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Abstract

Networks are the backbone of modern HPC systems. They serve as a critical piece

of infrastructure, tying together applications, analytics, storage and visualization.

Despite this importance, we have not fully explored how evolving communication

paradigms and network design will impact scientific workloads. As networks expand

in the race towards Exascale (1×1018 floating point operations a second), we need

to reexamine this relationship so that the HPC community better understands (1)

characteristics and trends in HPC communication; (2) how to best design HPC

networks to save power or enhance the performance; (3) how to facilitate scal-

able, informed, and dynamic decisions within the network. My thesis is that one

can improve application performance and system power usage by gaining a detailed

understanding of HPC communication on both the network endpoints and fabric;

specifically, I address the problem of network-induced memory contention, quantify the

power/performance tradeoffs for dragonfly topologies in HPC networks, and increase

the scalability/responsiveness of large-scale network monitoring. This dissertation
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highlights opportunities for improving network performance and power efficiency,

while uncovering pitfalls and mitigation strategies brought about by shifting trends in

HPC communication and fabric design. We begin by examining the communication

characteristics of the network endpoints. We show how one-sided communication

techniques can lead to contention in the memory subsystem with (3X increases to

runtime) and how this can be avoided. Then, we move onto a macro level study of the

network fabric, where we demonstrate the tradeoffs between power and performance

when designing HPC network topology. Lastly, in order to facilitate dynamic and

responsive solutions, we provide new methods for scalable network monitoring and

improved models of data aggregation.
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Chapter 1

Introduction

1.1 Motivation

High performance computing (HPC) systems continue to grow in size and complexity.

In 2008 the Roadrunner supercomputer at Los Alamos National Laboratory had just

broken the Petaflop1 barrier and consumed 2.35 MW of power. In less than ten years,

computing performance has increased by 125X and the power consumption by 6.4X.

Currently, the largest system (Sunway TaihuLight) computes at 125 Pflop/s, using

over 10 million cores [121]. The power consumption of this system is a massive 15MW.

To put this in perspective, Sunway TaihuLight consumes more power than 7,000 U.S.

homes [27]. The motivation for building such a large system comes from numerous

research domains. Weather forecasting, climate modeling, nuclear test simulations

and molecular dynamics are all complex problems that demand massive amounts of

computational power to solve with high precision. For example, when NOAA recently

upgraded its supercomputers Luna and Surge, Kathryn Sullivan, Ph.D., NOAA’s

administrator said [92],

11×1015 floating point operations per second
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The faster runs and better spatial and temporal resolution that Luna and

Surge provide will allow NOAA to improve our environmental intelligence

dramatically, giving the public faster and better predictions of weather,

water and climate change. This enhanced environmental intelligence is

vital to supporting the nation’s physical safety and economic security.

And while the current systems are big, there is a push to reach Exascale (1×1018

floating point operations per second) computation. Both power and performance

savings need to be extracted from every level of the system, in order to reach such

scale. Network performance and power is the focus of this dissertation.

Networks are the backbone of modern HPC systems. They serve as critical infras-

tructure, tying together applications, analytics, storage and visualization. Despite

this importance, we have not fully explored how evolving communication paradigms

and network design will impact scientific workloads. As networks expand in the race

towards Exascale, we must reexamine this relationship so that the HPC community

better understands (1) characteristics and trends in HPC communication; (2) how to

best design HPC networks to save power or enhance the performance; and (3) how

monitoring facilitates scalable, informed, and dynamic decisions within the network.

This understanding directly impacts our ability to create efficient Exascale platforms.

Challenges for HPC communication: The first challenge is understanding how

to best leverage next-generation communication techniques. Traditionally, HPC

has followed a bulk synchronous model of communication. That is, large portions

of computation followed by mass communication/synchronization. Now, HPC is

transitioning towards asynchronous task based paradigms that overlap communication

and computation, with fine grain distribution of work across a large number of cores.

This overlap between communication and computation can only occur if we can isolate

incoming network traffic, so that it does not interrupt the processor responsible for
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computation. In this respect, Remote direct memory access (RDMA) provides a

convenient mechanism. RDMA allows nodes to largely bypass the CPU of a remote

(target) node and read or write directly to a target’s memory, which facilitates

computation/communication overlap. This creates new opportunities throughout

the HPC ecosystem in areas as diverse as resilience, system monitoring, analytics

and visualization. These shifts in communication paradigms require us to reexamine

the traditional models of communication and fully explore the impact one-sided

communication has on the system.

Challenges for the network fabric: Communication paradigms are just a part

of the challenges Exascale networks face. Additionally, we must consider the network

fabric (the links, routers, switches and network cards). Modern HPC systems require

low latency and high bandwidth networks. This demand for performance has forced

a steady growth in bandwidth offerings as networks have moved from 54Gb/s in

2011 to a proposed 600Gb/s bandwidth in 2017 [65]. This volume of bandwidth

and low latency is necessary due to the bursty traffic patterns common in HPC

workloads. For many workloads, it is not uncommon for links to be idle for more

than 84% of the runtime [43]. If a network is poorly provisioned, these traffic bursts

may sporadically create bottlenecks on the fabric that propagate at scale, creating

far reaching performance penalties known as system noise [101]. Such a performance

penalty is unacceptable, so networks in HPC systems tend to be overprovisioned. This

overprovisioning results in increased complexity and monetary costs to the system,

and leaves potential for improvement. Furthermore, as we increase the scale of future

systems, there is a concern that these systems will be constrained by power, such that

we will not be able to power 100% of the system at any given time. HPC networks

make up a significant portion of total system power. It takes around 1.7 MW to

power the links and network cards in a 100,000 node system [43]. Therefore, we need

to look at how we might temporarily shut down portions of the network to save power
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when necessary.

Challenges for monitoring: Any strategy for scaling a network up or down dy-

namically must be aware of the workload and the power constraints. This awareness

typically involves the use of large scale system monitoring. Yet, many of the larger

HPC systems now span 100,000 nodes or more. When you consider the hundreds of

thousands of switches, NICs, ports and cables operating at microsecond latencies,

monitoring becomes a daunting task. Many of the traditional techniques for monitor-

ing large systems (e.g. SNMP, OpenSM) are centralized, pull-based approaches that

do not allow for scale or high granularity of collection. Furthermore, because of the

propagation of noise, any monitoring technique must ensure that it does not unduly

perturb the system. Even after all of the raw data has been collected, we have the

additional challenge of transforming it into meaningful insights.

1.2 Dissertation Overview

This dissertation explores three topics in HPC networks (1) performance of one-sided

communication and its interaction with the memory subsystem; (2) performance and

power tradeoffs for different topologies of Exascale class networks; (3) best practices

in monitoring large-scale networks.
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1.2.1 Thesis statement

My thesis is that one can improve application performance and system power usage by

gaining a detailed understanding of HPC communication on both the network endpoints

and fabric; specifically, I address the problem of network-induced memory contention,

quantify the power/performance tradeoffs for dragonfly topologies in HPC networks,

and increase the scalability/responsiveness of large-scale network monitoring.

This dissertation highlights opportunities for improving network performance and

power efficiency, while uncovering pitfalls and mitigation strategies brought about by

shifting trends in HPC communication and fabric design.

At this point we provide a brief overview and contributions of the bodies of work

that address these three topics. Each of these overviews are expanded fully in the

succeeding chapters.

Evaluated the Performance of Multi-threaded One-sided

Communication:[30]

On top of lower level communication layers sits libraries such as MPI. Remote

Memory Access (RMA) operations have been incorporated as a part of the MPI-3

specification and it’s important we evaluate their performance, so that we have a

complete understanding of one-sided operations throughout the communication stack.

To this end, we have developed and released a set of benchmarks to evaluate the

performance of multi-threaded RMA operations in MPI. These benchmarks are used

to both evaluate and debug Multi-threaded RMA performance within OpenMPI and

MVAPICH implementations of MPI.

Characterized, Detected and Eliminated Network-induced Memory

Contention:[42]

Communication paradigms are moving towards asynchronous communication mecha-
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Characterizing and Improving Power and 
Performance of HPC Networks

Ch 2: Characterizing 
and Improving 
One-sided 
Communication

Ch 3: Simulating 
Performance and 
Modeling Power of 
Next-generation HPC 
Networks

Ch 4: Monitoring 
Networks and 
Tree-based Data 
Aggregation
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Multi-threaded 
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(OSI application 
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Figure 1.1: An illustration showing the relationship between the contributions of
this work. We evaluated the network from the endpoints (node-centric), within the
fabric (fabric-centric), and how we can enhance the scalability and responsiveness of
network monitoring (middleware/support). Within each topic, the underlying goal
is to improve the power and performance of the network, by removing bottlenecks,
exposing underutilized resources and enhancing responsiveness.

nisms that provide opportunities for overlapping communication and computation by

bypassing the CPU. We analyzed the impact this has on creating contention on the

memory subsystem and potential solutions to reduce or avoid the associated perfor-

mance penalty. Specifically, our results show Network-induced Memory Contention

(NiMC) can increase application runtime by 3X at scales of 8,192 processes. Our

proposed solutions may be enabled either through changes to hardware or changes in
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software and can reduce the runtime penalty to a 0-6% increase. Furthermore, we

explored how we might leverage machine learning to detect the occurrence of NiMC

and predict the degree of performance degradation so that we may dynamically apply

the best solution. Understanding this relationship between RDMA and application

performance will be crucial to developing accurate models of network performance in

future systems.

Analyzed Large-scale Networks and Characterized Power and

Performance:[43]

The HPC community’s understanding of current and emerging workloads on on Exas-

cale network topologies is limited. Left ignored, this naivete will translate into missed

opportunities to (1) increase application performance and (2) decrease both power

and monetary costs in next generation systems. We used simulation to characterize a

variety of relevant workloads on dragonfly topologies of 110,592 nodes. We examined

tradeoffs in network design between execution time, power, bandwidth, and the

number of global links. Our simulations report stalled, active and idle time on a

per-port level of the fabric and we introduce a new method for visualizing network

performance. The findings in this work will help shape network design decisions in

future large-scale networks.

Enabled Scalable Network Monitoring:[41, 44]

Dynamic approaches for saving power and improving performance are reliant on

streams of information regarding the current state of the system. For example, these

data streams can contain valuable information about the power draw of different

components or the utilization of a network link. Understanding the best practices

and limitations of system monitoring is an important part of enabling dynamic

solutions. With this in mind, we develop scalable push-based approaches for in-
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network monitoring and introduce a new models for hierarchical data aggregation.

We show that we can (1) improve the responsiveness of the monitoring system; (2)

accurately predict the cost of data collection with a simple extension to canonical

models of parallel computation.

1.2.2 Organization

We begin by exploring the performance of one-sided communication at the application

level. This includes the development of a multi-threaded RMA benchmark suite, used

to evaluate the performance of OpenMPI communication libraries. After presenting

an benchmarks and evaluation for multi-threaded RMA performance, We charac-

terize one-sided communication at the transport layer, specifically with a study of

RDMA communication and its potential to create contention in memory (Chapter 2).

Following this work, we expand the scope of our studies to include the network fabric

(Chapter 3). We introduce a new approach to visualize networks at fine-grained, port-

level detail. This visualization provides greater insight about network performance,

that traditional metrics fail to capture. Using empirical measurements and analytical

models of power, we evaluate how topology design impacts the power/performance

tradeoff for large-scale dragonfly networks. We detail potential power savings for a

power proportional network and different static configurations of the network topology.

Furthermore, we estimate the amount of power saved by dynamically configuring the

network. Dynamically configured networks should make adjustments according to

the environment they operate in. This knowledge of the environment is commonly

obtained through system monitoring. With this in mind, we explore limitations in

scalable monitoring and develop in-network push based monitoring for large scale

networks (Chapter 4). In this same chapter we extend a canonical model of parallel

computation, to better represent hierarchical data aggregation that is central to

scalable monitoring. Finally, we conclude with an overview of this dissertation’s
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contributions and reemphasize their relationships to each other (Chapter 5).
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Chapter 2

Characterizing and Improving

Performance of One-sided

Communication

On today’s high-performance computing (HPC) systems, standard communication

mechanisms are synchronous, requiring active sender and receiver participation in

message transmission – expending resources and time on both ends.

On emerging many-core Exascale-class systems, synchronous operation is expected

to become a prohibitive bottleneck [35]. As systems and application researchers

investigate novel approaches to reduce application synchronization, asynchronous

communication is widely considered to be a part of the Exascale system design

solution [35]. We expect that this emerging trend toward less synchronous computa-

tional paradigms and services, along with improvements to one-sided communications

in MPI-3 [88] and new network technologies will lead to increased popularity for

asynchronous communication and shared memory abstractions.

In this chapter we study one-sided communication at both the application layer
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(MPI-3) and the transport layer (IB verbs). One-sided communication separates

data movement from data synchronization so that data transfer can occur with only

the involvement of a single (origin) process. While MPI provides abstractions for

one-sided communication, the underlying implementation may not efficiently utilize

passive data transfer. In order to evaluate the performance of one-sided MPI, we

develop a suite of bandwidth, latency, message rate and application benchmarks.

These are the first publicly available benchmarks to evaluate the combination of

multi-threaded and one-sided performance in MPI.

After completing our study of the application layer, we strip away higher level

abstractions of MPI and transition to the lower level transport layer, where we can

leverage truly passive data transfer through the use of Remote Direct Memory Access

(RDMA). In this second study, we characterize contention in the memory subsystem

as a result of communication/computation overlap. We quantify the performance

impact of NiMC on a variety of hardware architectures and explore how machine

learning can detect the presence of NiMC and predict the increase to application

runtime. We show that NiMC can reduce single node memory bandwidth by

56%. Furthermore, for an application that is performance-resilient to system

noise, we show NiMC can increase runtime by up to a factor of three (at

our tested scales). We then ask how NiMC can be eliminated, evaluating three

candidate hardware and software solutions. Together, the two studies in this chapter

provide valuable insights about how we can improve the effectiveness of one-sided

communication on the network endpoints/nodes.
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2.1 Evaluation of Multi-threaded RMA

Performance in MPI

Two advancements that are expected to impact Exascale technology are one-sided

communication and multi-threading. As the number of cores increases, there is an

additional need to leverage parallism in communication. One-sided communication

is a natural fit for a multi-threaded environment since this reduces the need for

unnecessary synchronization and locks. By decoupling synchronzation and data

transfer, threads are not contending for the same locks, provided they operate on

independent regions of memory. While these two mechanisms will likely be part of the

Exascale solution, the combination of multi-threaded and one-sided communication

had not been explored previously.

In this section we will evaluate two MPI implementations of Multi-threaded Remote

Memory Access (RMA). While both RDMA and RMA are considered one-sided

communication, RMA is not RDMA. When discussed at higher layer in the network

stack, such as MPI or SHMEM one-sided communication is referred to as RMA.

An RMA programming interface provides a shared memory abstraction that may

or may not be implemented on top of RDMA. To evaluate RMA-MT performance,

we developed the first publicly available suite of RMA-MT micro-benchmarks and

mini-applications [30].

This suite includes benchmarks of latency, bandwidth and message rate for each

of the four different MPI-3 RMA synchronization methods. Additionally, both

put and get data transfer operations are explored as well as varying thread count.

The bandwidth and latency benchmarks are derived from MPI THREAD MULTIPLE

benchmarks from Thakur and Gropp [118]. Message rate benchmarks were adapted

from the Sandia Microbenchmarks (SMB) [28]. The modifications to each of these

benchmarks required that they be redesigned, with two-sided MPI calls replaced

12



Chapter 2. Characterizing and Improving Performance of One-sided Communication

with the one-sided equivalent. Checksums were added to the bandwidth and latency

benchmarks which allowed us to evaluate the correctness of the MPI implementations

as well. As our results show, correctness of these RMA-MT MPI implementations

was lacking, particularly as scale was increased. Our benchmarks were able to expose

these issues to the MPI development team.

A final contribution of this work was the conversion of three mini-applications

(HPCCG, MiniFE and MiniMD) from two-sided to one-sided. Each of these mini-

applications represent computation and communication kernels important to the

HPC community. The conversion of these mini-applications allowed us to evaluate

the scalability of RMA-MT on clusters at Sandia of 512 processes. This scaling was

crucial to uncovering some of the failure points in the evaluated MPI implementations.

In Section 2.1.3 we discuss the miniapps and micro-benchmarks in detail, providing

informations about their development and design. Section 2.1.4 provides details about

our experimental setup and evaluation. Sections 2.1.5 and 2.1.6 show the results

of testing with the micro-benchmarks for a range of synchronization methods and

thread counts. In Section 2.1.7 we highlight results and provide a discussion of the

work with an assessment of three mini-apps (HPCCG, miniFE and miniMD). In

Section 2.1.8 we outline the contributions of this work.

The work of developing RMA-MT benchmarks, running experiments and writing the

paper was done collaboratively and shared between Matthew Dosanjh, Ryan Grant

and myself [30]. I cannot take full credit for the contributions in this section of

the dissertation. Specifically, I was responsible for developing the set of latency

and bandwidth benchmarks, while Matthew developed the message rate benchmarks.

Mini-app benchmarks were split between Matthew and Ryan. The work of running

the experiments and analysis was divided between myself and Matthew, where I was

in charge of the microbenchmarks and Matthew was responsible for mini-apps and

message rate. As writing goes, both Matthew and I added text, figures and results
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to the paper for the experiments we each developed and ran. Specifically, I authored

text regarding latency and bandwidth benchmarks in Sections 2.1.3, 2.1.5, and 2.1.6.

“Background” and “Conclusions” text was provided by Ryan Grant with “Experimental

Setup” text provided by Matthew. For each of these three sections I had an editing role.

The “Introduction” text for this chapter of the dissertation was written by myself, and

differs from the original paper. For the sake of completeness, I include descriptions

and results of the entire benchmark suite.

2.1.1 Background

MPI RMA

MPI first provided a one-sided communication interface in the MPI 2.0 specifica-

tion [63]. It provided three synchronization methods for RMA: MPI Win fence,

MPI Win lock, and “Post/Start/Complete/Wait” (PSCW). MPI RMA works by al-

lowing one-sided put, get, and accumulate operations on shared windows of memory

during an exposed time period, or epoch. Synchronization must occur between

different epochs to ensure that the memory window is in a determinant state. This

synchronization is key to enable reasoning about the current content of memory

and its use in an application. The three methods provide active and passive target

synchronization. MPI Win fence and PSCW both require the target of the RMA

operations to participate in the operations through a call to fence or Post/Wait calls,

and are therefore active target synchronization methods. MPI Win lock does not

require that the target call lock, only the origin, and therefore is a passive target

synchronization method.

To extend the capabilities of MPI 2.0 RMA, the one-sided (RMA) interface was

updated in the MPI-3 specification [87]. MPI Win lock all was introduced to solve

two problems. First, MPI-2 required that when using locks only one target could
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be locked at any given time. This was resolved with MPI Win lock all as it allows

an origin to obtain a shared lock on multiple targets at the same time. Second, fine

grained data movement synchronization was provided through the MPI Win flush

call that allows for assurance that remote operations on the window were complete.

Also added in MPI 3.0 were request generating RMA operations (MPI RPut etc.), new

memory models (unified vs. separate), and new window types. The new window types

enabled windows that can attached to memory after creation, windows with memory

allocated by MPI, and shared memory windows. This work focuses on the basic

operation of RMA in MPI with multi-threading and as such does not explore memory

models or window types in great depth. The interested reader is referred to [25] for

more information on these RMA features and a history of their development.

MPI multi-threading

MPI provides several threading modes. The default threading mode,

MPI THREAD SINGLE, requires the guarantee that each process has only one execution

thread at all times. MPI THREAD FUNNELED relaxes the single thread requirements by

allowing multiple execution threads but requires that only one thread, specifically

the one that called MPI Init thread, be the only thread that can make MPI calls.

MPI THREAD SERIALIZED further relaxes guarantees by allowing multi-threaded pro-

cesses and allowing any thread to call MPI but guaranteeing that only one thread at

a time can make MPI calls (serialization is assured outside the MPI library). Finally,

MPI provides MPI THREAD MULTIPLE which allows for multi-threaded processes and

any thread may call MPI and they may do so concurrently. Some MPI implementa-

tions opt to treat the single, funneled, and serialized threading models similarly, as

they all guarantee that only a single thread is in the MPI library at any given time.

MPI has provided MPI THREAD MULTIPLE, beginning in MPI-2.0 [63].

MPI THREAD MULTIPLE is not widely adopted, and consequently the multi-threaded
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mode of MPI is not yet heavily tuned in MPI implementations. MPI RMA with

multi-threading is not widely used due to a lack of benchmarks and application code

utilizing the combination of methods. However, with new proposals to allow for more

exposure of threads to MPI, such as the MPI Endpoints work [26, 113], the use of

multi-threaded MPI may increase. RMA is a promising communication mechanism for

future extreme scale systems; therefore, it is reasonable to predict that multi-threaded

RMA may be used in future MPI programs. This work seeks to provide, to the

best of the authors’ knowledge, the first publicly available MPI RMA multi-threaded

micro-benchmarks. These micro-benchmarks will provide the foundation to begin

optimizing RMA thread multiple as application developers explore alternative MPI

communication and threading models in the future.

2.1.2 Related work

Several MPI benchmark suites have been enhanced to support measuring MPI-3

RMA performance. The OSU Benchmark Suite from Ohio State University [93]

supports several different measurements associated with MPI-3 RMA operations,

including different window creation and synchronization methods. It also supports

several benchmarks for the OpenSHMEM one-sided operations. However, it does not

currently measure operations in the context of multiple threads. Likewise, the Intel

MPI Benchmark suite [67] also has several benchmarks for measuring MPI-3 RMA

performance and allows for measuring the impact of the different MPI thread levels,

but does not currently measure performance involving multiple threads within an

MPI rank.

Understanding the relationship between threads and the performance of communica-

tion operations has also been the subject of previous research. A test suite specifically

for measuring the performance of MPI communication for multi-threaded processes

was presented in [118]. This suite was used to measure the performance of MPI
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point-to-point and collective communication functions in open source and vendor

MPI implementations on three different platforms. More recently, the emergence of

many-core processors has motivated closer examination of the interaction of threading,

one-sided operations, and the need for achieving more concurrency from the network.

Proposals have been made to better support thread safety and performance optimiza-

tions for threaded programs in OpenSHMEM [117], and a proposal for endpoints

in MPI [113] seeks to offer enhanced network performance for multi-threaded MPI

applications. Similar examinations are occurring for low-level one-sided communica-

tion layers as well, including extensions to the GASNet [52] networking programming

interface. Several of the issues with extracting more concurrency from the networking

hardware and software stack were explored in [64].

2.1.3 Benchmarks and mini-apps

This work introduces four micro-benchmarks and three mini-applications to evaluate

different aspects of RMA performance and how it affects application performance. In

this section, we describe the various elements of the resulting suite.

Benchmarks

The RMA-MT test suite includes four micro-benchmarks:

• latency,

• bandwidth,

• single direction message rate, and

• halo exchange message rate.

The goal of these micro-benchmarks is to measure the performance difference between

multi-threaded RMA operations using the default locking scheme of MPI and a
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reduced locking scheme. For each benchmark, four different synchronization methods

(fence, PSCW, lock/unlock, and lock all/unlock all) and two RMA operations (Put

and Get) are explored. Additionally, these micro-benchmarks allow evaluation of

the effectiveness of multi-threaded RMA operations for a varying thread count and

message size.

The RMA synchronization methods used in the micro-benchmarks cover all four com-

mon methods: fence, lock/unlock, lockall/unlockall, and post/start/complete/wait.

It is important to note that RMA synchronization cannot be called on the same

window from multiple threads. This is because the RMA synchronization is done at

per-rank level. To avoid calling these synchronization methods multiple times per

rank, thread-level synchronization is used. When each thread is launched, it updates

a simple counter and waits for a broadcast from the parent thread, which signifies

that all threads have been created and are ready to begin message transfer. Once

each Put/Get thread is waiting, the original thread begins the timer, broadcasts to

the Put/Get threads to continue, and runs the RMA synchronization. This method

of timing is used to avoid measuring the extra time involved in creating and starting

threads. While this is more idealized than would be expected in real applications,

the overall thread creation overhead should be relatively small when using a thread

pool for performing communication.

Latency RMA operations are not ideal for latency sensitive communications because

of the high overhead of synchronization. Our latency tests measure the round trip time

of a single message, including the cost of synchronization. Despite these shortcomings,

a simple multi-threaded latency test is included in the RMA-MT benchmark suite,

which provides some insight into the impact multiple threads has on message latency.

For this benchmark, each thread is launched and waits for a broadcast from the

parent thread before beginning a single data transfer. This removes any artifacts
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of initializing the threads. After the call to the non-blocking data transfer, each

thread waits for an additional broadcast. Receipt of the second broadcast signifies

that all child threads have completed a data transfer and that the initial thread has

completed the RMA synchronization.

Bandwidth The bandwidth micro-benchmarks evaluate the potential bandwidth

for different RMA synchronization schemes with a varying number of threads. The

tests perform a large number of put or get calls between synchronization calls

and bandwidth is measured over all iterations. For RMA operations, bandwidth is

important to typical use cases because multiple data transfers can utilize a single RMA

synchronization, amortizing the cost. The RMA-MT bandwidth micro-benchmarks

do not “warm-up” the caches before commencing. Therefore, the resulting average

bandwidth reflects this warm-up penalty.

Similar to the latency test, each thread launched by the parent thread waits for an

initial broadcast, which signifies that RMA synchronization has occurred. This also

signals that all data transfer threads have been launched and are ready to transfer

data. Once receiving the broadcast, each data transfer thread performs multiple

iterations of put or get to the shared target buffer offset by its thread ID. Following the

completion of the data transfer operations, each thread waits for a second broadcast,

signifying the completion of a closing RMA synchronization.

Message rate Message Rate is a subset of the RMA-MT micro-benchmarks, based

on the Sandia Micro-benchmarks [28]. Single threaded, two-sided versions of the

SMB’s have been used in past work [9, 10]. These tests look at different message sizes,

peer counts, and two different communication patterns. For this work, applicable

communication patterns were extended to evaluate RMA synchronization methods,

RMA transfer methods and multiple threads. Communication patterns dealing with

two-sided specific communication were not relevant to RMA communication and were

19



Chapter 2. Characterizing and Improving Performance of One-sided Communication

not extended. The synchronization methods in these tests are fence, lock, PSCW,

and lockall. The lockall implementation calls flush after every transfer operation, to

provide multi-threaded progress.

Message rate (single direction) The single direction communication pattern

looks much like the bandwidth test. It starts up sender ranks that communicate

with a paired receiver rank. The primary difference between the two is that single

direction uses larger number of ranks. It uses these ranks to test the communication

of group of nodes, rather than being limited a single pair.

Message rate (halo exchange) The halo exchange test emulates application

behavior by implementing a commonly used communication pattern. This test has

every rank transfer data to a number of neighbors. In the default case, the benchmark

communicates with six neighbors. Due to it’s prominence in HPC applications, three

of the four two-sided Sandia Micro-benchmarks use this communication pattern, with

different variations in the manner and order in which sends and receives are posted.

For the RMA-MT versions of the halo exchange tests, only one version was needed to

map to RMA, since RMA does not have an unexpected message equivalent.

Mini-apps

This subsection presents the modifications made to a subset the Mantevo Suite [55].

We focused on three Miniapps: HPCCG, MiniFE, and MiniMD. These were selected to

stress the diversity of problems that can use RMA and to stress the RMA components

of an MPI implementation in different ways. HPCCG was implemented using the

Lock all/Unlock all to test the most recent synchronization method. This was added

in MPI 3.0 to support passive target RMA. MiniFE and MiniMD both use Fence as it

fits well with the design of those miniapps and was performant in the microbenchmarks
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tests, especially for MVAPICH.

HPCCG HPCCG is a conjugate gradient code focusing on the sparse iterative

solver. It is designed to be very scalable and is approximately 3100 lines of code. It uses

a halo exchange communication on a 27-point stencil. Therefore, this communication

pattern is somewhat similar to the message rate halo-exchange micro-benchmark,

however this mini-app performs calculation and only communicates at message sizes

that are relevant to the computation. In order to adapt HPCCG to use RMA data

transfers with multi-threading, each process spawns a communication thread per

neighbor in the halo-exchange. Each process creates a thread for each of the neighbors

it needs to communicate with and then uses that thread to drive the traffic solely

to that neighbor. This means the number of threads created is not an independent

variable for the results shown for this mini-app. The message size used in the MPI Put

is the same as those used in the MPI Isend in the two-sided version of the mini-app.

HPCCG uses lock all/unlock all synchronization semantics.

MiniFE MiniFE is a finite elements code and is similar to HPCCG because it

focuses on a similar problem, but it has substantially more features. The code is

around 8000 lines. Its main loop, much like HPCCG, is a conjugate gradient solver.

Again, MPI Put calls replace the MPI Isend. MiniMD uses fence synchronization

semantics.

MiniMD MiniMD is a molecular dynamics code focused on recreating the behavior

of LAMMPS. The code is under 3000 lines. It’s limited to Leonard Jones pair

interactions. MiniMD uses two communication phases per iteration. The first being

a forward communication, and the second being a reverse communication. In both

cases, we have replaced the MPI Isend call with MPI Put. MiniMD like MiniFE uses

fence synchronization semantics.
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2.1.4 Experimental methodology

All of the tests were run on a Skybridge production cluster, which consists of 1,848

dual-socket nodes (totaling 29,568 cores). Each node contains 2X Intel E5-2670,

2.60GHz, 8-core processors with 64 GiB (32 per socket) of DDR3-1600, memory.

Each node is connected by a Qlogic onload 4X QDR IB interconnect across a Fat

Tree topology. The fabric utilizes three 648-port core switches and 108 36-port edge

switches (both Qlogic).

There are two versions of MPI used for the tests. For MVAPICH, we used the 2.1

release downloaded from the official website. For Open MPI, we used a copy of the

v2.x branch of the ompi-release candidate development repository on GitHub pulled

on October 20th 2015. Both were compiled using Intels 15.0.4 compilers, and unless

noted otherwise, were compiled with THREAD MULTIPLE support. MVAPICH

was compiled using the ch3:psm netmod, while Open MPI was given the runtime

flags to specify the use of the openib Byte Transfer Layer (BTL), due to development

issues with the PSM Message Transfer Layer (MTL).

All versions of the micro-benchmarks perform 100 iterations within each test. Each

test was run 10 times. The results presented are the average of those 10 runs in each

figure in Sections 2.1.5 and 2.1.6. All figures shown include error bars, although some

may not be visible due to small standard deviations. For the miniapp runs, 3 runs were

performed. All results are the average of those 3 runs, with applicable error bars for

the standard deviation. While thread creation could be expected to introduce variance

that would result in larger standard deviations than presented in the following sections,

the overheads of thread creation and joining are not included in the performance

results of the micro-benchmarks. As the overheads due to thread creation/destruction

can be highly variable depending on the approach to threading used. For example,

thread pools have lower overheads than on-demand creation/destruction of threads.
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2.1.5 One-sided vs two-sided

Single threaded comparisons between one-sided and two-sided communication in

MPI have been explored before [25]. We primarily include the results of Figure 2.1-

Figure 2.4 to inform the reader of the baseline performance values for the system

under test.

In these figures, we reduce the amount of information displayed by only presenting the

best performing single-thread synchronization methods for one-sided communication.

When reviewing the bandwidth performance of MVAPICH, the best synchronization

is Lock All, which has 2.1% greater throughput on average across all message sizes

than the next best performing synchronization method (Lock). When comparing

maximum throughput, Lock All has a 4.0% increase over the next best method (Lock).

In the case of Open MPI, the best performing synchronization in terms of bandwidth

is PSCW, which is 1.3% greater on average across all message sizes than the next

best method (Lock). The maximum throughput of PSCW is 1.4% greater than the

next best synchronization method (Lock).

While the differences between one-sided synchronization methods are small for single

threaded communication, we see more significant differences when comparing one-

sided versus two-sided bandwidth. There are sudden dips in bandwidth for all

the series, with the exception of Open MPI PSCW, as different eager/rendezvous

thresholds are activated. The Open MPI revision used for these tests implemented

RMA using two sided network calls and has since been updated. Of all the single

thread techniques evaluated, Open MPI achieves the best peak bandwidth using

one-sided PSCW, just surpassing 3 GiB/s.

In the case of the single threaded latency results, again, we only display the best

performing synchronization method. For MVAPICH this is PSCW, which has 2.6%

decrease to latency on average than the next best performing synchronization method
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Figure 2.1: Single threaded one sided and two sided bandwidth and latency of Open
MPI for varying message size.

(Fence). When comparing minimum latency, PSCW has a 5.2% decrease over the next

best method (Fence). In the case of Open MPI, the best performing synchronization

is also PSCW, which saw a decrease to latency of 12.4%, averaging across all message
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Figure 2.2: Single threaded one sided and two sided message rate of Open MPI for
varying message size.

sizes than the next best method (Fence). The minimum latency of PSCW is 23% less

than the next best synchronization method (Fence).

While our benchmarks sample message sizes at powers of two, we match the sampling

of the original multi-threaded MPI benchmarks [118], which lack samples between 1

and 16 Bytes. In both cases of MVAPICH and Open MPI, the latency of one-sided

operations is significantly worse than the latency of two-sided operations, which is

somewhat expected as the maturity of the one-sided code in MPI implementations

is significantly less than that of the two-sided communication code path. In these

experiments the best observed latency was seen in two-sided MVAPICH (1.8µs).

For the message rate halo exchange results, we also only display the best synchro-

nization method. For Open MPI, the best was Fence, which did an average of 1.7%

better than PSCW and 12.9% better than Lock. For MVAPICH, Lock showed the

best performance, doing 12.1% and 11.8% better than Fence and PSCW respectively.

One anomaly in these results is the spike in MVAPICH Performance at 2KiB message
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Figure 2.3: Single threaded one sided and two sided bandwidth and latency of
MVAPICH for varying message size.

size. This is also observed in Section 2.1.6 and we will discuss it further there. For

messages smaller than 2KiB, MVAPICH one-sided message rate performance exceeds

the two-sided baseline. For those message sizes, MVAPICH Lock does an average of
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Figure 2.4: Single threaded one sided and two sided message rate of MVAPICH for
varying message size.

21.4% better than the baseline.

2.1.6 RMA-MT benchmark results

In this section, we illustrate the use of our benchmark suite and how it can provide

insights about the underlying system. We present and analyze the results of bandwidth,

latency, and message rate benchmarks for varying message sizes, thread counts and

MPI distributions. We have split these results into two separate sections by MPI

distribution and caution the reader against making any comparison between the

MVAPICH and Open MPI distributions for multi-threaded runs. These results should

not be compared for two reasons. First, the evaluated version of Open MPI is not a

released version and is currently under development. This version is not currently

fully tested and on occasion our experiments fail. Of course, these failed runs have

not been included in the performance results. We have included a discussion of
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these failures at the end of this section to illustrate the ability of our benchmarks

to evaluate correctness and functionality in addition to performance. Secondly, the

system benchmarked (Skybridge) utilizes Qlogic onload network cards, which utilize

the PSM interface in MVAPICH. For Open MPI, because we ran into functionality

issues the RMA-MT in the PSM MTL, we used the OpenIB BTL instead. These

interfaces represent different levels of optimization for the underlying hardware.

Because of this, a comparison between the two distributions may be misleading, and

as the goal of examining Open MPI was not to assess performance as much as it was

to use the benchmarks and mini-apps to demonstrate their utility in debugging and

improving MPI implementations in development.

MVAPICH release
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Figure 2.5: MVAPICH bandwidth results for one-sided (lockall) communication with
varying thread counts.
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Bandwidth Our results from MVAPICH only reported minor differences in through-

put when comparing different synchronization methods. For brevity, we only include

the plot for the Lock All synchronization method because there is less than a 2%

difference in average throughput across synchronization methods. As a disclaimer,

we should note that the code paths for offload cards in MVAPICH have had more

effort put into performance optimizations for one-sided communication, such that

synchronization methods become a contributing factor to performance. In Figure 2.5

we see that the dips and peaks in throughput occur as each series reaches the same

per-thread message size. To elaborate, as each thread reaches the point where it

sends 16 KiB of data, we see a sharp reduction in throughput. This occurs at 16 KiB

for single thread results 32 KiB for two threads, and so on. Overall as we increase the

number of threads to 16, we see a 19% reduction in throughput. This occurs because

the overheads of coarse grained locks that become larger as thread counts increase.

Latency The results of Figures 2.6(a) and 2.6(b) show that for small message sizes,

there are significant differences to latency across the four synchronization methods

and thread counts. Specifically, we see that PSCW and fence both outperform Lock

and Lock All performance significantly. PSCW achieves 44% and 27% of Lock All

latency at 1 and 16 threads, respectively. For PSCW and Fence, we see a increase to

latency of almost 5X or 88 and 90 µs respectively, as we increase the thread count

from 1 to 16 threads. Lock and Lock All see an increase to latency of almost 8X or

303 and 365 µs respectively, as the number of threads increase from 1 to 16. Because

there was not a significant difference in bandwidth across the synchronization methods

in the previous section, the benchmark suite suggest that either PSCW or fence are

preferred for the given system when using MVAPICH.

Message rate Figure 2.7 presents the results of the halo exchange message rate

benchmark when run under MVAPICH. This figure shows the total message through-
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Figure 2.6: MVAPICH latency results for various one-sided synchronization methods
and thread counts.

put of the benchmark for each of the synchronization methods. For space concerns

only the RMA Get transfer mechanism is shown. It should be noted that the two

sided baseline shown in each graph is a special case, as it is run under a single
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Figure 2.7: MVAPICH message rate comparison in a multi-threaded context

threaded instance of MPI where the multi-threading has been turned off at compile.

This was done to compare RMA-MT to a current day implementation.

In Figure 2.7(a) we can see the effect of the extra process level synchronization of

running under thread multiple. Fence and PSCW were very similar, on average there

31



Chapter 2. Characterizing and Improving Performance of One-sided Communication

was 2.3% difference between the two. For small messages under 2KiB, Fence, Lock,

and PSCW did not show significant differences in message throughput. Lock-All on

the other hand, performed significantly worse, averaging 49.5% throughput compared

to the baseline, while the others averaged 85.9%. Fence and PSCW handled large

messages the best out of all synchronization methods, with fence achieving a message

rate that was 47.4% of the single threaded baseline.

Figure 2.7(b) shows the message rate throughput when run on a thread per core. As

shown in the graph, large message rate throughput is roughly the same, which makes

sense given that the bottleneck quickly becomes the network, rather than the MPI

implementation itself. For small messages, there is a large reduction in performance

for Fence, Lock/Unlock, and PSCW. Fence, for instance has average throughput of

68.2% compared to the version with one thread.

The most unexpected result from this series of tests is the spike in message rate for

the baseline, Lock, and PSCW at 2KiB. While bandwidth is expected to fluctuate in

both directions at the message size increases, message rate (which is normalized for

message size should go down. The increase is unexpected, but has been confirmed in

other work examining RMA message rate for MVAPICH2 [50].

Open MPI development branch

Bandwidth This section presents results about the performance for different syn-

chronization methods, thread counts and message sizes of the chosen distribution. The

keen reader may observe the lack of Lock All data in this section. In our experiments,

we found the Lock All synchronization method of this development branch failed

too frequently at high thread counts to confidently display results for, therefore it is

excluded.

Examining the results of Figure 2.8(a)-2.8(b), it is evident that for single threads, the
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Figure 2.8: Open MPI bandwidth results for various one-sided synchronization
methods and thread counts.

bandwidth at 1MiB is extremely close across the different synchronization methods

(3065, 3062, and 3077 MiB/s for Lock, PSCW and Fence, respectively). However,

we can see that when using 16 threads, synchronization method plays an important
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role in the observed bandwidth, with Fence seeing a decrease of 573 MiB/s or 21%

compared to Lock. Focusing on Fence, as we scale up the number of threads from 1

to 16, we see a decrease to bandwidth of 849 MiB/s or 28%.
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Figure 2.9: Open MPI latency results for various one-sided synchronization methods
and thread counts.
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Latency The results of Open MPI latency (shown in Figure 2.9(a)-2.9(b)) tell a

different story than the bandwidth results earlier. For small message sizes (under

1KiB) we see that fence and PSCW provide significantly better latency at high thread

counts, with PSCW providing the best latency overall. In the worst case (Lock), we

see that as we increase thread count from 1 to 16, we see an increase of 235 µs or

6X. In the best case of PSCW, the increase is only 102 µs or 5X. Importantly, our

benchmark suite shows that PSCW is preferred when using Open MPI to achieve the

both the best bandwidth and latency.

Message rate Figure 2.10 presents the results of the halo exchange message rate

benchmark when run under Open MPI. It should be noted that the two sided baseline

shown in each graph is a special case, as it is run under a single threaded instance of

MPI where the multi-threading has been turned off at compile. This was done to

compare RMA-MT to a current best practices for running MPI. Again, Fence and

PSCW performance was very similar (within 3.2% of each other). In this graph we

can see the effects of using multiple cache lines, when we see the drop in performance

from 64 byte to 128 byte message sizes. For small messages, the effects of RMA-MT

are clear. Those effects have less impact as we increase message size. For example,

Fence performs at 43.4% of the baseline for 8 byte messages. However, once we get

up to 1 MiB, it performs at 96.4% the rate of the baseline. Figure 2.10(a) shows the

message rate throughput when run with one thread per core. The trends here are

strikingly similar to their single threaded counterparts, averaging a 1.3% difference

overall.

Development branch failures The Open MPI micro-benchmark results for la-

tency and bandwidth presented here consisted of 840 runs of our MPI benchmark,

where each run performs 100 one-sided communications across 20 different message

sizes. Because we were using a development branch of Open MPI we had a number
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Figure 2.10: Single-threaded comparison of the different RMA operations

of runs where errors were detected. These errors were limited to multi-threaded runs

and are enumerated as follows: three segmentation faults, 22 assertions, and 6 cases

where the target or origin buffer did not pass a checksum, representing an error in

less than 1% of the runs.
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For the message rate micro-benchmarks, we ran roughly 2160 runs across all the

combinations of message size, synchronization method, and transfer operation. We

observed 81 failures in those runs. It should be noted that the message rate bench-

mark does more iterations than the other micro-benchmarks and thus has a higher

probability of hitting an error. Of the errors we observed for message rate only 12.3%

were associated with Get operations, only 16.0% were associated with single threaded

runs, and only 19.8% were associated with message sizes less than 64 KiB.

As previously mentioned Lock All saw a significantly larger number of errors, so was

not included in our results. Fortunately, our benchmarks have brought these errors

to the attention of Open MPI developers so that they may be fixed before release.

Discussion

Many of the results in this section show a degradation in performance when using

RMA-MT. This degradation is due to a number of factors, one of the most apparent

is thread level synchronization. Ideally, RMA would require little locking within MPI

as it does not use most of the shared data structures such as the match list. However,

examining the version of MVAPICH used for this study, a lock encapsulates the the

entire call into MPI. This is due to multi-threaded RMA in MPI being underutilized

and thus unoptimized. The benchmarks in this study provide performance data

and RMA-MT capable code that MPI implementations may use to optimize their

performance. In addition to synchronization costs, RMA performance has the potential

to be degraded by contention for shared memory resources as seen in [42].

2.1.7 MiniApp results

This section presents the results from running the modified mini-applications. Each

test was run with 16 ranks per node, had a weak scaling problem size, and had the
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problem size adjusted to run for roughly a minute. The tests were run from 16 to

512 ranks using both MVAPICH and Open MPI. from HPCCG. Figure 2.11 graphs

the performance of our tests normalized compared to the performance of the original

non-RMA version.
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Figure 2.11: RMA-MT mini-app run time overhead compared to the regular version

HPCCG

For HPCCG, the results in Figure 2.11 demonstrate the RMA-MT overhead for

HPCCG using one thread per communication between communicating rank pairs

(neighbors). These runs used a 1603 per rank problem size resulting in an average

runtime of 57.8 seconds for the 16 rank MVAPICH baseline and 56.9 seconds for the

16 rank Open MPI baseline. As shown on the graph, the MVAPICH RMA-MT runs

are very close to the baseline; because the standard deviation of these runtimes is

often on the order of half a second, this performance difference is not statistically

significant.
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In contrast, the message rate halo exchange, which has an identical communication

pattern, had performance difference was statistically significant performance gap.

This is promising as it means that the performance gap left to bridge with application

communication patterns may be less than that implied from the micro-benchmark

results for future RMA-MT codes. This shows that the RMA-MT approach with

Unlock all/Lock all is scaling well.

For Open MPI, we see a more significant increase in runtime of up to 2.9% at 256

ranks. It should be noted, that given the significant amount of errors in lock-all for

Open MPI observed in previous sections, this result should be looked at skeptically.

MiniMD

For MiniMD, the results in Figure 2.11 show the RMA-MT overhead for MiniMD

using one thread per communication between communicating rank pairs (neighbors).

Our MiniMD implementation differs from our HPCCG implementation in that it uses

Fence as the mechanic for window synchronization. These runs used a 1503 per 16

ranks problem size resulting in an average runtime of 54.9 seconds for the 16 rank

MVAPICH baseline and 54.5 seconds for the 16 rank Open MPI baseline.

Unlike HPCCG, the MVAPICH RMA-MT test show a large performance degradation

from the baseline. This is due to the larger amount of communication calls in MiniMD,

and the extra window synchronization required. Given this, we see an overhead of up

to 7.8%. For Open MPI, we see a smaller change, of up to 2.4% overhead compared

with the baseline.

MiniFE

Finally, Figure 2.11 shows the RMA overhead for MiniFE using one thread for each

communication pair. The communication pattern is similar to HPCCG, as they both
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are proxy apps for conjugate gradient problems; to differentiate them we have used

the fence synchronization mechanism for MiniFE rather than lockall. The problem

size that used for these tests was a 3303.

The results for MVAPICH show the highest the RMA-MT overheads of any benchmark,

ranging from 16.3% to 44.1%. While this is larger than the other mini-applications,

it is not entirely unexpected. Both MiniMD and the message rate micro-benchmarks

have significant overhead when using fence as a synchronization method. Because

MiniFE uses a substantially larger problem than MiniMD, communication becomes

more of a bottle neck. For Open MPI, MiniFE has an overhead of up to 3.0%, much

smaller but again larger than the overhead that it had for MiniMD.

2.1.8 Outcomes of RMA-MT study

This work has presented the design of multi-threaded RMA micro-benchmarks and

mini-applications. It has used the micro-benchmarks and mini-app developed to

explore the performance of multi-threaded RMA on production systems, providing

the first performance numbers available for such MPI usage models. Using the

micro-benchmarks it was determined that up to 99% performance degradation can

occur when using multiple threads to perform RMA operations for small messages in

a current release of MVAPICH. However, there were a limited number of cases where

multiple threads aided communication. The mini-apps saw a variety of performance

effects; MiniFE and MiniMD both had a performance penalty when using MVAPICH.

MiniFE in particular had a sizable penalty of up to roughly 44%. Open MPI saw

less of a performance penalty for the miniapps which had a performance penalty

of up to 4%. The slowdown using threads was not unexpected when compared to

previous thread multiple studies [26] that have found similar multi-threading related

slowdowns. However, unlike previous studies, this work has explored MPI RMA in

a multi-threading context, which has fewer serialization requirements for ordering
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guarantees than typical two-sided point to point communications in MPI. This work

also demonstrated the use of this benchmark suite to drive development by testing

functionality and correctness, in addition to the performance. This showed that the

Open MPI development branch has a number of issues, ranging from triggering asserts

to incorrect data transfer. The miniapps also have the ability to test functionality,

correctness, and performance as the number of ranks and nodes is scaled up.

The micro-benchmarks used in this work have been open-sourced for use by the

community and are available from http://www.cs.sandia.gov/smb/.

2.2 Prediction, Characterization and Prevention

of Network-induced Memory Contention

In the previous section, we evaluated the performance of one-sided communication

at the application level. To explore one-sided communication fully, we need to

characterize the performance at lower levels of the network stack, where we can

leverage passive data transfer. Remote direct memory access (RDMA), also called

one-sided communication, is a popular and useful mechanism for implementing

efficient asynchronous communication. RDMA allows a node’s local memory to

be read or written by a remote node without involvement of the target operating

system or CPU. Such out-of-band communication incurs no direct overhead on the

target CPU. There are many attractive use cases for RDMA, such as overlapping

communication and computation phases in non-bulk synchronous parallel (non-BSP)

computational paradigms, for in-memory asynchronous checkpointing and for in-

situ analytics/visualization. However, little is known about the potential indirect

application interference of the additional memory contention caused by RDMA

communication. Consider, for example, uncoordinated1 checkpoints that are staged

1The target node is unaware of when the origin node will be reading/writing a checkpoint
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in the memory of remote nodes before being moved to stable storage, as in SCR [84].

Memory traffic from a remote node writing a checkpoint will contend with the memory

transactions of a local memory-bound application. Generally, memory contention

between local operations and out-of-band network operations can cause significant

decreases in memory and thus application performance. We refer to this phenomenon

as network-induced memory contention (NiMC2).
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Figure 2.12: A 10 year history of network and memory bandwidths. While total
bandwidth has been increasing, per-core network and memory bandwidth have not
significantly increased. The result is increased contention for the shared network and
memory resources.

Further exacerbating the situation, many-core technologies will be a fundamental

part of the Exascale system design solution. However, a greater number of hardware

threads means a greater demand for shared resources such as the network and memory

sub-system. As shown in Figure 2.12, while the total off-chip bandwidth has been

2nim is an English form of the German word nehmen meaning “to take or steal”. Using
’C’ as “cycles”, NiMC (\′nim −′ sē\) can also mean ”to steal cycles” – the net result of
network-induced memory contention.
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increasing, per-core memory bandwidth has not been increasing as significantly.

Coupling these trends with the increased interest in one-sided communication, it

becomes critical that we understand the potential application performance impact of

NiMC. While researchers have explored the memory subsystem as an area of concern

for extreme scale systems [120, 15], the concept of NiMC was introduced by us as a

part of the work included in this dissertation.

We explored several causes of NiMC – results that will inform future system design in

both the existence of NiMC as well as the potential methods to reduce its performance

impact. In addition, this study offers evidence to system software and application

developers that NiMC should be taken into account when developing software that may

be co-located with other applications or services that consume network bandwidth,

even for small durations of time.

The specific contributions of this work are:

• detailed analysis of NiMC and its isolated effects;

• quantification of the performance impact of NiMC for a range of systems and

applications;

• characterization of the system and application attributes that exacerbate NiMC,

examining differences and commonality of these attributes across workloads;

• demonstration of machine learning to detect the presence/predict impact of

NiMC with high accuracy.

The outline of this work is as follows. We start by providing a brief background on

NiMC and machine learning using random forests. In Section 2.2.2, we provide an

overview of related work followed by our evaluation methodology in Section 2.2.3.

NiMC is characterized on many different systems and found to impact most of them in

Section 2.2.4. Further investigations in Section 2.2.5, show the impact from NiMC on

applications and mini-apps for one of the evaluated systems, showing an approximately
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2X runtime increase for 5 of 7 of the studied workloads. In Section 2.2.6 we provide

a more detailed characterization of NiMC and demonstrate the ability of random

forests to detect NiMC and predict its impact. Afterwards, we prove that NiMC is an

issue for some systems at scale with a real application in Section 2.2.7. Section 2.2.8

then demonstrates the effectiveness of our three proposed solutions at scale with tests

conducted on two large systems comprising a total of 160,000 core hours worth of

runtime. Throughout these investigations, evidence is provided showing that the

slowdowns attributed to NiMC are not due to contention for compute or network

resources. Finally, we discuss the outcomes of this study in Section 2.2.9.

2.2.1 Background

HPC communication

The HPC network communication stack contains dense layers of libraries, APIs,

protocols, drivers, and hardware. The most common interface for HPC communication

at the application level is the Message Passing Interface (MPI). MPI allows for

message-passing and has been in use since 1991 and is the de facto standard for HPC

applications. It provides synchronization, communication and establishes a virtual

topology for multi-process applications. MPI sits on top of a range of physical fabrics

and protocols. While many of the top 500 supercomputers use custom interconnects,

as of this writing Infiniband networks make up 40% of HPC systems [121]. The

majority of our work focuses on the Infiniband (IB) standard, because it is prolific

and the standard on many of the systems available to us. Infiniband provides high

bandwidth (96 Gb/s) and low latency (0.5 µs) and supports both copper and optical

physical connections. Most Infiniband networks utilize the open source OpenFabrics

Enterprise Distribution (OFED) stack which includes drivers, middleware, and user

level interfaces for Infiniband. MPI translates application level communication

44



Chapter 2. Characterizing and Improving Performance of One-sided Communication

requests to low level Infiniband Verbs, which are transmitted and received by the

Host Controller Adapter (HCA)/NIC.

RDMA

Traditional HPC communication is two-sided, that is both sender and receiver must

actively participate (synchronize) to send and receive messages. In two-sided commu-

nication sender processes do not know where to place data in the receiver’s memory.

So a sender must first synchronize with the receiver before the receiver can copy data

from the sender’s buffer to it’s own. If the processes are not perfectly synchronized,

this results in delays as sending and receiving processes are forced to wait on each

other. In contrast with two-sided communication, one-sided communication splits

data transfer and synchronization phases. Essentially, a target process pins a window

of memory so that a origin process may either read or write to the window. When

the origin reads or writes directly through the target NIC, without involving the

target CPU this is referred to as RDMA, Remote Direct Memory Access. RDMA

is facilitated through a low level protocol such as IB verbs or RoCE (RDMA over

Converged Ethernet). RDMA and RMA are not equivalent. When discussed at

higher layer in the network stack, such as MPI or SHMEM one-sided communication

is referred to as Remote Memory Access (RMA). An RMA programming interface

provides a shared memory abstraction that may or may not be implemented on top

of RDMA. Both RDMA and RMA may be referred to as one-sided. RDMA allows a

node’s local memory to be read or written by a remote node without involvement of

the local operating system (i.e. kernel bypass) or CPU. We include an illustration

of the data transfer path for RDMA in Figure 2.13. There are many attractive use

cases for RDMA, such as to overlap an application’s communication and computation

phases in non-bulk synchronous parallel (non-BSP) computational paradigms, for

in-memory asynchronous checkpointing and for in-situ analytics.
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Figure 2.13: An illustration of the data transfer path for NiMC, note that the path for
a fully offloaded networking approach does not involve the CPU, while the on-loaded
networking approach requires some CPU intervention to setup the data transfer.

Network-induced memory contention

Remote memory operations can induce memory contention in two ways: (1) RNICs

(RDMA-enabled network interface controllers) producing memory traffic in offloaded

networks and (2) CPU-to-memory traffic when the CPU is used for onload network

processing. For onloaded RDMA, not all traffic necessarily flows through CPU cores

before being placed in memory. However, programming the DMA engines on the

RNIC requires CPU intervention and causes some data to be transferred from the

RNIC to the core to facilitate DMA requests. While there is ongoing debate for

onloaded versus offloaded networking, this study reveals that NiMC should be an

important consideration in this debate.

As Figure 2.12 illustrates, total network bandwidth is now much greater than per-

core memory bandwidth. For future Exascale systems, this relationship is expected

to become more pronounced [73], compounding the memory contention caused by

RDMA operations. Trends away from traditional BSP programming models toward

finer-grained, asynchronous models that admit higher levels of concurrency also will

lead to to greater demands on the memory subsystem and the network. Lastly,
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other Exascale requirements, for example application resilience, in-situ data analysis

and uncertainty quantification, will generate additional local and remote memory

traffic associated with activities only indirectly related to the application. NiMC

can be particularly troublesome when caused by traffic not directly related to the

computation.

RDMA traffic that causes NiMC has the potential to also impact application per-

formance through congestion on the network fabric [116] (rather than memory).

Therefore, this study uses methods of introducing NiMC that are realistic usage

scenarios, but also ones that do not create additional contention on the network.

Specifically, (1) the examination of NiMC impact on single node jobs (§2.2.5) does

not utilize the network for application communication. (2) in §2.2.8 we show that

the observed slowdowns at scale are caused by NiMC on the node, rather than in the

fabric.

One of the additional challenges posed by NiMC is that it is difficult to detect. In

our experiments we explicitly control the amount of RDMA traffic being injected on

a target node. However, in a production environment the target node may not know

how much RDMA traffic is being injected into its memory. Furthermore, some of

the uncore3 counters that might provide some insight are often unavailable. For this

reason, we need to explore alternative ways of detecting when NiMC is occurring and

predicting its impact on application performance.

Machine learning to predict the impact of NiMC

One of the challenges of NiMC is that it is not easily detected, since it originates

from RDMA communication. The target node does not know when or how much

RDMA data will be read or written to its memory. And while the target NIC does

have counters that can expose the total number of bytes written, it does not specify

3Closely related to the core, but not directly part of, e.g. QPI or memory controller.

47



Chapter 2. Characterizing and Improving Performance of One-sided Communication

whether the data originated as an RDMA request. Furthermore, counters provided

by the NIC require privileged access that is not always available. To detect NiMC

and predict the impact to application runtime, we apply machine learning (random

forests) to a set of easily accessible hardware counters.

Random forests Random forests [14] are an ensemble method of tree predictors,

such that a collection of classifying trees with randomly selected feature-vectors vote

to select the most popular class. Building a forest rather than developing a single tree

the robustness of the predictions are improved. The benefits of Random forests is that

overfitting is not a concern, given a large enough number of trees in the forest [14].

Additionally, random forests provide internal estimates of the generalization error,

classifier strength and dependence with out-of-bag estimates [13]. An internal method

of validation is included by default, as trees are trained on a subset of the input and

are then validated against the remaining data. For this study we are interested in

measuring the importance of the selected feature sets. Importance can be reported

by the off-the-shelf random forests packages (python scikit-learn [98]). Additionally,

once a random forest has been built using the training data, further classification can

be done in parallel in logarithmic time with respect to the number of splits in each

decision tree, allowing for real-time classification.

2.2.2 Related research

Memory contention has existed in many platforms over time, and tools have been

developed to help understand its impacts [32]. Concerns about the ability of memory

technologies to keep up with the bandwidth requirements of ever greater numbers

of cores have been expressed by Rogers et al. [105]. However, code developers also

deal with this issue through optimizing their code for cache use [99].This motivated

investigations into the causes of off-chip memory contention by Tudor, Teo and
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See [126] on modern systems for parallel applications, providing insight into the

behavior of cores heavily optimized for cache performance and those that are less

tuned. Given that architectures are designed to balance memory bandwidth with

the ability of the cores to saturate said bandwidth, the impacts of NiMC can push a

system on the edge, degrading optimized code performance.

Concerns over memory subsystem performance at extreme scale, particularly with the

expected growth in core counts, have prompted investigations into memory bandwidth

reductions [120] and contention [15]. Tiwari et al. [120] proposed a model for studying

the anticipated reduction in per-core bandwidths expected in the Exascale time frame

by varying the memory frequency on a single node of the Gordon supercomputer

as SDSC. While Tiwari et al.’s model was motivated by a desire to explore the

per-core memory bandwidth reduction expected for future extreme-scale systems, it

was developed and tested on a single compute node. As such, the model does not

account for any source of memory traffic from the network.

Casas and Bronevetsky’s work [15] is the closest to this work in terms of memory

contention studies. Like the Memory Bandit tool [32], they seek to create “memory

bandwidth interference” in order to observe the impact on application performance.

Unlike the Memory Bandit [32] work, Casas and Bronevetsky can purposefully perturb

different levels of cache while introducing threads that create memory traffic unrelated

to the executing application. They present methodology to introduce main memory

traffic with minimal cache impact for studying off-chip memory contention. Their

observations of application slowdown in the worst case of 20%-35% is inline with was

observed from the STREAM/RDMA single node tests in our work. This is expected

as their method of introducing interference for the application created main memory

contention. However, the main difference between this work and ours is the source of

the memory contention. While Casas and Bronevetsky introduce the contention from

cores, they do not account for RDMA traffic.
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In [11], Bhatele et. al used machine learning to identify sources of network conges-

tion and their success inspired us to employ machine learning techniques in this

work, though we are exploring different phenomena. In their work, they found

that the ExtraTreesRegressor/Classifier package outperformed RandomForestRegres-

sor/Classifier. We explored both packages and found only marginal differences in

average cross validation scores, though our tests showed the RandomForest class to

slightly outperform the ExtraTrees class for our data.

2.2.3 Evaluation methodology

In this section we outline our methodology for characterizing NiMC, detecting its

presence, and predicting its impact on application performance.

The workloads

Throughout this study we use a variety of workloads to evaluate the impact of NiMC.

In the text below, we include brief descriptions of each.

STREAM: The STREAM memory benchmark [82] performs a small set of memory

benchmarking kernels (copy, sum, scale, triad) that perform a small number of reads,

arithmetic operations and a write back to memory. We used these operations to

measure the sustainable memory bandwidth and corresponding computation rates

by working with data sets significantly larger than the available cache. We used

the STREAM triad test, a(i) = b(i) + q ∗ c(i), which is the most representative of a

typical workload. In some sections we specify either STREAM-DRAM (the standard)

and STREAM-cache (a modified version that uses smaller arrays designed to fit in

last level cache).
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CNS: CNS [16] is a ”simple stencil-based proxy-app for computing the hyperbolic

component of a time-explicit advance for the Compressible Navier-Stokes equations

using 8th order finite differences and a 3rd order, low-storage TVD RK algorithm

in time.” [34] CNS is intended to mimic the stencil operations of more realistic

combustion applications, it does not mimic a typical problem found in combustion

applications.

HPCCG: HPCCG [55] is an unstructured implicit finite element application, which

calculates the conjugate gradient for a 3D chimney domain, running on an arbitrary

number of processes. HPCCG creates a 27-point finite difference matrix, for which

each MPI rank is designated a user-defined sub-block. This mini-app is generally

considered to be memory-bandwidth bound, using from 25% to 75% of the total

system memory. HPCCG is a designed to provide excellent weak scaling.

LAMMPS: LAMMPS [102], the Large-scale Atomic/Molecular Massively Paral-

lel Simulator, is a molecular dynamics code modeling particles in different states.

LAMMPS provides excellent weak scaling with the majority of communication oc-

curring among nearest neighbors. In this work, we used a benchmark problem/data

set to model the melt of a 3D Lennard-Jones system, using a weak scaled problem

of a similar size to studies published by the authors of LAMMPS (32,000 atoms per

core) [125].

LULESH: LULESH [68] represents shock hydrodynamics code solving a simple

Sedov blast problem, illustrating the behavior of such solvers in ALE3D. This proxy-

app distributes the spatial domain onto a set of volumetric elements defined by a

mesh, where each intersection of mesh lines represents a node. Within the LULESH

proxy-app, there are a variety of kernels, of which some subset are memory bound.

One constraint of LULESH is that it must run with a cubic number of MPI Ranks.
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Therefore, for our experiments we extracted additional parallelism by leveraging Open

Multi-Processing (OMP) on any unused cores.

SNAP: SNAP [133] models the performance of a modern discrete ordinates neutral

particle transport application. This proxy-app does not employ any real physics

in its calculations. Instead, SNAP produces the computational workload, memory

requirements, and communication patterns that match the Los Alamos National Lab-

oratories application, PARTISN. To distribute larger problem sizes, SNAP spatially

decomposes its 3D mesh and maps it onto a 2D domain of MPI ranks. MPI ranks

send and receive data following wave propagation which limits the weak scaling of

the proxy-app.

XSbench: XSBench [124] is a proxy-app which represents the most significant kernel

(85% of runtime) in a robust nuclear reactor core Monte Carlo particle (neutron)

transport simulation. This variety of simulation can have significant data usage

requirements and the proxy-app is considered to be memory-intensive. XSBench

focuses on modeling intra-node performance characteristics of OpenMC and is not

intended to be run at scale, as communication is limited to a single reduction at the

end of a run.

The platforms

Our study used nine different platforms from the Sandia National Laboratories,

University of New Mexico and the Texas Advanced Computing Center consisting of a

variety of architectures. We provide a concise description in Table 2.1 and Table 2.2

for the reader’s convenience.

For a subset of the machines (Westmere, Lisbon, and Piledriver-1600/1866), we

performed our experiments with varied memory frequencies, allowing us to see the
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Table 2.1: Evaluated Architectures (1 of 2)

machine nodes kernel CPU

Westmere 1 3.2.0 (Ubuntu12) Intel E5620
Lisbon 1 3.13.6 (UN12) AMD 4170 HE

Piledriver-1600 70 2.6.32 (RHEL6) AMD A10-5800K
Piledriver-1866 2 2.6.32 (RHEL6) AMD A10-5800K

Sandy Bridge-X2-FDR-offload 6400 2.6.32 (Cent6.3) 2× Intel E5-2680
Sandy Bridge-X2-onload 1196 2.6.32 (RHEL6.2) 2× Intel E5-2670

Xeon-Phi (on-chip bandwidth) 49 2.6.38.8+mpss3.1.2 Xeon Phi 3120P
Haswell-X2 33 3.14.23 (RHEL6.5) Intel E5-2698

Table 2.2: Evaluated Architectures (2 of 2)

machine cores channels DRAM DRAM GB/s Network

Westmere@(800, 1066 MHz) 4 2 16GB 12.8, 17.1 QDR IB off
Lisbon@(800, 1066, 1333 MHz) 6 2 16GB 12.8, 17.1, 21.3 QDR IB off

Piledriver-1600 4 2 16GB 25.6 QDR IB on
Piledriver-1866 4 2 64GB 29.9 QDR IB on

Sandy Bridge-X2-FDR-offload 8 4 64GB 85.3 FDR IB off
Sandy Bridge-X2-onload 8 4 64GB 102.4 QDR IB on

Xeon-Phi (on-chip bandwidth) 57 12 6GB 240 QDR IB off
Haswell-X2 16 4 128GB 136 FDR IB off

impact available memory bandwidth has on NiMC. Westmere and Lisbon required

BIOS option changes, whereas the Piledriver systems are separate nodes with different

memory modules.

All of the systems, other than Haswell-X2 and Sandy-Bridge-X2-FDR-offload, utilize

an InfiniBand QDR network with a maximum speed of 32 Gbit/s. Within the

Table 2.1 in the network column on and off signify whether the NIC is an onload

or offload NIC. The observed bandwidth of these systems varies with the physical

network topology and the degree of contention. The general observation is that

larger production clusters (e.g. Sandy Bridge-X2-FDR-offload) tend to have a larger

variability in observed bandwidth, since network resources are shared among multiple

jobs which may compete for bandwidth. However this topic is beyond the scope

of our work and we refer the reader to [12] for further discussion of performance

degradation due to nearby jobs.
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Characterizing NiMC

Our approach to measuring the impact of NiMC is straightforward: for each applica-

tion and hardware configuration under test, we injected remote memory operations

into the compute node(s) and measured the resulting application perturbation by

comparing application performance with and without RDMA traffic.

First, we used a memory-bandwidth benchmark to establish a baseline for application

perturbation. These experiments were executed on multiple architectures to observe

the NiMC impact for different hardware configurations. Our subsequent experiments

then helped us to assess NiMC impact for real applications in single node and

distributed contexts.

Injecting RDMA operations: We used ib write bw from the Open Fabric Enter-

prise Distribution (OFED) Performance Tests [95] to generate network traffic streams.

The OFED Performance Tests are a set of tests that use InfiniBand’s user-level verbs

API to measure IB performance. The ib write bw test uses RDMA writes to perform

a series of operations between two connected nodes. As previously described, com-

pared to traditional send/recv tests, the benefits of one-sided tests are that message

delivery and synchronization are decoupled: after memory registration, writes do

not significantly involve the CPU on the target node. We chose write operations as

the overhead of performing read operations on the nodes running the applications

potentially would perturb the tests through use of compute cores to create and issue

the read requests. Write requests do not have this issue, as the source node bears the

burden of creating and issuing the network requests. An illustration of the flow of

traffic to an individual node is presented in Figure 2.13.

54



Chapter 2. Characterizing and Improving Performance of One-sided Communication

Detection and prediction of NiMC

After broadly characterizing NiMC on a range of architectures, we explore the

detection of NiMC and prediction of its application impact. Namely, given commonly

available performance monitoring counters can we (1) detect the presence of NiMC on

onload NICs? (2) determine the volume of RDMA traffic? (3) determine the impact

of NiMC on application CPU time?

We performed a more detailed analysis of NiMC, focusing on the Sandy Bridge-X2-

onload cluster (which was a heavily impacted, largescale system). We applied ensemble

machine learning (random forests) to examine a range of recorded performance

counters (features) of approximately 60,000 processes, spanning five benchmarks

and applications. We use random forest to answer the three questions enumerated

above. If we can answer these questions, we may then enact a mitigation strategy.

Beyond these important questions, we also evaluated the relationship between each

application and the 18 reported counters/features. We looked for any features that

were universally important across all applications when answering questions 1-3. In

several instances, the features of highest importance surprised us, which shows the

value of a principled approach such as random forests, since as system experts we

might have allowed our intuition to lead us to selecting features that were not as rich

in information. For the system evaluated, we were only able to collect a subset of

performance counters for any given run (exactly, six non-derived counters), where a

non-derived counter may be L2 dcm and a derived feature could be (l2 dcm/l2 tca).

This restriction is due to hardware constraints of the CPU, which determine the

overall number of reportable counters as well as incompatibilities between amongst

multiple counters. For this reason we divided the experiments up into three feature

sets, such that each set represents a different selection of counters. Furthermore, we

are limited by the Performance Application Programming Interface (PAPI) counters

made accessible to users on the system.
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All of our experiments using random forests are performed with single-node runs

of the application or benchmark, with a secondary node that writes RDMA traffic

into the system. We avoid multi-node application runs because we want to remove

outside sources of contention and noise that are known to impact system runtimes.

This allows us to isolate the effects of NiMC and provides a clearer picture of what

features are most indicative of a true, NiMC perturbance. Each experiment runs 200

times for each feature set, with and without added RDMA traffic.

When performing the machine learning, you must have a large enough forest to

develop accurate predictions. We used 100 estimators4 (trees in the forest), with

separate runs for each feature set. That is, we ran the regression for each feature

set in isolation. We use out of bag (OOB) samples to estimate the generalization

error. The OOB score is the average error of observations from a sampled subset of

observations. Where each observation, is evaluated by forests not trained on that

particular observation. If we wanted to combine feature sets from multiple runs

so that the trees were built considering all 17 features, this would be possible by

substituting in the average value of a feature for runs where it was not recorded.

However, increasing the number of features, increases the runtime of the learning

algorithms, in that a greater number of trees must be constructed for accurate results.

Additionally, given each feature set in isolation, our results were accurate enough

(demonstrated by the OOB scores), so that using averages was unnecessary.

Features For our random forests, we recorded 17 features that are commonly

available on most systems (displayed in Table 2.3). Alongside each feature name

is a description of what it measures. We record each feature with respect to each

process, which creates 6,400 samples per feature set (400 in the case of STREAM

since it uses OpenMP). These features are not comprehensive of all the hardware

counters PAPI provides but they do represent the supported preset events on the

4Trials of 300 trees did not show meaningful improvements to OOB scores.
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Table 2.3: Features used in machine learning.

Set 1

icy: Cycles with no instruction issue
l1 dcm: Level 1 data cache misses
l1 icm: Level 1 instruction cache misses
tlb dm: Data translation lookaside buffer misses
tlb im: Instruction translation lookaside buffer misses
ib bw: Average Infiniband write bandwidth (MBps)

Set 2

l2 dcm: Level 2 data cache misses
l2 dch: Level 2 data cache hits
l2 icm: Level 2 instruction cache misses
l2 ich: Level 2 instruction cache hits
l2 tcm: Level 2 total cache misses
l2 tca: Level 2 total cache accesses
l2 dcm/l2 tca: Fraction of level 2 data cache misses to total cache accesses
l2 tcm/l2 tca: Fraction of level 2 total cache misses to total cache accesses
ib bw: Average Infiniband write bandwidth (MBps)

Set 3

l3 tcm: Level 3 total cache misses
l3 tca: Level 3 total cache accesses
l3 ica: Level 3 instruction cache accesses
l3 dca: Level 3 data cache accesses
ib bw: Average Infiniband write bandwidth (MBps)

SandyBridge-X2-onload system.

2.2.4 A memory-bound benchmark

In our first NiMC experiments, we used the memory-bound, synthetic benchmark,

STREAM (§2.2.3). These experiments were used to assess NiMC impact for worse-

case memory intensive applications and to evaluate what architectural features can

lead to increased NiMC impacts.

STREAM used one OMP thread per core in order to saturate the available memory

bandwidth. A first-touch5 memory allocation policy was used to optimize memory

utilization within the NUMA hierarchy. Each experiment comprised 10 STREAM

5Memory allocation is done when the memory is accessed rather than malloced in Linux.
On a NUMA architecture you must take this into consideration to ensure performance.
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executions with 300 iterations of the triad kernel per execution, with each iteration

taking a few milliseconds of walltime. The average sustained bandwidth was then

calculated based on the average time to complete a triad operation.

To measure the impact NiMC has on memory bandwidth, we re-executed the same

set of experiments; this time, our origin node continuously injects 64 KiB of data

(using ib write bw as described in §2.2.3) into a buffer allocated on the different target

node on which the STREAM benchmark was running.

The results, shown in Table 2.4, illustrate varied NiMC behavior, dependent on the

underlying architecture. This performance degradation ranged from 0% to 60%. On

all systems other than Xeon-Phi, Sandy Bridge-X2-FDR-offload and Haswell-X2,

STREAM experienced significant (greater than 20%) memory bandwidth degradation

due to NiMC. The Piledriver-1600 system and Sandy Bridge-X2-onload stand out by

exhibiting a 60% and 51% performance degradation, respectively. The increased 9%

degradation on Piledriver-1600 is expected due to a higher network bandwidth to

memory bandwidth ratio compared to the Sandy Bridge system. We observe that all

three of the systems with variable memory frequency see a decreased impact from

NiMC as available memory bandwidth increases.

Of greater interest, our Sandy Bridge systems demonstrated how NiMC might impact

onload versus offload networks differently. Both systems utilize Sandy Bridge CPUs,

but Sandy Bridge-X2-FDR-offload utilize Mellanox offload network cards, whereas

Sandy Bridge-X2-onload uses QLogic onload NICs. There are stark differences

between the STREAM Triad results of these two machines. While the offload system

sees no performance degradation, we see a 51% performance penalty to the onload

system’s Triad performance. We observe that the onload-NIC systems (Piledriver-

1600/1866 and Sandy Bridge-X2-onload) are the most impacted by competing RDMA

flows.

Examining the four offload NIC systems in isolation, we see a bi-modal impact of
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Table 2.4: STREAM Triad Bandwidth (GB/s) with and without RDMA-NiMC

machine Triad no RDMA Triad w. RDMA diff. diff. %

Westmere @ 800 MHz 12.9 9.7 -3.2 -25%
Westmere @ 1066 MHz 16.8 12.8 -4.0 -24%

Lisbon @800 MHz 14.0 10.8 -3.2 -23%
Lisbon @1066 MHz 17.9 14.3 -3.6 -20%
Lisbon @1333 MHz 19.7 16.5 -3.2 -16%

Piledriver-1600 12.4 7.4 -5 -40%
Piledriver-1866 12.7 5.6 -7.1 -56%

Sandy Bridge-X2-FDR-offload 77.8 77.6 -0.2 0%
Sandy Bridge-X2-onload 73.4 36.1 -37.3 -51%

Xeon-Phi (on-chip bandwidth) 126.4 121.7 -4.7 -4%
Haswell-X2 116.6 116.9 0.3 0%

NiMC. When the CPU fully utilizes close to the theoretical memory bandwidth (as is

the case of Westmere and Lisbon), competing RDMA traffic can degrade the Triad

performance by 16-25%. Westmere and Lisbon, show effective memory bandwidth

of 98% and 93% the theoretical memory bandwidth, respectively. This compares

to Sandy Bridge and Haswell, which only achieve 74% and 85% effective memory

bandwidth, respectively. The decrease to percentage effective memory bandwidth

in Sandy Bridge and Haswell leaves additional headroom for the RDMA traffic, so

that we see no impact of NiMC. However, as increases to theoretical memory speeds

slow down, chip designers must increase their effective utilization in future systems.

Furthermore, network speeds are increasing rapidly, with 4X EDR InfiniBand reaching

speeds of 12 GBps so that we will again see larger network to memory bandwidth

ratios. For these reasons, we cannot rule out the resurgence of NiMC in future offload

systems.

For the Intel Xeon Phi (KNC) system, we observed a small (4%) memory bandwidth

decrease. This is due partially to the Phi’s unique memory architecture (as compared

to traditional CPUs). For instance, all other systems under tests had a single memory

controller. The Phi system has eight controllers that control 16 channels of GDDR5

memory. Each core has 64K of L1 cache and a 512k fully coherent L2 cache, which

are connected over a bi-directional ring interconnect. Additionally, the Phi runs its

own operating system, requiring a dedicated core for OS services. By leaving this
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reserved core open, we may be leaving additional memory-bandwidth-headroom into

which the RDMA traffic can fit.

In summary, we saw that NiMC impacts a range of architectures spanning multiple

vendors and hardware generations. Of importance, the NIC architecture (onload vs

offload) appears to play a significant role determining the impact of NiMC, as every

system utilizing an onload NIC saw significant degradation. Additionally, as one

might expect, the results suggest that increased available memory bandwidth reduces

NiMC interference, while decreased available memory bandwidth increases NiMC

interference.

2.2.5 Proxy-apps on a single node

While STREAM illustrated NiMC effects for worst-case memory-bound applications,

STREAM is not necessarily reflective of typical HPC applications. By mimicking the

operations of a variety of important scientific problems, the DOE proxy applications

(described in §2.2.3) are more accurate HPC workload representations. We now

describe our use of the proxy apps to understand NiMC effects on a single node for

realistic workloads with worst-case network traffic.

We ran our workloads on single nodes to study NiMC effects in isolation from other

potential interference on the network fabric. The applications use Open MPI v1.8

for inter-process communication. Additionally, LULESH and XSBench use OMP

for increased on-node parallelism. For these latter hybrid applications, we used

the highest performing combination of MPI processes and OMP threads6. Once

again, we measured application execution times with and without injected RDMA

traffic. Reported results are the averages of 10 runs with error bars displaying the

standard deviation. For the experiments in §2.2.5 and §2.2.7, we used the Sandy

6For LULESH this was 8 MPI ranks (4 per socket) with 2 OMP threads per rank and
for XSBench this was 16 Ranks with 1 OMP thread per rank.
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Table 2.5: Application Performance with and without RDMA

Application Run time Run time
no RDMA (s) w. RDMA (s)

CNS 8.75 8.89
HPCCG 4.08 6.07

LAMMPS 177.21 372.04
LULESH 23.07 44.08

SNAP 3.17 5.97
XSbench 72.92 146.44

Bridge-X2-onload system.

Table 2.5 shows the application time-to-solution results in the absence and presence

of NiMC, and Figure 2.14 shows the application performance slow-down due to NiMC.

These results illustrate several interesting behaviors. First, out of six proxy-apps,

we observed significant performance penalties in five, but CNS exhibited almost no

performance degradation. Second, three proxy-apps exhibited a performance degrada-

tion within 30% of that seen in STREAM. This was unexpected because we selected

STREAM as a worst-case indicator of NiMC, due to its intensive memory usage.

Furthermore, our pre-experiment hypothesis was that memory-intensive proxy-apps,

like HPCCG, would experience the most interference among the proxy-apps; however

HPCCG exhibited the second least relative interference. These results suggested that

additional sources of contention, beyond the memory-channel bandwidth, may be

influencing performance. Accordingly, our next set of experiments were aimed at

uncovering these additional contention effects.

Pearson’s R of runtime, stalls and cache counters

It can be hard to decipher precisely what is happening in a system with regards

to NiMC. Often, to maintain competitive advantages, hardware vendors do not

publicly share the details of components such as memory-controllers or network

drivers. While it can be difficult to determine NiMC root causes, we glean insights

by profiling application activity as measured by available performance monitoring
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Figure 2.14: Normalized impact of NiMC on single node runs.

counters (PMCs). In this case, we use OpenSpeedShop (OSS) [109], which can provide

PMC collection and analysis for large parallel applications. Using OSS, we found that

for all but CNS (the sole application that did not exhibit a NiMC-based performance

degradation), with RDMA traffic, NiMC impacted one core more than the other

cores.

To understand why this process was performing much slower under RDMA activity,

we used OSS to measure the performance of the L1, L2 and L3 caches as well as the

total number of stalled cycles in the presence and absence of RDMA traffic. With

the exception of CNS, we saw increases to L1 cache misses and, to a lesser extent,

increased L2 cache misses. Additionally, there was a significant increase in the number
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of stalled cycles in the presence of RDMA traffic. The relationship between cache

misses and stalled cycles is consistent with Figure 2.14 in that proxy-apps that have

more reasonable cache efficiency experience the worst NiMC interference. At the

same time, applications with poor cache utilization are less affected by additional

cache misses since their cache efficiency is low to begin with. These results also

help to explain why only one application process experienced significant performance

degradation: the largest differences in cache behavior were observed at cache levels

not shared by other cores.

Among the proxy-apps, CNS is an outlier in that it experiences almost no interference

from NiMC. CNS demonstrates that the slowdown seen in other runs is not primarily

due to CPU (core) perturbance, as CNS receives identical amounts of RDMA traffic

and services it in the same manner as the rest of the benchmarks, but observes only a

1.6% slowdown from RDMA traffic processing overhead. This is because in CNS, each

MPI process utilizes an extremely small amount of memory (approximately 4 MB).

Such a small working set of memory leaves space for both the one-sided RDMA and

the proxy-app to effectively utilize cache. As a result, there is only a minor increase

in the amount of idle cycles as we add interference from the network.

As Figure 2.13 illustrates, as a DMA transfer is serviced by an onload NIC, some

amount of data is distributed throughout the cache hierarchy. This data takes up a

larger proportion of space in L1 cache than L2 and L3, which is why we would see a

greater impact on the performance at lower levels of the cache. When sending data

synchronously, it makes sense that the application would want that information in

cache so that the CPU may service communication events faster. However, when this

data is sent asynchronously, we do not know when the application will require the

written data (if it does at all). In the asynchronous case, loading the data into cache

can be benign (as seen with CNS) or create significant bottlenecks (as seen in the

other proxy-apps).
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Table 2.6: PMC Correlations Across All Workloads

Corr. Metric Stalled Cyc. L1 Miss L2 Miss L3 Miss

No RDMA
Time -0.04 0.941 0.946 0.930

Stalled Cycles N/A 0.086 0.030 0.068

RDMA
Time 0.912 0.959 0.978 0.925

Stalled Cycles N/A 0.870 0.973 0.997

Our reasoning above presumes some relationships between the slowdown seen with

RDMA traffic, activity in cache and CPU stalled cycles. To determine the strength

of these relationships, we performed a correlation analysis between runtime, stalled

cycles and cache related counters. We used Pearson’s R for correlation,which measures

linear correlation between two variables. The analysis results (Table 2.6) show that

without additional RDMA traffic, the application runtimes are very strongly correlated

to L1/L2/L3 misses but are not correlated with stalled cycles. Stalled cycles for

the non-RDMA case do not meet required levels of significance to assert that a

relationship exists. For the RDMA traffic case in Table 2.6 a very strong correlation

exists between runtime and stalled cycles with a 95% certainty. We see that there

is a very strong correlation between the stalled cycle count and the cache misses,

particularly L3 misses, showing that the stalled cycle increase is almost certainly

due to misses throughout the cache hierarchy and requests to main memory. This

correlation coupled with the large rise in stalled cycles that occurs when introducing

RDMA traffic leads us to conclude that the increase in runtime observed is due to

time waiting for the memory subsystem.

Though cache pollution from RDMA is correlated with an increased number of stalled

cycles, it is not necessarily the only factor contributing to NiMC. Other contributing

factors can include: the policy and scheduling of the memory controller(s), such as

open-page row-buffer management, the degree of concurrent operations the memory

controller(s) can handle, the number of memory channels, and how these memory

channels are written to, for example, ganged or unganged. To fully model the impact

of NiMC and offer mitigating solutions, these factors must also be considered.
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2.2.6 Detection and prediction of NiMC

In the previous section we found unexpected correlations between NiMC, the cache

and stalled cycles. Our success motivated us to take a closer look at a wide range

of performance counters. In this section, we apply more sophisticated techniques

for prediction and analysis, to Sandy Bridge-X2-onload. These techniques further

characterize NiMC and answer the questions set forth at the beginning of this work.

Specifically, the objectives are:

1. To detect the presence of NiMC on onload NICs.

2. To predict the volume of RDMA traffic.

3. To predict the impact of NiMC on application CPU time.

In the previous section we used a limited number of runs to perform correlation

analysis between a small set of PMCs. In this section we’ve expanded the PMCs

from 4 to 17 (seen in Table 2.3). We’ve also expanded the number of runs to 6,400

for each feature set. We’ve reduced the number of workloads in this section to a

subset of those analyzed in the previous section, specifically: STREAM-DRAM,

STREAM-cache, CNS, LAMMPS, and HPCCG. Each of these workloads were chosen

to be representative of particular characteristics. STREAM-DRAM and its variant

STREAM-cache were chosen, because they are synthetic benchmarks that aggressively

push the memory system and easily reasoned about. CNS was selected as a control,

since it experiences almost no impact from NiMC. We chose LAMMPS since it

was the most impacted and a full application. HPCCG falls between the synthetic

benchmarks and full applications as a proxy app having high memory utilization, but

not as much as STREAM.
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Table 2.7: OOB scores for binary classification.

App/Benchmark Set 1 Score Set 2 Score Set 3 Score

STREAM-DRAM 1.000 1.000 0.995

STREAM-cache 1.000 1.000 0.990

HPCCG 0.998 0.999 0.999

CNS 0.741 0.747 0.742

LAMMPS 1.000 1.000 1.000

Predicting the presence of NiMC

In our first use of random forests, we evaluate whether the machine learning correctly

classifies the RDMA traffic for a binary classification (RDMA/No RDMA). Specifically,

we remove the Infiniband bandwidth feature from each feature set, then create a

binary classification, where any bandwidth greater than zero is labeled as RDMA and

otherwise No RDMA. This binary vector is used for our target values.

As displayed in Table 2.7, the OOB score for each feature set and application was

excellent with the exception of CNS. In random forest classification the OOB score,

is the ratio of correct predictions over the total number of trials. This makes a value

of 0.74 not particularly meaningful, since in the case of a coin flip a random guess

would obtain an OOB score of 0.5. Therefore, while there are some features of value

in the CNS results, they are not particularly reliable in their predictive power.

After determining the OOB score, we examine the importance of each feature in our

predictions. Random forests have a measure of feature importance that is calculated

differently depending on whether the forest is targeting classification or regression.

In the case of classification this is commonly calculated by adding up the decrease

to Gini impurity criterion[14] for each individual variable over all trees in the forest.

Gini impurity measures how frequently a randomly selected and randomly classified

sample would be incorrectly classified given the distribution of labels in the set. In

the case of regression, minimizing the mean squared error is commonly used as the
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impurity measure to calculate importance. It is important to note that while we can

determine which features are most important, if two features A and B overlap in

the information they provide, once a tree splits on feature A, feature B becomes less

important to future splits, since the tree has already incorporated the information

provided by A. So, a low ranking feature importance does not necessarily mean a

feature is not important. In this section we use the importance measure to draw our

attention to features that provide predictive power. Because of the volume of feature

importances calculated, we have placed them in the appendices.

STREAM-DRAM Examining the results of feature set 1, L1 instruction cache

misses was a particularly important feature. If we look at the histograms of runs

with and without NiMC, we see stark differences in the distribution and values.

Without NiMC we see in Figure 2.15(a) that the vast majority of runs (95%) have

between 2.5× 107 and 2.6× 107 misses. With added RDMA writes, Figure 2.15(a)

shows that the number of misses goes up substantially (in some cases nearly doubling)

from 3.0× 107 to 4.3× 107 misses. Interestingly, though the number of L1 data cache

misses is several orders of magnitude greater, the feature provides little information,

since it does not change significantly with the addition of NiMC. This is largely due

to the fact that STREAM is designed to marginalize the cache by using arrays several

times bigger than could fit into last level cache. Because the overall data cache miss

rate is so high to begin with, the added misses due to NiMC contain relatively little

information when compared to instruction cache misses. Lastly, from the third feature

set, we see that L3 instruction cache access was the most important feature. If we

compare median of runs with and without NiMC, we see that in the case of NiMC

there is a 12% increase to the number of L3 ICA.

STREAM-CACHE The behavior of STREAM-cache is identical to STREAM-

DRAM with the exception that we are ensuring that the data matrices fit inside the L3
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Figure 2.15: Histograms of important features for for binary classification of NiMC
(STREAM-DRAM)

cache, whereas STREAM-DRAM uses matrices of at least 4 times the size of last level

cache. As a consequence of the smaller matrix sizes, L1 data cache miss becomes an

important feature in the machine learning. While we can clearly distinguish the two

distributions in Figure 2.16(a), in reality the difference between the two distributions

is less than 1% of the L1 data cache miss. Even though STREAM-cache has terrible

cache utilization and a large number of L1 data cache miss, this shows that as we
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increase the application’s cache efficiency, we begin to see a shift in importance from

instruction cache to data cache.
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Figure 2.16: Histograms of important features for for binary classification of NiMC
(STREAM-cache)

HPCCG and LAMMPS In contrast with the STREAM runs, data cache misses

and total cache accesses are important features for HPCCG and LAMMPS. This

makes sense given the rate of data cache access drops dramatically in HPCCG and
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LAMMPS compared to STREAM. Looking closer at the results of HPCCG and

LAMMPS in Figures 2.17(a)-2.18(c) we see some surprises. Specifically, for the vast

majority of processes, data cache misses and total cache accesses decrease as we add

a competing RDMA traffic. It is important to remember that these measurements

are the sum over a run and not a rate of misses or accesses over time. In other words,

we see a decrease to total cache misses and accesses as the CPU time increases for

these two applications.

This is an example of how machine learning can point us in directions that we might

not explore otherwise Once we know where to look, human intelligence and expert

knowledge can provide a deeper understanding of the environment. The reason

for observed decrease in L1 misses can be explained by a slowdown which causes

a decrease to the rate that operations are issued. In other words, the L1 cache

access per unit time is decreasing, which allows for better hit to miss ratios of the

L1 cache. Better hit to miss ratios at the L1 create less pressure on L2 and L3,

resulting in both fewer accesses and fewer misses at higher levels in the cache. Going

back, evidence suggests that the slowdown that reduced pressure on the L1 for the

majority of the processes is the result of waiting on a single laggard process. Looking

at Figures 2.17(a)-2.18(c), we commonly see a small number of outliers in both misses

and CPU time. By examining the individual runs, we confirmed these outliers are

often just a single process of a run, which creates an intra-run imbalance. At points

of synchronization and communication faster processes are forced to wait for the

completion of the slower process. This waiting period provides the faster processes

an opportunity to satisfy any outstanding requests and clear the pipeline. When the

slowest process reaches the synchronization point the majority of processes are able

to take advantage of the cleared pipelines and achieve better cache efficiency until

they fill up.

The next logical question is, why don’t we see this behavior in STREAM? We cannot
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answer this with absolute certainty, but one idea is that this is because STREAM is

designed to miss cache. Therefore, any benefit of clearing the processor’s pipeline

at synchronization point is negated as the empty pipeline rapidly fills up waiting

on outstanding cache misses. We can see that when accounting for CPU time, that

STREAM-DRAM/cache see an 8X increase to L1 data cache miss per unit time,

compared to HPCCG.
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Figure 2.17: Histograms of important features for for binary classification of NiMC
(HPCCG)
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Figure 2.18: Histograms of important features for for binary classification of NiMC
(LAMMPS)

Discussion For each of the applications other than CNS the classifier had an

out-of-bag score of 0.995 or higher, meaning that if NiMC is present in system with

Onload NICs, we can accurately predict presence of NiMC using any of the three

feature sets evaluated 99.5 out of 100 times.

Additionally we saw a breadth of features were used to predict the presence of NiMC.

This exemplifies how machine learning and expert knowledge may be leveraged in
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future systems, since the best set of features appears to vary, dependent on the

behavior of the application.

Predicting volume of RDMA traffic

Next, we wanted to determine whether we could predict the amount of RDMA traffic

with more detail than just a binary classification. To do so, we used random forest

regression rather than random forest classifiers on the same data as before calculating

both the coefficient of determination (R2) and OOB scores. While R2 suggested some

success, this was misleading and contradicted by low OOB scores. The reason for

this discrepancy is that, given a predicted value of ŷ and a mean value of ȳ, R2 is

calculated as:

R2 = (1− u/v)

where u =
n∑

i=1

(yi − ŷ)2 and v =
n∑

i=1

(yi − ȳ)2

Because the distribution of injected bandwidth is often bi-modal, this makes the

use of average in v particularly poor, creating an inflated score that really is not

meaningful. The OOB score does not suffer from this and for the purposes of our

work is more informative.

Unfortunately, the results indicated that none of the feature sets were informative

enough to precisely predict the volume of RDMA traffic in the presence of NiMC.

Part of the reason may be that the throughput of the RDMA traffic injected onto

the target node is also dependent on contention in the network and may not be

fully represented by the features recorded. Because SandyBridge-X2-onload is a

shared system, the distribution of throughput varied across the runs depending on

the competing workloads. While our preset counters did not provide the necessary

information, this does not rule out the other performance counters that might be
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explored in future work. These might include PAPI native events, which are more

numerous than the PAPI preset events, but are accessed via the low-level PAPI

interface.

Predicting runtime impact of NiMC

In this section we wanted to predict the CPU time of each process for the set of

applications and benchmarks with and without NiMC. Initially, we used the entire

feature set of Table 2.3, so that our target vector is the CPU time recorded by

OpenSpeedShop, while the training input samples are comprised of the features in

Table 2.3. Examining the results, we found that each feature set was able to provide

quite accurate predictions of CPU time. The OOB prediction across the different

feature sets and applications ranged from 0.969 to 0.997, with the worst (although

still good) score being for CNS using feature set 3. This is likely due to the fact

that CNS has small working set of memory and a relatively small number of L3

misses compared than other applications. Furthermore, the results suggested that

each feature set was capable of accurate predictions of the CPU time.

While the OOB scores were quite high, one of the things we noticed is that the IB

bandwidth feature dominated in importance, providing little information about the

significance of the other hardware counters. Furthermore, we only have knowledge

of the volume of RDMA traffic injected because we introduced it in a controlled

experiment. In a more realistic approach this information would need to be shared

with the remote (application) node incurring a significant delay due to latency. In

response, we decided to remove the IB bandwidth feature from the training set and

run the experiments again. What we found is that even when the IB bandwidth

feature was removed, we maintained very good predictions. The largest decreases to

the OOB score were around -0.03 (e.g. 0.997 to 0.967). This suggests that the IB

bandwidth feature while valuable, provides information that can be gained through
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Table 2.8: OOB scores for regression on CPU time.

App/Benchmark Set 1 Score Set 2 Score Set 3 Score

STREAM-DRAM 0.984 0.997 0.991

STREAM-cache 0.992 0.994 0.984

HPCCG 0.966 0..5 0.966

CNS 0.981 0.978 0.966

LAMMPS 0.990 0.995 0.967

the other performance hardware counters (features) in order to accurately predict

CPU time.

In the following paragraphs we use the rankings of feature importance as a tool

to further analyze the results and try to understand why a particular performance

counter was ranked more importantly than others.

STREAM-DRAM While many of the features that were important in predicting

the presence of NiMC are important in predicting the CPU time, there are some

differences. This is expected given that NiMC is only one of many components

determining the overall runtime of an application. From the second feature set, the

derived fraction of L2 data cache miss over L2 total cache access is an important feature

in predicting CPU time that was valued much less in predicting NiMC. In general,

it’s not surprising that a derived metric of L2 efficiency is valuable in determining

the performance of STREAM. The histogram for this feature (Figure 2.19(a)) shows

that in the presence of NiMC, STREAM-DRAM distribution of L2 cache efficiency

changes from a distribution that looks fairly normal to a distribution that is much

harder to characterize. Specifically the feature shows some worst case runs with

NiMC achieving a value of just over 0.60 compared to 0.56 without RDMA traffic.

STREAM-CACHE In general, we found that a smaller number of features were

given greater importance, though the relative rankings of importance did not change
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Figure 2.19: Histograms of important features (L2 DCM/L2 TCA, L2 ICH, and
L3 DCA for STREAM-DRAM, HPCCG and LAMMPS, respectively), when predicting
CPU time.

for STREAM-cache. Specifically, when predicting CPU time we found that L1 data

cache miss, L2 instruction cache hit, and L3 instruction cache access achieved much

greater importance (more than double in the case of L3 instruction cache access)

than when predicting NiMC.
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CNS CNS is different from the other applications because the added RDMA traffic

has negligible impact on it. In fact IB bandwidth is rated as the least important

feature in determining CPU time. This matches our intuition and is as expected

since we are using CNS primarily as a control-case in our experiments. For these

reasons, the rankings of importance with respect to predicting CPU time of CNS

provide little insight about NiMC.

HPCCG When comparing the feature importance of HPCCG to predict NiMC

versus predicting CPU time, there is a change in the rankings of feature set 2. We see

that L2 instruction cache hit becomes a very important feature in predicting CPU

time, whereas it was the 5th most important feature when detecting NiMC. Looking

at the Histogram in Figure 2.19(b), we see the familiar distribution where a small

number of processes are fall well outside the expected range. In the worst case, some

processes saw up to a 7X increase in the number of instructions that hit L2. Whether

this is due to additional instructions issued by the drivers for the onload NIC, or for

some other reason, we can only speculate.

LAMMPS When reviewing the results from LAMMPS, the most important fea-

tures from Sets 1, 2 and 3 are L1 data cache miss, L2 instruction cache hit, and L3

data cache access, respectively. Within feature sets 1 and 2, the importance becomes

heavily weighted towards a single feature. In feature set 3, the importance of L3

data cache access decreases while L3 total cache access increases in importance. This

makes sense given the fact that TCA is the sum of ICA and DCA, however this shows

that DCA counters provide more information. Of the applications we ran, with the

exception of CNS, LAMMPS has the best cache utilization, such that if there is an

increase to L2 misses that becomes an L3 access, it is more noticeable than it would

be in STREAM or HPCCG.
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Discussion Several conclusions can be drawn from these experiments. First, if

we exclude IB bandwidth, no single feature is universally important. For example,

hardware events like L1 data cache miss were very important in determining the

CPU time of STREAM-cache, HPCCG and LAMMPS, but less so when used to

predict the CPU time of STREAM-DRAM and CNS. There tends to be some

overlap in importance among similar applications and machine learning facilitates an

understanding that compliments expert knowledge. We did see that IB bandwidth

was a valuable feature, however extracting it from the system is not straight-forward.

It is possible that it could be gleaned from PCI-e counters however these are not

readily available. Another alternative is that the NICS or hardware drivers could

report this information, but this requires that they (1) distinguish RDMA traffic apart

from two-sided traffic and (2) develop a mechanism for reporting that information.

A third possibility is that whatever service is pushing data into the remote system

report it to the relevant applications, however this solution incurs significant latency

in reporting.

Second, for some applications a majority of processes saw decreases in cache misses

as a result of running slower. Because of the black-box design of most hardware, we

can only speculate on the reasons behind this. We can generalize that this behavior

is isolated to applications that have better cache utilization than the benchmarks

which are designed to induce cache misses. Furthermore, we saw that the processes

that see a reduction in cache misses spend a significant amount of time waiting on

processes delayed by NiMC.

Third, it is apparent that some processes are disproportionately impacted by NiMC.

Due to the synchronization points and barriers of today’s BSP style programs these

stragglers delay all other processes. In other words, the fastest processes are limited

by the slowest. This is further magnified as the number of processes increases. It

would seem that the problem of NiMC is largely an artifact of BSP style programs and
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that we might expect it to become less prevalent in future asynchronous applications.

However, this is not entirely true. A closer examination of our results show that even

the fastest CPU times of processes for the applications are slowed down significantly.

Part of this is a result of shared hardware resources between the cores, particularly

last level cache. While it is true that NiMC will not impact an asynchronous program

as much as current BSP programs, we expect it to remain a issue in future systems.

From a high level viewpoint, our experience with machine learning shows that it

is an effective technique, that once trained, will allow us to respond to NiMC in

a timely manner. Additionally, this work shows the value of machine learning in

HPC, as we’ve successfully use these techniques to develop a deeper understanding of

the relationship between performance counters, applications and NiMC. In several

instances, the features of highest importance surprised us, which shows the value

of a principled approach such as random forests, since as system experts we might

have allowed our intuition to lead us to selecting features that were not as rich in

information.

2.2.7 Large scale evaluation

From the previous studies, we gained a better understanding of the underlying causes

of application interference in the context of a single, isolated node targeted with

an unlikely high volume of RDMA traffic. Our final study examined NiMC for

applications at scale with realistic RDMA traffic volumes.

As with our single node experiments, we use the Sandy Bridge-X2-onload cluster

executing a series of weak scaling LAMMPS experiments. We selected LAMMPS for

the large scale runs for multiple reasons. First, of all our workloads, LAMMPS is

the only real application: it is not a proxy app nor a contrived benchmark. Second,

LAMMPS scales very well for the size of system under study. Finally and most
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Figure 2.20: Impact of NiMC on LAMMPS for an onload system.

importantly, LAMMPS is widely regarded as an application that is resistant to

external interference [85]. Therefore, LAMMPS represents a good challenge when

trying to realize performance degradation due to external perturbations like RDMA

traffic.

As in our previous experiments, in addition to the target nodes running our application,

we reserved an additional set of origin nodes that push our RDMA traffic to the target

nodes. However, unlike in our previous experiments, we limit concurrent writes to a

small subset of the total nodes. We also limit the duration of each write operation.

We use a hypothetical uncoordinated, in-memory or disk-less checkpointing protocol7

7Contemporary approaches for in-memory checkpointing use a coordinated protocol in
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Table 2.9: Number of concurrent RDMA writes

Application Writes/s (Daly) Writes/s (Daly) Writes/s (0.2%)
node (rank) count QDR-onload FDR-offload

64 0 0 0
512 1 1 1
1024 2 2 2
2048 5 6 4
4096 15 17 8
8192 42 47 16

to shape our RDMA traffic pattern. Since there is no known optimal checkpoint

interval for uncoordinated checkpointing, we use Daly’s estimate [22] to derive optimal

coordinated checkpoint intervals. We use Daly’s estimate to compute the average

number of processes simultaneously taking a checkpoint using a five year mean time

to interrupt, and use this number as the number of concurrent writers, shown in

Table 2.9. We compute RDMA write duration by optimistically assuming that all

checkpoints take 46 thousand message iterations (equivalent to ≈1s for 4X-QDR IB

and ≈0.5s for 4X-FDR IB). Each data point in Fig 2.20 represents the minimum

runtime of 5 runs. We chose the minimum because (1) the minimum is the hardest

metric to overcome, when showing the existence of NiMC at scale. (2) it shows

the impact of NiMC rather than the impact of contention on the network or I/O

subsystem from other jobs that are outside of our control.

The results in Figures 2.20 show that as we scale up the number of application

processes the impact of NiMC becomes significant. Despite the fact we decreased

write duration to a single second, scaling up the number of application processes

greatly amplified the magnitude of interference. This is similar to phenomena seen

in the research of OS noise, where scale amplifies the magnitude of the overall

perturbance [59, 101]. Even with a constant 0.2% of total nodes as simultaneous

writers, time-to-solution nearly doubles at scale due to NiMC. While we’ve increased

the pressure on the network by introducing additional RDMA writes, we will show in

which all processes take a checkpoint simultaneously. However, for next generation systems
there is a concern that coordination at massive scale can become prohibitively costly.
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§2.2.8 that this additional traffic is not responsible for the increase to runtimes.

2.2.8 Solutions for NiMC

We evaluated several approaches for reducing the impact of NiMC, specifically: (1)

offload hardware, (2) core reservation, and (3) software based network throttling. All

of these techniques have been applied in other areas of research [29, 39, 83, 2] but this

work is the first to evaluate their effectiveness in mitigating NiMC. For the results in

Figs 2.21(a) and 2.21(c) we present the best (min) baseline LAMMPS runtimes and

the median runtimes for NiMC based on Daly’s volume. For the platforms evaluated,

the difference between the minimum and the median for Daly’s volume runs was

negligible.

Offload NICs as a solution

In § 2.2.4, it was shown that NiMC did not negatively impact the performance of

the most recent offload systems for the benchmark STREAM. In this section we

show that offload NIC’s continue to provide a solution to NiMC at scale for real

applications. In Fig 2.21(a) we ran LAMMPS on the Sandy Bridge-X2-FDR-offload

system, weak scaling up to 8192 processes. Comparing the results of No RDMA and

Daly, it is evident that NiMC does not have any observable impact on offload system

performance at scales of up to 8192 processes. From these results, we conclude that

offload NICs provide a solution for modern systems that would otherwise experience

NiMC. The main drawback to offload NICs is their greater monetary cost compared

to their onload equivalents. However, this is not a guarantee that future systems will

be unaffected by NiMC as the disparity between network and memory bandwidth

shrinks. Even though none of the most recent offload systems were impacted by NiMC

– on slightly older systems (Westmere and Lisbon) we observed a 16-25% decrease
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Figure 2.21: Fig 2.21(a) highlights the performance of offload cards at scale for the
application LAMMPS. Fig 2.21(b) shows the relationship between RDMA traffic and
available memory bandwidth in DRAM and LLC using N and N-1 cores. Every bit
per second of RDMA traffic reduces DRAM and LLC bandwidth by 14 and 22 bits
per second, respectively. Fig 2.21(c) demonstrates a core-reservation solution at scale
for the application LAMMPS.

to STREAM Triad performance due to NiMC. We believe the future viability of an

offload solution is dependent on how fully CPUs utilize memory bandwidth and by

future network bandwidth increases.
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Core reservation

Dedicating a core to service communication is another possible solution to mitigate

NiMC. This reduces the memory throughput of the CPUs, and sets aside separate

cache resources for handling network data. The downside to core reservation is that

in the absence of RDMA communication the reserved core is wasted. To test the

effectiveness of core reservation, we repeated the STREAM and LAMMPS tests of

§2.2.4 and §2.2.7 while reserving one core per node to process communication, binding

the QIB driver to the reserved core. Additionally, we evaluated core reservation for a

modified version of STREAM which uses array sizes designed to fit entirely in last

level cache (LLC). The modified STREAM allows us to evaluate LLC performance,

with respect to NiMC. Both of these tests can be seen in Figs 2.21(b) and 2.21(c).

Interestingly, Fig. 2.21(b) presents an intersection near 400-500 MBps on the x-axis,

where a core reservation strategy begins to provide a performance benefit. As the

RDMA bandwidth increases towards 3000 MBps we see performance gains by setting

aside a core. This suggests that a dynamic strategy for reserving a core to service the

network may be an attractive approach for future systems. Making this decision on a

live system could be determined by using a random forest to predict the impact of

NiMC (as seen in §2.2.6) and determine if core reservation was necessary.

In Fig 2.21(c), we use identical input files as the previous section, however we only

utilize N-1 cores per node for the application. These results show that core reservation

continues to be an effective strategy to prevent NiMC at scale, independent of the

volume of RDMA traffic. These results clearly demonstrate that contention on the

network is not a factor in the increase to runtime seen in § 2.2.7, Fig 2.20. This

can be observed in Fig 2.21(c), where the cases with and without RDMA traffic

have only a 0.1% difference in runtime, despite contention on the fabric that would

be present in the RDMA results. This allows for a quantification of the induced

network contention due to the RDMA streams, which is much less than the observed
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contention due to NiMC. Of minor note, there is a 10% increase to the runtime of the

runs that utilize 480 processes compared to the runs of 60 and 960 processes. After

discussion with LAMMPS developers it was determined to be the result of increased

communication due to a less efficient domain decomposition for 15 cores per node.

Overall, the results suggest that core reservation incurs a runtime increase of 6.4%

compared to 16-core to 15-core runs of LAMMPS without RDMA traffic. While a

6.4% increase to runtime is costly, it costs significantly less than the 330% increase

without core reservation (Fig. 2.20).

Software-based solutions

There are several methods for throttling or shaping the traffic sent over the network.

One such method is to artificially throttle the throughput of the network so that

the same total volume of traffic is sent over a longer time period. The practicality

of throttling is partially dependent on the significance of the network data to the

application. It is important to remember that traffic throttling increases the time to

deliver the data, but makes more memory bandwidth available to the CPU. If the

network data is part of the application’s critical path and the application is executing

faster (due to the increase in available memory bandwidth), throttling may leave

the application stalled. In Fig. 2.21(b) we plot the impact that varying network

speeds have on STREAM DRAM and LLC performance. Performing a least square

linear regression shows that for every bit per second (bps) of RDMA bandwidth

we add we slow the DRAM performance by 14 bps. When considering LLC, this

tradeoff becomes even more expensive as 1 bps of RDMA bandwidth reduces LLC

bandwidth by 22 bps. On modern HPC systems where memory performance is a

highly valued commodity, the large disparity of this tradeoff makes network throttling

less appealing as a solution compared to a hardware offloading. Additionally, for the

system evaluated, software-based throttling is only effective if you can reduce the
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amount of network traffic to under 500 MBps. If an RDMA service requires more

than 500 MBps network bandwidth, core reservation becomes a better solution.

Summary of solutions Our results show that a hardware offload solution is

ideal for modern systems, Though (as Westmere and Lisbon demonstrate) future

effectiveness is dependent on trends in CPU memory bandwidth utilization and

network speeds. Secondly, many systems utilize lower cost onload NICs. For these

systems there are two approaches to mitigate NiMC. The first approach of throttling

the network is limited in its effectiveness. Specifically there is a crossover point where

the amount of network traffic becomes large enough that core reservation becomes a

better solution. This crossover point will vary system to system but was 500 MBps

for our evaluated platforms. Lastly, core reservation allows for unthrottled RDMA

bandwidth but at a base-level increase to runtime of 6.4%. Though we provide general

guidelines, determining the best solution for each system requires a knowledge of

the application, services and underlying hardware. As we’ve demonstrated, machine

learning allows us to predict the impact of NiMC on application runtime and can

facilitate a dynamic solution space.

2.2.9 Outcomes of NiMC study

In this work, we introduced the concept of NiMC and demonstrated its impact for

a variety of current HPC system architectures. We showed that NiMC is a concern

for both onloaded and offloaded networking hardware, with the onloaded hardware

observing the largest performance impact. For all but one of our applications, we

observed significant performance impact on modern onload systems due to NiMC,

and we ruled out that the observed NiMC impact was not significantly attributable

to CPU contention or network contention. This work examined how we might detect

NiMC and predict its impact on workloads by using random forests. In this research
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we found that no single PMC was universally important to all workloads, validating

the use of sophisticated methods of machine learning. We demonstrated how random

forests could effectively (and without expert bias) determine which PMCs were

important to predicting NiMC’s impact on a particular application. Using real

applications at large scale, we showed that NiMC can lead to significant performance

degradation even in applications like LAMMPS that have previously demonstrated

performance robustness in the presence of other types of system noise. While this

work only examined InfiniBand based networks, such networks are relevant for HPC

as evidenced by the recent $325 million CORAL procurement [128], a 150 petaFLOP

IB-based system.

Lastly, we evaluated three strategies to mitigate NiMC, namely offload NICs, core

reservation, and network throttling. Our results suggest that Offload NICs appear

to provide the best, albeit most expensive, solution to NiMC on modern systems,

provided there is sufficient headroom between theoretical and observed CPU memory

bandwidth. In the event a cluster utilizes an onload NIC, setting aside a CPU core

to service the network is a viable solution for onload systems, but incurs a runtime

penalty proportionate to the power of the core (6.4% in our study). The current

disparity in the way memory bandwidth is provisioned between RDMA and the CPU

makes the third solution (network throttling) attractive only if the required RDMA

bandwidth is below specified thresholds (Fig 2.21(b)). We’ve demonstrated that

machine learning (specifically random forests) enables the prediction and detection of

NiMC necessary of a dynamic solution space.

2.3 Chapter Conclusions

In this chapter, we studied one-sided communication from the application layer (MPI)

through the transport layer (IB verbs). We evaluated the performance of one-sided
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communication from the application level (using both OpenMPI and MVAPICH).

To conduct this study we developed the RMA-MT benchmark suite which was

released to the public. These benchmarks will continue to assist future studies that

focus on improving the performance of RMA communication in MPI. Later in the

chapter, we showed that RDMA communication has the potential to greatly disturb

application performance via Network-induced Memory Contention. Furthermore,

we found that NiMC impacts a wide range of architectures, resulting in increased

runtime for applications. We demonstrated that the penalty of NiMC grows with

scale of the system, showing potentials for 3X increases to the runtime. Our work

showed that NiMC can be detected from easily accessible performance counters

using machine learning and we demonstrated three potential solutions to eliminate

NiMC, namely hardware offloading, network throttling and core reservation. In

conclusion, we have provided an in-depth study of one-sided communication in HPC

systems that highlights both the benefits and potential pitfalls. This knowledge

enables HPC systems and application designers to get the most out of next-generation

communication. In the next chapter, we will expand the scope of our work, moving

beyond the node-centric view of this chapter to study performance and power of the

network fabric.
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Chapter 3

Balancing Performance and Power

of HPC Interconnects

In Chapter 2, we characterized the performance of next-generation communication

methods. Specifically, we evaluated the performance of one-sided communication

at both the transport layer and application layer. This provided a node-centric

view of communication that largely ignored network fabric (the routers, switches,

NICs and links that connect the nodes). In this chapter we transition to a more

fabric-centric perspective, focusing on how network topology and bandwidth affects

system power and performance. With power being a primary concern in the global

race to Exascale, the network fabric (which may consume more than 10% of the total

power budget) provides attractive opportunities for savings. Simulation enables us to

experiment with network design at scales of hundreds of thousands of ports, which

would otherwise be infeasible. We leverage simulation to provide estimates of costs

and savings at scales previously unmatched. Throughout the chapter, as we evaluate

the power consumption of a topology we also evaluate its impact on application

performance. In addition, this work goes beyond just reporting the run time of our

workloads. We want to better understand why network topology A outperforms
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network topology B. So, we provide new techniques for visualizing and analyzing

network utilization at port level detail. The expectation is that, by the end of this

chapter the reader will have a solid understanding of the power/performance tradeoffs

associated with HPC network fabric.

3.1 Stalled Active and Idle: Characterizing Power

and Performance of Large-scale Networks

In this section, we perform a comprehensive, simulation-based study of large dragonfly

networks and application motifs that represent workloads and communication patterns

important to the HPC community. A primary motivating question was whether and

how varying dragonfly network bandwidth and link configuration can improve overall

network efficiency. We analyze the relationship among a network’s stalled, active and

idle port cycles. And we combine these metrics into a useful visualization approach

that provides fine-grained insights about network utilization. Furthermore, we model

the power consumption of these networks using both empirical measurements of

network power as well as estimates from existing literature.

For this study, we use the Structural Simulation Toolkit (SST) [104] and a range

of relevant workloads on a dragonfly topology of 110,592 nodes to examine network

design tradeoffs amongst execution time, power, bandwidth, and the number of global

links. Our contributions are:

1. An evaluation of how tapering global dragonfly links impacts 11 important

workloads;

2. An evaluation of the performance impact of link-width-reduction on dragonfly

networks at scales significantly larger than previously studied;

3. A scalable and information-rich approach for visualizing network utilization
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performance.

4. Estimates on the potential for static and dynamic network power savings at

Exascale, derived through empirical measurements and existing models in

literature;

5. Enhancements to the SST simulator, which extend the statistics provided by

the router and NIC components.

This work begins with an overview of background material and related work. We

describe the specifics of our simulated hardware environment and workloads §3.1.3.

In §3.1.4, we present the methodology and results of 88 simulations, examining the

tradeoffs made between power, performance and the design of the network. Last, we

review outcomes in §3.2.

3.1.1 Background

Network topologies

HPC network topologies can be divided into two main categories with hybrid ap-

proaches in between. These categories are primarily tree based, or mesh/torus based.

Several factors lead to the selection of one topology over another. In short these

factors are latency/hop-count, bandwidth, path diversity, and monetary cost. For each

topology mentioned, we highlight these factors.

Torus and mesh networks differ from tree based networks in several key ways. Firstly,

they provide an easy mapping to many of the scientific applications which predomi-

nately communicate with their nearest neighbors. Secondly, the number of links scales

linearly with the number of nodes and the radix of the switch (the dimensionality of

the mesh). The low radix of each switching element translates into a high worst-case

latency/hop-count, while the minimal number of hops required on a mesh or torus
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is 1. Similarly, on a mesh network, there is a greater worst case for congestion and

contention for network resources. If the communication operations are not localized,

a mesh or torus network must over-provision a greater proportion of links than its

Clos or Fat-tree counterpart. The maximum number of hops required for a 2-D NxM

mesh network is N+M, while a 2-D torus cuts this in half. Mesh networks have a

high path diversity and an expensive monetary cost at scale.

Tree based network topologies combine higher radix switches to enable a lower worst-

case hop count. In its most basic form, trees do not offer path diversity and the

trunk represents a single point of failure and potential bottleneck for bandwidth.

To mitigate the effects of these bottlenecks the capabilities of links grows as they

are positioned closer to the trunk. Tree’s that have this property are referred to as

Fat Trees. Because a tree based network anticipates multiple nodes communicating

across the trunk of the network, the trunk is provisioned to guarantee some fraction

of the total bandwidth that the combined nodes of the system might use. For large

systems, of many nodes, the worst-case latency on a tree based network is less than a

mesh-based network, while the best case latency of a tree is worse than a mesh. The

monetary cost of a tree based network is typically lower than that of a mesh or torus

solution, since there is a decrease in the number of links required.

Between tree and mesh based approaches are hybrid solutions. A hybrid solution

finds a compromise between cost, latency, bandwidth and path diversity of the

previously mentioned approaches. A Clos Network is an example of this compromise,

Traditional Clos Networks break up a single crossbar switch into 3 tiers/stages with

each stage providing multiple, differing routes to the stages above/below. Clos

networks provide a path diversity proportionate to the radix offered at each stage,

with a relatively low average, worst case and best case latency. Additionally, the path

diversity offers greater bandwidth in the event of congestion as traffic may be rerouted

through different links of the network. Other related approaches include Butterfly,
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Switch Switch

Node Node Node…

Figure 3.1: Dragonfly networks are networks built around logical collections of switches
and nodes called a group. Groups within a dragonfly network are fully connected to
each other by optical links. This figure is an example of a dragonfly network with 12
groups. Link connections are color coded to show local, group and global links. On
the left side of the figure is the fully connected group configuration. The right side
illustrates the structure of an single group.

the improved Flattened Butterfly, and Dragonfly networks [71]. Dragonfly topologies

see use in many modern systems [70]. Dragonfly networks combine high radix routers

and create virtual routers called a group which are fully connected to other groups

by optical links. In this dissertation we will refer to local, group and global ports.

Local ports connect a router to a compute node or NIC. Group ports connect routers

within the same group together. For a visual reference the reader may refer to Fig 3.1.

The topology within a group can vary, dependent on the requirements of the system

and workloads. Global ports facilitate inter-group traffic and use optical links so that

they may reach larger distance than is practical for electrical cables. One downside

of optical cables is that they can suffer an increased cost compared to their electrical

counterparts (depending on distance, amount purchased). Because global (optical)

links are more expensive than traditional electrical links, the cost of procuring a

HPC network may be decreased by reducing the number of global links. However,
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reducing the number of global links has an impact on the bisection bandwidth of

the network. Bisection bandwidth is defined as the minimum bandwidth across any

two evenly divided partitions of nodes. Bisection bandwidth has been observed as an

important indicator of application performance on many systems in the past [119, 21].

Quantifying the tradeoffs between workload performance and the number of global

links in a large-scale dragonfly network is one of the contributions of this work.

Modeling network power

While performance has traditionally been the chief concern of HPC scientists and

engineers, as the scale of systems increase, availability of power has become a major

concern. Because Exascale systems must become an order of magnitude more power

efficient, we must increase efficiency wherever possible, including in the network.

Modeling network power is relatively simple, because modern networks are not power

proportional, that is the ports consume the same amount of power whether they

are sending data or idle. Because of this, we can generally model the power of a

network link as either on or off. These models become slightly more complicated as

we consider two other link parameters, namely operating frequency and link width.

While changing link frequency can reduce power it comes at a cost. First, there is a

downtime as ports synchronize with each other after each adjustment and secondly, a

reduction in frequency increases the effective latency of the link. Because of these costs,

throughout our work we assume a stable link frequency. A link’s width is the number

of lanes that an individual link has, these may be disabled/enabled individually to

provide a greater selection of bandwidth/power options without impacting the latency

of the link. Modern network links are typically configurable to either a 1X, 4X, 8X

or 12X width. With this small set of configurations, we can model power an energy

of a network with relative ease.
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Techniques for network power saving

There is a history of work targeting power savings in the network fabric. Hoefler [57]

provided a survey of network-based, energy conservation techniques. This work

discussed challenges and motivated opportunities for a variety of network fabrics.

Possible mechanisms included hardware based solutions, e.g. Energy Efficient Eth-

ernet and design of network topology, as well as algorithmic approaches, such as

communication/computation overlap and process migration. For our work, we are

interested in approaches which manage the network fabric by adjusting the capability

of individual links. These strategies can be divided into two categories; approaches

which statically determine fabric requirements and approaches that dynamically

tune the fabric to application usage. In 2012, Laros et al. [75] provided insight on

how statically scaling the CPU and network can provide power savings on Cray XT

systems. In their results it was found that very few applications fully utilized the

available bandwidth and that they could scale back the network to 50% of capability

with very small execution time increases for the majority of applications. One of the

significant contributions of this work is that the experiments utilized real systems

and applications, rather than simulations. While their work provided a proof of

concept, static strategies are unable to extract power savings from short valleys of

underutilization without penalizing average performance.

In 2003, Kim et al. [69] introduced a scheme for Dynamic Link Shutdown (DLS),

which attempts to identify highly used links and shut down other links whose usage

is below a threshold, without creating a disjoint network. If shutting down the set of

underutilized links would create a disjoint network, the forwarding table is scanned

for the link that provides the highest degree of connectivity. The selected link is then

removed from the set of links to be shut down. The DLS technique utilizes locally

adaptive routing and two additional hardware modules. In [123, 122], Totoni et al.

propose the addition of hardware support for on/off link control. Furthermore, they
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suggest that this control should be managed by an adaptive runtime system. This

work takes a binary approach of completely disabling/enabling links (with a zero cost

delay). Simulated experiments suggest that a up to 20% of total system power may

be saved as a result. One of the strengths of this work is a thorough analysis of the

link utilization for a set of real applications using realistic topologies. Work by Li

et al.[79] presented an approach called Network Power Shifting or NPS. NPS is the

idea that power saved from deactivating network links could be used to speed up

computation. Additionally, they outline a hardware-based technique where switches

activate downed links in response to individual messages. This strategy requires a

priori knowledge of routes, so that links along a route may be enabled as well as

additional hardware modules. Other techniques to disable to links forego adaptive

routing or added hardware modules, instead requiring compiler support, or support

from application/runtime libraries. In 2005, Li et al. [78] utilized a compiler-based

scheme to predict link active and idle time, such that the compiler inserts explicit

calls to turn off/on communication links. Additional research on compile-time, power

aware optimizations was provided by Soteriou, Eisley, and Peh in 2007 [112, 111].

In addition to performing simulations on coarse-grained multi-chip architectures,

their work considered the power savings available to embedded multicore systems-

on-a-chip (SoCs). Work by Conner et al. [19] explored link shutdown opportunities

by performing an analysis of individual link activity. Conner’s work specifically

targets MPI collective operations and suggests that software libraries explicitly

inform the network of application communication needs. Later, in 2015 Alonso

et al. [6] simulated the shutting down branches of links and switches in a fat-tree

interconnection, while predicting power savings for a selection of synthetic workloads.

This work uses adaptive routing along redundant up-paths of the tree, while there is

only the guarantee of a single down path to any node in the system.

In lieu of completely disabling network links, some authors have taken the approach

of reducing link voltage, frequency, or width (number of lanes per link). The advan-
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tage of these approaches is that network power can be reduced without completely

disconnecting endpoints, making adaptive routing optional. However, the potential

power savings of these approaches is reduced compared to a complete link shutdown

strategy. An approach by Shang, Peh and Jha [110] explored how Dynamic Voltage

Scaling (DVS) may predictively be applied to links, based on a weighted moving

average of buffer and link utilization. Additionally the authors examined the impact

of varying voltage transition delays on performance. Alonso et al. [8, 7] explored the

dynamic adjustment of link width in 2004 and 2006, respectively. Dickov et al. [24]

simulated predictively reducing the link width of the network fabric by annotating the

MPI layer. The novelty of this work relies on the use of n-gram extraction techniques

[72] within the MPI profiling layer. In this work, the n-grams were a sequence of

MPI (communication) calls that form an (n− 1)-order Markov model – that allowed

the authors to predict periods of underutilization.

The work of Saravanan et al. [107] is significant – in that it examines the performance

of Energy Efficient Ethernet (EEE) in the domain of HPC. Their findings suggest

that by default, EEE did not provide power savings, but given a reduced on/off

transition delay there were overall power savings of 7.5%. Zamani et al. [132] provide

a comparison of Myrinet-2000 and Quadrics QsNet to compare the energy costs of

MPI operations, however both of these networks are no longer in use. Our work is

primarily focused on Infiniband networks, which is the most popular network of the

TOP500 (by system count).

For traditional data center environments, network power management strategies have

been proposed by Mahadevan [81] and Heller et al. [54]. This work resulted in Elas-

ticTree, a network-wide power manager. ElasticTree examines the problem of finding

minimum-power network subsets across a variety of traffic patterns. Traditional data

centers have different workload characteristics than HPC applications. For example,

in the case of [54], the network utilization showed a bimodal usage, characterized by
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working and sleeping hours of the general population.

Simulation of HPC networks

Once we have models of network performance and power, we can run simulations

to study how the systems handle a diverse and complex set of workloads at scale.

When simulating large scale systems we must consider many components such as

the network, I/O, memory and CPU. It is important to select a simulator which

finds the balance between scalability, complexity and accuracy. For these reasons,

we have chosen a flexible, modular and scalable simulator called the Structural

Simulation Toolkit (SST). Because of our interest in networks, we have elected to

utilize lightweight, scalable modules to simulate computation, while dedicating the

majority of our simulation resources to simulate the network and communication.

Specifically, we utilize SST to accurately represent the packet-level routing, buffering,

and internal switch characteristics of 100,000 node dragonfly networks, as well as the

MPI semantics and message matching.

SST SST is a simulation framework that allows different components to be connected

using a parallel discrete event simulation core. Along with the simulation core, SST

provides a number of ready-to-use component libraries. SST is widely used by both

industry and academic researchers. Throughout its history, the accuracy of SST has

been validated in peer-reviewed publications and by hardware vendors [104, 62, 127].

Ember One of the SST libraries/components is Ember. Ember is a lightweight

state-machine based event engine which replicates application communication patterns

at a simulation end point. We term a single logical communication pattern a motif,

drawing on the similar theme from Colella computational dwarfs [18]. A collection

of motifs can then be arranged within each end point to represent a more complex
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Application

MPI

NIC

Ember

Firefly

Network

Router Router … Merlin

Figure 3.2: Illustration of the Structural Simulation Toolkit (SST) along with three
components (Ember, Firefly, and Merlin). The SST core facilitates the use of flexible,
modular components, which can simulate HPC systems at varying degrees of accuracy
and scalability.

single application or even a more complete workflow.

A motif works by creating a sequence of events when prompted which contain primitive

operations for communication (e.g. send, receive, etc.), computation, waits or timing

markers. The events are added to a queue and then executed one by one until the

queue empties. Once emptied the motif is prompted to refill the queue with additional

events (while being able to see the effects and returns from the previous executed

set). Thus, motifs are able to execute short sprints of events punctuated by querying

or logic.

Events which relate to communication are translated into operations at the message

interface layer (Firefly). For instance, a communication event is encoded in Ember

and then converted into operations by Firefly which tracks the semantics associated

with the request.

By using short sprints of events and very small amounts of state at each end point,
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Ember is able to scale to very large simulated node counts without placing significant

constraints on the amount of memory or processing required for the simulation to

progress. Despite such simplicity, a collection of statistics relating to message sizes,

message timing, message types etc. can be collected with ease.

Firefly Firefly is a pair of state-machines that implement high level functional

models of the host based communication library and the network interface card (NIC)

logic.

The library state-machine supports point-to-point (e.g. send, receive, wait, etc.) and

collective (e.g. alltoall, reduce, etc.) operations. Message data movement between

network endpoints is based on a eager/rendezvous message protocol model. Message

matching is based on message tag and src. The library state-machine has several

parameters such as maximum length of an eager message, latency to check a posted

receive for a match, latency to copy message data between buffers and latencies that

mimic the time spent in various code paths of a library.

The NIC state-machine functionally moves data to and from the host over a bandwidth

constrained path (i.e. bus). It also has a mailbox interface to the host that the host

uses to initiate sends and gets. It models latencies through a NIC and latencies of

data movement over a bus. It has parameters such as host bus bandwidth, transmit

and receive latency, and NIC to host latency.

Merlin Merlin consists of a set of components that allows a user to model a detailed

network fabric. Merlin may be configured for a range of different network topologies.

It also provides a number of tunable parameters, including buffer sizes, latencies,

routing modes, and arbitration schemes.

The primary Merlin component used in this simulation is a high radix router model

called hr router. This component models a single router, including input/output
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buffers, single large crossbar, and routing capabilities. The routing capability is

controlled via a loadable “topology” model. The library currently supports mesh/torus,

fat-tree and dragonfly topologies. All the topology models use deterministic (minimal)

routing. Additionally, the dragonfly model adds two other routing modes: valiant

and adaptive-local. Valiant routing chooses an intermediate group to first route to

before routing to the final destination. Adaptive-local adaptively chooses between

the minimal and Valiant routes using a user defined threshold. The Valiant route is

chosen when the output buffer for the direct port has N (where N is the threshold)

times more occupied space then the Valiant route (i.e. since there are extra hops in

the valiant path, the direct path must be more congested before the valiant path is

chosen).

Stalled, Active and Idle

Stalled Idle

Active

Figure 3.3: State diagram of network ports given the three states Stalled, Active and
Idle.

When evaluating a system, frequently we are only given a single summarizing metric

such as the runtime of an application. While runtime is a useful metric, sometimes
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we desire more detail about the utilization of our system. However, when you are

simulating hundreds of thousands of ports, providing meaningful representations of

the system state becomes problematic. We’ve tackled this issue by summarizing ports

with three simple states: Stalled, Active and Idle (illustrated in Figure 3.3. As a

part of this dissertation, we’ve made additions of SAI statistics associated with the

network fabric in Merlin. These counters record data pertinent to the usage of each

simulated routers ports. We define these metrics as:

active: percent time a port is transmitting data.

idle: percent time a port has no data queued for transmit.

stalled: percent time not active or idle.1

run: simulated wall-time of the workload (normalized to 1).

By combining all three metrics, we provide a rich description of network usage, that

no single metric can achieve. For brevity we refer to the collection of metrics as SAI

(Stalled Active Idle). If we normalize these recorded times, SAI can be described by

the following set of relationships:

stalled = 1− active + idle

run

idle = 1− active + stalled

run

active = 1− idle + stalled

run

run = idle + stalled + active

These relationships limit the degrees of freedom to two, specifically we can derive any

single metric, given measurements of any two other. With this in mind, we simplify

1An example of this would be when a port has data to send but lacks credits necessary
to transmit.
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the presentation of SAI by using a ternary plot. Throughout this work we utilize the

SAI metric to explore the utilization of each motif for a given network. Therefore, we

provide the reader with a brief explanation of how to interpret the results. Fig 3.4

shows SAI in a ternary plot with five example points with a caption that provides

further detail. Fig 3.5 provides further insight about what ideal network utilization

looks like.

10% 

Stalled

Figure 3.4: There are three axes in the plot (one for each metric) with arrows
indicating the direction that a particular metric increases. The red square represents
a network port which is active for 100% of the run and is located to the top of the
figure. Similar points can be seen for ports that are 100% stalled or 100% idle (green
diamond and blue circle). The black star represents a port that spends 1/3 of the
time stalled, active and idle. The orange triangle is a port which is stalled and active
10% of the time and idle 80% of the time.
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Fully Active

Fully IdleFully Stalled

Figure 3.5: This figure provides simple guidelines for the reader about how to interpret
network utilization given a ternary plot. The red regions of the plot represent an
underprovisioned network, while the bottom right circle show underutilization. The
area circled in green is the region of ideal utilization. The reason this does not include
a fully active network is because we are considering buffered networks. In a buffered
network activity leads to longer queue lengths which manifests itself as higher latency.

3.1.2 Related Work

Exascale Network Simulation

In [3], Ahn, et al. present large-scale simulations of the HyperX network topology,

comparing it to other popular topologies. While we are interested in comparing

dragonfly networks with other topologies (e.g. Clos-trees), it is not the focus of this

work. Another simulator, LogGOPSim [60] is a LogGOP based simulator that runs

on inputs of MPI traces. While it is sufficient in many cases, LogGOPSim simulates

a fully connected, single hop network that does not allow for a detailed study of

port-level statistics. XSim is another large-scale simulator developed at Oak Ridge
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National Laboratory. While xSim has achieved considerable scale in simulation, it

utilizes a simpler model of the network and has only recently incorporated models for

network congestion [33]. The Rensselaer Optimistic Simulation System (ROSS) has

been used to simulate large scale systems. Lui et al. have examined torus networks at

Exascale size, strong scaling ROSS to use 128K cores on a Blue Gene/P system [80].

More recently the ROSS simulator was extended to included dragonfly networks, but

simulation was limited to evaluation of MPI collectives [90].

Evaluating Power and Performance of HPC Workloads

Dickov, et al explored link idle times in [24] and the potential for power savings using

the Venus-Dimemas simulator, given fat-tree networks. Our work has a broader focus

than just network power savings, examining best practices of large scale topology

design for dragonfly networks. Work by Bhatele et al. [12], explored how nearby

jobs create contention in mesh-based networks. Our work is interested in similar

phenomena, but focuses on dragonfly topologies which are significantly less prone

to delays caused by fragmented job placement – since the diameter of a dragonfly

network is constant, whereas the diameter of a mesh grows with the number of

nodes. Work by Laros, et al. [75] examined how static reductions in fabric link width

impacted application performance and energy. While their work was done on real

systems rather than simulation, simulation allows us to take a more detailed look at

the network fabric, as well as examine larger systems with newer topology designs.

Zahn et al. used OMNET++ simulations for 64 node runs with an integrated power

model to study the link utilization of networks running the Graph500 benchmark and

NAMD on a 3D torus network [131]. They found that there were significant portions

of idle time that could be exploited for power/energy savings. Unlike the work in

this paper, they studied an integrated NIC/switch network, EXTOLL (Tourmalet),

with different workloads and at smaller scale.
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3.1.3 Simulated Environment

Network Topology

For this work, all simulations evaluate networks of 110,592 nodes. Systems of this

size are believed to be similar to that of future Exascale systems. In our experiments,

we vary our simulations by motifs, bandwidth and the number of global links. Our

dragonfly is comprised of 24 nodes per router, 48 routers per group and 96 fully

connected groups. Throughout our experiments, the number of inter-group (global)

links varies, but every group has at least 1 and up to 12 connections to each other

group in the network. In each experiment this will be denoted in the legends by a

number between 1 and 12 followed by glbl.

Router and NIC Parameters

We simulate links with a bandwidth varying between 12.5 and 25 GBps. These

bandwidths are conservative in terms of what can be expected in the Exascale

timeframe, but their conservative nature means that they should be available circa

2018 and non-prohibitive in cost by the 2020 timeframe, making them a reasonable,

if conservative target. The full parameters of the SST router and NIC components

are provided in the following table:
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Param. Name Value

module merlin.reorderlinkcontrol

flitSize 32B

port input lat 150ns

port output lat 150ns

link lat 150ns

packetSize 2KB

link bw 12.5 or 25 GBps

buffer size 28 KB

rxMatchDelay ns 100ns

txDelay ns 50ns

hostReadDelay ns 200ns

nic2host lat 1ns

Processor Parameters

Each node in our system contains 5TF/s of processing power. This represents the

minimum capabilities expected in the near future. Given that we simulate 110,592

nodes, 5TF/s only represents a half an EF/s computational power. To achieve true

Exascale performance we would need to roughly double the FLOPs per node. While

this does not present a technical challenge to the simulator, 5TF/s allows us to more

closely match the expectations of next generation systems.

From the viewpoint of our simulator, the difference in processing power manifests itself

in the speed at which computation portions of motifs are completed. We assume that

offload NICs are in use, so that CPU capabilities do not influence the speed at which

network processing is done. Additionally, offload NICs allow for further simplifying

assumptions, such as reduced impact of Network Induced Memory Contention [42].
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Evaluated Motifs

The selection of motifs covers a broad set of important microbenchmarks and com-

munication kernels in HPC. The wall time to simulate a motif varies depending on

many factors including the amount of simulated congestion, adaptive routing, number

of simulated events and distribution of SST components across physical nodes. For

simple motifs (like bcast), wall time to run a simulation may be just a single minute

on a small number of nodes. Whereas, more complicated motifs increase the wall time

to run a simulation and must be split across a larger number of nodes due limited

memory. For example, for our parameters SST simulates bcast in a single minute,

while random and sweep3d may take an hour to simulate on 32 16-core nodes.

AllPingPong The AllPingPong motif is a simple workload that divides the network

into two logical groups of processes and then creates pairs consisting of one process

from each group. The performance of this motif is dependent on both the bisection

bandwidth and the number of hops (diameter) of the network. The communication

acts in a predictable manner that is easy to reason about. Our experiments perform

1000 iterations of ping-pong, sending messages of 1024 bytes.

Allreduce In Allreduce, each node receives n-1 messages (one for each other process

in the system) and then a reduction operation is performed. Our simulations measure

the impact for a single iteration of AllReduce sending 4 bytes, using 1 ns. of compute

time per reduction operation.

AMR3D This is a motif of a 3D adaptive mesh refinement, based from miniAMR.

To accurately replicate the communication and computational characteristics of the

real workload, the AMR3D motif must be given a block file which details how the

mesh should be refined and defines the communication and computation that will

108



Chapter 3. Balancing Performance and Power of HPC Interconnects

take place. Because blockfiles must be produced on real systems running the real

workload, we were limited to runs of 65,536 nodes which utilize 59% of our simulated

system. Depending on the phase that a block file represents, the communication

requirements may change considerably. We simulate two different block files, one from

a early time in the run which is not particularly intensive and an additional block file

that is from midway through the run. We denote these two different simulations as

amr3d-lite and amr3d-heavy.

Bcast A simple broadcast is performed, such that each node receives a single

message from the root node of the broadcast. We use similar parameters for broadcast

as Allreduce, one iteration, 4 bytes of data, 1 ns. of compute, but with a root

parameter set to rank 0.

FFT3D FFT3D is a discrete conversion of a signal from its original domain, into the

frequency domain with O(N log N) complexity. Fast Fourier Transform is considered

one of the most significant algorithms of all time and has applications throughout

digital signal processing. Our Fast Fourier Transform 3D motif uses block sizes of

1,992 for nx, ny and nz, with 125 FLOPs/element.

Halo3D Halo3D performs a 7-point stencil operation. That means a data transfer

to and from each direction in 3 axis and a central point. Problem sizes in the X,Y

and Z direction are set to 100. Per cell there are 16 variables being computed

Halo3D26 Identical parameters to those used in Halo3D are used In Halo3D26.

However, this motif represents communication between a larger number of neighbors,

each process has 26 other neighbors that they communicate with, where each neighbor

represents an adjacent point (including diagonals) in a three dimensional space.
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Random In the random motif, each node selects one other node on the system to

send a message to randomly at each iteration. Like AllPingPong, Random utilizes

the network resources significantly, but differences in distribution of traffic may

create hotspots on the network. The Random motif sends 1024 Byte messages for 10

iterations with a wait-all synchronization between each iteration. At each iteration

random destinations are recalculated.

Reduce Reduce is similar to Broadcast, except the flow of data is reversed (each

node aggregates and reduces data rather than propagating it). Our reduce parameters

are identical to broadcast for iterations, message size and compute time.

Sweep3D Sweep3D models a wavefront propagating through a mesh, where each

CPU represents a 2D column in a 3D mesh. We use values of 384 and 288 for values

of pex and pey, respectively. The problem size in the X, Y and Z dimension is set to

100. Per cell there are 6 variables computed and the KBA (Nz-K blocking factor) is

set to 10.

3.1.4 Methodology and results

In this section we review the results of the motif simulations, examining the network

characteristics of each workload and provide observations to assist in the design of

next generation networks. We begin with an assessment of motif runtimes as we taper

the number of global links in the network. This is followed by an analysis of how

adjusting the bandwidth of the entire network (from 25GBps per link to 12GBps per
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link) impacts motif performance. Finally, we look at the potential for power savings

in the network.

al
lp

in
gp

on
g

al
lre

du
ce

am
r3

D-li
te

am
r3

D-h
ea

vy

bc
as

t
fft

3d

ha
lo
3d

ha
lo
3d

26

ra
nd

om

re
du

ce

sw
ee

p3
d

0

1

2

3

4

5

6

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

8.06

1.
06

1.
01 1.

18

1.
04

1.
89

1.
21 1.

43

1.
05 1.

10
1.

03

16.10

1.
16

1.
04 1.

15
1.

12

3.
08

1.
96

2.
79

1.
16 1.

26

1.
11

Motif Runtimes Normalized to 25GBps 12 Global (full bisection) Network

12GBps-1-glbl

12GBps-3-glbl

12GBps-6-glbl

12GBps-12-glbl

25GBps-1-glbl

25GBps-3-glbl

25GBps-6-glbl

25GBps-12-glbl

Figure 3.6: Normalized runtimes for a variety of motifs on different simulated networks.
The baseline for the normalization is each run on a 25GBps per link network with half
bisection bandwidth (12 global links connecting each group to each other group). The
difference between simulations are the number of (1) the number of global links and
(2) the bandwidth of all links. All runs other than AMR3D run on the full network
(AMR3D runs utilize 59% of the nodes for reasons explained in §3.1.3).

Performance impact of reducing the number of global links

Reducing the number of global links impacts application performance by reducing

available bisection bandwidth. In our simulations we begin with a network that has

half bisection bandwidth. This means that each group in the dragonfly topology has

12 connections to each other group. Given 96 groups, each group has 12 × 95 =

1,140 global ports. This turns into 54,720 total global links. A network with this

many global links would likely be prohibitively expensive. Additionally, the expense

of procuring the extra links is only a part of the total cost which includes powering
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Figure 3.7: Ternary plots of ≈400k ports for allpingpong motif on a 25GBps per link
network with 1, 3, 6 and 12 global links. Allpingpong was one of the most sensitive
motifs to a reduction in global links. As global links are decreased, remaining global
ports increase to near 100% active.

the link and purchasing higher radix switches.
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Figure 3.8: Ternary plots of ≈400k ports for FFT3D motif on a 25GBps network with
1, 3, 6 and 12 global links. Similar to allpingpong, global links become increasingly
active as we reduce their number. When the network reaches 1 global link per group,
we see congestion (stalled cycles) on the group links.

Research Question In this section we ask, how many global links or what per-

centage of half bisection bandwidth does a Exascale network require for reasonable

performance?
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Figure 3.9: Ternary plots of ≈400k ports for Halo3D motif on a 25GBps network
with 1, 3, 6 and 12 global links. Unlike the FFT3D motif, even with half bisection
bandwidth the Halo3D motif sees congestion. Group ports spend a greater percentage
of time stalled as we decrease global links.

Methodology Our experiments evaluate the performance of the motif and the

network as we move towards quarter 1/8th and 1/24th bisection bandwidth (27,360,

13,680 and 4560 total global links, respectively). Throughout this work we use the
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Figure 3.10: Ternary plots of ≈400k ports for Halo3D26 motif on a 25GBps network
with 1, 3, 6 and 12 global links. Compared to Halo3D, Halo3D26 produces a greater
volume of traffic to a larger number of neighbors. This increased traffic results in a
greater amount of time stalled for global and group links.

terminology 12-global to refer to a half bisection bandwidth network for our simulated

topology. Similarly, a 6-global, 3-global and 1-global refer to a quarter, 1/8th and

1/24th bisection bandwidth network.
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Outcomes Fig 3.6 shows the impact of reducing the number of global links on the

runtime of evaluated motifs. Looking at the results for 25GBps networks, as we reduce

global links to 1/24th of the half bisection bandwidth, we see unacceptable increases

to the runtime for allpingpong, AMR3D, FFT3D, Halo3D and Halo3D26 (806, 118,

189, 121 and 143%, respectively). The only motifs that see mild increases to runtime

are the motifs that utilize the network the least, such as Sweep3D, broadcast, and

AMR3D-lite. While 1/24th bisection bandwidth is clearly a poor choice, the majority

of motifs see minimal degradation for topologies of 3 global links per group router.

Specifically, all motifs other than allpingpong see a more modest (0-11%) increase to

runtime for 75% reduction in global links. Allpingpong, which is essentially a measure

of bisection bandwidth and network diameter, shows a more direct penalty to runtime

as we decrease global links. In the ternary plot for AllPingPong (Fig 3.7), we see

increased activity for global links, which continues to grow as we remove available

global links, becoming fully active for the 1-global network. Similar increases in global

link activity is seen in Fig 3.8-Fig 3.10. However in these figures, group links see a

corresponding increase in stalls as the traffic on each global link increases.

Another observation is that the Halo3D and Halo3D26 motifs experience congestion

and stalled cycles even with a 12-global network. Because these two motifs are stalled

to begin with, they experience less of a relative increase to runtime than motifs like

FFT3D which have relatively few stalls until placed on a 1-global network (Fig 3.8).

One of the reasons for the stalls observed in Halo3D26 is that the workload does not

map to a dragonfly network as well as traditional mesh-based networks. In future

work, more refined mapping strategies may be able to improve this.

For brevity we limit the number of ternary plots we present to those that are most

interesting, but we should note that across our results we observed that local links

were generally clustered together more tightly and more idle than global or group links.

Additionally, the reader may notice that within Fig 3.6, that Halo3D26 25GBps-6-glbl
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actually sees a performance improvement compared to a 12-global run. We believe

this is likely due to network stalls hitting a critical threshold in the routing algorithm

that enables adaptive routing more readily with this number of links.

Performance impact of reducing total bandwidth (link widths)

One of the common methods proposed for saving power on the network is reducing

the link width, which only partially limits a link rather than completely disabling it.

Research question In this section, we ask what are the performance implications

of reduced link width are on the evaluated motifs?

Methodology To evaluate this, our simulations only reduce link bandwidth and

keep other parameters such as latency identical to those used in the 25GBps simula-

tions.

Outcomes Results in Fig 3.6 suggest that for the less bandwidth intensive motifs,

(such as AllReduce, Random, Reduce and Sweep) we may be able to statically reduce

link bandwidth by 50% for a run and see modest increases to runtimes. This topic

has been explored before with regards to smaller systems [75] using Cray Seastar

interconnects and our results suggest that static reductions in network bandwidth may

continue to provide power saving opportunities with modest runtime costs for a subset

of workloads at Exascale. Another interesting observation comes from comparing the

runtimes and ternary plots of Halo3D26 simulations of 12.5GBps networks (Fig 3.11)

and 25GBps networks (Fig 3.10). Decreasing the total available bandwidth to this

bandwidth sensitive application increases runtime as expected, however given the

volume of stalled cycles in the 25GBps run, we expected Fig 3.6 to show a greater than

2X increase to runtime for a 50% link reduction (25GBps to 12GBps). Examining
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Figure 3.11: Ternary plots of ≈400k switch ports for Halo3D26 motif on a 12.5GBps
network with 1, 3, 6 and 12 global links. Compared to Fig 3.10, the 12GBps run
surprisingly shows a decrease to stalled time and an increase in active time.

Fig 3.11, we see proportion of time spent in stalled cycles decreases as ports spend an

increasing proportion of time active. The reason for this behavior is that the adaptive

routing threshold in Merlin is determined by the number of packets waiting in the
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outbound queue. As we decrease the bandwidth to 12.5GBps switches begin to buffer

larger numbers of packets, which leads to more frequent enabling of Valiant routing,

which reduces stalls. With the reduction in stalls on the group and global ports, the

figures show that local ports transition to an almost entirely active or idle state.

Potential for power and energy savings

One of the goals of this paper was to examine potential power and energy savings on

large scale dragonfly networks for relevant workloads. In this section we have several

research questions, namely

1. What are the energy savings of a power proportional network?

2. What are the power savings from tapering global links?

3. What are the power savings from a static reduction to link width?

4. Is there potential for dynamic power saving solutions?

Methodology Since we measure the per-port idle time for each workload, we can

derive upper bounds on energy savings if a network was power proportional. A

network is power proportional if the network only consumes power corresponding

to the amount of data in transmission. While modern networks are not power

proportional, a large body of work has proposed dynamically and statically altering

the width and frequency of network links to reduce the amount of wasted energy. The

established work varies from shutting down the link completely [69, 122] to approaches

that only partially reduce link frequency or width [75, 110, 24]. The success of each

approach is dependent on a number of parameters, but dynamic solutions which

adaptively alter links must ensure they can disable/enable a link within a window of

idle time. Idle time windows smaller than the disable/enable time must be forfeit as

opportunities for power savings.
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To explore these questions, we require an estimate of how much power links utilize at

different widths and frequencies. Many of the existing power estimates in this area

are either theoretical or pertain to architectures that are more than a decade old.

While we are not suggesting these estimates are invalid, we believe it is worthwhile

to take empirical measurements of network power and include our findings in this

section.

Beginning with optical global links, 3W of power is the commonly used assumption

for transceiver power [110, 1]. We were unable to perform empirical measurements

on any optical interconnects for this work, so rely on industry datasheets.

Considering electrical interconnects, Soteriou and Peh [112] reported a 0.3W and

0.2W power consumption for IBM Infiniband 12X LPE TX and RX, respectively.

This measurement can be used to determine potential power savings when reducing

the width of an individual link. In our measurements we used WattsUp! power

measurement device to record switch (Mellanox MTX3600) power as we adjust link

widths and frequencies. We used PowerInsight [74] to measure power of Qlogic QDR

Infiniband NICs. When we adjusted the network from a 10Gbps 4X network to a

2.5Gbps 1X network we found savings of 1W per port on the Mellanox switch and

0.57W for the Qlogic NIC. At a reduction from 4X to 2X the NIC saw a reduced savings

of only 0.29W. Each reported power savings is the average of 40 measurements with

a standard deviation of 0.05W and 0.16W for switch port and NIC, respectively. Our

measured power savings are significantly less than the theoretical savings commonly

cited in literature. This is in large part because the Serializer/Deserializers are

not disabled on our measured hardware to reduce power savings. Regardless, these

numbers provide a lower bound of what we would expect to save on future systems

and we can provide an upper bound using models and measurements of previous

literature.

Given these power estimates we can assume that electrical switch ports on our network
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(local and intra group ports) consume 0.65MW of power for a 4X link width or almost

2MW for 12X link width. The optical global links take up an additional 0.33MW of

power for our half bisection topology. The NICs increase this by another 0.76MW

(6.83W/NIC in our measurements). Total estimates for the power consumed

by the fabric would be between 1.73 to 3.02 MW of power2.
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Figure 3.12: This figure shows the normalized runtime (averaged across all the motifs
of a given network simulation) against the total link power costs of the network.
Networks with a good balance of power and performance include the 25GBps 6-global
and 3-global, as well as the 12GBps 12-global networks. For the power estimates we
assume 4X links The per port power costs in this figure are set to 0.5W per RX+TX
for electrical ports and 3W per transceiver for optical links.

2This is not total network power which would be higher due to additional logic in the
switches, switch cooling, etc.
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Outcomes – power proportional network The best case power savings would

be if the network was power proportional, so that we only paid power costs for

active time. Looking across all of the motifs evaluated, Halo3D26 had the largest

amount of active and stalled ports, so we use this motif as a lower bound on the

amount of power that could be saved from a power proportional network. For this

motif, the average percent of idle time for global ports was 84%, which would be a

power savings of 0.28MW just for global ports. If we consider electrical ports, they

average 82% idle which is an additional power savings of 0.71MW to 2.13MW (4X

and 12X, respectively) of additional power savings. This totals 0.99 to 2.41 MW

of potential power savings within the network of our simulated system

for the most communication intensive motif we evaluated. Other motifs like

Sweep3D use less network resources and leave links 99% idle on average for our

simulations.

Outcomes – reducing global links As shown in previous sections, most of the

motifs simulated do not require half bisection bandwidth to achieve satisfactory

performance. By reducing the number of global links we not only save money on

the cost of the initial system procurement, but save on power costs throughout the

lifetime of the system. Specifically for the simulated 25GBps network, we

can reduce global links by 50% and save 164KW of power. A further

reduction to 1/4 or 1/12 global links results in a savings of 246KW and

300KW, respectively. However, as demonstrated, a reduction to 1/12 the number

of global links is impractical for performance reasons. Reducing global links to 25%

of half bisection incurs some performance penalty for Halo3D and FFT3D motifs.

However, this reduction may be practical for 75 GBps HDR networks, projected for

2017.
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Outcomes – reducing link width A static reduction in link width for the entire

network is a transition that could be enacted at low frequency from a power aware

resource manager, dependent on the characteristics of the workload. Given our

simulations of 12.5 GBps networks, we can estimate the amount of power saved by

reducing link widths. Because we keep latency constant throughout our simulations,

this provides an accurate mapping to a reduction in link widths for small messages,

where link width reductions do not significantly impact the performance (latency) of

small sparse message communication. Link width reductions are not being done in

combination with link speed reductions, so the impact of width reductions is mostly

limited to medium/large messages. Here, we present a pessimistic estimate given our

empirical measurements of power reduction and a more optimistic estimates, derived

from the power savings in literature.

First, lets examine a pessimistic model of static power savings. Given 327,168

electrical group and local switch ports, each of which at minimal would save 0.5W

per port for a 2X reduction in link width, our group and local switch ports could

save 164KW. Adding the 110,592 NICs, which minimally might save 0.29W for a

reduction from 4X to 2X link width, we gain an additional 32KW of savings. If

we consider the global links for a network that has quarter-bisection bandwidth,

there are an additional 109,440 ports to derive savings from. If we assume each of

these ports could save 1.5W for a reduction to 2X link width, we gain an additional

164KW of power. In total, our lower bound for power savings, given a static

reduction to link widths totals 0.36MW. This is around 1.8% of the projected

Exascale power budget. If we consider a network built with half bisection

bandwidth and more optimistic models of power savings (mentioned in

§3.1.4) we can increase this estimate to 0.60MW or 3% of an Exascale

power budget.
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Motif % idle % events > 1µs % events > 1ms
FFT3D 99% 66% 0%
Halo3D 89% 44% 0%
Halo3D26 83% 37% 0%
Sweep3D 99% 8% 0.4%

Table 3.1: Median time idle of ports across four motifs, as well as the percentage of
idle events greater than 1µs and 1ms.

Outcomes – dynamic link width The difference between the static 0.60MW

power savings and the 0.99MW power savings possible in a 4X power proportional

network may be reclaimed by dynamic network power strategies such as those proposed

in [69, 110, 112, 122, 24]. However all of these dynamic strategies require idle intervals

of network ports sufficiently long to disable or slowdown some portion of a network

link and bring it back up before it becomes active. While we are not proposing any

new solutions to predict idle and active intervals in this work, we present summary

statistics of the duration and percentage of time that the network is idle for our

simulations, which informs future endeavors in this area. Typically, clock-matching

Phase-Locked Loops are viewed as the bottleneck to increase a link’s width after

it has been decreased (aligning input and output phases takes around 400ns [31]).

For our work, we consider any idle interval greater than 1µs as an opportunity for

dynamic power savings strategies. Additionally, we present the percentage of idle

events whose duration is longer than 1ms.

In Table 3.1 we report the median idle time for 4 workloads as well as the percentage

of idle events greater than 1µs and 1ms in duration. It’s clear that most of the

network ports remain idle for a majority of the runtime. These results suggest that a

large portion of the idle events (8-66%) could be targeted by dynamic power savings

strategies. Only Sweep3D has idle periods longer than 1ms (0.4% of idle events).
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3.2 Chapter Conclusions

With power becoming a primary concern in Exascale system design, we must extract

power savings from every facet of the system. In this chapter we have explored the

tradeoffs between power and performance at Exascale through simulation of dragonfly

networks for a variety of workloads. Our models show that a dragonfly network

of 100,000 nodes would consume between 1.73 to 3MW of power for a 4X or 12X

network, respectively. We have found that significant power savings can be realized

by scaling back links during idle periods, such that 2-12% of the total system power

budget may be reclaimed.

We assessed how link width as well as global tapering impacts motif performance. As

an upper bound, a power proportional network would achieve power savings of 82%

of the total network power costs for the most communication intensive workloads.

As a lower bound, we’ve shown with conservative estimates of power, statically

adjusting link-width would save 20% of the network power cost (0.36MW). While

some motifs were sensitive to these reductions, we observed 7 out of 11 motifs

were able to withstand significant reductions available bandwidth with only minor

impact to runtime. In systems where applications are not run across the whole

machine, heterogeneous networks may be a possibility, which merits further study for

organizations that do not run demanding application types at a whole system scale.

In addition, we have shown what configurations of network bandwidths and global

link counts provide the best balance between power costs and execution time for the

workloads studied.

As a final contribution, this chapter has introduced a new method for visualiza-

tion/analysis of hundreds of thousands of network ports. We identified the relation-

ship between stalled, active and idle states, showing how these states can effectively

summarize the utilization of a port. As we conduct further research on HPC networks,
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we believe this technique will provide valuable insights about the effectiveness of

network designs.
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Chapter 4

Monitoring Large-scale Networks

In the previous two chapters, we have explored performance and power of HPC

networks, examining communication from varying levels of the network stack and the

network fabric. In each chapter, we provided the motivation for dynamic solutions

that could adapt to their environment, to achieve the best possible performance and

power. In Chapter 2, two different solutions were given (bandwidth throttling and

core reservation) for NiMC. The first solution (bandwidth throttling) was desirable

when you could keep the RDMA bandwidth below a certain threshold, but as the

volume of injected traffic increased the target node would be better suited by core

reservation. Similarly, in Chapter 3, we saw how a dynamic link-width reduction

could provide additional power savings beyond what a static link width reduction

might. For each of these dynamic solutions, knowing when to make an adjustment

requires knowledge of the environment. This information might be the amount of

RDMA traffic being injected between two nodes, or the percent time a port has been

stalled, active or idle. Collecting and analyzing this information is dependent on

the capabilities of monitoring systems. The monitoring system must gather, store

and disseminate information about components, while avoiding perturbance of the

underlying application. This is a challenge on individual nodes, but for a distributed
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system the difficulty increases at scale.

In this chapter we explore how large-scale network monitoring is currently done

in practice and how it might be improved, to become more scalable and respon-

sive through in-network push-based solutions(Section 4.1). By necessity, scalable

monitoring and data collection implies a hierarchical or tree-based structure. To

facilitate efficient design of these hierarchies, we extend a canonical model for parallel

computation, improving its accuracy when modeling large-scale data aggregation

(Section 4.2). Our model allows us to understand the scope and limitations of data

collection in HPC networks. This knowledge is crucial for designing effective and

efficient dynamic solutions that future systems demand.

4.1 In-network, Push-based Monitoring

Traditionally, computer and computational science fields have been dominated by

computation-intensive problems. In recent years, we have seen a dramatic rise in

data-intensive problems, involving the transmission and analysis of massive volumes

of data from large networks of sensors or other acquisition devices, simulations or

social networks. In addition to new generations of algorithms and data management

technologies, the efficient extraction, filtration, mining and knowledge discovery from

these data require scalable approaches for network traffic engineering and quality of

service (QoS).

Effective traffic engineering and QoS services rely on capabilities that enable localized

as well as more holistic profiles of network interactions and performance. This means

that the network (both its endpoints and intermediate points) must be instrumented

with monitoring capabilities. Current network monitoring typically employs the

Simple Network Management Protocol (SNMP). A major shortcoming of SNMP is

that it is not scalable for retrieving large collections of data. Wu and Marshall show
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that SNMP does not provide sufficient mechanisms to achieve payload efficiency when

sending a stream of data from even small routing tables [45]. This inefficiency is due

largely to extraneous protocol data and SNMP’s pull-based approach.

To continue to be feasible and effective, network monitoring techniques must evolve to

become more responsive and less intrusive. We propose a new distributed, push-based

approach to network resource monitoring that promises to be more scalable, efficient

and responsive than the traditional SNMP-based approach. Network switches have

grown beyond mere ASICs into full machines that run unmodified Linux kernels

with more standard interfaces and capabilities. We leverage these capabilities for on-

switch or in-network information collection, dissemination, filtration, aggregation and

analysis. Our push-based approach reduces the feedback loop of network diagnostics

and enables network-aware applications, middle-ware and resource managers to have

access to the freshest available data.

In this part of the dissertation, we detail our motivations, approach and preliminary

experiences with this new approach. Our prototype framework utilizes the OpenTSDB

framework [96]; in this environment, we implemented two basic data collection agents

to demonstrate the benefits of in-network, push-based network monitoring. Our

preliminary results demonstrate performance benefits and show the feasibility of

extending on-switch monitoring to production systems.

4.1.1 Background and related work

SNMP in data center networks

Traditionally, SNMP has been used for collecting information about network devices

and protocols. SNMP data collection can be divided into two approaches: a pull-

based approach, where managers query SNMP agents for system information and a

push-based approach, where SNMP traps are triggered, leading to an asynchronous
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communication from the agent to manager. Both of these methods rely on an

universally defined data structure called the Management Information Base (MIB).

While the MIB guarantees a universal view of network devices and protocols, its

usage often leads to unnecessary overhead.

SNMP traps are a feature of the protocol meant to communicate asynchronously

from the SNMP agent to manager. Traps are classified into 6 generic types: cold-

Start, warmStart, linkDown, linkUp, authenticationFailure, egpNeighborLoss, and

enterpriseSpecific. Usage of SNMP traps have traditionally been focused on provid-

ing coarse grained information about device status. Though custom traps can be

developed within the enterpriseSpecific domain, SNMP trap still suffer much of the

same structural overhead since both managers and agents must parse the MIB on

message transmissions and receipts.

One of the major operational issues with SNMP in a large corporation, for example

Yahoo, is that polling SNMP on network devices could result in very high CPU

utilization for the device. This high CPU utilization may delay or even halt important

information processing, such as route re-calculation. By using a push model, we do

not have to restrict ourselves to SNMP polling once every x minutes. Instead, we can

have the device report data on-demand as data changes such that it does not impede

other more important jobs.

One other issue with SNMP is that certain components of the protocol are not very

efficient. For example, a router normally stores its route table in a hashed format to

conduct fast subnet-to-route lookups. However, SNMP responses for the route are

required to be returned in lexicographical order per RFC 1213. Therefore, for each

SNMP request the router receives, the hash table must be sorted lexicographically

before a SNMP response (protocol data unit) can be built [17]. The larger the route

table, the more CPU intensive the sort. On the other hand, by using a push model,

we are more flexible and do not have to make the expensive and unnecessary sort
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before reporting the route data.

Real world usage of SNMP typically suffers from an additional deficiency in terms of

reliability and robustness to failure of management nodes. All system information is

delivered from the SNMP agents to the SNMP manager. If a manager node fails, the

agents cease to report the information needed for monitoring. Though distributed

approaches to management have been explored [115], in practice SNMP connections

are formed by agents reporting to a single management node [108].

One alternative to traditional collection is to perform push-based monitoring from

the switch into existing, scalable monitoring solutions. Modern switches have become

more powerful, hosting multi-core CPUs, in addition to several gigabytes of memory

and optional solid state storage. These switches can now be leveraged to enable

intelligent reporting of metrics without the burden of traditional pull based solution

and SNMP overhead. We believe that by utilizing on-switch monitoring network-aware

applications, middle-ware and data managers will have access to the freshest available

data. This is possible due to lower overheads in processing, a shorter feedback loop

and intelligent collection.

OpenSM and HPC Networks

Rather than SNMP, high performance networks typically perform monitoring through

an actor called the subnet manager or SM. The requirements of the subnet manager

are established in the Infiniband specification and commonly implemented as a part

of the Open Fabrics Enterprise Distribution (OFED). In this distribution, the subnet

manager is referred to as OpenSM. OpenSM is in charge of establishing a subnet

and managing/monitoring the connections within. Each host device participating

in a subnet must run a daemon or agent process. Any request to adjust or query

a portion of the subnet must be made through the OpenSM via specific subnet

management packets (SMPs). These request are routed to the OpenSM from the
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host, then OpenSM makes a query to a port. The queries may take a variety of forms

such as the number of bits transmitted by a port or the active connection speed.

In many ways this is not very different than the system that SNMP uses – both

being centralized pull-based approaches. While this section focuses on SNMP, the

shortcomings of network monitoring apply to both data center and HPC networks.

4.1.2 Motivation

In the era of large clustered systems, there has been an significant demand in inter-

node communication bandwidth within a data center. Many applications in large

Internet companies and national laboratories consist of thousands of distributed

nodes. Efficient communication among these nodes is critical to the performance of

these applications. For example, Yahoo has been running one of the largest Hadoop

clusters [130] consisting of more than 10,000 nodes. Each of these nodes must perform

significant data shuffling with other nodes in the same cluster to transport the output

of the map phase before the reduce phase can be performed.

To control costs while enhancing performance, new designs for next generation

networks [4, 91, 40, 46, 47] have emerged in recent years. The newly proposed

networks leverage a large number of commodity Ethernet switches and provide a very

low over-subscription rate for all connected hosts. In contrast to a single high radix

switch, several low-radix switches decrease the procurement cost, but increase the

complexity of a system.

This additional complexity poses significant challenges, particularly for network

monitoring, managing and troubleshooting. The number of switches and the number

of links among them are significantly larger than in the comparative traditional

networks. And if any component of a cluster fails, the configurations on the rest of

the devices may need adjustments to minimize the failure’s impact and re-balance the
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traffic. This needs to be done in a short time frame, ideally, by an automated system.

To meet these challenges, we need a scalable, fast and efficient monitoring system.

4.1.3 Prototype framework

The OpenTSDB monitoring framework

Time Series Daemon(s)

User/Analysis

(Running Collection Agent)
Network Device

Figure 4.1: A diagram representing our usage of the OpenTSDB monitoring frame-
work.

We chose to utilize the Open Time Series Database (OpenTSDB) as a scalable

monitoring back-end [96]. OpenTSDB is a system built to store, serve and index

system metrics on top of HBase [53] and is designed to handle billions of metrics per

day. We selected OpenTSDB as our monitoring solution for several reasons. First, it

is free and open source. Secondly, by utilizing a distributed data store such as HBase,

it is capable of higher throughput than some traditional monitoring systems. Lastly

was its usage of tags to easily organize metrics. OpenTSDB can be organized by its

three key components – Time Series Daemons (TSD’s), on device collectors, and a

distributed data store as seen in Figure 4.1.

TSD’s are responsible for receiving metrics from device collectors and pushing those
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metrics into the distributed data store. The daemons also query the data store on

behalf of the user and present the data via a web or command-line interface. In the

event that a set of TSD’s cannot adequately service a set of collectors the number of

daemons can be increased to provide further scalability of data collection.

The collectors are scripts running on the device being monitored (in our case, virtual

switches as we describe later). Collectors are responsible for retrieving and reporting

time series to the TSD’s, where a time series is a combination of four elements: a

metric name, Unix time-stamp, a floating point or 64-bit integer value and a set

of tags. The tags provide a mechanism for filtering and classifying the data in a

meaningful way. For example, a metric for inOctets might additionally have the

tags hostname and interface. With these tags the TSD’s could present the time

series as either sums of input traffic across all hosts and interfaces or a specific

interface on a single host. OpenTSDB’s related tcollector package [97] provides added

functionality to all the user written collectors, such as on-device deduplication, where

devices delay reporting metrics that have not changed since their last posted update.

Preprocessing like this benefits the monitoring system by saving bandwidth and

extraneous computation by the management system. In future work we wish to

explore other types of preprocessing, as we believe on-switch preprocessing may be a

useful avenue for finding savings in network bandwidth and data management.

Lastly, the distributed data store, HBase, is what provides the underlying scalability

of the system. By utilizing Hadoop and HDFS [48, 49], HBase supports querying and

writing tables with billions of rows and millions of columns.

For the purposes of our prototype cluster all of the collectors, virtual switches, TSD’s

and distributed data store were hosted on a single physical machine. It should be

made clear that this will not be the case when the system is put to real use.
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Interface and routing collectors

We implemented two prototype collectors for our initial testing on our virtual cluster,

eos interface and eos routing, which record interface and BGP metrics, respectively.

Both collectors were written to take advantage of Arista’s EOS operating system.

The eos interface script collects interface statistics and counters by utilizing the

information stored in Arista’s Sysdb. At the time, the BGP routing statistics were

not available via Sysdb, so we pulled them using the show commands from the

command line interface (CLI). We deployed each collector as extensions onto the

Arista switches by packaging each script in the required SWIX format and copying

them into the switch’s flash storage. Once a script is running as an EOS extension,

there are mechanisms to daemonize or immortalize the extension so it is restarted in

the event of failure. To ensure that the extensions persist between switch restarts

they are added to the boot-extensions file. Our interface collectors ran every 15

seconds on each switch, while the routing collector ran every 60 seconds. Each metric

uses the OpenTSDB tag system to provide custom filtering. This facilitates flexible

examination of the system metrics, providing both macro and micro views of the

system metrics. A complete list of the statistics and counters collected with their

tags can be seen in Table 4.1.

Virtualized environment

To experiment with our monitoring solution, we built a virtualized cluster comprised

of virtual switches and connected them with Ethernet bridges. Arista provides a

slightly modified switch operating system (vEOS) image to their customers. This

vEOS image can be run on a number of common hypervisors such as QEMU-KVM,

VMware Player, VirtualBox and etc. To create a cluster, we use libvirt to instantiate

24 such virtual switches with Arista’s vEOS image. As depicted in Figure 4.2, these

switches are divided into two virtual chassis (VCs) and a group of 8 Top of Rack
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Name Tags

intf.outBroadcastPkts host, interface

intf.outUcastPkts host, interface

intf.inMulticastPkts host, interface

intf.outErrors host, interface

intf.inBroadcastPkts host, interface

intf.outOctets host, interface

intf.outDiscards host, interface

intf.inOctets host, interface

intf.inUcastPkts host, interface

intf.inErrors host, interface

intf.inDiscards host, interface

intf.outMulticastPkts host, interface

intf.inBitsRate host, interface

intf.outBitsRate host, interface

intf.outPktsRate host, interface

intf.statsUpdateTime host, interface

intf.inPktsRate host, interface

bgp.msgrecv host, local AS, neighbor, neighbor AS

bgp.msgsent host, local AS, neighbor, neighbor AS

bgp.up down host, local AS, neighbor, neighbor AS

bgp.state host, local AS, neighbor, neighbor AS

bgp.pfxrcd host, local AS, neighbor, neighbor AS

bgp.summary.num nodes host, local AS, neighbor, neighbor AS

bgp.summary.num routes host, local AS, neighbor, neighbor AS

Table 4.1: Table showing the different metrics collected by the interface and routing
collectors. The tags represent different methods of filtering data with respect to each
metric.

switches (TORs). Each VC consists of 4 spine switches and 4 leaf switches. Each of

these switches has 16 in-band data ports and 1 management port. To connect these

virtual switches, Ethernet bridges are created within the host machine between any

two ports where we would run a cable in real world.

Once the virtual switches and Ethernet bridges are instantiated, we can configure

the virtual cluster and run routing protocols the same way as if we configure clusters

with real switches. In this particular virtual cluster, we assign IP addresses on each
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Figure 4.2: A visual representation of the 24 switches that make up the virtual cluster,
divided into leaf, spine and top of the rack (TOR) nodes.

of the interfaces on the virtual switches and run stock BGP protocol among them.

The virtualized environment provides a useful testbed to prototype on-device collection

without provisioning the actual hardware. To set this up on dedicated hardware,

we would require 24 switches and hundreds of network cables. With this virtualized

cluster we can conveniently adjust the link quality or emulate real world problems.

Some of this emulation would be more difficult on physical switches where traffic is

passed through the ASIC directly.

4.1.4 Results

Even though the CPU performance of virtualized switches does not necessarily reflect

the expected performance of physical switches, we can inform the reader that for our

cluster the CPU utilization peaked to approximately 15% on the virtual switches

and these peaks lasted for under a second as collectors gathered necessary metrics.
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Figure 4.3: This chart represents an observed data flow from TOR1-1 to TOR8-8.
This chart captures the transition from using the intermediate switch SPN1-2 to
SPN3-2. The y-axis is the inOctets rate per 15 seconds.

On dedicated switches we expect the performance to be better, since our 16 core

machine was hosting 24 virtual switches, the TSD and the distributed data store.

The performance overhead on dedicated machines will be explored in detail in future

work.

From the front-end web interface, we saw responses at a varying resolution of a

milliseconds upwards to around two seconds. This was highly dependent on the

amount of data points queried. This response should be greatly improved when the

data store becomes distributed across multiple physical nodes. Furthermore, the

TSD and collectors would have independent computational resources. In our virtual

cluster, the HBase nodes were hosted on the same physical node as the TSD’s and

collectors. In a real system this will be distributed to provide better performance.

Despite the over-subscription of virtual machines to cores we were able to retrieve
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metrics at a scale and frequency not practical with current SNMP based systems.

Extensive comparisons of scalability and frequency will be explored in future work.

To evaluate our prototype network, we performed a series of tests where traffic flow

was generated through the network via an iperf server and client. During this time

approximately 2000 metrics were collected every 15 seconds, corresponding to the

combination of metrics and interfaces on each switch. We saw no trouble in keeping

up with this rate, despite the over subscription of virtual machines to cores. Using

the OpenTSDB monitoring solution in combination with on-switch collectors we

observed a range of behaviors. In Figure 4.3 we were able to see the shift in flow

as traffic pivoted from spn1-2-vma to spn3-2-vma. We present this change in flow

in Figures 4.4 and 4.5. We believe this was likely due to the fact that the virtual

switches lack the hardware to consistently map communication flows that an ASIC

would normally provide. In additional testing we used traffic controller (tc) combined

with netem to emulate packet loss on specified interfaces throughout the network.

We were able to observe how this leads to a breakdown of the BGP topology, leading

to an eventual loss of application traffic and we were able to observe this in real-time.

If we had been using traditional SNMP approaches to monitor the network, our view

of network health would only be updated every 5 minutes. With an SNMP based

approach, it is possible that we might have missed this event entirely. We believe

that having this rapid access to network data can facilitate better network QOS in

addition to providing better support to network-aware applications. In future work

we want determine what kind of analysis an on-switch monitoring solution is capable

of and explore what kind of failures this system can detect that previous solutions

could not.
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Figure 4.4: This graphic demonstrates the original flow observed from TOR1-1 to
TOR8-8.

Figure 4.5: This graphic demonstrates the adjusted flow from TOR1-1 to TOR8-8.

4.1.5 Outcomes of In-network Push-based Monitoring

As large systems continue to grow, network-aware applications middle-ware and data

management will be crucial to efficient system usage. We’ve shown that current

strategies for network monitoring fall short in terms of scalability and performance.

Furthermore, to facilitate dynamic and responsive networks, we’ve demonstrated

several criteria necessary of future monitoring solutions:

• In-network collection to achieve better performance over the network, devices

and monitoring managers.

• Monitoring solution situated on top of a scalable, distributed data store to

support an era of large systems and big data.

140



Chapter 4. Monitoring Large-scale Networks

• In situ processing, (e.g. data deduplication) of the data to further distribute

the workload and save resources.

It is our belief that when a monitoring solution meets the above criteria it will provide

five benefits to the user and the application: (1) distributed intelligence, (2) faster

feedback loops, (3) smoothing of performance spikes, (4) decreased network usage and

(5) ease of use by leveraging existing large scale solutions (HBase, HDFS, Hadoop in

our case). As a result, our solution is more scalable and accurate with less overhead

on the device, while being easier to manage.

As we move forward towards larger and more dynamic networks in the future, we

want to explore enhancements to in-situ processing, so that the switch further reduces

extraneous reporting of data and can reduce the burden of processing for host CPUs.

With this monitoring system in place, we can explore the real-time analysis of network

QOS – examining the causes of congestion, downed links and other failures.

Furthermore, features such as adaptive routing, which are becoming more common

on next generation networks, perform better if they can make informed decisions

about the environment they operate in. We need to evaluate the cost of monitoring

overhead on physical switches and explore how we can smooth the performance spikes

associated with collection. Understanding the performance cost and developing a

model of data aggregation is the subject of the next portion of this dissertation.

4.2 Modeling Tree-based Data Aggregation

To provide scalability, monitoring and analysis frameworks must be built hierarchically.

Internally, hierarchical collection and reduction operations can be thought of as trees,

aggregating and transforming data as it progresses from leaf nodes to a root node.

We refer to such networks as tree aggregation networks (TAN). For our purposes,
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a TAN is a reduction tree such that a set of leaf nodes are connected to a root

node directly or indirectly via a set of optional internal nodes, where these internal

nodes perform partial reductions. Pertaining to the monitoring frameworks of the

previous section, TANs facilitate compression/deduplication of raw data, in-situ

analysis, and the scalable generation of summary statistics. These reductions are

common throughout large scale distributed systems. Frameworks like MapReduce [23],

MPI [87] and MRNet [106] all facilitate hierarchical data reduction. As the demands

for these services grows with system size, several questions arise including “How can

we precisely model the TAN performance?” and “How can we design topologies that

promote efficient operations for a given set of leaf nodes?”

The primary goal of this portion of the dissertation is to introduce a new performance

model for tree aggregation networks. In addition, this work makes several contributions

by providing:

• A novel extension of LogP for non-uniform tree aggregation networks with or

without contention

• A framework (MRNetBench) for deriving model parameters for MRNet

• A case study for a TAN performance model on a real system

When developing a performance model it is important to find a balance between the

accuracy of the model and its ease of use. Our approach for a TAN performance

model is one that focuses on four characteristics:

• Accuracy - Our model closely matches the performance seen on real machines.

• Generality - The parameters of our model are representative of the important

underlying hardware characteristics, yet are simple enough that the model

translates across multiple architectures and applications.

• Compositional - Our model is compositional in nature. Developed from the
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ground up, its constituent parts can be dissected at any level.

Some of the characteristics above may conflict (such as Accuracy and Generality), but

a well developed model will find the right compromise between these characteristics.

In many ways, the canonical LogP[20] model strives for similar goals and we use it as

the foundation of our TAN model, such that latency, overhead, gap and the number

of processing units all are incorporated into this work. However, our work expands

on the basic LogP parameters, adding height and fanout as additional parameters.

Unlike the LogP model, we recognize the significance of contention that is inherent

to reduction operations and account for this when calculating overhead.

We begin by providing an overview of background and related work. In Section 4.2.2,

we describe the model in detail and discuss the significance each parameter. After-

wards, we describe how the parameter values are derived in Section 4.2.3. This is

followed by Section 4.2.4, in which we present a comparison of the accuracy of our

model and the LogP model. Finally, we provide a summary of our contributions to

TAN modeling in Section 4.2.5 .

4.2.1 Background and Related Work

In order to simplify, and summarize complex computational systems, we rely on models.

Historically, both the PRAM [36] and BSP [129] models of parallel computation were

popular. However for the last twenty years the LogP [20] model has been the de facto

standard. In 1993, LogP was introduced as a framework for building accurate models

of parallel computations. The work focused on the most significant parameters that

could be used to deliver a model that could reveal important bottlenecks without

making the analysis of interesting problems intractable. Four parameters were

introduced in the original model: latency, overhead, gap and processing units. Latency

describes the time it takes the first bit to move across the wire from one node to
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another. Overhead is the time it takes the NIC and CPU to process the packet,

while Gap is the reciprocal of bandwidth – essentially, the amount of time it takes

for all the data to move onto the wire. P is simply the number of processing units.

These four simple parameters provide a concise yet powerful representation of network

performance. As described in [20]:

[A] parallel model [should] be realistic, yet simple enough to be used

to design algorithms that work predictably well over a wide range of

machines. The model should allow the algorithm designer to address

key performance issues without specifying unnecessary detail. It should

allow machine designers to give a concise performance summary of their

machine against which algorithms can be evaluated.

As an example, the creators of LogP demonstrated how the model could facilitate the

design of optimal broadcast trees. This model has been leveraged many times since,

including by Goehner et al.[38] to develop an algorithm for optimal process launching

in HPC resource management systems. Since its introduction, LogP has become the

foundation for many other models of parallel computation. Several notable extensions

of the LogP model have been introduced throughout later years. In the LogGP

model [5], Alexandrov et al. introduce an additional parameter (G) which better

models long messages. This has been followed by other works [76, 66] that examine

how as message size changes, communication protocols may switch to create different

performance classifications.

The LoGPC [86] and LoPC [37] extensions both incorporate the effects of contention,

though LoGPC focuses on network contention, while LoPC incorporates contention

in the message processing facilities. The LoPC model includes the effect of message

processing overhead, however it assumes an underlying queue handles the messages.

With this assumption, Little’s Result, Bard’s Approximation and Mean Value Analysis

are used to approximate queue length and time to handle a message. Our model
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differs from LoPC by making no assumption about the underlying protocols or NIC

transfer method.

More recently Hoefler, et al. [61] introduced the LogGOP model which has two im-

portant distinctions from the previous models. The first is that the model keeps CPU

overhead and network gap separate, to model potential communication/computation

overlap. The other extension of LogGOP is that overhead is measured as a per-byte

cost rather than a constant cost.

The LogP model and its derivatives are used extensively in HPC modeling and

simulation including the work done as a part of this dissertation. The Merlin network

simulator in Chapter 3 implicitly relies on these models of performance. In this chapter,

we introduce an extension of the LogP model that targets tree-based aggregation

networks (TAN). These aggregation networks are representative of the data-reduction

operations typical of large distributed systems, such as monitoring power and system

statistics and performing reductions of application data.

4.2.2 Model

Architectural Assumptions

Our TAN model represents systems which have a one to one mapping of physical nodes

to tree processes. While a single TAN process per node is generally conservative of

current architectures, extending our model to multi-core/multi-process architectures

requires collecting model parameters in two groups, one for inter-node modeling and

one for intra-node modeling. Other than this adjustment, the model would remain

mostly unchanged. We reserve such an extension for future work. Another constraint

of our TANs is that a process does not fulfill multiple roles within the topology. For

example, a back-end or leaf process may not transition to a front-end or root process

after pushing its data into the network. While there exist models and workload
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optimizations for this type of network [77], it is beyond the scope of our current

work. Furthermore, there are scenarios, such as a pipelined workflows, where this

assumption of static roles makes the most sense. A final assumption of our model is

that the architecture is uniform across the nodes of a system. For example, if one node

in the system has a message co-processor, all the nodes in the system have a message

co-processor. This enables our model to derive the performance characteristics for

the entire system by sampling the performance of a subset. In most high performance

systems, this is a reasonable expectation.

Despite these constraints, our model relaxes several assumptions of previous models.

We do not make any assumption about the topology of the TAN, so that our

model handles both simple and complex trees including those of non-uniform fan-

out. Additionally our model is able to capture contention in message processing

overhead as well as in the interconnect. Another feature of the TAN model is that

it does not make any assumptions of the underlying NIC transfer method, whereas

several previous models are forced to assume an interrupt driven, RDMA or polling

mechanism.

Model Parameters

These four parameters are included in most LogP based performance models, though

they have been slightly modified to better represent TANs and the effects of contention.

L: latency is measured as an median of the time or cycles taken to send a message

from a source processor to target processor.

o(x): message processing overhead is a period of time which a processor is working

to transmit or receive a message with respect to the fanout of that node (x). In

the absence of a dedicated communication processor, work cannot be done by

the processor during this transmission or receipt.
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g: the gap is defined as the minimum interval between sending or receiving consecutive

messages by a processor. Gap is the reciprocal of bandwidth, such that g =

1/bandwidth.

P : is defined in our work as the number of processes. This is not an explicit parameter

of our model but is incorporated by taking the height and fanout of the tree

into account.

In the original LogP paper [20], latency is defined as the upper bound on latency, or

delay, incurred in communicating a message containing a word or (or small number

of words) from its source module to its target module. We differ from LogP by

utilizing the average rather than an absolute upper bound. We found on real world

machines, that the upper bound did not properly represent typical performance.

Real world techniques for measuring latency, are often effected by noise such as

congestion, changes in route, connection establishment protocols, hardware affinity,

or DNS look-ups. While network jitter is visible in our work, we save exploring it in

depth for future work. Particularly with regards to reduction operations, we found

network jitter to be more important at lower fanout and less important at higher

fanout. For the systems evaluated, at low fanout network jitter is responsible for an

error of ± 4 percent. At high fanout, where communication overhead is greater, this

error becomes an order of magnitude less significant.

The authors of LogP state that they expect overhead costs will disappear as archi-

tectures improve. While this has become true of some current architectures [56] and

workloads, in our environment message processing overhead was the largest contrib-

utor to performance costs. Furthermore, we include results in Figure 4.6, showing

that while modern communications methods may have little overhead in the absence

of contention, message processing overhead grows to become the dominating factor

in communication performance as the number of participants increases. Specifically,

Figure 4.6 shows the time it takes to complete N-to-1 communication operations over
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Figure 4.6: We compare the cost of N-to-1 communication operations for varying
packet sizes over Infiniband. It is clear that contention becomes the bottle-neck in
communication costs as the number of participants increase.

Infiniband, for three varying packet size of 1KB, 12KB, and 131KB as we increase

the value of N. Five runs of these experiments were performed using Netgauge [58]

on the Cab cluster (whose technical specifications are outlined below). Because the

latency in an N-to-1 operation occurs in parallel, we can attribute the increase in cost

to message processing overhead contention. This figure shows how performance cost

is minuscule when reduction operation contains a low number of participants, but as

the number of participants grow, message processing overhead becomes a non-trivial

cost.

We have elected to ignore network gap in Section 4.2.3, since overhead is a significantly

larger cost. If a user wishes to distinguish between gap and overhead, this could

be accomplished in a manner similar to previous LogP models. Another difference

between our parameters and that of LogP is that we model overhead as a function of

fanout (x). This enables us to model the effect of contention, whereas the original

LogP model cannot. Similar to LogP, we do not explore how varying message size

affects the performance of our model. If we elected to do so, extending the model

in a manner similar to [5, 76, 66] would be possible. Additionally, by keeping the
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message sizes at 1 KB, we stay well under the maximum throughput of the system.

We leverage the structural properties of TANs by incorporating two additional

parameters to the LogP model:

y: the height is denoted by an implicit variable y, which represents number of hops

needed to traverse the tree from the farthest leaf to the root node.

x: the fanout is denoted by the variable x which is a measure of the number of

children directly linked to a parent node.

Height is implicitly built into our model by its recursive structure. This is discussed

further in in Section 4.2.2. Fanout is explicitly built into the TAN model, denoted as

(x) at each level of the tree. In later sections it will become apparent how we derive

the function o(x).

The TAN Model

The composite model is given as follows:

Ti = L+ o(x+ 1) + g + max(Tchild ),

(i ∈ N, i 6= leaf )

Tleaf = C

(4.1)

In this model Ti is the time to process the wave up to node i ∈ N, i 6= leaf . Tchild

represents the time to process the wave for a child of i. Tleaf represents our base case

in our recursive model, with the parameter C representing constant ”one-time” costs.

These are costs that only occur once for a given tree, independent of height or fanout.

This model is applied recursively to give an accurate estimation of performance.

Pipelining, or steady state throughput simplifies the model in that one-time costs

can be ignored and we can remove the recursive structure from the model above.
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Assuming a sufficiently large number of waves, the height of the tree is amortized

and the model becomes:

T = L+ max(oi(x+ 1)) + g, i ∈ N (4.2)

To determine the time taken to process w waves (for a sufficiently large w), we simply

multiply our model by w. For the scope of this work we evaluate non-pipelined

workflows and include the pipelined model variant for completeness’ sake.

4.2.3 Determining parameter values of the model

To test the performance prediction of the TAN model, we generate model parameter

values for latency, communication overhead, and application overhead on the Cab

cluster at Lawrence Livermore National Labs. We do this through a 3 stage processes

where we first measure latency using Netgauge framework. Second, we model the

performance of our communication framework, the Multicast Reduction Network

(MRNet) [106] , using an application we developed, called MRNetBench. The following

subsections provide an in depth discussion of the methodology and reasoning used

to generate our model parameter values. Throughout the course of this modeling

work, unless stated explicitly, the unit of measurement is seconds. We include all the

parameter values from our experiments in Table 4.2.

The Cab cluster at Lawrence Livermore is a 1,200 node cluster, where each node

consists of a 16-core Intel Xeon E5-2670. Each node has 32 GB of memory and runs

the TOSS 2.0 operating system. The entire cluster is connected via a InfiniBand

QDR (QLogic) interconnect. The scale of our experiments is limited to 256 nodes, the

maximum allocation allowed without special reservation or administrative processes for

releasing acquired data. While larger trees are interesting, they consist of compositions

of smaller trees. For instance, two million nodes leaf nodes might connected by three

levels of internal nodes with 128 fanout. While we leave large scale runs to future
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Figure 4.7: Histogram of 500 latency samples using two hosts on the Cab Cluster. A
single outlier of 672 microseconds was removed for the presentation of this figure.

work, our model is a constructive one, such that there are no technical hurdles to

applying the model to these scales.

Determining latency

To generate the latency values for the TAN model, we perform a small set of

experiments using Netgauge. Netgauge is an open source framework for implementing

network benchmarks. The Netgauge framework offers a wide variety of communication

patterns and protocols and has been used in a large number of publications for

determining network performance. We calculate latency characteristics of the system

by selecting 2 nodes at random. For this pair of nodes, we run Netgauge using the

distt mode and TCP over IB protocol. We use the TCP over IB protocol because

this is representative of the applications we use for validation. Netgauge samples the

round trip time 500 times between the two nodes. In Figure 4.7, a histogram of the

latency shows that the distribution is clearly bimodal. One possible reason for this

bimodal behavior could be the selection of the core/socket to process incoming and
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outgoing packets relative to the core utilized by the application. This behavior has

been observed in previous work [51, 100] and is further supported by the fact that

Cab contains two sockets. From this sample the maximum, average, minimum and

standard deviation for latency was 0.672, 0.098, 0.059, and 0.030 ms, respectively.

Even though reduction operations rely on the slowest participant for performance,

0.672 ms was not representative of typical network performance. Because of this, we

assign L, in our model (and the LogP model), the value representing the average

latency. On Cab this value was 0.098 ms.

For our set of experiments the gap of the system is ignored. We can ignore the cost

of g in our system because the cost of communication overhead is significantly more

expensive, especially as contention increases with fanout of the tree.

Determining communication overhead

After the value of latency is determined we must determine the value of communi-

cations overhead. For the purposes of this research, we will be using MRNet as our

communications framework. MRNet is a software overlay network which provides

multicast and reduction communications for parallel and distributed systems. To

evaluate the performance of MRnet we developed a MRNet benchmarking appli-

cation – MRNetBench. MRNetBench was designed to enable researchers to test

aspects of performance for a wide variety of TAN topologies and filters. The ap-

plication allows the user to specify the packet size, filter duration, frequency, and

synchronization mode. Filter duration is approximated by performing k iterations

of matrix multiplication repeatedly until the specified duration has been reached.

For our experiments we utilize an empty MRNetBench filter so that we can isolate

the communication overhead and latency costs. Additionally, MRNetBench provides

3 modes of operation: synchronous, timed, and number of waves. In synchronous

mode, the root and leaf processes are synchronized using NTP so that leaf processes
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send a communication wave to the root process simultaneously. In the timed mode

there is an initial synchronization, but subsequent waves are sent without explicit

synchronization attempts. Waves continue to be pushed through the system according

to the specified frequency for the duration of the timer. In number of waves mode, the

root node requests the leaves to initiate an aggregate communication and records the

round trip time required. MRNetBench is a relatively simple application in practice,

but it is an example of the type of framework necessary for deriving parameters for

LogP based models.

When measuring the time it takes to complete an aggregate communication, there are

two possible approaches. The first approach is to use properly synchronized clocks to

schedule the communication operation in the near future and then take the difference

from the end and start times (MRNetBench synchronous mode). The advantage of

this method is that the leaf nodes initiate the communication simultaneously. The

downside to this approach is that it relies heavily on the synchronization of each

participant’s clocks. The second approach is to initiate the aggregation from the root

node and record the round trip time (MRNetBench number of waves mode). This

approach benefits from relying on only a single clock, but it includes the additional

latency and communication overhead costs which must be subtracted. We tried

both methods and found that the method utilizing round trip time and relying on a

single clock had significantly less noise. The noise from the synchronized approach

was so significant that even with the extra latency and overhead costs, the round

trip approach resulted in a faster recorded time. For these reasons, we measure a

communication operation using the round trip time approach. In order to account

for the extra latency and overhead costs associated with the round trip approach, we

make the assumption the scatter and reduction operation are symmetrical and divide

the round trip time result by two.

The cost of communication overhead is determined through two sets of experiments:
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Figure 4.8: Illustration of a ”chain” topology.

chain and N-to-1. These runs measure the time to process a wave for an increasing

height and fanout, respectively. The purpose of the chain experiments is to derive per-

level and any one-time costs in the model, y and C respectively. N-to-1 experiments

utilize data from the chain experiments and then perform regression analysis to derive

remaining coefficients for the communications overhead function. In both runs, leaf

nodes send 11 waves of reduction operations. We discard the first wave because the

performance is an order of magnitude worse due to bootstrapping costs that are not

a part of this model. The following two subsections describe each experiment and

how we combine them into a communications overhead function.

The Chain Experiment

In this experiment, we use MRNet to measure the time it takes to process a wave as

we increase tree depth. The tree is a chain topology, such that each node has a single

child. An example of this topology is seen in Figure 4.8. We limited the height to
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32, since a binary tree of height 30 represents over 1 billion processes. In practice,

a TAN topology would likely not exceed a height of 30 on even the largest systems.

In MRNet we set timers to record the time a communication operation begins at

the leaf node and ends at the root node. This is collected 10 times at each depth

from a height of 1, to a height of 32. After we collect this information, we use our

previously determined value for L and multiply it by the depth of the tree. This is

essentially the number of hops times the latency. We then subtract this value from

each respective data point. Because there are two overhead operations at each level

(one send and one receive), we divide each value by 2 so that we are left with just

the communication overhead cost. By performing a simple regression analysis on the

data of Figure 4.9, we are able to derive a per-level overhead, and any one-time costs.

This analysis generates the value of b in the function y = a+ bx. Our simple linear

regression provided an estimate of y =4.93×10−5x seconds and a value of 0 for a,

with a coefficient of determination R2 = 0.89 for the linear regression. We believe

this value of R2 is sufficient for our model, but in future work we will explore more

accurate methods of representing latency and system noise. If the coefficient a had

mapped to a value greater than 0, we would have assigned this to the one-time cost C

in the model. We label the value which we derived for b as a per-level communication

overhead, and incorporate it the sub-section that follows.

The N-to-1 Experiment

The goal of this second experiment is to isolate and extract the communication

overhead with respect to the fanout (x) of a root node. This is accomplished by

measuring the time it takes to process a wave in a N-to-1 topology as we increase the

value of N. An N-to-1 topology is a tree which consists of only a root and leaf nodes

such that the leaves are directly connected to the tree root. An example can be seen

in Figure 4.10. First we subtract the latency and a single per-level overhead cost
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Figure 4.9: Time taken to process a single wave in a chain topology over an increasing
number of internal tree processes.

Figure 4.10: Illustration of a ”N-to-1” topology.

(leaf node send) from the data. Then, similar to the chain experiment, we perform

a regression analysis on data seen in Figure 4.11. When comparing the results to a

linear, logarithmic and quadratic fit, the best fit for this data was a quadratic fit.

By finding the best fit for the equation, y = bx + cx2, we are simply deriving the

cost of overhead relative to the fanout of the topology. the value derived for the

coefficients b and c are 7.83×10−7 and 1.57×10−7 seconds, respectively. The coefficient

of determination, R2 for this experiment was 0.90. Following this second analysis,

we have all the coefficients necessary to fully model the communication overhead of
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Figure 4.11: Communication overhead (MRNet) for a single wave in a N-to-1 topology
over an increasing number of leaf processes.

Table 4.2: Model parameter values (s)

L 9.8×10−5

oMRNet 4.93×10−5 + 7.83×10−7(x) + 1.57×10−7(x2)
g N/A
C N/A

our model. The values derived for these coefficients and the one time overhead, are

all combined in Table 4.2 as oMRNet. If the data from the N-to-1 experiment had

been linear, logarithmic or exponential, the same process would apply, with the least

significant coefficient being populated by values derived for latency and per-level

overhead.

In conclusion to this section we include all the parameters of our TAN model into

Table 4.2. These parameter values are specific to the Cab cluster, such that if

we desired to model an additional system, we would need to derive that system’s

parameter values as well.
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4.2.4 Complex Topology Validation

In order to evaluate the performance of our model, we compare the accuracy of the

TAN model and the original LogP model for the MRNet framework. The purpose

of these experiments is to show the accuracy of the TAN model for predicting

communication performance and to evaluate when the TAN model may be beneficial

in lieu of the traditional LogP approach. The only difference between the parameters

values of the LogP Model and the TAN model in our experiments is the calculation

of message processing overhead. In the case of LogP, we assign the overhead the

value derived from the chain experiments, whereas in the TAN model, overhead is

represented by a more complex function. In these validation experiments, we tested

the performance of two sets of topologies. The first set of topologies consist of trees

with 32 leaf nodes and a varying internal structure. Specifically, the four trees in

this set are: an unbalanced two-level tree, such that the root node has 6 children, of

which have either 5 or 6 leaf nodes as children, a binomial tree, a binary tree, and a

N-to-1 tree.

The second set of topologies consist of trees with 128 leaf nodes and an internal

structure similar to the first set. Specifically, the four trees in this set are: an

unbalanced two-level tree, such that the root node has 11 children, of which have

either 11 or 12 leaf nodes as children. a binomial tree, a binary tree, and a N-to-1

tree.

These topologies are representative of tall/thin (binary), short/fat (n-to-1), bal-

anced (2-level), and skewed (binomial) configurations. Our choice in this variety

demonstrates the models applicability to a range of configurations. In both sets

of experiments we take the average of 10 runs for each topology to represent the

observed performance.
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Figure 4.12: Time to process a single communication wave for 4 varying topologies,
each with 32 leaf nodes.

Evaluation of Communication Modeling.

In Figure 4.12 and Figure 4.13, we compare performance of complex topologies

without considering application overhead. In Figure 4.12, the best results for the

TAN model were achieved predicting shallow trees. This is not surprising, given the

relatively high value for the coefficient of determination for the experiments that

generated the values for message processing overhead. LogP’s best case match of

observed performance was for the binary tree. This is because a binary tree is the

topology most similar to a chain topology and it is the topology that experiences

the least amount of contention for message processing. That being said, the TAN

model provides a closer approximation of the observed performance in every single

case. Of the TANs tested with 32 leaves, the best performing were the two level and

the 32-to-1 topologies.

In the experiments with 128 leaf nodes we begin to see the cases where the TAN

model really shines. Because contention becomes more significant as fanout increases,
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Figure 4.13: Time to process a single communication wave for 4 varying topologies,
each with 128 leaf nodes.

the TAN model provides a better estimate than LogP and matches the observed

performance with greater precision than that of the experiments involving 32 leaf

nodes. Of the TANs tested with 128 leaves, the two level topology significantly

outperforms all other topologies. These experiments validate the accuracy of the

TAN model and show how it can facilitate the design of efficient topologies.

In the context of analyzing application performance, the power of the LogP model is

the flexibility it provides, so that communication overheads may be separated from

application overheads. The TAN model still provides this important functionality,

but additionally allows the performance to be further deconstructed, so that topology

effectiveness can be evaluated on a per-level basis even for topologies with non-uniform

branching. This flexibility facilitates efficient topology design, scheduling of workflows,

and the resolution of localized bottlenecks.
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4.2.5 Outcomes of the TAN Model

In this part of the dissertation we have extended the LogP model by introducing the

TAN model. This model considers the affects that contention may have on performance

and provides a fine grained approach for predicting the performance of reduction

operations in tree aggregation networks. In order to test our approach we developed

a benchmarking tool (MRNetBench) for the MRNet framework. We then used this

tool to show how model parameters could be extracted from a simple set of two

experiments. Our model shows a significant improvement in performance prediction

versus the standard LogP model for all of the topologies tested. Furthermore, this

work provides insight about the performance of reduction operations at a scale of 256

nodes of the Cab cluster at Lawrence Livermore National Labs.

4.3 Chapter Conclusions

In this chapter we asked, “How can we improve the responsiveness and scalability

of network monitoring?” and “How can we better model the cost of hierarchical

data aggregation?” These two questions are central to developing effective and

scalable monitoring solutions that facilitate adaptive solutions. We demonstrated

that traditional approaches to network monitoring were cumbersome and implemented

a in-network push-based agent to improve responsiveness. Placing the monitoring

agents on the devices being monitored (i.e. the switch) relieves the application

nodes and reduces the network traffic associated with monitoring, due to in-situ

processing techniques like deduplication. Furthermore, we extended the LogP model,

so that it could better represent the cost of large-scale data aggregation typical of

HPC monitoring frameworks. We evaluated the effectiveness of our model at scale

and showed significant improvements to accuracy of the base model. In particular,

we demonstrated that our model led to a better selection of tree in a hierarchical
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aggregation. As we move toward the Exascale era, the contributions of this chapter

will assist in the development of dynamic solutions that adapt to their environment.

However, in order to judge the impact of a dynamic solution, our understanding of

large-scale monitoring needs to be grounded in reality. Information is not free and

as a community we must make sure we include the “hidden” cost of data collection,

storage and dissemination.
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Conclusion

In this dissertation, we set out to improve the performance and power of HPC

systems with a focus on networks, through new models, benchmarks and monitoring

techniques. We explored the characteristics and hidden costs of emerging techniques

in HPC communication, providing insights, solutions, and a suite of benchmarks for

evaluating performance (Chapter 2). Later, in Chapter 3, we evaluated HPC systems

from a macro level, developing new approaches for visualizing the performance of

Exascale networks. We took our simulations and applied empirical measurements of

power as well as existing models in literature, to provide conservative and optimistic

projections of network power savings on future systems. These results contribute

to the field’s understanding of how to build high performance, power efficient large

scale networks. In order to facilitate high performance and adaptive networks of

the future, we examined the cost of monitoring a large-scale network, developing

on-switch, push-based approaches to scalable monitoring as well as improved models

for data aggregation (Chapter 4).
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5.1 Contributions

While this dissertation includes a large number of contributions that are summarized

in the individual chapters, there are several major contributions of this work:

1. Evaluate and characterize one-sided communication in HPC systems, introduc-

ing the concept of Network-induced Memory Contention with three candidate

solutions.

2. Characterize power and performance trade-offs in large-scale dragonfly networks,

with new methods for fine grained analysis of network utilization.

3. Develop on-switch, push based network monitoring agent as part of a scalable

network monitoring solution, with new performance models of data aggregation.

These contributions provide a breadth and depth of a large body of work related to

the power and performance of HPC networks. The impact is evident in five peer-

reviewed publications [41, 44, 43, 42, 30]. Beyond publications, this work has had

direct impact on publicly available software [114, 89, 94, 103], resulting in numerous

releases and improvements. As we continue to expand our understanding of HPC

systems, it is crucial to have a firm grasp of trends in HPC communications and an

understanding of how they impact node-level performance. These models for node

level performance must be integrated into a macro level models of network topology,

routing and application performance/power constraints. Lastly, in order to implement

the dynamic and adaptive solutions that are becoming increasingly common, we must

have an understanding of the performance cost associated with network monitoring.

Too often these costs remain undiscussed in literature, though they are critical in

determining the capabilities of the system. As such, this dissertation sets the stage

for a rich body of future work. And though it closes the door on several open research

questions, more importantly, it provides the necessary foundation to move forward.
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Supplemental Data of Chapter 2

A.1 Feature Importance of PMCs for CNS and

Varying Prediction Criteria

Below are tables containing the feature importance values referenced in the work

on detecting NiMC and predicting its impact on application performance. These

tables contain the coefficient of determination, Out-of-Bag scores (OOB), and the

feature importances for the listed features in binary classification or regression using

the Random Forests package of scikit-learn in Python. There are four tables for

each feature set, representing predictions of CPU-time (with and without the ib bw

feature), predictions of the volume of RDMA traffic, and binary classification of

whether or not the workload is experiencing NiMC.

Table A.1: Random forests predicting CPU time of workload in the presence of NiMC.
(cns, feature set:1)

Coefficient of Det.:0.9975
Out-of-Bag Score:0.9816

Features ib bw l1 icm icy l1 dcm tlb im tlb dm

Importance 0.0031 0.0844 0.1549 0.1628 0.1670 0.4278
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Table A.2: Random forests predicting CPU time of workload in the presence of NiMC.
(cns, feature set:1)

Coefficient of Det.:0.9974
Out-of-Bag Score:0.9807

Features l1 icm icy l1 dcm tlb im tlb dm

Importance 0.0853 0.1551 0.1636 0.1674 0.4285

Table A.3: Random forests predicting volume of RDMA traffic on target node. (cns,
feature set:1)

Coefficient of Det.:0.9142
Out-of-Bag Score:0.3745

Features tlb dm tlb im l1 dcm l1 icm icy

Importance 0.1129 0.1275 0.1357 0.1737 0.4501

Table A.4: Random forests binary classification to detect NiMC. (cns, feature set:1)

Coefficient of Det.:1.0
Out-of-Bag Score:0.7406

Features tlb im tlb dm l1 dcm l1 icm icy

Importance 0.1393 0.1450 0.1525 0.1623 0.4008

Table A.5: Random forests predicting CPU time of workload in the presence of NiMC.
(cns, feature set:2)

Coefficient of Det.:0.9971
Out-of-Bag Score:0.9789

Features ib bw l2 tcm/l2 tca l2 dcm/l2 tca l2 icm l2 tca l2 tcm l2 dcm l2 ich l2 dch

Importance 0.0018 0.0040 0.0059 0.0322 0.0330 0.0404 0.0607 0.2780 0.5441

Table A.6: Random forests predicting CPU time of workload in the presence of NiMC.
(cns, feature set:2)

Coefficient of Det.:0.997
Out-of-Bag Score:0.9782

Features l2 tcm/l2 tca l2 dcm/l2 tca l2 tca l2 tcm l2 icm l2 dcm l2 ich l2 dch

Importance 0.0042 0.0061 0.0332 0.0405 0.0420 0.0513 0.2782 0.5445

Table A.7: Random forests predicting volume of RDMA traffic on target node. (cns,
feature set:2)

Coefficient of Det.:0.9164
Out-of-Bag Score:0.3958

Features l2 tcm l2 tca l2 dcm l2 icm l2 ich l2 dcm/l2 tca l2 dch l2 tcm/l2 tca

Importance 0.0536 0.0587 0.0613 0.0705 0.0966 0.1287 0.1311 0.3994
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Table A.8: Random forests binary classification to detect NiMC. (cns, feature set:2)

Coefficient of Det.:1.0
Out-of-Bag Score:0.7467

Features l2 tca l2 ich l2 icm l2 tcm l2 dcm l2 dch l2 dcm/l2 tca l2 tcm/l2 tca

Importance 0.0847 0.0882 0.0903 0.0998 0.1074 0.1569 0.1580 0.2147

Table A.9: Random forests predicting CPU time of workload in the presence of NiMC.
(cns, feature set:3)

Coefficient of Det.:0.9957
Out-of-Bag Score:0.9687

Features ib bw l3 tca l3 ica l3 dca l3 tcm

Importance 0.0045 0.1109 0.1915 0.2464 0.4467

Table A.10: Random forests predicting CPU time of workload in the presence of
NiMC. (cns, feature set:3)

Coefficient of Det.:0.9954
Out-of-Bag Score:0.9664

Features l3 tca l3 ica l3 dca l3 tcm

Importance 0.1216 0.1927 0.2380 0.4477

Table A.11: Random forests predicting volume of RDMA traffic on target node. (cns,
feature set:3)

Coefficient of Det.:0.9181
Out-of-Bag Score:0.4071

Features l3 tca l3 ica l3 dca l3 tcm

Importance 0.1306 0.1697 0.2206 0.4791

Table A.12: Random forests binary classification to detect NiMC. (cns, feature set:3)

Coefficient of Det.:1.0
Out-of-Bag Score:0.7423

Features l3 ica l3 tca l3 dca l3 tcm

Importance 0.1619 0.1782 0.2292 0.4306
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Table A.13: Random forests predicting CPU time of workload in the presence of
NiMC. (hpccg, feature set:1)

Coefficient of Det.:0.9969
Out-of-Bag Score:0.9775

Features tlb dm tlb im l1 icm icy l1 dcm ib bw

Importance 0.0043 0.0047 0.0072 0.1183 0.1303 0.7352

Table A.14: Random forests predicting CPU time of workload in the presence of
NiMC. (hpccg, feature set:1)

Coefficient of Det.:0.9953
Out-of-Bag Score:0.9659

Features tlb im tlb dm l1 icm icy l1 dcm

Importance 0.0074 0.0096 0.0346 0.1053 0.8431

A.2 Feature Importance of PMCs for HPCCG and

Varying Prediction Criteria

Below are tables containing the feature importance values referenced in the work

on detecting NiMC and predicting its impact on application performance. These

tables contain the coefficient of determination, Out-of-Bag scores (OOB), and the

feature importances for the listed features in binary classification or regression using

the Random Forests package of scikit-learn in Python. There are four tables for

each feature set, representing predictions of CPU-time (with and without the ib bw

feature), predictions of the volume of RDMA traffic, and binary classification of

whether or not the workload is experiencing NiMC.

Table A.15: Random forests predicting volume of RDMA traffic on target node.
(hpccg, feature set:1)

Coefficient of Det.:0.9989
Out-of-Bag Score:0.9923

Features tlb im tlb dm icy l1 icm l1 dcm

Importance 0.0055 0.0104 0.0110 0.0891 0.8839
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Table A.16: Random forests binary classification to detect NiMC. (hpccg, feature
set:1)

Coefficient of Det.:1.0
Out-of-Bag Score:0.9983

Features l1 icm tlb im icy tlb dm l1 dcm

Importance 0.0431 0.0575 0.1573 0.1963 0.5458

Table A.17: Random forests predicting CPU time of workload in the presence of
NiMC. (hpccg, feature set:2)

Coefficient of Det.:0.998
Out-of-Bag Score:0.9854

Features l2 dcm l2 tcm l2 icm l2 ich l2 tca l2 tcm/l2 tca l2 dcm/l2 tca l2 dch ib bw

Importance 0.0012 0.0013 0.0036 0.0101 0.0206 0.0624 0.0657 0.0972 0.7378

Table A.18: Random forests predicting CPU time of workload in the presence of
NiMC. (hpccg, feature set:2)

Coefficient of Det.:0.9965
Out-of-Bag Score:0.9747

Features l2 icm l2 tcm/l2 tca l2 dcm/l2 tca l2 tca l2 tcm l2 dcm l2 dch l2 ich

Importance 0.0085 0.0400 0.0408 0.0417 0.0583 0.1014 0.1416 0.5678

Table A.19: Random forests predicting volume of RDMA traffic on target node.
(hpccg, feature set:2)

Coefficient of Det.:0.9993
Out-of-Bag Score:0.9945

Features l2 dch l2 icm l2 tca l2 tcm/l2 tca l2 dcm/l2 tca l2 ich l2 tcm l2 dcm

Importance 0.0006 0.0008 0.0014 0.0019 0.0019 0.1198 0.1663 0.7072

Table A.20: Random forests binary classification to detect NiMC. (hpccg, feature
set:2)

Coefficient of Det.:1.0
Out-of-Bag Score:0.9989

Features l2 dcm/l2 tca l2 tcm/l2 tca l2 icm l2 ich l2 dch l2 tcm l2 tca l2 dcm

Importance 0.0295 0.0316 0.0527 0.0927 0.1296 0.2090 0.2113 0.2436

Table A.21: Random forests predicting CPU time of workload in the presence of
NiMC. (hpccg, feature set:3)

Coefficient of Det.:0.9973
Out-of-Bag Score:0.9803

Features l3 tca l3 dca l3 tcm l3 ica ib bw

Importance 0.0043 0.0044 0.0543 0.2461 0.6908
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Table A.22: Random forests predicting CPU time of workload in the presence of
NiMC. (hpccg, feature set:3)

Coefficient of Det.:0.9953
Out-of-Bag Score:0.9663

Features l3 tca l3 dca l3 ica l3 tcm

Importance 0.0069 0.0075 0.2514 0.7343

Table A.23: Random forests predicting volume of RDMA traffic on target node.
(hpccg, feature set:3)

Coefficient of Det.:0.9995
Out-of-Bag Score:0.9964

Features l3 dca l3 tca l3 ica l3 tcm

Importance 0.0005 0.0006 0.0014 0.9976

Table A.24: Random forests binary classification to detect NiMC. (hpccg, feature
set:3)

Coefficient of Det.:1.0
Out-of-Bag Score:0.9992

Features l3 ica l3 tca l3 dca l3 tcm

Importance 0.0321 0.2186 0.2453 0.5039
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Table A.25: Random forests predicting CPU time of workload in the presence of
NiMC. (lammps, feature set:1)

Coefficient of Det.:0.9993
Out-of-Bag Score:0.9949

Features tlb dm tlb im l1 icm icy l1 dcm ib bw

Importance 0.0013 0.0017 0.0071 0.0526 0.2269 0.7104

Table A.26: Random forests predicting CPU time of workload in the presence of
NiMC. (lammps, feature set:1)

Coefficient of Det.:0.9986
Out-of-Bag Score:0.9896

Features tlb dm tlb im l1 icm icy l1 dcm

Importance 0.0025 0.0052 0.0882 0.2156 0.6886

A.3 Feature Importance of PMCs for LAMMPS

and Varying Prediction Criteria

Below are tables containing the feature importance values referenced in the work

on detecting NiMC and predicting its impact on application performance. These

tables contain the coefficient of determination, Out-of-Bag scores (OOB), and the

feature importances for the listed features in binary classification or regression using

the Random Forests package of scikit-learn in Python. There are four tables for

each feature set, representing predictions of CPU-time (with and without the ib bw

feature), predictions of the volume of RDMA traffic, and binary classification of

whether or not the workload is experiencing NiMC.

Table A.27: Random forests predicting volume of RDMA traffic on target node.
(lammps, feature set:1)

Coefficient of Det.:0.9995
Out-of-Bag Score:0.9965

Features tlb dm tlb im icy l1 icm l1 dcm

Importance 0.0006 0.0086 0.0383 0.0419 0.9105
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Table A.28: Random forests binary classification to detect NiMC. (lammps, feature
set:1)

Coefficient of Det.:1.0
Out-of-Bag Score:1.0

Features tlb dm tlb im l1 icm icy l1 dcm

Importance 0.0216 0.0349 0.1316 0.2113 0.6005

Table A.29: Random forests predicting CPU time of workload in the presence of
NiMC. (lammps, feature set:2)

Coefficient of Det.:0.9995
Out-of-Bag Score:0.9968

Features l2 dcm/l2 tca l2 tcm/l2 tca l2 dcm l2 tcm l2 ich l2 tca l2 dch l2 icm ib bw

Importance 0.0021 0.0031 0.0056 0.0109 0.0144 0.0281 0.0300 0.2049 0.7009

Table A.30: Random forests predicting CPU time of workload in the presence of
NiMC. (lammps, feature set:2)

Coefficient of Det.:0.9993
Out-of-Bag Score:0.9949

Features l2 tcm/l2 tca l2 dcm/l2 tca l2 tcm l2 dcm l2 tca l2 dch l2 icm l2 ich

Importance 0.0024 0.0085 0.0087 0.0139 0.0254 0.0468 0.2000 0.6944

Table A.31: Random forests predicting volume of RDMA traffic on target node.
(lammps, feature set:2)

Coefficient of Det.:0.9996
Out-of-Bag Score:0.9969

Features l2 tcm/l2 tca l2 dcm/l2 tca l2 icm l2 tcm l2 dcm l2 dch l2 tca l2 ich

Importance 0.0001 0.0002 0.0023 0.0076 0.0086 0.0092 0.0138 0.9581

Table A.32: Random forests binary classification to detect NiMC. (lammps, feature
set:2)

Coefficient of Det.:1.0
Out-of-Bag Score:1.0

Features l2 dcm/l2 tca l2 tcm/l2 tca l2 icm l2 tcm l2 dch l2 dcm l2 ich l2 tca

Importance 0.0118 0.0201 0.0386 0.1311 0.1700 0.2058 0.2102 0.2123

Table A.33: Random forests predicting CPU time of workload in the presence of
NiMC. (lammps, feature set:3)

Coefficient of Det.:0.9993
Out-of-Bag Score:0.9949

Features l3 tcm l3 tca l3 dca l3 ica ib bw

Importance 0.0023 0.0597 0.0620 0.1628 0.7132
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Table A.34: Random forests predicting CPU time of workload in the presence of
NiMC. (lammps, feature set:3)

Coefficient of Det.:0.9957
Out-of-Bag Score:0.9688

Features l3 tcm l3 ica l3 tca l3 dca

Importance 0.0129 0.1679 0.3676 0.4516

Table A.35: Random forests predicting volume of RDMA traffic on target node.
(lammps, feature set:3)

Coefficient of Det.:0.9994
Out-of-Bag Score:0.9957

Features l3 tcm l3 ica l3 tca l3 dca

Importance 0.0016 0.0397 0.4747 0.4839

Table A.36: Random forests binary classification to detect NiMC. (lammps, feature
set:3)

Coefficient of Det.:1.0
Out-of-Bag Score:1.0

Features l3 ica l3 tcm l3 dca l3 tca

Importance 0.0357 0.0680 0.4434 0.4529
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Table A.37: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-cache, feature set:1)

Coefficient of Det.:0.9996
Out-of-Bag Score:0.9969

Features tlb dm icy tlb im l1 icm l1 dcm ib bw

Importance 0.0002 0.0002 0.0065 0.0261 0.0748 0.8922

Table A.38: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-cache, feature set:1)

Coefficient of Det.:0.9987
Out-of-Bag Score:0.9916

Features tlb dm icy tlb im l1 icm l1 dcm

Importance 0.0004 0.0019 0.0796 0.1594 0.7586

A.4 Feature Importance of PMCs for STREAM-

cache and Varying Prediction Criteria

Below are tables containing the feature importance values referenced in the work

on detecting NiMC and predicting its impact on application performance. These

tables contain the coefficient of determination, Out-of-Bag scores (OOB), and the

feature importances for the listed features in binary classification or regression using

the Random Forests package of scikit-learn in Python. There are four tables for

each feature set, representing predictions of CPU-time (with and without the ib bw

feature), predictions of the volume of RDMA traffic, and binary classification of

whether or not the workload is experiencing NiMC.

Table A.39: Random forests predicting volume of RDMA traffic on target node.
(stream-cache, feature set:1)

Coefficient of Det.:0.995
Out-of-Bag Score:0.967

Features tlb dm icy tlb im l1 icm l1 dcm

Importance 0.0046 0.0057 0.0595 0.1208 0.8094
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Table A.40: Random forests binary classification to detect NiMC. (stream-cache,
feature set:1)

Coefficient of Det.:1.0
Out-of-Bag Score:1.0

Features tlb dm icy l1 icm l1 dcm tlb im

Importance 0.0086 0.0339 0.2382 0.3547 0.3647

Table A.41: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-cache, feature set:2)

Coefficient of Det.:0.9992
Out-of-Bag Score:0.9944

Features l2 tcm l2 dcm l2 tcm/l2 tca l2 dcm/l2 tca l2 dch l2 icm ib bw l2 tca l2 ich

Importance 0.0003 0.0005 0.0009 0.0009 0.0025 0.0169 0.1976 0.3478 0.4326

Table A.42: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-cache, feature set:2)

Coefficient of Det.:0.9991
Out-of-Bag Score:0.9937

Features l2 tcm/l2 tca l2 tcm l2 dcm l2 dcm/l2 tca l2 dch l2 icm l2 tca l2 ich

Importance 0.0004 0.0005 0.0007 0.0008 0.0031 0.0185 0.4044 0.5715

Table A.43: Random forests predicting volume of RDMA traffic on target node.
(stream-cache, feature set:2)

Coefficient of Det.:0.9962
Out-of-Bag Score:0.9729

Features l2 tcm l2 dcm/l2 tca l2 dcm l2 tcm/l2 tca l2 dch l2 icm l2 ich l2 tca

Importance 0.0026 0.0028 0.0078 0.0084 0.0130 0.0226 0.4097 0.5331

Table A.44: Random forests binary classification to detect NiMC. (stream-cache,
feature set:2)

Coefficient of Det.:1.0
Out-of-Bag Score:1.0

Features l2 dcm/l2 tca l2 dch l2 tcm/l2 tca l2 tcm l2 dcm l2 ich l2 tca l2 icm

Importance 0.0069 0.0072 0.0261 0.0894 0.1152 0.2325 0.2465 0.2763

Table A.45: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-cache, feature set:3)

Coefficient of Det.:0.9987
Out-of-Bag Score:0.9888

Features l3 tca l3 tcm l3 dca l3 ica ib bw

Importance 0.0010 0.0047 0.0047 0.0597 0.9299
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Table A.46: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-cache, feature set:3)

Coefficient of Det.:0.9976
Out-of-Bag Score:0.9841

Features l3 tcm l3 dca l3 tca l3 ica

Importance 0.0113 0.0269 0.0329 0.9289

Table A.47: Random forests predicting volume of RDMA traffic on target node.
(stream-cache, feature set:3)

Coefficient of Det.:0.9937
Out-of-Bag Score:0.9557

Features l3 tcm l3 dca l3 tca l3 ica

Importance 0.0231 0.0342 0.0385 0.9041

Table A.48: Random forests binary classification to detect NiMC. (stream-cache,
feature set:3)

Coefficient of Det.:1.0
Out-of-Bag Score:0.9899

Features l3 tcm l3 dca l3 tca l3 ica

Importance 0.0285 0.1203 0.3420 0.5092
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Table A.49: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-dram, feature set:1)

Coefficient of Det.:0.9992
Out-of-Bag Score:0.9931

Features l1 dcm icy tlb im tlb dm ib bw l1 icm

Importance 0.0001 0.0004 0.0506 0.0862 0.3042 0.5585

Table A.50: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-dram, feature set:1)

Coefficient of Det.:0.9981
Out-of-Bag Score:0.984

Features l1 dcm icy tlb im tlb dm l1 icm

Importance 0.0001 0.0002 0.0843 0.1100 0.8053

A.5 Feature Importance of PMCs for STREAM-

DRAM and Varying Prediction Criteria

Below are tables containing the feature importance values referenced in the work

on detecting NiMC and predicting its impact on application performance. These

tables contain the coefficient of determination, Out-of-Bag scores (OOB), and the

feature importances for the listed features in binary classification or regression using

the Random Forests package of scikit-learn in Python. There are four tables for

each feature set, representing predictions of CPU-time (with and without the ib bw

feature), predictions of the volume of RDMA traffic, and binary classification of

whether or not the workload is experiencing NiMC.

Table A.51: Random forests predicting volume of RDMA traffic on target node.
(stream-dram, feature set:1)

Coefficient of Det.:0.9955
Out-of-Bag Score:0.9665

Features l1 dcm icy tlb im tlb dm l1 icm

Importance 0.0046 0.0051 0.0996 0.1398 0.7509
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Table A.52: Random forests binary classification to detect NiMC. (stream-dram,
feature set:1)

Coefficient of Det.:1.0
Out-of-Bag Score:1.0

Features icy l1 dcm tlb im tlb dm l1 icm

Importance 0.0013 0.0534 0.2235 0.2635 0.4583

Table A.53: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-dram, feature set:2)

Coefficient of Det.:0.9995
Out-of-Bag Score:0.997

Features l2 tcm l2 dcm l2 icm l2 tca l2 ich l2 dch l2 tcm/l2 tca l2 dcm/l2 tca ib bw

Importance 0.0008 0.0011 0.0198 0.0229 0.0366 0.0604 0.0744 0.0853 0.6987

Table A.54: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-dram, feature set:2)

Coefficient of Det.:0.9957
Out-of-Bag Score:0.973

Features l2 dcm l2 tcm l2 tca l2 dch l2 ich l2 tcm/l2 tca l2 icm l2 dcm/l2 tca

Importance 0.0001 0.0007 0.0258 0.0700 0.1022 0.1178 0.1886 0.4949

Table A.55: Random forests predicting volume of RDMA traffic on target node.
(stream-dram, feature set:2)

Coefficient of Det.:0.9969
Out-of-Bag Score:0.9793

Features l2 dcm l2 tcm l2 tca l2 dcm/l2 tca l2 tcm/l2 tca l2 icm l2 dch l2 ich

Importance 0.0023 0.0075 0.0337 0.0394 0.0453 0.0492 0.0982 0.7243

Table A.56: Random forests binary classification to detect NiMC. (stream-dram,
feature set:2)

Coefficient of Det.:1.0
Out-of-Bag Score:1.0

Features l2 dcm l2 tcm l2 dcm/l2 tca l2 tcm/l2 tca l2 dch l2 tca l2 ich l2 icm

Importance 0.0082 0.0087 0.0447 0.0876 0.1372 0.2071 0.2158 0.2907

Table A.57: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-dram, feature set:3)

Coefficient of Det.:0.9989
Out-of-Bag Score:0.9914

Features l3 dca l3 tca l3 tcm l3 ica ib bw

Importance 0.0008 0.0010 0.0473 0.1088 0.8422
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Table A.58: Random forests predicting CPU time of workload in the presence of
NiMC. (stream-dram, feature set:3)

Coefficient of Det.:0.9985
Out-of-Bag Score:0.9882

Features l3 dca l3 tca l3 tcm l3 ica

Importance 0.0273 0.0429 0.2245 0.7053

Table A.59: Random forests predicting volume of RDMA traffic on target node.
(stream-dram, feature set:3)

Coefficient of Det.:0.9962
Out-of-Bag Score:0.9726

Features l3 tca l3 dca l3 tcm l3 ica

Importance 0.0259 0.0276 0.3163 0.6303

Table A.60: Random forests binary classification to detect NiMC. (stream-dram,
feature set:3)

Coefficient of Det.:1.0
Out-of-Bag Score:0.995

Features l3 tca l3 dca l3 tcm l3 ica

Importance 0.0313 0.0599 0.4404 0.4684
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