
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2014

Introducing Modularity into Complex Software
Test Suite Frameworks
Lucille Frey

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Frey, Lucille. "Introducing Modularity into Complex Software Test Suite Frameworks." (2014). https://digitalrepository.unm.edu/
cs_etds/64

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/64?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/64?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Lucille H Frey
 Candidate

 Computer Science
 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Dorian Arnold , Chairperson

 Patrick Bridges

 Jeff Squyres

Introducing Modularity into Complex
Software Test Suite Frameworks

by

Lucille Helen Frey

B.A., Astronomy, Case Western Reserve University, 2008

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2014

c©2014, Lucille Helen Frey

iii

Acknowledgments

I would like to thank my advisors Nathan Hjelm, at Los Alamos National Lab
(LANL)1, and Dorian Arnold, at the University of New Mexico (UNM), for working
with me on the content of this thesis and helping me revise my document. I would
also like to thank Dorian for serving as my committee chair, and my committee
members, Patrick Bridges from UNM and Jeff Squyres from Cisco Systems, Inc. I
thank Lynne Jacobsen, Lourdes McKenna, Cindy Leyba and all the people involved
with the UNM Interactive TV program for helping me navigate the complexities of
completing a degree from Los Alamos.

1This work was supported by LANL under the auspices of the National Nuclear Se-
curity Administration of the U.S. Department of Energy under contract No. DEAC52-
06NA25396.

iv

Introducing Modularity into Complex
Software Test Suite Frameworks

by

Lucille Helen Frey

B.A., Astronomy, Case Western Reserve University, 2008

M.S., Computer Science, University of New Mexico, 2014

Abstract

Large, complex programming projects are often constructed by developers at multiple

institutions working with a variety of computer architectures and environments. For

such projects a useful testing scheme must test all functionality in the software,

be able to run on all relevant architectures, and provide an efficient way for all

developers to view and interpret the test results. As a code project evolves, the

test suite framework must be able to display new result parameters and be easily

extended with additional tests including new types of tests. The complexity of

current software projects has led to the development of many individualized test

suite frameworks, each specifically tailored to the tests and results which currently

exist for that project.

In this work, we show that a more generic, modular test suite framework sim-

plifies the addition of new phases of testing, types of test results, and new ways to

display results. Such a test suite framework also can be applied to multiple program-

ming projects with minimal modifications. Our case study was based on the MPI

Testing Tool (MTT), which was created to provide a fully automated infrastructure

v

to run regression and performance tests on the Open MPI code base. We have re-

constructed MTT using the the principle of separation of concerns, reorganizing and

rewriting the code base to allow changes to be more easily made and simplifying the

connections between each part of the code. This restructuring was based around

the database schema as the model, so that changes to this schema are automatically

propagated through to both the test results submission process and the user interface

which displays test results. We show that the modular structure of the reconstructed

framework reduces the amount of code changes that must be completed to modify

the test suite or display while also allowing the framework to be applied readily to

new projects. We tested this version of MTT to ensure that it continues to provide

the same functionality of previous versions and that new features can be added effi-

ciently. We conducted a series of timing tests on our new code and to compare it to

the previous version and confirmed that our modifications did not affect performance

negatively. We have also applied the user interface code to a sample test suite to

demonstrate its applicability to new projects.

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Background 7

2.1 Domain . 7

2.1.1 Software Models . 8

2.2 Related Work . 10

3 Test Case: MPI Testing Tool 16

3.1 Open MPI . 16

3.2 MPI Testing Tool (MTT) . 17

4 Reconstructing MTT 25

4.1 Concepts . 25

vii

Contents

4.2 Implementation . 26

4.2.1 Reconstructing the results submission process 27

4.2.2 Reconstructing the database 28

4.2.3 Meteor.js . 30

4.2.4 Reconstructing the UI . 31

5 Evaluation and Assessment 35

5.1 Methodology and Results . 36

5.1.1 Maintaining Functionality . 36

5.1.2 Maintaining Performance . 37

5.1.3 Adding Functionality . 42

6 Conclusions 47

6.1 Contributions . 47

6.2 Limitations and Future Work . 48

A Database Schemas 51

References 56

viii

List of Figures

3.1 Flow chart for MTT 3.0 . 20

3.2 MTT 3.0 UI with results for all phases 21

3.3 MTT 3.0 UI with results for MPI Install 22

3.4 MTT 3.0 UI with results for test builds 23

3.5 MTT 3.0 UI with results for test runs 24

4.1 Flow chart for MTT 4.0 . 33

4.2 Flow chart comparing MTT 3.0 and MTT 4.0 34

5.1 MTT 4.0 UI with results for all phases 38

5.2 MTT 4.0 UI with results for MPI Install 39

5.3 MTT 4.0 UI with results for test builds 40

5.4 MTT 4.0 UI with results for test runs 41

5.5 MTT 4.0 UI with performance results from the AMG2006 test. Green

and red specify whether comparison to the standard value passed or

failed for each test result parameter. 45

ix

List of Figures

A.1 Database Schema for MTT 3.0 . 52

A.2 Database Schema for MTT 4.0 . 53

A.3 Views in the database schema for MTT 4.0 54

A.4 Database Schema for test case, simulating results from a test suite . 55

x

List of Tables

2.1 A summary of current code testing architectures, including the test

case described in this thesis (MTT). We evaluate whether the code is

modular and whether the source code for the testing, result submis-

sion, database of results or user interface is publicly available. Note

that the number of developers is for the programming project being

tested (i.e. Open MPI), not for the testing suite itself (i.e. MTT). . 12

5.1 Timing results for MTT 3.0 and MTT 4.0, run with identical in-

put parameters, with and without database submission. The times

presented here each the average of five identical test runs. 42

xi

Chapter 1

Introduction

Programming projects involving large, complex software are often collaborative

projects between many developers and institutions, involving multiple architectures

and software environments. As software grows in size and complexity, testing new

changes for proper functionality and performance becomes more crucial. To identify

bugs in a timely fashion, comprehensive regression and performance tests must be

constructed and implemented in a way that tests all supported platforms and pro-

vides the test results to all the developers. This suite of tests must be large enough

to capture all current functionality and be easily modifiable as the software project

evolves. The test suite also must be able to be run automatically on all the relevant

architectures without requiring code revisions. The test results must then be avail-

able to all the developers in an easy to access format so that bugs can be quickly

identified and studied in detail.

Such large software projects present many challenges to the development of an

efficient, functional test suite framework. These include:

1

Chapter 1. Introduction

1. Portability: The software may need to be run and be tested in many different

hardware and software environments.

2. Comprehensiveness: Many tests may be required to test the software com-

pletely.

3. Complexity: Complex test results may be generated that require user inter-

pretation to be useable.

4. Time Intensive: Running and analyzing a comprehensive test suite comprise

long turn-around times.

5. Problem Diagnosis: Identifying and tracking regressions and performance

changes require the ability to compare to past test results.

6. Extensibility: New tests and ways of displaying new test results are required

as the software develops.

7. Simultaneous, Real-time Access: Users and developers are at multiple

physical locations, but all want to submit and view test results in real time.

8. Versatility: Test suite frameworks are tailored to one software project and the

particular set of tests and results desired at one point in time, and so cannot

be easily applied to new projects.

Current test suite frameworks exist that address one or more of these challenges,

but do not solve all of them comprehensively. For many code projects, test suites exist

which are intended to be run by individual developers before new or revised code is

submitted. These are not automated and frequently must be modified to run on any

individual architecture. The test results are then used by that individual developer

to identify and fix bugs before they are added to the trunk, but are not available to

other developers unless shared individually. Other projects have a centralized testing

2

Chapter 1. Introduction

system where tests are run regularly on a single test machine, sometimes with these

results publicly available.

None of these current approaches addresses all of the issues that arise with a

large multi-developer code base. Many of the test suites cannot be run without

modifications on multiple platforms. Others are not run consistently in time or as

a complete comprehensive suite. The test results are not always available to all the

developers, or if they are the results are not well sorted and displayed so that bugs

can be easily identified. The code for the test suite framework is also not modular

and easy to add to or modify and is not freely available, requiring developers for a

new programming project to start from scratch.

Software test suite frameworks are developed to fit a specific purpose and to

supply the results needed for developers to perform their jobs. As software projects

grow the associated test suites must grow as well, but it is generally easier to add

to or modify whatever patchwork of tests exists rather than treat the test suite

framework as its own programming project. Even where a test suite framework is

incorporated into a project from the start, it is tailored to the programming project

in question rather than treated as a project in its own right. The huge variety of

languages and packages which exist help prevent test suite frameworks from being

applied to new projects, as developers prefer to choose the languages, database or

data storage format, and user interface that they know best.

Our goal in this thesis is to construct a test suite framework that addresses all of

the challenges listed here: one that can run automated regression and performance

tests on multiple architectures, report the results to a central database, display the

results in a usable form in real-time, be easily modifiable as the project evolves and

be applicable to new projects. Our test suite framework will be constructed in a

modular way using pre-existing packages where possible, so that future changes can

be made quickly and efficiently. All the code for the test suite, database, and online

3

Chapter 1. Introduction

user interface will be available online.

Our case study is based on the MPI Testing Tool (MTT)[1], created to provide

a fully automated infrastructure to run regression and performance tests on Open

MPI (Message Passing Interface)[2] implementations. The pre-existing version, MTT

3.0, tests whether MPI can be successfully installed, whether test programs can

be compiled and linked, whether test programs run successfully and generate valid

results, and then compiles the results of those tests into a central online database.

This ability to run many automated tests and sort results solves the problems of

comprehensiveness, complexity and time intensiveness listed above, and its online-

accessible database of results addresses problem diagnosis and partially addresses the

problem of simultaneous, real-time access. The user interface is not reactive, and so

the most recent test results can be missed if the user does not manually refresh the

page. MTT 3.0 can also be run on a wide variety of architectures without requiring

any code modifications, addressing the problem of portability. New tests can be

easily added, solving the first part of the problem of extensibility, but storing and

displaying new test results requires extensive code modifications and additions. MTT

3.0 is well-tailored to the tests and test results currently run and generated by the

Open MPI community and could not be easily applied to a different programming

project with a different suite of tests and results.

Despite all of its functionality, MTT 3.0 does not address the challenge of versa-

tility and only partially addresses extensibility and real-time access. In this thesis

we restructure and modify MTT to maintain all of the preexisting functionality and

add solutions to address these problems. We use the Model-View-Controller archi-

tecture to structure MTT 4.0, restructuring the test result submission process and

the UI (both views in this architecture) to receive information from the database

(the model) through separate controllers. This allows model-specific code to be re-

placed with calls to the database, simplifying the code base. The restructured code

4

Chapter 1. Introduction

allows new tests and parameters to be easily added and displayed in the UI, as

changes in the database are automatically propagated through to the rest of the

code. This dependence on the database schema allows the code to be easily applied

to new projects. The user interface has been replaced with one based on the Meteor

JavaScript framework, providing a reactive interface which displays the latest results

without manual page refreshes.

To demonstrate the success and impact of this project, we have performed a

variety of experiments that evaluate the functionality and performance of our newly

extended framework. Specifically, we ran a series of timing tests on both MTT 3.0

and MTT 4.0 to ensure that the modifications will not increase the time required

to run an automated series of tests. We also compared the functionality of the user

interfaces of MTT 3.0 and MTT 4.0 to test that a bug in Open MPI can be identified.

We added a new test, a new type of test results and a way to display these results

in the UI to MTT 4.0 and compared the amount of code and the number of code

sections which needed to be edited or added to MTT 3.0. To test the ability of MTT

4.0 to be applied to a new project, we created a sample test suite which generated

results data and used MTT 4.0 to store this data in a newly constructed database

and display the desired results in the UI.

The results from these tests, presented in Chapter 5, demonstrate that our ap-

proach to test suite framework modularity solves all of the challenges enumerated

above. This greatly simplifies the addition of new tests, phases of testing and ways

of displaying data for the Open MPI project. It also provides a code base which can

be applied to new programming projects in the future.

The rest of this document is organized as follows: In Chapter 2 we provide further

background information for the current project and related work. In Chapter 3 we

describe Open MPI and the previous version (MTT 3.0) of the test suite framework

used as a case study. In Chapter 4 we describe the work performed to modify MTT

5

Chapter 1. Introduction

for this thesis. We evaluate the success of the project in Chapter 5, demonstrating

how it addresses all the challenges described in the introduction, and describe its

impact. We provide a summary and a discussion of the limitations of the current

project and an outline of future work in Chapter 6.

6

Chapter 2

Background

2.1 Domain

Large software projects are frequently developed by many programmers at multi-

ple locations. Complex codes with large code bases require similarly complex test

suites, to identify bugs and performance issues. Useful test suites must be runnable

on all the relevant architectures without requiring modifications which might invali-

date comparisons. Developers who run an automated test suite can quickly identify

regressions and performance issues resulting from any of their modifications, and if

the results can be shared can also see the effects of code written by other developers.

A database of past results is also required so that developers can identify when any

regression or performance cut was introduced.

Comprehensive test suites for large software projects produce large amounts of

output, making it difficult for developers to sort through for the specific results they

require. Well constructed user interfaces can filter and sort the results so that only

the most frequently used are presented at first, and allows users to drill down to

more detailed data when desired.

7

Chapter 2. Background

As the software evolves developers must add new tests to the suite, sometimes

producing different types of results: performance data versus pass/fail results, for

instance. A good test suite framework will streamline the process of adding new

tests so that minimal changes are required to add a test and add the relevant results

to the database and user interface. Choosing the right software model for the test

suite framework can simplify the addition of tests and encourage the addition of new

useful tests.

2.1.1 Software Models

A test suite framework which includes all of the functionality described in the previ-

ous section will be a complex system, including the source code to be tested as well

as code for the tests, to run the tests, to copy test results to a central database, store

these results, and display them to the user. Projects of this complexity are regularly

encountered in software development, where the programmer must connect a user

interface with some sort of database or data processing capability. If each part of a

project is written independently, then adding or removing a feature from the UI will

also require changing the code for the data storing and processing capabilities.

There are many different software models which have been developed to solve this

type of problem, providing different ways of abstracting data, analysis and display.

One of these, Model-View-Controller (MVC)[3], was developed in order to match the

user’s mental model of a set of data and allow them to easily edit and view this data.

It was originally developed with the Smalltalk language [3][4], but has since been im-

plemented with many different languages[5]. It has been used to simplify description

and coding of many different problems, especially web applications [6][7][8][9][10].

MVC has also been applied to many applications including computer telephony ap-

plications [11], automatic generation of visualizations and GUIs [12] and adaptable

8

Chapter 2. Background

simulation software [13].

For test suite frameworks, the Model-View-Controller architecture is a good

match to the flow of data. Tests are run and may generate large amounts of output,

not all of which may be interesting to the user. The data of interest must somehow

be specified and then stored in a database so that results can be viewed over time and

regressions identified. Similarly, the exact data which a user wishes to view through

the UI must be specified so that data can be read from the database and displayed.

With the Model-View-Controller architecture, a single model (the database schema)

can be linked to multiple views (the test submission code and the UI) by individual

controllers which communicate data about the model to the views.

The essential idea of MVC is to separate the problem into three completely sep-

arate components, the model, the view and the controller, that only interact in

specified ways, usually implementing each as an object. The model is an object or

a structure made up of objects that represents the information stored by the sys-

tem. This model should match the user’s perception of the information in a logical

way. The view represents the model, usually visually as a GUI or other UI. It re-

ceives information from the model and filters it to highlight the desired data. The

view can send messages to the model to update it. The controller links the user

to the system, receiving user input entered through the view and translating this

into the appropriate commands to change the model. The controller also converts

any changes in the model into commands to update the view [14]. Complex pro-

grams can be constructed out of multiple MVC components, with each controller

communicating with its own model and view as well as the controllers associated

with other model-view pairs[15]. Many other similar architecture models exist which

divide responsibilities between components in slightly different ways. For example,

the Presentation-Abstraction-Control model is very similar to hierarchical MVC, but

the presentation component (similar to view) does not perform any communication

9

Chapter 2. Background

and can only receive and display data [14][16].

As an architecture for a complex test suite framework, the MVC model can

provide an easily modifiable structure. With an MVC architecture, a developer will

not need to edit the view to display different kinds of data, since any changes to

the model are automatically propagated through to the view by the controller. The

MVC architecture allows a localization of control that, when used in the context of

a test suite framework, simplifies the necessary work to add new functionality.

2.2 Related Work

Recall the challenges from the introduction, namely: portability, comprehensiveness,

complexity, time intensity, problem diagnosis, extensibility, simultaneous real-time

access and versatility. Current test suite frameworks exist that address one or more

of these challenges, but do not comprehensively solve all of them. For many code

projects, test suites exist that are intended to be run by individual developers before

new or revised code is submitted. Generally, these are not automated and frequently

must be modified to run on any individual architecture. The test results are then

used by that individual developer to identify and fix bugs before they are added to

trunk, but are not available to other developers unless shared individually. Other

projects have a centralized testing system where tests are run regularly on a single

test machine, sometimes with these results publicly available. To evaluate the com-

pleteness of currently available codes, from our list of challenges we have created a

taxonomy of important test suite framework features (see Table 2.2). These include

whether the code is modular, whether each part of the source code is publicly avail-

able, and how the test results are stored and shared. Through literature and public

web searches, we compiled a list of all the code testing projects which meet all of the

following criteria:

10

Chapter 2. Background

• code development and use is performed at multiple locations

• test suite results are used by code developers

• the test suite can be automated

• some part of the test suite framework code or a description of it is available

11

C
h
ap

ter
2.

B
ack

grou
n
d

Table 2.1: A summary of current code testing architectures, including the test case described in this thesis (MTT).
We evaluate whether the code is modular and whether the source code for the testing, result submission, database
of results or user interface is publicly available. Note that the number of developers is for the programming project
being tested (i.e. Open MPI), not for the testing suite itself (i.e. MTT).

Project details

Name Firebug CP2K Lustre PVFS Mozilla SDCC MTT 3.0 MTT 4.0
Developers 25 ∼12 ∼100 ∼10 >3000 40 >20 >20
Modular 7 7 7 7 7 7 7 3

Extensible 7 7 7 7 7 7 7 3

Code available

Testing 3 3 3 3 3 3 3 3

Submit 7 7 7 7 7 7 3 3

DB 7 7 7 7 3 7 3 3

UI 7 7 7 7 7 7 3 3

Results storage
and access

DB 3 7 7 7 3 3 3 3

Online 3 3 7 3 3 3 3 3

All results 3 3 7 7 7 3 3 3

Organized 7 7 7 7 3 7 3 3

Sortable 7 7 7 7 7 7 3 3

Simultaneous 3 3 7 3 3 3 3 3

Real-time 7 7 7 7 7 7 7 3

12

Chapter 2. Background

Many large software projects have distributed development, requiring some sort of

centralized testing structure to allow for effective regression and performance testing.

For many projects (for example, Mozilla, Lustre, Firebug, CP2K), the responsibility

for testing rests on each developer. They are expected to run regression and some-

times performance tests before submitting any changes to the central repository.

Even if each developer carefully runs up-to-date regression and performance tests

before submitting any change, they have no way of knowing whether their revised

code will behave identically on all the other systems. After a change is submitted,

it could be discovered that what runs perfectly on system A shows a bug on system

B. In addition to this developer-based testing system, some projects have a central-

ized automated testing system which posts the results online for developers to view

(Firebug, CP2K, PVFS), but these are only run on a small set of test machines and

the results are generally long and difficult to sift through.

Firebug is a debugging and editing tool for websites, supporting languages such

as CSS, HTML and JavaScript [17]. The current development team consists of 25

people, although most of the development is performed by a small subset of these.

There is a test suite which can be run by any developer, and the results are submitted

to a database. The online UI for this database simply lists the raw results of each

test in text form along with the number of failures which occurred. The test results

are not indexed or sortable in any way.

CP2K is a freely-available program that performs atomistic and molecular sim-

ulations of solid state, liquid, molecular and biological systems, run in parallel [18].

It currently has about a dozen developers from multiple institutions. It has an

automated tester which builds and tests CP2K after each new commit, running cor-

rectness tests on a single machine with one compiler. The raw data from the last

run of these tests is available online in text format.

13

Chapter 2. Background

PVFS (Parallel Virtual File System) provides high performance I/O for parallel

systems, supporting large datasets and high access rates [19]. The development team

contains members from universities and industry groups. Nightly tests are run on

the current code version on dedicated test machines. The tests have been tailored to

run on the test machines, and it is the responsibility of the developers to run tests

on their own machines, modifying the tests as necessary, before submitting changes.

A brief summary of the latest test results is available online, consisting of pass/fail

information for the build and test of 8 packages.

Lustre is another parallel, distributed file system developed for Linux-based clus-

ter computing [20]. In addition to a core team of developers outside programmers

can contribute patches. While these patches are reviewed before being added to the

code, developers are responsible for performing their own tests before submission.

There is an automated test suite which runs when new changes are checked in, but

the test results are not freely available.

Mozilla has developed a python performance testing framework, Talos[21], which

can be used on Windows, Mac and Linux operating systems. Test results can be

pushed to a Graph Server, where they are accessible online, and regressions are

found by comparing each push to both the previous 12 and subsequent 12 pushes.

SDCC (Small Device C Compiler) is a retargettable table, optimizing ANSI-C

compiler suite targeting specific Intel microprocessors[22]. It has been developed

by an international team of 40 programmers. Regression tests are automatically

performed daily on each version currently in development with the raw results of the

latest run available in text format online.

In Table 2.2, we compare the functionality currently available in each of these

codes. We provide information about the number of developers involved in the

software project being tested, and whether each test suite framework is modular or

14

Chapter 2. Background

extensible to new projects. We checked whether source code for each of four stages in

the test suite framework (running tests, submitting test results to a database, storing

results in a database and the user interface) is publicly available. We also studied how

the test results are made available to developers, including whether they are stored in

a database (allowing checks for regressions and performance issues), available online

and if this online access is available simultaneously to all developers and in real-time.

For test suite frameworks with results available online, we also checked whether all

test results are available or if just the latest results or a small subset is presented,

and whether the results are presented in some organized manner and if they can be

further sorted and filtered by the user.

These codes were chosen because all of them have distributed development in-

volving many individual programmers, and have the ability to conduct automated

testing and have some part of their code publicly available. As described above,

however, not all of these codes run automated tests on all the systems used for de-

velopment, or run tests at regular time intervals. The only code constructed in a

modular fashion to ease further development is the MTT code written for the cur-

rent project. Despite some of these projects providing useful functionality, since most

of the source code is not available it cannot be applied to other projects. All but

one of the projects, Lustre, provide some sort of online UI with test results. These

test results are presented as a brief summary of pass/fail results (PVFS, Firebug,

Mozilla) and/or the raw text dump containing all the test output (Firebug, CP2K,

Mozilla, SDCC). Two of these projects, Firebug and Mozilla, store past test results

in a database but only Mozilla uses this data to identify regressions.

15

Chapter 3

Test Case: MPI Testing Tool

Our case study is the MPI Testing Tool (MTT)[1], developed to test the Open

MPI code. Open MPI was initially created by the merger of MPI implementations

from the University of Tennessee, Los Alamos National Laboratory (LANL), Indiana

University and the University of Stuttgart. At LANL, Open MPI is preferred to

vendor-supported codes because of the ability to have developers identify bugs, create

a solution and immediately add that fix into the code base. The size, complexity and

distributed development of the Open MPI project provides a good demonstration of

the difficulties involved in implementing and using the results of test suites. Here we

describe the Open MPI code and the pre-existing version of MTT, 3.0. In Chapter

4 we detail the new version we developed, MTT 4.0.

3.1 Open MPI

Open MPI[2] is an open source implementation of the MPI (Message Passing In-

terface) standards, compliant up to MPI-2.2 as of Open MPI version 1.7.3. It is a

message-passing system designed to be used on many different parallel architectures.

16

Chapter 3. Test Case: MPI Testing Tool

The Open MPI project has over 30 organizations as members, contributors and part-

ners, including universities, government labs and software and computing companies.

Open MPI is constantly being developed and expanded, requiring a comprehensive

testing tool which can be used by all of the partners involved. Stable major releases

are produced approximately every two years along with new feature series as well as

about five minor releases each year. Nightly snapshots of the development series are

also produced and used for testing.

3.2 MPI Testing Tool (MTT)

The Open MPI project requires testing and reporting which have not previously

been implemented by other code projects. Developers use multiple compilers, archi-

tectures, schedulers and environments and need to know whether the changes they

make will fail when run on other systems. This requires that the test suite be highly

adaptable and that the test results are immediately and freely available in an easy

to interpret format. To be efficient and easy to use, one run of the test suite must be

able to perform multiple compilations with varying compilers and options and then

run a specified set of tests, again with varying options.

The MPI Testing Tool (MTT) provides a fully automated infrastructure to run

regression and performance tests on MPI implementations (see Figure 3.1 for a flow

chart). It can be run on many different machines with different environments and

combine the results into a central database. MTT tests whether MPI can be success-

fully installed, whether test programs can be compiled and linked, and whether test

programs run successfully and generate valid results. It is designed for use with Open

MPI, but will work with any MPI implementation. It was specifically designed to

incorporate previously existing tests, so that adding additional tests is simple. The

separation between running MTT and submitting results allows it to be run behind

17

Chapter 3. Test Case: MPI Testing Tool

firewalls. MTT can automatically test a given MPI version with a wide variety of

different parameters, such as compilers, compiler options, mpirun or mpiexec options

or environment variables.

The modular format of MTT input files allows many options to be easily specified.

A single run of MTT, run on one machine, takes a list of MPI versions (typically

tarballs containing the latest nightly snapshots from the development heads), a list

of compilers and environment variables, and a list of tests. It compiles each MPI

version using each compiler, and runs each of the tests. The results from all of these

steps are then submitted to an online database that is connected to a UI from which

results from all institutions running MTT are displayed (http://mtt.open-mpi.org).

This UI can be used by developers to identify under what conditions (if any) their

additions or modifications have broken the code, and in which part of the code the

errors originated (see Figures 3.2, 3.3, 3.4 and 3.5 for screencaps of this UI).

MTT 3.0 is specifically tailored to the project and data involved. The code for

submitting test results to the database and displaying database results in the user

interface is hard-coded for the specific tests and results desired. Displaying additional

results, such as performance data, or adding a new type of test requires modifying

many parts of the code: the code to run tests, submit results to the database, store

results in the database and display data in the user interface (see the bold-outlined

steps in Figure 3.1 for a graphical representation).

Referring back to the challenges listed in the introduction, MTT 3.0 does address

some of them, specifically portability, comprehensiveness, complexity, time intensity

and problem diagnosis and partly addressing simultaneous real-time access. Test

results are accessible in the database as soon as they are submitted from any location,

but the UI is only updated when the user manually refreshes the page. As described

above, displaying new types of data or adding new types of tests requires extensive

modifications to the code, discouraging useful additions. The single-purpose nature

18

Chapter 3. Test Case: MPI Testing Tool

of this code, closely linked to the Open MPI project, also would make it very difficult

to apply any part of the MTT 3.0 code to a different software project despite it being

publicly available.

19

Chapter 3. Test Case: MPI Testing Tool

Figure 3.1: Flow chart for MTT 3.0

20

C
h
ap

ter
3.

T
est

C
ase:

M
P
I
T
estin

g
T
o
ol

Figure 3.2: MTT 3.0 UI with results for all phases

21

C
h
ap

ter
3.

T
est

C
ase:

M
P
I
T
estin

g
T
o
ol

Figure 3.3: MTT 3.0 UI with results for MPI Install

22

C
h
ap

ter
3.

T
est

C
ase:

M
P
I
T
estin

g
T
o
ol

Figure 3.4: MTT 3.0 UI with results for test builds

23

C
h
ap

ter
3.

T
est

C
ase:

M
P
I
T
estin

g
T
o
ol

Figure 3.5: MTT 3.0 UI with results for test runs

24

Chapter 4

Reconstructing MTT

For this thesis, we produced a new version of MTT to address the testing challenges

described in the previous section. We used the Model-View-Controller architecture

model to structure the code, allowing changes to the database schema to be auto-

matically propagated through to both the user interface and test results submission

code. This simplifies the process of adding additional tests or testing phases to the

code, as well as allowing large parts of MTT to be applied to different programming

projects.

4.1 Concepts

The primary goal of this project is to simplify the structure of the test suite, results

database and user interface so that changes and additions can be easily made. To

aid this goal, we have used previously existing packages where possible, to make

understanding the code easier and to take advantage of future external developments.

We have also restructured the code, including the results submission process, the

database and the user interface, to follow the modular approach.

25

Chapter 4. Reconstructing MTT

Many different parts of computer science have embraced the idea of modularity,

or separation of concerns. This design principle advocates splitting a program into

separate parts, each of which solves a distinct subproblem. This can be applied on

small scales, with object orientation and classes, or on larger scales with architectural

patterns or separating software from hardware. Modularity requires that some time

be spent on planning the structure of a software package before it is implemented, so

that the code can be well structured. Separating out various functionalities allows

small changes to be made without requiring large portions of the code, and simplifies

testing procedures for newly added code. Having many well-defined parts makes it

easier to divide tasks between developers so that multiple people can work on the

same software at once. If each individual part of a problem is solved separately, then

depending on the project some of these parts can be reused in the future for another

project.

Applying a structured, modular architecture to a software project requires that

the specifications for a project are defined before the code is written. In the case of

software projects which start out small and focused and gradually evolve to be much

larger and more comprehensive, this is generally not the case. With test suites, what

starts out as a few simple tests written by one developer to catch bugs in a small

chunk of code can develop into a large comprehensive test suite framework, without

any official design process being conducted. This results in code which is functional

but not easily comprehensible or changeable.

4.2 Implementation

The code in MTT 3.0 that governs the reporting of test results to the database

and the sorting and displaying of these results by the user interface is not easily

separable and contains many hard-coded references to the current set of test results

26

Chapter 4. Reconstructing MTT

and database schema. Changes to the schema for the database require changes to

both the reporter code and the UI code as well. In our revised MTT 4.0 the database

schema is used as the central model, with both the results submission process and

the UI referencing the database.

We have reconstructed the MTT code base using the MVC model (see Figure

4.1 for a flow chart). We simplified the process by submitting test results to the

database directly from the code used to run tests (written in Perl), replacing the

previous process of using Perl to write test results to a text file and then using php

to parse that text file and submit results to the database. In the revised version,

both the UI and the test code receive information from the schema so that changes to

the schema are automatically propagated through. This new modular design makes

the process of adding new test suites more efficient. The modular design will also

allow this code to be applied to other testing projects.

4.2.1 Reconstructing the results submission process

MTT 3.0 has a well designed and comprehensive schema for its database which

includes all the data produced by the test runs that developers would then want to

view on the website (see Figure A.1). This schema was not fully implemented in

the code, and some of the variables were either never set or never viewable by the

user. Also, since these parameters are hard-coded in the code to submit test results,

any changes or additions require changes to both the database schema and to the

results submission code. In MTT 4.0, we simplified this by directly submitting test

results from the test running code, written in Perl. Directly accessing the database

at this point allows the results submission code to query the database to determine

which data to submit. There are several requirements imposed on the database

schema so that this process can work. There must be a phase table containing

27

Chapter 4. Reconstructing MTT

a row of data for each phase of the testing process. Each row matches the name

of the phase in the MTT input file to the name of the table in the database which

should receive results from that phase. A table must also exist, then, for each of these

phases with column names matching the parameters generated by MTT. When these

requirements are met, as MTT completes each phase it first queries the phase table

to find the corresponding table for results, and then queries that results table to

determine the correct parameters to submit to the database. Any additional phases

or parameters added to the database will then be automatically incorporated into

the results submission phase without requiring any code changes.

This method of directly submitting to the database, without an intermediate text

file step, was used as a proof of concept and as a way to explore how to make the

process more efficient. For the production system, with the database server accessed

remotely by individual developers possibly running behind firewalls, this process will

need to be further studied and modified. We maintained an option of writing a text

file, either for debugging purposes or for use in a modified submission scheme in the

future (see section 6.2).

4.2.2 Reconstructing the database

To enable the use of Meteor, a preexisting javascript package that connects the

database and the UI (described in section 4.2.4), we migrated the database from

PostgreSQL to MySQL (see Figure A.2 for the revised schema). The type of data

stored in the database was not changed, instead being restructured. The PostgreSQL

database used in MTT 3.0 makes use of the INHERITS functionality to group common

variables together and share them between tables. It is possible to replicate this in

MySQL with foreign keys and triggers, but we found that instead storing all data for

a phase in a single table speeds up and simplifies data calls. As described in section

28

Chapter 4. Reconstructing MTT

6.2, the structure of this database will be further evaluated and changed before it

is moved onto production systems. The database for MTT 3.0 was optimized for

searching using the concept of database normalization, since sorting and filtering of

data in the UI was performed with direct calls to the database. Meteor provides

a different way of accessing data and filters and sorts with javascript rather than

PHP/SQL calls, so the performance of the UI depends on the database structure in

different ways and will require further testing.

In addition to this reorganization, three new tables were created, two to allow

the results submission code and the UI to receive information about the database

and a third to store standard values for tests. The modular structure of MTT 4.0

requires the existence of these first two tables, shown with bold outlines in Figure

A.2. The phase table described in section 4.2 is accessed by the results submission

code, finding the MySQL table which corresponds to each phase and the types of

data (column names) which should be submitted to that table. The UI accesses the

phase table as well, to determine which phases to display as tables by accessing the

display boolean. If display is true for a table, then that table will be displayed in

the UI. For each of these displayed tables, the columns to be displayed in summary or

detail mode are determined by entries in the display data table. Views are created

(see Figure A.3) which filter the columns of each table listed in phase with the entries

in display data, and so contain only the data which should be displayed in a single

table. With the current version of Meteor (described in the next section) views

cannot be accessed, and so instead new tables were created with the desired filtering

and are updated with triggers every time data is added to the database. When the

user interacts with the UI to sort and filter the displayed data, this is done entirely

on the client side with javascript and html. These actions do not change the values

stored in the database defining default display options. As described in section 6.2,

the ability for users to define their own default options can be implemented in the

future.

29

Chapter 4. Reconstructing MTT

The standards table was introduced to store standard values for performance

tests where a test result must be compared against the standard to decide whether

the test passed or failed. The test result parameter it will be compared against, the

architecture, compiler, Open MPI version, and any other relevant parameters can be

specified for each standard value. When a new performance test result is added to

the database, a trigger checks whether any standard values are associated with that

test and if so performs a check against that value. The result of this check is used

to set the pass or fail values for that test. The structure of the standards table and

details of the checks performed will be extended as additional performance tests are

added to the framework.

4.2.3 Meteor.js

Meteor is a node.js-based open source JavaScript framework designed to support

reactive web applications using a single language [23]. It contains a library of pack-

ages which provide basic functionality such as HTTP connections and HTML tem-

plates, as well as many other official or user-provided packages providing functionality

such as email, passwords and accounts, or MySQL support. Meteor also contains a

command-line build tool which combines all the JavaScript, HTML and CSS for one

project with the required packages and produces a single standalone application bun-

dle. For this thesis, we use meteor to provide the connection between the database

and user interface and automatically update the UI in real-time when changes are

made to the database.

The current release of Meteor natively only supports MongoDB as a data storage

format. We have used a package to enable MySQL support which was written for

a previous release and does not provide full functionality. The planned Meteor 1.0

release will provide MySQL support and enable views in the database to be accessed

30

Chapter 4. Reconstructing MTT

by Meteor in the same way as tables. When this functionality is available, views

constructed in the database which filter each data table using the parameters in

the display data table will be accessed directly. The current version of MTT 4.0

contains a work-around. Instead of views, new tables were constructed for each

desired display with columns selected based on the values in display data. We

then added triggers to the database so that every time data is inserted into one of

the tables in phase the relevant columns of data are also added to these new display

tables.

4.2.4 Reconstructing the UI

Test results in the MTT database must be accessible in some manipulable format to

developers in real-time so that they can check the effects of any new code development

on test results and performance. In MTT 3.0 the code for this UI was closely tailored

to the currently existing set of test results, so that any additions or changes require

edits to all parts of the code. Results are received and displayed in the UI by php-

mediated calls to the database which are performed every time the user refreshes

the page or selects a different option. The most recent results can be missed if the

user does not refresh the page frequently. We have reconstructed this part of MTT

4.0 using the Meteor package to provide a reactive interface which interacts with

the database to determine which results to display rather than requiring hard-coded

tables. This functionality allows us to remove schema-specific data from the UI

code, instead querying the database to determine which tables and columns of data

to display.

The data displayed in the UI is formatted using the DataTables JavaScript

package[24] which provides sorting and filtering functionality as well as the ability to

switch between tables for multiple testing phases and display more detailed data all

31

Chapter 4. Reconstructing MTT

in one web page. Using this packages rearranges where filtering and sorting is accom-

plished. Previously all filtering and sorting of data was done with php/sql queries

to the database. In our revised code, the UI receives all the data to be displayed at

once (and not any other data) and performs any further sorting and filtering with

JavaScript commands. Meteor automatically updates the data displayed by the UI

whenever the database is changed, so no additional calls are necessary. With these

modifications adding an additional testing phase (such as performance testing) or

parameter only requires changing the related data table and display data entries

in the database, not any of the UI code. Figure 4.2, containing flow diagrams of

MTT 3.0 and MTT 4.0, illustrates how we have reduced the number of steps which

must be edited to add a new test by substituting hard-coded values for dependence

on the database.

32

Chapter 4. Reconstructing MTT

Figure 4.1: Flow chart for MTT 4.0

33

Chapter 4. Reconstructing MTT

Figure 4.2: Flow chart comparing MTT 3.0 and MTT 4.0

34

Chapter 5

Evaluation and Assessment

The goal of this thesis was to produce a software test suite framework that can

address all eight of the challenges enumerated in the introduction. We conducted

tests to ensure that the functionality present in MTT 3.0 was successfully maintained

in MTT 4.0 as well as tests to demonstrate the added functionality. Specifically, our

experiments were designed to answer the following questions:

• Can MTT 4.0 be used to identify a bug in Open MPI in the same way as MTT

3.0?

• Does MTT 4.0 add additional overhead?

• Can the following be easily and efficiently generated and displayed in the UI?

– an already-generated test result

– a new test

– a new type of test

• Can MTT 4.0 be easily applied to a new project?

35

Chapter 5. Evaluation and Assessment

5.1 Methodology and Results

All of the tests described in this section were run locally on a MacBook Pro running

OSX 10.8.5, with a 4-core 2.2 GHz Intel Core i7 processor. All tests were conducted

while the local database servers for both versions of MTT, the Apache server for

MTT 3.0 and the Meteor server for MTT 4.0 were all running locally. This was to

ensure that any timing or performance differences were due to code we introduced

rather than processes running in the background. As described in the next chapter,

further testing will be required before this code is moved to a production system.

For the purposes of this thesis, the ease of access and control over the whole system

afforded by using a local system was preferred.

5.1.1 Maintaining Functionality

We first tested that the new code can match the performance and functionality of

the previous version of MTT. Figures 5.1 - 5.4 show the user interface for MTT 4.0

displaying results, which can be compared to the MTT 3.0 UI in Figures 3.2 - 3.5.

We compared test results from MTT 3.0 and MTT 4.0 run on three different Open

MPI tarballs (versions 1.6a1r30359, 1.7.4rc2r30528, and 1.9a1r30527) and confirmed

that the results were identical. For version MTT 4.0, we also compared test results

directly output by the tests to the results submitted to the MySQL database and then

displayed in the UI and confirmed that these match. We also ran both MTT 3.0 and

MTT 4.0 on a version of Open MPI with a purposely introduced bug, and were able

to successfully identify the bug with both versions. These tests confirmed that the

new version of MTT still addresses the challenges of comprehensiveness, complexity

and problem diagnosis. We viewed the UI and command line output simultaneously

while MTT was running, and confirmed that new results are automatically added to

the UI in real time without any action from the user. This confirms that we address

36

Chapter 5. Evaluation and Assessment

the challenge of real-time, simultaneous access.

5.1.2 Maintaining Performance

To demonstrate that the new structure of MTT 4.0 did not increase the time neces-

sary to run the test suite framework, so that it still addresses the challenge of time

intensiveness, we ran a series of timing tests on MTT 3.0 and MTT 4.0. While adding

new functionality to the code we did not add any new steps to the process, and in

fact removed a step. MTT 3.0 wrote test results to a text file with Perl, compressed

that file and sent it to an Apache server and then decompressed the text file, parsed

it and submitted its contents to a database. In MTT 4.0 we instead directly connect

to the database with Perl and remove the intermediate steps. To maintain the ability

to save results and submit them at a later time, in case of firewall requirements or

technical issues, we have maintained an option to write results to a text file and to

parse and submit this file to the database.

We ran MTT 3.0 and MTT 4.0 with identical input files, with three versions of

Open MPI and six groups of tests. This combination of code and tests was selected

to match the current MTT runs on LANL production systems and to contain tests

that will (purposely) fail to build, and tests that will pass, fail, be timed out and

produce performance results. For each version of MTT, we ran five runs without

performing any results submission and five runs that submitted test results to the

database, timing each. The averaged results for each set of runs, shown in Table

5.1, show both that the revised structure of MTT 4.0 did not have an adverse affect

on timing and that the database submission process in both cases does not take a

significant percent of the total run time. This will be further tested on larger scales

before MTT 4.0 is introduced on production systems.

37

C
h
ap

ter
5.

E
valu

ation
an

d
A
ssessm

en
t

Figure 5.1: MTT 4.0 UI with results for all phases

38

C
h
ap

ter
5.

E
valu

ation
an

d
A
ssessm

en
t

Figure 5.2: MTT 4.0 UI with results for MPI Install

39

C
h
ap

ter
5.

E
valu

ation
an

d
A
ssessm

en
t

Figure 5.3: MTT 4.0 UI with results for test builds

40

C
h
ap

ter
5.

E
valu

ation
an

d
A
ssessm

en
t

Figure 5.4: MTT 4.0 UI with results for test runs

41

Chapter 5. Evaluation and Assessment

Table 5.1: Timing results for MTT 3.0 and MTT 4.0, run with identical input
parameters, with and without database submission. The times presented here each
the average of five identical test runs.

code version
run time

no results submission results submitted to DB time to submit
MTT 3.0 40m 6.348s 41m 34.688s 54.053s
MTT 4.0 40m 45.646s 41m 29.755s 43.236s

5.1.3 Adding Functionality

We also conducted a series of tests to demonstrate the new functionality which was

added to MTT 4.0. To test whether MTT 4.0 completely solves the challenge of

simultaneous, real-time access, (providing results in real time, without action by the

user), we ran MTT with the UI displayed in a browser. We compared the MTT

command-line output to the results in the UI and confirmed that new results are

added without requiring a manual refresh of the UI.

To demonstrate that new tests and test results can be more easily added (solving

the challenge of extensibility), we first added one new parameter to store and display,

then a new test and finally a new phase of testing.

We first went through the steps necessary to display a new test result parameter

(test duration) in the UI. In Figure 4.2, the thick outlines show which steps in the

code needed to be modified for MTT 3.0 and MTT 4.0. Both versions require code to

be written to calculate the new parameter or parse it from test output. For this test,

we chose a parameter which was already generated by the testing code but not saved

or displayed. In MTT 3.0 the parameters to be submitted to the database and then

displayed are all hard-coded, so adding a new parameter required editing the code at

each step after tests are run. MTT 4.0 simplifies this process by having the test result

submission code and the UI code directly access the database for information about

42

Chapter 5. Evaluation and Assessment

what parameters to submit and display. To add the test duration parameter, we

added a new column, duration, to the Test Run table in the database and added a

row to the display data table indicating that duration should be displayed in the

Test Run table. When the test result submission code accesses the MySQL table

for the phase Test Run, it now receives the new duration parameter along with the

previously existing ones, and submits the relevant data. The UI code then receives

all of this data along with the information to display the duration column, and does

so automatically.

We then added a new test (amg2006) to the process. For both versions this

required editing the input file to include the path to the testing code and the correct

build and run-time parameters. Both MTT versions also required a new Perl module

to parse the test results into the desired parameters. Adding these parameters to the

database and UI required the same steps as for a single parameter, described above.

The AMG test, along with the previously-run NetPipe test, generates performance-

related data. This needs to be processed and displayed in a different manner than

simple pass/fail results and so requires new parameters in the database and a new

way of displaying data in the UI. This data is generated in the same way as other

test results, so no additional changes to the test running or submitting processes

are required. In MTT 3.0, adding a new way of processing data requires additions

to all the post-results-submission steps as with adding a single parameter. With

MTT 4.0, the database must be edited to store the new data and code must be

added to the display part of the UI to specify how this new type of results are

to be displayed. Unlike in the previous version, however, no changes are required

to submit the results to the database, or serve them to the UI. In the MySQL

database, an additional row, performance, is added to the phase table along with

a new column to indicate that this is performance data. Future work will include

displaying this performance data in graphical format (triggered by this additional

flag), but at present the data is displayed as text. Performance testing requires that

43

Chapter 5. Evaluation and Assessment

some result (bandwidth or latency for NetPipe or the figure of merit for AMG) be

compared over time. This can easily be done with the already generated timestamps

and the newly produced performance parameters. In the case of AMG results we

also want to compare results to a standard value. To store this value, we added

a standards table to the MySQL database which can store standard values for a

given parameter per architecture. Values in this table can be added directly to the

database or through the MTT input file. The method of input file submission to the

Standards table might need to be changed before this system is moved to production

to reduce the possibility of inadvertently replacing values. Using triggers in the

MySQL database (to be replaced by the more efficient views when Meteor 1.0 is

released), the performance data which should be displayed is selected, compared to

standard data where required, and passed through Meteor to the UI to be displayed

(see Figure 5.5). When it is possible to display charts through Meteor, this addition

to the UI code will require only a single if/else statement referencing the phase table

to determine if a set of data is performance data or not, and then the additional

JavaScript/HTML to produce the desired chart format.

44

C
h
ap

ter
5.

E
valu

ation
an

d
A
ssessm

en
t

Figure 5.5: MTT 4.0 UI with performance results from the AMG2006 test. Green and red specify whether comparison
to the standard value passed or failed for each test result parameter.

45

Chapter 5. Evaluation and Assessment

To address the challenge of versatility, we created a test database with dummy

tables. We replaced the code build, test build and test run phases in MTT with Perl

scripts which generated text to be stored in the database (simulating a new software

project and tests). We populated the phase and display data tables and ran MTT

to populate our new MySQL database, constructed with the schema in Figure A.4.

We performed manual checks of the results displayed in the UI and confirmed that

the displayed data matched the data produced by the test code.

46

Chapter 6

Conclusions

Our goal in this thesis was to construct a test suite framework which can solve all

of the challenges involved in testing large software projects which we identified: one

that can run automated regression and performance tests on multiple architectures,

report the results to a central database, display the results in a usable form in real-

time, be easily modifiable as the project evolves and be applicable to new projects.

As a test case, we created a new version of the MPI Testing Tool (MTT) code,

maintaining its previous functionality while reconstructing it in a modular format

using the Meteor JavaScript package to link the database and UI. This simplifies

adding new parameters, tests and test phases to MTT and allows the code to be

easily applied to different projects.

6.1 Contributions

In this thesis, we produced a code test suite framework (MTT 4.0) which provides

all the functionality required for testing Open MPI and can also be applied to new

programming projects. We applied the Model-View-Controller model to the pre-

47

Chapter 6. Conclusions

existing MTT 3.0, allowing us to remove hard-coded values and functions from the

results submission and UI code and substitute dependence on the MySQL database.

This simplifies the process of adding new parameters, tests and testing phases which

will allow Open MPI developers to more easily produce and display relevant data as

the code evolves. We have demonstrated that MTT 4.0 can be applied to a completely

different set of tests and data than those used by Open MPI. This functionality was

introduced into MTT 4.0 without adding any additional overhead to the testing

process. As with previous versions MTT 4.0 will be freely available online, so it can

be used and developed by other programming projects.

6.2 Limitations and Future Work

Further testing will be required before MTT 4.0 can be implemented on production

systems, including timing tests and testing the ability of the system to handle the

large number of test results generated by multiple MTT users. Once MTT 4.0

is introduced onto production systems, then further tests and related test results

can be added into the pipeline. When Meteor 1.0 is released, providing a more

completely functioning interface between MySQL and Meteor, further tests will also

be required to determine whether the current system of creating new tables of data-

to-be-displayed with triggers in MySQL can be more efficiently replaced by views.

If Meteor 1.0 is capable of connecting to multiple types of SQL databases, then

testing can also be performed to determine whether MySQL is the best type of

database for this project. The database structure will also need to be optimized

with respect to access from the UI. The database for MTT 3.0 was optimized for

searching so that the PHP and SQL commands that sorted and filtered data for the

UI could be performed quickly. With MTT 4.0, we instead use Meteor to access

whole data tables and perform search and searching with javascript without further

48

Chapter 6. Conclusions

queries to the database. Further testing must be performed to determine the most

efficient way of performing this sorting and filtering of data when the full-scale set of

test results is involved. An intermediate solution can also be explored, where some

default amount of data (defined by a time interval) is initially passed through Meteor

to the UI and a request by the user for older data would prompt Meteor to access

and send through a larger set of data.

The exact method of submitting test results to the database will also need to be

studied further before being used by the whole Open MPI community. The current

method in MTT 4.0 of directly connecting to the database server will not be practical

on this scale due to security concerns and memory limits. A possible workaround

would be to apply a similar method as in MTT 3.0, but maintaining the modularity

we have introduced. This could use the option to write results to a text file, and

then move the results submission code from client-side MTT to the database server.

Here, the code could directly query the database to link results in the text file to

the correct tables in the database. It may also be possible to set up a second user

interface with Meteor which can be used to submit test results.

49

Appendices

50

Appendix A

Database Schemas

51

A
p
p
en
d
ix

A
.
D
atab

ase
S
ch
em

as

tag_groups
 tag_group_id int
 tag_group int[]

submit
 submit_id int
 hostname char(128)
 local_username char(16)
 http_username char(16)
 mtt_client_version char(16)

latency_bandwidth
 latency_bandwidth_id int
 message_size int
 bandwidth_min double[]
 bandwidth_max double[]
 bandwidth_avg double[]
 latency_min double[]
 latency_max double[]
 latency_avg double[]

compute_cluster
 computer_cluster_id int
 platform_name char(128)
 platform_hardware char(128)
 platform_type char(128)
 os_name char(128)
 os_version char(128)

compiler
 compiler_id int
 compiler_name char(64)
 compiler_version char(64)

mpi_get
 mpi_get_id int
 mpi_name char(64)
 mpi_version char(32)

test_suites
 test_suite_id int
 suite_name char(32)
 description text test_names

 test_name_id int
 test_suite_id int
 test_name char(64)
 description text

test_run_command
 test_run_command_id int
 launcher char(16)
 resource_mgr char(32)
 parameters text
 network char(32)
 test_run_network_id int

mpi_install_configure_args
 mpi_install_configure_id int
 vpath_mode bit(3)
 bitness bit(6)
 endian bit(2)
 config_args text

test_build
 test_build_id int
 submit_id int
 compute_cluster_id int
 mpi_install_compiler_id int
 mpi_get_id int
 mpi_install_configure_id int
 mpi_install_id int
 test_suite_id int
 test_build_compiler_id int

 description_id int
 start_timestamp timestamp
 test_result smallint
 trial boolean
 submit_timestamp timestamp
 duration interval
 environment_id int
 result_stdout text
 result_stderr text
 result_message_id int
 merge_std boolean
 exit_value int
 exit_signal int
 client_serial int
 tag_group_id int

mpi_install
 mpi_install_id int
 submit_id int
 compute_cluster_id int
 mpi_install_compiler_id int
 mpi_get_id int
 mpi_install_configure_id int

 description_id int
 start_timestamp timestamp
 test_result smallint
 trial boolean
 submit_timestamp timestamp
 duration interval
 environment_id int
 result_stdout text
 result_stderr text
 result_message_id int
 merge_std boolean
 exit_value int
 exit_signal int
 client_serial int
 tag_group_id int

test_run
 test_run_id int
 submit_id int
 compute_cluster_id int
 mpi_install_compiler_id int
 mpi_get_id int
 mpi_install_configure_id int
 mpi_install_id int
 test_suite_id int
 test_build_compiler_id int
 test_build_id int
 test_name_id int
 performance_id int
 test_run_command_id int
 np small int
 full_command text
 description_id int
 start_timestamp timestamp
 test_result smallint
 trial boolean
 submit_timestamp timestamp
 duration interval
 environment_id int
 result_stdout text
 result_stderr text
 result_message_id int
 merge_std boolean
 exit_value int
 exit_signal int
 client_serial int
 tag_group_id int

environment
 environment_id int
 environment text

result_message
 result_message_id int
 result_message text

description
 description_id int
 description text

performance
 performance_id int
 latency_bandwidth_id int
 performance_data_id int

interconnects
 interconnect_id int
 interconnect_name char(32)

test_run_networks
 network_id int
 test_run_network_id int
 interconnect_id int

performance_data
 performance_data_id int
 x_axis double[]
 x_axis_label_id int
 y_axis double[]
 y_axis_label_id int
 z_axis int
 z_axis_label_id int

axis_labels
 axis_label_id int
 label char(128)

tags
 tag_id int
 tag text

tag_refs
 tag_ref_id int
 tag_id int
 mpi_install_tags int[]
 test_build_tags int[]
 test_run_tags int[]

Figure A.1: Database Schema for MTT 3.0

52

Appendix A. Database Schemas

Figure A.2: Database Schema for MTT 4.0

53

A
p
p
en
d
ix

A
.
D
atab

ase
S
ch
em

as

Figure A.3: Views in the database schema for MTT 4.0

54

Appendix A. Database Schemas

Figure A.4: Database Schema for test case, simulating results from a test suite

55

References

[1] J. Hursey, E. Mallove, J. M. Squyres, and A. Lumsdaine, An Extensible Frame-
work for Distributed Testing of MPI Implementations, in Proceedings, Euro
PVM/MPI, Paris, France, October 2007.

[2] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall, Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation, in Proceedings, 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004, pp.
97–104.

[3] T. Reenskaug, THING-MODEL-VIEW-EDITOR: an Example from a planning
system, http://heim.ifi.uio.no/t̃rygver/1979/mvc-1/1979-05-MVC.pdf.

[4] G. E. Krasner and S. T. Pope, A Cookbook for Using the Model-View Controller
User Interface Paradigm in Smalltalk-80, J. Object Oriented Program. 1 (1988),
26–49.

[5] M. Veit and S. Herrmann, Model-View-Controller and Object Teams: A Perfect
Match of Paradigms, in AOSD03 ACM Press, 2003, pp. 140–149.

[6] R. Sridaran, G. Padmavathi, K. Iyakutti, and M. Mani, SPIM Architecture for
MVC-based Web Applications, Journal of Advanced Networking and Applica-
tions 1 (2009), 63–68.

[7] D. Walker and A. Orooji, Metrics for Web Programming Frameworks, in Pro-
ceedings of the International Conference on Semantic Web and Web Services,
Las Vegas, NV, July 2011.

[8] A. Valikov, A. Akhounov, and A. Schmidt, A Model-Transformers Architecture
for Web Applications, in Technologies for E-Services, Proceedings, Vol. 2444,
2002, pp. 29–37.

56

References

[9] Z. Sari, M. Sarosa, and H. Nurwasito, Article: Concept of Designing an Opti-
mized Pull Model View Controller Type Content Management Framework, In-
ternational Journal of Computer Applications 57 (2012), 9–13 (Published by
Foundation of Computer Science, New York, USA).

[10] Y. Ping, K. Kontogiannis, and T. Lau, Transforming Legacy Web Applications
to the MVC Architecture, in Software Technology and Engineering Practice,
2003. Eleventh Annual International Workshop on, 2003, pp. 133–142.

[11] O. Niese, T. Margaria, A. Hagerer, B. Steggen, G. Brune, W. Goerigk, and H.
Ide, Automated Regression Testing of CTI-Systems, in Test Workshop, 2001.
IEEE European, 2001, pp. 51–57.

[12] P. Hocov, T. Dymek, and K. Miroslav, Adaptable Visualization Service: through
Uniformity towards Sustainability, in Proceedings of the First International
Workshop on Model Driven Interoperability for Sustainable Information Sys-
tems (MDISIS’08) held in conjunction with the CAiSE’08 Conference, CEUR
Workshop Proceedings, Montpellier, France, 2008, pp. 59–71.

[13] J. Nutaro and P. Hammonds, Combining the Model/View/Control Design
Pattern with the DEVS Formalism to Achieve Rigor and Reusability in Dis-
tributed Simulation, Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology 1 (2004), 19–28.

[14] A. Karagkasidis, Developing GUI Applications: Architectural Patterns Revisited,
in Proceedings, 13th Annual European Conference on Pattern Languages of
Programming, 2008.

[15] J. Cai, R. Kapila, and G. Pal, HMVC: The Layered Pattern for Devel-
oping Strong Client Tiers, http://www.javaworld.com/jw-07-2000/jw-0721-
hmvc.html.

[16] A. Hussey and D. Carrington, Comparing Two User-Interface Architectures:
MVC and PAC, in MVC AND PAC. FAHCI’96 Springer Verlag, 1996, pp.
3–21.

[17] J. Hewitt, Firebug: Web Development Evolved, http://getfirebug.com.

[18] I. Bethune, A. Carter, K. Stratford, and P. Korosoglou, CP2K: Scalable Atom-
istic Simulation for the PRACE Community, in PRACE White Paper, 2012.

[19] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur, PVFS: A Parallel File
System for Linux Clusters, in In Proceedings of the 4th Annual Linux Showcase
and Conference MIT Press, 2000, pp. 391–430.

57

References

[20] R. Grigoryev, Xyratex Testing Tool, https://github.com/Xyratex/xperior.

[21] J. Maher, Buildbot/Talos, https://wiki.mozilla.org/Buildbot/Talos.

[22] S. Dutta, SDCC - Small Device C Compiler, http://sdcc.sourceforge.net/.

[23] M. D. Group, Meteor, http://www.meteor.com/.

[24] SpryMedia, DataTables, http://datatables.net/.

58

