
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2016

Resource-Efficient and Robust Distributed
Computing
Mahnush Movahedi Meimandi

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Movahedi Meimandi, Mahnush. "Resource-Efficient and Robust Distributed Computing." (2016). https://digitalrepository.unm.edu/
cs_etds/30

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/30?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/30?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

 , Chairperson

Mahnush Movahedi Meimandi

Computer Science

Jared Saia

David Evans

Maxwell Young

Shuang Luan

by

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

The University of New Mexico

Albuquerque, New Mexico

Resource-Efficient and Robust
Distributed Computing

Mahnush Movahedi Meimandi

 B.S., Computer Engineering, Amirkabir University of Technology

M.S., Computer Engineering, Amirkabir University of Technology

 M.S., Computer Science, University of New Mexico

Doctor of Philosophy
Computer Science

May 2016

Acknowledgments

I want to give my sincere thanks to my advisor, Professor Jared Saia, who has always been

supportive and helpful to me. He taught me all sorts of skills of doing research, from selecting

research topics to collaborating with other researcher and excelling in presentations. Without him,

my Ph.D. would never be this productive.

I would like to give my deep gratitude to other members on my Ph.D. committee, Professor

David Evans at University of Virginia, Professor Shuang Luan at UNM, and Professor Maxwell

Young at University of Mississippi for serving on my committee and providing invaluable comments

and feedback on my dissertation. I also thank Shafi Goldwasser at MIT and Seth Pettie at University

of Michigan for their advices on my dissertation.

Lastly, I want to give special thanks to my husband, Mahdi, and my parents who has always

helped me get through those toughest times. Not only have they been my first source of support. I

cannot find words to express my gratitude to them. I feel truly lucky to have them in my life.

iii

Abstract

There has been a tremendous growth in the size of distributed systems in the past three decades.

Today, distributed systems, such as the Internet, have become so large that they require highly

scalable algorithms; algorithms that have asymptotically-small communication, computation, and

latency costs with respect to the network size. Moreover, systems with thousands or even millions

of parties distributed throughout the world is likely in danger of faults from untrusted parties.

In this dissertation, we study scalable distributed algorithms that can tolerate faults from

untrusted parties. We consider three different security models: adversarial, rational, and cost-

competitive. Throughout this work, we balance two important and often conflicting characteristics

of distributed protocols: security and efficiency.

Our first contribution is building an asynchronous algorithm for secure Multi-Party Computation

(MPC) over n players. MPC is a fundamental problem in distributed computing that allows a set of

players to jointly compute an arbitrary function of their inputs, without revealing these inputs to

each other. We propose a scalable MPC algorithm assuming strictly less than a 1/8 fraction of the

players are controlled by a static adversary. For any function f over a field that can be computed by

a circuit with m gates, our algorithm requires each player to send a number of field elements and

perform an amount of computation that is Õ(m
n +
√

n). This significantly improves over traditional

algorithms, which require each player to both send a number of messages and perform computation

that is Ω(nm).

To achieve this result, we define and solve a new problem called threshold counting problem in

the asynchronous setting. Our solution is load-balanced, with computation, communication, and

latency complexity of O(log n), and may be useful for designing other load-balanced applications

in the asynchronous communication model.

As an important building block of MPC algorithms in the rational setting, we study the classical

secret sharing problem in a model where all players are rational. To the best of our knowledge, all

known mechanisms for this problem require each player to send O(n) messages in expectation.

As our second contribution in this dissertation, we describe mechanisms for rational secret

sharing. Our first result is a mechanism for n-out-of-n rational secret sharing that is Nash equilibrium,

iv

rather than just ε-Nash equilibrium. Our second result is a mechanism for rational t-out-of-n secret

sharing that is everlasting ε-Nash equilibrium. Both our mechanisms are scalable in the sense

that they require each player to send only an expected O(log n) bits. Furthermore, the latency of

these mechanisms is O(log n) in expectation, compared to O(n) expected latency of the best known

result due to Kol and Naor [KN08]. Both of our mechanisms are non-cryptographic and are not

susceptible to backward induction.

Finally, we propose a new algorithm for interactive communication when the noise rate is

unknown. We achieve this result by using resource-competitive approach, where the adversary is

assumed to pay a certain cost for each corruption he makes to the protocol. Most secure distributed

algorithms pay a huge cost just due to the possible existence of an adversary. We conjecture by

ensuring that a protocol does not pay more than the adversary, one can achieve a highly efficient

algorithm protocol.

v

Table of Contents

Table of Contents vi

List of Figures x

1 Introduction 1
1.1 Communication Models . 2

1.2 Selfish and Adversarial Behavior . 2

1.2.1 Computation secure against an adversary 2

1.2.2 Computation robust against Rational Behavior 3

1.3 Contributions . 3

1.3.1 Scalable Multi-Party Computation . 3

1.3.2 Rational Secret Sharing . 4

1.3.3 Interactive Communication over Noisy Channels 5

2 Secure Multi-Party Computation in Large Networks 6
2.1 Our Contribution . 7

2.1.1 Model . 7

2.1.2 Problem Statement . 8

2.1.3 Our Results . 8

2.2 Related Work . 9

2.3 Preliminaries . 13

2.4 Our Protocols . 15

2.4.1 Synchronous MPC . 15

2.4.2 Asynchronous MPC . 20

2.4.3 Remarks . 23

2.5 Proof of Theorem 2.1.2 . 24

2.5.1 The UC Framework . 24

vi

2.5.2 Proof Sketch . 25

2.5.3 Security of Input Commitment . 26

2.5.4 Security of Circuit Evaluation . 29

2.5.5 Security of Output Stages . 32

2.5.6 Security of Protocol 1 . 34

2.5.7 Cost Analysis . 34

2.6 Asynchronous Threshold Counting . 35

2.6.1 Up Stage . 37

2.6.2 Down Stage . 38

2.6.3 Handling Sublinear Thresholds . 38

2.6.4 Proof of Theorem 2.6.1 . 39

2.6.5 Using Quorums as Nodes in the Count Tree 48

2.7 Asynchronous Quorum Formation . 48

2.7.1 The Election Graph . 51

2.7.2 Static Network with Polylog-Bounded Degree 53

2.7.3 Communication Protocols . 55

2.7.4 SRS-Agreement Protocol . 56

2.7.5 Proof of Build-Quorums . 58

2.8 Conclusion . 61

3 Scalable Mechanisms for Rational Secret Sharing 63
3.1 The Problem . 63

3.2 Related Work . 64

3.3 Our Results . 66

3.4 Our Approach . 67

3.5 chapter Organization . 68

3.6 Notation and Preliminaries . 69

3.6.1 Utility Functions . 69

3.6.2 Game Theoretic Concepts . 70

3.6.3 Information-Theoretic Message Authentication Codes 71

3.7 Algorithm for n-out-of-n Secret Sharing . 72

3.7.1 The Communication Tree . 72

3.7.2 Labeling the Communication Tree: Short and Long Players 74

3.7.3 Our Algorithm . 75

vii

3.7.4 Discussion . 79

3.8 Analysis of Algorithm for All Players Present . 80

3.8.1 Some Remarks . 88

3.9 Algorithm for t-out-of-n Secret Sharing . 90

3.9.1 Creating the Shares . 90

3.9.2 Reconstruction phase . 91

3.9.3 MAC Scheme for t-out-of-n . 91

3.9.4 Analysis . 92

3.10 Conclusion . 95

4 Interactive Communication with Unknown Noise Rate 96
4.1 Related Work . 97

4.2 Formal Model . 98

4.3 Overview of Our Result . 98

4.4 Chapter Organization . 99

4.5 Bounded T - Algorithm . 99

4.5.1 Overview, Notation and Definitions . 99

4.5.2 Helper Functions . 99

4.5.3 Remaining Notation . 101

4.5.4 Algorithm Overview . 102

4.6 Bounded T - Analysis . 103

4.6.1 Phases . 106

4.6.2 Correctness and Termination . 108

4.6.3 Cost . 110

4.7 Unbounded T - Algorithm . 114

4.7.1 Helper Functions . 116

4.7.2 Algorithm . 117

4.8 Unbounded T - Analysis . 118

4.8.1 Alice and Bob are both present . 118

4.8.2 Bob plays alone . 122

4.8.3 Failure Probabilities . 122

4.8.4 Putting everything together . 123

4.9 Some Additional Remarks . 125

4.10 Conclusion . 128

viii

5 Conclusion and Open Problems 129
5.1 Two Party Computation Over a Noisy Channel . 129

5.2 Cost-Competitive MPC Over Secure Channels . 130

5.3 Cost-Competitive MPC over Noisy Channels . 131

Bibliography 132

ix

List of Figures

2.1 The gate gadgets for gate u and its left and right children 17

2.2 Evaluation of gate u: (a) generating ru, (b) providing inputs to CMPC, (c) receiving the

masked outputs . 18

2.3 Circuit of gate u . 20

2.4 The count tree for n = 2048 and τ = 1232. D = dlog 1232
14×11e = 3. The node marked R is

the root, nodes marked A are adding nodes, and nodes marked C are collection nodes. . 37

2.5 The count tree for n = 2048 and τ = 616. D = dlog 616
14×11e = 2. The node marked R is

the root, nodes marked A are adding nodes and nodes marked C are collection nodes.

The filters, marked F, are complete binary trees of depth 7, with 128 leaves each, for a

total of 512 filter leaves. 39

3.1 Construction of the iterated shares. We define 〈S〉1 as the first share and 〈S〉2 as the

second share generated from the 2-out-of-2 Shamir’s secret sharing scheme. 73

3.2 Communication trees for 5 players (left) and 6 players (right) 75

4.1 Glossary of Notation . 100

x

Chapter 1

Introduction

Today, companies, governments, and consumers depend on secure and reliable information systems.

A new generation of cyber-attacks is costing millions and straining the structure of the Internet.

Unfortunately, as technology becomes more complex, security and privacy threats also become

more complicated. The primary motivation of this dissertation is to design distributed algorithms

that can provably resist sophisticated attacks conducted by powerful adversaries.

As a part of this dissertation, we develop techniques for securing large-scale distributed systems

that consist of millions or even billions of nodes. Such systems may service many countries, and be

used as the building blocks for communication, computation, and storage of information. When

designing protocols for large systems, resources should be used carefully. Our first goal in this

dissertation is to design secure algorithms that are scalable: communication, computation, and

latency costs are asymptotically small with respect to the system size.

Moreover, in practice it is not always the case that the behavior and specifically the budget of

the adversary for corruption is known by the algorithm in advance. Having this unknown factor

in mind, we design an algorithm that adapts to the behavior of the adversary. Thus, our second

goal in this dissertation is to design a protocol such that the cost of the algorithm is a slow-growing

function of the budget of the adversary. Furthermore, we ensure that the algorithm is not paying too

much if the adversary is not corrupting.

After describing our model, We briefly summarize the core contributions of this dissertation.

These include scalable and efficient algorithms for three fundamental distributed problems: multi-

party computation (MPC), rational secret sharing, and interactive communication.

1

1.1 Communication Models

Throughout this dissertation, we consider a network of n parties whose identities are common

knowledge. We assume there is a channel between every pair of parties. We do not assume a

broadcast channel. Communication can be via synchronous or asynchronous message passing. In a

synchronous network, all parties have a common global clock and all the messages has pre-defined

delays. In the asynchronous model, the sent messages may be arbitrarily delayed by the adversary.

Latency in the asynchronous model is defined as the maximum length of any chain of messages

(see [CD89, AW04]). We assume a synchronous model unless we explicitly say in the problem that

the communication model is asynchronous.

1.2 Selfish and Adversarial Behavior

We study three secure distributed computing problems mentioned above in the three settings each

with a different adversarial or selfish behavior.

1.2.1 Computation secure against an adversary

In this model, we assume the presence of an adversary who is willing to corrupt the protocol. Here

we sketch some key parameters in this model.

Control over the parties. In the fail-stop corruption model, parties may crash randomly. Passive

adversary can eavesdrop on the internal state of the corrupted parties, trying to obtain some

information he is not entitled to. Byzantine (malicious or Active) adversary can additionally make

the corrupted parties deviate in an arbitrary manner from the protocol specification. These parties

are bad (i.e., Byzantine or dishonest) and the remaining parties are good (i.e., honest or semi-honest).

The good parties run our algorithm, but the bad parties may deviate from the protocol specification.

Byzantine model is the strongest adversarial model.

Control over the channel. The adversary might have different abilities to corrupt or eavesdrop on

the communication channel between the parties. In a secure channel, we assume the adversary has

no control over the channel and cannot read the bits on the channel. In private unauthenticated

channel, the adversary can only flip the bits of the channel, but he cannot eavesdrop the bits. In

authenticated channel, the adversary can eavesdrop the bits, but he has not the ability to corrupt

them. Finally, in unauthenticated insecure channel, the adversary has the ability to corrupt or

eavesdrop the communication.

2

Computational power. The adversary can be computationally-bounded or computationally-unbounded.

Computationally bounded adversary is capable of only polynomial-time computation. In computa-

tionally unbounded model, we cannot assume any bound on the adversary’s computational powers,

or any cryptographic hardness assumptions. Throughout this dissertation, we assume the adversary

is computationally unbounded.

Adaptivity. The adaptive adversary can take over players at any point of the protocol. The static

adversary must select the set of bad parties at the start of the algorithm. We assume that the

adversary is static.

1.2.2 Computation robust against Rational Behavior

We deploy game theory to model the rational behavior of the parties while computing a protocol

together. In this model, the parties are participating in a game together, thus we call parties, players

interchangeably. We assume each player has a utility function and can computes its payoff at the

end of the game (protocol) and its outcome based on his utility function. In this model, rationality

implies that every player always maximizes his utility. In other words, every player is motivated by

maximizing his own payoff.

In this setting, the goal is to design a protocol (mechanism) that can build an equilibrium between

the players. We say a protocol (mechanism) is a Nash equilibrium in the sense that no player can

improve its utility by deviating from the protocol, given that all other players are following the

protocol. Similarly, we define ε-Nash equilibrium when no player can gain more than ε utility by

unilaterally deviating from it. Furthermore, the equilibrium is everlasting if after any history that is

consistent with all players following the protocol, following the protocol continues to be an ε-Nash

equilibrium.

1.3 Contributions

1.3.1 Scalable Multi-Party Computation

In secure multi-party computation (MPC), a set of parties, each having a secret value, want to

compute a common function over their inputs, without revealing any information about their inputs

other than what is revealed by the output of the function. Usually, a malicious adversary who

makes the parties deviate arbitrarily from the protocol controls a certain fraction of the parties.

Although much theoretical progress has been made in the MPC literature to achieve scalability in

3

the malicious setting, practical progress is slower. In particular, most known schemes suffer from

either poor or unknown communication and computation costs in practice. Another challenge is

that most large-scale distributed systems are composed of nodes with limited resources. This makes

it of extreme importance to balance the protocol load across all parties involved.

In the Section 2, we first propose an efficient MPC protocol for computing arithmetic circuits

in the synchronous communication model. Our protocol is secure against a Byzantine (malicious)

adversary who can corrupt less than a 1/3 fraction of the parties. To achieve efficiency, we reduce

the communication cost of our protocol by performing local communications in logarithmic-size

groups of parties called quorums, where the number of malicious parties in each quorum is at most a

certain fraction. Our paper is the first publication in a line of research on the use of communication

locality in multi-party computation.

We also adapted our protocol to the asynchronous communication model. The asynchronous

protocol is secure against a malicious adversary corrupting less than a 1/8 fraction of the parties.

To deal with asynchrony problems arising from delayed inputs, we propose a novel distributed

data structure called threshold counter. Surprisingly, our MPC algorithm requires each party to

send only a sub-linear number of bits with respect to the network size. This significantly improves

over traditional works, which require each party to both send a number of messages and perform

computation that is linear in the network size.

1.3.2 Rational Secret Sharing

Secret sharing is one of the most fundamental problems in computer security, and is an important

primitive in many cryptographic protocols. In this problem, a secret message is converted into n

pieces called shares, which are dealt to n parties. The shares are generated in such a way that makes

it possible for all or a fraction of parties to reconstruct the secret later from the shares, but no smaller

subset of parties can reconstruct the secret.

Recently, there has been an interest in solving the rational secret sharing problem, where

all parties are rational: they want to maximize their pay-offs from a game-theoretic perspective.

Unfortunately, to the best of our knowledge, all previous mechanisms for this problem require each

agent to send O(n) messages in expectation; they do not scale well to large networks. In Section 3,

we address this issue by describing scalable mechanisms for rational secret sharing that are designed

for large n in the sense that the amount of communication and the latency of the protocol are a slow

growing function of the number of players.

Our first result is a non-cryptographic mechanism for n-out-of-n rational secret sharing that

is Nash equilibrium, rather than just ε-Nash equilibrium. Our second result is a cryptographic

4

mechanism for rational t-out-of-n secret sharing that is everlasting ε-Nash equilibrium. Both our

mechanisms require each player to send an expected O(log n) bits and has O(log n) latency in

expectation.

1.3.3 Interactive Communication over Noisy Channels

In interactive communication, a network protocol is run by two parties over a communication

channel in order to compute a desired functionality. Such a protocol usually considers the channel as

a reliable medium that always transfers information sent by either party correctly. This assumption

is, however, not always valid in practice; channels are usually subject to some random or adversarial

noise corrupting some fraction of the symbols transmitted between the parties. In such cases, a

mechanism is required to simulate the original protocol using another protocol over a noisy channel

such that it achieves the same outcome as the original protocol over an abstract noise-free channel.

In Section 4, we argue that, in most practical scenarios, the exact resource budget of the adversary

in corrupting the communication is finite but unknown to the parties in advance. We then propose

a simple and efficient technique for simulating the protocol when the noise rate is unknown. The

parties run one block of the original protocol, as if there was no noise. Then, they verify whether an

error has occurred or not by checking the some fingerprints of the block sent along with the block.

We design an adaptive algorithm during which parties estimate the number of bit-flips so far and

adapt their running protocol based on that.

If an adversary flips T bits, our algorithm sends L +O
(√

L(T + 1) log L +T
)

bits in expectation

and succeeds with high probability in L. It does so without any a priori knowledge of T . Assuming a

conjectured lower bound by Haeupler, our result is optimal up to logarithmic factors. Our algorithm

critically relies on the assumption of a private channel. We show that such an assumption is

necessary when the amount of noise is unknown.

5

Chapter 2

Secure Multi-Party Computation in Large
Networks

In secure multi-party computation (MPC), a set of parties, each having a secret value, want to

compute a common function over their inputs, without revealing any information about their inputs

other than what is revealed by the output of the function.

Recent years have seen a renaissance in MPC, but unfortunately, the distributed computing

community is in danger of missing out. In particular, while new MPC algorithms boast dramatic

improvements in latency and communication costs, none of these algorithms offer significant

improvements in the highly distributed case, where the number of parties is large.

This is unfortunate, since MPC holds the promise of addressing many important problems

in distributed computing. How can peers in BitTorrent auction off resources without hiring an

auctioneer? How can we design a decentralized Twitter that enables provably anonymous broadcast

of messages. How can we create deep learning algorithms over data spread among large clusters of

machines?

Most large-scale distributed systems are composed of nodes with limited resources. This makes

it of extreme importance to balance the protocol load across all parties involved. Also, large

networks tend to have weak admission control mechanisms which makes them likely to contain

malicious nodes. Thus, a key variant of the MPC problem that we consider will be when a certain

hidden fraction of the nodes are controlled by a malicious adversary.

6

2.1 Our Contribution

In this chapter, we describe general MPC protocols for computing arithmetic circuits. In terms of

communication and computation costs per party, our protocols scale sublinearly with the number of

parties and linearly with the size of the circuit.

To achieve sublinear communication and computation costs, our protocols critically rely on the

notion of quorums. A quorum is a set of O(log n) parties, where the number of corrupted parties in

each quorum is guaranteed not to exceed a certain fraction. We describe an efficient protocol for

creating a sufficient number of quorums in the asynchronous setting.

To adapt to the asynchronous setting, we introduce the general problem of threshold counting.

We show how this problem relates to the problem of dealing with arbitrarily-delayed inputs in our

asynchronous MPC protocol, and then propose an efficient protocol for solving it.

When a protocol is concurrently executed alongside other protocols (or with other instances of

the same protocol), one must ensure this composition preserves the security of the protocol. We

show that our protocols are secure under such concurrent compositions by proving its security in

the universal composability (UC) framework of Canetti [Can01].

2.1.1 Model

Consider n parties P1,...,Pn in a fully-connected network with private and authenticated channels.

In our asynchronous protocol, we assume communication is via asynchronous message passing,

so that sent messages may be arbitrarily and adversarially delayed. Latency (or running time) of a

protocol in this model is defined as the maximum length of any chain of messages sent/received

throughout the protocol (see [CD89, AW04]).

We assume a malicious adversary who controls an unknown subset of parties. We refer to these

parties as corrupted and to the remaining as honest. The honest parties always follow our protocol,

but the corrupted parties not only may share information with other corrupted parties but also can

deviate from the protocol in any arbitrary manner, e.g. , by sending invalid messages or remaining

silent.

We assume the adversary is static meaning that it must select the set of corrupted parties at the

start of the protocol. We assume that the adversary is computationally-unbounded; thus, we make

no cryptographic hardness assumptions.

7

2.1.2 Problem Statement

Multi-Party Computation. In the MPC problem, n parties, each holding a private input, want to

jointly evaluate a deterministic n-ary function f over their inputs while ensuring:

1. Each party learns the correct output of f ; and

2. No party learns any information about other parties’ inputs other than what is revealed from

the output.

Constraints for the Asynchronous Model. Consider a simple setting, where, the n parties send

their inputs to a trusted party P who then locally computes f and sends the result back to every

party. In the asynchronous setting, the MPC problem is challenging even with such a trusted party.

In particular, since the t corrupted parties can refrain from sending their inputs to P, it can only wait

for n− t inputs rather than n inputs. Then, it can compute f over n inputs consisting of n− t values

received from the parties and t dummy (default) values for the missing inputs. Finally, the trusted

party sends the output back to the parties. The goal of asynchronous MPC is to achieve the same

functionality as the above scenario but without the trusted party P.

Quorum Building. A quorum is a set of Θ(log n) parties, where the fraction of corrupted parties

in this set is at most t/n + ε for a small positive constant ε . In the quorum building problem, there

are n parties up to t < n of whom may be corrupted. The goal is to ensure all parties agree on a set

of n quorums such that each party is mapped to O(log n) quorums.

Threshold Counting. In this problem, there are n honest parties each with a flag bit initially set to

0. At least τ < n of the parties will eventually set their bits to 1. The goal is for all the parties to

learn when the number of bits set to 1 becomes greater than or equal to τ.

2.1.3 Our Results

The main results of this chapter are summarized by the following theorems proved in Section 2.5.

We consider an n-ary function, f , represented as an arithmetic circuit of depth d with m gates.

Theorem 2.1.1. There exist a universally-composable protocol that with high probability solves

the synchronous MPC problem and has the following properties:

• It is secure against t < (1/3− ε)n corrupted parties, for some fixed ε > 0.

• Each party sends Õ(m/n +
√

n) field elements.

8

• Each party performs Õ(m/n +
√

n) computations.

• The expected running time is O(d polylog(n)).

Theorem 2.1.2. There exist a universally-composable protocol that with high probability solves

the asynchronous MPC problem and has the following properties:

• It is secure against t < (1/8− ε)n corrupted parties, for some fixed ε > 0.

• Each party sends Õ(m/n +
√

n) field elements.

• Each party performs Õ(m/n +
√

n) computations.

• The expected running time is O(d polylog(n)).

Chapter Organization. In Section 2.2, we discuss related work. In Section 3.6, we define our

notation and discuss the building blocks used in our protocols. We present our MPC protocols

in Section 2.4. In Section 2.5, we prove the security of our MPC protocols. Section 2.6 is a

self-contained presentation of the threshold counting problem and our solution to this problem. In

Section 2.7, we describe an asynchronous protocol for the quorum building problem. Finally, we

conclude in Section 2.8 and discuss future directions.

2.2 Related Work

Due to the large body of work, we do not attempt a comprehensive review of the MPC literature

here, but rather focus on seminal work and, in particular, schemes that achieve sublinear per-party

communication costs. The MPC problem was first described by Yao [Yao82]. He described an

algorithm for MPC with two parties in the presence of a semi-honest adversary. Goldreich et

al. [GMW87] propose the first MPC protocol that is secure against a malicious adversary. This

work along with [CDG88, GHY88] are all based on cryptographic hardness assumptions. These

were later followed by several cryptographic improvements [BMR90, GRR98, CFGN96].

In a seminal work, Ben-Or et al. [BGW88] show that every function can be computed with

information-theoretic security in the presence of a semi-honest adversary controlling less than half

of the parties, and in the presence of a malicious adversary controlling less than a third of the parties.

They describe a protocol for securely evaluating an arithmetic circuit that represents the function.

This work was later improved in terms of both communication and computation costs in

[CCD88, Bea91, GRR98]. Unfortunately, these methods all have poor communication scalability.

In particular, if there are n parties involved in the computation, and the function f is represented by

9

a circuit with m gates, then these algorithms require each party to send a number of messages and

perform a number of computations that is Ω(nm).

These were followed by several improvements to the cost of MPC, when m (i.e. , the circuit

size) is much larger than n [DI06, DN07, DIK+08]. For example, the protocol of Damgård et

al. [DIK+08] incurs computation and communication costs that are Õ(m) plus a polynomial in n.

Unfortunately, the additive polynomial in these algorithms is large (at least Ω(n6)) making them

impractical for large n. One may argue that for large circuits the circuit-dependent complexity

dominates the polynomial complexity. However, we believe there are many useful circuits such as

the ones used in [MSZ15, HKI+12] which have relatively small number of gates.

Asynchronous MPC. Foundational work in asynchronous MPC was presented by Ben-Or et

al. [BCG93]. They adapt the protocol of [BGW88] to the asynchronous setting and show that asyn-

chronous MPC is possible for up to n/3 fail-stop faults and up to n/4 malicious faults. Improvements

were made by Srinathan and Rangan [SR00] and Prabhu et al. [PSR02] with a final communi-

cation cost of O(n3) per multiplication achieved by Beerliová-Trubíniová and Hirt [BTH07] for

perfectly-secure asynchronous MPC with the optimal resiliency bound of up to n/4.

Damgård et al. [DGKN09] describe a perfectly-secure MPC that guarantees termination only

when the adversary allows a preprocessing phase to terminate. However, their protocol is not fully

asynchronous, as they assume a few synchronization points; hence, they can achieve a resiliency

bound of up to n/3.

Choudhury et al. [CHP13] propose an amortized asynchronous MPC protocols with linear

communication complexity per multiplication gate meaning that the communication done by

an individual party for each gate does not grow with the number of parties. This protocol is

unconditionally-secure against up to n/4 corrupted parties with a small failure probability. In this

chapter, we are directly addressing the third open problem of [CHP13] as we quote here:

“If one is willing to reduce the resilience t from the optimal resilience by a constant fraction,

then by using additional techniques like packed secret sharing, committee election and quorum

forming, one can achieve additional efficiency in the synchronous MPC protocols, as shown in [...].

It would be interesting to see whether such techniques can be used in the asynchronous settings to

gain additional improvements.”

MPC with Sublinear Overhead. We first introduced the notion of using quorums to decrease

message cost in MPC in a brief announcement [DKMS12]. In that paper, we described a syn-

chronous protocol with bit complexity of Õ(m/n+
√

n) per party that can tolerate a computationally

10

unbounded adversary who controls up to (1/3− ε) fraction of the parties for any fixed positive ε .

As network size scales, it becomes infeasible to require each party to communicate with all other

parties.

The current chapter is the detailed version of our later extended abstract [DKMS14], where

we described algorithms to improve [DKMS12] by handling asynchronous communication. One

important challenge in the asynchronous communication model is to ensure that at least n− t inputs

are committed to, before the circuit evaluation. To address this issue we introduce and solve the

threshold counting problem.

Boyle et al. [BGT13] describe a synchronous MPC protocol for evaluating arithmetic circuits.

The protocol is computationally-secure against an adversary corrupting up to (1/3− ε) fraction

of parties, for some fixed positive ε . Similar to [DKMS12], the protocol of [BGT13] also uses

quorums to achieve sublinear per-party communication cost. Interestingly, the communication

cost of this protocol is independent of circuit size. This is achieved by evaluating the circuit over

encrypted values using a fully-homomorphic encryption (FHE) scheme [Gen09]. Unfortunately,

the protocol is not fully load-balanced as it evaluates the circuit using only one quorum (called the

supreme committee). The protocol requires each party to send polylog(n) messages of size Õ(n)

bits and requires polylog(n) rounds.

Chandran et al. [CCG+14] address two limitations of the protocol of [BGT13]: tolerating

an adaptive adversary and achieving optimal resiliency (i.e. , t < n/2 malicious parties). They

replace the common reference string assumption of [BGT13] with a different setup assumption

called symmetric-key infrastructure, where every pair of parties share a uniformly-random key

that is unknown to other parties. The authors also show how to remove the SKI assumption at a

cost of increasing the communication locality by O(
√

n). Although this protocol provides small

communication locality, the bandwidth cost seems to be super-polynomial due to large message

sizes.

Boyle et al. [BCP14] describe a scalable technique for secure computation of RAM pro-

grams [GO96] in large networks by performing local communications in quorums of parties. For

securely evaluating a RAM program Π, their protocol incurs a total communication and computation

of poly(n) +Õ(Time(Π)) while requiring Õ(|x |+ Space(Π)/n) memory per party, where Time(Π)

and Space(Π) are time and space complexity of Π respectively, and |x | denotes the input size.

11

Table 2.1: Recent MPC results with sublinear communication costs

Protocol Security Resiliency
Bound Async?

Assumes
Broadcast
Channel?

Total Message
Complexity

Total
Computation
Complexity

Latency Msg Size
Load-

Balanced?

[BGT13] Crypto (1/3− ε)n No No Õ(n) Ω̃(n) +

Ω̃(κmd3)† Õ(1) O(n` ·
polylog(n))

No

[BCP14] Perfect (1/3− ε)n No Yes poly(n) +

Õ
(
T ime(Π)

) poly(n) +

Õ
(
T ime(Π)

) Õ
(
T ime(Π)

)
O(`) Yes

[CCG+14] Crypto‡ n/2 No No
O(n log1+ε n)

or
O(n

√
n log1+ε n)

Ω(n log1+ε n)
or

Ω(n
√
n log1+ε n)

O(logε
′
n)

Ω
(
loglogn n

)
or

Ω
(√

nlogn) Yes

Our result
(sync)

Perfect (1/3− ε)n No No Õ
(
m+n

√
n
)

Õ
(
m+n

√
n
) O

(
d +

polylog(n)
) O(`) Yes

Our result
(async)

Perfect (1/8− ε)n Yes No Õ
(
m+n

√
n
)

Õ
(
m+n

√
n
) O

(
d +

polylog(n)
) O(`) Yes

Parameters: n is the number of parties; ` is the size of a field element; d is the depth of the circuit; κ is the the security
parameter; ε,ε ′ are the positive constants; Time(Π) is the worst-case running time of RAM program Π.

Notes:
†The cost is calculated based on the FHE scheme of [BGV12].
‡Assumes a symmetric-key infrastructure. However, unlike the rest, this protocol is secure against an adaptive
adversary.

In Table 2.1, we review recent MPC results that provide sublinear communication locality. All

of these results rely on some quorum building technique for creating a set of quorums each with

honest majority.

12

Counting Networks. The threshold counting problem can be solved in a load-balanced way using

counting networks that were first introduced by Aspnes et al. [AHS91]. Counting networks are

constructed from simple two-input two-output computing elements called balancers connected to

one another by wires. A counting network can count any number of inputs even if they arrive at

arbitrary times, are distributed unevenly among the input wires, and propagate through the network

asynchronously.

Aspnes et al. [AHS91] establish an O(log2 n) upper bound on the depth complexity of counting

networks. Since the latency of counting is dependent on the depth of the network, minimizing

this depth has been the goal of many papers in this area. A simple explicit construction of an

O(clog∗ n log n)-depth counting network (for some positive constant c), and a randomized con-

struction of an O(log n)-depth counting network that works with high probability are described

by Klugerman and Plaxton in [KP92, Klu95]. These constructions use the AKS sorting net-

work [AKS83] as a building block. While this sorting network and the resulting counting networks

have O(log n) depth and require each party (or gate in their setting) to send O(log n) messages,

large hidden constants render them impractical.

2.3 Preliminaries

In this section, we define standard terms, notation, and known building blocks used throughout this

chapter.

Notation. We denote the set of integers {1,...,n} by [n]. We say an event occurs with high probabil-

ity, if it occurs with probability at least 1−1/nc, for some c > 0 and sufficiently large n. A protocol

is called t-private if no coalition of t corrupted parties can learn anything more than what is implied

by their private inputs and the protocol output. A protocol is called t-resilient if no set of t or less

parties can influence the correctness of the outputs of the remaining parties.

We also assume that all arithmetic operations in the circuit are carried out over a finite field F.

The size of F depends on the specific function to be computed and is always Ω(log n). All of the

messages transmitted by our protocol are logarithmic in F and n.

Let r be a value chosen uniformly at random from F and x̂ = x + r, for any x ∈ F. In this case,

we say x is masked with r and we refer to r and x̂ as the mask and the masked value respectively.

Universal Composability Framework. When a protocol is executed several times possibly con-

currently with other protocols, one requires to ensure this composition preserves the security of the

13

protocol. This is because an adversary attacking several protocols that run concurrently can cause

more harm than by attacking a stand-alone execution, where only a single instance of one of the

protocols is executed.

One way to ensure this is to show the security of the protocol in the universal composability

(UC) framework of Canetti [Can01]. A protocol that is secure in the UC framework is called

UC-secure. We describe this framework in Section 2.5.

Verifiable Secret Sharing. An (n,t)-secret sharing scheme is a protocol in which a dealer who

holds a secret value shares it among n parties such that any set of t < n parties cannot gain any

information about the secret, but any set of at least t +1 parties can reconstruct it. An (n,t)-verifiable

secret sharing (VSS) scheme is an (n,t)-secret sharing scheme with the additional property that after

the sharing stage, a dishonest dealer is either disqualified or the honest parties can reconstruct the

secret, even if shares sent by dishonest parties are spurious. When we say a set of shares of a secret

are valid, we mean the secret can be uniquely reconstructed solely from the set of shares distributed

among the parties.

In this chapter, we use the (dn/3e −1)-resilient VSS scheme of Ben-Or et al. [BGW88] for the

synchronous setting and the (dn/4e −1)-resilient VSS scheme of Ben-Or et al. [BCG93] for the

asynchronous setting. When run among n parties, both protocols incur poly(n) communication cost

and O(1) latency. We refer to the sharing stages of these protocols as VSS-Share and AVSS-Share,

and to their reconstruction stages as VSS-Reconst and AVSS-Reconst, respectively.

Classic MPC. Our main protocols rely on the classic (dn/3e −1)-resilient MPC protocol of Ben-

Or et al. [BGW88] for the synchronous setting and the classic (dn/4e −1)-resilient MPC protocol

of Ben-Or et al. [BCG93] for the asynchronous setting. When run among n parties to compute a

circuit with d gates, both protocols send poly(n) bits and incur a latency of O(d). We refer to the

former protocol as CMPC and to the latter as ACMPC.

In this chapter, we use the above VSS and classic MPC protocols only among logarithmic-size

groups of parties and only for computing logarithmic-size circuits. Thus, the communication

overhead per invocation of these protocols will be polylog(n).

Byzantine Agreement. In the Byzantine agreement problem, each party is initially given an input

bit. All honest parties must agree on a bit which coincides with at least one of their input bits.

When parties only have access to secure pairwise channels, a protocol is required to ensure

secure (reliable) broadcast. This guarantees all parties receive the same message even if the

14

broadcaster (dealer) is dishonest and sends different messages to different parties. Every time a

broadcast is required in our protocols, we use the Byzantine agreement algorithms of Feldman and

Micali [FM88]. We refer to their (dn/3e −1)-resilient synchronous algorithm as BA and to their

(dn/4e −1)-resilient asynchronous algorithm as ABA. When all parties participating in a run of a

broadcast protocol receive the same message, we say these messages are consistent.

2.4 Our Protocols

We now describe our protocols for scalable MPC in large networks. Throughout this section, we

consider the network model defined in Section 2.1.1. We first describe our synchronous protocol,

and then adapt this protocol to the asynchronous setting.

We assume that the parties have an arithmetic circuit C computing f ; the circuit consists of

m addition and multiplication gates. For convenience of presentation, we assume each gate has

in-degree and out-degree 2.1 For any two gates x and y in C, if the output of x is input to y, we say

that x is a child of y and that y is a parent of x. We assume the gates of C are numbered 1,2,. . . ,m,

where the gate numbered 1 is the output (root) gate.

2.4.1 Synchronous MPC

The high-level idea behind our protocols is to first create a sufficient number of quorums and assign

to each gate in the circuit one of these quorums. Then, for each party Pi holding an input xi ∈ F,

Pi secret-shares xi among all parties in the quorum associated with the i-th input gate. We refer to

such a quorum as an input quorum.

Next, the protocol evaluates the circuit gate-by-gate starting from input gates. Each gate is

jointly evaluated by parties of the quorum associated with this gate over the secret-shared inputs

provided by its children. In a similar way, the result of the gate is then used as the input to the

computation of the parent gate. Finally, the quorum associated with the root gate, constructs the

final result and sends it to all parties via a binary tree of quorums.

This high-level idea relies on solutions to the following main problems.

Quorum Building. Creating a sufficient number of quorums. In Section 2.7, we describe a ran-

domized protocol called Build-Quorums that achieves this goal with high probability.
1Our protocol works, with minor modifications, for gates with arbitrary constant fan-in and fan-out.

15

Protocol 1 Synchronous MPC

1. Quorum Building. All parties run Build-Quorums to agree on n good quorums Q1,...,Qn . The i-th gate of C is assigned to
Q(i mod n) , for all i ∈ [m].

2. Input Commitment. For all i ∈ [n], party Pi holding an input value xi ∈ F runs the following steps concurrently:

a) Pick a uniformly random element ri ∈ F, set x̂ = xi + ri , and broadcast x̂ to Qi .

b) Run VSS-Share to secret-share ri in Qi .

3. Circuit Evaluation. All parties participate in a run of Circuit-Eval to securely evaluate C.

4. Output Reconstruction. For the output gate z, parties in Qz ,

a) Run VSS-Reconst to reconstruct rz from its shares.

b) Set the circuit output message: y← ŷz − rz .

c) Send y to all parties in the Q2 and Q3.

5. Output Propagation. For every i ∈ {2,...,n}, parties in Qi perform the following steps:

a) Receive y from the Q bi/2c .

b) Send y to all parties in Q2i and Q2i+1.

Circuit Evaluation. Securely evaluating each gate over secret-shared inputs by the parties inside a

quorum. In Section 2.4.1.2, we describe a protocol called Circuit-Eval that achieves this goal.

Share Renewal. Sending the result of one quorum to another without revealing any information to

any individual party or to any coalition of corrupted parties in both quorums. We solve this as part

of our gate evaluation protocol described in Section 2.4.1.2.

Protocol 1 is our main protocol. When we say a party VSS-shares (or secret-shares) a value s in

a quorum Q (or among a set of parties), we mean the party participates as the dealer with input s in

the protocol VSS-Share with all parties in Q (or in the set of parties).

The protocol starts by running Build-Quorums to create n quorums Q1,...,Qn. Then, it assigns

the gates of C to these quorums in the following way. The output gate of C is assigned to Q1; then,

every gate in C numbered i (other than the output gate) is assigned to Q(i mod n). For each gate u ∈ C,

we let Qu denote the quorum associated with u, yu denote the output of u, ru be a random element

from F, and ŷv denote the masked output of u, where ŷu = yu + ru.

16

CMPC

Qv

CMPC

Qu

QwQv

CMPC

Qw

Same quorumsSame quorums

Figure 2.1: The gate gadgets for gate u and its left and right children

2.4.1.1 Input Commitment

Let Qi be the quorum associated with party Pi who holds input xi. At the start of our protocol, Pi

samples a value ri uniformly at random from F, sets x̂ = xi + ri, and broadcasts x̂ to all parties in Qi.

Next, Pi runs VSS-Share to secret-share ri among all parties in Qi.

2.4.1.2 Circuit Evaluation

The main idea for reducing the amount of communication required in evaluating the circuit is

quorum-based gate evaluation. If each party participates in the computation of the whole circuit, it

must communicate with all other parties. Instead, in quorum-based gate evaluation, each gate of the

circuit is computed by a gate gadget. A gate gadget (see Figure 2.1) consists of three quorums: two

input quorums and one output quorum. Input quorums are associated with the gate’s children which

serve inputs to the gate. The output quorum is associated with the gate itself and is responsible for

creating a shared random mask and maintaining the output of the quorum for later use in the circuit.

As depicted in Figure 2.1, these gate gadgets connect to form the entire circuit. In particular, for any

gate u, the output quorum of u’s gate gadget is the input quorum of the gate gadget for all of u’s

parents.

The parties in each gate gadget run CMPC among themselves to compute the gate operation. To

ensure privacy is preserved, each gate gadget maintains the invariant that the value computed by the

gadget is the value that the corresponding gate in the original circuit would compute, masked by a

uniformly random element of the field. This random element is not known to any individual party.

17

(a) (b) (c)

CMPC

Qu

Qv Qw

Shares of ru

CMPC

Qu

Qv Qw

Shares of ru

Qv Qw

Shares of ru

yv + rv

Shares of rv

yw + rw

Shares of rw

yu + ru

Qu

Figure 2.2: Evaluation of gate u: (a) generating ru, (b) providing inputs to CMPC, (c) receiving the
masked outputs

Protocol 2 Circuit-Eval

Goal. Given a circuit C, the protocol securely evaluates C.

For every gate u ∈C with children v,w ∈C, parties in Qu , Qv , and Qw perform the following steps to compute the gate functionality:

1. Mask Generation. Parties in Qu run Gen-Rand to jointly generate a secret-shared random value ru ∈ F.

2. MPC in Quorums. The following parties participate in a run of CMPC with their corresponding inputs:

• Every party in Qu with his share of ru .

• Every party in Qv with his input(
ŷv , his share of rv

)
.

• Every party in Qw with his input(
ŷw , his share of rw

)
.

Instead, shares of it are held by the members of the output quorum. Thus, the output quorum can

participate as an input quorum for the evaluation of any parent gate and provide both the masked

version of the inputs and shares of the mask. The gate gadget computation is performed in the same

way for all gates in the circuit until the final output of the whole circuit is computed. After the input

commitment step, for each input gate u, parties in Qu know the masked input ŷu, and each has a

share of the mask ru.

The first step of the circuit evaluation is to generate shares of uniformly random field elements

for all gates. If a party is in a quorum at gate u, it generates shares of ru, a uniformly random

field element, by participating in the Gen-Rand protocol. These shares are needed as inputs to the

subsequent run of CMPC.

18

Protocol 3 Gen-Rand

Goal. A set of parties P1,...,PN in a quorum want to agree on a secret-shared value r chosen uniformly at random from F.

1. For all i ∈ [N], party Pi chooses ρi ∈ F uniformly at random and VSS-shares it among all N parties.

2. For every j ∈ [N], let N ′ be the number of shares Pj receives from the previous step, and ρ1 j ,..., ρN ′ j be these shares. Pj

computes r j =
∑N ′

k=1 ρk j .

Next, parties form the gadget for each gate u to evaluate the functionality of the gate using Circuit-
Eval. Let v and w be the left and right children of u respectively. The gate evaluation process is

shown in Figure 2.2. The values yv and yw are the inputs to u, and yu is the its output as it would be

computed by a trusted party. Each party in Qu has a share of the random element ru via Gen-Rand.

Every party in Qv has the masked value yv + rv and a share of rv (respectively for Qw).

As shown in Part (b) of Figure 2.2, all parties in the three quorums participate in a run of CMPC,

using their inputs, in order to compute ŷu = yu + ru. Part (c) of the figure shows the output of the

gate evaluation after participating in CMPC. Each party in Qu now learns ŷu as well a share of ru.

Therefore, parties in Qu now have the input required for performing the computation of parents of u

(if any). Note that both yu and ru remain unknown to any individual.

The gate evaluation is performed for all gates in C starting from the bottom to the top. The

output of the quorum associated with the output gate in C is the output of the entire algorithm. This

quorum will unmask the output via the output reconstruction step. The last step of the algorithm is

to send this output to all parties. We do this via a complete binary tree of quorums, rooted at the

output quorum.

2.4.1.3 Implementing the Gate Circuit

For every gate u ∈ C, the Circuit-Eval protocol requires a circuit (as we denote by Cu) for unmasking

the masked inputs ŷv and ŷw, computing u’s functionality fu over the unmasked inputs, and masking

the output with the gate’s random value ru. This circuit is securely evaluated using the CMPC
protocol by the quorum associated with u.

For unmasking an input, Cu requires a reconstruction circuit, which given a set of shares, outputs

the corresponding secret. Since dishonest parties may send spurious shares, the circuit implements

the error-correcting algorithm of Berlekamp and Welch [BW86] to fix such corruptions. Then,

the resulting shares are given to an interpolation circuit which implements a simple polynomial

interpolation. Figure 2.3 depicts the circuit for gate u.

We now briefly describe the error correcting algorithm of Berlekamp and Welch [BW86]. Let

19

Shares of 𝑟𝑢

Reconstruction

Circuit

Reconstruction

Circuit

Shares of 𝑟𝑣 𝑦 𝑣

−

Reconstruction

Circuit

Shares of 𝑟𝑤 𝑦 𝑤

−

𝑓𝑢

+

𝑦 𝑢

Berlekamp-Welch

Circuit

Interpolation

Circuit

R
ec

o
n

st
ru

ct
io

n
 C

ir
cu

it

Shares of 𝑥

𝑥 𝑦𝑣 𝑦𝑤

𝑟𝑣 𝑟𝑤

𝑟𝑢 𝑦𝑢

Figure 2.3: Circuit of gate u

Fp denote a finite field of prime order p, and S = {(x1,y1) | xi,yi ∈ Fp}
η
i=1 be a set of η points,

where η − ε of them are on a polynomial y = P(x) of degree τ, and the rest ε < (η − τ + 1)/2

points are erroneous. Given the set of points S, the goal is to find the polynomial P(x). The

algorithm proceeds as follows. Consider two polynomials E(x) = e0 + e1x + ...+ eεxε of degree

ε, and Q(x) = q0 + q1x + ...+ qk xk of degree k ≤ ε+ τ−1 such that yiE(xi) = Q(xi) for all i ∈ [η].

This defines a system of η linear equations with ε+ k = η variables e0,...,eε,q0,...,qk that can be

solved efficiently using Gaussian elimination technique to get the coefficients of E(x) and Q(x).

Finally, calculate P(x) = Q(x)/E(x).

Since the Gaussian elimination algorithm over finite fields has O(n3) arithmetic complex-

ity [Far88], the corresponding circuit has at most O(n3) levels. Since the interpolation circuit

consists of at most O(n2) arithmetic operations (using the Lagrange’s method [Abr74]), the overall

depth of the reconstruction circuit will be O(n3).

2.4.2 Asynchronous MPC

We now adapt our synchronous protocol to the asynchronous communication model. We do this by

modifying the following parts of Protocol 1:

1. We replace the synchronous subprotocols VSS-Share, VSS-Reconst, and CMPC with their

20

corresponding asynchronous versions AVSS-Share, AVSS-Reconst, and ACMPC, respectively.

In Section 2.7, we describe a technique for adapting Build-Quorums to the asynchronous

setting.

2. At the end of the Input Commitment stage, the protocol should wait for at least n− t inputs

before proceeding to the Circuit Evaluation stage. To this end, we introduce a new subprotocol

called Wait-For-Inputs and invoke it right after step (b) of the Input Commitment stage. This

protocol is described in Section 2.4.2.1.

3. Although the protocol ACMPC terminates with probability one, its actual running time (i.e. ,

the number of rounds until it terminates) is a random variable with expected value O(D log N),

where N is the number of parties participating in the MPC and D is the circuit depth [BCG93].

Since we run m instances of ACMPC (one for each gate of C), we need a method that allows

us to bound the running time of each gate, and thus to bound the expected running time

of our asynchronous MPC protocol. We describe a simple method for achieving this in

Section 2.4.2.2.

4. In the second step of Gen-Rand (Protocol 3), each party may receive less than N shares. This

is because

2.4.2.1 Implementing Wait-For-Inputs

The protocol Wait-For-Inputs counts the number of inputs that are successfully received by their

corresponding input quorums. This can be achieved using a solution to the threshold counting

problem: Count the number of inputs successfully received by each input quorum and return once

this number becomes greater than or equal to n− t. As a result of returning from Wait-For-Inputs,

the main protocol resumes and starts the circuit evaluation procedure.

In Section 2.6, we provide a solution to the threshold counting problem. We refer to this protocol

as Thresh-Count. This protocol creates a distributed tree structure called the count tree which is

known to all parties and determines how the parties communicate with each other to count of the

number of inputs.

Protocol 4 implements Wait-For-Inputs using our Thresh-Count algorithm. In Wait-For-Inputs,

the role of each party in Thresh-Count (i.e. , each node in the count tree) is played by a quorum of

parties. Once Thresh-Count terminates, the parties in each input quorum decide whether or not the

corresponding inputs are part of the computation.

21

Protocol 4 Wait-For-Inputs

Goal. For every input quorum Q, all parties in a quorum Q wait until n− t inputs are received by the input quorums. For each party
Pi ∈ Q, Pi is initially holding two values x̂ and ri , the i-th share of a random value r .

Each party Pi ∈ Q does the following:

1. Run Thresh-Count with flag bit bi initially set to zero.

2. If x̂ and ri ’s are consistent and valid (based on the Byzantine agreement protocol and the verification stage of AVSS-Share
respectively), set bi ← 1 in Step 2(a) of Thresh-Count.

3. Upon receiving 〈Done〉 from the parent quorum, run ACMPC using bi as the input. d← True if a 5/8-fraction of the parties
in Q have their bi ’s set to one. Otherwise, d← False.

4. If d = False, then x̂← Default and ri ← 0.

When run among quorums, Thresh-Count requires the quorums to communicate with each other.

We say a quorum Q sends a message M to quorum Q′, when every (honest) party in Q sends M to

every party in Q′. A party in Q′ is said to have received M from Q if it receives M from at least

7/8 of the parties in Q. When we say a party broadcasts a message M to a quorum Q, we mean the

party sends M to every party in Q, and then, all parties in Q run BA over their messages to ensure

they all hold the same message.

2.4.2.2 Bounding the Expected Running Time

Consider N parties in a quorum who want to jointly compute a circuit of depth D using the protocol

ACMPC. Let X denote the random variable corresponding to the number of rounds until an instance

of ACMPC terminates. From [BCG93], we have

E[X] = O(D log N).

Instead of running only one instance of ACMPC, we run O(log N) instances sequentially each for

2E[X] rounds. The output corresponding to the first instance that terminates will be returned as the

output of the gate. Using the Markov’s inequality,

Pr(X ≥ 2E[X]) ≤ 1/2.

In each gate of C, each party also participates in a run of Gen-Rand which itself calls AVSS-Share.

Similar to ACMPC, for each instance of AVSS-Share, we run O(log N) instances sequentially each

for 2E[X] rounds. The sharing corresponding to the first instance that terminates will be accepted

by the parties.

22

Since O(log N) instances of ACMPC and AVSS-Share are executed in each gate, the computation

of the gate correctly terminates after at most

2E[X] log N = O(D log2 N)

rounds with high probability. Since C has m = poly(n) gates, using union bound over all gates of

C, our MPC algorithm correctly terminates with high probability. Finally, since C has depth d,

the expected running time of our asynchronous MPC protocol is O(Dd log2 N). In Section 2.4.1.2,

we argued that the circuit computed by Circuit-Eval has depth D = polylog(n). Thus, the expected

running time of our protocol is O(d polylog(n)).

2.4.3 Remarks

As described in the introduction, the goal of MPC is to simulate a trusted third party in the

computation of the circuit, and then send back the computation result to the parties. Let S denote the

set of parties from whom input is received by the (simulated) trusted party. Recall that |S | ≥ n− t.1

Thus, for an arbitrary S, a description of S requires Ω(n) bits, and cannot be sent back to the parties

using only a scalable amount of communication. Therefore, we relax the standard requirement that

S be sent back to the parties. Instead, we require that at the end of the protocol each honest party

learns the output of f ; whether or not their own input was included in S; and the size of S.

Also note that although we have not explicitly included this in the input commitment step, it is

very easy for the parties to compute the size of the computation set S. Once each input quorum Qi

has performed the third step of Wait-For-Inputs and has agreed on the flag bi = 1, they can simply

use an addition circuit to add these bits together, and then disperse the result. This is an MPC, all of

whose inputs are held by honest parties, since each input flag bi is jointly held by the entire quorum

Qi, and all the quorums are good. Thus, the computation can afford to wait for all n inputs and

computes the correct sum.

In our both protocols, it may be the case that a party P participates more than one time in the

quorums performing a single instance of the classic MPC. In such a case, we allow P to play the

role of more than one different parties in CMPC and ACMPC, one for each quorum to which P

belongs. This ensures that the fraction of corrupted parties in any instance of the classic MPC is

always less than 1/3 for the synchronous case and 1/4 for the asynchronous case. We stress that

CMPC and ACMPC both maintain privacy guarantees even in the face of gossiping coalitions of
1We allow |S | > n− t because the adversary is not limited to delivering one message at a time; two or more messages

may be received simultaneously.

23

constant size. Thus, each party will learn no information beyond the output and its own inputs after

running these protocols.

2.5 Proof of Theorem 2.1.2

We first describe the UC framework in Section 2.5.1, and then give a sketch of our proof in

Section 2.5.2. We prove the UC-security of Protocol 1 in sections 2.5.3 to 2.5.5. Finally, we

calculate the resource costs of this protocol in Section 2.5.7.

2.5.1 The UC Framework

The UC framework is based on the simulation paradigm [Gol00], where the protocol is considered

in two models: ideal and real. In the ideal model, the parties send their inputs to a trusted party

who computes the function and sends the outputs to the parties. We refer to the algorithm run by the

trusted party in the ideal model as the functionality of the protocol. In the real model, parties run

the actual protocol that assumes no trusted party. We refer to a run of the protocol in one of these

models as the execution of the protocol in that model.

A protocol P securely computes a functionality FP if for every adversary A in the real model,

there exists an adversary S in the ideal model, such that the result of a real execution of P with A

is indistinguishable from the result of an ideal execution with S. The adversary in the ideal model,

S, is called the simulator.

The simulation paradigm provides security only in the stand-alone model. To prove security

under composition, the UC framework introduces an adversarial entity called the environment,

denoted by Z, who generates the inputs to all parties, reads all outputs, and interacts with the

adversary in an arbitrary way throughout the computation. The environment also chooses inputs for

the honest parties and gets their outputs when the protocol is finished.

A protocol is said to UC-securely compute an ideal functionality if for any adversary A that

interacts with the protocol there exists a simulator S such that no environmentZ can tell whether it

is interacting with a run of the protocol and A, or with a run of the ideal model and S.

Now, consider a protocol P that has calls to ` subprotocols P1,...,P` which are already proved

to be UC-secure. To facilitate the security proof of P, we can make use of the hybrid model, where

the subprotocols are assumed to be ideally computed by a trusted third-party. In other words, we

replace each call to a subprotocol with a call to its corresponding functionality. This hybrid model

is usually called the (P1,...,P`)-hybrid model. We say P is UC-secure in the hybrid model if P in

24

the hybrid model is indistinguishable by the adversary from P in the ideal model. The modular

composition theorem [Can00] states that if P1,...,P` are all UC-secure, and P is UC-secure in the

hybrid model, then P is UC-secure in the real model.

2.5.2 Proof Sketch

Before proceeding to the proof, we remark that the error probability in Theorem 2.1.2 comes entirely

from the possibility that Build-Quorums or the threshold counting procedure may fail to output

correct results. All other components of our protocol are deterministic and thus have no error

probability. We also assume that, at the beginning of our MPC protocol, the parties have already

agreed on n good quorums, and the threshold counting procedure is performed successfully.1

As in [Gol04], we refer to the security in the presence of a malicious adversary controlling t

parties t-security. For every gate u ∈ C, let Iu denote the set of the corrupted parties in the quorum

associated with u. Also, let I denote the set of all corrupted parties, where |I | < t.

Our goal is to prove the UC-security of Protocol 1. To do this, we must show two steps. Step

1) is to show that each of our subprotocols are UC-secure. Step 2) is to show that our protocol is

UC-secure in the hybrid model. Once we show these two steps, then by the modular composition

theorem, we conclude that our protocol is UC-secure in the real model.

In Lemma 2.5.7, we show Step 2, that the adversary can not distinguish the execution of the

hybrid model from the ideal model.

We next describe our approach to Step 1, which is more challenging. For this step, we make use

of a theorem that will help us show that our subprotocols are UC-secure. Kushilevitz et al. [KLR10]

show Theorem 2.5.1. This theorem targets perfectly-secure protocols that are shown secure using a

straight-line black-box simulator. A black-box simulator is a simulator that is given only oracle

access to the adversary (see [Gol00] Section 4.5 for a detailed definition). Such a simulator is

straight-line if it interacts with the adversary in the same way as real parties, meaning that it proceeds

round by round without ever going back.

Theorem 2.5.1 ([KLR10]). Every protocol that is perfectly-secure in the stand-alone model and

has a straight-line black-box simulator is UC-secure.

We first define the ideal functionalities shown in Table 2.2 that correspond to the subprotocols

used in Protocol 1. We then prove that Protocol 1 is t-secure in the (FBA, FVSS-Share, FVSS-Reconst,
1For simplicity, we assume the primitive Build-Quorums is run only once, and it does not run concurrently with

other protocols.

25

Table 2.2: Ideal functionalities
Functionality Implemented by

FBA Protocol BA
FVSS-Share Protocol VSS-Share

FVSS-Reconst Protocol VSS-Reconst
FCMPC Protocol CMPC

FGen-Rand Protocol Gen-Rand
FInput Input Commitment stage of Protocol 1

FCircuit-Eval Protocol Circuit-Eval
FOutput Output Reconstruction and Output

Propagation stages of Protocol 1

FCMPC, FGen-Rand, FInput, FCircuit-Eval, FOutput)-hybrid model. Finally, we use Theorem 2.5.1 to infer

the UC-security of Protocol 1.

In order to prove the t-security of Protocol 1 in the hybrid model, we first show that all of

our subprotocols are UC-secure. Similar to the above approach, we first prove t-security of every

subprotocol in its corresponding hybrid model using a straight-line black-box simulator, and then

use Theorem 2.5.1 to infer its UC-security.

To prove the t-security of a protocol Π, we describe a simulator SΠ that simulates the real

protocol execution by running a copy of Π in the ideal model. For each call to a secure subprotocol

π, the simulator calls the corresponding ideal functionality Fπ. A view of a corrupted party from

execution of a protocol is defined as the set of all messages it receives during the execution of

that protocol. At every stage of the simulation process, SΠ adds the messages received by every

corrupted party in that stage to its view of the simulation. This is achieved by running a copy of

Π for each corrupted party with its actual input as well as by running a copy of Π for each honest

party with a dummy input.1 The view of the adversary is then defined as the combined view of all

corrupted parties.

2.5.3 Security of Input Commitment

Before proceeding to the proof of security for Input Commitment stage, we show the following

auxiliary lemma.

Lemma 2.5.2. If a quorum Q sends to a quorum Q′ a message M, it is eventually received by all

honest parties in Q′.

1SΠ learns neither the actual inputs nor the actual outputs of the honest parties.

26

Protocol 5 FInput

Goal. The functionality guarantees valid inputs are received by at least n− t input quorums. Then, the functionality notifies all
input quorums to proceed to the next stage of the protocol with either a valid input or a default input.

Functionality:

1. Wait to receive at least n− t valid inputs from the set of all n parties. For every such input xi , the functionality receives
x̂i = xi + ri and ri from party Pi where i ∈ [n]. Let S denote the set of parties whose inputs have been accepted (Note that
if Pi ∈ S, then ŷi and ri are valid).

2. If Pi < S, then define ŷi = 0 and ri = 0.

3. Broadcast 〈Done〉 and yi←xi + ri to Qi and run FVSS-Share to secret-share ri in Qi .

Proof. Recall that when Q sends M to Q′, every honest party in Q sends M to all parties in Q′. A

party in Q′ considers itself to have received the message M from Q if it receives M from at least 7/8

of the parties in Q. Since n quorums have successfully been formed, more than 7/8 of the parties in

each quorum are honest. In particular, this is true for Q. Thus, at least 7/8 of the members of Q send

M to each member of Q′. Since the adversary must eventually deliver all the messages that have

been sent, albeit with arbitrary delays, it follows that eventually each honest party in Q′ receives M

from at least 7/8 of the members of Q. � �

We now proceed to the proof of the Input Commitment stage. The ideal functionality, FInput,

is given in Protocol 5. This functionality creates a set S containing the index of the parties whose

inputs have been accepted (as defined in Step 1 of Protocol 5) by the protocol to be used for the

computation. If a party’s input is not in S, then the functionality sets this input to the default value.

Next, the functionality sends each masked input x̂i to quorum Qi and secret-shares the mask ri in

Qi. In Lemma 2.5.3, we show the Input Commitment stage in Protocol 1 correctly implements this

functionality. Thus, the parties in Qi eventually either have received consistent VSS-shares of xi

and have agreed on x̂i = xi + ri as well as on i being in S or they have agreed that i < S and have set

these values to the predefined value and rv and all its shares to 0. We say that a quorum has come to

agreement on X if all honest parties in the quorum agree on X .

Lemma 2.5.3. The Input Commitment stage of Protocol 1 is UC-secure.

Proof. First, we show that corrupted parties cannot do anything but choose their input as they wish;

thus, the Input Commitment stage correctly computes FInput. This means that all honest parties

receive the 〈Done〉 message. Moreover, there exists a set S such that for every i ∈ [n], the following

statements hold:

1. All parties in Qi eventually agree whether i ∈ S or not.

27

2. At least n− t input quorums agree that their corresponding party’s index is in S.

3. All parties in Qi agree that party i ∈ S if and only if they collectively hold enough shares to

reconstruct Pi’s input. If all parties in Qi agree that i ∈ S, then party Pi’s input will be used in

the computation. Otherwise, the default value will be used instead.

First, since there are n − t honest parties, at least n − t valid inputs are eventually sent to

Thresh-Count. Based on Theorem 2.6.1, all parties will be notified when n− t inputs are received.

Each party in Qi has set its flag bit to either 1 or 0 depending on whether it has received a valid

input share from Pi. Let q = |Qi |. Upon receiving the 〈Done〉 message, the parties in Qi run the

third step of Wait-For-Inputs to decide whether at least 5q
8 of them have set their flag bit to 1. If they

have, they assume i ∈ S.

If i ∈ S, then at least 7q
8 of the parties in Qi have received input shares from Pi before they

received the 〈Done〉 message. Of these, more than 3q
4 parties in Qi are honest and have set their

flag bit to 1. Since CMPC in Line 3 starts even if as many as q/8 inputs are missing, the parties in

Qi will correctly decide that at least 5q
8 flag bits among them are set to 1. Thus, the parties in Qi

all agree that i ∈ S. If i < S, then CMPC in Line 3 has determined that less than 5q
8 flag bits are set

to 1. Since Qi contains less than q/8 corrupted parties, more than q/2 parties set their flags to 0

and the parties in Qi all agree that i < S. As a result, at least n− t input quorums agree that their

corresponding inputs are in S, and hence |S | ≥ n− t.

We prove the t-security of the Input Commitment stage in the (FVSS-Share, FVSS-Reconst,FCMPC)-

hybrid model which is similar to the Input Commitment stage of Protocol 1 except that every

call to its subprotocols is replaced with a call to their corresponding functionality. We define the

corresponding simulator SInput in Protocol 6.

Let V1 denote the view of the adversary from the hybrid execution, and V2 be its view from the

simulation. The inputs to Thresh-Count and Line 3 of Protocol 4 are completely independent of the

inputs of Protocol 1. Thus, V1 contains only the masked inputs, x̂i’s, and at most 1/8 fraction of

the shares for each random mask, ri’s. The masked inputs convey no information about the inputs.

Moreover, a 1/8 fraction of the shares are not enough to reconstruct the random number. Since V2

contains all random elements, the adversary cannot distinguish V1 from V2. Since our simulator

is straight-line and black-box, it follows from Theorem 2.5.1 that the Input Commitment stage is

UC-secure. � �

28

Protocol 6 SInput

For every i ∈ [n], party Pi holds an input xi ∈ F. Associated with this input, we consider a quorum Qi . Let Ii denote the set of
corrupted parties in Qi , and let I denote the set of all corrupted parties among P1,...,Pn .

Inputs. {ri }i∈[n], and { x̂i }i∈[n] from parties in I (set of all corrupted parties).

Simulation:

1. For every i ∈ [n], if Pi ∈ I, send xi + ri to all parties in Qi , and run FVSS-Share to secret-share ri in Qi .

2. If Pi < I,

a) Choose ri and xi uniformly at random from F and x̂i ← xi + ri .

b) Send x̂i to all parties in Qi .

c) Run FVSS-Share to secret-share ri in Qi .

d) For every party in Ii , add his share of ri and x̂i to his view.

3. For every party in Qi , run Wait-For-Inputs to wait for at least n− t inputs.

a) Run FThresh-Count with flag bi initially set to zero to count the number of received inputs.

b) If xi and ri are valid and consistent (based on the broadcast protocol and the verification stage of VSS-Reconst
respectively), raise an event to set bi ← 1 in FThresh-Count.

c) Upon receiving 〈Done〉 from the parent quorum, run CMPC using bi as your input to set d← True if a 5/8-fraction
of the parties in Q have their bi ’s set to one. Otherwise, d← False.

d) If d is set to False, then set y← Default and ri ← 0.

Protocol 7 FGen-Rand

Goal. For a gate u ∈ C, generate a random value r ∈ F and VSS-share it among parties P1,...,PN in the quorum associated with u.

Functionality:

1. Receive inputs ρ1,..., ρN ∈ F from P1,...,PN respectively. For every i ∈ [N], if Pi does not send an input, then define
ρi = 0.

2. Calculate r =
∑N

i=1 ρi and invoke FVSS-Share to send a share ri of r to Pi .

2.5.4 Security of Circuit Evaluation

We first prove the security of Gen-Rand. The ideal functionality FGen-Rand is given in Protocol 7.

At least 7n/8 of the inputs ρ1,..., ρN are sent by honest parties and thus are chosen uniformly and

independently at random from F. Hence, r =
∑N

i=1 ρi is also a uniform and independent random

element of F. This is because the sum of elements of F is uniformly random if at least one of them

is uniformly random.

Lemma 2.5.4. The protocol Gen-Rand is UC-secure.

Proof. We prove the t-security of Gen-Rand in the FVSS-Share-hybrid model which is similar to

29

Protocol 8 SGen-Rand

Inputs. For a gate u ∈ C, the inputs {ρ j }P j ∈Iu of the corrupted parties P1,...,PN in the quorum associated with u.

Simulation:

1. For every Pi ∈ (Qu − Iu) (i.e. , for every honest party Pi), call FVSS-Share with dummy input 0. Let si1,...,s
i
N

denote the
outputs.

2. For every Pj ∈ Iu ,

a) Run FVSS-Share with input ρ j . Let ρ j1,..., ρ
j
N

denote the outputs. For every k ∈ [N], add ρk
j

to the view of Pj .

b) Compute r j =
∑N

k=1 ρ
k
j

and add r j to the view of Pj .

Protocol 9 FCircuit-Eval

Goal. For each gate u ∈ C with children v,w ∈ C, 3N parties P1,...,P3N provide inputs to the functionality to allow it evaluate the
functionality of u denoted by fu .

Functionality:

1. For every i ∈ [N], receive ρi from Pi , ŷv and r (i)
v from Pi+N , and ŷw and r (i)

w from Pi+2N respectively.

2. Run FGen-Rand with inputs ρ1,..., ρN to generate r (1)
u ,...,r (N)

u .

3. Run FCMPC to locally compute the following functionality:

a) ru ← FVSS-Reconst over r (1)
u ,...,r (N)

u .

b) rv ← FVSS-Reconst over r (1)
v ,...,r (N)

v .

c) rw ← FVSS-Reconst over r (1)
w ,...,r (N)

w .

d) y1← ŷv − rv

e) y2← ŷw − rw

f) ŷu ← fu (y1,y2) + ru

Protocol 3 except that every call to VSS-Share is replaced with a call to the ideal functionality

FVSS-Share. The corresponding simulator SGen-Rand is given in Protocol 8.

The views of the corrupted parties in the hybrid execution and the simulation are indistinguish-

able because the only difference between the two views is that SGen-Rand generates the shares from

dummy input 0 instead of actual inputs. Since FVSS-Share generates uniform and independent random

shares from any input, the two views are identically distributed. Since our simulator is straight-line

and black-box, Gen-Rand is UC-secure. � �

We now proceed to the security proof of Circuit-Eval. The ideal functionality FCircuit-Eval is given

in Protocol 9.

Lemma 2.5.5. The protocol Circuit-Eval is UC-secure.

30

Protocol 10 SCircuit-Eval

For every gate u ∈ C with children v,w ∈ C, consider three groups of parties Qu ,Qv , and Qw , each of whom have N parties. In
each group, up to N/8 parties are corrupted.

Inputs. {ρi }Pi ∈Iu ,{r
(i)
u }Pi ∈(Iv∪Iw) , and ŷv and ŷw from parties in Iv ∪ Iw .

Simulation:

1. Run FGen-Rand with the following inputs: ρi for every Pi ∈ Iu and a dummy input for every party in Qu − Iu . Let
{r (i)
u }Pi ∈Qu

denote the outputs. For every Pi ∈ Iu , add r (i)
u to the view of Pi .

2. Let Q4 = Qu ∪Qv ∪Qw and I4 = Iu ∪ Iv ∪ Iw . Run FCMPC to compute the functionality defined in Line 3 of FCircuit-Eval
with the following inputs: the input of every party in I4 as described in FCircuit-Eval, and a dummy input for every party in
Q4 − I4. Let ŷu denote the output. For every party in I4, add ŷu to the view of the party.

Proof. We first show that for each gate u ∈ C, FCircuit-Eval correctly computes ŷu = yu + ru. Based

on FInput and FGen-Rand, for each gate u ∈ C, the inputs of the honest parties in Qu are enough to

reconstruct ru. If u is an input gate not included in the computation from the Input Commitment

stage, then ru and its shares are 0. Thus, all three values of ru, rv, and rw can be correctly

reconstructed by the functionality since FVSS-Reconst can tolerate up to a 1/4 fraction of the inputs

being invalid.

We prove ŷu = yu + ru by induction on the height of u, where yu is the correct output of the gate

u. The base case is correct because based on the correctness of FInput, for each input gate v′, we have

ŷv′ = yv′ + rv′ and rv′ can correctly be reconstructed from the inputs received from honest parties in

Qv′. Suppose that for all gates u′ whose height is less than the height of u, the functionality can

compute ŷu′ = yu′ + ru′ and ru′. This induction hypothesis is valid for v and w.

We now describe the induction step. In the computation of u, the functionality runs FCMPC. We

now argue based on the definition of the function computed by FCMPC that the output of FCMPC is

ŷu = ru + yu. By the induction hypothesis, the functionality can reconstruct correct rv and rw and

consequently it can correctly find yv and yw even if a 1/8 fraction of the inputs are missing. It

is because the majority of the parties in Qv and Qw hold correct values of ŷv and ŷw. Thus, the

functionality can correctly compute fu(yv,yw) + ru.

We now prove the t-security of Circuit-Eval in the (FGen-Rand,FCMPC)-hybrid model which is

similar to Protocol 2 except that every call to CMPC and Gen-Rand is replaced with a call to FCMPC

and FGen-Rand respectively. The corresponding simulator SCircuit-Eval is given in Protocol 10.

We now show that the views of the corrupted parties in the hybrid execution and the simulation

are indistinguishable. After the evaluation of u, the following information will be added to the view

of every corrupted party Pi ∈ I4: ŷu and {r (j)
u }Pj∈Iu . Recall that ŷu is the output of FCMPC during the

computation of u which is equal to yu + ru, and ru is a uniformly random element of F based on

31

FGen-Rand, independent of all other randomness in the algorithm.

First, if a corrupted party Pi is not in any of the quorums associated with u,v, and w, then no

additional information will be added to its view during the computation of u; thus, its view will be

identically distributed in the hybrid execution and the simulation.

Second, a corrupted party Pi ∈ I4 may add a share ru as well as shares of the individual random

elements whose sum is ru to its view in the computation of FGen-Rand. Also, it adds yu + ru to its

view. However, Pi cannot learn any additional information about the shares of ru (and thus about

ru) based on FCMPC and FGen-Rand. In other words, the parties in I4 are unable to directly determine

ru, since the only relevant inputs are the shares of ru, and they do not have enough of those since

they have fewer than half of them.

These parties also do not have enough shares of shares of ru to reconstruct it. However, they

add to their view shares of each of the other shares of ru multiple times: once during the input stage

of FCMPC in which u is involved, and once during the computation of the parent of u. Each time,

they do not get enough shares of shares ru to reconstruct any shares of ru. But, can they combine

the shares of shares from different runs for the same secret to gain some information? Since fresh

and independent randomness was used by the dealers creating these shares on each run, the shares

from each run are independent of the other runs, and so they do not collectively give any more

information than each of the runs give separately. Since each run does not give the parties in I4
enough shares to reconstruct anything, it follows that they do not learn any information about ru.

Second, parties in I4 add shares of shares for rv and rw to their views. However, with a similar

argument as ru, they cannot reconstruct rv and rw as well even if these parties participate in one or

more of the instances of FCMPC which involve v or w: the computation of v or w themselves or the

computations of u as their parents.

Moreover, ŷu is also a random element in the field since ru is uniformly random and ŷu = yu +ru.

Thus, ŷu holds no information about yu, and the corrupted parties cannot learn any information

about yu except what is implicit in his input and the circuit output. This means that the corrupted

parties cannot distinguish if they are participating in a run of the hybrid model or the simulation.

Finally, since SCircuit-Eval is straight-line and black-box, Circuit-Eval is UC-secure. � �

2.5.5 Security of Output Stages

The ideal functionality for the Output Reconstruction and the Output Propagation stages of Protocol 1

are given in Protocol 11.

Lemma 2.5.6. The Output Reconstruction and Output Propagation stages of Protocol 1 are UC-

32

Protocol 11 FOutput

Goal. The functionality guarantees the output is reconstructed correctly and it is learned by all honest parties.

Functionality:

1. Run FVSS-Reconst to reconstruct the output.

2. Send the output to all the parties.

Protocol 12 SOutput

Inputs. For the output gate z and the corresponding quorum Qz , the inputs of the simulator are {r (i)
z }Pi ∈Iz , and ŷz from parties in

Iz .

Simulation:

1. Run FVSS-Reconst with inputs {r (i)
z }Pi ∈Iz and dummy inputs for honest parties. Add the output to the view of parties in Iz .

2. For every i ∈ {2,...,n}, parties in Qi perform the following steps:

a) Receive y from Q bi/2c and add it to the view of every parties in I bi/2c .

b) Send y to all parties in Q2i and Q2i+1.

secure.

Proof. We first show that the two stages correctly compute FOutput. Let z be the output gate of C. By

Lemma 2.5.5, all parties in the output quorum Qz eventually agree on yz + rz and hold shares of rz.

In the Output Reconstruction stage, these parties run the VSS-Reconst. Since at least a 7/8 fraction

of them are honest, they correctly reconstruct rz. Since all honest parties in Qz know yz + rz and

subtract from it the reconstructed rz, they all eventually learn yz. Thus, all parties in Qz eventually

learn yz.

We now show by induction that all honest parties eventually learn yz. Since Q1 is assigned to

the output gate, it provides a base case. For i > 1, consider the parties in Qi, and for all j < i assume

the correct output is learned by all parties in Q j . During the Output Propagation stage, the parties

in Qi receive putative values for the output from the parties at Qbi/2c . Since Qbi/2c is good, and by

induction hypothesis all honest parties in it have learned the correct output, it follows that all honest

parties in quorum Qbi/2c send the same message which is the correct output. By Lemma 2.5.2, all

honest parties in Qi eventually learn the correct output. By induction, all the parties learn the correct

value.

We now prove the t-security of the output stages in the FVSS-Reconst-hybrid model. The corre-

sponding simulator SOutput is given in Protocol 12. The views of the corrupted parties in the hybrid

execution and the simulation are indistinguishable since the only message that is added to the view

33

of the adversary is the output. Based on the security definition of MPC, the adversary is allowed to

learn the output. � �

2.5.6 Security of Protocol 1

We now show that our main protocol is UC-secure.

Lemma 2.5.7. Protocol 1 is UC-secure.

Proof. Canetti [Can95] proves the t-security of VSS-Share, VSS-Reconst, and CMPC using straight-

line black-box simulators. So, based on Theorem 2.5.1, these protocols are UC-secure. Moreover,

Lindell et al. [LLR06] show that any Byzantine agreement protocol in the standard model (such

as the protocol of [CR93]) is UC-secure. Hence, the Byzantine agreement of [FM88] is also

UC-secure.

Protocol 1 is t-secure since in lemmas 2.5.3, 2.5.5, and 2.5.6 we showed that all stages of the

Protocol 1 are t-secure. Based on Theorem 2.5.1, since we have proved the t-security of Protocol 1

using a straight-line black-box simulator, the protocol is also UC-secure. � �

2.5.7 Cost Analysis

We now analyze the resource costs of Protocol 1.

Lemma 2.5.8. During the Input stage, each quorum sends at most O(log n) messages.

Proof. For the input stage, each quorum is mapped to at most one of the input gates and hence one

of the nodes in the count tree. Thus, from Theorem 2.6.1 it follows that the total number of messages

sent by each quorum is O(log n). Since each quorum has log n parties, an additional polylog(n)

messages are sent by each quorum during VSS-Share and VSS-Reconst to check whether the input

is correctly secret-shared. � �

Lemma 2.5.9. If all honest parties follow Protocol 1, then with high probability, each party sends

at most Õ(m/n +
√

n) messages.

Proof. By Theorem 2.7.1, we need to send Õ(
√

n) messages per party to build the quorums.

Subsequently, each party must send messages for each quorum in which it is a member. Recall that

each party is in Θ(log n) quorums.

By Lemma 2.5.8, each quorum sends Õ(log(n)) messages during Input stage. Recall that each

quorum is mapped to Θ
(m+n

n
)

nodes of C. A quorum runs Gen-Rand and the gate evaluation

34

step of Circuit-Eval once per node it is mapped to in C. Since each gate has in-degree two and

out-degree at most two, a quorum runs CMPC at most three times for every node it is mapped to in

C. Also, at most polylog(n) messages are sent per party per instance of CMPC, Gen-Rand, and gate

evaluation. Finally, each quorum sends O(log n) messages in the dissemination of the output. Thus,

each quorum sends polylog(n) messages per node it represents. It follows that each party sends

Õ(m/n +
√

n) messages. � �

Lemma 2.5.10. If all honest parties follow Protocol 1, with high probability, the total latency is

O(d polylog(n)) where d is depth of the circuit the protocol computes.

Proof. Based on Theorem 2.7.1, the latency for creating quorums is polylog(n). Based on The-

orem 2.6.1, the latency for the Thresh-Count algorithm is O(log n) which implies that the Input

Commitment stage also has polylog(n) latency.

In the computation of the circuit, to evaluate the gate g in the upper level of the circuit, first its

input gates in lower level of the circuit must be evaluated. This implies that the evaluation of the

circuit is level by level and the latency for evaluating the circuit is O(d) times the latency of CMPC
over log n parties. � �

2.6 Asynchronous Threshold Counting

In this section, we present an asynchronous Monte Carlo algorithm called Thresh-Count which

solves the threshold counting problem and provides the following theorem proved in Section 2.6.4.

Our threshold counting algorithm runs in a setting with n honest parties in a fully-connected

network with private and authenticated channels and asynchronous communication. In our asyn-

chronous MPC protocol presented in Section 2.4, we run Thresh-Count among a set of quorums,

where each quorum represents an honest party.

Theorem 2.6.1. The algorithm Thresh-Count solves the threshold counting problem with high

probability, while ensuring:

1. Each party sends at most O(log n) messages of constant size,

2. Each party receives at most O(log n) messages,

3. Each party performs O(log n) computations,

4. Total latency is O(log n).

35

Recall that in the threshold counting problem there are n honest parties in an asynchronous

communication network with private channels. Each party has an input flag which is initially 0. At

least τ of the parties’ bits will eventually be set to 1 based on an external event. When this happens,

we say the threshold is reached. The goal is for each of the parties to terminate at some time after

the threshold is reached.

Although in our application τ is linear in n, we address the more general case, where τ = O(n).

Our algorithm depends on prior knowledge of τ. As specified in Theorem 2.6.1, each party

running the algorithm sends and receives O(log n) messages of constant size and performs O(log n)

computations; moreover the total latency is O(log n).

For ease of presentation, we first describe an algorithm which works when τ =Θ(n), in particular,

when τ is at least n/2. We then indicate why this fails when τ is smaller, and show how to modify it

so that it works for all τ. The formal algorithm is shown as Protocol 13.

Consider a complete binary tree where each party sends its input to a unique leaf node when it

is set to 1. Then, for every node v, each child of v sends v a message giving the number of inputs it

has received so far and it sends a new message every time this number changes. The problem with

this approach is that it is not load-balanced: each node at depth i has n/2i descendants in the tree,

and therefore, in the worst case, sends and receives n/2i messages. Thus, a child of the root sends

n/2 messages to the root and receives the same number of messages from its children.

To solve the load-balancing problem, we use a randomized approach which ensures with high

probability that each leaf of the data structure receives at least 7 log n messages and does not

communicate with its parent until it has done so. Subsequent messages it receives are not forwarded

to its parent but rather to other randomly chosen leaves to ensure a close to uniform distribution of

the messages.

Our algorithm consists of up and down stages. For the up stage the parties are arranged in a

predetermined tree data structure, which we call the count tree. The count tree consists of a root

node with O(log n) children, each of which is itself the root of a complete binary tree; these subtrees

have varying depths as depicted in Figure 2.4. In the up stage, parties in the trees count the number

of 1-inputs, i.e. , the number of parties’ inputs that are set to 1. The root then eventually decides

when the threshold is reached. In the down stage, the root notifies all the parties of this event via a

complete binary tree of depth log n. Note that the tree used in the down stage has the same root as

the count tree.

Let D = dlog τ
14log ne. Note that D = O(log n). The root of the count tree has degree D. Each

of the D children of the root is itself the root of a complete binary subtree, which we will call a

collection subtree. For 1 ≤ j ≤ D, the jth collection subtree has depth D + 1− j. Party 1 is assigned

36

R

AA A

A A A A C C

A A A A C C C C

C C C C C C C C

Figure 2.4: The count tree for n = 2048 and τ = 1232. D = dlog 1232
14×11e = 3. The node marked R is

the root, nodes marked A are adding nodes, and nodes marked C are collection nodes.

to the root and parties 2 to D +1, are assigned to its children, i.e. , the roots of the collection subtrees,

with party j + 1 being assigned to the jth child. The remaining nodes of the collection trees are

assigned parties in order, starting with D + 2, left to right and top to bottom. One can easily see

that the entire data structure has fewer than n nodes, (in fact it has fewer than τ
3log n nodes) so some

parties will not be assigned to any node.

The leaves of each collection subtree are collection nodes, while the internal nodes of each

collection tree are adding nodes.

2.6.1 Up Stage

When a party’s input is set to 1, it sends a 〈Flag〉 message, which we will sometimes simply refer to

as a flag, to a uniformly random collection node from the first collection subtree. Intuitively, we

want the flags to be distributed as evenly as possible among the collection nodes. The parameters of

the algorithm are set up so that with high probability each collection node receives at least 7 log n

〈Flag〉 messages.

Each collection node in the j-th collection tree waits until it has received 7log n flags. It then

sends its parent a 〈Count〉 message. For each additional flag received, up to 14log n, it chooses a

uniformly random collection node in the (j + 1)-st collection subtree and forwards a flag to it. If

j = D, then it forwards these 14log n flags directly to the root. Subsequent flags are ignored. Again,

we use the randomness to ensure a close to even distribution of flags with high probability.

Each adding node waits until it has received a 〈Count〉 message from each of its children. Then,

it sends a 〈Count〉 message to its parent. We note that, with high probability, each adding node

37

sends exactly one message during the algorithm. The parameters of the algorithm are arranged so

that all the 〈Count〉 messages that are sent in the the jth collection subtree together account for τ/2 j

of the 1-inputs. Thus, all the 〈Count〉 messages in all the collection subtrees together account for

τ
(
1− 1

2D

)
of the 1-inputs. At least τ

2D 1-inputs remain unaccounted for. These 1-inputs and up to

O(log n) more are collected as flags at the root.

2.6.2 Down Stage

When party 1, at the root, has accounted for at least τ 1-inputs, it starts the down stage by sending

the 〈Done〉 message to parties 2 and 3. For j > 1, when party j receives the 〈Done〉 message, it

forwards this message to parties 2 j and 2 j + 1. Thus, eventually the 〈Done〉 message reaches all the

parties, who then learn that the threshold has been met.

Note that all three types of messages sent in this protocol, 〈Flag〉, 〈Count〉 and 〈Done〉, are

notifications only; they do not contain any numerical value. Since 2 bits are sufficient to distinguish

three different kinds of messages, all the messages sent in this protocol are 2-bit strings. Note that

we distinguish between flags and 〈Count〉 messages since the root receives both kinds. However it is

the only node for which this is a problem. We could add another node, as the (D + 1)st child of the

root, (equivalently as a collection subtree of depth 0,) which waits for 14 log n messages, and sends

a 〈Count〉 message to the root. In so doing, we could eliminate the need to explicitly distinguish

〈Flag〉 and 〈Count〉 message, since they would be automatically distinguished by the role of the

receiving node. Thus, we could actually reduce all message lengths to a single bit.

2.6.3 Handling Sublinear Thresholds

Now, we consider the case where τ = o(n). It is easy to see that the worst load in terms of the

number of received messages is when all n inputs are 1. In this case, a collection node in the first

collection subtree receives, on average, 14(n/τ) log n flags. When τ = Θ(n), this is still O(log n),

but when τ = o(n) this is ω(log n). Before we describe how to fix this, we note that the problem

exists only in the leaves of the first collection subtree. Subsequent collection nodes receive only

O(log n) flags, because each node only forwards up to 14log n flags.

For the sake of having a definite cutoff and tractable constants, we will apply the following fix

whenever τ < n/2. Below each collection node in the first collection tree, we put in a filter, which is

a complete binary tree of depth log n−2−D with 7n log n
2τ leaves. This is equivalent to extending the

first collection tree to depth log n−2 so that it has n/4 leaves. The collection nodes will remain at

depth D though. See Figure 2.5.

38

R

AA

A A A A

C C C C

F F F F

Figure 2.5: The count tree for n = 2048 and τ = 616. D = dlog 616
14×11e = 2. The node marked R is

the root, nodes marked A are adding nodes and nodes marked C are collection nodes. The filters,
marked F, are complete binary trees of depth 7, with 128 leaves each, for a total of 512 filter leaves.

When a party’s input is set to 1, it selects a random collection node in the first collection tree,

but rather than sending a flag directly to it, it sends the flag to a random leaf of the collection node’s

filter. The nodes in the filter simply forward any flags they receive, up to 21log n, to their parent in

the filter. Subsequent flags are ignored. Clearly, this means that the collection node at the root of the

filter cannot receive more than 42log n flags, which solves the load problem. Moreover, we have

not simply transfered the problem to the leaves of the filter. Since there are so many more of them,

each one actually receives fewer flags on average and the parameters are adjusted to make their

maximum load O(log n) with high probability. As we will also see in the analysis, these filters do

not filter out too many flags; when there are only τ 1-inputs among the parties, with high probability

all the flags get through.

2.6.4 Proof of Theorem 2.6.1

In this section, we prove the correctness and resource costs of Protocol 13. The process of each

party independently selecting a random collection node to notify after its input has been set to 1 can

be modeled as a balls and bins problem and hence be approximated by the Poisson distribution.

39

Protocol 13 Thresh-Count

Goal. n is the number of parties, τ is the threshold, b is a flag bit initially set to zero which may be set to one by an external event
throughout the protocol and D = dlog(τ

14logn)e. The algorithm notifies all the parties upon receiving τ flag bits set to one.

1. Setup. No messages sent in this stage:

a) Build the count tree and set party 1 as the root:
For 1 ≤ j ≤ D, party j + 1 is a child of the root (and the root of the jth collection subtree with depth D + 1− j).
Starting with party D + 2, the remainder of the nodes are assigned to parties, left to right and top to bottom. If
τ < n/2 the remaining parties are assigned to filters, left to right and top to bottom.

b) Let sum = 0 for the root.

2. Up Stage.

a) Upon b = 1, choose a uniformly random collection node v from collection subtree 1,

• If τ > n/2, send a 〈Flag〉 to v.

• Otherwise, choose a uniformly random leaf in v’s filter and send a 〈Flag〉 to it.

b) Upon receiving a 〈Flag〉, if previously forwarded fewer than 21log n flags, forward the flag to parent. Otherwise,
ignore it.

c) Perform the following steps to collect nodes in the collection subtree j:

• Upon receiving 7log n 〈Flag〉s, send parent a 〈Count〉 message.

• Upon subsequently receiving a 〈Flag〉, if j < D, send it to a uniformly random collection node in collection
subtree j + 1. If j = D, then send it directly to the root. Do this for up to 14log n flags. Then, ignore all
subsequent 〈Flag〉 messages.

d) Upon receiving 〈Count〉 from both children, send 〈Count〉 to the parent.

e) If sum < τ,

• Upon receiving a 〈Count〉 from party j + 1, set sum← sum + τ/2 j .

• Upon receiving a 〈Flag〉, sum← sum + 1.

3. Down Stage. If sum ≥ τ,

a) Party 1 (the root): Send 〈Done〉 to parties 2 and 3, and then terminate.

b) Party j for j > 1: Upon receiving 〈Done〉 from party b j/2c, forward it to parties 2 j and 2 j + 1 (if they exist), and
then terminate.

40

2.6.4.1 Preliminaries

We first recall the following Chernoff bound for a Poisson random variable from Mitzenmacher and

Upfal [MU05].

Theorem 2.6.2 (Theorem 5.4 of [MU05]). Let Y ∼ Poisson(µ). Then,

1. for x < µ, Prob(Y ≤ x) ≤ e−µ(eµ/x)x , and

2. for x > µ, Prob(Y ≥ x) ≤ e−µ(eµ/x)x .

Lemma 2.6.3. Assume αk balls are thrown independently and uniformly at random into k bins.

Let E1 denote the event that the minimum load is less than α/2, and let E2 denote the event that the

maximum load exceeds 3α/2. Then,

Prob(E1) ≤ ek
√
αk

(
2
e

)α/2
(2.1)

and

Prob(E2) ≤ ek
√
αk

(
8e
27

)α/2
. (2.2)

Proof. For 1 ≤ i ≤ k, let Xi denote the number of balls in the ith bin, and let Yi ∼ Poisson(α) be an

independent Poisson random variable with mean α. It is well known that the distribution of each Xi

is close to that of Yi, and moreover that the joint distribution of the Xi’s is well approximated by

the joint (i.e. , product) distribution of the Yi’s (see Chapter 5 in Mitzenmacher and Upfal [MU05]).

Indeed, Corollary 5.11 from [MU05] states that for any event E that is monotone in the number

of balls, if E occurs with probability at most p in the Poisson approximation, then E occurs with

probability at most 2p in the exact case. Since maximum and minimum load are both clearly

monotone increasing in the number of balls, applying this corollary we have:

Prob(E1) = Prob (∃i s.t. Xi ≤ α/2)

≤ 2Prob (∃i s.t. Yi ≤ α/2)

≤ 2
k∑

i=1

Prob
(
Yi ≤

α

2

)
≤ 2k

(
2
e

)α/2
,

41

where the last inequality follows from Theorem 2.6.2 with µ = α and x = α/2. Similarly,

Prob(E2) = Prob (∃i s.t. Xi > 3α/2)

≤ 2Prob (∃i s.t. Yi > 3α/2)

≤ 2
k∑

i=1

Prob
(
Yi ≥

3α
2

)

≤ 2k
(

8e
27

)α/2
,

where the last inequality follows from Theorem 2.6.2 with µ = α and x = 3α/2. �

2.6.4.2 Protocol Analysis

Let σ be the number of 1-inputs. We know that τ ≤ σ ≤ n. Let s = σ/τ. For simplicity of the

analysis, we will assume that the first τ flags to be sent are marked while the remaining σ − τ

are unmarked. As we track the progress of the flags through our data structure, we pay particular

attention to the marked flags. Due to asynchrony, the marked flags need not be the first τ to arrive at

their destinations.

Lemma 2.6.4. Suppose τ ≥ n/2. In the Thresh-Count algorithm, with probability at least 1− 1
7n log n ,

the first collection subtree satisfies all of the following:

1. Each collection node receives between 7s log n and 21s log n flags.

2. The 〈Count〉 messages generated in this tree, when they reach the root, account for τ/2

1-inputs.

3. At least τ/2 and at most τ flags are forwarded to the second collection tree.

Proof. The process of sending σ 〈Flag〉 messages to the collection nodes in the first collection tree

can be modeled as a balls and bins problem as in Lemma 2.6.3 with α = 14s log n and k = τ/14log n.

E1 and E2 are, respectively, the events that some collection node fails to receive 7s log n flags and

that some collection node receives more than 21s log n flags. By applying the lemma, we get

Prob(E1) ≤
2τ

14log n

(
2
e

)7s log n

≤
2n

14log n
2−0.4426×7s log n

≤
1

7n2s log n

42

and

Prob(E2) ≤
2τ

14log n

(
8e
27

)7s log n

≤
2n

14log n
2−0.3121×7s log n

≤
1

7n1.1s log n

Thus, the probability that (a) fails is at most 1+n0.9s

7n2s log n .

To see (b), we note that there are τ/(14log n) collection nodes in the first collection subtree,

each of whom generates a 〈Count〉 message when it has received 7log n flags. The flags correspond

to distinct 1-inputs, and hence together they account for τ/2 1-inputs. Thus, (b) fails only if some

node fails to receive at least 7 log n flags, which is already accounted for in the failure of (a).

To prove (c), we need to track the progress of the marked flags. Let E′1 and E′2 denote respectively,

the events that some node fails to receive at least 7 log n marked flags and that some node receives

more than 21log n marked flags. Then, since there are τ marked flags, applying Lemma 2.6.3 with

α = 14log n and k = τ/14log n we see that

Prob(E′1) ≤
2τ

14log n

(
2
e

)7log n

≤
2n

14log n
2−0.4426×7log n

≤
1

7n2 log n

and

Prob(E′2) ≤
2τ

14log n

(
8e
27

)7log n

≤
2n

14log n
2−0.3121×7log n

≤
1

7n1.1 log n
.

Within each collection node, by transferring the marks from some marked flags to some

unmarked flags, we may assume that the marked flags are the first to arrive. We can do this transfer

because it does not change the distribution of marked and unmarked flags between the nodes, nor

does it change the total number of marked flags across all collection nodes. The advantage of this

change is that in following the algorithm, each node will first use all its marked flags before using

unmarked flags.

43

In particular, as long as E′1 and E′2 do not occur, each node will use 7log n flags to generate

a 〈Count〉 message, after which it will be left with between 0 and 14log n marked flags. Since it

forwards up to 14log n flags to the next collection subtree, it follows that it will forward all of its

marked flags and possibly some unmarked flags to the next subtree. Since there are τ marked flags

across all the collection nodes, and the 〈Count〉messages account for τ/2 of them, it follows that the

remaining τ/2 marked flags are forwarded. Hence, at least τ/2 flags are forwarded. Moreover, since

there are τ/(14log n) nodes and each forwards at up to 14log n flags, at most τ flags are forwarded,

which establishes (c).

Now, let E = E1∪E2∪E′1∪E′2 be the union of all the bad events we’ve encountered. For large

enough n,

Prob(E) ≤
1

7n2s log n
+

1
7n1.1s log n

+
1

7n2 log n

+
1

7n1.1 log n

≤
1

7n log n

Thus, with probability at least 1− 1
7n log n , (a), (b), and (c) are all true, as desired. � �

We will also need to prove a similar lemma when τ < n/2. Note that when τ ≥ n/2, we have

σ ≤ 2τ, or s = σ/τ ≤ 2. When τ < n/2, σ may be much bigger than τ. Let M = min{σ/τ,2}.

Lemma 2.6.5. Suppose τ < n/2. In the Thresh-Count algorithm, with probability at least 1− 1
7n log n ,

the first collection subtree satisfies all of the following:

1. Each collection node receives between 7log n and 21M log n flags.

2. Each filter node receives at most 21M log n flags.

3. The 〈Count〉 messages generated in this tree, when they reach the root, account for τ/2

1-inputs.

4. At least τ/2 and at most τ flags are forwarded to the second collection tree.

Proof. When τ < n/2, the flags are not sent directly to the collection nodes, but rather to leaf nodes

of the filters below the collection nodes. We will say that a filter receives a flag if the flag is received

by any of its leaf nodes.

We first note that each party’s process of selecting a random collection node, and then selecting a

random leaf in its filter, is equivalent to simply selecting a uniformly random leaf node from among

44

all the leaf nodes for all the filters. We’ve already remarked that adding the filters is equivalent

to extending the first collection subtree to depth log n− 2 while keeping the collection layer the

same. Thus, there are n/4 filter leaf nodes to choose from. Using the Poisson approximation and

an argument similar to the one in Lemma 2.6.3, it is easy to see that when σ ≤ n parties each

independently send a flag to a uniformly random filter leaf node out of n/4 choices, the probability

of the event E0, that there is a leaf node that receives more than 21log n flags is less than n− log log n.

Once the flags have been sent to the leaf nodes of the filters, they are forwarded up the filter

from nodes to their parents, all the way to the collection node, with the only caveat that nodes do

not forward more than 21log n flags. Since each node has two children, it follows that each node in

the filter receives at most 42log n flags, and the same is true of the collection nodes. At the same

time, viewing the process as first selecting a collection node, and then a filter leaf node below it,

we see as in Lemma 2.6.4 that the probability of the event E2, that there is a filter that receives

more than 21s log n flags is at most 1
7n1.1s log n . Since no node in the filter can get more flags than the

filter as a whole, it follows that the filter nodes and the collection nodes all receive no more than

21M log n = min{21s log n,42log n} flags. This shows (b) and the upper bound in (a).

To show that the collection nodes each receives at least 7 log n flags with high probability, and

that together the collection nodes receive at least τ flags, we will once again track the marked flags.

As we have remarked previously, although the marked flags are the first τ to be sent, by asynchrony,

they need not be the first τ to arrive at the filters. Thus, it need not be the case that all these marked

flags are forwarded through to the collection nodes. Nevertheless, we will argue that for every

marked flag that fails to be forwarded, at least one unmarked flag was forwarded instead. To see

this, note that as in Lemma 2.6.4, all the filters receive between 7log n and 21log n marked flags,

except with probability 1+n0.9

7n2 log n . Thus, each node in a filter can have at most 21log n marked flags

arrive at it.

Now, suppose a filter node fails to forward one or more marked flags. It can only do this if it has

previously forwarded 21log n flags, and since it can receive at most 21 log n marked flags, it follows

that it has already forwarded at least as many unmarked flags as it is choosing to ignore marked

ones. Once again, by transferring marks from the marked flags that are dropped to the unmarked

flags that have been sent in their place, we can ensure that except with probability 1+n0.9

7n2 log n , between

7log n and 21log n marked flags get through each filter to the corresponding collection node, and at

least τ marked flags get through all the filters together, to the collection layer of the first collection

subtree. This shows the lower bound in (a) and sets us up to show (c) and (d).

For (c), we will once again pretend, by transferring marks that at each node the marked flags

are the first to arrive and be used. As before, we do this without altering the distribution of marked

45

and unmarked flags between collection nodes. Note that each newly marked flag at the collection

node corresponds to a distinct 1-input, so the 7 log n of them used by each of τ/(14log n) collection

nodes to generate a 〈Count〉 message accounts for τ/2 1-inputs at the root. This leaves between

0 and 14log n marked flags at each collection node which add up to τ/2 of them across all the

collection nodes. Since each collection node forwards up to 14log n flags, all the marked flags are

forwarded, so that at least τ/2 flags are forwarded to the next collection subtree. Since each of

τ/(14log n) collection nodes forwards up to 14log n flags, at most τ flags are forwarded to the next

collection tree, proving (d).

Finally, adding up the probabilities of all the bad events we’ve encountered, we see that for large

enough n, 1+n0.9

7n2 log n + 1
7n1.1 log n + n− log log n < 1

7n log n . It follows that with probability at least 1− 1
7n log n ,

(a), (b), (c), and (d) are all true, as desired. � �

We are now ready to study what happens further up in the data structure. We will say that the

algorithm succeeds up to level j if for all i ≤ j the following are true:

1. All the collection nodes in the ith collection subtree receive between 7log n and 42log n flags.

2. The 〈Count〉 messages generated in the ith subtree account for τ/2i 1-inputs at the root.

3. Between τ/2i and τ/2i−1 flags are forwarded from the ith collection subtree to the (i + 1)st

collection subtree

Lemma 2.6.6. Let j ≤ D. In the Thresh-Count algorithm, with probability at least 1− j
7n log n , the

algorithm succeeds up to level j.

Proof. We proceed by induction on j. We have already established the base case j = 1 in Lem-

mas 2.6.4 and 2.6.5. Now suppose j ≥ 2, and for an induction hypothesis we assume that the

algorithm succeeds to level j −1 with probability at least 1− j−1
7n log n . Let us condition on this event.

This means that between τ/2 j−1 and τ/2 j−2 flags are forwarded to the jth collection subtree, which

has τ
2 j−114log n collection nodes.

Thus, we can apply Lemma 2.6.3 with α between 14log n and 28log n. The proof that con-

ditioned on the algorithm having succeeded up to level j −1, it succeeds to level j, except with

probability 1
7n log n , is identical to the proof of Lemma 2.6.4. By Bayes’ law and the induction

hypothesis, the unconditional probability that the algorithm succeeds to level j(
1−

j −1
7n log n

) (
1−

1
7n log n

)
≥ 1−

j
7n log n

,

as desired. � �

46

Corollary 2.6.7. With probability at least 1− 1
7n , the root node successfully accounts for at least τ

1-inputs.

Proof. The last collection subtree is the one corresponding to j = D, and by Lemma 2.6.6, with

probability at least 1− D
7log n the root has accounted for

∑D
j=1 τ/2

j = τ(1− 2−D) 1-inputs, and

moreover, between τ/2D and τ/2D−1 flags have been forwarded directly to the root, by the collection

nodes in the last collection subtree. Since no randomness is involved, the root eventually receives

all of these flags. Thus, conditioned on the algorithm succeeding up to level D, the root eventually

accounts for at least τ 1-inputs. Since D < logτ < log n, the success probability is at least 1−
1

7n . � �

We now prove the Theorem 2.6.1. Lemmas 2.6.4 to 2.6.6 and Corollary 2.6.7 show that with

probability at least 1− 1
7n , the root accounts for at least τ 1-inputs while ensuring the following:

1. Filter nodes receive no more than 42log n messages and send no more than 21log n messages.

2. Collection nodes receive no more than 42log n messages and send no more than 14log n + 1

messages. (The extra 1 is for the 〈Count〉 message.)

3. The root receives no more than τ/2D−1 = 28log n 〈Flag〉 messages.

Additionally, the adding nodes each receive two 〈Count〉 messages and send one 〈Count〉 message,

and the root receives D ≤ log n 〈Count〉 messages, one from each of the collection subtrees. Individ-

ual parties send at most one message each, when their input is set to 1. We have already remarked

that the messages used in this algorithm can be encoded using two bits. Thus, in the Up stage

of the algorithm each party sends and receives O(log n) messages of constant size. In the Down

stage, 〈Done〉 messages are sent via a canonical complete binary tree, so each party except the root

receives exactly one 〈Done〉 message, and each party that is not a leaf in the tree sends (at most) two

〈Done〉 messages. Since all messages that are sent are eventually received, eventually all the parties

receive the 〈Done〉 message and terminate. Since the depths of the data structure used in the Up

stage and the binary tree used in the Down stage are both log n, the longest chain of messages is of

length 2 log n, and hence the total latency is O(log n). Finally, since the computations done by each

node during the algorithm amount to counting the number of messages it receives and generating

up to 14log n random numbers, each node performs O(log n) computations. �

47

2.6.5 Using Quorums as Nodes in the Count Tree

So far in this section, we have assumed that all of the nodes in the count tree follow the protocol

honestly. However, this is not the case in our MPC model, where some of the parties can play

maliciously. To fix this, we assign a quorum to each node in the tree and let the quorums perform

the roles of the parties. In our MPC protocol described in Section 2.4, we introduce Protocol 4 that

allows us run the threshold counting algorithm in a malicious setting.

Lemma 2.5.2 shows that a quorum Q can securely send a message M to another quorum Q′.

However, there is some subtlety involved in using this fact. Every party in a quorum communicates

with its parent when it has received at least half as many inputs as the parents’ threshold. However,

due to asynchrony, multiple messages may arrive simultaneously; when the threshold is set, not

all parties in the quorum may be in the same state. Some may already have more inputs than

the threshold, while others may still be waiting, because messages from their children have been

delayed. Lemma 2.5.2 tells us that if all parties in the quorum send the same message to the parent

quorum, then the parent quorum can resolve that message. Thus, in order to ensure that all parties

in the quorum send the same message to the parent quorum, we have required that even if a party’s

received inputs exceed his threshold, it should only inform the parent of having met the threshold,

not of having exceeded it. The remaining inputs are held to be sent later.

2.7 Asynchronous Quorum Formation

In this section, we describe the quorum building algorithm of King et al. [KSSV06b, KLST11],

and then adapt it to the asynchronous communication model by proving the following theorem:

Theorem 2.7.1. Consider n parties connected to each other pairwise in an asynchronous network,

where up to t < (1
4 − ε)n of them are corrupted, for some small constant ε > 0. If all honest parties

follow the protocol Build-Quorums, then with high probability,

1. the parties agree on n quorums,

2. each party sends at most Õ(
√

n) field elements,

3. each party performs Õ(
√

n) computations, and

4. the protocol latency is O(polylog(n)).

One may alternatively use the asynchronous Byzantine agreement protocol of Braud-Santoni et

al. [BGH13] to build a set of n quorums. This protocol requires each party on average to send

48

Protocol 14 Build-Quorums

Goal. Generate n quorums.

1. All parties run SRS-Agreement.

2. All parties run SRS-to-Quorum.

polylog(n) field elements, and perform polylog(n) computations. However, it is not load-balanced:

some parties may send a linear number of field elements. Using this result our MPC protocol needs

only logarithmic bits and computations.

We start the description of our protocol by defining the semi-random-string agreement problem,

where the goal is to agree on a single string of length O(log n) with a constant fraction for random

bits, where for any positive constant ε , a 1/2 + ε fraction of the parties are honest. King et

al. [KLST11] present an asynchronous algorithm as an additional result that we call SRS-to-Quorum.

The SRS-to-Quorum algorithm can go from a solution for semi-random-string agreement problem

to the solution for the quorum building problem. Thus, their techniques can be extended to

the asynchronous model assuming a scalable asynchronous solution for the semi-random-string

agreement problem. We describe Build-Quorums algorithm based on SRS-to-Quorum and an

algorithm, that solves semi-random-string agreement problem in the asynchronous model with

pairwise channels that we call SRS-Agreement.
King et al. [KSSV06b] present a synchronous algorithm that a set of parties, up to 1/3 of which

are controlled by an adversary, can reach almost-everywhere1 agreement with probability 1− o(1).

Their main technique is to divide the parties into groups of polylogarithmic size; each party is

assigned to multiple groups. In parallel, each group uses bin election algorithm [Fei99] to elect a

small number of parties from within their group to move on. This step is recursively repeated on

the set of elected parties until size of the remaining parties in this set becomes polylogarithmic. At

this point, the remaining parties can solve the semi-random-string agreement problem (similarly,

they can run a Byzantine agreement protocol to agree on a bit). Provided the fraction of corrupted

parties in the set of remaining parties is less than 1/3 with high probability, these parties succeed in

agreeing on a semi-random string. Then, these parties communicate the result value to the rest of

the parties.

Bringing parties to agreement on a semi-random string is trickier in the asynchronous model.

The major difficulty is that the bin election algorithm cannot be used in asynchronous model since
1King et al. [KSSV06b] relax the requirement that all honest parties reach agreement at the end of the protocol,

instead requiring that a 1− o(1) fraction of honest parties reach agreement. They refer to this relaxation as almost-
everywhere agreement.

49

Protocol 15 Simple-Elect-Subcommittee

Goal. Ω(ln8 n) parties agree on a subcommittee of size Ω(ln3 n). The protocol is performed by parties P1,...,Pk ∈ W with k =

Ω(ln8 n).

1. Party Pi generate a vector of c ln3 n random numbers chosen uniformly and independently at random from 1 to k where
each random number maps to one party.

2. Run CMPC to compute the component-wise sum modulo k of all the vectors. Arbitrarily, add enough additional numbers
from 1 to k to the sum vector to ensure it has c ln3 n unique numbers.

3. Let WB be the set of winning parties which are those associated with the components of the sum vector.

4. Return WB as the elected subcommittee.

the adversary can prevent a fraction of the honest parties from being heard, and then prevent them

to be part of the election. We present a similar algorithm to [KSSV06b] that solves this issue in

asynchronous model with private channels. The main result of this section is as follows.

Theorem 2.7.2. Suppose there are n parties, for any fix positive ε constant fraction b < 1/4− ε of

which are corrupted. There is a polylogarithmic (in n) bounded degree network and a protocol such

that:

1. With high probability, a 1−O(1/ ln n) fraction of the honest parties agree on the same value

(bit or string).

2. Every honest party sends and processes only a polylogarithmic (in n) number of bits.

3. The number of rounds required is polylogarithmic in n.

The important novelty of our method compare to King et al. [KSSV06b] is that instead of bin

election algorithm, we use CMPC to decide on the parties who move on to the next level. The simple

version of our election method is presented as Simple-Elect-Subcommittee in Protocol 15 that has

the properties described in Lemma 2.7.3. The complete protocol and its proof of correctness are

given in Section 2.7.5

Lemma 2.7.3. Let W be a committee of Ω(ln8 n) parties, where the fraction, fW , of honest parties

is greater than 3/4. Then, there exists some constant c, such that with high probability, the

Elect-Subcommittee protocol elects a subset WB of W such that |WB | = c ln3 n and the fraction

of honest parties in WB is greater than (1− 1/ ln n) fW . The Elect-Subcommittee protocol uses a

polylogarithmic number of bits and polylogarithmic number of rounds in a fully connected network.

50

Proof. The proof follows from a straightforward application of union and Chernoff bounds. Let

X be the number of honest parties in WB. By the correctness of the CMPC algorithm, each party

in WB is randomly chosen from W . Let Yi be an indicator random variable, that equals to 1 if the

i-th member of WB is honest. Then, E[Yi] = fW and E[X] = fW c1 ln3 n. Using Chernoff bounds,

we have Pr[X < (1− 1/ ln n) fW c1 ln3 n] = Pr[X < (1− 1/ ln n)E[X]] ≤ e−
E[X]/ ln2 n

2 < 1/nc. Since

fW > 1/2, setting c1 = 4c, establishes the first part of Lemma 2.7.3. � �

We establish a polylogarithmic bound on the number of bits used in Elect-Subcommittee protocol

since the bit cost of Elect-Subcommittee is polynomial in the number of parties participating in the

algorithm.

2.7.1 The Election Graph

Our algorithms make use of an election graph to determine which parties will participate in which

elections. This graph was described in [KSSV06a, KSSV06b] and is repeated here.

Before describing the election graph, we first present a result similar to that used in [CL95]. Let

X be a set of parties. For a collection F of subsets of X , a parameter δ, and a subset X ′ of X , let

F (X ′,δ) be the sub-collection of all F′ ∈ F for which

|F′
⋂

X ′|
|F′|

>
|X ′|
|X |

+ δ.

In other words, F (X ′,δ) is the set of all subsets of F whose overlap with X ′ is larger than the

“expected” size by more than a δ fraction. Let Γ(r) denote the neighbors of node r in a graph.

Lemma 2.7.4. Let l,r,n be positive integers such that l and r are all no more than n and r/l ≥ ln1−zn.

Then, there is a bipartite graph G(L,R) such that |L | = l and |R| = r and

1. Each node in R has degree lnz n.

2. Each node in L has degree O((r/l) lnz n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then, for any subset L′ of L,

|F (L′,1/ ln n) | < max(l,r)/ lnz−2 n.

The proof of Lemma 2.7.4 follows from a counting argument using the probabilistic method

and is omitted. The following corollaries follows immediately by repeated application of the above

lemma.

51

Corollary 2.7.5. Let `∗ be the smallest integer such that n/ ln`
∗

n ≤ ln10 n. There is a family of

bipartite graphs G(Li,Ri),i = 0,1,. . . ,`∗, and constants c1 and c2 such that |Li | = n/ lni n, |Ri | =

n/ lni+1 n, and

1. Each node in Ri has degree lnc1 n.

2. Each node in Li has degree O(lnc2 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then, for any subset L′i of Li,

|F (L′i,1/ ln n) | < |Ri |/ ln6 n.

4. Let F ′ be the collection of sets Γ(l) for each l ∈ L. Then, for any subset R′i of Ri,

|F ′(R′i ,1/ ln n) | < |Li |/ ln6 n.

Corollary 2.7.6. Let `∗ be the smallest integer such that n/ ln`
∗

n ≤ ln10 n. There is a family of

bipartite graphs G(Li,Ri),i = 0,1,. . . ,`∗, such that |Li | = n/ lni n, |Ri | = n/ lni+1 n, and

1. Each node in Ri has degree ln5 n.

2. Each node in Li has degree O(ln4 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then, for any subset L′i of Li,

|F (L′i,1/ ln n) | < |Li |/ ln3 n.

Lemma 2.7.4 and its corollaries show there exists a family of bipartite graphs with strong

expansion properties which allow the formation of subsets of parties where all but a small fraction

contain a majority that are honest.

We are now ready to describe the election graph. Throughout, we refer to nodes of the election

graph as e-nodes to distinguish them from nodes of the static network. Let `∗ be the minimum

integer ` such that n/ ln` n ≤ ln10 n; note that `∗ = O(ln n/ ln ln n). The topmost layer `∗ has a single

e-node which is adjacent to every e-node in layer `∗−1. For the remaining layers ` = 0,1,...,`∗−1,

there are n/ ln`+1 n e-nodes. There is an edge between the ith e-node, A, in layer ` and the jth

e-node, B, in layer `+ 1 if and only if there is an edge between the ith node in L`+1 and the jth

node in R`+1 from Corollary 2.7.6. In such a case, we say that B is the parent of A, and A is the

child of B. Note that e-nodes have many parents.

Each e-node will contain a set of parties known as a committee. All e-nodes, except for the one

on the top layer and those in layer 0, will contain c ln3 n parties. Initially, we assign the n parties to

e-nodes on layer 0 using the bipartite graph G(L0,R0) described in Corollary 2.7.6. The ith party is

a member of the committee contained in the jth e-node of layer 0 if and only if there is an edge in

52

G between the ith node of L0 and the jth node of R0. Note every e-node on layer 0 has ln5 n parties

in it.

The e-nodes on higher layers have committees assigned to them during the course of the protocol.

Let A be an e-node on layer ` > 0, let B1,. . . ,Bs be the children of A on layer `−1, and suppose

that we have already assigned committees to e-nodes on layers lower than `. If ` < `∗, we assign a

committee to A by running Elect-Subcommittee on the parties assigned to B1,. . . ,Bs, and assigning

the winning subcommittee to A. (Note that we can run each of these elections in parallel.) If A is at

layer `∗, the parties in A, B1,. . . ,Bs, run byzantine agreement for Byzantine agreement.

2.7.2 Static Network with Polylog-Bounded Degree

We now repeat the description of the bounded degree static network [KSSV06b] and show how

it can be used to hold elections specified by the election graph. For each e-node A, we form a

collection of parties which we call it s-node: s(A). Intuitively, the s-node s(A) serves as a central

communication point for an election occurring at e-node A. Our goal is to bound the fraction of

s-nodes controlled by the adversary by a decreasing function in n, namely 1/ ln10 n, for each layer.

As the number of s-nodes grows much smaller with each layer, we need to make each s-node
more robust. To do this, the number of parties contained in the s-node increases with the layer.

Specifically, the s-nodes for layer i are sets of lni+12 n parties. We determine these s-nodes using

the bipartite graph from Lemma 2.7.4, where L is a collection of n nodes, one for each party, R is

the set of s-nodes for layer i and the degree of each node in R is set to lni+12 n. The neighbors of

each node in R constitute a set of parties in an s-node on layer i.

We use the term link to denote a direct connection in the static network. The communications

for an election A will all be routed through s(A): a message from a party x to s(A) on layer i will

pass from the party to a layer 0 s-node, whose parties will forward the message to a layer 1 s-node
and so on, the goal being to reliably transmit the message via increasingly larger s-nodes up to s(A).

Similarly, communications to an individual party x from s(A) will be transmitted down to a layer

0 s-node whose parties will transmit the message to x. We describe the connections in the static

network.

Connections in the static network. Consider the following:

• Let A be an e-node on layer 0 in the election graph. Every party in A has a link to every party

in s(A).

53

• Let A and B be e-nodes in the election graph at levels i and i−1 respectively such that A is a

parent of B. Thus, s(A) has lni+12 n parties in it and s(B) has lni+11 n parties in it. Let G be a

bipartite graph as in Lemma 2.7.4 where L is the set of parties in s(A), R is the set of parties

in s(B) and the degree of R is set to lnc1 n and the degree of L is set to O(lnc2 n). If there is an

edge between two nodes in L and R respectively, then the corresponding party in s(A) has a

link to the corresponding party in s(B). We will sometimes say that s(A) is adjacent to s(B)

in the static network.

The following lemma follows easily from the application of Lemma 2.7.4 and its corollaries.

Item (1) follows from Lemma 3.1; items (2) and (4) from Corollary 3.2; and item (3) from Corollary

3.1. Although item (2) only makes a guarantee about layer 0 e-nodes, we will see eventually that

with high probability, the fraction of corrupted e-nodes on every layer is small.

Lemma 2.7.7. With high probability, the election graph and the static network have the following

properties:

1. (Bad s-nodes) Any s-node whose fraction of corrupt parties exceeds b+ 1/ ln n will be called

bad. Else, we will call the s-node good. No more than a 1/ ln10 n fraction of s-nodes on any

given layer are bad.

2. (Bad e-nodes) Any e-node whose fraction of corrupt parties exceeds b+ 1/ ln n will be called

bad. Else we call the e-node good. No more than a 1/ ln2 n fraction of e-nodes on layer 0 are

bad.

3. (Bad s-node to s-node connection) For any pair of e-nodes A and B joined in the election

graph, the parties in s-nodes s(A) and s(B) are linked such that the following holds. For any

subset WA of parties in s(A), at most a 1/ ln6 n fraction of parties in s(B) have more than a

|WA |/|s(A) |+ 1/ ln n fraction of their links to s(A) with parties in WA.

4. (Bad e-node to e-node connection) Let |I | represent the total number of e-nodes on layer i

in the election graph. For any set W of e-nodes on any layer i, at most a 1/ ln2 n fraction of

e-nodes on layer i + 1 have more than |W |/|I |+ 1/ ln n fraction of their neighbors in W .

The degree of the static network is polylogarithmic.

54

2.7.3 Communication Protocols

A permissible path is a path of the form P = x,s(A0),s(A1),...,.s(Ai) where x is a party in A0, i is

the current layer of elections being held, each A j is an e-node on layer j, and there is an edge in the

election graph between A j and A j+1 for j = 0,...,i. Each party y in an s-node s(A) on each layer j

keeps a List of permissible paths that determine which parties’ messages it will forward. The List
(for y ∈ s(A)) represents y’s view of which parties are elected (to the subcommittee) at A that are

still participating in elections on higher layers. If y’s List indicates that x is such a party, then the

List will also have the entire path for x, which stretches from x to the elections on layer i in which x

is currently participating in. We have the following definitions.

• We say a s-node knows a message [resp., knows a permissible path, or resp., knows a List
of permissible paths] if 1− b−2/ ln n parties in the s-node are honest and receive the same

message [resp., have the same path on their Lists, or resp., all have the same List.]

• A permissible path P is good if every s-node on the path knows P. Else the path is bad.

We will show our construction of the static network ensures at most a 1/ ln n fraction of the

permissible paths are bad.

We now describe three primitive communication subroutines: Sendhop, Send, and Mes-
sagePass. The subroutine Sendhop describes how s-nodes (with direct links) communicate

with each other, Send describes how a party communicates with an s-node, and MessagePass
describes how two parties communicate with each other.

Sendhop(s,r,m,P). A message m can be passed from s (the sender) to r (the receiver) from a level

i to a level i−1 or from a level i to a level i + 1, where s and r are s-nodes on these layers or one

of s,r is a 0-layer s-node and the other is a party. If a party x sends a message to a layer 0 s-node
s(A) it sends the message to every party in s(A) (note by construction it will have a direct link with

every party in s(A)). Similarly if a message is sent from a layer 0 s-node s(A) to a party x, every

party in s(A) sends the message to x.

When an s-node s(A) sends a message to s-node s(B), every party in s(A) sends the message

to those parties of s(B) to which it has a direct link. When each party in s(B) receives such a set of

messages, it waits until it receives the same messages from the majority to determine the message.

If there is no majority value, the party ignores the message. Along with sending the message the

parties also send information which specifies along which path P the message is being sent. Each

time a message is received by a party of an s-node s(B) on layer j ≤ i, it checks that:

55

1. The message came from the s-node previous to it in the path P; if not the message is dropped.

2. The path P (or its reverse) is on its List of permissible paths. If not, the message is dropped.

3. Only messages that conform to the protocol in size and number are forwarded up and down

the permissible paths. If more or longer messages are received from a party, messages from

that party are dropped.

Send(s,r,m,P). Of the first two parameters, one must be a party (“x”) and one must be an s-node
(“s(A)”). The path P contains the first parameter s as its start and the second parameter r as its

endpoint. Send(s,r,m,P) sends the message m from s to r along the path P via repeated application

of Sendhop.

MessagePass(x ∈ A,y ∈ B,m,Px ,Py). Both A and B are adjacent e-nodes. Hence, s(A) and s(B)

are adjacent in the static network. A message from party x in e-node A sends message m to

party y in e-node B by first calling Send(x,s(A),m,Px). Then, s(A) sends m to s(B) by calling

Sendhop(s(A),s(B),m,P), where P is the path consisting of two s-nodes s(A),s(B). Finally, the

message is transmitted from s(B) to y by calling Send(s(B),y,m,Pr
y), where Pr

y is the reversal of

path Py.

2.7.4 SRS-Agreement Protocol

Before describing the SRS-Agreement protocol, we first adapt the Elect-Subcommittee protocol for

the static network. Let A be an e-node with children B1,. . . ,Bs, and let X be the set of all parties

from B1,. . . ,Bs. For each i ∈ [s] and x ∈ Bi, let Px denote a good path of s-nodes from x to s(Bi)

concatenated with s(A). At the start of the election for A, we assume that each node in Px knows

Px and s(A) knows {Px | x ∈ X }.

We now describe the implementation of the Elect-Subcommittee algorithm. Every party x ∈ X

generate a vector of random numbers chosen uniformly and independently at random where each

random number maps to one party. The parties use the CMPC protocol to determine the winners

(recall that the number of parties in e-nodes is always polylogarithmic, so this can be done sending

only polylogarithmic messages). The list of winners is sent up to s(A), where each party in s(A)

takes a majority to determine the winners. Then, s(A) sends down the list of winners along all the

permissible paths to each party x ∈ X . Parties on the path (i.e. , in s-nodes along the path) update

their Lists of permissible paths to remove those party-paths who lost as well as those party-pairs

who won too many elections (we will quantify this shortly), and make ln4 n copies of each of the

56

Protocol 16 Elect-Subcommittee

Goal. Adapted version of Simple-Elect-Subcommittee for static networks.

1. For each x ∈ X : // This stage done in parallel

2. Party x randomly selects one of k/(c1 ln3 n) random numbers chosen uniformly and independently at random from zero
to k where each random number maps to one party.

3. Parties in X run CMPC to compute the component-wise sum modulo k of all the vector. Arbitrarily, add enough additional
numbers to the vector to ensure it has c ln3 n unique numbers.

4. Let M be the set of winning parties, which are those associated with some component of the vector sum.

5. Each y ∈ X sends M to s(A) by calling Send(y,s(A),M,Py).

6. Parties in s(A) determine M by waiting until they receive the majority of same messages. These become the elected
parties.

7. For each party x ∈ X that is elected, the parties in s(A) use Send(s(A),x,m,Pr
x) to tell x, along with each s-node in Px ,

that x was elected.

8. Each party in each s-node revises its list of permissible paths to:

Retain only the winners. Eliminate parties who have won more than 8 elections. Make ln4 n copies of remaining
permissive paths, concatenating each with a different s-node neighbor on layer i + 1.

9. s(A) sends its list to every adjacent s-node s(B) on layer i + 1 using Sendhop(s(A),s(B),m,P), where P is the path
consisting only of s(A), s(B).

Protocol 17 Scalable-SRS-Agreement

Goal. Parties agree on a semi-random string.

1. For l = 1 to l∗:

2. For each e-node A in layer l, let B1,...,Bs be the children of A in layer l −1 of the election graph, and

3. If l < l∗, run Elect-Subcommittee on the parties in nodes B1,...,Bs . Assign winning parties to node A.

4. Else parties in nodes B1,...,Bs solve semi-random-string agreement problem.

5. Let A∗ be the e-node on layer l∗, every party x assigned to A∗ communicates the result of Step 4 to s(A∗) using
Send(x,s(A∗),m,Px).

6. Every party in s(A∗) waits for the majority of same message to determine the result of Step 4.

winners’ paths and concatenate a different layer i + 1 s-node parent onto each one. We present a

detailed description of Elect-Subcommittee in the following.

The condition in Step 5 that requires parties who have won more than 8 elections to be eliminated

is a technical condition that insures the protocol is load-balanced and parties in an s-node do not

communicate more than a polylogarithmic number of bits. We now describe the SRS-Agreement
protocol.

57

Since every party is a member of s(A∗), steps 5 and 6 will insure the final result of the protocol

is communicated to every party.

2.7.5 Proof of Build-Quorums

To establish the correctness of the protocol presented in Section 2.7.4, we first state some claims

regarding the primitive communication protocols. Their proofs follow by straightforward proba-

bilistic arguments and are omitted in the interest of space. Recall the fraction of corrupted parties is

b, where b < 1/4− ε for any fix positive ε .

Claim 2.7.8. Let s(A) and s(B) be s-nodes on consecutive layers. Assume the following conditions

hold:

1. Both s(A) and s(B) are good.

2. s(A) is on a permissible path known by s(B).

3. There exists a set W of parties from s(A) such that for every message m, all parties in W are

honest and agree on a message m. Further W consists of at least a 1− b−2/ ln n fraction of

the parties in s(A).

Then, there is a set W ′ of parties from s(B) such that for every message m, every party in W ′ is

honest and agrees on the message m after Sendhop(s(A),s(B),m,P) is called. (Here, P is the path

s(A),s(B).) Further, W ′ consists of all but a 1/ ln6 n fraction of the honest parties in s(B).

Proof. Every party in W is honest and sends the same massage to its connected parties in s(B).

The parties in s(B) can afford to wait for the majority of same messages, since s(A) is good and

W consists of at least 1− b−2/ ln n fraction of parties which is more than 1/2 and for majority we

need to receive a fraction of 1/2 same messages from the parties in s(A). Thus, all honest party

but a 1/ ln6 n fraction of parties in s(B) will eventually receive the message based on corollary

2.7.5. � �

Claim 2.7.9. Let x be an honest party. Assume Px is a good path. Then, after Send(x,s(A),m,Px)

is executed, there is a fixed set W of honest parties which contains all but a 1/ ln6 n fraction of the

honest parties in s(A) and every party z ∈W agrees on m.

An election at e-node A is legitimate if the following two conditions hold simultaneously for

more than a 3/4 fraction of parties x participating in the election at A: (1) party x is honest; (2) The

path Px is good.

58

Lemma 2.7.10. For a legitimate election at node A, let X be a set of honest parties with good

permissible paths. (Note |X | > 3ln8 n/4.) Let W be the set of honest parties in s(A) that know X .

Then, after the execution of Elect-subcommittee, the parties in W know the winners of the election

in A, as do the s-nodes that belong to good paths Px .

Proof. From Claim 2.7.9, we have that every message m sent by MessagePass(y ∈ Bi,z ∈

B j ,m,Py,Pz) from y ∈ X to z ∈ X is received by some fixed set W of honest parties in s(Bi),

such that W contains at least 1− b−2/ ln n fraction of the parties in s(Bi). By Claim 2.7.8, every

message sent by y is received by z. Since X contains more than 3/4 of the total parties participating

in the election, (after running CMPC) all the parties in X will all agree on the same set of for random

parties. Thus, after the parties in X send these values to s(A), s(A) will know the winners. When

s(A) sends these winners to X , by repeated application of Claim 2.7.8, we have every x ∈ X and

every s-node in Px will know these winners. � �

We have shown that in a legitimate election at node A, s(A) knows the list of winners. We next

consider when paths are dropped from the permissible path Lists.

2.7.5.1 Permissible Paths Removal

Let y be a party in some s-node on layer i. A permissible path Px is removed from a party y’s List
on layer i if y receives a message from an s-node above it in Px , indicating either x has won more

than 8 elections or x lost in the election held at the last node of Px . Here, we consider when Px

is removed for the former reason, i.e. , we give an upper bound on the fraction of parties that are

reported to have won too many elections on layer i.

First we consider the effect of legitimate elections. The following lemma, a version of which

appears in [KSSV06a, KSSV06b], shows that on a given layer a very small fraction of honest parties

win more than 8 times in legitimate elections.

Lemma 2.7.11. With high probability, the parties that win more than 8 elections, counting mul-

tiplicities, account for no more than a 16/ ln3 n fraction of the honest parties that are winners of

legitimate elections.

Next, we bound the effect of elections that are not legitimate. We first consider the case where

s(A) is good, yet the fraction of honest parties participating in A with good paths is less than 3/4.

For the remainder of the proof we shall treat such an e-node A as a bad e-node.

59

Claim 2.7.12. Suppose less than a 1/7 fraction of the honest parties of a good s(A) agree on a

message m. Then, after Sendhop(p(A),p(B),m,P) is executed, all but a 1/ ln6 n fraction of the

honest parties in s(B) will ignore m.

Proof. Even if the corrupted parties agree on m, since b < 1/4, the total fraction of parties in s(A)

sending the message m is less than 11/28. Thus, at most a 1/ ln6 n fraction of the parties in s(B)

will receive m from a majority of parties in s(A). � �

Hence, a good s(A) can only communicate with seven different sets of winners to the s-nodes

below it. Since each honest party will send ln3 n winners, the total number of winners sent is at most

7 ln3 n. Therefore, a bad e-node can cause at most 7 ln3 n parties to have their permissible paths

removed.

Next, we consider the effect of a bad s-node. We will assume one bad s-node s(A) on layer i

can cause the removal of all the permissible paths for every party participating in the election at

A. Since ln8 n parties participate in an election, and fewer than a 1/ ln10 n fraction of the s-nodes

are bad on a layer, the fraction of honest winners affected is less than 1/ ln2 n. Thus, we can bound

the fraction of the honest winners on any layer i that have their permissible paths removed by

1/ ln2 n + 1/ ln3 n + 7βi; where βi represents the fraction of bad e-nodes on layer i. Thus, we have

the following lemma.

Lemma 2.7.13. Assume the fraction of bad e-nodes on layer i is bounded by c/ ln2 n, for some

constant c. Then, the fraction of honest winners that have their permissible paths removed on layer

i is bounded by 8c/ ln2 n.

2.7.5.2 Proof of Theorems 2.7.2

We now complete the proof of Theorem 2.7.2 which follows from the following lemma.

Lemma 2.7.14. On layer i, with high probability, at least a 1−4/ ln2 n fraction of s-nodes s(A j)

have the following properties:

1. s(A j) is good.

2. At least a 1− b−4i/ ln n fraction of the parties in node A j are honest and have good paths to

s(A j) (note this implies s(A j) knows this path). That is, A j is a good e-node.

60

Proof. We prove the lemma by induction. On all layers and particularly layer 0, only a 1/ ln10 n

fraction of the s-nodes are bad. If s(A) is good, then every party in A has a good path to s(A).

Further by construction all but a 1/ ln2 n fraction of the e-nodes on layer 0 consist of at least a

1− b−1/ ln n fraction of honest parties. So the lemma is true on layer 0.

Assume the lemma is true for layer i. Then, a 1−4/ ln2 n fraction of e-nodes are good, more

specifically these e-nodes have at least a 1− b−4i/ ln n fraction of honest parties that have a good

path to their corresponding s-node. Since the election is legitimate by Lemmas 2.7.3 and 2.7.10,

with high probability, after Elect-Subcommittee at least a 1− b− 4i/ ln n− 1/ ln n fraction of the

parties elected are honest and have a good path to any good parent of their s-node. Thus, at least

a 1− b− (4i + 1)/ ln n fraction of the parties elected at layer i are honest and have good paths to

good parent s-nodes on layer i + 1. By Lemma 2.7.13 this fraction is reduced by at most 32/ ln2 n.

Thus, at least a 1− b− (4i + 2)/ ln n fraction of the parties elected at layer i are honest and have

good paths to good parent s-nodes on layer i + 1. Since the fraction of bad s-nodes on layer i + 1 is

at most 1/ ln10 n, by Corollary 2.7.6 at least a 1−1/ ln2 n−1/ ln10 n fraction of the e-nodes (and

their corresponding s-nodes) are good on layer i +1, and have at least a 1− b− (4i +2)/ ln n−1/ ln n

fraction of honest parties that have good paths to their corresponding s-nodes. � �

By Lemma 2.7.14, with high probability the layer `∗ e-node is good. Thus, the parties in

this e-node succeed in solving the semi-random-string agreement problem (Step 4 of algorithm

SRS-Agreement). Since all the parties are in the s-node (though they may appear multiple times)

corresponding to A on `∗, by Claim 2.7.9 all but a O(1/ ln n) fraction of the honest parties learn the

final result. To prove the number of bits sent by each party is polylogarithmic we note each party is

in a polylogarithmic number of e-nodes and s-nodes on each layer i, and participates in at most a

polylogarithmic number of election on layer i. Since the number of layers is O(ln n) Theorem 2.7.2

follows. Finally, the correctness of Theorem 2.7.1 follows from Theorem 2.7.2 and the correctness

of SRS-to-Quorum protocol.

2.8 Conclusion

We described a Monte Carlo algorithm to perform asynchronous MPC in an scalable manner. Our

protocols are scalable in the sense that they require each party to send Õ(m/n +
√

n) messages

and perform Õ(m/n +
√

n) computations. They tolerate a static adversary that controls up to a

1/8− ε fraction of the parties, for ε any positive constant. We showed that our protocol is secure in

the universal composability framework. We also described efficient algorithms for two important

61

building blocks of our protocol: threshold counting and quorum building. These algorithms can be

used separately in other distributed protocols.

The following problems remain open. Can we prove lower bounds for the communication and

computation costs for Monte Carlo MPC? Can we implement and adapt our algorithm to make it

practical for a MPC problem such as the beet auction problem described in [BCD+09]. Finally, can

we prove upper and lower bounds for resource costs to solve MPC in the case where the adversary

is adaptive, able to take over parties at any point during the algorithm?

62

Chapter 3

Scalable Mechanisms for Rational Secret
Sharing

Secret sharing is one of the most fundamental problems in security, and is an important primitive in

many cryptographic protocols. In t-out-of-n secret sharing, we are interested in designing a protocol

to distribute shares of a secret to each n players and to reconstruct the secret ensuring that: (1) if any

group of t players follow the protocol, they will all learn the secret; and (2) knowledge of less than

t of the shares reveals nothing about the secret. In rational secret sharing, all players are rational.

Moreover, we want our protocol to be a Nash equilibrium in the sense that no player can improve

its utility by deviating from the protocol, given that all other players are following the protocol.

Recently, there has been interest in solving rational secret sharing [KN08, GK06, HT04,

ADGH06, LT06]. Unfortunately, all previous solutions to this problem require each agent to send

O(n) messages in expectation, and so do not scale to large networks.

In this chapter, we address this issue by designing scalable mechanisms for rational secret

sharing. Our main result is a protocol for rational n-out-of-n secret sharing that (1) requires each

agent to send only an expected O(log n) bits; and (2) has O(log n) expected latency. We also design

a scalable mechanism for t-out-of-n rational secret sharing when the parties are computationally

bounded.

3.1 The Problem

Shares of a secret are to be dealt to n rational players, who will later reconstruct the secret from the

shares. The players are learning-preferring, in the sense that each player prefers every outcome in

which he learns the secret to any outcome in which he does not learn the secret. However, a player

63

may prefer the situation where he learns the secret and other players do not to the situation where

all players learn the secret.

The secret is an arbitrary element of a large (fixed) finite field Fq. At the beginning of the game,

a dealer provides the shares to the players. The dealer has no further role in the game. The players

must then communicate with each other in order to recover the secret.

Communication between the players is point-to-point and through secure private channels. In

other words, if player A sends a message to player B, then a third player C is not privy to the

message that was sent, or indeed even to the fact of a message having been sent. Communication is

synchronous in that there is an upper-bound known on the maximum amount of time required to

send a message from one player to another. However, we assume non-simultaneous communication,

and thus allow for the possibility of rushing, where a player may receive messages from other

players in a round before sending out his own messages.

Our goal is to provide protocols for the dealer and rational players such that the players following

the protocol can reconstruct the secret. Moreover, we want a protocol that is scalable in the sense

that the amount of communication and the latency of the protocol should be a slow growing function

of the number of players.

3.2 Related Work

The problem of secret sharing with rational players was introduced by Halpern and Teague in [HT04].

They showed that, rational secret sharing is possible using randomized mechanisms with constant

expected running time and it is impossible using a mechanism that has a fixed running time. They

also show that there is no practical mechanism for 2-out-of-2 rational secret sharing even with an

infinite game tree. A mechanism is practical if it is a Nash equilibrium that survives iterated deletion

of weakly-dominated strategies. Since then, there has been significant work on the problem of

rational secret sharing, including results of Gordon and Katz [GK06], Abraham et al. [ADGH06],

Lysyanskaya and Triandopoulos [LT06], Asharov and Lindell [AL09], Kol and Naor [KN08] et

al. [ZTW11] and Fuchsbauer et al. [FKN10].

Most of this related work except for [KN08, AL09, FKN10, ZTW11], assume the existence

of simultaneous communication, either by broadcast or private channels. Several of the protocols

proposed [GK06, ADGH06, LT06, ZTW11] require cryptographic assumptions and achieve an

equilibrium under the assumption that the players are computationally bounded. In contrast, our

results do not assume simultaneous communication and our n-out-of-n algorithm does not make

any cryptographic assumptions.

64

Fuchsbauer et al. [FKN10] proposed protocols for 2-out-of-2 and t-out-of-n rational secret

sharing. Similarly to our model, they assume the players only have point-to-point channels and

they do not require broadcast channel. Unlike us, the proposed protocols in [FKN10] are based

on cryptographic assumptions and the authors introduce the notion of a computational strict Nash

equilibrium, that is a Nash equilibrium when all players are polynomial time bounded. They show

that their protocols are both computational strict Nash. A caveat is that the protocols are susceptible

to backwards induction.

Zhang, Tartary, and Wang in [ZTW11], propose a protocol for rational t-out-of-n secret sharing

scheme based on the Chinese reminder theorem. Their protocol works in a communication model

similar to our model. Their protocol requires a synchronous but not simultaneous broadcast

channel and synchronous but not simultaneous point-to-point private channels. They assume some

computational hardness related to the discrete logarithm problem and RSA. The proposed protocol

is a (t −1)-resilient computational strict Nash equilibrium that is stable with respect to trembles.

Their protocol runs in time polynomial in k and has shares of size O(k) bits where k is the protocol

security parameter.

The work of Kol and Naor [KN08] is closest to our own work and our protocols make use of

several clever ideas from their result. Kol and Naor show that in the non-simultaneous broadcast

model (i.e. , when rushing is possible), there is no Nash equilibrium that ensures all agents learn the

secret, at least for the case of two players. They thus consider and solve the problem of designing

an ε-Nash equilibrium for the problem in this communication model. Furthermore, the equilibrium

they achieve is everlasting.

The impossibility of a Nash equilibrium for two players carries over to the setting with secure

private channels, since there is no difference between private channels and broadcast channels

when there are only two players. However, one might hope that the algorithm of [KN08] could

be efficiently simulated over secure private channels to give an everlasting ε-Nash equilibrium.

Unfortunately, simulation of broadcast over private channels is expensive. To the best of our

knowledge, a single broadcast requires each player to send Θ(n) messages.

In [DMRS11], Dani et al. overcame this difficulty, by providing a scalable protocol for rational

secret sharing, in which each player only sends O(1) bits per round and the expected number of

rounds is constant (although each round takes O(log n) time). Moreover, following the protocol

is an ε-Nash equilibrium. Unfortunately, a certain bad event with small but constant probability

caused some players, when they recognized it, to deviate from the protocol so that the equilibrium

from [DMRS11] is not everlasting.

65

3.3 Our Results

The main result of this chapter is presented as Theorem 3.3.1.

Theorem 3.3.1. Let n ≥ 3. There exists a protocol for rational n-out-of-n secret sharing with the

following properties.

• The protocol is a Nash equilibrium in which all players learn the secret.

• In expectation, the protocol requires each player to send O(log n) bits, and has latency

O(log n).

• The protocol is not robust to coalition on any size.

This chapter is the full version of the extended abstract in [DMRS11]. Additionally, it improves

on the work in [DMRS11] in two ways. First, the new proposed algorithm for n-out-of-n secret

sharing is correct with probability one and there is no probability of error. Second, we show that our

new protocol for n-out-of-n is a Nash equilibrium, not just an ε-Nash equilibrium, as long as n ≥ 3.

t-out-of-n secret sharing We also consider the problem of t-out-of-n rational secret sharing for the

case where t < n. Scalable rational secret sharing for the t-out-of-n case may also be of interest

for applications like the Vanish peer-to-peer system [GKLL09]. Vanish uses secret sharing in a

peer-to-peer system with churn in order to provide data that vanishes over time. In this setting we

prove the following.

Theorem 3.3.2. Let n ≥ 3 and t ≤ n. Assuming the players are computationally bounded to

polynomial-time algorithms, there exists a protocol for rational t-out-of-n secret sharing with the

following properties.

• The protocol is an everlasting ε-Nash equilibrium in which all active players learn the secret,

where ε can be any arbitrary positive value.

• In expectation, the protocol requires each player to send O(log n) bits, and has latency

O(log n).

• The protocol is not robust to coalition of any size.

This is an improvement to the Θ(n)-out-of-n result we proved in [DMRS11], in the sense that

in this new result, t can be any number smaller than n. However, in our new t-out-of-n protocol,

we require a cryptographic digital signature scheme with security parameter κ = max j
U+

j +Uj

2Uj+ε
. See

Section 3.6.2 for definitions of U+
j and Uj .

66

3.4 Our Approach

The difficulty in designing a Nash equilibrium in a communication model where rushing is possible,

is that the last player to send out his share has no incentive to actually do so. He already has the

shares of all the other players and can recover the secret alone. To get around this, it is common (see

[HT04, ADGH06, GK06, LT06, KN08]) for the protocol to have a number of fake rounds designed

to catch cheaters. The uncertainty in knowing which is the “definitive” round, during which the true

secret will be revealed causes players to cooperate.

In the work of [KN08] this uncertainty is created by dealing one player only enough data to

play until the round preceding the definitive one. Thus, there is a single “short” player and n−1

“long” players. None of the players know whether they are short or long. The long players must

broadcast their information every round, since they cannot predict the definitive round in advance.

The short player knows the definitive round in advance, but has no information about the secret in

that round. In the definitive round the short player is the last to speak so that he (and all the other

players) receives the shares of all the long players and can recover the secret. The short player’s

failure to broadcast a message is what cues the other players to the end of the game, and they too

can recover the secret.

Moreover, having learned the secret, the short player cannot pretend that he actually had a share

for that round as the messages sent by all the players are verified by a tag and hash scheme (see, e.g.,

[WC81, RBO89, KN08]). In fact, it is the small but positive chance of cracking the tag and hash

scheme that results in the protocol from [KN08] being an ε-Nash equilibrium rather than a Nash

equilibrium. In this chapter for the n-out-of-n case, we overcome this problem by ensuring there are

at least two short players when n ≥ 3. Thus, our protocol is a Nash equilibrium for this case since

if a single short player breaks the tag and hash scheme, he cannot prevent any other player from

learning the secret. See Section 3.8 for complete analysis.

Unfortunately, the same trick of having more than one short player to achieve a Nash-equilibrium

cannot be easily applied to the t-out-of-n case. Since the dealer is not aware of the identity of the

active players, he cannot choose short players in a way to make sure there are at least two short

players active in the game. Since there is a chance that there is only one active short player, a short

player will now have some incentive to try to forge the tag and hash scheme.

Due to the using of short and long players, both of our protocols are susceptible to coalitions of

any size. Consider a long player who is the first one that learns the secret. He can join together with

a short player to learn that this round is definitive. Thus, both players in this coalition will learn the

secret early, and the remaining players will be fooled into thinking that the previous round was the

67

definitive round.

We introduce two novel techniques to ensure scalable communication. The first technique is

to arrange players at the leaves and nodes of a complete binary tree, and require that the players

only communicate with their neighbors in the tree. The assignment of players to the leaves is

independently random in every round, and their assignment to internal nodes is related to their

assignment to leaves according to a predefined scheme. Every round of the game, information

travels up to the root where it is decoded and then travels back down again to the leaves. We also

use short and long players to determine the definitive round. The short players are the players who

are parents of the leaves in the definitive round and all other players are long players. So, every

player is a child of a short player in the definitive round. In the definitive round, the short players

will fail to send messages to all the leaf nodes. Thus, every player, upon not receiving a message,

will learn that this is the definitive round and so will learn the secret.

The second main idea is that we make use of an iterated secret sharing scheme over this tree in

order to divide up shares of secrets among the players. This scheme is similar to that used in recent

work by King and Saia [KS10] on the problem of scalable Byzantine agreement, and suggests a

deeper connection between the two problems.

One drawback of our both protocols is vulnerability to coalitions of any size. The player who is

at the root in the definitive round can team up with a short player and learn the secret early without

telling it to others.

As in previous work [WC81, RBO89, KN08] we use a information-theoretic message authenti-

cation codes (also referred as tag-and-hash scheme) to ensure that players cannot forge messages in

the protocol in our n-out-of-n protocol.

3.5 chapter Organization

The rest of this chapter is laid out as follows. In Section 3.6, we give notation and preliminaries. In

Section 3.7, we describe our algorithm for scalable n-out-of-n secret sharing. In Section 3.8, we

analyze this algorithm; the main result of this section is a proof of Theorem 3.3.1. In Section 3.9,

we give our algorithm and analysis for scalable t-out-of-n secret sharing; the main result of this

section is a proof of Theorem 3.3.2. Finally in Section 3.10, we conclude and give directions for

future work.

68

3.6 Notation and Preliminaries

The secret to be shared is an arbitrary element of a set S. There are n players with distinct player ids

in [n] = {1,2,. . .n}. During the course of the algorithm, we will want to do arithmetic manipulations

with player ids and shares of the secret, including adding in, or multiplying by random elements to

preserve secrecy. In order to be able to do these sorts of manipulations, we embed the sets S and

[n] into a finite field F of size q > max{n, |S|}. The latter embedding will be the canonical one; the

former may be arbitrary, but is assumed to be known to all parties.

The messages sent by players in the algorithm will be elements of F. The length of any such

message is log q =Ω(log n). Since our goal is to provide a scalable algorithm we cannot afford the

message lengths to be much bigger than that. We will choose F to be a prime field of size q = O(n).

We remark that although generally S is of constant size, we can tolerate |S| = O(n).

3.6.1 Utility Functions

We will denote the utility function of player j by u j . As mentioned before, we assume that the

players are learning preferring, i.e. , each player prefers any outcome in which he learns the secret

to every outcome in which he does not learn the secret. More formally, for outcome o of the game,

let R(o) denote the set of players who learn the secret. If o and o′ are outcomes of the game such

that j ∈ R(o) \ R(o′), then u j (o) > u j (o′). As in [KN08], we denote

U+
j = max{u j (o) | j ∈ R(o)}

Uj = min{u j (o) | j ∈ R(o)}

U−j = max{u j (o) | j < R(o)}.

Thus U+
j is the utility to player j of the best possible outcome for j, Uj is the utility to j of the worst

possible outcome in which j still learns the secret, and U−j is the best possible utility to j when he

does not learn the secret. By the learning-preferring assumption, we have for all j,

U+
j ≥ Uj >U−j .

We will denote byU , the quantity

U := max
j∈[n]

U+
j −U−j

Uj −U−j
.

Note thatU ≥ 1. We assume thatU is constant, i.e. , that it does not depend on n.1
1Technically, we can achieve scalable (polylog) communication even if we allowU to be as big as polylog(n).

69

Similar to previous work on rational secret sharing [KN08], we also assume that the utilities are

such that the players have an incentive to play the game rather than just guess the secret at random.

Moreover, as in previous works, we assume that the prior distribution of the secret is uniform for

all players. Thus, if player j decides to guess the secret, with probability 1/|S| he can get at most

the maximum utility of U+
j and with probability of 1−1/|S| can get at most the maximum utility

of U−j . Thus, player j’s utility is at most
U+

j −(1−|S|)U−j
|S|

if he guesses instead of running the protocol.

On the other hand, if the protocol runs correctly, he has utility at least Uj . Hence, we require
U+

j −(1−|S|)U−j
|S|

< Uj for all 1 ≤ j ≤ n. To satisfy these inequalities we need: |S| > max j∈[n]
U+

j −U−j
Uj−U−j

.

Thus we require,

U < |S|. (3.1)

3.6.2 Game Theoretic Concepts

In this section, we review a few game-theoretic background concepts. We adapt the standard

concepts here from the previous work (e.g. see [HT04, ADGH06]). We describe a game with a tree,

where each node represents the local states of players based on their moves in previous rounds. The

local state of player j describes player j’s initial information and messages sent and received by

player j. At each round, all the players move to a new state by deciding which messages to send.

This decision can happen after receiving other players’ messages. Each message takes exactly one

round to arrive.

A strategy or protocol for player j is a function from player j’s information set (i.e. , player j’s

local state) to actions. A strategy can be a randomized function. A joint strategy
→
σ= (σ1,. . . ,σn) is

a tuple of strategies, one for each player. We let
→
σ= (

→
σ− j ,σ j), where

→
σ− j denotes a tuple consisting

of each player’s strategy in
→
σ other than player j’s. Ur j (

→
σ) is player j’s expected utility if

→
σ is

played. Thus, the utility function depends on the path in the tree that starts from the root.

Recall that a joint strategies for a game is called a Nash equilibrium if no player has an incentive

to unilaterally deviate from the equilibrium strategy, when all others are following it. Formally,
→
σ is

a Nash equilibrium if,

∀ j,∀σ′j ,Uj (
→
σ− j ,σ j) ≥ Uj (

→
σ− j ,σ

′
j).

In the same way,
→
σ is an ε-Nash equilibrium if,

∀ j,∀σ′j ,Uj (
→
σ− j ,σ j) + ε ≥ Uj (

→
σ− j ,σ

′
j).

In games of incomplete information which have multiple rounds, there is the further question of

whether the players are forced to commit to their strategies before the start of the game or whether

70

they have the option to change strategies in the middle of the game, after some rounds have been

played and they may learn some new information. Kol and Naor [KN08] defined a equilibrium to be

everlasting if after any history that is consistent with all players following the equilibrium strategy,

it is still true (despite whatever new information the players may have learned over that history) that

a player choosing to deviate unilaterally cannot gain in expectation, i.e. , following the prescribed

strategy remains in equilibrium. For some equilibrium concepts such as ε-Nash, everlastingness is a

stronger concept than the same equilibrium where the strategies are committed to up front [KN08].

However, when the underlying equilibrium is Nash, everlastingness does not make a difference.

That is, an everlasting Nash equilibrium is the same as a Nash equilibrium. Nash equilibrium cannot

fail to be an everlasting equilibrium. Consider a Nash equilibrium joint strategy
→
σ and a path related

to this joint strategy in the game tree. If this joint strategy is not an everlasting equilibrium, then

along the path, there is some node consistent with
→
σ= (

→
σ− j ,σ j) at which some player, say player j,

has an incentive to deviate and follow strategy σ′j . Thus, the strategy σ′j would dominate strategy

σ j , contradicting the assumption that the original
→
σ is Nash.

Linger Avoiding Assumption: In this chapter, we make the standard linger avoiding assumption.

This means that our mechanisms do not require players to continue after they learn the secret. With-

out this assumption, there are trivial but fragile mechanisms that are Nash equilibria. See [KN08]

for details.

3.6.3 Information-Theoretic Message Authentication Codes

A Message Authentication Code (MAC) scheme consists of three algorithms Key-Generation, Mac

and Verification. The key-generation algorithm generates a key as its name suggests. The Mac

algorithm takes a key and a message from a field as input and outputs a tag. The Verification

algorithm takes a key, a message and a tag as input, and verifies the tag. In our algorithm we use

the following information theoretic MAC scheme in field F with q elements. The Key-Generation

algorithm outputs c ∈ F and b ∈ F∗ = F \ {0} independently, uniformly at random. (b,c) is the

verification vector, to be given to the recipient of the message y. The Mac algorithm takes an

F-element message y and generates the tag, a = c− b · y, which will be given to the sender of

message y to send it along with the message. The recipient of the message y can run the Verification

algorithm to verify the tag by testing if c− b · y is equal to a.

Next, we discuss the properties of the above information theoretic MAC scheme. This scheme

makes it hard for a sender to successfully fool the intended recipient of a message by sending a

faked message. At the same time, it does not give the recipient of the message any information about

71

the message prior to receiving it. Such schemes have been used before (see e.g. [WC81, RBO89,

KN08]); we include the following proposition for completeness. See Lemma 1 of [RBO89] for the

proof of the following proposition.

Proposition 3.6.1. The MAC scheme described above has the following properties:

• The verification vector contains no information about the message, i.e. , the probability of

correctly guessing the message given the verification vector is the same as the unconditional

probability of guessing the message.

• The probability that a faked message will satisfy the verification function is 1
q−1 .

3.7 Algorithm for n-out-of-n Secret Sharing

We now describe our scalable mechanism for n-out-of-n secret sharing. First, in Section 3.7.1 and 3.7.2

we describe the communication tree and how to label it that is used by the dealer and players. An

informal description of the mechanism follows in Section 3.7.3. The formal descriptions of the

dealer’s and players’ protocols appear respectively as Algorithms 19 and 20.

3.7.1 The Communication Tree

Communication between the players in our protocol will be restricted to sending messages to their

neighbors in a communication tree. The communication tree is a complete binary tree with n leaves.

Recall that a complete binary tree is a binary tree in which all the internal nodes have exactly two

descendants, all the leaves are at the two deepest levels, and the leaves on the deepest level are as

far left as possible.

The communication tree is used to build iterated shares of a value. The dealer sends these

iterated shares to the players, so they can reconstruct the value later. The iterated shares players

receive are constructed by starting with the value to be reconstructed at the root and recursively

constructing 2-out-of-2 Shamir shares down the tree, all the way down to the leaves. The shares at

the leaves are the iterated shares the players receive. See Figure 3.1 and Algorithm 18 for details

of how the iterated shares are constructed. At reconstruction time, shares are sent up the tree. At

each internal node, a pair of shares received from the two children is reconstructed into a degree 1

polynomial which is used to obtain the value to be sent further up the tree. At the root, the original

symbol is reconstructed and transmitted down the tree. Note that the advantage of this scheme

over simply using n-out-of-n Shamir shares is that the size of the messages does not increase as the

72

2

4

1

5

3

1 2

4 5

hS11i1 hS11i2

S11 = hS1i1 S12 = hS1i2

S1 = hSi1

S21 = hS2i1 S22 = hS2i2

S2 = hSi2

S

share(1) hS11i1 share(2) hS11i2

share(3) S12 share(4) S21 share(5) S22

Figure 3.1: Construction of the iterated shares. We define 〈S〉1 as the first share and 〈S〉2 as the
second share generated from the 2-out-of-2 Shamir’s secret sharing scheme.

messages are transmitted up the tree. Lemma 3.7.1 describes that shares resulted from Algorithm 18

is an n-out-of-n secret sharing scheme.

Lemma 3.7.1. Let σ ∈ F be a value that is encoded into n iterated shares, σ1,. . . ,σn, by Algo-

rithm 18. Then, σ can be decoded from all n of the shares, but knowledge of fewer than n of the

shares reveals no information about σ.

Proof. Starting with the shares σ1,. . . ,σn at the leaves of the tree, we can recursively reconstruct

the values bottom-up using 2-out-of-2 Shamir’s secret sharing reconstruction algorithm. Since this

is exactly the reverse of the process used to create these shares, the value at the root will be σ.

To see why fewer than n shares give us no information about σ, observe that the values at

the two children of the root were created by 2-out-of-2 secret sharing algorithm. Both of these

values together determine the secret, but a single one of them does not reveal any information

about the secret. Thus the values at the children of the root individually contain no information

about the value of the root, and in order to decode the value at the root, we need both the values at

its children. But now, this reasoning applies recursively to all the internal nodes, relative to their

children. Suppose there is a leaf of the tree at which the share is missing. Then, the share of its

parent cannot be decoded because it is equally likely to be any element of the F. This propagates

up to its grandparent, and then its great-grandparent and so on all the way to the root, so that the

73

Protocol 18 RecursiveShares (node w , F-element y):

Parameters: V is a n-leaf complete binary tree global data structure; for node w, V (w) denotes the
location for the data associated with w.
Usage: Initially called with the root node and the value for which shares are to be created, this
function populates V with intermediate values. The values at the leaves are the shares for the players
at the corresponding leaves of the communication tree.

1. V (w)← y.

2. If w has children L(w) and R(w):

a) share y using 2-out-of-2 secret sharing. Let the shares be yL,yR

b) RecursiveShares(L(w),yL).

c) RecursiveShares(R(w),yR).

root cannot be decoded. Thus, if even one of the shares is missing, the remaining shares provide no

information about the value of σ. �

3.7.2 Labeling the Communication Tree: Short and Long Players

Recall that the short players are the players who are parents of the leaves in the communication

tree in the definitive round and all other players are long players. To make the definition easier, we

devise a specific labeling for the communication tree. We have exactly n labels and thus, the labels

may be repeated in the tree. The leaves will be labeled 1 to n from left to right. Next every internal

node which is a parent of two leaves is labeled with the odd label from among its two children.

Finally, the remaining internal nodes are labeled in order with even numbers, proceeding top to

bottom and left to right, starting with 2 at the root. If n is odd, then each even number appears at

some internal node. If n is even, we will place the last even number, n at the root, along with 2, so

the root will have two labels. Figure ?? illustrates the labeling scheme for five and six players. The

tree thus labeled has the following properties:

1. Every even label occurs at some internal node. If n is odd, there will be an odd label that

occurs only at a leaf and not at any internal node. This will not matter.

2. No even labeled internal node has an odd labeled node above it.

3. Every path from root to leaf has exactly one odd label (the same odd label may occur once or

twice on the path).

74

1 2

1 3

4

2

5

4 5

1 2 3 4

1 3

4

2,6

5

5 6

Figure 3.2: Communication trees for 5 players (left) and 6 players (right)

We generate a permutation of players and assign players to n labels based on his permutation

position. We use this permutation to assign players to the nodes of the tree. A player is assigned to

a node if they have the same labels. Thus, each player can be assigned to multiple nodes of the tree

and two players may assign to the root node of the tree. Based on this labeling, the short players are

ones in odd positions in the permutation in the definitive round and all the other players are long

players 1.

As discussed in Sections 3.7.4 and 3.8, it is critical in our analysis that the players themselves

do not know which are short or long until the definitive round. Further, each player must have as

a priori equal chance to be short or long. Thus, the permutation and the definitive round must be

random and unknown to the players. Therefore, in our protocol, the dealer first generates random

trees based on random permutations and chooses a definitive round randomly. Then, he assigns the

long and short players accordingly to the choice of the tree in the definitive round.

3.7.3 Our Algorithm

The dealer is active only once at the beginning of the game, and during this phase of the game the

players’ inputs are prepared.

The dealer independently samples two random variables X and Y from a geometric distribution

with parameter β (to be determined later). X will be the definitive iteration, or the round of the

game in which the true secret is revealed. Y will be the amount of padding on the long players’

input. We have two kinds of players: short players will receive enough input to last for X rounds of

the game while long players will receive enough input to last for X +Y rounds of the game.
1Note that the above numbered properties for odd and even labeled nodes in the tree are also correct for short and

long players in the definitive round.

75

Protocol 19 Dealer’s Protocol

Parameters: F is a field of size q > n (to represent messages in the algorithm) n players with
distinct identifiers 1,2,. . .n ∈ F. β ∈ (0,1) is geometric distribution parameter. Complete binary tree
with n leaves, labeled as described in Section 3.7.1 known to everyone.

1. Choose X,Y, independently from a geometric distribution with parameter β and let L = X +Y .
Round X is the definitive one. Short players will receive full input for X − 1 rounds and
partial input for round X . Long players will receive full input for L−1 rounds and partial
input for round L. For convenience we will create all the inputs for L rounds, and truncate
them appropriately before sending them to the players.

2. for round r = 1 set m1 = 0

3. For each round r between 1 and L:

a) If r < L, then choose a random permutation πr ∈ Sn. Else, randomly choose a permuta-
tion πL which is random subject to the constraint that all the long players (determined
by πX) are assigned to odd labels under πL.

b) Preparing labeling information:
For all players j

i. Set player j’s label to πr (j). player j will be assigned to all nodes marked πr (j) in
the tree.

ii. Let νr (j) be the set of all neighbors of nodes labeled πr (j) in the tree. πr (j) has a
constant number of neighbors.

iii. Let π−1
r (νr (j)) be the tuple of identities of all the players assigned to a node in set

νr (j). Thus, it is the tuple of identities of all neighbors of j.

iv. Generate the labeling information tuple, (πr (j),π−1
r (νr (j))).

v. Mask the labeling information tuple,
P j

r = (πr (j),π−1
r (νr (j))) + mr .

c) Preparing shares of the secret:

i. If r = X , then sr ← true secret.
Else, sr ← random element of S

ii. Create shares of sr by calling RecursiveShares (root,sr).

d) Preparing mask shares for the next round:

i. Choose a random mask mr+1 ∈ F
c.

ii. Create shares of mr+1 by calling RecursiveShares (root,mr+1).

e) Create tags and verification functions for all the messages to be sent in round r

f) For each player j, j’s (full) input I j
r for round r consists of P j

r , shares of mr+1 and
sr corresponding to node πr (j), tags to authenticate all messages to be sent by j and
verification vectors for all the messages to be received by j. Partial input Ĩ j

r consists of
all of the above except the authentication tags for sending messages to your children (in
the down-stage).

4. Identify the short players as those players j who are at odd numbered nodes in the definitive
iteration, i.e. , πX (j) is odd.

5. For each short player j, send j the list I j
1 ,. . . I

j
X−1, Ĩ

j
X .

6. For each long player j, send j the list I j
1 ,. . . I

j
L−1, Ĩ

j
L.

76

Protocol 20 Protocol for Player j

Parameters: S=0; M=0
If at any time you receive spurious messages (messages not expected under the protocol), ignore
them.
On round r:

Up-Stage:

1. mr = M

2. Subtract mr from P j
r to find out your position in the tree and the identities of your

neighbors for round r .

3. (as a player at a leaf) Send your shares of sr and mr+1 along with their tags to your
parent in the tree.

4. (as a player at an internal node)

a) Receive (intermediate) shares of sr and mr+1 and tags from left and right chidren.
Use the appropriate verification vectors to check that correct messages have been
sent. If a fault is detected (missing or incorrect message) output S and quit.

b) For each of sr and mr+1: interpolate them from their shares. This is your share.

c) If you are not at the root, send the above reconstructed shares of sr and mr+1 to
your parent(s) along with the appropriate tags. If you are at the root, these shares
are the actual values of sr and mr+1.

Down-Stage:

1. (as a player at the root) Set S = sr and M = mr+1 and send these values along with
authentification tags to your left and right children.

2. (as a player at a non-root node)

a) Receive sr and mr+1 and tags from your parent and use verificaton vectors to check
them. If fault detected, output S and quit.

b) Set S = sr and M = mr+1.

3. (as a player at a non-root internal node) Send sr and mr+1 to your children along with
the appropriate tags. If you are a short player and have no authentication tags, output sr
and quit.

r ← r + 1

77

In order not to reveal which players are the short players, the players will be reassigned to new

random positions in the tree in each round. This is accomplished by choosing a random permutation

of the players and label them for each round. Again recall that the short players are the ones who

are at odd labeled nodes in the definitive round.

Since the players must be at different nodes in the tree each round, their input must contain this

information. At the same time, the positions of the players for all the rounds cannot be revealed

up front, since this may give away information about who the short players are. A naive idea to

solve this problem is, in each round, to distribute shares of the permutation for the next round.

Then, during each round, the players could reconstruct the permutation from the shares and use it to

reposition for the next round. Unfortunately, there is a problem with this approach. To represent

permutations of n symbols, we need a field of size at least n!. To transmit elements of such a field,

players would need to send messages of length log(n!) ∼ n log n. This is unacceptable if we desire

scalability.

To get around this problem, we note that it is not really necessary for players to know the entire

permutation. Each player only needs to know its own position and the identities of its neighbors.

We only need a field of size order n to encode this, and so, symbols of this field may be transmitted

with messages of length O(log n). Since it is dificult via share reconstruction to transmit different

messages to the leaves of the tree, we simply provide each player with a list of positional data for the

entire game. But in order that players do not know their positional data for a round before actually

getting to that round, this data is masked by adding in a random element of the field. Positional data

for the first round is sent unmasked. The players also receive iterated shares of the masks for the

next round. Thus, in each round, players reconstruct a mask, and use it to unmask the positional

data and reposition themselves for the next round.

For each round, the full input consists of the following:

• iterated shares of a purported secret (the true secret in the definitive round);

• masked versions of positional data for the current round (position and identities of neighbors

in the tree);

• shares of the mask for the next round of positional data;

• tags for all the messages to be sent; and

• verification vectors for all the messages to be received.

As mentioned earlier, round X is the definitive round, when the encoded symbol is the true

secret. Short players receive full input for every round prior to this round. For round X they only

78

receive partial input. Long players receive input for X +Y rounds. However, they, too receive only

partial input for their last block of input. Otherwise, a player would be able to distinguish whether

or not he is a short player by looking at his last block of input. Here, partial input consists of all of

the pieces of data from the full input, except the tags to send the decoded message to your children

in the down stage of the round.

Since in the definitive round the short players (with odd labels) are in the level above the leaves,

and all the long players are at internal nodes higher than that in the tree, the long players have

learned the secret before the short players, although since they have input for more rounds of the

game, they do not know (i.e. , cannot guess) that it is the definitive round, and that the secret they

have learned is in fact the true secret. Thus, they send the secret down the tree, and eventually it

gets to the short players. Thus, the short players learn the secret as well. Since they have no more

input they know that the game is over and the secret is the true one. However, since they do not

have any more authentication data, they cannot gain by remaining in the game and trying to fool the

others into thinking that the secret has not yet been reconstructed. Finally, when the long players do

not receive a message at the end of the definitive iteration, they too realize the game has ended and

output the correct secret.

3.7.4 Discussion

A careful reader may ask why it is necessary to permute the players. First, we note that if we never

permute the players, then the short and long players know who they are at the beginning of the

game. In the game, there is an event with small probability that the short players have an array of

size exactly one less than the long players (e.g. short players have array of size one and long players

have array of size two). If there are only two rounds remaining in the list of long player, he learns

the one to last (the current) round is the definitive round since Y is at least 1. It is crucial for our

analysis that long players do not know if the current round is the definitive round. Since, in this

case, the long player at the root node can learn the secret without revealing it to any other players.

What if the players are only permuted in the definitive round? Then, when the players see that a

permutation occurs, they know they are in the definitive round. Thus, again the long player(s) at the

root node will be able to learn the secret without allowing other players to learn it. Hence, we need

more than one random permutation during the algorithm. For simplicity of algorithmic presentation

and analysis, we permute the players at every round.

A careful reader might wonder why we do not first construct a new scalable protocol for rational

broadcast and then use it in the existing protocols for RSS. They are two main reasons. First of all,

we note that composing two mechanisms that are Nash equilibria does not necessarily give a new

79

mechanism that is a Nash equilibrium. In general, composability of mechanisms and generating a

new one with specific properties is not an easy problem. Second, it seems difficult to come up a

mechanism that can broadcast in a scalable manner, because of the linger avoiding assumption we

make. In particular, it seems that all players must participate in the broadcast and learn the result of

the broadcast at the same time. We achieve scalability by never performing broadcast.

3.8 Analysis of Algorithm for All Players Present

In this section, we show that the secret sharing scheme we have described is in fact a scalable

n-out-of-n secret sharing scheme, and that it is a Nash equilibrium in which all the players learn the

secret.

Recall that in Lemma 3.7.1 we show our rescursive scheme for encoding a value into n iterated

shares (Algorithm 18) is an n-out-of-n scheme.

We will focus our attention on showing that it is a Nash equilibrium for all the players to follow

our protocol. Consider player j and suppose that all other players are committed to following the

protocol. The next lemma gives a necessary criterion for j to have an incentive to cheat.

Lemma 3.8.1. If all other players are following the protocol, player j prefers to also follow the

protocol, unless his probability of successfully cheating is at least
Uj−U−j
U+

j −U−j
.

Proof. Suppose j is considering deviating from the protocol. We will consider the deviation to

be successful if either j learns the secret right away, with or without being caught, or he does

not get caught and is therefore still in a position to learn it later. The deviation will have failed

if it is detected, causing the game to end without j learning the secret. Let p j be the probability

that the deviation succeeds. The maximum utility that j can get is U+
j . With probability 1− p j ,

the game ends without j learning the secret, in which case the maximum payoff possible is U−j .

Thus, a player’s expected utility from cheating while everyone else follows the protocol is at most

p jU+
j + (1− p j)U−j .

On the other hand, if everyone else follows the protocol, then following the protocol guarantees

a utility of at least Uj . Thus, the protocol will be a Nash equilibrium if Uj > p jU+
j + (1− p j)U−j . By

rearranging the terms, we have a Nash equilibrium if

p j <
Uj −U−j
U+

j −U−j
.

�

80

When and how might a player cheat? We note that since players are not required to commit to

their strategy before starting the game, and since the progression of the game reveals information, a

player may as well defer his decision to cheat in a future round until that future round. Thus, at any

given time, the decision facing the player is whether to cheat in the current round. In order to weigh

the benefits of such a decision, the player needs an estimate of whether the current round is likely to

be the definitive one.

As remarked earlier, the purpose of having short and long players is to create uncertainty about

when the definitive round of the game is, until it is too late to gain from this information.

The players know that X is chosen from a geometric distribution with parameter β. Thus, a

priori the probability that X takes on any particular value is at most β, the most likely being X = 1,

whose probability is exactly β. As the game progresses, players receive partial information about

the value of X ; as soon as they receive their inputs they can eliminate all values of X larger than

their input length, if the game did not end on the first round, they learn that X , 1 and so on. Clearly,

when a player reaches his last block of input, he knows that the current round is definitive. The next

lemma shows that until that stage, a player’s estimate that the current round is definitive remains

small.

Lemma 3.8.2. Let j be a player who initially received input for k > 1 rounds of the game, and

let 1 ≤ r < k be the current round. Then, j’s estimate of the probability that the current round is

definitive, conditioned on all the information he has learned, is at most 2β.

Proof. Let L j denote the random variable which is the initial input length of player j. Then, we

know that

L j =

X if j is a short player,

X +Y if j is a long player.
(3.2)

Also, let L j denote the event that j is a long player and LC
j the event that j is a short player. By

hypothesis, the current round is r ≥ 1, and player j received an initial input of length k > r . What

information does player j know in round r?

• Since his initial input was of length k he knows that L j = k and X ≤ k and moreover, that

X = k if and only if LC
j .

• Since the game has entered round r he knows that X ≥ r .

• He knows his position πr (j) and the identities of his neighbors in round r .

• He also has learned sr , mr+1 and using the latter to unmask his positional data, he knows

πr+1(j) and the identities of his neighbors in round r + 1. Technically, he learns these just

81

prior to his turn in the downstage in round r, but this is fine, as we will argue later that no

player ever has any reason to cheat during the upstage of a round.

We note that knowing sr does not benefit player j in any way as far as estimating the probability

that X = r goes, since sr is equally likely to be any element of S, independently of X . Similarly,

knowing the identities of his neighbors does not affect his estimate, since all other players are

equally likely to be his neighbors independently of X .

On the other hand, knowing πr (j) and πr+i (j) does affect the estimate. By construction:

• In the definitive iteration, short players have odd labels, and long players have even labels;

and

• Each player has an odd label in his last round of input.

Thus, if πr (j) is odd, then player j knows that the current round is not definitive, since if X = r,

then k > r implies that j is a long player and should have an even label. In particular, conditioned

on everything he knows, Pr(X = r) = 0. Since 2β > 0 the lemma is proved in this case.

For the remainder of the proof, we will assume that πr (j) is even and denote this event Er .

Consider the case πr+1(j). If k = r + 1, then we know that πr+1(j) is odd by construction and

knowing this contains no additional information over knowing L j = k. On the other hand, when

k > r +1, if πr+1(j) is odd, then player j knows that X cannot be r +1 and this affects the probability

that X = r .

Let b ∈ {0,1} be the observed parity of πr+1(j) and let Eb
r+1 denote the event that the parity of

πr+1(j) is b. Note that if k = r + 1 we must have b = 1.

Let Pj,r be player j’s estimate that the current round, r , is definitive, conditioned on everything

he knows. Then,

Pj,r

= Pr(X = r | L j = k ∧ r ≤ X ≤ k ∧ Er ∧ E
b
r+1)

=
Pr(X = r ∧ L j = k ∧ Er ∧ E

b
r+1)

Pr(L j = k ∧ t ≤ X ≤ k ∧ Er ∧ E
b
r+1)

≤
Pr(X = r ∧ L j = k ∧ Er ∧ E

b
r+1)

Pr(L j = k ∧ X ∈ {r,k} ∧ Er ∧ E
b
r+1)

,

where the inequality follows from the fact that the event X ∈ {r,k} is a subset of the event r ≤ X ≤ k.

If the current round is definitive i.e. , X = r , then j is not a short player, and L j = X +Y . So the

event X = r ∧ L j = k ∧ Er ∧ E
b
r+1 is the same as the event L j ∧ X = r ∧ Y = k −r ∧ Eb

r+1. Note

that Er is implied by L j ∧ X = r and can therefore be dropped.

82

For the denominator, the event L j = k ∧ X ∈ {r,k} ∧ Er ∧ E
b
r+1 can be split into the union of

disjoint events LC
j ∧ X = k ∧ Er ∧ E

b
r+1 and L j ∧ X = r ∧ Y = k−r ∧ Eb

r+1. The latter summand

is the same as the numerator, and loses the Er term for the same reason. Making these substitutions

in the above expression, we get

Pj,r ≤ A/B,

where

A = Pr(L j ∧ X = r ∧ Y = k − r ∧ Eb
r+1)

and

B = Pr(LC
j ∧ X = k ∧ Er ∧ E

b
r+1)

+ Pr(L j ∧ X = t ∧ Y = k − t ∧ Eb
r+1).

The random variables X , Y and the indicator that j is a long player are independent. Thus the

numerator of the above expression becomes

Pr(L j ∧ X = r ∧ Y = k − r ∧ Eb
r+1)

=Pr(Eb
r+1 |L j ∧ X = r ∧ Y = k − r)×

Pr(L j) Pr(X = r) Pr(Y = k − r)

=Pr(Eb
r+1 |L j ∧ X = r ∧ Y = k − r)×

bn/2c
n

(1− β)r−1 β(1− β)k−r−1 β

=Pr(Eb
r+1 |L j ∧ X = r ∧ Y = k − r)×

bn/2c
n

(1− β)k−2 β2.

Similarly we tackle the first term in the denominator. Since X and all the πi are independent and

k , r , then πr and πX are independent conditioned on X = k. It follows that the events LC
j = πX (j)

83

is odd; Er = πr (j) is even; and X = r are independent. Thus, we have the following.

Pr(LC
j ∧ X = k ∧ Er ∧ E

b
r+1)

=Pr(Eb
r+1 |L

C
j ∧ X = k ∧ Er)×

Pr(LC
j ∧ X = k ∧ Er)

=Pr(Eb
r+1 |L

C
j ∧ X = k ∧ Er)×

Pr(LC
j) Pr(Er) Pr(X = k)

=Pr(Eb
r+1 |L

C
j ∧ X = k ∧ Er)×

dn/2e bn/2c
n2 (1− β)k−1 β

≥Pr(Eb
r+1 |L

C
j ∧ X = k ∧ Er)×

bn/2c
2n

(1− β)k−1 β.

If k > r + 1 then πX and πr+1 are independent conditioned on X being either r or k, and

hence, the events Eb
r+1 and L j ∧ X = r ∧ Y = k − r are independent, as are the events Eb

r+1 and

LC
j ∧ X = k ∧ Er . It follows that Pr(Eb

r+1 |L j ∧ X = r ∧ Y = k−r) and Pr(Eb
r+1 |L

C
j ∧ X = k ∧ Er)

both equal Pr(Eb
r+1). On the other hand if k = r + 1 then b = 1 and Eb

r+1 is implied in both cases

Thus, Pr(Eb
r+1 |L j ∧ X = r ∧ Y = k − r) and Pr(Eb

r+1 |L
C
j ∧ X = k ∧ Er) are both 1. Either way,

they are equal, and since their common value occurs in the numerator as well as in both terms in the

denominator, it simply cancels out.

Putting everything together we see that

Pj,r ≤

bn/2c
n (1− β)k−2 β2

bn/2c
2n (1− β)k−1 β+

bn/2c
n (1− β)k−2 β2

=
β

1
2 (1− β) + β

≤ 2β.

�

We remark that although in the above proof we have bounded player j’s estimate during the

down-stage, a nearly identical proof shows the same bound for the up-stage (when πr+1(j) is

unknown). We are now ready to prove the main theorem.

of Theorem 3.3.1. We will begin by showing that the protocol is a Nash equlibrium in which all the

players learn the secret.

84

Suppose all the players follow the protocol. In every round, during the up-stage, players send

their shares up toward the root where they are decoded. During the down-stage, the reconstructed

secret and mask are sent back toward the leaves. If the odd players in the round do not drop out at

the end of the round, then the game continues into the next round. In the definitive round, the real

secret is reconstructed at the root and all the even labeled players, who are long players learn it first.

Once it gets to the short players with odd labels, they drop out of the game since they have no tags to

send any more messages. This signals the end of the game to the long players who then realize that

the current reconstructed secret is the true one. Thus if all the players follow the protocol, everyone

learns the secret.

Suppose all players other than j are following the protocol. We want to show that player j

prefers following the protocol over deviating.

At the beginning of the game, each player has set their current guess for the secret to 0. If no

cheating occurred before the current round r then during round r −1 all the players set their current

guess to sr−1. Thus, at the beginning of round r, all players have the same guess for the secret.

(Round r −1 has been eliminated as the definitive one, but sr−1 still has probability 1/|S| of being

the true secret). Moreover, since by Lemma 3.7.1 partial information about the shares reveals no

information about the symbol they encode, throughout the up-stage player j has no better guess than

sr−1 for the secret. SinceU < |S|, it is strictly better for j not to leave the game in the up-stage. If j

sends incorrect messages in the up-stage, then even if he is not caught(which results in not learning

the secret), this deviation will cause an incorrect value to be decoded instead of sr . This results in j

not learning the secret if r happened to be the definitive round. Thus, j has no incentive to deviate

in the up-stage.

Now, what about the down-stage? If j is on his last round of input, then he is a short player, and

knows that the current round is definitive. At the same time, this means that he is an odd-labeled

player and by the construction of the communication tree he cannot prevent anyone from learning

the secret. Moreover, even if he successfully fakes a tag in order to convince the unique long player

below him that the game has not ended, that player will detect in the next round that all other players

have left the game and will therefore still output the correct secret. Thus this deviation does not

change the outcome of the game, namely that all players learn the secret. It follows that j does not

gain anything by this deviation (although he also does not lose anything by it). Effectively, if j is a

short player on his last round of input, it is too late for him to improve his payoff by deviating.

If j is not on his last round of the input and is at an odd labeled node, then, as remarked in

the proof of Lemma 3.8.2, he knows the current round is not definitive. So, cheating would be

equivalent to randomly guessing the secret that is correct with probability only 1/|S |. This is worse

85

than following the protocol by Equation (3.1).

Now, suppose that the current round, r, is not j’s last round of the input and j is at an even

labeled node. Note that any spurious messages sent by player j to players that are not expecting

them, will be ignored. Also, any action involving not sending a message that is expected will be

detected immediately, only by the involved players at first, but the knowledge will quickly propagate

to all the players, before the end of the up-stage of the next round. Since detection of deviation

causes other players to quit immediately, effectively such actions amount to player j leaving the

game. Thus, the possible deviations we need to analyze for player j are:

• Leave the game with or without sending fake messages first, and;

• Send fake messages to one or both children and hope to stay in the game by not being caught.

Let Pj,r be j’s estimate of the probability that the current round is definitive. Then, by

Lemma 3.8.2, Pj,r ≤ 2β.

If player j leaves the game and outputs the value sr then the probability that he has output the

right value is Pj,r + (1− Pj,r)/|S|, and since he has left the game, he has no later opportunity to

improve that probability. By Lemma 3.8.1, in order to discourage this deviation it is sufficient if

Pj,r +
(1−Pj,r)
|S|

≤
Uj −U−j
U+

j −U−j
. (3.3)

Now consider the other kind of deviation. Suppose instead of sending sr to his descendents,

player j sends a fake value to one or both of them. Let α be the probability that he is not caught. By

Proposition 3.6.1 we know that α = 1
q−1 if he sends a fake message to only one of his children, and,

since the two verification functions are chosen independently by the dealer, α = 1
(q−1)2 if he fakes

both messages. If he is not caught, and if the current round is definitive, then player j has learned

the true secret and has prevented some of his descendants from learning it. If the current round

was not definitive and his deviation was not detected, the game continues and since the values si

are all independent, it does not affect the next round.1 This means that player j can either revert to

following the protocol and guarantee learning the secret along with everyone else, or he may find

further opportunities to cheat.

On the other hand, if the faked message is detected, which happens with probability 1−α, then

the game ends right away and player j outputs sr . In this case, there is still a Pj,r chance that the

current round was definitive and an additional (1−Pj,r)/|S| chance that the value sr was correct
1This is why player j does not try to fake the mask mr+1 - a successfully transmitted incorrect mr+1 will wreak

havoc in the next round, since some players will be talking to the wrong players.

86

despite the current round not having been definitive. So the probability that the deviation succeeds

is

α+ (1−α)
(
Pj,r +

(1−Pj,r)
|S|

)
.

As this quantity is bigger when α = 1
q−1 , faking only one message dominates faking both messages.

Thus, again by Lemma 3.8.1, to discourage this deviation, it is sufficient if

1
q−1

+
q−2
q−1

(
Pj,r +

(1−Pj,r)
|S|

)
≤

Uj −U−j
U+

j −U−j
. (3.4)

Moreover, note that (3.4) implies (3.3). Thus for a Nash equilibrium, it is sufficient to show (3.4).

For the remainder of the proof, we are going to assume that n is sufficiently large, specifically

that n ≥ 2U|S|
|S|−U

. We will discuss the modifications required when 3 ≤ n < 2U|S|
|S|−U

in Section 3.8.1.1.

We have so far not specified β. We do this now. Let

β =
|S| −U

4U|S|
.

Then, 1/β = O(1) so that the expected number of rounds in the game is constant.

To show (3.4), recall that q > n, so that q−1 ≥ n. We have

1
q−1

+
q−2
q−1

(
Pj,r +

(1−Pj,r)
|S|

)
<

1
n

+

(
Pj,r +

(1−Pj,r)
|S|

)
=

1
n

+
|S| −1
|S|

Pj,r +
1
|S|

≤
|S| −U

2U|S|
+ 2β+

1
|S|

≤
|S| −U

2U|S|
+ 2
|S| −U

4U|S|
+

1
|S|

=
|S| −U

U|S|
+

1
|S|

=
1
U

as desired.

Finally, we analyze the resource costs of our protocol. The communication tree has 2n−1 nodes.

In each round, each player is mapped to one leaf and one internal node. Players only communicate

with their neighbors in the tree. So on each round, during the up-stage each player sends up to three

messages: one to his parent when he is a leaf; one to his parent when he is a non-root internal node;

87

and if he is a child of the root and n is even, he has to send an additional message because there are

two players at the root.

During the down stage, each player sends two messages, to his two children. Thus, each player

sends at most five messages per round. Each message consists of four elements of F (shares of

sr , mr+1 and two tags) each of which is represented as O(log n), since n < q ≤ 2n. Thus, each

player send O(log n) bits per round. Since the expected number of rounds is 1/β, which is constant,

each player sends only O(log n) bits during the course of the game. Finally, since the tree has

depth O(log n), the number of rounds is constant (in expectation). Note that the communication is

synchronous, which follows that the expected latency is O(log n). �

3.8.1 Some Remarks

3.8.1.1 The Case of a Small Number of Players

When the number of players is a constant greater than 2, then scalability is not an issue, and one

might hope to simply use the algorithm of Kol and Naor [KN08] by simulating non-simultaneous

broadcast channels with secure private channels. Unfortunately their algorithm only provides an

ε-Nash equilibrium, since the unique short player has a small chance of successfully pretending the

game has not ended.

In our algorithm, dn/2e players are short players. In particular, even for n = 3, there are at least

two short players, and none of the short players can increase their expected payoff by cheating alone.

Thus, we obtain a Nash equilibrium, provided that we can prove inequality (3.4). The above proof

used the fact that n was at least 2U|S|
|S|−U

, so we need a separate argument.

However, scalability is immediate when n is constant. Thus, we have more leeway to choose a

larger field to work with.1 So, we can work in a prime field of size q where

max{|S|,
2U|S|
|S| −U

} < q ≤ 2max{|S|,
2U|S|
|S| −U

}

and the proof of (3.4) goes through as before, giving us a Nash equilibrium.

3.8.1.2 Nash Equilibria vs. Strict Nash Equilibria

An n-tuple of strategies is called a strict Nash equilibrium if when all other players are following

the prescribed strategy, a player unilaterally deviating achieves a strictly worse expected payoff than

he would by following the equilibrium strategy.
1The upper bound of O(n) on the field size came from the desire to keep 4log q, which is the size of an individual

message, small.

88

Our algorithm fails to be a strict Nash equilibrium, for the following reasons:

• Any player may, at any time, send spurious messages that are not part of the protocol, to

players that are not his neighbors in the tree. Such messages will be ignored by their recipients,

who are following the protocol.

• At the end of the definitive round, a short player may try to fake a tag and send a message to

the long player below him. This may go undetected with some small probability, but as noted

in the proof, even in this case, it cannot fool that long player into outputting the wrong secret.

Our proof shows that our algorithm does have the property that any player deviating from the

protocol in one of the above ways does not increase his payoff, and moreover does not affect any

other player’s payoff either. In other words, if a player deviating unilaterally from our protocol, does

so in a manner that changes some other player’s payoff, then he strictly reduces his own expected

payoff. In this weaker sense, the equilibrium is strict.

3.8.1.3 A Note on Backwards Induction

The backwards induction problem arises when a multi-round protocol has a last round number that

is known to all players. In particular, if it is globally known that the last round of the protocol is

`, then on the `-th round, there is no longer any fear or reprisal to persuade a player to follow the

protocol. But then if no player follows the protocol in the `-th round, then in the (`−1)-th round,

there is no reason for any player to follow the protocol. This same logic continues backwards to the

very first round.

As in [KN08], we protect against backwards induction by having both long and short players.

As the above analysis shows, we can ensure that the probability of making a correct guess as to

when the protocol ends is too small to enable profitable cheating for any player. Thus, even when a

player gets to the second to the last element in all his lists, he can not be very sure that the protocol

will end in the next round. All players are aware of these probabilities at the beginning of the

protocol, and thus each player knows that no other player will be able to accurately guess when the

protocol ends.

The backwards induction problem may occur with protocols that make cryptographic assump-

tions. If there is a round, `, in which enough time has passed, so that even a computationally

bounded player can break the cryptography, then it is globally known that the protocol will end

at round `. Thus, even though ` may be far off in the future, by backwards induction, there is no

incentive for a player to follow the protocol even at the beginning. We note that in out t-out-of-n

89

protocol, there is no such round since the keys are refreshed every round. Moreover, the information

about the key for each round is shared until that round and nobody knows it beforehand.

3.9 Algorithm for t-out-of-n Secret Sharing

In this section, we discuss t-out-of-n secret sharing where t < n. Here, we want any subset of t or

more of the players to be able to reconstruct the secret. However, fewer than t players should not be

able to reconstruct the secret on their own.

We will assume, as in previous work, that the set of active players is known to all the active

players, before the start of the players’ protocol. However, this set is not known to the dealer at the

time of share creation.

Our algorithm will be a hybrid of the Kol and Noar [KN08] scheme for t out of n players and

our scheme described above for n out of n players. As in [KN08], we now have a single short player

and the secret shares now include an indicator bit to enable any subset of t players to reconstruct

the secret, even if that subset does not contain the short player. The existence of the short player is

necessary to avoid backwards induction. See the work of Kol and Naor [KN08] for details.

Since the algorithm is a variant of the n-out-of-n scheme, for conciseness, we briefly describe

the protocol focusing only on the places where the two algorithms differ. We first describe sharing

and reconstruction (Sections 3.9.1 and 3.9.2) without authentication, and then show how to modify

to ensure authentication in Section 3.9.3.

3.9.1 Creating the Shares

We assume each player has an id that is known to all other players. Moreover, each player initially

has a label from 2 to n + 1 based on their sorted ids. These labels may change during the course of

the protocol. In particular, in each round, exactly one player will have its label change to 1, and

the player player previously labeled 1 will revert to its initial label. At the start, the dealer selects a

random player to be labeled 1 in the first round and sends its id to all players.

To ensure reconstructability, in addition to the secret, the shares will need to encode some more

information. Specifically, they will also encode an indicator bit to identify the definitive round, and

they will also encode the label of the player that will be labeled 1 for the following round. For a

given round r, we let sr be the potential secret, br be the indicator bit, and `r be the label of the

player who will have label 1 in round r + 1.

90

The dealer samples values X and Y independently from a geometric distribution with parameter

β and lets L = X +Y . The game will have L rounds, and round X will be the definitive one.

The player labeled 1 in the definitive round is the short player.

For each round 1 ≤ r ≤ L, the dealer proceeds as follows. The value `r is set to a number

selected uniformly at random between 2 and n + 1. Then, if r = X , sr is set to be the true secret,

br ← 1. Otherwise if r , X , sr is set to a random value in the set S and br ← 0.

The dealer prepares the players’ inputs as follows. For rounds, 1 ≤ r ≤ L, the dealer uses

Shamir’s (t,n)-secret sharing to generate n different shares of the tuple
〈
r,sr ,br ,`r

〉
and also the

hash and tags for each message as described in Section 3.9.3. For rounds 1 ≤ r ≤ X , the dealer

sends out shares to all the players. For rounds X + 1 ≤ r ≤ L, the dealer sends out shares to all

players except the short player.

3.9.2 Reconstruction phase

For the reconstruction phase, we will make use of the following property of the t-out-of-n Shamir’s

secret sharing: For every set of shares s1,. . . ,st ′ of cardinality t′ ≥ t, there exist coefficients

(Lagrange coefficients) λ1,. . . ,λt ′, which depend only on the identities of the active players, such

that s =
∑t ′

i λisi. See [Sha79, Knu97] for details.

Let T be the group of t players who are active, and let pi be the i-th player in T in the sorted

order based on their labels. Every active player knows the id and label of all players in T , and the id

of the player labeled 1 for the first round. In each round, players generate a complete binary tree

with t leaves and assign player pi to the i-th leaf node, going from left to right. For all 1 < i ≤ t,

player pi is also assigned to an internal node of the tree from root node, going from top to bottom

and from left to right.

Each player i at a leaf node multiplies his shares of
〈
r,sr ,br ,`r

〉
by λi and sends the result to his

parent in the tree. Players at internal nodes of the tree add the received shares together and send the

result up. The root node learns the tuple
〈
r,sr ,br ,`r

〉
, and sends it down in the tree. Subsequently,

each player sends the result down until everybody learns it. If a player does not receive the correct

messages from his children or parent, or if he receives a message with indicator 1, he outputs the

last secret that was associated with an indicator 0.

3.9.3 MAC Scheme for t-out-of-n

In the t-out-of-n setting, the set of active players, and hence, the position of the players in the

reconstruction tree are unknown to the dealer. Thus, unlike the n-out-of-n case, the dealer cannot

91

generate a tag for the sender and a unique matching verification vector for the potential receiver of

the message. Instead, the dealer uses the fact that the same message is propagated in the tree for the

down stage. Thus, he uses digital signature to sign messages before sharing them.

Moreover, as in the n-out-of-n case, no player has an incentive to cheat in the up stage of a

round, since that results in nobody recovering the secret, including, in particular, the cheater. Thus

there is no need to have a verification scheme for the messages in the up stage.

We now formally describe this scheme. For each round r of the protocol, the dealer generates

a pair of keys for a digital signature scheme, a secret key SKr and a public key PKr . The public

key PK1 is sent to all the players as the first part of their input share. For round r ≥ 1, after

constructing the tuple
〈
r,sr ,br ,`r

〉
, the dealer appends it with the private key PKr+1. He then signs

the resulting message
〈
r,sr ,br ,`r ,PKr+1

〉
using his private key SKr , and then creates Shamir shares

of the resulting signed message. These shares are then sent to the players. During the reconstruction

phase, the player at the root node recovers the signed tuple
〈
r,sr ,br ,`r ,PKr+1

〉
and uses the dealer’s

public key PKr to verify that it was indeed generated by the dealer, and not forged. If it passes

the verification, he forwards the signed tuple to his children. Otherwise, he quits the game and

outputs the last secret that was associated with an indicator zero. This process of checking and

forwarding is repeated by all internal nodes in the tree until all the players have learned the tuple〈
r,sr ,br ,`r ,PKr+1

〉
for round r . Thus, each key pair is used to sign only one message. Based on the

security of digital signatures, the probability that a player who does not know the dealer’s secret key,

can successfully forge a message and make it look like it came from the dealer is negligible. Thus

this scheme gives us cryptographic security for our algorithm. We note that, unlike in the n-out-of-n

case, we do not achieve information theoretic security.

3.9.4 Analysis

In this section, we will prove Theorem 3.3.2.

Lemma 3.9.1. Let j be any player who initially received input for k > 1 rounds of the game, and

let r be the current round 1 ≤ r < k such that r , X + 1. Then, j’s estimate of the probability that

round r is definitive, conditioned on all the information he has learned, is at most 2β.

Proof. The proof is similar to the proof of the n-out-of-n case. Let L j denote the random variable

which is the initial input length of player j. Then, we know that

L j =

X if j is a short player,

X +Y if j is a long player.
(3.5)

92

Also, let L j denote the event that j is a long player and LC
j the event that j is a short player. By

hypothesis, the current round is r ≥ 1, and player j received an initial input of length k > r . What

information does player j know in round r? He knows the following.

• Since his initial input was of length k he knows that L j = k and X ≤ k and moreover, that

X = k if and only if LC
j .

• Since the game has entered round r he knows that X ≥ r −1.

• He knows his position and the identities of his neighbors in the tree.

• He also has learned sr−1, sr , br−1, br . Technically, he learns these just prior to his turn in the

downstage in round r , but this is fine, as we argued before, no player ever has any reason to

cheat during the upstage of a round.

We note that knowing sr−1, sr , does not benefit player j in any way as far as estimating the probability

that X = r goes, since both sr−1, sr , are equally likely to be any element of S, independently of X .

Similarly, knowing the identities of his neighbors does not affect his estimate, since positions of the

players are independent of X .

On the other hand, knowing his label does not affect player j’s chance of successful cheating.

By construction in the definitive round, the short player has label 1, and long players have other

labels larger than 1. However, in the definitive round, the short player already reached its last input,

and he knows that this round is the definitive round (without the help of knowing its label).

Moreover, each player thinks that he can have label 1 in his last round of inputs and long players

never play until the last round to figure out it is not the case for them. Thus, if the label is 1 but

k > r , then player j knows that the current round is not definitive, since if X = r , then k > r implies

that j is a long player and should not have label 1 in definitive round. In particular, conditioned on

everything he knows, Pr(X = r) = 0. Since 2β > 0 the lemma is proved in this case.

Similarly, knowing that the values of br−1, and br are both zero (since r , X + 1) also does not

affect the estimate since that just indicates that the game has not reached the definitive round yet.

The remainder of the proof is exactly like the proof for n-out-of-n case (see Lemma 3.8.2) and we

do not repeat it here. �

Now we can complete the proof for Theorem 3.3.2, which we recall here.

Theorem 3.9.1. Let n ≥ 3 and t ≤ n. Assuming the players are computationally bounded to

polynomial-time algorithms, there exists a protocol for rational t-out-of-n secret sharing with the

following properties.

93

• The protocol is an everlasting ε-Nash equilibrium in which all active players learn the secret,

where ε can be any arbitrary positive value.

• In expectation, the protocol requires each player to send O(log n) bits, and has latency

O(log n).

• The protocol is not robust to coalition of any size.

Proof. In this proof, we use case analysis for different values of r (r < X, r = X and r = X + 1) and

different kinds of players (short and long).

• When r < X , both short and long players have no incentive to deviate the protocol based on

Lemma 3.9.1.

• When r = X and player j is the short player, then in round r player j is in his last round of

his input. Hence, player j knows he is in definitive round. However, he is not willing to cheat

in the game since he wants to find the secret of this round and he will be the last one who

learns it.

• When r = X and player j is a long player, he has no incentive to cheat in this round based on

Lemma 3.9.1.

• When r = X + 1 and player j is a short player, he does not have enough information to

participate in the this round, and the only way he can cheat is to successfully forge the

messages for the game.

• When r = X + 1 and player j is a long player who learns the last round was definitive based

on br sooner than others since he is in the root, the only way he can cheat in this round is to

successfully forge the messages for the game.

Therefore, the only way a player can cheat is to successfully forge a message by breaking the

digital signature scheme. Player j gains the largest utility if he cheats in the definitive round after he

learns the secret. The probability that a player can successfully break the digital signature scheme is

at most 1
2κ where κ is the security parameter for digital signature. Thus, if player j decides to cheat

and forge a message at the definitive round, with probability 1/2κ he can get at most the maximum

utility of U+
j and with probability of 1−1/2κ can get at most the maximum utility ofUj . The player

who decides to cheat before the definitive round gets the utility of Uminus j which is less than Uj .

Thus, player j’s utility is at most
U+

j +(1−2κ)Uj

2κ . On the other hand, if the protocol runs correctly, he

94

has utility at least Uj . Therefore, our protocol is an ε-Nash where ε is

U+
j + (1−2κ)Uj

2κ
−Uj =

U+
j + (1−2κ+1)Uj

2κ
.

Solving this equation for κ, we have κ = max j
U+

j +Uj

2Uj+ε
. Finally, similar to [KN08], since player j gains

the largest utility if he cheats in the last round, our protocol is an everlasting ε-Nash equilibrium. �

3.10 Conclusion

We have presented scalable mechanisms for rational secret sharing problems. Our algorithms are

scalable in the sense that the number of bits sent by each player is O(log n) and the latency is at

most logarithmic in the number of players. For n-out-of-n rational secret sharing, we give a scalable

algorithm that is a Nash equilibrium to solve this problem. For t-out-of-n rational secret sharing

where, we give a scalable algorithm that is a ε-Nash equilibrium.

95

Chapter 4

Interactive Communication with Unknown
Noise Rate

How can two parties run a protocol over a noisy channel? Interactive communication seeks to

solve this problem while minimizing the total number of bits sent. Recently, Haeupler [Hae14]

gave an algorithm for this problem that is conjectured to be optimal. However, as in previous

work [Sch92, BN13, BK12, BR11, Bra12b, GMS11, GHS14, GH13], his algorithm critically relies

on the assumption that the algorithm knows the noise rate in advance, i.e. , the algorithm knows in

advance the number of bits that will be flipped by the adversary.

In this chapter, we remove this assumption. To do so, we add a new assumption of privacy. In

particular, in our model, an adversary can flip an unknown number of bits, at arbitrary times, but he

never learns the value of any bits sent over the channel. This assumption is necessary: with a public

channel and unknown noise rate, the adversary can run a man-in-the-middle attack to mislead either

party (see Theorem 4.9.1, Section 4.9).

Problem Overview We assume that Alice and Bob are connected by a noisy binary channel.

Our goal is to build an algorithm that takes as input some distributed protocol π that works over a

noise-free channel and outputs a distributed protocol π′ that works over the noisy channel.

We assume an adversary chooses π, and which bits to flip in the noisy channel. The adversary

knows our algorithm for transforming π to π′. However, he neither knows the private random bits

of Alice and Bob, nor the bits sent over the channel, except when it is possible to infer these from

knowledge of π and our algorithm.

We let T be the number of bits flipped by the adversary, and L be the length of π. As in previous

work, we assume that Alice and Bob know L.

96

Our Results Our main result is summarized in the following theorem.

Theorem 4.0.1. Algorithm 3 tolerates an unknown number of adversarial errors, T , succeeds

with high probability in the transcript length1, L, and if successful, sends in expectation L +

O
(√

L(T + 1) log L +T
)

bits.

The number of bits sent by our algorithm is within logarithmic factors of optimal, assuming a

conjecture from [Hae14] (see Theorem 4.9.3).

Results in this chapter first appeared in conference proceedings [DHM+15].

4.1 Related Work

For L bits to be transmitted from Alice to Bob, Shannon [Sha48] proposes an error correcting code

of size O(L) that yields correct communication over a noisy channel with probability 1− e−Ω(L).

At first glance, this may appear to solve our problem. But consider an interactive protocol with

communication complexity L, where Alice sends one bit, then Bob sends back one bit, and so forth

where the value of each bit sent depends on the previous bits received. Two problems arise. First,

using block codewords is not efficient; to achieve a small error probability, “dummy” bits may be

added to each bit prior to encoding, but this results in a superlinear blowup in overhead. Second,

due to the interactivity, an error that occurs in the past can ruin all computation that comes after it.

Thus, error correcting codes fall short when dealing with interactive protocols.

The seminal work of Schulman [Sch93, Sch92] overcame these obstacles by describing a

deterministic method for simulating interactive protocols on noisy channels with only a constant-

factor increase in the total communication complexity. This work spurred vigorous interest in the

area (see [Bra12a] for an excellent survey).

Schulman’s scheme tolerates an adversarial noise rate of 1/240. It critically depends on the

notion of a tree code for which an exponential-time construction was originally provided. This

exponential construction time motivated work on more efficient constructions [Bra12b, Pec06,

MS14]. There were also efforts to create alternative codes [GMS11, ORS09]. Recently, elegant

computationally-efficient schemes that tolerate a constant adversarial noise rate have been demon-

strated [BK12, GH13]. Additionally, a large number of powerful results have improved the tolerable

adversarial noise rate [BN13, BR11, GHS14, FGOS15, BE14].

The closest prior work to ours is that of Haeupler [Hae14]. His work assumes a fixed and known

adversarial noise rate ε , the fraction of bits flipped by the adversary. Communication efficiency
1Specifically with probability at least 1− 1

L logL

97

is measured by communication rate which is L divided by the total number of bits sent. Haeu-

pler [Hae14] describes an algorithm that achieves a communication rate of 1−O(
√
ε log log(1/ε),

which he conjectures to be optimal. We compare our work to his in Section 4.9.

Feinerman, Haeupler and Korman [FHK14] recently studied the interesting related problem of

spreading a single-bit rumor in a noisy network. In their framework, in each synchronous round,

each agent can deliver a single bit to a random anonymous agent. This bit is flipped independently at

random with probability 1/2− ε for some fixed ε > 0. Their algorithm ensures with high probability

that in O(log n/ε2) rounds and with O(n log n/ε2)) messages, all nodes learn the correct rumor.

They also present a majority-consensus algorithm with the same resource costs, and prove these

resource costs are optimal for both problems.

4.2 Formal Model

Our algorithm takes as input a protocol π which is a sequence of L bits, each of which is transmitted

either from Alice to Bob or from Bob to Alice. As in previous work, we also assume that Alice and

Bob both know L. We let Alice be the party who sends the first bit in π.

Channel Steps We assume communication over the channel is synchronous and individual

computation is instantaneous. We define a channel step as the amount of time that it takes to send

one bit over the channel.

Silence on the Channel When neither Alice nor Bob sends in a channel step, we say that the

channel is silent. In any contiguous sequence of silent channel steps, the bit received on the channel

in the first step is set by the adversary for free. By default, the bit received in subsequent steps of the

sequence remains the same, unless the adversary pays for one bit flip in order to change it. In short,

the adversary pays a cost of one bit flip each time it wants to change the value of the bit received in

any contiguous sequence of silent steps.

4.3 Overview of Our Result

Challenges Can we adapt prior results by guessing the noise rate? Underestimation threatens

correctness if the actual number of bit flips exceeds the algorithm’s tolerance. Conversely, over-

estimation leads to sending more bits than necessary. Thus, we need a protocol that adapts to the

adversary’s actions.

98

One idea is to adapt the amount of communication redundancy based on the number of errors

detected thus far. However, this presents a new challenge because the parties may have different

views of the number of errors. They will need to synchronize their adaptions over the noisy channel.

This is a key technical challenge to achieving our result.

Another technical challenge is termination. The length of the simulated protocol is necessarily

unknown, so the parties will likely not terminate at the same time. After one party has terminated, it

is a challenge for the other party to detect this fact based on bits received over the noisy channel.

A high-level overview of how we address these challenges is given in Section 4.5.4.

4.4 Chapter Organization

The rest of this chapter is organized as follows. In Section 4.5, we describe a simple algorithm

for interactive communication that works when T = O(L/ log L). We analyze this algorithm in

Section 4.6. In Section 4.7, we describe an algorithm for interactive communication that works for

any finite T ; we prove this algorithm correction in Section 4.8. Section 4.9 gives some relevant

remarks, including justifying private channels and comparing our algorithm with past work. Finally,

we conclude and give directions for future work in Section 4.10.

4.5 Bounded T - Algorithm

In this section, we describe an algorithm that enables interactive communication problem when

T = O(L/ log L).

4.5.1 Overview, Notation and Definitions

Our algorithm is presented as Algorithm 21. The overall idea of the algorithm is simple: the parties

run the original protocol π for a certain number of steps as if there was no noise. Then, Alice

determines whether an error has occurred by checking a fingerprint from Bob. Based on the result

of this verification, the computation of π either moves forward or is rewound to be performed again.

4.5.2 Helper Functions

Before giving details of the algorithm, we first describe some helper functions and notation (see

Figure 4.1).

99

L The length of the protocol to be simulated.
π The L-bit protocol to be simulated, augmented by random bits to length

(
1 +

⌈
L
R0

⌉)
R0.

π[T ,`] The result of the computation of the next ` bits of π after history T .
R0 Initial round size in the algorithm. This is the smallest power of 2 that is greater than

√
LF.

So
√

LF ≤ R0 ≤ 2
√

LF
F The length of the fingerprint.
Ta Alice’s tentative transcript.
Tb Bob’s tentative transcript.
T ∗a Alice’s verified transcript.
T ∗b Bob’s verified transcript.
T [0 : `] The first ` bits of T . If |T | < L this is null

Figure 4.1: Glossary of Notation

Fingerprinting To verify communication, we make use of the following well-known theorem.

Theorem 4.5.1. [Naor and Naor [NN93]] For any positive integer L and any probability p, there

exists a hash function F that given a uniformly random bit string S as the seed, maps any string

of length at most L bits to a bit string hash value H , such that the collision probability of any two

strings is at most p, and the length of S and H are |S | = Θ(log(L/p)) and |H | = Θ(log(1/p)) bits.

We define two functions based on this theorem, h and MatchesFP. In this section, we will write

hL to denote that the probability of error p is polynomial in L. In particular, we can set p = 1/L2,

with fingerprints of size O(log L). The function hL (T) takes a transcript T and returns a tuple (s, f),

where s is uniformly random bit string and f is the output of the hash function F in the theorem

above when given inputs s and T . We refer to this tuple as the fingerprint of T .

The function MatchesFP((s, f),T) takes a fingerprint (s, f) and a transcript T . It returns true if

and only if the output of F when given bit string s and transcript T is equal to the value f . In both

of these functions, the total length of the fingerprint is given by the value F, which will be defined

later.

Algebraic Manipulation Detection Codes Our result makes critical use of Algebraic Manipula-

tion (AMD) Codes from [CDF+08]. These codes provide three functions: amdEnc, IsCodeword

and amdDec. The function amdEnc(m) creates an encoding of a message m. The function

IsCodeword(m′) returns true if and only if a received message m′ is equal to amdEnc(m) for

some sent message m. The function amdDec(m′) takes a received value m′, where IsCodeword(m′),

100

and returns the value m such that amdEnc(m) = m′. Intuitively, AMD Codes enable detection of bit

corruptions on encoded words, with high probability.

We make use of the following theorem about AMD codes. This is a slight rewording of a

theorem from [CDF+08].

Theorem 4.5.2. [CDF+08] For any δ > 0, there exists functions amdEnc, IsCodeword and amdDec,

such that, for any bit string m of length x:

• amdEnc(m) is a string of length x +C log(1/δ), for some constant C;

• IsCodeword(amdEnc(m)) and amdDec(amdEnc(m)) = m;

• For any bit string s , 0 of length x, Pr (IsCodeword(amdEnc(m) ⊕ s)) ≤ δ

In this section, we set δ = 1/L2 and add O(log L) additional bits to the message word. Also in

this section, we will always encode strings of size O(log L), so the AMD encoded messages will be

of size O(log L).

In the algorithm, we will denote the fixed length of the AMD-encoded fingerprint by F.

4.5.3 Remaining Notation

Transcripts We define Alice’s tentative transcript, TA , as the sequence of possible bits of π that

Alice has either sent or received up to the current time. Similarly, we let TB denote Bob’s transcript.

For both Alice or Bob, we define a verified transcript to be the longest prefix of a transcript for

which a verified fingerprint has been received. We denote the verified transcript for Alice as T ∗
A

,

and for Bob as T ∗
B

. The notation T 4 T ′ signifies that a transcript T is a prefix of a transcript T ′.

Rounds We define one of Alice’s rounds as one iteration of the repeat loop in Alice’s protocol.

Alice’s round consists of ra channel steps, where ra is the round size value maintained by Alice.

Similarly, we define one of Bob’s rounds as one iteration of the repeat look in Bob’s protocol. Such

a round consists of rb channel steps, where rb is the round size for Bob.

Other Notation For a transcript T and integer i, we define T [0 : i] to be the first i bits of T . For

two strings x and y, we define x � y to be the concatenation of x and y.

101

4.5.4 Algorithm Overview

To facilitate discussion of the algorithm, we first state some important properties of rounds (proven

in Section 4.6). First, the size of any round is always a power of two. Second, the start of each of

Bob’s rounds always coincides with the start of one of Alice’s rounds. This ensures that whenever

Bob is listening for the message F ′a , Alice will be sending such a message.

We first describe one of Alice’s rounds in which 1) neither Alice nor Bob terminate; and 2) there

are no adversarial bit flips. In such a round, Alice sends an encoded message containing two pieces

of information. These are ma, which is the number of failed rounds Alice has counted so far; and

|T ∗a |, which is the size of Alice’s verified transcript.

When Bob decodes this message, he synchronizes several values with Alice. In particular, he

sets his round size value, rb, and mistake estimate value, mb, so they equal the values Alice sent.

Then, based on |T ∗a |, Bob either increases the length of his verified transcript, or else decreases

the length of his tentative transcript. After this synchronization, Alice and Bob both compute a

certain number of bits of π and add these to their tentative transcripts. Finally Bob sends an encoded

fingerprint to Alice. She verifies this fingerprint, and then adds the bits of π computed during this

round to her verified transcript.

There are two key ways in which adversarial bit flips can alter the above scenario. First, when

the encoded message Alice sends containing ma and |T ∗a | is corrupted. In this case, Bob will send

random bits for the remainder of the round. This ensures two things. First, whenever Alice is

listening for a fingerprint from Bob, Bob will either be sending a fingerprint or random bits. Thus,

w.h.p., the adversary will be unable to forge an encoding of a fake fingerprint by flipping bits.

Second, Bob’s error count updates at the same time as Alice’s.

The other key way in which adversarial bit flips can alter the ideal scenario is as follows. The

adversary flips bits in such a way that the encoded fingerprint, F ′b that Bob sends to Alice, fails

to be a valid fingerprint for Alice’s tentative transcript. In this case, Alice rewinds her tentative

transcript, increments her error count, and updates her block size.

Handling Termination In previous work, since ε and L′ are known, both parties know when to

terminate (or leave the protocol), and can do so at the same time. However, since we know neither

parameter, termination is now more challenging.

In our algorithm, π is augmented with a certain number of additional bits that Alice sends to

Bob. Each of these bits is set independently and uniformly at random by Alice. Alice terminates

when her verified transcript is of length greater than L. Bob terminates when he receives a value

F ′a , where all bits are the same. This conditions ensures that 1) Bob is very unlikely to terminate

102

Protocol 21 Bounded Error Interactive Communication

Protocol for Alice

1: while ma =
R2

0
4F2 −1 do

2: Fa← amdEnc(ma,ra, |T
∗

a |)
3: Send Fa
4: Append π[Ta,ra −2F] to Ta
5: Receive Bob’s F-bit message, F ′b
6: if IsCodeword(F ′b) then
7: if |T ∗a | ≥ L then
8: Output T ∗a [0 : L]
9: Terminate

10: F ← amdDec(F ′b)
11: if MatchesFP(F ,Ta) then

// successful round
12: T ∗a ←Ta

13: else
// round failed

14: Ta←T
∗

a
15: ma← ma + 1
16: if 1 + ma is a power of 4 then
17: ra← ra/2

Protocol for Bob

1: Tb← null; T ∗b ← null mb← 0; rb←

R0

2: while mb =
R2

0
4F2 −1 do

3: Receive Alice’s F-bit message,
F ′a

4: if all bits of F ′a are equal then
// Alice has likely left

5: Output T ∗b [0 : L] and
6: Terminate
7: if IsCodeword(F ′a) then
8: (m,r,`)← amdDec(F ′a)

// synchronize values
9: rb← r

10: mb← m
11: if ` > |T ∗b | then
12: T ∗b ←Tb
13: else
14: Tb←T

∗
b

15: Append π[Tb,rb−2F] to Tb
16: Fb← amdEnc(hL (Tb))
17: Send Fb
18: else

// corruption occurred
19: Send random bits for rb − F

steps
20: mb← mb + 1
21: if 1 + mb is a power of 4 then
22: rb← rb/2

before Alice; and 2) Bob terminates soon after Alice, unless the adversary pays a significant cost to

delay this.

4.6 Bounded T - Analysis

We now prove that with high probability, Algorithm 1 correctly simulates π when T is promised to

be O(L/ log L). Before proceeding to our proof, we define two bad events.

103

Hash Collision. Either Alice or Bob incorrectly validates a fingerprint and updates their

verified transcript to include bits not in π.

Failure of AMD Codes The adversary corrupts an encoded message into the encoding or a

different message. Or the encoding of some message, after possible adversary corruption,

equals a bit string of all zeroes or all ones.

Throughout this section, we will assume neither event occurs. At the end of this section, we will

show that the probability that either even occurs is polynomially small in L.

Lemma 4.6.1. Each player’s round size is always a power of two.

Proof. This is immediate from the fact that the round size starts out as a power of 2 and the fact

that each time it decreases, it decreases by a factor of 2. �

Lemma 4.6.2. ma is monotonically increasing, and hence Alice’s round size never increases.

Proof. This follows immediately from the fact that the only time ma changes is on Line 15 of

Alice’s protocol, when it is incremented by 1. �

Lemma 4.6.3. Algorithm 21 has the following properties:

1. When Bob starts a round, Alice starts a round,

2. mb ≤ ma at all times that Alice remains in the protocol.

Proof. This follows by induction on ma.

Base Case We first show that the lemma holds while ma = 0. Note that mb can only increase after

Bob has spent a round sending random bits. During such a round, Alice will increment ma before

Bob increments mb. Next, note that while mb = ma = 0, Alice and Bob both have the same round

sizes, and so when Bob starts a round, Alice starts a round.

Inductive Step Consider the channel step, t, at which Alice increases ma to some value j > 0.

We must show that the lemma statement holds throughout the time while ma = j. By the inductive

hypothesis, up to time t, mb ≤ ma, and when Bob started a round, Alice started a round. There are

two cases for the value of mb at the end of channel step t.

104

Case 1 mb < j. In this case, Bob must not have received Fa at the beginning of the round he is

in at channel step t. Hence, Bob transmits random bits during this entire round. Bob’s round size

is an integer multiple of Alice’s round size (by Lemma 4.6.1). Thus, Bob will transmit random

bits throughout Alice’s round begun at channel step t + 1. So Alice will not receive a matching

fingerprint at the end of the round she began at step t + 1, and so she will increment ma before

Bob increments mb. This will happen before Bob completes the round he is in at time t, so both

conditions of the lemma hold while ma = j.

Case 2 mb = j. Note that mb can only increase after Bob has spent a round sending random bits.

During such a round, Alice will increment ma before Bob increments mb. Thus, while ma = j,

mb = j. Next, note that, if mb = ma = j at step t, then Alice and Bob both ended their rounds at step

t. Hence, during the time that ma = j, when Bob starts a round, Alice starts a round. �

The following corollaries are immediate from the above lemma.

Corollary 4.6.4. When Bob ends a round, Alice ends a round.

Corollary 4.6.5. Bob’s rounds are at least as large as Alice’s rounds.

The following corollary holds from the above lemma and the fact that Bob’s round sizes are at

least as large as Alice’s.

Corollary 4.6.6. While both parties remain in the protocol, whenever Bob is listening for a Fa,

Alice is sending it. Also, whenever Alice is listening for Fb, either Bob is sending it, or Bob is

sending random bits.

The following lemma also follows from Lemma 4.6.3.

Lemma 4.6.7. Let R be one of Alice’s rounds which starts and ends at the same time as one of

Bob’s rounds. Then, at the end of R, either ma −mb is the same as it was at the beginning of R or it

equals 0 or 1.

Proof. If Fa is corrupted at the beginning of R, Bob transmits random bits for the rest of R, and

both Alice and Bob increment their error counts at the end, so ma −mb stays the same.

If Fa is not corrupted at the beginning of R, then Bob sets mb to ma at the beginning of R, so at

the end, ma −mb ≤ 1. By Lemma 4.6.3 (2), ma −mb ≥ 0. �

105

4.6.1 Phases

We now give some definitions.

Definition 4.6.8. We define phase j to be all of Alice’s rounds of size R0/2 j .

Definition 4.6.9. We define ∆ j , for all j > 0, to be the value ma −mb at the end of phase j.

Note that at the beginning of phase j, Alice’s error count is 4 j −1. We now give a few lemmas

about phases.

Lemma 4.6.10. For any j > 0, phase j contains at least 3∆ j−1 of Alice’s rounds,

Proof. Consider any j > 0. At the beginning of phase j, ma = 4 j − 1. Also, at the beginning of

phase j, by Lemma 4.6.3 (2), mb ≤ ma. Hence, 0 ≤ ∆ j−1 ≤ 4 j −1. Note that ma increases by at

most 1 in each of Alice’s rounds. Thus, 3∆ j−1 rounds after the beginning of phase j, the value of

ma is at most:

4 j −1 + 3∆ j−1 ≤ 4 j −1 + 3(4 j −1)

< 4 j+1−1

Thus after 3∆ j−1 rounds, ma is not large enough for Alice to advance to phase j + 1. �

Progressive, Corrupted and Wasted Rounds Let R be one of Alice’s rounds. We call R

progressive if Alice does not update her error count during the round, or equivalently if her verified

transcript length increases. We call R corrupted if the adversary flipped at least one bit in the round.

We call R wasted if it is neither progressive nor corrupted. We want to bound the number of wasted

rounds since this number represents amount by which ma is potentially an overestimate of T .

We note that wasted rounds occur only when rb > ra. In this case, Bob is not listening when

Alice sends him Fa. As a result, Bob does not send Alice a valid fingerprint at the end of her round,

and so her verified transcript does not increase, even though the adversary has not flipped any bits.

The following lemma bounds the number of wasted rounds in a phase, and gives other critical

properties.

Lemma 4.6.11. Suppose at the beginning of phase j, j > 0, Bob is at the start of a round and his

round size is at most R0/2 j−1. Then

1. There are at most ∆ j−1 wasted rounds in phase j;

106

2. ∆ j ∈ {0,1,2∆ j−1}; and

3. Bob ends a round at the end of phase j.

Proof. If Bob’s round size initially less than R0/2 j−1, then it must equal R0/2 j in order to be a

power of two. Hence Alice and Bob will have rounds that are the same size for the entire phase, and

the lemma holds trivially.

We now consider the harder case where Bob’s round size equals R0/2 j−1.

By Definition 4.6.8, Alice has round size R0/2 j throughout phase j. By Lemma 4.6.3 (2),

Bob’s round size is always greater than or equal to Alice’s round size. Thus, as soon as 1) Bob

receives Fa in one of his rounds in phase j, or 2) Bob sets mb equal to Alice’s error count at the

beginning of phase j, then Bob’s round size will be R0/2 j for the remainder of the phase. Finally,

by Lemma 4.6.3 (1), from that point on, Alice and Bob will begin, and thus end, all rounds at the

same time.

Now consider Bob’s rounds in phase j. Assume the adversary corrupts Fa in Bob’s rounds 1

through i for some value i ≥ 0, and then the adversary does not corrupt Fa in Bob’s round i + 1. We

consider two cases.

Case 1: i < ∆ j−1 Each of the first i rounds of Bob spans two rounds of Alice. By Lemma 4.6.10,

these rounds are all contained in phase j. Consider each pair of Alice’s rounds spanned by one of

Bob’s rounds. The first round in the pair is corrupted, but during the second, Bob is transmitting

random bits and Alice will not receive a fingerprint from him. Thus, this round is wasted. Hence,

there are i wasted rounds.

In round i + 1, Bob synchronizes his round size with Alice since he receives Fa. Thus, there are

no more wasted rounds. Applying Lemma 4.6.7 for the remaining rounds of the phase, we see that

at the end of the phase, ma −mb = ∆ j is either 0 or 1.

Case 2: i ≥ ∆ j−1 Bob increases mb by 1 in each of his first i rounds. Note that at the beginning

of phase j, Alice’s error count is 4 j −1. Thus, after Bob’s first i rounds, mb = (4 j −1)−∆ j−1 + i.

Hence when i = ∆ j−1, mb = (4 j −1). At that time, Bob sets his round size to R0/2 j , and so Alice

and Bob will have the same round sizes, and will hence begin and end all rounds at the same step,

for the rest of phase j. Thus, there are no more wasted rounds. Note that in this case, at Bob’s ∆ j−1

round, ma −mb will be 2∆ j−1. Applying Lemma 4.6.7 for the remaining rounds of the phase, we

see that ∆ j = 2∆ j−1, or ∆ j is 0 or 1. �

Lemma 4.6.12. For every j ≥ 0:

107

1. There are at most 2 j−1 wasted rounds in phase j;

2. ∆ j ≤ 2 j ; and

3. Bob ends a round at the end of phase j.

Proof. We prove this by induction on j.

Base Case At the beginning of phase 0, Bob is at the start of a round and his round size is R0.

Thus, by Lemma 4.6.11: there are 0 wasted rounds in phase 0; ∆0 ≤ 1; and Bob ends a round at the

end of phase 0.

Inductive Step Consider some j > 0. By the inductive hypothesis, ∆ j−1 ≤ 2 j−1. At the beginning

of phase j, mb = ma −∆ j−1 ≤ (4 j −1)−∆ j−1, so that rb = R0/2blog4 (1+mb)c ≤ R0/2blog4 (4 j−∆ j−1)c ≤

R0/2 j−1. The last line holds since 0 ≤ ∆ j−1 ≤ 2 j−1.

Also, by the inductive hypothesis, Bob ended a round at the end of phase j −1, and so is starting

a round at the beginning of phase j. Hence, we can apply Lemma 4.6.11 to phase j. From this

lemma, it follows that 1) the number of wasted rounds in phase j is at most 2 j−1; 2) ∆ j ≤ 2∆ j−1 ≤ 2 j ;

and 3) Bob ends a round at the end of phase j. �

Note from the above lemma that Bob’s rounds are never more than double the size of Alice’s

rounds. The following lemma sums up what we now know about Alice and Bob’s rounds.

Lemma 4.6.13. The following are always true.

1. Bob’s round size is either equal to Alice’s round size or double Alice’s round size.

2. If Bob’s round size equals Alice’s round size, then when Alice starts a round, Bob starts a

round.

3. If Bob’s round size is twice Alice’s round size, then when Alice starts a round, either Bob

starts a round, or Bob is in the middle of a round.

Proof. The lemma follows from Corollary 4.6.5, Lemma 4.6.3, and Lemma 4.6.12. �

4.6.2 Correctness and Termination

Lemma 4.6.14. It is always the case that T ∗a 4 π, where π is the padded transcript.

108

Proof. This holds by Lemma 4.6.25 and Lemma 4.6.26 and the fact that Alice never adds any string

to T ∗a that is not verified by an encoded fingerprint from Bob. �

Lemma 4.6.15. At the beginning and end of each of Alice’s rounds,

T ∗b 4 T
∗

a = Ta 4 Tb;

where at most one of the inequalities is strict. Moreover, at the end of a channel step in which Bob

receives Fa correctly,

T ∗b = Tb = T ∗a .

Proof. We prove this by induction on Alice’s round number.

Base Case At the beginning of the algorithm, all transcripts are null, so T ∗b = T ∗a = Ta = Tb.

Moreover if Bob receives Fa correctly in this round, then T ∗b = Tb = T ∗a .

Inductive Step We must show that the lemma holds for the j-th round. By the inductive hypothe-

sis, at the end of the j −1-th round,

T ∗b 4 T
∗

a = Ta 4 Tb,

with at most one of the inequalities being strict. Clearly the statement about the inequalities will

thus hold at the beginning of the j-th round.

Alice’s j-th round starts with Alice sending Bob Fa.

Case 1: Bob does not receive Fa If Bob does not receive Fa, then either 1) he was listening and

it was corrupted; or 2) he was not listening for it. If he was listening and Fa was corrupted, then

Bob transmits random bits for the remainder of his round, which will be the remainder of Alice’s

round by Lemma 4.6.13. By the same lemma, if Bob was not listening, then he must be in the

middle of a round that is twice as large as Alice’s. In either case, Bob transmits random bits for the

remainder of Alice’s j-th round.

Thus, Alice does not receive a matching fingerprint from Bob at the end of her j-th round. Thus,

at the end of her round, Ta←T
∗

a and Tb and T ∗b are unchanged. Hence, it continues to hold that:

T ∗b 4 T
∗

a = Ta 4 Tb;

and at most one of the inequalities is strict.

109

Case 2: Bob receives Fa If Bob receives Fa, then he learns the length of T ∗a and also Alice’s

round size. By the inductive hypothesis, either T ∗a = T ∗b or T ∗a = Tb. Based on the length of T ∗a ,

Bob either updates T ∗b or rewinds Tb, so that T ∗b = Tb = T ∗a . This establishes the second part of the

lemma for the j-th round.

Next Alice and Bob continue their rounds which are the same size. If Alice receives a correct

fingerprint from Bob at the end of her round, then the following holds:

T ∗b 4 T
∗

a = Ta = Tb.

If Alice does not receive a correct fingerprint from Bob at the end of her round, then the

following holds:

T ∗b = T ∗a = Ta 4 Tb.

In either case, the first part of the lemma statement holds at the end of Alice’s j-th round. �

Lemma 4.6.16. Bob leaves after Alice. When Alice leaves, |T ∗b | ≥ L.

Proof. Bob leaves only when he receives an F ′a that is all zeroes or all ones. By Lemma 4.6.26, F ′a
is never such a string, and the adversary cannot convert Fa to such a string by bit flipping. It follows

that Bob receives such a string only after Alice has left.

Alice leaves only when 1) she has received an encoded fingerprint from Bob; and 2) |T ∗a | ≥ L.

If Alice receives a correctly encoded fingerprint from Bob, then by Lemma 4.6.26, Bob must have

sent one, and hence Bob must be in a round where he received Fa correctly. By Lemma 4.6.15, at

that channel step, T ∗b = Tb = T ∗a . Hence at the step when Alice receives the encoded fingerprint

from Bob, T ∗b = T ∗a . Thus, when Alice leaves, |T ∗b | ≥ L. �

Lemma 4.6.17. When either party terminates, their output is correct.

Proof. The proof follows from Lemmas 4.6.14, 4.6.15, and 4.6.16, and the fact that when either

party terminates, they output the first L bits of their verified transcript. �

4.6.3 Cost

Lemma 4.6.18. After Alice leaves, the adversary must flip at least one bit for each of Bob’s rounds

that does not result in Bob leaving.

Proof. After Alice has left, there is silence on the channel in the steps when Bob is listening for

Alice’s encoded message. This means that if there is no bit flipping by the adversary, the channel

transmits the same bit in every channel step, causing Bob to read a string of all zeroes or all

110

ones, and terminate. Thus, the adversary must flip at least one bit each time Bob is listening for a

codeword. �

Lemma 4.6.19. There are at most 2 j −1 wasted rounds prior to the end of phase j, for all j ≥ 0.

Proof. This follows trivially by repeated applications of Lemma 4.6.12 (1). �

Throughout this section, we assume the worst case, that the adversary corrupts at most one bit

per corrupted round.

Lemma 4.6.20. At all times, ma ≤ T +
√

T . In particular, there are no more than
√

T wasted rounds.

Proof. By way of contradiction, assume ma > T +
√

T at some step, in some phase j, j ≥ 0. Then

the number of wasted rounds at this step must be greater than
√

T . But by Lemma 4.6.19, the

number of wasted rounds at the end of phase j is no more than 2 j −1. Thus, we have
√

T < 2 j −1,

or T < (2 j −1)2.

But ma is no larger than the number of corrupted rounds plus the number of wasted rounds. By

the above paragraph, T < (2 j −1)2 and the number of wasted rounds is no more than 2 j −1. Thus

ma < (2 j −1)2 + (2 j −1). Moreover, we know that in phase j, ma ≥ 4 j −1. Thus, we know

4 j −1 < (2 j −1)2 + (2 j −1).

Simplifying, we get 2 j < 1, which is a contradiction for any j ≥ 0. �

Let m∗a denote Alice’s error count when she leaves the algorithm, and m∗b denote Bob’s error

count when he himself leaves the algorithm.

Lemma 4.6.21. Alice terminates in at most L +O(
√

LF (1 + m∗a)) steps.

Proof. We first calculate the cost of the rounds that are not progressive for Alice. The number

of non-progressive rounds that she has executed is m∗a. Her cost for these rounds is at most the

following.

111

m∗a∑
i=1

R0

2blog4 ic
≤ 2R0

m∗a∑
i=1

1
2log4 i

= 2R0

m∗a∑
i=1

1
√

i

≤ 2R0

∫ m∗a

0

1
√

i

= 4R0
√

m∗a

In every progressive round, except possibly the last, Alice’s block size is at least R02− log4(1+m∗a).

Thus in all but possibly the last progressive round, Alice always adds bits to her verified transcript

at a rate of at least

R02− log4(1+m∗a) −2F
R02− log4(1+m∗a)

.

Thus, the total number of bits Alices sends in all but the last progressive round is no more than

L ·
R02− log4(1+m∗a)

R02− log4(1+m∗a) −2F
.

We will make use of the inequality

1
1− δ

≤ 1 + 2δ for 0 < δ ≤ 1/2

and let δ = 2F/R02− log4(1+m∗a). Note that δ ≤ 1/2, since Alice’s round size is always at least 4F.

Then we have that the total number of bits sent by Alice in all but the last progressive round is

no more than

L +
4LF

R02− log4(1+m∗a)
.

Adding in the last progressive round, we get that the total number of bits sent by Alice in

progressive rounds is no more than

L +
4LF

R02− log4(1+m∗a)
+ R02− log4(1+m∗a) .

Putting this together with the number of bits send in non-progressive rounds, we have that the

total number of bits send by Alice is no more than

112

L + 4R0
√

m∗a +
4LF

R02− log4(1+m∗a)
+ R02− log4(1+m∗a) ≤ L + 5R0

√
m∗a + 4

√
LF (2log4(1+m∗a))

≤ L + 10
√

LFm∗a + 4
√

LF (1 + m∗a)

≤ L + 14
√

LF (1 + m∗a) �

Lemma 4.6.22. Bob terminates in at most L + 14
√

LF (1 + m∗a) + 8
√

LFm∗b steps.

Proof. Since Bob never leaves before Alice, Bob’s cost must be at least as much as Alice’s. We

now compute Bob’s additional cost.

At the time of Alice’s departure, ra = R0/2blog4(1+m∗a)c . By Lemma 4.6.13, rb ≤ 2R0/2blog4(1+m∗a)c .

Let m′b denote Bob’s error count when Alice leaves the algorithm. Then 1 + m′b ≥ 4blog4(1+m∗a)c−1.

Bob’s final error count is m∗b. Thus, Bob’s additional cost is at most

m∗
b
−1∑

i=m′
b

R0

2blog4(1+i)c ≤ 2R0

m∗
b∑

i=1

1
2log4 i

= 2R0

m∗
b∑

i=1

1
i2

≤ 4R0

√
m∗b

≤ 8
√

LFm∗b

Combining this with Alice’s cost gives the result. �

Lemma 4.6.23. The algorithm ends in at most 12L time steps.

Proof. By Lemma 4.6.22, Bob terminates in at most L + 14
√

LF (1 + m∗a) + 8
√

LFm∗b steps. More-

over, m∗a and m∗b are no more than R2
0/4F2 − 1. Thus, the algorithm terminates in at most the

following number of steps.

L + 14
√

LF (1 + m∗a) + 8
√

LFm∗b ≤ L + 22

√
LFR2

0

4F2

= L + 22

√
L2

4
= 12L . �

113

Lemma 4.6.24. If T ≤ L
8F − 1 then both players terminate with the correct output in at most

L +O(
√

LF (T + 1)) steps.

Proof. Let Ta denote the number of bits flipped by the adversary while Alice is still in the protocol,

and Tb the bits flipped after Alice has left. Then Ta +Tb = T .

By Lemma 4.6.20, m∗a ≤ Ta +
√

Ta. By Lemmas 4.6.3 and 4.6.18, m∗b ≤ m∗a +Tb. Since Ta +Tb = T

it follows that

m∗a ≤ T +
√

T ≤ 2T ≤
L

4F
−2 <

R2
0

4F2 −1

and similarly

m∗b <
R2

0

4F2 −1

Thus, Alice and Bob will both terminate by outputting the bits of π by Lemma 4.6.17.

Plugging m∗a ≤ 2T and m∗b ≤ 3T into Lemma 4.6.22 gives the total number of steps required. �

Lemma 4.6.25. With high probability in L, there are no hash collisions.

Proof. By Lemma 4.6.23, the algorithm ends in at most 12L steps. Also, there are at least 4F =

Θ(log L) steps in a round. Thus, the algorithm has at most O(L log L) rounds. Each round has one

fingerprint. By Theorem 4.5.1 and the setting of our fingerprint sizes, each fingerprint fails with

probability at most 1/L2. Thus, a simple union bound gives the result. �

Lemma 4.6.26. With high probability in L, any bit flipping of a AMD encoded message is detected.

Proof. We noted in the previous lemma that the algorithm terminates in O(L log L) rounds. Each

round has two AMD encoded messages. By Theorem 4.5.2 and the setting of our encoding sizes,

each AMD encoding fails with probability at most 1/L2. Again, a union bound gives the result. �

4.7 Unbounded T - Algorithm

Algorithm 1 uses fingerprints of a fixed size, F in order to check its transcripts. Each of these has a

1/L2 chance to fail due to a hash collision. Since the algorithm only computes about O(L/ log L)

fingerprints, a union bound tells us that with high probability the algorithm succeeds, below its

threshold value of T . When T is large, many more checks may need to be made, and eventually

there will be a good chance that there is a hash collision. Since the algorithm cannot really recover

from a hash collision, we cannot afford this. On the other hand, we cannot simply start out with

larger fingerprints, both because this would be too expensive if T turned out to be small, and also

114

because even bigger fingerprints are still of a fixed size and eventually become unreliable. A natural

solution is is to allow the fingerprints to grow, adapting the size to the value of T seen so far, and

this is indeed what we will do.

Protocol 22 Interactive Communication: Iteration j

Protocol for Alice

Parameters: N j ,Fj , ρ j
1: for i = 1 to N j do
2: Fa← ecEnc(amdEnc(|T ∗a |))
3: Send Fa
4: if |T ∗a | < L then
5: for the next bFj/ρ jc bits of π do
6: if sender then
7: Send next bit ρ j times
8: Append to Ta
9: else

10: Receive ρ j bits
11: Append majority bit to Ta

12: else
13: Transmit Fj random bits.

14: Receive Bob’s cFj-bit message, F ′b
15: if IsCodeword(F ′b) then
16: if |T ∗a | ≥ L then
17: Output T ∗a [0 : L]
18: Terminate
19: F ← amdDec(F ′b)
20: if MatchesFP(F ,Ta) then

// successful round
21: T ∗a ←Ta
22: else

// round failed
23: Ta←T

∗
a

Protocol for Bob

Parameters: N j ,Fj , ρ j
1: for i = 1 to N j do
2: if |T ∗b | ≥ L then
3: Wait cFj channel steps
4: Receive Fj bits
5: if fewer than Fj/3 alternations in the

received string then
6: Output T ∗b [0 : L]
7: Terminate
8: else
9: Fb← ecEnc(amdEnc(h j (T ∗b)))

10: Send Fb

11: else
12: Receive Alice’s cFj-bit message F ′a
13: if IsCodeword(ecDec(F ′a)) then
14: `← amdDec(ecDec(F ′a))
15: if ` > |T ∗b | then
16: T ∗b ←Tb
17: else
18: Tb←T

∗
b

19: for the next bFj/ρ jc bits of π do
20: if sender then
21: Send next bit ρ j times
22: Append to Tb
23: else
24: Receive ρ j bits
25: Append majority bit to Tb

26: Fb← ecEnc(amdEnc(h j (Tb)))
27: Send Fb
28: else
29: Transmit (c + 1)Fj random bits.

115

Protocol 23 Interactive Communication

Protocol for Alice

// Iteration 0
1: Run Alice’s protocol from Alg 1
2: if not terminated then
3: transmit random bits until channel step

12L
// End of Iteration 0

4: j ← 1
5: while still present do
// Iteration j

6: Fj ← β(j + log L)
7: ρ j ← 2 j d

Fj

F e ∧Fj
8: N j ← 2 j−1d8L/Fe
9: Run Alice’s protocol from Algorithm 2,

with parameters N j ,Fj , ρ j
// End of Iteration j

10: j ← j + 1

Protocol for Bob

// Iteration 0
1: Run Bob’s protocol from Alg 1
2: if not terminated then
3: transmit random bits until channel step

12L
// End of Iteration 0

4: j ← 1
5: while still present do
// Iteration j

6: Fj ← β(j + log L)
7: ρ j ← 2 j d

Fj

F e ∧Fj
8: N j ← 2 j−1d8L/Fe
9: Run Bob’s protocol from Algorithm 2,

with parameters N j ,Fj , ρ j
// End of Iteration j

10: j ← j + 1

4.7.1 Helper Functions

As in Algorithm 1, we make black-box use of the Naor and Naor hash family, as well as AMD

codes to protect information. However, in Iteration j we need the failure probabilities for both these

primitives to be 1/(2 j L2). Thus, we want the fingerprint size to grow with j. We will denote the

hash function which has a collision probability of at most 1/(2 j L2) by h j . 1 It is easy to see that

O(j) extra bits are required for this, so that the fingerprint size is O(j + log L).

Algorithm 1 works well when the adversary can only afford to flip a fraction of a bit per block

of the algorithm. In this case, it doesn’t matter that he can corrupt an entire round of the protocol by

flipping a single bit. However, when the adversary has a larger budget, it becomes crucial to force

him to pay a larger price to corrupt a round. To this end, we wrap each fingerprint and protocol bit

in a linear error-correcting code.

To be concrete, we will use a repetition code for each protocol bit, and a Reed-Solomon

code [RS60] to provide the already AMD-encoded messages with a degree of error correction. This

enables us to encode a message so that it can be recovered even if the adversary corrupts a third
1By abuse of notation, we will not subscript all the other helper functions with j; it should be clear from context

that the version of the function used is the one that operates on strings of the correct size and has the correct failure
probability

116

of the bits. We will denote the encoding and decoding functions by ecEnc and ecDec respectively.

The following theorem, a slight restatement from [RS60], gives the properties of these functions.

Theorem 4.7.1. [RS60] There is a constant c > 0 such that for any message m, | ecEnc(m) | ≤ c |m |.

Moreover, if m′ differs from ecEnc(m) in at most one-third of its bits, then ecDec(m′) = m.

Finally, we observe that the linearity of ecEnc and ecDec ensure that when the error correction

is composed with the AMD code, the resulting code has the following properties:

1. If at most a third of the bits of the message are flipped, then the original message can be

uniquely reconstructed by rounding to the nearest codeword in the range of ecEnc.

2. Even if an arbitrary set of bits is flipped, the probability of the change not being recognized is

at most δ, i.e. the same guarantee as the AMD codes.

This is because ecDec is linear, so when noise η is added by the adversary to the codeword x,

effectively what happens is the decoding function ecDec(x +η) = ecDec(x) +ecDec(η) = m+ D(η),

where m is the AMD-encoded message. But now ecDec(η) is an obliviously selected string added

to the AMD-encoded codeword.

4.7.2 Algorithm

Let N1 := d8L/Fe be the number of rounds in Iteration 1. Let N j := 2 j−1N1 be the number of rounds

in Iteration j > 1. Let Fj = 2β j + F be the size of the fingerprints in Iteration j, where β is the

constant from the Naor and Naor hash function. Thus the hash collision probability of a single

fingerprint is 2−2 j L−2. Each round of the iteration begins with Alice sending Bob a (1/3)-error-

corrected, AMD-encoded synchronization message of length cFj , followed by simulation of the

protocol for Fj channel steps, followed by Bob sending Alice a (1/3)-error-corrected, AMD-encoded

fingerprint of length cFj . Here c is the constant factor blowup we get from the ECC and AMD

encodings, but for technical reasons we will further ensure that it is at least 5. Thus, the total round

length is (2c + 1)Fj ≥ 11Fj . We will let α equal (2c + 1).

As in Algorithm 1, Alice will decide whether to update her verified transcript and advance to the

next block of π or to rewind to redo the current block, based on whether she receives a fingerprint

from Bob that matches the fingerprint of her own transcript. Similarly, Bob will decide whether to

join in the simulation of π or to transmit random bits until the end of the round based on receiving or

failing to receive Alice’s synchronization message at the round’s start. Where the round differs from

a round in Algorithm 1, is in the actual simulation of π. For the whole iteration, a fixed number of

117

bits of π will be simulated per round. Each bit will be repeated ρ j = 2 j−1dFj/Fe ∧Fj times 1. The

receiving party will use majority filtering to infer the transmitted bit. Since Fj time steps in the

round are allocated to protocol simulation, this allows bFj/ρ jc bits of π to be simulated.

Notice that the number of rounds doubles from one iteration to the next. Also, the number of

repetitions of each simulated bit also roughly doubles between iterations, at least until it hits its cap,

which is a constant fraction of the length of the round. This is the so-called doubling trick, (though

in our case perhaps it should be quadrupling) which results in the overall cost being dominated by

the cost in the last (or second to last) iteration.

4.8 Unbounded T - Analysis

We now analyze the main algorithm presented in Section 4.7. As in Section 4.6, we begin by noting

that a hash collision or an AMD code failure will cause the algorithm to fail. Additionally, the

algorithm could fail during the padding rounds, if the adversary happens to flip bits in such a way

as to cause Alice’s random bits to look like silence, resulting in Bob’s premature departure.

In Section 4.8.3 we will show that with high probability each of these events does not occur.

Meanwhile, throughout this section we will assume without further mention that we are in the good

event where none of the undesirable events occur.

4.8.1 Alice and Bob are both present

Lemma 4.8.1. For every j ≥ 1, Alice and Bob are always synchronized. That is, they begin the

iteration as well as every round therein at the same time.

Proof. Alice and Bob synchronize themselves after Iteration 0 by both starting Iteration 1 at channel

step 12L + 1. Thereafter, for each j ≥ 1, they have the same round sizes αFj and number of rounds

N j in Iteration j, so that they remain synchronized. �

We will call a round corrupted if enough bits are flipped in the round that the bits of π being

simulated cannot be recovered or verified by Alice. We will call it uncorrupted or progressive if it

is not corrupted in the above sense.

Lemma 4.8.2. Each round is either corrupted at a cost of at least ρ j/2 to the adversary or results in

bFj/ρ jc bits of progress in π.

1We remind the reader that x∧ y denotes the minimum of x and y, while x∨ y denotes their maximum.

118

Proof. Since each simulated protocol bit is sent ρ j times, with majority filtering at the receiving

end, it costs the adversary ρ j/2 to corrupt the repetition-encoded bit. It costs the adversary at

least cFj/3 ≥ ρ j/2 to corrupt Alice’s synchronization message or Bob’s fingerprint since these

are protected by error-correction. Thus it costs the adversary at least ρ j/2 to corrupt the round.

Otherwise, since there are Fj steps allocated to sending protocol bits, and each one is repeated ρ j

times, the protocol is successfully simulated for b Fj

ρ j
c bits. �

The following lemma is the equivalent of Lemmas 4.6.14 to 4.6.17 for Iteration j. Its proof is

nearly identical to the proofs in Section 4.6.2 (indeed, it is simpler, since Iteration j does not have

the synchronization problems faced by Algorithm 1) and we omit it.

Lemma 4.8.3. Iteration j has the following properties:

1. It is always the case that T ∗a 4 π, where π is the padded transcript.

2. At the beginning and end of each round,

T ∗b 4 T
∗

a = Ta 4 Tb;

where at most one of the inequalities is strict. Moreover, at the end of a channel step in which

Bob receives Fa correctly,

T ∗b = Tb = T ∗a .

3. Bob leaves after Alice. When Alice leaves, |T ∗b | ≥ L.

4. When either party terminates, their output is correct.

Lemma 4.8.4. There are at most N j/4 uncorrupted rounds in Iteration j

Proof. Since each uncorrupted round results in bFj/ρ jc bits of progress in π, dLρ j/Fje rounds are

sufficient for Alice’s transcript length to exceed L. One additional uncorrupted round is sufficient

for Bob to catch up to Alice if necessary, using her synchronization message, and for Alice to infer

from Bob’s fingerprint that Bob’s transcript length has exceeded L, resulting in Alice’s departure.

After that, if a round is uncorrupted, then Bob will perceive silence on the channel, resulting in

Bob’s departure. Thus dLρ j/Fje + 2 uncorrupted rounds are enough for both parties to terminate.

Finally note that for all j ≥ 1,
ρ j

Fj
≤

2 j−1

F
∧1 ≤

2 j−1

F

It follows that (for sufficiently large L) there are at most 2 j L/F = N j/4 uncorrupted rounds in

Iteration j. �

119

The following corollary is immediate.

Corollary 4.8.5. If j is not the last iteration, then at least 3/4 of the rounds are corrupted.

Although the adversary can flip any number of bits in a round, we will only charge him the

minimum number of bit-flips required for the outcome we see in the round, i.e. , we will charge him

0 for uncorrupted rounds and ρ j/2 for corrupted rounds. Let Tj denote the number of corruptions

charged to the adversary in Iteration j. Clearly, for j > 0

Tj ≤
1
2

N j ρ j (4.1)

Also, we know from Section 4.5 that if the algorithm does not end in Iteration 0, then T0 ≥ L/8F.

In this case, we will generously only charge the adversary that amount. In other words, if Iteration 1

is reached, either by both Alice and Bob, or by Bob alone, T0 = dL/8Fe.

Lemma 4.8.6. If j is not the last iteration then Tj ≥
3
8 N j ρ j

Proof. This follows from Corollary 4.8.5, since it costs the adversary at least ρ j/2 to corrupt a

round. �

Lemma 4.8.7. If j is not the last iteration then

3Tj−1/2 ≤ Tj ≤ 64Tj−1

Proof. If j = 1

T1 ≥
3
8

N1ρ1 ≥
3L
F
≥ 24T0 > 3T0

and

T1 ≤ N1ρ1/2 ≤
8L
F

= 64T0 .

If j > 1, then by (4.1) and Lemma 4.8.6,

3
2

3N j ρ j/8
N j−1ρ j−1/2

≤
Tj

Tj−1
≤

N j ρ j/2
3N j−1ρ j−1/8

≤ 64

since N j−1 = N j/2 and ρ j−1 ≤ ρ j ≤ 4ρ j−1. �

Lemma 4.8.8. The cost to either player due to uncorrupted rounds in Iteration j ≤ log F is at most

7α
√

LTj−1F

120

Proof. Each uncorrupted round costs the players αFj . Since there are at most N j/4 uncorrupted

rounds, the resulting cost is no more than α
4 N j Fj . Since j ≤ log F, ρ j = 2 j−1dFj/Fe and Fj ≤ 2F.

Combining these we have

Fj ≤ F
√

22− j ρ j

so that

α

4
N j Fj ≤ αN j−1Fj−1

≤ αN j−1F
√

23− j ρ j−1

≤ αF
√

N j−123− j
√

N j−1ρ j−1

≤ αF
√

2N1

√
8Tj/3

≤ α
√

128LTj F/3

≤ 7α
√

LTj F . �

Lemma 4.8.9. If j > log F, the cost to either player due to uncorrupted rounds in Iteration j is at

most

3αTj−1

Proof. When j > log F, Fj = ρ j and by Lemma 4.8.6,

α

4
N j Fj =

α

4
N j ρ j ≤ αN j−1ρ j−1 ≤

8α
3

Tj−1 ≤ 3αTj−1 . �

Lemma 4.8.10. The cost to the players from corrupted rounds in Iteration j is at most 4α
√

2LTj F

if j ≤ log F and 2αTj otherwise.

Proof. Suppose there are k corrupted rounds. Then the cost to the players is kαFj , while the

adversary’s cost is k ρ j/2. If j ≥ log F +1, Fj = ρ j and we easily see that the players’ cost is at most

2αT . When j ≤ log F, since k ≤ N j ,

kαFj = α
√

k ρ j F21− j
√

N j Fj

≤ α
√

Tj F22− j
√

2 j N1F

≤ 2α
√

8LTj F . �

Collecting the various costs and noting that Tj ≤ 64Tj−1, we see that for a suitably large constant

γ, we have

121

Lemma 4.8.11. The total cost to the players from Iteration j is at most γ
√

LTj−1 log L if j ≤ log F

and γTj−1 otherwise.

4.8.2 Bob plays alone

After Alice’s verified transcript has length at least L, in each subsequent round, she transmits her

synchronization message, and then random bits to indicate her continued presence. Once Alice has

left, there is silence on the channel. To corrupt this silence, the adversary must make it look like

a corrupted synchronization message followed by random bits. Since a random string of length

Fj has, on average, Fj/2 alternations of bits, Bob considers the string to represent silence if it has

fewer than Fj/3 alternations. Thus, to corrupt such a round the adversary must pay at least Fj/3.

Alice leaves when she has received word that Bob has a verified transcript of length at least L,

and a single extra uncorrupted round thereafter will cause Bob to leave as well. Thus, if iteration j

was not Bob’s last one, the adversary must have corrupted every round. If 1 ≤ k < N j rounds are

corrupted, Bob pays at most (k + 1)αFj ≤ 2kαFj and the adversary pays kFj/3. If k = 0, we will

generously account for the lone uncorrupted round from Iteration j in Iteration j −1 by noting that

α(N j−1Fj−1 + Fj) ≤ 2α(N j−1Fj−1) Finally a calculation identical to that in Lemma 4.8.10 shows

that Bob’s cost for an iteration j that he played alone is no more than

γ
√

LTj−1 log L

if j < log F and

γTj−1

otherwise.

4.8.3 Failure Probabilities

In this section we bound the probabilities of the events that cause the algorithm to fail.

Lemma 4.8.12. With high probability in L, there is no hash collision during Iteration j.

Proof. The fingerprint size has been selected large enough that the probability of a hash collision

for a single hash is 1
22 j L2 . Since there are N j = 2 j+2L/F rounds in Iteration j, by a union bound, the

probability of a hash collision during the iteration is O
(

1
2 j L log L

)
. �

Lemma 4.8.13. With high probability in L, any bit flipping of an AMD encoded message during

Iteration j is detected.

122

Proof. The size of the AMD encoding has been selected so that the probability of a failure to detect

a single instance of tampering is 1
22 j L2 . Since there are two AMD encodings per round and 2 j+2L/F

rounds, again the probability that such a failure occurs during the iteration is O
(

1
2 j L log L

)
. �

Lemma 4.8.14. With high probability in L, Alice leaves before Bob.

Proof. Bob does not terminate until he thinks Alice has left, and he does not even start checking for

whether she seems to have left until after his transcript has length at least L. Since Bob’s transcript

lags behind that of Alice, this means that by the time Bob is checking for whether Alice has left,

Alice either really has left, in which case it is fine for Bob to leave, or she is transmitting i.i.d.

random bits in batches of length Fj , between fingerprints. Since the adversary cannot see the bits,

any bit flips on his part do not alter the fact that the string received by Bob is a uniformly random bit

string of length Fj . Such a string has Fj/2 alternations (consecutive bits that differ) in expectation.

Bob leaves if he sees fewer than Fj/3 alternations. If the string is random, the likelihood of Bob

seeing fewer than Fj/3 alternations is, by Chernoff’s bound, at most e−Fj/18 ≤ 1
22 j L2 provided

β =
Fj

2 j+log L was chosen suitably large. Since there are at most N j chances in Iteration j for the

adversary to try this attack, a union bound again shows that Bob leaves after Alice, except with

probability O
(

1
2 j L log L

)
. �

4.8.4 Putting everything together

We will now prove our main theorem by putting all these costs together and calculating the total

cost to either player and the failure probability of the algorithm. As before, T denotes the number

of bits flipped by the adversary.

Theorem 4.8.15. The algorithm succeeds with probability at least 1−1/L log L. If it succeeds, then

each player’s cost is at most

L +O(
√

LT log L +T)

Proof. First we note that for each j ≥ 0 (Iteration 0 being Algorithm 1), the probability that

Algorithm 3 fails during iteration j is at most O
(

1
22 j L log L

)
. Thus the overall probability that it fails

at all is

O *.
,

∞∑
j=0

1
2 j L log L

+/
-

= O
(

1
L log L

)
Thus, with high probability the algorithm succeeds.

123

Let J denote the last iteration in which the player participates. If J = 0 then Lemma 4.6.24

already proves that the players’ total cost is at most L +O(
√

L(T + 1) log L). Suppose J ≥ 1. For

each j, let Cost(j) denote the player’s cost from Iteration j. We know that

• Cost(0) = 12L ≤ L +γ
√

LT0 log L where T0 = L/(8F)

• Cost(j) ≤ γ
√

LTj−1 log L if 1 ≤ j ≤ log F

• Cost(j) ≤ γTj−1 if j > log F

When J ≤ log F, the player’s total cost is
J∑

j=0

Cost(j) ≤ Cost(0) +

J∑
j=1

Cost(j)

≤ L +γ
√

LT0 log L +

J∑
j=1

γ
√

LTj−1 log L

≤ L +γ
√

L log L *.
,

√
(2/3)J−1TJ−1 +

J∑
j=1

√
(2/3)J−1− jTJ−1

+/
-

≤ L +γ
√

LTJ−1 log L *.
,

√
(2/3)J−1 +

J−2∑
j=0

√
(2/3) j+/

-

≤ L +

√
3γ

√
3−
√

2

√
LTJ−1 log L

= L +γ′
√

LTJ−1 log L

≤ L +γ′
√

LT log L

On the other hand, Tblog Fc = Θ(Nblog Fc ρblog Fc) = Θ(L log L), so that
√

LTblog Fc log L = Θ(Tblog Fc)

and for J > log F we have
J∑

j=0

Cost(j) ≤ Cost(0) +

blog Fc∑
j=1

Cost(j) +

J∑
j=blog Fc+1

Cost(j)

≤ L +γ′
√

LTblog Fc log L +

J∑
j=blog Fc+1

γTj−1

≤ L +γ′′Tblog Fc +

J∑
j=blog Fc+1

γTj−1

≤ L +O(T)

Thus the players’ cost is always L +O
(√

L(T + 1) log L +T
)
. �

124

4.9 Some Additional Remarks

Need for Private Channels

The following theorem justifies our assumption of private channels.

Theorem 4.9.1. Consider any algorithm for interactive communication over a public channel that

works with unknown T and always terminates in the noise-free case. Any such algorithm succeeds

with probability at most 1/2.

Proof. The adversary chooses some protocol π with transcript length L and some separate “cor-

rupted” protocol πc such that 1) πC has transcript length L and 2) Bob’s individual input for πc is

equivalent to his individual input for π. The goal of the adversary will be to convince Bob that πc is

the protocol, rather than π. Note that we can always choose some appropriate pair π and πc meeting

the above criteria.

Assume that if πc is the protocol and there is no noise on the channel, then Bob will output πc

with probability at least 1/2; if not, then the theorem is trivially true. Then, the adversary sets π to

be the input protocol. Next, the adversary simulates Alice in the case where her input protocol is πc,

and sets the bits received by Bob to be the bits that would be sent by Alice in such a case.

Since the the algorithm eventually terminates, Bob will halt after some finite number of rounds,

X . Using the above strategy, Bob will incorrectly output πc with probability at least 1/2 and the

value of T will be no more than X .

Note that in the above, we critically rely on the fact that T is unknown to Bob. �

Communication Rate Comparison.

In Haeupler’s algorithm [Hae14], the noise rate ε is known in advance and is used to design an

algorithm with a communication rate of 1−O(
√
ε log log1/ε). Let L′ be the length of π′. Then in

his algorithm, L′ = O(L), and so the adversary is restricted to flipping εL′ = O(L) bits. Thus, in his

model, T and L′ are always O(L). In our model, the values of T and L′ are not known in advance,

and so both T and L′ may be asymptotically larger than L.

How do our results compare with [Hae14]? As noted above, a direct comparison is only possible

when T = O(L). Restating our algorithm in terms of ε , we have the following theorem.

Theorem 4.9.2. If the adversary flips O(L) bits and the noise rate is ε then our algorithm guarantees

a communication rate of 1−O
(√

log L
L +

√
ε log L

)
.

125

Proof. When T < L we also have T <
√

L(T + 1) log L and our algorithm guarantees that for some

γ > 0,

L′ = L +γ
√

L(T + 1) log L

Let ε = T/L′ and R = L/L′ be the effective noise and communication rates respectively. Then,

R =
L
L′

= 1−
L′− L

L′

≥ 1−
γ
√

L(T + 1) log L
L′

≥ 1−γ

√
L log L +

√
LT log L

L′

≥ 1−γ *
,

√
R log L
√

L′
+

√
Rε log L+

-
≥ 1−γ

√
log L

(
1
√

L
+
√
ε

)
,

where the last line follows because 1/
√

L′ ≤ 1/
√

L and R ≤ 1. �

We note that the additive term
√

log L
L arises from the fact that because we do not know the error

rate ahead of time, we cannot get a communication rate of 1 even when the effective error rate turns

out to be zero.

A Note on Fingerprint Size.

A natural question is whether more powerful probabilistic techniques than union bound could enable

us to use smaller fingerprints as done in [Hae14]. The variability of block sizes poses a challenge to

this approach since Alice and Bob must either agree on the current block size, or be able to recover

from a disagreement by having Bob stay in the listening loop so he can receive Alice’s message. If

their transcripts diverge by more than a constant number of blocks, it may be difficult to make such

a recovery, and therefore it seems challenging to modify our algorithm to use smaller fingerprints.

However, it is a direction for further investigation.

A Lower Bound

In this section, we prove a lower bound that demonstrates the near optimality of our upper bound

by assuming the following conjecture by Haeupler holds [Hae14]. We now restate Haeupler’s

conjecture.

126

Conjecture 1. (Haeupler [Hae14], 2014) The maximal rate achievable by an interactive coding

scheme for any binary error channel with random or oblivious errors is 1−Θ(
√
ε) for a noise

rate ε → 0. This also holds for for fully adversarial binary error channels if the adversary is

computationally bounded or if parties have access to shared randomness that is unknown to the

channel.

For the remainder of this section, we assume that Haeupler’s conjecture holds for any algorithm

that succeed with high probability in L with an expected cost of at most L′ under adversarial noise.

For ease of exposition, we omit such statements in all of our claims below. By robust interactive

communication, we mean interactive communication tolerates T errors.

We begin by showing the near optimality with respect to the communication rate achieved:

Theorem 4.9.3. Any algorithm for robust interactive communication must have L′= L+Ω
(
T +
√

LT
)

for some T ≥ 1.

Proof. Let T ≥ 1 be any value such that T/L′ = o(1). Then, Haeupler’s Conjecture applies and

the expected total number of bits sent is L′ ≥ L/(1− d
√
ε) for some constant d > 0. Noting

that 1/(1 − d
√
ε) ≥ 1 + d

√
ε by the well-known sum of a geometric series, this implies that

L′ ≥ L/(1− d
√
ε) ≥ (1 + d

√
ε)L = (1 + d

√
T/L′)L since ε = T/L′.

This implies that L/L′ ≤ 1/(1+ d
√

T/L′). Now observe that 1/(1+ x) = 1/(1− (−x)) ≤ 1− x +

x2 for |x | < 1, again by the sum of a geometric series. Plugging in d
√

T/L′ for x, we have 1/(1 +

d
√

T/L′) ≤ 1− d
√

T/L′+ d2(T/L′). Therefore, L/L′ ≤ 1− d
√

T/L′+ d2(T/L′) = 1−d
√

T/L′(1−

d
√

T/L′) ≤ 1− d′
√

T/L′ for some d′ > 0 depending only on d.

We then derive: L ≤ L′(1− d′
√

T/L′) = L′ − d′
√

L′T . It follows that L′ ≥ L + d′
√

L′T =

L +Ω(
√

LT) since L′ ≥ L.

Finally, we show that
√

LT = Θ(T +
√

LT). Assume that given any algorithm A for interactive

computation, we create a new algorithm A’ that has expected value of L′ = O(L). To do this, A’

checks based on ε and L whether or not Haeupler’s algorithm [Hae14] will send fewer bits in

expectation than A. If so it runs Haeupler’s algorithm. Note that the expected number of bits sent by

A’ is no more than the expected number of bits sent by A.

Note that T = εL′ and for algorithm A’, the expected value of L′ = O(L). This implies that

implies that T = εO(L) or T = O(L). Since T < L, it holds that
√

LT = Θ(T +
√

LT) which

completes the proof. �

127

4.10 Conclusion

We have described the first algorithm for interactive communication that tolerates an unknown

but finite amount of noise. Against an adversary that flips T bits, our algorithm sends L +

O
(√

L(T + 1) log L +T
)

bits in expectation where L is the transcript length of the computation. We

prove this is optimal up to logarithmic factors, assuming a conjectured lower bound by Haeupler.

Our algorithm critically relies on the assumption of a private channel, an assumption that we show

is necessary in order to tolerate an unknown noise rate.

Several open problems remain including the following. First, can we adapt our results to

interactive communication that involves more than two parties? Second, can we more efficiently

handle an unknown amount of stochastic noise? Finally, for any algorithm, what are the optimal

tradeoffs between the overhead incurred when T = 0 and the overhead incurred for T > 0?

128

Chapter 5

Conclusion and Open Problems

In this dissertation, we have studied secure distributed protocols in the unbounded adversarial model

and the rational model. We designed a protocol that solves the MPC problem in polylogarithmic

communication and computation cost and is secure against an adversary than can corrupt a third

of the parties. We adapted our synchronous MPC protocol to the asynchronous setting when the

fraction of the corrupted parties are less than 1/8. Additionally, we presented a scalable protocol

that solves the secret sharing problem between rational parties in polylogarithmic communication

and computation cost.

Furthermore, we presented a protocol that can solve the interactive communication problem over

a noisy channel when the noise rate in unknown. In this problem, we have focused on the cost of the

protocol in the resource-competitive analysis model. Unlike classic models, resource-competitive

models consider the cost that the adversary must pay to succeed in corrupting the protocol.

In the rest of this chapter, we propose a few open problems related to the research done in this

dissertation. Our final goal is to build a resource-competitive MPC that works over noisy channels.

Each subsection is a step toward this goal.

5.1 Two Party Computation Over a Noisy Channel

Can we run a secure two party computation (2PC) over a noisy channels? Most 2PC papers assume

the channel between the parties is noise-free. However, in practice that is not the case and there

might be random or even adversarial noise over the channel. This means that we need a mechanism

to simulate the 2PC protocol that is correct and secure over a noise-free channel such that it is also

correct and secure over noisy channel. One simple method for that is to use error-correcting code

for each message of the 2PC protocol. As we talked about it in Section 4, this method is not efficient

129

since we need to send at least log n extra bits for each message even if the message itself is only one

bit.

The idea is how to adapt an efficient protocol for interactive communication such as our result

in Section 4 to simulate a secure 2PC. Note that this method and similar methods critically rely on

computing blocks of the protocol more than once. Since the overall picture of the algorithm is that

compute one block of the protocol, if an error happens, compute the same block again. If there is no

error, move to the next block.

However, if parties have a 2PC protocol that is correct over a noise-free channel, they cannot

simply use a recent and efficient algorithm to simulate it over the noisy channel. This is because it

might breach the privacy by computing some part of the 2PC protocol twice or more. Therefore, the

interesting question is to see if we can extend our results for interactive communication while make

sure we do not give up privacy. Our goal here is to design a 2PC protocol that works over noisy

channel.

5.2 Cost-Competitive MPC Over Secure Channels

One interesting direction is to see if a standard MPC protocols can be analyzed in the cost-

competitive setting. The cost to the adversary in MPC can be modeled as the cost of obtaining

control over each node for each round. The goal is designing a protocol that costs more when the

adversary is making many corruptions and costs less when the adversary remains passive. The

difference between interactive computation and MPC is that in interactive computation, we assume

parties are honest, but the channel is not reliable. In MPC, however, the computation is performed

in the presence of dishonest parties but with secure channels. Thus, addressing privacy is the most

challenging problem in this setting since it is not easy to detect when the adversary eavesdrops. We

suggest two approaches for this problem.

Cheap Curiosity Versus Expensive Bysantine: The first approach is to design a MPC protocol

that handles Byzantine nodes as efficiently as honest-but-curious nodes. Our intuition for this

approach is that most algorithms cost less in dealing with honest-but-curious parties and addressing

Byzantine faults is more expensive. To deal with the Byzantine case, the verification step is the

most expensive part. The idea is to start the protocol with a weak but cheap verification scheme by

assuming the parties are honest but curious in the start. Then parties can check if the other parties

cheat or not. The hope is to develop an easy sub-protocol for this check. Parties keep a measure for

how honest other parties are. Then, based on this honesty measure, they can run a more complicated

130

but more expensive method for verification. Our goal is to decrease the cost in practice or at-least

have a protocol in which enforces the parties to remain honest by making it expensive for them to

cheat.

Limited Communication Model: The second approach is to exploit the similarities between

taking control over a node to do active corruptions and flipping bits of its channels, specifically

when the degree of each nodes and the message size is logarithmic. This modeling can help us to

reduce the problem to the interactive computation problem over noisy channels and use a parametric

algorithms. We assume our algorithm spends α (a parameter) and we like to guarantee that any

adversary must spend ω(α) (e.g. α3) to break privacy.

5.3 Cost-Competitive MPC over Noisy Channels

Finally, is it possible to build a scheme for MPC in the cost-competitive model, where the adversary

is able to take control over both parties and channels? In this setting, the adversary’s total cost is the

cost of obtaining control over a party plus the cost of corrupting channels in each round. Generally

speaking, solving MPC when the adversary has the power to corrupt the channels is a difficult task.

Jain et al. [JKL11] show how to convert any n-party protocol into one that is resilient to a 1/n-

fraction of adversarial error while increasing the communication by only a constant factor. They

prove that this result is optimal.

The difference between their work and what we propose here is threefold. First, the goal here is

solving the problem not for any n-party protocol but for a specific MPC problem in mind. Designing

a specialized solution might be easier than a generalized case. Second, we assume the channels

are private, while Jain et al. consider a general noisy channel. As we showed in Section 4, privacy

might be a crucial assumption here. Third, the focus of this problem is on the cost-competitive

model, which probably allows the protocol to spend more resources if the adversary is willing to

spend more.

131

Bibliography

[Abr74] Milton Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs,

and Mathematical Tables,. Dover Publications, Incorporated, 1974.

[ADGH06] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game

theory: robust mechanisms for rational secret sharing and multiparty computation. In

Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed

computing, pages 53–62. ACM, 2006.

[AHS91] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks and multi-

processor coordination. In Proceedings of STOC’91, pages 348–358. ACM, 1991.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings

of STOC’83, pages 1–9, New York, NY, USA, 1983. ACM.

[AL09] Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational

secret sharing. In Proceedings of the 29th Annual International Cryptology Conference

on Advances in Cryptology, CRYPTO ’09, pages 559–576, Berlin, Heidelberg, 2009.

Springer-Verlag.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations

and Advanced Topics (2nd edition), page 14. John Wiley Interscience, March 2004.

[BCD+09] P. Bogetoft, D. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,

J. Nielsen, J. Nielsen, K. Nielsen, J. Pagter, et al. Secure multiparty computation goes

live. Financial Cryptography and Data Security, pages 325–343, 2009.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation.

In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing,

STOC ’93, pages 52–61, New York, NY, USA, 1993. ACM.

132

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation.

Cryptology ePrint Archive, Report 2014/404, 2014.

[BE14] Mark Braverman and Klim Efremenko. List and Unique Coding for Interactive Com-

munication in the Presence of Adversarial Noise. In Foundations of Computer Science

(FOCS), pages 236–245, 2014.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances

in Cryptology – CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,

pages 420–432. Springer Berlin Heidelberg, 1991.

[BGH13] Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. Fast Byzantine agreement.

In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing,

PODC ’13, pages 57–64, New York, NY, USA, 2013. ACM.

[BGT13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure

multi-party computation: how to run sublinear algorithms in a distributed setting. In

Proceedings of the 10th theory of cryptography conference on Theory of Cryptography,

TCC’13, pages 356–376, Berlin, Heidelberg, 2013. Springer-Verlag.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic en-

cryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference, ITCS ’12, pages 309–325, New York, NY, USA, 2012.

ACM.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for

non-cryptographic fault-tolerant distributed computing. In Proceedings of the Twentieth

ACM Symposium on the Theory of Computing (STOC), pages 1–10, 1988.

[BK12] Zvika Brakerski and Yael Tauman Kalai. Efficient Interactive Coding against Adversar-

ial Noise. In Foundations of Computer Science (FOCS), pages 160–166, 2012.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In

Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing,

STOC ’90, pages 503–513, New York, NY, USA, 1990. ACM.

[BN13] Zvika Brakerski and Moni Naor. Fast Algorithms for Interactive Coding. In Symposium

on Discrete Algorithms (SODA), pages 443–456, 2013.

133

[BR11] Mark Braverman and Anup Rao. Towards Coding for Maximum Errors in Interactive

Communication. In Symposium on Theory of Computing (STOC), pages 159–166,

2011.

[Bra12a] Mark Braverman. Coding for Interactive Computation: Progress and Challenges. In

Communication, Control, and Computing (Allerton), pages 1914–1921, 2012.

[Bra12b] Mark Braverman. Towards Deterministic Tree Code Constructions. In Innovations in

Theoretical Computer Science Conference (ITCS), pages 161–167, 2012.

[BTH07] Zuzana Beerliová-Trubíniová and Martin Hirt. Simple and efficient perfectly-secure

asynchronous MPC. In Proceedings of the Advances in Crypotology 13th Interna-

tional Conference on Theory and Application of Cryptology and Information Security,

ASIACRYPT’07, pages 376–392, Berlin, Heidelberg, 2007. Springer-Verlag.

[BW86] E Berlekamp and L Welch. Error correction for algebraic block codes, US Patent

4,633,470, December 1986.

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and Applications: Thesis. PhD

thesis, Weizmann Institiute of Science, 1995.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal

of Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: a new paradigm for cryptographic

protocols. In Proceedings of the 42nd Annual Symposium on Foundations of Computer

Science, FOCS ’01, pages 136–145, Oct 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure

protocols. In Proceedings of the Twentieth Annual ACM Symposium on Theory of

Computing (STOC), pages 11–19, 1988.

[CCG+14] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail

Ostrovsky, and Vassilis Zikas. Optimally resilient and adaptively secure multi-party

computation with low communication locality. Cryptology ePrint Archive, Report

2014/615, 2014.

[CD89] B. Chor and C. Dwork. Randomization in Byzantine agreement. Advances in Comput-

ing Research, 5:443–498, 1989.

134

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. De-

tection of algebraic manipulation with applications to robust secret sharing and fuzzy

extractors. In Advances in Cryptology–EUROCRYPT 2008, pages 471–488. Springer,

2008.

[CDG88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty computations

ensuring privacy of each party’s input and correctness of the result. In A Conference on

the Theory and Applications of Cryptographic Techniques on Advances in Cryptology,

CRYPTO ’87, pages 87–119, London, UK, UK, 1988. Springer-Verlag.

[CFGN96] R. Canetti, U. Friege, O. Goldreich, and M. Naor. Adaptively secure multi-party

computation. Technical report, Cambridge, MA, USA, 1996.

[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous multiparty compu-

tation with linear communication complexity. In Yehuda Afek, editor, Distributed

Computing, volume 8205 of Lecture Notes in Computer Science, pages 388–402.

Springer Berlin Heidelberg, 2013.

[CL95] Jason Cooper and Nathan Linial. Fast perfect-information leader-election protocol with

linear immunity. Combinatorica, 15:319–332, 1995.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with optimal

resilience. In STOC, pages 42–51, 1993.

[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-

chronous multiparty computation: Theory and implementation. In Proceedings of the

12th International Conference on Practice and Theory in Public Key Cryptography:

PKC ’09, Irvine, pages 160–179, Berlin, Heidelberg, 2009. Springer-Verlag.

[DHM+15] Varsha Dani, Tom Hayes, Mahnush Mohavedi, Jared Saia, and Maxwell Young. In-

teractive Communication with Unknown Noise Rate. In Proceedings of the 36th

International Colloquium on Automata, Languages and Programming (ICALP), pages

575–587, 2015.

[DI06] I. Damgård and Y. Ishai. Scalable secure multiparty computation. Advances in

Cryptology - CRYPTO 2006, pages 501–520, 2006.

135

[DIK+08] I. Damgård, Y. Ishai, M. Krøigaard, J. Nielsen, and A. Smith. Scalable multiparty

computation with nearly optimal work and resilience. Advances in Cryptology –

CRYPTO ’08, pages 241–261, 2008.

[DKMS12] Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Brief announcement:

breaking the o(nm) bit barrier, secure multiparty computation with a static adversary.

In Proceedings of the 2012 ACM symposium on Principles of distributed computing,

PODC ’12, pages 227–228, New York, NY, USA, 2012. ACM.

[DKMS14] Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Quorums quicken

queries: Efficient asynchronous secure multiparty computation. In Distributed Com-

puting and Networking, volume 8314 of Lecture Notes in Computer Science, pages

242–256. Springer Berlin Heidelberg, 2014.

[DMRS11] V. Dani, M. Movahedi, Y Rodriguez, and J. Saia. Scalable Rational Secret Sharing.

In Proceedings of the thirtieth annual ACM symposium on Principles of distributed

computing. ACM, 2011.

[DN07] I. Damgård and J.B. Nielsen. Scalable and unconditionally secure multiparty com-

putation. In Proceedings of the 27th annual international cryptology conference on

Advances in cryptology, pages 572–590. Springer-Verlag, 2007.

[Far88] R.W. Farebrother. Linear Least Squares Computations. Statistics: A Series of Text-

books and Monographs. Taylor & Francis, 1988.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In FOCS, pages 142–153, 1999.

[FGOS15] Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard Schulman. Optimal Cod-

ing for Streaming Authentication and Interactive Communication. IEEE Transactions

on Information Theory, 61(1):133–145, 2015.

[FHK14] Ofer Feinerman, Bernhard Haeupler, and Amos Korman. Breathe before speaking: effi-

cient information dissemination despite noisy, limited and anonymous communication.

In Principles of Distributed Computing (PODC), pages 114–123. ACM, 2014.

[FKN10] Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret

sharing in standard communication networks. In Proceedings of the 7th international

conference on Theory of Cryptography, TCC’10, pages 419–436, Berlin, Heidelberg,

2010. Springer-Verlag.

136

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for Byzantine agreement. In

Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC

’88, pages 148–161, New York, NY, USA, 1988. ACM.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of

the 41st annual ACM symposium on Theory of computing, STOC ’09, pages 169–178,

New York, NY, USA, 2009. ACM.

[GH13] Mohsen Ghaffari and Bernhard Haeupler. Optimal Error Rates for In-

teractive Coding II: Efficiency and List Decoding, 2013. Available at:

http://arxiv.org/abs/1312.1763.

[GHS14] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal Error Rates for

Interactive Coding I: Adaptivity and Other Settings. In Symposium on Theory of

Computing (STOC), pages 794–803, 2014.

[GHY88] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation: Secure faut-

tolerant protocols and the public-key model. In A Conference on the Theory and

Applications of Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87,

pages 135–155, London, UK, UK, 1988. Springer-Verlag.

[GK06] S. Gordon and J. Katz. Rational secret sharing, revisited. Security and Cryptography

for Networks, pages 229–241, 2006.

[GKLL09] R. Geambasu, T. Kohno, A.A. Levy, and H.M. Levy. Vanish: Increasing data privacy

with self-destructing data. In Proceedings of the 18th conference on USENIX security

symposium, pages 299–316. USENIX Association, 2009.

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and Explicit Coding for Interactive

Communication. In Foundations of Computer Science (FOCS), pages 768–777, Oct

2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In

Proceedings of the nineteenth annual ACM symposium on Theory of computing, STOC

’87, pages 218–229, New York, NY, USA, 1987. ACM.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious

RAMs. J. ACM, 43(3):431–473, May 1996.

137

[Gol00] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University

Press, New York, NY, USA, 2000.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-

bridge University Press, New York, NY, USA, 2004.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track

multiparty computations with applications to threshold cryptography. In Proceedings

of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing,

PODC ’98, pages 101–111, New York, NY, USA, 1998. ACM.

[Hae14] Bernhard Haeupler. Interactive channel capacity revisited. In Foundations of Computer

Science (FOCS), pages 226–235. IEEE, 2014.

[HKI+12] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Prac-

tically efficient multi-party sorting protocols from comparison sort algorithms. In

Information Security and Cryptology – ICISC 2012, volume 7839 of Lecture Notes in

Computer Science, pages 202–216. Springer Berlin Heidelberg, 2012.

[HT04] J. Halpern and V. Teague. Rational secret sharing and multiparty computation: extended

abstract. In Proceedings of the thirty-sixth annual ACM symposium on Theory of

computing, page 632. ACM, 2004.

[JKL11] Abhishek Jain, Yael Tauman Kalaiy, and Allison Lewkoz. Interactive coding for

multiparty protocols, 2011.

[KLR10] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure

protocols and security under composition. SIAM Journal on Computing, 39(5):2090–

2112, March 2010.

[KLST11] Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. Load balanced

scalable Byzantine agreement through quorum building with full information. In

Distributed Computing and Networking, volume 6522 of Lecture Notes in Computer

Science, pages 203–214. Springer Berlin Heidelberg, 2011.

[Klu95] Michael Richard Klugerman. Small-depth Counting Networks and Related Topics.

PhD thesis, Cambridge, MA, USA, 1995. Not available from Univ. Microfilms Int.

[KN08] G. Kol and M. Naor. Games for exchanging information. In Proceedings of the 40th

annual ACM symposium on Theory of computing, pages 423–432. ACM, 2008.

138

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumer-

ical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1997.

[KP92] Michael Klugerman and C. Greg Plaxton. Small-depth counting networks. In Proceed-

ings of STOC’92, pages 417–428, 1992.

[KS10] V. King and J. Saia. Breaking the O(n2) bit barrier: scalable byzantine agreement with

an adaptive adversary. In Proceeding of the 29th ACM SIGACT-SIGOPS symposium

on Principles of distributed computing, pages 420–429. ACM, 2010.

[KSSV06a] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In

Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm,

SODA ’06, pages 990–999, Philadelphia, PA, USA, 2006.

[KSSV06b] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable

computation in peer-to-peer networks. In Proceedings of the 47th Annual IEEE

Symposium on Foundations of Computer Science, FOCS ’06, pages 87–98, Washington,

DC, USA, 2006. IEEE Computer Society.

[LLR06] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated

Byzantine agreement. J. ACM, 53(6):881–917, November 2006.

[LT06] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-

party computation. Advances in Cryptology - CRYPTO 2006, pages 180–197, 2006.

[MS14] Cristopher Moore and Leonard J. Schulman. Tree Codes and a Conjecture on Expo-

nential Sums. In Innovations in Theoretical Computer Science (ITCS), pages 145–154,

2014.

[MSZ15] Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Scalable multi-party shuffling. In

International Colloquium on Structural Information and Communication Complexity

(SIROCCO 2015), Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2015.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing: randomized algo-

rithms and probabilistic analysis. Cambridge University Press, New York, 2005.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and

applications. SIAM Journal on Computing (SICOMP), 22(4):838–856, 1993.

139

[ORS09] Rafail Ostrovsky, Yuval Rabani, and Leonard J. Schulman. Error-Correcting Codes

for Automatic Control. IEEE Transactions on Information Theory, 55(7):2931–2941,

2009.

[Pec06] Marcin Peczarski. An Improvement of the Tree Code Construction. Information

Processing Letters, 99(3):92–95, 2006.

[PSR02] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous unconditionally secure

computation: An efficiency improvement. In INDOCRYPT 2002, Lecture Notes in

Computer Science, volume 2551, pages 93–107. Springer-Verlag, 2002.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest

majority. In Proceedings of the twenty-first annual ACM symposium on Theory of

computing, pages 73–85. ACM, 1989.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the

Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[Sch92] L.J. Schulman. Communication on Noisy Channels: A Coding Theorem for Computa-

tion. In Foundations of Computer Science (FOCS), pages 724–733, Oct 1992.

[Sch93] Leonard J. Schulman. Deterministic Coding for Interactive Communication. In

Symposium on Theory of Computing (STOC), pages 747–756, 1993.

[Sha48] Claude E. Shannon. A Mathematical Theory of Communication. Bell System Technical

Journal, 27(3):379–423, 1948.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SR00] K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty distributed

computation. In INDOCRYPT 2000, Lecture Notes in Computer Science, volume 1977,

pages 117–129. Springer-Verlag, 2000.

[WC81] M.N. Wegman and J.L. Carter. New hash functions and their use in authentication and

set equality. Journal of computer and system sciences, 22(3):265–279, 1981.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd

Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 160–164,

Washington, DC, USA, 1982. IEEE Computer Society.

140

[ZTW11] Yun Zhang, Christophe Tartary, and Huaxiong Wang. An efficient rational secret

sharing scheme based on the chinese remainder theorem. In Udaya Parampalli and

Philip Hawkes, editors, Information Security and Privacy, volume 6812 of Lecture

Notes in Computer Science, pages 259–275. Springer Berlin Heidelberg, 2011.

141

