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Abstract

As a flexible representation for complex systems, networks (graphs) model entities

and their interactions as nodes and edges. In many real-world networks, nodes divide

naturally into functional communities, where nodes in the same group connect to the

rest of the network in similar ways. Discovering such communities is an important

part of modeling networks, as community structure offers clues to the processes which

generated the graph. The stochastic block model is a popular network model based

on community structures. It splits nodes into blocks, within which all nodes are

stochastically equivalent in terms of how they connect to the rest of the network. As

a generative model, it has a well-defined likelihood function with consistent parameter

estimates. It is also highly flexible, capable of modeling a wide variety of community

structures, including degree specific and overlapping communities.

Performance of different block models vary under different scenarios. Picking the

right model is crucial for successful network modeling. A good model choice should

balance the trade-off between complexity and fit. The task of model selection is
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to automatically choose such a model given the data and the inference task. As

a problem of wide interest, numerous statistical model selection techniques have

been developed for classic independent data. Unfortunately, it has been a common

mistake to use these techniques in block models without rigorous examinations of

their derivations, ignoring the fact that some of the fundamental assumptions has

been violated by moving into the domain of relational data sets such as networks.

In this dissertation, I thoroughly exam the literature of statistical model selection

techniques, including both Frequentist and Bayesian approaches. My goal is to

develop principled statistical model selection criteria for block models by adapting

classic methods for network data. I do this by running bootstrapping simulations

with an efficient algorithm, and correcting classic model selection theories for block

models based on the simulation data. The new model selection methods are verified

by both synthetic and real world data sets.
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Chapter 1

Introduction

As a powerful representation for many complex systems, networks model entities and

their interactions as nodes and edges. Food webs for example, have species as nodes,

which are connected by edges representing predator-prey relationships. Another ex-

ample would be computers and their network connections. With modern technology,

an unprecedented amount of such relational data is available today, revolutionizing

the way we study these complex systems. A new daunting challenge is how to extract

useful information on this scale.

Different aspects of real world networks has been proposed and investigated over

the years, like connectivity, degree distribution and so on [61, 33]. These measures

are helping us to better understand the data on a seemingly intrackable scale. Among

them, community detection has attracted much attention. It follows the canonical

reductionist approach, dividing nodes into a hierarchy of categories, characterized by

different patterns of connections in between. In online social networks, blogs tend to

link to other blogs with similar political views [1]. In vertebrate food webs, predators

tend to eat prey whose mass is smaller, but not too much smaller, than their own [25].

Networks of word adjacencies are correlated with those words’ parts of speech [64].
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Chapter 1. Introduction

In the Internet, different types of service providers form different kinds of links based

on their capacities and business relationships [6, 29]—and so on.

Understanding these structures is crucial in deciphering these relational datasets.

There has been a great deal of work on efficient algorithms for community detection in

networks (see [27, 70] for reviews). However, most of this work defines a “community”

as a group of nodes with high density of connections within the group and a low

density of connections to the rest of the network. While this type of assortative

community structure is generally the case in social networks, we are interested in a

more general definition of functional community—a group of nodes that connect to

the rest of the network in similar ways. A set of similar predators form a functional

group in a food web, not because they eat each other, but because they feed on similar

prey. In English, nouns often follow adjectives, but seldom follow other nouns. Even

some social networks have disassortative structure, where nodes are more likely to

be connected if they have different types. For example, some human societies are

divided into moieties, and only allow marriages between different moieties [45].

The stochastic block model (SBM) provides a simple yet powerful solution [44,

85]. The basic SBM splits nodes into blocks, within which all nodes are stochasti-

cally equivalent in terms of how they connect to the rest of the network [86]. As a

generative model, it has a well-defined likelihood function with consistent parameter

estimates. It is also highly flexible, capable of modeling a wide variety of community

structures with an arbitrary mixture of assortative and disassortative structure. It

can also readily be extended to many other more elaborate probabilistic models—for

instance, those where nodes belong to a mixture of classes [4], a hierarchy of classes

and subclasses [21], or degree-corrected block models such as those in [48, 57, 65],

which treat the nodes’ degrees as parameters rather than data to be predicted. As

a result, block models has been widely adopted to model networks in various disci-

plines (e.g. [10, 83, 37, 41, 7, 43, 74]).

2



Chapter 1. Introduction

The problem of model selection is to automatically choose a model given the

data for a specific inferences tasks, among all models being considered [20]. With a

good model that fits the task and data, learning of the parameters will be fast and

inference will be accurate and noise tolerant. On the other hand, if you try to fit

the data to a bad model, much effort will be wasted. For example, performance of

different block models vary under different scenarios. A degree-corrected block model

would be a good choice if members of the same communities have a wide degree

distribution [48]. Even with the same block models, choosing different number of

blocks (order selection) still leads to very different result [68].

The goal of model selection is to balance the trade-off between the model com-

plexity and its fit to the data. Complex models with more parameters have a natural

advantage at fitting data. Simpler models have lower variability, as result are less sen-

sitive to noise in the data. A good model choice should hit the sweet spot, avoiding

both over-fitting and under-fitting. In other words, we should only include addi-

tional parameters when they really matter. Excessive complexity not only increases

the cost of the model, but also hurts the generalization performance [20].

This interest of finding the best model goes beyond statistics to science in gen-

eral. Throughout history, it implicitly guided the development of many elegant

models from observed data. The famous “Occam’s razor” states “entities must not

be multiplied beyond necessity”. Albert Einstein put it as, “Everything should be

kept as simple as possible, but no simpler”. This “principle of parsimony” is at the

heart of model selection.

One meta-framework of model selection that works for any classification model

is generalization performance test. It achieves the balance by holding out a part of

the data for generalization tests [14]. With network data, however, a single giant

instance is usually all we have. An alternatives is to break the available data into

sub-sets for multiple samples, which is tricky for graphs where strong correlations are

3



Chapter 1. Introduction

so prevalent [80]. Nonetheless, these meta-frameworks do provide general baselines

for the purpose of comparison.

For models with proper likelihood functions like the block models, model selection

can be approached using Frequentist or Bayesian statistical tools. In the classic

Frequentist likelihood ratio tests (LRTs) [20, 77], we cast the model selection problem

as a hypothesis testing between nested models. We reject the null model in favor of

a more elaborate alternative when the likelihood ratio exceeds some threshold. This

threshold, in turn, is determined by our desired error rate, and by the distribution

of likelihood ratio under the null model. The famous Akaike information criterion

(AIC) has its root in such Frequentist tests [20, 18].

Under the Bayesian framework, model selection is cast as an optimization prob-

lem. While simply maximizing the likelihood term leads to over-fitting, Bayesian

approaches integrating over all parameters ensure a complexity-fit trade-off [42, 35,

19, 9, 56]. Based on it, the other popular Bayesian information criterion (BIC) are

derived under various assumptions and approximations [20, 18, 35, 14]. They take

the simple form of a penalized likelihood function just as the AIC. These information

criteria offer efficient off-the-shelf methods for model selection on independent data,

and are quite effective if used properly.

Unfortunately, it has been a common mistake to apply these information criteria

without rigorous examinations of the underlying assumptions [71, 8, 81]. This is

especially dangerous in the case of block models, as some of the fundamental as-

sumptions have been violated. Little work has been done to lay down the theoretic

foundation of model selection for the SBM and its various extensions, as [13] did for

Markov chains. As a result, some employ these information criteria directly without

knowing the consequences [7, 39], while others remain skeptical and use them only

when no alternative is available [4, 3]. In this dissertation, I will investigate this

issue and derive model selection algorithms for block models on a sound statistical

4



Chapter 1. Introduction

foundation.

1.1 Overview of the Chapters

In this dissertation, I will focus on the model selection problem for choosing between

SBM and its degree-corrected cousin, as well as the important order selection problem

of the number of blocks given the data and inference task.

In the second chapter, I will first introduce the idea of bias and variance trade-off

in model selection problems. Then I will define related model selection information

criteria that has been developed for independent data, as well as various block models.

With the assumptions of information criteria explicitly listed, and the block models

defined, I will investigate the mathematical compatibility between them in later

chapters.

In the third chapter I shall introduce scalable inference algorithms for the models

we consider, which enabled efficient and accurate experiments in the following chap-

ters. This also include supervised learning for recommendation systems and an active

learning framework for block models which can also be used to provide intuitions in

our model selection study.

The fourth chapter shall focus on adapting classic Frequentist likelihood ratio

tests into the realm of relational network data. I will investigate the model selec-

tion problem between pairs of nested models separately, laying down the statistical

foundation for these basic situations with the full controllability of margins of error

and confidence intervals. Investigations here shall lead to a corrected AIC for sparse

networks.

The fifth chapter approaches the whole model selection problem in a single uni-

fied Bayesian framework, and establish its equivalence (under certain conditions) to

5



Chapter 1. Introduction

the minimum description length (MDL) principle [35]. As I will show, while the

equivalence appears to be a mere mathematical coincidence, it has a much deeper

and more intuitive connection in terms of information coding theories. By going

through the Bayesian derivations, I shall propose the correct formulation of BIC for

block models.
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Chapter 2

Background and Related Work

In this chapter, I shall first introduce the idea of bias and variance trade-

off in the setting of model selection. Based on this idea, I will define

popular information criteria that was developed for independent data. By

going through their derivations, it dose not only remind us of their un-

derlying assumptions, but more importantly, pave the way for the more

fundamental statistical analysis I shall employ in the later chapters. I

shall then define various block models we will encounter in this disser-

tation. Notice the violation of many assumptions underlying traditional

statistical tools. Finally, the chapter will be completed with a survey of

existing model selection techniques for networks in the previous literature.

2.1 Bias and variance trade-off in model selection

For statistical models in general, errors in generalization tests can be decomposed

into two main subcomponents: error due to ”bias” and error due to ”variance”.

The error due to bias is taken as the difference between the average prediction of

7



Chapter 2. Background and Related Work

a model and the ground truth we are trying to predict. The error due to variance

is taken as the variability of predictions from the same model around this average

value [26]. We can visualize the interplay of bias and variance using the following

bulls-eye diagram 2.1.

Figure 2.1: Graphical illustration of bias and variance
Imagine that the center of the target is the true model with perfect prediction. As we
move away from the bulls-eye, the model gets worse and worse. Here we have built
four candidate models, and fitted them to multiple training data sets with variability,
forming distributions on the target. Each distribution corresponds to a model with
different bias and variance, with individual hit represents a fitted instances for a
specific training data set. Image courtesy of Fortmann–Roe, from the web essay [26].

Out of the four candidate models illustrated in Figure 2.1, the model with both

low bias and low variance is the obvious choice in an ideal setting. In reality, however,

we have no prior knowledge of the true model (the bulls-eye), nor can we ever hope

to recover it exactly with finite and noisy data. With the best of both worlds out of

8



Chapter 2. Background and Related Work

the question, we instead aim for a good model that hit the sweet spot in the middle,

minimizing the the total error from both sources. The balance between bias and

variance is thus fundamental in general statistical studies.

In the framework of model selection, this trade-off takes the form of balancing

model complexity against its fit to the data [20]. In most practical situations, simpler

models are more like the bottom left target in Figure 2.1. They have fewer parameters

to estimate, leading to lower variance in the distribution of fitted instances. Since the

model is most likely wrong, all fitted instances will have a systematic bias, leading to

what is called under-fitting in machine learning. On the other hand, more complex

models are represented by the top right target. With more parameters and thus a

bigger hypothesis space, they usually have a much smaller modeling bias once fitted.

The cost, however, is the larger variance and the risk of over-fitting to the noise in

the training data.

From this perspective, model selection has become a optimization problem, with

a target function composed of competing terms representing fit and complexity re-

spectively. In the following section, I will introduce a class of popular model selection

methods called information criteria, which are explicitly designed to follow this in-

tuitive formulation.

2.2 Information criteria and their assumptions

Here we briefly derive two of the most popular information criteria (please refer

to [20, 18] for more details). By explicitly listing their assumptions, we hope to

identify problems that are preventing them from being directly applied on networks.

They also serves as inspiration for two of the chapters later in this dissertation. There

are many other information criteria in the literature, but most are derived from them

with additional assumptions [20].

9



Chapter 2. Background and Related Work

Information criteria in general have a rather simple and intuitive formulation:

XIC = −P (Y |Mi, Π̂) + C(|Π|, n) (2.1)

where Π is the parameter set and n is the number of independent data samples.

In this general formulation, the first term is the (negative) maximum likelihood

of a model, with the second term measuring its model complexity. The complexity

term usually is a function of the number of free parameter |Π| and the sample size

n. By minimizing this formula with explicit fit and complexity terms, the trade-off

between bias and variance is achieved.

2.2.1 Akaike’s information criterion

Originally named “an information criterion” (AIC) by Hirotsugu Akaike [5], AIC is

the first general information criterion for model selection. Versatile and simple to

use, it remains one of the most popular strategies until this day.

Founded in information theory, it is effectively a relative measure of the informa-

tion lost when a given model is used to describe reality. If different model functions

are denoted as M1, ...,Mm, with the observed data Y = {y1, ..., yn}, this information

lost can be calculated as the Kullback-Leibler divergence between a candidate Mi

and the true model M∗,

DKL(P (M∗)||P (Mi)) =

∫
P (y|M∗) ln

P (y|M∗)

P (y|Mi)
dy

=

∫
P (y|M∗) lnP (y|M∗)dy −

∫
P (y|M∗) lnP (y|Mi)dy (2.2)

≈
∑
j

P (yj|M∗) lnP (yj|M∗)−
∑
j

P (yj|M∗) lnP (yj|Mi) (2.3)

Notice Kullback-Leibler divergence and its empirical approximation is based on the

assumption:

10
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Assumption A.1:

The data generated by P (y|M∗) are independent,

and by the law of large numbers, the empirical dis-

tribution formed by the observed data Y become a

close estimate of the true distribution, as the num-

ber of samples n→∞.

When comparing different models, the first term of (2.2) which is the entropy

of the true model stays constant. The second term, a variable where the model

specification of Mi dependent upon the observed data Y , is the relative measure we

are actually interest in. If all models considered are parametric, they can be specified

using Π̂, the maximum likelihood estimator (MLE) of parameters given the data Y ,

and the expected value of the second term is:

EΠ̂

[∫
P (y|M∗) lnP (y|Mi)dy

]
=

∫
Π̂

[∫
P (y|M∗) lnP (y|Mi, Π̂)dy

]
P (Π̂|Y )dΠ̂

(2.4)

This expected relative KL divergence is essentially what AIC measures before any

approximation.

If the true model M∗ is indeed contained in the parametric class of Mi, we can

minimize (2.2) or (2.4) to 0 with Π∗, called the least false parameter values. The

MLE Π̂ tends to Π∗ in the limit of large sample, even if the true model M∗ is outside

Mi. If we expand the inner expectation around Π∗,

∫
P (y|M∗) lnP (y|Mi, Π̂)dy = EP (y|M∗)

[
lnP (y|Mi, Π̂)

]
≈EP (y|M∗) [lnP (y|Mi,Π

∗)] + [Π̂− Π∗]TEP (y|M∗)

[
∂ lnP (y|Mi,Π)

∂Π

∣∣∣∣
Π∗

]
+

1

2
[Π̂− Π∗]TEP (y|M∗)

[
∂2 lnP (y|Mi,Π)

∂Π2

∣∣∣∣
Π∗

]
[Π̂− Π∗]

11
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Now we take the outer expectation with respect to Π̂,

EΠ̂

[
EP (y|M∗)

[
lnP (y|Mi, Π̂)

]]
≈EP (y|M∗) [lnP (y|Mi,Π

∗)]− 1

2
EΠ̂

[
[Π̂− Π∗]TEP (y|M∗)[I(y|Π∗)][Π̂− Π∗]

]
(2.5)

where we denote the second derivative matrix evaluated at Π∗ as −I(y|Π∗). The first

order term vanishes because Π∗ is the minimizer, therefore EP (y|M∗)[µ(y|Π∗)] = 0,

where we denote the fisrt derivative evaluated at Π∗ as µ(y|Π∗).

(2.5) becomes:

EP (y|M∗) [lnP (y|Mi,Π
∗)]− 1

2
EΠ̂

[
tr
[
J(y|Π∗)[Π̂− Π∗][Π̂− Π∗]T

]]
≈EP (y|M∗) [lnP (y|Mi,Π

∗)]− 1

2
tr
[
J(y|Π∗)EΠ̂

[
[Π̂− Π∗][Π̂− Π∗]T

]]
≈EP (y|M∗) [lnP (y|Mi,Π

∗)]− 1

2
tr [J(y|Π∗)Σ]

If we do another Taylor expansion of P (y|Mi,Π
∗) around Π̂,

EP (y|M∗) [lnP (y|Mi,Π
∗)]− 1

2
tr [J(y|Π∗)Σ]

≈EP (y|M∗)

[
lnP (y|Mi, Π̂) + [Π∗ − Π̂]T

∂ lnP (y|Mi, Π̂)

∂Π

+
1

2
[Π∗ − Π̂]T

∂2 lnP (y|Mi, Π̂)

∂Π2
[Π∗ − Π̂]

]
− 1

2
tr [J(y|Π∗)Σ]

≈EP (y|M∗)

[
lnP (y|Mi, Π̂)

]
− 1

2
tr
[
J(y|Π̂)Σ

]
− 1

2
tr [J(y|Π∗)Σ]

Because Π̂ → Π∗ in the limit of large sample size, putting everything together, we

have:

EΠ̂

[∫
P (y|M∗) lnP (y|Mi, Π̂)dy

]
≈
∫
P (y|M∗) lnP (y|Mi, Π̂)dy− tr [J(y|Π∗)Σ]

(2.6)

12
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The inner integral in (2.6) is taken with respect to the true data generating

process. In practice, we approximate it with the empirical distribution like we did

in (2.3). Using 1/n for P (yj|M∗) and Π̂ for Π∗, (2.6) becomes:

nEΠ̂

[∑
j

P (yj|M∗) lnP (yj|Mi)

]
≈
∑
j

lnP (yj|Mi, Π̂)− tr

[
1

n

[∑
j

I(yi|Π̂)

]
nΣ

]
(2.7)

where we multiplied both sides by n, so that the first term is now the maximum

likelihood of the candidate model given data lnP (Y |Mi, Π̂). The second term, can

be rewritten as

tr

[
1

n

[∑
j

I(yi|Π̂)

]
nΣ

]
≈ tr

[
J(Y |Π̂)

n

n
J−1(Y |Π̂)K(Y |Π̂)J−1(Y |Π̂)

]
≈ tr1 = |Π|

where we approximated Σ with n−1J−1(Y |Π̂)K(Y |Π̂)J−1(Y |Π̂). Multiplying both

sides of (2.7) by −2, we now have the standard AIC equation:

AIC(Mi) = −2 lnP (Y |Mi, Π̂) + 2|Π| (2.8)

In summary, this derivation of (2.8) assumes:

Assumption A.2:
All models considered are simple parametric mod-

els. The parameters are twice differentiable.

Assumption A.3:

When n → ∞, the MLE of the param-

eters Π̂ tends to Π∗, as
√
n(Π̂ − Π∗) ∼

Nk(0, n
−1J−1(Y |Π̂)K(Y |Π̂)J−1(Y |Π̂)).

13
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2.2.2 Bayesian information criterion

Given the option of selecting a single model from multiple candidates, a “Bayesian”

procedure would select the model with the maximum a posteriori (MAP) probabil-

ity [78]. The posterior probability of a particular model Mi is by Bayes’ theorem:

P (Mi|Y ) =
P (Mi)P (Y |Mi)

P (Y )

Since the data is constant, if we assume all models have uninformative or uniform

priors, the posterior ends up proportional to the marginal likelihood:

P (Mi|Y ) ∝ P (Y |Mi) =

∫
Π

P (Y |Mi,Π)P (Π|Mi)dΠ (2.9)

=

∫
Π

exp(
n

n
ln(P (Y |Mi,Π)P (Π|Mi)))dΠ

where Π stands for the set of parameters in Mi.

Assumption B.1:
Prior knowledge is available for observed data (con-

stant) and candidate models (uniform).

Applying the Laplace approximation on the integral gives,

P (Y |Mi) ≈(
2π

n
)|Π|/2

∣∣∣∣ ∂21/n lnP (Y |Mi,Π)P (Π|Mi)

∂2Π

∣∣∣∣
Π̂

∣∣∣∣−1/2

eln(P (Y |Mi,Π̂)P (Π̂|Mi))

lnP (Y |Mi) ≈
|Π|
2

(ln(2π)− lnn) + lnP (Y |Mi, Π̂) + lnP (Π̂|Mi)−
1

2
Hi(Π̂)

where Hi(Π̂) denotes the the Hessian matrix evaluated at the MLE Π̂, and |Π|

represents the number of parameters in model Mi. If n is the number of data points,

we have only two terms scale with it. By ignoring the constant terms, and multiplying

both sides by −2, we have the BIC score as:

BIC(Mi) = −2 lnP (Y |Mi, Π̂) + |Π| lnn (2.10)

With the Bayesian approach, BIC introduces additional assumptions on data and

model priors. On the other hand, all the parameters in the set Π∗ are integrated
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out, therefore the assumptions on their convergence to MLEs is no longer needed.

Furthermore, the distribution of the data samples are no longer required to be i.i.d.,

as the joint distribution P (Y |Mi,Π) is not factored into a product.

Assumption B.2:
All models considered are simple parametric mod-

els. The parameters are twice differentiable.

2.3 The stochastic block model and variants

Recall that the SBMs provides a simple yet flexible model for the task of community

detection in networks [44, 85]. Here I will first introduce various kinds of block

models we will study in this dissertation. On a higher level, if we treat each model

as a node, they form a directed network in terms of model elaboration, as shown in

figure 2.2.

For all variants of block models we will consider, I represent our network as

an undirected graph without self-loops G = (V,E). G has n nodes in the set

V , m edges in the set E, and they can be specified by an adjacency matrix A

where each entry Auv indicates how the node pair {u, v} are connected. I as-

sume that there are k blocks of nodes, so that each node u has a block label

g(u) ∈ {1, . . . , k}. Here ns = |{u ∈ V : g(u) = s}| is the number of nodes in block s,

and mst = |{u < v&(u, v) ∈ E : g(u) = s, g(v) = t}| is the number of edges connect-

ing between block s and block t, or twice that number if s = t.

Among all the different block models in the above figure, I will focus on the model

selection problems of the SBM, the Poisson block model, the Degree-corrected block

model and their order selection problems in this dissertation. The notion “block

model” will be used as a general term for all these variants. I will now define these

three models in the following subsections.
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k++

SBM

Poisson
SBM

M
odel e laborat ion

 DC-
SBM

Gen- 
SBM

+Text

Figure 2.2: The network of complexity hierarchy of variants of block models
The model on the origin of an edge in this network is strictly a special case of the
model on the target. They form a partial order with simpler models at the bottom.
k + + means a SBM with more blocks, which can also be applied to all the other
variants. For details of the +Text SBM, please refer to our paper [93]. Gen-SBM is
defined in the paper [2].

2.3.1 The stochastic block model

I assume that G is generated by a SBM, or a “vanilla SBM” as I will often call

it throughout this dissertation for distinction. For each pair of nodes u, v, there is

an edge between u and v with the probability pg(u),g(v) specified by the k × k block

affinity matrix p. Each node label g(u) is first independently generated according

to the prior probability qg(u) with
∑k

s=0 qs = 1. Given a block assignment, i.e.,

a function g : V → {1, . . . , k} assigning a label to each node, the probability of
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generating a given graph G in this model is

P (G, g | q, p) =
∏
u

qg(u)

 ∏
u<v,(u,v)∈E

pg(u)g(v)

 ∏
u<v,(u,v)/∈E

(1− pg(u)g(v))


=

k∏
s=1

qnsi

k∏
s,t=1

p
mst/2
st (1− pst)(nsnt−mst)/2 (2.11)

= P (V, g | q)× P (E, g | p) .

This likelihood factors into terms for nodes (first order) and edges (second order),

conditioned on their parameters q, p respectively.

If we wish to model directed graphs, we can modify this expression by taking

away the restriction s ≤ t.

Take the log of (2.11), we have the log-likelihood

logP (G, g | q, p)

=
k∑
s=1

ns log qs +
1

2

k∑
s,t=1

(mst log pst + (nsnt −mst) log(1− pst)) . (2.12)

2.3.2 Poisson block model

As I have just shown, the vanilla SBM is for simple graphs, where each entry Auv of

the adjacency matrix is 0 or 1. Following e.g. [48], I propose a multi-graph general-

ization called the Poisson block model (Poisson-SBM), where the Auv entries are now

Poisson-distributed. According to the block assignment g, the model generates the

number of edges Auv between each pair of nodes u and v by making an independent

Poisson draw. The means of these Poisson draws are specified by the k × k block

affinity matrix ω (replacing ), which replaces the p matrix in the vanilla SBM. Given
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the block assignment g along with the data G, the likelihood would be

P (G, g |ω, q) =
∏
u

qgu
∏
u<v

ωAuvgugve
−ωgugv

Auv!

=
k∏
s=1

qnss

k∏
s,t=1

ω
mst/2
st exp(−1

2
nsntωst)

∏
u<v

1

Auv!
. (2.13)

Here the last term is constant in the parameters, and is identically 1 for simple

graphs, so we will discard it in what follows. The log-likelihood is then

logP (G, g |ω, q) =
k∑
s=1

ns log qs +
1

2

k∑
s,t=1

(mst logωst − nsntωst) . (2.14)

Compare it with (2.12), if ωst = pst and both are very close to 0, and thus

mst � nsnt,

logP (G, g | q, p) ≈
k∑
s=1

ns log qs +
1

2

k∑
s,t=1

(mst log pst − (nsnt −mst)pst)

≈ logP (G, g |ω, q) .

In other words, when graph is very sparse, multi-edges are so rare that Poisson-

SBM converge to the vanilla (Bernoulli) SBM. In the following chapters, we will

often choose one of these two basic models for mathematical convenience in different

situations.

2.3.3 Degree-corrected block model

For the above two block models I have introduced, any two nodes in the same block

have the same degree distribution. Moreover, their degrees are sums of independent

Poisson (Bernoulli) variables, so this distribution is also Poisson. As a consequence,

these block models “resist” putting nodes with very different degrees in the same
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block. This leads to problems with real networks where the degree distribution is

highly skewed.

The degree-corrected block model(DC-SBM) addresses this problem by allowing

heterogeneity of degree within blocks. Nodes are assigned to blocks as before, but

each node also gets an additional parameter θu, which scales the expected number

of edges connecting it to other nodes [48],

Auv|g ∼ Poi(θuθvωgugv) .

The parameter θu gives us a mean to explicitly model the expected degree of each

node, which for instance, could be a measure of popularity in social networks. Since

setting θu = 1 for all u recovers the SBM, we say Poisson-SBM is nested inside the

DC-SBM model, which is strictly more general.

The likelihood stays the same if we increase θu by some factor c for all nodes in

block r, provided we also decrease ωst for all s by the same factor. Thus identification

demands a constraint, and a convenient one forces θu to sum to the total number

of nodes within each block:
∑

u:gu=s θu = ns. The complete-data likelihood of the

DC-SBM model is then

P (G, g | θ, ω, q) =
∏
u

qgu
∏
u<v

(θu θv ωgugv)
Auv

Auv!
exp(−θu θv ωgugv)

=
∏
u

θduu

k∏
s=1

qnss

k∏
s,t=1

ω
mst/2
st exp(−1

2
nsntωst)

∏
u<v

1

Auv!
(2.15)

= P (Θ, g | θ)× P (V, g | q)× P (E, g | p) ,

where ns and mst are as before, and Θ is the factor containing all the θ parameters.

Again ignoring the constant term, the log-likelihood is

logP (G, g | θ, ω, q) =
k∑
s=1

ns log qs+
∑
u

du log θu+
1

2

(
k∑

s,t=1

mst logωst − nsntωst

)
.

(2.16)
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2.3.4 Block models for directed networks

So far we have defined the vanilla SBM, Poisson-SBM and the DC-SBM for undi-

rected graphs. The directed counterparts actually have simpler mathematical forms

with fewer constrains, thanks to their asymmetrical nature. Their likelihood func-

tions are:

P (G, g | q, p) =
∏
u

qg(u)

 ∏
(u,v)∈E

pg(u)g(v)

 ∏
(u,v)/∈E

(1− pg(u)g(v))


=

k∏
s=1

qnsi

k∏
s,t=1

pmstst (1− pst)nsnt−mst , (2.17)

P (G, g |ω, q) =
∏
u

qgu
∏
u,v

ωAuvgugve
−ωgugv

Auv!

=
k∏
s=1

qnss

k∏
s,t=1

ωmstst exp(−nsntωst)
∏
u<v

1

Auv!
, (2.18)

P (G, g | θ, ω, q) =
∏
u

qgu
∏
u,v

(θu θv ωgugv)
Auv

Auv!
exp(−θu θv ωgugv)

=
∏
u

θduu

k∏
s=1

qnss

k∏
s,t=1

ωmstst exp(−nsntωst)
∏
u<v

1

Auv!
, (2.19)

now with mst = |{u < v&(u, v) ∈ E : g(u) = s, g(v) = t}| as the number of edges

connecting between block s and block t, even if s = t.

For mathematical convenience, I shall be using the directed block models for the

learning algorithms in the next chapter, although the experiments in later chapters

are actually based on the undirected versions.
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2.4 Existing related model selection methods

With the block models properly defined, I will do a brief literature review on related

model selection methods beside information criteria to motivate my work in later

chapters. These include machine learning meta-frameworks of both model driven

and data driven varieties, as well as a method based on information coding theories.

Before I question the compatibility of these methods with block models, I want to

first point out the biggest common pitfall in the network modeling community is to

simply ignore the model selection problem all together. Increasingly complex models

are built based on ad-hoc heuristics [61, 33]. The design choice in these models are

often made out of personal preferences. Without proper statistical foundations, they

are getting more and more susceptible to over-fitting as the model complexity keeps

to grow.

A better alternative is to built/choose models based on domain knowledge. This

is a popular approach for building network models in matured fields like biology and

sociology, where plenty of domain knowledge is available from the previous litera-

ture [39, 87, 88]. These prior knowledge can help to reduce the potential space of

candidate models, and confirm key hypothesis and observations. However, models

based on such prior knowledge are at the same time constrained by it, incapable

of exploring new discoveries from the data. Not to mention domain expertise are

usually hard to come by.

2.4.1 Non-parametric models and generalization tests

Non-parametric models employ domain knowledge in a more model driven fashion.

They can grow indefinitely in complexity, and the scaling is automatic based on the

input data. Nonetheless, these models are severely restricted by the model family
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they are defined in. For example the Chinese restaurant process is based on the

conditional distribution of a Dirichlet mixture [69]. The same can be said about

its numerous variants including the Indian buffet process [34]. To make the matter

worse, the complexity scaling rules are usually designed for mathematical convenience

rather than empirical evidence, making them not that practical for real data.

A more data driven framework of model selection is generalization performance

test such as cross-validation. It achieves the balance between bias and variance by

holding out a part of the data for generalization tests. In model selection problems,

beside the usual training set and testing set, a separate validation set is used for

tuning hyper parameters [14]. Many network problems like the community detection,

however, has no ground truth to refer to. A counterpart for such clustering models

is stability testing, which focus on a model’s robustness to random noise to avoid

over-fitting [84].

These methods work for any classification model provided that there is enough

data sample. Unfortunately, we do not have this luxury for most networks, where

a single giant instance is all that is available. An alternatives is to break the avail-

able data into sub-sets for multiple samples, which is tricky even in time-series

data [72, 17], let alone for graphs where strong correlations is so prevalent [80].

Even if we manage to divide the data, repeated runs over the data pieces could

lead to performance slowdowns. Nonetheless, these meta-frameworks do provide an

general base line for the purpose of comparison.

2.4.2 The minimum description length principle

By compressing data with different codes, information scientists have long been work-

ing with the trade-off between complexity and fit. Because data compression is for-

mally equivalent to a form of probabilistic prediction, searching for the model with

22



Chapter 2. Background and Related Work

best predictive performance is essentially finding a coding scheme that lead to the

minimum description length (MDL) [35, 74].

Under the MDL principle, the trade-off takes the from of balancing between

the description length of the coding scheme and that of the message body given

the code. When applied for block models, the description length of the coding

scheme corresponds to the complexity of the SBM, which grows with the number of

blocks as well as additional parameters such like the θ parameters in DC-SBM. The

message body corresponds to the description length of the graph G given the SBM.

It becomes shorter as the model gets more complex, since the data can be better

fitted [75, 67, 66].

The minimum description length principle has a connection with Bayesian model

selection in general [35]. This connection, while appear to be purely mathematical,

actually has much deeper roots in carefully designed Bayesian codes. I will show how

this can be done on block models in Chapter 5.
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Scalable Learning Algorithms

Before the statistical inquiry, I shall first explain the algorithms for learn-

ing the block models which make the experiments in later chapters possi-

ble. Beside traditional Monte Carlo sampling methods, I developed mes-

sage passing algorithms for efficient estimation of the partition function.

They fall into a more general framework of variational inference, which

provides a range of approximations with desirable balance between accu-

racy and scalability. Supervised learning from labeled data is another im-

portant task. Active learning goes one step further, querying pro-actively

for the most informative label. I build an active learner for node commu-

nity labels which uses information-theoretic measures gathered during the

conditional Monte Carlo sampling algorithm at no additional cost.

3.1 The partition function

In the previous chapter, I have defined likelihood functions for the various block

models given a specific block assignment 2.3. However, the block assignment g is
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usually not observed, but rather are what we most want to infer. We could try to

infer g by maximizing the likelihood over the parameter set Π; in terms borrowed

from statistical physics, this amounts to finding the ground state ĝ that minimizes

the energy (a connection I will explain later). When this ĝ can be found, it recovers

the correct g exactly if the graph is dense enough [10].

This approach, however, violates the assumptions of AIC and BIC we listed in the

previous chapter 2.2.1 (assumptions A.2 and B.2). Thanks to the discrete nature of

the latent states g, Taylor expansions on them are not possible, which is fundamental

for deriving not only information criteria, but also the classic χ2 likelihood ratio

test we will see later. For latent state models in general, this maximum likelihood

approach also runs a greater risk of over-fitting. Take an Erdős–Rényi random graph

for instance, one can easily fit a specific block assignment g on top of it and get a

much higher likelihood. These illusory block structures are actually capturing the

random noise in this model, and therefore indications of over-fitting.

This is a common issue for any model with discrete latent variables. They cannot

be simply ignored, since they are not fixed constants. A principled solution is to

marginalize over them [28, 52, 9]. This is also a natural requirement for the Bayesian

model selection in later chapters [20, 18, 14]. For block models, it means summing

over all the possible group assignments. As an example, I will use the vanilla SBM for

its simplicity, but the following result can be applied to any block model introduced

in the previous chapter (see Section 2.3) .

P (G | q, p) =
∑
g

P (G, g | q, p) . (3.1)

In statistical physics terms the sum in (3.1) corresponds to the partition function

Z(β) at β = 1 of the Boltzmann distribution from which we sample the discrete group

assignment variables. The probability density of P (g |G, q, p) under the Boltzmann
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distribution is given by:

P (g |G, q, p) =
eβ lnP (G,g | q,p)∑
g e

β lnP (G,g | q,p) , (3.2)

where the denominator is the partition function

Z(β) =
∑
g

P (G, g | q, p)β .

In statistical physics, the minus logarithm of a probability is often viewed as an

energy function, as the exponents in equation (3.2). The minus logarithm of the

maximum likelihood P (G | ĝ, q, p) is called the ground state energy. The partition

function P (G | q, p), being a marginal probability itself, is connected with free ener-

gies. In fact, the vanilla SBM has a direct counterpart in the Ising model in statistical

mechanics. These connections between probability theory and statistical physics will

prove to be instrumental for designing and understanding the algorithms later in this

chapter.

3.2 Calorimetry approximations for the partition

function

With the partition function P (G | q, p), the discrete states are summed over, we are

now back in the continuous regime, problem solved. The sum, however, quickly be-

comes intractable since the state space of g explodes exponentially with the number

of nodes in the graph. This is where the calorimetry trick from statistical physics

comes to the rescue, providing us means to estimate the log partition function lnZ

based on the free energy at various temperatures. There are several annealing tech-

niques available for efficient sampling on these models.
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3.2.1 Simulated annealing

Simulated annealing is inspired by the annealing technique in metallurgy, where

controlled cooling in temperature leads to a decrease in the thermodynamic free

energy.

∂

∂β
lnZ(β) =

∂
∂β
Z(β)

Z(β)

=

∑
g lnP (G, g | q, p)P (G, g | q, p)β

Z(β)

=
∑
g

lnP (G, g | q, p)P β(g |G, q, p)

= 〈lnP (G, g | q, p)〉β

= Eq,p,β[lnP (G, g | q, p)] ,

where the last line simply indicates the expectation of lnP (G, g | q, p) over this Boltz-

mann distribution with inverse temperature β and parameters q, p. This value can be

approximated using the average lnP (G, g | q, p) in a Monte Carlo sampling process.

We go through the derivative above so that we can estimate

lnZ(1) = lnZ(0) +

∫ 1

0

∂

∂β
lnZ(β)∂β ,

where lnZ(1) is the log partition function at temperature 1 of the distribution of dis-

crete variables with fixed continuous variables β. It is also equal to the log marginal

probability lnP (G | q, p). We approximate this integral numerically at q temperature

points evenly distributed between (0, 1].∫ 1

0

∂

∂β
lnZ(β)∂β =

tq=1∑
β=t1

∂

∂β
lnZ(β)× 1

q
.

We employ Simulated Annealing to speed up the convergence of the sampler. It

starts the system at the highest temperature with β = 0, and gradually cools down
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until we have β = 1, allowing data collection at each temperature point. To avoid

traps of local minima, we employ multiple replicas of MC chain at each temperature,

and each is inherited into lower temperatures independently.

3.2.2 Population annealing

Population Annealing differs from Simulated Annealing in that new replicas in lower

temperatures β′ are not inherited independently, but instead with probability pro-

portional to its P (G, g | q, p)(β′−β) [54]. Assuming the population of replicas is R, the

expected number of copies of replica r that appear in the re-sampled population at

β′ is

ρr(β
′) =

R× Er
q,p,β[P (G, g | q, p)(β′−β)]∑

all r E
r
q,p,β[P (G, g | q, p)(β′−β)]

The normalizing term above is actually the ratio of the partition function at

neighboring temperatures:

Z(β′)

Z(β)
=

∑
g P (G, g | q, p)β′

Z(β)

=
∑
g

P (G, g | q, p)(β′−β)P (G, g | q, p)β

Z(β)

= Eq,p,β[P (G, g | q, p)(β′−β)]

=
1

R

∑
all r

Er
q,p,β[P (G, g | q, p)(β′−β)] .

This enable us to estimate lnZ(1) as

lnZ(1) = lnZ(0) +

tq=1∑
β=t0=0

ln

(
Z(β′)

Z(β)

)
. (3.3)

Besides the above two calorimetry methods, there are even more sophisticated

algorithms like parallel tempering. Unfortunately, all of them suffer from poor scala-

bility. As the network grows, the convergence of the Monte Carlo sampling algorithm

28



Chapter 3. Scalable Learning Algorithms

becomes increasingly slow, and the number of samples required also skyrockets for

accurate estimation. Since these algorithms are slow but exact, at least if the sam-

pling algorithm converges and the spacing of temperatures is small enough, we use

them as a correctness test for the more efficient algorithms we discuss next.

3.3 Variational approximations for the partition

function

Variational methods are a family of techniques for approximating intractable sums

just like the partition function. An alternative to Monte Carlo sampling methods

mentioned previously, variational methods use a simpler variational distribution Q(g)

to approximate the intractable Boltzmann distribution.

logP (G | q, p) = log
∑
g

Q(g)
P (G, g | q, p)

Q(g)

=
∑
g

log

[
Q(g)

P (G, g | q, p)
Q(g)

]
+ DKL(Q ‖ P ∗)

=EQ(g)

[
log

P (G, g | q, p)
Q(g)

]
+ DKL(Q ‖ P ∗) . (3.4)

where the Kullback-Leibler divergence would be zero if the “variational distribution”

Q(g) was exactly the same as the true Boltzmann distribution P ∗. Since DKL(Q ‖

P ∗) is always positive, we can rewrite the above equality in the form of Jensen’s

inequality,

logP (G | q, p) = log
∑
g

Q(g)
P (G, g | q, p)

Q(g)

≥
∑
g

log

[
Q(g)

P (G, g | q, p)
Q(g)

]
= EQ(g) [logP (G, g | q, p)] + S[Q(g)]

=− 〈E〉+ S . (3.5)
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Now the approximation for the partition function has become an optimization

problem:

logP (G | q, p) ≈ sup
Q

[
EQ(g)[logP (G, g | q, p)] + S[Q(g)]

]
. (3.6)

The key design problem of a variational approximation is the choice of the varia-

tional distribution Q(g). We want Q(g) to be simple in form and thus easy to infer,

yet we need it to be complex enough to make an accurate approximation. Given the

form of the likelihood function logP (G, g | q, p), a very desirable property of Q(g) is

to be able to factor it into terms which can be locally optimized. One such family

of distributions are the “cluster variational distributions” from the field of statistical

physics.

3.3.1 Kikuchi approximations and local free energies

In statistical physics, the formula 〈E〉−S, which is exactly the minus of what we are

trying to maximize, is called the Gibbs free energy. The Kikuchi method, otherwise

known as the “cluster variational method”, approximates the Gibbs free energy as

a sum of local free energies [89]. The first order Kikuchi approximation, also known

as the mean-field approximation, assumes that Q(g) is a product distribution, with

single-site marginals at each node.

For each node u and type s, define bsu as the marginal belief that node u is of type

s. They should obey the normalization conditions
∑

s b
u
s = 1. It follows that the

two-node beliefs are simply buvst = bus × bvt . Now we can define the local free energy

involving a single node u as:

Fu
Kikuchi =

∑
t

but (ln b
u
t − ln qt) ,

and the local free energy involving an edge/non-edge correlation (u, v) (excluding
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node u and v) as:

Fuv
Kikuchi =

∑
st

buvst (ln buvst − ln f(s, t)uv) ,

where the function of f(s, t)u,v depends on the model. For mathematical convenience

in the following subsection, I shall first use a directed vanilla SBM:

f(s, t)u,v =



p(st)p(ts) (u, v) ∈ E, (v, u) ∈ E

p(st)(1− p(ts)) (u, v) ∈ E, (v, u) /∈ E

(1− p(st))p(st) (u, v) /∈ E, (v, u) ∈ E

(1− p(st))(1− p(ts)) (u, v) /∈ E, (v, u) /∈ E

With a particularly simple form of the joint belief:

BMF (g |G, q, p) =
∏
u

(bug(u)) ,

we have the mean-field free energy:

FMF =
∑
u

Fu
MF +

∑
u6=v

Fuv
MF

=
∑
u

∑
s

[
bus (ln b

u
s − ln qs) +

∑
v<u

∑
t

buvst (ln buvst − ln f(s, t))

]

=
∑
u

∑
s

[
bus ln bus + bus

∑
v<u

∑
t

bvt ln(busb
v
t )− bus (ln qs +

∑
v<u

∑
t

bvt ln f(s, t))

]

= −SMF −
∑
g

BMF (g |G, q, p) ln

[
qs
∑
v<u

∑
t

bvt f(s, t)

]
. (3.7)

While the first order mean-field approximation is simple and fast [9], it does not

work well for block models where the correlations (edges) are important.

The second order Kikuchi approximation, which expands the range of local belief
to pairs of nodes, is the Bethe free energy.
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v

w

 u

Figure 3.1: Regions of local energies in Bethe approximation
Notice that each node is overlapped d times, where d is its degree.

The Bethe free energy approximates the Gibbs free energy using one-node beliefs

bus , as well as two-node beliefs buvst [90]. For each pair of vertices u, v and pair of types

s, t, define buvst as the pairwise marginal belief that vertices u and v are of type s and

t respectively. They should obey the marginalization conditions
∑

t b
uv
st = bus . The

Bethe estimate of the joint belief is

BBethe(g |G, q, p) =

∏
(u,v)∈E b

uv
st∏

u(b
u
s )
du−1

. (3.8)

For block models on simple graphs, the Bethe estimate of average energy is exact:

〈EBethe〉 = −
∑
g

BBethe(g |G, q, p) lnP (G, g | q, p)

=− EBBethe(g |G,q,p)

[
n∑
u=1

ln qg(u) +
∑
u6=v

ln f(s, t)

]

=−
n∑
u=1

∑
s

bus ln qs −
∑
u6=v

∑
st

buvst ln f(s, t) . (3.9)

The Bethe estimate of the entropy, on the other hand, is only exact when the
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graph is a tree.

−SBethe =
∑
g

BBethe(g |G, q, p) lnBBethe(g |G, q, p)

= EBBethe(g |G,q,p)

[∑
u6=v

ln buvst −
∑
u

ln(bus )
du−1

]

=
∑
u6=v

∑
st

buvst ln buvst −
n∑
u=1

(du − 1)
∑
s

bus ln(bus ) . (3.10)

Putting both together, with some rearrangement,

FBethe =〈EBethe〉 − SBethe

=
∑
u6=v

∑
st

buvst (ln buvst − ln f(s, t))−
∑
u

∑
s

bus (ln(bus )
du−1 + ln qs)

=
∑
u6=v

∑
st

buvst (ln buvst − ln f(s, t)− ln qs − ln qt)

−
∑
u

(du − 1)
∑
s

bus (ln b
u
s − ln qs)

=
∑
u6=v

Fuv+u+v
Bethe −

∑
u

(du − 1)Fu
Bethe . (3.11)

As we can see, higher order Kikuchi methods follows the inclusion–exclusion

principle when summing up the local free energy components (see Figure 3.1 for

the second order case). In general, the accuracy of Kikuchi methods improves as

the order increases, and it is exact when the largest local component becomes the

largest clique in the graph. When going for even higher order, the inclusion–exclusion

equation might look very complicated, but everything boils down to including each

local components exactly once, like (3.7) and (3.11) for block models.

Through the connection between probability and energy, these Kikuchi free en-

ergy formulations provide a range of candidates for the variational distribution Q(g),

forming a hierarchy of approximations with various scalability and accuracy. In par-

ticular, the second order Bethe approximation, with its exact average energy estima-
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tion, turns out to hit the sweet point of balance for learning block models [23, 58].

As a result, we shall have the following variational distribution for the rest of the

dissertation:

Q(g) = BBethe(g |G, q, p) =

∏
u6=v b

uv
st∏

u(b
u
s )
n−2

, (3.12)

where we have plugged in n − 1 as the degree for every node because all pairs of

nodes in the block models are explicitly modeled, no matter if there is an edge or

not. While this complete interaction graph might looks very far away from the tree

condition for the Bethe approximation to be exact, empirical results will nevertheless

validate its accuracy.

Now the approximation of the log partition function lnZ becomes an optimiza-

tion problem of the Bethe free energy instead. In the paper [90], the authors proved

that a message passing algorithm called Belief Propagation converges to the same

fixed points as the Bethe free energy minimization process. It makes a scalable im-

plementation with great parallelism potential possible, when analytical minimization

is difficult. In statistical physics, it is called the cavity method and has already been

applied to block models [24, 23].

3.3.2 The Belief Propagation algorithm

In this subsection I will describe the Belief Propagation (BP) algorithm for mini-

mizing the Bethe free energy. To keep the mathematical notations simple, I will

be building an algorithm for directed vanilla SBMs. Another version for undirected

DC-SBMs shall be introduced in the next section. With these examples, readers

should be able to generalize it to the other cases.
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v

w

 u

Figure 3.2: Belief Propagation on Figure 3.1
The message from u to v is based on the messages that u receives from its other
neighbors like w.

The idea of belief propagation is each vertex u sends a “message” to each of its

neighbors v, consisting of the marginal distribution that u would have if v were not

in the network. We denote this µu→vt , the probability that u would be of type t if

v were absent. We update µu→v according to the messages that u receives from its

other neighbors w.

Finally, we assume that these neighbors are independent when conditioned on the

label of u. In other words, we ignore the effect of paths that don’t go through u. This

assumption holds, just like the exact condition for the Bethe approximation, when

the graph is a tree. If the graph is locally treelike and correlations decay, then it will

hold approximately. In the rare event of double edges occurring in both directions

for a pair of vertices, I assume that they are independent events.

In the vanilla SBM, where an edge from type s to type t exists with probability

pst, we have the following update rule:

µu→vt =
ξu→vt∑k
t′=1 ξ

u→v
t′

,
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where the numerator ξu→vt is just the un-normalized versions of the µu→vt :

ξu→vt = qt


∏

w:(w,u)∈E
w:(u,w)∈E
w 6=u,v

k∑
s=1

µw→us pstpts




∏
w:(w,u)/∈E
w:(u,w)∈E
w 6=u,v

k∑
s=1

µw→us (1− pst)pts




∏
w:(w,u)∈E
w:(u,w)/∈E
w 6=u,v

k∑
s=1

µw→us pst(1− pts)




∏
w:(w,u)/∈E
w:(u,w)/∈E
w 6=u,v

k∑
s=1

µw→us (1− pst)(1− pts)


(3.13)

In most contexts, we wouldn’t have the product over the non-edges. But if the

non-edges matter to us, we have to take these into account. In block models, this

turns the network into a complete graph. But then every vertex sends messages to

every other vertex, giving us n2 different messages we have to keep track of.

We can simplify things by assuming that each vertex sends the same messages

to all its non-neighbors. In other words, µu→v is the same for all v such that neither

(u, v) nor (v, u) is ∈ E. Denote this µu. Then µu is the marginal of vertex u taking
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the messages from all the other vertices into account. This gives the update rules

ξu→vt = qt


∏

w:(w,u)∈E
w:(u,w)∈E
w 6=u,v

k∑
s=1

µw→us pstpts




∏
w:(w,u)/∈E
w:(u,w)∈E
w 6=u,v

k∑
s=1

µw→us (1− pst)pts




∏
w:(w,u)∈E
w:(u,w)/∈E
w 6=u,v

k∑
s=1

µw→us pst(1− pts)




∏
w:(w,u)/∈E
w:(u,w)/∈E
w 6=u,v

k∑
s=1

µws (1− pst)(1− pts)


for (u, v) ∈ E or (v, u) ∈ E

ξut = qt


∏

w:(w,u)∈E
w:(u,w)∈E

w 6=u

k∑
s=1

µw→us pstpts




∏
w:(w,u)/∈E
w:(u,w)∈E

w 6=u

k∑
s=1

µw→us (1− pst)pts




∏
w:(w,u)∈E
w:(u,w)/∈E

w 6=u

k∑
s=1

µw→us pst(1− pts)




∏
w:(w,u)/∈E
w:(u,w)/∈E

w 6=u

k∑
s=1

µws (1− pst)(1− pts)



If the network has n vertices, m edges, and k is constant, then the total number

of variables we need to keep track of is O(n+m). Moreover, we can update them in

O(n+m) time by first computing the product

∏
all w

k∑
s=1

µws (1− pst)(1− pts)

for each type t, which gives the overall effect of all the vertices on all the others ones

assuming that there are no edges. We can then obtain ξut and ξu→vt for each u by

dividing and multiplying by a finite number of terms.

Once we reach a fixed point in the messages, they can be used in place of marginal
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beliefs in the Bethe formula (3.9) and (3.10),

bus = µus (3.14)

buvst ∝



µu→vs µv→ut pstpts (u, v) ∈ E, (v, u) ∈ E

µu→vs µv→ut pst(1− pts) (u, v) ∈ E, (v, u) /∈ E

µu→vs µv→ut (1− pst)pts (u, v) /∈ E, (v, u) ∈ E

µusµ
v
t (1− pst)(1− pts) (u, v) /∈ E, (v, u) /∈ E

, (3.15)

where we normalize each of these by summing over all s or all s, t. By the results

of the paper [90], these beliefs should be the same as the minimizers of the Bethe

free energy (3.11), which is in turn the approximation we seek for the partition

function (3.1).

3.3.3 Preliminary results

Here we compare the partition function estimation from the methods detailed in

section 3.2.2 and section 3.3.1 (for population annealing, here I take 100 tempera-

ture points with a population size of 10). As we will see, BP is much faster than

calorimetry, and is a good approximation in all cases. Furthermore, among different

BP constructions (please refer to the Appendix A for details), the variational Bethe

estimate (3.11) usually provides a slightly better approximation. Constrained by the

speed of calorimetry methods, we cannot scale to much bigger networks here. The

runtime is averaged 10 independent runs.

Toy graphs with 6 nodes

These are synthetic graphs hand written for testing purpose. They both have only

6 nodes, with assortative and disassortative block structure respectively. These toy
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graphs are so small that we can compute the partition function explicitly by summing

over all the possible 26 block assignments:

Z(1) =
∑
g

P (G, g|q, p)

Table 3.1: Specifications and learning results of toy SBM #1

#nodes 6
True q 0.5 0.5
True P 0.667 0.112
(k=2) 0.112 0.667
Exact lnZ -18.053

Method Bethe (3.11) BP (A.4) Calorimetry (3.3)
Estimated lnZ -18.604 -18.189 -17.997
Runtime(ms) 1537 1537 155937

Table 3.2: Specifications and learning results of toy SBM #2

#nodes 6
True q 0.5 0.5
True P 0.167 0.778
(k=2) 0.778 0.167
Exact lnZ -19.097

Method Bethe (3.11) BP (A.4) Calorimetry (3.3)
Estimated lnZ -19.098 -19.181 -19.033
Runtime(ms) 1594 1594 161023

Synthetic graph with 200 nodes

This graph is generated using the block model, with a much bigger n = 200. Since
the exact partition function is intractable here, we validate the BP algorithms by
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the result from the calorimetry method with extended running time. The same goes
for the next word adjacency network.

Table 3.3: Specifications and learning results of a 200 nodes SBM

#nodes 200
True q 0.5 0.5
True P 0.002 0.1
(k=2) 0.1 0.002
Exact lnZ N/A

Method Bethe (3.11) BP (A.4) Calorimetry (3.3)
Estimated lnZ -6995.47 -6818.25 -6683.09
Runtime(ms) 515587 515587 32766328

Word adjacency network of David Copperfield

This is a real world network made from the 60 most commonly occurring nouns and

the 60 most commonly occurring adjectives in the novel David Copperfield by Charles

Dickens. They are represented by vertices and a directed edge connects any pair that

appear adjacent in the corpus, pointing from the preceding word to the following one.

Eight of the words never appear adjacent to any of the others and are excluded from

the network, leaving a total of 112 vertices [63]. It is a highly disassortative network,

meaning most of the edges are between nouns and adjectives.
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Table 3.4: Specifications and learning results of the Word adjacency network

#nodes 112
True q 0.509 0.491
True P 0.050 0.129
(k=2) 0.010 0.012
Exact lnZ N/A

Method Bethe (3.11) BP (A.4) Calorimetry (3.3)
Estimated lnZ -2084.49 -2102.74 -2061.18
Runtime(ms) 240849 240849 57096614

3.4 The variational EM framework

In the previous sections, I explained how to estimate the partition function P (G | p, q)

given the parameter set Π, circumventing the latent state g and its discreteness

altogether. As is usual with many generative models, the parameters in Π also need

to be inferred from the data. In this section, I will put both inference tasks under

a variational expectation maximization (EM) framework [59], and to showcase the

flexibility of this framework, I will use the most general DC-SBM as an example.

The partition function for the DC-SBM is:

P (G | θ, ω, q) =
∑
g

P (G, g | θ, ω, q) ,

where the sum is over all kn possible block assignments.

Under the variational EM framework, the E-step approximates the average over

g with respect to the Boltzmann distribution, and the M step estimates θ, q and ω in

order to maximize that average. Assuming that we know the marginal distributions

bus of each u, and joint marginal distributions of buvst for each pair of nodes {u, v}, the
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M-step sets θ, q and ω to their most likely estimates (MLEs),

q̂s =
n̄s
n

=

∑
u b

u
s

n
, ω̂st =

mst

nsnt
=

∑
u6=v:Auv 6=0Auvb

uv
st

(
∑

u b
u
s )(
∑

u b
u
t )

, (3.16)

with θ̂u = du
dgu

(where dgu =
∑
u b

u
s du∑

u b
u
s

is the weighted average of vertex degrees of block

s) being fixed given the graph and independent of the other parameters.

One approach to the E-step would use a Monte Carlo sampling algorithm to

sample g from the Boltzmann distribution. However, as I have just shown in 3.16,

in order to determine θ, q and ω it suffices to estimate the marginal distributions of

bus for each u, and joint marginal distributions of buvst for each pair of nodes {u, v} [9].

This leads to the Bethe variational approximation I have shown in the previous

section (thus the abuse of belief notations b). Here I will rewrite it for the undirected

DC-SBM model.

3.4.1 The variational E-step for DC-SBM

I have already shown that belief propagation is an efficient and accurate algorithm

for approximating both the free energy and the marginals. Here I describe how belief

propagation works for the undirected DC-SBM model, extending the treatment of

the directed vanilla SBM in the previous section 3.3.2.

Recall that µu→vs is the probability that u would be of type s in the absence of

v. Then µu→v gets updated in light of the messages u gets from the other nodes as

follows. Let

f(θu, θv, ωst, Auv) =
(θuθvωst)

Auv

Auv!
exp(−θuθvωst) (3.17)

denote the probability that Auv takes its observed value assuming that gu = s and

gv = t. Then

µu→vs =
1

Zu→v qs
∏
w 6=u,v

k∑
t=1

µw→ut f(θw, θu, ωst, Awu) , (3.18)
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where Zu→v is a normalization factor set so that
∑k

s µ
u→v
s = 1. As usual in belief

propagation, I assume here that the block assignment gw of the other nodes are

independent conditioned on gu.

Note that each node sends messages to every other node, not just to its neighbors,

since non-edges are also informative about gu and gv. Thus we have a Markov random

field on a weighted complete graph, as opposed to just on the network itself. However,

keeping track of n2 messages is cumbersome. For sparse networks, we can restore

scalability by noticing that, up to O(1/n) terms, each node u sends the same message

to all of its non-neighbors. That is, for any v such that Auv = 0, we have µu→vs = µus

where

µus =
1

Zu
qs
∏
w 6=u

k∑
t=1

µw→ut f(θw, θu, ωst, Awu) . (3.19)

This simplification reduces the number of messages to O(n+m). We can then write

µu→vs =
1

Zu→v qs ×
∏
w

k∑
t=1

µwt f(θw, θu, ωst, 0)

×
∏

w 6=v,Auw 6=0

∑k
t=1 µ

w→u
t f(θw, θu, ωst, Awu)∑k

t=1 µ
w
t f(θw, θu, ωst, 0)

. (3.20)

Since the second product depends only on θu, we can compute it once for each degree

in the network, and then update the messages for each u in O(k2du) time. Thus,

for fixed k, the total time it takes to update all the messages is O(m + `n), where

` is the number of distinct degrees. As discussed in [23], for many networks only a

constant number of updates are necessary in order to reach a fixed point, making

the entire E-step of linear scalability in terms of number of edges. Please refer to

[23] for details.

The BP estimate of the marginals are

Pr[gu = s] =bus ∝ µus , (3.21)

Pr[gu = s, gv = t] =buvst ∝ f(θu, θv, ωst, Auv)µ
u→v
s µv→ut . (3.22)
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These are normalized so that
∑k

s b
u
s = 1, and

∑k
s,t=1 b

uv
st = 1.

As we have discussed in Section 3.3.1, marginals based on convergent BP messages

also minimize the Bethe free energy, which is a second order Kikuchi approximation

to the log partition function [89]:

logP (G | θ, ω, q) ≈
∑
u

logZu +
1

2

k∑
s,t=1

ωstnsnt

−
∑

u6=v,Auv 6=0

log

[
k∑

s,t=1

f(θu, θv, ωst, Auv)µ
u→v
s µv→ut

]
.

I want to emphasize that while I use the linear-time BP algorithm for the exper-

iments in this dissertation, the results on model selection in the following chapters

are quite indifferent as to how the likelihood or partition function is computed. Un-

der the variational EM framework alone, many other choices of Q(g) is possible,

including the whole range of Kikuchi approximations we have seen earlier 3.3.1.

However, the Bethe approximation and the linear-time BP algorithm does achieve

the desired balance between scalability and accuracy for the task of learning block

models, as validated by its linear scalability and optimal detectability [23, 58]. The

variational EM framework with the linear-time BP as the E-step will be the main

inference algorithm of choice in the following chapters.

3.5 Supervised learning on block models

So far, we have been learning the block models solely from the data G. This is called

unsupervised learning. In many real-world networks, nodes and edges can have class

labels, or variables/attributes that can affect the network’s topology. If some or all

of the labels are given with some probability or confidence level, we would like to

take advantage of what is available to help predict the missing labels on other nodes
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or edges. On a higher level, we can also cast model selection problems as a targeted

learning task based on such knowledge.

This is where supervised learning comes in, making our inference process condi-

tioned on observed ground truth, and complement our model–based approaches with

the power of data–driven approaches. In this section, I will show how to adapt block

models as well as the variational EM framework for such supervised learning tasks.

To highlight the flexibility of this framework without digressing too much into other

learning tasks beside model selection, much of the algorithmic details are left in the

Appendices (see B.1 and B.2).

3.5.1 Supervised link prediction

An example for such a supervised learning tasks is the recommendation system on

e-commerce websites. Recommendation systems make predictions about preferences

of items based on preferences or ratings previously expressed by users. If we assume

that similar users have similar preferences with similar items, block models become

the perfect model for the task.

Following the model in [36], all the users u ∈ U and items i ∈ I are nodes,

observed ratings r ∈ RO can be modeled by weighted edges. The graph G = (U +

I, RO) is then bipartite, and the adjacency matrix will be dominated by missing

links/ratings waiting to be predicted.

Now I assume that G is generated by a special SBM. Labels for both user u and

item i are first independently generated. For each pair of nodes {u ∈ U, i ∈ I}, the

rating from u to i follows a categorical distribution that depends only on these labels.

Given a block assignment g, the probability of generating the observed ratings RO
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under this model is

P (RO, g | p, γ, η) =
∏

g(u)∈PU

∏
g(i)∈PI

K∏
r=1

γ
ng(u)
g(u) η

ng(i)
g(i) (prg(u)g(i))

nr
g(u)g(i) , (3.23)

where γg(u) is the prior probability that a user belongs to a group g(u), and ng(u) is

the number of user actually in the group g(u) under the block assignment g. The

same applies to ηg(i) and ng(i) for the items. prst is the categorical probability for

rating r and nrst represents the number of observed ratings r between the user block

s and the item block t.

Besides the straightforward change from Bernoulli to categorical distributions,

the above model differs from the vanilla SBM in how data is observed. For all block

models introduced in 2.3, we treat edges and non-edges between every pair of nodes

as observed. Here, however, the model is only based on observed ratings. Non-ratings

are completely irrelevant under this model.

Another key difference between the models is the inference task. The ultimate

goal here is to predict missing links (edges/ratings), whereas the block models in 2.3

are built for community detection. With this in mind, we can further simplify the

model by targeting the following conditional distribution directly:

P (rui = r|RO) =
1

Z

∑
g

prg(u)g(i)P (RO, g | p, γ, η)

=
1

Z

∑
g

P (RO
+, g | p, γ, η) , (3.24)

where RO
+ represents the new graph with the r label on the missing link. By marginal-

izing over all possible latent states g, we end up with the total probability of the

missing rating regardless of how the nodes might be assigned to blocks.

The normalization term Z in (3.24) is the partition function of the Boltzman

distribution:

P (g |RO, p, γ, η) =
elnP (RO,g | p,γ,η)∑
g e

lnP (RO,g | p,γ,η)
, (3.25)
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where the denominator is the partition function

Z =
∑
g

P (RO, g | p, γ, η) .

The numerator in (3.24) on the other hand corresponds to the partition function Z+

of the new graph with the r label on the missing link.

Z+ =
∑
g

P (RO
+, g | p, γ, η) .

Just like the partition functions we have seen earlier, we can use the variational

EM framework to estimate both Z and Z+. Because these two only differ on a single

rating, the final ratio has a very simple mathematical form. The application of the

framework is fairly straightforward. Because I am not focusing on model selection for

link prediction in later chapters, please refer to Appendix B.1 for algorithmic details.

In fact, this framework is so flexible that the full Bayesian integrated recommendation

system can also be solved in a similar fashion (see Appendix B.2).

If we use the block models in Section 2.3 as generative models for the task of link

prediction, we can view conditional models like (3.24) as discriminative in nature.

Compared with generative models, discriminative models usually enjoy performance

advantages in predicting the target variables [30, 14, 47, 50]. However, they require

complete knowledge of the label on every single data point to work. In the recom-

mendation system example above, only observed ratings are treated as input data in

the model. Another drawback for discriminative models for link prediction is that

links are not independent, the conditional distribution (3.24) will be different for

different target links, leading to repeated inference for each new target link.

3.5.2 Semi-supervised community detection

Unlike discriminative models, generative models can take advantage of both labeled

and unlabeled data. This is especially important in the semi-supervised setting,
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where we only have partially labeled data [30, 50]. Generative models are based on

the joint distribution of all target variables together with observed variables. This

also leads to a huge performance advantage on networks, as discriminative approaches

are forced to model multiple conditional distributions.

With the generative block models in 2.3, we can do semi-supervised link prediction

if we introduce a new edge type to represent “unknown” links, which would change

the edge distributions from Bernoulli to categorical as we have seen in the previous

subsection. An adapted variational EM algorithm similar to B.1 will provide an

efficient solver for the model.

Another learning task is semi-supervised community detection, where we are

given the graph and some of the node labels, and the goal is to predict the community

membership of the unlabeled nodes. Designed as generative community models,

block models in 2.3 can be adapted for semi-supervised node classification by simply

fixing the block membership for the labeled nodes.

If the learning algorithm is based on Monte Carlo sampling in the latent block

assignment space, supervision can be achieved directly by rejecting moves into the

“illegal” label space which contradicts the ground truth. This is the approach I take

in the next section. Under the variational EM framework, supervision fixes the block

membership for the labeled nodes, leading to a partition function summed over only

the unlabeled nodes. Accordingly, the BP in the E-step will have some fixed out-

going messages for the labeled nodes. For example, if we know that node u has a

true block label of t, then the message it sends to any neighbor v will be fixed as

µu→vt = 1, regardless of its in-coming messages during all time steps.

If one prefers the maximum likelihood approach over the partition function, the

EM framework can even be changed in to a greedy “maximization-maximization”

framework, with a specialized BP for the max-product inference in the E-step (the
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standard BP performs a sum-product inference. See Appendix A.2).

3.6 Active Learning on block models

Based on semi-supervised community detection models, we can take one step further

and uses information-theoretic techniques to actively choose which labels to explore.

Given a SBM, it can help predicting the labels of unexplored nodes after exploring

a relatively small fraction of the network, driving the parameters towards correct

values even faster.

This so–called Active Learning, coupled with a generative model, offers a new

approach to analyzing networks where the topology is known, but knowledge of class

labels is incomplete and costly to obtain. This could be the case, for instance, if

we have a network of blogs and hyperlinks between them (like citations, trackbacks,

blogrolls, etc.) and we are trying to classify the blogs according to their political

leanings. Another possible application is in online social networks, where friendships

are known and we are trying to infer hidden demographic variables. This problem

is sometimes referred to as collective classification [79]. However, in that work the

focus is on classification of individual nodes. In contrast, our focus is on the discovery

of functional communities in the network, and our underlying generative model is

designed around the assumption of that these communities exist.

We make no initial assumptions about the structure of the network—for instance,

whether its groups are assortative, disassortative, or some mixture of the two. We

assume that we can learn the label of any given node, but at a cost, say in terms

of work in the field or laboratory. Our goal is to identify a small subset of nodes

such that, once we explore them and learn their labels, we can accurately predict

the labels of all the others.

49



Chapter 3. Scalable Learning Algorithms

We present a general approach to this problem. Our algorithm uses information-

theoretic measures to decide which node to explore next—that is, which one will give

us the most information about the rest of the network. We start with a probabilistic

generative model of the network, called a SBM [44, 85], in which groups connect to

each other according to a matrix of probabilities. This model allows an arbitrary

mixture of assortative and disassortative structure, as well as directed links from

one group to another, and has been used to model networks in many fields (e.g.

[7, 43, 74]).

We stress, however, that our approach could be applied equally well to many other

probabilistic models, such as those where nodes belong to a mixture of classes [4], a

hierarchy of classes and subclasses [21], locations in a latent geographical or social

space [40], or niches in a food web [87]. It could also be applied to DC-SBMs such as

those in [48, 57, 65], which treat the nodes’ degrees as parameters rather than data

to be predicted.

At each stage of the learning process, some of the nodes’ labels are already known

and we need to decide which node to explore next. We do this by estimating, for

each node, the mutual information between its label and the joint distribution of

all the others’ labels, conditioned on the labels of the nodes that are known so far.

We obtain this estimate by Gibbs sampling, giving each classification of nodes a

probability integrated over the parameters of the SBM. We then explore the node

for which this mutual information is largest.

A key fact about the mutual information, which we argue is essential to our

algorithm’s performance, is that it is not just a measure of uncertainty: it is a com-

bination of uncertainty about a node’s label and the extent to which it is correlated

with the labels of other nodes. Thus the algorithm explores nodes which maximize

the expected amount of information it will gain about the entire network. It skips

nodes whose labels seem obvious to it, or which are uncertain but have little effect
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on other nodes. In an assortative network, for instance, it starts by exploring nodes

which are central to their communities, and then explores nodes along the boundaries

between them, without being told in advance to pursue this strategy.

We also present an alternate approach which maximizes a quantity we call the

average agreement. For each node v, this is the average number of nodes at which

two independent samples of the Gibbs distribution agree, conditioned on the event

that they agree at v. Like mutual information, average agreement is high for nodes

that are highly correlated with the rest of the network. A similar idea (but not

applied to networks) is present in [76].

We test our algorithm on three real-world networks: the social network of a karate

club, a network of common adjacent words in a Charles Dickens novel, and a marine

food web of species in the Antarctic. Each of these networks is curated in the sense

that we possess the correct node labels, such as the faction of the social network each

individual belongs to, the part of speech of each word, or the part of the habitat each

species lives in. We judge our algorithm according to how accurately it predicts the

labels of the unexplored nodes, as a function of the number of nodes it has explored so

far. We also compare our algorithm with several simple heuristics, such as exploring

nodes based on their degree or betweenness centrality, and find that it significantly

outperforms them.

3.6.1 Related work

The idea of designing experiments by maximizing the mutual information between

the variable we learn next and the joint distribution of the other variables, or equiva-

lently the expected amount of information we gain about the joint distribution, has a

long history in statistics, artificial intelligence, and machine learning, e.g. Mackay [55]

and Guo and Greiner [38]. Indeed, it goes back to the work of Lindley [53] in the
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1950s. However, to our knowledge this is the first time it has been coupled with a

generative model to discover hidden variables in networks.

In recent work, Zhu, Lafferty, and Ghahramani [92] study active learning of node

labels using Gaussian fields and harmonic functions defined using the graph Lapla-

cian. However, this technique only applies to networks where neighboring nodes

are likely to be in the same class—that is, networks with assortative community

structure. In contrast, our techniques are capable of learning about much more gen-

eral types of network structure, including disassortative and directed relationships

between functional communities.

Another approach to active learning of node labels is found in the work of Bilgic

and Getoor [11] and Bilgic, Mihalkova, and Getoor [12], who use collective vector-

based classifiers. By properly defining the collective relationships between nodes,

both assortative or disassortative communities can be learned in this framework.

However, our technique differs from theirs by using mutual information as the active

learning criterion, which takes into account not just uncertainty, but correlations as

well.

Additional works by Goldberg, Zhu, and Wright [32] and Tong and Jin [82] also

perform semi-supervised learning on graphs, and handle the disassortative case. But

they work in a setting where they know, for each link, if the ends should have the

same or different labels, such as if one writer quotes another with pejorative words. In

contrast, we work in a setting where we have no such information: only the topology

is available to us, and there are no signs on the edges telling us whether we should

propagate similar or dissimilar labels.
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3.6.2 The simplified SBM and the Bayesian integration

We represent our network as we did in (2.11), with the additional assumption of q

terms being equal

P (G | g, p) ∝

 ∏
(u,v)∈E

pg(u),g(v)

 ∏
(u,v)/∈E

(1− pg(u),g(v))


=

k∏
s,t=1

pestst (1− pst)nsnt−est . (3.26)

This simplified SBM is well-known in the machine learning, statistics, and net-

work communities [10, 83, 37, 41, 43, 74] and has also been used in ecology to identify

groups of species in food webs [7]. Unlike e.g. [83, 41, 43], we do not assume that

pst takes one value when i = j and a smaller value when i 6= j. In other words, we

do not assume an assortative community structure, where nodes are more likely to

be connected to other nodes of the same class. Nor do we require in general that

pst = pts, since the directed nature of the edges may be important—for instance, in

a food web or word adjacency network.

If all block assignments g are equally likely a priori, then Bayes’ rule implies that

the Gibbs distribution on the classifications, i.e., the probability of g given G, is

proportional to the probability of G given g:

P (g |G) ∝ P (G | g) . (3.27)

In order to define P (G | g), we need to integrate P (G | g, p) over some prior probability

distribution on p. If we assume that the pst are independent, then this integral factors

over the product (3.26). In particular, if each pst follows a beta prior, we have the
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Bayesian estimate of edge probabilities

P (G | g) =

∫∫∫ 1

0

d{pst}P (G | g, p)

=
k∏

s,t=1

∫ 1

0

dpst Beta(pst |α, β) pestst (1− pst)nsnt−est

=
k∏

s,t=1

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dpst p
est+α−1
st (1− pst)nsnt−est+β−1

=
k∏

s,t=1

Γ(α + β)

Γ(α) Γ(β)

Γ(est + α) Γ(nsnt − est + β)

Γ(nsnt + α + β)
. (3.28)

For reasonable choices of the hyper-parameters α and β, the prior dominates only

in small data cases, such as very small networks or sparsely populated classes. For

such small data cases, the beta prior allows the user to input some domain knowledge

about, say, the (dis)assortativity of the target network’s community structure. In the

limit of large data, the prior will wash out and the data-driven community structure

will dominate.

If the user wishes to remain agnostic, however, he or she can specify a uniform

prior (α = β = 1) and allow the learning algorithm to estimate the degree of as-

sortativity, disassortativity, directedness, and so on entirely from the data. We take

this approach in this paper, in which case

P (G | g) =
k∏

s,t=1

1

(nsnt + 1)
(
nsnt
est

) . (3.29)

An even simpler approach is to assume that the pst take their maximum likelihood

values

p̂st = argmax
p

P (G | g, p) = est/nsnt , (3.30)

and set P (G | g) = P (G | g, p̂). This approach was used, for instance, for a hierarchical

SBM in [21]. When k is fixed and the ns are large, this will give results similar
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to (3.29), since the integral over p is tightly peaked around p̂. However, for any

particular finite graph it makes more sense, at least to a Bayesian, to integrate over

the pst, since they obey a posterior distribution rather than taking a fixed value.

Moreover, averaging over the parameters as in (3.29) discourages over-fitting, since

the average likelihood goes down when we increase k and hence the volume of the

parameter space. This gives us a principled way for order selection, although in this

paper we set k by hand.

This Bayesian integration approach is actually a major branch in statistical model

selection. I shall dedicate the whole chapter 5 for Bayesian model selection methods

in much more details and generality. However, Monte Carlo sampling algorithm

provided below does provide one of the main inference frameworks for such Bayesian

models. The variational EM framework is a better alternative for full Bayesian

approaches where latent states are summed over as well (see Appendix B.2).

3.6.3 Active learning and sampling methods

In the active learning setting, the algorithm can learn the class label of any given

node, but at a cost—say, by devoting resources in the laboratory or the field. Since

these resources are limited, it has to decide which node to explore. Its goal is to

explore a small set of nodes and use their labels to guess the labels of the remaining

nodes.

One natural approach is to explore the node v with the largest mutual information

(MI) between its label g(v) and the labels g(G\v) of the other nodes according to the

Gibbs distribution (3.27). We can write this as the difference between the entropy

of g(G \ v) and its conditional entropy given g(v),

MI(v) = I(v;G \ v) = H(G \ v)−H(G \ v | v) . (3.31)

Here H(G\v | v) is the entropy, averaged over g(v) according to the marginal of g(v)

55



Chapter 3. Scalable Learning Algorithms

in the Gibbs distribution, of the joint distribution of g(G \ v) conditioned on g(v).

In other words, MI(v) is the expected amount of information we will gain about

g(G \ v), or equivalently the expected decrease in the entropy, that will result from

learning g(v).

Since the mutual information is symmetric, we also have

MI(v) = I(v;G \ v) = H(v)−H(v |G \ v) , (3.32)

where H(v) is the entropy of the marginal distribution of g(v), and H(v |G \ v) is

the entropy, on average, of the distribution of g(v) conditioned on the labels of the

other nodes. Thus MI(v) is large if (i) we are uncertain about v, so that H(v) is

large, and (ii) v is strongly correlated with the other nodes, so that H(v |G \ v) is

small.

We estimate these entropies by sampling from the space of classifications t ac-

cording to the Gibbs distribution. Specifically, we use a single-site heat-bath Markov

chain. At each step, it chooses a node v uniformly from among the unexplored nodes,

and chooses its label g(v) according to the conditional distribution proportional to

P (G | g), assuming that the labels of all other nodes stay fixed. In addition to ex-

ploring the space, this allows us to collect a sample of the conditional distribution of

the chosen node v and its entropy. Since H(v |G\v) is the average of the conditional

entropy, and since H(v) is the entropy of the average conditional distribution, we

can write

I(v;G \ v) = −
k∑
i=1

〈Ps〉 ln 〈Ps〉+

〈
k∑
i=1

Ps lnPs

〉
, (3.33)

where Ps is the probability that g(v) = s and 〈·〉 denotes the average, according to

the Gibbs distribution, over the labels of the other nodes.

We offer no theoretical guarantees about the mixing time of this Markov chain,

and it is easy to see that there are families of graphs and values of k for which it it
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takes exponential time. However, for the real-world networks we have tried so far,

it appears to converge to equilibrium in a reasonable amount of time. We test for

equilibrium by measuring whether the marginals change noticeably when the number

of updates is increased by a factor of 2. We improve our estimates by averaging over

many runs, each one starting from an independently random initial state.

We say that the algorithm is in stage j if it has already explored j nodes. In

that stage, it estimates MI(v) for each unexplored node v, using the Markov chain to

sample from the Gibbs distribution conditioned on the labels of the nodes explored

so far. It then explores the node v with the largest MI. We provide it with the correct

value of g(v) from the curated network, and it moves on to the next stage.

The mutual information is not the only quantity we might use to identify which

node to explore. Another is the average agreement, which we define as follows. Given

two classifications g1, g2, define their agreement as the number of nodes on whose

labels they agree,

|g1 ∩ g2| = |{v : g1(v) = g2(v)}| . (3.34)

Since our goal is to label as many nodes correctly as possible, we wish we could

maximize the agreement between an classification g1, drawn from the Gibbs distri-

bution, and the correct classification g2. However, the algorithm doesn’t know g2, so

it assumes that it is drawn from the Gibbs distribution as well. Exploring v projects

onto the part of the joint distribution of (g1, g2) where g1(v) = g2(v). So, we define

AA(v) as the expected agreement between two classifications g1, g2 drawn indepen-

dently from the Gibbs distribution, conditioned on the event that they agree at v:

AA(v) =

∑
g1,g2:g1(v)=g2(v) P (g1)P (g2) |g1 ∩ g2|∑

g1,g2:g1(v)=g2(v) P (g1)P (g2)
. (3.35)

We estimate the numerator and denominator of AA(v) using the same heat-bath

Gibbs sampler as for MI(v), except that we sample independent pairs of classifications
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(g1, g2) by starting the Markov chain at two independently random initial states.

3.6.4 Results and discussion

We tested our algorithms on three different networks from three different fields. The

first is Zachary’s Karate Club [91]. As shown in Fig. 3.3, this is a social network con-

sisting of 34 members of a karate club, where undirected edges represent friendships.

The club split into two factions, indicated by diamonds and circles respectively. One

of them centered around the instructor (node 1) and the other around the club

president (node 34), each of which formed their own club. Shaded nodes are more

peripheral, and have weaker ties to their communities. This network is highly assor-

tative, with a high density of edges within each faction and a low density of edges

between them.

Figure 3.3: Zachary’s Karate Club.
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Figure 3.4: Results of the active learning algorithms on Zachary’s Karate Club net-
work.

We judge the performance of each algorithm by asking, at each stage and for each

node, with what probability the Gibbs distribution assigns it the correct label. In

each stage we sampled the Gibbs distribution using 100 independently chosen initial

conditions, doing 2 × 104 steps of the heat-bath Markov chain for each one, and

computing averages using the last 104 steps. Increasing the number of Markov chain

steps to 105 per stage produced only marginal improvements in performance. Fig. 3.4

shows what fraction of the unexplored nodes are assigned the correct label with

probability at least q, for various thresholds q = 0.1, 0.3, 0.5, 0.7, 0.9, as a function of

the stage j.

After exploring just four or five nodes, both of our algorithms succeed in correctly

predicting the labels of most of the remaining nodes—i.e., to which faction they

belong—with high accuracy. The AA algorithm performs slightly better than MI,

achieving an accuracy close to 100% after exploring nine nodes. Of course, the Karate

Club network is quite small, and there are many community-finding algorithms that

classify the two factions with perfect or near-perfect accuracy [70, 27].
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Figure 3.5: The order in which the active learning algorithms explore nodes in
Zachary’s Karate Club.

Perhaps more interesting is the order in which our algorithms choose to explore

the nodes. In Fig. 3.5, we sort the nodes in order of the median stage at which they

are explored. Error bars show 90% confidence intervals over 100 independent runs

of each algorithm. Some nodes show a large variance in the stage in which they

are explored, while others are consistently explored at the beginning or end of the

process. Both algorithms start by exploring nodes 1 and 34, which are central to

their respective communities. Note that these nodes are chosen, as we argued above,

not just because their labels are uncertain, but because they are highly correlated

with the labels of other nodes.

After learning that nodes 1 and 34 are in class 1 and 2 respectively, the algorithms

“know” that the network consists of two assortative communities. They they explore

nodes such as 3, 9, and 10 which lie at the boundary between these communities.

Once the boundary is clear, they can easily predict the labels of the remaining nodes.

The last nodes to be explored are those such as 2, 4, and 24, which lie so deep inside

their communities that their labels are not in doubt.

The second network consists of the 60 most commonly occurring nouns and the 60

most commonly occurring adjectives in Charles Dickens’ novel David Copperfield. A

directed edge connects any pair of words that appear adjacently in the text, pointing
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from the preceding word to the following one. Excluding eight words which are

disconnected from the rest leaves a network with 112 nodes [63]. Unlike Zachary’s

Karate Club, this network is both directed and highly disassortative. Of the 1494

edges, 1123 of them point from adjectives to nouns. This lets us classify most nodes

early on, simply by labeling a node as an adjective or noun if its out-degree or

in-degree is large.

figures/queryWords

Figure 3.6: The order in which the active learning algorithm MI explores nodes in
word adjacency network from the novel David Copperfield.
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Word adjacency network with AA
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Figure 3.7: Results of the active learning algorithms on word adjacency network in
the novel David Copperfield by Charles Dickens.

Accordingly, our algorithms focus their attention on words about which they are

uncertain, like “early,” “low,” and “nothing,” whose out-degrees and in-degrees in

the text are roughly equal, and words like “perfect” that precede words of both

classes (see Fig. 3.6, where green and yellow nodes represent nouns and adjectives

respectively; rectangular nodes are explored first, and elliptical ones lasg). Once

these nodes are resolved, both algorithms achieve high accuracy—80% accuracy after

exploring 20 nodes and close to 100% after exploring 65 nodes (see Fig. 3.7).
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Sea food web (Feeding type) with MI
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Sea food web (Feeding type) with AA
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Sea food web (Habitat)  with MI
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Sea food web (Habitat)  with AA
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Figure 3.8: Results for the Weddell Sea food web.

In each stage we sampled the Gibbs distribution using 100 independently chosen

initial conditions, doing 5×104 steps of the heat-bath Markov chain for each one, and

computing averages using the last 2.5× 104 steps. Increasing the number of Markov

chain steps to 105 per stage produced only marginal improvements in performance.

As in Fig. 3.4, the y-axis shows the fraction of unexplored nodes which are labeled

correctly by the conditional Gibbs distribution with probability at least q, for q =

0.1, 0.3, 0.5, 0.7, 0.9. The performance of the two algorithms is similar in the later

stages, but unlike the Karate Club, here MI performs noticeably better than AA in

the early stages.

The third network is a food web of 488 species in the Weddell Sea in the Antarc-

tic [25, 16, 46], with edges pointing to each predator from its prey. This data set

is very rich, but we focus on two particular variables—the feeding type and the

habitat in which the species lives. The feeding type takes k = 6 values, namely pri-
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mary producer, omnivorous, herbivorous/detrivorous, carnivorous, detrivorous, and

carnivorous/necrovorous. The habitat variable takes k = 5 values, namely pelagic,

benthic, benthopelagic, demersal, and land-based.

We show results of our algorithms for both variables in Fig. 3.8. The results

are averaged over 100 runs of each algorithm. In each stage we sampled the Gibbs

distribution using 100 independently chosen initial conditions, doing 5 × 104 steps

of the heat-bath Markov chain for each one, and computing averages using the last

2.5× 104 steps. For the feeding type, after exploring half the nodes, both algorithms

correctly label about 75% of the remaining nodes. For the habitat variable, both

algorithms are less accurate, although AA performs somewhat better than MI. Note

that the accuracy only includes the unexplored nodes, not the nodes we have already

explored. Thus it can decrease if we explore easily-classified nodes early on, so that

hard-to-classify nodes form a larger fraction of the remaining ones.

Fig. 3.8 shows that both algorithms get to a state where they are confident,

but wrong, about many of the unexplored nodes. For the feeding type variable,

for instance, after the AA algorithm has explored 300 species, it labels 75% of the

remaining nodes correctly with probability 90%, but it labels the other 25% correctly

with probability less than 10%. In other words, it has a high degree of confidence

about all the nodes, but is wrong about many of them. Its accuracy improves as

it explores more nodes, but it doesn’t achieve high accuracy on all the unexplored

nodes until there are only about 60 of them left.

Why is this? We argue that the fault lies, not with our learning algorithms and

the order in which they explore the nodes, but with the SBM and its ability to

model the data. For example, for the habitat variable, these algorithms perform well

on pelagic, demersal, and land-based species. But the benthic habitat, which is the

largest and most diverse, includes species with many feeding types and trophic levels.
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These additional variables have a large effect on the topology, but they are not

taken into account by the SBM. As a result, more than half the benthic species

are mislabeled by the SBM in the following sense: even if we condition on the cor-

rect habitats of all the other species, the species’ most likely habitat is pelagic,

benthopelagic, demersal, or land-based. Specifically, 219 of the 488 species are mis-

labeled by the most likely SBM, 94% of them with confidence over 0.9.

Of course, we can also regard our algorithms’ mistakes as evidence that these

habitat classifications are not cut and dried. Indeed, ecologists recognize that there

are “connector species” that connect one habitat to another, and belong to some

extent to both.

To test our hypothesis that it is the SBM’s inability to model the data that

causes some nodes to be misclassified, we artificially modified the data set to make it

consistent with the SBM. Starting with the nodes’ original class labels, we updated

the habitat of each species to its most likely value according to the SBM, given the

habitats of all the other species. After iterating this process six times, we reached a

fixed point where each species’ habitat is consistent with the SBM’s predictions. On

this synthetic data set both of our learning algorithms perform perfectly, predicting

the habitat of every species with close to 100% accuracy after exploring just 18% of

them.

More generally, it is important to remember that the topology of the network is

only imperfectly correlated with the nodes’ types. Zachary [91] relates that one of

members of the Karate Club joined the instructor’s faction even though the network’s

topology suggests that he was more strongly connected to the president. The reason

is that he was only three weeks away from a test for his black belt when the split

occurred. He had already invested four years learning the instructor’s style of karate,

and if he had joined the president’s club he would have had to start over with a

white belt. In any real-world network, there is information of this kind that is not
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reflected in the topology and which is hidden from our algorithm. If a node is of a

given class for idiosyncratic reasons like these, we cannot expect any algorithm based

solely on topology and the other nodes’ class labels—no matter how sophisticated a

probabilistic model we use—to correctly classify it.
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Comparison of learning methods
 on word adjacency network
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Comparison of learning methods
 on sea food web (habitat)
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Comparison of learning methods
 on sea food web (feeding type)
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Figure 3.9: A comparison of the MI and AA learning algorithms with three simple
heuristics.

We compared our active learning algorithms with several simple heuristics. These

include exploring the node with the highest degree in the subgraph of unexplored

nodes, exploring the node with the highest betweenness centrality (the fraction of

shortest paths that go through it, see [15, 60, 62]) in the subgraph of unexplored

nodes, and exploring a node chosen uniformly at random from the unexplored ones.

We judge the performance of these heuristics using the same Gibbs sampling process

as for MI and AA.

In Fig. 3.9, we show the results of these heuristics at the 0.9 accuracy threshold

65



Chapter 3. Scalable Learning Algorithms

on all three networks, including both the habitat and feeding type variables in the

food web. On Zachary’s Karate Club (lefg) our algorithms outperform these heuris-

tics consistently. In the David Copperfield network (righg), the highest-degree and

highest-betweenness heuristics enjoy an early lead, but quickly hit a ceiling and are

surpassed by MI and AA.

For the Weddell Sea food web (bottom), the highest-degree and highest-betweenness

heuristics perform poorly throughout the learning process. One reason for this is that

many nodes with high degree or high betweenness are easy to classify from the labels

of their neighbors. By exploring these nodes first, these heuristics leave themselves

mainly with hard-to-classify nodes. The random-node heuristic performs surpris-

ingly well early on, but all three heuristics are worse than MI or AA once they have

explored half the nodes.
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Frequentist Model Selection

In this chapter, I start the statistical inquiry with Frequentist model se-

lection techniques, whose derivations are very similar to those of AIC. In

particular, the likelihood ratio test provides us a powerful hypothesis test

for nested models. This classic statistical tools comes with the full con-

trollability of margins of error and confidence intervals, however, many

of the analytical results for independence data do not work properly any

longer on networks. Using the variational EM framework for bootstrap-

ping simulations, I shall investigate the likelihood ratios of two specific

pairs of nested models in Poisson-SBM vs DC-SBM, and SBMs with 1

and 2 blocks. By correcting the theory according to the simulation data,

I will finally propose new frequentist model selection methods for block

models, including the corrected AIC.
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4.1 The likelihood ratio test

In frequentist statistics, the problem of model selection between a pair of nested

models can be casted as a hypothesis test. The Neyman–Pearson lemma, named

after Jerzy Neyman and Egon Pearson, states that when performing a hypothesis

test for point hypotheses, and in our case, nested candidate models, the likelihood

ratio test (LRT) is the uniformly most powerful test [77].

To construct a LRT, we need to explicitly state our null model H0, and the

more general, nesting alternative H1. Assuming that the likelihood function of the

graph given the alternative model is P (G |H1), the appropriate test statistic is the

log-likelihood ratio,

Λ(G) = log
supH1∈M1

P (G |H1)

supH0∈M0
P (G |H0)

, (4.1)

where the Supremum function in the denominator is taken with respect to the nested

and thus smaller domain of the null model.

We reject the null model in favor of the more elaborate alternative when Λ ex-

ceeds some threshold. This threshold, in turn, is fixed by our desired error rate,

and by the distribution of Λ when G is generated from the null model. When G

is small, the null-model distribution of Λ can be found through parametric boot-

strapping [22]: generating random graphs G̃ from the null model, fitting H0 and H1

to each graph, and evaluating Λ(G̃). When n is large, however, fitting models for

each graph will take much longer. It would be helpful to replace bootstrapping with

analytic calculations.

A classic result in asymptotic statistics [77] asserts that in hypothesis-testing

problems like this, the large-sample null distribution of Λ(G) approaches the chi-

squared distribution 1
2
χ2
` , where ` is the number of constraints that must be imposed

on H1 to recover H0. However, deriving the χ2 distribution relies on second or-
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der Taylor expansions. The process is very similar to those we have seen for AIC

(see 2.2.1). Indeed, the same twice differentiable assumption (assumptions A.2) needs

to held for this analytical result. Fortunately, we have already overcome the discrete

latent states by calculating the partition functions instead.

There is another key assumption in this derivation [77, 31]: namely, that the

log-likelihood of both models is well-approximated by a quadratic function in the

vicinity of its maximum, so that the parameter estimates have Gaussian distributions

around the true model. The most common grounds for this assumption are central

limit theorems for IID data (assumptions A.3), or more generally, being in a “large

data limit” (assumptions A.1). We will see that, for sparse networks, this assumption

does not hold for many parameters. To avoid bootstrapping, we need to be able to

correctly predict Λ’s null distribution when the average degree of the graph is small,

while recovering the classical χ2 distribution in the the limit of large, dense graphs.

4.2 Model selection between SBM and DC-SBM

To reiterate the motivation behind the development of DC-SBM, vanilla and Poisson-

SBMs impose real restrictions on networks; notably, the degree distribution within

each block is asymptotically Poisson. This makes these block models implausible

for many real-world networks, where the degrees within each community are highly

inhomogeneous. Fitting these block models to such networks tends to split the high-

and low- degree nodes in the same community into distinct blocks; for instance,

dividing both liberal and conservative political blogs into high-degree “leaders” and

low-degree “followers” [1, 48]. To avoid this effect, and allow degree inhomogeneity

within blocks, there is a long history of generative models where the probability of an

edge depends on node attributes θu as well as their group memberships (e.g. [57, 73]).

Here I use the DC-SBM due to [48].
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We often lack the domain knowledge to choose between the vanilla/Poisson and

the degree-corrected block model, and so are faced with a classic problem of statistical

model selection. Following the classic LRT introduced earlier, I do some bootstrap-

ping experiments using the variational EM framework with the linear BP as the

E-step (see 3.4). This choice of learning algorithm made it possible to gather thou-

sands of samples at a respectable accuracy from the null distribution on networks

with hundreds of thousands nodes. The simulation result show that the usual χ2

theory for likelihood ratios relies on approximations which are invalid in our setting,

because of the dependency and sparsity of network data.

I derive the correct asymptotics under certain assumptions, recovering the classic

asymptotics in the limit of dense graphs, but finding that significant corrections

are needed in the sparse case. Numerical experiments confirm the validity of my

expressions, and I apply my method to a range of real and synthetic networks. The

same corrections are applicable to AIC for the model selection problem between SBM

and DC-SBM.

In the following derivations, I will focus on Poisson-SBM as it is a proper nested

model within DC-SBM. However, according to section 2.3.2, the vanilla SBM and the

Poisson-SBM share a lot in common, especially when the network is sparse, making

the model selection criteria easily applicable for both.

4.2.1 The LRT for Poisson-SBM vs DC-SBM

Since the Poisson-SBM is nested within the DC-SBM model, any given graph G is

at least as likely under the latter as under the former. Moreover, if the Poisson-SBM

is the null model which generated the data, all of the parameters shared between the

two should converge to the same MLEs (3.16), at least in the limit of large networks.

Following the LRT construction in section 4.1, we define the null model H0 as the
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Poisson-SBM, with DC-SBM as the alternative. We have the log-likelihood ratio,

ΛDC(G) = log
supH1

∑
g P (G, g | θ, ω, q)

supH0

∑
g P (G, g |ω, q)

. (4.2)

with the P functions defined in (2.13) and (2.15).

The classic result asserts that the large-sample null distribution of ΛDC(G) ap-

proaches 1
2
χ2
` . In this case, ` = n−k, as we must set all n of the θ̂u to 1 to recover H0

from H1. Notice that our identifiability convention
∑

u:gu=s θu = Ds already imposed

k constraints.

However, for sparse networks, this assumption of large data limit does not hold for

the parameters θu. Nevertheless, with some work we are able to compute the mean

and variance of Λ’s null distribution. While we recover the classical χ2 distribution

in the the limit of large, dense graphs, there are significant corrections when the

average degree of the graph is small. In particular, χ2 testing commits type I errors

in the sparse case whenever the graph is sufficiently large, rejecting the Poisson-

SBM in favor of DC-SBM even for graphs generated by the former (see Fig. 4.1). In

essence, it underestimates the amount of degree inhomogeneity we would get simply

from random noise, incorrectly concluding that the inhomogeneity must come from

underlying properties of the nodes.
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Figure 4.1: The size n, as a function of the average degree µ, above which naive χ2

testing commits a type I error with 95% confidence
Type I error means incorrectly rejecting the SBM for graphs generated by the Poisson-
SBM. For instance, for µ = 5, χ2 commits a type I error at roughly n > 3000, while
for µ = 3, it does so for n > 700. Here we assume the asymptotic analysis of (4.4)–
(4.7) for the mean and variance of the likelihood ratio; see Fig. 4.3 for comparison
with experiment.

To obtain theoretical estimates of the null distribution of Λ, I assume that the

Gibbs distribution of both models is concentrated on the same block assignment g.

This is a major assumption, but it is borne out by our experiments (Fig. 4.2 and

Fig. 4.3), and the fact that under some conditions [10] the block models recovers

the underlying block assignment exactly. Under this assumption, while the free

energy differs from the ground state energy by an entropy term, the free energy

difference between the two models has the same distribution as the ground state

energy difference. The MLE estimates for H0 and H1 are then given by (3.16).

Substituting these into (4.2) gives ΛDC the form of a Kullback-Leibler divergence,

ΛDC(G) = log
∏
u

(
du

dgu

)du
=
∑
u

du log
du

dgu
. (4.3)

Recall that ds is the empirical mean, not the expected degree µs =
∑

t qtωst of the
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true underlying Poisson-SBM.
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Figure 4.2: Joint density of posterior probabilities over block assignments, showing
that the Poisson-SBM and the DC-SBM are concentrated around the same ground
state
The synthetic network has n = 103, k = 2 groups of equal size q1 = q2 = 1/2, average
degree µr = 11, and associative structure with ω12/ω11 = ω21/ω22 = 1/11. The x and
y axes are the marginal probabilities of being in block 1 according to Poisson-SBM and
DC-SBM. The left is a 3D histogram while the right is a heat map with logarithmic
z axis.
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Figure 4.3: (a) f(µ) from (4.5), the expected log-likelihood difference per node,
compared to simulation results; (b) the asymptotic variance of the log-likelihood
difference per node, from (4.7), with simulation results; (c) QQ plots comparing the
distribution of log-likelihood differences from 104 synthetic networks with µ = 3 to
a Gaussian with the theoretical mean and variance.
All simulations have n = 104, k = 2, q1 = q2 = 1/2, and ω12/ω11 = 0.15, ω11/ω22 = 1.
In (a) and (b), each point is the average over 103 networks, including 95% bootstrap
confidence intervals.
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We can understand the asymptotic null distribution of ΛDC by assuming that

the du in each block r are IID and Poisson with expectation µr. This assumption is

sound in the limit n→∞, since the correlations between node degrees are O(1/n).

In that case, we can compute the expectation and variance of ΛDC analytically (see

Appendix C.1). These results show how the behavior of ΛDC differs from naive χ2

asymptotics, as well as revealing the limits where the naive results apply. Specifically,

E[ΛDC ] =
∑
r

nrf(µr)− f(nrµr) (4.4)

where if d is Poisson with mean µ,

f(µ) = E[d log d]− µ log µ =
∞∑
d=1

e−µµd

d!
d log d− µ log µ . (4.5)

In the limit µ → ∞, i.e., for dense graphs, both f(µ) and f(nµ) approach 1/2,

and (4.4) gives E[ΛDC ] = (n − k)/2 just as in the standard χ2 analysis. However,

when µ is finite, f(µ) differs significantly from 1/2.

The variance of ΛDC is more complicated, but still calculable. The limiting

variance per node is

lim
n→∞

1

n
Var[ΛDC ] =

∑
r

qrv(µr) , (4.6)

where, again taking d to be Poisson with mean µ,

v(µ) =µ(1 + log µ)2 + Var[d log d]− 2(1 + log µ) Cov[d, d log d] . (4.7)

Since the variance of χ2
` is 2`, the χ2 analysis would predict (1/n)Var[ΛDC ] = 1/2.

Indeed v(µ) approaches 1/2 in the limit µ→∞, but like f(µ) it differs significantly

from 1/2 for finite µ. Plots of f(µ) and v(µ) can be found in Fig. 4.3(a,b). More

details are available in Appendix C.1.

Why exactly does the null distribution of ΛDC differ from the usual χ2 distribu-

tion? The reason is that the parameters θu are in a high-dimensional regime, and
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thus are not in the large data limit. We have one observation for each node, i.e.,

its degree du. If a Poisson distribution has small mean, its shape differs significantly

from a Gaussian, and so does the posterior distribution of the mean based on a single

sample. In particular, P (θ | d) follows a Gamma distribution, if the prior on θ is un-

informative [94]. When the degrees are large, both the sample distribution and the

posterior become Gaussian, and the χ2 analysis takes over; but when they are small,

the geometry is simply different, causing f(µ) and v(µ) to differ from 1/2. This

would eventually lead to a type I error for the χ2 testing, rejecting the Poisson-SBM

for almost all graphs generated by the itself. Since χ2 distribution is tightly peaked

around 0.5n, the situation also becomes worse with bigger n ( see Fig. 4.1).

As shown in Fig. 4.3, experiments on synthetic networks generated from the

Poisson-SBM show that the mean and variance of ΛDC are very well fit by our theo-

retical results. I have not attempted to compute higher moments of ΛDC . However,

if we assume that du are independent, then the central limit theorem applies, and

ΛDC follows a Gaussian distribution in the limit of large n. Quantile plots from

the same experiments (Fig. 4.3(c)) show that a Gaussian with mean and variance

given by (4.4) and (4.6) is indeed a good fit. Moreover, the free energy difference

and the ground state energy difference have similar distributions, as implied by our

assumption that both Gibbs distributions are concentrated around the ground state.

Interestingly, in Fig. 4.3(c), the degree is low enough that this concentration must be

imperfect, but our theory still holds remarkably well. Notice that all the synthetic

experiments done in this section took the simplifying assumptions that q and µ does

not change across all blocks.
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4.2.2 Results on real networks
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Figure 4.4: Hypothesis testing of real world networks
(a): Zachary’s karate club [91], where n = 34. The CCDF (complementary

cumulative distribution) of the log-likelihood ratio ΛDC under the null model is
estimated using bootstrapping (shaded), and is fit reasonably well by the CCDF of a
Gaussian (curve) with our theoretically predicted mean and variance. The observed
ΛDC = 20.7 (marked with the red line) has p-values of 0.186 and 0.187 according to

the bootstrap and theoretical distributions respectively. The naive χ2 test gives a
p-values of 0.125 (dashed), which is quite a bit off because of the low degree

network. (b): A network of political blogs [1] where n = 1222. Since the network
has a higher average degree, the bootstrap distribution (shaded) is very well fit by
both our theory (curve) and the naive χ2 test. The actual log-likelihood ratio is so

far in the tail (see inset) that its p-value is effectively zero. Thus for the blog
network, we can decisively reject the ordinary block model in favor of the

degree-corrected model, while for the karate club, the evidence is less clear.

I have derived the theoretical null distribution of ΛDC , and backed up our calculations

with simulations. We now apply our theory to the two real world examples studied

in [48], demonstrating how our methods can be applied in different situations.

The first is a social network consisting of 34 members of a karate club, where

undirected edges represent friendships [91]. The network is made up of two assorta-

tive blocks centered around the instructor and the club president, each with a high

degree hub and lower-degree peripheral nodes. The authors of [48] compared the

perfomance of Poisson-SBM and DC-SBM on this network, and heavily favored DC-
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SBM over Poisson-SBM because the former leads to a community structure agreeing

with the ground truth. Our test, however, shows that the evidence is not strong

enough to reject the null model with any great confidence. As shown in Fig. 4.4(a),

the distribution of ΛDC from bootstrap experiments is fit reasonably will by a Gaus-

sian with our predicted mean and variance. The observed ΛDC = 20.7 has a p-value

of 0.187 according to the theoretical Gaussian, and 0.186 according to the bootstrap

distribution. Thus a prudent statistician would think twice before embracing the

additional n parameters of DC.

Indeed, under the active learning framework introduced earlier 3.6, we found that

the vanilla SBM labels most of the nodes correctly if we fix the block assignment of

the instructor and the president to 1 and 2 respectively. This implies that the degree

inhomogeneity is not too extreme, and that only a handful of nodes are responsible

for the better performance of DC.

This network is of such low degree that the naive χ2 test cannot work, and small n

hinders our Gaussian approximation. For such small networks, I suggest parametric

bootstrapping using our BP algorithm to estimate the null distribution. Nonetheless,

our estimation of the mean and variance remain solid, making it possible to quickly

check some extreme cases.

The second example is a network of political blogs in the US assembled by Adamic

and Glance [1]. As in [48], I focus on the giant component, which consists of 1222

blogs and 19087 links between them. The blogs have known political leanings, and

were labeled as either liberal or conservative. The network is assortative and has

a highly right-skewed degree distribution within each block. In its agreement with

ground truth, DC-SBM substantially outperforms Poisson-SBM, as observed in [48].

This time around, our hypothesis testing procedure completely agrees with their

choice of model. As shown in Fig. 4.4(b), the bootstrap distribution of ΛDC is very

well fit by a Gaussian with our theoretical prediction of the mean and variance. The
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observed log-likelihood ratio ΛDC = 8883 is 330 standard deviations above the mean.

It is essentially impossible to produce such extreme results through mere fluctuations

under the null model. Thus, for this network, introducing n extra parameters to

capture the degree heterogeneity, and rejecting Poisson-SBM in favor of DC-SBM,

is fully justified.

The blog network is an example for the advantages in theoretical predictions.

As with many other real networks, n is large enough that bootstrapping would be

too slow, but the Gaussian approximation is fairly tight. Unfortunately, since the

average degree d̄ is relatively high, our corrected theory does not do much better

than the naive χ2 approximation.

4.2.3 Corrected AIC for SBM vs DC-SBM

Deciding between the vanilla/Poisson SBM and DC-SBM models for sparse graphs

presents a difficult hypothesis testing problem. The distribution of the log-likelihood

ratio Λ does not follow the classic χ2 theory, because the nuisance parameter θ,

only present in the alternative, suffers from the curse of dimensionality. We have

nonetheless derived Λ’s mean and variance in the limit of large, sparse graphs, where

node degrees become independent and Poisson. Simulations using the variational

EM algorithm confirm the accuracy of our theory for moderate n, and we applied it

to two real networks.

While hypothesis testing such like the LRT give us the full power of frequentist

statistics with margins of error and confidence intervals, standard information criteria

are much easier to interpret, and are more widely used in application domains. While

we have not directly dealt with AIC, the derivations of AIC use exactly the same

asymptotics as the χ2 test 2.2.1. As a result, AIC will break down for the same

reasons χ2 theory fails for sparse graphs, and more importantly, the same correction
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factor shall applied for the penalty term in AIC. This leads to the corrected AIC for

the model selection problem between the vanilla/Poisson SBM and DC-SBM:

AICDC(Mi) = −2 lnP (G|Mi, Π̂i) + 2(1 +
1

6µ
+

1

6µ2
+O(

1

µ3
))|Πi| , (4.8)

where Πi is the parameter set for model Mi, and the penalty scaling term 1 + 1
6µ

+

1
6µ2

+O( 1
µ3

) depends on the average degree µ. This correction comes from our theory

about the expected likelihood ratio, which is proportional to the expected Kullback-

Leibler divergence measured by AIC. Please refer to the Appendix C.1 for details of

a nontrivial analytical solution, which leads to the above asymptotic correction.

The model selection problem between vanilla/Poisson SBM and DC-SBM models

might be just one example in the hierarchy of block models 2.2, many other block

models have similar node attributes that participant in edge generation. Just like

DC-SBMs with the θ parameters, these models are likely to suffer from the same

problems in sparse networks. Similar corrections could be derived for choosing such

models versus the vanilla SBM.

From a more general perspective, the work here opens the way for hypothesis test-

ing to be applied in a wide range of network problems. With the efficient variational

EM bootstrapping algorithm, we can replicate the process of doing simulations, ana-

lyzing data and correcting theories for many other model selection problems. In the

next section, I will employ this exact strategy for the order selection problem.

4.3 Order selection of the vanilla SBM

Choosing the right number of blocks for various SBMs is an important problem which

has attracted much attention in the literature. Here I will focus on the very simple

case of choosing between the one block vanilla SBM and the two blocks vanilla SBM,

under the framework of the LRT. For order selection of the SBM for any number of
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blocks as well as order selection for other variants of the SBM, please refer to the

next chapter.

Following the LRT construction in section 4.1, I define the null model H0 as the

one block vanilla SBM, which is by definition the Erdős–Rényi graph. With the

vanilla SBM with two blocks as the alternative model H1, we have the log-likelihood

ratio,

Λ(G) = log
supH1

∑
g P (G, g | q, p)

supH0

∑
g P (G, g | q, p)

, (4.9)

where P defined as in (2.11) can be specified as

P (G, g | q, p) = qn1
1 qn2

2

2∏
s≤t,s,t=1

pmstst (1− pst)nsnt−mst ,

under H1. The above definition leads to multiple ways how H0 can be nested within

H = 1. For example, we can set q1 = 0 which according to (3.16) would lead to

n1 = 0 and thus the additional block empty. Another way to reduce H1 to H0 is by

forcing all the entries in the p matrix the same.

Degenerate reductions like the empty blocks poses a major challenge for statistical

analysis of likelihood ratios in many other situations besides the block model. One

prominent example is the classic mixture model, which for its simplicity is surpris-

ingly hard to analyze. In the following subsections, I shall first introduce a simplified

SBM model compatible with the state of art likelihood ratio test methods for mixture

models. Then, I will try to generalize the result to the vanilla SBM and so on.

4.3.1 The pairwise mixture model

The classic mixture model is a natural model for data with unobserved heterogeneity.

In many different disciplines, data are believed to be mixed samples from multiple

subpopulations, which can be modeled by different parametric distributions. The

81



Chapter 4. Frequentist Model Selection

marginal distribution for the whole population is then a mixture model [51]. If we

limit the number of subpopulation to be two as we did for the SBM, the likelihood

of a finite mixture model with the parameter set X for data Y can be defined as

P (Y |X) =
∏
∀yu∈Y

[(1− α)f(yu |x1) + αf(yu |x2)] ,

where α is the mixing proportion of the components, yu ∈ Y are individual sam-

ples and x1, x2 are the different parameter values for subpopulations of the same

parametric form.

The above formulation has a seemingly simple form, i.e. weighted average of

component likelihoods. However, it is not statistically identifiable under the one

component null model, that is we can reduce the two component model to a single

component by either setting α = 0 or X1 = X2. Just like the degenerate reductions

for SBMs, this identifiability problem in mixture models leads to irregularity in its

likelihood ratio tests.

Overcoming this irregularity proved to be quite a challenge. The state of art

likelihood ratio test techniques in the statistics literature restores the identifiability

by introducing a penalty function to the likelihood. This is called the modified

likelihood ratio test (MLRT), which is defined as

Λ(Y ) = log
supH1

P ′(Y |X)

supH0
P ′(Y |X)

= logP ′(Y | α̂, x̂1, x̂2)−logP ′(Y | (1/2), x̂0, x̂0) , (4.10)

where H0 is the one component null model and H1 is the two components mixture

model as the alternative. P ′(Y |X) is the modified likelihood. Under some condi-

tions, the limiting distribution of Λ(Y ) is (1/4)(χ2
0 + χ2

1) [51].

To apply these latest statistics theories to SBMs, here I will build a pairwise

version of the mixture model with similar formulation as the SBM. As usual, we

have an undirected graph G = (V,E) with n nodes. I assume that there are 2 blocks

{1, 2}. To emulate the independent data samples in mixture models, I assume that
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for each pair of nodes {u, v}, there is an edge from u to v with a probability pg′(uv)g′(vu)

that depends only on their block labels. The labels are now pairwise, and is generated

independently each time a pair of nodes undergo this edge generating process. Each

label generation for node u, however, follows the same distribution

Pg′(u) =
q

1
n−1

g′(u)

q
1

n−1

1 + q
1

n−1

2

with q1 + q2 = 1, regardless of the other participanting node v. Given a pairwise

block assignment, i.e., a function g′ : V 2 → {1, 2}2 assigning n−1 independent labels

to every node for each of its edge generation, the probability of generating a given

graph G in this model is

Pmix(G, g
′ | q, p) =

∏
u<v

q
1

n−1

g′(uv)q
1

n−1

g′(vu)

(q
1

n−1

1 + q
1

n−1

2 )2

pAuvg′(uv)g′(vu)(1− pg′(uv)g′(vu))
1−Auv .

Summing it over all pairwise block assignments, we get the partition function

Pmix(G | q, p) =
∑
g′

Pmix(G, g
′ | q, p)

=
1

(q
1

n−1

1 + q
1

n−1

2 )n(n−1)

∏
u<v

2∑
s,t=1

q
1

n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv , (4.11)

where we are able to factor it into local terms thanks to the pair-wise independence

between all edges. Notice that each local term is a weighted average of component

likelihoods, i.e. we have a mixture model with each edge being a sample from the

2× 2 components. We shall call the above model the pairwise mixture model.

Just like data under the classic mixture model is independent and identically

distributed (i.i.d.), the above partition function is just a fancy formulation of the
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one block vanilla SBM. To see this, recall the likelihood of a one block vanilla SBM,

P (G | p) =
∏

(u,v)∈E

p
∏

(u,v)/∈E

(1− p)

=
∏

(u,v)∈E

2∑
s,t=1

q
1

n−1
s q

1
n−1

t

(q
1

n−1

1 + q
1

n−1

2 )2

pst
∏

(u,v)/∈E

2∑
s,t=1

q
1

n−1
s q

1
n−1

t

(q
1

n−1

1 + q
1

n−1

2 )2

(1− pst) ,

(4.12)

where p is a mixtures of pst entries.

If we take the logarithm of the partition function (4.11),

logPmix(G | q, p)

=
∑
u<v

logEcuvst

q 1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv

cuvst

− n(n− 1) log(q
1

n−1

1 + q
1

n−1

2 )

=
∑
u<v

Ecuvst

[
log(q

1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv)− log cuvst

]
+
∑
u<v

DKL(cuvst ‖ P̂ uv
st )− n(n− 1) log(q

1
n−1

1 + q
1

n−1

2 ) . (4.13)

Here we have used the variational trick to switch the logarithm and expectation

operators, just as we did in 3.3. This time, however, we constructed a variational

distribution cuvst for the local pairwise distribution P (uv) (∀u, v,
∑

st c
uv
st = 1), instead

of the global Boltzman distribution. Again, thanks to the pair-wise independence,

we can actually recover the most likely local pairwise distribution P̂ uv
st exactly by

setting:

ĉuvst =
q

1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv∑
st q

1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv
. (4.14)

No longer an approximation, the Kullback-Leibler divergence goes to zero, and
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we have the following formulation of free energy for the pairwise mixture model,

logPmix(G | q, p) =
∑
u<v

[∑
st

[
ĉuvst log(q

1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv)

]
+ S[ĉuvst ]

]
− n(n− 1) log(q

1
n−1

1 + q
1

n−1

2 ) .

Applying the same EM algorithm of the variational framework introduced in 3.3,

we have the MLEs:

q̂
1

n−1
s ∝ n̄s =

∑
u

ĉus , p̂st =
mst

nsnt
=

∑
(u,v)∈E ĉ

uv
st

(
∑

u ĉ
u
s )(
∑

u ĉ
u
t )
.

If we take the weighted average of p̂st entries,

< p̂ >=
∑
st

n̄sn̄t
n2

p̂st =
2∑

s,t=1

q̂
1

n−1
s q̂

1
n−1

t

(q̂
1

n−1

1 + q̂
1

n−1

2 )2

p̂st ,

we get exactly the same mixture as we did in (4.12).

4.3.2 Order selection of the vanilla SBM

Now let us go back to the problem of order selection for the vanilla SBM. Recall under

the variational framework introduced in 3.3, we can rewrite the partition function of

the two blocks vanilla SBM as:

logP (G | q, p) =
∑
u<v

Ebuvst

[
log(q

1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv)− log buvst

]
+ DKL(B ‖ P ∗) , (4.15)

where the variational distribution B is an approximation to the true Boltzman dis-

tribution P ∗. In 3.3, we considered the following Bethe formulation of it:

B(g) =

∏
u<v b

uv
gugv∏

u(b
u
gu)n−2

,
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with bus =
∑

t,∀v b
uv
st .

As I have shown earlier, local marginals optimized using the BP algorithm lead

to exact recovery of P ∗ on trees. Even if the graph has a lot of short loops, we can

still get very close to it, thus making the Kullback-Leibler divergence DKL(B ‖ P ∗)

negligible. Now (4.15) becomes the first term in the pairwise mixture model, if we

plug in the BP marginals into (4.13):

logPmix(G | q, p) =
∑
u<v

Ebuvst

[
log(q

1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv)− log buvst

]
+
∑
u<v

DKL(buvst ‖ P̂ uv
st )− n(n− 1) log(q

1
n−1

1 + q
1

n−1

2 )

= logP (G | q, p) +
∑
u<v

Ebuvst

[
log

buvst

P̂ uv
st

]
− n(n− 1) log(q

1
n−1

1 + q
1

n−1

2 ) .

(4.16)

Notice that buvst terms are optimized for the Bethe approximation of the vanilla

SBM, not for the pairwise mixture model. By simply plugging in the BP marginals,

we effectively constrained the the function g′ : V 2 → {1, 2}2 to assign the same label

for each node when generating its n−1 independent edges/non-edges, recovering the

function g : V → {1, 2}. As a result, the Kullback-Leibler divergence DKL(buvst ‖ P̂ uv
st )

is no longer zero.

Recall that Pmix(G | q, p) is just the likelihood of the one block vanilla SBM. If

we also use the MLEs of the vanilla SBM (3.16), the weighted average of p̂st entries

is

< p̂ >=
2∑

s,t=1

qsqtp̂st =
2∑

s,t=1

(
∑

u b
u
s )(
∑

v b
v
t )

n2

∑
(u,v)∈E b

uv
st

(
∑

u b
u
s )(
∑

v b
v
t )

=
m

n2
.

Although this is a different mixture when compared with (4.12), Pmix(G | q, p)

remains the likelihood of a one block vanilla SBM. In fact, it has now becomes the

maximum likelihood of the one block vanilla SBM. We can now rewrite (4.16) in the
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form of (4.10),

Λ(G) = log
supH1

∑
g P (G, g | q, p)

supH0

∑
g P (G, g | q, p)

= logP (G | q̂1, p̂11, p̂12, p̂21, p̂22)− logP (G | q̂1,
m

n2
,
m

n2
,
m

n2
,
m

n2
)

=n(n− 1) log(q̂1

1
n−1 + q̂2

1
n−1 )−

∑
u<v

∑
st

buvst log
buvst

P̂ uv
st

.

where we have plugged in the MLEs of the vanilla SBM, and

P̂ uv
st =

q
1

n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv∑
st q

1
n−1
s q

1
n−1

t pAuvst (1− pst)1−Auv
.
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Chapter 5

Bayesian Model Selection

In this chapter, I will shift my attention to Bayesian model selection tech-

niques, which are the statistical foundations directly lead to BIC. Bayesian

approaches take the whole posterior distribution into account rather than

just point estimates, thus achieving the trade-off between bias and vari-

ance. Using the efficient algorithms introduced in Chapter 3, I shall again

investigate model selection problems through both theoretical and empiri-

cal studies. By adapting the theory for network data, I will finally propose

new Bayesian model selection methods for block models, including the cor-

rected BIC.

5.1 The Bayesian integration

Frequentist model selection approaches like the LRT introduced in the last chap-

ter, usually relies on finding some point estimates of the parameters. Bayesian ap-

proaches, on the other hand, are based on the posterior of the models, which takes

the whole distribution of the parameters into account [20]. These posteriors distri-
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butions, by the Bayes’ theorem, have an intuitive interpretation for model selection,

P (Mi |G) =
P (Mi)

P (G)
P (G |Mi) ∝

∫∫∫ 1

0

P (G |Mi,Πi)P (Πi |Mi)dΠi , (5.1)

where I have assumed that the prior probability of models P (Mi) is uniform, and

the total evidence of data P (G) is constant.

These are exactly the same assumptions we made in the derivation of BIC 2.2.2

(assumptions B.1). The posterior P (Mi |G) is thus proportional to the total likeli-

hood P (G |Mi), which is intuitively the integrated conditional likelihood given pa-

rameter values P (G |Mi,Πi) over the prior P (Πi |Mi) of the parameter set Πi. This

total likelihood term will be the target for Bayesian model selection in the following

sections.

Ironically, model selection is inherently an contradiction to the Bayesian philoso-

phy of not making point estimates. A full Bayesian approach would give a posterior

distribution for all candidate models, rather a single preferred choice. However,

compared with the frequentist methods in last chapter, it still makes sense to calling

these maximum a posteriori (MAP) methods Bayesian.

5.1.1 Bayes factor

The Bayes factor is a Bayesian extension to the classical LRT (4.1). Instead of taking

the supremum of conditional likelihood functions, the Bayes factor uses the whole

posterior for the ratio test:

ΛBayes(G) = log

∫∫∫ 1

0
P (G |M1,Π1)P (Π1 |M1)dΠ1∫∫∫ 1

0
P (G |M0,Π0)P (Π0 |M0)dΠ0

. (5.2)

Here the null model M0 and its alternative M1 does not need to be nested like the

LRT. In fact, the Bayes factor works for any pair of models as long as both have valid

total likelihoods, even if they do not share any parameters and take totally different

forms of likelihood functions [20].

89



Chapter 5. Bayesian Model Selection

The Bayes factor works just like the LRT. We reject the null model in favor of

the alternative when ΛBayes exceeds some threshold. This threshold, again, depends

on your tolerance of error, as well as the null distribution of ΛBayes.

Just like the LRT, one criticism of Bayes Factors is that it only works for pair-

wise model comparisons. Another problem with Bayes inference in general is that

it depends heavily on the choice of prior P (Πi |Mi), and most of the priors lead to

intractable integrals.

5.1.2 Bayesian information criterion

One key advantage of Bayesian model selection is its flexibility for models of any

form, provided that the posterior can be calculated. This makes it a good framework

for universal model selection. To compare among any number of arbitrary models,

however, we need to choose a common confidence interval for all models, sacrificing

our ability in setting the margins of error. Furthermore, to ensure the tractability

of posteriors, I shall restrict our choice of prior to conjugate priors of the likelihood

functions.

One such Bayesian model selection method is the BIC we have seen previously

2.2.2:

BIC(Mi) = −2 lnP (Y |Mi, Π̂i) + |Πi| lnn , (5.3)

where |Πi| is the degree of freedom of the model Mi with a parameter set |Πi|, and

n is number of i.i.d. samples in the data.

The above simple formulation with a maximized likelihood and a penalty term for

model complexity, deceivingly, is a large sample approximation to twice the logarithm

of the total likelihood (5.1). However, as we have already seen in the previous chapter,

the assumption of large data limit does not always hold for sparse networks. The next
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few sections will revisit the derivation of BIC for network data, and investigate its

connection with another model selection criterion we have seen earlier: the Minimum

Description Length principle (MDL).

5.2 BIC for SBM and its connection to MDL

In this section I will derive the correct approximation to (5.1) for the vanilla SBM.

Following the formulation of BIC, we shall arrive at a maximized likelihood plus a

penalty term. I will also investigate its connection with MDL using a special coding

scheme.

For mathematical convenience, I represent our network as the directed SBM (2.17).

By Bayes’ theorem, we have the posterior of a SBM Mi with the parameters {q, p}:

P (Mi |G) =
P (Mi)

P (G)
P (G |Mi)

∝
∑
g

∫∫∫ 1

0

d{pst}d{qs}P (G, g | q, p) , (5.4)

where I have followed the same assumptions as before (assumptions B.1). In this

full Bayesian framework, the total likelihood P (G |Mi) is integrated over the prior

distributions on both p and q entries, as well as summed over all possible latent states

g.

One key design problem for Bayesian model selection is how to balance between

bias and variance. The trade-off is achieved by carefully choosing the parameters

that are to be integrated over. Depending on the bias in the learning task, as well

as the variance in application domains, some of the parameters might not need to

be integrated. For example, if the learning task is to find the SBM with the most

likely parametrization, regardless of any specific block assignments, the integral over

parameters is not necessary. This is the approach I took in the previous chapter.
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Alternatively, if the learning task is to find the SBM with the most likely ground

state, we do not need the sum over the latent state g, and benefit from the smaller

variance because of the bias we are willing to assume. However, if we plan to apply

the learned SBM to other networks with variance in p and q entries, the integral

over them remains essential. This corresponds to the idea of Universal Coding in

MDL 2.4.2, where a code has to achieve good compression for any data generated by

the same model with different parameters. I used this model for the active learning

algorithm 3.6, and I will keep it same here in this chapter for the connection with

existing MDL methods for block models.

For block models, a key assumption during the derivation of BIC (assumptions

B.1 2.2.2) is violated by the discrete latent state g. One solution I have proposed

in the previous chapter is to sum it over using the variational EM framework with

the linear BP as the E-step. Please refer to Appendix B.2 for an example of this full

Bayesian approach. In this chapter, however, with the sum forgone, we need to pay

extra attention in deriving the correct BIC for block models.

If I assume that the pst and qs entries are independent, with the sole constrain∑
s qs = 1, and they follows their respective conjugate Dirichlet and Beta priors, we

have the Bayesian posterior of a SBM given the graph G and the block assignment

g:

P (Mi |G, g) ∝ P (G, g |Mi) =

∫∫∫ 1

0
d{pst}d{qs}P (G, g | q, p)

=

(∫
4

dqDirichlet(~q|~δ)
k∏
s=1

qnss

)
 k∏
s,t=1

∫ 1

0
dpst Beta(pst|α, β) pmstst (1− pst)nsnt−mst
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=

(
Γ(
∑k

s=1 δs)∏k
s=1 Γ(δs)

∫
4

dq
k∏
s=1

qns+δs−1
s

)
 k∏
s,t=1

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dpst p

mst+α−1
st (1− pst)nsnt−mst+β−1


=

(
Γ(
∑k

s=1 δs)∏k
s=1 Γ(δs)

∏k
s=1 Γ(ns + δs)

Γ(
∑k

s=1(ns + δs))

)
 k∏
s,t=1

Γ(α+ β)

Γ(α) Γ(β)

Γ(mst + α) Γ(nsnt −mst + β)

Γ(nsnt + α+ β)


=P (V, g |Mi)× P (E, g |Mi) , (5.5)

where I assumed the same beta prior {α, β} for all the pst entries, and applied

the Euler integral of the first kind, including its multinomial generalization on the

simplex
∑

s qs = 1. As equation (5.5) shows, the total likelihood factors into terms

for nodes and edges.

To get an idea of the posterior distribution P (Mi |G, g), I assume the data g

follows a uniform prior over random graphs generated by a SBM with 5 prescribed

blocks. This is a generalization to the assumptions we have made (assumptions B.1),

but the total likelihood remains proportional to the posterior. For simplicity, I have

also plugged in the uniform priors (i.e., δ∀s = 1, α = β = 1) for the parameters, just

like I did it in Section 3.6,

P (Mi |G, g) ∝ P (G, g |Mi)

=

(
(k − 1)!

∏k
s=1 ns!

(n+ k − 1)!

)(
k∏

s,t=1

mst!(nsnt −mst)!

(nsnt + 1)!

)
. (5.6)

The distributions of the posterior with different number of blocks are shown in

Figure 5.1. While the SBM with correct number of blocks (red) does has slightly

higher likelihood in average, it overlaps quite heavily with SBMs with fewer blocks

(green) or more blocks (blue). But further investigation reveals that most of the

variance came from the variance in data prior. Once we enforce the constant data
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assumption, i.e. fixing the input graph for all the candidate models, the correct SBM

always has a higher likelihood than the others, as illustrated in Figure 5.2.

Out[674]=

-31 500 -31 000 -30 500 -30 000 -29 500 -29 000
Log-likelihood

0.0005

0.0010

0.0015

Histogram

Figure 5.1: The distribution of log-likelihoods of the Bayesian model (equation (5.5))
The distributions are gathered from randomly generated SBMs with 1000 nodes and
5 prescribed blocks. SBMs with different number of blocks k are fitted to the data.
Specifically, the green distribution is from a SBM with k = 1, the red with k = 5 and
the blue with k = 10. The experiment is done using a Monte Carlo sampling method,
with 500 samples for each SBM.

5.2.1 Bayesian code for SBM

According to Grünwald [35], Bayesian approach for model selection has a close re-

lation to the minimum description length principle. In particular, if we choose the

Jeffreys priors for pst and qs entries (i.e., α = β = δ∀s = 1/2), the coding length

according to the Bayesian model is asymptotically the same as the optimal mini-

max coding. Grünwald also pointed out in [35], while the Jeffreys priors lead to the

shortest coding, other priors and their corresponding non-optimal coding can still

produce description with length of the same asymptotic order, as long as the prior
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is dominated by the evidence.

Knowing prior choice is flexible, I will use the simple form with uniform pri-

ors (5.6), we have:

P (G, g |Mi) = P (V, g |Mi)× P (E, g |Mi)

=

(
(k − 1)!

∏k
s=1 ns!

(n+ k − 1)!

)(
k∏

s,t=1

mst!(nsnt −mst)!

(nsnt + 1)!

)

=

(
1(

n+k−1
k−1

) 1(
n

(n1,n2,...,nk)

))( k∏
s,t=1

1(
nsnt
mst

)
(nsnt + 1)

)
. (5.7)

The leading combinatorial terms in equation (5.7) lead to a Bayesian universal code

for a graph G consists of the following parts:

1. number of blocks k (log k bits, implicit)

2. code for the partition of n into ns terms (log
(
n+k−1
k−1

)
bits)

3. code for the block assignment given the ns terms (log
(

n
(n1,n2,...,nk)

)
bits)

4. for each pair of blocks s, t, the number of edges mst between them (logmst <

log(nsnt + 1) bits)

5. for each pair of blocks s, t, code for the edge allocations given mst (log
(
nsnt
mst

)
bits)

According to [35], there is a correspondence between probability distributions and

prefix codes. In the above coding scheme, the distribution of possible realizations in

part i (i > 1) conditioned on all previous code parts are all uniform, therefore the

optimal code length for part i can be quantified by the negative logarithm of the

corresponding combinatorial terms in equation (5.7).

While the above coding scheme gives an intuitive connection to the Bayesian

integration, popular MDLs are usually defined in terms of the most likely estimators
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(MLEs) or equivalently, the entropy minimizers of the likelihood functions. In the

following subsections, I shall prove the mathematical equivalence between the BIC

measure based on (5.5) and the MDL for SBMs as defined in [67].

5.2.2 Corrected BIC for order selection in SBM

The keys to transform the integrals in (5.5) to the BIC formulation (5.3) are the uni-

form priors and Laplace’s approximation. If the integrals are tightly peaked around

their most likely value, by applying Laplace’s method, or equivalently by using Stir-

ling’s formula for the factorials in (5.7), we should have a close approximation:

P (G, g |Mi) = P (V, g |Mi)× P (E, g |Mi)

=
(k − 1)!n!

(n+ k − 1)!

∏k
s=1 ns!

n!

k∏
s,t=1

mst!(nsnt −mst)!

nsnt!(nsnt + 1)

≈
∏k

s=1

√
2πns(

(n+k−1)
n

)√
2πn

∏
u

ng(u)

n

k∏
s,t=1

2π
√
mst(nsnt −mst)√

2π(nsnt)(nsnt + 1)

∏
u<v,(u,v)∈E

mg(u)g(v)

ng(u)ng(v)

∏
u<v,(u,v)/∈E

(1−
mg(u)g(v)

ng(u)ng(v)

)

≈P (V, g | q̂)
∏k

s=1

√
2πns(

(n+k−1)
n

)√
2πn
× P (E, g | p̂)

k∏
s,t=1

√
2π√
n3
sn

3
t

mst(nsnt −mst)

, (5.8)

where I plugged in the MLEs q̂s =
ns
n

and p̂st = mst
nsnt

.

If we take the negative log of (5.8). The factor associated with E becomes the

term:

− lnP (E, g |Mi) ≈− lnP (E, g | p̂)−
k∑

s,t=1

1

2
ln

2πmst(nsnt −mst)

n3
sn

3
t

≈− lnP (E, g | p̂) +
k2

2
ln

n6

2π|E|(n2 − |E|)
− C , (5.9)
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where I made a mean-field assumption about mst under constant number of blocks

k. If the graph is sparse, as |E| = ρn, we have

− lnP (E, g |Mi) ≈− lnP (E, g | p̂) +
k2

2
ln

n6

2πρn2(n− ρ)

≈− lnP (E, g | p̂) +
k2

2
ln Θ(n3) .

If the graph is dense, as |E| = ρn2, we have

− lnP (E, g |Mi) ≈− lnP (E, g | p̂) +
k2

2
ln

n6

2πρn4(1− ρ)

≈− lnP (E, g | p̂) +
k2

2
ln Θ(n2) .

Putting it together with the term associated with V , in which I again assumed

mean-field ns terms, we get

− lnP (G, g |Mi) = − lnP (V, g |Mi)− lnP (E, g |Mi)

≈− lnP (V, g | q̂) + Θ(k lnn)− lnP (E, g | p̂) +
k2

2
ln Θ(n2)

=− lnP (G, g | p̂, q̂) +
k2

2
ln Θ(n2) . (5.10)

Finally, multiply it by 2, we have the BIC for order selection in dense SBMs:

BICSBM(Mi) = −2 lnP (G, g|Mi, Π̂i) + k2 ln Θ(n2) , (5.11)

which is simply the direct application of BIC to directed block models, with k2

specifying the number of parameters in the block affinity matrix p and n2 represent

the sample size as pairwise edge/non-edge interactions.

Similarly, in sparse SBMs, the BIC for order selection is:

BIC ∗
SBM(Mi) = −2 lnP (G, g|Mi, Π̂i) + k2 ln Θ(n3) , (5.12)

where the penalty term becomes even greater, favoring simpler models to compensate

for fewer data samples in sparse networks.
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5.2.3 Mathematical comparison with MDL

Many MDL measures has been proposed for networks [74, 75, 67]. In [67], the authors

adopted a universal code for the vanilla SBM corresponds to the Bayesian integration

in (5.5), and designed a code with description length of Σt :

Σt ≈ − lnP (E, g | p̂) +
(k + 1)k

2
ln |E|+ n ln k (5.13)

where I have made the simplifying assumption that |E| � k2, and replaced notations

according to our convention.

This is asymptotically the same as the BIC defined in (5.11). To see this,

rewrite (5.10) as

1

2
BICSBM(Mi) ≈ − lnP (V, g |Mi)− lnP (E, g |Mi)

≈− lnP (V, g | q̂) + Θ(k lnn)− lnP (E, g | p̂) +
k2

2
ln Θ(n2)

=− lnP (E, g | p̂) +
k2

2
ln Θ(n2) + Θ(n ln k) .

Specifically, the first term corresponds to the description length of the graph

given the parameters. The second term accounts for the description length of the

pst matrix. The third term of n ln k, which accounts for the code length for block

assignment, appears from the terms − lnP (V, g | q̂) with a mean-field assumption.

However, if the mean-field assumptions are violated, the optimal coding scheme

according to BIC, i.e. a Bayesian model with uniform priors, should leads to shorter

descriptions. This is confirmed by the experiment result shown in Figure5.2, where

I have intentionally made one block bigger than others.

Although by theory the optimal code with Jeffreys priors could produce even bet-

ter information compression, Grünwald claimed that all reasonable priors should pro-

duce description length of the same asymptotic order [35]. This means our Bayesian
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measure with uniform priors, as well as the MDL in [67] are still practically sound

criteria for SBM model selection.
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Figure 5.2: Log-likelihood (or negative description length) of the Bayesian model
(equation (5.10)) compared with those of the MDL model in [67] (equation (5.13))
The experiment is setup the same way as those in Figure.1 of [67]. The algorithms
run on the same SBM with 10000 nodes and 10 prescribed blocks. To demonstrate that
the Bayesian model and its corresponding coding scheme has a slight advantage, I did
intentionally make one of the block 4 times as big as the rest. Both the Bayesian and
MDL model achieves the highest likelihood, or shortest description length at the right
number of blocks. The experiment is done using a Monte Carlo sampling method.

5.3 BIC for DC-SBM

Now I will generalize the BIC formulations to DC-SBMs, and compared it to the

frequentist method introduced in 4.2. Through the inherent connection between

BIC and MDL, this would also lead to a coding scheme for these models.

For mathematical convenience, I use the directed DC-SBM (2.19) as the model.

By Bayes’ theorem, we have the posterior of a DC-SBM Mi with the parameters
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{θ, ω, q}:

PDC(Mi |G) =
P (Mi)

P (G)
PDC(G |Mi)

∝
∑
g

∫∫∫ 1

0

d{θu}d{ωst}d{qs}P (G, g | θ, ω, q) , (5.14)

where I again assumed that the prior probability of models P (Mi) is uniform, and

the total evidence of data P (G) is constant. The total Bayesian likelihood integrates

over the prior distribution on θ, p and q entries, as well as summed over all possible

latent states g. For the connection to MDL, here I simply forgo the sum and only

focus on a given block assignment g.

If I assume that the θu, pst and qs entries are independent, with the constrains∑
u:gu=s θu = ns and

∑
i qs = 1, we have the Bayesian posterior of a DC-SBM given

the graph G and the block assignment g :

PDC(Mi |G, g) ∝PDC(G, g |Mi) =

∫∫∫ 1

0
d{θu}d{ωst}d{qs}P (G, g | θ, ω, q)

=

(∫
4

d{θu}
∏
u

θduu

)∫∫∫ 1

0
d{ωst}d{qs}P (G, g |ω, q)

=P (Θ, g |Mi)× PPoisson(G, g |Mi)

≈P (Θ, g |Mi)× P (G, g |Mi) , (5.15)

where I have made the approximation that the Poisson-SBM is asymptotically the

same as the vanilla SBM (see sections 2.3.2). As equation (5.15) shows, the total like-

lihood of the DC-SBM has one additional factor compared with the vanilla (Poisson)

SBM.

To prepare the extra factor P (Θ, g |Mi) for Bayesian treatments, I first change the

variables θu = ng(u)ηu in the first integral, making the integrand a proper multinomial
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distribution. Now if the new parameters ηu follow their Dirichlet conjugate priors,

P (Θ, g |Mi) =
k∏
s=1

∫
4

d{θu}
∏
g(u)=s

(
θu
ns

)du

×∏
u

ndug(u)

≈
k∏
s=1

∫
4

d{ηu}
∏
g(u)=s

ηduu

×∏
u

ndu+1
g(u)

=
k∏
s=1

∫
4

dηDirichlet(~ηs|~γs)
∏
g(u)=s

ηduu

×∏
u

ndu+1
g(u)

=
k∏
s=1

Γ(
∑

g(u)=s γu)∏
g(u)=s Γ(γu)

∫
4

dηs
∏
g(u)=s

ηdu+γu−1
u

×∏
u

ndu+1
g(u)

=
k∏
s=1

(
Γ(
∑

g(u)=s γu)∏
g(u)=s Γ(γu)

∏
g(u)=s Γ(du + γu)

Γ(
∑

g(u)=s(du + γu))

)
×
∏
u

ndu+1
g(u) , (5.16)

where I applied the multinomial Euler integral on the simplex
∑

u:gu=s ηu = 1. Now,

if I again assume the priors are uniform (i.e., γ∀u = 1), we have:

P (Θ, g |Mi) =
k∏
s=1

(
(ns − 1)!

∏
g(u)=s du!

(Ds + ns − 1)!

)
×
∏
u

ndu+1
g(u)

=
k∏
s=1

(
(ns − 1)!Ds!

(Ds + ns − 1)!

∏
g(u)=s du!

Ds!

)
×
∏
u

ndu+1
g(u)

≈
k∏
s=1

 ∏
g(u)=s

√
2πdu(

(Ds+ns−1)
Ds

)√
2πDs

∏
g(u)=s

(
du
Ds

)du

×∏
u

ndu+1
g(u)

=P (Θ, g | η̂)
k∏
s=1

( ∏
g(u)=s

√
2πdu(

(Ds+ns−1)
Ds

)√
2πDs

)
×
∏
u

ndu+1
g(u) , (5.17)

where Ds =
∑

g(u)=s du is the total degree of nodes in block s. Here I applied the

Stirlings formula for factorials, and plugged in the MLEs ηu = θu
ngu

= du
Dg(u)

.

Now we put back the factors from the vanilla SBM (5.10), and take the logarithm
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of it, we have the BIC formulation for DC-SBM:

− 1

2
BICDCMi = lnPDC(G, g |Mi) = lnP (Θ, g |Mi) + lnP (G, g |Mi)

≈ lnP (Θ, g | η̂) + lnP (E, g | p̂)− k2

2
ln Θ(|E|) + lnP (V, g | q̂)−Θ(k ln k)

+O(k lnn) +
k∑
s=1

(
Θ(
ns
2

ln(
1

ns
))−Θ(ns ln(Ds + ns)

)
+
∑
u

(du + 1) lnng(u)

= lnP (G, g | η̂, q̂, p̂)− k2

2
ln Θ(|E|)−Θ(n lnn)−Θ(n ln |E|) + Θ(|E| lnn) .

(5.18)

5.3.1 Mathematical comparison with LRT

To confirm its correctness, I compare the BIC measure under the model selection

problem of SBM vs DC-SBM, with the LRT in section 4.2. We can rewrite (5.10)

and (5.18) as:

lnP (G, g | 1, q̂, p̂) ≈ lnPSBM(G, g |Mi) +
k2

2
ln Θ(|E|) ,

lnP (G, g | θ̂, q̂, p̂) ≈ lnPDC(G, g |Mi) +
k2

2
ln Θ(|E|)

+ Θ(n lnn) + Θ(n ln |E|) .

Therefore, following the construction of Bayes factors 5.1.1, we have the Bayesian

version of the log-likelihood ratio,

ΛDC(G, g) = lnP (G, g | θ̂, q̂, p̂)− lnP (G, g | 1, q̂, p̂)

≈ lnP (Θ, g |Mi) + Θ(n lnn) + Θ(n ln |E|)

≈ lnP (Θ, g | θ̂) ,

which is the same as the log-likelihood ratio test statistics we have in (4.3). The

agreement between Bayesian and Frequentist methods is not a coincident, because

we have used uniform priors in our derivation. This is also very similar to the code
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length function used in [67]. Again, an intuitive Bayesian code in the next subsection

will reveal that it is not merely a mathematical equivalence.

5.3.2 Bayesian code for DC-SBM

As we did in 5.2.1, here I will propose a intuitive Bayesian code for DC-SBM. Since

the total likelihood of the DC-SBM factors (5.15) and we already the code for factor

P (G, g |Mi) corresponding to the vanilla SBM, the following code is only for the

extra factor P (Θ, g |Mi).

Again assuming uniform priors (i.e., γ∀u = 1), we have:

P (Θ, g |Mi) =
k∏
s=1

(
(ns − 1)!Ds!

(Ds + ns − 1)!

∏
g(u)=s du!

Ds!

)
×
∏
u

ndu+1
g(u)

=
k∏
s=1

 1(
Ds+ns−1
ns−1

) 1(
Ds

(dus1
,dus2

,...,dusns
)

)
×∏

s

nDs+nss . (5.19)

The leading combinatorial terms above lead to a Bayesian universal code for

P (Θ, g |Mi):

1. number of blocks k (log k bits, implicit)

2. for each block s, the total degree Ds (logDs bits, implicit)

3. for each block s, code for the partition of Ds into ns terms (log
(
Ds+ns−1
ns−1

)
bits)

4. for each block s, code for the degree assignment given the degree sequence

(log
(

Ds
(dus1

,dus2
,...,dusns

)

)
bits)

5. For each block s, the negative code for uniformly randomly assigning each

degree to each node (−(Ds + ns) log ns bits)
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Notice that the last part of the code is negative, and it is effectively the code

needed if the degree sequence in each block is totally random, being totally ignorant

of degrees just as the vanilla SBM does. We can interpret the last part of the code

as the canceling factor going from the vanilla SBM to DC-SBM. As a result, if we

just use the same Bayesian code for the vanilla SBM 5.2.1 in addition to the above

code, we will have the Bayesian code for DC-SBM.
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Conclusions and Future Work

Model selection is very important for building better models with both efficient

learning processes and accurate generalization performances. For stochastic block

models, however, it remains an open problem because traditional model selection

methods no longer work properly in the realm of network data, and many classic

statistical tools need to be corrected for sparse graphs.
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k++

SBM

Poisson
SBM

M
odel e laborat ion

 DC-
SBM

Gen- 
SBM

+Text

Figure 6.1: The network of complexity hierarchy of variants of block models
The model on the origin of an edge in this network is strictly a special case of the
model on the target. They form a partial order with simpler models at the bottom.
k + + means a SBM with more blocks, which can also be applied to all the other
variants. For details of the +Text SBM, please refer to our paper [93]. Gen-SBM is
defined in the paper [2].

In this dissertation, I targeted two specific model selection problem in the hierar-

chy of block models (Figure 6.1). The first is to choose between the Poisson-SBM and

DC-SBM models. I approached this pair of nested models using classic frequentist

statistics. Based on simulations made possible by my scalable algorithms, I corrected

the classic theory, and proposed a corrected AIC for this particular model selection

problem:

AICDC(Mi) = −2 lnP (G|Mi, Π̂i) + 2(1 +
1

6µ
+

1

6µ2
+O(

1

µ3
))|Πi| ,

where Πi is the parameter set for model Mi, and µ is the average degree of the

network. I later confirmed this result using a Bayesian approach.

The second problem is choosing the right number of blocks for the vanilla SBM.
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To tackle this important but surprisingly difficult problem, I adopted Bayesian model

selection techniques. By careful choices of assumptions and priors, I not only uncov-

ered the deep connection between BIC and MDL, but also analytically solved this

order selection problem, ultimately leading to the corrected BIC for the task

BICSBM(Mi) = −2 lnP (G, g|Mi, Π̂i) + k2 ln Θ(n2) ,

with k being the number of blocks and n being the size of the network. Again, sparse

networks have a slight bigger penalty term:

BIC ∗
SBM(Mi) = −2 lnP (G, g|Mi, Π̂i) + k2 ln Θ(n3) . (6.1)

These problems serve as examples for two groups of very different model selection

problems in the hierarchy. One group is for choosing between the vanilla SBM and

those like the DC-SBM, with node attributes that participant in edge generation.

The other is the order selection problem for each block model variant. I expect the

statistical approaches I used here can be respectively generalized to these similar

situations. From a more general perspective, my work here opens the way for ap-

plying these statistical tools in a wide range of network problems. With an efficient

algorithmic framework like the variational EM with BP, one can replicate the process

of doing bootstrapping simulations, analyzing data and correcting theories for many

other model selection problems.

Armed with the knowledge of model selection for networks in general, I hope to

build more sophisticated models in the future that not only are capable of generating

complex network structures, but at the same time are statistically well-defined with

low risk of over-fitting. As the size and quality of network data sets keep to grow,

and our domain knowledge improves, I look forward to a flexible framework armed

with the full statistical arsenal, capable of selecting or even automatically generating

appropriate models given the data and inference task.
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Appendix A

Other constructions of the BP

algorithm

A.1 BP as a partition function construction

Besides the Bethe approximation, we can construct the partition function by re-

cursive addition of nodes [23]. Starting with an existing graph G, with a partition

function:

ZG =
∑
{g(G)}

P (G, g|θ)

Let G− = G \ {u} be the graph without the node u. By assuming conditional

independence among the neighbors, we can write ZG in terms of ZG− :

Zt
G = γt

∑
{g(G−)}

∏
w 6=u

f(g(w), t)Z
g(w)

G−

= γt
∏
w 6=u

∑
s

f(s, t)Zs
G− (A.1)

where Zt
G is the partial partition function conditioned on node u being type t.
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If you compare (A.1) with (3.13), you will find them to be of a very similar

form. Indeed, the messages defined in our BP algorithm can be interpreted as a

local partition function constructed based on messages received except the message

from the target. In fact, (A.1) has the exact same form as the approximate non-edge

messages. Apply the same message normalization, we have

µtG =
Zt
G∑
t Z

t
G

=
γt
∏

w 6=u
∑

s f(s, t)Zs
G−∑

t γt
∏

w 6=u
∑

s f(s, t)Zs
G−

=

∏
w 6=u

∑
s Z

s
G−∑

t γt
∏

w 6=u
∑

s f(s, t)Zs
G−

γt
∏

w 6=u
∑

s f(s, t)Zs
G−∏

w 6=u
∑

s Z
s
G−

=
1

Zu
γt
∏
w 6=u

∑
s

f(s, t)µsG− (A.2)

where

Zu =

∑
t γt
∏

w 6=u
∑

s f(s, t)Zs
G−∏

w 6=u
∑

s Z
s
G−

=
ZG
ZG−

In other words, the normalizing term in non-edge messages is the growing ratio of

the parition function if node u and its induced edges are added. We can estimate

the complete partition function as the product of

ZG =
∏
u

Zu =
∏
u

[∑
t

γt
∏
w 6=u

∑
s

f(s, t)µsGu

]

=
∏
u

[∑
t

ξut (Gu)

]

where Gu is the growing graph before node u is added.

The above construction, however, is less accurate than the Bethe free energy

mentioned in in Section 3.2. With bus = µus , and a close comparison with (B.4), we

can see that it is in fact a mean-field approximation of the total free energy, which

is estimated as the sum of node free energies (including its induced edges). To go

beyond the fist order of Kikuchi, we need a better formulation of the BP algorithm.
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A.2 The factor graph (sum-product) formulation

Suppose a stochastic model with a joint probability distribution that factors into

a product of n local functions λi, each having Xi, some subset of {x1, ..., xm} as

arguments:

P ({x1, ..., xm}) =
n∏
i=1

λi(Xi)

A factor graph is a bipartite graph that express the structure of such a factorization.

It has a variable node for each variable xj, and a factor node for each local function

λi. An Edges would connect a variable node xj to a factor node λi if and only if the

former is an argument of the latter.

Many other popular graphical models such as Bayesian networks can be translated

into this representation. Furthermore, various famous algorithms on these graphical

models can also be reduced to the belief propagation algorithm on the corresponding

factor graph [49]. Under the factor graph formulation, we will shortly see why belief

propagation is also called the sum-product algorithm.

Accroding to (2.11), our block model has a natural factor graph representation

with edge/node generating functions f(g(u)g(v)) and q(g(u)) as factor nodes and

the node type assignment g(u) as the variable nodes. With the orginal graph of

Figure 3.1, we would have a corresponding factor graph shown as Figure A.1:
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Figure A.1: The factor graph representation of Figure 3.1
Factor nodes are represented as squares while the variable nodes circles. Note that
all edge generating factors have 2 variables, whereas all node generating factors have
just 1.

The message update equation, originally (3.13), can now be break into the “sum”

step and the “product” step which leads to the alternative name of belief propagation.

ξλ→ut =


∑

s f(st)µw→λs λ ∈ f(g(u)g(v))&w : n(λ)\{x}

qt λ ∈ q(g(u))

ξu→λt =
∏

η∈n(x)\{λ}

ξη→ut

where n(x)\{λ} indecates all neighboring factor nodes of variable node g(u) except

the target, while n(λ)\{x} only has one element because the edge/nonedge factors

all have 2 variables.

After the messages has converged, we have the marginals of factors:

P [λi(Xi)] =


∑

st f(st)
∏

w µ
w→λ
s λ ∈ f(g(u)g(v))&w : n(λ)∑

t qtµ
w→λ
t λ ∈ q(g(u))&w : n(λ)

(A.3)

This local partition function corresponds to FuBethe in (3.11).

112



Appendix A. Other constructions of the BP algorithm

The normalizing term of the edge generating factors can be converted to:

Z∗uv =
∑
st

f(st)
∏
w:n(λ)

µw→λs =

∑
st f(st)Z

g(u)=s
G1

Z
g(j)=t
G2

(
∑

s Z
g(u)=s
G1

)(
∑

t Z
g(j)=t
G2

)
=
ZG1+G2+(i,j)

ZG1+G2

Therefore, Zuv is the growing ratio of the partition function if the edge/nonedge (u, v)

is added, excluding any of its end points. This local partition function corresponds

to FuvBethe in (3.11).

With both local partition functions readily available from convergent messages,

BP on factor graphs provides us an easy way of obtaining an estimate of the partition

function:

ZG =
∏
u6=v

Z∗uv ×
∏
u

Z∗u (A.4)

(A.4) follows the intuition of the factor graph formulation. The total probability

by definition factors into the product of factor nodes. It might seems odd that the

total partition function, which is a sum of such products over states, factors into a

product of local sums. However, the conditional independence assumption has made

such sum/product swaps possible.

Although (A.4) is intuitive and easy to obtain, it still fails to leverage all the

information provided by the second order beliefs buvst . If we compare it to (3.11),

lnZG =
∑
u6=v

FuvBethe +
∑
u

FuBethe

=
∑
u6=v

∑
st

buvst (ln buvst − ln f(s, t)) +
∑
u

∑
s

bus (ln b
u
s − ln qs)

we can see that it differs from the full Bethe estimate in the first order terms. The

above construction actually assumes a joint belief of

B∗(g |G, q, p) =
∏
u6=v

buvst
∏
u

bus
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This is different from the Bethe assumption (B.5). By using the BP fixed point values

and thus the Bethe minimizers instead of its true minimizers, the estimated ZG in

this form is not the optimal approximation to the partition function. In practice,

however, since the partition function is usually dominated by second order terms,

ZG would not be too far off either.
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Variational EM algorithms for

recommendation systems

Please notice that this appendix follows the notations from the paper [36], which is

not consist with main body of this dissertation.

B.1 The partition function under given parame-

ters

Here we assume the Q parameters are fixed. Instead of integrating over them, we

simply maximize the likelihood with respect to the Q parameter,

p̂SBM(rui = r|RO) =
1

Z(τ)

∑
PU ,PI

q̂r(σu, σi)P (PU , PI , R
O|Q̂, γ, η)

=
1

Z(τ)

∑
PU ,PI

P (PU , PI , R
O
+|Q̂, γ, η) (B.1)

where P (PU , PI , R
O|Q̂, γ, η) =

∏
α∈PU

∏
β∈PI γ

nα
α η

nβ
β

∏K
i=1 q̂i(α, β)n

i
α,β , and RO

+ repre-

sents the new graph with the r label on the missing link. This would be a close
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approximation of (3.23) if the probability density as a function of Q is dominated

by the most likely values Q̂.

In statistical physics terms the normalization in (B.1) corresponds to the partition

function Z(τ) of the observed graph, at τ = 1 of the Boltzman distribution from

which we sample the discrete group assignment variables. The probability density of

P (PU , PI |RO, Q̂, γ, η) under the Boltzman distribution is given by:

P (PU , PI |RO, Q̂, γ, η) =
eτ lnP (PU ,PI ,R

O|Q̂,γ,η)∑
PU ,PI

eτ lnP (PU ,PI ,RO|Q̂,γ,η)
(B.2)

Where the denominator is the partition function

Z(τ) =
∑
PU ,PI

P (PU , PI , R
O|Q̂, γ, η)τ

The sum in (B.1) on the other hand corresponds to the partition function Z+(τ)

of the new graph with the r label on the missing link.

Z+(τ) =
∑
PU ,PI

P (PU , PI , R
O
+|Q̂, γ, η)τ

To deal with these exponential sums, we shall introduce some MCMC sampling

methods to estimate this partition function. In the following sections, we shall focus

our attention to the calculation of Z(τ). The results can be easily applied to Z+(τ)

as the latter can be viewed just as a graph with one additional rating.

B.1.1 Variational approximations

As mentioned earlier, besides the sampling techniques, we can use variational ap-

proaches to approximate the true Boltzman distribution P (PU , PI |RO, Q, γ, η), using

a belief distribution B(PU , PI). Since we are only interested in Z(1), we shall assume

τ = 1, and write Z = Z(1).
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Recall the partition function,

Z =
∑
PU ,PI

P (PU , PI , R
O|Q̂, γ, η)

B(PU , PI)

B(PU , PI)

We take the logarithm of it, and by Jensen’s inequality

lnZ ≥EB(PU ,PI)

[
ln
P (PU , PI , R

O|Q̂, γ, η)

B(PU , PI)

]
=EB(PU ,PI)[lnP (PU , PI , R

O|Q̂, γ, η)] + SB(PU ,PI) = −FB(PU ,PI) (B.3)

It would become a equality if and only if B(PU , PI) is exactly P (PU , PI |RO, Q, γ, η).

As a result, by maximizing −FB(PU ,PI) (called the negative Gibbs free energy in

statistical physics) with respect to B(PU , PI), we can approach the log partition

function from below.

The key here is to use a B(PU , PI) that is simple for inference, but yet flexible

enough to fit the data closely. One class of such distributions is the cluster variational

approximation.

Mean-field approximation

The cluster variational method, approximates the joint Boltzman distribution as a

product of localized factors. In statistical physics, it corresponds to the Kikuchi

approximations [89] where the free energy is the sum of local energy terms (see

Appendix). The first order cluster approximation, also known as the mean-field ap-

proximation, has defined local belief only at the single node level, with a particularly

simple form of the joint belief:

BMF (PU , PI) =
∏
u∈U

buδu

∏
i∈I

biδi

For each vertex u and a type s, define bsu as the marginal belief that vertices u ∈ U

is of type s. They should obey the normalization conditions
∑

s b
u
s = 1. Similarly
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we have bti as the marginal belief that vertices i ∈ I is of type t. It follows that

the two-node beliefs are simply buist = bus × bit. Now we can define the log partition

function in terms of local factors:

−FMF =EB(PU ,PI)[lnP (PU , PI , R
O|Q̂, γ, η)] + SB(PU ,PI) (B.4)

=
∑
u∈U

∑
s

bus (ln γs − ln bus ) +
∑
i∈I

∑
t

bit(ln ηt − ln bit)

+
∑

(ui)∈RO

∑
st

busb
i
t(ln f(u, i, s, t))

where the function of f(u, i, s, t) in our case is defined as:

f(u, i, s, t) = qr(s, t) if (u, i) ∈ Rr ⊆ RO

Assuming the parameters and the beliefs are conditional independent, we can solve

for the MLEs,

γ̂s =

∑
u∈U b

u
s

ns
, η̂t =

∑
i∈I b

i
t

nt
, q̂r(s, t) =

∑
(ui)∈RO

busb
i
tR

r
ui

busb
i
t

,

b̂us ∝exp[
∑
t,i

(ln f(u, i, s, t)bit) + ln γs − 1],

b̂it ∝exp[
∑
s,u

(ln f(u, i, s, t)bus ) + ln ηt − 1].

Using numeric techniques like the EM algorithm, one can approximately solve the

above problem analytically.

Bethe approximation

While the first order mean-field approximation is simple and fast [9], it does not

work well for block models where correlations are the key factors. The second order

Cluster variational approximation, also known as the Bethe approximation, expands

the range of local factors to pairs of nodes,
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It approximates the true Boltzman distribution using one-node beliefs bus , as well

as two-node beliefs buist [90]. For each pair of vertices u, i and pair of types s, t, define

buist as the pairwise marginal belief that vertices u and i are of type s and t respectively.

They should obey the marginalization conditions
∑

t b
ui
st = bus . The Bethe estimate

of the joint belief is

BBethe(PU , PI) =

∏
u,i b

ui
st∏

u(b
u
s )
du−1

∏
i(b

i
t)
di−1

(B.5)

As we can see, higher order cluster variational methods follows the inclusion

–exclusion principle when summing up the local factors (see Figure 3.1 for the second

order case). In general, the accuracy improves as the order increases, and it is exact

when the largest local component becomes the whole graph itself.

For block models on simple graphs, the Bethe estimate of the first term in (B.3)

is exact:

EBBethe(PU ,PI)[lnP (PU , PI , R
O|Q̂, γ, η)]

=
∑
u∈U

∑
s

bus ln γs +
∑
i∈I

∑
t

bit ln ηt +
∑

(ui)∈RO

∑
st

buist ln f(u, i, s, t) (B.6)

The Bethe estimate of the entropy, on the other hand, is only exact when the graph

is singly-connected.

SBethe(B(PU , PI)) = −
∑
PU ,PI

BBethe(PU , PI) lnBBethe(PU , PI)

=− EBBethe(PU ,PI)

 ∑
(ui)∈RO

ln buist −
∑
u

ln(bus )
du−1 −

∑
i

ln(bit)
di−1


=−

∑
(ui)∈RO

∑
st

buist ln buist +
∑
u∈U

(du − 1)
∑
s

bus ln(bus ) +
∑
i∈I

(di − 1)
∑
t

bit ln(bit)

(B.7)

This is because (B.5) is not exact on graphs with loops.
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Putting both together, with some rearrangement,

−FBethe =
∑

(ui)∈RO

∑
st

buist(ln f(u, i, s, t)− ln buist)

+
∑
u∈U

∑
s

bus (ln(bus )
du−1 + ln γs) +

∑
i∈I

∑
t

bit(ln(bit)
di−1 + ln ηt) (B.8)

If the graph is sparse in cycles, we could get a good approximation of the partition

function by maximizing (B.8) instead. Assuming the parameters and the beliefs are

conditional independent, we can solve for the MLEs,

γ̂s =

∑
u∈U b

u
s

ns
, η̂t =

∑
i∈I b

i
t

nt
, q̂r(s, t) =

∑
(ui)∈RO

buistR
r
ui

buist
.

However, the MLEs of the Bethe beliefs are not as easy to obtain as the simple mean-

field approximation. The pair-wise beliefs have introduced non-trivial dependencies,

and more sophisticated optimizing tools are required. In the paper [90], the authors

proved that the Belief Propagation algorithm converges to the same fixed points as

the Bethe maximizing process. It makes a efficient message passing implementation

possible, when analytical solution is not there.

The BP message passing algorithm

The idea of belief propagation is each vertex u sends a “message” to each of its

neighbors v, consisting of the marginal distribution that u would have if v were not

in the network. We denote this µu→vt , the probability that u would be of type t if

v were absent. We update µu→v according to the messages that u receives from its

other neighbors w.

Finally, we assume that these neighbors are independent. In other words, we

ignore the effect of paths that don’t go through u. This assumption holds, for

instance, if the graph is locally treelike and correlations decay.
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In our model, we have the following update rule for type s message from a user

u to an item i,

µu→is =
ξu→is∑k
t=1 ξ

u→i
s

,

The numerator ξu→is is the un-normalized versions of the µu→is , which is defined as

ξu→is = γs

 ∏
j:(j,u)∈RO

j 6=i

∑
t

µj→ut f(j, u, t, s)

 (B.9)

where the function:

f(j, u, t, s) = qr(t, s) if (j, u) ∈ Rr ⊆ RO

Similarly, we have the type t messages from an item i to a user u,

µi→ut ∝ ηt

 ∏
v:(v,i)∈RO

v 6=u

∑
s

µv→is f(v, i, s, t)

 (B.10)

Once we reach a fixed point in the messages, they can be used to estimate the

beliefs in the Bethe formula (B.8),

bus ∝ γs
∏

j:(j,u)∈RO

∑
t

µj→ut f(j, u, t, s), (B.11)

bit ∝ ηt
∏

v:(v,i)∈RO

∑
s

µv→is f(v, i, s, t), (B.12)

buist ∝ µu→is µi→ut f(u, i, s, t) v : (v, i) ∈ RO . (B.13)

where we normalize each of these by summing over s, t. Notice that the above

messages and beliefs are only defined on observed edges, that is (u, i) ∈ Rr ⊆ RO.

121



Appendix B. Variational EM algorithms for recommendation systems

B.2 The partition function under full integration

If we take the full Bayesian approach, we have a particularly simple result with

respect to the integration over Q [36]:

pSBM(rui = r|RO) =
1

Z

∑
PU ,PI

nrδuδi + 1

nδuδi +K

∏
α,β

∏K
k=1(nkαβ)!

(nαβ +K − 1)!
(B.14)

=
1

Z

∑
PU ,PI

P (PU , PI , R
O
+)

where P (PU , PI , R
O
+) is the marginalized (over parameters Q) likelihood of the new

graph with the r label on the missing link. Notice that the model is based on the

simplified SBM as defined in (3.26), in which the first order priors γ, η are absent.

In statistical physics terms the normalization Z in (B.14) corresponds to the

partition function of the observed graph. The probability density of the Boltzman

distribution is given by:

P (PU , PI |RO) =
eτ lnP (PU ,PI ,R

O)∑
PU ,PI

eτ lnP (PU ,PI ,RO)
(B.15)

Where the denominator is the partition function

Z =
∑
PU ,PI

P (PU , PI , R
O)

The sum in (B.14) on the other hand corresponds to the partition function Z+ of

the new graph with the r label on the missing link.

Z+ =
∑
PU ,PI

P (PU , PI , R
O
+)

To deal with these exponential sums, we shall extend variational methods to the

full Bayesian case. In the following sections, we shall focus our attention to the

calculation of Z. The results can be easily applied to Z+ as the latter can be viewed

just as a graph with one additional rating.
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B.2.1 Variational Bayesian approximation

Besides the sampling techniques, we can use variational approaches to approximate

the Boltzman distribution P (PU , PI |RO), using a belief distribution B(PU , PI)

Z =
∑
PU ,PI

P (PU , PI , R
O)
B(PU , PI)

B(PU , PI)

We take the logarithm of it, and by Jensen’s inequality

lnZ ≥EB(PU ,PI)

[
ln
P (PU , PI , R

O)

B(PU , PI)

]
=EB(PU ,PI)[lnP (PU , PI , R

O)] + SB(PU ,PI) = −FB(PU ,PI) (B.16)

It would become a equality if and only if B(PU , PI) is exactly P (PU , PI |RO). As a

result, by maximizing −FB(PU ,PI) (called the negative Gibbs free energy in statistical

physics) with respect to B(PU , PI), we can approach the log partition function from

below.

The key here is to use a B(PU , PI) that is simple for inference, but yet flexible

enough to fit the data closely. One class of such distributions is the cluster variational

approximation which approximates the joint Boltzman distribution as a product of

localized factors.

Before we can define the partition function in terms of local factors, we need to

rewrite the likelihood in terms of local factors as well

P (PU , PI , R
O) =

∏
α,β

∏K
k=1(nkαβ)!

(nαβ +K − 1)!

≈
∏
α,β

∏K
k=1

√
2πnkαβ√

2π(nαβ +K − 1)(
nαβ +K − 1

e
)K−1

∏
(u,i)∈RO
k:(u,i)∈Rk

nkδuδi
nδuδi

(B.17)

where we used the Stirling’s approximation for factorials. This is equivalent to

using Laplace’s method to approximate the integral over Q, which would be quite
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accurate if parameters Q follows some common regularity conditions. To see this,

let us rewrite the likelihood as an integral:

P (PU , PI , R
O) =

∫ 1

0

∏
α∈PU

∏
β∈PI

K∏
i=1

qi(α, β)n
i
α,βdQ

=

∫ 1

0

exp

[
M

M
lnP (PU , PI , R

O|Q)

]
dQ

≈P (PU , PI , R
O|Q̂)(

2π

M
)
|Q|
2

∣∣∣∣∣ P (PU , PI , R
O|Q)

∂2Q

∣∣∣∣
Q̂

∣∣∣∣∣
− 1

2

=
∏

(u,i)∈RO
k:(u,i)∈Rk

nkδuδi
nδuδi

∏
α,β

√
2π√

M ×
∏K

i=1 n
i
α,β(niα,β − 1))

Now we take the log of (B.17), and rewrite the leading global term as C(PU , PI),

lnP (PU , PI , R
O) =C(PU , PI) +

K∑
k=1

∑
(u,i)∈Rk

lnnkδuδi −
∑

(u,i)∈RO
lnnδuδi (B.18)

Mean-field approximation

The first order cluster approximation, or the mean-field approximation, has defined

local belief only at the single node level, with a particularly simple form of the joint

belief:

BMF (PU , PI) =
∏
u∈U

buδu

∏
i∈I

biδi

For each vertex u and a type s, define bsu as the marginal belief that vertices u ∈ U

is of type s. They should obey the normalization conditions
∑

s b
u
s = 1. Similarly

we have bti as the marginal belief that vertices i ∈ I is of type t. It follows that the

two-node beliefs are simply buist = bus × bit.
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Now we can define the log partition function in terms of node factors:

−FMF =EB(PU ,PI)[lnP (PU , PI , R
O)] + SB(PU ,PI)

=EB(PU ,PI)[C(PU , PI)] +
K∑
k=1

∑
(u,i)∈Rk

∑
st

busb
i
t(lnn

k
st)

−
∑

(ui)∈RO

∑
st

busb
i
t(lnnst)−

∑
u∈U

∑
s

bus (ln b
u
s )−

∑
i∈I

∑
t

bit(ln b
i
t) (B.19)

Unlike (B.4), the variables in (B.19) are solely determined by the beliefs B(PU , PI),

which in turn maximizes (B.19):

nkst =
∑

(u,i)∈Rk
busb

i
t, nst =

K∑
k=1

nkst =
∑

(u,i)∈RO
busb

i
t,

b̂us ∝exp[
K∑
k=1

∑
i:(u,i)∈Rk

∑
t

bit(lnn
k
st)−

∑
i:(ui)∈RO

∑
t

bit(lnnst)− 1],

b̂it ∝exp[
K∑
k=1

∑
u:(u,i)∈Rk

∑
s

bus (lnn
k
st)−

∑
u:(ui)∈RO

∑
s

bus (lnnst)− 1].

Using numeric techniques like the EM algorithm, one can approximately solve the

above problem analytically.

Bethe approximation

While the first order mean-field approximation is simple and fast [9], it does not

work well for block models where correlations are the key factors. The second order

Cluster variational approximation, also known as the Bethe approximation, expands

the range of local factors to pairs of nodes,

It approximates the true Boltzman distribution using one-node beliefs bus , as well

as two-node beliefs buist [90]. For each pair of vertices u, i and pair of types s, t, define

buist as the pairwise marginal belief that vertices u and i are of type s and t respectively.
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They should obey the marginalization conditions
∑

t b
ui
st = bus . The Bethe estimate

of the joint belief is

BBethe(PU , PI) =

∏
u,i b

ui
st∏

u(b
u
s )
du−1

∏
i(b

i
t)
di−1

(B.20)

As we can see, higher order cluster variational methods follows the inclusion

–exclusion principle when summing up the local factors (see Figure 3.1 for the second

order case). In general, the accuracy improves as the order increases, and it is exact

when the largest local component becomes the whole graph itself.

For block models on simple graphs, the Bethe estimate of the first term in (B.16)

is exact:

EBBethe(PU ,PI)[lnP (PU , PI , R
O)]

=EB(PU ,PI)[C(PU , PI)] +
K∑
k=1

∑
(u,i)∈Rk

∑
st

buist(lnn
k
st)−

∑
(ui)∈RO

∑
st

buist(lnnst)

(B.21)

The Bethe estimate of the entropy, on the other hand, is only exact when the graph

is singly-connected.

SBethe(B(PU , PI)) = −
∑
PU ,PI

BBethe(PU , PI) lnBBethe(PU , PI)

=− EBBethe(PU ,PI)

 ∑
(ui)∈RO

ln buist −
∑
u

ln(bus )
du−1 −

∑
i

ln(bit)
di−1


=−

∑
(ui)∈RO

∑
st

buist ln buist +
∑
u∈U

(du − 1)
∑
s

bus ln(bus ) +
∑
i∈I

(di − 1)
∑
t

bit ln(bit)

(B.22)

This is because (B.20) is not exact on graphs with loops.
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Putting both together, with some rearrangement,

−FBethe =EB(PU ,PI)[C(PU , PI)]

+
K∑
k=1

∑
(u,i)∈Rk

∑
st

buist(lnn
k
st)−

∑
(ui)∈RO

∑
st

buist(lnnst + ln buist)

+
∑
u∈U

(du − 1)
∑
s

bus ln(bus ) +
∑
i∈I

(di − 1)
∑
t

bit ln(bit) (B.23)

If the graph is sparse in cycles, we could get a good approximation of the partition

function by maximizing (B.23) with respect to B(PU , PI). Given the the beliefs

B(PU , PI), we would get an analytical solution to (B.23), by plugging in following

values

nkst =
∑

(u,i)∈Rk
buist , nst =

K∑
k=1

nkst =
∑

(u,i)∈RO
buist .

Here we shall employ the EM framework again. We will solve for the MLEs of

B(PU , PI) while fixing the above variables (E-step), and iteratively update both back

and forth. However, the MLEs of the Bethe beliefs are not as easy to obtain even with

everything else fixed. The pair-wise beliefs have introduced non-trivial dependencies,

and more sophisticated optimizing tools are required. In the paper [90], the authors

proved that the Belief Propagation algorithm converges to the same fixed points as

the Bethe maximizing process. It makes a efficient message passing implementation

possible, when analytical solution is not there.

The BP message passing algorithm

The idea of belief propagation is each vertex u sends a “message” to each of its

neighbors v, consisting of the marginal distribution that u would have if v were not

in the network. We denote this µu→vt , the probability that u would be of type t if

v were absent. We update µu→v according to the messages that u receives from its

other neighbors w.
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Finally, we assume that these neighbors are independent. In other words, we

ignore the effect of paths that don’t go through u. This assumption holds, for

instance, if the graph is locally treelike and correlations decay.

In our model, we have the following update rule for type s message from a user

u to an item i,

µu→is =
ξu→is∑k
t=1 ξ

u→i
s

,

The numerator ξu→is is the un-normalized versions of the µu→is , which is defined as:

ξu→is =
∏

j:(j,u)∈RO
j 6=i

∑
t

µj→ut

∏K
k=1 n

k
st

nst
(B.24)

Similarly, we have the type t messages from an item i to a user u,

ξi→ut =
∏

v:(v,i)∈RO
v 6=u

∑
s

µv→it

∏K
k=1 n

k
st

nst
(B.25)

Once we reach a fixed point in the messages, they can be used to estimate the

beliefs in the Bethe formula (B.8),

bus ∝
∏

j:(u,j)∈RO

∑
t

µj→ut

∏K
k=1 n

k
st

nst
, (B.26)

bit ∝
∏

v:(v,i)∈RO

∑
s

µv→it

∏K
k=1 n

k
st

nst
, (B.27)

buist ∝ µu→is µi→ut

∏K
k=1 n

k
st

nst
v : (v, i) ∈ RO . (B.28)

where we normalize each of these by summing over s, t. Notice that the above

messages and beliefs are only defined on observed edges, that is (u, i) ∈ Rr ⊆ RO.
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Theoratic Derivation of Likelihood

ratios

C.1 LRT for SBM vs DC-SBM

For simplicity we focus on one group with expected degree µ. Assuming independence

between the groups will then recover the expressions (4.4) and (4.6) where the mean

and variance of Λ is a weighted sum over groups. We have

Λ =
n∑
i=1

di log
di

d

=
∑
i

di log di −

(∑
i

di

)
log

(∑
i

di

)
+

(∑
i

di

)
log n , (C.1)

where d = (1/n)
∑

i di is the sample mean. We wish to compute the mean and

expectation of logL if the data is generated by the null model.

If d is Poisson-distributed with mean µ, let f(µ) denote the difference between
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the expectation of d log d and its most likely value µ log µ:

f(µ) =

(
∞∑
d=1

e−µµd

d!
d log d

)
− µ log µ . (C.2)

Assume that the di are independent and Poisson with mean µ; this is reasonable

in a large sparse graph, since the correlations between degrees of different nodes is

O(1/n). Then
∑

i di is Poisson with mean nµ, and (C.1) gives

E[Λ] = nf(µ)− f(nµ) . (C.3)

To understand this asymptotically, note that f(µ) converges to 1/2 when µ is large.

Thus in the limit of large n,

E[Λ] = nf(µ)− 1

2
.

When µ is large, this gives E[Λ] = (n − 1)/2, just as χ2 hypothesis testing would

suggest. However, as Fig. C.1 shows, f(µ) deviates significantly from 1/2 for finite µ.

We can obtain the leading corrections as a power series in 1/µ by approximating (C.2)

with the Taylor series of d log d around d = µ, giving

f(µ) =
1

2
+

1

12µ
+

1

12µ2
+O(1/µ3) .
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Figure C.1: The function f(µ) defined in (C.2), or equivalently the expected log-
likelihood difference divided by n. We compare this with experiment in Fig. 4.3(a).
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Computing the variance is harder, but still possible. It will be convenient to

define several functions. If d is Poisson with mean µ, let φ(µ) denote the variance of

d log d:

φ(µ) = Var[d log d] = E
[
(d log d)2

]
− E[d log d]2

=
∞∑
d=0

e−µµd

d!
(d log d)2 − (f(µ) + µ log µ)2 . (C.4)

We will also use

c(µ) = Cov[d, d log d] = E
[
d2 log d

]
− µE[d log d]

=
∞∑
d=1

e−µµd

d!
d2 log d− µ (f(µ) + µ log µ) . (C.5)

Finally, let λ ≥ µ, and let d and u be independent and Poisson with mean µ and

λ− µ respectively. Then let

r(µ, λ) = Cov[d log d, (d+ u) log(d+ u)]

= E[(d log d)((d+ u) log(d+ u))]− E[d log d]E[(d+ u) log(d+ u)]

=
∞∑

d,u=1

e−λµd(λ− µ)u

d!u!
(d log d)((d+ u) log(d+ u)) (C.6)

− (f(µ) + µ log µ) (f(λ) + λ log λ) ,

where we used the fact that d+ u is Poisson with mean λ.

Then again assuming that the di are independent, we have the following terms

131



Appendix C. Theoratic Derivation of Likelihood ratios

and cross-terms for the variance of (C.1):

Var

[∑
i

di log di

]
= nφ(µ)

Var

[(∑
i

di

)
log

(∑
i

di

)]
= φ(nµ)

Var

[∑
i

di

]
= nµ

Cov

[∑
i

di log di,

(∑
i

di

)
log

(∑
i

di

)]
= nr(µ, nµ)

Cov

[∑
i

di log di,
∑
i

di

]
= nc(µ)

Cov

[(∑
i

di

)
log

(∑
i

di

)
,
∑
i

di

]
= c(nµ)

Putting this all together, we have

Var[Λ] = nφ(µ) +φ(nµ) +nµ log2 n− 2nr(µ, nµ) + 2
(
nc(µ)− c(nµ)

)
log n . (C.7)

In the limit of large µ, using Taylor series to expand the summands of (C.4)

and (C.5) gives the following simplifications:

φ(µ) = µ log2 µ+ 2µ log µ+ µ+
1

2
+O

(
log µ

µ

)
c(µ) = µ log µ+ µ+O(1/µ) .

Also, when λ� µ and µ = O(1), using log(d+ u) ≈ log u+ d/u lets us separate the

double sum in (C.6), giving

r(µ, λ) = E
[
d2 log d

]
(1 + log λ) + E[d log d]E[u log u]

− E[d log d]E[(d+ u) log(d+ u)]) +O(1/λ) .

In particular, setting λ = nµ gives

r(µ, nµ) = c(µ)(1 + log nµ) +O(1/n) .
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Finally, keeping O(n) terms in (C.7) and defining v(µ) as in (4.6) gives

v(µ) = lim
n→∞

1

n
Var[Λ] = φ(µ) + µ(1 + log µ)2 − 2c(µ)(1 + log µ) . (C.8)

Using the definitions of φ and c, we can write this more explicitly as (where Var

and Cov denote the variance and covariance in the Poisson distribution with mean

µ)

v(µ) = µ(1 + log µ)2 + Var[d log d]− 2(1 + log µ) Cov[d, d log d]

= µ(1 + log µ)2

+
∞∑
d=1

e−µµd

d!
(d log d)

(
d log d− 2(1 + log µ)(d− µ)

)
−

(
∞∑
d=1

e−µµd

d!
d log d

)2

. (C.9)

We plot this function in Fig. C.2. It converges to 1/2 in the limit of large µ, but it

is significantly larger for finite µ.
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Figure C.2: The asymptotic variance of the log-likelihood difference, divided by n,
given in (C.8). We compare this with experiment in Fig. 4.3(b).
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