
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

7-1-2013

Ontology-based annotation using naive Bayes and
decision trees
Jiawei Xu Jr

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Xu, Jiawei Jr. "Ontology-based annotation using naive Bayes and decision trees." (2013). https://digitalrepository.unm.edu/cs_etds/
62

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/62?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/62?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 , Chairperson

Jiawei Xu

Computer Science

George F. Luger

Jessica A. Turner

Lance R. Williams

by

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

The University of New Mexico
Albuquerque, New Mexico

Ontology-based Annotation using Naive Bayes and Decision
Trees

Jiawei Xu

Master of Science
Computer Science

July, 2013

B. S., Business Administration, Tongji University
M. S., Micro-electronics, Fudan University

iii

ACKNOWLEDGEMENTS

 This thesis is based on a collaborative research project on Text Data mining and Machine

Learning between the computer science department of the University of New Mexico and Mind

Research Network (MRN) in Albuquerque, USA, supported by The National Institute of Health.

 I would like to thank my research advisor, Professor George F. Luger, for his support,

instructions and lots of inspirations. From taking his class and doing research under his

supervision, I have been introduced into the world of artificial intelligence where I found my real

interest, passion, motivation.

 Thanks also to my colleagues Chayan Chakrabarti and Thomas B. Jones, for working

together with me on the project. Finally, lots of thanks to Dr. Jessica Turner and Dr. Matthew

Turner from MRN, who have provided expert knowledge for us in the biomedical field.

 Although this Master dissertation reflects a group effort to solve an interesting but difficult

problem, my own contributions include:

1. Articulating the problem and summarizing the components related to the project (chapter 1);

2. Collecting and describing possible approaches to solve the problem (chapter 2);

3. Taking part in the implementation of our approach, in particular the component of f-score

evaluation (chapter 3);

4. Evaluating the performance and exploring possible alternatives, in particular proposing an

'enhanced' version of the algorithm which achieves better performance (chapter 4).

iv

ONTOLOGY-BASED ANNOTATION USING NAIVE BAYES AND

DECISION TREES

by

 Jiawei Xu

B.S., Business Administration, Tongji University, 2005

M.S., Micro-electronics, Fudan University, 2009

M.S., Computer Science, University of New Mexico, 2013

Abstract

 The Cognitive Paradigm Ontology (CogPO) defines an ontological relationship

between academic terms and experiments in the field of neuroscience. BrainMap

(www.brainmap.org) is a database of literature describing these experiments, which are

annotated by human experts based on the ontological framework defined in CogPO. We

present a stochastic approach to automate this process. We begin with a gold standard

corpus of abstracts annotated by experts, and model the annotations with a group of

naive Bayes classifiers, then explore the inherent relationship among different

v

components defined by the ontology using a probabilistic decision tree model. Our

solution outperforms conventional text mining approaches by taking advantage of an

ontology.

 We consider five essential ontological components (Stimulus Modality, Stimulus

Type, Response Modality, Response Type, and Instructions) in CogPO, evaluate the

probability of successfully categorizing a research paper on each component by training

a basic multi-label naive Bayes classifier with a set of examples taken from the BrainMap

database which are already manually annotated by human experts. According to the

performance of the classifiers we create a decision tree to label the components

sequentially on different levels. Each node of the decision tree is associated with a naive

Bayes classifier built in different subspaces of the input universe. We first make decisions

on those components whose labels are comparatively easy to predict, and then use

these predetermined conditions to narrow down the input space along all tree paths,

therefore boosting the performance of the naive Bayes classification upon components

whose labels are difficult to predict. For annotating a new instance, we use the classifiers

associated with the nodes to find labels for each component, starting from the root and

then tracking down the tree perhaps on multiple paths. The annotation is completed

when the bottom level is reached, where all labels produced along the paths are

collected.

vi

TABLE OF CONTENTS

LIST OF FIGURES..viii

LIST OF TABLES...ix

CHAPTER 1 INTRODUCTION..1

 Information retrieval..1

 F-measure...2

 Text mining..3

 Brain mapping and neuroimaging..4

 Ontology and CogPO (Cognitive Paradigm Ontology)...........................7

 BrainMap Tracker...9

CHAPTER 2 BACKGROUND..11

 Machine learning...11

 Multi-class multi-label classification..13

 Problem transformation methods..14

 Simple algorithm adaption methods..21

 Decision tree learning..21

 Boosting...27

 k Nearest Neighbor..31

 Support Vector Machine..32

vii

CHAPTER 3 MULTI-LABEL BAYESIAN DECISION TREES..........38

 Naive Bayes classifier..39

 Document classification...41

 Multi-label Bayesian Decision Tree...44

CHAPTER 4 EXPERIMENTAL RESULTS...48

 Baseline..48

 Performance of The Multi-label Bayesian Decision Tree......................51

CHAPTER 5 CONCLUSION AND FUTURE WORK..........................55

REFERENCES...57

APPENDICES...60

APPENDIX A CORPUS...61

APPENDIX B COMPONENT TERMS..68

viii

LIST OF FIGURES

Figure 1. An example of decision trees..22

Figure 2. Framework of AdaBoost...28

Figure 3. Support Vector Machine..33

Figure 4. Flow of document classification..42

Figure 5. Annotation results from NCBO...49

Figure 6. Distribution of correct annotations..50

Figure 7. Comparisons between MLBT and MLBT*.................................54

ix

LIST OF TABLES

Table 1. Example of multi-label classification..15

Table 2. Simple transformation method..16

Table 3. Transformation by label power set method.................................17

Table 4. Transformation by BR...19

Table 5. An example of label ranking...19

Table 6. An example of decision tree..22

Table 7. F-scores of NCBO annotation...51

Table 8. F-Scores of Multi-label Bayesian Decision Trees.......................51

Table 9. MLBT with different orders of classification on components....52

Table 10. Enhanced MLBT with one component manually annotated.......53

1

Chapter 1

Introduction

With the rapid advance of biomedical research the amount of biomedical literature

has been growing fast in recent years. For a researcher to efficiently find relevant

literature that he/she is interested in is a very important task. Nowadays the main

biomedical literature databases have grown into such big size that the number of

abstracts they reference could go beyond millions (For instance, PubMed

currently comprises over 22,000,000 abstracts[1]). Because of the enormous size,

accurate and complete information is missed more often than not with common

approaches which are usually based on plain text search of the literature[2].

1.1. Information retrieval

This task of finding the exact desired literature has everything to do with

information retrieval. Information retrieval refers to the process of extracting

information pertaining to a specific need from a set of information entities. The

search targets that an information retrieval system is based on can be certain data,

or metadata which is data about the collections of data, such as documents.

books, journals, videos, photographs or Web pages[3]. The most common

information retrieval systems are the web search engines.

 In order for an information retrieval system to address information needs, they

are represented by queries, which are usually in the form of formal logic

statements. An information retrieval process starts with feeding a query specified

2

by a user into an information retrieval system. The information retrieval system is

usually attached to a database system, whose data or metadata is searched

according to the input query. An information retrieval system usually does not

uniquely identify one entity in the database system; as in most cases there are

multiple entities which may be considered related to the query, with different

degrees of relevancy. The system then uses certain approaches to compute how

well the relevant entities match the query, and returns the most related entities to

the user.

 In reality, as this information retrieval process is performed automatically by a

system, the results may not always be accurate. Hence there ought to be

measures to evaluate the performance of the an information retrieval system.

Many different measures have been proposed and most of them assume a

premise exists that every returned entity can be classified as either relevant or

irrelevant to a particular query.

1.2. F-measure

One popular way to measure the performance of an information retrieval system

is called F-measure, or F-core[4], which is also the approach we adopt to evaluate

our work. F-measure is the "weighted harmonic mean of precision and recall"[5].

 Precision is the percentage of returned entities which are considered relevant

to a particular query, while recall is the percentage of relevant entities out of all the

entities that have been returned. For example, an information retrieval system

fulfills a query of identifying all men from a collection of 42 human facial images,

3

among which 39 are male. It returns 33 images, in which 14 turn out to be women.

Therefore, the precision of this information retrieval system with respect to the

query of identifying all men is 19/33, and the recall is 19/39.

 The F-measure is computed on basis of precision and recall as follows:

2
precision recall

F
precision recall






It can be also called 1F measure, or 1F score, in which precision and recall have

the same weight. It can be generalized to F measure, where  is a

non-negative real value, which indicates recall is  times as important as

precision:

2

2
1+

precision recall
F

precision recall
 




 

 
（ ）

The most commonly used F measures are 1F measure, 2F measure and 0.5F

measure.

1.3. Text mining

Information retrieval involves obtaining information from all kinds of media, while

the task of finding relevant literature only targets text documents. Therefore

solving this problem is also related to text mining.

 Text mining is a special type of data mining, whose objective is to extract

desired information from text data[6]. The information concerned here usually

refers to patterns or trends in the text, hence the way text mining works has

4

everything to do with pattern recognition[7]. A typical framework of text mining

usually consists of parsing the input text, reorganizing the text in a structured

manner, indentifying patterns from the structured text, and finally returning the

interpretation of the text. The paring and reorganization of the text are also

referred to as preprocessing, during which addition and removal of certain content

are often performed.

 Apart from information retrieval, text mining is also related to link and

association analysis, lexical analysis such as studying frequency or distributions

of words, text tagging and annotation. Typical text mining applications are text

categorization, text clustering, concept/entity extraction, production of granular

taxonomies, sentiment analysis, document summarization, and entity relation

modeling.

 Biomedical text mining is a subcategory of text mining, which is dedicated to

texts and literature in the biomedical domain. It is also considered as an

interdisciplinary research field of natural language processing, bioinformatics and

computational linguistics. As stated before, the electronic publications in major

biomedical databases such as PubMed are growing rapidly, hence the information

retrieval techniques dedicated specifically to biomedical literature have called

upon more and more research interest in recent years.

1.4. Brain mapping and neuroimaging

Biomedical science is a broad category. Neuroscience is a subfield of biomedical

science, which involves approaches to study the nervous system. Neuroimaging

5

is about "the use of different techniques to either directly or indirectly image the

structure and function of the brain"[9]. Brain mapping is "a set of neuroscience

techniques predicated on the mapping of biological quantities or properties onto

spatial representations of the human or non-human brain resulting in maps"[10].

The idea behind this is that the normal flow of electrical impulses in brain tissue

can be disrupted by injuries and diseases, such as a physical injury (e.g.,

concussion), toxic injury, seizure disorder, Alzheimer's disease, anoxia and brain

infection (e.g., chronic Lyme encephalitis). Even common emotions such as

anxiety and depression can alter brainwave activities, leaving distinct brainwave

"signatures". Brain mapping is a quantitative recording of such activities. It is

essentially a comprehensive analysis of brainwave frequency bandwidths on

which topographic color-coded maps that show brainwave activities can be

created. Brain mapping can be conceived as a higher form of neoroimaging,

producing brain images supplemented by the result of additional (imaging or

non-imaging) data processing or analysis, such as maps projecting behavior onto

brain regions. On the other hand, all neuroimaging can be considered part of brain

mapping. Functional and structural neoroimaging are at the core of the mapping

aspect of brain mapping.

 Cognitive neuroscience is a discipline based on experiments, whose goal is to

associate structure to corresponding function with applications of psychology and

neuroscience. Cognitive neoroimaging and brain mapping methods are powerful

research tools for neuroscience, which have led to the generation of enormous

amount of data. Given the vast amounts of published results in this field,

neuroimage scientists have become increasingly interested in function-location

meta-analysis, in which they pool similar studies to identify the most consistent

6

brain-activation patterns observed under similar experimental conditions.

Meta-analytic tools that synthesize, organize, and interpret distinct segments of

the cognitive neuroimaging literature have been facilitated by the Brainmap

Project, a public repository of neuroimaging findings[11]. Its contributions have

resulted in what is now a relatively automated pipeline from study selection to

meta-analytic image interpretation. The ability to perform meta-analysis to identify

replicated results is part of the toolset needed to explore the different cognitive

constructs underlying similarities and differences in brain function in related

disorders, such as the constellation of schizophrenia, bipolar disorder, depression

and autism.

 However, the ability to perform meta-analysis across experimental domains is

challenged by identification of the appropriate literature. Currently, researchers

manually carry out multiple searches in the PubMed database with different

keywords from alternate terminologies to attempt to capture the entirety of the

studies they seek. This approach is inefficient and ineffective.

 The fact that relevant publications are easily missed is largely due to the

widely used alternate and even competitive terminologies among neuroimaging

and brain mapping publications. While the experimental psychology and cognitive

neuroscience literature may refer to a certain behavioral paradigm by name (e.g.,

the Stroop paradigm or the Sternberg paradigm) or by function (e.g., a working

memory task or a visual attention task), these paradigms can vary tremendously

in the stimuli presented to the subject, and the instructions given to the subject.

For example, a general task could be given totally different names such as

"Sternberg Task", "Delayed Match to Sample Task", "Serial Item Recognition

7

Task", and "Working Memory Tasks" in different experiments.

1.5. Ontology and CogPO (Cognitive Paradigm Ontology)

The content of most brain mapping publications is about certain experiments

whose results lead to certain facts about brain activity. Therefore the structure of

these publications tends to follow some particular patterns. This distinct

characteristic can be taken advantage of to aid the task of automatic extracting

and organizing essential information from these publications.

 In computer and information science, an ontology formally "represents

knowledge as a set of concepts within a domain, and the relationships between

pairs of concepts"[12]. It can be used to model a domain with the definition of

entities and concepts together with their properties and relations by means of

shared vocabulary and taxonomy. An ontology is "a structural framework for

organizing information". Applications of ontology can be found in artificial

intelligence, semantic web, biomedical informatics, knowledge representation,

and so forth.

 The Cognitive Paradigm Ontology (CogPO)[13] was created in 2009 to

address the non-standard vocabulary that exists for describing behavioral tasks or

paradigms in brain mapping experiments. The design of CogPO is focused on

"what can be observed directly: categorization of each paradigm in terms of 1) the

stimulus presented to the subjects; 2) the requested instructions; 3) the returned

response". Since all paradigms consist exactly of these three orthogonal

components, forming an ontology to describe paradigms becomes a "clear and

8

direct" approach. CogPO seeks to "represent stimuli, responses and instructions

that define the conditions of the experiment in a standard format, with well-defined

terms and relationships between them". The driving force behind CogPO's design

is to support published experiments implementing similar behavioral task

characteristics to be linked, despite the use of alternate vocabularies.

 CogPO actually transfers the task of identifying the paradigm names in a plain

scope into identifying a common set of hierarchical characteristics of the

experiments which captures the nature of the discoveries published more

accurately and avoids any ambiguity. This naturally leads to the question of how

to capture the ontology terms from free text that characterizes the experimental

tasks.

 The National Center for Biomedical Ontology (NCBO) provides "online tools

and a web portal enabling biomedical researchers to access, review, and

integrate disparate ontological resources in all aspects of biomedical investigation

and clinical practice to support their knowledge-intensive work"[14]. A major focus

of it involves "the use of biomedical ontologies to aid in the management and

analysis of data derived from those complex experiments". In order to achieve this,

NCBO has developed the "NCBO annotator" as a tool for automated identification

of existing ontological terms from literature text.

 There is one more gap to fill. NCBO is based on the whole collection of

biomedical science publications and there are too many ontological terms that are

related. The terms annotated by the "NCBO annotator" can come from any

ontology. They need to be further filtered and organized in order to be associated

9

and used by CogPO. To achieve this, a new computational resource, called

"BrainMap Tracker", which integrates the NCBO's ontology annotation tools and

CogPO is created to address the task of automatic annotation and identification of

candidate studies for neuroimaging meta-analysis using PubMed[1].

1.6. BrainMap Tracker

This section is adapted mainly from the research proposal written by Dr. Jessica

Turner for the Brainmap Tracker project (NIH R56MH097870).

 The problem "BrainMap Tracker" attempts to address is the ability to rapidly

identify what paradigms have been utilized to study brain activations across

neuropsychiatric disorders. The work of this thesis is to focus on portions of the

software methodology to realize such a tool.

 To carry out this goal we begin with a set of manually curated studies archived

in the BrainMap database that focus on four exemplar mental disorders:

schizophrenia, autism, bipolar disorder, and depression (see Appendix A). These

manually annotated studies offer a baseline or "gold standard" for comparison

and validation with the automatic annotation algorithms we develop, as the

foundation of our work.

 To formalize our goals, we aim to: 1) Develop automatic annotation algorithms

to extend the functionality of the NCBO Annotator, which is an annotation tool

provided by NCBO; 2) Develop a search and retrieval tool for cognitive

neuroimaging studies; 3) Evaluate BrainMap Tracker to identify patterns of

10

overlapping studies among schizophrenia, autism, bipolar disorder, and

depression.

 The BrainMap Tracker project will integrate CogPO's domain-specific

knowledge representation capabilities and the Brain-Map database resource with

the annotation capabilities of NCBO Annotator. The approach we present to

achieve this objective is to use a stochastic framework to automate this

integration process. We use a hierarchical version of a naive Bayes classifier, and

then leverage the inherent structural relationships among the different concepts

as defined by the ontology using a probabilistic decision tree model[55].

11

Chapter 2

Background

2.1. Machine learning

The key idea of CogPO is to characterize all the behavioral experiments by a

certain set of ontological terms which are hierarchically related to each other in

the representation of cognitive experiments. These terms fall into components or

dimensionst, which are Stimulus Modality, Stimulus Type, Response Modality,

Response Type and Instruction, which describe five aspects of the experiment

accordingly. For a specific behavioral experiment, each of these five aspects

could be summarized by one or more ontological terms from a limited, disjoint

vocabulary, depending on the content of the experiment. For example, Stimulus

Modality could be "Auditory", "Visual", "Tactile", and etc; Stimulus Type could be

"Faces", "Food", "Heat", and etc. Each experiment has some tags from all these

five aspects, even if the tag might be "No Stimulus", for example. Therefore, each

experiment is associated with a set of five ontological terms. The internal

relationship between the literature document which describes the experiment

could be learned by machine learning approaches with a group of examples for

automatic reasoning.

 Machine learning is a subcategory of artificial intelligence about "the

construction and study of systems that can 'learn' from data"[15]. All machine

learning processes consist of two basic phases: learning and generalization. The

learning phase refers to identifying rules and trends from a set of examples, while

12

generalization refers to the ability of the system to make accurate predictions on

unforeseen examples according to the previous learned rules or trends. In another

word, the key idea of machine learning is to extract some generally unknown

probability distribution from existing data so that it can be used to produce

accurate predictions on new data. Machine learning has everything to do with

data mining as many techniques are used for both tasks. However, the objective is

not the same. Machine learning aims at making accurate predictions by learning

properties from data, while data mining emphasizes on discovering unknown

properties from the data.

 There are two main categories of machine learning: supervised learning[16]

and unsupervised learning[17]. Supervised learning refers to "inferring a function

from labeled training data". The training data is composed of a set of training

examples. In supervised learning each example consists of two parts: an input

vector and a corresponding output value. The training data is first parsed by

certain supervised learning algorithms. Then a function between the input and

output is proposed, which can be seen as a classifier or a regression function,

depending on whether the output value is discrete or continuous. The proposed

function is supposed to predict the correct output value when any new input vector

is accepted. Unsupervised learning, however, deals with unlabeled data, which

means the input vector has no desired output value. It attempts to "find hidden

structure" in the data itself. In our case, as explained before, we have a desired

output value, and the output is the set of CogPO components, which are five

distinct ontological terms. Therefore, we will focus on the approaches of

supervised learning for discrete output.

13

2.2. Multi-class multi-label classification

For supervised learning, when the output is of discrete value, the task of machine

learning is also called classification[18]. As the output is discrete, it can be

regarded as a group of categories, thus the problem can be regarded as

categorizing a set of input values into these categories, or classes. An algorithm

that implements classification is called a classifier.

 The training data is composed of a group of examples (or instances), each of

which has input and output values. The input values are also called features. As

this name suggests, features are actually a vector of characteristics which

describe the example instance. There are a variety of features types: binary,

nominal, ordinal, numeric, and so forth. The size of features is predetermined.

The output values, or the categories to classify the examples into, are also called

labels. The size of labels are also prefixed. The least size of labels is two, which

means a single instance described by a vector of features belongs to either one of

the two classes. Such classification problems are called binary classification. On

the other hand, if the size of labels are more than two, it is called multi-class

classification. If each vector of features can only correspond to one label, the

classification problem is single-label classification. As the majority of problems are

of this type, classification problems are referred to as single-labeled by default.

There are cases that each vector of features could correspond to one or more

labels. Such problems are called multi-label classification, to distinguish from

single-label classification problems. The approaches to solve these problems are

also different correspondingly.

14

 Our problem is by nature a text classification problem, a problem of assigning

a text document into one or more topics or categories[19]. Suppose we have a

brain mapping publication, we need to determine what behavioral experiment it

describes, by extracting the five ontological terms which correspond to five

CogPO components (Stimulus Type, Stimulus Modality, Response Type,

Response Modality and Instructions) from the content of document. A full list of all

possible terms for each of these five components can be found in Appendix B.

One component can actually have multiple terms combined together to describe

an behavioral experiment. For example, from our manually annotated examples,

one publication with PubMed ID 30376 has two terms "Letters" and "Words"

annotated for component "Stimulus Type". Since all components have more than

two possibilities for ontological terms, it is a multi-label, multi-class text

classification problem for each component. Therefore, our problem can be seen

as five separate sub-problems of multi-class, multi-label classification.

 Here we give a formal definition of a multi-class, multi-label classification

problem: let X be the instance universe, and consider a set of labels

{1,...., }Y k . The goal is to find a hypothesis : 2Yh X  with error as low as

possible, based on a set of examples {(,) | , ,1 }i i i iS x Y x X Y Y i m     .

2.2.1. Problem transformation method

In comparison with multi-label classification, single-label classification has been

well studied. SVM[20] and Naive Bayes[21] are popular single-label classifiers. It

is possible to transfer a multi-label classification problem into a single-label

15

classification problem, then such existing single-label classifiers can be applied

directly to address multi-label classification.

 There are several ways to fulfill the task of transformation[22][23]. To illustrate

these ideas, an example of training data set is set up as Table 1:

Instances Features Label set

1 1X 2 4{ , } 

2 2X 3{ }

3 3X 1 2 4 5{ , , , }   

Table 1 Example of multi-label classification

 There are four instances in the data set, which correspond to four feature sets

represented by Xi . The form, size and attributes of features are not explicitly

given because they do not really matter to the problem of transformation. In

single-label cases, there is only one label i that corresponds to each instance,

while in this example three of four instances have more than one labels. A number

of transformation approaches are very simple: select-max, select-min,

select-random, ignore. The simplest of them is ignore, which discards all the

instances with multiple labels from the training data set. The other three all

transfer each multi-label set into single-label set by selecting one label out of the

set and discarding the rest. To achieve this, a single-label classifier that outputs

probability distributions over all classes can used to learn a ranking. The class

with the highest probability will be ranked first, the class with second highest

probability will be ranked second, and so forth. For the label set of each instance,

16

select-max simply picks the most frequent label, while select-min picks the least

frequent label; and select-random picks one randomly. The outcome after

transformation is shown in Table 2, from (a) to (d). It is obvious that all of these

approaches discard significant amounts of information during the transformation

process which is crucial to understanding properties of the data set.

Table 2 Simple transformation methods

 More advanced approaches try to avoid that. For example, copy method splits

an instance with multiple labels into several, each of which is distributed one label

from the original label set. Copy-weight method further associates each of the

sub-instances with a normalized probability which is dependent on the original

size of the label set. The outcome of these two approaches are shown in Table 2

(e) and (f). There is still information loss with these methods because the fact that

a particular instance is labeled as A and B is by nature different from the fact that it

Idx Label

1a 2

1b 4

2 3

3a 1

3b 2

3c 4

3d 5

 (e)

Idx Label Weight

1a 2 0.50

1b 4 0.50

2 3 1.00

3a 1 0.25

3b 2 0.25

3c 4 0.25

3d 5 0.25

 (f)

Idx Label

1 4

2 3

3 1

 (d)

Idx Label

1 2

2 3

3 1

 (c)

Idx Label

1 4

2 3

3 4

 (b)

Idx Label

3 3

 (a)

17

is sometimes labeled as A and sometimes labeled as B.

 Actually, a label set can also be considered as a special type of single label.

Such a single label represents the specific combination of the exact labels

contained in the label set. This transformation approach is called label power set

(LP). If there are n possible labels, then there will be 2n possibilities of label

combination in total.

Table 3 Transformation by label power set method

 Table 3 (a) shows the training data set after transformation; Table 3 (b) shows

an example of possible probability distribution produced by LP, based on the

training data set, given a new instance. The label ranking for each label is the sum

of the probabilities among all possibilities. Although the computational complexity

is upper bounded by min(,2)kn , where n is the total number of data instances, and

k is the total number of labels in the training data before transformation, usually

the actually complexity is much smaller than 2k . One problem of this approach is

while there are 2k labels (after transformation), the majority of them are not likely

to be seen in the training data instances. This leads to a large number of labels

associated with only a small number of data instances that would cause extreme

Idx Label

1 2 4 ，

2 3

3 1 2 4,5 ，，

 (a)

c p(c|x) 1
2

3
4

5

2 4 ，
 0.4 0 1 0 1 0

3 0.2 0 0 1 0 0

1 2 4,5 ，，
 0.4 1 1 0 1 1

 (|) jc
p c  x 0.4 0.8 0.2 0.8 0.4

 (b)

18

label imbalance for learning. A Pruned Problem Transformation[24] method has

been proposed to address this problem by pruning away the label sets that occur

less than a user-defined threshold and replacing them by introducing disjoint

subsets of these label sets that show up more frequently in the training data

instances.

 Another most well-known transformation method is Binary Relevance(BR)[25].

It breaks the whole data set into L single-label subsets, where L is the size of the

original label set. Each of these subsets focuses on one label, say i . If i is in

the label set for one instance, this instance is labeled i , or i otherwise.

 The data set after transformation is shown in Table.4. Since now in every

subset, each instance is associated with one label, therefore it is easy to train the

subsets with a binary classifier[20]. The problem with this approach is by treating

each label separately it assumes by default that all the labels are independent of

each other, while this might not be the case in many multi-label applications.

 There is another advanced method of transformation by means of label

ranking[26], which is a preference learning scenario. The original label ranking

problem is slightly different from classification, whose goal is to predict the

preference order of a set of labels when given a new instance after learning a

group of training examples. An example is shown below in Table 5.

 Again the details of the feature set is ignored and is represented by a person's

name. It can contain any kinds of attributes such as height, weight, hobby and so

forth. The second to fourth columns represent the first three German automobile

19

brands that person prefers. According to these information, given a new person

Matt's attributes, the task is to predict his preference.

Table 4 Transformation by BR

 The formal statement of the label ranking problem is to learn a mapping of

instances x X to rankings x (total restrict orders) over a finite set of labels

1 2{ , ,...., }cL    , where i x j  means that for instance x , label i is

preferred to j [27]. A ranking over L can be represented by a unique

permutation  such that i x j  iff. i j   （ ）< (), where i （ ） denotes the

position of i in the tanking.

 The multi-label classification problem can be related to label ranking as

follows: each training example x is associated with a subset xP L of possible

Idx Label

1 1

2 1

3 1

 (a)

Idx Label

1 2

2 2

3 2

 (b)

Idx Label

1 3

2 3

3 3

 (c)

Idx Label

1 4

2 4

3 4

 (d)

Feature set label label label

Fred BMW Volkswagen Audi

John Porsche BMW Mercedes

Andy Mercedes Porsche Volkswagen

Matt ? ? ?

Table 5 An example of label ranking

Idx Label

1 5

2 5

3 5

 (e)

20

labels. It simply defines the set of preferences { | , \ }x i x j i x j xR P L P      .

The size of xP is usually small or moderate. The labels in the set xP are called

relevant to the given instance; the rest are considered irrelevant. Approaches

operate in this framework include ranking by pair-wise comparison (RPC)[28] and

constraint classification[29].

 The key idea of RPC is to learn, for each pair of labels i j （ ， ）, a binary

model ()ijM x that predicts whether i x j  or j x i  for an input x . In order

to rank the labels for a new instance, predictions for all pair-wise label preferences

are obtained and a ranking that is maximally consistent with these preferences is

derived. Although constraint classification aims at learning a linear utility function

for each label, it still operates in the frame of label ranking and requires (not

necessarily complete) sets of pair-wise label preferences associated with training

instances to learn a ranking model which, as a post processing step, maybe

projected from the label set to a specific output space.

 While it is straightforward to represent the training information for multi-label

classification as a preference learning problem, the algorithms which operate in

the framework only produce a ranking of the available options. In order to convert

the learned ranking to a multi-label prediction, the learner has to be able to

autonomously determine a point at which the learned labels are split into relevant

and irrelevant labels. Both RPC and constraint classification ignore this problem

and only focus on producing rankings. The authors of [27] call this point the zero

point and propose a conceptually new technique called calibrated ranking, which

extends the common pair-wise learning approach to the multi-label scenario, a

21

setting previously not amenable to a pair-wise decomposition approach. Within

this framework, RPC can solve both multi-label classification and in a consistent

and generally applicable manner.

2.2.2. Simple algorithm adaption methods

This category of methods attempt to solve the multi-label classification problem by

adapting algorithms which are originally applicable to single-label classification

cases.

2.2.2.1. Decision tree learning

Decision tree learning is a commonly used method in data mining and machine

learning, which "uses a decision tree as a predictive model which maps

observations of an instance to conclusions about the instances target label"[30].

In a decision tree, internal nodes represent "conjunctions of features that lead to

class labels", which are represented by leaves. Generally a decision tree works as

follows: a process of splitting the instances set into subsets based on a feature

attribute is repeated on each derived subset in a recursive manner until the subset

at one node has all the same value as for the target label. Table 6 shows an

example of decision tree derived from the data set Figure 1. (This example and

corresponding figures are adapted by the author from [53].)

 Due to the order of feature selection, the decision tree for one data set is not

unique. Hence there are many ways to generate a decision tree. The construction

and evaluation of decision trees is based on the theory of information entropy[31]

22

overcast

sunny rainy

high normal
false true

and information gain[32].

Instance Outlook Temperature Humidity Windy Play

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Sunny

Sunny

Overcast

Rainy

Rainy

Rainy

Overcast

Sunny

Sunny

Rainy

Sunny

Overcast

Overcast

Rainy

Hot

Hot

Hot

Mild

Cool

Cool

Cool

Mild

Cool

Mild

Mild

Mild

Hot

Mild

High

High

High

High

Normal

Normal

Normal

High

Normal

Normal

Normal

High

Normal

High

False

True

False

False

False

True

True

False

False

False

True

True

False

True

No

No

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Yes

No

Table 6 An example of decision tree

(b)

Figure 1 An example of decision tree

Outlook

humidity windy Yes

No Yes Yes No

23

 In information theory, entropy represents the amount of uncertainty or

unpredictability contained in a random variable. It is also referred to as the

Shannon entropy, or the information content. The average entropy of a discrete

random variable X can be quantified as:

1

() () log (())
n

i b i

i

H X P x P x


 

Usually b is equal to 2, while it could also be 10 or e (natural logarithm).

 As for how this is conceptually related to the uncertainty of information,

consider the following example: let X be a random variable which denotes the

event of raining tomorrow, and suppose the probability P(X) is 0.5. This is the

maximum of uncertainty because it tells no information at all about whether or not

it will rain tomorrow, since the chances of raining and not raining are equal. As can

be calculated H(X) is 1 in this case. On the other hand, suppose P(X) is 0 or 1,

which means it is absolutely certain that it will rain or not tomorrow. In this case

the uncertainty is minimized, hence the information contained in this random

variable is maximized, and H(X) is 0 (although P(X) equal to 0 or 1 is illegal in the

equation, we can define the values of H(X) at these two points according to the

limits). Therefore, the lower the entropy is, the more the information is contained

in the distribution of the random variable, hence the better it can be used for future

prediction.

 Ross Quinlan invented an algorithm called ID3[34] to generate a decision tree

based on entropy. It is a greedy approach which continuously takes the feature

from unused features with minimum entropy, makes a new node and spits the

instances according to that feature until all instances under one node are of the

24

same label. The equations of entropy in this case can be rewritten as follows:

2

1

() () log ()
n

s s

j

H S f j f j


 

where S denotes the current instance set or subset; n denotes the number of

different possible labels; ()sf j denotes the frequency of the label value j . The

key idea of using entropy in generating a decision tree is to define a preferred

sequence of feature selection which can most rapidly narrow down uncertainty.

 One limitation of ID3 is that it is overly sensitive to features with large numbers

of values. Consider an extreme case when there is a feature of social security

number. Since everyone has a different social security number, testing on its

entropy will always yield very low values. However, selecting social security

number as a feature to split the instances obviously does not help with predicting

whether a future medical patient needs a surgery.

 To overcome this problem Quinlan invented another algorithm called C4.5[35],

which is an extension of ID3. The framework of C4.5 to generate a decision tree is

exactly the same as ID3, however it introduces a metric as for how a feature is

selected, which is based on the concept of information gain, which is defined by

subtracting the conditional entropy from the base entropy:

1

(,) () () ()
i

m

s i a

i

IG S a H S f a H S


 

where ()H S is the base entropy and
1

() ()
i

m

s i a

i

f a H S


 is the conditional entropy;

S denotes the current instances set or subset; for one chosen feature a ,

(,)IG S a denotes the information gain produced by a split over the feature a ; m

25

is the number of different values of feature a ; ()s if a is the frequency of the

items possessing ia as value for a in S ; ia is the i th possible value for a ;

iaS is a subset of S containing all items where the value of a is ia . This

computation does not, in itself, produce anything new. However it allows to

measure the gain ratio, defined as (|) (,) / ()a aGainRatio S S IG S a H S , where

()aH S is the entropy of instances only relative to feature a . It measures the

information gain of feature a relative to the "raw" information of the aS

distribution. By using gain ratio instead of plain conditional entropy, C4.5 reduces

the problem of artificially low entropy values such as was seen with social security

number.

 The decision trees generated by C4.5 are statistical classifiers for single-label

classification, as each instance will be ultimately labeled as belonging to one

class. Clare et. al.[36] extends the C4.5 algorithm in order for multi-label

classification by modifying the entropy calculation:

2 2

1

() { () log () (1 ()) log (1 ())}
n

s s s s

j

H S f j f j f j f j


    

where ()sf j denotes the frequency of the label value j .

 Entropy is a measure of the amount of uncertainty in the dataset. It can also

be thought in another way: given an instance of the dataset, how much

information is needed to describe that instance? This is equivalent to asking how

many binary bits are needed to describe all the labels it belongs to. The alternated

formula shown above is a sum of the number of bits needed to describe

26

membership or non-membership of each label.

 To illustrate this idea, consider a bit string with four labels: { , , , }a b c d . An

instance belonging to label b and d could be represented by four bits 0101.

However, this is more than enough if we know the distribution of the labels. For

example, what if we already know that every instance belongs to label b ? Then

the second bit could simply be dropped and only three bits are needed. In other

words, we need 0 (log 1) bits to represent if an instance belongs to label b . What

if we know 75% of the instances belong to label b ? Then we know intuitively an

instance is more likely to belong to label b than not. The amount of information

gained by actually knowing whether a particular instance belongs to label b or

not will be log1 log0.75（ ） and log1 log0.25（ ）, hence the expected amount of

information gained is:

0.75 log1 log0.75 +0.25 log1 log0.25 =0.81   （ ） （ ）

It means we actually only need 0.81 bits to represent the information about the

membership or non-membership of label b for an instance. This rule can be

generalized for the whole label set, which leads to the entropy formula for

multi-label classification introduced earlier. With the alternated entropy, it also has

to allow leaves of the trees to potentially be a set of labels, i.e. the outcome of a

classification of an instance can be a set of labels.

2.2.2.2. Boosting

Boosting is another powerful technique for machine learning. The basic idea of

boosting is to combine a series of 'base' classifiers to produce a 'committee'

27

1()y x 2 ()y x ()My x

1

() sign(())
M

M m m

m

Y y


 x x

whose overall performance can significantly outperform any of the base classifiers,

even the base classifiers (also called weak learners) only perform slightly better

than random. Boosting was originally meant to solve classification problems, it

can also be adapted to solve regression problems.

Figure 2 Framework of AdaBoost

 There are other machine learning methods which also construct a committee

to take the average predictions of a group of individual models, such as bootstrap

bagging[37]. The major improvement of boosting over such methods is that in

boosting, the individual base classifiers are trained in sequence. Moreover, each

base classifier is associated with a data point set in which each data corresponds

to a weighting coefficient that is iteratively adjusted according to the performance

of the previous classifiers. The principal updating idea is that if a point is classified

wrongly by the current base classifier, its weight will increase when the next

classifier in the sequence is trained. The learning phase is finished after all the

base classifiers are trained. In the generalization phase, the label of a new

(1){ }nw

(2){ }nw

(M){ }nw

. . . .

28

instance is decided by taking the weighted majority of votes from the base

classifiers. The basic framework of boosting is shown in Figure 2, which is

adapted by the author from [45].

 The most widely used boosting algorithm is AdaBoost (Adaptive Boosting)[38].

Consider a binary label classification problem: training data instance consists of

input feature vectors 1 2, ,...., Nx x x with corresponding binary labels 1 2, ,...., Nt t t

where { 1,1}nt   . Each instance, which can be seen as a data point, is

associated with a corresponding weighting coefficient nw . Suppose a base

classifier is already available, which maps an instance to one of the two labels:

() { 1,1}y  x . The precise form of AdaBoost algorithm is given below:

1. Initialize the data weighting coefficients { }nw by setting (1) 1/nw N for

1,2,....,n N .

2. For 1,2,....,m M :

a) Train a classifier ()my x with the training data by minimizing the weighted

error function:

()

1

((),)
N

m

m n m n n

n

E w F y t


 x

where
0 ()=

((),)=
1 ()

m n n

m n n

m n n

y t
F y t

y t






x
x

x

，

，

b) Evaluate
()

1

m
m N

m

n

n

E

w








 and then compute

1
ln{ }m

m

m









c) Update the weight coefficients as follows:

29

(1) () exp{ ((),)}m m

n n m m n nw w F y t  x

3. Make predictions on new instances as follows:

1

() sign(())
M

M m m

m

Y y


 x x

 As can be seen, a new base classifier is trained with a data set whose

weighting coefficients are updated based on the performance of the previously

trained base classifier so that former misclassified data points are given greater

weight.

 AdaBoost has been studied extensively and has been shown to perform well

on standard machine-learning tasks. Schapire[39] describes how this algorithm

can be extended and generalized in order to address text-categorization task,

which is usually a multi-class, multi-label classification problem. Two extensions

of the AdaBoost algorithm are specifically intended for multi-class, multi-label data:

the first extension tries to predict a good approximation of the set of labels

associated with a text document; and then the second extension tries to rank the

labels so that the correct labels will receive the highest rank.

 The first extension is called AdaBoost.MH. It is actually a natural reduction of

the multi-class, multi-label data to binary data, which has been introduced earlier

(Binary Relevance): each training instance ,x Y（ ）is mapped to k binary labeled

examples, where k is the size of all possible labels, depending on whether or not a

certain label is in the current label set Y. Then the original binary AdaBoost can be

applied to train the derived binary data. The space and time per-round (each call

of weak learner) complexity is ()O mk , where m is the size of training set. Similar

30

to the original AdaBoost algorithm, AdaBoost.MH maintains a weight distribution

over X Y , and adjusts the weights at each boosting step so that instances that

are misclassified by the hypothesis in the previous round have a higher weight in

the current round.

 It is still unclear how to quantify the error. In single label classification this is

simple as there is only one output label for one instance, therefore either it is

completely right or completely wrong. It is more complicated in multi-label

classification as the classification can be "partly" correct. There are a couple of

ways to evaluate the error depending on the specific application to deal with. Here

AdaBoost.MH considers Hamming Loss, which takes into account prediction

errors (an incorrect label is predicted) and missing errors (a correct label is not

predicted). Suppose the hypothesis function is : 2Yh X , the Hamming Loss

error over a training sample set S is defined by:

,

1
(,) (|| () || || () ||)H i i i i

i l

E h S l h x l Y l h x l Y
km

       

where the factor
1

k
 normalizes the error in the interval [0, 1]; and || ||a equals 1 if

a holds and 0 otherwise. This idea can be further generalized to evaluate

prediction error for new unforeseen instances, if a target function : 2Yc X is

known.

 The second extension is called AdaBoost.MR. It bears the same framework

as the first extension with a different goal to minimize the average fraction of

misordered crucial pairs which are relative orderings of 0l , 1l , for which one of

them is in the current label set while the other is not. Suppose with respect to a

31

labeled observation ,x Y（ ）, 0l Y and 1l Y , a classification rule f misorders

the crucial pair if 1 0(,) (,)f x l f x l so that f fails to rank 1l over 0l . The space

and time-per-round complexity is the same as the first extension.

2.2.2.3. k Nearest Neighbor

Both decision tree based and boosting based approaches try to construct a

general hypothesis function solely based on learning the training set, without any

knowledge about the input during the generalization phase. Such methods are

called eager learning in artificial intelligence. In contrast, there are methods called

lazy learning in which "generalization beyond the training data is delayed until a

new query of unforeseen instance is made for classification"[41]. The advantage

of lazy learning is that the hypothesis function is approximated locally, therefore

the new query is more closely correlated to some particular training data

instances. The disadvantage is that since the function abstraction is limited on a

local scale concerning only a small group of data points, noise or abnormal

instances can sometimes significantly affect generalization performance. And for

the same reason it requires large space to store enough training data in order to

achieve good performance. This also leads to the fact that lazy learning methods

have a shorter training phase, but take longer to generalize. Therefore lazy

learning are most useful for large data with few features.

 The representative of lazy learning approach is k Nearest Neighbor (k-NN). It

classifies new instances based on closest training examples in the feature space:

the label of a new instance is determined by the votes of its neighbors, that is, the

32

instance is assigned the most common label among its k nearest neighbors,

where k is an small integer. The k-NN algorithm is one of the simplest machine

learning algorithms[42].

 There are k-NN based approaches that have been proposed for multi-label

classification in combination with either problem transformation or algorithm

adaption introduced earlier. For example, BRkNN conceptually uses Binary

Relevance to transfer the problem and then takes k-NN method as a classifier.

The author in [43] points out two possible problems of directly combining the

implementation of them. One of them is that simply applying k-NN on the basis of

Binary Relevance would incur a time cost |L| times that of k-NN algorithm, where

L is the size of all possible labels. This could be crucial in domains with a large set

of labels and strict requirements for response time. Another problem is that since

Binary Relevance trains every label independently, it is possible that an instance

turns out not to belong to any label. The author then proposes two extensions of

BRkNN to address these two problems.

2.2.2.4. Support Vector Machine

Support Vector Machine (SVM)[20] is another supervised learning approach for

both classification and regression. An SVM training algorithm builds a model

which is an representation of the examples as points in space, marked as

belonging to one of two categories. The example points are then mapped in such

a way that separate categories are divided by a clear gap that is as wide as

possible. In the generalization phase, new examples are predicted to belong to a

category based on which side of gap they fall on.

33

|| ||

b

w

w

1H

2H

1d 2d

Figure 3 Support Vector Machine

 Suppose S is the training set, whose size is m , in which each input ix has

n attributes, therefore can be seen as a point in n dimensional space and is

labeled as two classes: 1iy   or 1iy   . Assume the data is linearly separable,

which means a line can be drawn on the graph of 1x vs. 2x separating two

classes when 2n  and a hyperplane on graphs of 1 2, ,...., Ax x x for when 2n  ,

shown in Figure 3 (this example and the corresponding figure are adapted by the

author from [54]).

 The hyperplance can be described by 0b  w x where w is normal to the

hyperplane and
|| ||

b

w
 is perpendicular distance from the hyperplane and the

origin. Support Vectors are example points closest to the separating hyperplane

and the aim of Support Vector Machine is to orientate this hyperplane so that it is

as far as possible from closest members from both classes. As shown in Fig. 8,

implementing a SVM can be reduced to the selection of w andb to fix the

34

hyperplane so that:

1 for 1

1 for 1

i i

i i

b y

b y

     

     

x w

x w

which can be combined into one formula:

() 1 0 i iy b i    x w

Support Vectors are the points which lie on two planes 1H and 2H . The

distances from 1H and 2H to the hyperplane are 1d and 2d , which are

equivalent to each other. This distance is called SVM's margin. To orientate the

hyperplane so that the Support Vectors are as far away as possible means SVM's

margin needs to be maximized.

 It can be shown by vector geometry that the SVM's margin is equal to
1

|| ||w
.

Maximizing this objective function with constraints that the hyperplane separates

points of distinct labels leads to:

min|| || such that () 1 0 i iy b i    w x w

This can be transformed into a Quadratic Programming problem:

21
min || || s. t. () 1 0

2
i iy b i    w x w

To solve this we need to minimize:

2

1 1

1
|| || ()

2

m m

P i i i i

i i

L y b 
 

     w x w

where i are Lagrange multipliers and 0i  . Taking derivatives on w and b ,

and then substituting the results (
1

m

i i i

i

y


w x and
1

0
m

i i

i

y


) back we have:

35

1 , 1

1
max s. t. 0 , 0

2

m m

D i i j i j i j i i i

i i j i

L y y i y   
 

      x x

which leads to:

1 1

1
max[] s. t. 0 , 0

2

m m
T

i i i i

i i

i y


  
 

    α Hα

where
ij i j i jH y y x x . This is a convex quadratic optimization problem, therefore a

QP solver can be run to return  , and then w can be deducted from the former

derivative conditions. To determine b , a Support Vector has the form

() 1s sy b  x w , and therefore:

() 1s m m m s

m S

y y b


   x x

where S denotes the set of indices of the Support Vectors. S is determined by

finding the indices i where 0i  . Since 2 1sy  , we have:

2 ()s m m m s s

m S

s m m m s

m S

y y b y

b y y









  

  





x x

x x

Instead of using an arbitrary Support Vector sx , it is better to take an average

over all of the Support Vectors in S :

1
s m m m s

s S m SS

b y y
N


 

    x x（ ）

Once w and b are determined, the hyperplane is fixed. For a new instance

point 'x is classified by evaluating ' sgn(')y b  w x . This algorithm can be

extended to handle the data that is not fully linearly separable with simple

adaption.

 The matrix H which plays a crucial role in the algorithm is created from the

36

dot product of the input variables:

(,) T

ij i j i j i j i jH y y k   x x x x x x

(,)i jk x x is an example of a family of functions called Kernel Functions ((,)i jk x x

is known as the Linear Kernel). The set of kernel functions is composed of such

functions which are all based on calculating inner products of two vectors. The

idea is that if the functions can be recast into high dimension space by some

non-linear feature mapping function ()x x , only inner products of the mapped

inputs in the feature space need to be determined without explicitly calculating  .

This is called the Kernel Trick[54].

 This Kernel Trick is useful to deal with classification problems that are

completely not linearly separable in the space of the inputs x , as they might be

separable in a higher dimensionality feature space given a suitable mapping

function ()x x . There are a few kinds of kernel functions. For example,

2

2

|| ||
()

2(,)=

i j

i jk e 




x x

x x is known as Radial Basis Kernel; (,)=()b

i j i jk ax x x x + is

known as Polynomial Kernel; (,)=tanh()i j i jk a b x x x x is known as Sigmoidal

Kernel, where a and b are parameters that define the kernel's behavior. By

means of kernel functions the non-linearly separable input data can be made

separable, and therefore the SVM method can be applied.

 The SVM method can also be combined with BR serving as a basic binary

classifier like KNN in a similar way as introduced before. Several ideas are

proposed in [46] to improve the margin. First the dataset is extended to have

37

additional features which are actually predictions of each binary classifier at the

first round. The new binary classifiers are trained on the extended dataset so that

the extended BR takes into account potential label dependencies. And then

negative training examples of a complete label are removed if it is very similar to

the positive label. Finally similar negative examples within a threshold distance

from the learned decision hyperplane are also removed to build better models

especially in the presence of overlapping classes.

38

Chapter 3

Multi-label Bayesian Decision Trees

As introduced in Chapter-1, the objective of BrainMap Tracker is to annotate the

cognitive neuroimaging papers according to CogPO. The essence of this task is

still text mining, or more specifically, document classification, but it is also different

from normal cases that the target annotations are related to each other and

organized in a pattern predefined by the ontology.

 We analyzed the results of the NCBO annotator, which also serves as our

baseline of development shown in the Chapter-4, and found that its performance

on different CogPO components differ significantly. The NCBO annotator captures

ontological terms for certain components (for example, Stimulus Type) quite

effectively, while for some components it achieves almost nothing (for example,

Stimulus Modality). This indicates that the internal difficulty to capture the terms

corresponding to different components also differs significantly.

 An important reason is that the current NCBO annotator is based on pure text

matching. It often fails to identify the correct ontological term when there are a

number of possible alternatives available for describing a concept, and also when

a concept is hard to be explicitly expressed in one single word and therefore the

intent of the author is usually hidden deep in the meaning of the context . This

variety among different components indicates a decision tree might be useful

because we can prioritize those components which tend to give us accurate

predictions and effectively narrow down the scale of the problem. On the other

hand, in regards to the existing classifying approaches, Naive Bayes is

39

considered the best for document classification[47]. On the basis of these

intuitions we propose a combined model of decision tree and Naive Bayes

classifier for solution of the BrainMap Tracker.

 This chapter is the result of a group effort. The basic framework of the

algorithm is mainly proposed and implemented by my colleague, Thomas B.

Jones. The author and another colleague, Chayan Chakrabarti, contributed to the

solution by taking part in the group discussions and the algorithm implementation.

In particular, the author implemented a component which evaluates the

performance of our approach in terms of f-scores, and helped my colleagues by

correcting a few bugs during programming.

3.1. Naive Bayes classifier

Naive Bayes classifier is the simplest instance of a probabilistic classifier. It is

based on the assumption that for a given class the features of the class are

independent of each other. The model can be represented as 1(| ,....,)np C F F ,

where C is the class variable, conditional on features 1F through nF . According

to the Bayes' theorem:

1
1

1

() (,...., |)
(| ,....,)

(,....,)

n
n

n

p C p F F C
p C F F

p F F


The denominator is effectively constant since it does not depend on C and the

values of 1F through nF are given. Therefore the numerator is effectively

equivalent to the joint probability model 1(, ,....,)np C F F , which can be repeatedly

rewritten as follows:

40

1 1

1 2 1

1 2 1 3 1 2

(, ,....,) () (,...., |)

 () (|) (,...., | ,)

 () (|) (| ,) (,...., | , ,)

n n

n

n

p C F F p C p F F C

p C p F C p F F C F

p C p F C p F C F p F F C F F







1 2 1 1 2 1 () (|) (| ,).... (| , , ,....,)n np C p F C p F C F p F C F F F 

Now the 'naive' feature independence assumption comes into play: if iF is

conditionally independent of jF , as long as i j given the class C , it means:

(| ,) (|)i j ip F C F p F C

for i j , therefore the formal expression of the joint model can be further written

as:

1 1 2

1

1

(| ,....,) () (|) (|).... (|)

 () (|)

1
 = () (|)

n n

n

i

i

n

i

i

p C F F p C p F C p F C p F C

p C p F C

p C p F C
Z







 



where Z is a scaling factor dependant only on 1,...., nF F , hence a constant if the

value of the feature variables are known.

 The Naive Bayes classifier applies a decision rule to this probability model.

One common rule is to select the hypothesis that has the highest probability,

which is known as maximum a posteriori (MAP) decision rule. The classifier works

as follows:

1

1

classify(,....,) arg max () (|)
n

n i i
c i

f f p C c p F f C c


   

In spite of the oversimplified assumption, naive Bayes classifiers work surprisingly

well in many real world situations because of several properties. In particular, the

decoupling of the class conditional feature distributions means each distribution

41

can be independently estimated as a one dimensional distribution. This helps

alleviate problems stemming from dimensionality, such as the need for data sets

that scale exponentially with the number of features.

3.2. Naive Bayes for document classification

All the machine learning methods introduced above have been applied to address

the challenge of automatic document classification. Among them, Naive Bayes

text classifier has been widely used because of its simplicity in both the training

and the classifying stages. It allows each feature attribute to contribute toward the

final decision equally and independently from other feature attributes, which

makes it computationally more efficient compared to other text classifiers.

 A typical framework to generate a document classifier model is shown below

in Figure 4, which is adapted by the author from [47]. The input dataset is the raw

documents, each of which consists of a set of words serving as feature attributes.

All words ought to be found from a 'dictionary', which can be considered as the

whole feature space.

 The whole process begins with data preprocessing with the model evaluation,

which usually involves removing stop words and stemming. Removing stop words

means taking out of the words from the document whose presence is necessary

for grammatical correctness but contains no substantial information and hence

useless for classifying the document. Such words could be 'a', 'the', 'in', 'at', and

so forth. Stemming means combining words which carry similar meanings but in

different grammatical forms into one attribute. For example, 'soldiers' is the plural

42

No

form of 'soldier', but both of them describe the same entity.

Figure 4 Flow of document classification

 The next step after preprocessing is feature selection, which is one of the

most important steps for data mining. It means selecting a subset of the feature

attributes which are relevant to a given analysis task. The general strategy is to

select subsets, learn a model on the subset and evaluate the performance of the

learned model. The subset on which the highest performance is achieved is then

selected as input to the subsequent steps. There are different ways as for how

subsets are selected. For example, the brute force strategy simply evaluates the

performance of all possible subsets; and forward selection uses one attribute at

Dataset
Preprocessing Feature

Selection

Classifier

Selection

Model

Evaluation

Phase

good

enough?

Classifier Generalization

43

the beginning and adds additional attributes heuristically until performance is no

longer improved. Several feature selection methods specifically dedicated to text

mining have been proposed and studied[48][49].

 After preprocessing and feature selection, the numbers of feature attributes

should reduce significantly. The next step is to apply the classifier to the dataset.

Since it is a general workflow of document classification, we can actually apply

any classifier here, like Nearest Neighbor, Decision Tree, or SVM. Here we focus

on Naive Bayes, which is used because of its simplicity and good performance in

text and document classification[50].

 The way naive Bayes classifier works with document classification is as

follows: consider the problem of classifying a document into a class C or C . A

document can be modeled as a set of words where the probability that the i th

word of a given document occurs in a document classified as C can be written

as (|)ip w C . Here we assume that words are randomly distributed in the

document, which means they are independent of the length of the document, and

position within the document with respect to other words. Therefore the probability

that a given document D contains all the words iw , given a class C is

(|) (|)i

i

p D C p w C , while what we are interested in is the probability of a given

document belonging to a class, which is (|)p C D . According to Bayes' theorem:

()
(|) (|)

()

p C
p C D p D C

p D


Since this is a binary classification problem, there are only two classes C and

C , therefore:

44

()
(|) (|)

()

()
(|) (|)

()

i

i

i

i

p C
p C D p w C

p D

p C
p C D p w C

p D




  





Combining them we have:

(|)(|) ()

(|) () (|)

i

i i

p w Cp C D p C

p C D p C p w C


  


The exact value of (|)p C D and (|)p C D can be computed because of the

fact that (|) (|) 1p C D p C D   . For classification, if (|) (|)p C D p C D  then

document D is classified as C , otherwise it does not belong to C . This basic

naive Bayes classifier for binary classification can be extended to multi-class,

multi-label cases using the problem transformation methods introduced before.

 After classification the technique of F-Measure introduced earlier can be

applied to evaluating the performance of the model. If it is not good enough, the

model can be adjusted by repeating the process from feature selection to model

evaluation again, until a satisfactory result is obtained.

3.3. Multi-label Bayesian Decision Tree

On the basis of the naive Bayes classifier and the decision tree, we propose a

combined model, called Multi-label Bayesian Decision Tree. It first trains a naive

Bayes classifier on each component of CogPO, and then depending on the

performance of the classifiers a decision tree is built, which decides the label for

each component in the order of prediction confidence. The idea is to take

advantage of the components whose labels are easy to classify, narrow down the

45

input dimension space, in order to help with those components whose labels are

difficult to decide. This strategy exploits the internal relationship among the

component labels to improve the accuracy of classification

 Suppose we have a training set S , composed of abstracts annotated for

each component in the component set C by human experts. We train a

multi-label naive Bayes classifier ,c SB on each component c . That is, ,c SB only

focuses on what labels the abstracts are annotated for component c , and ignores

the rest components. In order to test the performance for each of the classifiers

,c SB we split the training examples into k subsets randomly and then use one of

them for evaluation purpose and the rest for training the classifier. This process is

repeated for k times until each subset has been used as a testing set, and then

the performance of the classifier is taken from the average of the k trials. This is

called K-fold cross validation[51]. We apply K-fold cross validation to every

component, therefore obtain C refined naive Bayes classifiers corresponding to

each component.

 Suppose the refined naive Bayes classifiers are ordered by performance in

terms of f-score from highest to lowest:
1 2, , ,,

mc S c S c SB B B,...., , where m is the

size of the component set C . The construction of a multi-label decision tree

works as follows: each tree node represents the component labels that have

already been decided. Therefore the root has no labels because nothing has been

decided yet. To start we pick the classifier which has the highest f-score and

associate it with the root of the tree,
1 ,c SB . The root has

1c
n children, where

1c
n

corresponds to the size of the label set of the component 1c , and each child

46

corresponds to one label of the label set. Then each child is associated with a

classifier
2 ,c SB , trained to classify component 2c , with a subset of the training

examples, in which each abstract has component 1c classified as the label that

the current child contains (It is possible that an abstract has multiple labels for one

component. In this case as long as the label represented by the current child is

contained, the abstract is included in the training set). In this way the labels for

component 2c are decided. Each child then has
2cn children, and

2cn is the

size of the label set of the component 2c . Each of these
2cn children has two

labels, one for component 1c and the other for component 2c , and associated

with another basic, multi-label naive Bayes classifier, trained by the example

abstracts containing labels of the current child for component 1c and 2c , in order

to classify component 3c . Therefore on this level labels for 3c are decided. This

process is repeated until labels for each component are decided and finally a

decision tree of | |C levels is constructed. Here the training phase is completed.

 In the generalization phase, when classifying a new abstract, we first use the

multi-label naive Bayes classifier associated with the root,
1 ,c SB , to decide the

labels of component 1c . Suppose it returns a label set 1C which contains labels

1 2, ,...., dl l l . We traverse down the tree to the d children corresponding to the

labels. On the next level, we obtain predictions for classifying component 2c ,

based on the conditions of the labels decided for 1c , and then go down one more

level to classify 3c with the information of 1c and 2c , and so forth. On the bottom

47

level we collect all the labels on the traversed paths and the classification is

complete. The formal description of the algorithm is as follows:

 Algorithm Multi-Label Bayesian Decision Tree:

 Input: an unclassified document D , a Multi-Label Bayesian Decision Tree T

 Output: label vector in multiple components DL

 ()t Root T

 SearchList NULL

 while t NULL

 : ()D D tL L B D

 for ()tl B D

 : (,)SearchList SearchList Child l t

 end

 [0]t SearchList

 :x SearchList SearchList

 end

 return DL

 In our case, the components set has CogPO's five components: stimulus type,

stimulus modality, response type, response modality and instructions:

{ , , , , }C ST SM RT RM I

Each of them has a different set of possible labels. The complete lists of these five

label sets can be found in Appendix B.

48

Chapter 4

Experimental Results

To build the training data set we select 247 abstracts of academic research

papers in the brain mapping field which have been annotated manually with

CogPO (Cognitive Paradigm Ontology). This collection of abstracts is organized

as a table called the corpus, in which each entry corresponds to one abstract,

containing its basic information such as the identification number (ID) in the

PubMed database, what experiments it deals with, when and in which journal it is

published, who the author is, and the annotation results which consist of ten

CopPO components: "Diagnosis", "Stimulus Modality", "Stimulus Type",

"Response Modality", "Response Type", "Instruction", "Context", "Paradigm

Class", "Behavioral Domain", and "Prose Description". Each component contains

one or more terms as its labels. The most crucial five of them (Stimulus Modality,

Stimulus Type, Response Modality, Response Type, Instruction) are selected for

our automatic classification task. A full list of the abstracts with information of

these five components can be found in Appendix A.

 This chapter is the result of a group effort. Section 4.1 is put together from the

results of NCBO annotator and the author's implementation of f-score evaluation.

The statistics in section 4.2 for MLBT result from the implementation of my

colleague Thomas B. Jones. The adaption of MLBT* is implemented and tested

by the author.

4.1. Baseline

49

The collection of abstracts including their titles and keywords are annotated by

NCBO's standard annotation tool using CogPO. The results of CogPO are

collected and compared with the manual annotations, as shown in Figure 5.

Figure 5 Annotation results from NCBO

 Among those 165 annotation results, 120 of them fail to produce any term that

matches the manual annotation. This means the terms returned by the NCBO

annotation are not found in the corresponding manual annotations. These 120

results are considered as false positive. For instance, the annotation result of the

abstract with ID 9862553 contains a term "function". This term is searched in the

corresponding entry in the corpus among the components of CogPO ontology

listed above. If none of the field values contains the word function, it is considered

as a false positive result. Some of such terms are common words like "function",

which have little to do with the ontology; while some of them are very likely

ontology terms but without a match in the corpus, like "speech", which could be

the value of "Response Type".

 Therefore, 45 of the 165 non-empty annotation results produce at least one

negative

false positive

positive

50

term that matches the corresponding manual annotation. This means the term

could be found in the content of one or more of the manually annotated CogPO

components, which are “Diagnosis”, “Stimulus Modality”, “Stimulus Type”,

“Response Modality”, “Response Type”, “Instruction”, “Context”, “Paradigm Class”,

and “Behavioral Domain”. Since one abstract can have multiple different

annotation terms, it can also have multiple of them correctly annotated. For

instance, abstract of ID 16497485 has term "Recall" and "Words" both correctly

annotated. Actually this is the only case. Therefore there are 46 correct

annotations in total. On the other hand one correctly annotated term can match

multiple CogPO components simultaneously. For instance, abstract of ID

10080553 has the term "recall" correctly annotated which could be found in both

"Instruction" and "Paradigm class".

Figure 6 Distribution of correct annotations

 The distribution of the terms among these components is in Figure 6. As can

be seen, most terms correctly annotated come back from “Stimulus Type”. Such

terms are usually “words”, “pictures” or “faces”. In comparison with false positive

0

10

20

30

40

50

Distribution

CogPO
Components

matches

51

terms, the set of correctly annotated terms is much smaller, which has only 6

terms.

 Among all CogPO components the most important ones which decide the

accuracy of an annotation attempt are "Stimulus Modality", "Stimulus Type",

"Response Modality", "Response Type" and "Instruction". Each annotation result

covers predictions for all of these five components, and each of them has a

distinct set of terms as for what an annotation result could be. The calculated

F-measure scores for each of those components are listed below:

 Instruction Stimulus

Modality

Stimulus

Type

Response

Type

Response

Modality

F-measure 0.00425 0 0.00941 0.00223 0

Table 7 F-Scores of NCBO annotation

ST>SM>RT>RM>I Instruction Stimulus

Modality

Stimulus

Type

Response

Type

Response

Modality

F-measure 0.495 0.816 0.463 0.689 0.757

Standard deviation 0.126 0.067 0.133 0.114 0.068

Table 8 F-Scores of Multi-label Bayesian Decision Tree

4.2. Performance of The Multi-label Bayesian Decision Tree

We implemented our Multi-label Bayesian Decision Tree (MLBT) on the basis of

the multi-label naive Bayes classifier provided by Mallet (Machine Learning for

Language Toolkit)[52], a Java-based package for statistical natural language

processing, document classification, clustering, topic modeling, information

extraction, and other machine learning applications to text. For K-fold cross

52

validation we set 5k  . The components are ordered as {ST, SM, RT, RM, I} so

that Stimulus Type is set as the root of decision tree. The performance on the

same benchmark is shown in Table 8.

 Comparing Table 8 with Table 7, it is obvious MLBT significantly outperforms

NCBO's annotator. For components Stimulus Modality and Response Modality, it

produces correct labels in most cases; for the rest three components which have

large label sets, it makes the right decisions in a fair amount of cases. On the

other hand, NCBO's annotator achieves almost nothing. Appendix B lists

F-scores of each label in each component.

 There is much room to improve on the basis of NCBO's annotator, and it does

not necessarily justify our approach. To show MLBT is an effective solution, we

need to look further into the alternatives.

 Instruction Stimulus

Modality

Stimulus

Type

Response

Type

Response

Modality

SM>ST>RT>RM>I 0.476 0.828 0.461 0.678 0.735

RT>ST>SM>RM>I 0.487 0.791 0.426 0.726 0.769

RM>ST>SM>RT>I 0.484 0.778 0.420 0.714 0.776

I>ST>SM>RT>RM 0.519 0.830 0.406 0.686 0.759

ST>SM>RT>RM>I 0.495 0.816 0.463 0.689 0.757

Average 0.492 0.809 0.435 0.699 0.759

Non-hierarchical 0.519 0.828 0.463 0.726 0.776

Table 9 MLBT with different orders of classification on components

 First, we are interested in how the order of classification on components

affects the annotation performance. In Table 9, the f-scores of a group of MLBTs

are shown with different components selected as the tree root and the rest in the

53

same order as Table 8 (the standard deviations are omitted and the f-scores of the

original order are also listed for comparison).

 Instruction Stimulus

Modality

Stimulus

Type

Response

Type

Response

Modality

ST*>SM>RT>RM>I 0.546 0.856 1.000 0.708 0.772

SM*>ST>RT>RM>I 0.543 1.000 0.551 0.732 0.782

RT*>ST>SM>RM>I 0.544 0.817 0.446 1.000 0.956

RM*>ST>SM>RT>I 0.568 0.818 0.448 0.915 1.000

I*>ST>SM>RT>RM 1.000 0.864 0.532 0.844 0.893

Average 0.550 0.839 0.494 0.800 0.851

Original Average 0.492 0.809 0.435 0.699 0.759

Non-hierarchical 0.519 0.828 0.463 0.726 0.776

Table 10 Enhanced MLBT with one component manually annotated

 As can be seen in the table, no order outperforms all the others on every

component. This indicates the order of classification on the components has no

significant impact on the annotation performance. Another fact that can be

observed is that the component which is classified first at the root always gives

the best annotation performance among all the orders. Note that when the

classifier associated with the root is trained on a certain component, the input

training examples are the whole set of abstracts, unlike those classifiers trained

on lower tree levels only with a subset of the abstracts. This means for the

component trained on top the annotation performance is equivalent to that of

applying a basic naive Bayes classifier to the component independently, therefore

the f-scores of classifying the components one by one in a flat, non-hierarchical

manner with naive Bayes can also be known from this figure, summarized in the

last row of Table 9. Although MLBT seems not to gain any advantage over the

common, non-hierarchical approach, Table 10 demonstrates that an 'enhanced'

version of MLBT (MLBT*) with a little adaption can significantly outperform it.

54

Figure 7 Comparisons between MLBT and enhanced MLBT (MLBT*)

 Our enhancement is to call manual annotation at the root in the generalization

phase. It means when classifying a new abstract, instead of using a basic naive

Bayes classifier to classify an abstract on the component at the root, we pull the

'correct' labels for the corresponding component directly from manual annotation

results and feed them into the decision tree. The rest of the process is the same

as the original MLBT approach. The new f-scores are shown in Table 10. Since

we feed the correct labels directly for the first component (followed with a '*'), the

f-scores for the components at the root in each order is exactly 1, which are left

out of calculating the average score. As can be seen in Figure 7, MLBT*

outperforms both the original MLBT approach as well as the common

non-hierarchical way on every component with a clear margin. These results

show that in our classification problem it is possible to explore the label

dependencies among different components and improve the automatic annotation

performance by using the multi-label Bayesian decision tree approach.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

MLBT* (AVG)

MLBT (OPT)

55

Chapter 5

Conclusions and Future Work

Ontologies can serve to organize concepts and structure information in a specific

domain. It provides people with insight and exposes the nature of the information

to be processed. Combined with conventional machine learning techniques, the

effectiveness and efficiency of knowledge processing information can be

significantly improved.

 We propose a stochastic approach using Multi-label Bayesian Decision Trees

which integrates naive Bayes classifiers with decision trees to automatically

annotate neuroimaging literatures in biomedical science and the Cognitive

Paradigm Ontology. It enables biomedical scientists to find research papers of

their interest efficiently, therefore saving them work in manual literature reading

and categorization.

 Our experiments show that associating the annotation process with the

ontology leads to much better performance in automated annotation in

comparison with contemporary standard annotators such as the Stanford NCBO

annotation tool, which are usually based on pure flat text mining methods. By

working in the framework of an ontology, our approach takes advantage of the

inherent relationship among concepts in the knowledge domain and narrows

down the input sample space to produce better prediction on labels. Although our

algorithm cannot completely replace a human annotator, it can effectively reduce

the manual effort made on the annotation process by a human expert.

56

 With Brainmap Tracker large-scale identification of studies examining brain

activation patterns is possible. In the next step the algorithm developed can be

applied to the entirety of abstracts indexed on PubMed, to search and retrieve

targeted subsets of studies that are candidates for meta-analysis. Furthermore,

by identifying coherent groups of studies suitable for neuroimaging meta-analysis,

more versatile tools can be implemented to automate extraction of neuroimaging

results, add structured information regarding the experimental methods for better

integration and interpretation.

57

Reference

[1] www.ncbi.nlm.nih.gov/pubmed (2012)

[2] Doms A., Schoeder M.: GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids

Research, vol. 33, Web Server issue (2005).

[3] en.wikipedia.org/wiki/Information_retrieval (4.2.2013)

[4] en.wikipedia.org/wiki/F-score (4.2.2013)

[5] en.wikipedia.org/wiki/Precision_and_recall (4.2.2013)

[6] en.wikipedia.org/wiki/Text_mining (4.2.2013)

[7] en.wikipedia.org/wiki/Pattern_recognition (4.2.2013)

[8] en.wikipedia.org/wiki/Natural_language_processing (4.2.2013)

[9] en.wikipedia.org/wiki/Neuroimaging (4.2.2013)

[10] en.wikipedia.org/wiki/Brain_mapping (4.2.2013)

[11] brainmap.org (4.2.2013)

[12] en.wikipedia.org/wiki/Ontology (4.2.2013)

[13] www.cogpo.org (4.2.2013)

[14] www.bioontology.org (4.2.2013)

[15] en.wikipedia.org/wiki/Machine_learning (4.2.2013)

[16] en.wikipedia.org/wiki/Supervised_learning (4.2.2013)

[17] en.wikipedia.org/wiki/Unsupervised_learning (4.2.2013)

[18] en.wikipedia.org/wiki/Statistical_classification (4.2.2013)

[19] McCallum A. K.: Multi-label text classification with a mixture model trained by EM. Proceedings

of AAAI' 99 Workshop on Text Learning, pp. 1-7 (1999).

[20] Cortes C., Vapnik V.: Support Vector Networks. Machine Learning, 20(3), pp. 273-297 (1995).

[21] en.wikipedia.org/wiki/Naive_Bayes (4.2.2013)

[22] Tsoumakas G., Katakis I.: Mining Multi-label Data. Maimon O., Rokasch L.(Ed.), Springer, 2nd

edition (2010).

58

[23] Chen W., Yan J., Zhang B., Chen Z., Yang Q.: Documentation transformation for multi-label

feature selection in text categorization. Proceedings of 7th IEEE International Conference on Data

Mining, Los Alamitos, CA, USA, IEEE Computer Society, pp. 451-456 (2007).

[24] Read J.: A pruned problem transformation method for multi-label classification. Proceedings of

New Zealand Computer Science Research Student Conference, pp. 143-150 (2008).

[25] Tsoumakas G., Katakis I.: Multi-label classification: an overview. International Journal of Data

Warehousing and Mining, 3(3), pp. 1-13 (2007).

[26] Fürnkranz J., Hüllermeier E.: Preference learning. Künstliche Intelligenz, 19(1), pp. 60-61 (2005).

[27] Brinker K., Fürnkranz J., Hüllermeier E.: A unified model for multilabel classification and ranking.

Proceedings of the 17th European Conference of Artificial Intelligence, pp. 489-493 (2006).

[28] Fürnkranz J., Hüllermeier E.: Pairwise preference learning and ranking. Proceeding of the 14th

European Conference on Machine Learning, pp. 145-156 (2003).

[29] Har-Peled S., Roth D., Zimak D.: Constraint classification: a new approach to multiclass

classification and ranking. Advances in Neural Information Processing Systems 15 (2002).

[30] en.wikipedia.org/wiki/Decision_tree_learning (4.2.2013)

[31] en.wikipedia.org/wiki/Information_entropy (4.2.2013)

[32] en.wikipedia.org/wiki/Information_gain_in_decision_trees (4.2.2013)

[33] en.wikipedia.org/wiki/Overfitting (4.2.2013)

[34] Quinlan J. R.: Induction of decision trees. Machine Learning, 1(1), pp. 81-106 (1986).

[35] Quinlan J. R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers (1993).

[36] Clare A., King R. D.: Knowledge discovery in multi-label phenotype data. Proceedings of the 5th

European Conference on Principles of Data Mining and Knowledge Discovery, pp.42-53 (2001).

[37] Breiman L.: Bagging predictors. Machine Learning, 24(2), pp. 123-140 (1996).

[38] Freund Y., Schapire R. E.: A decision theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences, 55(1), pp. 119-139 (1997).

[39] Schapire R.: BoosTexter: a boosting-based system for text categorization. Machine Learning,

59

39(2/3), pp. 135-168 (2000).

[40] Comite F., Gilleron R., Tommasi M.: Learning multi-label alternating decision trees from texts and

data. Proceedings of the 3rd International Conference on Machine Learning and Data Mining in

Pattern Recognition, pp. 35-49 (2003).

[41] en.wikipedia.org/wiki/Lazy_learning (4.2.2013)

[42] en.wikipedia.org/wiki/K-nearest_neighbor_algorithm (4.2.2013)

[43] Spyromitros E., Tsoumakas G., Vlahavas I.: An empirical study of lazy multilabel classification

algorithms. Proceedings of 5th Hellenic Conference of on Artificial Intelligence, pp. 401-406 (2008).

[44] Cristianini N., Shawe-Tayler J.: An introduction to support vector machines: and other

kernal-based learning methods. Cambridge University Press, New York, NY, USA (2004).

[45] Bishop C. M.: Pattern recognition and machine learning (information science and statistics).

Springer (2006).

[46] Godbole S., Sarawagi S.: Discriminative methods for multi-labeled classification. Proceedings of

the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 22-30 (2004).

[47] Ting S. L., Ip W. H., Tsang Albert H. C.: Is Naive Bayes a good classifier for document classification?

International Journal of Software Engineering and Its Publications, 5(3) (2011).

[48] Devi M. I., Rajaram R., Selvakuberan K.: Generating best features for web page classification.

Webnology, 5(1) (2008).

[49] Do T. D., Hui S. C., Fong Alvis C. M.: Associative feature selection for text mining. International

Journal of Technology, 12(4) (2006).

[50] Chakrabarti S., Roy S., Soundalgekar M. V.: Fast and accurate text classification via multiple linear

discriminant projection. The International Journal on Very Large Data Bases, pp. 170-185 (2003).

[51] en.wikipedia.org/wiki/Cross-validation_(statistics) (4.2.2013)

[52] mallet.cs.umass.edu (4.2.2013)

[53] Mitchell T. M: Machine Learning, McGraw Hill (1997)

[54] Fletcher T.: Support Vector Machines Explained. unpublished (4.2.2013).

[55] Jones T, Charkrabarti C, Xu J., Turner M., Luger G., Laird A., Turner J.: Modeling Ontology-Based

60

Annotation Process using a Stochastic Framework, OHBM (2013)

61

Appendix A
Medline Stim Mod Stim Type Res Mod Res Type Instruction

11823267 Visual Words Oral/Facial Speech Name

10080553 Auditory, None None, Words None, Oral/Facial None, Speech Passive/Rest, Recall

11241873 Visual Words Oral/Facial Speech Recall

11466121 Olfactory Odor None None Attend

10739412 None None None None Passive/Rest

11313038 None None None None Passive/Rest

9699694 Auditory Letters, Words None None Generate

10327898 None None None None Passive/Rest

11578663 Visual Words None None Generate

10227106 Auditory, Visual Fixation Point, Letters, Words None None Fixate, Generate

12727696 Visual Shapes Hand Button Press Discriminate, Recall

14638592 Visual Digits Hand Button Press Detect, Recall

11053229 Visual Digits Hand Button Press Detect, Recall

10557338 Visual Letters Hand Button Press Recall

11728837 Visual Letters Hand Button Press Detect, Recall

15099600 Visual Shapes Hand Button Press Detect, Recall

11691686 Visual Digits Hand Button Press Discriminate, Recall

12598724 Visual Pictures Hand Button Press Attend

12606841 Visual Asian Characters None None Generate, Repeat

11431233 Visual Letters Hand Button Press Detect, Recall

12729869 Visual Letters Hand Button Press Discriminate, Recall

12151286 Visual Fixation Point, Letters Hand, None Button Press, None Discriminate, Fixate, Recall

10986548 None None None None Passive/Rest

12714174 None, Tactile Eye Puffs, None None None Attend, Passive/Rest

12946085 Visual Letters Hand Button Press Discriminate, Recall

15050867 Auditory Tones Hand Button Press Recall

15099603 Visual Abstract Patterns Hand Button Press Detect, Recall

9673996 None, Visual None, Pictures Foot, None None, Point Discriminate, Passive/Rest

15741464 Visual Letters Hand Button Press Discriminate

14674880 Visual Letters Hand Button Press Discriminate

15949653 Visual Letters Hand Button Press Discriminate

1410086 None None None None Passive/Rest

11438629 None None None None Passive/Rest

62

1402966 None None None None Passive/Rest

1527602 None None None None Passive/Rest

8772633 None None None None Passive/Rest

12547471 None None None None Passive/Rest

10974961 None None None None Passive/Rest

11384897 None None None None Passive/Rest

15921853 None None None None Passive/Rest

12063157 None None None None Passive/Rest

14706942 None None None None Passive/Rest

11986125 None None None None Passive/Rest

11063978 None None None None Passive/Rest

12427580 None None None None Passive/Rest

10327899 None None None None Passive/Rest

15992522 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Fixate

10641577 None None None None Passive/Rest

11839364 Visual Symbols None, Ocular None, Saccades Attend, Fixate

15006650 Visual Digits, Shapes Hand Finger Tapping Discriminate, Recall

15377745 None None None None Passive/Rest

12150424 Visual Faces, Fixation Point, Words Hand, None Button Press, None Fixate, Recall

16199829 Visual Words Hand Button Press Discriminate

15056518 Visual Digits, Letters Hand Button Press Discriminate

16054343 Visual Pictures, Words Hand Button Press Discriminate

12566282 Visual Letters Hand Button Press Discriminate

11595391 Visual Pictures Hand Button Press Discriminate

12738340 Visual Words Hand Button Press Discriminate

11231835 Visual Letters Hand Button Press Discriminate

15570157 Visual Words None None Discriminate

16237317 Visual Faces Hand Button Press Discriminate

12727695 None, Visual None, Words Hand, None Button Press, None Passive/Rest, Recall

14514494 None, Visual None, Words Hand, None Button Press, None Passive/Rest, Recall

15993859 Auditory, Visual Faces, Words Oral/Facial Speech Discriminate

11295369 Auditory Noise, Tones Hand Button Press Discriminate

14550677 Visual Pictures, Words None None Attend

15013826 Visual Faces Hand Button Press Discriminate

16076549 Visual Shapes Hand Button Press Discriminate, Recall

15339824 None, Visual Letters, None Hand, None Button Press, None Discriminate, Passive/Rest

12513942 Visual Letters Hand Button Press Discriminate

63

15691520 Visual Faces, Fixation Point Hand, None Button Press, None Discriminate, Fixate

15804721 Visual Abstract Patterns, Faces Hand Button Press Attend, Recall

16503328 Visual Letters None None Encode

16503328 Visual Letters Hand Button Press Discriminate

15541071 Visual Letters Hand Button Press Discriminate, Recall

15866546 Visual Pictures None None Attend

12195096 Auditory Letters, Words Oral/Facial Speech Count, Generate, Repeat

12505803 Visual Pictures None None Attend

15351766 Visual Faces, Fixation Point Hand, None Grasp, None Discriminate, Fixate

15955496 Visual Letters Hand Button Press Discriminate

14754778 None, Visual Digits, None Hand, None Button Press, None Detect, Generate, Passive/Rest

12411216 None, Visual None, Words None None Generate, Passive/Rest

15325374 Visual Pictures Hand Button Press Discriminate

16275810 Visual Fixation Point, Pictures Hand, None Button Press, None Discriminate, Fixate

16275810 Visual Fixation Point, Pictures Hand, None Button Press, None Discriminate, Fixate

16806312 Visual Faces Hand Button Press Attend

15135158 Visual Fixation Point, Letters Hand, None Button Press, None Detect, Fixate

10903406 Visual Digits, Shapes Hand Button Press Discriminate, Recall

15841676 Visual Letters Hand Button Press Discriminate, Recall

11926931 Visual Shapes None, Ocular None, Saccades Attend, Fixate

9862553 Auditory, None None, Tones Hand, None Flexion/Extension, None Passive/Rest, Recall

15319275 Visual Faces, Fixation Point Hand, None Button Press, None Discriminate, Fixate

12513941 None, Visual Faces, None Hand, None Button Press, None Fixate, Recall

15329304 Auditory, None Letters, None None None Generate, Passive/Rest

16458267 Visual Fixation Point, Shapes None, Ocular None, Saccades Fixate, Move, Recall

11050021 Visual Faces Hand Button Press Discriminate

17069771 Visual Faces Hand Button Press Discriminate

15750588 Visual Faces Hand Button Press Discriminate

17151834 Visual Fixation Point, Letters Hand, None Button Press, None Fixate, Recall

16780808 Visual Faces, Pictures None None Attend

14625454 Visual Letters Hand Button Press Detect, Recall

17010573 Visual Letters Hand, None Button Press, None Discriminate, Fixate

17074949 Visual Digits Hand Button Press Discriminate, Recall

15187809 Visual Faces, Shapes, Words Hand Button Press Discriminate

17188464 None, Visual None, Words Hand, None Button Press, None Discriminate, Passive/Rest

16708026 Visual Film Clip None None Attend

15741465 None, Visual Letters, None Oral/Facial Speech Generate, Repeat

64

16616862 Visual Faces, Pictures Hand, None Button Press, None Attend, Discriminate

16327784 Visual Faces, Fixation Point None None Attend, Fixate

17321151 Visual Faces Hand Button Press Discriminate

12900306 Auditory, Visual Faces, Words Hand Button Press Discriminate

15235232 None, Visual Film Clip, None None None Attend

17197102 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Fixate

17448605 Visual Letters Hand Button Press Recall

17476364 None, Visual None, Words Hand, None Button Press, None Passive/Rest, Recall

16814264 Visual Pictures Hand Button Press Recall

17337340 Visual Letters, Words Oral/Facial Speech Generate, Repeat

17517680 Visual Faces, Fixation Point Hand, None Button Press, None Detect, Fixate, Recall

11229981 None None None None Passive/Rest

17548751 Auditory, Visual Pictures, Words Hand Button Press Discriminate

10450253 None None None None Passive/Rest

16458263 Visual Words Hand Button Press Discriminate

17010993 Visual Pictures None None Attend

16983390 Visual Digits Hand Button Press Recall

17197035 Visual Letters Hand Button Press Move, Recall

17525987 Visual Fixation Point, Letters, Shapes Hand, None Button Press, None

Count, Detect, Discriminate,

Passive/Rest, Recall

16674833 None None None None Passive/Rest

17182108 Auditory Words Oral/Facial Speech Recall

17012690 Visual Words Hand Button Press Read

17403973 Visual Faces Hand Grasp Discriminate

17885606 Visual Words Hand Button Press Discriminate

17825123 Visual Words Hand Button Press Discriminate

17588725 Visual Words Hand, None Button Press, None Move, Passive/Rest

17547582 Visual Letters, Words Oral/Facial Speech

Detect, Discriminate, Generate,

Read

17400195 Visual Faces Hand Button Press Discriminate

16616832 Visual Shapes, Words Hand, None Button Press, None Detect, Passive/Rest

18076530 Visual Letters, Shapes Hand Button Press Discriminate

16108017 Auditory Tones Hand Button Press Detect

18055184 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Encode, Fixate

17768265 Visual Pictures Hand Button Press Discriminate

8790444 None None None, Oral/Facial None, Speech Passive/Rest, Recall

16199012 Visual Words Hand Button Press Discriminate

65

15177789 Visual Pictures Hand Finger Tapping Recall

11691685 Auditory, None None, Tones Hand, None Button Press, None Move, Passive/Rest

16585464 Visual Abstract Patterns Hand Button Press Recall

11431234

Auditory, None,

Visual None, Words Hand

Button Press, Finger

Tapping Move, Recall

16814525 Visual Words Hand Button Press Recall

17020747 Visual Words Hand Button Press Recall

9819069 Auditory Digits, Words None, Oral/Facial None, Speech Encode, Recall

10195166 Visual Letters Oral/Facial Speech Generate, Recall

16497485 Visual Words Oral/Facial Speech Recall

9626713 Visual Shapes, Words Hand Button Press Discriminate

8988793 Visual Fixation Point None None Fixate

14683698 None, Visual None, Words Hand, None Button Press, None Discriminate, Passive/Rest

17988357 Visual Faces Hand Button Press Discriminate

15500300 Visual Faces Hand Button Press Discriminate

15184035 None, Visual None, Words Hand, None Button Press, None Discriminate, Passive/Rest

18063349 Visual Faces, Shapes, Words Hand Button Press Discriminate

18329671 Visual Pictures, Words None None Generate

12887982 Visual Pictures Hand Button Press Discriminate

18669482 Auditory Tones Hand Button Press Detect

16377154 Visual Faces, Fixation Point None None Attend, Fixate

18310580 Visual Faces Hand Button Press Discriminate

16837058 Visual Words Hand Button Press Recall

14514501 Visual Shapes Hand Finger Tapping Move

18837865 Visual Faces, Shapes Hand Button Press Discriminate

14984424 Visual Pictures None None Attend, Read

17184978 Auditory Words None None Attend

14990520 Auditory Noise, Words Hand, None Flexion/Extension, None Attend, Discriminate

17097071 Visual Faces Hand Button Press Attend

15289277 Visual Pictures Hand Button Press Discriminate

15225144 Visual Pictures, Words None None Read

16112653 Visual Faces, Words Hand Button Press Discriminate

15094461 Visual Fixation Point, Words None, Oral/Facial None, Speech Fixate, Read

16225562 Visual Words Hand Button Press Name

18854323 None, Visual Letters, None None None Generate, Passive/Rest

17618089 Visual Letters Hand Button Press Detect, Recall

15541070 Visual Digits Hand Button Press Discriminate, Recall

66

16837832 Visual Words Hand Button Press Count

16135630 Visual Words Hand Button Press Count

15173843 Visual Digits Hand, None Button Press, None Attend, Detect

16310510 Visual Letters Hand, None Button Press, None Detect, Discriminate

15246453 None, Visual Film Clip Hand, Oral/Facial Grasp, Speech Discriminate, Move

16411978 Visual Letters, Words Oral/Facial Speech Name

18321870 Visual Words Hand Button Press Recall

18997158 Auditory Words Hand Button Press Discriminate

18713781 Visual Film Clip Hand Button Press Detect, Move

9397017 Auditory Tones Hand, None Grasp, None Move, Passive/Rest

18571627 Visual Letters Hand Button Press Discriminate, Recall

19603410 Visual Letters Hand Button Press Recall

19418510 Visual Letters Hand Button Press Discriminate, Recall

19118321 Visual Letters Hand

Button Press,

Flexion/Extension Detect, Recall

17217921 Visual Faces, Fixation Point Hand, None Button Press, None Discriminate, Fixate

17656073 Visual Pictures, Words None None Attend, Discriminate

19243925 Visual Fixation Point, Shapes None, Ocular None, Saccades Fixate, Move

18954477 Visual Letters, Words Hand Button Press Discriminate

17916330 None, Visual None, Shapes None None Attend

19176471 Visual Faces Hand Button Press Recall

19449330 Visual Abstract Patterns, Shapes Hand Button Press Discriminate

19500088 Visual Fixation Point, Shapes Hand, None Button Press, None Fixate, Recall

19624392 Visual Letters Hand, None Button Press, None Attend, Detect

19442494 Visual Letters Hand, None Button Press, None Discriminate

19594508 Auditory, Visual Fixation Point, Letters, Words Hand, None Button Press, None Fixate, Recall

17719567 Visual Pictures Hand Button Press Discriminate

18559283 Visual Pictures Hand Button Press Discriminate

17949689 Visual Faces, Fixation Point Hand, None Grasp, None Discriminate, Fixate

18550030 Visual Faces Hand Grasp Discriminate

17888408 Visual Fixation Point, Letters, Pictures Hand Button Press Discriminate

17699669 Auditory, Visual Pictures, Words Hand Button Press Discriminate, Imagine

9430507 Visual Pictures None None Attend

18586109 Visual Shapes Hand Button Press Discriminate

18455373 Visual Pictures, Shapes Hand, None Button Press, None Attend, Detect

18586275 Visual Letters Hand, None Button Press, None Discriminate

19389870 Visual Words Hand, None Finger Tapping, None Move, Passive/Rest

67

19419384 Visual Fixation Point, Letters Hand, None Button Press, None Discriminate, Fixate

18950748 Visual Faces, Words Hand, None Button Press, None Attend, Discriminate

19218875 Auditory, Visual Letters, Tones Hand, None Button Press, None Detect

18706701 Visual Pictures Hand, None Button Press, None Attend, Discriminate

19176279 Auditory, None None, Words None None Attend, Passive/Rest

19239982 Auditory, Visual Letters, Tones Hand, None Button Press, None Detect, Discriminate

19171077 Visual Digits, Pictures, Words Hand Button Press Discriminate

17585888 Visual Letters Hand Button Press Detect

9141092 None None None None Passive/Rest

19446443 Visual Fixation Point None None Fixate

17601497 Visual Letters Hand Button Press Discriminate

15691522 None None None None Passive/Rest

19448846 None None None None Passive/Rest

18822408 Visual Faces, Shapes Hand Button Press Detect

20393460 Visual Digits Hand Button Press Discriminate

12611834 None None None None Passive/Rest

19261334 Visual Shapes, Symbols, Words Hand Button Press Discriminate

19346000 Visual Faces Hand Button Press Recall

19428222 Visual Faces, Shapes, Words Hand Button Press Discriminate

19218875 Auditory, Visual Letters, Tones Hand, None Button Press, None Discriminate

18097655 Visual Digits, Fixation Point, Shapes Hand Button Press Discriminate

18097655 Visual Digits, Fixation Point, Shapes Hand Button Press Discriminate

21041614 Visual Faces Hand Button Press Detect

16203952 None, Visual None, Shapes Hand, None Button Press, None Passive/Rest, Recall

15885507 Auditory Noise, Tones Hand, None Button Press, None Attend, Discriminate

11999890 None None Hand, None Finger Tapping, None Move, Passive/Rest

15169688 Visual Fixation Point, Words Hand, None Button Press, None Encode, Fixate

16199830 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Fixate

16199831 Visual Letters Hand Button Press Discriminate, Imagine, Recall

68

Appendix B
Stimulus

Modality

f-score Stimulus Type f-score
Response

Modality
f-score Response Type f-score Instructions f-score

None

0.649

+/-0.180
3D Objects 0.0 +/-0.0 Arm 0.0 +/-0.0 Blink 0.0 +/-0.0 Attend

0.660

+/-0.337

Auditory

0.0397

+/-0.214

Abstract

Patterns

0.0 +/-0.0 Facial 0.0 +/-0.0 Breath-Hold 0.0 +/-0.0 Count

0.587

+/-0.369

Visual

0.933

+/-0.023
Acupuncture 0.0 +/-0.0 Foot 0.0 +/-0.0 Button Press

0.826

+/-0.088
Detect

0.573

+/-0.321

Tactile 0.0 +/-0.0 Asian Characters 0.0 +/-0.0 Hand

0.857

+/-0.098
Draw 0.0 +/-0.0 Discriminate

0.696

+/-0.096

Olfactory 0.0 +/-0.0 Braille Dots 0.0 +/-0.0 Leg 0.0 +/-0.0 Drink 0.0 +/-0.0 Encode

0.890

+/-0.244

Gustatory 0.0 +/-0.0 Breathable Gas 0.0 +/-0.0 None

0.546

+/-0.186
Finger Tapping

0.315

+/-0.754
Fixate

0.740

+/-0.386

Interoceptive 0.0 +/-0.0
Chord

Sequences

0.0 +/-0.0 Ocular

0.067

+/-0.632
Flexion/Extension 0.0 +/-0.0 Generate

0.706

+/-0.251

Clicks 0.0 +/-0.0 Oral 0.0 +/-0.0 Grasp

0.309

+/-0.711
Imagine

0.780

+/-1.247

Digits

0.074

+/-0.311
Pelvis 0.0 +/-0.0 Manipulate 0.0 +/-0.0 Move

0.766

+/-0.291

Electrical

Stimulation

0.0 +/-0.0 Shoulder 0.0 +/-0.0 Micturate 0.0 +/-0.0 Name

0.0

+/-0.0

Eye Puffs 0.0 +/-0.0 Torso 0.0 +/-0.0 None

0.761

+/-0.115
None

0.0

+/-0.0

Faces

0.606

+/-0.273
 Point 0.0 +/-0.0 Passive/Rest

0.809

+/-0.269

69

False Fonts 0.0 +/-0.0 Saccades

0.457

+/-0.877
Read

0.425

+/-0.809

Film Clip 0.0 +/-0.0 Smile 0.0 +/-0.0 Recall

0.820

+/-0.153

Fixation Point

0.044

+/-0.146
Speech

0.392

+/-0.496
Repeat

0.571

+/-1.019

Flashing

Checkerboard

0.0 +/-0.0 Swallow 0.0 +/-0.0 Sing

0.0

+/-0.0

Food 0.0 +/-0.0 Whistle 0.0 +/-0.0 Smile

0.0

+/-0.0

Fractals 0.0 +/-0.0 Write 0.0 +/-0.0 Track

0.0

+/-0.0

Heat 0.0 +/-0.0

Infrared Laser 0.0 +/-0.0

Infusion 0.0 +/-0.0

Letters 0.0 +/-0.0

Music 0.0 +/-0.0

Noise 0.0 +/-0.0

None

0.624

+/-0.131

Nonverbal Vocal

Sounds

0.0 +/-0.0

Nonvocal

Sounds

0.0 +/-0.0

Odor 0.0 +/-0.0

Pain 0.0 +/-0.0

Pictures 0.141

70

+/-0.375

Points of Light 0.0 +/-0.0

Pseudowords 0.0 +/-0.0

Random Dots 0.0 +/-0.0

Reversed Speech 0.0 +/-0.0

Shapes

0.177

+/-0.298

Syllables 0.0 +/-0.0

Symbols 0.0 +/-0.0

TMS 0.0 +/-0.0

Tactile

Stimulation

0.0 +/-0.0

Tones

0.057

+/-0.361

Vibratory

Stimulation

0.0 +/-0.0

Words

0.510

+/-0.109

