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Abstract

Reservoir computing (RC) is a promising paradigm for time series processing. In this

paradigm, the desired output is computed by combining measurements of an excitable

system that responds to time-dependent exogenous stimuli. The excitable system is called

a reservoir and measurements of its state are combined using a readout layer to produce a

target output. The power of RC is attributed to an emergent short-term memory in dynami-

cal systems and has been analyzed mathematically for both linear and nonlinear dynamical

systems. The theory of RC treats only the macroscopic properties of the reservoir, without

reference to the underlying medium it is made of. As a result, RC is particularly attractive

for building computational devices using emerging technologies whose structure is not

exactly controllable, such as self-assembled nanoscale circuits.

RC has lacked a formal framework for performance analysis and prediction that goes

beyond memory properties. To provide such a framework, here a mathematical theory of
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memory and information processing in ordered and disordered linear dynamical systems

is developed. This theory analyzes the optimal readout layer for a given task. The focus

of the theory is a standard model of RC, the echo state network (ESN). An ESN consists

of a fixed recurrent neural network that is driven by an external signal. The dynamics of

the network is then combined linearly with readout weights to produce the desired output.

The readout weights are calculated using linear regression.

Using an analysis of regression equations, the readout weights can be calculated using

only the statistical properties of the reservoir dynamics, the input signal, and the desired

output. The readout layer weights can be calculated from a priori knowledge of the desired

function to be computed and the weight matrix of the reservoir. This formulation explic-

itly depends on the input weights, the reservoir weights, and the statistics of the target

function. This formulation is used to bound the expected error of the system for a given

target function. The effects of input-output correlation and complex network structure in

the reservoir on the computational performance of the system have been mathematically

characterized. Far from the chaotic regime, ordered linear networks exhibit a homoge-

neous decay of memory in different dimensions, which keeps the input history coherent.

As disorder is introduced in the structure of the network, memory decay becomes in-

homogeneous along different dimensions causing decoherence in the input history, and

degradation in task-solving performance. Close to the chaotic regime, the ordered systems

show loss of temporal information in the input history, and therefore inability to solve

tasks. However, by introducing disorder and therefore heterogeneous decay of memory

the temporal information of input history is preserved and the task-solving performance

is recovered. Thus for systems at the edge of chaos, disordered structure may enhance

temporal information processing. Although the current framework only applies to linear

systems, in principle it can be used to describe the properties of physical reservoir com-

puting, e.g., photonic RC using short coherence-length light.
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Chapter 1

Introduction

1.1 Overview

The pursuit of fast ubiquitous computing has left us with two apparently conflicting goals.

On one hand we seek ever faster and more reliable computers to perform a spectrum of

signal-processing tasks, such as tracking, navigation, system identification, pattern recog-

nition, and control. On the other hand the miniaturization trend in conventional silicon

electronics to achieve faster speed is approaching its physical limits, resulting in higher

energy consumption, more expensive fabrication, and more vulnerable devices; faster

speed is undermining reliability and energy efficiency. The fields of natural computing

and nanotechnology have emerged to explore alternative approaches to building comput-

ers. This pursuit has led to the development of various techniques, such as adaptive “pro-

gramming” [1], and self-organization [2] strategies for a variety of underlying architec-

tures including molecular switches, self-assembled nanowires, and DNA nanotechnology.

However, all of these strategies rely on post-fabrication control of the microstructure of

the underlying architectures to achieve their goals.

An alternative paradigm, called intrinsic computation, is to use the natural behavior
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Chapter 1. Introduction

of a system for computation. In this dissertation I focus on a particular instance of in-

trinsic computing, called reservoir computing (RC), which uses the excitable dynamics of

systems to perform real-time computation. I analyze excitable dynamics as a paradigm to

build reliable application-specific computers using unconventional computer architectures.

RC enables us to perform computation using the collective dynamics of a system, i.e., the

global dynamics resulting from interactions of many elementary components, without re-

lying on the specifics of the underlying architecture.

RC was initially proposed in the neural network community for the purpose of re-

ducing the training time of recurrent neural networks. Unfortunately, the main analytical

understanding of this approach was under an annealed approximation and most studies in

this field relied on numerical experiments, which made it hard to draw firm conclusions

about correctness and performance or to gain fundamental insight into the workings of

RC.

To study RC in depth, I developed a mathematical framework to calculate an exact

solution for the dynamics and the memory of a classical implementation of RC. I ex-

tended this framework to gain analytical insight into the expected performance of RC for

real-world signal-processing tasks. Furthermore, I used the analytical results to calculate

bounds on the estimated performance of a given system on a given task. Using this frame-

work, I mathematically analyzed the effect of structure of the network on the performance

of a given task. Although the formulation only applies to linear systems, in principle it

can be used to describe the properties of physical reservoir computing, e.g., propagation

of short coherence-length light through the reservoir medium. I hope that the insights here

can help us develop useful approximations to nonlinear systems in the future.
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Chapter 1. Introduction

1.2 Motivation

My three main sources of motivation for studying RC are its potential for (1) building

application-specific and embedded systems using unconventional architectures, (2) build-

ing intelligence into smart matter and designing cyber-physical systems, and (3) bringing

down the computational cost of training recurrent neural networks. I see the ultimate out-

come of these three lines of research to be bringing down the cost of intelligent systems

so they can be used widely.

Collective dynamics, i.e., global dynamics of systems with many interacting parts, has

been long studied in cybernetics, artificial life, and complex systems communities [3, 4].

Applications of collective dynamics have only recently been realized as advances in ma-

terials science and nanotechnology have enabled the use of physical systems to perform

computation for real-world signal processing scenarios. The term RC has been coined to

refer to various frameworks in which computation takes place within the transient dynam-

ics of a system. Within the community of intrinsic and natural computing there are other

approaches that use the properties of physical systems to perform computation, such as

chaos computing, neural networks, amorphous computing, and DNA computing. How-

ever, all these rely on manipulation of the microstructure of the underlying system. In

contrast, RC takes a system as given, and only takes advantage of the dynamics of the

system, without modifying its underlying structure. This makes RC particularly attractive

for nanoscale self-assembled systems, whose structure cannot be engineered precisely.

Moreover, RC has shown superb performance in chaotic time series analysis and predic-

tion, and has become a valuable signal-processing tool [5–7]. Another advantage of RC

is that it uses some aspects of kernel methods [8], in which the input is projected into a

high-dimensional feature space. The features are linearly combined to produce the desired

output. The linear coefficients in the process can be calculated using efficient closed-form

solutions [8]. This is in contrast with common adaptive approaches, which use expen-

sive iterative algorithms based on error backpropagation, genetic algorithms, or simulated
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Chapter 1. Introduction

annealing [9]. In addition, RC has experimentally proven to be robust to physical imple-

mentation using many different architectures [10–13]. In addition, RC’s performance has

been shown to be resistant to failure of some of the components of the system or temporal

variations in its structure [14, 15].

1.2.1 Unconventional Architectures

The approaching physical limits of silicon-based semiconductor technology are making

conventional top-down designed computer architecture prohibitive [16]. Recent advances

in materials science and nanotechnology suggest that unconventional computer architec-

tures could be a viable technological and economical alternative for building energy-

efficient and reliable application specific computers [17, 18]. Some proposed alternative

architectures are based on molecular switches and memristive crossbars [19, 20] that pos-

sess highly regular structure. Another emerging approach is self-assembly of nanowires

and memristive networks [21, 22], which results in irregular structure. Major obstacles to

using such architectures are design variations, defects, faults, and susceptibility to envi-

ronmental factors, such as thermal noise and radiation [23]. How should one program an

unreliable system with unknown structure to perform reliable computation? Research in

RC presents an opportunity to answer this question.

1.2.2 Smart Matter and Cyber-Physical Systems

Amorphous computing [4], a discipline that aims to find computing solutions using many

interacting and unreliable parts. Two research fields that have emerged from amorphous

computing are Smart materials, i.e., systems that can be programmed to behave according

to a history of environmental stimuli, and cyber-physical systems, i.e., systems that can be

programmed to interface with physical systems. One of the most promising developments

in this area is DNA computing, which can have significant applications in health care, such
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Chapter 1. Introduction

as monitoring and smart and localized drug delivery. So far, DNA computing focuses on

implementing simple logic operation for identifying target chemical species and releas-

ing appropriate chemicals to nullify the target. Using RC one could design DNA-based

systems that monitor concentration of chemical species and respond appropriately.

1.2.3 Artificial Intelligence and Machine Learning

The past decade has seen a rapid development of artificial intelligence (AI) through ad-

vances in neural networks. AI systems based on deep and recurrent neural networks have

been used to solve classification and control problems with human-level accuracy. Contin-

uation of this trend inevitably makes intelligent systems as pervasive as computers: every

computer, embedded, and cyber-physical system will incorporate an intelligent adaptive

component. Computational cost is a critical obstacle to the wide deployment of intelligent

systems. Cutting down the computational cost of intelligence is one of the main chal-

lenges I am tackling in my research. To this end, my research focuses on understanding

and leveraging the most ubiquitous source of intelligence that naturally occurs in excitable

physical systems: short-term memory.

1.3 Background and Related Work

The multidisciplinary nature of this dissertation can only be served by an appropriate mul-

tidisciplinary literature review. Here, after giving an overview of existing work in the field

of RC (see Section 1.3.1), I try to give an adequate context for this dissertation in different

fields to elucidate the significance of the work for each field. Broadly speaking, the idea of

computing with transient states of the system puts RC in the realm of chaos computing and

computing with dynamical systems (see Section 1.3.3). The systems discussed in chaos

computing usually adhere to Turing universality of computation, i.e., the inputs are explic-
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Chapter 1. Introduction

itly encoded into the dynamics of the system and the system is designed in such a way that

its time evolution can reach any desired halting state. RC, on the other hand, works in the

realm of real-time computing and although it has been proven to be a universal approxima-

tor [24], it was not originally intended to perform universal computation. As I mentioned

above, the hallmark of RC is the absence of task-related modification to the microstructure

of the underlying substrate, which makes it particularly suitable for building computational

systems using emerging technologies at the nanoscale whose microstructure is difficult to

engineer exactly. These include DNA nanotechnology and self-assembled circuits (see

Section 1.3.4 and Section 1.3.5). The only adaptive part in RC is the readout layer, which

is usually trained using ordinary linear regression (OLR) and follows the convergence the-

orems in the theory of learning and generalization (see Section 1.3.2). An important aspect

of RC is how its structure affects the performance. Our main theoretical results explain this

dependency in networks with linear transfer function and additive presynaptic integration.

To reason about nonlinear systems, we then use computational tools to extend our results

to multiplicative integration and nonlinear transfer function (see Section 1.3.6 and 1.3.7).

These studies are motivated by the appearance of nonlinear effects in the transfer function

as well as the presynaptic integration in biological neurons. Finally, I will summarize the

background information and explain how our study relates to each field (see Section 1.4).

1.3.1 Reservoir Computing

The origin of reservoir computing is rooted in theoretical cognitive and neuroscience. Un-

derstanding contextual information processing in the brain is one of the long-standing chal-

lenges in neuroscience [25]. Specifically, the challenge emerges while explaining neuro-

dynamic mechanisms that allow time-lagged stimulus-dependent behavior in humans and

animals. Such behaviors require a working memory characterized by persistent neural ac-

tivity following a received stimulus [26–31]. “Persistent activity provides the cellular basis

of a central neural mechanism, as postulated by Hebb, ‘to account for the delay, between
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Chapter 1. Introduction

stimulation and response, that seems so characteristic of thought?’. In order for a neural

persistent activity to subserve working memory, it must be stimulus-selective, and there-

fore information-specific” [25, p. 455]. A popular approach to modeling persistent activity

in neural networks is through attractor networks; however, these models do not address the

design of the network to encode desired attractors [32]. Alternatively, Dominey et al. [33]

proposed a simple model to explain the interaction between the prefrontal cortex, corticos-

triatal projections, and basal ganglia in context-dependent motor control of eyes. In this

model, visual input drives stable activity in the prefrontal cortex, which is projected onto

basal ganglia using learned interactions in the striatum. This model has also been used

to explain higher-level cognitive tasks such as grammar comprehension in the brain [34].

This model could be called a precursor to reservoir computing, but it focused mainly on

modeling the prefrontal cortex without any mention of generic task solving or common

machine learning concepts such as learning and generalization.

RC was independently introduced by Maass, Natschläger, and Markram [24] under the

name liquid state machine, and by Jaeger [35] under the name echo state network (ESN).

Later the two approaches were unified under the name reservoir computing [36,37]. ESNs

are one of the most popular RC paradigms, and have shown promising results in time series

computing and prediction [5, 6], voice recognition [38], nonlinear system identification

[39], and robot control [40]. In Ref. [5], it was shown that ESN outperformed the best

state-of-the-art results achieved through approaches such as classical neural networks [41],

chaos theory [42], and even one of the most popular architectures today, long short-term

memory (LSTM) [43], by a factor of 2,400 in terms of mean-squared-error.

An ESN [37,39,44,45] consists of an input-driven recurrent neural network, which acts

as the reservoir, and a readout layer that reads the reservoir states and produces the output.

Unlike a classical recurrent neural network where all the nodes are interconnected and their

weights are determined during a training process, in ESN the nodes are interconnected

using random weights and random sparse connectivity between the nodes. The input and
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u(t)

Ω
b

reservoir state x(t)

ω Ψ

y(t)

Figure 1.1: Schematic of an ESN. A dynamical core called a reservoir is driven by input
signal u(t). The states of the reservoir x(t) extended by a constant 1, are combined lin-
early to produce the output y(t). The reservoir consists of N nodes interconnected with
a random weight matrix Ω. The connectivity between the input and the reservoir nodes
is represented with a randomly generated weight matrix ω . The reservoir states and the
constant are connected to the readout layer using the weight matrix Ψ. The reservoir and
the input weights are fixed after initialization, while the output weights are learned using
a regression technique.

reservoir connections are initialized and fixed, usually with no further adaptation.

Figure 1.1 shows a schematic of an ESN. The readout layer is a linear combination

of the reservoir states. The readout weights are determined for each task using super-

vised learning techniques, where the network is driven by a teacher input and its output

is compared with a corresponding teacher output to estimate the error. Then, the weights

are calculated using any closed-form regression technique [45] in offline training contexts

or using adaptive techniques if online training is needed [39]. Mathematically, the input-

driven reservoir is defined as follows. Let N be the size of the reservoir. We represent

the time-dependent inputs as a scalar u(t), the reservoir state as a column vector x(t), and

the output as a scalar y(t). in general input and output could be multidimensional (repre-

sented by column vectors), but in this dissertation we focus on scalar values. The input

connectivity is represented by the matrix ω and the reservoir connectivity is represented

by an N×N weight matrix Ω. For simplicity, we assume that we have one input signal

8
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and one output, but the notation can be extended to multiple inputs and outputs. The time

evolution of the reservoir is given by:

x(t +1) = f (Ωx(t)+ωu(t)+b). (1.1)

where f is the transfer function of the reservoir nodes that is applied element-wise to its

operand. This is usually the hyperbolic tangent, but sigmoidal or linear functions can

be used as well. An optional bias term b can be used to adjust the nonlinearity of the

reservoir [46]. The output is generated by the multiplication of an output weight matrix Ψ

of length N +1 and the reservoir state vector x(t) extended by an optional constant 1:

y(t) = Ψx(t). (1.2)

The output weights Ψ need to be trained using a teacher input-output pair. A common

training technique is the pseudo-inverse method [37, 47, 48]. To use this method, one

would drive the ESN with a teacher input and record the history of the reservoir states into

a matrix X = [xit ] = [x(0)| . . . |x(T )], where the columns are the reservoir state in time,

and indices i and t refer to node index and time step respectively, and T is the total length

of the input time series. A constant row of “1”s is added to X to serve as a bias. The

corresponding teacher output will be denoted by the row vector Ŷ = [y(0)| . . . |y(T )]. To

keep the notation consistent I will refer to the expected output vectors with Ŷ even though

we are considering only 1-dimensional outputs. The readout can be calculated as follows

pseudo-inverse solution to the least-squares problem [47]:

Ψ = 〈XX>〉−1〈XŶ>〉, (1.3)

where > is the transpose operator. Since the ESN can be trained in closed form, it is

very efficient compared with classical recurrent neural network training, which requires a

time-consuming iterative process [49].

9
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ESN belongs to a class of neural network architectures and training algorithms, such as

back-propagation decorrelation (BPDC) [50] and extreme learning machines (ELM) [51],

that attempt to reduce the training time of neural networks. In all these cases, the network

architecture leverages a fixed hidden layer acting as a kernel projecting the inputs into a

feature space that can be interpreted by the readout layer. In the case of ESN, the feature

space is created with a large recursive kernel which creates an expressive spatiotempo-

ral code for the input signal [52]. In ESN, to create the required spatiotemporal feature

space, the reservoir must enjoy the so-called echo state property [44] (ESP): over time the

asymptotic state of the reservoir only depends on the history of the input signal u(t) and

not the initial reservoir state. Jaeger [44] showed that to satisfy this condition, the reser-

voir weight matrix Ψ must have the spectral radius λ max and the largest singular values

σmax smaller than 1, a bound that was less conservative than the global stability analysis

of the reservoir dynamics for all input signals [53]. Other approaches have proposed using

self-organization techniques to adjust the poles of the reservoir, i.e., the eigenvalues of

the reservoir weight matrix, to ensure optimal response of the reservoir to all frequencies

and amplitudes of the input signal [40, 54–56]. However, it has been observed that these

optimizations are task dependent and there are no reservoirs that are optimal for all tasks.

As a result, in practical applications the reservoir parameters are usually adjusted for each

task using a training and validation procedure [37, 48, 57–60].

The ESP conditions on reservoir weight matrix ensure that the dynamics of the reser-

voir is near the critical dynamical regime, also known as the edge of chaos. Many studies

have pointed out the connection between the edge of chaos and the optimality of compu-

tation in network systems, such as the brain, genetic networks, artificial neural networks,

and network automata models [61–70]. In the context of RC, Büsing et al. [71] studied the

relationship between the reservoir and its performance and found that while in continuous

reservoirs the performance of the system does not depend on the topology of the reservoir

network, coarse-graining the reservoir state will make the dynamics and the performance

of the system highly sensitive to its topology. Verstraeten et al. [72] used a novel method

10
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to quantify the nonlinearity of the reservoir as a function of input weight magnitude. They

used the ratio of the number of frequencies in the input to the number of frequencies in the

dynamics of the input-driven reservoir as a proxy for the reservoir nonlinearity. In ESN, if

the spectral radius of the reservoir is very small, λ max� 1, distinctions in the state space of

the reservoir converge very quickly and the reservoir cannot retain any memory of the past

inputs. At the edge of chaos where λ max ≈ 1, the distinction will never converge, which

means that the system always remembers the past inputs, but also remembers the initial

states of the reservoir; this is not desirable. In a reservoir in the chaotic regime λ max > 1,

the distinctions in the state space diverge very rapidly and therefore the reservoir is hy-

persensitive to inputs and the initial states. In a system with the echo state property, the

state space is slightly convergent and can retain enough memory of the inputs to be able

to compute the desired output while being independent of the initial state of the reservoir.

Figure 1.2 shows the dynamics of the ESN reservoir and the result of the computation in a

reservoir with 100 nodes and tanh transfer function. The activation row shows the values

of each node over time, the reservoir nodes row shows the time evolution of the reservoir

nodes arranged in an arbitrary fixed spatial order, the result row shows the output and the

expected output of the ESN, and the squared error row shows the calculated error in each

time step given by (y(t)− ŷ(t))2. The system is trained to solve the order 10 NARMA

task (see Section 2.2.4), a nonlinear autoregressive task (used in the neural net commu-

nity to test neural net performance for capturing nonlinear long-term dependencies). The

performance is evaluated by the normalized mean squared error (NMSE):

NMSE =

〈
(y(t)− ŷ(t))2〉

〈(ŷ(t)−〈ŷ(t)〉)2〉 . (1.4)

In the ordered regime, the convergent dynamics of the reservoir lead to very regular be-

havior in the node activations. This is visible in the reservoir nodes plots as the vertical

lines where all the nodes synchronize and by the wide bands of horizontal lines showing

groups of reservoir nodes having the same values over time. This homogeneity in the state

space does not allow the readout layer to recover enough information from the reservoir

to construct the target output, resulting in high error values, NMSE = 0.76. In the crit-
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ical regime, the rapid divergence in the state space results in overexcitation of the node

activations, which smears the information in the input signal over the state space in an

unrecoverable way. This is reflected in the irregular waves in the reservoir nodes plot.

This also results in high error NMSE = 0.81. Finally, in reservoirs with ESP, the nodes

are moderately responsive to the input signal and the reservoir can retain enough infor-

mation about the signal to compute the correct output. This is reflected in the complex

micro-patterns in the reservoir nodes plot. Consequently the ESN with this reservoir has

the lowest error NMSE = 0.11.
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Figure 1.2: Illustration of signal processing using intrinsic dynamics. A randomly gener-
ated linear system is set in ordered, critical, and chaotic dynamical regimes and subjected
to input stimuli. The activations row shows the values of the reservoir nodes over time,
the reservoir nodes row shows the reservoir state vector X(t) in a fixed order presenting
the spatiotemporal coding of the reservoir, the result row shows the ESN output and the
target output, and squared error shows the squared error of the output at each time step.
The reservoir is trained to solve the NARMA 10 task (see Section 2.2.4). The imprint of
the input on the dynamics of the system creates a spatiotemporal code that can be used to
recreate the output using a linear readout layer. In the ordered regime, the information is
lost very quickly and cannot be used to compute the correct output. In the chaotic regime,
the diverging dynamics scrambles the input to a point that it cannot be used to produce the
output. In a reservoir with the echo state property, the information is preserved and it is
recoverable by the readout layer. This reservoir is capable of optimal signal processing,
which achieves minimum squared error.
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Other ESN aspects that relate to my dissertation and have been previously studied in

different contexts are noisy inputs, sparsity and structural properties of the reservoir con-

nectivity, and continuity of the state space. Jaeger [39] studied ESN training in the context

of time series processing and adaptive nonlinear system identification and found that us-

ing noisy teacher input/output increases the stability of the training. In this study, the

readout layer is provided with the input, the reservoir states, and their squared value which

greatly reduced the generalization error. It was postulated [73,74] that sparsity of the reser-

voir connectivity enhances the ESP, however the sparsity was loosely defined as having a

zero mean in the reservoir weight matrix. Consequently, experiments by Jaeger [39, 45]

were conducted by sampling the reservoir weights uniformly from the interval [−1,1].

Jaeger [44] made the sparsity explicit by only choosing 10% of all the reservoir weights

to be −0.47, another 10% to be 0.47, and the rest of the weights as zero. Furthermore, it

was observed experimentally [37] that setting 50% of all the connections to have nonzero

weights improved the results. Later [71] it was observed that in discrete state reservoirs the

exact value of the sparsity significantly affects the performance while in continuous reser-

voirs the performance is not sensitive to the fraction of connections with zero weights.

Inspired by models of brain morphology [73, 74], Song and Feng [75] studied ESN with

reservoirs having complex connectivity structure and found that low clustering between

the reservoir nodes improves performance. On the other hand, using the scale-free net-

work growth model [76], Deng and Zhang [77, 78] showed that highly clustered nodes

and short average path length between the reservoir nodes improve performance. Ganguli,

Huh, and Simpolinsky [79] proposed an optimization for the input weights of linear dy-

namical systems to improve the performance of information processing. However, Rodan

and Tiňo [48] did not find any improvement in reservoir performance using this optimiza-

tion even when using linear transfer functions. The only analytical work on ESNs to date

is the calculation of the memory curve for ESNs with orthogonal reservoirs [80]. This ap-

proach uses an annealed approximation, in which the reservoir weight matrix is assumed

to be sampled from the Gaussian orthogonal ensemble (GOE) at each time step.
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1.3.2 Learning and Generalization

By its nature, the material presented in this dissertation is deeply rooted in vast and deep

disciplines of neural networks [9] and statistical learning theory [81]. Learning is a nec-

essary process for a machine to solve a problem without being explicitly programmed for

it. Valiant [82] was the first to formulate a theory of learning from examples in a com-

putational framework with requirements on its computational complexity. However, the

problem of learning had been first considered within the neuroscience community with the

introduction of Rosenblatt’s perceptron model and a discussion of its adaptive and learn-

ing properties [83], and later, in the mathematics community with Novikoff’s convergence

proof of the perceptron model [84]. As a simple example of a learning problem, let us con-

sider the McCulloch-Pitts [85] model of neuron with N inputs x = (x1, . . . ,xn) ∈ X ⊂ Rn

and one output y ∈ {−1,1}. The input-output relation is defined as follows

y = sgn{w>x−b}, (1.5)

where sgn is the transfer function, wT x is the inner product between the two vectors w and

x, and b is the intercept. Geometrically, the neuron divides X into the region where y =+1

and the region where y = −1, with the boundary given by the hyperplane wT x− b = 0.

During learning, a learning algorithm should choose appropriate w and b to find the correct

hyperplane that agrees with a given set of training examples {(x1,y1), . . . ,(xl,yl)}. This

is done by appropriately adjusting w and b after presentation of each example (xi,yi).

Computational learning theory started with Novikoff’s proof [84] showing that if

1. the norm of the training vectors x is bounded by some constant |x|< R,

2. the training data can be separated with margin ρ ,

3. and the training sequence is presented to the perceptron a sufficient number of times,

then after at most N ≤
[

R2

ρ2

]
adjustments of w the optimal hyperplane for the training data

can be constructed. Although Rosenblatt [83] had experimented with perceptrons orga-
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nized in multiple layers, he did not know how to train all the network parameters at the

same time. His solution was to fix all the parameters and only adjust the last layer that con-

nects to the output. The solution to training all the weights in a multi-layer perceptron was

found by Rumelhart, Hinton, and Williams [86] and is popular today under the name error

backpropagation. As evident from the above example, the central goal in learning the-

ory is to find algorithms that can efficiently deduce the functional relation between inputs

and outputs from a finite set of examples in a way that generalizes to the rest of the input

space. A good survey of major challenges, breakthroughs, and historical developments in

learning theory can be found in [81].

1.3.3 Chaos Computing and Computational Power of Dynamical Sys-

tems

Theory of computation consists of analysis of various computation models and their com-

putational power. Each of these models is effectively a discrete-state dynamical system

with different state space size and memory. This naturally raises this question: “Is there

a computer in the heart of every dynamical system?” This question has been analyzed in

the context of various dynamical systems. This is done by carefully analyzing the generic

structure of a given class of dynamical systems and building a mechanism that effectively

simulates the operation of a classical computational model, such as a universal Turing

machine, within the natural dynamics of the system [87]. For instance, an analysis of

simple discrete dynamical systems called generalized shift registers revealed that they are

effectively Turing universal [88, 89]. Koiran and Moore [90] showed that closed-form

analytical maps in one and two dimensions are universal. Koiran et al. [91] discovered

that even piece-wise linear maps in two dimensions are computationally universal. Bran-

icky [92] analyzed computation in ordinary differential equations (ODE) and concluded

that Lipschitz ODEs with as few as three dimensions are universal, while Bournez and

Cosnard [93] proved that general analog continuous-time dynamical systems have super-
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Turing ability because they use reals. Siegelmann [94] also argued that recurrent neural

networks with real weights could provide a substrate for super-Turing computation. All

of these efforts provide insight into the fundamental computational power of dynamical

systems. However, for a particular desired computation, they do not prescribe how one

should build a computer using said dynamical systems.

One of the first experimental examples of computation in dynamical systems was given

in Ercsey-Ravasz and Toroczkai [95], which demonstrated a mapping between the K−SAT

problem and differential equations (DE), in which the system effectively searches for a

solution as it follows a trajectory to one of its attractors and eventually finds the right solu-

tion when it settles into an attractor. They found that although K−SAT is an NP-complete

problem, their implementation always finds the right solution in polynomial time, but with

exponential fluctuation in the system’s energy. Murali et al. [96, 97] showed that coupled

chaotic logistic maps may be programmed to implement arithmetic and logic operations.

In this implementation the system uses initial conditions as an input and its dynamics is

controlled via an external signal to ensure that the system will end in an attractor that

encodes the desired result [98]. This technique, however, requires precise control of the

chaotic dynamics of the coupled chaotic system, which might not always be easy or even

possible. Alternative techniques have been proposed by other authors [99,100] to use cou-

pled complex-valued oscillators for implementing a variety of logic operations in a robust

manner.

1.3.4 DNA Nanotechnology

The medical application of DNA nanotechnology, and in particular DNA-based long-term

health monitoring and management, is an area that could benefit from a physical realization

of RC. Here I give an overview of the field of DNA computing and nanotechnology.

Built on our ability to manipulate the information-carrying capacity of nucleic acid
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molecules, DNA nanotechnology is a rapidly growing field that promises to deliver a wide

array of biomechanical devices that can autonomously operate in a variety of biological

environments [101–103]. DNA nanotechnology can be traced back to the discovery of

sequence-specific recognition of DNA molecules using proteins by Ned Seeman [104],

and his later pioneering work on construction of geometric shapes and mechanical devices

using DNA [105–108].

In recent years, DNA has been established as a versatile programmable matter, ow-

ing to its universal information-processing capability [109] and rich controllable behav-

ior [110]. The first analysis of computation power of DNA was done by Winfree [111],

in which he proved that algorithmic self-assembly is computationally universal. Solove-

ichik and Winfree [112] analyzed the complexity of building a variety of shapes using

the abstract self-assembly model. Several techniques for reducing the complexity of self-

assembly and dealing with errors have been proposed [113–115]. DNA self-assembly has

also been proposed to perform logic operation [116]. The first attempt to use DNA to

solve hard optimization problems was made by Adleman [117]. This demonstrated the

use of massive parallelism and plausibility of performing computation problems using

biomolecules. However, Adleman’s approach is not easily extensible because it requires

monolithic design of the biomolecular reactions to solve a given problem. The largest

problem solved using this approach has been the 20 variable 3-SAT problem [118]. An-

other approach has been to design simple logic gate motifs based on DNA strand displace-

ment or DNAzymes [119,120], and use them to build large-scale logic circuits [121–123].

One of the most intriguing applications of DNA nanotechnology is in medicine [124,

125]. For example, programmed drug delivery has been demonstrated using pH-sensitivity

[126] and DNA-based logic controlled circuits [127]. It has also been demonstrated that

DNA circuits can be designed to reprogram internal reaction pathways of a cell by tar-

geting and changing their local environment through the release of appropriate molecules

[127–129].
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Another promising application of DNA is in long-term high-density information stor-

age, owing to its small size factor, high fidelity, and robust capacity to store digital infor-

mation [130]. DNA-based large-scale digital information storage with associative search

and retrieval capability was first demonstrated in [131] with its postulated impact in med-

ical data storage [132]. Advances in high-speed sequencing have enabled petabyte-scale

DNA-based storage systems [133, 134]. Despite fast sequencing technologies, such mas-

sive storage may require in vitro parallel distributed information processing systems for

efficient information retrieval and modification, which may be possible through advances

in DNA computing [117, 118].

A different approach is to use DNA nanotechnology to implement an existing model

of storage and information processing in distributed systems, such as the Hopfield neural

network [135]. The Hopfield neural network is a popular model of large-scale distributed

information processing and storage in physical systems. Although the implementation of

these networks using chemical kinetics goes back to the early 1990s [136–138], a DNA

implementation was proposed a decade later by introducing a generic scalable design for

implementing matrix algebra using DNA strand displacement [139,140]. This design was

postulated to scale up to billions of neurons; however, a realizable Hopfield network has

been demonstrated with only four neurons [141] using in silico calculations of the correct

interactions between the neurons.

DNA and RNA circuits for higher-order tasks such as digital filters and Fourier trans-

forms [142–145] and classifiers [146] have been proposed. Moreover, software packages

for automated design of DNA circuits have been developed [147–149] and design of a

DNA proportional-integral (PI) controller has been reported [150].

Neural network computation using DNA also has been demonstrated [141], but cur-
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rent implementation lacks training within the DNA circuitry. However, theoretical designs

for such adaptive circuits have been proposed [151, 152]. Although still at early stages,

DNA nanotechnology could give us a new perspective in advanced medical diagnosis and

treatments, such as long-term sensing, and potentially controlling, gene expression pat-

terns over time in a cell. This would require appropriate sensors to detect cell state; for

example, the pH-sensitive DNA nanomachine recently reported by Modi et al. [153] or

other suitable functional DNA structures [154]. This may result in new methods for smart

diagnosis and treatment using DNA signal translators [155–157].

1.3.5 Nano-Scale and Self-Assembled Electronics

In this dissertation, I frequently refer to the potential application of RC in physical com-

putation and cite examples of such attempts. Here, I give a broader context for computing

using unconventional and emerging technologies.

The quantum revolution in the twentieth century, and consequently, our increased un-

derstanding of fundamental properties of matter, led to a vision of building mechanical

devices at the molecular and atomic scale. This is famously reflected in a statement made

in a 1959 speech by the celebrated physicist Richard Feynman [158]: “There is plenty of

room at the bottom.” However, because of various technical difficulties, it has not been

until the twenty-first century that we have learned how to enforce nanowires and carbon

nanotubes into predefined structured patterns [159, and references therein]. Typically,

nanowires and nanotubes are organized into a lattice structure or cross-bar, in which the

intersections show semi-conducting behavior [19, 20]. Xiang et al. [160] demonstrated

that transistors based on nanowires and carbon nanotubes easily outperform metal-oxide-

semiconductor field-effect transistors (MOSFETs) with respect to energy consumption,

fabrication density, and switching delay. For example, a very high-density dynamic ran-

dom access memory (DRAM) at 1011 bits cm−2 was demonstrated in [161], in which a
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160kB memory was fabricated the size of a white blood cell. Another example is atomic

switch networks (ASNs) based on silver nanowires. These were based on a technology

developed by Terabe et al. [162] aimed at reducing the cost and energy consumption of

electronic devices. They can achieve a memory density of 2.5 Gbit cm−2 without any op-

timization, and a switching frequency of 1 MHz.

Recently, techniques have been developed to self-assemble nanowires into irregular

network structures [21, 22]. Sillin et al. [12] combined bottom-up self-assembly and top-

down patterning to self-assemble ASN. These networks are formed using deposition of

silver on pre-patterned copper seeds. They have a three-dimensional structure that contains

cross-bar-like junctions, and can be transformed into metal-insulator-metal (MIM) atomic

switches in the presence of external bias voltage [12]. Nanoscale finite-state machines

based on deterministic bottom-up assembly have also been demonstrated [163].

Major obstacles for using any of the above nanoscale and self-assembled architectures

are design variations, irregular structure, defects, faults, and susceptibility to environmen-

tal factors such as thermal noise and radiation [23]. To overcome these challenges most

approaches to date assume knowledge of the underlying architecture and rely on recon-

figuration and redundancy to achieve programming and fault tolerance [164–168]. There

have been two recent proposals on how to program such devices to perform classification

or logic operations using a “black-box” approach [1,169]. In this model, called a randomly

assembled computer (RAC), a network of interacting nodes with sparse and irregular con-

nectivity is assumed. All nodes are initialized to zero and update their state according

to a global clock, and each node calculates its next state using its transfer function and

connections to other nodes. Three types of external signals (inputs, outputs, and controls)

are connected to randomly chosen nodes. The task is to program the device to compute

the desired output for a given input using a proper control signal. The optimal control

signal can modify the propagation of input across the network such that the input is pro-

cessed as required and the desired result will be ready at the output. The optimal control
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values are computed using simulated annealing. A similar approach was also proposed

by Tour et al. [2], but requires direct manipulation of microscopic structure of the system

using genetic algorithms, which renders the approach impractical. A detailed study of na-

noelectronics revealed that it is significantly more effective to rely on architectures with

physically fault-tolerant devices than to achieve error correction [170]. Finding physically

fault-tolerant phenomena for building computers is currently an active area of research.

1.3.6 Transfer Function Nonlinearity in Neural Networks

The theoretical core of this dissertation is based on the analysis of a model of RC with

an arbitrary reservoir weight matrix and a linear transfer function. The exact analysis of

RC with a nonlinear transfer function is mathematically prohibitive. However, we will

use computational tools to investigate the degree of nonlinearity that helps boost the per-

formance in RC compared with a linear model. In this section, we will provide broader

context for the significance of such a study within the neuroscience and neural network

literature.

McCulloch and Pitts [85] showed that the computational power of the brain can be

understood and modeled at the level of a single neuron. Their simple model of the neuron

consisted of linear integration of synaptic inputs followed by a threshold nonlinearity. Cur-

rent understanding of neural information processing reveals that the role of a single neuron

in processing input is much more complicated than a linear integration-and-threshold pro-

cess [171]. In fact, the morphology and physiology of the synapses and dendrites create

important nonlinear effects on the spatial and temporal integration of synaptic input into a

single membrane potential [172]. Moreover, dendritic input integration in certain neurons

may adaptively switch between supralinear and sublinear regimes [173]. From a theoret-

ical standpoint this nonlinear integration is directly responsible for the ability of neurons

to classify linearly inseparable patterns [174]. The advantage of nonlinear processing at
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the level of a single neuron has also been discussed in the artificial neural network (ANN)

community [175].

1.3.7 Neural Networks with Product Nodes

Product nodes in neural networks emerged with the study of nonlinear presynaptic inte-

gration in biological neurons. In particular, multiplicative presynaptic integration has been

observed in several types of neurons, but has not been fully investigated in the context of

recurrent networks and RC.

In a node with a nonlinear transfer function, the inputs are linearly combined and

passed through a saturating nonlinearity. Another model that achieves nonlinear compu-

tation in a node is nonlinear integration of inputs before applying the transfer function.

Product nodes are a special case of this model, in which the inputs are raised to the power

of the synaptic weight and then multiplied together. The use of product nodes in neural

networks was introduced in [176] in an effort to learn suitable high-order statistics for a

given task. It has been reported that most synaptic interactions are multiplicative [177].

Examples of such multiplicative scaling in the visual cortex include gaze-dependent in-

put modulation in parietal neurons [178], modulation of neuronal response by attention

in the V4 area [177] and the MT area [179]. In addition, locust visual collision avoid-

ance mediated by LGMD neurons [180], optomotor control in flies [181, 182], and barn

owl’s auditory localization in inferior colliculus (ICx) neurons can only be explained with

multiplicative interactions [183].

Another popular architecture which uses product nodes is the ridge polynomial net-

work [184]. In this architecture the learning algorithm iteratively adds groups of product

nodes with integer weights to the network to compute polynomial functions of the inputs.

This process continues until a desired error level is reached. The advantage of the product

node with variable exponent over the ones used in polynomial networks is that instead of
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providing fixed integer power of inputs, the network can learn the individual exponents

that can produce the required pattern [175].

1.4 Significance of This Dissertation

Three major disciplines that benefit from advances in RC are neuroscience, machine learn-

ing, and unconventional computing. In neuroscience, RC represents one of the best models

today to explain short-term memory in the prefrontal cortex; in machine learning, RC is a

computationally efficient way to train a recurrent neural network for accurate chaotic pre-

diction; and in unconventional computing, RC is an approach to compute using a system’s

intrinsic dynamics. In the remainder of this section, I will elaborate on the connection

between RC and each of the said disciplines and how the content of this dissertation con-

tributes to it.

1.4.1 RC in Neuroscience

In theoretical neuroscience, short-term memory is the central feature in RC. Using an-

nealed approximation, linear random orthogonal networks driven by uncorrelated inputs

have been found to hold extensive memory, wherein the capacity of the network to re-

construct τ prior inputs scales linearly with the system size N [80]. The same study also

revealed (through computational tools) that non-orthogonal networks do not have exten-

sive memory. Later in [79], generic recurrent networks with saturating nonlinearity were

analyzed using mean-field approximation and their memory was bounded by
√

N. More

recently, Toyoizumi [185] showed that networks with uniform weights with saturating

nonlinearity tuned to have attractor dynamics can have nearly extensive memory with a

scaling regime of N/ logN. Moreover, super-linear memory has only been observed in

orthogonal networks with sparse input under compressed sensing setup [186]. Notwith-
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standing the search for better memory scaling, an exact evaluation of the memory of a

generic network under a generic input signal has been lacking in the theoretical RC lit-

erature. This dissertation fills this gap. Current theories either focus on a restricted class

of systems, or use an annealed approximation, which ignores the specific structure of a

particular network, or provide an exact solution for a uniformly weighted network. In ad-

dition, they do not consider how the memory changes if input is correlated. The theory

introduced in this dissertation addresses this shortcoming.

1.4.2 RC in Machine Learning

In machine learning, RC is used as a computationally efficient method to train recurrent

neural networks to solve temporal problems, such as chaotic prediction [5]. Since the

premise of RC is that the specifics of the underlying network do not affect the RC’s

computation significantly, many have tried to use different classes of networks, such as

small-world and scale-free networks, to improve the performance of RC on task solv-

ing [37, 39, 45, 48, 71, 75–78]. Choosing the right class of networks as well as adjusting

the spectral properties of the network and the input coefficients are hyper parameter opti-

mizations that have to take place for each dataset and task. Another issue is that although

the power of RC is attributed to its short-term memory, there is no direct relationship

between the short-term memory of the system and its performance in a given task. The

theoretical framework of this dissertation extends the evaluation of memory capacity to an

expected mean squared error (MSE) and worst-case error bound for a given task based on

the spectral properties of the network, the input, and the expected output. As a result, one

can determine exactly how a microscopic and macroscopic change in the structure of the

network, along with changes to task properties, influence the performance of the system.
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1.4.3 RC and Other Recurrent Networks

Several neural network architectures exist for temporal pattern discovery and time series

processing, such as autoregressive networks, time-delayed networks, simple recurrent neu-

ral networks [9]. More recently, long short-term memory network (LSTM) [187] and gated

recurrent neural network [188] have been proposed to learn arbitrary long-term dependen-

cies. Here we briefly compare and contrast these networks.

One of the earliest models for neural-network-based time series processing is the au-

toregressive neural network, or, closely related to it, time-delay networks [9]. In a time-

delay network, input is passed through a tapped delay line which is connected to the hid-

den layer of the network. In a an autoregressive network, the output of the network is

also passed through a tapped delay line and fed to the hidden layer. The hidden layer

combines information from the input and output history which is used to generate the

output. The problem with this architecture is that the length of the delay line is fixed in

advance, which means the hidden layer can only access a predefined number of previous

outputs and inputs. This is called fixed memory depth. Simple recurrent networks, or

Ellman’s networks, fix this problem by considering a fully connected recurrent network

driven by input [9]. These networks do not have the problem of fixed memory depth but

their training is very time-consuming and unstable due to the vanishing and exploding gra-

dient problem [189]. A new Hessian-free optimization has been developed recently that

partially alleviates this problem; however, this algorithm is still computationally expensive

and depending on the training dataset it may not converge while learning arbitrarily long

time dependencies [190].

Long short-term memory network [187] and its variant, gated recurrent neural network

[188], are specialized network architectures with a generic feedforward structure and a

recurrent circuit (called memory cell) that is designed to trap network activations inside it

for arbitrarily long time and provide it to downstream nodes for further processing. These
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architectures are much more robust to the vanishing gradient problem but one has to adjust

the number of memory cells based on the needs of a particular application. To address this

problem neural Turing machines [191] have been proposed which are networks augmented

with virtually infinite memory and a specialized training algorithm to teach the network

how to access the memory.

All of the mentioned architectures require modification to the microscopic structure

of the system during the training, which is not only computationally expensive, but also

infeasible if a physical realizations of these systems were possible in atomic scale, which

is a general issue with nanoscale self-assembled devices. While RC does not have the gen-

erality of these systems due to restricted training, it does provide a way of using transient

states of a dynamical system as a memory without modifying its microscopic structure.

This feature makes RC attractive for physical implementations using emerging technolo-

gies.

1.4.4 RC in Unconventional Computing

Unconventional computing is concerned with building computers from alternative archi-

tectures to von Neuman’s. Recent advances in material science and nanotechnology have

infused unconventional computing with a new wave of possible substrates to work with,

such as self-assembled nanowires, memristors, and DNA. One challenge in using these

new substrates is that structures built from them are hard or impossible to control precisely

and even harder to reconfigure after initial construction [12, 192]. This controllability is

essential to encode, maintain, and manipulate information in these systems to achieve

computation. Achieving controllability in systems where many unreliable parts interact to

achieve computation is central to unconventional computing research.

Neural networks as a model of distributed computing have long been a subject of re-

search in unconventional computing community [3, 135], and RC in particular provides
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an additional advantage that the microstructure of the system does not need to be modi-

fied. Therefore, understanding how the system can be tuned collectively to give suitable

macroscopic properties for computation, and how deviation from this can hurt perfor-

mance is of great interest in RC and its application to unconventional computing. The

framework introduced in this dissertation makes such an investigation possible in a pre-

cise and mathematical way. Although our focus on linear systems is limiting, since many

possible physical implementations of RC behave nonlinearly [12, 193, 194], our frame-

work is still relevant for analyzing photonic implementation of RC, where propagation of

short coherence-length light through the reservoir medium is known to be governed by

linear operators [195]. In principle, in such a photonic reservoir, given the linear operator

governing the reservoir and the task specification, one could analytically compute the op-

timal readout layer without training. Finally, whereas our original design for DNA-based

RC would have required expensive microfluidic setup and circuit design to work prop-

erly [193], here we introduce a new design that solves many of the challenges and could

potentially be realized using buffered strand displacement techniques [196, 197].

1.4.5 Contributions

In this dissertation, I develop a mathematical framework for analytical investigation of

computational properties of linear ESNs. Using this framework I provide the first exact

solution for the memory capacity of ESNs under both uncorrelated and correlated input. I

give the first exact solution to expected error for a given task and a worst-case error bound.

I show that it is possible to analytically reason about the memory and information process-

ing performance of a linear ESN based on the input-output statistics and the spectrum of

the ESN connection matrix.

Using the mathematical framework for linear ESNs, I formulate a way to reason about

nonlinear ESNs. I investigate two types of nonlinearity: (1) ESN with nonlinear transfer
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function and (2) ESN with linear transfer function and nonlinear presynaptic integration.

I show that the recurrent dynamics of the ESN generate higher-order correlation informa-

tion from the smallest possible nonlinearity that significantly enhances the performance

of the ESN. In addition, I prove the stability of ESN with product nodes and show their

application in chaotic prediction.

I investigate a possible design for DNA reservoir computing and computationally show

that it is capable of predicting glucose concentration. This design simplifies previous

attempts in DNA reservoir computing by eliminating the need for a timed microfluidic

system for DNA-based oscillators as the reservoir.

Section 1.4.6 lists the publications that are directly or indirectly based on the material

presented in this dissertation.

1.4.6 Publications

The publication list in this section represents the body of work that I contributed to during

the course of my Ph.D. The work has been done through various collaborations. I have

limited this list to the papers that have been published or are close to publication.
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Benchmarks for Experimental

Evaluation of RC Memory Capacity and

Computational Ability

RC is used for blackbox modeling of dynamical processes with memory. Hence, theoreti-

cal studies of RC focus on understanding its computational abilities in context-dependent

computation, where we are interested in computing some function of an input sequence

u(t), i.e., y(t) = f (u(t),u(t−1), . . . ,u(t−τ)). Therefore, a conceptual distinction is made

in theoretical studies of reservoir computing between the complexity of f and its required

memory depth τ [206].

In this chapter we first motivate what we are interested in studying (Section 2.1) and

then review some of the common benchmarks commonly used to assess RC’s performance

(Section 2.1.1) that have been adopted in the RC literature because of their ability to test

different properties of RC, such as memory, nonlinear processing capacity, trajectory pre-

diction, and regressive computation. We will then motivate our choice of benchmarks

(Section 2.1.2) and describe their details and what they will measure, and we will evaluate
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the performance of the system on these benchmarks (Sections 2.2.1).

2.1 Methodology

The central objective in time series analysis is to discover how the current value or the

future of the time series can be causally described in terms of its history and how such

information can be represented in an efficient way [207–210]. Time series analysis tech-

niques in one way or another seek to discover dependencies between future and the past

of a sequence of data points that constitute the time series. In the neural network litera-

ture, it has been known that discovering long-term dependencies is especially hard [211].

Therefore, our benchmarks for evaluating different architectures and training algorithms

for neural network time series processing should consist of a series of tasks to test if the

architecture and the algorithm can discover and represent long-term dependencies and the

complexity of the function it can compute based on such dependencies [43,49]. Below we

will discuss some of the commonly used benchmarks in neural-network-based time series

processing.

2.1.1 Common Benchmarks

In [49], the authors summarize some of the landmark achievements in recurrent neural

networks in 1990’s and propose a few benchmark tasks to test the state of the art al-

gorithms. In particular, at the time the universal nonlinear approximation properties of

neural networks had been understood well and non-trivial questions about recurrent neural

networks were focused on learning long-term dependencies. Therefore, all of the pro-

posed benchmark tasks are synthetic nonlinear autoregressive systems that generate time

series with long-term dependencies that span from two to 10 time steps ago. The input

to these systems is usually a white noise signal and the output is stochastic as well. Of
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these tasks, NARMA 10 has emerged as a standard benchmark for testing if a network can

learn long-term dependencies. In [5] and [43], the authors used a series of tasks based on

prediction and generation of continuous chaotic signals. Unlike previous autoregressive

tasks, these chaotic signals have deterministic dynamics and time dependencies that far

exceed 10 time steps. In [190] a Hessian-free optimization method for training recurrent

neural network was introduced. The resulting network was compared with long short-term

memory (LSTM) [43, 187] networks on a series of pathological examples to specifically

test for discovering long-term dependencies. Jaeger [212] used the same set of problems

as in [43] to show that RC may solve them as well. These problems included producing

addition and multiplication of two numbers in a sequence, memorizing long bit streams,

and solving XOR on binary sequences. In [14], we showed that it is even possible to de-

compose a single nonlinear Boolean function such as XOR into a circuit with a number of

linear functions such as NAND and have the reservoir compute the final value by includ-

ing a feedback to the reservoir from the output. In addition to the above tasks, memory

capacity and nonlinear memory capacity tasks have been introduced specifically in the RC

community to directly test for the memory depth and nonlinear computation in the reser-

voir [80, 213]. Below, we motivate our choice of tasks for evaluating the performance of

RC in this dissertation.

2.1.2 The Choice of Benchmark

Broadly speaking, the hypothesis behind the working of RC is that the recurrent dynamics

of the reservoir creates a short-term memory, which encodes the input sequence into the

reservoir. This short-term memory is distributed (it can only be recovered by reading all

the nodes and not just a single node), is instantaneous (the input history is encoded in

the state of the reservoir in a single time step), and independent of the initial state of the

reservoir. The readout layer than interprets the states of the reservoir to produce a desired

output.
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In my analysis, I focus on memory and information processing properties of RC and

how they are influenced by the choice of the reservoir. One of the fundamental approaches

to analyze RC is to directly measure the total number of recent inputs it can reproduce

with reasonable accuracy (Section 2.2). I will take the same approach to start my analysis

and develop a framework for exact evaluation of total memory capacity in the network. I

will then extend this framework for cases in which we desire to output a value that is a

non-identity function of the input history. Any input dependent function shall suffice for

this analysis, however we would like this function to have long-term memory temporal

dependencies to really leverage the memory capacity of the RC. Our choice here is the

NARMA10 benchmark (Section 2.2.4), which is a discrete-time stochastic system where

the output at time t is nonlinearly dependent on previous input and output from t − 10.

For the second choice of task solving, I picked the prediction of Mackey-Glass system

(Section 2.2.3). This is a deterministic continuous-time chaotic system with non-vanishing

temporal dependencies and is used for assessing the ability of neural networks to discover

nontrivial long-term dependencies. We will explain the details of these tasks below.

2.2 Tasks

2.2.1 Memory Capacity with Uncorrelated Input

The memory capacity in RC is defined as the total number of recent inputs that can be

reconstructed from the instantaneous state of the reservoir x(t) with reasonable accuracy

[80]. To calculate the memory capacity the reservoir is driven with an input sequence u(t)

drawn from i.i.d. uniform distributions with zero mean 〈u(t)〉 = 0 and variance 〈u2(t)〉.

The desired output for this task is defined as:

ŷτ(t) = u(t− τ), (2.1)
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where τ is the lag for the memory task. The quality of reconstruction is measured by the

coefficient of determination between the reconstructed output y(t) and expected output

ŷ(t) as follows [45, 80]:

m(τ) =
Cov2(y(t), ŷτ(t))

Var(y(t))Var(ŷτ(t))
, (2.2)

The capacity function m(τ) is a curve that at each point is between 0 (for no reconstruction)

and 1 for perfect reconstruction. To make the relationship between m(τ) and number of

recovered inputs concrete, one defines a threshold m(τ)> k (usually k = 0.5) to count the

input at u(t−τ) as recovered. The summation ∑τ m(τ) gives the total memory capacity in

terms of the number of recent inputs recoverable.

2.2.2 Memory Capacity with Correlated Input

Memory capacity of RC is usually analyzed under uncorrelated input [79, 80, 185]. How-

ever, it has been reported that existence of structure in the input can greatly enhance the

memory capacity [186]. In this dissertation, I extend my framework to the calculation

of memory capacity under correlated input and investigate its effects. To this end, I pick

the exponential autocorrelation function, R(τ) = e−ατ with decay rate α . Exponential

autocorrelation arises from linear systems and short-term memory processes [214] and

has been observed in some natural signals [215–217]. It constitutes an autocorrelation

model with nontrivial correlation structure which is simple enough to analyze exactly.

The output is defined as before by Equation 2.1 and the memory capacity is measured

using Equation 2.2.

2.2.3 Mackey-Glass Chaotic Trajectory Prediction

The Mackey-Glass system [218] was first proposed as a model for feedback systems that

may show different dynamical regimes. The system is a one-dimensional delayed feedback
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differential equation and manifests a wide range of dynamics, from fixed points to strange

attractors with varying divergence rates (Lyapunov exponent). This system has been used

as a benchmark task for chaotic signal prediction and generation [5]. It is defined as:

dx(t)
dt

= β
x(t− τ)

1+ x(t− τ)n − γx(t), (2.3)

where β = 2,γ = 1,n = 9.7451,τ = 2 ensure the chaoticity of the dynamics [5]. the

performance is evaluated by calculating the mean-squared error MSE as follows:

MSE =
1
T

T

∑
t=0

(yt− ŷt)
2 (2.4)

where yt is the network output and ŷt is the desired output, and T is the total length of the

output.

2.2.4 Nonlinear Autoregressive System Computation

Nonlinear autoregressive moving average of order 10 (NARMA10) is a classic autore-

gressive task commonly used in benchmarking recurrent neural networks because of its

nonlinearity and long-term temporal dependencies. The task is defined by the following

system:

yt = αyt−1 +βyt−1

n

∑
i=1

yt−i + γut−nut−1 +δ , (2.5)

where n = 10, α = 0.3,β = 0.05,γ = 1.5,δ = 0.1. The input ut is drawn from a uniform

distribution over the interval [0,0.5]. The performance is evaluated using Equation 2.4.
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Memory and Task Solving in ESN, An

Analytical View

Since the introduction of reservoir computing [5,24] to leverage short-term memory in the

transient dynamics of recurrent networks for computation, four major theoretical works

have analyzed short-term memory properties in recurrent networks [79,80,185]. This was

done by defining a memory function m(τ) to measure the ability of the system to recon-

struct input from τ time steps ago, i.e., u(t− τ), from the present system state x(t). The

integral of this function, i.e., ∑τ m(τ), is called the memory capacity. The short-term mem-

ory of orthogonal networks with linear transfer function was analyzed under uncorrelated

input signal u(t) and annealed approximation [80]. A regime of extensive memory was

identified in these networks, i.e., the regime where the total memory scales with the size

of the network O(N). The authors reported discrepancies between analytical and numeri-

cal results because the annealed approximation cannot account for the correlation between

higher powers of connection matrices. In numerical studies, they also observed a lack of

an extensive memory regime for non-orthogonal networks. The extensive memory regime

was rediscovered in [79] by calculating how much Fisher information the system states

x(t) retain from the inputs u(t−τ). In addition, the authors showed that saturating nonlin-
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earity disrupts the extensive memory regime and that the memory capacity scales with
√

N.

In [186], the memory capacity of linear orthogonal networks was shown to exceed O(N)

for sparse input sequences. Later, it was shown that in networks with identical weights and

saturating transfer function, with enough nonlinearity to ensure attractive states, an error

correction property emerges wherein the decaying past values are corrected due to the ex-

istence of attractors. In such a network, the memory capacity scales with N/ log(N) [185].

In this chapter, I review the core results of this dissertation. My approach to ana-

lyzing the memory and information processing in the reservoir is to derive an algebraic

expression for the linear regression equation of the readout layer (Equation 1.3). My fo-

cus is not on finding the best architecture or the memory scaling regime, but on deriving

an expression for exact evaluation of network performance for a given task. The expres-

sion will enable determination of task performance based on the properties of the given

network and the task itself, viz., network and signal spectra. This approach will bridge

the existing gap between task performance and memory capacity in RC and allow one to

ask precise questions about how the network performance for a given task depends on the

specifics of a given network structure. While the linear transfer function assumption is

a limitation of our analysis, advances in understanding the information processing in lin-

ear systems are nevertheless relevant, even for physical implementations of RC systems,

e.g., photonic reservoir with short coherence-length light source and linear-rectifier feed-

back [195]. I understand this approach is in contrast from the explanation of computation

in RC through interpretation or simulation arguments that is usual in theoretical computer

science [94, 219–221]. Therefore, I dedicate Section 3.1 to justify this approach. I then

introduce the general structure of my mathematical framework (Section 3.2) and proceed

to apply the framework to analytically evaluate the reservoir on the memory and signal

processing benchmark tasks (Sections 3.3, 3.4, and 3.5). I end the chapter with an anal-

ysis of the effect of the structure of the reservoir on the benchmark results (Section 3.6),

followed by a discussion of the results (Section 3.8).
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3.1 The Choice of Analysis

Siegleman and Sontag [220] showed for the first time that the class of fully connected

recurrent neural networks with a sigmoid activation function is a universal Turing machine.

Their proof is based on a simulation argument in which they designed the structure of the

network to simulate a counter machine, which is equivalent to a Turing machine. This

type of simulation argument is commonly used in theoretical computer science to show

the expressive power of a mathematical structure [222]. However, such arguments do not

consider how the structure is used by a training algorithm to achieve some function. On

the other hand, neural networks and other learning machines are used for their ability to

learn and generalize, a behavior that emerges from the operation of a learning algorithm on

the network architecture [9]. It is often difficult or impossible to analyze the operation of a

learning algorithm exactly. However, it is possible to construct a series of hypotheses from

the computer science perspective and test them against the behavior of a certain trained

neural network. Yet, such arguments give us at best an interpretation of what a learning

machine is doing, and in the case of RC will result in interpretations that may be confusing.

For example, the readout layer of RC can be trained to compute the XOR (parity) function

over a sequence of input bits (Section 2.1.1). It is tempting to conceptualize the XOR

operation in this case as a modulus 2 of summation of a sequence of bits and therefore the

reservoir is counting the bits in its nonlinear dynamics. This interpretation would mean

that since the only adaptive part of RC is the output layer, the network is able to count

the number of zero and one bits in a given interval of the input sequence. However, this

explanation does not work because the same reservoir can be used to solve the XOR task

over different lengths of input with any time lag (given a large network). In fact one can

change the task and train the output to compute any other function of the input using the

same reservoir. Then would that mean that the reservoir is computing all possible functions

over the input history and the readout layer is only picking out one of them?
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Here I ask a different question: since the output is generated by the readout layer from

the reservoir states, why don’t we analyze what the readout layer does? In this dissertation,

we aim to give a mathematical description of what exactly the reservoir looks like to a

linear readout layer.

3.2 Core Results

Here we describe the general setup for our core results. Derivations for 1-dimensional and

N-dimensional systems as well as validation of calculations are given in Appendix A.

Consider a discrete-time network of N nodes. The network weight matrix Ω is a full-

rank real N×N matrix with spectral radius λ < 1. A time-dependent scalar input signal ut

is fed to the network using the input weight vector ω drawn from some distribution, e.g.,

a Gaussian or uniform distribution [35,37,206]. The evolution of the network state xt and

the output yt is governed by

xt+1 = Ωxt +ωut , and (3.1)

yt+1 = Ψxt+1, (3.2)

where

Ψ =
(
XXT)−1 XŶT (3.3)

is an N-dimensional column vector calculated for a desired output ŷt . Without loss of

generality we are restricting ourselves to scalar input and output.

Here X = [xit ] = [x(0)| . . . |x(T )] represent the system states in time. We denote the

desired output by Ŷ = [y(0)| . . . |y(T )], and T is the total length of input time series. In

practice it is sometimes necessary to reguralize the readout weights:

Ψ =
(
XXT + γ2I

)−1 XŶT, (3.4)
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where γ is a regularization factor that needs to be adjusted depending on Ω,ω , and ut

[206]. Calculating Ψ for a given problem requires the following input-output-dependent

evaluations (Section A.4):

XXT =
∞

∑
i, j=0

ΩiωRuu(i− j)ωT(ΩT) j, and (3.5)

XYT =
∞

∑
i=0

ΩiωRuŷ(i), (3.6)

where Ruu(i− j) = 〈utut−(i− j)〉 and Ruŷ(i− j) = 〈ut ŷt−(i− j)〉 are the autocorrelation of the

input and the cross-correlation of the input and target output. This may also be expressed

in terms of the power spectrum of the input and the target [205], but the two derivations are

dual with respect to the Fourier transform, therefore I will proceed with the representation

introduced here.

The performance can be evaluated by the mean-squared-error (MSE) as follows:

〈E2〉=
〈
(ŷ(t)− y(t))2

〉
= ŶŶT− ŶY (3.7)

= ŶŶT− ŶXT (XXT)−1 XŶT. (3.8)

The MSE gives us an upper bound on the instantaneous squared-error through the

application of Markov inequality [223]:

P
[
(ŷ(t)− y(t))2 ≥ a

]
≤ 〈E

2〉
a

. (3.9)

This upper bound is independent of the distribution of u(t). Intuitively, this means that

the probability of error at time t being larger than a constant a is always less than or equal

to the average error divided by a. The existence of a worst-case bound is important for

engineering applications of RC.

42



Chapter 3. Memory and Task Solving in ESN, An Analytical View

3.3 Memory Capacity for Correlated Inputs

In Appendix A I exhibit a mathematical framework for analyzing the memory of ESN

with linear activation function and arbitrary weight matrix Ω and input vector ω . I also

validated the theory by comparing both the raw values and memory function with several

system sizes and spectral radii for uncorrelated input. Here we focus on a minimal ESN

model that consists of a uniform ring with all identical weights λ . This is a circulant ma-

trix with spectral radius λ . This model was first introduced in [48] to investigate the role

of randomness in ESN, and it was reported that this simple deterministically instantiated

network achieves similar results to a random reservoir. Furthermore, this model lets us

control the reservoir using just two parameters: the number of nodes N and the spectral ra-

dius λ . In Section 3.6 we will systematically deviate from this regular structure to analyze

the effect of structure on the performance of the reservoir.

Here, I will test our framework on this regular ESN to calculate memory capacity un-

der correlated input and later (Section 3.4 and 3.5) I will apply it to compute the expected

error of the system on nonlinear autoregressive and chaotic prediction problems. I com-

pute the memory function and the total memory of the ESN described in Section A.4 for

exponentially correlated input where Ruu(τ) = e−ατ . For justification of memory function

and the exponentially correlated input refer to Section 2.2.1. The total memory of the

system is given by the following summation over the memory function [80]:

∑
τ

m(τ) = ∑
τ
(YXT)τ(XXT)−1(XYT)τ , (3.10)

where Y is the input with lag τ , ut−τ . The term (YXT)τ(XXT)−1(XYT)τ in this summa-

tion is equivalent to Equation 2.2 written using the components we have computed and

calculates the total number of most recent inputs to the reservoir that is recoverable from

the reservoir state by an optimal linear readout layer. The notation (YXT)τ means the

desired output is input from τ time steps ago.
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Computing XXT requires the evaluation of:

XXT =
∞

∑
i, j=0

ΩiωRuu(i− j)ωT(ΩT) j. (3.11)

By applying some linear algebra (Appendix A.5) we can show that:

XXT = UBUT(I− e−αΩT)−1

+(UBUT(I− e−αΩT)−1)T

−UBUT. (3.12)

Here, the columns of U are the eigenvectors of Ω, d = (di) is the column vector containing

the eigenvalues of Ω, Λ = U−1ωωTU−1T
, and B is an N×N matrix whose elements are

given by Bi j = Λi j
(
1−did j

)−1. The first and second term in this equation calculate the

contributions for elements of XXT, where i ≥ j and i ≤ j, respectively and the last term

corrects for the double counting of the diagonal elements, where i = j.

The covariance of the network states and the expected output is given by:

XYT
τ = ∑

i
ΩiωR(|i− τ|) = ∑

i
Ωiωe−α|i−τ|. (3.13)

For α → ∞, the signal becomes i.i.d. and the calculations converge to the formula

developed in Section A.2.

To validate our calculations, we use a network of N = 20 nodes in a ring topology

and identical weights. The spectral radius λ = 0.9. The input weights ω are created by

sampling the binomial distribution and multiplying with 0.1. The magnitude of the input

weights does not affect the memory and the performance in linear systems and therefore

we adopt this convention for generating ω throughout the paper. Note that there is only

a single uniform ring with a fixed N. This choice constrains the effect of variability due

to structure. The effect of structural variability will be discussed in Section 3.6. We

also assumed α = 0.05, the number of samples T = 30,000, washout period of 5,000

steps, and regularization factor γ2 = 10−9. To generate exponentially correlated input
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(a)

(b)

Figure 3.1: (a) Agreement of analytical and empirical memory function for different λ .
(b) Scaling of memory capacity with increasing structure in the input.

we draw T samples ui from a uniform distribution over the interval [0,1]. The samples

are passed through a low-pass filter with a smoothing factor α [214]. We normalize and

center ut so that 〈u(t)〉t = 0 and 〈u(t)2〉t = 1. The resulting normalized samples u(t) have

exponential autocorrelation with decay exponent α , i.e., Ruu(τ) = e−ατ . Figure 3.1(a)

shows good agreement between result of the single-instance calculation of the analytical

and the empirical memory curves m(τ) for different λ .

We also study the memory capacity for different levels of structure in the input sig-

nal. Here, we use simple ring topologies with λ = 0.9 and vary the decay exponent α ,
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Figure 3.1(b). For a fixed system size, decreasing α increases the correlation in the input,

which subsequently increases the memory capacity. There are two special cases that can

be analyzed from the equations of memory under exponentially correlated inputs. First,

when α → ∞ the input approaches i.i.d., a case that has been extensively analyzed be-

fore [79, 80] and it is known that under this condition the network can only remember up

to N previous inputs. At the other extreme when α → 0 we have a constant signal which

the network can remember infinitely. As α goes from ∞ to 0 the signal will gradually have

more redundancy which the network exploits to recover longer sequences.

3.4 Solving a Nonlinear Autoregressive Problem

Now we turn to the NARMA10 example previously described in Chapter 2. Several pre-

vious studies have reported good performance on this synthetic task using ESN [5, 15, 37,

39, 48]. Here we show that we are able to predict the expected error analytically. Here the

evaluation of XXT follows the same calculation as for the memory capacity for the uniform

distribution. For XYT we must estimate the cross-correlation of yt and ut and substitute

it into Equation A.43. We used a sequence of 1,000,000 time steps to get an accurate

estimation of the cross-correlation of input and output. We plug this cross-correlation in

Equation 3.6 to evaluate our analytical derivation. For simulation we used 5,000 time

steps to train the readout layer and 5,000 time steps for testing. Figure 3.2(a) shows the

output of a network of N = 20 nodes connected in a uniform ring topology with λ = 0.9.

Once again there is no averaging in these results due to uniqueness of topology. The out-

puts of the network trained with numerical simulation (red curve) and analytically (yellow

curve) are in agreement. The outputs agree with the correct output of the NARMA10

system (blue curve). To illustrate the robustness of our analytical results we repeat this ex-

periment with randomly generated networks. Here the networks are fully connected with

random weights drawn from a normal distribution with zero mean and standard deviation
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1, then scaled to have spectral radius λ . We then measure the error between the output of

the system produced with analytical calculation of the readout weights and readout weights

from numerical simulation. Figure 3.3 shows the log of mean-squared-error between the

output of the reservoir produced analytically and through simulation for different system

size N and spectral radius λ averaged over 10 instantiations of RC. The large negative val-

ues over all λ and N indicate that the raw error values are close to zero. In conclusion, we

can compute the expected optimal readout layer analytically and therefore predict the per-

formance of the system directly from the reservoir structure. The cross-correlation of the

system used for the calculation is shown in the inset. Figure 3.2(b) shows the worst-case

error bound for this system and the empirical errors generated from the system output,

showing that the bound we derived is tight.

3.5 Solving A Chaotic Prediction Problem

For the NARMA10 example above, the output is a stochastic function of inputs and the

inputs are uncorrelated. Moreover, the cross-correlation of the input and output shows

significant correlation up to about τ = 20. Here, we use another popular benchmark, the

prediction of a chaotic Mackey-Glass system (Chapter 2.) This system is continuous, de-

terministic and shows chaotic trajectory with non-vanishing input autocorrelation. Again,

we will evaluate Equation 3.5 and Equation 3.6, where for predicting τ steps ahead we

have XYT = ∑∞
i=τ ΩiωRuŷ(i). We validate our result by calculating the optimal readout

weights for predicting τ = 10 step ahead for this time series. We use a ring topology

with N = 100 and spectral radius λ = 0.9, γ2 = 0.0001. The autocorrelation and cross-

correlation were evaluated on a discretized Mackey-Glass time series with 10,000 steps

and 500 washout time steps were used. As before, our goal here is to show that our analyt-

ical method can exactly estimate the optimal readout layer given by numerical evaluation

of the regression equation for the readout layer. Figure 3.4(a) shows the prediction result
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(a)

(b)

Figure 3.2: Target output and system output generated with analytical weights and trained
weights for the NARMA10 task (a), the worst-case bounds using the Markov inequality,
with the same plot on a log-log scale in the inset (b).

for 10 time steps ahead for the Mackey-Glass system (Section 2.2.3) and the inset shows

the autocorrelation at different lags. The autocorrelation is characterized by a long cor-

relation length evident from non-zero correlation values for large τ (Figure 3.4(b)). This

long memory is a hallmark of chaotic systems. Since we use a uniform ring topology, a

single instance is representative of the network class and no averaging is required. To test

robustness of our validation we repeat the experiment with a randomly generated network

drawn from a normal distribution with mean zero and standard deviation 1 and rescaled so

as to have spectral radius λ . We systematically study different network sizes and spectral
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Figure 3.3: Mean-squared-error between analytical and simulated output of reservoir for
different system sizes and spectral radii showing the robustness of our analytical methods
over different regions of parameter space.

radii and average the results over 10 instantiations of the network for each configuration.

We measure the log of mean-squared-error between output of the network with analytical

readout weights and numerically simulated readout weights. Figure 3.5 shows the result

of this experiment. The large negative values show the raw error values are close to zero

and our analytical method is robust to variations in the topology.

3.6 The Effect of Network Structure

The effect of randomness and sparsity of reservoir connectivity has been a subject of de-

bate [206]. To study the effect of network structure on memory and performance, we

systematically explore the range between sparse deterministic uniform networks and ran-

dom graphs. We start from a simple ring topology with identical weights and induce noise

to ` random links by sampling the normal distribution N (0,1). We then re-evaluate the

memory and task solving performance keeping the weight matrix fixed. We evaluate sys-

tem performance on a memory task with exponentially correlated inputs, the nonlinear

autoregressive NARMA10 task, and the Mackey-Glass chaotic time series prediction. We

49



Chapter 3. Memory and Task Solving in ESN, An Analytical View

(a)

(b)

Figure 3.4: Target output and system output generated with analytical weights and trained
weights for the Mackey-Glass 10 step ahead prediction task (a), the worst-case bounds
using the Markov inequality, with the same plot on a log-log scale in the inset (b).

systematically explore the effects of λ and ` on the performance of the system for fixed

system size. For the memory and NARMA10 tasks we set N = 50, and for the Mackey-

Glass task N = 100. The length of data for each tasks is the same as used before in

corresponding sections. The results are averaged over 100 runs for memory and Mackey-

Glass and 1000 runs for NARMA10 (NARMA10 is an unstable system and needs many

samples to generate smooth plots).

Figure 3.6(a) shows the resulting total memory capacity normalized by N as a function
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Figure 3.5: Mean-squared-error between analytical and simulated output of reservoir for
different system sizes and spectral radii showing the robustness of our analytical methods
over different regions of parameter space.

of increasing randomness `
N2 for different spectral radii λ . The expected theoretical total

memory capacity for an uncorrelated signal is ∑τ m(τ)/N = 1. Here the system exploits

the structure of the input signal to store longer input sequences, i.e., ∑τ m(τ)/N > 1. This

effect has been studied previously under annealed approximation and in a compressive

sensing setup [186]. However, here we see that even without the sparse input assumption

and L1 optimization in the output (a computationally expensive optimization used in com-

pressive sensing) the network can achieve capacity greater than its degrees of freedom N.

Figure 3.6(b) and (c) show the error in the NARMA10 and the Mackey-Glass prediction

tasks. Here, best performance is achieved for a regular architecture. A slight randomness

significantly increases error at first, but additional irregularity will decrease it. This can be

observed for the NARMA10 task at λ = 0.6 and for the Mackey-Glass prediction task at

λ = 0.9.

The reduced performance in irregular networks can be explained by the distribution

of eigenvalues of the weight matrix and their effects on the memory of the system. These

eigenvalues define the rate of information decay along the corresponding dimensions of the

state space of the reservoir. To analyze this we consider two general cases of completely

regular structure, a simple ring and a random network. In a regular network, the eigen-
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Figure 3.6: Total memory capacity (a), NARMA10 error (b), and Mackey-Glass prediction
error (c) as a function of λ and increasing network irregularity. The best results in all cases
are for completely regular networks.

values of the weight matrix are equidistant points on the perimeter of a circle with radius

|λ | on the complex plane. In this case all eigenvalues have identical magnitude, which

means that the information decays at uniform rate along all dimensions. For a random

network, the eigenvalues fill the complex plane uniformly and therefore each dimension

has a different decay rate. Because information decays at different rates along different

dimensions the signal loses coherence and therefore the readout layer cannot reconstruct

the desired signal perfectly.
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3.7 Memory and Computation in RC and Related Models

An early neural model for time series processing was the time-delay neural network [9].

This model was capable of creating an internal representation by integrating weighted

delayed version of their inputs according to the backpropagation algorithm. However, it

suffered from fixed memory depth, i.e., the number of delays has to be predefined. Re-

current neural networks were proposed to solve the problem of fixed memory depth [9].

However, their training requires backpropagation through time, which is not only costly

but is unstable due to vanishing and exploding gradient problem [189]. Reservoir com-

puting solves this issue by initializing a recurrent network as a reservoir in a stable state

near the edge of chaos and training only a linear readout layer on the emergent short-term

memory of the reservoir [5]. The linearity of the readout layer and the fixed reservoir make

an efficient closed-form calculation of the readout weights possible. On the other hand, the

number of previous inputs that can be accessed in the short-term memory is limited and

depends on the number of nodes in the reservoir and the spectral radius of the reservoir.

In this thesis, I showed that even the correlations accessible to the readout layer during

task solving decay exponentially with the correlation lag τ . This means that despite the

fast training, RC cannot use correlations at arbitrary timescale for a fixed system size and

spectral radius. Moreover, for a fixed reservoir size and spectral radius, dependencies on

previous inputs with lag will increase the values of the readout weights as an exponential

of τ [80]. This will particularly limit the application of RC for physical devices where the

weights are encoded using physical material. Increasing the spectral radius could increase

the memory depth of the reservoir at the cost of approaching the critical threshold where

the integrals of XXT becomes divergent. Recently introduced architectures such as the

LSTM [187] could, in principle, solve the memory limit problem. However, their training

is computationally expensive and requires large-scale parallel processing, such as GPU

clusters. In summary, RC could provide an efficient alternative for time series processing

to time-delay networks and LSTM, if the correlation lags that are required for the task

53



Chapter 3. Memory and Task Solving in ESN, An Analytical View

are finite, but RC is not suitable for tasks with unknown correlation lags that could be

arbitrarily long. In terms of the performance in task solving, if a mean-squared objective

function is used and the model structure allows the required memory depth for the task,

then time-delay networks, RC, and LSTM should result in the same error, provided that

a proper schedule for the learning rate is used to ensure convergence to the solution in

LSTM and time-delay networks.

3.8 Discussion

Although memory capacity of ESNs has been studied before, its learning and generaliza-

tion ability in a task solving setup has not. Our derivation allows us to relate the memory

capacity to task-solving performance for arbitrary ESNs and reason about their general-

ization. In empirical experiments with systems presented here, the training and testing are

done with finite input sequences that are sampled independently for each experiment, so

the statistics of the training and testing inputs vary according to a Gaussian distribution

around their true values and one expects these estimates to approach their true values with

increasing sample size. Hence, the mean-squared-error 〈E2〉, which is linear in the input

and output statistics, is also distributed as a Gaussian for repeated experiments. By the law

of large numbers, the difference between testing and training mean-squared-error tends to

zero in the limit. This explains the ability of the system to generalize its computation from

training to test samples.

The computational power of reservoir computing networks has been attributed to their

memory capacity. While their memory properties have been studied under annealed ap-

proximation, previously no direct mathematical connection to their signal-processing per-

formance had been made. We developed a mathematical framework to exactly calculate

the memory capacity of RC systems and extended the framework to study their expected

and worst-case errors on a given task in a supervised learning setup. Our framework gives
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us an explanation for the different behavior observed in a delay line with an adaptive read-

out layer vs. reservoir computing and invalidates the claim that reservoir computing is

“just” a regression on a memory. We have seen that the reservoir performs computation.

In fact from the point of view of a linear readout layer, the reservoir in RC does not store

raw input values, but stores the values based on how they are correlated with each other.

Our result confirms previous studies that the upper bound for memory capacity for uncor-

related inputs is N. We further show that the memory capacity monotonically increases

with correlation in the input. Intuitively, the output exploits the redundant structure of

the inputs to retrieve longer sequences. Moreover, we generalize our derivation to task-

solving performance. Our derivation helps us reason about the memory and performance

of arbitrary systems directly in terms of their structure. We have seen that unlike the claim

in [48], linear ESNs cannot have a λ -independent memory lower bound. We showed that

networks with regular structure have a higher memory capacity but are very sensitive to

slight changes in structure, while irregular networks are robust to variation in their struc-

ture.
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Conclusion

Computing with physical systems is a perennial topic of computer science research. Re-

cent advances in materials science and nanotechnology have made this academic topic

realizable. Meanwhile, the limitations in scaling current silicon technology have created

commercial motivation to research possible alternatives to von Neumann-based comput-

ing. Research in unconventional computing paradigms must develop new ways of concep-

tualizing computation and characterizing its power. One way of using physical systems

for computation is through their characterization as dynamical systems. This enables re-

searchers to tap into one of the most prevalent sources of computation in nature, called the

short-term memory. To use short-term memory an excitable system is driven with a tem-

poral input. The dynamics of the system encodes the temporal input for a short period of

time. A readout layer can extract this information and use it to generate a desired output.

The coefficients, or weights, of the readout layer are computed with a closed-form linear

regression, which is efficient. This approach was developed in the neural networks com-

munity (under the name of reservoir computing) as a way of modeling the prefrontal cortex

and also a solution to avoid computationally expensive training of recurrent neural net-

works. Despite promising practical applications the theory of reservoir computing lacked

mathematical development. Two prominent efforts to characterize reservoir computing
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used mean-field approximation to compute the memory of the system. In this disserta-

tion, I developed an exact mathematical framework to compute the memory of a standard

model of reservoir computing, ESN. I generalized the framework to compute expected er-

ror as well as a worst-case error bound of ESN for generic temporal tasks. I validated this

method by applying it to memory tasks for uncorrelated and correlated inputs, a chaotic

prediction task, and a nonlinear autoregressive task. I further showed that the method can

be insightful for reasoning about the performance of nonlinear ESN. I experimented with

two types of nonlinearity: (1) nonlinear presynaptic integration and (2) nonlinear trans-

fer function. I showed that, as expected according to the insights from the mathematical

framework, even a small nonlinearity in the system gives the ESN almost the same power

as a fully nonlinear ESN with a tanh transfer function.

This dissertation has contributed to understanding the properties of short-term mem-

ory in neuroscience and its application in machine learning and unconventional computing.

While the current limitation of the work is that it only applies to linear systems, the con-

tribution is still important and relevant to physical implementation of RC based on signal

propagation through a linear reservoir, such as the photonic RC. Our framework makes it

possible to exactly evaluate the optimal readout weights and therefore performance and

memory properties of an arbitrary recurrent network, for arbitrary inputs and any given

task, and gives an estimate for the worst-case error on the task. In addition, one can use

the presented framework to exactly determine how memory and performance in the system

change with respect to changes in the structure of the network. Moving beyond the current

work, there remain crucial questions to be answered in RC. For example, what are the

promising approaches to investigate memory and information processing capacity in non-

linear networks? Can such a framework give an explicit relation between the performance

and the structure of the system? Will such a framework give us a way to build a network

through a constructive or an adaptive algorithm to achieve minimum required performance

for a given task? Is it feasible for RC to be applied to large-scale machine learning prob-

lems and what would be the real benefits of using RC in the field of big data and predictive
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analysis? On a deeper theoretical level, one can ask what “short” in short-term memory

in RC means. Clearly, the memory of past inputs decays over time, but RC particularly

thrives in chaotic prediction problems, which are by definition characterized by long corre-

lation lengths. Therefore, “short” must simply allude to time-scales that are not arbitrarily

long, or in another word finite correlation length. In this case from the automata theory

perspective, can we say that RC is equivalent to a finite state machine and can recognize all

regular languages? Additionally, if one allows adaptive system size, will RC become akin

to a nondeterministic Turing machine and able to recognize context-sensitive languages?

Moreover, there are versions of RC that include feedback from the output to the reservoir.

This induces a NARX-like architecture [219, 221], which has been shown to be Turing-

universal. If such RCs are truly Turing universal, which is an open question, how can

one train them to implement any given algorithm? Will such an algorithm help advance

the current state-of-the-art in recurrent neural networks, which requires highly specialized

architectures, such as gated networks [188] and LSTM [187], for the training algorithms

to work properly. This dissertation shed light on some of the unknowns in the field of RC,

such as expected performance on a given task, worst-case performance, and the effect of

structure on the task performance. Although the formulation only applies to linear sys-

tems, in principle it can be used to describe the properties of physical reservoir computing,

e.g., propagation of short coherence-length light through the reservoir medium and I hope

that my results can help illuminate the path to answering some of these questions in the

future.

T
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A Mathematical Framework for

Studying the ESN

My aim in this chapter is to use ESN with linear transfer function to develop a theoretical

framework that allows us to form an expectation about the performance of RC for a desired

computation. To demonstrate the power of this framework, I will apply it to the problem

of memory curve characterization in ESN. The ESN is a simple and tractable model to

study reservoir computing.

Here, I will use the memory capacity task as a simple example and derive an equa-

tion for the optimal readout weights for a one-dimensional reservoir based on the reservoir

feedback weight, the input weight, and the input statistics. The one-dimensional exam-

ple helps to understand the mechanics of the framework without having to deal with the

complexities of matrix multiplications. I will then build on the one-dimensional exam-

ple to derive the optimal readout weights for N-dimensional reservoirs. Generalizing the

framework to N dimensions employs advanced linear algebra to get analytical solutions to

matrix multiplications. In both one-dimensional and N-dimensional cases I have assumed

an uncorrelated input signal for simplicity. I will compare the results of the analytical
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calculations with numerical results for validation of my method. I hope that these two ex-

amples give the reader a good perspective for how the remaining results are derived. The

remainder of the chapter will introduce the generic structure of the mathematical frame-

work in abstract and succinct terms. I will start with the regression equation for the optimal

readout weights for an arbitrary task and show it can be rewritten in terms of the structure

of the reservoir and correlation structure of the input and output. I will then show that my

derivation can be used not only to calculate the memory capacity, but also to derive an

expected error for a given task. I will then show that the same framework can be used to

derive a worst-case bound on the expected error for the task.

A.1 Analytical Solution to the Memory Curve: A One-

Dimensional System

The method I developed to perform the calculations uses many steps and observations

about the structure of the system and its dynamics. To demonstrate the framework, I

will first explain how the calculations can be done in a one-dimensional system. This will

permit the representation of the structure of the system as just scalars, which is much easier

to work with and is sufficient as a pedagogical device. After developing our intuition about

the logic of the derivation I will show the same process for an N dimensional reservoir in

Section A.2.

A.1.1 Model

Let us review the description of the system and the memory curve. We put the time t as

the subscript for aesthetics. The model is a linear ESN with a reservoir of one node. The

reservoir connectivity is a feedback connection from the reservoir node to itself. This is

denoted by a scalar Ω, where |Ω| < 1. This is a necessary condition for the stability of
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the system. A time-dependent scalar input signal ut is fed to the reservoir using the input

weight ω , also a scalar. The time-dependent reservoir states are denoted by the scalar xt .

The time evolution of the reservoir xt is governed by

x(t +1) = Ωx(t)+ωu(t), (A.1)

and the output yt is given by

y(t +1) = Ψx(t +1), (A.2)

where Ψ is a scalar calculated for a desired output ŷt by:

Ψ = 〈XXT〉−1〈XŶT〉. (A.3)

Here X is a row vector whose columns are the states of the reservoir in time and the

rows of ŶT are the corresponding desired output at each time step. The memory function

for the system is defined as the coefficient of determination between the output of the

system and its τ past inputs:

MCτ =
Cov2(ut−τ ,yt)

Var(ut−τ)Var(yt)
, (A.4)

where ut is the input at time t, ut−τ is the corresponding target output, and yt is the output of

the network given the optimal Ψ. The inputs ut are drawn from identical and independent

uniform distributions in the range [−1,1]. The intuition behind this formula is to take the

τ-delayed input ut−τ and see how well the system can reconstruct it.

A.1.2 Computing 〈XXT〉

To calculate the covariance component we first note that we can rewrite Equation A.1

explicitly in terms of the input history and initial condition of the system

x(t +1) = x0

t

∑
i=0

Ωi +
t

∑
i=0

Ωiωut−i. (A.5)
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Figure A.1: The summation in Equation A.27 can be visualized as summing the terms
qi, j(t) along three axis of i, j, and t.

However, since |Ω| < 1 the contributions of the initial state will vanish over time and we

are left with:

x(t +1) =
t

∑
i=0

Ωiωut−i. (A.6)

Now, we can write the covariance component as:

〈XXT〉= 〈x2(t)〉Tt=0 =
1
T

T

∑
t=0

x2(t) (A.7)

=

〈
t−1

∑
i=0

t−1

∑
j=0

Ωi+ jω2ut−iut− j

〉T

t=0

(A.8)

=
1
T

T

∑
t=0

t−1

∑
i=0

t−1

∑
j=0

Ωi+ jω2ut−iut− j (A.9)
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Figure A.2: The summation along the i axis.

To see how we can calculate Equation A.9 analytically it helps to visualize the formula as

summing along three different axis of i, j, and t. Figure A.1 illustrates this. Let

qi, j(t +1) = Ωi+ jω2ut−iut− j, (A.10)

〈XXT〉= 1
T

T

∑
t=0

t−1

∑
i=0

t−1

∑
j=0

qi, j(t),T → ∞. (A.11)

Our task is to calculate the sum of qi, j(t) along the three axes of the cube. The sum over

i and j is the sum of qi, j(t) in one horizontal layer, and then we sum over all the layers.

Normally, we would be able to perform this sum using the power series identities along

the i, j, and then t axis in order. However, in this case we face a complication. To see this,

let us look at the sum along the i axis (Figure A.2). We now expand the values of qi, j(t) to

see that they consist of a power sum, in which each term is multiplied by a constant and a

stochastic part given by the input signal at the corresponding time step (Figure A.3). This

stochasticity of each term prevents us from performing the sum along the i axis. Similarly

we cannot perform this sum along the j axis. Note that this sum corresponds to the sum of
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terms on a single layer of the cube, which corresponds to the instantaneous cross-product

of the reservoir x2
t .

Ω 6ω 2u4u4

Ω 7ω 2u3u4

Ω 8ω 2u2u4

Ω 9ω 2u1u4

∑
i

Figure A.3: Expanding the values along the i axis. The blue color are constants, the black
shows the power series, and the red shows the stochastic factor.
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Figure A.4: The summation along the t axis.

However, if we look at a single column along the t axis (Figure A.4), we find that if we

expand the values of qi, j(t), the terms of the power sum in the column consist of ut−iut− j

multiplied by a constant factor (Figure A.5). Note that for each i and j this summation

gives us the δ -delayed auto-covariance of the input signal. Therefore, we have found

a trick to perform the sum vertically along each column of the cube. This leaves us to

calculate the sum over i and j.

The algebraic representation of this trick is aligning the terms of the summation so we
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Ω 5ω 2u2u1

Ω 5ω 2u3u2

Ω 5ω 2u4u3

Ω 5ω 2u5u4

∑
t

Figure A.5: Expanding the values along the t axis. The blue color are constants, the black
shows the multiplication of input with a delayed version of itself.

have terms with equal powers of Ω on each column as follows:

〈XXT〉= 1
T

T

∑
t=0

t−1

∑
i=0

t−1

∑
j=0

Ωi+ jω2ut−iut− j,

=
1
T
. . .Ω0+0ω2utut +Ω0+1ω2utut−1 + . . .

+ . . .Ω0+0ω2ut−1ut−1 +Ω0+1ω2ut−1ut−2 + . . .

+ . . .Ω0+0ω2ut−2ut−2 +Ω0+1ω2ut−2ut−3 + . . .

+ . . .Ω0+0ω2 ut−3ut−3︸ ︷︷ ︸
δ=0

+Ω0+1ω2 ut−3ut−4︸ ︷︷ ︸
δ=1

+ . . .

We can then perform the sum column-wise, which is equivalent to performing the triple

sum from outermost sum. I arranged this so that the columns have identical coefficients.
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Also note that for i > θ we have Ωi→ 0. Therefore we can write:

〈XXT〉= . . .Ωt+tω2〈utut〉+Ωt+t−1ω2〈utut+1〉+ . . .

=
θ

∑
i=0

θ

∑
j=0

Ωi+ jω2〈ut−iut− j〉

Remember that uis are drawn from i.i.d. uniform distribution on the interval [−1,1]. The

variance of this distribution will be 〈u2〉 = 1
3 and because of the independence condition

the covariance of two variables will be zero. Therefore:

〈ut−iut− j〉=





0 , if i 6= j

〈u2〉 , if i = j
(A.12)

Hence we can write:

〈XXT〉= 〈u2〉ω2
θ

∑
i=0

Ω2i ≈ 〈u
2〉ω2

1−Ω2 (A.13)

Here we have shown that to calculate the covariance component, we only need to

calculate the sum of the diagonal elements of the cube as illustrated in Figure A.6.
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Figure A.6: For zero mean input signal drawn from i.i.d. uniform distribution, the covari-
ance of the reservoir 〈XXT〉 is given by the average of the diagonal terms on the cube.
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A.1.3 Computing 〈XYT〉

The next step is to compute the projection component 〈XYT〉. First note that the desired

output does not appear anywhere in the expression of 〈XXT〉. This means that the covari-

ance component is constant for a given ESN and input distribution. Now recall that the

projection component is given by:

〈XYT〉= 1
T

T

∑
t=0

t−1

∑
i=0

Ωiωut−iŷ′t , (A.14)

which means it depends on the desired output. To compute the memory function MCτ ,

we have a different desired output for each τ , namely ut−τ . Therefore, we specify the

projection component for each τ with a subscript 〈XYT〉τ . We can now write:

〈XYT〉τ =
1
T

T

∑
t=0

t−1

∑
i=0

Ωiωut−iut−τ , (A.15)

Again we see that for i> θ , Ωi→ 0 and that for all i 6= τ we have 〈ut−iut−τ〉= 0. It follows

that:

〈XYT〉τ = Ωτω〈u2〉. (A.16)

A.2 Analytical Solution to the Memory Curve: An N-

Dimensional System

In a high-dimensional system, the calculation of the memory curve follows the same logic

as before. However, in this case one must be aware that the elements of calculations consist

of matrices and vectors and therefore some of the simplification of the scalar case does not

apply. Nevertheless, analytical calculation is still possible using a matrix identity that will

help us perform the power sum. Let us review the model once again. The equations are

adopted from the 1-dimensional case and repeated here for convenience.
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A.2.1 Model

Here, the system is a linear ESN with a reservoir of N randomly interconnected nodes. The

reservoir weight matrix is denoted by a N×N matrix Ω with spectral radius λ max < 1. A

time-dependent scalar input signal ut is fed to the reservoir using the input weight vector

ω . The time-dependent reservoir states are denoted by a column vector x(t). The time

evolution of the reservoir state x(t) is governed by

x(t +1) = Ωx(t)+ωu(t), (A.17)

and the output yt is given by

y(t +1) = Ψx(t +1), (A.18)

where Ψ is an N-dimensional column vector calculated for a desired output ŷt as:

Ψ = 〈XXT〉−1〈XŶT〉. (A.19)

Here, the columns of X are the states of the reservoir in time xt and the columns of Ŷ are the

corresponding desired output at each time step. Table A.1 provides a visual representation

of all the matrices and their dimensionality to make it easier to follow the rest of the

exposition.

The memory function for the system is defined as the coefficient of determination

between the output of the system and its τ past inputs:

MCτ =
Cov2(ut−τ ,yt)

Var(ut−τ)Var(yt)
, (A.20)

where ut is the input at time t, ut−τ is the corresponding target output, and yt is the output of

the network given the optimal Ψ. The inputs ut are drawn from identical and independent

uniform distributions in the range [−1,1].
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Figure A.7: The summation in Equation A.27 can be visualized as summing the terms
qi, j(t) along three axis of i, j, and t.

Table A.1: A list of vectors and matrices used in the calculations along with their dimen-
sionality. The shorthand notation xt denotes the state vector and each of its elements xi(t)
denote the state of the corresponding node i at time t. The vector ω is the input weight
matrix, Ψ the output weight matrix, and ŶT is the desired output vector elements of which
correspond to Ŷ T. Finally, Ω is the reservoir weight matrix and X is a N×T matrix whose
columns correspond to the states of the reservoir at each time step.

xt =




x1(t)
x2(t)

...
xN(t)


 ω =




ω1
ω2
...

ωN


 Ψ =




Ψ1
Ψ2
...

ΨN


 ŶT =




ŷ1
ŷ2
...

ŷT




Ω =




Ω(1,1) Ω(1,2) . . . Ω(1,N)

Ω(2,1) Ω(2,2) . . . Ω(2,N)
...

...
...

...
Ω(N,1) Ω(N,2) . . . Ω(N,N)


 X =




X(1,1) X(1,2) . . . X(1,T )
X(2,1) X(2,2) . . . X(2,T )

...
...

...
...

X(N,1) X(N,2) . . . X(N,T )
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A.2.2 Computing 〈XXT〉

To calculate the covariance component we first note that we can rewrite Equation A.17

explicitly in terms of the input history and initial condition of the system

x(t +1) = x0

t

∑
i=0

Ωi +
t

∑
i=0

Ωiωut−i. (A.21)

However, since the spectral radius of Ω, λmax < 1 the contributions of the initial state will

vanish over time and we will be left with:

x(t +1) =
t

∑
i=0

Ωiωut−i. (A.22)

We can write the covariance component as:

〈XXT〉= 〈x(t)xT(t)〉Tt=0 =
1
T

T

∑
t=0

x(t)xT(t) (A.23)

=

〈
t−1

∑
i=0

t−1

∑
j=0

Ωiωut−iuT
t− jω

TΩT j

〉T

t=0

(A.24)

=
1
T

T

∑
t=0

t−1

∑
i=0

t−1

∑
j=0

Ωiωut−iuT
t− jω

TΩT j (A.25)

To see how we can calculate the Equation A.25 analytically it helps to visualize the formula

as summing along three different axes of i, j, and t. Figure A.7 illustrates this. Let

qi, j(t +1) = Ωiωut−iuT
t− jω

TΩT j, (A.26)

〈XXT〉= 1
T

T

∑
t=0

t−1

∑
i=0

t−1

∑
j=0

qi, j(t),T → ∞. (A.27)

Our task is to calculate the sum of qi, j(t) along the three axes of the cube. The sum over

i and j are the sum of qi, j(t) in one horizontal layer and then we sum over all the layers.

Once again we notice that we cannot perform the summation along the i and j axes due to

the stochastic factors(Figure A.8).
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Ω 3ωu4u ′
4ω ′Ω ′3

Ω 4ωu3u ′
4ω ′Ω ′3

Ω 5ωu2u ′
4ω ′Ω ′3

Ω 6ωu1u ′
4ω ′Ω ′3

∑
i

Figure A.8: Expanding the values along the i axis. The blue color are constants, the black
shows the power series, and the red shows the stochastic factor.

73



Appendix A. A Mathematical Framework for Studying the ESN

q0,3(0)

q0,2(0)

q0,1(0)

q0,0(0)
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q2,2(0)

q2,1(0)

q2,0(0)

q3,3(0)

q3,2(0)

q3,1(0)

q3,0(0)

q1,4(1)

q1,3(1)

q1,2(1)

q1,1(1)

q2,4(1)

q2,3(1)

q2,2(1)

q2,1(1)

q3,4(1)

q3,3(1)

q3,2(1)

q3,1(1)

q4,4(1)

q4,3(1)

q4,2(1)

q4,1(1)

q2,5(2)

q2,4(2)

q2,3(2)

q2,2(2)

q3,5(2)

q3,4(2)

q3,3(2)

q3,2(2)

q4,5(2)

q4,4(2)

q4,3(2)

q4,2(2)

q5,5(2)

q5,4(2)

q5,3(2)

q5,2(2)

q3,6(3)

q3,5(3)

q3,4(3)

q3,3(3)

q4,6(3)

q4,5(3)

q4,4(3)

q4,3(3)

q5,6(3)

q5,5(3)

q5,4(3)

q5,3(3)

q6,6(3)

q6,5(3)

q6,4(3)

q6,3(3)

t

i

j

qi,j(t)

Figure A.9: The summation along the t axis.

However, if we look at a single column along the t axis (Figure A.9), we find that if we

expand the values of qi, j(t) the terms of the power sum in the column consist of ut−iut− j

squeezed from each side by constant factors (Figure A.10). Note that for each i and j

this summations gives us the δ -delayed auto-covariance of the input signal. Therefore, we

have found a trick to perform the vertical sum along the each column of the cube. This

leaves us to calculate the sum over i and j.

The algebraic representation of this trick is aligning the terms of the summation so we
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Ω 2ωu2u ′
1ω ′Ω ′3

Ω 2ωu3u ′
2ω ′Ω ′3

Ω 2ωu4u ′
3ω ′Ω ′3

Ω 2ωu5u ′
4ω ′Ω ′3

∑
t

Figure A.10: Expanding the values along the t axis. The blue color are constants, the black
shows the multiplication of input with a delayed version of itself.

have terms with equal powers of Ω on each column as follows:

〈XXT〉= 1
T

T

∑
t=0

t−1

∑
i=0

t−1

∑
j=0

Ωiut−iuT
t− jΩ

′ j,

=
1
T
. . .Ω0utuT

t Ω′0 +Ω0utuT
t−1Ω′1 + . . .

+ . . .Ω0ut−1uT
t−1Ω′0 +Ω0ut−1uT

t−2Ω′1 + . . .

+ . . .Ω0ut−2uT
t−2Ω′0 +Ω0ut−2uT

t−3Ω′1 + . . .

+ . . .Ω0 ut−3uT
t−3︸ ︷︷ ︸

δ=0

ΩT0 +Ω0 ut−3uT
t−4︸ ︷︷ ︸

δ=1

ΩT1 + . . .

We can then perform the sum columnwise, which is equivalent to performing the triple

sum from outermost sum. I arranged this so that the columns have identical coefficients to
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the left and right the uiu j term. Also note that for i > θ we have Ωi→ 0. Therefore we

can write:

〈XXT〉= . . .Ωt〈utuT
t 〉ΩTt +Ωt〈utuT

t+1〉ΩTt−1 + . . .

=
θ

∑
i=0

θ

∑
j=0

Ωiω〈ut−iut− j〉ωTΩT j (A.28)

Remember that uis are drawn from i.i.d. uniform distribution on the interval [−1,1]. The

variance of this distribution will be 〈u2〉 = 1
3 and because of the independence condition

the covariance of two variables will be zero and therefore:

〈ut−iut− j〉=





0 , if i 6= j

〈u2〉 , if i = j
(A.29)

And therefore we can write:

〈XXT〉= 〈u2〉
θ

∑
i=0

ΩiωωTΩTi (A.30)

This sum still cannot be performed because of the special matrix form. We have to per-

form a trick to be able to do this sum. Now let Λ = ω̄ω̄T, and Ω = UDU−1 the eigen

decomposition of Ω, and ω̄ =U−1ω . Also let the vector d be the diagonal elements of D

(the eigenvalues of Ω).

We use the fact that for diagonal matrices A and B, and vectors a and b holding the

diagonal elements of A and B respectively and an arbitrary matrix C we can write:

ACB =C ◦AI◦B =C ◦abT (A.31)

Here ◦ is the Hadamard product and I◦ is the identity matrix with respect to the Hadamard

product. Then we can write:

ΩiωωTΩT j = ΩiΛΩT j = Λ◦didT j = Λ◦DiI◦D j (A.32)
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And therefore:

〈XXT〉= 〈u2〉UΛ◦

(
θ

∑
i=0

(ddT)i

)
UT (A.33)

≈ 〈u2〉UBUT, (A.34)

where B is an N×N matrix whose elements are Bi, j = Λi, j(1−did j)
−1.

77



Appendix A. A Mathematical Framework for Studying the ESN

A.2.3 Computing 〈XYT〉

The next step is to compute the projection component 〈XYT〉. First note that the desired

output does not appear anywhere in the expression of 〈XXT〉. This means the covari-

ance components is constant for a given ESN and input distribution. Now recall that the

projection component is given by:

〈XYT〉= 1
T

T

∑
t=0

t−1

∑
i=0

Ωiωut−iŷT
t−i, (A.35)

which means it depends on the desired output. To compute the memory function MCτ ,

for each τ we have a different output, namely ut−τ . Therefore we specify the projection

component for each τ with a subscript 〈XYT〉τ . We can now write:

〈XYT〉τ =
1
T

T

∑
t=0

t−1

∑
i=0

Ωiωut−iut−τ , (A.36)

Again we see that for i > θ , ΩiT0 and that for all i 6= τ we have 〈ut−iut−τ〉= 0. It follows

that:

〈XYT〉τ = Ωτω〈u2〉. (A.37)

A.3 Validating the Method

In this section we calculate the memory capacity of a given ESN using our analytical

solution and compare it with numerical estimations. For the purpose of demonstration,

we create ten N×N reservoir weight matrices Ω and corresponding N× 1 input weight

matrix ω by sampling a zero-mean normal distribution with standard deviation of 1. We

then rescale the weight matrix to have a spectral radius of λ ∗ = λ . For each {Ω,ω} pair

we run the system with an input stream of length 5000. We discard the first 2000 reservoir

states and use the rest to calculate MCτ , and repeat this experiment 10 times to calculate

the average τ-delay memory capacity MCτ . As we will see, the variance in our result is
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Figure A.11: Agreement between analytical and simulation results for 〈XXT〉 (a), 〈XYT〉
(b) and the memory curve MCτ (c).

low enough for 10 runs to give us a reliable average behavior. We choose 1 ≤ τ ≤ 100,

and try the experiment with N ∈ {25,50,75,100} and λ ∈ {0.1,0.50,0.95}.

Figure A.11a and Figure A.11b illustrate the probability distribution of our simulated

results for the entries of 〈XXT〉 and 〈XYT〉 for a sample ESN with N = 50 nodes and spec-

tral radius λ = 0.95. We drove the ESN with 20 different input time series and for each

input time series we calculated the matrices 〈XXT〉, 〈XŶ
T〉. To look at all the entries of

〈XXT〉 at the same time we create a dataset XXT∗ by shifting and rescaling each entry of

〈XXT〉 with the corresponding analytical values so all entries map onto a zero-mean nor-

mal distribution. As expected there is no skewness in the result, suggesting that all values

follow a normal distribution centered at the analytical calculations for each entry. Simi-
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larly for Figure A.11b, we create a dataset XYT∗ by shifting and rescaling each entry of

〈XYT〉 with the corresponding analytical values to observe that all values follow a normal

distribution centered at the analytical values with no skewness.

Figure A.11c shows the complete memory curve MCτ for the sample ESN. Our analyt-

ical results (solid red line) are in good agreement with simulation results (solid blue line).

Note that our results are exact calculations and not approximation, therefore the analytical

MCτ curve also replicates the fluctuations for various values of MCτ that are signatures of

a particular instantiation of the ESN model.

Next, we analyze the accuracy of our analytical results with respect to changes in the

reservoir size N and its spectral radius λ . Figure A.12 shows the result of this analysis,

and reveals two interesting trends for accuracy and memory behavior for different N and

λ . For all N and λ the analytical calculation of MCτ agrees very well with the numerical

simulation. However, as we approach λ = 1, the variance in the simulation result in-

creases during the phase transition from MCτ = 1 to MCτ = 0, likely because the reservoir

approaches the onset of chaos, i.e., λ = 1.

The behavior of the memory function also shows interesting behavior. For small N <

50, the transition from high to low MCτ occurs very close to τ = N, as expected from

the fundamental limit MC ≤ N. However, as the reservoir size grows, the position of the

transition in MCτ diverges from N. Note that our analytical calculation is equivalent to

using infinite size training data for calculating the output weights, therefore divergence

of the actual memory capacity from the bound N cannot be attributed to finite training

size. Determining the reason for this discrepancy requires a more careful analysis of the

memory function. We will present this analysis in Section 3.6.
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Figure A.12: Sensitivity of the analytical (red solid lines) and simulation results (data
markers) for the memory curve MCτ to changes in the system size N and the spectral
radius λ . The data were generated from 20 systems each driven with 20 different input
streams. For all N and λ values, the analytical and simulated results are in good agreement.
However, as the spectral radius approaches λ = 1 the variance of the simulated results
increases, suggesting that the system is approaching the chaotic dynamical phase.

A.4 The General Formula for Optimal Readout Weights

Having developed a mental model to think about ESNs in mathematical terms and validat-

ing our approach for a simple task of memory capacity we now put together all the pieces

in a succinct formula that gives a general expression for optimal readout weights of the

reservoir.

Consider a discrete-time network of N nodes. The network weight matrix Ω is N×N
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with spectral radius λ < 1. A time-dependent scalar input signal ut is fed to the network

using the input weight vector ω . The evolution of the network state xt and the output yt is

governed by

xt+1 = Ωxt +ωut , and (A.38)

yt+1 = Ψxt+1, (A.39)

where

Ψ =
(
XXT)−1 XŶT (A.40)

is an N-dimensional column vector calculated for a desired output ŷt .

Here, each column of X is the state of the network at time xt and each column of ŶT is

the corresponding desired output at each time step. In practice it is sometimes necessary

to use Tikhonov regularization to calculate the readout weights

Ψ =
(
XXT + γ2I

)−1 XŶT, (A.41)

where γ is a regularization factor that needs to be adjusted depending on Ω,ω , and ut [206].

To derive our general formula for optimal readout weights we can simply take Equa-

tions A.30 and A.35 and rewrite them in more general and concise way. As a result cal-

culating Ψ for a given problem requires the following input-output-dependent evaluations

(Section A.4):

XXT =
∞

∑
i, j=0

ΩiωRuu(i− j)ωT(ΩT) j, and (A.42)

XYT =
∞

∑
i=0

ΩiωRuŷ(i), (A.43)

where Ruu(i− j) = 〈utut−(i− j)〉 and Ruŷ(i− j) = 〈ut ŷt−(i− j)〉 are the autocorrelation of the

input and the cross-correlation of the input and target output. This may also be expressed
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more generally in terms of the power spectrum of the input and the target:

XXT =
1

2T

∫ T

−T
Ω−1

+ ωSuu( f )ωTΩ−1
− d f , (A.44)

XYT =
1

2T

∫ T

−T
Ω−1

+ ωSuŷ( f )ei f τd f . (A.45)

where Ω+ =
(
I− ei f Ω

)
and Ω− =

(
I− e−i f Ω

)
, Suu( f ) is the power spectral density of the

input, and Suŷ( f ) is the cross-spectral density of the input and the target output.

The performance can be evaluated by the mean-squared-error (MSE) as follows:

〈E2〉=
〈
(ŷ(t)− y(t))2

〉
= ŶŶT− ŶY (A.46)

= ŶŶT− ŶXT (XXT)−1 XŶT. (A.47)

The MSE gives us a distribution-independent upper bound on the instantaneous-squared-

error through the application of Markov inequality [223]:

P
[
(ŷ(t)− y(t))2 ≥ a

]
≤ 〈E

2〉
a

. (A.48)

Intuitively, this means that the probability of error at time t being larger than a constant

a is always less than or equal to the average error divided by a. The existence of a worst-

case bound is important for engineering applications of RC.

A.5 Memory Under Correlated Input

In this section we derive the equation for memory capacity of ESN (Equation A.39) under

correlated input with an exponential autocorrelation function, i.e., Ruu(τ) = e−ατ . The

total memory of the system is given by the following summation over the memory function

[80]:
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∑
τ

m(τ) = Tr((XXT)−1
∞

∑
τ=0

(XYT)τ(YXT)τ). (A.49)

where Y is the input with lag τ , ut−τ .

Computing XXT requires the evaluation of:

XXT =
∞

∑
i, j=0

ΩiωRuu(i− j)ωT(ΩT) j. (A.50)

This assumes an even correlation function, i.e., Ruu(i− j) = Ruu( j− i). For numerical

computation it is more convenient to perform the calculation as follows:

XXT = XXT
i≥ j +XXT

i≤ j−XXT
i= j

= XXT
i≥ j +

(
XXT

i≥ j
)T−XXT

i= j, (A.51)

where XXT
i≥ j is a partial sum of XXT satisfying i ≥ j, XXT

i≤ j =
(

XXT
i≥ j

)T
is a partial

sum of XXT satisfying i≤ j, and XXT
i= j is a partial sum of XXT satisfying i = j, which is

double counted and must be subtracted. We can substitute τ = |i− j| and evaluate XXT
i≥ j

and XXT
i= j as follows:
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XXT
i≥ j =

∞

∑
i,τ=0

ΩiωRuu(τ)ωT(ΩT)i+τ (A.52)

=
∞

∑
i,τ=0

Ωiωe−ατωT(ΩT)i+τ (A.53)

=
∞

∑
i=0

ΩiωωT(ΩT)i
∞

∑
τ=0

(e−αΩT)τ (A.54)

= UBUT(I− e−αΩT)−1, (A.55)

XXT
i= j =

∞

∑
i=0

ΩiωRuu(0)ωT(ΩT)i (A.56)

=
∞

∑
i=0

ΩiωωT(ΩT)i (A.57)

= UBUT. (A.58)

Here B is an N×N matrix whose elements are Bi, j = Λi, j(1−did j)
−1. Here the trick

is that ω̄ = U−1ω takes the input to the basis of the connection matrix Ω allowing the

dynamics to be described by the powers of the eigenvalues of Ω, i.e., D. Since D is

symmetric we can use the matrix identity DΛD = Λ ◦ddT, where d is the main diagonal

of D. Summing over the powers of D gives us ∑∞
i=0 ΩiωωT(ΩT)i = UBUT.

The covariance of the network states and the expected output is given by:

XYT
τ = ∑

i
ΩiωR(|i− τ|) = ∑

i
Ωiωe−α|i−τ|. (A.59)

By plugging these two components into the memory equation we can directly calculate

the memory capacity without simulating the ESN.
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[222] J. Šı́ma and P. Orponen, General-purpose computation with neural networks: A
survey of complexity theoretic results, Neural Computation 15 (2003), 2727–2778.

[223] A. Dasgupta, Probability for Statistics and Machine Learning: Fundamentals and
Advanced Topics, Springer-Verlag, New York, NY, 2011.

104


