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Abstract

Interest in swarm robotics, particularly those modeled on biological systems, has been

increasing with each passing year. We created the iAnt robot as a platform to test how well

an ant-inspired robotic swarm could collect resources in an unmapped environment.

Although swarm robotics is still a loosely defined field, one of the included hallmarks

is multiple robots cooperating to complete a given task. The use of multiple robots means

increased cost for research, scaling often linearly with the number of robots. We set out to

create a system with the previously described capabilities while lowering the entry cost by

building simple, cheap robots able to operate outside of a dedicated lab environment.

Obstacle avoidance has long been a necessary component of robot systems. Avoiding

collisions is also a difficult problem and has been studied for many years. As part of mov-

ing the iAnt further towards the real-world we needed a method of obstacle avoidance.

Our hypothesis is that use of biological methods including evolution, stochastic move-

ments and stygmergic trails into the iAnt Central Place Foraging Algorithm (CPFA) could
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result in robot behaviors suited to navigating obstacle-filled environments. The result is a

modification of the CPFA to include pheromone trails, CPFA-Trails or CPFAT.

This thesis first demonstrates the low-cost, simple and robust design of the physical

iAnt robot. Secondly we will demonstrate the adaptability of the the system to evolve and

succeed in an obstacle-laden environment.
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Chapter 1

Introduction

Interest in swarm robotics, especially systems modeled after insects, have garnered in-

creasing attention in the last few years. The iAnt robot platform was created to test the

ability of an ant-inspired robotic swarm to collect resources in an unmapped environment

and return the resources to a central location [2]. This process, known as central-place

foraging, is widely accepted as a viable behavioral strategy for robots working in mining,

search-and-rescue or ordinance disposal [3, 4].

Other robotic systems were examined for cost and viability with regard to our desired

research strategy [5]. Although several swarm systems are available commercially all

proved too expensive and we felt construction of a new robot was warranted. The iAnt is

composed of both commercial and custom designed parts with ease of assembly and low

cost in mind. The total cost of a current iAnt is under $600 US dollars.

Also absent from the iAnt research, until now, was inclusion of obstacles in the en-

vironment and a study of how well the iAnt behavior could adapt in environments with

obstacles. Obstacle avoidance, in robotics, has been researched for many decades and it is

especially important for autonomous systems [6]. The bulk of this thesis is devoted to the

work done incorporating obstacles and results from testing the modified iAnt behavior as
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Chapter 1. Introduction

they navigate the new, more complex environment.

1.1 Contributions and Organization

Chapter 2 will provide the background for the iAnt robot platform and the physical design

of the robot. The genesis of the robot was the need to find a low-cost, durable and simple

robot for study of swarm robotics. Several systems were considered but cost was deemed

too high. The iAnt is made up of custom-designed, laser cut acrylic parts as well as

commercial off-the-shelf (COTS) parts where possible. The detailed drawings and parts

lists are presented in the Appendices and complete instructions are available online.

Chapter 3 is devoted to work done to incorporate obstacles and obstacle avoidance into

the iAnt central-place foraging algorithm (CPFA). Avoidance of obstacles, for robots, is

important and a great deal of research has been devoted to the topic. First I will demon-

strate the ability of the CPFA to evolve behaviors via genetic algorithm (GA) that can

maximize fitness while operating in obstacle strewn environments. Not only is fitness

maximized but collision calls, made by the robots, is decreased. Secondly I will show that

the addition of stygmergic trails to the CPFA, resulting in CPFA-Trails (CPFAT), is able to

further increase fitness, reduce obstacle avoidance calls and succeed against a pathological

case which defeated the CPFA. The work in this chapter was co-authored by Dr. Melanie

Moses and Joshua Hecker.

Chapter 4 is the conclusion and future work.
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Chapter 2

The iAnt Robot Platform

2.1 Introduction

When we began work on the iAnt our initial intent was to purchase robots or a system

which met our needs, not to build our own. The E-Puck and the Kilobot were both con-

sidered as both met the definition of swarm robots but cost was prohibitive [7, 8]. Our

attention then shifted to the idea of constructing our own robot while maintaining the fol-

lowing capabilities:

• Lower the initial cost, per robot of setting up a multi-agent system

• Utilize as many commercial off-the-shelf (COTS) parts as possible

• Make the design simple to construct for other researchers or educators

• Provide all design and construction details as “open-source”

3



Chapter 2. The iAnt Robot Platform

2.2 The First Generation iAnt Robot

The first generation of the iAnt began in the summer of 2011 and although many changes

have been made since, it is relevant to show the basis of the iAnt and the on-board sensors.

The initial version used an Arduino micro-controller for all computing tasks, a Global

Positioning System (GPS) module for localization, compass for heading, 802.11b wire-

less module for communication, ultrasonic range-finder and radio-frequency identification

(RFID) reader for resource collection. The selected chassis was a commercial off-the-shelf

product chosen for its size and cost. A complete document detailing the construction and

design considerations is presented in Appendix A.

2.3 The Current Generation iAnt Robot

The current (2014) version of the iAnt is an evolution in and of itself, from the first version.

Many changes took place including the use of an Apple iPod for increased computing

power and inclusion of cameras, removal of the GPS for indoor use, removal of the RFID

and substitution of quick-response (QR) codes to simulate resources and a completely new

chassis designed from laser cut acrylic. The Arduino micro-controller was retained, along

with the compass, range-finder and motor driver ”shield.”

Work began with construction of a three-dimensional computer-aided design (3D-

CAD) model of the necessary parts to test dimension and fitment, Fig.2.1.

To allow use of both cameras, on board the iPod, a set of pieces were designed to

mount the iPod horizontally and using an angled mirror mounted above the upward-facing

camera. The result is one camera able to look down for resource detection and the other to

look ahead for navigation, Fig.2.2,2.3,2.4.

The original chassis was scrapped in favor of a wheeled-chassis incorporating similar

4



Chapter 2. The iAnt Robot Platform

Figure 2.1: 3D CAD model of 4th generation iAnt platform assembly.

motors but having lower gear ratios. The tracked chassis showed poor motor life with a

failure happening approximately 10-12 hours of run time. The wheeled configuration has

seen motor failures decrease to as little as every 60-70 hours of run time. In addition to

use of lower gear-ratio motors a small cap was added to seal the motor gears from damage

due to sand to grit and likely contributed to the extended motor life. The wheeled chassis

also allows for faster motor replacement in the event of a failure.

Additional battery capacity, over the first generation, is due to use of a 7.4 volt, 1100

5



Chapter 2. The iAnt Robot Platform

Figure 2.2: Top view of assembled 4th generation iAnt.

milli-amp/hour (mAh) lithium polymer battery.

The final result is a robot that maintained a total cost of approximately $550.00 and

utilizes easily replaceable parts made from flat, cast acrylic material. The final assembly

is also one easily modified to allow for future changes to either design or capability.

Figure 2.3: Side view of assembled 4th generation iAnt.

6



Chapter 2. The iAnt Robot Platform

Figure 2.4: Front view of assembled 4th generation iAnt.

The dimensioned drawings for the acrylic parts are included in Appendix B. The full

parts list, along with suppliers and costs are included in Appendix C.

7



Chapter 3

Evolution of Ant-Inspired Obstacle

Avoidance in Swarming Robots

3.1 Abstract

In this chapter we demonstrate that a simple robotic swarm can use a genetic algorithm

(GA) to achieve autonomous navigation in highly cluttered environments. We also show

the GA can evolve effective strategies for coping with random obstacle placements using

a central place foraging algorithm (CPFA). The CPFA combines stochastic movements,

insect-inspired obstacle avoidance and simple communication among robots. We modify

the CPFA by allowing simulated robots to communicate with stygmergic trails in CPFA-

Trails (CPFAT). Both the CPFA and CPFAT can evolve foraging strategies to collect re-

sources in the presence of a high density of randomly placed obstacles. CPFAT addition-

ally succeeds against a classic bug trap, where the CPFA fails. These methods are simple to

implement, run in real-time and need no global knowledge of the environment. This chap-

ter was authored by myself and in collaboration with by Melanie E. Moses and Joshua

Hecker (Department of Computer Science, University of New Mexico) and submitted for
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Chapter 3. Evolution of Ant-Inspired Obstacle Avoidance in Swarming Robots

publication.

3.2 Introduction

If swarming robots are to leave the controlled environment of research laboratories, where

many currently navigate, they will have to deal with real-world complexities, not least

of which is avoiding collisions [6, 9]. Obstacle avoidance has long been recognized as a

challenging problem, and collisions with objects can cause damage to both the objects and

the robots, and impair the robots’ ability to complete their tasks [6].

The iAnt swarm has demonstrated flexible, error-tolerant foraging using the Central

Place Foraging Algorithm (CPFA) optimized by a genetic algorithm (GA) [2]. The for-

aging task is also known to be difficult and one well suited to multi-agent systems [10].

Real-world problems, similar to foraging, include terrestrial mining and search-and-rescue

[3, 11]. The iAnt robot swarm forages using stochastic movements and a simple commu-

nication strategy, but until now, has not attempted to navigate environments containing

obstacles.

The iAnt swarm utilizes a GA to evolve autonomous behaviors that are automatically

tuned to different environments [1]. In this work we show the GA can evolve behaviors

to forage successfully in the presence of obstacles. We additionally modify the CPFA

to include stygmergic trails and a simple, insect-inspired obstacle avoidance algorithm.

We call the resulting, novel method CPFA-Trails (CPFAT). We test the CPFA and CPFAT

against environments with randomly placed obstacles and a pathological trap used widely

to test performance of path planning algorithms [12–14]. The GA is able to evolve ef-

fective strategies for coping with randomized obstacles in both the CPFA and CPFAT by

producing unique parameter sets appropriate to each method. Finally we demonstrate that

the CPFAT method is able to succeed against the insect trap arrangement where the CPFA
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method is not. The CPFAT retains all the hallmarks of the original CPFA in its ability to

achieve flexible, real-time foraging in the absence of global knowledge [1].

3.3 Background

3.3.1 Obstacles and Collision Avoidance

Obstacle avoidance has been studied for over three decades in robotics [6]. The reasons for

avoiding obstacles are simple. As a robot moves from the lab to more uncertain environ-

ments encounters with obstacles and possible damage to both robot and obstacle become

more probable. The issue was addressed in early designs of possible planetary rovers by

NASA [15–17]. In 1979 it was shown that generalized path-planning problems (i.e., the

Mover’s Problem) belong to the complexity class PSPACE-hard [18].

3.3.2 Path-Planning without Global Knowledge

Path planning algorithms can be divided into two distinct categories, those having global

knowledge of the space and those that do not [19]. Often local planning is simply avoiding

an obstacle without regard to overall navigation path [6, 19].

Bug algorithms are a family of path planning algorithms that typically utilize only

local knowledge except for the location of the robot’s final destination or sink [20, 21].

The body of research surrounding bug algorithms is deep, varied and many improvements

have been proposed [22–27].

Taking the example of biological inspiration further, ant behavior has been used as

model strategy for obstacle avoidance and path planning [28–32]. The main focus of this

research lies in the stygmergic trails of pheromones laid by ants as a method of sharing

10
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information about the environment [33–39].

A shortcoming of bug algorithms lies in the classic “bug trap,” Fig. 3.1(L), often

used as a pathological test case for planning algorithms [12–14]. The bug trap takes its

name from actual traps used on insects which are easy to enter but difficult to escape [40].

Research has also shown that randomization, within the path planning task, can allow

robots to escape bug traps [41].

3.3.3 The Foraging Task

Ant behavior has also been used as a model for behavior of multi-robot systems [4, 9, 42–

45]. Ants foraging for food search a space, collect resources and return those resources,

typically to a central location. This particular behavior would be well suited to robots

collecting in situ resources in an extra-planetary setting, terrestrial mining, search-and-

rescue and security tasks [3, 11, 46]. The collection of robots performing the foraging

are often referred to as a swarm. Swarms are usually characterized by cooperation, local

communication and lack of centralized control. Swarm robotic algorithms require error-

tolerance and flexibility, particularly because the robots need to be small and relatively

inexpensive, in order to make large swarms economically feasible [47, 48].

3.3.4 The iAnt and Evolution of Autonomous Behavior

Previously, we observed and modeled ants foraging in natural environments [49], pa-

rameterized those models, used a GA to maximize resource collection rates for different

resource distributions [38, 50] and instantiated those foraging parameters in iAnt robot

swarms [2, 51, 52]. We briefly describe the CPFA below by summarizing the longer de-

scription in [1]. Parameters are listed in Table 3.1.

In [1] the GA-tuned CPFA evolved appropriate solutions to various environmental con-
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Chapter 3. Evolution of Ant-Inspired Obstacle Avoidance in Swarming Robots

Figure 3.1: The iAnt simulation environment including the bug trap obstacle arrangement
and a resource distribution of 256 targets divided into four discrete clusters. Robots are
magenta (center) obstacles are brown and resources are gray. The nest is in the center of
the trap.

Table 3.1: Evolved Parameters Controlling iAnt Behavior
Parameter Initialization Function
Informed Search Decay Rate Exponential(5)
Pheromone Decay Rate Exponential(1)
Pheromone Laying Rate Uniform(0, 20)
Search Give-Up Probability Uniform(0, 1)
Pheromone Following Rate Uniform(0, 20)
Travel Give-Up Probability Uniform(0, 1)
Uninformed Search Variation Uniform(0, 4π)
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ditions, for example: i) increased communication when information was reliable and re-

sources were highly clustered, ii) more individual memory when cluster sizes were vari-

able, and iii) greater dispersal with increasing swarm size. The GA was able to evolve

foraging strategies tolerant of real-world sensing and navigation error, flexible with re-

spect to various resource distributions, and scalable to large numbers of agents [1].

Fig. 3.2 shows the states of the CPFA. The appropriate set of movement and communi-

cation behaviors depends on various features of the foraging problem, most notably here,

how resources are distributed in the environment.

The CPFA is implemented as a state machine with probabilistic transitions. The pa-

rameters in Table 3.1 govern the transitions. Each robot begins foraging from a central nest

by setting a new search location. Robots traveling to a random location with no prior infor-

mation search using an uninformed correlated random walk where the degree of turning in

the walk is governed by the parameter Uninformed Search Variation. Robots traveling to a

previously found resource location use an informed random walk to thoroughly search the

area. The informed walk has more variation in turning angles. That variation decays over

time into an uninformed walk at a rate determined by Informed Search Decay Rate. When

a robot locates a resource it collects the resource, records a count of neighboring resources

and returns to the nest. The decision to lay and follow pheromones are made based on the

parameters Pheromone Laying Rate and Pheromone Following Rate. Pheromones decay

exponentially over time controlled by the parameter Pheromone Decay Rate.

The specific implementation of several CPFA behaviors are particularly relevant to the

work presented here. First, in the original CPFA which was designed assuming obstacle-

free environments, pheromones are simply transmitted as way-points rather than complete

trails from the nest to the resource location. Second, during the search phase, robots

move using either an informed or uninformed random walk. In the uninformed random

walk, at each time step a robot chooses a new travel direction from a Gaussian probability

distribution, where the mean is the current robot heading and the standard deviation is a
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parameter evolved by the GA. After choosing the new heading the robot advances one

cell. The informed random walk is similar, but with a different standard deviation around

the robot’s heading. The GA evolves a larger standard deviation for the informed walk,

increasing the Brownian motion and in turn resulting in a more complete search of the

region surrounding the robot’s destination. Third, when the iAnt attempts to travel in a

straight line, either returning to the nest or traveling to a previous resource site, there is a

stochastic component. At each step, a robot is most likely to choose an optimal, shortest

path but the robot can choose a non-optimal step at any point during the travel.

Although the CPFA can evolve effective solutions for different resource distributions,

here we consider only the highly clustered distribution, Fig. 3.1. Evidence suggests that

most natural resource distributions are clustered [53, 54]. Pheromone communication is

particularly important for clustered resources, because pheromones recruit new robots to

the discovered clusters [1].

Figure 3.2: The iAnt CPFA state diagram. Parameters from Table 3.1 are in italics. Modi-
fied from [1].
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3.4 Methodology

3.4.1 Central-Place Foraging and Evolutionary Algorithms

Following methods detailed in [1] we use a GA to evolve a population of CPFA parameters

that maximizes the foraging efficiency of simulated robot swarms evaluated in an agent-

based model. These parameters control the sensitivity threshold for triggering CPFA be-

haviors, likelihood of transitioning from one state to another, and length of time spent in a

given state.

3.4.2 Distribution of Obstacles

We use four types of obstacle arrangements in experiments. The first arrangement utilizes

a 2 x 2 cell square obstacles placed randomly, referred to as Random, in the arena. A one-

cell wide corridor around the outer perimeter and a four-cell square around the central nest

is left free of obstacles. Numbers of obstacles range from a baseline of zero to a maximum

of 1000. It should be noted that high densities of obstacles rarely subdivided the space

completely and did occasionally form “bug traps,” from which robots struggled to escape.

Fig. 3.3 illustrates the maximum obstacle density.

The second obstacle arrangement is a previously described bug trap, referred to as

Trap, surrounding the central nest [12]. The inner dimension is 12 x 12 cells with a 1-cell

wide opening on the left side of the trap. Fig. 3.1 shows the trap arrangement. Experiments

with the trap environment did not include any additional obstacles.

The third arrangement, shown in Fig.3.4 (L), has large obstacles separating the nest

from the resource clusters with three narrow passages, referred to as Passages, between

the two regions (top, bottom and center). The passages are a single grid cell in width.

The fourth arrangement, shown in Fig.3.4 (R), has walls, referred to as Walls, separating

15



Chapter 3. Evolution of Ant-Inspired Obstacle Avoidance in Swarming Robots

Figure 3.3: Robot search environment with 1000 randomly distributed obstacles and clus-
tered resource distribution. Inset shows two robots ensnared in a bug trap and unable to
escape. Pheromone trails to resource cluster are visible, top-center. Obstacles are brown,
resources are gray and robots are green, orange, purple or cyan. The nest is white circle in
center.

the environment into five equal regions. Each wall contains two, single-cell openings

randomly placed in the walls.

3.4.3 Obstacle Avoidance Algorithm

Our obstacle avoidance algorithm belongs to the family of bug algorithms. The method

is similar to one of the simplest, “Dist-Bug” [21, 55]. When a robot decides to move

to a neighboring cell it first checks to see if the cell is obstructed. If obstructed, the robot

checks neighboring cells in a clockwise direction until a clear cell is found. The robot then
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Figure 3.4: Additional obstacle arrangements used in testing. (Left) Passage arrangement.
(Right) Walls arrangement. Obstacles are brown, resources are gray and robots are green,
orange, purple or cyan. The nest is the white circle.

moves to the clear cell and returns to its previous task. If performing a random walk there

is no guarantee the robot will not turn immediately back to the obstacle and have to repeat

the procedure. Failure occurs when the robot has a destination lying beyond its eight-cell

neighborhood. After moving to a clear cell the robot will turn back towards the destination

and is guaranteed to run into the trap walls again. In the iAnt algorithm a distant way-

point is used to path-plan when the robot is utilizing information, i.e. traveling to nest or

previous resource discovery site. The primary difference between the Dist-Bug algorithm

and the one employed here is the randomness incorporated into the basic movement even

when approximating straight line travel [50].

3.4.4 Pheromone Trails

In CPFAT we introduce a trail consisting of a list of actual grid points the robot moves

through while returning to the nest with a resource. The robot uses the iAnt straight line
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approximation algorithm to travel between its current position and the nest. When a robot

departing the nest chooses to follow pheromones it is provided with one of the available

trail lists. The robot will then follow the provided trail cell-by-cell duplicating the path of

the robot that laid the path.

The provided paths are not expected to be optimal with regard to shortest distance but

are guaranteed to provide a complete and collision free path to the trail terminus. Research

indicates that ants may minimize travel time, rather than path length, to optimize trails so

the traditional metric of optimality may not be valid [56].

Trails are only followed when leaving the nest and returning to a previously discovered

resource. Trails are not used when returning to the nest nor are they used during random

search. Trail use in the CPFAT is evolved by genetic algorithm in exactly the same way all

CPFA parameters are evolved [1].

3.4.5 Experimental Set-up

Experiments were conducted in the iAnt simulation environment. The simulation allows

for selection of resource distribution, number of robots, size of search environment, ob-

stacle number and distribution and inclusion of error. Robots do not detect other robots

as obstacles. Collisions only occur with static obstacles placed in the environment. The

following conditions were used for for all experiments:

• 256 resource targets or tags divided into four randomly placed clusters

• Area equal to 100 m2 discretized into 125 x 125 cells

• Mann-Whitney U test used for statistical significance

and the following conditions were used to evolve CPFA parameters with the GA:
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• 100 swarms evaluated for each generation of evolution

• 50 generations of evolution

• GA employs elitism

• 10 independent iterations of the GA determines the optimal parameter set to evaluate

• 1000 evaluations with best parameters conducted post evolution

3.5 Results

3.5.1 Random Obstacles

CPFA Obstacle Evolution

Fig. 3.5(L) shows fitness of the CPFA with increasing obstacle density. The three lines

plotted represent full evolution of parameters against each obstacle density (blue), param-

eters evolved with no obstacles evaluated against increasing obstacle density (red) and

the parameters evolved against 1000 obstacles and tested with increasing density (green).

Behaviors evolved for each specific density (blue) shows better performance, on average,

than behaviors evolved from a single obstacle density. Swarms with obstacle-evolved

parameters collected 4.0% more resources than the parameters assuming 1000 obstacles

(p = 0.04). Swarms with obstacle-evolved parameters also show a marginally significant

3.1% increase in foraging performance with 1000 obstacles, over the parameters evolved

assuming no obstacles (p = 0.05).
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Figure 3.5: (Left) Results of testing three different evolved parameter sets against increas-
ing obstacle density and using CPFA way-points. The blue line shows parameters evolved
for the particular obstacle density on which they were tested. The green line shows pa-
rameters evolved for only maximum density but tested against increasing density. The red
line shows parameters evolved for no obstacles tested against increasing density. (Right)
Evolved fitness of both CPFA (red) and CPFAT (blue) are shown against increasing obsta-
cle density. The black lines indicate the fraction of collision avoidance calls made by all
robots for a given obstacle density. Shaded regions represent the 25% and 75% quantiles.
The right axis shows collisions relative to the total number of collisions from the random
obstacles.

CPFA & CPFAT Fitness

Fig. 3.4(R) shows overall fitness for CPFA (red) and CPFAT (blue) versus obstacle density.

CPFAT shows a marginally significant increase of 2.0% compared to CPFA (p = 0.05).

Figure 3.6: (Left) Uninformed search variation for both CPFA (red) and CPFAT (blue)
show correlated increases with respect to increasing obstacle density. The values are pre-
sented as the range of degrees around the robot’s current heading which may be chosen
for the next walk step. (Right) Pheromone following rate for CPFAT shows a correlated
increase with respect to obstacle density. The values are medians of the ten best, evolved
parameter sets.
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Figure 3.7: (Left) The number of total collision avoidance calls made by the CPFA (red)
and CPFAT (blue) evaluated against the obstacle arrangements. (Right) The total fitness
values for both CPFA (red) and CPFAT (blue) evaluated against three possible obstacle
arrangements. Error bars represent the 25% and 75% quantiles. Refer to section IIIb for
obstacle description. The random arrangement included 1000 individual obstacles.

CPFA & CPFAT Collision Calls

Fig. 3.5(R) shows the total number of collision calls made by both the CPFA (dashed) and

CPFAT (black). Collision calls, with increasing obstacle density, showed a rate of increase

faster than rate of fitness decrease. Thus, while the addition of trails with CPFAT made

a slight difference in the number of resources collected, trails substantially decreased the

number of collision calls.

Increasing Turn Angle

Fig. 3.6(L) shows the only parameter that evolved a significant change as obstacle den-

sity increased: the uninformed search correlation. Both the CPFA (red) (p < 0.01) and

CPFAT (blue) (p < 0.01) show increases in possible turning angles used at each step of

the uninformed random walk. The uninformed search correlation values for the CPFA are

approximately 8.2 degrees greater than for CPFAT.
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Table 3.2: Evolved Parameters For Each Obstacle Environment
Parameter None None Random Random Walls Walls Passage Passage Trap Trap

CPFA CPFAT CPFA CPFAT CPFA CPFAT CPFA CPFAT CPFA CPFAT
Informed Search Decay Rate 0.1890 0.1732 0.1388 0.0795 0.2392 0.0858 0.4289 0.0382 0.0983 0.0626
Pheromone Decay Rate 0.0316 0.0144 0.0159 0.0345 0.0230 0.0250 0.0049 0.0127 0.1524 0.0119
Pheromone Laying Rate 1.4052 3.6324 4.5668 1.6652 0.7846 0.3421 1.4948 1.5240 4.2519 2.3580
Search Give-Up Probability 0.0061 0.0098 0.0047 0.0130 0.0097 0.0061 0.0060 0.0044 0.0029 0.0037
Pheromone Following Rate 1.6494 1.5053 1.5508 19.8645 3.6803 19.4112 5.3931 13.2560 0.7897 19.3037
Travel Give-Up Probability 0.1353 0.1253 0.3560 0.1442 0.2508 0.1333 0.0025 0.0031 0.8935 0.4139
Uninformed Search Variation 0.2640 0.1996 0.3678 0.4554 0.8766 0.8293 0.4059 0.5084 0.4683 0.5496

CPFA & CPFAT Unique Parameters

Fig. 3.6(R) shows the other parameter with a significantly positive increase as obstacle

density increases using CPFAT: the pheromone following rate (p < 0.01). The final value

indicates a high probability that pheromone trails will be followed when available. In

contrast the CPFA did not show a significant increase in pheromone following (NS, p =

0.08) as obstacle density increased. Table 3.2 shows a list of best evolved parameters, for

different environments. Note that with no obstacles, pheromone following rate is simi-

lar, between CPFA and CPFAT, but with all other cases the pheromone following rate is

substantially different between the two methods. The high pheromone following rate for

CPFAT indicates a strong preference to use stygmergic trails in the presence of obstacles.

3.5.2 The Trap, Passage and Walls

CPFAT Decreases Collision Calls

Fig. 3.7(L) shows total number of collision calls made by the CPFA (red) and CPFAT

(blue) versus maximum obstacle density and the other three obstacle arrangements. As

previously shown, the decrease with randomly placed obstacles is significant (p < 0.01).

The difference in collision calls with the walls, narrow passage and the bug trap are signif-

icant (p < 0.01) and greater than with random obstacles. Each parameter set was evolved

for the individual situations.
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CPFAT Succeeds and CPFA Fails

Fig. 3.7(R) shows the effect on fitness for both CPFA (red) and CPFAT (blue) as obstacles

increase. With no obstacles both methods were similar and showed no significant differ-

ence (p = 0.66). With 1000 random obstacles the difference in the number of collected

resources became significant while still relatively small (p < 0.01). With the bug trap the

CPFAT was still able to gather 22.3% of resources while the CPFA was only able to col-

lect 2.0% (p < 0.01). The Walls and Passage arrangements showed significant differences

between CPFA and CPFAT (p < 0.01) although the difference between the two methods

was not as marked as with the trap. Each parameter set was evolved for the case in which

they were evaluated.

GA Prefers Trails for CPFAT

Table 3.2 displays the best evolved parameter values for each obstacle arrangement, from

the ten, independent evolutions. Note that in all cases the evolved parameter for pheromone

following rate is much higher in all CPFAT cases. The GA strongly prefers use of trails

when available while relying more on site fidelity or individual memory for the CPFA.

3.6 Discussion

Our initial expectation was the CPFAT would always outperform the original CPFA. How-

ever, CPFAT resulted in only minor foraging improvement for randomly placed obstacles,

even with very high obstacle density. Fig. 3.5 shows the GA is able to tune parameters to

each unique obstacle density and modestly improve foraging in the presence of obstacles.

However, when comparing fitness and collision calls between the CPFA and the CPFAT

there were significant gains made by the GA using trails. Not surprisingly, the naı̈ve CPFA

which evolves behaviors in environments with no obstacles, collects fewer resources as the
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number of obstacles increases during evaluation. Swarms collect 42% of resources with

1000 obstacles compared to 68% of resources with no obstacles. Interestingly, the GA

evolves a unique parameter set or different strategy, when robots lay trails rather than the

way-points of the original CPFA. Refer to Table 3.2 for evolved values.

Increase of the uninformed search correlation indicates a preference for more thorough

search of the robot’s local area when searching without information. The CPFA turning

angles increase from 12 to 19 degrees and the CPFAT increases from 5 to 9 degrees,

as obstacles increase from zero to 1000. This indicates i) the GA consistently increases

turning angles in robot movement when there are more obstacles, and ii) the addition of

trails encourages use of straighter search paths. We hypothesize the increase in turning

angles causes robots to search local areas more completely when there are more obstacles,

and further, increased turning reduces repeated collisions with the same obstacle.

The major difference between the CPFA and CPFAT becomes apparent when ex-

amining the evolved pheromone following rate. The GA shows a strong preference for

pheromone following when the CPFAT trails are used. As previously stated the trails are

only utilized when a robot is traveling from the nest to a resource, not when returning to

the nest. We hypothesize that use of trails in both directions would result in a significant

increase in performance over this initial CPFAT implementation.

In the pathological case of the bug trap, the methods show distinct divergence in per-

formance. Both methods use random movement to escape the trap. With the CPFA a robot

that escapes and finds a resource cluster will return and either use memory or shared in-

formation, but both lead to a high probability the robot will become permanently trapped.

In addition, a lack of shared information means that a single robot escaping the trap pro-

vides no benefit to other robots. The result is the noticeable increase in collision calls and

decrease in fitness over CPFAT.

With the Passage and Walls arrangement fitness was decreased, similar to the trap, but
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the difference between the CPFA and CPFAT are not as clear as the trap case. Unlike the

trap, robots are less likely to become permanently trapped. Fitness decrease is more likely

attributed to the difficulty of finding passages between regions and longer transit times

between resource and nest.

Fig. 3.8 shows a detail of the simulation where a robot using CPFAT lays pheromone

trails leading other robots to discovered resources. When a single robot escapes, finds re-

sources and leaves a trail, it not only guarantees it’s own escape again but other robots can

escape using the same trail. The decrease in collision and increase in fitness are primarily

due to a single robot succeeding and recruiting others via trails.

These results have another practical implication. Decreased collisions and increased

fitness were most apparent when the bug trap was used. This suggests that random place-

ment of obstacles rarely results in formation of actual traps, even when the environment

becomes quite cluttered. Our expectation is that obstacle arrangements in real-world sit-

uations would more closely mirror the random distribution rather than the pathological

case. While bug traps provide an important test of how different algorithms function un-

der adversarial conditions, they may be rare in natural environments. Thus, robot swarms

designed to operate under real-world conditions may not require use of complex and time

consuming methods of path-planning or obstacle avoidance. A simple strategy coupled

with use of multiple agents may be adequate to handle a majority of encountered condi-

tions. Simple trail following algorithms with stochastic movement can be effective be-

cause only one robot needs to escape the trap and lay a trail which can be followed by

other robots. Additionally, since swarms have multiple robots, the cost of having a few

robots trapped is lower than it would be for a lone robot.

Video demonstration of results available: 1

1https://www.youtube.com/watch?v=yl9YAl43u-Y
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Figure 3.8: Simulation detail showing trap, pheromone trail usage and robot states:
Searching (magenta), Returning sans resource (orange), Returning with resource (green)
and Returning to site via trail (cyan). Nest is in center of trap.

3.7 Conclusion

We have demonstrated that a simple shared information strategy can allow a group of

small, low-cost robots to successfully navigate an obstacle laden environment via evo-

lution of existing behavioral parameters. Not only does this method work in a random

distribution of obstacles but use of stygmergic trails allows success when faced with the

classic bug trap. This simple method is a starting point for future research using more

sophisticated obstacle avoidance strategies.
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Conclusion

This thesis only presents the beginnings of a successful robot platform and obstacle avoid-

ance technique. Future work, already under way, includes adaptation of the localization

method to use a cadiotropic mirror and the necessary physical adaptation to fit the mirror

onto the robot. Work has also been performed to adapt the iAnt CPFA(T) to a differ-

ent physical robot platform and use of the Robot Operating System (ROS) and Gazebo

simulation environment while maintaining the iAnt’s core principals. Our hypothesis has

always been that the iAnt CPFA(T) should be adaptable to any system of terrestrial robots,

no matter size or basic hardware configuration. Lastly, the bug-algorithm used for ob-

stacle avoidance is one of the most simple available and this work is but a starting point

for further research, rather than a comprehensive solution. More sophisticated avoidance

algorithms that do not need global information can certainly be tested and in fact, should

be.

Our hope is, like the natural evolution incorporated into the CPFA, the iAnt is a system

which will continue to grow, evolve and succeed far into the future.
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AntBot Version 1.0 – Overview 

 

 The intent of this document is to provide a complete operations manual for the robots 

constructed for the physical demonstration of an ant-based genetic algorithm as overseen by Dr. 

Melanie Moses at the University of New Mexico SCALENET Lab. 

 This guide is intended for any end user of the “AntBot” or anyone seeking to build such a 

robot for research and development.  Design considerations are included, as are original, 

manufacturers technical documents.  Also included is current documentation (as of the date 

7/23/11) for software libraries written for the AntBot for use with the Arduino IDE.   

 Team members for this project include PhD candidate Joshua Hecker, undergraduate Karl 

Stolleis (author) and high school intern Daniel Washington. 
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AntBot Version 1.0 – Hardware Description 

 

Physical Platform 

 The OSBots.com Surveyor-1 chassis, Arduino version was chosen as the platform for the 

project.  The case is machined aluminum and contains a 7.4V (2-cell) Lithium Polymer battery, 

four 100:1 gear-motors, a charging jack and on/off switch.  The top plate is polycarbonate and has 

holes drilled and tapped (#4-40) for mounting the Arduino microcontroller board. 

 Primary drive is via two, rubber tank-style treads attached to the motors on each side.  

The tread drive wheels are driven directly by d-shaped motor axles. 

 In use the platform has shown to be light and sturdy.  A maximum climbing angle, on a 

smooth surface, was approximately 30 degrees. 

 

Microcontroller 

 The actual control unit for the AntBot is the Arduino Uno (smd version) microcontroller 

board based on the Atmel AtMega 328 digital chip.  The board has provisions for 14 digital pins, 

6 analog pins (routed through a DAC) and 6 of the 14 digital pins can be used for pulse-width 

modulation (PWM).  There are onboard regulators to supply 3.3V and 5V power while taking 7-

20V DC input.  Programming is via a USB port on the board.  One of the notable features of the 

Arduino system is the stacking header system that extends each of the motherboard’s pins up 

through each attached daughter board allowing for electrical and physical connections between 

the boards.  Care must be taken to avoid overlapping pin connections when using this system and 

without an additional power source the motherboard is only capable of delivering 750mA of 

current to the attached shields.  Each shield will be detailed later in the document. 

 The Atmel AtMega 328 is an 8-bit native processor running on an onboard clock of 

16Mhz.  Total RAM storage on board is 32K with 0.8K being taken up by the boot loader.  The 

processor is programmed via a USB bus using the Arduino IDE.  All logic lines use a 5V 

reference voltage.  Care must be taken to ensure that all attached devices are 5V logic tolerant or 

provision must be made to limit voltage lest damage occur to the attached device. 

 A deciding factor for the use of the Arduino is its Open Source Hardware design.  Design 

information as well as basic programming examples are provided by the Arduino developers and 

available from multiple sources on the internet.   
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Figure 1 - The Surveyor Chassis with Arduino Attached. Standoffs can be seen underneath main 
board.  Power switch and charging port are on left.  Wires on right are for main power and motor 
connections. 

 

Wireless Networking Shield 

 The first shield attached to the Arduino Uno is the Sparkfun, Inc “Wifly” board.  This 

board uses the Arduino stacking header system for physical and electrical attachment.  The shield 

utilizes the Roving Networks Wifly GSX 802.11 b/g wireless module.  This module allows for 

normal 802.x communication with the robots over any accessible wireless network.  The interface 

with the Arduino is via the microcontroller’s SPI data bus which is tied to pins 11, 12 and 13 with 

a fourth pin required for device selection (the SPI bus allows for multiple device connections that 

all share pins 11-13).  Range for the Wifly GSX is listed at 300+ ft but practical use has shown a 

reliable range of slightly less. 

 The Wifly unit also has provision for mounting an external 2.4gHz antenna via an 

onboard UFl connector.  An adapter is needed to interface this with the more commonly available 

antennas (RPMSA) types and this connector is fragile so although this capability is available the 
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increase in physical complexity might outweigh any advantage gained from extended signal 

range. 

 The practical use of the Wifly system is to allow two-way communication with the robot 

via a local wireless network.  The data collected from positional and environmental sensors are be 

transmitted via the network to a personal computer while commands and data sharing between 

robots are sent via this system. 

                          
Figure 2 - The Roving Networks WiFly module on mating Arduino shield. 

 

Motor Control Shield 

 The next shield attached above the Wifly board is the Sparkfun, Inc. “Ardumoto” board.  

This board uses an L298 Half-Bridge to supply two separate control lines with a maximum 

current draw of 2 Amps.  Onboard power connections allows motor voltage inputs of 6-18V and 

also supplies the Arduino with power via header connections.  This is the method chosen to 

deliver power to the system since higher current draw for the system could exceed the capabilities 

of the Arduino with all four motors running.  In practice this system seemed to provide necessary 

current to all parts without damage or failure. 

 The Ardumoto board has one drawback related to its basic design.  The board uses pins 3, 

11, 12 and 13 causing a conflict with the SPI bus for the aforementioned Wifly board.  The 

solution for the initial runs of robots was to use jumpers to move pins 11-13 to pins 5-7 in the 

same order.  This solution did cause problems with an apparent floating ground on the header 

containing pins 8-13 so arrangements were made to keep those pins unconnected.  For future 

robots the suggestion would be made to use the motor driver board made by DFRobots.  This 
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board uses the same half-bridge and therefore the same software commands while pin 

connections are made through pins 5, 6, 7 and 8.  This solution would seem to eliminate the need 

for jumpers and would free two additional digital pins for possible connections/usage. 

 It should be noted that there is no marking on the board for motor connection polarity 

only note of right and left side.  Some experimentation may be required to connect the motors 

properly to allow for expected results. 

 

 
Figure 3 - The Ardumoto Shield with attached jumpers (top and bottom).  The jumpers are the three 
pins that need relocation due to conflict with wireless board.  Blue screw terminals (right) are for 
power and motor connections.  Perforated area on left is prototyping area. 

 

GPS/SD Shield 

 The final board on the electronic stack is the GPS-SD data-logging shield manufactured 

by Adafruit Industries.  The board has provision for mounting a GPS receiver that uses a six-pin 

FTDI connector, a coin-style battery for power backup, a FAT formatted SD card and two led’s 

for indicators.  The Arduino Uno’s main reset button is also brought up to this shield.  Physical 

and electrical connection is made through the Arduino’s stacking header system. 

 A logical choice for a GPS receiver on the Adafruit board is the EM-406A from US 

GlobalSat.  Further discussion of the 406A will be made later but some basic considerations will 

be discussed here.  The Adafruit shield and the Arduino supply 5V logic lines which are native to 

the 406A but many GPS receivers operate on 3.3V logic voltages necessitating the use of an 

external step-down system and complicating physical design of a small robot such as the AntBot. 

 The GPS shield provides a mounting area for the GPS receiver on the board and adhesive 

foam-backed tape was used to mount the receiver.  With this arrangement it was noted that 
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excessive lock times for the GPS were present even when using the unit outdoors with a clear 

view of the sky.  Experimentation demonstrated that removing the receiver from the board and 

mounting it just two inches away, atop an aluminum stalk, provided lock times corresponding to 

the 406A technical specifications and was able to maintain a data lock even indoors.  The final 

design of this series of robot included replacing one of the mounting screws for the polycarbonate 

top plate with an aluminum stalk approximately 10cm in height and a longer FTDI cable was 

used to connect the receiver with the port on the GPS board. 

 Another consequence of using the Sparkfun, Inc Ardumoto board and the necessary re-

routing of pins 11-13 is that the SD card read/write capabilities of the GPS shield could not be 

utilized.  SD card connection is made through the hardware SPI bus and the rerouting of the 

motor board pins caused a failure of this connection.  The previously mentioned alternative motor 

board from DFRobot would, in theory, allow for use of the SD card feature on the GPS board. 

 After relocating the GPS receiver to the external stalk consideration was given to removal 

of the GPS shield altogether but ultimately the board was left in place for several reasons.  GPS 

receiver connection was much simpler made through the board and the Arduino reset button were 

considered important enough to continue use of the board.  Also, if in the future the SD card 

feature could be utilized with the possible motor control board substitution. 

                  
Figure 4 - GPS Shield with FTDI cable and jumpers for compass attached.  Shield also has main 
reset button (upper right) and led’s for indicator use. 
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GPS Receiver 

The choice of GPS receiver is the EM-406A from US GlobalSat.  This receiver interfaces 

easily with the Adafruit GPS shield, via a six-pin FTDI cable as well as being compatible with the 

Arduino 5V logic levels.  The unit is small, lightweight and is listed as having a WAAS-enabled 

accuracy of 5 meters.  In practice we found this receiver to have slightly better horizontal 

resolution when used with a clear view of the sky.  The receiver also uses NEMA standard 0183.  

The NEMA standard data consists of comma-delimited strings that are easily parsed within the 

Arduino framework.  Use of this standard also makes substitution of another GPS receiver easy 

while using the same software. 

 The 406A also uses a data update rate of 1Hz limiting access to additional readings and 

possibly limiting the accuracy of positional data.  In the future GPS receivers with higher update 

rates might be considered for use but high volume of data contained in the NEMA standard may 

cause processing delays with the Arduino. 

 Initially connection of the GPS unit was made through digital pins 2 and 4 requiring the 

use of a software library (NewSoftSerial) to mimic hardware serial communication through 

digital pins.  Eventually the GPS unit transmit and receive lines were switched to the Arduino 

pins 0 and 1.  These pins are dedicated to hardware serial connection with the Atmega 328 and 

produced faster and more reliable data acquisition.  The NewSoftSerial library was not necessary 

for this connection.  The apparent speed increase was due to not having to use software to mimic 

the serial ports on standard digital pins.  The one minor complication in using pins 0-1 was that 

the connection to the GPS unit must be removed during programming of the Arduino via the USB 

cable, due to the fact that the programming takes place on the same pins.  Once programmed the 

GPS connection is re-established and showed no ill effects during normal operation. 

 The GPS unit serial communication is also at 4800 baud so care must be taken to 

initialize the Arduino’s baud rate to 4800 and also to use 4800 baud when monitoring the 

debugging GUI connected to the serial port.  These issues were minor when weighed against the 

advantage of stable, reliable data communication with the GPS receiver. 

 The function of the GPS receiver, on the robots, is positional location, route tracking, 

waypoint information (home and “food” location) and generation of paths to and from waypoints 

for distribution to other “ants.”  The limitation of the GPS unit is the requirement of a reasonable 

unobstructed view of the sky and the need for the unit to be moving to generate directional 

heading information. 
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Figure 5 - EM 406A GPS Module attached to aluminum stalk.  The threaded end replaces top-plate 
chassis screw.   

 

Digital Compass Module 

 The unit chosen for external compass readings is the Honeywell 6352 digital magnetic 

compass.  The compass module used was manufactured by Sparkfun, Inc and allows for 

communication over the Arduino’s native I2C bus.  The I2C protocol is an industry standard that 

allows for communication with I2C devices via two wires (SLA and SLC) tied to the Arduino’s 

analog pins of A4 and A5.  Up to 127 devices may be chained together on this bus with 

communication made possible via a slave/master command sequence transmitted via the 

software. 

 The compass module is 5V logic tolerant and able to run on VCC of 2.7-5.2V so power 

connection was made via jumper to the Arduino’s 3.3V regulated supply pin.  The SLC and SLA 

pins were connected via jumpers to their respective pins on the Arduino. 

 The compass was originally mounted on an unused area of the GPS shield but moved to 

an aluminum stalk, similar to that of the GPS receiver, replacing a screw holding the 

polycarbonate top plate on the chassis.  The stalk is a 7075 aluminum tube with aluminum insert, 

on top, to hold the compass module.  The insert was a sliding, interference fit to allow for 

alignment of the compass module, with respect to the robot chassis, while preventing the compass 

module from inadvertently rotating during routine use.  The decision to use the compass atop the 

aluminum stalk was made in light of the compass module’s apparent sensitivity to 

electromagnetic fields generated by the chassis motors.  The height of 10cm was chosen to help 

maximize the distance between the compass and the motors, as well as any other possible EMF 

sources, while maintaining a balance to the overall size of the robot. 

 The need for the compass module is to allow for directional information to be gathered 

while stationary.  During periods of little or no linear motion the GPS unit cannot be relied on for 
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reliable position information other than latitude and longitude.  The eventual desire is to correlate 

the data from all positional sensors and allow for greater location accuracy than any one sensor 

can provide. 

       
Figure 6 - HMC6352 Compass module on aluminum stalk.  Threaded end replaces chassis top-plate 
mounting screw.  Mounting plate is slip-fit in tube to allow alignment. 

 

Ultrasonic Rangefinder 

 The need for distance measurement and obstacle avoidance on the robot is handled via 

the Devantech SRF05 Ultrasonic Rangefinder unit.  This unit uses two digital pins on the 

Arduino for communication and is connected to the regulated 5V and GND connections on the 

Arduino via jumpers.  The effective range of the unit is 4 meters, which in practice allows for 

positional location within the GPS data’s error margin of approximately 3 meters.  The unit 

allows for updates every 10 microseconds and can be configured to operate over a single 

communication jumper, should additional digital pins need to be freed up on the Arduino. 

 The SRF05 was originally mounted on the front of the Surveyor chassis but initial testing 

showed sensitivity to surface irregularities, such as expansion joints in concrete, providing false 

obstacle readings.  This failure was attributed to the units close proximity to the travelling surface 

and the unit was eventually raised by mounting it on a 1”x1” aluminum angle attached to the 

front of the robot.  The polycarbonate chassis mounting screws were again utilized to minimize 

the modification to the original chassis. 
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Figure 7 - SRF05 Ultrasound with mounting bracket.  Notches in bracket, near mounting holes, are 
relief for power switch and charging port. 

 
RFID Read/Write Module 

 The final piece of electronic hardware, on the robot, is the Parallax RFID Read/Write 

module.  This module allows for use with 125kHz RFID tags for both reading and writing data on 

the tags.  The tags used consist of a flat, plastic card with an RFID chip imbedded in the card.  

The chip is passively read, via the read function, and contains a unique serial number assigned by 

the manufacturer that allows for consistent identification of each tag.  In addition to the read-only 

feature the tags allow for the writing of 116K of information in 31 register locations on the RFID 

chip.   The manufacturer lists the interaction distance at 3 inches under optimal condition 

 The initial design was to install the RFID modules with adhesive on the underside of the 

Surveyor chassis to keep the robot size small and the reader unobtrusive.  It became apparent that 

EMF interference from the chassis motors was providing false readings and unstable data 

connections with the RFID reader.  Concerns about physical abrasion of the module, while 

mounted under the chassis were raised but data reliability decided the final placement of the unit.  

The final configuration uses small, threaded, aluminum standoffs glued to the rear of the 

polycarbonate top plate and allowing for attachment of the module via 4-40 screws.  Despite the 

increase in physical distance from the card the data connection reliability rose to a reasonable 

level when the RFID card is immediately under the read/write module. 

 The RFID module data connection is a hardware serial connection that is made either via 

the hardware serial connection on the Arduino or via any other two digital pins using the 

NewSoftSerial library to mimic serial operation of those pins.  As the GPS receiver occupied the 

hardware serial port it was necessary to choose digital pins and use the software serial solution.  
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The unit works reliably under this system, more reliably than the GPS receiver, due most likely to 

the much smaller volume of data being transmitted and received via this interface. 

 The power needs of the module are 5V regulated and with the Arduino only having one 

regulated 5V port available via headers a “wye” jumper was made to allow simultaneous 

connection of the RFID module and the ultrasonic rangefinder to the single 5V and GND ports. 

 The use for the RFID tags is to simulate the robots need to locate and pick up “food” in 

the same manner that ants collect food from seed piles in the wild.   The cards can be located, 

serial number scanned for “food” location identification and the size or number of seeds in the 

“food pile” can be set and decremented by the robots thus simulating an ant retrieving a seed 

from a pile in the physical world. 

 

 

 
Figure 8 - RFID Module and rear of chassis showing mounting standoffs.  Header pins, as supplied 
were right angle and changed to straight. 

 
Hardware Assessment 

 The only real testing done with the hardware, once in final configuration, was to test 

current draw and ensure that the provided battery was capable of powering the system.  The robot 

was powered via a BK Precision digital power supply and all modules/sensors were activated and 

motors were run at a speed setting of 200 out of a possible 255.  The noted free-running current 

draw was 0.69 amperes and when running with a load of only its own weight the current draw 

was .0.75 amperes.  When the motors alone were used the current draw was 0.5 amps which 

places the system within the current supply capabilities of the onboard 7.4V battery and the 

current handling of the Arduino Uno. 

 

Additional Information 

 For additional information on each of these hardware items consult the attached 

manufacturers technical documentation in the appendices of this manual. 
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 Information on the Arduino Uno environment, hardware and IDE can be found at  

www.arduino.cc.  This site contains information on the physical hardware, included software 

libraries, third-party libraries, available hardware shields and a user forum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43



 15 

AntBot Version 1.0 – Maintenance and Known Physical Issues 

 

Physical Maintenance 

 The Surveyor chassis was established to be quite rugged under normal use.  Some 

maintenance issues did arise during use. 

 Due to the close proximity of the axles to the ground it became apparent that debris was 

easily collected by the axles and could contribute to a substantial drag on these small motors.  The 

nature of the debris was mostly carpet fibers, pet hair, string, ect..  This issue requires periodic 

checking and cleaning of the motor axles.  Removal of the treads and drive wheels allows for 

easy access to the area. 

 Drive wheel removal is accomplished by sliding the wheel straight off the d-shaped axle 

extending from the motor.  The wheels are pressed on with reasonable hand pressure and care 

should be taken to pull the wheel straight off to avoid damage to the motor gearbox.  

 Lubrication of the gearboxes is probably not necessary but due to the relatively open 

nature of the gearbox and proximity to the ground a dry, powdered graphite would be a good 

choice, rather than oil.  

 The motors seem durable in use but a fall from a table showed that the gearbox was 

susceptible to failure.  Any user of this chassis would be advised to have at least one spare motor 

on hand to limit operational downtime.  Replacement of the motors requires removal of the top 

plate, one screw and the use of a soldering iron. 

 The included battery on the Surveyor is a 7.4V 2-cell Lithium Polymer battery with no 

provision for cell balancing during charging operations.  Care must be used to charge these 

batteries with only the supplied charger or with a charger specifically designed for LiPo batteries.  

If any other type of charger is used the batteries may be damaged and can burst due to 

overheating or even erupt into flames.  Additional consideration might be given to not leaving the 

robots unattended during the charging operation due to damage concerns. 

 The charging is via a small port on the front of the robot and the on/off switch must be set 

to the charge position.  The charger has an LED that indicates a charging condition (RED) and a 

full charge (GREEN). 

 All screws on the chassis are 4-40NC threads and are interchangeable.  Any 

modifications to the initial robots were made with this in mind and all additional mounts kept this 

thread specification.  
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 Also the use of adhesive backed foam was used for the mounting of any sensors, other 

than the RFID unit, to allow for easy removal or relocation.  The use of any more permanent 

adhesives is discouraged unless the final physical layout is well established. 

Little other maintenance is required of these robots using the system outlined.  Of note is 

the availability of round wheels for the Surveyor chassis.  The wheels are available at additional 

cost from the manufacturer and might provide a more stable sensor surface if operating 

exclusively on smooth surfaces.  Finally assembly of these robots, although minimal, does require 

the use of a soldering iron and a multimeter would be recommended for testing and 

troubleshooting. 
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AntBot Version 1.0 – Operation and Known Issues 

 

Honeywell 6352 Compass Module 

 The 6352 module is a small, light and inexpensive compass module used on the AntBots.  

Its unique attribute, among digital magnetometers, is the use of an onboard processor to provide 

compass headings in degrees.  Stated accuracy of the compass is 2.5 degrees.  Other comparable 

units are magnetometers only therefore the main microcontroller must be utilized to interpret the 

data and translate the readings into useable headings.  This unit is not tilt-compensated so a level 

and stable operating surface must be maintained to give accurate readings. 

 Initial testing consisted of out and return tests and programming the robot to map out a 

square pattern based on the four cardinal directions, with side lengths of one meter.  The compass 

unit is factory calibrated but initial results contained approximate angular error of +/- 15 degrees 

from known cardinal headings.  The reference for the established headings was via a Suunto KB-

20 handheld compass.  The compass has provision for user calibrations and a function for the 

project Compass.h library was written and after calibration results were improved but showed 

errors of +10 degrees on the headings of 0 and 180 degrees.  Since the compass responds to the 

earth’s magnetic poles this discrepancy could not be attributed solely to magnetic declination. 

 Additional attempts were made to access and alter the four register locations containing 

the calibration offsets for the compass module.  These locations were accessed via additional 

functions in the Compass.h library and were successfully overwritten.  On the initial unit this 

proved helpful but when the same correction offsets were loaded into subsequent units erratic and 

varied results were obtained.  The conclusion of the calibration testing was that the internal 

calibration routine was not ideal but without direct parsing of the raw magnetometer data further 

improvement of the user calibration routine could not be easily accomplished. 

 Care was taken to calibrate the compass modules of all robots under identical conditions 

and with some care to remove sources of magnetic interference, such as large ferrous objects.  A 

small turntable was assembled to facilitate the level and smooth rotation of the robot during the 

compass calibration. 

 As noted in the physical hardware descriptions the use of an external standoff was used to 

minimize any EMF interference with the compass from either the chassis motors or other 

electronic components.  It was noted, anecdotally, that large ferrous objects such as metal support 

poles could influence the compass’ data when in proximity of 1-2 meters. 
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 Although initial results with this compass were disappointing when compared to headings 

obtained with the GPS it is obvious that the compass cannot be dispensed with altogether and all 

due diligence must be made to maintain accuracy of this unit. 

 

EM-406A GPS Receiver 

 Data from the GPS receiver, as previously noted, is formatted using the NEMA 0183 

standard, common to many GPS receivers.  Relevant data, to this application, was determined to 

be date, time, latitude, longitude, heading, speed, horizontal dilution of precision and number of 

satellites used in the calculations.  Each of the raw data streams is parsed via the project’s GPS.h 

library.  A C-style struct is used to store the data internally and return the above fields to the main 

program.  All are returned in the string format except for latitude and longitude.  Although 

checksums are included in each of the raw data strings they were not utilized in this version of the 

project for error checking. 

 Additional processing of the latitude and longitude is needed to ease calculations with 

this data.  The original format is a string of the “degrees, minutes” form (ddmm.mmmm) with a 

precision of four decimal places for the minutes.  This was converted to decimal degrees 

(dd.ddddddd) and seven decimal places were used as the precision due to the conversion of 

essentially base 6 notation (minutes) to base 10.  (60^4 = 1296000 so precision of 10^7 places).  

These data fields are returned as floating point decimals to facilitate mathematical calculations 

using latitude and longitude. 

 Note must be made of the horizontal dilution of precision (HDOP) field.  This number 

ranges from 1.0 to infinity and is effectively a multiplier for the known error of the system.  

Established error for WAAS corrected GPS data is 3m therefore an HDOP value of 1.0 yields an 

error of 3m, the theoretical maximum of terrestrial GPS. 

 Initial testing with the unit showed stationary accuracy of approximately 3-5 meters.  

Additional testing, while the robots traced out a 10, 5 and 3 m square showed useable resolution 

down to the 3 meter range. 

 As noted in the hardware description a change was made to the initial configuration to 

relocate the GPS receiver atop a stalk similar to that used with the compass module.  This created 

a noticeable improvement in unit position lock time and stability.  No testing, aside from 

observation was used in this decision.  It should also be noted that the led on the receiver used to 

indicate a position lock (blinking) was a reasonable indicator of valid data from the unit.  

Although position, date and time data could be read from the unit without an indicated lock it was 
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intermittent and functionally inaccurate with the exception of date and time.  Most often when a 

lock was not indicated polling data from the unit results in no data being read at all. 

 As was also noted this unit is connected via the hardware serial ports of the Arduino (pins 

0,1).  The initial configuration, using other digital output pins requires the use of a software 

library, NewSoftSerial.h , which mimics the function of  the dedicated hardware serial on 

alternate pins.  This arrangement is beneficial when multiple serial devices are used and is use on 

this project to connect the RFID module.  The initial reason for relocating the connection was to 

resolve pin conflicts arising from the motor and Wifly shield but an increase in speed and data 

stability was noted leading to the conclusion that this is the ideal arrangement. 

 Note must be made of the ever increasing accuracy and availability of more accurate GPS 

units that could replace the 406A.  Consideration must be given to number of channels available 

for tracking and the frequency of the update rate.  The 406A has 20 available channels and an 

update rate of 1Hz.  Units are already available with 60+ channels and 5-10Hz update rates but 

come with the caveat of increased power consumption and the ability to overwhelm the 

processing capabilities of many microprocessors when polled at a higher rate than 5Hz. 

 

Devantech SRF05 Ultrasonic Rangefinder 

 Operation of the SRF05 rangefinder, in use, was quite simple and proved to be accurate 

out to the manufacturer specified range of 4 meters.  A simple library, Ultrasound.h was written 

by the team and data returned in centimeters.  Initial testing of the units showed accuracy to +/- 1 

cm but further testing is necessary to fully establish the capabilities of this unit.   

Concern was expressed about the AntBot's ability to not interfere with one another’s ultrasonic 

readings.  A simple test, with units approximately 20cm apart showed that with a delay of less 

than 10 ms that overlap of ultrasonic pulses was common, while the units were pointed directly at 

one another.  A delay of 20 ms showed little if any error in the range detection. 

 Function was also included in the Ultrasound.h library for operation of the unit using a 

single wire to transmit and receive data.  This is not necessary in the current configuration but 

might be necessary to implement in future configurations if additional digital pins need to be 

utilized on the Arduino microcontroller.      

 

Parallax RFID Read/Write Module 

 This module was originally designed for use with the PIC-based Parallax 

microcontrollers.  Little information was given for attaching this unit to an Arduino so a team 

written library, RFID.h, is used for communication with this unit.  This unit will only work with 
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RFID tags containing the EM Microelectronics EM4x50 1kbit R/W transponder.  Several 

versions are available.  See the attached technical document for further explanation. 

 Testing showed that tag data could be read when approximately 40-50% of the tag is 

located directly beneath the reader.  A slight improvement in read reliability was also noted when 

the tag’s label was facing away from the reader.  In terms of the ant-based model these robots are 

designed to replicate, being approximately one body length away from a food item is necessary 

for food detection 

 The library provides provision for reading the tag’s unique serial number and any data 

location on the tag.  The error codes provided by the tag are used to create a parity check of data 

coming from the tag and the reliability of the data received.  Due to the passive nature of the tag 

activation and data transmission data errors are not unexpected and required some mitigation. 

 Read times from tag data are fast and despite a small delay in writing neither time delay 

is a noticeable in normal use. 

 

Roving Networks Wifly GSX 802.11 b/g wireless LAN Module 

 Wireless communication with the AntBot is established with the Roving Networks Wifly 

module.  The Wifly module is utilized via an Arduino compatible shield manufactured by 

Sparkfun, Inc.  The board provides necessary power, logic and physical mounting on the Arduino 

Uno and communicates with the microcontroller via the dedicated hardware SPI serial 

communication bus.   

 Software dialog with the unit is via an Arduino third-party library Wireless.h.  The signal 

from the robot is routed through a standard IEEE 802 compliant wireless router and has provision 

for signing onto a WEP protected wireless network. 

 Early testing of the wireless capabilities, to transmit sensor data from the robot to a laptop 

computer, show expected range capabilities and issues not altogether different from any wireless 

network.   Few, if any other options exist, at this time, for wireless communication over standard 

wireless networks. 

 

Sparkfun, Inc ArduMoto L298 Half-Bridge Motor Driver Board 

 The AntBot system is classed as a “differential drive” robot.  This means that motors on 

either side of the robot work in concert to perform turns, rotations and movements without the use 

of any mechanical gearboxes or transfer systems.  This requires the use of a “half-bridge” circuit 

to facilitate reversing the polarity connection to one pair of motors while leaving the second pair 

to run in normal polarity.  One of the most common half-bridge circuits available as an integrated 
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circuit is the L298.  This chip is utilized on the Sparkfun Ardumoto shield designed to work 

specifically with the Arduino Uno. 

 This board, via the L298 is capable of handling up to 2 amperes of current total.  Testing 

on a BK Precision power supply showed total current draw of all four motors in the .5-.6A range.  

This is well within the capabilities of this chip without use of an external heat sink or any other 

heat management provision. 

 Note was made of the pin conflict inherent in this board, as designed and the 

recommendation to use the DFRobot Industries motor driver board for future iterations.  This 

board also uses the L298 and should fit in with the other components and software with a 

minimum of modifications. 

  

 
Figure 9 - Wifly Card on Arduino (stack 1) 

      
Figure 10 - Motor Driver Shield (stack 2) 
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Figure 11 - Back of motor board showing connection 

           
Figure 12 - Ultrasound Bracket using GPS stalk as one screw 

 
Figure 314 - GPS shield in place (stack 3) 
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Figure 415 - Compass stalk in place 

 

 
Figure 516 - Wiring harnesses 
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AntBot Version 1.0 – Arduino IDE Use 

 The Ardiuino IDE is used as the programming platform for the AntBot.  The IDE has 

extensive documentation available at www.arduino.cc for included libraries and basic functions.  

The section immediately following is documentation of the libraries that were specifically written 

for this project.  Additional third-party, external libraries were used and must be included for 

proper operation.  These include : “NewSoftSerial,” “Wire,” “Random,” and “Wireless.”  All can 

be found on the AntBot website as well as via the Arduino website.  These libraries are used in 

their original form and were issued under the same creative commons license that governs the 

Arduino IDE.  Since these libraries were not altered during this project they are not included in 

the software documentation that follows. 
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AntBot Version 1.0 – Part Sources 

 

Arduino Uno SMD - http://www.sparkfun.com/products/10356    $29.95 

Ardumoto - http://www.sparkfun.com/products/9815     $24.95 

(Suggested Substitute - http://www.robotshop.com/dfrobot-arduino-compatible-motor-shield-

2a.html   $16.67) 

Wifly - http://www.sparkfun.com/products/9954      $89.95 

EM-406A GPS Module - http://www.sparkfun.com/products/465    $59.95 

HMC6352 Compass Module - http://www.sparkfun.com/products/7915   $34.95 

GPS Shield - http://www.robotshop.com/adafruit-gps-logger-shield-kit-arduino.html $19.50 

RFID W/R - http://www.robotshop.com/parallax-serial-rfid-reader-writer-module.html $49.99 

Robot Chassis - http://osbots.com/shop/product/arduino-osbase/    $139.00 

Total (version one)         $448.24 
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iAnt Version Four Technical Drawings
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Appendix B. iAnt Version Four Technical Drawings

Figure B.1: iAnt Motor Base - 1/4” Laser Cut Acrylic
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Appendix B. iAnt Version Four Technical Drawings

Figure B.2: iAnt iPod Base - 1/8” Laser Cut Acrylic
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Appendix B. iAnt Version Four Technical Drawings

Figure B.3: iAnt iPod Cradle - 1/4” Laser Cut Acrylic
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Appendix B. iAnt Version Four Technical Drawings

Figure B.4: iAnt iPod Lid - 1/16” Laser Cut Acrylic
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Appendix B. iAnt Version Four Technical Drawings

Figure B.5: iAnt Mirror - 1/8” Laser Cut Acrylic (Mirrored)

Figure B.6: iAnt Motor Cover - 1/16” Laser Cut Acrylic
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Appendix C

iAnt Version Four Parts List
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Appendix C. iAnt Version Four Parts List

Figure C.1: iAnt Complete Parts List
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