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Abstract 

 
 

 

 The Cognitive Paradigm Ontology (CogPO) defines an ontological relationship 

between academic terms and experiments in the field of neuroscience. BrainMap 

(www.brainmap.org) is a database of literature describing these experiments, which are 

annotated by human experts based on the ontological framework defined in CogPO. We 

present a stochastic approach to automate this process. We begin with a gold standard 

corpus of abstracts annotated by experts, and model the annotations with a group of 

naive Bayes classifiers, then explore the inherent relationship among different 
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components defined by the ontology using a probabilistic decision tree model. Our 

solution outperforms conventional text mining approaches by taking advantage of an 

ontology.  

 We consider five essential ontological components (Stimulus Modality, Stimulus 

Type, Response Modality, Response Type, and Instructions) in CogPO, evaluate the 

probability of successfully categorizing a research paper on each component by training 

a basic multi-label naive Bayes classifier with a set of examples taken from the BrainMap 

database which are already manually annotated by human experts. According to the 

performance of the classifiers we create a decision tree to label the components 

sequentially on different levels. Each node of the decision tree is associated with a naive 

Bayes classifier built in different subspaces of the input universe. We first make decisions 

on those components whose labels are comparatively easy to predict, and then use 

these predetermined conditions to narrow down the input space along all tree paths, 

therefore boosting the performance of the naive Bayes classification upon components 

whose labels are difficult to predict. For annotating a new instance, we use the classifiers 

associated with the nodes to find labels for each component, starting from the root and 

then tracking down the tree perhaps on multiple paths. The annotation is completed 

when the bottom level is reached, where all labels produced along the paths are 

collected. 
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Chapter 1 

Introduction 

 

With the rapid advance of biomedical research the amount of biomedical literature 

has been growing fast in recent years. For a researcher to efficiently find relevant 

literature that he/she is interested in is a very important task. Nowadays the main 

biomedical literature databases have grown into such big size that the number of 

abstracts they reference could go beyond millions (For instance, PubMed 

currently comprises over 22,000,000 abstracts[1]). Because of the enormous size, 

accurate and complete information is missed more often than not with common 

approaches which are usually based on plain text search of the literature[2].  

 

1.1. Information retrieval 

 

This task of finding the exact desired literature has everything to do with 

information retrieval. Information retrieval refers to the process of extracting 

information pertaining to a specific need from a set of information entities. The 

search targets that an information retrieval system is based on can be certain data, 

or metadata which is data about the collections of data, such as documents. 

books, journals, videos, photographs or Web pages[3]. The most common 

information retrieval systems are the web search engines. 

 

 In order for an information retrieval system to address information needs, they 

are represented by queries, which are usually in the form of formal logic 

statements. An information retrieval process starts with feeding a query specified 
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by a user into an information retrieval system. The information retrieval system is 

usually attached to a database system, whose data or metadata is searched 

according to the input query. An information retrieval system usually does not 

uniquely identify one entity in the database system; as in most cases there are 

multiple entities which may be considered related to the query, with different 

degrees of relevancy. The system then uses certain approaches to compute how 

well the relevant entities match the query, and returns the most related entities to 

the user.  

 

 In reality, as this information retrieval process is performed automatically by a 

system, the results may not always be accurate. Hence there ought to be 

measures to evaluate the performance of the an information retrieval system. 

Many different measures have been proposed and most of them assume a 

premise exists that every returned entity can be classified as either relevant or 

irrelevant to a particular query.  

 

1.2. F-measure 

 

One popular way to measure the performance of an information retrieval system 

is called F-measure, or F-core[4], which is also the approach we adopt to evaluate 

our work. F-measure is the "weighted harmonic mean of precision and recall"[5]. 

 

 Precision is the percentage of returned entities which are considered relevant 

to a particular query, while recall is the percentage of relevant entities out of all the 

entities that have been returned. For example, an information retrieval system 

fulfills a query of identifying all men from a collection of 42 human facial images, 
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among which 39 are male. It returns 33 images, in which 14 turn out to be women. 

Therefore, the precision of this information retrieval system with respect to the 

query of identifying all men is 19/33, and the recall is 19/39.  

 

 The F-measure is computed on basis of precision and recall as follows: 

2
precision recall

F
precision recall





                          

It can be also called 1F  measure, or 1F  score, in which precision and recall have 

the same weight. It can be generalized to F  measure, where   is a 

non-negative real value, which indicates recall is   times as important as 

precision: 

2

2
1+

precision recall
F

precision recall
 




 

 
（ ）  

The most commonly used F measures are 1F  measure, 2F  measure and 0.5F  

measure.  

 

1.3. Text mining 

 

Information retrieval involves obtaining information from all kinds of media, while 

the task of finding relevant literature only targets text documents. Therefore 

solving this problem is also related to text mining. 

 

 Text mining is a special type of data mining, whose objective is to extract 

desired information from text data[6]. The information concerned here usually 

refers to patterns or trends in the text, hence the way text mining works has 
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everything to do with pattern recognition[7]. A typical framework of text mining 

usually consists of parsing the input text, reorganizing the text in a structured 

manner, indentifying patterns from the structured text, and finally returning the 

interpretation of the text. The paring and reorganization of the text are also 

referred to as preprocessing, during which addition and removal of certain content 

are often performed. 

 

 Apart from information retrieval, text mining is also related to link and 

association analysis, lexical analysis such as studying frequency or distributions 

of words, text tagging and annotation. Typical text mining applications are text 

categorization, text clustering, concept/entity extraction, production of granular 

taxonomies, sentiment analysis, document summarization, and entity relation 

modeling. 

 

 Biomedical text mining is a subcategory of text mining, which is dedicated to 

texts and literature in the biomedical domain. It is also considered as an 

interdisciplinary research field of natural language processing, bioinformatics and 

computational linguistics. As stated before, the electronic publications in major 

biomedical databases such as PubMed are growing rapidly, hence the information 

retrieval techniques dedicated specifically to biomedical literature have called 

upon more and more research interest in recent years. 

 

1.4. Brain mapping and neuroimaging  

 

Biomedical science is a broad category. Neuroscience is a subfield of biomedical 

science, which involves approaches to study the nervous system. Neuroimaging 
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is about "the use of different techniques to either directly or indirectly image the 

structure and function of the brain"[9]. Brain mapping is "a set of neuroscience 

techniques predicated on the mapping of biological quantities or properties onto 

spatial representations of the human or non-human brain resulting in maps"[10]. 

The idea behind this is that the normal flow of electrical impulses in brain tissue 

can be disrupted by injuries and diseases, such as a physical injury (e.g., 

concussion), toxic injury, seizure disorder, Alzheimer's disease, anoxia and brain 

infection (e.g., chronic Lyme encephalitis). Even common emotions such as 

anxiety and depression can alter brainwave activities, leaving distinct brainwave 

"signatures". Brain mapping is a quantitative recording of such activities. It is 

essentially a comprehensive analysis of brainwave frequency bandwidths on 

which topographic color-coded maps that show brainwave activities can be 

created. Brain mapping can be conceived as a higher form of neoroimaging, 

producing brain images supplemented by the result of additional (imaging or 

non-imaging) data processing or analysis, such as maps projecting behavior onto 

brain regions. On the other hand, all neuroimaging can be considered part of brain 

mapping. Functional and structural neoroimaging are at the core of the mapping 

aspect of brain mapping. 

 

 Cognitive neuroscience is a discipline based on experiments, whose goal is to 

associate structure to corresponding function with applications of psychology and 

neuroscience. Cognitive neoroimaging and brain mapping methods are powerful 

research tools for neuroscience, which have led to the generation of enormous 

amount of data. Given the vast amounts of published results in this field, 

neuroimage scientists have become increasingly interested in function-location 

meta-analysis, in which they pool similar studies to identify the most consistent 
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brain-activation patterns observed under similar experimental conditions. 

Meta-analytic tools that synthesize, organize, and interpret distinct segments of 

the cognitive neuroimaging literature have been facilitated by the Brainmap 

Project, a public repository of neuroimaging findings[11]. Its contributions have 

resulted in what is now a relatively automated pipeline from study selection to 

meta-analytic image interpretation. The ability to perform meta-analysis to identify 

replicated results is part of the toolset needed to explore the different cognitive 

constructs underlying similarities and differences in brain function in related 

disorders, such as the constellation of schizophrenia, bipolar disorder, depression 

and autism.  

 

 However, the ability to perform meta-analysis across experimental domains is 

challenged by identification of the appropriate literature. Currently, researchers 

manually carry out multiple searches in the PubMed database with different 

keywords from alternate terminologies to attempt to capture the entirety of the 

studies they seek. This approach is inefficient and ineffective.  

 

 The fact that relevant publications are easily missed is largely due to the 

widely used alternate and even competitive terminologies among neuroimaging 

and brain mapping publications. While the experimental psychology and cognitive 

neuroscience literature may refer to a certain behavioral paradigm by name (e.g., 

the Stroop paradigm or the Sternberg paradigm) or by function (e.g., a working 

memory task or a visual attention task), these paradigms can vary tremendously 

in the stimuli presented to the subject, and the instructions given to the subject. 

For example, a general task could be given totally different names such as 

"Sternberg Task", "Delayed Match to Sample Task", "Serial Item Recognition 
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Task", and "Working Memory Tasks" in different experiments. 

 

1.5. Ontology and CogPO (Cognitive Paradigm Ontology) 

 

The content of most brain mapping publications is about certain experiments 

whose results lead to certain facts about brain activity. Therefore the structure of 

these publications tends to follow some particular patterns. This distinct 

characteristic can be taken advantage of to aid the task of automatic extracting 

and organizing essential information from these publications.  

 

 In computer and information science, an ontology formally "represents 

knowledge as a set of concepts within a domain, and the relationships between 

pairs of concepts"[12]. It can be used to model a domain with the definition of 

entities and concepts together with their properties and relations by means of 

shared vocabulary and taxonomy. An ontology is "a structural framework for 

organizing information". Applications of ontology can be found in artificial 

intelligence, semantic web, biomedical informatics, knowledge representation, 

and so forth. 

 

 The Cognitive Paradigm Ontology (CogPO)[13] was created in 2009 to 

address the non-standard vocabulary that exists for describing behavioral tasks or 

paradigms in brain mapping experiments. The design of CogPO is focused on 

"what can be observed directly: categorization of each paradigm in terms of 1) the 

stimulus presented to the subjects; 2) the requested instructions; 3) the returned 

response". Since all paradigms consist exactly of these three orthogonal 

components, forming an ontology to describe paradigms becomes a "clear and 
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direct" approach. CogPO seeks to "represent stimuli, responses and instructions 

that define the conditions of the experiment in a standard format, with well-defined 

terms and relationships between them". The driving force behind CogPO's design 

is to support published experiments implementing similar behavioral task 

characteristics to be linked, despite the use of alternate vocabularies.  

 

 CogPO actually transfers the task of identifying the paradigm names in a plain 

scope into identifying a common set of hierarchical characteristics of the 

experiments which captures the nature of the discoveries published more 

accurately and avoids any ambiguity. This naturally leads to the question of how 

to capture the ontology terms from free text that characterizes the experimental 

tasks.  

 

 The National Center for Biomedical Ontology (NCBO) provides "online tools 

and a web portal enabling biomedical researchers to access, review, and 

integrate disparate ontological resources in all aspects of biomedical investigation 

and clinical practice to support their knowledge-intensive work"[14]. A major focus 

of it involves "the use of biomedical ontologies to aid in the management and 

analysis of data derived from those complex experiments". In order to achieve this, 

NCBO has developed the "NCBO annotator" as a tool for automated identification 

of existing ontological terms from literature text.  

 

 There is one more gap to fill. NCBO is based on the whole collection of 

biomedical science publications and there are too many ontological terms that are 

related. The terms annotated by the "NCBO annotator" can come from any 

ontology. They need to be further filtered and organized in order to be associated 
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and used by CogPO. To achieve this, a new computational resource, called 

"BrainMap Tracker", which integrates the NCBO's ontology annotation tools and 

CogPO is created to address the task of automatic annotation and identification of 

candidate studies for neuroimaging meta-analysis using PubMed[1].  

 

1.6. BrainMap Tracker 

 

This section is adapted mainly from the research proposal written by Dr. Jessica 

Turner for the Brainmap Tracker project (NIH R56MH097870). 

 

 The problem "BrainMap Tracker" attempts to address is the ability to rapidly 

identify what paradigms have been utilized to study brain activations across 

neuropsychiatric disorders. The work of this thesis is to focus on portions of the 

software methodology to realize such a tool. 

 

 To carry out this goal we begin with a set of manually curated studies archived 

in the BrainMap database that focus on four exemplar mental disorders: 

schizophrenia, autism, bipolar disorder, and depression (see Appendix A). These 

manually annotated studies offer a baseline or "gold standard" for comparison 

and validation with the automatic annotation algorithms we develop, as the 

foundation of our work.  

 

 To formalize our goals, we aim to: 1) Develop automatic annotation algorithms 

to extend the functionality of the NCBO Annotator, which is an annotation tool 

provided by NCBO; 2) Develop a search and retrieval tool for cognitive 

neuroimaging studies; 3) Evaluate BrainMap Tracker to identify patterns of 
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overlapping studies among schizophrenia, autism, bipolar disorder, and 

depression. 

 

 The BrainMap Tracker project will integrate CogPO's domain-specific 

knowledge representation capabilities and the Brain-Map database resource with 

the annotation capabilities of NCBO Annotator. The approach we present to 

achieve this objective is to use a stochastic framework to automate this 

integration process. We use a hierarchical version of a naive Bayes classifier, and 

then leverage the inherent structural relationships among the different concepts 

as defined by the ontology using a probabilistic decision tree model[55].  
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Chapter 2 

Background 

 

2.1. Machine learning 

 

The key idea of CogPO is to characterize all the behavioral experiments by a 

certain set of ontological terms which are hierarchically related to each other in 

the representation of cognitive experiments. These terms fall into components or 

dimensionst, which are Stimulus Modality, Stimulus Type, Response Modality, 

Response Type and Instruction, which describe five aspects of the experiment 

accordingly. For a specific behavioral experiment, each of these five aspects 

could be summarized by one or more ontological terms from a limited, disjoint 

vocabulary, depending on the content of the experiment. For example, Stimulus 

Modality could be "Auditory", "Visual", "Tactile", and etc; Stimulus Type could be 

"Faces", "Food", "Heat", and etc. Each experiment has some tags from all these 

five aspects, even if the tag might be "No Stimulus", for example. Therefore, each 

experiment is associated with a set of five ontological terms. The internal 

relationship between the literature document which describes the experiment 

could be learned by machine learning approaches with a group of examples for 

automatic reasoning. 

 

 Machine learning is a subcategory of artificial intelligence about "the 

construction and study of systems that can 'learn' from data"[15]. All machine 

learning processes consist of two basic phases: learning and generalization. The 

learning phase refers to identifying rules and trends from a set of examples, while 
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generalization refers to the ability of the system to make accurate predictions on 

unforeseen examples according to the previous learned rules or trends. In another 

word, the key idea of machine learning is to extract some generally unknown 

probability distribution from existing data so that it can be used to produce 

accurate predictions on new data. Machine learning has everything to do with 

data mining as many techniques are used for both tasks. However, the objective is 

not the same. Machine learning aims at making accurate predictions by learning 

properties from data, while data mining emphasizes on discovering unknown 

properties from the data.  

 

 There are two main categories of machine learning: supervised learning[16] 

and unsupervised learning[17]. Supervised learning refers to "inferring a function 

from labeled training data". The training data is composed of a set of training 

examples. In supervised learning each example consists of two parts: an input 

vector and a corresponding output value. The training data is first parsed by 

certain supervised learning algorithms. Then a function between the input and 

output is proposed, which can be seen as a classifier or a regression function, 

depending on whether the output value is discrete or continuous. The proposed 

function is supposed to predict the correct output value when any new input vector 

is accepted. Unsupervised learning, however, deals with unlabeled data, which 

means the input vector has no desired output value. It attempts to "find hidden 

structure" in the data itself. In our case, as explained before, we have a desired 

output value, and the output is the set of CogPO components, which are five 

distinct ontological terms. Therefore, we will focus on the approaches of 

supervised learning for discrete output.  
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2.2. Multi-class multi-label classification 

 

For supervised learning, when the output is of discrete value, the task of machine 

learning is also called classification[18]. As the output is discrete, it can be 

regarded as a group of categories, thus the problem can be regarded as 

categorizing a set of input values into these categories, or classes. An algorithm 

that implements classification is called a classifier.  

 

 The training data is composed of a group of examples (or instances), each of 

which has input and output values. The input values are also called features. As 

this name suggests, features are actually a vector of characteristics which 

describe the example instance. There are a variety of features types: binary, 

nominal, ordinal, numeric, and so forth. The size of features is predetermined. 

The output values, or the categories to classify the examples into, are also called 

labels. The size of labels are also prefixed. The least size of labels is two, which 

means a single instance described by a vector of features belongs to either one of 

the two classes. Such classification problems are called binary classification. On 

the other hand, if the size of labels are more than two, it is called multi-class 

classification. If each vector of features can only correspond to one label, the 

classification problem is single-label classification. As the majority of problems are 

of this type, classification problems are referred to as single-labeled by default. 

There are cases that each vector of features could correspond to one or more 

labels. Such problems are called multi-label classification, to distinguish from 

single-label classification problems. The approaches to solve these problems are 

also different correspondingly.  

 



14 

 Our problem is by nature a text classification problem, a problem of assigning 

a text document into one or more topics or categories[19]. Suppose we have a 

brain mapping publication, we need to determine what behavioral experiment it 

describes, by extracting the five ontological terms which correspond to five 

CogPO components (Stimulus Type, Stimulus Modality, Response Type, 

Response Modality and Instructions) from the content of document. A full list of all 

possible terms for each of these five components can be found in Appendix B. 

One component can actually have multiple terms combined together to describe 

an behavioral experiment. For example, from our manually annotated examples, 

one publication with PubMed ID 30376 has two terms "Letters" and "Words" 

annotated for component "Stimulus Type". Since all components have more than 

two possibilities for ontological terms, it is a multi-label, multi-class text 

classification problem for each component. Therefore, our problem can be seen 

as five separate sub-problems of multi-class, multi-label classification. 

 

 Here we give a formal definition of a multi-class, multi-label classification 

problem: let X  be the instance universe, and consider a set of labels 

{1,...., }Y k . The goal is to find a hypothesis : 2Yh X   with error as low as 

possible, based on a set of examples {( , ) | , ,1 }i i i iS x Y x X Y Y i m     . 

 

2.2.1. Problem transformation method 

 

In comparison with multi-label classification, single-label classification has been 

well studied. SVM[20] and Naive Bayes[21] are popular single-label classifiers. It 

is possible to transfer a multi-label classification problem into a single-label 
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classification problem, then such existing single-label classifiers can be applied 

directly to address multi-label classification. 

 

 There are several ways to fulfill the task of transformation[22][23]. To illustrate 

these ideas, an example of training data set is set up as Table 1:  

 

Instances Features Label set 

1 1X  2 4{ , }   

2 2X  3{ }  

3 3X  1 2 4 5{ , , , }     

Table 1 Example of multi-label classification 

 

 There are four instances in the data set, which correspond to four feature sets 

represented by Xi . The form, size and attributes of features are not explicitly 

given because they do not really matter to the problem of transformation. In 

single-label cases, there is only one label i  that corresponds to each instance, 

while in this example three of four instances have more than one labels. A number 

of transformation approaches are very simple: select-max, select-min, 

select-random, ignore. The simplest of them is ignore, which discards all the 

instances with multiple labels from the training data set. The other three all 

transfer each multi-label set into single-label set by selecting one label out of the 

set and discarding the rest. To achieve this, a single-label classifier that outputs 

probability distributions over all classes can used to learn a ranking. The class 

with the highest probability will be ranked first, the class with second highest 

probability will be ranked second, and so forth. For the label set of each instance, 
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select-max simply picks the most frequent label, while select-min picks the least 

frequent label; and select-random picks one randomly. The outcome after 

transformation is shown in Table 2, from (a) to (d). It is obvious that all of these 

approaches discard significant amounts of information during the transformation 

process which is crucial to understanding properties of the data set.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Simple transformation methods 

 

 More advanced approaches try to avoid that. For example, copy method splits 

an instance with multiple labels into several, each of which is distributed one label 

from the original label set. Copy-weight method further associates each of the 

sub-instances with a normalized probability which is dependent on the original 

size of the label set. The outcome of these two approaches are shown in Table 2 

(e) and (f). There is still information loss with these methods because the fact that 

a particular instance is labeled as A and B is by nature different from the fact that it 

Idx Label 

1a 2  

1b 4  

2 3  

3a 1  

3b 2  

3c 4  

3d 5  

   (e) 

Idx Label Weight 

1a 2  0.50 

1b 4  0.50 

2 3  1.00 

3a 1  0.25 

3b 2  0.25 

3c 4  0.25 

3d 5  0.25 

       (f) 

Idx Label 

1 4  

2 3  

3 1  

   (d) 

Idx Label 

1 2  

2 3  

3 1  

   (c) 

Idx Label 

1 4  

2 3  

3 4  

   (b) 

Idx Label 

3 3  

   (a) 
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is sometimes labeled as A and sometimes labeled as B. 

 

 Actually, a label set can also be considered as a special type of single label. 

Such a single label represents the specific combination of the exact labels 

contained in the label set. This transformation approach is called label power set 

(LP). If there are n possible labels, then there will be 2n  possibilities of label 

combination in total.  

 

 

 

 

 

 

 

Table 3 Transformation by label power set method 

 

 Table 3 (a) shows the training data set after transformation; Table 3 (b) shows 

an example of possible probability distribution produced by LP, based on the 

training data set, given a new instance. The label ranking for each label is the sum 

of the probabilities among all possibilities. Although the computational complexity 

is upper bounded by min( ,2 )kn , where n is the total number of data instances, and 

k is the total number of labels in the training data before transformation, usually 

the actually complexity is much smaller than 2k . One problem of this approach is 

while there are 2k  labels (after transformation), the majority of them are not likely 

to be seen in the training data instances. This leads to a large number of labels 

associated with only a small number of data instances that would cause extreme 

Idx Label 

1 2 4 ，  

2 3  

3 1 2 4,5 ，，  

    (a) 

c p(c|x) 1  
2  

3  
4  

5  

2 4 ，
 0.4 0 1 0 1 0 

3  0.2 0 0 1 0 0 

1 2 4,5 ，，
 0.4 1 1 0 1 1 

 ( | ) jc
p c  x  0.4 0.8 0.2 0.8 0.4 

                      (b) 
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label imbalance for learning. A Pruned Problem Transformation[24] method has 

been proposed to address this problem by pruning away the label sets that occur 

less than a user-defined threshold and replacing them by introducing disjoint 

subsets of these label sets that show up more frequently in the training data 

instances. 

 

 Another most well-known transformation method is Binary Relevance(BR)[25]. 

It breaks the whole data set into L single-label subsets, where L is the size of the 

original label set. Each of these subsets focuses on one label, say i . If i  is in 

the label set for one instance, this instance is labeled i , or i  otherwise. 

 

 The data set after transformation is shown in Table.4. Since now in every 

subset, each instance is associated with one label, therefore it is easy to train the 

subsets with a binary classifier[20]. The problem with this approach is by treating 

each label separately it assumes by default that all the labels are independent of 

each other, while this might not be the case in many multi-label applications. 

 

 There is another advanced method of transformation by means of label 

ranking[26], which is a preference learning scenario. The original label ranking 

problem is slightly different from classification, whose goal is to predict the 

preference order of a set of labels when given a new instance after learning a 

group of training examples. An example is shown below in Table 5. 

 

 Again the details of the feature set is ignored and is represented by a person's 

name. It can contain any kinds of attributes such as height, weight, hobby and so 

forth. The second to fourth columns represent the first three German automobile 
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brands that person prefers. According to these information, given a new person 

Matt's attributes, the task is to predict his preference. 

 

 

 

 

 

 

 

Table 4 Transformation by BR 

 

 

 

 

 

 

 The formal statement of the label ranking problem is to learn a mapping of 

instances x X  to rankings x  (total restrict orders) over a finite set of labels 

1 2{ , ,...., }cL    , where i x j   means that for instance x , label i  is 

preferred to j [27]. A ranking over L  can be represented by a unique 

permutation   such that i x j   iff. i j   （ ）< ( ), where i （ ） denotes the 

position of i  in the tanking. 

 

 The multi-label classification problem can be related to label ranking as 

follows: each training example x  is associated with a subset xP L  of possible 

Idx Label 

1 1  

2 1  

3 1  

   (a) 

Idx Label 

1 2  

2 2  

3 2  

   (b) 

Idx Label 

1 3  

2 3  

3 3  

   (c) 

Idx Label 

1 4  

2 4  

3 4  

   (d) 

Feature set label label label 

Fred BMW Volkswagen Audi 

John Porsche BMW Mercedes 

Andy Mercedes Porsche Volkswagen 

Matt ? ? ? 

Table 5 An example of label ranking 

Idx Label 

1 5  

2 5  

3 5  

   (e) 
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labels. It simply defines the set of preferences { | , \ }x i x j i x j xR P L P      . 

The size of xP  is usually small or moderate. The labels in the set xP  are called 

relevant to the given instance; the rest are considered irrelevant. Approaches 

operate in this framework include ranking by pair-wise comparison (RPC)[28] and 

constraint classification[29].  

 

 The key idea of RPC is to learn, for each pair of labels i j （ ， ）, a binary 

model ( )ijM x  that predicts whether i x j   or j x i   for an input x . In order 

to rank the labels for a new instance, predictions for all pair-wise label preferences 

are obtained and a ranking that is maximally consistent with these preferences is 

derived. Although constraint classification aims at learning a linear utility function 

for each label, it still operates in the frame of label ranking and requires (not 

necessarily complete) sets of pair-wise label preferences associated with training 

instances to learn a ranking model which, as a post processing step, maybe 

projected from the label set to a specific output space.  

 

 While it is straightforward to represent the training information for multi-label 

classification as a preference learning problem, the algorithms which operate in 

the framework only produce a ranking of the available options. In order to convert 

the learned ranking to a multi-label prediction, the learner has to be able to 

autonomously determine a point at which the learned labels are split into relevant 

and irrelevant labels. Both RPC and constraint classification ignore this problem 

and only focus on producing rankings. The authors of [27] call this point the zero 

point and propose a conceptually new technique called calibrated ranking, which 

extends the common pair-wise learning approach to the multi-label scenario, a 
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setting previously not amenable to a pair-wise decomposition approach. Within 

this framework, RPC can solve both multi-label classification and in a consistent 

and generally applicable manner.  

 

2.2.2. Simple algorithm adaption methods 

 

This category of methods attempt to solve the multi-label classification problem by 

adapting algorithms which are originally applicable to single-label classification 

cases.  

 

2.2.2.1. Decision tree learning 

 

Decision tree learning is a commonly used method in data mining and machine 

learning, which "uses a decision tree as a predictive model which maps 

observations of an instance to conclusions about the instances target label"[30]. 

In  a decision tree, internal nodes represent "conjunctions of features that lead to 

class labels", which are represented by leaves. Generally a decision tree works as 

follows: a process of splitting the instances set into subsets based on a feature 

attribute is repeated on each derived subset in a recursive manner until the subset 

at one node has all the same value as for the target label. Table 6 shows an 

example of decision tree derived from the data set Figure 1. (This example and 

corresponding figures are adapted by the author from [53].) 

 

 Due to the order of feature selection, the decision tree for one data set is not 

unique. Hence there are many ways to generate a decision tree. The construction 

and evaluation of decision trees is based on the theory of information entropy[31] 
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overcast 

sunny rainy 

high normal 
false true 

and information gain[32]. 

 

Instance Outlook Temperature Humidity Windy Play 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Sunny 

Sunny 

Overcast 

Rainy 

Rainy 

Rainy 

Overcast 

Sunny 

Sunny 

Rainy 

Sunny 

Overcast 

Overcast 

Rainy  

Hot 

Hot 

Hot 

Mild 

Cool 

Cool 

Cool 

Mild 

Cool 

Mild 

Mild 

Mild 

Hot 

Mild 

High 

High 

High 

High 

Normal 

Normal 

Normal 

High 

Normal 

Normal 

Normal 

High 

Normal 

High 

False 

True 

False 

False 

False 

True 

True 

False 

False 

False 

True 

True 

False 

True 

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Table 6 An example of decision tree 

 

 

 

 

 

 

 

(b) 

Figure 1 An example of decision tree 

 

Outlook 

humidity windy Yes 

No Yes Yes No 
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 In information theory, entropy represents the amount of uncertainty or 

unpredictability contained in a random variable. It is also referred to as the 

Shannon entropy, or the information content. The average entropy of a discrete 

random variable X can be quantified as: 

1

( ) ( ) log ( ( ))
n

i b i

i

H X P x P x


   

Usually b is equal to 2, while it could also be 10 or e (natural logarithm).  

 

 As for how this is conceptually related to the uncertainty of information, 

consider the following example: let X be a random variable which denotes the 

event of raining tomorrow, and suppose the probability P(X) is 0.5. This is the 

maximum of uncertainty because it tells no information at all about whether or not 

it will rain tomorrow, since the chances of raining and not raining are equal. As can 

be calculated H(X) is 1 in this case. On the other hand, suppose P(X) is 0 or 1, 

which means it is absolutely certain that it will rain or not tomorrow. In this case 

the uncertainty is minimized, hence the information contained in this random 

variable is maximized, and H(X) is 0 (although P(X) equal to 0 or 1 is illegal in the 

equation, we can define the values of H(X) at these two points according to the 

limits). Therefore, the lower the entropy is, the more the information is contained 

in the distribution of the random variable, hence the better it can be used for future 

prediction.  

 

 Ross Quinlan invented an algorithm called ID3[34] to generate a decision tree 

based on entropy. It is a greedy approach which continuously takes the feature 

from unused features with minimum entropy, makes a new node and spits the 

instances according to that feature until all instances under one node are of the 
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same label. The equations of entropy in this case can be rewritten as follows: 

2

1

( ) ( ) log ( )
n

s s

j

H S f j f j


   

where S  denotes the current instance set or subset; n denotes the number of 

different possible labels; ( )sf j  denotes the frequency of the label value j . The 

key idea of using entropy in generating a decision tree is to define a preferred 

sequence of feature selection which can most rapidly narrow down uncertainty.  

 

 One limitation of ID3 is that it is overly sensitive to features with large numbers 

of values. Consider an extreme case when there is a feature of social security 

number. Since everyone has a different social security number, testing on its 

entropy will always yield very low values. However, selecting social security 

number as a feature to split the instances obviously does not help with predicting 

whether a future medical patient needs a surgery.  

 

 To overcome this problem Quinlan invented another algorithm called C4.5[35], 

which is an extension of ID3. The framework of C4.5 to generate a decision tree is 

exactly the same as ID3, however it introduces a metric as for how a feature is 

selected, which is based on the concept of information gain, which is defined by 

subtracting the conditional entropy from the base entropy: 

1

( , ) ( ) ( ) ( )
i

m

s i a

i

IG S a H S f a H S


   

where ( )H S  is the base entropy and 
1

( ) ( )
i

m

s i a

i

f a H S


  is the conditional entropy; 

S denotes the current instances set or subset; for one chosen feature a , 

( , )IG S a  denotes the information gain produced by a split over the feature a ; m
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is the number of different values of feature a ; ( )s if a  is the frequency of the 

items possessing ia  as value for a  in S ; ia  is the i th possible value for a ; 

iaS  is a subset of S  containing all items where the value of a  is ia . This 

computation does not, in itself, produce anything new. However it allows to 

measure the gain ratio, defined as ( | ) ( , ) / ( )a aGainRatio S S IG S a H S , where 

( )aH S  is the entropy of instances only relative to feature a . It measures the 

information gain of feature a  relative to the "raw" information of the aS  

distribution. By using gain ratio instead of plain conditional entropy, C4.5 reduces 

the problem of artificially low entropy values such as was seen with social security 

number. 

 

 The decision trees generated by C4.5 are statistical classifiers for single-label 

classification, as each instance will be ultimately labeled as belonging to one 

class. Clare et. al.[36] extends the C4.5 algorithm in order for multi-label 

classification by modifying the entropy calculation: 

2 2

1

( ) { ( ) log ( ) (1 ( )) log (1 ( ))}
n

s s s s

j

H S f j f j f j f j


      

where ( )sf j  denotes the frequency of the label value j .  

 

 Entropy is a measure of the amount of uncertainty in the dataset. It can also 

be thought in another way: given an instance of the dataset, how much 

information is needed to describe that instance? This is equivalent to asking how 

many binary bits are needed to describe all the labels it belongs to. The alternated 

formula shown above is a sum of the number of bits needed to describe 
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membership or non-membership of each label.  

 

 To illustrate this idea, consider a bit string with four labels: { , , , }a b c d . An 

instance belonging to label b  and d  could be represented by four bits 0101. 

However, this is more than enough if we know the distribution of the labels. For 

example, what if we already know that every instance belongs to label b ? Then 

the second bit could simply be dropped and only three bits are needed. In other 

words, we need 0 (log 1) bits to represent if an instance belongs to label b . What 

if we know 75% of the instances belong to label b ? Then we know intuitively an 

instance is more likely to belong to label b than not. The amount of information 

gained by actually knowing whether a particular instance belongs to label b  or 

not will be log1 log0.75（ ） and log1 log0.25（ ）, hence the expected amount of 

information gained is: 

0.75 log1 log0.75 +0.25 log1 log0.25 =0.81   （ ） （ ）  

It means we actually only need 0.81 bits to represent the information about the 

membership or non-membership of label b  for an instance. This rule can be 

generalized for the whole label set, which leads to the entropy formula for 

multi-label classification introduced earlier. With the alternated entropy, it also has 

to allow leaves of the trees to potentially be a set of labels, i.e. the outcome of a 

classification of an instance can be a set of labels. 

 

2.2.2.2. Boosting 

 

Boosting is another powerful technique for machine learning. The basic idea of 

boosting is to combine a series of 'base' classifiers to produce a 'committee' 
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1( )y x  2 ( )y x  ( )My x

 

1

( ) sign( ( ))
M

M m m

m

Y y


 x x

 

whose overall performance can significantly outperform any of the base classifiers, 

even the base classifiers (also called weak learners) only perform slightly better 

than random. Boosting was originally meant to solve classification problems, it 

can also be adapted to solve regression problems.  

 

 

 

 

 

 

 

 

 

 

Figure 2 Framework of AdaBoost 

 

 There are other machine learning methods which also construct a committee 

to take the average predictions of a group of individual models, such as bootstrap 

bagging[37]. The major improvement of boosting over such methods is that in 

boosting, the individual base classifiers are trained in sequence. Moreover, each 

base classifier is associated with a data point set in which each data corresponds 

to a weighting coefficient that is iteratively adjusted according to the performance 

of the previous classifiers. The principal updating idea is that if a point is classified 

wrongly by the current base classifier, its weight will increase when the next 

classifier in the sequence is trained. The learning phase is finished after all the 

base classifiers are trained. In the generalization phase, the label of a new 

(1){ }nw

 

(2){ }nw

 

(M){ }nw

 

.  .  .  . 
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instance is decided by taking the weighted majority of votes from the base 

classifiers. The basic framework of boosting is shown in Figure 2, which is 

adapted by the author from [45]. 

 

 The most widely used boosting algorithm is AdaBoost (Adaptive Boosting)[38]. 

Consider a binary label classification problem: training data instance consists of 

input feature vectors 1 2, ,...., Nx x x with corresponding binary labels 1 2, ,...., Nt t t  

where { 1,1}nt   . Each instance, which can be seen as a data point, is 

associated with a corresponding weighting coefficient nw . Suppose a base 

classifier is already available, which maps an instance to one of the two labels: 

( ) { 1,1}y  x . The precise form of AdaBoost algorithm is given below: 

1. Initialize the data weighting coefficients { }nw  by setting (1) 1/nw N  for 

1,2,....,n N . 

2. For 1,2,....,m M : 

a) Train a classifier ( )my x  with the training data by minimizing the weighted 

error function: 

( )

1

( ( ), )
N

m

m n m n n

n

E w F y t


 x  

where 
0 ( )=

( ( ), )=
1 ( )

m n n

m n n

m n n

y t
F y t

y t






x
x

x

，

，
 

b) Evaluate 
( )

1

m
m N

m

n

n

E

w








 and then compute 

1
ln{ }m

m

m







  

c) Update the weight coefficients as follows: 
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( 1) ( ) exp{ ( ( ), )}m m

n n m m n nw w F y t  x  

3. Make predictions on new instances as follows: 

1

( ) sign( ( ))
M

M m m

m

Y y


 x x  

 

 As can be seen, a new base classifier is trained with a data set whose 

weighting coefficients are updated based on the performance of the previously 

trained base classifier so that former misclassified data points are given greater 

weight. 

 

 AdaBoost has been studied extensively and has been shown to perform well 

on standard machine-learning tasks. Schapire[39] describes how this algorithm 

can be extended and generalized in order to address text-categorization task, 

which is usually a multi-class, multi-label classification problem. Two extensions 

of the AdaBoost algorithm are specifically intended for multi-class, multi-label data: 

the first extension tries to predict a good approximation of the set of labels 

associated with a text document; and then the second extension tries to rank the 

labels so that the correct labels will receive the highest rank. 

 

 The first extension is called AdaBoost.MH. It is actually a natural reduction of 

the multi-class, multi-label data to binary data, which has been introduced earlier 

(Binary Relevance): each training instance ,x Y（ ）is mapped to k binary labeled 

examples, where k is the size of all possible labels, depending on whether or not a 

certain label is in the current label set Y. Then the original binary AdaBoost can be 

applied to train the derived binary data. The space and time per-round (each call 

of weak learner) complexity is ( )O mk , where m is the size of training set. Similar 
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to the original AdaBoost algorithm, AdaBoost.MH maintains a weight distribution 

over X Y , and adjusts the weights at each boosting step so that instances that 

are misclassified by the hypothesis in the previous round have a higher weight in 

the current round.  

 

 It is still unclear how to quantify the error. In single label classification this is 

simple as there is only one output label for one instance, therefore either it is 

completely right or completely wrong. It is more complicated in multi-label 

classification as the classification can be "partly" correct. There are a couple of 

ways to evaluate the error depending on the specific application to deal with. Here 

AdaBoost.MH considers Hamming Loss, which takes into account prediction 

errors (an incorrect label is predicted) and missing errors (a correct label is not 

predicted). Suppose the hypothesis function is : 2Yh X , the Hamming Loss 

error over a training sample set S is defined by: 

,

1
( , ) (|| ( ) || || ( ) ||)H i i i i

i l

E h S l h x l Y l h x l Y
km

         

where the factor 
1

k
 normalizes the error in the interval [0, 1]; and || ||a  equals 1 if 

a  holds and 0 otherwise. This idea can be further generalized to evaluate 

prediction error for new unforeseen instances, if a target function : 2Yc X  is 

known.  

 

 The second extension is called AdaBoost.MR. It bears the same framework 

as the first extension with a different goal to minimize the average fraction of 

misordered crucial pairs which are relative orderings of 0l , 1l , for which one of 

them is in the current label set while the other is not. Suppose with respect to a 
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labeled observation ,x Y（ ）, 0l Y  and 1l Y , a classification rule f  misorders 

the crucial pair if 1 0( , ) ( , )f x l f x l  so that f  fails to rank 1l  over 0l . The space 

and time-per-round complexity is the same as the first extension.  

 

2.2.2.3. k Nearest Neighbor 

 

Both decision tree based and boosting based approaches try to construct a 

general hypothesis function solely based on learning the training set, without any 

knowledge about the input during the generalization phase. Such methods are 

called eager learning in artificial intelligence. In contrast, there are methods called 

lazy learning in which "generalization beyond the training data is delayed until a 

new query of unforeseen instance is made for classification"[41]. The advantage 

of lazy learning is that the hypothesis function is approximated locally, therefore 

the new query is more closely correlated to some particular training data 

instances. The disadvantage is that since the function abstraction is limited on a 

local scale concerning only a small group of data points, noise or abnormal 

instances can sometimes significantly affect generalization performance. And for 

the same reason it requires large space to store enough training data in order to 

achieve good performance. This also leads to the fact that lazy learning methods 

have a shorter training phase, but take longer to generalize. Therefore lazy 

learning are most useful for large data with few features. 

 

 The representative of lazy learning approach is k Nearest Neighbor (k-NN). It 

classifies new instances based on closest training examples in the feature space: 

the label of a new instance is determined by the votes of its neighbors, that is, the 
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instance is assigned the most common label among its k nearest neighbors, 

where k is an small integer. The k-NN algorithm is one of the simplest machine 

learning algorithms[42]. 

 

 There are k-NN based approaches that have been proposed for multi-label 

classification in combination with either problem transformation or algorithm 

adaption introduced earlier. For example, BRkNN conceptually uses Binary 

Relevance to transfer the problem and then takes k-NN method as a classifier. 

The author in [43] points out two possible problems of directly combining the 

implementation of them. One of them is that simply applying k-NN on the basis of 

Binary Relevance would incur a time cost |L| times that of k-NN algorithm, where 

L is the size of all possible labels. This could be crucial in domains with a large set 

of labels and strict requirements for response time. Another problem is that since 

Binary Relevance trains every label independently, it is possible that an instance 

turns out not to belong to any label. The author then proposes two extensions of 

BRkNN to address these two problems.  

 

2.2.2.4. Support Vector Machine  

 

Support Vector Machine (SVM)[20] is another supervised learning approach for 

both classification and regression. An SVM training algorithm builds a model 

which is an representation of the examples as points in space, marked as 

belonging to one of two categories. The example points are then mapped in such 

a way that separate categories are divided by a clear gap that is as wide as 

possible. In the generalization phase, new examples are predicted to belong to a 

category based on which side of gap they fall on.  
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Figure 3 Support Vector Machine 

 

 Suppose S  is the training set, whose size is m , in which each input ix  has 

n  attributes, therefore can be seen as a point in n  dimensional space and is 

labeled as two classes: 1iy    or 1iy   . Assume the data is linearly separable, 

which means a line can be drawn on the graph of 1x  vs. 2x  separating two 

classes when 2n   and a hyperplane on graphs of 1 2, ,...., Ax x x  for when 2n  , 

shown in Figure 3 (this example and the corresponding figure are adapted by the 

author from [54]). 

 

 The hyperplance can be described by 0b  w x  where w  is normal to the 

hyperplane and 
|| ||

b

w
 is perpendicular distance from the hyperplane and the 

origin. Support Vectors are example points closest to the separating hyperplane 

and the aim of Support Vector Machine is to orientate this hyperplane so that it is 

as far as possible from closest members from both classes. As shown in Fig. 8, 

implementing a SVM can be reduced to the selection of w andb to fix the 
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hyperplane so that:  

1    for 1

1    for 1

i i

i i

b y

b y

     

     

x w

x w
 

which can be combined into one formula: 

( ) 1 0    i iy b i    x w  

Support Vectors are the points which lie on two planes 1H  and 2H . The 

distances from 1H  and 2H  to the hyperplane are 1d  and 2d , which are 

equivalent to each other. This distance is called SVM's margin. To orientate the 

hyperplane so that the Support Vectors are as far away as possible means SVM's 

margin needs to be maximized.  

 

 It can be shown by vector geometry that the SVM's margin is equal to 
1

|| ||w
. 

Maximizing this objective function with constraints that the hyperplane separates 

points of distinct labels leads to: 

min|| ||    such that    ( ) 1 0  i iy b i    w x w  

This can be transformed into a Quadratic Programming problem: 

21
min || ||     s. t.    ( ) 1 0  

2
i iy b i    w x w  

To solve this we need to minimize: 

2

1 1

1
|| || ( )

2

m m

P i i i i

i i

L y b 
 

     w x w  

where i  are Lagrange multipliers and 0i  . Taking derivatives on w  and b , 

and then substituting the results (
1

m

i i i

i

y


w x  and 
1

0
m

i i

i

y


 ) back we have: 
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1 , 1

1
max   s. t. 0  , 0

2

m m

D i i j i j i j i i i

i i j i

L y y i y   
 

      x x  

which leads to: 

1 1

1
max[ ]    s. t.    0  , 0  

2

m m
T

i i i i

i i

i y


  
 

    α Hα  

where 
ij i j i jH y y x x . This is a convex quadratic optimization problem, therefore a 

QP solver can be run to return  , and then w  can be deducted from the former 

derivative conditions. To determine b , a Support Vector has the form 

( ) 1s sy b  x w , and therefore: 

( ) 1s m m m s

m S

y y b


   x x  

where S  denotes the set of indices of the Support Vectors. S  is determined by 

finding the indices i  where 0i  . Since 2 1sy  , we have: 

2 ( )s m m m s s

m S

s m m m s

m S

y y b y

b y y









  

  





x x

x x
 

Instead of using an arbitrary Support Vector sx , it is better to take an average 

over all of the Support Vectors in S : 

1
s m m m s

s S m SS

b y y
N


 

    x x（ ） 

Once w  and b  are determined, the hyperplane is fixed. For a new instance 

point 'x  is classified by evaluating ' sgn( ' )y b  w x . This algorithm can be 

extended to handle the data that is not fully linearly separable with simple 

adaption.  

 

 The matrix H  which plays a crucial role in the algorithm is created from the 
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dot product of the input variables:  

( , ) T

ij i j i j i j i jH y y k   x x x x x x  

( , )i jk x x  is an example of a family of functions called Kernel Functions ( ( , )i jk x x  

is known as the Linear Kernel). The set of kernel functions is composed of such 

functions which are all based on calculating inner products of two vectors. The 

idea is that if the functions can be recast into high dimension space by some 

non-linear feature mapping function ( )x x , only inner products of the mapped 

inputs in the feature space need to be determined without explicitly calculating  . 

This is called the Kernel Trick[54]. 

 

 This Kernel Trick is useful to deal with classification problems that are 

completely not linearly separable in the space of the inputs x , as they might be 

separable in a higher dimensionality feature space given a suitable mapping 

function ( )x x . There are a few kinds of kernel functions. For example, 

2

2

|| ||
( )

2( , )=

i j

i jk e 




x x

x x  is known as Radial Basis Kernel; ( , )=( )b

i j i jk ax x x x +  is 

known as Polynomial Kernel; ( , )=tanh( )i j i jk a b x x x x  is known as Sigmoidal 

Kernel, where a  and b  are parameters that define the kernel's behavior. By 

means of kernel functions the non-linearly separable input data can be made 

separable, and therefore the SVM method can be applied.  

 

 The SVM method can also be combined with BR serving as a basic binary 

classifier like KNN in a similar way as introduced before. Several ideas are 

proposed in [46] to improve the margin. First the dataset is extended to have 
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additional features which are actually predictions of each binary classifier at the 

first round. The new binary classifiers are trained on the extended dataset so that 

the extended BR takes into account potential label dependencies. And then 

negative training examples of a complete label are removed if it is very similar to 

the positive label. Finally similar negative examples within a threshold distance 

from the learned decision hyperplane are also removed to build better models 

especially in the presence of overlapping classes. 
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Chapter 3 

Multi-label Bayesian Decision Trees 

 

As introduced in Chapter-1, the objective of BrainMap Tracker is to annotate the 

cognitive neuroimaging papers according to CogPO. The essence of this task is 

still text mining, or more specifically, document classification, but it is also different 

from normal cases that the target annotations are related to each other and 

organized in a pattern predefined by the ontology.  

 

 We analyzed the results of the NCBO annotator, which also serves as our 

baseline of development shown in the Chapter-4, and found that its performance 

on different CogPO components differ significantly. The NCBO annotator captures 

ontological terms for certain components (for example, Stimulus Type) quite 

effectively, while for some components it achieves almost nothing (for example, 

Stimulus Modality). This indicates that the internal difficulty to capture the terms 

corresponding to different components also differs significantly.  

 

 An important reason is that the current NCBO annotator is based on pure text 

matching. It often fails to identify the correct ontological term when there are a 

number of possible alternatives available for describing a concept, and also when 

a concept is hard to be explicitly expressed in one single word and therefore the 

intent of the author is usually hidden deep in the meaning of the context . This 

variety among different components indicates a decision tree might be useful 

because we can prioritize those components which tend to give us accurate 

predictions and effectively narrow down the scale of the problem. On the other 

hand, in regards to the existing classifying approaches, Naive Bayes is 
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considered the best for document classification[47]. On the basis of these 

intuitions we propose a combined model of decision tree and Naive Bayes 

classifier for solution of the BrainMap Tracker.  

 

 This chapter is the result of a group effort. The basic framework of the 

algorithm is mainly proposed and implemented by my colleague, Thomas B. 

Jones. The author and another colleague, Chayan Chakrabarti, contributed to the 

solution by taking part in the group discussions and the algorithm implementation. 

In particular, the author implemented a component which evaluates the 

performance of our approach in terms of f-scores, and helped my colleagues by 

correcting a few bugs during programming. 

 

3.1. Naive Bayes classifier 

 

Naive Bayes classifier is the simplest instance of a probabilistic classifier. It is 

based on the assumption that for a given class the features of the class are 

independent of each other. The model can be represented as 1( | ,...., )np C F F , 

where C  is the class variable, conditional on features 1F  through nF . According 

to the Bayes' theorem: 

1
1

1

( ) ( ,...., | )
( | ,...., )

( ,...., )

n
n

n

p C p F F C
p C F F

p F F
  

The denominator is effectively constant since it does not depend on C  and the 

values of 1F  through nF  are given. Therefore the numerator is effectively 

equivalent to the joint probability model 1( , ,...., )np C F F , which can be repeatedly 

rewritten as follows: 
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1 1

1 2 1

1 2 1 3 1 2

( , ,...., ) ( ) ( ,...., | )

                        ( ) ( | ) ( ,...., | , )

                        ( ) ( | ) ( | , ) ( ,...., | , , )

                         .......

            

n n

n

n

p C F F p C p F F C

p C p F C p F F C F

p C p F C p F C F p F F C F F







1 2 1 1 2 1            ( ) ( | ) ( | , ).... ( | , , ,...., )n np C p F C p F C F p F C F F F 

 

Now the 'naive' feature independence assumption comes into play: if iF  is 

conditionally independent of jF , as long as i j  given the class C , it means: 

( | , ) ( | )i j ip F C F p F C  

for i j , therefore the formal expression of the joint model can be further written 

as: 

1 1 2

1

1

( | ,...., ) ( ) ( | ) ( | ).... ( | )

                        ( ) ( | )

1
                         = ( ) ( | )

n n

n

i

i

n

i

i

p C F F p C p F C p F C p F C

p C p F C

p C p F C
Z







 



 

where Z  is a scaling factor dependant only on 1,...., nF F , hence a constant if the 

value of the feature variables are known.  

 

 The Naive Bayes classifier applies a decision rule to this probability model. 

One common rule is to select the hypothesis that has the highest probability, 

which is known as maximum a posteriori (MAP) decision rule. The classifier works 

as follows: 

1

1

classify( ,...., ) arg max ( ) ( | )
n

n i i
c i

f f p C c p F f C c


     

In spite of the oversimplified assumption, naive Bayes classifiers work surprisingly 

well in many real world situations because of several properties. In particular, the 

decoupling of the class conditional feature distributions means each distribution 
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can be independently estimated as a one dimensional distribution. This helps 

alleviate problems stemming from dimensionality, such as the need for data sets 

that scale exponentially with the number of features.  

 

3.2. Naive Bayes for document classification 

 

All the machine learning methods introduced above have been applied to address 

the challenge of automatic document classification. Among them, Naive Bayes 

text classifier has been widely used because of its simplicity in both the training 

and the classifying stages. It allows each feature attribute to contribute toward the 

final decision equally and independently from other feature attributes, which 

makes it computationally more efficient compared to other text classifiers. 

 

 A typical framework to generate a document classifier model is shown below 

in Figure 4, which is adapted by the author from [47]. The input dataset is the raw 

documents, each of which consists of a set of words serving as feature attributes. 

All words ought to be found from a 'dictionary', which can be considered as the 

whole feature space.  

 

 The whole process begins with data preprocessing with the model evaluation, 

which usually involves removing stop words and stemming. Removing stop words 

means taking out of the words from the document whose presence is necessary 

for grammatical correctness but contains no substantial information and hence 

useless for classifying the document. Such words could be 'a', 'the', 'in', 'at', and 

so forth. Stemming means combining words which carry similar meanings but in 

different grammatical forms into one attribute. For example, 'soldiers' is the plural 
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No 

form of 'soldier', but both of them describe the same entity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Flow of document classification 

 

 The next step after preprocessing is feature selection, which is one of the 

most important steps for data mining. It means selecting a subset of the feature 

attributes which are relevant to a given analysis task. The general strategy is to 

select subsets, learn a model on the subset and evaluate the performance of the 

learned model. The subset on which the highest performance is achieved is then 

selected as input to the subsequent steps. There are different ways as for how 

subsets are selected. For example, the brute force strategy simply evaluates the 

performance of all possible subsets; and forward selection uses one attribute at 
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the beginning and adds additional attributes heuristically until performance is no 

longer improved. Several feature selection methods specifically dedicated to text 

mining have been proposed and studied[48][49].  

 

 After preprocessing and feature selection, the numbers of feature attributes 

should reduce significantly. The next step is to apply the classifier to the dataset. 

Since it is a general workflow of document classification, we can actually apply 

any classifier here, like Nearest Neighbor, Decision Tree, or SVM. Here we focus 

on Naive Bayes, which is used because of its simplicity and good performance in 

text and document classification[50].  

 

 The way naive Bayes classifier works with document classification is as 

follows: consider the problem of classifying a document into a class C  or C . A 

document can be modeled as a set of words where the probability that the i th 

word of a given document occurs in a document classified as C  can be written 

as ( | )ip w C . Here we assume that words are randomly distributed in the 

document, which means they are independent of the length of the document, and 

position within the document with respect to other words. Therefore the probability 

that a given document D  contains all the words iw , given a class C  is 

( | ) ( | )i

i

p D C p w C , while what we are interested in is the probability of a given 

document belonging to a class, which is ( | )p C D . According to Bayes' theorem: 

( )
( | ) ( | )

( )

p C
p C D p D C

p D
  

Since this is a binary classification problem, there are only two classes C  and 

C , therefore: 
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( )
( | ) ( | )

( )

( )
( | ) ( | )

( )

i

i

i

i

p C
p C D p w C

p D

p C
p C D p w C

p D




  




 

Combining them we have: 

( | )( | ) ( )

( | ) ( ) ( | )

i

i i

p w Cp C D p C

p C D p C p w C


  
  

The exact value of ( | )p C D  and ( | )p C D  can be computed because of the 

fact that ( | ) ( | ) 1p C D p C D   . For classification, if ( | ) ( | )p C D p C D   then 

document D  is classified as C , otherwise it does not belong to C . This basic 

naive Bayes classifier for binary classification can be extended to multi-class, 

multi-label cases using the problem transformation methods introduced before. 

 

 After classification the technique of F-Measure introduced earlier can be 

applied to evaluating the performance of the model. If it is not good enough, the 

model can be adjusted by repeating the process from feature selection to model 

evaluation again, until a satisfactory result is obtained. 

 

3.3. Multi-label Bayesian Decision Tree 

 

On the basis of the naive Bayes classifier and the decision tree, we propose a 

combined model, called Multi-label Bayesian Decision Tree. It first trains a naive 

Bayes classifier on each component of CogPO, and then depending on the 

performance of the classifiers a decision tree is built, which decides the label for 

each component in the order of prediction confidence. The idea is to take 

advantage of the components whose labels are easy to classify, narrow down the 
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input dimension space, in order to help with those components whose labels are 

difficult to decide. This strategy exploits the internal relationship among the 

component labels to improve the accuracy of classification  

 

 Suppose we have a training set S , composed of abstracts annotated for 

each component in  the component set C  by human experts. We train a 

multi-label naive Bayes classifier ,c SB  on each component c . That is, ,c SB  only 

focuses on what labels the abstracts are annotated for component c , and ignores 

the rest components. In order to test the performance for each of the classifiers 

,c SB  we split the training examples into k  subsets randomly and then use one of 

them for evaluation purpose and the rest for training the classifier. This process is 

repeated for k  times until each subset has been used as a testing set, and then 

the performance of the classifier is taken from the average of the k  trials. This is 

called K-fold cross validation[51]. We apply K-fold cross validation to every 

component, therefore obtain C  refined naive Bayes classifiers corresponding to 

each component.  

 

 Suppose the refined naive Bayes classifiers are ordered by performance in 

terms of f-score from highest to lowest: 
1 2, , ,,

mc S c S c SB B B,...., , where m  is the 

size of the component set C . The construction of a multi-label decision tree 

works as follows: each tree node represents the component labels that have 

already been decided. Therefore the root has no labels because nothing has been 

decided yet. To start we pick the classifier which has the highest f-score and 

associate it with the root of the tree, 
1 ,c SB . The root has 

1c
n  children, where 

1c
n  

corresponds to the size of the label set of the component 1c , and each child 



46 

corresponds to one label of the label set. Then each child is associated with a 

classifier 
2 ,c SB , trained to classify component 2c , with a subset of the training 

examples, in which each abstract has component 1c  classified as the label that 

the current child contains (It is possible that an abstract has multiple labels for one 

component. In this case as long as the label represented by the current child is 

contained, the abstract is included in the training set). In this way the labels for 

component 2c  are decided.  Each child then has 
2cn  children, and 

2cn  is the 

size of the label set of the component 2c . Each of these 
2cn  children has two 

labels, one for component 1c  and the other for component 2c , and associated 

with another basic, multi-label naive Bayes classifier, trained by the example 

abstracts containing labels of the current child for component 1c  and 2c , in order 

to classify component 3c . Therefore on this level labels for 3c  are decided. This 

process is repeated until labels for each component are decided and finally a 

decision tree of | |C  levels is constructed. Here the training phase is completed. 

 

 In the generalization phase, when classifying a new abstract, we first use the 

multi-label naive Bayes classifier associated with the root, 
1 ,c SB , to decide the 

labels of component 1c . Suppose it returns a label set 1C  which contains labels 

1 2, ,...., dl l l . We traverse down the tree to the d  children corresponding to the 

labels. On the next level, we obtain predictions for classifying component 2c , 

based on the conditions of the labels decided for 1c , and then go down one more 

level to classify 3c  with the information of 1c  and 2c , and so forth. On the bottom 
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level we collect all the labels on the traversed paths and the classification is 

complete. The formal description of the algorithm is as follows: 

 

 Algorithm Multi-Label Bayesian Decision Tree: 

 Input: an unclassified document D , a Multi-Label Bayesian Decision Tree T  

 Output: label vector in multiple components DL  

 ( )t Root T  

 SearchList NULL  

 while  t NULL  

  : ( )D D tL L B D  

  for  ( )tl B D  

   : ( , )SearchList SearchList Child l t  

  end  

  [0]t SearchList  

  :x SearchList SearchList  

 end  

 return DL  

 

 In our case, the components set has CogPO's five components: stimulus type, 

stimulus modality, response type, response modality and instructions:  

{ , , , , }C ST SM RT RM I  

Each of them has a different set of possible labels. The complete lists of these five 

label sets can be found in Appendix B. 
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Chapter 4 

Experimental Results 

 

To build the training data set we select 247 abstracts of academic research 

papers in the brain mapping field which have been annotated manually with 

CogPO (Cognitive Paradigm Ontology). This collection of abstracts is organized 

as a table called the corpus, in which each entry corresponds to one abstract, 

containing its basic information such as the identification number (ID) in the 

PubMed database, what experiments it deals with, when and in which journal it is 

published, who the author is, and the annotation results which consist of ten 

CopPO components: "Diagnosis", "Stimulus Modality", "Stimulus Type", 

"Response Modality", "Response Type", "Instruction", "Context", "Paradigm 

Class", "Behavioral Domain", and "Prose Description". Each component contains 

one or more terms as its labels. The most crucial five of them (Stimulus Modality, 

Stimulus Type, Response Modality, Response Type, Instruction) are selected for 

our automatic classification task. A full list of the abstracts with information of 

these five components can be found in Appendix A. 

 

 This chapter is the result of a group effort. Section 4.1 is put together from the 

results of NCBO annotator and the author's implementation of f-score evaluation. 

The statistics in section 4.2 for MLBT result from the implementation of my 

colleague Thomas B. Jones. The adaption of MLBT* is implemented and tested 

by the author.  

 

4.1. Baseline 
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The collection of abstracts including their titles and keywords are annotated by 

NCBO's standard annotation tool using CogPO. The results of CogPO are 

collected and compared with the manual annotations, as shown in Figure 5. 

 

 

Figure 5 Annotation results from NCBO 

 

 Among those 165 annotation results, 120 of them fail to produce any term that 

matches the manual annotation. This means the terms returned by the NCBO 

annotation are not found in the corresponding manual annotations. These 120 

results are considered as false positive. For instance, the annotation result of the 

abstract with ID 9862553 contains a term "function". This term is searched in the 

corresponding entry in the corpus among the components of CogPO ontology 

listed above. If none of the field values contains the word function, it is considered 

as a false positive result. Some of such terms are common words like "function", 

which have little to do with the ontology; while some of them are very likely 

ontology terms but without a match in the corpus, like "speech", which could be 

the value of "Response Type".  

 

 Therefore, 45 of the 165 non-empty annotation results produce at least one 

negative 

false positive 

positive 
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term that matches the corresponding manual annotation. This means the term 

could be found in the content of one or more of the manually annotated CogPO 

components, which are “Diagnosis”, “Stimulus Modality”, “Stimulus Type”, 

“Response Modality”, “Response Type”, “Instruction”, “Context”, “Paradigm Class”, 

and “Behavioral Domain”. Since one abstract can have multiple different 

annotation terms, it can also have multiple of them correctly annotated. For 

instance, abstract of ID 16497485 has term "Recall" and "Words" both correctly 

annotated. Actually this is the only case. Therefore there are 46 correct 

annotations in total. On the other hand one correctly annotated term can match 

multiple CogPO components simultaneously. For instance, abstract of ID 

10080553 has the term "recall" correctly annotated which could be found in both 

"Instruction" and "Paradigm class". 

 

 

Figure 6 Distribution of correct annotations 

 

 The distribution of the terms among these components is in Figure 6. As can 

be seen, most terms correctly annotated come back from “Stimulus Type”. Such 

terms are usually “words”, “pictures” or “faces”. In comparison with false positive 

0 

10 

20 

30 

40 

50 

Distribution 

CogPO  
Components 

# matches 



51 

terms, the set of correctly annotated terms is much smaller, which has only 6 

terms. 

 

 Among all CogPO components the most important ones which decide the 

accuracy of an annotation attempt are "Stimulus Modality", "Stimulus Type", 

"Response Modality", "Response Type" and "Instruction". Each annotation result 

covers predictions for all of these five components, and each of them has a 

distinct set of terms as for what an annotation result could be. The calculated 

F-measure scores for each of those components are listed below: 

 

 Instruction Stimulus 

Modality 

Stimulus 

Type 

Response 

Type 

Response 

Modality 

F-measure 0.00425 0 0.00941 0.00223 0 

Table 7 F-Scores of NCBO annotation 

 

ST>SM>RT>RM>I Instruction Stimulus 

Modality 

Stimulus 

Type 

Response 

Type 

Response 

Modality 

F-measure 0.495 0.816 0.463 0.689 0.757 

Standard deviation 0.126 0.067 0.133 0.114 0.068 

Table 8 F-Scores of Multi-label Bayesian Decision Tree 

 

4.2. Performance of The Multi-label Bayesian Decision Tree 

 

We implemented our Multi-label Bayesian Decision Tree (MLBT) on the basis of 

the multi-label naive Bayes classifier provided by Mallet (Machine Learning for 

Language Toolkit)[52], a Java-based package for statistical natural language 

processing, document classification, clustering, topic modeling, information 

extraction, and other machine learning applications to text. For K-fold cross 
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validation we set 5k  . The components are ordered as {ST, SM, RT, RM, I} so 

that Stimulus Type is set as the root of decision tree. The performance on the 

same benchmark is shown in Table 8. 

 

 Comparing Table 8 with Table 7, it is obvious MLBT significantly outperforms 

NCBO's annotator. For components Stimulus Modality and Response Modality, it 

produces correct labels in most cases; for the rest three components which have 

large label sets, it makes the right decisions in a fair amount of cases. On the 

other hand, NCBO's annotator achieves almost nothing. Appendix B lists 

F-scores of each label in each component. 

 

 There is much room to improve on the basis of NCBO's annotator, and it does 

not necessarily justify our approach. To show MLBT is an effective solution, we 

need to look further into the alternatives.  

 

 Instruction Stimulus 

Modality 

Stimulus 

Type 

Response 

Type 

Response 

Modality 

SM>ST>RT>RM>I 0.476 0.828 0.461 0.678 0.735 

RT>ST>SM>RM>I 0.487 0.791 0.426 0.726 0.769 

RM>ST>SM>RT>I 0.484 0.778 0.420 0.714 0.776 

I>ST>SM>RT>RM 0.519 0.830 0.406 0.686 0.759 

ST>SM>RT>RM>I 0.495 0.816 0.463 0.689 0.757 

Average 0.492 0.809 0.435 0.699 0.759 

Non-hierarchical 0.519 0.828 0.463 0.726 0.776 

Table 9 MLBT with different orders of classification on components 

 

 First, we are interested in how the order of classification on components 

affects the annotation performance. In Table 9, the f-scores of a group of MLBTs 

are shown with different components selected as the tree root and the rest in the 
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same order as Table 8 (the standard deviations are omitted and the f-scores of the 

original order are also listed for comparison). 

 

 Instruction Stimulus 

Modality 

Stimulus 

Type 

Response 

Type 

Response 

Modality 

ST*>SM>RT>RM>I 0.546 0.856 1.000 0.708 0.772 

SM*>ST>RT>RM>I 0.543 1.000 0.551 0.732 0.782 

RT*>ST>SM>RM>I 0.544 0.817 0.446 1.000 0.956 

RM*>ST>SM>RT>I 0.568 0.818 0.448 0.915 1.000 

I*>ST>SM>RT>RM 1.000 0.864 0.532 0.844 0.893 

Average 0.550 0.839 0.494 0.800 0.851 

Original Average 0.492 0.809 0.435 0.699 0.759 

Non-hierarchical 0.519 0.828 0.463 0.726 0.776 

Table 10 Enhanced MLBT with one component manually annotated 

 

 As can be seen in the table, no order outperforms all the others on every 

component. This indicates the order of classification on the components has no 

significant impact on the annotation performance. Another fact that can be 

observed is that the component which is classified first at the root always gives 

the best annotation performance among all the orders. Note that when the 

classifier associated with the root is trained on a certain component, the input 

training examples are the whole set of abstracts, unlike those classifiers trained 

on lower tree levels only with a subset of the abstracts. This means for the 

component trained on top the annotation performance is equivalent to that of 

applying a basic naive Bayes classifier to the component independently, therefore 

the f-scores of classifying the components one by one in a flat, non-hierarchical 

manner with naive Bayes can also be known from this figure, summarized in the 

last row of Table 9. Although MLBT seems not to gain any advantage over the 

common, non-hierarchical approach, Table 10 demonstrates that an 'enhanced' 

version of MLBT (MLBT*) with a little adaption can significantly outperform it. 
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Figure 7 Comparisons between MLBT and enhanced MLBT (MLBT*) 

 

 Our enhancement is to call manual annotation at the root in the generalization 

phase. It means when classifying a new abstract, instead of using a basic naive 

Bayes classifier to classify an abstract on the component at the root, we pull the 

'correct' labels for the corresponding component directly from manual annotation 

results and feed them into the decision tree. The rest of the process is the same 

as the original MLBT approach. The new f-scores are shown in Table 10. Since 

we feed the correct labels directly for the first component (followed with a '*'), the 

f-scores for the components at the root in each order is exactly 1, which are left 

out of calculating the average score. As can be seen in Figure 7, MLBT* 

outperforms both the original MLBT approach as well as the common 

non-hierarchical way on every component with a clear margin. These results 

show that in our classification problem it is possible to explore the label 

dependencies among different components and improve the automatic annotation 

performance by using the multi-label Bayesian decision tree approach. 
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Chapter 5 

Conclusions and Future Work 

 

Ontologies can serve to organize concepts and structure information in a specific 

domain. It provides people with insight and exposes the nature of the information 

to be processed. Combined with conventional machine learning techniques, the 

effectiveness and efficiency of knowledge processing information can be 

significantly improved.  

 

 We propose a stochastic approach using Multi-label Bayesian Decision Trees 

which integrates naive Bayes classifiers with decision trees to automatically 

annotate neuroimaging literatures in biomedical science and the Cognitive 

Paradigm Ontology. It enables biomedical scientists to find research papers of 

their interest efficiently, therefore saving them work in manual literature reading 

and categorization.  

 

 Our experiments show that associating the annotation process with the 

ontology leads to much better performance in automated annotation in 

comparison with contemporary standard annotators such as the Stanford NCBO 

annotation tool, which are usually based on pure flat text mining methods. By 

working in the framework of an ontology, our approach takes advantage of the 

inherent relationship among concepts in the knowledge domain and narrows 

down the input sample space to produce better prediction on labels. Although our 

algorithm cannot completely replace a human annotator, it can effectively reduce 

the manual effort made on the annotation process by a human expert. 
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 With Brainmap Tracker large-scale identification of studies examining brain 

activation patterns is possible. In the next step the algorithm developed can be 

applied to the entirety of abstracts indexed on PubMed, to search and retrieve 

targeted subsets of studies that are candidates for meta-analysis. Furthermore, 

by identifying coherent groups of studies suitable for neuroimaging meta-analysis, 

more versatile tools can be implemented to automate extraction of neuroimaging 

results, add structured information regarding the experimental methods for better 

integration and interpretation. 
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Appendix A 
Medline Stim Mod Stim Type Res Mod Res Type Instruction 

11823267 Visual Words Oral/Facial Speech Name 

10080553 Auditory, None None, Words None, Oral/Facial None, Speech Passive/Rest, Recall 

11241873 Visual Words Oral/Facial Speech Recall 

11466121 Olfactory Odor None None Attend 

10739412 None None None None Passive/Rest 

11313038 None None None None Passive/Rest 

9699694 Auditory Letters, Words None None Generate 

10327898 None None None None Passive/Rest 

11578663 Visual Words None None Generate 

10227106 Auditory, Visual Fixation Point, Letters, Words None None Fixate, Generate 

12727696 Visual Shapes Hand Button Press Discriminate, Recall 

14638592 Visual Digits Hand Button Press Detect, Recall 

11053229 Visual Digits Hand Button Press Detect, Recall 

10557338 Visual Letters Hand Button Press Recall 

11728837 Visual Letters Hand Button Press Detect, Recall 

15099600 Visual Shapes Hand Button Press Detect, Recall 

11691686 Visual Digits Hand Button Press Discriminate, Recall 

12598724 Visual Pictures Hand Button Press Attend 

12606841 Visual Asian Characters None None Generate, Repeat 

11431233 Visual Letters Hand Button Press Detect, Recall 

12729869 Visual Letters Hand Button Press Discriminate, Recall 

12151286 Visual Fixation Point, Letters Hand, None Button Press, None Discriminate, Fixate, Recall 

10986548 None None None None Passive/Rest 

12714174 None, Tactile Eye Puffs, None None None Attend, Passive/Rest 

12946085 Visual Letters Hand Button Press Discriminate, Recall 

15050867 Auditory Tones Hand Button Press Recall 

15099603 Visual Abstract Patterns Hand Button Press Detect, Recall 

9673996 None, Visual None, Pictures Foot, None None, Point Discriminate, Passive/Rest 

15741464 Visual Letters Hand Button Press Discriminate 

14674880 Visual Letters Hand Button Press Discriminate 

15949653 Visual Letters Hand Button Press Discriminate 

1410086 None None None None Passive/Rest 

11438629 None None None None Passive/Rest 
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1402966 None None None None Passive/Rest 

1527602 None None None None Passive/Rest 

8772633 None None None None Passive/Rest 

12547471 None None None None Passive/Rest 

10974961 None None None None Passive/Rest 

11384897 None None None None Passive/Rest 

15921853 None None None None Passive/Rest 

12063157 None None None None Passive/Rest 

14706942 None None None None Passive/Rest 

11986125 None None None None Passive/Rest 

11063978 None None None None Passive/Rest 

12427580 None None None None Passive/Rest 

10327899 None None None None Passive/Rest 

15992522 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Fixate 

10641577 None None None None Passive/Rest 

11839364 Visual Symbols None, Ocular None, Saccades Attend, Fixate 

15006650 Visual Digits, Shapes Hand Finger Tapping Discriminate, Recall 

15377745 None None None None Passive/Rest 

12150424 Visual Faces, Fixation Point, Words Hand, None Button Press, None Fixate, Recall 

16199829 Visual Words Hand Button Press Discriminate 

15056518 Visual Digits, Letters Hand Button Press Discriminate 

16054343 Visual Pictures, Words Hand Button Press Discriminate 

12566282 Visual Letters Hand Button Press Discriminate 

11595391 Visual Pictures Hand Button Press Discriminate 

12738340 Visual Words Hand Button Press Discriminate 

11231835 Visual Letters Hand Button Press Discriminate 

15570157 Visual Words None None Discriminate 

16237317 Visual Faces Hand Button Press Discriminate 

12727695 None, Visual None, Words Hand, None Button Press, None Passive/Rest, Recall 

14514494 None, Visual None, Words Hand, None Button Press, None Passive/Rest, Recall 

15993859 Auditory, Visual Faces, Words Oral/Facial Speech Discriminate 

11295369 Auditory Noise, Tones Hand Button Press Discriminate 

14550677 Visual Pictures, Words None None Attend 

15013826 Visual Faces Hand Button Press Discriminate 

16076549 Visual Shapes Hand Button Press Discriminate, Recall 

15339824 None, Visual Letters, None Hand, None Button Press, None Discriminate, Passive/Rest 

12513942 Visual Letters Hand Button Press Discriminate 
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15691520 Visual Faces, Fixation Point Hand, None Button Press, None Discriminate, Fixate 

15804721 Visual Abstract Patterns, Faces Hand Button Press Attend, Recall 

16503328 Visual Letters None None Encode 

16503328 Visual Letters Hand Button Press Discriminate 

15541071 Visual Letters Hand Button Press Discriminate, Recall 

15866546 Visual Pictures None None Attend 

12195096 Auditory Letters, Words Oral/Facial Speech Count, Generate, Repeat 

12505803 Visual Pictures None None Attend 

15351766 Visual Faces, Fixation Point Hand, None Grasp, None Discriminate, Fixate 

15955496 Visual Letters Hand Button Press Discriminate 

14754778 None, Visual Digits, None Hand, None Button Press, None Detect, Generate, Passive/Rest 

12411216 None, Visual None, Words None None Generate, Passive/Rest 

15325374 Visual Pictures Hand Button Press Discriminate 

16275810 Visual Fixation Point, Pictures Hand, None Button Press, None Discriminate, Fixate 

16275810 Visual Fixation Point, Pictures Hand, None Button Press, None Discriminate, Fixate 

16806312 Visual Faces Hand Button Press Attend 

15135158 Visual Fixation Point, Letters Hand, None Button Press, None Detect, Fixate 

10903406 Visual Digits, Shapes Hand Button Press Discriminate, Recall 

15841676 Visual Letters Hand Button Press Discriminate, Recall 

11926931 Visual Shapes None, Ocular None, Saccades Attend, Fixate 

9862553 Auditory, None None, Tones Hand, None Flexion/Extension, None Passive/Rest, Recall 

15319275 Visual Faces, Fixation Point Hand, None Button Press, None Discriminate, Fixate 

12513941 None, Visual Faces, None Hand, None Button Press, None Fixate, Recall 

15329304 Auditory, None Letters, None None None Generate, Passive/Rest 

16458267 Visual Fixation Point, Shapes None, Ocular None, Saccades Fixate, Move, Recall 

11050021 Visual Faces Hand Button Press Discriminate 

17069771 Visual Faces Hand Button Press Discriminate 

15750588 Visual Faces Hand Button Press Discriminate 

17151834 Visual Fixation Point, Letters Hand, None Button Press, None Fixate, Recall 

16780808 Visual Faces, Pictures None None Attend 

14625454 Visual Letters Hand Button Press Detect, Recall 

17010573 Visual Letters Hand, None Button Press, None Discriminate, Fixate 

17074949 Visual Digits Hand Button Press Discriminate, Recall 

15187809 Visual Faces, Shapes, Words Hand Button Press Discriminate 

17188464 None, Visual None, Words Hand, None Button Press, None Discriminate, Passive/Rest 

16708026 Visual Film Clip None None Attend 

15741465 None, Visual Letters, None Oral/Facial Speech Generate, Repeat 
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16616862 Visual Faces, Pictures Hand, None Button Press, None Attend, Discriminate 

16327784 Visual Faces, Fixation Point None None Attend, Fixate 

17321151 Visual Faces Hand Button Press Discriminate 

12900306 Auditory, Visual Faces, Words Hand Button Press Discriminate 

15235232 None, Visual Film Clip, None None None Attend 

17197102 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Fixate 

17448605 Visual Letters Hand Button Press Recall 

17476364 None, Visual None, Words Hand, None Button Press, None Passive/Rest, Recall 

16814264 Visual Pictures Hand Button Press Recall 

17337340 Visual Letters, Words Oral/Facial Speech Generate, Repeat 

17517680 Visual Faces, Fixation Point Hand, None Button Press, None Detect, Fixate, Recall 

11229981 None None None None Passive/Rest 

17548751 Auditory, Visual Pictures, Words Hand Button Press Discriminate 

10450253 None None None None Passive/Rest 

16458263 Visual Words Hand Button Press Discriminate 

17010993 Visual Pictures None None Attend 

16983390 Visual Digits Hand Button Press Recall 

17197035 Visual Letters Hand Button Press Move, Recall 

17525987 Visual Fixation Point, Letters, Shapes Hand, None Button Press, None 

Count, Detect, Discriminate, 

Passive/Rest, Recall 

16674833 None None None None Passive/Rest 

17182108 Auditory Words Oral/Facial Speech Recall 

17012690 Visual Words Hand Button Press Read 

17403973 Visual Faces Hand Grasp Discriminate 

17885606 Visual Words Hand Button Press Discriminate 

17825123 Visual Words Hand Button Press Discriminate 

17588725 Visual Words Hand, None Button Press, None Move, Passive/Rest 

17547582 Visual Letters, Words Oral/Facial Speech 

Detect, Discriminate, Generate, 

Read 

17400195 Visual Faces Hand Button Press Discriminate 

16616832 Visual Shapes, Words Hand, None Button Press, None Detect, Passive/Rest 

18076530 Visual Letters, Shapes Hand Button Press Discriminate 

16108017 Auditory Tones Hand Button Press Detect 

18055184 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Encode, Fixate 

17768265 Visual Pictures Hand Button Press Discriminate 

8790444 None None None, Oral/Facial None, Speech Passive/Rest, Recall 

16199012 Visual Words Hand Button Press Discriminate 
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15177789 Visual Pictures Hand Finger Tapping Recall 

11691685 Auditory, None None, Tones Hand, None Button Press, None Move, Passive/Rest 

16585464 Visual Abstract Patterns Hand Button Press Recall 

11431234 

Auditory, None, 

Visual None, Words Hand 

Button Press, Finger 

Tapping Move, Recall 

16814525 Visual Words Hand Button Press Recall 

17020747 Visual Words Hand Button Press Recall 

9819069 Auditory Digits, Words None, Oral/Facial None, Speech Encode, Recall 

10195166 Visual Letters Oral/Facial Speech Generate, Recall 

16497485 Visual Words Oral/Facial Speech Recall 

9626713 Visual Shapes, Words Hand Button Press Discriminate 

8988793 Visual Fixation Point None None Fixate 

14683698 None, Visual None, Words Hand, None Button Press, None Discriminate, Passive/Rest 

17988357 Visual Faces Hand Button Press Discriminate 

15500300 Visual Faces Hand Button Press Discriminate 

15184035 None, Visual None, Words Hand, None Button Press, None Discriminate, Passive/Rest 

18063349 Visual Faces, Shapes, Words Hand Button Press Discriminate 

18329671 Visual Pictures, Words None None Generate 

12887982 Visual Pictures Hand Button Press Discriminate 

18669482 Auditory Tones Hand Button Press Detect 

16377154 Visual Faces, Fixation Point None None Attend, Fixate 

18310580 Visual Faces Hand Button Press Discriminate 

16837058 Visual Words Hand Button Press Recall 

14514501 Visual Shapes Hand Finger Tapping Move 

18837865 Visual Faces, Shapes Hand Button Press Discriminate 

14984424 Visual Pictures None None Attend, Read 

17184978 Auditory Words None None Attend 

14990520 Auditory Noise, Words Hand, None Flexion/Extension, None Attend, Discriminate 

17097071 Visual Faces Hand Button Press Attend 

15289277 Visual Pictures Hand Button Press Discriminate 

15225144 Visual Pictures, Words None None Read 

16112653 Visual Faces, Words Hand Button Press Discriminate 

15094461 Visual Fixation Point, Words None, Oral/Facial None, Speech Fixate, Read 

16225562 Visual Words Hand Button Press Name 

18854323 None, Visual Letters, None None None Generate, Passive/Rest 

17618089 Visual Letters Hand Button Press Detect, Recall 

15541070 Visual Digits Hand Button Press Discriminate, Recall 
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16837832 Visual Words Hand Button Press Count 

16135630 Visual Words Hand Button Press Count 

15173843 Visual Digits Hand, None Button Press, None Attend, Detect 

16310510 Visual Letters Hand, None Button Press, None Detect, Discriminate 

15246453 None, Visual Film Clip Hand, Oral/Facial Grasp, Speech Discriminate, Move 

16411978 Visual Letters, Words Oral/Facial Speech Name 

18321870 Visual Words Hand Button Press Recall 

18997158 Auditory Words Hand Button Press Discriminate 

18713781 Visual Film Clip Hand Button Press Detect, Move 

9397017 Auditory Tones Hand, None Grasp, None Move, Passive/Rest 

18571627 Visual Letters Hand Button Press Discriminate, Recall 

19603410 Visual Letters Hand Button Press Recall 

19418510 Visual Letters Hand Button Press Discriminate, Recall 

19118321 Visual Letters Hand 

Button Press, 

Flexion/Extension Detect, Recall 

17217921 Visual Faces, Fixation Point Hand, None Button Press, None Discriminate, Fixate 

17656073 Visual Pictures, Words None None Attend, Discriminate 

19243925 Visual Fixation Point, Shapes None, Ocular None, Saccades Fixate, Move 

18954477 Visual Letters, Words Hand Button Press Discriminate 

17916330 None, Visual None, Shapes None None Attend 

19176471 Visual Faces Hand Button Press Recall 

19449330 Visual Abstract Patterns, Shapes Hand Button Press Discriminate 

19500088 Visual Fixation Point, Shapes Hand, None Button Press, None Fixate, Recall 

19624392 Visual Letters Hand, None Button Press, None Attend, Detect 

19442494 Visual Letters Hand, None Button Press, None Discriminate 

19594508 Auditory, Visual Fixation Point, Letters, Words Hand, None Button Press, None Fixate, Recall 

17719567 Visual Pictures Hand Button Press Discriminate 

18559283 Visual Pictures Hand Button Press Discriminate 

17949689 Visual Faces, Fixation Point Hand, None Grasp, None Discriminate, Fixate 

18550030 Visual Faces Hand Grasp Discriminate 

17888408 Visual Fixation Point, Letters, Pictures Hand Button Press Discriminate 

17699669 Auditory, Visual Pictures, Words Hand Button Press Discriminate, Imagine 

9430507 Visual Pictures None None Attend 

18586109 Visual Shapes Hand Button Press Discriminate 

18455373 Visual Pictures, Shapes Hand, None Button Press, None Attend, Detect 

18586275 Visual Letters Hand, None Button Press, None Discriminate 

19389870 Visual Words Hand, None Finger Tapping, None Move, Passive/Rest 
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19419384 Visual Fixation Point, Letters Hand, None Button Press, None Discriminate, Fixate 

18950748 Visual Faces, Words Hand, None Button Press, None Attend, Discriminate 

19218875 Auditory, Visual Letters, Tones Hand, None Button Press, None Detect 

18706701 Visual Pictures Hand, None Button Press, None Attend, Discriminate 

19176279 Auditory, None None, Words None None Attend, Passive/Rest 

19239982 Auditory, Visual Letters, Tones Hand, None Button Press, None Detect, Discriminate 

19171077 Visual Digits, Pictures, Words Hand Button Press Discriminate 

17585888 Visual Letters Hand Button Press Detect 

9141092 None None None None Passive/Rest 

19446443 Visual Fixation Point None None Fixate 

17601497 Visual Letters Hand Button Press Discriminate 

15691522 None None None None Passive/Rest 

19448846 None None None None Passive/Rest 

18822408 Visual Faces, Shapes Hand Button Press Detect 

20393460 Visual Digits Hand Button Press Discriminate 

12611834 None None None None Passive/Rest 

19261334 Visual Shapes, Symbols, Words Hand Button Press Discriminate 

19346000 Visual Faces Hand Button Press Recall 

19428222 Visual Faces, Shapes, Words Hand Button Press Discriminate 

19218875 Auditory, Visual Letters, Tones Hand, None Button Press, None Discriminate 

18097655 Visual Digits, Fixation Point, Shapes Hand Button Press Discriminate 

18097655 Visual Digits, Fixation Point, Shapes Hand Button Press Discriminate 

21041614 Visual Faces Hand Button Press Detect 

16203952 None, Visual None, Shapes Hand, None Button Press, None Passive/Rest, Recall 

15885507 Auditory Noise, Tones Hand, None Button Press, None Attend, Discriminate 

11999890 None None Hand, None Finger Tapping, None Move, Passive/Rest 

15169688 Visual Fixation Point, Words Hand, None Button Press, None Encode, Fixate 

16199830 Visual Fixation Point, Words Hand, None Button Press, None Discriminate, Fixate 

16199831 Visual Letters Hand Button Press Discriminate, Imagine, Recall 
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Appendix B 
Stimulus 

Modality 

f-score Stimulus Type f-score 
Response 

Modality 
f-score Response Type f-score Instructions f-score 

None 

0.649 

+/-0.180 
3D Objects 0.0 +/-0.0 Arm 0.0 +/-0.0 Blink 0.0 +/-0.0 Attend 

0.660 

+/-0.337 

Auditory 

0.0397 

+/-0.214 

Abstract 

Patterns 

0.0 +/-0.0 Facial 0.0 +/-0.0 Breath-Hold 0.0 +/-0.0 Count 

0.587 

+/-0.369 

Visual 

0.933 

+/-0.023 
Acupuncture 0.0 +/-0.0 Foot 0.0 +/-0.0 Button Press 

0.826 

+/-0.088 
Detect 

0.573 

+/-0.321 

Tactile 0.0 +/-0.0 Asian Characters 0.0 +/-0.0 Hand 

0.857 

+/-0.098 
Draw 0.0 +/-0.0 Discriminate 

0.696 

+/-0.096 

Olfactory 0.0 +/-0.0 Braille Dots 0.0 +/-0.0 Leg 0.0 +/-0.0 Drink 0.0 +/-0.0 Encode 

0.890 

+/-0.244 

Gustatory 0.0 +/-0.0 Breathable Gas 0.0 +/-0.0 None 

0.546 

+/-0.186 
Finger Tapping 

0.315 

+/-0.754 
Fixate 

0.740 

+/-0.386 

Interoceptive 0.0 +/-0.0 
Chord 

Sequences 

0.0 +/-0.0 Ocular 

0.067 

+/-0.632 
Flexion/Extension 0.0 +/-0.0 Generate 

0.706 

+/-0.251 

 

Clicks 0.0 +/-0.0 Oral 0.0 +/-0.0 Grasp 

0.309 

+/-0.711 
Imagine 

0.780 

+/-1.247 

Digits 

0.074 

+/-0.311 
Pelvis 0.0 +/-0.0 Manipulate 0.0 +/-0.0 Move 

0.766 

+/-0.291 

Electrical 

Stimulation 

0.0 +/-0.0 Shoulder 0.0 +/-0.0 Micturate 0.0 +/-0.0 Name 

0.0 

+/-0.0 

Eye Puffs 0.0 +/-0.0 Torso 0.0 +/-0.0 None 

0.761 

+/-0.115 
None 

0.0 

+/-0.0 

Faces 

0.606 

+/-0.273 
 Point 0.0 +/-0.0 Passive/Rest 

0.809 

+/-0.269 
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False Fonts 0.0 +/-0.0 Saccades 

0.457 

+/-0.877 
Read 

0.425 

+/-0.809 

Film Clip 0.0 +/-0.0 Smile 0.0 +/-0.0 Recall 

0.820 

+/-0.153 

Fixation Point 

0.044 

+/-0.146 
Speech 

0.392 

+/-0.496 
Repeat 

0.571 

+/-1.019 

Flashing 

Checkerboard 

0.0 +/-0.0 Swallow 0.0 +/-0.0 Sing 

0.0 

+/-0.0 

Food 0.0 +/-0.0 Whistle 0.0 +/-0.0 Smile 

0.0 

+/-0.0 

Fractals 0.0 +/-0.0 Write 0.0 +/-0.0 Track 

0.0 

+/-0.0 

Heat 0.0 +/-0.0 

  

Infrared Laser 0.0 +/-0.0 

Infusion 0.0 +/-0.0 

Letters 0.0 +/-0.0 

Music 0.0 +/-0.0 

Noise 0.0 +/-0.0 

None 

0.624 

+/-0.131 

Nonverbal Vocal 

Sounds 

0.0 +/-0.0 

Nonvocal 

Sounds 

0.0 +/-0.0 

Odor 0.0 +/-0.0 

Pain 0.0 +/-0.0 

Pictures 0.141 



70 

+/-0.375 

Points of Light 0.0 +/-0.0 

Pseudowords 0.0 +/-0.0 

Random Dots 0.0 +/-0.0 

Reversed Speech 0.0 +/-0.0 

Shapes 

0.177 

+/-0.298 

Syllables 0.0 +/-0.0 

Symbols 0.0 +/-0.0 

TMS 0.0 +/-0.0 

Tactile 

Stimulation 

0.0 +/-0.0 

Tones 

0.057 

+/-0.361 

Vibratory 

Stimulation 

0.0 +/-0.0 

Words 

0.510 

+/-0.109 

  

 


