
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

Summer 7-1-2018

Mining Temporal Activity Patterns On Social
Media
Nikan Chavoshi
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems
Commons, and the Other Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Chavoshi, Nikan. "Mining Temporal Activity Patterns On Social Media." (2018). https://digitalrepository.unm.edu/cs_etds/92

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/92?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Nikan Chavoshi
 Candidate

 Computer Science
 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 Abdullah Mueen , Chairperson

 Jared Saia

 Jedidiah Crandall

 Danai Koutra

Mining Temporal Activity Patterns On Social
Media

by

Nikan Chavoshi

B.S., Computer Engineering, Amirkabir University of Technology, 2011
M.S., Computer Networks, Amirkabir University Technology, 2013

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2018

iii

Dedication

This dissertation is dedicated to

my husband Hossein,

my parents Mahnaz and Amir,

and my brother Ehsan.

iv

Acknowledgments

First of all, I would like to thank my advisor, Professor Abdullah Mueen. He has
been supportive since the first day I arrived at UNM. He taught me how to find interesting
problems and grow as an independent researcher. He is always open to new ideas, and it
has been an enjoyable experience to work with him.

Besides, I would like to thank my committee members, Danai Koutra, Jared Saia, and
Jedidiah Crandall for their valuable comments on my dissertation.

I would like to give my sincere thanks to my manager at Visa Research, Hao Yang,
who has been a great mentor since I met him for the first time.

Thank you to Amanda and Noor for being such wonderful lab mates. I will never
forget the time and fun we had together.

I would like to thank my parents, Mahnaz and Amir, for their endless love and support.
They have always helped me to get through tough times, and bared with me during stressful
situations. Thank you to my brother, Ehsan, for always being there for me. They make me
believe in myself and I am so lucky to have them in my life.

Finally, thank you to my lovely husband, Hossein, for being such an amazing friend,
collaborator, and teacher. No matter what I ask, he answers patiently. I really could not
make my deadlines without his help in managing the time. He is always confident in my
abilities and gives me the motivation that I need to continue. I am really blessed to have
him in my life.

v

Mining Temporal Activity Patterns On Social
Media

by

Nikan Chavoshi

B.S., Computer Engineering, Amirkabir University of Technology, 2011
M.S., Computer Networks, Amirkabir University Technology, 2013

Ph.D., Computer Science, University of New Mexico, 2018

Abstract

Social media provide communication networks for their users to easily create and share

content. Automated accounts, called bots, abuse these platforms by engaging in suspicious

and/or illegal activities. Bots push spam content and participate in sponsored activities to

expand their audience. The prevalence of bot accounts in social media can harm the us-

ability of these platforms, and decrease the level of trustworthiness in them. The main

goal of this dissertation is to show that temporal analysis facilitates detecting bots in so-

cial media. I introduce new bot detection techniques which exploit temporal information.

Since automated accounts are controlled by computer programs, the existence of patterns

among their temporal behavior is highly predictable. On the other hand, patterns emerge

in human temporal behavior as well since humans follow cyclic schedule. Therefore, we

need a solution that can differentiate between these two classes by learning patterns of

each. For my Ph.D. dissertation, I focus on the temporal behavior of social media users

for the following purposes: 1. to show that high temporal correlation among users is com-

mon with automated accounts, 2. to design a system, called DeBot, which detects highly

vi

correlated accounts, 3. to improve the time complexity of calculating correlation for real-

time applications, and 4. to deploy deep learning techniques on temporal information to

classify social media users.

vii

Contents

List of Figures xii

List of Tables xviii

1 Introduction 1

1.1 An Unsupervised Bot Identification System 2

1.2 Improving Correlation Calculation for Sparse Time Series 3

1.3 Understanding Temporal Behavior of Social Media Users Using Inter-

posting Time Distribution . 4

2 An Unsupervised Bot Identification System 5

2.1 Introduction . 5

2.2 Related Work . 8

2.3 Definition and Background . 9

2.4 Significance of Correlation In Bot Detection 12

2.5 Real-time Activity Correlation . 15

Contents viii

2.5.1 Never-ending Bot Detection Framework 15

2.5.2 Clustering . 18

2.6 Empirical Evaluation . 20

2.6.1 Bot Quality: Precision . 20

2.6.2 Comparison to Non-temporal Methods 28

2.6.3 Bot Quality: Recall . 29

2.6.4 Bot Semantics . 29

2.6.5 Impact of Filters . 30

2.6.6 Parameter Sensitivity . 31

2.6.7 Scalability . 33

2.7 Temporal Patterns . 33

2.7.1 Periodicity . 34

2.7.2 Correlated Deletions . 35

2.7.3 Dynamic Clusters of Bots . 38

2.7.4 Burst in Bots . 42

2.8 DeBot Archive . 42

2.9 DeBot API . 43

2.9.1 API Functions . 44

2.10 Conclusion . 49

3 Improving Correlation Calculation for Sparse time series 51

Contents ix

3.1 Introduction . 51

3.2 Related Work . 53

3.3 Encoding Sparse Time Series . 54

3.3.1 Definition . 54

3.3.2 Sparse Time Series and Representations 55

3.3.3 Motivating Example . 58

3.4 AWarp Distance Measure . 58

3.4.1 Binary-valued Series . 58

3.4.2 Any-valued Series . 61

3.4.3 Invariance to Partial Encoding 64

3.4.4 Multidimensional Warping . 66

3.4.5 Constrained Warping . 68

3.4.6 Conversion of Representation 69

3.5 Experiments . 69

3.6 Data Mining Applications . 73

3.6.1 Bot Discovery in Twitter . 73

3.6.2 Temporal Patterns in Bot Activities 75

3.6.3 Pseudo-sparse Time Series Analysis 77

3.6.4 Behavioral Classification . 79

3.6.5 Power Usage Classification . 80

3.6.6 Unusual Review Pattern Discovery 82

Contents x

3.7 Conclusion . 83

4 Understanding Temporal Behavior of Social Media Users Using IPT 86

4.1 Introduction . 86

4.2 Related Work . 88

4.3 Why not model humans? . 89

4.4 Background and Notation . 92

4.4.1 Convolutional Neural Networks 92

4.5 Proposed Method . 94

4.5.1 Generating II-Map . 95

4.5.2 CNN Architecture . 96

4.6 Dataset . 97

4.7 Experiments . 100

4.7.1 Human vs. Bot . 100

4.7.2 Classifying into more categories 101

4.7.3 Impact of II-Map resolution . 101

4.7.4 Comparison with existing methods 102

4.8 Interpretation . 103

4.9 Conclusion . 104

5 Conclusion and Future Work 106

Contents xi

References 109

xii

List of Figures

2.1 (top) Two highly correlated Twitter accounts: Alan (left) and Filosofei

(right). (bottom) Six-minutes of correlated activities from these two

users. Warping - invariant correlation between them is 0.99, while cross-

correlation is 0.72 and Pearson’s correlation is 0.07. 6

2.2 Four phases of our bot detection process. The system takes a stream of

activities (e.g. Twitter Firehose) as input and produces groups of corre-

lated users in a pipelined manner. 15

2.3 A sample dendrogram of the suspicious users activities. Only a few users

fall below the restricted cutoff. The rest of the users are cleared as false

positives. 19

2.4 Comparison between the number of bots detected by DeBot, Twitter, and

Bot or Not? project (BoN) over time. (Note that we probed Twitter and

Bot or Not? for only the accounts in the base set.) 21

2.5 (left) Four bots showing different patterns in the minutes-of-hour vs.

seconds-of-minute plot. (right) Relative support of 4 different tests of

DeBot. 24

List of Figures xiii

2.6 Comparison between benign accounts and accounts we detect as bot (De-

Bot). The dashed lines show a complete separation in all of the features

between benign accounts and the accounts DeBot detects considering the

mean and the standard deviation. 26

2.7 Comparison between accounts we detect as bot (DeBot), accounts sus-

pended by Twitter and accounts detected as bot by Bot or Not? (BoN) . . 28

2.8 (left) Recall rates of three different techniques in detecting bots from

around 8,600 of Twitter accounts. (right) Impact of different filters on

the total number of tweets and number of tweets per user. 30

2.9 Effect of parameters on the detection performance, base window (left)

and number of buckets (right). 31

2.10 (left) Effect of maximum lag in seconds on the detection performance

(left). Cluster sizes in sorted order (right). 32

2.11 Distribution of periodicity . 34

2.12 Total activities of two users over 18 hours show no correlation. A zoomed

in segment of deletion activities show perfect correlation suggesting the

accounts are bots. 36

2.13 Deletion behavior of bot accounts. Two clear clusters exist, one that

deletes every 600 seconds (i.e. 10 minutes) and the other that has bursty

deletion behavior with no periodicity. 37

2.14 Three users A, B and C changing their groups. 39

2.15 (top) Frequency distribution of hourly count of handovers. (bottom) An

example user with daily periodicity and a strong activity association with

handover. 40

List of Figures xiv

2.16 Three accounts with almost identical activity profile and correlated han-

dovers. Handovers initiate change in activity patterns. 41

2.17 Number of bots detected by DeBot per day. Gaps indicate downtime due

to update and maintenance. 41

2.18 How we offer different services. (left) The blue section of the figure

shows how the DeBot’s archive API works. (right) The red section of the

figure shows how our asynchronous on-demand bot detection platform

operates. 42

3.1 (left) Day-long signals generated from the front doors of two single-

resident apartments of two users. (right) Euclidean distance cannot cap-

ture the difference between the two users, while DTW distance can. . . . 52

3.2 (a) Two sparse time series x and y and their DTW matrix. (b) The AWarp

matrix for their encoded versions, X and Y. (c) The AWarp matrix for a

constraint window of size 5. 57

3.3 Twelve cases covered by the Algorithm 1. OBS: observation, ROZ: run

of zeros. 60

3.4 An example demonstrating that optimal alignment in the encoded repre-

sentation is not possible. 62

3.5 AWarp LB and AWarp UB on encoded series with respect to DTW on

vector representation. On average, 90% of the times the upper bound is

within 5% of the true distance. Sample time series are shown inside. . . 65

3.6 (left) The exactness of constrained AWarp LB and AWarp UB for vari-

ous windows. (right) The error and exactness of partially encoded repre-

sentation as we split runs of zeros into halves iteratively. 66

3.7 Speed and accuracy with respect to the sparsity and size of the datasets. . 71

List of Figures xv

3.8 Speed accuracy trade-off for various methods and implementations. . . . 73

3.9 (Left) Time series of a cluster of 35 bots. Each spike is one tweet. Note

the warping in time axis. (Right) Dendrogram of the Twitter accounts

using constrained (60 sec) AWarp. Most of the random users are outliers

and several clusters of bots are formed. 74

3.10 Example of time series motif in bot activities. x-axis is in millisecond,

y-axis shows number of tweets. 75

3.11 Example of discord in bot activities. x-axis is in millisecond, y-axis

shows number of tweets. 76

3.12 Example of a motif discovered in seismograph after conversion to sparse

time series. 77

3.13 Clustering Google Trends with AWarp. 79

3.14 Multidimensional power usage data from two households. Each time

series is 1 day long at 5 minutes resolution starting at midnight. There is

neither a fixed schedule nor a fixed load to these appliances. 81

3.15 Review time series found as outliers illustrate the capacity hit and subse-

quent two day cycle in the data collection system. 82

4.1 Inter-posing time distributions of four human users (manually verified).

Plots show that humans can have very different temporal patterns. . . . 87

List of Figures xvi

4.2 IPT distributions. a) Bimodal distribution introduced by RSC. The two

modes are 100 seconds and 10,000 seconds respectively. b) IPT distribu-

tion from a manually verified human user. The IPT distribution is gen-

erated using recent tweets of the user for more than 8 weeks. The plot

shows that the longest inactive duration for this user is about a day. c)

IPT distribution of a bot account detected by DeBot and also suspended

latter by Twitter. Again, the plot is generated by using recent tweets of

the user for more than 8 weeks. d) Odds Ratio for 4 human users and 4

bot accounts. 90

4.3 a) Distribution of IPT from all users. b-f) II-Map with different range R

and bin size B . 91

4.4 Architecture of designed CNN. It has four convolution and three pooling

layers. Having a fully connected layer at the end, necessitate us to flatten

2D matrices after the last pooling layer and before the fully connected

layer. Figure also shows the details of each layer hyper parameters. The

input of this network is a stacked II-Map, Relu is the activation function

for convolution layers, and Adadelta is the optimizer. 94

4.5 Confusion matrices: Plots (a) and (b) are results of classification consid-

ering 2 classes of users. Plots (c) and (d) show results of classification by

considering accounts from two bot detection methods separately. These

matrices show: 1) DeBot and Botometer focus on two different types of

bots. 2) Further ability of proposed method in understanding underlying

patterns of bot temporal behavior from these two different bot detection

methods. 100

List of Figures xvii

4.6 The impact of using different resolutions. The (left) plot shows validation

accuracy. The (right) plot shows testing accuracy and training time. The

accuracy we get from higher resolution is not significantly different from

lower resolution; however, training time is remarkably different. 102

4.7 Samples of CAM for bots and humans. (a) Bots activation maps show

more intense colors. (c) Columns have more influence on Organic human

class. 105

xviii

List of Tables

2.1 The fraction of accounts are suspended by Twitter and comparison be-

tween Debot and Bot or Not?. Numbers show that Twitter suspension

process is mainly towards per-user method. 22

2.2 Confusion Matrix . 27

2.3 Several examples of the clusters of Twitter accounts with common nam-

ing and synchronicity. A more comprehensive list is available at [23]. . . 50

3.1 Dataset summary . 70

3.2 Speedup achieved on real datasets. 72

3.3 Accuracies of different distance functions 80

3.4 Accuracy of different distance functions. 81

4.1 Summary of the collected data . 99

4.2 Our model vs. rsc . 103

1

Chapter 1

Introduction

Today is the age of Social Media. Spending time on websites such as Facebook, Twitter,

Pinterest and LinkedIn is a daily habit of Internet users. In November 2016, it was reported

that 70% of American adults have at least one social media account [8]. Users find social

media sites suitable platforms to interact with one another, get and share information,

generate new content, and discuss opinions. These sites give us ease of connectivity, but

also have a major drawback: the prevalence of automated accounts that pretend to be

human. Automated accounts, known as bots, are those accounts controlled by computer

programs. The majority of bots carry out illegal activities, such as posting inappropriate

content [4], participating in sponsored activities [38], and manipulating top trend topics

[24].

In a world most online interactions occur through social media sites, the existence of

social bots can cause significant harm. These bots can deceive people and gain their trust,

then send them false information to intentionally mislead or defraud them. Spreading

untrue ideas online, can change social decisions on political topics or consumers opinions

on buying a new product. Since it is hard to calculate, the exact number of bots in social

media is not available. One study has shown that 8.5% of accounts in Twitter are bots

[85]. Social media sites themselves have their own mechanism to suspend these accounts.

Chapter 1. Introduction 2

Although these mechanisms do suspend many accounts, since the process of creating a

new account is easy, the number of bots is still increasing everyday. Therefore, studying

bots is of critical importance.

The main goal of this dissertation is to identify automated accounts in social media by

analyzing their temporal behavior. Targeting this goal, we have designed and implemented

an unsupervised system, called DeBot, to detect automated accounts using Twitter data. In

Chapter 2 we discuss details of DeBot and evaluate detected bots by comparing our method

with two other existing methods. DeBot has been up and running since August 2015. We

provide an API to make the database of bots accessible to other researchers. The details

of this API are explained in Chapter 2. DeBot is a near-real-time system, which means we

need to process data quickly. Chapter 3 introduces a fast distance measure which we use in

DeBot to do real-time detection. In the last chapter we study temporal dynamics of social

media users. Then, we will use this knowledge and deep learning methods to introduce a

supervised bot detection technique and give better understanding of underlying dynamics.

1.1 An Unsupervised Bot Identification System

As discussed, bot accounts are quite common in social media. Most bots inappropriately

pretend to be human, entice people to follow, harvest human followers, spread unethical

content and run advertising, election, and marketing campaigns. Due to dynamic nature

of social media and the fact that bots are getting smarter, bot detection methods are lim-

ited. Moreover, most of existing methods consider user accounts independently of other

accounts.We have developed a real-time activity-correlation finder on Twitter, named De-

Bot, to detect highly correlated user accounts, which are very unlikely to be human. This

approach to bot detection considers cross-matching users and can detect bots as soon as

they begin posting. Our correlation finder works at a rate of 48 tweets per second for mil-

lions of users and discovers groups of abnormally correlated accounts. This correlation

finder also produces a daily report on the latest correlated bots.

Chapter 1. Introduction 3

We observe that most of these bots appear to be humans, but their synchronicity with

other users reveals severe abnormality. Our studies show that a group of correlated bots are

often functionally related, and that bots change groups dynamically. We also identify bots

that are not correlated in their aggregate activities but instead in their deletion activities.

Such deletions are done either periodically or in bursts based on the volume of tweets that

are deleted. We observe that some bots can avoid suspension and remain active for months,

and we show that DeBot detects bots at a rate higher than the rate Twitter is suspending

them.

1.2 Improving Correlation Calculation for Sparse Time

Series

Dynamic Time Warping (DTW) distance has been effectively used in mining time series

data in a multitude of domains [51]. However, in its original formulation DTW is ex-

tremely inefficient, with quadratic time complexity at comparing long sparse time series,

containing mostly zeros and some unevenly spaced non-zero observations. The original

DTW distance does not take advantage of this sparsity, leading to redundant calculations

and a prohibitively large computational cost for long time series.

We derive a new time warping similarity measure (AWarp) for sparse time series that

works on the run-length encoded representation of sparse time series. The complexity of

AWarp is quadratic on the number of observations as opposed to the length of the time

series. Therefore, AWarp can be several orders of magnitude faster than DTW on sparse

time series. AWarp is exact for binary-valued time series and a close approximation of

the original DTW distance for any-valued series. We discuss useful variants of AWarp:

bounded (both upper and lower), constrained, and multidimensional. DeBot uses AWarp

to calculate correlation among activity signals of users faster. Other potential areas of

application include human activity classification, search trend analysis, and unusual review

Chapter 1. Introduction 4

pattern mining.

1.3 Understanding Temporal Behavior of Social Media

Users Using Inter-posting Time Distribution

Over the course of developing DeBot and AWarp, we learned that the posting schedule

reveals characteristic patterns of users on social media. Motivated by this knowledge, sev-

eral researchers have tried to introduce a single generic model to explain human temporal

behavior. It is true that circadian rhythms induce regularity in human temporal behavior;

however, we show that this regularity is an individual trait and insufficient to develop a

generic model. In the last chapter of this dissertation, we show the existence of various

patterns in human posting behaviors using inter-posting time (IPT). We also show that

bots are more structured in their posting behaviors compared to humans. We generate

IPT values by calculating differences between successive activity time-stamps (tweeting,

re-tweeting). We then explain why existing methods cannot work for all different cases.

Finally, we classify social media users either as humans or bots by using temporal infor-

mation and a Convolutional Neural Network (CNN).

5

Chapter 2

An Unsupervised Bot Identification

System

2.1 Introduction

In Chapter 1 we discussed the significant presence of bots in social media and harms that

they cause.Social media sites such as Twitter suspend abusive bots [92]. Irrespective of

suspension, the number of bots is growing because of the ease of account creation. After

creation they achieve high numbers of followers by producing lots of activities focused on

certain topics (e.g. movies, politics). We observe that, the number of bots is increasing at

a rate higher than the rate Twitter is suspending them.

Existing bot detection methods are not capable of fighting this dynamic set of mis-

creants. Because, current methods are mostly non-adaptive and consider accounts inde-

pendently [99][33]. Typical features used in some of the methods need a long duration

of activities [103], rendering the detection process useless as the bots can initiate a fair

amount of harm before being detected. Moreover, bots are becoming smarter. They mimic

humans to avoid being detected and suspended, and increase throughput by creating many

Chapter 2. An Unsupervised Bot Identification System 6

accounts. We take a novel unsupervised approach of cross-correlating account activities,

that works in real time to detect such dynamic bots.

0

1

2

40 Seconds

Alan
Filosofei

Time

Warping

Figure 2.1: (top) Two highly correlated Twitter accounts: Alan (left) and Filosofei (right).
(bottom) Six-minutes of correlated activities from these two users. Warping - invariant
correlation between them is 0.99, while cross-correlation is 0.72 and Pearson’s correlation
is 0.07.

Our novelty is in using activity correlation as an absolute indicator of bot behavior.

Millions of users interact in social media at any time. Even at this large scale, human

users are not expected to have highly correlated activities in social media for even a small

duration, let alone hours. A video capture of two completely unrelated (no one follows

the other) and yet perfectly correlated Twitter accounts is shown in [23], and a snapshot is

shown in Figure 2.1 (better in high resolution). Such correlation in tweeting activities is

Chapter 2. An Unsupervised Bot Identification System 7

only possible if the accounts are controlled automatically, indicating that the accounts are

bots. High lagged and warped correlation are also unlikely to happen for the same reason.

In Figure 2.1(bottom)), we show the activities of two lagged correlated users, Alan and

Filosofei, who retweeted many identical pairs of tweets at exactly ten seconds of lag and,

therefore, the users must be classified as bots.

We develop a system, named DeBot, to correlate Twitter users in real time to identify

bot accounts. Traditional correlation coefficients such as Pearson’s are non-elastic, they

are not suitable for activity time series because of warping and lag induced by bot con-

trollers, network delays and internal processing delays in Twitter. Example of warping in

activity time series is shown in Figure 2.1(bottom). We allow time-warping by calculating

correlation using the Dynamic Time Warping (DTW) distance for time series [49]. DTW

calculates the optimal alignment between two time series to minimize distance between

them [16]. The detail process of DTW calculation is provide in section 2.3.

Our system collects tweets from the Twitter API at 48 tweets per seconds, which is the

maximum rate we get from Twitter API. Our system hashes the users of the tweets in a

sliding window into buckets of suspiciously correlated users. We use a cross-correlation

(O(n log n)) based hashing technique to approximate expensive DTW distances (O(n2)).

Finally, the system validates the correlation among the suspected users with account-

specific listeners and output valid bots.

Our contribution in this work is mainly twofold, developing the correlation finder and

analyzing the bots to understand their dynamics. Specifically:

• We develop a novel real-time correlation finder which is the first (to our knowledge)

unsupervised method to detect bots in social media. Our system detects more bots

than existing supervised techniques can.

• Our system is up and running since August 2015 and detects bots everyday. Only

a portion of these bots are suspended by Twitter. We show this significant gap that

can potentially lead to a massive bot outbreak.

Chapter 2. An Unsupervised Bot Identification System 8

• We show that bots are functionally grouped and that individual bots change mem-

berships to move between groups.

• We show that bots may be correlated only when they are deleting posts. We show

that bots delete tweets in bursts or periodically, depending on the volume of the

tweets.

The rest of this chapter is organized as follows. We start with a quick background on

correlation computation in Section 2.3. We describe our core techniques in Section 2.5,

including the never-ending correlation tracker and bot clustering algorithm. We perform

a comprehensive evaluation of our method in Section 2.6. We discuss couple of novel

observations about the behavior of the social media bots detected by DeBot in Section 2.7.

In section 2.2 we review related work, and conclude in Section 2.10.

2.2 Related Work

Real-time correlation monitoring: Real-time correlation monitoring has been a well-

researched topic for over a decade now. One of the first works is StatStream [106], which

can monitor thousands of signals. In [76], authors show a method to monitor lagged

correlation in streaming fashion for thousands of signals. In [30], authors develop a sketch

(i.e. random projection) based correlation monitoring algorithm that does not consider

time warping. Twitter stream can provide tweets of millions of users which are at least an

order of magnitude more in number, and an order of magnitude less in density than the

method in [30], and time warping exists in Twitter. Such warped sparseness has not been

addressed previously for correlation monitoring.

Twitter spam detection: A good characterization of spammers in Twitter is presented

in [42]. Authors concluded that 92% of the accounts that Twitter suspends for spamming

activities are suspended within three days of the first post. Therefore, if a spamming bot

survives one week, it is very likely to survive a long time. Our work identifies bots that are

Chapter 2. An Unsupervised Bot Identification System 9

tweeting for months, if not years. In [89], authors characterize the spam detection strate-

gies very well. Spam detection methods that analyze social graph properties, characterize

contents and rates of postings, and identify common spam redirect paths, are typically at-

abuse methods. Such methods find the spam after the spam has done the harm. In contrast,

our method can detect accounts registered by account merchants which will eventually be

sold to miscreants, and thus, our method detects these bots soon-after-registration to pre-

vent future abuse. Detecting bots by correlating users is our novelty.

Other relevant works include detecting campaign promoters in Twitter [57]. Correlat-

ing user activity across sites (e.g. Yelp and Twitter) can provide useful information about

linked-accounts, and thus, form a basis of privacy attack [41]. In [40], authors perform

offline analysis to discover link-farming by which spammers acquire a large number of

followers. In [61], authors develop a fast algorithm to mine millions of co-evolving sig-

nals and find anomalies. In [18], authors find temporally coherent collaborative Liking of

Facebook pages. As opposed to these works, our focus is to correlate within the same site

to identify bot accounts that already are or will potentially become spammers.

2.3 Definition and Background

The activity signal of a user in social media consists of all the actions the user performs

in a temporal sequence. Actions include posting, sharing, liking, tweeting, retweeting

and deleting. The sequence of timestamps of the activities of a user-account (or simply,

a user) typically forms a very sparse time series with mostly zero values and occasional

spikes representing number of actions in that specific second. Throughout this chapter,

we assume a one-second sampling rate. Although the method does not require such an

assumption, we find it realistic for bot detection in social media. We define the problem

we solve as follows.

Chapter 2. An Unsupervised Bot Identification System 10

Problem: Find warping-invariant correlated groups of users from activity signals at

every T hours.

The core part of the above problem is comparing pairs of users to determine correlated

groups, which is an unsupervised, quadratic matching process. To facilitate discussion, we

define terms and functions and provide necessary background before further details of our

method.

Correlation: The correlation coefficient between two signals captures the similarity be-

tween the signals. There are several measures of correlation and the most commonly

used coefficient is Pearson’s coefficient. For a time series x and y of length m, Pearson’s

correlation coefficient is defined as follows. This formulation is suitable for one-pass im-

plementation.

C(x, y) =
P

xy�mµxµy

m�x�y

µx =
Pm

i=1 xi

m

�x =
qPm

i=1(xi�µx)2

m

Cross-correlation: Cross-correlation between two signals produces the correlation co-

efficients at all possible lags. For two signals x and y of length m and integer lag ⌧

(⌧ 2 [�m,m]), a discrete version of cross-correlation ⇢xy is defined as follows

⇢xy(⌧) =

8
<

:
C(x1:m�⌧ , y⌧+1:m) , ⌧ � 0

C(x|⌧ |+1:m, y1:m�|⌧ |) , ⌧ < 0

Here the : operator is used to represent an increment-by-one sequence. Note that

⇢xy(⌧) = ⇢yx(�⌧).

Typically, for large lag (⌧), cross-correlation is meaningless for lack of data. In reality,

every domain has a range of interesting lags. For example, a lag of seconds is meaningful

for physicians reading ECG data, while a lag of years is meaningful for climate scientists.

Chapter 2. An Unsupervised Bot Identification System 11

For two signals x and y of length m, cross-correlation takes O(m logm) time to compute

2m� 1 coefficients at all lags.

Dynamic Time Warping: Dynamic time warping allows signals to warp against one

another. Simply put warping is stretching/squeezing a time series along time. Example of

warping is shown in Figure 2.1. DTW distance is calculated using dynamic programming.

Constrained version of it allows warping within a window of w samples and is defined as

follows

DTW (x, y) = D(m,m)

D(i, j) = (xi � yj)
2 +min

8
>>><

>>>:

D(i� 1, j)

D(i, j � 1)

D(i� 1, j � 1)

D(0, 0) = 0, 8i>0,j>0D(i, 0) = D(0, j) =1

8|i�j|>wD(i, j) =1

If x and y are z-normalized, DTW distance can be converted to a warping-invariant

correlation measure with a range of [-1,1]. If the number of squared errors, that are added

to obtain a distance, is p then the warping-invariant correlation is 1� DTW 2(x,y)
2p . Minimiz-

ing DTW distance effectively maximizes the warping-invariant correlation. For simplicity,

we adopt the notion of minimizing the DTW distance for the rest of this document. For

more detail, we suggest consulting [49][66].

Random Projection: Random projection has been used in high dimensional K-nearest

neighbor search for over a decade now [20]. It has also been shown to work for time series

similarity search in real time [30]. The key idea is to project each high dimensional time

series on k random directions. By Johnson-Lindenstrauss lemma, it is probabilistically

guaranteed that distance between points in the projected space will closely approximate

distances between points in the high dimensional space [20].

Chapter 2. An Unsupervised Bot Identification System 12

Structured random projection is a computationally efficient method with slight degra-

dation in quality [19]. The trick is to use structured random vectors in such a way that only

a few of the k projections are calculated exactly, and the remaining projections will be just

a combination of the already calculated ones. In this project, we use cross-correlation

based random projection. State it differently, we generate one random vector and rotate

the dimensions in both clockwise and anti-clockwise manner to produce the remaining

random vectors. Note that cross-correlation can calculate the projections on k lagged vec-

tors in O(n log n) time, independent of k and depending only on the dimensionality n. We

use cross-correlation to perform random projection which is expected to capture lagged

similarity.

There are dozens of other dimensionality reduction techniques for time series data that

lower-bound Euclidean distance [50][66]. These lower bounds have been used to perform

unsupervised pair-wise matching [64] for millions of time series under Euclidean distance.

As we explained, we need warping-invariant correlation and there was no work on pair-

wise warping-invariant matching at a scale of millions of time series before ours.

2.4 Significance of Correlation In Bot Detection

In this section, we analyze the significance of correlation in detecting bots. We first assume

each user tweets independently and then relax the restriction.

We estimate the probability of two users having n posts at identical timestamps among

m seconds when there are N such active users. We assume the users are independently

tweeting. There are M = m
n possible ways a user can post n actions in m seconds. Let

us estimate the probability p̂ that no two users have n identical timestamps under user

independence.

p̂ = 1⇥ M � 1

M
⇥ M � 2

M
⇥ . . .⇥ M �N + 1

M

The probability p of at least two users posting at the same n seconds in m seconds is

Chapter 2. An Unsupervised Bot Identification System 13

simply 1� p̂.

p = 1� M !

MN(M �N)!

Note that, if N > M then p = 1, as there are more trials (i.e. users) than possible options

(i.e. combination of seconds). If we realistically set N = 109 and m = 3600, p sharply

goes down from one to zero, when we move from n = 6 to n = 8. Therefore, observing

two users with seven or more identical posting timestamps is an extremely unlikely event

when users are independent.

Let us now consider the warped instance of the above estimation. If the warping con-

straint is w, then we can pessimistically assume that any pair of the n tweets are more

than 2w apart. This ensures that, for each of the n tweets, there can be a maximum of

W = 2w + 1 locations available for an equivalent tweet. The new expression for p̂ is the

following.

p̂ = 1⇥ M �W
n

M
⇥ M � 2W n

M
⇥ . . .⇥ M �NW

n

M

Similar to the exact matching, in case of warped matching, p = 1 � p̂ tends to zero for

n = 13 when w = 20 seconds, N = 109 and m = 3600.

Let us now consider the dependent case where the Twitter users react to similar news

or events in similar ways. Let us assume q is the probability of a user reacting to any tweet

within ±w seconds of the relevant tweet. The probability of none of the n tweets of a user

fall within ±w of n tweets from another user is 1� q
n. The expression for p̂ becomes the

following.

p̂ = 1⇥ (1� q
n)⇥ (1� 2qn)⇥ . . .⇥ (1�Nq

n)

Note that, in the equal probability case, q = 2w
m , which is identical to the p̂ for warped

correlation. In an extreme scenario, if users are perfectly in sync, q = 1 ensures p̂ = 0 and

Chapter 2. An Unsupervised Bot Identification System 14

p = 1. If q = 0.25, p tends to zero for n = 40 and if q = 0.5, p tends to zero for n = 80.

However, q = 0.25 is an extremely high probability. To elaborate, consider how many

tweets/posts, that a user sees, is retweeted or shared. For an average user, it may be one

in every few. Now consider how many a user shares within w seconds of seeing, which

should be much less. Then consider how many a user shares within w seconds of another

user authoring the tweets or retweets, which should be even smaller.

Thus, even for this unlikely high probability of a user tweeting or retweeting within

±20 seconds (q = 0.25) of another tweet, the probability of two users with forty or more

matching tweets in an hour is close to zero. Our system, therefore, considers users with

at least forty tweets in an hour and identifies highly correlated (� 0.995) users as bots

because of their extreme unlikelihood of being humans. This approach of identifying bots

is highly precise with almost no false-positive.

One may think that evading detection by this simple approach is a very easy task. It

is indeed very simple to evade such detection by inserting unbounded random time delays

among the same tweet from many accounts. However, such randomization will severely

damage the throughput of a bot-master, making it worthless to maintain large pool of

uncontrolled bots. Moreover, although evasion is fairly easy, we have detected hundreds

of thousands of unique correlated bots that are freely operating in absence of such a simple

detection system.

We do not claim that correlated bot detection is the solution to bot related problems

in social media. Detecting benign or malicious bot is out of the scope of this work. We

simply suggest that detecting correlated bots has a potential to improve the performance

of suspension systems that safeguard large social networks, eventually increasing the cost

of bot operation and maintenance.

A pathological argument against correlated bot detection is that a human user may be

identified as bot if some bots mimic the human user. If a human user is mimicked by bots,

it is an urgent matter to take some action, such as blocking all of the accounts and asking

Chapter 2. An Unsupervised Bot Identification System 15

all the users to prove their humanity once again. Naturally, only the human user can prove

it while the bot mimickers will just remain blocked.

2.5 Real-time Activity Correlation

U3

U1
U2

U4

Un

Collector

Keyword
swarmapp

https-www-@
Youtube
instagram

Indexer U1
×3a

b
c
d

e
f
g

U5
×3 U6

×2U2
×2 U9

×3

U1
×1

h

U8
×1

U3
×1

U7
×1

U2
×5 U3

×1 U4
×1 U7

×1

U1
×3 U2

×3 U5
×3 U9

×1

U3
×1 U5

×1 U6
×2

U3
×2 U8

×3

U3
×1 U4

×2 U7
×1 U8

×2 U9
×3

U8
×1 U1

U5
U9
U2

Listener

Validator

U9

U1
U5

U2

Hash Table

U5 U9 U1 U2

Figure 2.2: Four phases of our bot detection process. The system takes a stream of activi-
ties (e.g. Twitter Firehose) as input and produces groups of correlated users in a pipelined
manner.

We start describing our technique with first components of the never-ending bot detec-

tion framework of DeBot in section 2.5.1. Then explain the last stage of DeBot, how we

cluster bots, in section 2.5.2.

2.5.1 Never-ending Bot Detection Framework

In this section, we describe our never-ending framework of detecting bots every T hours.

The framework consists of four components which are shown in Figure 2.2.

The four components of the process are: collector, indexer, listener and validator. The

collector collects tweets that match with a certain set of keywords for T hours using the

filter method in the API. The matching process in the Twitter API is quoted from the

Twitter’s developer’s guide for clarity. “The text of the Tweet and some entity fields are

Chapter 2. An Unsupervised Bot Identification System 16

considered for matches. Specifically, the text attribute of the Tweet, expanded url and

display url for links and media, text for hashtags, and screen name for user mentions are

checked for matches.” The collector forms the time series of the number of activities at

every second for all of the user-accounts. The collector filters out users with just one

activity because correlating one activity is meaningless. The collector then passes the time

series to the indexer.

Note that, as we are using the filter method, we may not receive all the activities

of a given user in the T hour period. This clearly challenges the efficacy of our method,

as subsampled time series may add false negatives. Even though we may have false neg-

atives, our method outperforms existing bot detection techniques by far (see Section 2.6).

Moreover, this issue simply goes away when site-owners use our method on the complete

set of user activities.

The indexer takes the activity time series of all the users as input, hashes each of them

into multiple hash buckets, and reports sets of suspicious users that collide in the same hash

buckets. In order to calculate the hash buckets for a given set of time series, the indexer

uses a pre-generated random time series r, calculates the cross-correlation between each

time series and r, and finally calculates 2w + 1 hash indexes for different lags. Here, w

is a user-given parameter representing the maximum allowable lag. For example, assume

that the cross-correlation between time series s and r is calculated. The w = 0 produces

one index when s and r are perfectly aligned. The w = 1 produces three indexes when s

or r can be lagged at most for one second.

Theorem 1. If two infinitely long time series x and y are exactly correlated at a lag l w

then they must collide in exactly 2w � l buckets.

Proof. Let us assume r is the reference object of the same length as of x and y. Without

loosing generality, let us assume ⇢xy(l) = 1.0 and l � 0 (if l < 0, we can swap x and

y). Every alignment of r with x has a corresponding alignment of r with y at lag l. Both

of these alignments produce the same correlation and result into a collision in the hash

Chapter 2. An Unsupervised Bot Identification System 17

structure. Formally, ⇢xr(i) = ⇢yr(i � l) for any i 2 [�w,w]. Exactly three ways this can

happen.

• If i < 0, ⇢xr(�i) = ⇢rx(i) and ⇢yr(�i � l) = ⇢ry(i + l) are equal because r1 is

aligned with xi and yi+l.

• If 0 < i < l, ⇢xr(i) and ⇢yr(i� l) = ⇢ry(l � i) are equal because ri is aligned with

x1 and yl.

• If i > l, ⇢xr(i) = ⇢yr(i� l) is trivially true because ri is aligned with x1 and yl.

Now, for i < �(w � l), ⇢yr(i� l) is not calculated by our hash function. Therefore, only

valid range for i is [�(w � l), w] that gives us 2w � l collisions.

Once hashed, the indexer finds a list of suspicious users which are qualified users in

qualified buckets. Qualified users are those who have more than bw4 c occurrences in a

specific bucket. Similarly, qualified buckets have more than bw4 c qualified users. We go

through each qualified bucket and pick qualified users in them to report as suspicious users.

Example: In Figure 2.2, we show a collision scenario. We name the buckets a through h.

Let us assume w = 12 here. Each user is hashed in these buckets 25 times. The number of

occurrences of a user is denoted by the superscript. We need bw4 c=3 occurrences of a user

account in the same bucket to qualify, e.g. U2 is a qualified user in bucket d. Qualified

users are marked with green ellipses. However, bucket d is not a qualified bucket as it

does not have three qualified users. Buckets a and e are qualified because they have three

qualified users each. Thus from the hash table in Figure 2.2, we extract four suspicious

users: U1, U5, U9, and U2 which are circled with solid line.

The listener listens to the suspicious users exclusively. In this step, instead of using

keywords, the Twitter stream is filtered by using suspicious user accounts. The listener

is different from the collector in a principled way. The listener receives all the activities

of a suspicious user over a period of T hours, while the collector obtains only a sample

Chapter 2. An Unsupervised Bot Identification System 18

of the activities in the first phase. The listener will form the activity time series of the

suspicious users and send them to the validator. The listener filters out users with less

than ten activities. This is a very important design choice that is directly related to the

significance of our method. As mentioned in the introduction, the chance of two signals

with ten or more activities being perfectly correlated over an hour is 10�35. Therefore,

considering the users with more than ten correlated activities increases the significance of

our framework.

The validator, reads the suspicious time series from the listener and checks their va-

lidity. The validator calculates a pair-wise DTW distance matrix over the set of users, and

clusters the users hierarchically up to a very restricted distance cutoff. A sample of hier-

archical cluster is shown in Figure 2.2. After clustering, every singleton user is ignored

as false positive and the tightly connected clusters are reported as bots. For clarity, we

describe the clustering process separately in section 2.5.2.

2.5.2 Clustering

The validator calculates the pair-wise constrained DTW distances for all of the suspicious

users. We use the maximum allowable lag (i.e. w) from the indexer as the window size for

constrained DTW. As mentioned before, although we want to maximize warping-invariant

correlation, we focus on minimizing DTW distance.

The validator then performs a hierarchical clustering on the pair-wise DTW distances

using the “single” linkage technique that merges the closest pairs of clusters iteratively.

A sample dendrogram is shown in Figure 2.3, which shows the strong clusters and the

numerous false positives that we extract from the time series.

We use a very strict cutoff threshold to extract highly dense clusters and ignore all the

remaining singleton users. For example, in Figure 2.2, U1, U5 and U9 are clustered together

and U2 is left out as false positive. The cutoff we use is a DTW distance of 0.1, which is

Chapter 2. An Unsupervised Bot Identification System 19

0

0.5

1
1.5

2

2.5

3

Clusters

False Positives

Cutoff=0.1

Figure 2.3: A sample dendrogram of the suspicious users activities. Only a few users fall
below the restricted cutoff. The rest of the users are cleared as false positives.

equivalent to a warping-invariant correlation of ⇠1.0. The extracted clusters contain bot

accounts by definition. Each cluster also contains semantically similar user accounts. We

discuss some of these clusters in 2.6.

As we pass more periods of T hours, we can merge these clusters to form bigger

clusters. This is an important step, because bots form correlated groups and may disband

them dynamically. Therefore, an already detected bot can reveal a new set of bots in

the next T hour period. While merging these clusters, we use a simple friend-of-friend

technique. If two clusters share one user in common, we merge them. Although it may

sound very simple, we see that such a simple method can retain high precision because of

the overwhelming number of existing bots.

Large clusters are generated by the merging process. Typically, large clusters contain

highly periodic behaviors. For example, we found a big cluster of 2,427 user accounts,

that tweet every one or two seconds in T = 2 hours. Although these accounts are bots

because of their too accurate periodicity, some of them may not be as harmful as others.

For example, countforever is a Twitter account that has a fixed periodicity, and it only

tweets the value of an ever-increasing counter.

Smaller clusters show more human-like behavior than bigger ones. They pause for

random durations and tweet on specific topics. Therefore, smaller clusters group bots that

Chapter 2. An Unsupervised Bot Identification System 20

are hard to find for lack of activity. Alan and Filosofei (Figure 2.1) are such bots. The

evaluation of our detected bots is given in section 2.6.

2.6 Empirical Evaluation

We start with our reproducibility statement. All of the experiments in this section are

exactly reproducible with code and data provided on the supporting page [23]. Our method

is deployed to produce a daily report of the bot accounts by analyzing the activities in the

previous day. We listen to Twitter API to collect sets of suspicious users, using one server

machine for 5 hours a day, and we validate them in the remaining 19 hours of the day. The

daily reports are all available at [23].

We have three inter-dependent parameters: the number of buckets (B=5000) in the

hash table, the base window (T=2 hours), and the maximum lag (w=20 seconds). Unless

otherwise specified, the default parameters are used for experiments. All the numbers are

averaged over five runs at different times of the day.

2.6.1 Bot Quality: Precision

Our method produces a set of clusters of highly correlated users based on just the tem-

poral similarity. As mentioned earlier, we find correlated users who have more than ten

synchronous activities in T hours. Any highly correlated group (> 0.99 correlation) can-

not appear at random and certainly discloses a family of bots.

Comparison with existing methods

Typically there are three approaches to evaluating the detected bots. The first approach

is to sample and evaluate the accounts manually [48]. The second approach is to set up

Chapter 2. An Unsupervised Bot Identification System 21

8/28 9/5 9/11 9/18 9/25
0

6K

12K

18K

Date

D

et
ec

te
d

Bo
ts

8/28

D

et
ec

te
d

Bo
ts

6/12 6/30 7/14 8/3
0

6K

12K

18K

Date

DeBot

Twitter

BoN

DeBot

BoN

Twitter

Static Dynamic

s

Figure 2.4: Comparison between the number of bots detected by DeBot, Twitter, and Bot
or Not? project (BoN) over time. (Note that we probed Twitter and Bot or Not? for only
the accounts in the base set.)

“honeypot” in order to produce labeled data by attracting bots, and then to evaluate a

method by cross validation [82]. The last approach is to check whether or not the accounts

are suspended by Twitter at a later time [88]. The first two approaches are suitable for

supervised methods and only produce static measurements at one instance of time. Our

major evaluation is done against Twitter over three months and we compare DeBot with

two other static techniques in the literature.

Comparison with Twitter

Twitter suspends the accounts that do not follow the Twitter rules [90]. Since most

bot accounts are producing spam content, we expect Twitter to suspend them. Here we

compare the results of our method with Twitter’s suspension process. We first ask the

question, how many bots that we detect are later suspended by Twitter? If Twitter suspends

them, we are certain that the bots were bad ones. To find the answer, we ran DeBot

every 4 hours for sixteen days (May 18 - June 3, 2015) and merged all the clusters into

one consolidated set of clusters using friend-of-friend approach. We picked the top ten

clusters that contained a total of 9,134 bot accounts to form our base set. On June 12,

2015, we began tracking these accounts via Twitter API to check whether or not they were

Chapter 2. An Unsupervised Bot Identification System 22

suspended. We checked every few days until August 28, 2015. Figure 2.4 (left) shows the

result of this experiment. Twitter increasingly suspended more bots that we had detected

months ahead. Twitter suspended 2,491 accounts in the very first probe and reached to

4,126 in the last probe. This means that roughly 45% of the bots were suspended by

Twitter in 12 weeks.

In the previous experiment, we kept the set of bots detected by DeBot fixed and probed

Twitter over time. Next we moved on to dynamic detection. On August 28, 2015, we

started running DeBot every week and including newly discovered bots in the base set of

bots that had been detected on June 3, 2015. In every run, we listened to Twitter for 7

successive days. The results are shown in Figure 2.4 (right). DeBot consistently found

new bots every week. We continuously probed Twitter to check the status of the newly

detected bots and updated the number of suspended accounts. The result tells the stunning

story that the number of bots we detect are increasing at a higher rate than the rate Twitter

is suspending them. This alarming outcome of our experiments needs immediate action

from Twitter to de-bot their network in a more aggressive manner. At the time of writing,

DeBot has accumulated a set of close to 170,000 bots (at the rate of close to 1500 bots per

day) that are available in our supporting page [23].

An obvious question one might ask is, how many bots that are not suspended by Twitter

are worth detecting? We answer the question by comparing our method with a successful

existing technique developed in the Botometer project [33] in the next paragraph.

July August September
BoN 0.58% 4.12% 37.43%

DeBot 0.33% 2.37% 21.60%

Table 2.1: The fraction of accounts are suspended by Twitter and comparison between
Debot and Bot or Not?. Numbers show that Twitter suspension process is mainly towards
per-user method.

Bot or Not? is a supervised technique to estimate the probability of an account being

bot. It uses account features, network features and content features to train a model [33]

Chapter 2. An Unsupervised Bot Identification System 23

and estimates a probability of “being bot” for a given account. We set a threshold of 50%

or more to classify an account as bot and found that 59% of the bots in our base set were

also flagged by Bot or Not? on June 12, 2015. We probed Bot or Not? for the base set

two more times in the static segment (see Figure 2.4) and notice no significant change in

detection performance. We probed Bot or Not? for the growing set of bots two more times

in the dynamic segment and observe that Bot or Not? detected increasingly more bots as

DeBot was growing the base set. This supports our original argument that Twitter is falling

behind in detecting bots.

The reason why Bot or Not? is half as accurate as DeBot is that the method was trained

for English-language tweets, while DeBot catches all languages just based on temporal

synchronicity. Recall that Alan and Filosofei in Figure 2.1 tweet in Portuguese. Another

reason is that Bot or Not? is a supervised technique trained periodically. In contrast,

DeBot detects bots every day in a completely unsupervised manner. Bot or Not? probably

misses some recent dynamics of the bots that results in a smaller overlap with DeBot.

A complementary question is, which method (DeBot or Bot or Not?) does Twitter

prefer to suspend more? We calculate the fraction of accounts that Twitter suspends, in

Bot or Not? and in DeBot exclusively. Table 2.1 shows the results. We see that Twitter

suspends more bots that are supported by Bot or Not? (37.43%) than are supported by

DeBot (21.06%). This bias to a feature-based supervised method actually supports the fact

that temporal synchronicity is still neglected by Twitter’s suspension mechanism.

Comparison with per-user method

Per-user methods are being developed actively by researchers. We compare our method

to an existing per-user method [104] which uses the dependence between minute-of-

an-hour and second-of-a-minute as an indicator for bot accounts. For example, Figure

2.5(left) shows a set of bots and their second-of-minute vs. minute-of-hour plots. The

method in [104] tests the independence of these two quantities using the �
2 test and de-

clares an account bot if there is any dependence. The method fails for user alan26oficial

Chapter 2. An Unsupervised Bot Identification System 24

alan26oficial

C
ELEBR

IR
O

610azuha

O
N

IG
ASH

IM
Ach

0
10
20
30
40
50
60

0 10 20 30 40 50 60

Se
co

nd
s-

of
-M

in
ut

e

Minutes-of-Hour

R
el

at
iv

e
Su

pp
or

t (
%

)

Text
and

Author

Text
or

Author

Human
Judgment

�� test

0.76 0.78 0.79

0.94

Figure 2.5: (left) Four bots showing different patterns in the minutes-of-hour vs. seconds-
of-minute plot. (right) Relative support of 4 different tests of DeBot.

(the same Alan as in Figure 2.1) because of independence among the quantities, while

our method can detect alan26official because of its correlation with FrasesFiIosofos. We

calculate what percentage of the bots that we detect can also be detected by the �
2 test.

76% of the bots are supported by the �
2 test on average.

There are other per-user methods [29][82][32] that use machine-learned classifiers to

detect bots. For example, the method in [82] uses six features: ratio of the number of

friend requests to accepted ones (FF), percentage of messages containing URLs, similarity

among messages/posts of the user, distinctness of the first names of the friends, number of

messages sent, and number of friends. Our method is different from these methods for at

least two reasons. First, many of these features are not defined for social media sites where

connections are uni-directional as opposed to bi-directional connections in networks such

as Facebook. Second, the ground-truth data used for training a classifier is based on a set

of bots at one time instance, which becomes outdated in a short time with new bots being

generated every moment.

The method in [32] is similar to ours in considering temporal behavior. However, the

Chapter 2. An Unsupervised Bot Identification System 25

method is a supervised per-user method, trained on a small dataset of around a few thou-

sand accounts. We do not compare DeBot with this method since DeBot is unsupervised,

works in real time, and identifies several hundred bots every day.

Contextual Validation

One-quarter of the bots detected by DeBot are not yet supported by Twitter or Bot or Not?

or �2 test. Are they worth finding? An exact answer to this question does not exist because

of the lack of ground truth and the dynamic nature of the bots. To alleviate the concern,

we evaluate the bots using contextual information such as tweet content and cross-user

features. We also employ human judges to compare the content of our bots against each

other. Finally, we justify DeBot by showing that DeBot detects accounts with significantly

different high risk indicators compared to unvalidated ones.

Tweet Content Matching

We investigate whether the synchronously aligned tweets have identical texts and au-

thors. We define the “botness” of a group of accounts as the average of the botness of all

the pairs of accounts in the cluster. For a given pair, botness is the percentage of aligned

tweets that also match in their content (e.g. author, text). The higher the botness score

the more successful DeBot is. We achieve an average of 78.5% botness when we match

text and/or authors of the tweets. Simply put, the aligned tweets have identical text and

authors 78.5% of the time. Note that there is a very little difference between and and or

configuration. This suggests that most of the time tweets and authors match.

Less botness score does not necessarily mean that our method is detecting false posi-

tives. We see many bot accounts that correlate in time perfectly, but do not have identical

tweets. There can be two reasons: tweets are approximately similar instead of being identi-

cal and the correlations are in deletions of tweets rather than in posting tweets (see section

2.6).

Chapter 2. An Unsupervised Bot Identification System 26

DeBot Benign4

8

12

16

20

ac
tiv

iti
es

 p
er

 u
se

r i
n

2
ho

ur
s

DeBot Benign0

4

8

12

de

le
tio

ns
 p

er
 u

se
r i

n
2

ho
ur

s

DeBot Benign55

75

95

Pe
rc

en
ta

ge
 o

f t
w

ee
ts

 c
on

ta
in

 U
R

L

DeBot Benign50

65

80

95

Pe
rc

en
ta

ge
 o

f d
up

lic
at

e
tw

ee
ts

Figure 2.6: Comparison between benign accounts and accounts we detect as bot (DeBot).
The dashed lines show a complete separation in all of the features between benign accounts
and the accounts DeBot detects considering the mean and the standard deviation.

We investigate whether approximate text matching would increase botness by employ-

ing human judges in Amazon Mechanical Turk. We ask the judges to determine whether

fifty random pairs of accounts are showing similar text (may not be exact), URLs, authors

and languages. We then calculate the botness. DeBot achieves up to 94% botness score

from the contextual information. Simply put, 94% of the tweets are not only synchronized

in time, but also share the same information. Figure 2.5 (right) shows the relative support

to our method from various contextual information.

High Risk Indicators

We compare the bots that DeBot detects with the suspended accounts by Twitter, and

the accounts that are being flagged by Bot or Not?. We also name the set of accounts that

are not found suspicious by DeBot, benign users. In order to do the comparison, we define

four high risk indicators:

• The number of activities per user in two hours is a generic feature focusing on overall

activities. Bots are usually very active.

Chapter 2. An Unsupervised Bot Identification System 27

• The number of deletions per user in two hours indicates whether or not the user

maintains a low profile on the accumulated number of tweets to avoid looking like

a bot. Similar to overall activities, bots delete tweets more frequently than benign

accounts.

• The percentage of tweets that contain URLs indicates what fraction of the contents

of the tweets are outside of Twitter.

• The percentage of the duplicate tweets [87] indicates the fraction of the tweets which

is generated by the user automatically. We consider all the tweets with identical text

as duplicates. This set includes the retweets by definition. The original sources

of these duplicate contents are usually celebrities, politicians, sportsmen and news

accounts.

A high value in any of the above indicators is a sign of abnormal behavior. We compare

the above indicators of the benign accounts and of the bots detected by DeBot, Twitter and

Bot or Not?. We run our bot detection algorithm 50 times to correctly estimate the variance

of the indicators in the sets of benign and bot users. The results shown in Figure 2.6 clearly

separates bots and benign users and empirically prove that DeBot detects spamming bots

more than benign users.

To properly estimate the predictive power of the above high risk indicators, we perform

10-fold cross validation using a Support Vector Machine (SVM) classifier with an average

accuracy of 81.71% on a balanced set of benign and bot users. We use an rbf kernel with

� = 1. The confusion matrix of the classifier is shown in Table 2.6.1.

Classified Benign Classifier Bot
True Benign 65% 35%

True Bot 11.2% 88.8%

Table 2.2: Confusion Matrix

Chapter 2. An Unsupervised Bot Identification System 28

0

20

40

60

0

5

10

0

30

60

90

0

30

60

90

activities
per user in

2 hours

deletions
per user in

2 hours

percentage of
tweets

contain URL

percentage of
duplicate

tweets

De
Bo

t
Tw

itt
er

Bo
N

De
Bo

t
Tw

itt
er

Bo
N

De
Bo

t
Tw

itt
er

Bo
N

De
Bo

t
Tw

itt
er

Bo
N

Figure 2.7: Comparison between accounts we detect as bot (DeBot), accounts suspended
by Twitter and accounts detected as bot by Bot or Not? (BoN)

2.6.2 Comparison to Non-temporal Methods

To test DeBot contextually with Twitter and Bot or Not?, we listened to the bot accounts

that DeBot detected for two weeks and calculate the above indicators. After two weeks,

we identify the accounts that are suspended by Twitter and the accounts that have more

than 50% probability of being a bot in Bot or Not?. The indicators for the three sets of

accounts are presented in Figure 2.7. In this experiment, we processed 7 million tweets in

total to observe the following:

• The three bot detection algorithms tend to agree on the percentage of tweets that

contain URLs and the percentage of duplicate tweets.

• DeBot catches high deletion activities more than others while Twitter catches high

overall activity more than others.

• The benign users have the smallest values for all of the indicators. This is a very

significant difference between the bots detected by the three methods and the benign

Chapter 2. An Unsupervised Bot Identification System 29

users.

The bots detected by DeBot show similarity to Twitter and Bot or Not? and dissimilar-

ity to benign users. Thus, the high risk indicators are necessary, but not sufficient, features

for supervised techniques to detect bots. Note DeBot, being unsupervised, may be able to

detect new forms of correlation without at all depending on specific indicators.

2.6.3 Bot Quality: Recall

Although unrealistic, we evaluate the recall of several bot detection methods by a simple

approach. First, we listen to the Twitter streaming API for 30 minutes and pick those user

that have more than 1 activity to be able to calculate DTW distances. In 30 minutes we

filter out 8600 user accounts, on average. We test these accounts using Bot or Not? and �
2

test methods. We apply DeBot to identify the bots based on temporal correlation.

The final results, which are the average of three rounds of our experiments, are in

Figure 2.8 (left). DeBot shows the highest recall rate of 6.3% among the methods, which

is very close to the true bot ratio (8.5%) estimated and disclosed by Twitter recently [84].

2.6.4 Bot Semantics

As we find that DeBot detects significantly more bots than other techniques, we investigate

the bot clusters to understand whether they are semantically associated. We show some

of the clusters and the names of the accounts in Table 2.6.4. All of these accounts were

not suspended at the time of writing. We find numerous correlated groups of accounts that

are semantically similar within their groups. For example, the Racing cluster is mostly

related to Australia and the News cluster mostly contains celebrity news accounts to catch

mass attention. The clusters also show content similarity as detected by the Mechanical

Turk users. For example, the Serial accounts mostly contain tweets in Asian languages

Chapter 2. An Unsupervised Bot Identification System 30

2

3

4

5

6

7

8

9
x 104

Tweets
Users

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Tw
ee

ts
 p

er
 u

se
r

Tweets per
User

C
ou

nt

Selected Filter

!"-test
2.1%

DeBot

Bot or Not?

3.4%

0.1%
0.3%

0.1%

6.3%

Figure 2.8: (left) Recall rates of three different techniques in detecting bots from around
8,600 of Twitter accounts. (right) Impact of different filters on the total number of tweets
and number of tweets per user.

including Thai, Korean and Arabic. Thus, DeBot successfully finds groups of bots that are

related in their names and function, which we will exploit to understand the motivation

and production process of the bot developers in the future.

2.6.5 Impact of Filters

We start with discussing the impact of the filtering keywords on the number of activities

(see [91] for fields that are matched) and the number of user accounts we collect. Figure

2.8 (right) shows the results for eight different filter strings in the decreasing order of the

total number of tweets we receive for a given string. We notice that the number of tweets

per user increases although we achieve fewer tweets in total. This essentially describes

the tradeoff between the number-of-users and tweets-per-user when we collect tweets at a

limited capacity. If we want to correlate more users by choosing general keywords with

many tweets, the time series will be more sparse, degrading the quality. If we want to find

high quality correlation by using specific keywords with fewer tweets but more tweets-

per-user, we will find a small number of bots.

Chapter 2. An Unsupervised Bot Identification System 31

40

60

80

100

120

140

160

180

200

N
um

be
r o

f A
cc

ou
nt

s

10 20 30 40 50

Base Window (T)

60
5

6

7

8

9

10

11

12

13

14

N
um

be
r o

f C
lu

st
er

s

Number of Clusters

Number of Accounts
50

100

150

200

250

300

350

N
um

be
r o

f A
cc

ou
nt

s

8

10

12

14

16

18

20

22

N
um

be
r o

f c
lu

st
er

s

1000 2000 4000 8000 16000 32000
Number of Buckets (B)

Number of Clusters

Number of Accounts

Figure 2.9: Effect of parameters on the detection performance, base window (left) and
number of buckets (right).

We pick the eight filtering keywords based on our exploration for bots in Twitter. We

find that third party sharing services (video, image and location sharing) are commonly

used to create automated tweets. For example, swarmapp provides services to post

check-ins for attractions, restaurants, etc. We also cover benign strings such as a and

the, and domains such as net. We find that an or filter of internet keywords (www k

http k https k @) is more general (i.e. matches more activities) than the vowel filter (a

k e k i k o k u) which emphasizes the prominence of tweets containing URLs and email

addresses.

2.6.6 Parameter Sensitivity

We have three inter-dependent parameters that we analyze in this section. We iterate over

each parameter while keeping the remaining parameters fixed. For the experiments in this

section, we use the keywords (swarmappk youtube k instagram) as filter string.

Base Window (T): We change the size of the base window, T , to observe the change in

detection performance. We see a consistent growth in number of clusters and bot accounts.

Chapter 2. An Unsupervised Bot Identification System 32

A larger base window ensures that more correlated users can show up and be hashed. The

end effect is that we have higher quality clusters at the cost of a longer wait. Figure 2.9

(left) shows the results.

Number of Buckets (B): We change the number of buckets in the hash structure. Too few

buckets will induce unnecessary collisions, while too many buckets spread users sparsely.

Figure 2.9 shows that the maximum number of clusters and bot accounts can be achieved

by using 2000 to 4000 buckets.

Maximum Lag (w): We check the impact of maximum lag over detection performance.

As motivated initially, user activities require lag and warping sensitive correlation mea-

sure. For zero lag (essentially Euclidean distance), we obtain significantly fewer clusters

and bot accounts. For the lag of 30 seconds, the number of clusters is again low because the

hash structure is crowded with copies of each user, resulting in lots of spurious collisions.

Results are shown in Figure 2.10.

0 50 100 150 200 250 300
0

20

40

60

80

100

N
um

be
r o

f A
cc

ou
nt

s

Cluster IDs
20

155

160

165

170

175

180

185

190

N
um

be
r o

f c
lu

st
er

s

Maximum Lag (w)
0 5 10 30

340

360

380

400

420

440

460

480

Nu
m

be
r o

f a
cc

ou
nt

s

Number of Clusters
Number of Accounts

Figure 2.10: (left) Effect of maximum lag in seconds on the detection performance (left).
Cluster sizes in sorted order (right).

Chapter 2. An Unsupervised Bot Identification System 33

2.6.7 Scalability

Real-time methods depend on several degrees of freedom. This makes analyzing and

comparing the scalability difficult. Two quantities are always involved: data rate and

window size. Fortunately, Twitter streaming API has a hard limit on the data rate. We

receive tweets at a 48 tweet-per-second rate at the most. Even if we generalize the filter

string more, we do not receive more than 48 tweets in a second.

Therefore, scalability depends on how far along the history we can store and analyze.

This is exactly the parameter T in our problem definition. We set our largest experiment

to collect 1 million user accounts. This is a massive number of time series to calculate the

warping-invariant correlation for all pairs. Note that it is easier to do trillions of subse-

quence matching [70] in a streaming fashion at a very high data rate by exploiting over-

lapping segments of successive subsequences. Calculating pair-wise DTW distances for a

million users is equivalent to a trillion distance calculation without overlapping substruc-

ture. We exploit the efficiency of cross-correlation, which enables our hashing mechanism,

to compute the clusters and identify bots.

It takes T = 9.5 hours to collect 1 million users. The indexer then takes 40 minutes to

hash all the users. 24,000 users are qualified for the listener and the validator detects 93

clusters of 1,485 accounts.

2.7 Temporal Patterns

In section 2.6 we describe the overall evaluation of the bots that DeBot detects. In this

section, we present some of our observations about the behaviors of the bots. Each obser-

vation demands separate study to understand the underlying mechanism completely. We

apply five temporal pattern mining algorithms on the bot activity series and describe sev-

eral successful cases in this section.Our goal is just to present the cases to advocate the

Chapter 2. An Unsupervised Bot Identification System 34

goodness of DeBot.

2.7.1 Periodicity

Periodicity detection is a common pattern mining tool to identify repeated behavior. We

consider finding the most frequent periodicity in our set of bots. We evaluate periodicity

by considering the most frequent delay between successive activity. Figure 2.11 shows the

distribution where three frequent periodicity dominate others. Half minute, two minutes

and seven to eight minutes of periodicity are commonly observed.

104 105 106 107
0

5

10

15

20

25

Periods

Nu
m
be

r	o
f	B

ot
s

450-460	Seconds

30-40	Seconds

120-130	Seconds

Figure 2.11: Distribution of periodicity

There are some bots that produce tweets and retweets at a high rate and small period,

such as the bot shown in Figure 3.11. These bots mainly retweets arbitrary content from

Chapter 2. An Unsupervised Bot Identification System 35

the network to remain active and increase their chance to gain human followers.

2.7.2 Correlated Deletions

Time Series Join on subsequences identifies segments of two time series that are very

similar at an arbitrary lag. As DeBot detects synchronous groups of bots, the bots in the

same group have long join sequences. However, bots in different groups have no particular

reason to have a join sequence.

We perform join between every pair of time series from different correlated groups.

We discover pairs of bots that are overall uncorrelated but contain highly correlated join

sequences. In Figure 2.12, we show the total activities of two accounts for 18 hours. It

is clear that the total activities of these two users are not synchronous. However, if we

zoom in on the segment in which both users have synchronicity, we find that there is

no tweet or retweet in these segments. Both users were deleting tweets that they made

previously. Although Mechanical Turk users find that the synchronicity among bots is

approximately both in time and content, we also have examples of accounts that are highly

correlated in time, while their posts and activities do not match. We tracked such accounts

to understand why. Our investigation reveals that most of the time, such accounts are

correlated because they delete their tweets synchronously during the time in which we

collect data. Later, when we revisit the accounts, we see random posts at random times.

Twitter does not provide details of the deleted tweets which makes it impossible to match

the texts or authors of these deleted tweets.

Figure 2.12 shows the total activities of two such accounts for 18 hours, and we mark

the delete actions in red color. It is clear that the total activities of these two users are

not synchronous, which is a normal behavior. However, if we zoom in on the segment in

which both users only perform deletion operations and no other activity, they are perfectly

correlated, and this proves the point that the accounts are bots. This again indicates that

merchants have many types of non-deterministic account management processes that are

Chapter 2. An Unsupervised Bot Identification System 36

0

1

2

0

1

2

3

0

1

2

0

1

2

Suwaidi_Amigo

Sleeksmokeit7

Thu, 23 Apr 2015
20:48:28

Fri, 24 Apr 2015
15:18:21

18.5 hours

All Activities
Delete ActivitiesNu

m
be

r o
f T

w
ee

ts

zoom

Figure 2.12: Total activities of two users over 18 hours show no correlation. A zoomed in
segment of deletion activities show perfect correlation suggesting the accounts are bots.

not yet captured by the existing bot detection algorithms. A further investigation of these

two accounts reveals that they both strongly support a political party in Turkey named the

Justice and Development Party (AKP). During the General Election in Turkey in 2015,

the AKP allegedly hired thousands of trolls to create a strong online presence [10]. We

hypothesize that the trolls use multiple accounts to do their activities on Twitter, and use

automated tools to delete the tweets to maintain an average profile.

We also observe that the deletion of a large number of tweets is a common bot behavior.

Bots try to have the same net content generation rate as benign accounts. A benign account

creates 5.1 and deletes 0.7 tweets on average in two hours, so 5.1 � 0.7 = 4.4 tweets

are accumulated every 2 hours. DeBot bots also show identical increase in accumulated

content in two hours (13.8 � 9.4 = 4.4. See Figure 2.6). This is the technique that many

bots use in order to maintain a low profile closer to normal users.

Chapter 2. An Unsupervised Bot Identification System 37

100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

1000

Number of deletions in 2 hours

M
os

t f
re

qu
en

t l
ag

 b
et

w
ee

n
de

le
tio

ns
 (s

ec
on

d)

0 36000

4

8

7200
Time(s)

D

el
et

io
ns

0 36000

4

8

7200
Time(s)

D

el
et

io
ns

4 1

0 36000

4

8

7200
Time(s)

D

el
et

io
ns

2

0 36000

4

8

7200
Time(s)

D

el
et

io
ns

3

biladalchamnews Awkwardlovetext FreakingTrues

theSecret_world

Figure 2.13: Deletion behavior of bot accounts. Two clear clusters exist, one that deletes
every 600 seconds (i.e. 10 minutes) and the other that has bursty deletion behavior with
no periodicity.

Profiling Deletions

We observe that massive deletions are frequent among Twitter accounts. We set to profile

the deletion activities to understand the general approach bots are taking. We take a small

subset of 1600 bot accounts randomly. We listen to the activities of these accounts for

2 hours. For each user, we look at the total number of deletions and the most frequent

interval between two successive deletions. We plot 550 users with more than 10 deletions

in the 2 hours in Figure 2.13.

We observe two clear clusters in the figure. The top cluster consists of user accounts

that delete frequently in every 600 seconds (i.e. 10 minutes). The bottom cluster has no

specific periodicity, and the most frequent interval is 50 seconds or less. When the number

of deletions is less than or around 100, there is no periodicity and no burst, as shown for

the user 4. Accounts with high numbers of deletions either show strong periodicity such

as is seen with users 1 and 2 in Figure 2.13 or show bursty behavior as is seen with user 3.

Chapter 2. An Unsupervised Bot Identification System 38

Note that user 3 deletes up to 8 tweets in a second, which is an impossible rate of activities

for a human to perform.

Interestingly, almost all active users with high number of deletions are divided in two

groups in terms of most frequent lag between deletion: those who do a set of deletions

every 600 seconds like user 1 and 2, and those who do bursty consecutive deletions like

user 3 and 4. The fact that the most frequent lag for active accounts is either 600 seconds or

close to 0 second shows that all these account are bots, although having a high number of

deletions itself is a sign of a bot account. User 1 and 2 are programmed in such a way that

they delete a set of their tweets every 600 seconds. User 3 has a bursty deletion activity

and he deletes 1 tweet per second where user 4 deletes up to 8 tweets per second in his

bursty deletion period.

2.7.3 Dynamic Clusters of Bots

Our method finds clusters at every T hours. It is possible to have both overlapping and

disjoint clusters in two successive iterations, because we only receive a small sample of

the total activities in Twitter. We, therefore, take an orthogonal approach. We ask if a

single bot changes cluster membership by changing its activity pattern. We find numerous

examples in which three accounts, A,B and C are related, initially A and B were correlated,

and later A moves out of B’s group and joins C’s group. One example is given in Figure

2.14, captured by tracking three bots for 24 hours.

This observation leads us to believe that account merchants are making their bots as

random and dynamic as possible to avoid suspension. One strategy might be to inter-

wind high and low activity periods as shown in Figure 2.14. Therefore, our approach of

cross-user bot detection is required to catch such dynamics, as opposed to simple per-user

classification.

Chapter 2. An Unsupervised Bot Identification System 39

0

1

0

1

2

0

1

2

3

5/24/2015
05:43:43

5/24/2015
03:48:16

5/24/2015
03:06:18

5/24/2015
01:16:05

5/23/2015
16:10:18

5/23/2015
13:43:31

5/23/2015
09:06:16

5/23/2015
06:51:28

A: FraseDeGrey

B: UnaExCabrona

C: iFotosGeniales

Nu
m

be
r o

f T
w

ee
ts

A , B correlated A , B , C correlated A , C correlated

Figure 2.14: Three users A, B and C changing their groups.

Activity Association

We first consider the distribution of handovers over 11 weeks. We only consider handovers

that have less than a day of calculated lag. This ensures that the real lag is at most 24 hours,

a reasonable value. In Figure 2.15(top) we show the frequency distribution of the hourly

aggregates of handover counts over 1890 hours. We use the method in [97] and identify

three sharp peaks pointing to weekly, daily and 12-hourly periodicity. Figure 2.15(bottom)

shows an example activity sequence of a user with daily and weekly periodicity.

We investigate if the handovers are related to a change in activity patterns. We check

if the average activity levels of a user in the 6-hour windows before and after a handover

are significantly different. 91% of the times the difference is less than 1 tweet an hour.

Therefore, we conclude there is no significant change in the activity level before and after

the handovers. However, exceptions are possible. Figure 2.15(bottom) shows an example

Chapter 2. An Unsupervised Bot Identification System 40

where the activity starts and stops with handovers.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0
50
100
150
200 Hours

Tw
ee

ts

URL Handovers

0 50 100 150 200 250 300 350 400

20
60
100
140

Frequencies

Daily 12-hourlyWeekly

Figure 2.15: (top) Frequency distribution of hourly count of handovers. (bottom) An
example user with daily periodicity and a strong activity association with handover.

Correlated Handovers

We correlate infrequent Twitter actions with bot activities to demonstrate that bots are not

only synchronous in tweets, retweets and deletes, they are also synchronous in changing

their Twitter screen-name (handle). Twitter accounts are allowed to change their screen-

names at any time. [44] shows that handing over a screen-name is a common behavior

among suspicious accounts in Twitter.

In Figure 2.16, we show three bots that are synchronous (with 0.96 correlation) for

over 11 weeks. We also point to the times when the bots changed their URLs and some

other accounts picked up those URLs shortly. We see the bots perform URL handovers

within the same hour. The motifs are shown in Figure 2.16. The URLs that were handed

over by these accounts are all related to celebrities such as MacMiller, Rihanna, Drake,

Megan Fox and Lil Wayne.

The above explanation provides an evidence that bots work in correlation, possibly us-

Chapter 2. An Unsupervised Bot Identification System 41

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0
5
10
15
20
0
5
10
15
20

0
5
10
15
20

URL Handovers

Hours

URL Handovers

URL Handovers

Figure 2.16: Three accounts with almost identical activity profile and correlated han-
dovers. Handovers initiate change in activity patterns.

ing the same code-base, and that they hand over at the same time to swap or pass URLs that

they do not want to lose. In the future, we will investigate how to scale handover detection

in real time so we can track the interest areas of the bots and take countermeasures.

0 50 100 150 200 250 300 350 400 450 5000

5000
10000
15000 Aug	18,	2015 Dec	10,	2016

Days

#	
of
	B
ot
s Apr	3,	2016

Figure 2.17: Number of bots detected by DeBot per day. Gaps indicate downtime due to
update and maintenance.

Chapter 2. An Unsupervised Bot Identification System 42

2.7.4 Burst in Bots

Although we get over 2000 bots on average every day, Figure 2.17 shows that there are

several days when number of detected bots are significantly higher than the remaining.

Figure 2.17 shows that, there are two consecutive days on April 2016 when ⇠12,000 ac-

counts were flagged as bots. Most of automated accounts of these two days were support-

ing three popular music bands (One Direction, 5 Seconds of Summer, and 5 Harmony).

On those two days, there was a music award show organized by iHeartRadio which had

an award category called Best Fan Army. Fans had to vote for their favorite singer or band

online. Most of bots we detected on those days had a hashtag related to one of these bands

or Best Fan Army award. There can be two conclusion: 1) The fans or bands hired a group

of bots to propagate information about the award and make the band name one of the top

trends in Twitter, and/or, 2) these bots might have been used for online mass voting to

manipulate the result of the contest.

2.8 DeBot Archive

Authentication
Platform

DeBot
Archive

API
Server On-Demand

Platform

DeBot
Engine

4. Submit query

5. Query Results

6. Data
Response

Daily Insertion
of Bots

1. On-Demand
Request

Figure 2.18: How we offer different services. (left) The blue section of the figure shows
how the DeBot’s archive API works. (right) The red section of the figure shows how our
asynchronous on-demand bot detection platform operates.

DeBot has been up and running since August 2015. It is working 24/7 to detect bots

Chapter 2. An Unsupervised Bot Identification System 43

in Twitter. At the end of each day, we insert the list of all detected bots in to the DeBot’s

archive. 1500 new bots are added to the DeBot’s archive on average every day. We keep

different pieces of information for each bot in our archive. This meta data can later be

used to serve users’ queries more accurately. Here is a list of attributes we store for each

bot in our archive:

• User ID: This is the unique ID assigned to each account by Twitter. The ID can not

be changed during the lifetime of an account.

• Twitter screen-name: This is a string picked by the user for the account. The

Twitter screen-name (handle) of each account specifies the URL to its Twitter page.

Although the screen-name of each account is unique in the whole network at a given

time, users are allowed to change it to any non-taken string. [45] explains how

Twitter users hand over their screen-names to the other accounts. Therefore, a given

screen-name may belong to different account during the time. We use User ID in

our archive to specify an account.

• Date: This is the date that DeBot detects a bot. DeBot may detect an account as a

bot in different days.

• Cluster ID: DeBot detects bots based on the high correlation between Twitter users’

activities. At the final step of DeBot, bots are clustered based on their pairwise cor-

relation. Therefore, DeBot groups similar bots together. This attribute is a globally

unique ID which shows the group ID of a bot.

• Topic: DeBot collects tweets based on the trending topics of each day. At the end of

the bot detection process, each bot is related to zero, one, or more than one trending

topics. We also keep the list of topics related to each bot in our archive.

2.9 DeBot API

To make our archive publicly accessible, we have developed a REST API. When the user

sends a data request, DeBot responds in XML format. A Python library is also provided

Chapter 2. An Unsupervised Bot Identification System 44

to make data retrieval even simpler for developers. The library is available at [2]. Users

should register in our system in order to use the services. The registration process is for

managing requests through an API key. The API key is a 40 character string which is sent

to the user’s email after filling out the registration form. Each service requires different

input parameters. If the parameters are not set properly, an error XML object will be sent

to the user. It contains a message with a brief description of the error.

There is a daily limit rate for each user in using the API. If a user exceeds the maximum

rate, an error message is returned. A sample of the error object is shown in XML Object

2.1. Each API key can send 50 requests a day.

XML Object 2.1: Example of error message

1 <? xml v e r s i o n =” 1 . 0 ” ?>

2 <r e s p o n s e s t a t u s =” e r r ”>

3 <e r r o r>

4 <e r r o r c o d e>

5 101

6 < / e r r o r c o d e>

7 <e r r o r m s g>

8 You have exceeded your d a i l y l i m i t .

9 < / e r r o r m s g>

10 < / e r r o r>

11 < / r e s p o n s e>

In 2.9.1 we introduce different functions of our API. Specifically, we explain how to

call the function and the fields in the XML response.

2.9.1 API Functions

Bots of a specific date: The get bot list function produces a report that contains

a set of correlated accounts detected on a given date. DeBot collects data everyday and

Chapter 2. An Unsupervised Bot Identification System 45

inserts correlated accounts into the archive at the end of the day. As mentioned before,

each account belongs to a group of users which we call a cluster. Each cluster shows a

set of users whose activities were correlated with each other. The input of the function is

a date and the maximum number of bots the user wants to receive. The default maximum

number of reported bots is 5000. The bot clusters are in descending order based on their

number of bots. XML Object 2.2 shows a sample output of this function.

1 import d e b o t

2 db = d e b o t . DeBot (’ y o u r a p i k e y ’)

3 db . g e t b o t s l i s t (’2017�01�08 ’)

Bots may constantly change their temporal pattern of activities. For example, a Twitter

account may be correlated with a set of accounts in Cluster A in the morning. Then it

changes behavior and becomes correlated with the users of Cluster B in the afternoon.

Therefore, DeBot may detect this account as a bot multiple times in different bot clusters

on a specific date.

XML Object 2.2: Output of get bot list function

1 <? xml v e r s i o n =” 1 . 0 ” ?>

2 <r e s p o n s e s t a t u s =” s u c c e s s ”>

3 <day d a t e =”2015�12�04”>

4 < c l u s t e r c l u s t e r i d =” 1 ” s i z e =” 5 ”>

5 <u s e r>

6 <i d>12359852135< / i d>

7 <s c r e e n n a m e>m a r r i o j a< / s c r e e n n a m e>

8 < / u s e r>

9 <u s e r>

10 <i d>85642135261< / i d>

11 <s c r e e n n a m e>NapPerez< / s c r e e n n a m e>

12 < / u s e r>

13 .

14 .

Chapter 2. An Unsupervised Bot Identification System 46

15 .

16 < / c l u s t e r>

17 < / day>

18 < / r e s p o n s e>

The list of detected bots, which we call daily report, also has a web-based GUI avail-

able at the DeBot’s homepage [23]. Users can specify a date and a set of connected com-

ponents will be illustrated. Each connected component shows one of the bot clusters, and

each node is a bot account with a link to the bot’s Twitter page.

Check For a Specific Twitter Account: The check user function checks the exis-

tence of a Twitter account in the archive. The input of the function is either a screen-name

or a user ID of a Twitter account. Given a Twitter account, the function checks all the

bots that DeBot has detected so far. Since an account may be detected multiple times, the

output of this function is a list of dates on which DeBot has detected the given account as a

bot. XML Object 2.3 is an example of the output returned by the check user function.

In this example the user lovefor has been totally detected 4 times under different Twitter

account IDs. Note that a Twitter screen-name may belong to different users during the

time.

1 import d e b o t

2 db = d e b o t . DeBot (’ y o u r a p i k e y ’)

3 db . c h e c k u s e r (’ @lovefor ’)

XML Object 2.3: Output of check user function

1 <? xml v e r s i o n =” 1 . 0 ” ?>

2 <r e s p o n s e s t a t u s =” s u c c e s s ”>

3 <u s e r>

4 <i d>6532574884< / i d>

5 <s c r e e n n a m e> l o v e f o r< / s c r e e n n a m e>

6 <d a t e s>

Chapter 2. An Unsupervised Bot Identification System 47

7 <d a t e c o u n t =” 1 ”>2015�10�28< / d a t e>

8 <d a t e c o u n t =” 4 ”>2015�12�04< / d a t e>

9 < / d a t e s>

10 < / u s e r>

11 <u s e r>

12 <i d>1498736854< / i d>

13 <s c r e e n n a m e> l o v e f o r< / s c r e e n n a m e>

14 <d a t e s>

15 <d a t e c o u n t =” 2 ”>2016�02�22< / d a t e>

16 <d a t e c o u n t =” 1 ”>2016�04�06< / d a t e>

17 < / d a t e s>

18 < / u s e r>

19 < / r e s p o n s e>

Bots that are detected frequently: Bots may be detected by DeBot on different dates.

Using the get frequent bots function, the user can get the list of bots which appear

in our archive more than a given number of times. The input of the function is the minimum

number of times the bots are appeared in our archive. The output is a list of bots with

number of times each of them has been detected. As discussed before, a Twitter account

can change the screen-name. Therefore, we may have a single user ID that appears with

multiple screen-names. The XML output of this function is a list of user IDs, number of

appearances, and the screen-names associated with it. Note that if a user gets detected

several times on a day, we count it once in the result. The example of the output XML is

shown in XML object 2.4.

1 import d e b o t

2 db = d e b o t . DeBot (’ y o u r a p i k e y ’)

3 db . g e t f r e q u e n t b o t s (1 0 0)

XML Object 2.4: Output of get frequent bots function

1 <? xml v e r s i o n =” 1 . 0 ” ?>

Chapter 2. An Unsupervised Bot Identification System 48

2 <r e s p o n s e s t a t u s =” s u c c e s s ”>

3 <u s e r>

4 <i d>12359852135< / i d>

5 <f r e q u e n c y>102< / f r e q u e n c y>

6 <s c r e e n n a m e s>

7 <s c r e e n n a m e>maFan< / s c r e e n n a m e>

8 <s c r e e n n a m e>b u r g e r F a n< / s c r e e n n a m e>

9 <s c r e e n n a m e>mama mia< / s c r e e n n a m e>

10 < / s c r e e n n a m e s>

11 < / u s e r>

12 .

13 .

14 .

15 < / r e s p o n s e>

Bots and Topics: We explained that the first step of our method is listening to a set

of topics which we pick from top Twitter trends. Therefore, detected bots are usually

associated with few topics. We have a database of worldwide top Twitter trends which

contains more than 17000 unique topics with their associated bots. Based on this database,

we provide another function, called get related bots. Given a topic, this function

returns all bots who were associated with that topic at some point in the past. It also

provides the corresponding dates. XML Object 2.5 shows the example output of this

function.

1 import d e b o t

2 db = d e b o t . DeBot (’ y o u r a p i k e y ’)

3 db . g e t r e l a t e d b o t s (’ # e l e c t i o n 2 0 1 6 ’)

XML Object 2.5: Bots and Topics list

1 <? xml v e r s i o n =” 1 . 0 ” ?>

2 <r e s p o n s e s t a t u s =” s u c c e s s ”>

Chapter 2. An Unsupervised Bot Identification System 49

3 < t o p i c t i t l e =” e l e c t i o n 2 0 1 6 ”>

4 <u s e r>

5 <i d>12359852135< / i d>

6 <s c r e e n n a m e>m a r r i o j a< / s c r e e n n a m e>

7 <d a t e>2016�10�22< / d a t e>

8 < / u s e r>

9 <u s e r>

10 <i d>3562489511< / i d>

11 <s c r e e n n a m e>DNC < / s c r e e n n a m e>

12 <d a t e>2016�10�22< / d a t e>

13 < / u s e r>

14 < / t o p i c>

15 < / r e s p o n s e>

2.10 Conclusion

We introduce a real-time method that detects bots by correlating their activities. Our

method can detect hundreds of bot accounts everyday, which can aggregate to hundreds of

thousands of bots over time. Human judges in Amazon Mechanical Turk have found the

detected bots are highly similar to each other. Our method, DeBot, is identifying bots at a

higher rate than the rate Twitter is suspending them. In comparison to per-user methods,

our cross-user temporal method detects more bots with strong significance. We observe

bots are functionally grouped and change group membership over time. We also observe

that some bots can be correlated only when they are deleting posts and they delete in

bursts or in periods. In chapter 4 we extend this work to further understand bot and human

behavior in social media to improve trustworthiness and reliability.

Chapter 2. An Unsupervised Bot Identification System 50

Cluster Name # bots Examples

Serial accounts 87 2jo116, 2jo120, 2jo24, 2jo31, 2jo42, 2jo64, 2jo72, 2jo88,
2jo97, 2jo 71

News 53 ADavisNews, ARiversNews, AlYankovicTNews,
BilbaoAllNews,
ChemtrailsTNews, ChromeAllNews, DYankeeNews,
PaulinaNoticias, ShakiraNoticia1

Racing 18 AusHorseRacingN, AusRacingTweets, CanterburyRacin,
FreeRaceTips ,
FreshRacing , HorseRacingAus1, RacingAussie ,
RacingFields, RacingTweetsAU

Japanese 27 AzamiMisaki, KaguraKokona, KawakamiAyumu,
KisaragiMinami, KizekiEfy, NakataniHaruna,
Sengyo bot, gutarajunko, guzuguzu6, komoji san,
nonkina tousan, ochame p, tekitohiroko, yontanbot

Indian 19
AadarshSvebpvme, BhatNipun, BinduSing,
DaluiNityananda, LullaAbhishek, RoyRoymukul,
SinghKulvira,
YoVinaykumar, abhishekbhsker, anil khar, arvindtomar ,
baloni sunil, desh raj , euzvfsdtxud,
mohitsharma 1, rajeshkumara , sahilver , sumit vai,
sumitkumarsha, sushilkumr , vikram nag

Mobile 22 MobileStandared, m plusplus4, miconmob, mob charger,
mob maps,
mobilesmrt, mobileupdate1, product mobile,
attack mobile, boss mobileboss, m authorize,
miconmob, mobile external, mobilefollower3,
mobilefuture2, mobilelearning7, mobilesmrt,
mobilesubscb, mobmuseums, mobrepeat, mob design,
mob hole

Love 95 Awkward Loves, Awkwardlovetext, BaeLoveNotes,
Funnyloves012,
HistoryTabloids, ItsLoveLetter, Lovelythink1,
LovequQuite, LovesQuote0, LovingFacz,
Truelovesfacts, girlfriendloved, justlovforever,
loveQuoites, love fillings, lovelikefuny,
lovemsgs512, lovenoteguru, loveromantic60, lovingfaczzz,
lovingsrose, points love

Table 2.3: Several examples of the clusters of Twitter accounts with common naming and
synchronicity. A more comprehensive list is available at [23].

51

Chapter 3

Improving Correlation Calculation for

Sparse time series

3.1 Introduction

Time warping naturally appears in many domains, especially in the activities of humans

and animals. For example, humans can produce the same motion or speech at a different

pace and acceleration and have it still be recognizable. Time warping is also present in

discrete action sequences. For example, Figure 3.1 shows the 24-hour time series of the

front door statuses of two single-resident apartments. Each day shows a warped version of

the unique schedule of the resident in that apartment. A simple hierarchical clustering of

the data shows that the daily patterns of a person can be clustered well if we use Dynamic

Time Warping (DTW) distance instead of the widely used Euclidean distance.

Dynamic Time Warping (DTW) is a distance measure that has been used in dozens of

research works on mining equally sampled time series data [49]. However, new sensor

technologies (both soft and hard) can capture a sequence of discrete events that forms a

sparse time series (as in Figure 3.1). In its original form, DTW distance does not take

Chapter 3. Improving Correlation Calculation for Sparse time series 52

advantage of this sparsity. For example, Twitter records discrete activities of more than

700 million users at a resolution of milliseconds. Comparing the activities of two users for

a day at this resolution requires 86, 400, 0002 computations, which amounts to more than a

day in an off-the-shelf machine. The number of activities performed by average users are

on the order tens or hundreds. Clearly, the amount of computation required to calculate

DTW distance using existing algorithms is excessive.

Warping	Distance	

Euclidean	Distance

12:00AM 9:00AM 5:00PM 12:00AM

8

7

6

5

4

3

2

1 6 7 5 8 1 3 4 2

6 7 5 4 1 3 8 2

Us
er
	2

Us
er
	1

Front	Door	Open

Figure 3.1: (left) Day-long signals generated from the front doors of two single-resident
apartments of two users. (right) Euclidean distance cannot capture the difference between
the two users, while DTW distance can.

We develop a time warping distance measure, AWarp, for sparse time series data that

works on run-length encoded time series. Run-length encoded time series are much shorter

than their versions before encoding; for example, in Figure 3.1 the run-length encoded

time series for instance 7 will have only eight numbers, as opposed to 86,400 observations

for a day. Thus, AWarp will require around 82 arithmetic operations to calculate DTW

distance between two such run-length encoded time series. We show that AWarp is exact

for binary-valued time series and closely approximates the DTW distance for any-valued

Chapter 3. Improving Correlation Calculation for Sparse time series 53

time series. AWarp is extendable to constrained warping and multidimensional warping.

We demonstrate applications of AWarp in the important areas of bot discovery, human

activity classification, search trend analysis, seismic analysis, and unusual review pattern

discovery.

We give necessary background (section 3.3) on sparse time series and their various

representations, and on Dynamic Time Warping. Next we describe the core AWarp algo-

rithm and its variants in section 3.4. We show performance analysis of the algorithm in

section 3.5 and demonstrate potential applications in section 3.6. We conclude in section

3.7.

3.2 Related Work

Dynamic time warping is a long-studied algorithm in many research communities, in-

cluding signal processing [21], speech recognition [75][46], data mining [52], and image

processing [72]. One of the earliest research on using dynamic time warping to discover

patterns in time series data is by Berndt and Clifford [17]. We adopt warping distance for

sparse time series. Although many human activity datasets are publicly available, warping-

invariant mining has not been applied to sparse time series from generated discrete human

activities (to the best of our knowledge). Our work is the first to exploit sparsity for time

efficiency in warping-invariant mining.

Some works exploit other forms of sparsity in DTW calculations [11][86]. In [11],

the authors reduce space complexity by approximating the distance; however, there is

no reduction in time complexity. In contrast, our method reduces both time and space

complexity with negligible difference in accuracy. In [86], the authors have not used the

sparsity of the time series or the sparsity of the DTW matrix, rather sparsity is used when

combining features that are independently calculated without using DTW. We claim our

work as the first to calculate warping similarity on an encoded representation of sparse

Chapter 3. Improving Correlation Calculation for Sparse time series 54

time series data.

A significant body of research exists on efficient DTW calculation [28][77][78]. In all

of these work, calculation of one global DTW distance has a worst-case time complexity

of O(n2), where n is the length of the time series. AWarp has a worst-case complexity

of O(m2), where m is the number of non-zero observations. This makes a significant

difference in performance for sparse time series.

DTW-based similarity search in streaming or database settings has been made efficient

by indexing [49], hybrid bounding [71], admissible pruning [15], and filter-and-refine [13]

approaches. These approaches are equally applicable for sparse time series and can use

AWarp, instead of DTW, for un-pruned distance comparisons. We leave it as a future work

to adopt these techniques to perform similarity search under AWarp. In [22], the authors

have shown that locally-relevant constraints learned from salient features of the comparing

time series are better than a fixed constraint for the entire time series. We will evaluate this

approach on constrained AWarp in future.

3.3 Encoding Sparse Time Series

We first define time series and dynamic time warping distance (DTW). We then discuss

sparse time series and run-length encoding and show a motivating example.

3.3.1 Definition

A time series is defined as a vector T =< v1, v2, . . . , vn > of observations made at equal

intervals. Most distance measures and mining algorithms are invariant to the absolute start

time and sampling interval of the time series [36][100].

For two series x = x1, x2, . . . , xn and y = y1, y2, . . . , ym of length n and m, where

n > m without losing generality, the classic Dynamic Time Warping distance is defined

Chapter 3. Improving Correlation Calculation for Sparse time series 55

as below.

DTW (x, y) = D(n,m)

D(i, j) = (xi � yj)
2 +min

8
>>><

>>>:

D(i� 1, j)

D(i, j � 1)

D(i� 1, j � 1)

D(0, 0) = 0, 8ijD(i, 0) = D(0, j) =1

We intentionally skip taking the square root of D(n,m), as it does not change the

relative ordering of pairs and makes it efficient for speedup techniques. A dynamic pro-

gramming algorithm to populate the DTW matrix and calculate the DTW distance is well

known. An example DTW matrix for two time series is given in Figure 3.2(a).

Constrained DTW distance is a variant that limits the the allowed time gap between

two aligned observations. In effect, the DTW matrix is populated partially around the

diagonal (readers can find details about DTW in many online resources such as Wikipedia

and also in [49]).

3.3.2 Sparse Time Series and Representations

A time series is simply a sequence of observations made in temporal order. The phenom-

ena that we observe can be continuous or discrete in time. For example, the temperature

of a sea surface at specific point on earth is a continuous phenomenon. In contrast, the

activities of a user on social media are discrete because the user can be inactive at times.

When observing a discrete phenomena, a sparse time series is produced, which is the focus

of this work.

A sparse time series has many more zero-valued observations than non-zero observa-

tions. We define the sparsity factor, s, of a time series as the ratio between the length of

Chapter 3. Improving Correlation Calculation for Sparse time series 56

the time series and the number of non-zero observations. The higher the sparsity factor,

the more sparse a time series is. Representing a sparse time series in the traditional vec-

tor format wastes significant amount of space. For example, the REFIT [67] datasets are

stored in this format. A more optimal way to store sparse time series is as a sequence of

time-value pairs.

Time-value Sequence: Each observation is stored as a (t, v) pair and a sparse time

series is an ordered set Tv = {(ti, vi)|ti < ti+1, i = 1 . . . n� 1}. For example, the CASAS

datasets [31] are represented in this format. This is the most common representation of

sparse time series. Example: The time series T =< 7, 0, 0, 9, 6, 0, 0, 0, 1 > can be repre-

sented equivalently as Tv = {(1, 7), (4, 9), (5, 6), (9, 1)} if the start time is 1.

In this section, we use a well known compression technique, run-length encoding [7],

to represent sparse time series. We differ from the classic run-length encoding as we only

encode the runs of zeros and leave the runs of non-zero observations as they are.

Length-Encoded series: Let us assume we have a time series T . A length-encoded

time series is Te where we replace a run of k zeros in T with a (k). Here we use the

parenthesis to represent the duration of zeros. Example: For the same sparse time series,

T =< 7, 0, 0, 9, 6, 0, 0, 0, 1 >, the length-encoded series is Te =< 7, (2), 9, 6, (3), 1 >.

We can also define length-encoded series in a rather complex way from the time-value

sequence Tv as Te =< v1, (t2 � t1 + 1), v2, (t3 � t2 + 1), . . . , vn�1, (tn � tn�1 + 1), vn >.

In other words, we insert the duration between each pair of observations in between the

observations to create a length-encoded series. From now on, we use simply use encoded

series to denote length-encoded series.

Note that a time series of four observations, such as Tv, needs eight integers for storage

in the time-value sequence representation. In traditional representation, T could require

any number of integers larger or equal to eight to store the series because the lengths of

the runs of zeros can arbitrarily vary in size. In an encoded series, Te needs at most eight

integers. Thus, for a fixed sparsity factor, the encoded series require the lowest amount of

Chapter 3. Improving Correlation Calculation for Sparse time series 57

space.

Run-length encoding compresses a run of zeros by the length of the run. There is no

better compression than just one number. In that sense, run-length encoded series are also

fully encoded series. We can also define partially encoded series, which will be useful to

calculate multidimensional DTW distance.
0 2 4 6 8 10 11

0

1

0

1

0 2 4 6 8 10 12 14

0 Inf Inf Inf Inf
3 0 1 1 Inf

Inf 1 0 2 Inf
Inf 1 2 0 1
Inf 2 1 1 0
Inf Inf Inf 2 0
Inf Inf Inf 2 3
Inf Inf Inf 3 2

1 (4) 1 (4) 1

1
(3)

1
(3)

1
1

(3)
1

Co
ns

tr
ai

ne
d

DT
W

Y

X

1 0 0 0 0 1 0 0 0 0 1
1 0 1 2 3 4 4 5 6 7 8 8
0 1 0 0 0 0 1 1 1 1 1 2
0 2 0 0 0 0 1 1 1 1 1 2
0 3 0 0 0 0 1 1 1 1 1 2
1 3 1 1 1 1 0 1 2 2 2 1
0 4 1 1 1 1 1 0 0 0 0 1
0 5 1 1 1 1 2 0 0 0 0 1
0 6 1 1 1 1 2 0 0 0 0 1
1 6 2 2 2 2 1 1 1 1 1 0
1 6 3 3 3 3 1 2 2 2 2 0
0 7 3 3 3 3 2 1 1 1 1 1
0 8 3 3 3 3 3 1 1 1 1 2
0 9 3 3 3 3 4 1 1 1 1 2
1 9 4 4 4 4 3 2 2 2 2 1

0 2 4 6 8 10 11

0

1

0

1

0 2 4 6 8 10 12 14

0 4 4 8 8
3 0 1 1 2
3 1 0 2 1
6 1 2 0 1
6 2 1 1 0
6 3 1 2 0
9 3 4 1 2
9 4 3 2 1

1 (4) 1 (4) 1
1

(3)
1

(3)
1
1

(3)
1

O
pt

im
al

 D
TW

y

x X

Y

Figure 3.2: (a) Two sparse time series x and y and their DTW matrix. (b) The AWarp
matrix for their encoded versions, X and Y. (c) The AWarp matrix for a constraint window
of size 5.

Partially encoded series: Given an encoded series Te, a partially encoded series Tpe is

an equivalent series where one or more of the runs of zeros are split into parts. Example:

Tpe =< 7, (2), 9, 6, (2), (1), 1 > is a partially encoded series of Te from the previous

example. If we keep splitting the runs of zeros in a partially encoded series, we reach

the same length as the traditional series, with zero being represented by (1) and no more

possible splits.

If a time series starts with a run of zeros, we treat the first zero as an observation

and encode the rest of the run. This ensures that an encoded series always starts with an

observation, and not with a run of zeroes. Similarly, we ensure that the series ends with

an observation. Since Te and Tpe are equivalent, their DTW distances to any other series

remain identical. The conversion between the three representations of sparse time series

can be performed in time linear to the length of the time series.

Chapter 3. Improving Correlation Calculation for Sparse time series 58

3.3.3 Motivating Example

We now present an example to motivate AWarp. In Figure 3.2(a), we show two toy time

series x and y of lengths 14 and 11, respectively. The DTW distance between the two

time series is 1. The DTW matrix is a 14⇥11 matrix as shown in Figure 3.2(a). If we

encode the time series x and y, the two time series shrink to X (length 8) and Y (length 5),

respectively. The AWarp matrix calculated on these encoded time series is only of size 8⇥5

(shown in (b)). The AWarp distance is the same as the DTW distance, 1. The computation

in each boxed sub-matrix of the DTW matrix is replaced by a one cell in the AWarp matrix.

The value in the bottom-right corner of a sub-matrix is identical to the corresponding cell

in the AWarp matrix. Note that a sub-matrix is not always a constant matrix with identical

values. Some of the sub-matrices are monotonically increasing sequences. To complete

the example, we also show the constrained AWarp matrix for a constraint window of size 5

in Figure 3.2(c). The constrained warping distance is always larger than the optimal DTW

distance. In this example, the constrained AWarp distance is 2, which is exactly the same

as the constrained DTW distance under the same constraint window.

3.4 AWarp Distance Measure

We start by describing the AWarp algorithm for simple binary valued series. We then relax

this simplification and discuss the general case of any-valued time series. Finally we show

the constrained and multidimensional versions of AWarp.

3.4.1 Binary-valued Series

Algorithm 2 is the AWarp distance function for run-length encoded time series. The inputs

to the algorithm are two run-length encoded time series. The algorithm fills in a matrix D

of size lx ⇥ ly in the same way as the DTW algorithm. Here lx and ly are the lengths of

Chapter 3. Improving Correlation Calculation for Sparse time series 59

the two encoded series x and y, respectively. The algorithm has two loops in lines 4 and

5 that go over all the cells of the AWarp matrix. The algorithm calculates three costs for a

cell based on three other cells: (diagonal, left, and top) relative to the cell being populated.

Finally, in line 11, the algorithm takes the minimum of the costs as per the definition of

DTW.

While calculating the cost of a pair of values xi and yj , Algorithm 1 treats various

mutually exclusive cases differently based on the values of xi and yj (i.e. a real observation

or a run of zeros), and the direction of the cell (i.e. Di�1,j�1, Di�1,j or Di,j�1) to which

the cost will be added to. The following facts describe the cases in UBCosts, one by one.

Observation 1. AWarp (Algorithm 2) is identical to DTW for any traditional time series,

although it is designed for encoded series.

It is a trivial observation. If x and y are traditional vectors, there is no run of zeros in x

and y by definition. Therefore, the UBCosts algorithm must always execute the first case

in line 1, which is the squared error between the values, as in the definition of DTW.

Observation 2. AWarp distance of encoded binary-valued series is identical to the DTW

distance of their traditional representations.

Algorithm 1 describes the cases we need to treat separately for binary-valued encoded

series. The case in line 1 is the trivial case when both of the inputs a and b are real

observations. The value v is simply the squared error. In line 2, we have one observation

(a=1) and one run of zeros (b). There can be two inner cases: the run of zeros has already

been aligned (left) or it is being aligned for the first time (right or diagonal). If the

run of zeros is being aligned for the first time, we have no choice other than aligning

all of the zeros with some real observation(s). In the case of a binary-valued series, the

real observation(s) are always identical and their values are one, no matter where they are

located. Thus the term ba
2 aligns the zeros. If the run of zeros has already been aligned

to previous value(s) of the real observation a, we just align a with the last zero of the

Chapter 3. Improving Correlation Calculation for Sparse time series 60

a: OBS
b: OBS

Top

Diagonal

Left

(a-b)2

(a-b)2

(a-b)2 a2

b2ba2

ba2 ab2

ab2

0

0

0

a: OBS
b: ROZ

a: ROZ
b: OBS

a: ROZ
b: ROZ

Figure 3.3: Twelve cases covered by the Algorithm 1. OBS: observation, ROZ: run of
zeros.

run, hence the term a
2 = 1. The case in line 4 is the mirror of the case in line 2. The

default case in line 6 is triggered when both a and b are runs of zeros, which can only

result into a distance of zero. In Figure 3.3, we show twelve cases, which are all of the

possible cases in binary-valued time series, and we illustrate how UBCosts calculates

the optimal alignment. The solid lines (aligning the red and blue time series) represent

the so-far-alignment, and the dotted lines show the new alignment for which UBCosts is

calculating the cost.

As shown in Figure 3.2, if we take the DTW matrix of the traditional binary-valued

time series and remove the rows and columns corresponding to zeros that are followed by

other zeros, we obtain the matrix calculated by the AWarp algorithm.

Chapter 3. Improving Correlation Calculation for Sparse time series 61

Algorithm 1 UBCosts(a, b, c)
Require: a an observation, b another observation, c a case identifier

Ensure: Output the distance value v between a and b

1: case: a and b are observations: v (a� b)2

2: case: a is an observation and b is a run of zeros:

3: if c = left v a
2 else v ba

2

4: case: a is a run of zeros and b is an observation:

5: if c = top v b
2 else v ab

2

6: case default: v 0

7: return v

3.4.2 Any-valued Series

As we have described the exactness of AWarp in case of binary-valued time series, the

natural question is if the exactness holds for any-valued time series. The answer is no.

Observation 3. AWarp on any-valued encoded series approximates the DTW distance

between their traditional representations.

We first discuss why AWarp is not exact for any-valued time series. Although the

encoded representation is not lossy, the optimal alignment, which is similar to classic

DTW, is not possible for any-valued encoded series. This is because run-length encoding

treats all zeros as identical, while an optimal warping alignment may treat zeros in the

same run differently.

Example: In Figure 3.4, two time series x =< 1, 2, 3, 0, 1 > and y =< 1, 0, 0, 4, 1 >

are shown in red and blue, respectively. Note that these time series contain various positive

observations as opposed to just one. The optimal DTW aligns the first zero of y with the

first one of x and the second zero of y is aligned with the two of x. Such a scenario of

aligning part of a run of zeros to one observation and the remaining part of the run to an-

other observation is not possible in the encoded representation, where we treat all the zeros

Chapter 3. Improving Correlation Calculation for Sparse time series 62

Algorithm 2 AWarp(x, y)
Require: x, y two encoded time series for comparison

Ensure: Output warping distance between x and y

1: lx length(x), ly length(y)

2: D(0 : lx, 0 : ly) 1

3: D0,0 0

4: for i 1 to lx do

5: for j 1 to ly do

6: ad Di�1,j�1 + UBCosts(xi, yj, diagonal)

7: al Di,j�1 + UBCosts(xi, yj, top)

8: at Di�1,j + UBCosts(xi, yj, left)

9: Di,j min(ad, al, at)

10: return Dlx,ly

0 4

1
1 0

0
2
4 0

2
4

1 2 3 4 5 6

Missing	Alignment

0 1 4
1

1 0
0
2
4Correct	Alignment

1			2	
3			0			1

1			2	
3		(1)		1

1			2	
3		(1)		1

y
0					1					2				11				11
1					4					5						6					7
5				10			13					6				10
6					5					5				21					7
6					6					6				14					7

0					2				11				11
1					6					6						7
5				15				7				10
6					5				21					8
6					6				14					8

1						0					0					4						1
0					2				11				11
1					4					6						7
5				10				5						9
6					5				21					6
6					6				14					6

1				(2)					4					1 1				(2)					4					1

DTW	Matrix AWarpLB Matrix AWarpUB Matrixx x x

y y

0 1 1 4

1
1 0

0
2
4Extra	Alignment

1 2 3 4 5 61 2 3 4 5 6
0
2
4

0
2
4

Figure 3.4: An example demonstrating that optimal alignment in the encoded representa-
tion is not possible.

Chapter 3. Improving Correlation Calculation for Sparse time series 63

as one entity. If we encode x and y and calculate the AWarp distance, the UBCosts func-

tion aligns the run of two zeros of y to the first one of x. Therefore, AWarp accumulates a

higher distance than the optimal DTW and forms an upper-bounding function of the DTW

distance measure. Similarly, if in the UBCosts algorithm, we skipped aligning the run of

two zeros of y with the first one of x, AWarp would have accumulated a smaller distance

than the optimal DTW and formed a lower-bounding function of the DTW distance.

Algorithm 3 LBCosts(a, b, c)
Require: a an observation, b another observation, c a case identifier

Ensure: Output the distance value v between a and b

1: case: a and b are observations: v (a� b)2

2: case: a is an observation and b is a run of zeros:

3: if c = top v ba
2 else v a

2

4: case: a is a run of zeros and b is an observation:

5: if c = left v ab
2 else v b

2

6: case default: v 0

7: return v

We define the lower-bounding cases in Algorithm 3, where the term ba
2 is applied to

only the top case and the term ab
2 is applied to only the left case. The difference between

the UBCosts and LBCosts is that the diagonal cost in the former is always equal or

larger (ab2 or ba2) than the latter (b2 or a2). From now on, we will use AWarp UB and

AWarp interchangeably to refer to Algorithm 2 and AWarp LB to the refer to the same

algorithm where UBCosts are replaced with LBCosts.

At this point, the most important question is: how good are these bounding functions?

To test them, we generate a comprehensive set of synthetic datasets in the following way.

Each dataset has a sparsity factor from the following: 2, 4, 8, 12, 16, 24, 32. Each dataset

is associated with a distribution (uniform, normal, binomial and exponential) to generate

random numbers from. To generate a dataset, we create 1000 pairs of zero vectors of

length 128. We insert random values between one and five in the zero vectors at random

Chapter 3. Improving Correlation Calculation for Sparse time series 64

locations drawn from the associated distribution. The number of values that are inserted

depends on the associated sparsity factor.

For each pair of time series in a dataset, we calculate the upper bound (i.e. AWarp), the

lower bound as described above, and the DTW distance in the traditional representation.

We calculate the percentage of exact and approximate matches (up to 5% error) between

the bounds and DTW distances. The results are shown in Figure 3.5. AWarp UB, approx-

imately 90% of the times, is within 5% of the true distance value. The accuracy converges

to 100% as data becomes sparser. These results empirically support that AWarp distance

for sparse time series in the encoded form is almost identical to the DTW distance in the

traditional form.

The cup-shapes of the approximate matches in Figure 3.5 can be explained. For low

sparsity factor, the number and length of the runs of zeros are smaller than that when spar-

sity factor is high. Thus, for low sparsity factor, high accuracy is achieved by exploiting

the observation 1.

Although AWarp is not exactly identical to DTW, there is a simple way to test if AWarp

distance is exact. we can calculate Awarp LB and check if it is equal to AWarp. If they

are the same, the distance must be exactly equal to the DTW distance. Thus, we can

validate the exactness without calculating the expensive DTW distance by just two AWarp

calculations on encoded series, and use AWarp as a pre-processing step ahead of the exact

DTW calculation on sparse data.

3.4.3 Invariance to Partial Encoding

As mentioned before, a partially-encoded series is a longer version of an encoded series

where a run of zeros can follow another run of zeros. Let us informally define order of

partially encoded series as the number of zeros that have been encoded.

Observation 4. AWarp is invariant to the order of partial encoding.

Chapter 3. Improving Correlation Calculation for Sparse time series 65

32

100

Normal	Distribution
2 4 8 12 16 24

10
20
30
40
50

60
70
80
90
100

Pe
rc
en

ta
ge

AWarp_UB ≤	1.05	*	DTW
AWarp_UB =	DTW
AWarp_LB =	DTW

Sparsity	Factor

Exponential	Distribution
20

30

40

50

60

70

80

90

100

2 4 8 12 16 24 32
Sparsity	Factor

Pe
rc
en

ta
ge

AWarp_UB ≤	1.05	*	DTW
AWarp_UB =	DTW
AWarp_LB =	DTW

Pe
rc
en

ta
ge

Uniform	Distribution
2 4 8 12 16 24 32

10
20
30
40
50

60
70
80
90

AWarp_UB ≤	1.05	*	DTW
AWarp_UB =	DTW
AWarp_LB =	DTW

Sparsity	Factor

30

40

50

60

70

80

90

100

2 4 8 12 16 24 32
Sparsity	Factor

Pe
rc
en

ta
ge

Binomial	Distribution

AWarp_UB ≤	1.05	*	DTW
AWarp_UB =	DTW
AWarp_LB =	DTW

Figure 3.5: AWarp LB and AWarp UB on encoded series with respect to DTW on vector
representation. On average, 90% of the times the upper bound is within 5% of the true
distance. Sample time series are shown inside.

Let us first give an example. If x =< 7, (2), 9, 6, (3), 1 > is an encoded series and

x
0 =< 7, (2), 9, 6, (2), (1), 1 > is a partially encoded series of x, then the above fact

ensures AWarp(x,y) = AWarp(x0,y). This observation can be easily explained by the

UBCosts algorithm, which solely depends on the two values, a and b, and is not impacted

by prior or later values in the series. Since x and x
0 are equivalent series, the distance

values must be identical. Optimality in substructures is a classic property of dynamic pro-

gramming. This fact is simply an alternative description of the optimal substructure of the

AWarp algorithm that we will exploit in the multidimensional version.

Chapter 3. Improving Correlation Calculation for Sparse time series 66

AWarp(x0,y0) is always closer to the DTW distance on traditional representations than

AWarp(x,y), where x
0 and y

0 are partial encodings of x and y, respectively. The reason

is that the more runs of zeros are split, the closer the partial encoding is to the traditional

representation. To test this statement, we define an operation, split, on an encoded series

that splits every run of two or more zeros into half. If we iteratively split an encoded series,

the series is eventually converted to the traditional version. The impact of such iterative

splits on exactness is shown in the Figure 3.6(right). As we split more, the error decreases

and the exactness increases.

20 40 60 80 100 120 140 160 180
96.5

97

97.5

98

98.5

99

99.5

100

Window Size%
 o

f E
xa

ct
 D

TW
 D

is
ta

nc
es

AWarp_UB

AWarp_LB

Iterative	Splitting	of	the	Runs	of	Zeros
1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

82
84
86
88
90
92
94
96
98

100

Percentages of
Exact Distances

Average Error between
AWarp and DTW

Figure 3.6: (left) The exactness of constrained AWarp LB and AWarp UB for various
windows. (right) The error and exactness of partially encoded representation as we split
runs of zeros into halves iteratively.

3.4.4 Multidimensional Warping

We have so far discussed the one dimensional algorithms for calculating AWarp. We consi-

der the multidimensional extension of AWarp using approaches similar to those developed

for traditional DTW in [80]. There are three general ways to extend DTW to multidimen-

sional time series:

Independent: Calculate the individual optimal distances and sum them after normaliza-

Chapter 3. Improving Correlation Calculation for Sparse time series 67

tion by the path length.

Aggregate: Sum up the individual dimensions into one superposed time series and encode

them to calculate the AWarp distance using Algorithm 2.

Dependent: Calculate the global optimal distance assuming that all of the observations at

a timestamp must be aligned together to the observations of another timestamp.

Extending AWarp to multidimensional-encoded time series is trivial for the indepen-

dent scenario. In the aggregate scenario, we sum up the individual dimensions. A simple

way to sum two encoded sparse time series is to convert them to traditional time series,

add the series, and encode them back to obtain the aggregated time series. It is even more

simple to aggregate two time-value sequences. We concatenate the two sequences, sort

the concatenated sequence based on time, and add observations which appear at the same

time. The time cost is linear in both the cases.

In the dependent scenario, it is non-trivial to calculate the global optimal distance.

The recursive step of the dependent version of multidimensional warping distance is given

below.

D(i, j) =
dX

k=1

(Xik � Yjk)
2 +min

8
>>><

>>>:

D(i� 1, j)

D(i, j � 1)

D(i� 1, j � 1)

The above definition of the multidimensional DTW does not work on encoded series

directly. For example, if a two-dimensional series is (x1, x2) = (< 1, 0, 0,�1, 0, 0, 0, 1 >

,< 1, 0, 0, 0, 0, 1, 0, 1 >), the encoded representation is (x1, x2) = (< 1, (2),�1, (3), 1 >

,< 1, (4), 1, (1), 1 >). Clearly, the locations of real observations are not aligned in x1 and

x2. In order to convert them to a workable representation, we partially encode x and y

in a way that runs of zeros always end at an observation in one of the dimensions. For

example, (x0
1, x

0
2) = (< 1, (2),�1, (1), (1), (1), 1 >,< 1, (2), (1), (1), 1, (1), 1 >) is an

equivalent representation of x and y where the values are time aligned. On sequences

of different lengths, aligning them requires managing the ends carefully. we provide the

Chapter 3. Improving Correlation Calculation for Sparse time series 68

Algorithm 4 that describes the alignment process for two run-length encoded sequences

corresponding to two dimensions. The algorithm aligns every positive observation with

another observation or a zero in the other dimension. When there are more than two

dimensions, the process will be to align pairs of dimensions until no change is needed.

The AWarp algorithm will need to calculate the sum of UBCosts over all of the di-

mensions in lines 8-10 to accommodate the recursion specified above. In [80], the authors

have shown that a combination of the dependent and independent algorithms can beat

both of them individually. We will consider such extensions for multidimensional AWarp

in future.

3.4.5 Constrained Warping

It is widely accepted that constraining the warping between two time series in a user-given

window not only helps data mining algorithms to run more quickly, but also enforces

physical laws in the matching process [75][49][71]. Figure 3.2(right) shows an example

of a constrained (Sakoe-Chiba band) AWarp matrix. The constrained AWarp algorithm for

encoded time series is shown in Algorithm 5. This algorithm is identical to Algorithm 2

except the lines 6-9. In line 6, the absolute difference between the timestamps of xi and yj

is calculated. We assume that the timestamp of every observation in the encoded series is

available to us. It takes linear time to calculate these absolute timestamps if we know t0,

and the overhead is minimal compared to the overall computational cost.

The condition on line 7 ensures that if txi > tyj + w then txi�1 > tyj + w must be

true to set a cell to infinity. If txi > tyj +w and txi�1 < tyj +w, then xi is a run of zeros,

which contains the timestamp tyj+w (boundary of the Sakoe-Chiba band). As mentioned

before, AWarp cannot align a run of zeros in parts, therefore, when a run of zeros contains

the boundary of Sakoe-Chiba band, we extend the band until the next observation after the

run of zeros. This forces us to calculate some extra cells that would have been infinity if

we used the traditional representation. However, constrained AWarp ensures that no cell

Chapter 3. Improving Correlation Calculation for Sparse time series 69

within the band is skipped, as Line 7 also checks the mirror case for tyj > txi + w.

In Figure 3.6(left), we show the correctness of the AWarp LB and AWarp UB al-

gorithms as we increase constraint window size. We generate a time series of length

200 with 50% sparsity and normally distributed observations. We calculate 10,000 ran-

dom distances using Algorithm 5 and check what percentage of the distances match the

exact constrained DTW distance. We find that the accuracy increases as the window

grows. AWarp UB converges quickly to 100%, while AWarp LB show some vari-

ance. Note that the exactness is always above 96.5% for AWarp LB and above 99% for

AWarp UB.

3.4.6 Conversion of Representation

The best sparse representation for time series data depends on sparsity. Time-value se-

quence is space saver if more than half of the sequence contains zeros. Length-encoding

can save even more when the sequence is very sparse. It is clear that conversion between

representations is useful to harvest benefits of various representations. We provide two

algorithms to convert the two common representations (traditional series and sequence of

time-value pairs) of sparse time series into run-length encoded series. The conversion al-

gorithms work in linear time and linear space. Both of the algorithms are implemented

and shared in our project page [9].

3.5 Experiments

Reproducibility Statement: We share code for AWarp in two languages (C++ and MAT-

LAB), presentation slides, datasets, experimental results, additional experiments, and ad-

ditional data in AWarp supporting webpage [1].

Chapter 3. Improving Correlation Calculation for Sparse time series 70

Dataset Instances Length Resolution Duration
TA 4,170 36,799 1 Second One Day
AR 3,755 1,334 1 Day Years
HA 1,628 288 5 Minutes One Day
PW 3,089 288 5 Minutes One Day

Table 3.1: Dataset summary

Datasets: We use four real datasets from diverse domains to demonstrate the scala-

bility of AWarp. The datasets are: Twitter user activity time series (TA), app review time

series (AR), human activity time series (HA) and power usage time series (PW). In Table

3.1, we briefly describe the datasets. The resolutions of the datasets are very carefully

chosen to be relevant for the respective domains. In human behavioral activity and electric

power usage, a resolution of five minutes is reasonable. In online reviewing activity, a

resolution of a day is enough. In Twitter activity time series, a resolution of a second is

required because many actions in Twitter only need mouse clicks (e.g. follow, retweet).

Detailed descriptions of the datasets are given in the section 3.6.

Speedups

We generate 100,000 pairs of sparse time series for various sparsity factors and lengths

where the activities are uniformly distributed. We calculate the average speedup achieved

by AWarp over DTW for these pairs and show the results in Figure 3.7.

As data becomes more sparse, speedup increases. As data gets larger, the speedup

increases even more.This is an incredible feature of AWarp that can enable applications

of warping distance to datasets where DTW cannot run on the uncompressed sparse time

series.

Chapter 3. Improving Correlation Calculation for Sparse time series 71

100
200

400
800

1600
3200

2
4

8
16

320

50

100

150

200

Sp
ee
du

p	
(T
im

es
)

100200
4008001600

3200

2
4

8
16

320

20

40

60

80

100

Pe
rc
en
ta
ge
	C
or
re
ct

Figure 3.7: Speed and accuracy with respect to the sparsity and size of the datasets.

Tractability

A valid question at this point is: are the sizes and sparsity factors of real datasets large

enough to require a method like AWarp? We first validate the major motivation of AWarp.

We test the speed of AWarp by comparing the running time of AWarp in the encoded rep-

resentation with that of DTW in the traditional representation. The gain in speed naturally

depends on the resolution of the time series. The higher the resolution, the more sparse

the data becomes and the more speedup we gain. We use reasonable resolutions for all of

our datasets as shown in the Table 3.1.

We perform all-pair distance calculations on each of the datasets using DTW and

AWarp. All-pair distance calculations is a basic operation for many data mining task

including: hierarchical clustering, outlier detection, and nearest neighbor classification.

We record the speedup and the respective sparsity factors for four real datasets in Table

3.5. The sparsity factors in our real datasets are large enough to extract at least 2⇥, and

up to 557⇥, speedup. In each of these domains, the data owners (e.g. Twitter, Google

Play) have several orders of magnitude more data than what we use for this experiment.

AWarp will be very useful at that scale for performing many basic data mining tasks under

warping similarity. We describe four such data mining tasks in the section 3.6.

Chapter 3. Improving Correlation Calculation for Sparse time series 72

Dataset s DTW AWarp SpeedUp
TwitterActivity 746 180 hrs 0.3 hr 557⇥

AppReviews 3 46 hrs 21 hrs 2⇥
HumanActivity 42 907 Sec 34 Sec 27⇥

PowerUsage 28 1170 Sec 40 Sec 29⇥

Table 3.2: Speedup achieved on real datasets.

Comparison with a Baseline

As described earlier, the purpose of AWarp is to calculate the warping similarity of sparse

time series much more quickly than the classic dynamic time warping algorithm while

retaining the accuracy of a warping distance measure. There are other methods (e.g. Fast-

DTW) that achieve the same for arbitrary time series data, as opposed to sparse time series.

We compare AWarp to FastDTW [77] on 1000 pairs of sparse time series for different val-

ues of the radius parameter. We measure total execution times and percentages of exact

distances produced by FastDTW and show the results in Figure 3.8. On the same chart, we

point to the worst and median accuracy achieved by AWarp (implemented in MATLAB)

and the corresponding execution time for various sparsity factors. Note that AWarp has

no input parameters. Also note that FastDTW does not vary on sparsity. For complete-

ness, we point to the timings of two classic DTW implementations. FastDTW (Python) is

completely dominated by our implementations. We show a hypothetical 10⇥ accelerated

curve for FastDTW, which is also dominated by our implementations of AWarp and DTW.

Dozens of techniques are available to speedup similarity search [49], subsequence

search [70], and indexing time series [79] data. These techniques are equally applicable

to sparse time series and can benefit from AWarp’s speedup just by replacing DTW with

AWarp when calculating true distances to eliminate false positives. Comparing AWarp,

DTW, and FastDTW in searching or indexing algorithms is out of scope of this work.

Chapter 3. Improving Correlation Calculation for Sparse time series 73

Execution	Time	(Seconds)
0 10 20 30 40 50 60

0
10
20
30
40
50
60
70
80
90
100

%
	o
f	E
xa
ct
	D
ist
an
ce
s

FastDTW
Python

FastDTW
10x	Accelerated

Awarp (s=12)

DTW	C++ DTW	MATLAB

Awarp (s=2)

Figure 3.8: Speed accuracy trade-off for various methods and implementations.

3.6 Data Mining Applications

AWarp is a distance measure that nearly optimally aligns two discrete time series much

more quickly than DTW aligns them in their traditional representation. However, this work

needs to be justified by showing the utility of this speedup in real data mining tasks. In this

section, we show four cases of important data mining tasks that require time warping and

could not have been performed using time warping distance functions without the speedup

provided by AWarp.

3.6.1 Bot Discovery in Twitter

We evaluate the performance of AWarp for clustering the Twitter activities of thousands of

users. We assemble a dataset of every activity, including tweet, retweet and delete, from

4,170 randomly chosen users for a day. We form activity time series for each of the users

Chapter 3. Improving Correlation Calculation for Sparse time series 74

at a resolution of seconds (the data is available at milliseconds resolution).

Activity time series can be very useful for finding surprisingly correlated user groups

that are mostly bot operated. To find such correlated user groups, we hierarchically cluster

the users based on their AWarp distances. We use the single linkage technique and a

threshold of 1 to create the clusters.

0
0.5
1

1.5
2

2.5
3

3.5

Outliers Cluster

Di
st
an
ce

50 100 150 200 250 300 350 400
5

10

15

20

25

30

35

Seconds
0

5

10

15

20

25

30

Figure 3.9: (Left) Time series of a cluster of 35 bots. Each spike is one tweet. Note the
warping in time axis. (Right) Dendrogram of the Twitter accounts using constrained (60
sec) AWarp. Most of the random users are outliers and several clusters of bots are formed.

We find ten clusters that are very dense groups of ten or more users with highly syn-

chronous activities. Several of these clusters can be further merged to form four seman-

tically coherent clusters. One of the clusters was spreading pornographic content and is

now mostly suspended by Twitter. Another cluster is spreading news, videos, and im-

ages about Selena Gomez (wedselena13,wedselena,wedselena12). The re-

maining two clusters were spreading identical content in two specific languages: Por-

tuguese (patetamos, IndiretasMusica, LoucoDeVodka) and Malaysian (elzmn01,

ItSy4mimi, zazaizzaty96).

We show some of the activity time series from the cluster of Portuguese language in

Figure 3.9(left). The time series show arbitrary shifts in tweet timestamps because of

queuing delay, transmission delay, tweet registration delay, geographically separated data

centers, and many other reasons. Such unstructured delay between synchronous tweets

breaks Euclidean distance- and lagged Euclidean distance-based methods and prevents

this bot group from being detected and suspended. Since AWarp is two orders of magni-

Chapter 3. Improving Correlation Calculation for Sparse time series 75

tude faster on Twitter data, we could perform the clustering under warping distance and

discover such a cluster.

2.44 2.46 2.48 2.5 2.52 2.54 2.56
0
0.5
1

2.4424 2.4425 2.4426 2.4427 2.4428 2.4429 1050

0.5
1

2.495 2.4952 2.4954 2.4956 2.4958 2.496
0
0.5
1

105

105

Occurrence	1

Occurrence	2

Figure 3.10: Example of time series motif in bot activities. x-axis is in millisecond, y-axis
shows number of tweets.

3.6.2 Temporal Patterns in Bot Activities

Twitter bots are very active agents. It is interesting analyze temporal patterns in these bots

to understand their dynamics. With that objective, we select a group of 1500 bots, and

collect 100% of their activities in Twitter for five consecutive days. We then perform two

temporal pattern mining algorithms (motif discovery and discord discovery) to identify

repeating and outlying structure in the activities.

Time series motif is a repeating subsequence in a long time series [65]. Motif can

be very simply defined as the most similar pair of subsequence. Motif discovery is an

important data mining tool to identify preserved structure in the underlying dynamics of

the data source. We use our time warping distance measure, AWarp, to extract the most

similar repeated segments for each bot.

In Figure 3.10, we show the activity series of the user DSGuarico for five days.

Visually there is no periodicity in the activity other than some long pauses. However, the

user has a motif that occurs many times (two occurrences are shown in the Figure 3.10).

The motif is simply a sequence of tweets made at about 500 milliseconds interval (exact

Chapter 3. Improving Correlation Calculation for Sparse time series 76

interval varies). Clearly it is impossible for a human being to post tweets at this rate even if

the tweets are identical. Upon further investigation, we observe that all of these tweets are

copied from the President of Venezuela, Nicols Maduro. DSGuarico was synchronous

with at least fifty other bots engaged in similar kind of proliferation of political tweets.

Time series discord is the most anomalous subsequence in a long periodic time series

[102]. Discord is defined as the subsequence whose nearest neighbor is the furthest among

other nearest neighbors. A good segment of Twitter bots are periodic. For example The

Count (@countforever), is a harmless bot that just counts periodically. Another ex-

ample is Red Swingline (@RedSwingline1), which posts political content periodically.

A discord in such bots is unusual and potentially indicates downtime in bot master. In

Figure 3.11, we show the bot m and e 2 that is periodically posting at every 4 seconds.

We discover a discord of 32 seconds long pause.

1 1.1 1.2 1.3 1.4 1.5 1.6

0
0.5
1

Discord
10#

Figure 3.11: Example of discord in bot activities. x-axis is in millisecond, y-axis shows
number of tweets.

Both motifs and discords are computationally expensive tasks requiring quadratic num-

ber of distance computation in the worst case. A five-day long time series at millisecond

resolution contains 4.32⇥108 samples in the traditional representation. AWarp on Length-

encoded sequences makes it feasible to discover motifs and discords by considering only

the timestamps of the tweets. Note that the motifs and discords described above requires

high resolution (seconds or milliseconds) data to be discovered as patterns. Aggregated

tweet counts over minutes would not require AWarp, and fail to discover the patterns.

Chapter 3. Improving Correlation Calculation for Sparse time series 77

3.6.3 Pseudo-sparse Time Series Analysis

AWarp is motivated to exploit sparsity. Many real world time series are not sparse in

their raw forms, while can easily be converted to sparse time series without losing much

information. For example, seismic recordings are typically stationary having mostly noise

and only infrequent signatures of seismic activities. We can very simply use a cut-off

threshold to increase sparsity of the signal. Thus, AWarp can be applied on the converted

sparse times series to mine patterns in an efficient manner.

0 50 100 150 200
-1

-0.5

0

0.5

1
x106

0 1 2 3 4 5 6-1
-0.5
0
0.5
1
1.5

0 1 2 3 4 5 6-1
-0.5
0
0.5
1
1.5

x106

x104

x104

After Conversion to Sparse Series

Motifs

Figure 3.12: Example of a motif discovered in seismograph after conversion to sparse time
series.

We show a simple application of motif discovery in a pseudo-sparse time series. We

collect digital seismic data recorded at a station near Yellowstone, WY (station SM06 of

network ZH). The station is strategically picked with a hope to contain seismic signals of

both natural and human generated activities. In Figure 3.12, we show a 10-minute long

segment of time series. We convert the time series by reducing observations with absolute

value less than 5⇥ 103. This conversion preserves all high amplitude data, while allowing

a sparsity factor of over seven. Dynamic Time Warping (DTW) alignment can produce

valuable insights in seismic data, for example, linking wells to their seismic activities

[47][12]. We perform motif discovery on the compressed seismic signal using AWarp and

Chapter 3. Improving Correlation Calculation for Sparse time series 78

identify a motif that periodically appears in a short window of 10 seconds. The constant

periodicity of the motif within the window is more likely to be human generated, although

the signal shape does not confirm anything more specific. Nevertheless, the process of

efficiently finding motifs in pseudo-sparse time series potentially can improve seismic

data analysis methodologies.

Reducing low magnitude observations is a relatively straight-forward technique to add

sparsity. Clearly, it works when the expected mean of the time series is zero, as in some

seismic data. When a signal has non-zero mean, we can extend the technique to reduce

observations with values in an arbitrary range about the mean. For example, in an extreme

scenario, we can convert all the values less than the mean to zeros. Adding sparsity in such

way can be useful in search engine trend analysis.

In Figure 3.13, we show trends of some keywords as search query in Google [3]. Most

trends contain periodicity (i.e. annual, monthly, etc.) or sudden bursts. Ignoring the vast

amount of small observations does not change the periodic or bursty patterns much, while

provides significant performance boost via algorithms such as AWarp. We collect trends

for two groups of keywords related to the holiday season and tax season. The keywords

are: Christmas, Turkey, Gift, Black-Friday, W2, 1040, H&R and Tax. We

convert the trends to sparse time series by replacing observations lower than the mean

with zeros. We use constrained AWarp with a window size of a month (i.e. 30 days)

to perfectly cluster the trends and show the dendrogram in Figure 3.13. Note that the

grouping within clusters are also meaningful: Christmas is more related to Gift than

to Black-Friday or Turkey. Computationally, AWarp has captured the shape of the

periodic patterns. Holiday keywords have single spikes whereas tax keywords have double

spikes denoting the start and ending of the season.

Chapter 3. Improving Correlation Calculation for Sparse time series 79

Clustering using AWarp

0 50 100 150 200 250

0

2

4

6
0 50 100 150 200 250

-5

0

5

10

After Removing Negatives

Z-Normalized Google Trends

Days

Christmas

Black-Friday

Turkey

Gift

w2
1040

Tax
H&R

Figure 3.13: Clustering Google Trends with AWarp.

3.6.4 Behavioral Classification

We evaluate the classification performance of AWarp in a real-world setting. We use two

human activity datasets (HH102 and HH104) from the WSU CASAS repository [31]. Each

dataset is from a single-resident apartment recording the activities (e.g. door open, light

on, etc.) of the resident. The datasets are partially annotated by labeling the beginning

and end of some day-to-day activities, such as toilet, dress, sleep, cook, leave home, etc.

Instead of using the annotations to classify the activities, we ask an alternate question:

can we identify a person based on the status (e.g. opened or closed) of the front door of

his apartment? We pick the daily time series of the front door of the two apartments for

over two years and create a balanced two-class classification problem of 1,628 instances

of daily time series of length 288 (i.e. one observation every five minutes). A sample of

the dataset is shown in the Figure 3.1.

Chapter 3. Improving Correlation Calculation for Sparse time series 80

We use a 1-NN classifier under Euclidean distance, DTW distance (global and con-

strained), and our proposed AWarp distance (global and constrained). We evaluate the

leave-one-out accuracy for each of these classifiers (see Table 3.3).

Euclidean DTW DTW 100 AWarp AWarp 100
59.89% 62.71% 78.19% 76.78% 78.50%

Table 3.3: Accuracies of different distance functions

It is interesting to note that there is a big gap between the accuracy of global DTW

distance (62.71%) and the accuracy of the global AWarp distance (78.19%). Although

global DTW finds the optimal alignment between the two series, AWarp penalizes a run

of zeros being aligned with some real observations more than DTW does. The difference

goes away when we use constrained versions of both of the measures with 100-minutes

widows. Because long runs of zeros are broken into at most 100 minute runs, the difference

between the global versions is reduced.

Irrespective of the difference noted above, a 1-NN classification using AWarp is 26⇥

faster than the DTW based classifier. This is a substantial difference for large datasets. We

estimate that if we use all of the fourteen CASAS datasets of single-resident apartments, it

would take 50 minutes to perform these experiments using AWarp, versus 23 hours using

a DTW-based classifier.

3.6.5 Power Usage Classification

We also evaluate the performance of AWarp on a dataset of the power usage of appliances

from two different houses. This dataset has been collected from [67]. Instead of consider-

ing all the appliances, we first consider only the power usage of the dishwasher appliance.

Typically a dishwasher consumes more than 2000 watts at regular operation. We discretize

the power usage time series to on-off time series at a resolution of five minutes. In total

we have 500 days of on-off time series for the dishwashers. The two classes have 214 and

Chapter 3. Improving Correlation Calculation for Sparse time series 81

286 instances of days. These data are very sparse because dishwashers are not often in

use. We consider classifying households by using their dishwashing pattern.

ClothWasherDishWasher

Ho
us

e
7

Ho
us

e
3

Figure 3.14: Multidimensional power usage data from two households. Each time series
is 1 day long at 5 minutes resolution starting at midnight. There is neither a fixed schedule
nor a fixed load to these appliances.

We use a 1-NN classifier under Euclidean distance, DTW distance (global and con-

strained), and our proposed AWarp distance (global and constrained). We evaluate the

leave-one-out accuracy for each of these classifiers and report the results in Table 3.4.

Eucl. DTW DTW1h AWarp AWarp1h

DW 79.56% 82.16% 76.95% 83.57% 77.15%
CW 81.96% 87.58% 82.77% 85.37% 81.16%
Both 82.16% 88.98% 85.77% 87.58% 71.34%

Table 3.4: Accuracy of different distance functions.

We also evaluate the classification accuracy of the same two houses based on the

power usage of washing machines. We finally evaluate the accuracy considering both

of the appliances together using the multidimensional extension of AWarp. In all three

cases, global DTW or AWarp has the highest accuracy compared to constrained DTW,

constrained AWarp and Euclidean distances. To perform a leave-one-out cross-validation,

DTW took 4.5 hours while AWarp took 9 minutes with a tiny reduction in accuracy of

1.4%.

Chapter 3. Improving Correlation Calculation for Sparse time series 82

3.6.6 Unusual Review Pattern Discovery

We collect a dataset of app reviews from the Google Play Marketplace. This dataset con-

tains the review time series for 3,755 mobile apps. To form review time series, we collect

the number of reviews an app receives in a day since the beginning of data availability.

The time series are therefore of varying lengths, with an average length of 1,334 days.

We perform discord discovery [102] on these data to identify the most anomalous re-

view time series. The discord is the object in a dataset whose nearest neighbor is the

farthest among all other nearest neighbors. We use AWarp as a distance measure to iden-

tify the discord. We find a pair of apps that are “far” from every other app while they

are reasonably similar to each other. These apps are com.facebook.katana and

com.supercell.clashofclans, which are two of the most popular apps in the

Google Play Marketplace [5]. These apps have received more than 20 million reviews

each and they receive several thousands of reviews every day, which is much greater than

the average number of reviews an app receives in the store.

Nu
m
be

r	o
f	R

ev
ie
w
s

Nov 22,2015 Dec 31,2015
0

500

1000

1500

2000

2500

3000

3500

4000

Dec 12,2015

Facebook

Nu
m
be

r	o
f	R

ev
ie
w
s

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Nov 22,2015 Dec 31,2015Dec 12,2015

Clash	of	Clans

Figure 3.15: Review time series found as outliers illustrate the capacity hit and subsequent
two day cycle in the data collection system.

However, the success of AWarp is not catching the popular apps, which can easily be

found in Wikipedia, but in efficiently identifying anomalous patterns. The patterns that

cause AWarp to detect these two apps as outliers are shown in Figure 3.15. These pattern

Chapter 3. Improving Correlation Calculation for Sparse time series 83

show that the apps receive thousands of reviews in one day and do not receive any on

another day, which is an impossible scenario. The data collection system has a dynamic

limit on the number of reviews it can collect and the system works in a two-day cycle. If

an app is highly popular, the number of reviews it receives in a day exceeds the dynamic

limit. For the two outlier apps, the limit is exceeded every day and the collection system

gets reviews written in one day every two days, which is why the pattern appears. Thus,

the outliers represent the overloaded scenarios of the data collection system.

3.7 Conclusion

In this chapter we develop a time warping distance measure for sparse time series to exploit

sparsity for efficiency. We design and implement AWarp, which is orders of magnitude

faster than DTW and calculates a close approximation of DTW, if not a more accurate

measure in some cases, such as in human activity datasets. We show applications of AWarp

in four domains where DTW is unusable and AWarp can produce interesting results. We

discover new bot behavior in Twitter, and we classify human activity much more quickly

than with DTW-based classifiers.

Chapter 3. Improving Correlation Calculation for Sparse time series 84

Algorithm 4 AlignDimensions(x, y)
Require: x, y run length encoded dimensions of a multidimensional time series

Ensure: dfx, dfy aligned run length encoded time series

1: while x is not empty or y is not empty do

2: case: x empty

3: while y is not empty do

4: Append (head(y)) to dfx if isRun(head(y))

5: Append (1) to dfx if isV alue(head(y))

6: case: y empty

7: while x is not empty do

8: Append (head(x)) to dfy if isRun(head(x))

9: Append (1) to dfy if isV alue(head(x))

10: case: isV alue(head(x)) and isV alue(head(y))

11: Append head(x) to dfx and Append head(y) to dfy

12: Move to next x and y

13: case: isRun(head(x)) and isV alue(head(y))

14: Append (1) to dfx and Append head(y) to dfy

15: Move to next y and set head(x) �(|head(x)|� 1)

16: case: isV alue(head(x)) and isRun(head(y))

17: Append head(x) to dfx and Append (1) to dfy

18: Move to next x and set head(y) �(|head(y)|� 1)

19: case: isRun(head(x)) and isRun(head(y))

20: m min(|head(x)|, head(y)|)

21: Append (m) to dfx and dfy

22: if m = |head(x)| then

23: Move to next x and set head(y) �(|head(y)|�m)

24: else

25: Move to next y and set head(x) �(|head(x)|�m)

26: return dfy, dfy

Chapter 3. Improving Correlation Calculation for Sparse time series 85

Algorithm 5 Constrained AWarp(x, y, w)
Require: x a sequence of timestamps, y another sequence of timestamps

Ensure: Output warping distance between the two sequences x and y

1: lx length(x), ly length(y)

2: D(0 : lx, 0 : ly) 1

3: D0,0 0

4: for i 1 to lx do

5: for j 1 to ly do

6: gap |txi � tyj|

7: if gap > w and

(tyj�1 � txi > w or txi�1 � tyj > w) then

8: Di,j 1

9: else

10: ad Di�1,j�1 + UBCosts(xi, yj, diagonal)

11: al Di,j�1 + UBCosts(xi, yj, left)

12: at Di�1,j + UBCosts(xi, yj, top)

13: Di,j min(ad, al, at)

14: return Dlx,ly

86

Chapter 4

Understanding Temporal Behavior of

Social Media Users Using IPT

4.1 Introduction

We have argued how temporal analysis helps us in studying bot behavior. In chapter 2 we

designed a system to detect correlated accounts in Twitter and in chapter 3 we developed

the method to calculate the cross-correlation among users faster than existing methods.

Both of these methods consider activity time series of accounts. In this chapter, we want

to use another representation of temporal information which is inter-posting time (IPT).

A trend in existing literature on understanding social media users considers modeling

posting schedules with generic models [37] [94] [14]. Anomalous users under these mod-

els can naturally be identified as non-human (i.e. bot) accounts. However, such methods

fail miserably in the presence of impersonating bots that are just copies of other humans.

Moreover, such bots are growing in number because of ease of bot creation [68]. To elab-

orate, we show in Figure 4.1 inter-posting time (IPT) distributions of four human users.

IPT is the difference between two consecutive activity time-stamps. The figure shows that

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 87

0

0.005

0.01

0.015

0.02

0

0.002

0.004

0.006

0.008

0.01

0.012

0

0.005

0.01

0.015

0.02

0.025

0

0.005

0.01

0.015
No

rm
al

ize
d

Nu
m

be
r o

f a
ct

iv
iti

es

101 102 103 104 105 106

101 102 103 104 105 106

101 102 103 104 105 106

101 102 103 104 105 106

Inter-posting time distribution (seconds)

Figure 4.1: Inter-posing time distributions of four human users (manually verified). Plots
show that humans can have very different temporal patterns.

no common pattern exists in these distributions. The IPT distributions suggest that hu-

mans can post in very quick succession (top-right), may never post after more than a day

(top-left), or can be somewhat uniform in posting delays (bottom-right). Figure 4.1 also

illustrates that human behaviors do not necessarily follow known parametric distribution

[35]. In section 4.3, we show that such distributions are fairly common in bots, making it

difficult to create a single generic model for all humans.

We are interested in understanding dynamics of bots, hoping that this will lead us to de-

velop better prevention and avoidance strategies against them. Authors in [25] [37] [104]

[98] used temporal information to identify automated accounts in Twitter. In this chap-

ter, we also analyze temporal behavior of Twitter users to discover differences between

humans and bots. We propose a supervised learning technique using Convolution Neural

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 88

Networks and an alternative representation of temporal information. Good performance of

CNNs on image classification tasks is well-known [54]. In addition, their ability to learn

underlying patterns for each class of objects motivated us to take such a deep learning

approach.

We show that despite a large variation in posting patterns, the CNN can classify the

bots from humans with high accuracy. In addition, we show that the CNN model explains

the bot groups with less entropy than that required to explain the humans. We conclude

that modeling efforts may benefit more from the scheduling similarity among bots than

from the inherently dynamic human behavior.

4.2 Related Work

Inter-event Time Modeling Many studies have used inter-event time1 distributions (IED)

to analyze temporal data. For many years, it has been assumed that human actions are

distributed randomly in time and can be estimated by Poisson processes [43]. Studies on

human temporal behavior reveal that IED has two main features: long periods of inactivity

and bursts of activity. These two features cannot be approximated by Poisson processes

[69][14]. Malmgren et al. [60][59] showed that human dynamics follow circadian and

weekly cycles that can be modeled by non-homogeneous Poisson process. Another view-

point considers power law approximation of human dynamics [96]. In this view, heavy-

tail and bursty nature of IEDs are consequences of priority-based decision making, while

conducting sequences of activities. In [95], authors have introduced a model called SFP

showing that the two mentioned viewpoints are corner cases of SFP. Authors in [37] and

[101] also have shown evidence of bimodal distribution in human dynamics.

Bot Detection: We have discussed the fact that bots are created for different purposes, and

the primary purpose may also change [68] [27]. There are many studies on detecting bot

1inter-posting time and inter-arrival time are kinds of inter-event time

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 89

accounts on social media which we covered in chapter 2. Content of posts [34], profile in-

formation, following/follower networks [33], and temporal data [104] are features used in

these studies either individually or combined [62]. Common non-temporal features used

in bot detection methods are listed in [63]. In chapter 2, we introduced Debot, an unsuper-

vised bot detection method, that detects groups of bots who are temporally correlated [25].

Attractor+ [98] detects groups of bots considering characteristics of malicious retweeter

groups.

Convolutional Neural Network: We exploit Convolutional Neural Networks (CNN) in

this work which has been shown to be effective in computer vision [56][53] and image

processing [54]. Recently, authors in [55] have proposed a contextual LSTM network to

classify social media accounts. They determine whether an account is bot or human using

a single tweet from that account. At the user level, deep learning has not been used on

posting behavior.

4.3 Why not model humans?

There are several studies on modeling posting behavior on social media. Authors in [37]

have shown that human inter-posting time (IPT) distribution is bimodal. Figure 4.2-a

shows a typical bimodal IPT distribution 2. The modes correspond to successive postings

in the same session and in a different session roughly three hours later. The distribution

also shows harmonics at multiples of 24 hours. The RSC (Rest-Sleep-Comment) model

has been used to model users on social media (Reddit and Twitter) and to spot bots as

anomalies with respect to such distributions.

In contrast, Figure 4.2-b and 4.2-c show IPT distributions of a human user and a bot

user in Twitter, respectively. The human distribution is not bimodal and the bot distribution

is almost identical to it. We have collected thousands of human users similarly deviating

2The plot is generated by using the provided code in the RSC Github page

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 90

from the observations used in the RSC model. We identify a strong bias in the data used

in [37]. Authors have analyzed a dataset of 6790 verified users from Twitter to make such

observations. Verified users have blue badges on their Twitter profiles, which indicates a

set of properties ensured by Twitter rules [93]. These accounts are usually associated with

users who are active in music, sports, politics, fashion, media, or other areas . Unfortu-

nately, celebrities are not representative samples of general Twitter users; hence, the RSC

model is not a valid model for regular human users (data collection process is in Section

4.6).

0

5

10

15

D , IPT (seconds)

Human

10
2

10
4

10
5

PD
F

x 10-3

0

2

4

6

8

10

12

14

16

18

D , IPT (seconds)
10

2
10

4

Bot

10
5

PD
F

x 10-3

10
2

0

2

4

6

8

10

12

PD
F

D , IPT (seconds)
10

4
10

6

RSCx 10-3

0 0.5 1 1.5 2 2.5 3 3.5
-3

-2

-1

0

1

2

3

human1

human2

human3

human4

bot1

bot2

bot3

bot4

Lo
g1

0(
O

dd
 R

at
io

)

log10(percentile) (p1 … p100)

(a) (b) (c) (d)

Figure 4.2: IPT distributions. a) Bimodal distribution introduced by RSC. The two modes
are 100 seconds and 10,000 seconds respectively. b) IPT distribution from a manually
verified human user. The IPT distribution is generated using recent tweets of the user for
more than 8 weeks. The plot shows that the longest inactive duration for this user is about
a day. c) IPT distribution of a bot account detected by DeBot and also suspended latter
by Twitter. Again, the plot is generated by using recent tweets of the user for more than 8
weeks. d) Odds Ratio for 4 human users and 4 bot accounts.

Another modeling approach is to characterize the bursts and tails in the distributions.

Long periods of inactivity (heavy tail) and bursts of intense activities (spikes) have been

used to model human posting behavior [14]. However, the quantity of the burst and heavy

tail depends on factors such as the type of social media and the age of user.

A Self Feeding Process (SFP) has been used to model communication activity in the

Web [94]. Authors show that a line with slope ' 1 can fit the log of IPT’s Odds Ratio.

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 91

The Odds Ratio is calculated for each percentile {P1, P2, ..., P100} by

Odds Ratio(t) =
CDF (t)

1� CDF (t)

Figure 4.2-d shows Odds Ratio curves for 4 humans and 4 bots from Twitter. It is

obvious that the tails of the curves are not linear. Moreover, Odds Ratio plots of bots are

similar to humans. One reason that SFP cannot explain posting behavior of social media

users is that, they only studied data from personal communication (e.g. emails and phone

calls) and subject-based communication (e.g. comments on a video). On social media, a

post is broadcasted to every follower; hence, the tails vary wildly from straight lines.

64

Log scale range of IPT

Nu
m

be
r o

f I
PT

1 2 3 4 5 6 7 8 90

1

2

3

4
x 10

6
64

R = (0:8), B = 0.125
a f

24

R = (0:6), B = 0.25

24

b

0 5 10 15 20 x10-3

R = (0:8), B = 0.25

32

32

c

0 5 10 15 20 x10-3

R = (0:6), B = 0.125

48

d

0 1 2 3 4 5 6 x10-3

48

0 1 2 3 4 5 6 x10-3

Figure 4.3: a) Distribution of IPT from all users. b-f) II-Map with different range R and
bin size B

The above discussion leads to an understanding that humans show complex posting

behavior which is not possible to model with one generic model. But, can we model the

differences in posting behavior between humans and bots using other techniques? If yes,

does the model find more structure in humans or in bots? In the rest of this chapter, we

answer these two questions.

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 92

4.4 Background and Notation

In this section, we define terms and discuss concepts to develop necessary background

knowledge for the rest of this chapter.

Inter-Posting Time (IPT): Given a Twitter user account, we collect a sequence of

activity (tweeting and retweeting) time-stamps called T = {t1, t2, ..., tn}. We can calculate

a sequence of IPTs � = {�1, �2, ..., �(n�1)} where �i = ti+1 � ti. For simplicity, and

without losing generality, we assume the time unit is in seconds. Figure 4.3-a shows the

distribution of inter-posting times across a large set of Twitter users in log scale. The

largest IPTs observed are at 109 with mode around 102 and 103.

Two Dimensional Distribution of Successive IPTs: Having the IPT sequence for

a user, we generate tuples of consecutive IPTs (�i, �i+1). These tuples are counted in a

binned two-dimensional grid. The range of the grid is (100 : 10R) with bins of size B. We

call the output of this process IPT-IPT Map or II-Map. The II-Map is a two dimensional

distribution of consecutive IPTs. Figure 4.3 shows examples of II-Maps with different bin

sizes B and ranges R. We use heatmaps for visualizing II-Maps.

4.4.1 Convolutional Neural Networks

CNN has a sequence of convolution and pooling layers ordered arbitrary followed by fully

connected layer(s). The number and order of convolution and pooling layers are design

decisions and depend on complexity of the problem. Following we will explain main

components of CNNs and how we modify them for our problem.

Convolution Layer: A convolution layer gets an input Xn⇥n (II-Map in our case) and

apply filter Wh⇥h on the input where h n . The filter is slided over the input both

horizontally and vertically. In each position of the filter we calculate the dot (.) product of

overlapping values and add them with bias b. Next step is applying a non-linear activation

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 93

function to generate the final output Cq⇥q (q = n � h + 1), aka feature map. Using Relu

as the activation function, the output Cq⇥q is calculated by

ci = Relu(W . Xij : Xi+hj+h + b)

Here Xij : Xi+hj+h is a sub-matrix with size h from position (i, j) and Relu is

Relu(x) = max(x, 0)

Above process extracts one feature map, however capturing hidden features needs multiple

filters. The outputs of a convolution layer are k feature maps where k is the number of

filters.

Pooling Layer: This layer is for summarizing feature maps and reducing size of them

to preserve only important information. Pooling is sliding a window over both directions

of a feature map and applying an aggregation function such as average to that window.

Pooling can be applied either globally or locally. The size of window is equal to and

smaller than the size of feature maps in global and local pooling respectively. We use local

pooling to preserve more valuable information.

Fully Connected Layer: Fully connected layer connects every node of current layer

to every node from the previous layer. The last layer(s) of CNN is/are fully connected

layer(s) to prepare processed data for final decision. The last fully connected layer is

softmax which distributes probability over classes.

Dropout: Simply put, dropout means not considering randomly picked nodes of a

layer in processing the output. It is a regularization technique to preventing the networks

from over-fitting.

Channels: In image classification a grayscale image has one channel, and a colored

image has three channels (RGB or HSV). We adapt the same concept by considering dif-

ferent lags (l) of consecutive IPTs. We define new concept of lagged-ipt �li as follow

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 94

�
l
i = ti+l � ti

Having above definition tuple i in a lagged II-Map is

(�li, �
l
i+1)

We believe that using multiple lags to generate II-Map would equip CNN to capture

more hidden features and classify accounts more accurately.

4.5 Proposed Method

� = �

� = �

� = �

⋮

⋮

II-map with 3 lags
Batch Size = 128

Filters = 32
Filter Size = (3,3)

FC Nodes = 128
Dropout Rate= 0.25

Dropout weights

#Nodes = #Classes
Dropout = 0. 5

Input Layer First Convolution Layer Hidden Layers Fully Connected Layer

⋱

Last Pooling Layer Softmax Layer

Fi

lte
rs

 =
 6

4
Fi

lte
r S

ize
 =

 (3
,3

)

W
in

do
w

 S
ize

 =
 (2

,2
)

Fi

lte
rs

 =
 1

28
Fi

lte
r S

ize
 =

 (3
,3

)

W
in

do
w

 S
ize

 =
 (2

,2
)

Fi

lte
rs

 =
 2

56
Fi

lte
r S

ize
 =

 (3
,3

)

⋱

Figure 4.4: Architecture of designed CNN. It has four convolution and three pooling lay-
ers. Having a fully connected layer at the end, necessitate us to flatten 2D matrices after
the last pooling layer and before the fully connected layer. Figure also shows the details
of each layer hyper parameters. The input of this network is a stacked II-Map, Relu is the
activation function for convolution layers, and Adadelta is the optimizer.

We argue that modeling humans is challenging because of the inherent variability

among their posting behavior. We ask, is it simpler or easier or better to model bots than

modeling humans? To answer this question, we consider a simplified task of classifying

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 95

Twitter accounts as bots or humans. The hope is that the results from the machine-learned

classifier indicates the relative complexity of modeling bots over humans.

We convert a sequence of time-stamps to II-Map, so we can treat and process our data

as images. In section 4.5.1 we explain the details of II-Map generation process and how

we prepare our data for passing through CNN.

4.5.1 Generating II-Map

Inter-posting time, �, shows difference between two successive activity time-stamps. One

way to represent IPTs is one-dimensional distribution shown in Figure 4.1. To adapt the

idea of image classification with CNNs, we use II-Map which is a two-dimensional dis-

tribution of consecutive IPTs. Images are stored in a 3D matrix. The first and the second

dimensions are height and weight respectively. The third dimension is the RGB channel.

To have the third dimension for II-Map, we stack II-Map of three different lags. Algorithm

6 shows how a CNN input or stacked II-Map is generated.

After initialization (Lines 1-4), we generates IPT sequence for three lags and assign

them to a variable called diff (Lines 5 - 7). Then we iterate over all lags and IPTs to

produce (IPT,IPT) tuples and find the cell each tuple belongs to in the 2D grid (Lines

8-11). For simplicity, we initialize variable c in the beginning of the for loop, which is

just the variable diff of the current lag (Line 9). Number of tuples in each cell is counted

in line 12. Finally, in line 14 we normalized II-Map by the number of tuples of the current

lag. Given x, a sequence of time-stamps; R, a range of 2D space; and B, a bin size the

output of this procedure is a stacked II-Map of x.

The range and the size of bins are two parameters that specify the resolution of an

II-Map. A small range may cause information overflow, and a large range may summarize

all information into small segments, and leave the rest empty. Similarly, a small bin size

scatters tuples all over the space, and a large bin size gathers tuples in the same bin.

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 96

Algorithm 6 Generating CNN Input(x,R,B)

Require: x a sequence of timestamps, R range of output in log scale, B bin size

Ensure: stacked II-Map of x from 3 lags

1: lx len(x)

2: size R/B

3: diff(3, lx) 0

4: st IIMap(3, 0 : size, 0 : size) 0

5: diff(0, 0 : lx) get diff(x, lag = 1)

6: diff(1, 0 : lx � 1) get diff(x, lag = 2)

7: diff(2, 0 : lx � 2) get diff(x, lag = 3)

8: for lag 0 to 2 do

9: c diff((lag � 1), 0 : lx� (lag � 1))

10: for q 0 to len(c) do

11: (i, j) find cell(c(q), c(q + 1))

12: st IIMap(lag, i, j)+ = 1

13: st IIMap(lag, :, :) st IIMap(lag,:,:)
len(c)

14: return st IIMap

4.5.2 CNN Architecture

The first layer of the CNN is input layer, which is the output of Algorithm 6: a stacked

II-Map. Figure 4.4 shows the details of our CNN architecture. It has four convolution

layers, three pooling layers, and two fully connected layers. Activation functions of the

convolution layers are Relu, optimizer is Adadelta, and loss function is categorical cross-

entropy. The loss functions are used in the back-propagation process to tune the learnable

parameters towards optimal solution. Categorical cross-entropy for binary classification is

calculated by

�(ylog(p) + (1� y)log(1� p))

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 97

where actual class is y 2 {0, 1}, and predicted probability is p.

How does our proposed network differ from other successful networks? VGG16 is one

of the most famous CNN architecture that is used for classifying ImageNet and has sixteen

weight layers [81]. Our network is much smaller compared to VGG16. The difference is

mostly because of the input and output types. ImageNet [74] is a dataset of 14 million

images from 1, 000 categories of objects. Whereas, our dataset has 12 thousand users

from two classes of users and complexity of the images is much lower than natural images.

Adding more layers, as in VGG16, may provide more test accuracy, however, will certainly

take more time to train.

LSTM (Long Short Term Memory) networks have shown to be powerful in predicting

the next state of a time series [39][58]. Although we are analyzing temporal data, our

goal is not to perform a time series prediction task. We want to detect underlying patterns

which exist in the temporal data, and classify users. CNNs are demonstrated to be more

useful in such a task, especially on three-channel inputs such as II-Maps.

We have to make several choices for our CNN such as filter size, number of channels,

batch size, etc. We choose the best options based on findings in the literature, and the

validation accuracy that we get on our own data. The final chosen hyper parameters are

indicated in Figure 4.4.

4.6 Dataset

In this work, we collect inter-posting time of both human and bot accounts from Twitter.

We collect human users in two different ways: synthetic and organic. To collect human

users synthetically, we consider random users on Twitter and filter out a set of 10 thousand

users with a strict set of rules:

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 98

• Tweeted only once while collecting data through Twitter API: Bot accounts usu-

ally have high number of activities [25]. To avoid picking bots, we consider those

accounts that tweeted only once during 30 minutes of collecting random users.

• Age of the account: We look for accounts that are created more than three years

ago. Bots do not last for a long time and they get suspended due to their suspicious

behavior. We choose those accounts with more than three years of activity to have

high chance to get human accounts.

• Number of tweets: The account should not be extremely active to pass our filter. In

other words, we are looking for accounts which have less than x tweets per day on

average. We empirically set x = 5. Although many humans may have more than

five tweets per day on average, this threshold will guarantee no bot account appears

in this set. This assumption is aligned with our observations on bot activities.

The intuition behind this filtering approach comes from the fact that: Given a random

Twitter account, the probability of being human is more than 90% (8.5% of accounts in

Twitter are bots [83]). Therefore, filtering random accounts by considering some human-

related features will give us the accounts that are almost humans. Note that, these features

are not sufficient for our classification task, because there are recent, highly active, inno-

vative human users which are filtered out.

To address that, we collect organic human users using Amazon Mechanical Turk. We

asked each worker to provide us 10 accounts who (1) is not a verified user, (2) has at least

five activities in the previous week, and (3) does not have more than 5000 followers. The

initial set contained 1, 000 accounts from 100 workers. After collecting recent activities of

these accounts and only consider those with more than eight weeks worth of data, the final

set contains 881 human accounts.

To collect bot accounts we use three different bot detection methods: DeBot [26],

Botometer [33], Botwalk [62]. We use DeBot API [26] to collect clusters of bots for two

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 99

Method Botometer DeBot BotWalk Human
(Synthetic)

Human
(Organic)

#Accounts 668 569 700 10,433 881
Normal-ratio (D1) ⇥ ⇥ ⇥ ⇥

High-confidence (D2) ⇥ ⇥ ⇥
Comprehensive (D3) ⇥ ⇥ ⇥ ⇥ ⇥

Table 4.1: Summary of the collected data

months. Since members of a cluster are highly correlated, we pick exactly one account

from each cluster to avoid biasing the classifier towards a specific correlated group. We

queried Botometer with a set of randomly picked accounts, and selected accounts with

scores larger than 70%. From BotWalk, we choose accounts that are not common with

Botometer and DeBot to add more diversity to our dataset. Finally, we have labeled ac-

counts from five different sources (two sources for humans and three sources for bots).

Having collected accounts of various types, we use Twitter API to get the most recent

tweets of these accounts. Since we study the overall behavior of a user, the variation in

duration and amount of activities does not impact final results. We create three different

datasets by using different combinations out of our five data sources:

1. Normal ratio (D1): This dataset has the same ratio of bots and humans as the actual

ratio on Twitter.

2. High confidence (D2): These are accounts that we are extremely sure about their

labels.

3. Comprehensive (D3): This set includes accounts collected from all five sources of

data.

The summary of these datasets is provided in Table 4.1. In all datasets, humans are labeled

as negative and bots are labeled as positive samples.

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 100

4.7 Experiments

The dataset used in most of experiments is D1 with 12, 370 users. The reason of not

including BotWalk in D1 is that Botometer and DeBot both have a threshold to output

highly probable bots. But there is no such a threshold for Botwalk, and the probability of

getting false positive is higher than the two other methods. We do additional experiments

on various datasets to further investigate the ability of our method. We split each dataset

into training (60%), validation (20%), and testing (20%) sets. We use Keras for running

experiments. The code and data are available at [6].

Dataset = D1 Human

(Org + Synth)

Bot

Human (2244) 98.35 1.64

Bot (230) 12.60 87.39

Dataset = D2 Human

(Org)

Bot

Human (171) 92.98 7.01

Bot (253) 5.13 94.86

Dataset = D1 Human
(Org + Synth)

Botometer DeBot

Human (2244) 98.39 0.89 0.71

Botometer (129) 15.50 70.54 13.95

DeBot (101) 15.84 0.99 83.16

Predicted Class (%) Predicted Class (%) Predicted Class (%)

Ac
tu

al
 C

la
ss

Classification Accuracy = 97.33 %
Default Accuracy = 90.20 %

FPR = 1.64

Classification Accuracy = 93.63 %
Default Accuracy = 58.40 %

FPR = 7.01

Classification Accuracy = 96.32 %
Default Accuracy = 90.20 %

Dataset = D2 Human
(Org)

Botometer DeBot

Human (171) 90.05 2.92 7.17

Botometer (140) 4.28 86.42 9.28

DeBot (113) 3.53 13.27 83.18

Predicted Class (%)

Classification Accuracy = 87.02 %
Default Accuracy = 58.40 %

(a) (b) (c) (d)

Figure 4.5: Confusion matrices: Plots (a) and (b) are results of classification consid-
ering 2 classes of users. Plots (c) and (d) show results of classification by considering
accounts from two bot detection methods separately. These matrices show: 1) DeBot and
Botometer focus on two different types of bots. 2) Further ability of proposed method in
understanding underlying patterns of bot temporal behavior from these two different bot
detection methods.

4.7.1 Human vs. Bot

We run proposed method on D1 with different parameters to find the architecture that gives

us the best validation accuracy. Besides calculating the accuracy, we generate confusion

matrix and calculate precision and recall. The results are provided in figure 4.5-a. The

classification accuracy is 97.33% where the default accuracy is 90.20%. Values reported

in the matrix show the percentage of of predicted samples to actual samples.

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 101

4.7.2 Classifying into more categories

The current set of experiments are designed to check further abilities of proposed method

and other combinations of the dataset. First, we run an experiment using D2. Second,

we do experiments that include multi-class classification in which we label a bot account

based on the bot detection method and check if proposed CNN can classify accounts cor-

rectly in to sub-categories. We do multi-class classification for both D1 and D2.

Confusion matrix (b) in Figure 4.5 shows the result of binary classification using D2.

The accuracy we get in this experiment is lower that D1 in the first look. Considering

the default accuracy 58.40% and number of samples 2, 118 (10K less that D1), we can

accept that the classification result is good and promising. Confusion matrices (c) and (d)

show the classification accuracy we get for multi-class classification experiments. These

two matrices show that the proposed method can even distinguish between bots detected

by different methods. These experiments also indicate that DeBot and Botomter focus on

different types of bots.

Finally, we do experiments to see what accuracy we can get by classifying users from

D3. The accuracy of prediction for binary classification is 92.08% with default accuracy

of 85.17%. We also do the multi-class experiment and get 91.39% accuracy. BotWalk

accounts are misclassified more than other classes. This is because BotWalk is more a bot

exploration method compare to DeBot and Botometer which are bot detection methods.

4.7.3 Impact of II-Map resolution

In section 4.5.1, we explain the impact of R and B on the resolution and sparsity of an

II-Map. To complete our experiments, we use II-Map with different setup to check if the

accuracy is highly dependent to resolution. For our experiments we use R = {8, 6} and bin

size B = {0.25, 0.125}. For comparison we use validation accuracy, prediction accuracy,

and training time. Figure 4.6-left shows validation accuracy over 70 epochs. All setups

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 102

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 11 21 31 41 51 61

Ac
cu

ra
cy

 (%
)

Epochs

Validation Accuracy

(0:8) - 0.25

(0:8) - 0.125

(0:6) - 0.25

(0:6) - 0.125

X 102

0.97

0.971

0.972

0.973

0.974

0.975

0.976

0.977

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ac
cu

ra
cy

 (%
)

Se
co

nd
s

Testing Accuracy and Training Time

Training Time

Testing Accuracy

(0:8) – 0.25
(0:8) – 01.25

(0:6) – 0.25
(0:6) – 0.125

2DDCI log scale range – Bin size

X 102

Figure 4.6: The impact of using different resolutions. The (left) plot shows validation
accuracy. The (right) plot shows testing accuracy and training time. The accuracy we
get from higher resolution is not significantly different from lower resolution; however,
training time is remarkably different.

have almost monotonically increasing validation accuracy and their last epoch accuracy do

not differ significantly. Figure 4.6-right shows both test accuracy and training time. The

change in test accuracy using various resolutions is negligible; however, the training time

is significantly different. Having the result of these experiments, we conclude that R = 6

and B = 0.25 give us II-Map from which we can get accurate results.

4.7.4 Comparison with existing methods

We show how our model performs compared to the RSC model [37] in this section. We

use D1 for this experiment. Both classifiers are trained based on the same training set, and

the final results are also reported on identical testing sets. We report accuracy, precision,

recall, and false positive rate. As shown in Table 4.2, our model outperforms RSC in all

the performance metrics by a significant margin. As we mentioned before, the reason that

we can get more accurate results compare to the RSC model is that capturing the human

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 103

Metrics CNN RSC
Classification Accuracy 97.3% 92.3%

Precision 84.4% 60.4%
Recall 87.3% 49.1%

FPR (humans detected as bots) 1.6% 3.3%

Table 4.2: Our model vs. rsc

behavior with a generic model does not always work because of the variation in human

posting activities.

We do not compare our method with Botometer, DeBot, and BotWalk because we

have used bot accounts detected by these methods to train our model. Our results strongly

suggest that all of these methods may improve if II-Map features are included in them.

4.8 Interpretation

Lack of interpretability is a common concern for neural network based intelligence. Ana-

lyzing the hidden layers is an active research area to identify the most impactful features

on the final decision [105] [73]. Given a trained CNN for image classification, Class Acti-

vation Map [105] is a technique for highlighting the regions of an image that are relevant to

the final output. We modify the CAM implementation3 to apply on our own input, and see

which regions of II-Map have more impact on the final classification result. Since II-Maps

are two-dimensional matrices, and three of them are stacked to form the CNN input, the

visualization will be meaningful if we show only one of the matrices. II-Maps illustrated

in Figure 4.7-b and 4.7-d are generated using lag=1. CAMs and II-Maps illustrated in

Figure 4.7 are all from D2.

We evaluate the impact of using II-Map (lag=1) and stacked II-Map (lag 2 {1, 2, 3})

on the final result by considering the classification accuracy. Although the stacked II-Map

3We modify the code from: https://github.com/jacobgil/keras-cam

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 104

gives us better accuracy, the difference is not significant. Therefore, we can assume that

II-Maps illustrated in figure 4.7 are proper representatives of CNN inputs.

The class activation maps for bots suggest that the top-right and bottom-left corners

of the CAMs are very important to distinguish bots from humans. Top-right corner has

been activated for almost all bots and humans (Figure 4.7-c and 4.7-a). Note that, high

frequency regions (red) in CAMs do not necessarily point to regions with greater values

in the original II-Map. Rather, they point to regions where CNN pays more attention to.

The activated corners indicate the correlation among the consecutive IPTs at low and high

extremes.

We measure interpretability of the CAMs using traditional entropy measure, which

captures the “complexity” of texture in images. We discover that bot CAMs are signifi-

cantly lower in entropy than human CAMs. More precisely, we reject the hypothesis that

mean entropy in bot (5.4) and human (6.7) CAMs are the same with 99% confidence.

These results support our claim about existence of various patterns in human temporal

behavior.

One may think that such bias towards bot accounts can be a consequence of poorly cho-

sen architecture. We evaluate this architecture on the famous MNIST dataset and achieve

a 99.4% accuracy for the ten-class problem, which suggests that the architecture is strong

enough for the task. One may think that our II-Map representation is contributing to

the bias in CAMs between bots and humans, while there may exist other representations

which reveal better structural patterns in human CAMs. We will explore such possibility

in future.

4.9 Conclusion

In this chapter, we use a two dimensional distribution of consecutive IPTs or IPT-IPT Maps

to represent posting schedule of social media users, and exploit a CNN to classify social

Chapter 4. Understanding Temporal Behavior of Social Media Users Using IPT 105

Low High Activation

Color

a) CAM for bots c) CAM for humans d) II-map for humansb) II-map for bots

Figure 4.7: Samples of CAM for bots and humans. (a) Bots activation maps show more
intense colors. (c) Columns have more influence on Organic human class.

media users as either bots or humans. We achieve 97% accuracy in classifying bots. We

use Class Activation Map (CAM) to interpret the CNN, and find that bot CAMs have less

entropy than humans. This finding suggests that modeling efforts may benefit more from

scheduling similarity among bots, compared to dynamic human behavior.

106

Chapter 5

Conclusion and Future Work

The main goal of this dissertation was to analyze temporal behavior of social media users

to understand underlying existing patterns in their behavior and identify accounts which

are controlled by a computer program instead of a human. We discussed the problems that

automated accounts make in social media, and the impact they have on decreasing the level

of trust in these platforms. The main challenges of studying social media users are lack

of ground truth, various human temporal behavior, and complexity of automated accounts.

To tackle these challenges we used time series analysis techniques, deep learning methods,

and new representation of temporal information in our proposed methods.

We designed and implemented DeBot, an unsupervised system to detect automated

accounts on Twitter. It calculates correlation between users and declares those ones with

high correlation as bots. Using temporal information, DeBot has detected thousands of

bots which are highly synchronized not only in time but also in content. We evaluated

our work by comparing with existing methods and found that DeBot can detect bots away

earlier than Twitter suspends them.

We designed and implemented Awarp to improve time complexity of cross correlation

calculation. Before Awarp, we used DTW to calculate correlation between two activity

signals. Activity signals are sparse time series, and Awarp exploits this sparsity to calculate

Chapter 5. Conclusion and Future Work 107

similarity between two users faster than O(n2). The number of activities is the parameter

that specifies Awarp time complexity, rather than the length of activity signal. Using Awarp

we could get up to 500X speed up in cross correlation calculations.

In chapter 4, we proposed a supervised technique to classify humans and bots in social

media using 2-dimensional inter-posting time distribution of their activities. We showed

existence of various patterns in human temporal behavior that cannot be explained with a

single generic model. We adapted the idea of image classification using CNNs to perform

our classification task. We treated IPT distribution as an image, and pass it to a CNN for

classification. Our method lets us understand the temporal of users on social media better.

There are three different directions in which this research can be expanded. We briefly

discuss them in this section.

1. Detecting other types of bots: Finding various types of bots helps analyzing their

behavior, and detecting suspicious patterns which results a more reliable social me-

dia. Accounts detected by DeBot are dependent to the keywords that we use to

collect tweets. Finding keywords in which bots are more interested would increase

the bot detection throughput. Listening to various keywords generates significantly

more data. Processing this huge amount of data needs more time and computa-

tional resources. Another possibility to make DeBot better is to implement it in a

distributed architecture to collect more data, and process data in a near real-time

fashion.

2. Analyzing detected bots: In addition to introducing new techniques for anomaly

detection, one of the main contribution of this dissertation is providing the DeBot

API. This API makes it possible for other researchers to access the accounts that

have been detected so far, and study other aspects of them. One future direction by

using DeBot archive is to design a system to follow daily activities of the detected

accounts, and check whether or not they are suspended. This system helps to figure

out features that bots use to circumvent suspension mechanisms.

Chapter 5. Conclusion and Future Work 108

3. Interpreting clusters of social media users: We showed how human inter-posting

time behavior differentiates them from bot accounts. One future direction of this

work is to find sub-clusters for humans and/or bots. Having an explanation for each

sub-category of accounts in these two main classes can be of use for researchers in

social computing and sociology fields.

109

Bibliography

[1] Awarp: Warping similarity for asynchronous time series. http://www.cs.

unm.edu/˜mueen/Projects/AWarp/.

[2] Debot api on github. https://github.com/nchavoshi/debot_api.

[3] Google Trends. https://www.google.com/trends/.

[4] How Twitter Bots Fool You into Thinking They are Real
People. http://www.fastcompany.com/3031500/

how-twitter-bots-fool-you-into-thinking/

/-they-are-real-people.

[5] List of most downloaded android applications. https://en.wikipedia.

org/wiki/List_of_most_downloaded_Android_applications.

[6] Paper Supplementary Material. http://cs.unm.edu/˜chavoshi/

tempcnn/.

[7] Run-length encoding. https://en.wikipedia.org/wiki/

Run-length_encoding.

[8] Social Media Fact Sheet. http://www.pewinternet.org/fact-sheet/
social-media/.

[9] Supporting webpage containing video, data, code and daily report.

[10] Targeted journalists react as ak party trolls hint at new op-
eration. http://www.todayszaman.com/anasayfa_

targeted-journalists-react-as-ak-party/

/-trolls-hint-at-new-operation_354568.html.

[11] G. Al-Naymat, S. Chawla, and J. Taheri. SparseDTW: A Novel Approach to Speed
up Dynamic Time Warping. page 17, 1 2012.

Bibliography 110

[12] K. R. Anderson and J. E. Gaby. Dynamic waveform matching. Information Sci-
ences, 31(3):221–242, 12 1983.

[13] I. Assent, M. Wichterich, R. Krieger, H. Kremer, and T. Seidl. Anticipatory DTW
for Efficient Similarity Search in Time Series Databases. Journal Proceedings of
the VLDB Endowment, 2(1):826–837, Aug. 2009.

[14] A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature,
435(7039):207, 2005.

[15] N. Begum, L. Ulanova, J. Wang, and E. Keogh. Accelerating Dynamic Time Warp-
ing Clustering with a Novel Admissible Pruning Strategy. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining - KDD ’15, pages 49–58, New York, New York, USA, 8 2015. ACM Press.

[16] D. J. Bemdt and J. Clifford. Using dynamic time warping to find patterns in time
series. 1994.

[17] D. J. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns in Time
Series. In KDD Workshop, pages 359–370, 1994.

[18] A. Beutel, W. Xu, V. Guruswami, C. Palow, and C. Faloutsos. Copycatch: stopping
group attacks by spotting lockstep behavior in social networks. In Proceedings of
the 22nd international conference on World Wide Web, pages 119–130. Interna-
tional World Wide Web Conferences Steering Committee, 2013.

[19] E. Bingham and H. Mannila. Random projection in dimensionality reduction. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’01, pages 245–250, 2001.

[20] E. Bingham and H. Mannila. Random projection in dimensionality reduction: ap-
plications to image and text data. In Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 245–250.
ACM, 2001.

[21] N. Boulgouris, K. Plataniotis, and D. Hatzinakos. Gait recognition using dynamic
time warping. In IEEE 6th Workshop on Multimedia Signal Processing, 2004.,
pages 263–266. IEEE, 2004.

[22] K. S. Candan, R. Rossini, M. L. Sapino, and X. Wang. sDTW: Computing DTW
Distances using Locally Relevant Constraints based on Salient Feature Alignments.
PVLDB, 5(11):1519–1530, 2012.

[23] N. Chasvoshi and A. Mueen. Real-time Activity Correlation in Social-Media.

Bibliography 111

[24] N. Chavoshi, H. Hamooni, and A. Mueen. Debot: Twitter bot detection via warped
correlation. In IEEE International Conference on Data Mining (ICDM), 2016.

[25] N. Chavoshi, H. Hamooni, and A. Mueen. Debot: Twitter bot detection via warped
correlation. In ICDM, pages 817–822, 2016.

[26] N. Chavoshi, H. Hamooni, and A. Mueen. On-demand bot detection and archival
system. In Proceedings of the 26th International Conference on World Wide Web
Companion, pages 183–187. International World Wide Web Conferences Steering
Committee, 2017.

[27] N. Chavoshi, H. Hamooni, and A. Mueen. Temporal patterns in bot activities. In
Proceedings of the 26th International Conference on World Wide Web Companion,
pages 1601–1606. International World Wide Web Conferences Steering Committee,
2017.

[28] S. Chu, E. Keogh, D. Hart, and M. Pazzani. Iterative Deepening Dynamic Time
Warping for Time Series, chapter 12, pages 195–212. 2002.

[29] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia. Detecting Automation of Twitter
Accounts: Are You a Human, Bot, or Cyborg? IEEE Transactions on Dependable
and Secure Computing, 9(6):811–824, Nov. 2012.

[30] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over uncooperative
time series. In Proceeding of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining - KDD ’05, page 743, 2005.

[31] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan. CASAS: A Smart
Home in a Box. Computer, 46(7):62–69, July 2013.

[32] A. F. Costa, Y. Yamaguchi, A. J. M. Traina, C. T. Jr., and C. Faloutsos. RSC: min-
ing and modeling temporal activity in social media. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Sydney, NSW, Australia, August 10-13, 2015, pages 269–278, 2015.

[33] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer. Botornot: A
system to evaluate social bots. In Proceedings of the 25th International Conference
Companion on World Wide Web, pages 273–274. International World Wide Web
Conferences Steering Committee, 2016.

[34] J. P. Dickerson, V. Kagan, and V. Subrahmanian. Using sentiment to detect bots on
twitter: Are humans more opinionated than bots? In Advances in Social Networks
Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on,
pages 620–627. IEEE, 2014.

Bibliography 112

[35] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song. Re-
current marked temporal point processes: Embedding event history to vector. In
ACM SIGKDD, KDD ’16, pages 1555–1564, New York, NY, USA, 2016. ACM.

[36] C. Faloutsos and C. Faloutsos. Fast subsequence matching in time-series databases.
ACM SIGMOD Record, 23(2):419–429, 1994.

[37] A. Ferraz Costa, Y. Yamaguchi, A. Juci Machado Traina, C. Traina Jr, and C. Falout-
sos. Rsc: Mining and modeling temporal activity in social media. In 21th ACM
SIGKDD, pages 269–278. ACM, 2015.

[38] P. Galán-Garcı́a, J. G. de la Puerta, C. L. Gómez, I. Santos, and P. G. Bringas.
Supervised machine learning for the detection of troll profiles in twitter social net-
work: Application to a real case of cyberbullying. In International Joint Conference
SOCO13-CISIS13-ICEUTE13, pages 419–428. Springer International Publishing,
2014.

[39] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual predic-
tion with lstm. 1999.

[40] S. Ghosh, B. Viswanath, F. Kooti, N. K. Sharma, G. Korlam, F. Benevenuto, N. Gan-
guly, and K. P. Gummadi. Understanding and combating link farming in the twitter
social network. In Proceedings of the 21st international conference on World Wide
Web - WWW ’12, page 61, New York, New York, USA, Apr. 2012. ACM Press.

[41] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Friedland, R. Sommer, and R. Teixeira.
Exploiting innocuous activity for correlating users across sites. pages 447–458,
May 2013.

[42] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the underground on 140
characters or less. In Proceedings of the 17th ACM conference on Computer and
communications security - CCS ’10, page 27, New York, New York, USA, Oct.
2010. ACM Press.

[43] F. A. Haight. Handbook of the poisson distribution. 1967.

[44] H. Hamooni, N. Chavoshi, and A. Mueen. On url changes and handovers in social
media. In International Conference on Social Informatics, pages 58–74. Springer
International Publishing, 2016.

[45] H. Hamooni, N. Chavoshi, and A. Mueen. On URL changes and handovers in social
media. In Social Informatics - 8th International Conference, SocInfo 2016, Belle-
vue, WA, USA, November 11-14, 2016, Proceedings, Part I, pages 58–74, 2016.

[46] H. Hamooni and A. Mueen. Dual-domain Hierarchical Classification of Phonetic
Time Series. In ICDM 2014, ICDM, 2014.

Bibliography 113

[47] R. H. Herrera, S. Fomel, and M. van der Baan. Automatic approaches for seismic
to well tying. Interpretation, 2(2):SD9–SD17, 5 2014.

[48] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and B. Y. Zhao. Under-
standing latent interactions in online social networks. In Proceedings of the 10th
annual conference on Internet measurement - IMC ’10, page 369, New York, New
York, USA, Nov. 2010. ACM Press.

[49] E. Keogh. Exact indexing of dynamic time warping. In Proceedings of the 28th
international conference on Very Large Data Bases, VLDB ’02, pages 406–417,
2002.

[50] E. Keogh, J. Lin, and A. Fu. HOT SAX: Efficiently finding the most unusual time
series subsequence. In Proceedings - IEEE International Conference on Data Min-
ing, ICDM, pages 226–233, 2005.

[51] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining
applications. In Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 285–289. ACM, 2000.

[52] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining
applications. In Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD ’00, pages 285–289, New York,
New York, USA, Aug. 2000. ACM Press.

[53] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[55] S. Kudugunta and E. Ferrara. Deep neural networks for bot detection. arXiv preprint
arXiv:1802.04289, 2018.

[56] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[57] H. Li, A. Mukherjee, B. Liu, R. Kornfield, and S. Emery. Detecting Campaign
Promoters on Twitter Using Markov Random Fields. In Data Mining (ICDM),
2014 IEEE International Conference on, pages 290–299, 2014.

[58] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. Long short term memory networks
for anomaly detection in time series. In Proceedings, page 89. Presses universitaires
de Louvain, 2015.

Bibliography 114

[59] R. D. Malmgren, D. B. Stouffer, A. S. Campanharo, and L. A. N. Amaral. On uni-
versality in human correspondence activity. science, 325(5948):1696–1700, 2009.

[60] R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A. N. Amaral. A poissonian
explanation for heavy tails in e-mail communication. Proceedings of the National
Academy of Sciences, 105(47):18153–18158, 2008.

[61] Y. Matsubara, Y. Sakurai, N. Ueda, and M. Yoshikawa. Fast and Exact Monitoring
of Co-Evolving Data Streams. In 2014 IEEE International Conference on Data
Mining, pages 390–399. IEEE, Dec. 2014.

[62] A. Minnich, N. Chavoshi, D. Koutra, and A. Mueen. Botwalk: Efficient adaptive
exploration of twitter bot networks. In Proceedings of the 2017 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining 2017,
pages 467–474. ACM, 2017.

[63] F. Morstatter, L. Wu, T. H. Nazer, K. M. Carley, and H. Liu. A new approach to
bot detection: striking the balance between precision and recall. In (ASONAM’16,
pages 533–540. IEEE, 2016.

[64] A. Mueen, E. Keogh, and N. Bigdely-Shamlo. Finding time series motifs in disk-
resident data. In Proceedings - IEEE International Conference on Data Mining,
ICDM, pages 367–376, 2009.

[65] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover. Exact Discovery of Time
Series Motifs. Proceedings of the 2009 SIAM International Conference on Data
Mining, pages 473–484, 2009.

[66] A. Mueen, S. Nath, and J. Liu. Fast approximate correlation for massive time-series
data. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 171–182,
2010.

[67] D. Murray and L. Stankovic. Refit: Electrical load measurements. http://www.
refitsmarthomes.org/.

[68] D. Murthy, A. B. Powell, R. Tinati, N. Anstead, L. Carr, S. J. Halford, and M. Weal.
Automation, algorithms, and politics— bots and political influence: a sociotechni-
cal investigation of social network capital. International Journal of Communication,
10:20, 2016.

[69] V. Paxson and S. Floyd. Wide area traffic: the failure of poisson modeling.
IEEE/ACM Transactions on Networking (ToN), 3(3):226–244, 1995.

[70] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh. Searching and mining trillions of time series subsequences

Bibliography 115

under dynamic time warping. In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 262–270,
2012.

[71] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh. Searching and mining trillions of time series subsequences
under dynamic time warping. In Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining - KDD ’12, page 262,
New York, New York, USA, Aug. 2012. ACM Press.

[72] T. M. Rath and R. Manmatha. Word image matching using dynamic time warp-
ing. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, volume 2, pages II—-521. IEEE, 2003.

[73] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 1135–1144.
ACM, 2016.

[74] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[75] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,
26(1):43–49, Feb. 1978.

[76] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining through
group lag correlations. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, page 610, 2005.

[77] S. Salvador and P. Chan. Toward Accurate Dynamic Time Warping in Linear Time
and Space. Intell. Data Anal., 11(5):561–580, Oct. 2007.

[78] D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E. Keogh. Accelerating Dy-
namic Time Warping Subsequnce Search with GPUs and FPGAs. ICDM 2010. In
Proceedings - IEEE International Conference on Data Mining, ICDM, pages 1001–
1006, 2010.

[79] J. Shieh. iSAX : Indexing and Mining Terabyte Sized Time Series. In Work, volume
KDD ’08, pages 623–631, 2008.

[80] M. Shokoohi-Yekta, J. Wang, and E. Keogh. On the Non-Trivial Generalization of
Dynamic Time Warping to the Multi-Dimensional Case, chapter 33, pages 289–297.

Bibliography 116

[81] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, 2014.

[82] G. Stringhini. Stepping Up the Cybersecurity Game: Protecting Online Services
from Malicious Activity. Thesis, UNIVERSITY OF CALIFORNIA Santa Barbara,
2014.

[83] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman, L. Zhu,
E. Ferrara, A. Flammini, and F. Menczer. The darpa twitter bot challenge. Com-
puter, 49(6):38–46, 2016.

[84] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman, L. Zhu,
E. Ferrara, A. Flammini, F. Menczer, R. Waltzman, A. Stevens, A. Dekhtyar,
S. Gao, T. Hogg, F. Kooti, Y. Liu, O. Varol, P. Shiralkar, V. Vydiswaran, Q. Mei,
and T. Huang. The darpa twitter bot challenge. IEEE Computer (In press), 1 2016.

[85] V. S. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman,
L. Zhu, E. Ferrara, A. Flammini, F. Menczer, R. Waltzman, A. Stevens, A. Dekht-
yar, S. Gao, T. Hogg, F. Kooti, Y. Liu, O. Varol, P. Shiralkar, V. Vydiswaran, Q. Mei,
and T. Huang. The DARPA Twitter Bot Challenge. Jan. 2016.

[86] L. N. Tan, A. Alwan, G. Kossan, M. L. Cody, and C. E. Taylor. Dynamic time
warping and sparse representation classification for birdsong phrase classification
using limited training data. The Journal of the Acoustical Society of America,
137(3):1069–80, 3 2015.

[87] K. Tao, F. Abel, C. Hauff, G.-J. Houben, and U. Gadiraju. Groundhog Day: Near-
duplicate Detection on Twitter. In Proceedings of the 22Nd International Confer-
ence on World Wide Web, WWW ’13, pages 1273–1284, 2013.

[88] K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended accounts in retrospect:
an analysis of twitter spam. In Proceedings of the ACM, IMC ’11, pages 243–258,
2011.

[89] K. Thomas, V. Paxson, D. Mccoy, and C. Grier. Trafficking Fraudulent Accounts
: The Role of the Underground Market in Twitter Spam and Abuse Trafficking
Fraudulent Accounts. In USENIX Security Symposium, pages 195–210, 2013.

[90] Twitter. About suspended accounts. https://support.twitter.com/

articles/15790.

[91] Twitter. Streaming API request parameters. https://dev.twitter.com/

streaming/overview/request-parameters#track.

[92] Twitter. The Twitter Rules.

Bibliography 117

[93] Twitter. Request to verify an account, 2017. https://support.twitter.

com/articles/20174631.

[94] P. O. S. Vaz de Melo, C. Faloutsos, R. Assunção, and A. Loureiro. The self-feeding
process: a unifying model for communication dynamics in the web. In 22nd WWW,
pages 1319–1330. ACM, 2013.

[95] P. O. S. Vaz de Melo, C. Faloutsos, R. Assunção, and A. Loureiro. The self-feeding
process: A unifying model for communication dynamics in the web. In 22Nd WWW,
WWW ’13, pages 1319–1330, New York, NY, USA, 2013. ACM.

[96] A. Vázquez, J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, and A.-L. Barabási.
Modeling bursts and heavy tails in human dynamics. Physical Review E,
73(3):036127, 2006.

[97] M. Vlachos, D. Gunopulos, and G. Das. Rotation invariant distance measures for
trajectories. In Proceedings of the 2004 ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’04, page 707, New York, New York,
USA, Aug. 2004. ACM Press.

[98] N. Vo, K. Lee, C. Cao, T. Tran, and H. Choi. Revealing and detecting malicious
retweeter groups. In Proceedings of the 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining 2017, pages 363–368. ACM,
2017.

[99] A. Wang. Detecting Spam Bots in Online Social Networking Sites: A Machine
Learning Approach. In S. Foresti and S. Jajodia, editors, Data and Applications
Security and Privacy XXIV, volume 6166 of Lecture Notes in Computer Science,
pages 335–342. Springer Berlin Heidelberg, 2010.

[100] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Ex-
perimental comparison of representation methods and distance measures for time
series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.

[101] Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber. Evidence for a bimodal
distribution in human communication. Proceedings of the national academy of
sciences, 107(44):18803–18808, 2010.

[102] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detecting time series mo-
tifs under uniform scaling. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining KDD 07, KDD ’07, page 844,
2007.

[103] C. M. Zhang and V. Paxson. Detecting and analyzing automated activity on twit-
ter. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Bibliography 118

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6579 LNCS of
PAM’11, pages 102–111, 2011.

[104] C. M. Zhang and V. Paxson. Detecting and analyzing automated activity on twitter.
In International Conference on Passive and Active Network Measurement, pages
102–111. Springer, 2011.

[105] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep fea-
tures for discriminative localization. In Computer Vision and Pattern Recognition
(CVPR), 2016 IEEE Conference on, pages 2921–2929. IEEE, 2016.

[106] Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data
Streams in Real Time. In Proceedings of the 28th international conference on Very
Large Data Bases, volume 54 of VLDB ’02, pages 358–369, 2002.

