
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2014

DNA Chemical Reaction Network Design
Synthesis and Compilation
M. Leigh Fanning

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Fanning, M. Leigh. "DNA Chemical Reaction Network Design Synthesis and Compilation." (2014).
https://digitalrepository.unm.edu/cs_etds/48

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/48?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Margaret Leigh Fanning

Computer Science

Darko Stefanovic

Shuang Luan

George Lugar

Christof Teuscher

DNA Chemical Reaction Network Design
Synthesis and Compilation

by

M. Leigh Fanning

B.S., Engineering Physics, University of Colorado
M.S., Computer Science, University of New Mexico

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2014

ii

Acknowledgments
Advisor and Dissertation Supervisor Darko Stefanovic,
Associate Professor of Computer Science, University of New Mexico

Committee Member Shuang Luan,
Associate Professor of Computer Science, University of New Mexico

Committee Member George Luger,
Professor of Computer Science, University of New Mexico

Committee Member Christof Teuscher,
Professor of Computer Science, Portland State University

This work was supported by National Science Foundation grants EMT-0829881, CCF-
0829793, 1027877, and 1028238, scholarships from Intel Corporation, and the UNM
Charlotte and William Kraft graduate fellowship.

iii

iii

DNA Chemical Reaction Network Design
Synthesis and Compilation

by

M. Leigh Fanning

B.S., Engineering Physics, University of Colorado
M.S., Computer Science, University of New Mexico

Ph.D., Computer Science, University of New Mexico

Abstract

The advantages of biomolecular computing include 1) the ability to interface with, moni-

tor, and intelligently protect and maintain the functionality of living systems, 2) the ability

to create computational devices with minimal energy needs and hazardous waste produc-

tion during manufacture and lifecycle, 3) the ability to store large amounts of information

for extremely long time periods, and 4) the ability to create computation analogous to

human brain function. To realize these advantages over electronics, biomolecular comput-

ing is at a watershed moment in its evolution. Computing with entire molecules presents

different challenges and requirements than computing just with electric charge. These

challenges have led to ad-hoc design and programming methods with high development

costs and limited device performance. At the present time, device building entails com-

plete low-level detail immersion. We address these shortcomings by creation of a systems

engineering process for building and programming DNA-based computing devices.

iv

iv

Contributions of this thesis include numeric abstractions for nucleic acid sequence and

secondary structure, and a set of algorithms which employ these abstractions. The ab-

stractions and algorithms have been implemented into three artifacts: DNADL, a design

description language; Pyxis, a molecular compiler and design toolset; and KCA, a simula-

tion of DNA kinetics using a cellular automaton discretization. Our methods are applicable

to other DNA nanotechnology constructions and may serve in the development of a full

DNA computing model.

v

Contents

1 Thesis Introduction and Central Question 1

1.1 The Central Challenge for Molecular Computing 3

1.2 Thesis Question . 4

1.3 Platform, Programming, Achievable Computation 6

1.3.1 Deoxyribozyme Computing Platform 6

1.3.2 Deoxyribozyme Computing Components 9

1.3.3 Platform Programming and Instantiation 17

1.3.4 Contrasts with electronic computing 23

1.4 Related Work . 24

2 Abstractions Development 27

2.1 DNA Computing Model Foundations . 27

2.2 Physical-Level Entities and Interactions 29

vi

Contents

2.2.1 Entities . 30

2.2.2 Interactions . 31

2.3 Abstractions . 34

2.3.1 Sequence Abstractions . 37

2.3.2 Structure Abstraction . 40

2.3.3 Abstracting Reactions . 47

3 Algorithms 53

3.1 Sequence Algorithms . 54

3.1.1 FindAllHybrids . 54

3.1.2 Generate Separated DNA Oligonucleotides 62

3.2 Structure Algorithms . 73

3.2.1 ISO/Dot-Parenthesis Conversion 73

3.2.2 Shape Inference . 75

3.3 Binding Characterization . 93

3.3.1 Exhaustive Generation Method For All Possible Structures 97

4 Implementation 105

4.1 DNADL: DNA Description Language 106

4.1.1 Description Levels . 107

vii

Contents

4.1.2 Types and Identifiers . 108

4.1.3 Four Layer Cascade Example 120

4.1.4 Deoxyribozyme Logic Gates . 121

4.1.5 MAYAII revisited . 126

4.2 Examining Cross-Talk Using The Kinetic Cellular

Automaton (KCA) Simulation . 132

4.2.1 DNA Chemistry . 136

4.2.2 Simulation and Modeling Approaches 138

4.2.3 KCA Implementation . 140

4.3 Pyxis . 143

4.3.1 Compiling DNA Systems . 144

4.3.2 Pyxis Features . 145

5 Conclusion 154

5.1 Contributions of Thesis . 155

Appendices 159

A Deoxyribozyme Gate Catalog 160

A.1 Gate Catalog . 160

A.1.1 Gate Schematics . 160

viii

Contents

A.1.2 Gate Sequence Specifications 163

A.1.3 Gate Structure Specification . 174

A.1.4 Gate Stem-Loop Specification 175

A.1.5 Gate-Input Binding Structure Specification 176

A.1.6 Gate-Input Binding Stem-Loop Specification 177

A.1.7 Gate-Substrate Structure Specification 178

A.2 Reactions . 179

A.2.1 Reactions for gates with only positive inputs. 180

A.2.2 Reactions for a gate with a single negative input. 182

A.2.3 Reactions for gates with positive inputs and a single negative input. 183

A.3 Logic Examples . 185

A.3.1 Adders . 185

A.3.2 MAYA2 . 185

A.3.3 Sensor Platform . 188

B Structure Shape and Binding Inference Report 190

B.1 Inference report for multibranch structure. 190

C Four Layer Cascade DNADL File 196

C.1 Four Layer Cascade DDL File . 196

ix

Contents

C.2 Four Layer Cascade Diagrams . 205

C.3 Maya II DDL File . 206

D Deoxyribozyme Gate Evaluation Rules 358

References 365

x

Chapter 1

Thesis Introduction and Central

Question

Engineering is the creative application of scientific principles to design or develop structures, ma-

chines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or

to construct or operate the same with full cognizance of their design; or to forecast their behavior

under specific operating conditions; all as respects an intended function, economics or operation

and safety to life and property. – American Engineer’s Council for Professional Development

Whereas the physical sciences have benefitted from the reductionist approach in under-

standing phenomena, the life sciences are distinctly more complex and challenging to

distill. It is therefore not surprising that computing technologies built using reductionist

physical principles occurred first. Babbage’s Difference and Analytical Engines were ad-

vanced in the age of the steam engine [24]. Turing and Newman’s Colossus and ENIAC

were advanced at the inception of the age of electronics, an age we have not yet left. We

are just now arriving at the biological age, where we can manipulate the building blocks of

life to compute. This age, anticipated by Turing as unorganized systems and Feynman as

1

Chapter 1. Thesis Introduction and Central Question

infinitesimal machines, will irrevocably integrate computing into the fabric of humanity.

Molecular computing as a field has achieved demonstration of solving small instances of

computationally hard problems. For a final design, materials costs are low yet up-front

development and testing costs are high, and worse, the spectacular advantage held by

electronic computing suggests that performance will never catch up and justify current

research dollar expenditures. At the current level of technology, computing with nucleic

acids DNA or RNA, involves low-level detail iteration over long timelines. Designing

individual components and then getting them to work together cohesively defies engineer-

ing approaches that have sufficed for electronic computers. Additionally, although various

architectures have been shown to work for certain problems, problem coverage remains

sparse. Designers of necessity have chosen problems that fit their specific architectures,

and the field lacks the general ability to solve an arbitrary problem on a molecular sub-

strate. Missing are design standards, benchmarks, commonly recognized formalisms, and

well-understood abstractions in the manner of the stored program computer model put

forth by Eckert, Mauchly, and von Neumann [55].

These observations, however, are not made dissuasively. Truly new technology always

suffers in comparisons, yet these comparisons dampen extreme responses. Neither wildly

unrealistic promises on the part of proponents, nor instant dismissal on the part of op-

ponents who may fear change and eventual loss in market dominance, serve purpose in

engineering. Within the current context, comparison to electronic computing and criti-

cal observation of existing development processes help us practically identify the main

difficulties, and what challenges can bear fruit if solved.

2

Chapter 1. Thesis Introduction and Central Question

1.1 The Central Challenge for Molecular Computing

Electronic computing achieved dominance through iterative device performance gains,

where each new plateau enabled solving larger problems. Scaling was achieved by pro-

cess engineering, a science unto itself, that succeeded by narrowing the search of all pos-

sible component configurations and interactions into testable development cycles. These

cycles engendered standards, benchmarks, models, and formalisms which in turn engen-

dered more powerful devices. Molecular computing is at the starting gate of a similar

evolution. To elevate the field beyond demonstration requires generalizing device building

and programming away from niche problems, and providing real computational capability

guarantees over theoretical simulations. The central challenge, at this time, is to initiate

similar scaling to electronics.

At the current level of technology, DNA base components are composable into architec-

tures, each of which support construction and programming for a variety of applications

as shown in Figure 1.1.

junctions deoxyribozymes branch migration

origami tilings cascades logic gates

arithmetic automata classifiers

components

architectures

applications

Figure 1.1: Nucleic acid components can be ultimately organized into programmed con-
structions that execute target applications.

3

Chapter 1. Thesis Introduction and Central Question

Programmed constructions are physically located in reaction vessels and operate as chem-

ical reaction networks. Networks carry their own energy, and lack central control or a

system clock. Reactions are asynchronous, parallel, and possess a large number of variant

pathways. The bootstrap scaling challenge is therefore rooted both in the hardware—

the chemistry of nucleic acids in reaction networks, and in the software—how the chem-

istry can be abstracted to build programmable devices. The end goal is the capability to

transform algorithms written in some appropriate programming language into low-level

chemical instructions ready for laboratory execution. A measure of success is reliable and

repeatable laboratory results that support generalization and standards development.

1.2 Thesis Question

Our thesis research question addresses the bootstrap scaling challenge for molecular com-

puting: What abstraction stack can be built that will facilitate programmable nucleic

acid device construction amenable to standards development and performance guar-

antees?

We take our cue from the history of electronic computing where abstractions are the uni-

fying concept that enabled scaling and standards development. At the present time, we

can easily direct a computer to execute intricate data manipulation to solve arbitrary prob-

lems. We can describe these problems in mathematically inflected human-like languages

and minimally interact with the operational characteristics of the computing machine. Yet

early electronic computers, built with switches, relays, vacuum tubes and magnetic drums

all initially necessitated use of machine languages and hardware manipulation. Over time,

the hardware became more sophisticated and powerful, but equally importantly, people

built up the stack of commensurately sophisticated abstractions to alleviate need of direct

hardware interaction. Further, these abstractions have become so well understood that the

4

Chapter 1. Thesis Introduction and Central Question

hardware is now largely discussed in time and space performance terms. The electronic

computing abstraction stack achieved generalization and scaling that supported creation of

high-level language families, all able to describe arbitrary problems, where each problem

is executable on arbitrary hardware configurations.

Expressive high-level programming languages aimed at molecular computing platforms,

in contrast, are not yet available. Development undertaken by various groups instead

has produced disparate low-level meta-languages [20, 90, 115] that are tightly molded

around their particular and distinctive approaches to molecular computation. As these

meta-languages mature and the field evolves to include more participants, a later heteroge-

neous group of full-fledged languages will presumably be the norm. Our taken approach

acknowledges this context, and instead proceeds from the bottom up. The “bare metal” for

molecular computing are the molecules themselves. Molecules are data, and reactions are

operations on this data. In the physical world, reactions are also probabilistic events that

shift electrons from one configuration to another [126], yet in fantastically large numbers.

Molecular computing means successful orchestration of DNA and RNA physical activity

because both device realization and program execution are functions of this activity.

Our approach is the development of nucleic acid abstractions that capture the relevant

properties and physical effects which are principally responsible for their behaviors. The

abstractions are incorporated into a molecular compiler Pyxis to accomplish systems en-

gineering of nucleic acid chemical reaction networks. Adoption of compilation brings

together both the low-level chemistry, and its programmability, into an abstraction stack.

Each level of the stack organizes previous ad-hoc methods into a pipeline process. To de-

termine the abstraction set, and its logical pipeline organization, a careful study of existing

approaches was made with a focus on deoxyribozymes as the basis components. However,

our abstaction pipeline is not limited to deoxyribozyme architectures. To emphasize this

point, a DNA description language, DNADL, was created to serve as the top level of the

5

Chapter 1. Thesis Introduction and Central Question

abstraction stack. DNADL is similar in flavor to electronic computing assembly code and

is itself designed to serve as a target of a higher-level programming language.

We begin in this chapter with background on how deoxyribozyme-based computing works

in order to provide sufficient foundation for the dissertation. We discuss where the present

state of the art lies and what technical difficulties are present. The artifacts of the disserta-

tion are applicable to any form of DNA computing, or DNA device building. Chapters 2

and 3 cover the abstractions and related algorithms. Chapter 4 covers implementation into

the Pyxis compiler, the KCA simulation, and the DNADL language. Chapter 5 presents a

summary list of contributions.

1.3 Platform, Programming, Achievable Computation

In this section we outline in detail the context for our questions within the confines of

the present state of technological development of deoxyribozyme-based molecular com-

puting. We describe platform characteristics as principally developed by Stojanovic and

Stefanovic [69, 73, 88, 89, 119, 120, 121], programming steps, and what limitations are

present. Additional supporting deoxyribozyme technology development was reported by

Stojanovic, Margolin, and Kolpashchikov [67, 76, 122, 123].

1.3.1 Deoxyribozyme Computing Platform

The basis of all molecular computing, including deoxyribozyme-based architectures, is

chemistry, therefore a new platform is constructed for each computation execution. There

is no notion of a fixed, general purpose assembly. Instead, a well plate provides a matrix

of reaction compartments where one or more wells contain species mixtures (Figure 1.2).

6

Chapter 1. Thesis Introduction and Central Question

Each holds a small volume of buffer liquid and DNA, and there is no flow between them.

Although different computations may be simultaneously occurring in each of the wells,

they are independent and are unable to communicate. This technology limitation precludes

flow of information across wells, and requires some duplication of logic and inputs in each

participating well as a work-around when needed.

xxxxx
xx
xx xxxx

Figure 1.2: 384-well plate using a two color output scheme to signal results of a compu-
tation. Although finite, the combinatorial space of wells and colors leads to significantly
large numbers of interpretable input/output/work patterns. For example, 384 wells limited
to only two marking colors yields 2384 distinct patterns, while increasing to five marking
colors yields 5384 distinct patterns.

DNA species are short single-stranded oligonucleotides and are usually no more than 60-

130 bases long. Each species is introduced in nanomolar to micromolar concentrations

into specially prepared buffers, identically constituted for each participating well. In most

constructions we do not consider the ordering of species introduction, except for species

that are part of the read-out reaction. Depending on viewpoint, this is either a limitation

or a benefit. Oligonucleotides are named and classified according to the function they are

destined to carry out. At present, there are three classes: gates, inputs, and substrates.

7

Chapter 1. Thesis Introduction and Central Question

Gates act as basic units, similar to electronic logic gates used in combinational and se-

quential circuits in digital electronic integrated devices. Gates and inputs work together as

switches to execute Boolean calculations, and gates and substrates work together to signal

the calculation results. All calculations are performed autonomously, without feedback or

guidance from a control system.

The basic gate set (Table 1.1) encompasses sufficient functionality to encode any

Boolean formula. There are two single input gates, YES and NOT, two double input gates,

AND and ANDNOT, and one three input gate, ANDANDNOT. The YES and NOT act analo-

gously to buffer (Ia) and inverter (¬Ia) gates respectively in electronic circuits. The AND

acts as a 2-input Boolean and (Ia∧ Ib), whereas the ANDNOT acts as a 2-input Boolean and

with one input inverted (Ia∧¬Ib) and the ANDANDNOT acts as a 3-input Boolean and with

one input inverted (Ia∧ Ib∧¬Ic).

Basic Deoxyribozyme Logic Gate Components
Single Double Triple

Input Output Input Output Input Output
Ia YES NOT Ia Ib AND ANDNOT Ia Ib Ic ANDANDNOT

0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 0

1 0 0 1 0 1 0 0
1 1 1 0 0 1 1 0

1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 1.1: Logic gates YES (Ia), NOT (¬Ia), AND (Ia ∧ Ib), ANDNOT (Ia ∧¬Ib), and
ANDANDNOT (Ia∧ Ib∧¬Ic) used in encoding single-layer Boolean formulas.

8

Chapter 1. Thesis Introduction and Central Question

1.3.2 Deoxyribozyme Computing Components

Basis Components

Deoxyribozyme logic gates are constructed with DNA enzymes. In both natural and syn-

thetic systems, enzymes serve to catalyze reactions. Most natural enzymes are made of

proteins, some are made of RNA (ribozymes), yet none have yet been found to be made of

DNA (deoxyribozymes). In each case, the role of the biological enzyme is to speed up a

transformative reaction involving nucleic acids such as splicing or cleaving. These trans-

formations use a variety of mechanisms, yet all of them rely on the enzyme’s flexibility

to take on different structural and spatial orientations. This allows the enzyme, typically a

short molecular chain, to properly align with a target substrate molecular chain and maxi-

mally promote intended substrate modification, with rate increases up to a billion-fold over

the uncatalyzed rate as reported by Breaker [15]. Since DNA, like other biomolecules, is

able to fold into a variety of secondary and tertiary structures, chemists have succeeded

in using DNA as a raw material to devise DNA-based enyzmes. These synthetic enzymes

possess functional characteristics similar to their natural protein and RNA-based counter-

parts [16, 105].

DNA enzymes have been designed and tested together with specific short oligonucleotide

substrate molecules to determine the particular sequences capable of cleaving a substrate.

Substrates are composed of either all RNA, or DNA with a single embedded RNA nu-

cleotide. The two enzymes most commonly used in constructing deoxyribozyme logic

gates are the E6 and 8-17 enzymes (Figure 1.3). Each enzyme has an operational depen-

dency that requires introduction of a metal ion to produce catalytic rate gains. This ion can

be incompatible with a living system such as Zn2+, or able to mimic real biological sys-

tem conditions such as Mg2+. After enzyme-substrate binding, substrate cleavage occurs

immediately to the left of the single RNA nucleotide marked in red in both diagrams. The

9

Chapter 1. Thesis Introduction and Central Question

enzyme unbinds, allowing the separated substrate pieces to move apart, and is then ready

to repeat the cycle with additional uncleaved substrate molecules.

5′substrate
G

C

A

T

G

C

A

T

A

T

G

C

A

G

C

G

A
T C

C

G

G
A

A

C

G

G C A C
C

C

A
T

G
T

G rA T A

T

T

A

C

G

A

T

C

G

T

A
5′enzyme

E6 Enzyme and Substrate

5′substrate
X

X′
X

X′
X

X′
X

X′
X

X′
X

X′
X

X′
G

T
C

C
G

A

G C
C

G
G

A C
G

A

rA Y

Y′
Y

Y′
Y

Y′
Y

Y′
Y

Y′
Y

Y′
Y

Y
5′enzyme

′

8-17 Enzyme and Substrate

Figure 1.3: Sequence and structure of the E6 [16] and 8-17 [105] enzymes and substrates,
where each enzyme has a catalytic core (blue) built with a small stem-loop. The cores are
flanked by two binding arms which allow base pairing to the DNA-RNA substrate. The
arm sequences for the E6 are fixed, but are variable for the 8-17 as long as arm-substrate
complementarity is preserved for each domain, and sequence assignments are unique. The
8-17 arm-substrate bonds are placeholders since bond strength is not determined until
subsequence assignment for domains X and Y are made. Each substrate has a central
RNA adenine nucleotide shown in red.

Platform Readout

The E6 and 8-17 enzymes form the basis of deoxyribozyme logic gates. Substrates are

labeled with a fluorophore at the 5’ end and a quencher at the 3’ end to exploit the effect

of Förster Resonance Energy Transfer (FRET) as a means of signaling logical output state

(Figure 1.4).

10

Chapter 1. Thesis Introduction and Central Question

Q
T
C
A
C
T

A
T
rA
G
G
A

A
A
G
A
G

F

Q
T
C
A
C
T

A
T
rA

G
G
A

A
A
G
A
G

F

Figure 1.4: Two common donor (F) and acceptor (Q) pairs are tetramethylrhodamine
(TAMRA) and Black Hole 2 (BH2), and fluorescein and Black Hole 1 (BH1). TAMRA
is excited with light at wavelength λexcitation = 530 nm, and upon separation from the
quencher generates a red light signal at wavelength λemission = 580 nm. Fluorescein uses
input light at wavelength λexcitation = 480 nm, and generates upon separation a green light
signal at wavelength λemission = 530 nm.

11

Chapter 1. Thesis Introduction and Central Question

FRET was first theorized classically by Jean Perrin in 1909 and later given quantum me-

chanical treatment by Förster in 1948 as a non-radiative dipole to dipole electronic energy

transfer mechanism. In 1978 Stryer showed experimental results [125] both proving the

theory and pointing out applicability as a biomolecule spectroscopic ruler since the dis-

tance scales are consistent. Under UV light exposure, fluorophores act as energy donors

and quenchers as non-emitting acceptors. Close proximity and overlap of the donor emis-

sion and acceptor absorption spectra allow sufficient transference of donor energy such

that it appears “quenched” even though there is still some residual donor fluorescence.

In the case of deoxyribozymes [67, 76, 122, 123], the effect provides both an accurate

method to detect the physical state of the substrate and a natural mapping to digital in-

terpretation. An intact substrate has most fluorophore output absorbed and serves as an

off signal. Alternatively, following substrate cleavage, the two halves diffuse away and

allow fluorescence build-up to serve as an on signal. Different fluorophores and appropri-

ate quenchers can be successfully attached to substrates, and since each fluorophore emits

in a different part of the spectrum, there is greater flexibility in output expression and the

possibility of synthesizing and programming a system employing multi-valued logics.

Applications typically signal one color in each well for the duration, yet the output signal

capacity can be expanded beyond base-2 digits used in electronic computing. Experimen-

tal results have shown that the signalling logic can reliably employ up to five colors in

each individual well used in two different ways. The first way allows for simultaneous

presence of multiple substrates, each with different fluorophore-quenchers, such that the

signal can be one of five different colors. This arrangement yields a possible base-5 digit

per well. The second way is an extension of the first and uses additional programming

of the plate reader to allow multicolor output where the main technical issue becomes vi-

sual color disambiguation. If all possible combinations are considered, a base-31 digit is

conceivable since there are ∑
5
i=1
(5

i

)
= 5+10+10+5+1 = 31 separate ways to combine

12

Chapter 1. Thesis Introduction and Central Question

colors as singles, doubles, triples, quadruples, and the final quintuple. If absence of a color

is designated as a signal, then the base capacity of each digit scheme increases by one.

For all of the variations, output signals are persistent since gates do not yet possess reliable

reset functionality, a limiting characteristic which has obvious implications for arranging

computation. Figure 1.5 shows an example of fluorescence emissions over time, where

observations are taken every fifteen minutes until saturation. Estimated product yield as

the concentration of cleaved substrate with the attached fluorophore may be computed at

each time point. This is accomplished using the initial substrate concentration, the series

of fluorescence readings over the reaction period, and a baseline set of readings at known

different product concentrations. Overall reaction times may extend to three hours.

0
1
2
3
4
5
6
7
8
9

10

15 30 45 60 75 90 105 120 135 150

Fl
uo

re
sc

en
ce

Time (minutes)

No Input

With Input

Figure 1.5: Rate of fluorescence gain, ∆ f/∆t, normalized to arbitrary units vs. time t. Sig-
nal strength varies with FRET fluorophore/quencher characteristics and does not achieve
consistent maxima, therefore low and high thresholds for each FRET pair must be defined
to distinguish 0 and 1 signals from intermediate values indicative of an error status.

Mapping to Two State Logic and Boolean Formulas

Treating the physical condition of substrate molecules as a two state system, with FRET as

a read-out method, is not unlike the mapping of 0 and 1 states to high and low voltages in

electronic circuits. A variety of methods [67, 119] have been developed to control access

to the substrate binding regions by the enzyme, yielding the ability to transduce inputs

13

Chapter 1. Thesis Introduction and Central Question

into outputs corresponding to various Boolean logic connectives. The simplest method is

to add one or two stem loops to the 5′ and 3′ ends of the enzyme molecular chain, such

that for each involved stem, one of its single strands possesses the same substrate subse-

quence. The reverse complementarity between stems and enzyme effectively sequesters

these regions, termed critical regions, and precludes the enzyme to substrate binding re-

action as long as the stem is intact. Hybridization between complementary subsequences

again plays a pivotal role as a control mechanism. If one (YES gates) or two (AND gates)

input oligonucleotides which are the reverse complements to the loop regions are intro-

duced they will bind to the loops, pull the stems apart, and reverse the situation. The

secondary enzyme-substrate binding reaction may then proceed, and further, we see that

the 0-1 mapping applies to both the substrate and stem-loop physical state. When a gate

is activated, the appropriate inputs have been introduced in solution and subsequent sub-

strate cleavage generates an output signal. When a gate is not activated, stems remain

intact and no cleavage reactions occur. Each input acts as a logical input, therefore the

single input YES gate requires only one stem-loop, while the double input AND gate re-

quires two stem-loops. The expected hybridization bindings, input-loop first, followed by

enzyme-substrate, must have a majority response for all participating strands in solution

in order to generate an unequivocal FRET output signal. AND-gates with only one input

introduced are not able to bind to both substrate ends, therefore cleavage and signaling are

prevented.

A different method [119] is used to alter the enzyme-substrate binding reaction to create

negation used in the NOT gate, ANDNOT gate, and ANDANDNOT gate. These gates behave

as input inverting rather than output inverting since negation of an input is recognized.

Input negation is created by use of the E6 enzyme (the 8-17 is unable to support this func-

tion), where a much larger stem-loop structure is substituted for the small inner loop of

the enzyme. This provides a similar recognition mechanism for gate activation as in the

14

Chapter 1. Thesis Introduction and Central Question

YES gate and AND gate architectures. Without introduction of input complementary to

the inner enzyme loop region, the gate is already activated and generates an output signal.

Conversely when input is added, the enzyme core deforms, leading to gate deactivation

and loss of output signal. Therefore absence of input maps to an on state, and presence of

input maps to an off state. The ANDNOT and ANDANDNOT gate designs combine the en-

zyme core modification to handle negation of one of the inputs with one or two additional

stem-loops added to the enzyme binding arms to handle the single or dual positive inputs

respectively.

A third class of gates [69] includes pre-complexed gates where loop regions and partial

stem sections are hybridized to additional complementary oligonucleotides prior to intro-

duction of inputs. This negates activating stem-loops attached to enzyme ends, or the sin-

gle inhibiting stem-loop attached to the enzyme core region. Starting with the ANDAND-

NOT gate equivalent to Ia∧ Ib∧¬Ic, a covering complement containing the Ic subsequence

deforms the enzyme core region, rendering it deactivated. Upon introduction of the shorter

Ic input, the Ic:Ic binding pulls off the deformative blocking oligonucleotide to allow en-

zyme core refolding back to its active state. Overall, the ANDANDNOT (Ia∧ Ib∧¬Ic) gate

becomes an ANDAND (Ia ∧ Ib ∧ Ic) gate, to yield full three-input logic. Similarly, block-

ing oligonucleotides may be introduced to pre-bind to one of the activating stem-loops

to modify positive activation into negative inhibition. In this variation the ANDANDNOT

(Ia ∧ Ib ∧¬Ic) gate becomes an ANDNOTANDNOT (Ia ∧¬Ib ∧¬Ic) gate where two inputs

rather than one are negated.

Component Modularity

All deoxyribozyme gate components are largely modular and may be switched out to op-

timize functionality. YES and AND gates may use either DNA enzyme, while the rest must

15

Chapter 1. Thesis Introduction and Central Question

use the E6. Additionally, there is flexibility in designing the YES gates. Because only one

stem-loop is required it is possible to place it on either side of the enzyme: when it occurs

before the enzyme at the 5’ end, it is unofficially termed a LEFT-YES gate, and when it

occurs after the enzyme at the 3’ end it is termed a RIGHT-YES gate. Positive input stem-

loops for the AND gate may be switched so that a gate encoding Ia ∧ Ib becomes Ib ∧ Ia.

The same holds true for the ANDANDNOT gate where Ia∧ Ib∧¬Ic is logically equivalent

to Ib∧ Ia∧¬Ic. The full suite of the basic designs is shown in Appendix A.1.

The largest source of modularity arises from the loop recognition regions of each gate

stem-loop. Tremendous freedom appears possible in making up the loops since the number

of subsequence choices for a single oligonucleotide is exponential in the length n of its

string of bases (Σ = {A,C,G,T)}, 4n strings). Typically these loops are fifteen nucleotides

long, therefore each stem-loop may be parameterized with up to 415 different subsequence

assignments. Selection of these subsequences from such a large space is a central design

problem for architecting individual gates and specifying entire systems.

Platform Kinetics

The basic reaction sequences for all Table 1.1 gates are shown in Appendix A.2. In prac-

tice, several important experimental observations have been noted. First, the rate limiting

step for all deoxyribozyme reactions is the catalytic gate-input-substrate complex reaction

which cleaves the substrate [82]. Second, reactions are sensitive to species initial con-

centrations and it is not the case that selectively increasing concentrations yields more

products or faster results. On the contrary, the desired general three-step procedure ini-

tiated with gate activation, and completed with substrate signalling, can sometimes be

fatally perturbed in unknown ways and not generate the desired reactions. This is not a

limitation of the technology per se, rather it is an indicator of how difficult it is to capture

16

Chapter 1. Thesis Introduction and Central Question

and examine nanometer-scale behaviors in order to finely tune them. Silverman [117] has

bluntly pointed out the need for “structural and mechanistic investigations of DNA cat-

alysts,” while Halász [5] has noted the existence of experimentally inaccessible reaction

mechanisms. All reactions are as well part of a dynamic liquid system and subject to diffu-

sion. The correct gate, input and substrate molecules must find each other in solution while

undergoing collisions with all other well species and water molecules, therefore there is

constant competition for binding opportunities, as well as dissolution of bound regions.

Platform kinetics are equal in importance to gate design when devising a system. The

speed of the slowest reaction dictates the overall speed of the entire computation for sin-

gle layer logic programs, and will be the execution time bottleneck for multi-layer logic

programs. Various approaches have been undertaken which simulate chemical system evo-

lution in terms of likely reactions, initial species concentrations, and rates where they are

known. Simulation codes such as COPASI [60], DSD [91], and ENZO [11] are valuable if

they can be provided with good input data. We have equally treated kinetics using a sim-

ulation approach and incorporated a kinetics pass for estimation of intermediate product

yields within the compiler pipeline.

1.3.3 Platform Programming and Instantiation

Using the catalog of deoxyribozyme gate architectures, platform construction and pro-

gramming tasks are divisible into two groups roughly equivalent to the compiler front and

back ends used in electronic computing. Front-end type tasks involve determining the

total number of required wells, determining the logic formulas for each well, converting

the formulas into disjunctive normal form (DNF), and then finally converting each DNF

clause as needed into an equivalent expression involving only the logic connectives avail-

able in the gate design catalog. Previous applications have all been single-layer logic such

17

Chapter 1. Thesis Introduction and Central Question

that the series of disjuncts act as an or over all clauses. Back-end type tasks involve mak-

ing instantiation choices to effect each intended Boolean formula. These include selecting

an enzyme, choosing one or more fluorophore-quencher pairs, and making an assignment

of DNA subsequences for all inputs and therefore also their corresponding reverse com-

plements within the loop regions of each gate stem-loop. Because there is potential for

unwanted hybridization reactions happening along with the directed ones, the assignment

problem is non-trivial.

There is a certain level of freedom in specifying a system. Unlike electronic computing,

where there is a fixed number of bits per word per architecture, and a large but finite mem-

ory, we can assume there is no practical limit to deoxyribozyme platform size. There are

several ways a platform may be measured, and with each there is the possibility of scaling.

We place no limit on the size of the Boolean expressions in each well, nor on the number of

participating wells, nor on the interpretation of well-plate signal patterns. Although now

execution is typically worked out by a human technician, we further assert that any arbi-

trary assignment of substrate, gate and input oligonucleotides, into any number of wells,

can be adequately executed as needed instead by use of robotics or other automated means.

To show the range of practical computing capability, and exemplify the high-level pro-

gramming steps, we briefly outline previously built systems, and discuss one in develop-

ment. In each of these successes, the engineering effort to solve the required low-level

design and optimization tasks was challenging, yet each computation is inspiring and

thought-provoking, and quickly suggests other interesting and practical problems which

could be similarly worked out.

18

Chapter 1. Thesis Introduction and Central Question

Digital Logic Programming

A deoxyribozyme-based half-adder was reported by Stojanovic and Stefanovic [120], and

a full adder was reported by Lederman [69]. The half-adder handled two single bit in-

puts, while the full adder handled three single bit inputs, each producing correct sum and

carry digits interpreted from signaling the results of input summation encoded into simple

Boolean formulas. In these platforms all computation took place in a single well, using

the truth tables shown in Figure 1.2.

Adder Logic Truth Tables
Device Input Output Interpretation

i1 i2 i3 Carry Sum Base 2

Half Adder

0 0 - 0 0 00
0 1 - 0 1 01
1 0 - 0 1 01
1 1 - 1 0 10

Full Adder

0 0 0 0 0 00
0 0 1 0 1 01
0 1 0 0 1 01
0 1 1 1 0 10
1 0 0 0 1 01
1 0 1 1 0 10
1 1 0 1 0 10
1 1 1 1 1 11

Table 1.2: The half adder processed two inputs to produce two outputs, while the full adder
processed three inputs to produce two outputs. For each, the sum output was signaled in
red through use of fluorophore TAMRA and quencher BH2, while the carry output was
signaled in green through using fluorescein and BH1. For the full adder, the well plate
reader was programmed to allow dual signal acquisition of simultaneous fluorescence of
both fluorophores.

The half adder used two ANDNOT gates to produce an XOR for the Sum output and a single

AND gate for the Carry output. The full adder used three pre-complexed ANDNOTANDNOT

19

Chapter 1. Thesis Introduction and Central Question

gates, and one pre-complexed ANDAND gate to compute the Sum output. Three AND gates

were used to compute the Carry output. The full formulas logically encoding the truth

tables are shown in Appendix A.3.1.

Game Programming

Three different game playing automata have been demonstrated, all termed Molecular

Array of Yes and And Gates (MAYA). MAYA1 (Stojanovic and Stefanovic [121]), and

MAYA2 (Macdonald [73]), played tic-tac-toe without losing for all possible game varia-

tions by transforming a non-losing strategy into Boolean formulas. The third automaton,

MAYA3 (Pei [89]), improved the demonstration of synthetic intelligence by exhibiting the

ability to learn from a human guided training period to play a game of tit-for-tat. Each

of the MAYAs used multiple wells, with different formulas encoded per well. The choice

of games reflects the limitation of persistent signaling, since game play involved claim-

ing board squares only once. In contrast to the adders, the programming inception point

was not a truth table. Instead, the natural beginning was the game decision tree, from the

perspective of the automaton. We focus on the second generation tic-tac-toe automaton

MAYA2 to show the leap in complexity.

MAYA2 made a single initial assumption of the automaton playing first in the middle

square. From this point on, each possible human move and the optimal strategic response

was determined and diagrammed as a set of decisions. The decision tree was captured as

a Mealy machine where nodes represented the historical set of moves already played, and

edges represented the next possible human/automaton move pairs as Mealy machine input

and outputs. We recall that Mealy machines act as deterministic finite transducers which

convert strings in one language into strings of either the same or a different language.

For the MAYA2 game, input and output strings (Σ = {1, . . . ,9} \ {5}) represented the

20

Chapter 1. Thesis Introduction and Central Question

concatenated set of human and automaton moves respectively, and the labeling of nodes

with substring pairs served as a form of memory: it was encoded into the automaton

logic to always “know” what had been already played. Each well signaled a single move

by either player, therefore two output colors were required to distinguish moves. Using

the input to output transduction encoded in the Mealy diagram, automaton moves were

mapped onto Boolean formulas, and then simplified to a form expressible using only the

YES, AND, and ANDNOT gates. Human moves were appended as single variable clauses

expressed using YES gates. The final formulas for each well are shown in Appendix A.3.2.

Sensor Platform Programming

Our third and final example is a project in development where recognition of inputs and

signaling using only YES gates is the basis for a DNA-level virus detection platform. The

platform will act as a molecular quorum sensing device able to make decentralized de-

cisions based on achieving sensing thresholds. The platform is intended to be used in

austere environments and rely little on up-front sample preparation or sophisticated oper-

ator training. Conceptually, the logic is straightforward: Istrain1∨ Istrain2∨ ·· ·∨ IstrainN for

N viral strains in a single well for the simplest possible implementation. Since YES gates

signal on in the presence of activating input, the gates can act as sensors to indicate pres-

ence or absence of pathogens. The platform requires a bioinformatics effort to determine

representative reverse complement 15-mer subsequences to place in the loop region of the

single attached stem-loop in each gate. Depending on the genomic separation of strains

the detector covers, multiple signature subsequences might be required for unequivocal

discrimination. With a single well approach, signalling requires N different substrates la-

belled with non-overlapping FRET fluorophore/quencher pairs. Yet this would be prone to

interpretation error on the part of the human user, hence we instead exploit the flexibility of

arranging gates within multiple wells. With careful programming we can distribute gates

21

Chapter 1. Thesis Introduction and Central Question

such that positive identification is displayed in a dot-matrix readout as shown in Figure

1.6. This illustrates a unique platform characteristic — by shifting more programming ef-

fort onto the platform, a computation output can be immediately readable in any language

or number system. Formulas for the figure example are shown in Appendix A.3.3.

xx
xx
x

xx
xx
xx
x

xx
xx
x

xx
xx
x

xx
xx
xxxx xx

xx
x

Figure 1.6: Example output for positive viral strain detection. Programming involves dis-
tributing YES gates for each strain covered by the detector platform such that simultaneous
signaling in multiple wells creates a human readable identification string in a dot-matrix
display.

22

Chapter 1. Thesis Introduction and Central Question

1.3.4 Contrasts with electronic computing

The short history of molecular computing shows essentially the same challenges facing

engineers 60 years ago when computer science started branching from logic and com-

putability questions into making real machines and devising practical applications. How

can the execution of algorithms be worked out on a device consisting of molecules in so-

lution? The state of the art in molecular computing, now, is really all about designing

and building circuits. To understand this claim, we find similar status in the early days

of electronic computing when we recall that in 1947, the US Army had a very new and

exciting tool at its disposal. The Electronic Numerical Integrator and Computer, ENIAC,

was operated by programmatic control of memory. A program input signal stimulated the

unit to perform [23]. A single function, as selected from a table of functions, required

presetting of switches to prime circuits responsible for executing the function. Output,

as the result of applying the function to the input, was emitted by signal, or the machine

could be instructed to retain this information for later use. Prior to ENIAC deployment, a

function and input written on a piece of paper could have been handed to a human com-

puter with the result handed back on a different piece of paper, and perhaps checked by

an additional person. Indeed, these actions were captured exactly as ENIAC was mod-

eled conceptually by Turing and von Neumann upon human procedures and protocols.

Use of electronics as a computing substrate prevailed over neurons by virtue of scaling

where far larger numbers and more complicated operations on numbers could be worked

out reliably at a much faster rate. The point is not that people were easily overwhelmed

or stupid. Their actions were effectively copied and recreated in painstaking fashion. The

remarkable and unprecendented achievement was that interesting problems could be cast

onto an electronic platform. The mapping of executing mathematics in a device required

methods to represent numbers and their operators, carry out operations in a precise order,

store values, and report them. Since these methods were generalized and not restricted to

23

Chapter 1. Thesis Introduction and Central Question

Molecular Platform Silicon Platform
no clock: reactions initiate and proceed commonly uses a clock signal tied to

an internal crystal resonant frequency
elements carry their own required energy outside power source required
write once read only memory uses an updatable memory
single pass feed-forward only logic multiple pass hierarchical logic levels
no reset can reset
up to base-5 native number representation base-2 numbers only

Table 1.3: Hardware comparison between molecular and electronic silicon based comput-
ing platforms.

small numbers or small problems, scaling could occur.

When we compare the two regimes we see the scaling differential immediately, both in

the basic architecture, as well as the maturity of the technology. This comparison, shown

in Table 1.3, strives to highlight what niche is available to molecular computers in light

of current overwhelming electronic platform superiority, and serves to temper the termi-

nology we are tempted to employ when discussing molecular computing. No group can

realistically suggest future competitiveness with electonic computing since we are still

firmly within the phase of recapitulating electronic design and organizational motifs. A

better alternative will be development of an entirely different problem encoding and so-

lution execution paradigm, and in the interim, we already have the potential capability of

natural system interface since the molecules involved are biologically based.

1.4 Related Work

The first successful experiment proving the viability of using nucleic acid chemistry as a

computational substrate was accomplished in 1994 by Adleman [6]. Adleman showed a

24

Chapter 1. Thesis Introduction and Central Question

method to solve a small instance of the NP-complete Hamiltonian path problem which asks

if there is a path for visiting each vertex of a directed graph without repetition. Edge and

vertex relationships were encoded into DNA sequences, without the benefit of any high-

level language, or design tool set for generation of the sequences. Seeman [109] predated

this work in 1981 with the first nucleic acid based synthetic constructions, and also wrote

one of the earliest sequence design programs, SEQUIN [110, 111]. At this time, the most

mature non-enzyme based DNA computing technology and process toolset all emanate

from the substantial work accomplished by Pierce and Winfree’s groups at Caltech. There

are two different molecular computing architectures which have been well developed from

these groups: DNA tiling systems (Rothemund [102]) and strand displacement systems

(Seelig [107]).

Only recently has the field started using the mainstream terminology associated with au-

tomated circuit design, high-level computing languages, program compilation, and pro-

gram execution on standard silicon electronic computing platforms. Design methodolo-

gies includes works separately accomplished by Dirks and Zhang [27, 28, 29, 140], a

combinatorial optimization approach by Kai [63], molecular recognition as signal de-

tection by Savir [106], and DNA motif, crystal, and origami construction techniques

by Seeman [108]. The fundamental DNA word problem is intrinsically part of any de-

sign approach, and attracted significant attention early on, notably with contributions by

Andronescu [8] and Marathe [74]. Recent theoretical formalization and language devel-

opment work includes interrelated approaches by Cardelli, Phillips, Qian, and Winfree

([20, 90, 95]). Using elements of all these works, groups headed by Winfree (Shin [116]),

and Riedel (Shea [115]), have conceived of and built molecular compilers aimed at their

respective architectures. Of note is their conceptual mapping of programs to solve the se-

quence assignment problem as assemblers. An alternative DNA molecular compiler has

been in long-term development by Feldkamp [36, 37], while Way and colleagues [131]

25

Chapter 1. Thesis Introduction and Central Question

have explored non-nucleic acid molecular compiler and platform building. Experimen-

tally validated systems, arguably the strongest results, include results from Benenson [9],

Elbaz [33], Rothemund [102], Qian [94, 96], Strack [124], and Wu [137].

26

Chapter 2

Abstractions Development

Everybody who has analyzed the logical theory of computers has come to the conclusion that the

possibilities of computers are very interesting – if they could be made to be more complicated by

several orders of magnitude. – Richard P. Feynman [39]

2.1 DNA Computing Model Foundations

Developing abstractions for deoxyribozyme computing facilitates the design-build process

towards reliability guarantees, and the understanding of the computer science aspects of

molecular computing. The implicit statistical physics and chemistry questions which arise

can easily overwhelm the computational questions or lead to just applied computer science

approaches with little recognition of the deeper implications. Moret [81] observes that

“since much of complexity theory is about modeling computation in order to understand

it, we naturally want to study new devices such as DNA computing, develop models of its

mode of computation, and compare the results with current models.”

27

Chapter 2. Abstractions Development

Historically, there are two modes of thought in devising a model: focus on the logic level

or focus on the implementation level. Finite state automata, stack machines, grammars,

cellular automata, tiling systems, recursive functions, lambda calculus, and Turing ma-

chines are all abstract computing models at the logic level. The logic level addresses the

computability of transforming inputs into outputs, the study of problems, and creation of

the complexity hierarchy. At the smallest indivisible abstraction, it is enough to discuss

operations. Operations undertaken in solving a problem instance will execute in unit time

or space, without our knowledge of exactly how. We simply count the total number of

units and use the overall resource demand to rank problem hardness relative to others and

therefore classify the complexity. This yields a way to write and weigh the utility of algo-

rithms invented to solve problems. In a sense, despite the fact that it appears very far away

from the machine under the microscope, logical model creation is practical. Blelloch [12]

echoes this sentiment, noting “the ultimate purpose of an abstract model is not to directly

model a real machine but to help the algorithm designer produce efficient algorithms.”

Implementation-level models, which mimic the system under study, serve the hardware

designer and allow design trade decisions. This level uses component abstractions combi-

nationally to devise architectures or sub-architectures. It is often assumed that components

are free of dependencies and contextual requirements, and are thus able to be arbitrarily

combined. DNA chemical reaction networks, in contrast, do not admit dependency-free

operating conditions. Component operation is sensitive to design and build conditions

such as the sequence of oligonucleotide bases, their concentrations, and the chemical en-

vironment in solution. Molecular computing implementation-level models are therefore

physical-level models. Physical attributes and processes are describable for single entities,

or populations of entities. The populational aspect is a critical distinguishing factor that is

not present for modelers abstracting electronic circuits. For DNA systems, all elements are

present as multitudes and hence form multisets rather than sets. Population interactions

28

Chapter 2. Abstractions Development

occur in any one of an exponential number of non-centralized timelines, hence a different

approach is warranted to determine suitable abstractions to serve as atomic operations in a

complexity measure.

2.2 Physical-Level Entities and Interactions

Knowledge of nucleic acid composition, organization, and potential interaction is critical

to understanding their behavior and use. In natural systems DNA reflects evolutionary

state by encoding genetic information. RNA serves as an intermediary between DNA and

proteins for coding genes, acts as an enzyme [21], regulates gene expression [86], and

orchestrates embryonic organogenesis [25]. In addition to primitive computing platforms,

DNA has also been used in the construction of synthetic biology devices such as data stor-

age systems [22, 51], theranostic sense-delivery instruments [53, 75, 100], logic circuits

[89, 93, 96, 124], and molecular scale machines [72, 129, 134, 138].

In general, transitioning from the science of nucleic acids to the engineering of nucleic

acids requires a smart control system to promulgate specific behavioral responses. This

is, in effect, no different than directing the discharge of electrons in a transistor. Under-

standing of the physics of electricity and semiconductors through detailed experimentation

enabled the engineering of digital computers. Understanding of the physics behind the

chemistry of nucleic acids will in time achieve parity. DNA and RNA properties tightly

depend on environmental conditions, and interactions occur within multiple time and spa-

tial scales. In natural systems, the result is robust, fault tolerant processes that we would

like to emulate. At present, the extent to which native properties and interactions are fully

rendered into working models largely dictates the complexity and sophistication of what

can be engineered.

29

Chapter 2. Abstractions Development

2.2.1 Entities

DNA and RNA are chains of nucleotides, where each nucleotide consists of a nitrogenous

Lewis base bonded to a five-carbon sugar, and polymerized together by sugar-attached

phosphate groups. The bases guanine (G), adenine (A), thymine (T), and cytosine (C) in

DNA, with uracil (U) substituted for thymine in RNA, additionally interact through hydro-

gen bonding to hybridize single-stranded regions into double-stranded helices. Natively

in the cell, DNA is a double-stranded helix primarily formed through G-C and A-T base-

pairing, while single-stranded RNA folds into various functional configurations through

G-C and A-U base-pairing. For molecular computing or alternative synthetic biology con-

structions, DNA is used as a raw material with single strands engineered to self-assemble

into designed helices and folding shapes.

At a fine grain, each DNA or RNA nucleotide is composed of atoms, and they interact by

way of atomic collisions. Because the energies involved in each collision are not enough

to disturb the atomic nuclei, it is sufficient to understand the overall interactions on the

basis of electromagnetic forces and energy exchange, principally hydrogen bonding that

is responsible for base-pairing. Hydrogen bonding in biological-based systems is an as-

sociation between two electronegative atoms, linked by an intermediate electropositive

hydrogen atom, to create two proximal dipoles. Bond length denotes the distance between

atomic centers whereas bond energy is the amount of energy necessary to break the bond

and produce neutral fragments. The formation of an ionic bond between atoms of bio-

logical systems is not energetically possible because the atoms are moving too slowly to

allow for creation of cation/anion pairs that require a large activation energy input as the

ionization energy. Instead nucleic acid behavior, principally Watson-Crick base pairing, is

governed by hydrogen bonding. Hydrogen bonding is a type of covalent bonding where

the positively charged electron of a single hydrogen atom allows for formation of two

30

Chapter 2. Abstractions Development

dipoles via attraction to two different negatively charged electrons in nitrogen and oxygen

atoms flanking the opposing pentose rings found in each opposing nucleotide. Cytosine

to guanine Watson-Crick bond formation is nothing more than three dipole pairs, one as

N-H-N, another O-H-N, and the third N-H-O, while thymine to adenine pairing is two

dipole pairs, one as N-H-N and the other as O-H-N.

Oligonucleotide sequences are termed primary structure, their folding patterns which re-

sult from stretches of base-pairing are the secondary structure, and the actual physical

orientation in 3D space is the tertiary structure. While tertiary structure data is the most

valuable, it is also the hardest to obtain experimentally. For both DNA and RNA, the

folding of a single strand into helices occurs as a multi-step process that follows multiple

parallel pathways [135]. Pathways generally exhibit collapse to an intermediate compact

form followed by a slower diffusive conformational search to a lower thermodynamically

stable state [103, 135], or to possibly kinetically trapped misfolded states [136]. The en-

ergy driven search for an optimal arrangement of hydrogen bonds is true for single strands,

or many strands interacting together. All principal entity-level physical properties are out-

lined in Table 2.1.

2.2.2 Interactions

Interactions can be reactions involving DNA or RNA oligonucleotides, or the rearrange-

ment of base-pairing hydrogen bonds in a single oligonucleotide. The result in either

case is production of new molecular species and reduction of existing species. The ex-

act mechanisms responsible for these transformations are not comprehensively known and

multiple competing mechanisms are possible. The set of all known and unknown inter-

actions constitutes the chemical reaction network. Network behavior is also subject to

change under varying environmental conditions. For example, hybridization is sensitive to

31

Chapter 2. Abstractions Development

Classification Property
gross aspects molecular weight

physical dimensions
base sequence
base count
base-pairing pattern

mechanical groove type
bend and twist angles
molecular stress and strain
vibrational frequencies

thermal melting temperature
stacking energy
base-pairing binding energies

electrical charge distribution

Table 2.1: Physical properties pertaining to a single DNA or RNA oligonucleotide. The
associated cost of obtaining accurate, high quality property descriptions varies with the
difficulty of direct measurement or modeling of each property.

different buffer conditions, principally through the use of salts such as Mg2+. Magnesium,

manganese, and cobalt divalent cations, or a number of monovalent cations such as Na+,

have the effect of shielding negative charge on the phosphate groups that are a part of each

nucleotide molecule. An elevated concentration of one of these salts will stabilize bond

formation by opposing the phosphate group negative charge repulsion [128]. Overall, the

high degree of variability and probabilistic nature of competing mechanisms prohibit ex-

act characterization of the network, yet directing the network to serve as a computational

substrate, and allow execution of a program, is the goal of molecular computing.

If it were possible to know the position, momentum, and therefore velocity of each atom

within each molecular chain, then system interactions would be in principle amenable to

state change computations for exact system modeling [98]. This information is not readily

available, however, in a many-bodied system comprising an uncountable number of par-

ticipants. Statistical mechanics treatment is an alternative where systems are characterized

32

Chapter 2. Abstractions Development

as ensembles. Aggregate behavior can be deduced by starting with a number of identical

systems that are composed of the same constituent components but in different configura-

tions initially. On the way towards achieving equilibrium, there is nothing preventing the

occurrence of multiple systems visiting the same state at some point along their trajectory

of states. Because the state space is large, the probability of state parameters taking on

particular values is computed, rather than focusing on characterizing any one individual

system. There are other smaller and more familiar scenarios that benefit from a simi-

lar probabilistic treatment. Consider measuring the two-state coin flip system, the eleven

state sum of two dice throw system, or the 100,000 state five digit lotto number system. To

understand the nature of their respective state spaces and see if a system is fair or rigged,

progressively larger and larger flips, throws and dollars must leave the hand. In this way,

each test is an independent system in the ensemble.

The ensemble of oligonucleotide systems can be modeled as a many-particle chemical

system, such that their accessible states follow a Boltzmann distribution [98]:

p(s) = e−βEs

∑s∈Ω e−βEs

where Es is the energy of state s, Ω is the space of all states, and the divisor ∑s∈Ω e−βEs

is the partition function Z (from the German, Zustandsumme, “sum over states”), which

normalizes the total probability to 1. Prior to equilibrium, each member system of the en-

semble will constantly make transitions between states. When the distribution over states

remains uniform, equilibrium has been achieved. Some of these states will be advanta-

geous and reflect oligonucleotides with specifically required properties while others will

be deleterious and instead hinder some part of an overall interaction event chain.

This model makes several assumptions, and is not completely consistent with the real sys-

tems it is intended to capture. The first assumption pertains to the state of matter. Chemical

33

Chapter 2. Abstractions Development

reaction networks of interacting oligonucleotides are well mixed liquids. Liquids are both

dense and disordered, and therefore more difficult to formulate mechanics for than gases

or solids [13]. In contrast, gases are so sparse that the time between particle collisions is

much longer than the time of a collision itself, and solids possess regular structure. Liquids

possess neither of these aspects and there is no easy way to generalize the gas state Boltz-

mann distribution nor solid-state lattice approaches towards their behavior. The adoption

of the Boltzmann distribution assumes that statistical mechanics methods developed for

gases are adequate for well-mixed liquids. Additionally it is assumed that all other liquid

properties such as viscosity and thermal gradient induced motion can be neglected. The

most critical assumption, however, is that systems are in equilibrium. This is not actually

the case for most molecular computing systems, and in particular for anything built with

deoxyribozymes. The interactions that carry out platform construction and program exe-

cution occur well before equilibrium, hence although this approach correctly casts DNA

systems as many-bodied, it is implicitly introducing error because we really don’t know

the correct model of the state distribution. Furthermore, there is no simple way to deter-

mine better statistical parameters without extensive laboratory work to fully elucidate the

correct distribution. The engineering challenge is thus to appropriately adjust analytical

results and exploit these results in a search process to determine optimal system specifica-

tion.

2.3 Abstractions

The conceptual value of the Boltzmann distribution model for oligonucleotides is that it

does reflect their transient nature, and the range of structural manifestations that are pos-

sible for any one sequence. Through Watson-Crick base-pairing, potentially any double-

helical region may form wherever there are complementary stretches of bases. This poten-

34

Chapter 2. Abstractions Development

tial exists within a single oligonucleotide, or between multiple oligonucleotides, and is the

basis for working out any form of computation or device building. Controlling hybridiza-

tion through design of sequences is therefore the central low-level required task. Further-

more, given the current status of molecular computing technology, design effectively is the

sole control system. Different tasks that incorporate sequence design within the process of

transforming initial conceptions to successful instances of molecular computing are shown

in Figure 2.1. These tasks have evolved over time, through the course of the discovering

the viability of DNA as a computational substrate and experimenting with different ways

to build circuits and applications. Previous successes suggest the process is easy, yet in

reality it is challenging and difficult because of the large number of interrelated variables.

Hence our goals in devising abstractions have been twofold: the abstractions must serve to

reduce development timelines, and increase reliability. To make this concrete, workflows

were studied to determine how abstractions could be organized towards replacing the ad-

hoc development style with a rigorous systems engineering approach amenable to testing

and evaluation.

35

Chapter 2. Abstractions Development

truth
table determine

Boolean
formulas

simplify
formulas

put
formulas
into DNF

decision
tree

determine
signal pattern
interpretation

divide
formulas
into wells assign

formula
outputs to

signals

assign
gates to
formulas

design
sequences
for gates

and inputs

evaluate gate/
input/substrate
interactions as a

whole system

optimize
concentrations

for gates, inputs
and substrates

determine cost
of system

configuration

build system in
the laboratory

test and refine
system in the

laboratory
document
findings

1

2

3

Deoxyribozyme Computing Build Stages

Figure 2.1: The current process for engineering a platform from concept to finished prod-
uct can be divided into three stages, proceeding from top to bottom. These processes are
deliberately shown disconnected, rather than in a flow chart, to reflect how the overall
design and build engineering effort currently proceeds. There is no central, generally rec-
ognized, set of steps to program, build, and verify a deoxyribozyme computing platform.

36

Chapter 2. Abstractions Development

There are three groups of abstractions that have been developed. What this means in

practical terms is that our contribution includes utility methods to represent core physical

entities and interactions in compressed formats that retain the full scope of information

within a more tractable packaging. The groups cover (1) representation methods and algo-

rithms for nucleic acid sequences, (2) representation methods and algorithms for nucleic

acid secondary structures, and (3) representation methods for reactions. They work to-

gether in the DNADL language, and the Pyxis compiler, to create a logical and pipelined

workflow for conception of new molecular computing ideas to successful laboratory exe-

cution. The nature of compiling for a molecular platform is in many ways fundamentally

different from mainstream computing. A relatively new concept has been proposed for

reconfigurable hardware that seems to fit—PICO—program in, chip out. In this regime,

rather than the compiler creating code for a particular architecture and instruction set, the

compiler crafts the machine to fit the code. Assigning gates to formulas, designing se-

quences for gates and inputs, and evaluating gate/input/substrate interactions as a whole

system are interrelated tasks. The final product is identical to the PICO concept where

platform construction of DNA-based logic gates is not separable from writing the program

that will be executed on that platform.

2.3.1 Sequence Abstractions

To describe a particular sequence, we can simply list the bases from the DNA or RNA

alphabets ordered in the biological standard as 5’ to 3’. Formats for sequence files have

been adopted that embed alphabet-based sequences with additional relevant data that may

cover other physical properties, translation to amino acids, or data provenance identifiers.

The largest collection of natural sequences is the GenBank genomic sequence repository.

37

Chapter 2. Abstractions Development

GenBank now contains 157,943,793,171 base pairs, as of the February, 2014 release1.

Designed sequences for synthetic use such as molecular computing do not have any stan-

dard format, nor are they particularly large in count because there has not been any con-

certed effort to build searchable libraries. This need does exists, and will increase in

importance as nucleic acid devices transition from backing through government financed

research projects to manufacturable and salable product lines.

Rather than listing bases in ASCII in flat text files, it is more efficient to use a binary

encoding. Two bits are enough to encode either four DNA or four RNA letter sets, yet

if we are clever in assigning bit patterns to each letter we can gain the subtle benefit of

determining complements as a short series of logical xor and and operations which are

native and fast on standard computer processors.

Definition DNARNABitStringEncoding. DNARNABitStringEncoding represents DNA

or RNA strings as bitstrings. The DNA encoding key is T = 00, C = 01, A = 10, G = 11.

For RNA strings, T is replaced with U = 00. Each character of a sequence string is mapped

in-place to the bit encoding per the key.

As an example, the DNA sequence TCAG is 00011011. No information is lost, and be-

cause ASCII characters nominally use a 7 bit encoding, this is a lossless compression

scheme, yielding a reduction of 71% of space required per character. The representation

also encodes a fast complementarity check between two sequences through bit shifting and

the xor operation native to electronic computer processors. The Watson-Crick base-pairs

T-A or A-T, and G-C or C-G are identified by comparing the first bit of each 2-bit encoding

and verifying they are not equal, along with comparing the second bit of each 2-bit encod-

ing and verifying they are equal. For example, if two DNA sequences ALPHA = AACGT

1U.S. National Institute of Health, NCBI-GenBank Flat File Release 200.0, February 15, 2014.
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

38

Chapter 2. Abstractions Development

and BETA = ACGTT, we can see that they are complementary as ALPHA and the reverse

of BETA, BETAREVERSE = TTGCA, consistent with chemistry of DNA hybridization.

We encode these as:

ALPHA is 10 (A) 10 (A) 01 (C) 11 (G) 00 (T) = 1010011100

BETAREVERSE is 00 (T) 00(T) 11(G) 01(C) 10(A) = 0000110110

Then comparing each 2-bit interval:

Oligonucleotide Name Base Encoding
Interval 1 ALPHA A 10

BETAREVERSE T 00
Interval 2 ALPHA A 10

BETAREVERSE T 00
Interval 3 ALPHA C 01

BETAREVERSE G 11
Interval 4 ALPHA G 11

BETAREVERSE C 01
Interval 5 ALPHA T 00

BETAREVERSE A 10

Table 2.2: Complementarity checking between AACGT and TTGCA uses fewer native
operations per base.

For each interval, the first bits compare as different and the second bits compare as iden-

tical, therefore it is quickly computed that the sequences are complementary and able

to form a double helix. This check is expressed as (Bit1A
⊕

Bit1B)∧¬(Bit2A
⊕

Bit2B)

where A and B abbreviate ALPHA and BETAREVERSE.

An alternative is to pack four two bit sequence representation encodings into appropri-

ately selected characters from the ASCII character set. Since computers nominally ad-

dress memory as bytes, the 7-bit per character ASCII encoding appends a leading zero for

consistency across memory boundaries. For example, the ASCII character J is encoded

39

Chapter 2. Abstractions Development

as 01001010. This can alternatively encode DNA sequence CTAA, where 01001010 ex-

panded as 01 00 10 10 in terms of four 2 bit groups maps as 01 to base C, 00, to base T, 10

to base A, and 10 to base A. Thus in a flat text file the sequence CTAA is replaced by the

single letter J, and the original sequence may be reconstituted as needed, making this also

a lossless compression scheme. Each variation can be further compressed by composition

with other methods such as the Burrows-Wheeler algorithm [19] that is the basis of the

Bzip utilities.

Algorithms FindAllHybrids and Separated employ DNARNABitStringEncoding as shown

in Chapter 3. Other uses are possible, such as direct query search of all occurrences of

pattern subsequences within larger sequences using compressed encodings directly and

bypassing expansion into full alphabet-based representations. Therefore, the encoding

acts as a homomorphism.

2.3.2 Structure Abstraction

To describe a particular secondary structure, we can simply list those pairs of bases that

have formed hydrogen bonds. However, the exact manner in which we present this list

(symbolically, numerically, graphically, etc.) greatly affects how easily the secondary

structure can be grasped by the human reader, or processed by computer algorithms. Nu-

merous approaches have been proposed in the literature including schematic pictures, dot-

parenthesis strings [59], circle plots [85], dot-plots [61], mountain plots [59], arc diagrams,

trees [42, 112, 113, 143], compressed tree-like mappings [47], and graphs [38, 64]. To as-

sess each approach, we should ask (1) how much structure information is conveyed? (2)

how much is disregarded? (3) how compact is the representation? and (4) how can the

abstraction be used effectively?

Optimal representation properties include maximal information, efficiency of use, and ease

40

Chapter 2. Abstractions Development

of implementation. Ideally, a representation will disregard very little and ultimately be

convertible to the full list of base pairs. It will support satisfactory comprehension by the

user, and not require constant reference to the definition [84]. An abstraction that reflects

small changes in base-pairing in commensurately small changes in the representation may

be aesthetically desired2. To a certain extent, desired properties will depend on intended

use, and the number of secondary structures that will be handled. Large-scale applications

require high-throughput analysis, for example prediction of non-coding RNAs (ncRNA)

de novo from next-generation sequencing platforms will benefit from efficiently executed

structure alignment algorithms [52].

In building a DNA computer, a different high-throughput need exists. Design proceeds as

a coupled search through both sequence and structure space. The long development times

experienced by designers so far underline that this search has been done by hand. As part

of speeding up the process through automation with a compiler, it is useful to consult the

full suite of possible secondary structures predicted by a thermodynamic code. This type

of modeling, termed suboptimal modeling, returns more than the single minimum free en-

ergy structure for each sequence. Instead, an entire range is considered within an energy

gap above the minimum. To efficiently use this type of modeling, and be able to automate

the search, we saw that the other approaches are not able to retain maximal information

and support high-throughput scanning, parsings, and analysis. In many cases, a visual as-

sessment must be done which precludes large-scale characterization and comparison ques-

tions, and impedes efficient database storage and retrieval. To address this shortcoming, a

contribution of this thesis is the ISO numeric representation (Fanning [35]). A surprising

result is that the numeric method allows for algorithmic probing of structures, which can

then be easily automated in compiler code.

ISO notation describes nucleic acid secondary structure as a list of triples (index, stem,

2Robert Giegerich, personal communication, 2011.

41

Chapter 2. Abstractions Development

opening), where each triple defines a distinct hybridization region within a single nucleic

acid oligonucleotide, or between multiple oligonucleotides bound together as a complex.

Definition ISO. Let P = {p0, p1, . . .} be a set of n nucleotide strings, drawn from Σ =

{A,C,G,T}, and let d 6∈ Σ be a neutral spacer symbol. Form concatenated string c by

ordering 5′ to 3′ all strings pi ∈ P, separating each pi by d such that c = p0d p1d . . .d pn−1.

Let t be a list of m triples, t = [(i,s,o)0,(i,s,o)1, . . . ,(i,s,o)m−1]. t is a unique representa-

tion of secondary structure features in c where for each feature:

1. i defines the (zero-based) indexing location relative to the p0 5′ end.

2. s defines the length of binding stem.

3. o defines the opening enclosed by s, equal to the number of bases, paired or unpaired,

which are intermediate between the last opening base and first closing base of the

feature.

0
1

2
3

103

5'
3'

8
17

21
24

29

40
50

58 61 64
68

78 82

97

Figure 2.2: 105 base RNA segment with two stem-loops, five internal loops and one three-
way multi-branch feature [42]. The ISO representation, starting from the marked 5′ end,
is [(2,5,92),(8,7,57),(17,3,46),(21,2,40),(24,3,32),(29,7,16),(40,4,3),(82,6,4)].

Figure 2.2 exemplifies this notation for a natural RNA oligonucleotide. An equally useful

variation of ISO dispenses with separating characters d within the sequence concatenation

c, with referral to a vector of oligonucleotide lengths to distinguish one sequence from the

next. We next show how use of ISO enables inference of hybridization features.

42

Chapter 2. Abstractions Development

Nucleic acids may naturally, or as synthetically directed, prefer to fold into a variety of

motifs including bulges, internal loops, hairpins, stem-loops and multibranches. ISO ex-

presses all structure information exactly for each of these forms by virtue of relationships

between the triples. Consider a structure with m triples, [(i,s,o)0, . . . ,(i,s,o)m−1]. A motif

anchored as triple j, j ∈ [0,m−1], is identified in the following ways. In each of these not

only can we recognize existence of a specific motif, and locate it precisely, we can also

infer the size exactly via further simple arithmetic over the triples defining the motif.

1. Bulges. A bulge is one or more unpaired bases on one side of two stem regions.

A bulge is recognized within the list of triples where triples (i,s,o) j and (i,s,o) j+1

satisfy either of the following, but not both:

• i j+1− (i j + s j)> 0, (i j + s j +o j)− (i j+1 +2s j+1 +o j+1) = 0

• i j+1− (i j + s j) = 0, (i j + s j +o j)− (i j+1 +2s j+1 +o j+1)> 0

An example of a bulge is shown in Figure 2.2, in triples 4 = (24,3,32) and 5 =

(29,7,16), since i5− (i4 + s4) = 29− (24+ 3) > 0 and (i4 + s4 + o4)− (i5 + 2i5 +

o5) = (24+3+32)− (29+14+16) = 0.

2. Internal loops. An internal loop is formed by unpaired open regions surrounded

by exactly two stems, where at least one unpaired base must occur on both sides.

An internal loop is recognized within the list of triples where triples (i,s,o) j and

(i,s,o) j+1 satisfy:

• i j+1− (i j + s j)> 0, (i j + s j +o j)− (i j+1 +2s j+1 +o j+1)> 0

An internal loop example in Figure 2.2 is found between the stems represented by

triples 1 = (8,7,57) and 2 = (17,3,46), since i5− (i4 + s4) = 17− (8+ 7) > 0 and

(i4 + s4 +o4)− (i5 +2s5 +o5) = (8+7+57)− (17+6+46)> 0.

43

Chapter 2. Abstractions Development

3. Hairpins. Hairpins are terminal stems with no unpaired bases intervening. Hairpins

are recognized as a triple with a size zero opening:

• (i,s,0) j

4. Stem-loops. Stem-loops are hairpins with at least one unpaired base between the

opening and closing paired bases of the stem. Stem-loops are recognized as a triple:

• (i,s,> 0) j

An example stem-loop is seen in Figure 2.2 as the last triple (82,6,4), where a

binding stem of six base pairs surrounds four unpaired bases.

5. R-way multibranches. An r-way multibranch is an internal loop formed by r sur-

rounding stems. An r-way multibranch is recognized within the list of triples where

exactly r− 1 triples (i,s,o) j+1, . . . ,(i,s,o) j+r−2 are enclosed by triple (i,s,o) j, but

not enclosed by each other:

• ∀ik, k ≥ j+1, i j + s j < ik < i j + s j +o j, ik +2sk +ok > ik−1 +2sk−1 +ok−1

The first constraint tracks binding openings and stipulates that each triple defining a

multibranch stem follows the initiating 5’-most stem, and is completely enclosed by

the opening and closing bindings of this stem. The second constraint tracks binding

closings and stipulates that subsequent stems not be enclosed by any previous defin-

ing one. For example, in Figure 2.2, triple 0 = (2,5,92) initiates a 3-way branch, and

triples 1-7 are enclosed by this triple. However, triples 2-6 are excluded since each

of their extents is enclosed by triple 1 = (8,7,57), and therefore they fail to satisfy

the second constraint. Hence, the 3-way branch is represented by triples 0, 1, and 7,

equal to sublist [(2,5,92),(8,7,57),(82,6,4)]. In the case of nested multibranches,

this relation is extended further and requires use of an additional computation to in-

44

Chapter 2. Abstractions Development

fer parent to child relationships for each embedded mulitbranch. Chapter 3 details

the expanded algorithm for the generalized case.

6. Pseudoknots. A pseudoknot is a region of intercalated hybridizations such that

successive binding stems do not occur serially, nor are nested. Triples in list S =

[. . . ,(i,s,o) j, . . .(i,s,o)k, . . .], k ≥ j + 1 where triples (i,s,o) j and (i,s,o)k satisfy

the following qualify as a pseudoknot structure:

• ik < i j + s j +o j, ik + sk +ok > i j +2s j +o j

The first constraint places the opening bases of triple (i,s,o)k within the unpaired

open region of triple (i,s,o) j. The second constraint places the corresponding clos-

ing bases of (i,s,o)k outside triple (i,s,o) j, hence the triples are not nested. The

intercalation may occur for successive triples or any two triples separated within the

ISO list. Counting all such pairs of triples that satisfy this test yields the degree of

knots. An example is shown in Figure 2.3, where the two triples representing the

structure satisfy the pseudoknot test.

The most well-known secondary structure representation is the dot-parenthesis notation

introduced in 1984 [59]. Thermodynamic design and modeling programs such as Vienna

[58], Mfold [77], RNAsoft [7], and NUPACK [139], all use the basic dot-parenthesis no-

tation as either output for predicted conformations, or input for determination of energy

parameters associated with a desired conformation. This notation nominally uses a three-

character alphabet {.,(,)}, where full stop (“dot”) symbols indicate unpaired bases, and

matching parentheses indicate paired bases. Strings with balanced parentheses describe

structure patterns in which all hybridization regions are properly nested. The encoding

is linear in the number of bases it abstracts, and thus is not a particularly compact repre-

sentation. Location information for the various folding motifs can only be accomplished

by overlaying a numeric index, and the notation is unable to handle pseudoknots without

45

Chapter 2. Abstractions Development

!

"

#!
#"

$% &!

''

&(

&#

$(

$$

#'

#&
#$

##

$&

Figure 2.3: Human telomerase (hTR) pseudoknot structure located at the 5’ end of
the 451 base RNA [118]. The 49 base pseudoknot sequence segment is GGGCUGU-
UUUUCUCGCUGACUUUCAGCCCCAAACAAAAAAGUC which folds into an H-
type motif with two stems and two loop regions. We describe this pseudoknot as
[(0,6,17),(14,9,14)].

resorting to additional characters. As an instance of a context-free language, a stack is

required to parse dot-parenthesis strings, whereas ISO strings are in the class of regular

languages, requiring no more than regular expressions for parsing. Another notation is

the “RNA as graphs” (RAG) project [38]. RAG takes the approach of dropping all stem

information and only tracks connections between folding shapes such as loops and bulges.

Commentary by Leontis [70] has indicated at least one place where the RAG approach

fails, and we note as well their difficulty handling pseudoknots. In general, no other repre-

sentation that we know of can handle pseudoknots natively without some form of special

handling, change, or extension.

ISO was motivated by different reasons than development of other representation schemes,

yet the importance of secondary structure representation remains consistent. Cataloging

and classifying secondary structure in terms of motif connections is an active research area

[38, 64, 66, 87]. ISO keeps motif information, location, and size, therefore in addition to

connection determination, distinction can be made for motif extents rather than abstracted

46

Chapter 2. Abstractions Development

away. By virtue of using numbers to describe what is ultimately hydrogen bonding be-

tween molecular chains, we have greater ability to cast the understanding of nucleic acid

structure space as a pattern recognition problem.

2.3.3 Abstracting Reactions

A molecular computer is implemented through arrangement of DNA oligonucleotide in-

teractions as a chemical reaction network. The final abstraction is for oligonucleotide

interactions R′ ∈ R that specifically implement platform and program execution out of R

possible interactions, where R varies with the properties of all oligonucleotides in a system

and with its chemical conditions. Rather than using stoichiometric formulas as shown in

Appendix A.2, reactants and products are represented using a subset of their properties,

termed strands, and interactions between strands are restricted to fold, bind, unbind, lig-

ate, exchange or cleave operations that take one or more strands as input and create one

or more strands as output, each termed transitions. Both strands and transitions carry a

limited amount of information pertaining to the physical entity they represent. Multiple

transitions are ordered as event streams to enable a mapping from build/execute logic to

physical instantiation.

Definition Strand. A strand is a single oligonucleotide o, or complex of n oligonu-

cleotides o0,o1, . . . ,on−1, characterized by its sequence sSEQ, iso sST RC, and length sL,

s = (sSEQ,sST RC,sL).

• sSEQ is a sequence entity for oligonucleotide s or a concatenation of sequence entities

s0,s1 . . .sn−1, sSEQ = s0− s1− ·· ·− sn−1, where each si is the sequence entity for

oligonucleotides oi ordered 5′ to 3′ as part of a complex.

47

Chapter 2. Abstractions Development

• sST RC is the ISO entity, sST RC = [(i,s,o)0, . . .] for one or more oligonucleotides with

sequence sSEQ and length sL. Note that ISO handles single oligonucleotides, or mul-

tiple oligonucleotides bound as a complex, hence there is no compositing scheme of

individual structure strings required.

• sL,sL ∈ N is the length of the single oligonucleotide s, or the total length of all n

oligonucleotides o0, o1, . . . , on−1 lengths, sL = l0 + l1,+ · · ·+ ln−1, li ∈ N if s is a

complex of n oligonucleotides.

Definition Transition. A reaction step happening in a vessel or well. Reactions may

be one strand sa taking on a new structural form sb through an alternative hybridization

pattern (fold), strand sa and strand sb becoming a complex sc through hybridization (bind),

complex sc dissociating into strands sa, sb (unbind), strands sa, sb becoming a longer

strand sc through backbone linkage (ligate), a complex and a single oligonucleotide un-

dergoing strand exchange (exchange), or a complex or single oligonucleotide sa splitting

along a backbone linkage into parts (cleave). Transitions are described through use of the

fold, bind, ligate, exchange or cleave operators t = (a,sa,sb,sc,sd,op), where inclusion of

strand entities sa, sb, sc, or sd depends on choice of operator op, and a denotes the vessel

or well addressable location.

• fold is an unary operation on a strand sa to produce sb with the same sequence and

length, but with a different structure, sb = f old(sa).

• bind is a binary operation on two strand entities sa,sb to produce a new complexed

strand entity sc, sc = bind(sa,sb).

48

Chapter 2. Abstractions Development

• unbind is a unary operation on one strand sc to produce two strand entities sa and

sb, sa,sb = unbind(sc).

• ligate is a binary operation on two strand entities sa and sb to produce a new ligated

strand sc, sc = ligate(sa,sb).

• exchange is a binary operation on two strand entities sa and sb to swap single

oligonucleotides and form sc and sd . The operator implicitly expects that at least

sa or sb is a complex of at least two oligonucleotides and that at least one of sc or sd

is a complex of at least two oligonucleotides, sc,sd = exchange(sa,sb).

• cleave is an unary operation on one strand sa to create two strand entities sb,sc,

sb,sc = cleave(sa).

Transitions are inspired by Temkin [126] who was motivated to represent enzymatic cata-

lysts in the presence of metal ions and employed graphs to explain reaction mechanisms.

The use of graphs aided the subsequent formulation of reaction mechanisms to identify

multiple routes, intermediate products, and elementary steps comprising the actions of en-

zyme catalysts. In DNA-based devices there are also reaction mechanisms, and to build

a computing device and execute a program on it these mechanisms must occur in a fairly

precise and ordered manner. Thus transitions define the implementation in behavioral

terms as a series of critical reaction steps. These steps are atomic: no further division into

smaller reaction substeps is defined.

Transitions, rather than species population counts, can also define system state because

they can be clearly identified, named, and ordered. They are supported by computational

49

Chapter 2. Abstractions Development

assessment tools, from a time and cost perspective, that provide a realistic degree of phys-

ical understanding. In contrast, a straight physics approach would dictate that state be

defined as exact molecule counts based on known stoichiometrically balanced chemical

equations, species concentrations, and reaction rates. Yet this treatment then insists on use

of molecular dynamics simulations because of Boltzmann model limitations, and lack of

comprehensive kinetics for arbitrary DNA or RNA oligonucleotide interactions. It is in-

feasible to engineer molecular computing platforms with this level of assessment because

the cost and data collection time are prohibitive. Furthermore, there is a fundamental sys-

tem characteristic that would be ignored: there is never just a single literal oligonucleotide

molecule involved in any one transition. Reaction endpoints are entire populations where

there is no capability to correctly infer an accurate census, and there is always a plethora

of alternative species and reactions concurrently active. Because nucleic acids are promis-

cuous and constantly undergoing physical change, branching reaction mechanisms exist

up until the point of equilibrium at which time even if individual strands are continuing to

transition, the population statistics remain invariant. Systems such as an origami construc-

tion, say for the purpose of implementing a tiling, are equilibrium systems, but the ones

we are interested in here implement a computation before reaching equilibrium. Instead,

the computation is worked out on the way through direction of a subset of all possible

reaction pathways. Every other pathway not in the subset, and every intermediate or final

product not in the design set, is noise.

The unknowable populational dynamics as a construct admits some contrasts to electronic

computing. Traditional computing systems and their abstractions rely on bit state, which is

generally a known datum. Flipped bits representing error may be checked in hardware or

software. But even if a bit is in the wrong state and goes undetected, the associated error

within a program execution is a function of far fewer system states. Yet biological dy-

namics with vastly more system states and many more error states yield redundant, robust,

50

Chapter 2. Abstractions Development

self-healing systems that in some measures out-perform all human engineered computing

machines. Hence, the attendant uncertainty of working with biologically-based materials

is a feature, not a flaw, even if we don’t know how to fully exploit this inherent system-

level property. Another direct contrast is that any constructed device or platform has no

clock or program counter. There is ample parallelism, yet no central control. The implica-

tion is that while moving from one desired population state to another can be identified and

defined as a requirement, the responsible transition occurs within an indeterminate num-

ber of time units. Physically some transitions may represent very quick transformations,

such as input-loop binding between a gate and input pair, or slow ones, such as the one-

way transition from intact substrate molecules to FRET tagged cleavage products. The

transitions will additionally overlap in time, since each occupies a range and a succeeding

transition step can start executing as soon as a preceding one has produced even a single

molecule of the next required species. Because we are endeavoring to control the system

by design principles, the tactic is to create dominant transition trajectories that will act to

shift the mass of intended product creations in a particular ordering which will happen to

end with the correct signaling state.

Rosen [101] from the context of computationally influenced theoretical biology introduced

the concept of instantaneous state of a system as a specification of its structure at an

instant of time [101]. In addition to defining state in terms of structure at a particular

time, he also asked when can function be inferred from structure, and when can a designer

create a desired function with a given set of structurally specified pieces? Structure is

closely aligned with what something is, and function is associated with what something

does. To create reliable computation, and scale it towards increasing performance, the

effort is the inverse of the canonical biology “function from structure” problem. That is,

we use structure to direct function.

51

Chapter 2. Abstractions Development

In this vein, we can define system state using the sequence, structure, strand and transition

abstractions. Together, they work directly with matching granularity modeling and simula-

tion analytical tools. Figure 2.4 illustrates the use of structure to show ordered transitions

as platform states. The depicted platform runs a one line logic program implemented using

the reaction pathway shown in Table A.2.1.1. Three oligonucleotides are used to build the

platform and run the program: a yes gate Ga, an input Ia, and a substrate S. The preferen-

tial structures to attain this pathway are shown in each state (Tables A.12, A.15), for the

active oligonucleotides present. Lack of structure is indicated as “[]” since for optimal

binding to the gate, the input and substrate oligonucleotides should be structure-free and

therefore available to bind on cue.

A:{[(0,10,15),(35,2,5)], []}

B:{[(10,15,31)], []} C:{[(10,15,31),(27,8,37),(36,7,39)]}

D:{[(10,15,31)], [], []}

Figure 2.4: Deoxyribozyme transition steps for the YES gate, input, and substrate reac-
tions, where the expected secondary structure is substituted in place of oligonucleotide
identifier names for each state.

52

Chapter 3

Algorithms

The problems of chemistry and biology can be greatly helped if our ability to see what we are doing,

and to do things on an atomic level, is ultimately developed–a development which I think cannot

be avoided.” – Richard P. Feynman [39]

The sequence and secondary structure abstractions facilitate algorithmic methods to solve

various problems that are part of searching sequence and structure space for specfication of

a nucleic acid based chemical reaction network. In this chapter, we cover these problems

and a suite of algorithms all based on the sequence and structure abstractions that provide

solutions. Each algorithm is encoded in the Pyxis compiler.

53

Chapter 3. Algorithms

3.1 Sequence Algorithms

3.1.1 FindAllHybrids

The problem of finding all longest-possible oligonucleotide pair-binding regions, for an ar-

bitrary number of oligonucleotides of varying lengths, is an implied need in building DNA

computing systems but typically is not explicitly considered. Instead, secondary struc-

ture prediction programs such as MFold [142], Vienna [58] and NUPACK [139] solve an

energy-based variant of this problem using dynamic programming algorithms originated

by early researchers Nussinov [85] and Sankoff [143]. These algorithms energetically fit

secondary structures using the Nearest Neighbor Model [104] to a Boltzmann distribu-

tion to return structures at and above the minimum free energy for a given sequence or

sequences. Since any one secondary structure may contain more than one pair-binding

region, prediction codes must not only identify bindings, but also formulate combinations

of bindings. The time complexity of these algorithms, for a length n sequence, scales as

O(n3) without pseudoknots [114].

The approach here finds all longest possible pair-binding regions, with a threshold of at

least three base-pairs. The algorithm is used within the Kinetic Cellular Automaton (KCA)

simulation to find possible hybridization reactions under the assumption that they will fire

one at a time. Thus, the job of the algorithm is to return individual viable triples since

other mechanisms within the simulation handle combinations. Formally, let P and Q be

two sequence strings over Σ = {A,C,G,T} with lengths n,m > 2, determine bindings set

B where for each triple (i,s,o)b ∈ B, index ib addresses a unique length sb pair-binding

region, 2 < sb ≤min(n,m), in concatenated string PQ, and for any two triples (i,s,o) j and

(i,s,o)k, ik > i j + s j. For example, if P = Q = CATATG, then B = {(0,6,0)}.

With the example, we observe that sequence string P is composed of four sequence sub-

54

Chapter 3. Algorithms

strings (0) CAT, (1) ATA, (2) TAT, and (3) ATG. Since we are interested in determining

binding regions, we consider the reverse of sequence string Q composed of sequence sub-

strings (0) TAC, (1) ATA, (2) TAT, and (3) GTA. Because the sequences are hypotheti-

cally part of two DNA strands that may encounter each other physically anywhere along

their respective extents, checking for complementarity between the sequence substrings

of P and the sequence substrings of Q reverse is done by checking all combinations. We

can achieve looking at these combinations by conceiving of a P vs. Q reverse sequence

substring table such that each cell i, j represents the complementarity check between se-

quence substring i of P and sequence substring j of Q reverse (Table 3.1). To determine

the longest possible binding regions, each diagonal is individually examined. Contiguous

checks occurring on the upper left to lower right diagonals correspond to overlapping com-

plementary subsequences, hence counting these checked cells along the diagonals is used

to compute binding lengths. Where the contiguity ends, the identified binding locations

hold the longest possible one, hence through manipulation of P and Q indices a complete

ISO triple can be formed and added to the overall list of identified binding regions. It is

not necessary to construct the full table in memory since the orientation variations repre-

sented by the diagonals are independent. To see this, Table 3.2 shows the correspondence

between cells along the diagonals and orientation variations that example strands P and Q

may encounter assuming the binding length three threshold.

(0) CAT ≡ (1) ATA ≡ (2) TAT ≡ (3) ATG ≡
011000 100010 001000 100011

(3) GTA ≡ 110010
√

(2) TAT ≡ 001000
√

(1) ATA ≡ 100010
√

(0) TAC ≡ 001001
√

Table 3.1: Sequence strings P=Q=CATATG is Watson-Crick palindromic, thus the single
maximal binding is found corresponding to placing the strands end-to-end.

55

Chapter 3. Algorithms

diagonal orientation
0,0 C A T A T GG T A T A C

1,0 0,1 C A T A T GG T A T A C

2,0 1,1 0,2 C A T A T GG T A T A C

3,0 2,1 1,2 0,3 C A T A T GG T A T A C

3,1 2,2 1,3 C A T A T GG T A T A C

3,2 2,3 C A T A T GG T A T A C

3,3 C A T A T GG T A T A C

Table 3.2: Correspondence between table diagonals and relative orientations of strands P
and Q that may yield binding regions.

Support Algorithms

The algorithm relies on support algorithms EncodeSequence, SectionNucleotides, Re-

verseSequence, IsComp, and ExamineDiagonal. Together, they work to arrange the

details of creating the table diagonals, counting complements along the diagonals, and

computing ISO triples.

EncodeSequence converts a length n sequence string drawn from the A-C-G-T alpha-

bet into its corresponding DNARNABitStringEncoding binary format. The algorithm has

O(n) running time and space usage for a length n oligonucleotide.

Algorithm EncodeSequence

Input: DNA sequence string d, sequence length n.

Output: Numeric encoded sequence string d’.

\∗ Key T: 00, C: 01, A: 10, G: 11 ∗\
1: d’← 0
2: i← 0
3: while i < n do

56

Chapter 3. Algorithms

4: if d[i] == ’T’ then
5: d’← (d’�2)ˆ0b00
6: else if d[i] == ’C’ then
7: d’← (d’�2)ˆ0b01
8: else if d[i] == ’A’ then
9: d’← (d’�2)ˆ0b10

10: else if d[i] == ’G’ then
11: d’← (d’�2)ˆ0b11
12: i← i+1

13: return d’

SectionNucleotides slices a length n sequence string into n− k + 1 length k sequence

substrings using a right-to-left scan. For example, length 6 sequence string P=CATATG

yields 6-3+1=4 length 3 subsequence strings CAT, ATA, TAT and ATG. The algorithm uses

O(n) bits in running time and space to scan and formulate subsequence strings through use

of the numeric representation format and bit operations.

Algorithm SectionNucleotides

Input: DNA numeric encoded sequence string d, sequence length n,

section length k.

Output: List of DNA numeric encoded length k sequence substrings

kmers.

\∗ Key T: 00, C: 01, A: 10, G: 11 ∗\
1: kmers← []

2: stamp← 0
3: i← 0
4: for i < k do
5: stamp← (stamp�2)^0b11

6: i← i+1

7: j← 0
8: while j < n-k+1 do
9: kmers← append(kmers, d&stamp)

10: d← d�2
11: j← j+1

57

Chapter 3. Algorithms

12: return kmers

ReverseSequence reverses a length n sequence string using O(n) bits running time and

space.

Algorithm ReverseSequence

Input: DNA numeric encoded sequence string d, sequence length n.

Output: Reverse sequence string drev of d.

\∗ Key T: 00, C: 01, A: 10, G: 11 ∗\
1: drev← 0
2: i← n-1
3: while i >= 0 do
4: drev← drev^(d&0b11)�2i

5: d← d�2

6: i← i-1

7: return drev

IsComp checks complementarity between length 3 sequence substrings (3-mers) using

O(1) bits running time and 18 bits of space.

Algorithm IsComp

Input: DNA numeric encoded length 3 sequence substrings d, d’.

Output: True or False boolean.
\∗ Key T: 00, C: 01, A: 10, G: 11 ∗\
\∗ 010101 selects alternate bits for 3-mer complementarity ∗\
\∗ check. ∗\
1: return !((d&0b010101)^(d’&0b010101))

ExamineDiagonal determines maximal bindings between two strands A and B by exam-

ining a list of binding index pairs. Each pair defines a length 3 complementarity region

58

Chapter 3. Algorithms

between A and B. The first index a refers to the address of a participating sequence sub-

string on A, and the second index b refers to the address of a participating sequence sub-

string on B. The algorithm iterates a single time through all (a,b) pairs to build up binding

stems where successive addresses ai, ai+1 on A differ only by one. A break in addresses

(ai+1−ai > 1) indicates a new binding region. Manipulation of information stored in the

index pairs yields complete ISO triples, with each ISO binding address i corresponding

to the initiating binding location on the A sequence string for concatenated AB sequence

string. The algorithm has O(m) running time and space usage where m counts the number

of diagonal cells which at most are the length of the shortest input sequence string.

Algorithm ExamineDiagonal

Input: List of index pairs (a,b) diag, representing table diagonal

cells for A vs. B reverse sequence strings.

Output: List of triples (i,s,o) binds.
\∗ Each (a,b) pair refers to a 3 nt complement between two ∗\
\∗ sequences A,B where a is the subsequence address in A ∗\
\∗ and b is the subsequence address in B, both relative to ∗\
\∗ their respective 5’ ends; (i,s,o) is longest possible ∗\
\∗ binding at address i within AB. ∗\
1: binds ← []

2: iter← 0

3: while iter < |diag| do
4: i← diag[iter].a

5: s← 3

6: lasta← i

7: next← iter+1

8: while next < |diag| do
9: if diag[next].a - lasta == 1 then

10: s← s+1

11: lasta← diag[next].a

12: next← next+1

13: else
14: break
15: o← |A|+diag[iter].b-2*s-i+3

59

Chapter 3. Algorithms

16: binds← append(binds,(i,s,o))

17: iter← iter+s-2
18: return binds

Algorithm FindAllHybrids first starts with two sequence strings A and B, encodes them

into bitstrings, and then splits the bitstrings into shorter ones representing all possible

length 3 sequence substrings. This preparation step has O(n) running time and space us-

age, driven by conversion from the A-C-G-T alphabet into bitstring encodings for length

n sequence strings. The algorithm then creates a table of encoded A vs. B sequence sub-

strings, one diagonal at a time. Diagonals (0,0) through the main diagonal, (n−1,0),(n−

2,1), . . . ,(0,m− 1) are formulated, and then diagonals (1,m− 1), . . . ,(n− 1,1) through

(n−1,m−1) are formulated (Table 3.1). Processing on each diagonal proceeds by check-

ing for bindability, and then creating ISO triples through review of the examined diag-

onal cells that showed complementarity. Complete binding regions may be as short as

three base-pairs, corresponding to a single cell, or m base-pairs corresponding to the entire

length m of the shortest oligonucleotide. A diagonal may also yield multiple triples since

any one orientation of two strands can generate more than one binding region. Forming

and processing information on the diagonals examines each cell once. If A has length n,

and B has length m, then a total of nm operations are used leading to running time and

space usage of O(n2). Use of bitstrings and bit-level manipulation limit resource usage in

the inner processing iterations in lines 12 and 25 to O(n) bits. Assuming a RAM model

of computation with 64-bit words, running time and space increase to O(n3) at a threshold

oligonucleotide strand length of 32.

Algorithm FindAllHybrids

Input: Sequence strings A, B.

Output: List of longest possible hybridizations triples.

60

Chapter 3. Algorithms

\∗ Address i, for each list triple, refers to concatenated ∗\
\∗ sequence string AB. ∗\
1: triples ← []

2: Anumeric← EncodeSequence(A,|A|)

3: A3mers← SectionNucleotides(Anumeric,|A|,3)

4: Bnumeric← EncodeSequence(B,|B|)

5: B3mers← SectionNucleotides(Bnumeric,|B|,3)

6: betaiter← 0
7: while betaiter < |B|-2 do
8: astart← 0

9: astop← betaiter

10: diaglist← 0

11: idx← astart

12: while idx <= astop do
13: if IsComp(A3mers[idx],ReverseSequence(B3mers[astop-idx],3)) then
14: diaglist← append(diaglist,(idx,astop-idx)

15: idx← idx+1

16: if |diaglist| > 0 then
17: triples← append(triples,ExamineDiagonal(diaglist))

18: betaiter← betaiter+1

19: betaiter← 1
20: while betaiter < |B|-2 do
21: astart← betaiter

22: astop← |B|-3

23: diaglist← 0

24: idx← astart

25: while idx <= astop do
26: if IsComp(A3mers[idx],

ReverseSequence(B3mers[|B|-idx-astart-3])) then
27: diaglist← append(diaglist,(idx,|B|-idx-astart-3)

28: idx← idx+1

29: if |diaglist| > 0 then
30: triples← append(triples,ExamineDiagonal(diaglist))

31: betaiter← betaiter+1

32: return triples

61

Chapter 3. Algorithms

3.1.2 Generate Separated DNA Oligonucleotides

For some applications, avoiding bond formation is imperative and instead what is required

is a set of oligonucleotides that can be used together without undue cross-reactivity or

self-folding, which could otherwise compromise their functionality. The problem is to

determine base assignments such that minimal Watson-Crick base-pairs will form leading

to very few or no double helical regions. Formally, the generate separated DNA oligonu-

cleotides problem considers a count c, a length n, and an avoidance length k, and searches

4n sequence space to find a satisfying set S = {seq0,seq1, . . . ,seqc−1} such that for all(c
2

)
pairs (seqi,seq j), and all c2 pairs (seqi,seqi), there are no binding regions with length

greater than k−1.

Examples where it is important to avoid bond formation between co-located oligonu-

cleotides include primer and aptamer design. DNA primers can be used to test the pres-

ence or absence of a particular DNA sequence, such as in a lateral flow device where a

small amount of a biological sample is absorbed and allowed to chemically interact with

carefully chosen sensor DNA oligonucleotides impregnated within the device. Aptamers

are small DNA or RNA oligonucleotides that can bind to proteins and peptides through

adoption of specific three dimensional shapes, and are being marketed as an alternative

to antibodies for treatment of some disorders. In yet another application area, a designer

of a synthetic biology system such as the DNA bricks as shown by Wei [132] will need

to design many strands, some of them very long, that will allow Watson-Crick base-pairs

to form at only a few particular locations and nowhere else. Building logic gates with

deoxyribozymes entails solving the same problem in wild-card regions of the gates, and in

selecting gate inputs.

The algorithm considers each sequence string as a vertex in an undirected graph G =

(V,E). An edge ei, j ∈ E indicates a binding region of length at least k between seqi and

62

Chapter 3. Algorithms

seq j. Multiedges and self edges are allowed since any two sequence strings may have

multiple independent binding regions or a sequence may have complementary regions

within itself. The search for satisfying sequence strings starts with randomly generated

strings and iteratively replaces the string with the highest edge count with a new random

string until the edge set is empty. Accurate maintainance of the edge set during the search

is aided by two dictionaries, one to hold the current working set of sequence strings, and

the other to track length k substrings that compose the strings.

Support Algorithms

The algorithm relies on support algorithms RandomNucleotides, SectionNucleotides,

RevComp, and DecodeNT. The support algorithms handle low-level tasks associated with

creating and using bitstrings to represent DNA sequence strings.

RandomNucleotides generates bitstring encoded random sequence strings in O(n) bits

running time and space usage for a length n sequence string, where we assume a constant

time uniform random generator function.

Algorithm RandomNucleotides

Input: Input length n.

Output: A length n random DNA sequence encoded with key as shown.
\∗ Key T: 00, C: 01, A: 10, G: 11 ∗\
\∗ URNG performs uniform random selection from argument list. ∗\
1: ntstring← 0
2: i← 0
3: for i < n do
4: ntstring← (ntstring�2)^URNG(0b00,0b01,0b10,0b11)

5: i← i+1

6: return ntstring

63

Chapter 3. Algorithms

RevComp employs bit-level manipulations to produce reverse-complemented DNA se-

quence strings in the DNARNABitStringEncoding binary format in O(1) running time

and O(n) bit space usage for a length n sequence string.

Algorithm RevComp

Input: DNA numeric encoded sequence d, sequence length n.

Output: Reverse complement DNA numeric encoded sequence d’.
\∗ Key T: 00, C: 01, A: 10, G: 11 ∗\
\∗ In place add 2 mod 4 complements each encoded nucleotide. ∗\
1: d’← 0
2: i← 0
3: for i < n do
4: d’← (d’� 2)^(((d&0b11) + 2) % 4)

5: d← d�2

6: i← i+1

7: return d’

DecodeNT converts DNA sequence strings from the DNARNABitstringEncoding binary

format into A-C-G-T sequence string format in O(n) running time and space usage.

Algorithm DecodeNT

Input: DNA numeric encoded sequence d, sequence length n.

Output: DNA A-C-G-T sequence string d’.
1: key ← [T,C,A,G]

2: d’ ← ""

3: i← 0
4: while i < n do
5: d’ ← append(d’, key(d&0b11))

6: d ← d�2

7: i← i+1

8: return d’

64

Chapter 3. Algorithms

Algorithm Non-Intersecting Sequence Set proceeds through several steps. The algo-

rithm maintains the current set of sequence strings in vector workingAvoidanceSet. A

key-value dictionary blackSubseq is employed where keys are all avoidance length sub-

sequence strings and values are the owner sequence strings identified by their

workingAvoidanceSet indices. Each sequence string in workingAvoidanceSet is addi-

tionally represented as a graph vertex by use of a second key-value dictionary edges that

tracks complementary subsequence string information between vertex pairs. Keys and

value lists in edges are sequence strings also identified by their workingAvoidanceSet

indices. Multiple edges between vertex pairs reflect multiple occurrences of complemen-

tary subsequence strings. Circular edges from and to the same vertex are also possible

and reflect occurrences of complementary subsequence strings within a sequence string.

The algorithm computes counts of complementary length k subsequence strings, hence the

value lists in edges take the form of multisets with duplicate indices allowed.

Step 1 populates workingAvoidanceSet with c randomly generated length n sequence

strings. Each of these sequence strings is then sliced into length k subsequence strings and

dictionary blackSubseq is populated by using the subsequence strings as keys and the

owner sequence strings indices as values. Since the same length k subsequence string may

occur within a single sequence string, the blackSubseq value lists may contain duplicates.

Step 2 iterates through dictionary blackSubseq and for each key α , the reverse comple-

ment α ′ is computed and checked for existence within blackSubseq. If α ′ is found, α and

α ′ within blackSubseq are Watson-Crick base-pairable, and therefore in conflict. This

conflict is recorded within dictionary edges. First, all the sequence strings that have α as

a subsequence string are found as the value list of key α within blackSubseq. The value

list contains a list of indices, where each index serves as a name of the owner sequence

string. The value list of key α ′ within blackSubseq similarly contains a list of indices,

where each index names the owner sequence of α ′. The α owner indices are iterated to

65

Chapter 3. Algorithms

populate dictionary edges keys, and the α ′ owner indices are appended as edges value

lists, for each separate key.

Step 3 uses data structures workingAvoidanceSet, blackSubseq, and edges to orches-

trate the search for a satisfying set of sequence strings. A loop is executed to regen-

erate new sequence strings and check their cross-reactivity against existing ones until a

zero length k conflict count amongst all sequence strings in workingAvoidanceSet is

achieved. At the top of the loop, the sequence string with the highest number of con-

flict subsequence strings is tallied by examining the total number of conflict indices in

the value lists for each vertex key in dictionary edges. The key with the maximum count,

maxowner, is selected for replacement as a greedy decision. Prior to deletion and regenera-

tion, the information associated with maxowner is excised from dictionaries blackSubseq

and edges, and finally from within workingAvoidanceSet. Loop substeps are as follows.

Step 3a cleans up dictionary blackSubseq. First, all subsequence strings associated with

maxowner are recomputed since they have been merged into blackSubseq and a separate

data structure to hold them was not used in Step 1. Next, any duplicate subsequence strings

from this set are removed to form set killsubseqs as the set of all unique subsequence

strings found in the sequence string named by maxowner. Iteration through killsubseqs

proceeds to examine each unique subsequence string and look up its associated owner list

in dictionary blackSubseq, followed by a nested iteration through each owner list to look

for and delete instances of maxowner. It may be the case that either no other sequence

strings contained the subsequence string under examination other than maxowner, or that

the list of owner sequence strings is reduced. As such, the key under review is deleted

outright from blackSubseq, or the blackSubseq value list for the key is replaced with

the reduced owner list.

Steb 3b cleans up dictionary edges. Prior to removing the maxowner key completely from

66

Chapter 3. Algorithms

edges, references to maxowner must be removed from the value lists of the remaining

keys. We recall that edges is tracking conflict sequence strings that contain Watson-Crick

pairable subsequence strings. First, the value list of key maxowner in edges is copied

into a temporary variable killnodes so that each of these vertices may have maxowner

removed from their corresponding value lists. Iteration through killnodes accomplishes

this goal by examination of each individual vertex and deletion of all maxowner instances

from the associated value list. The cleaned-up lists of each key other than maxowner in

edges then replace the existing value lists, and finally the entire maxowner key is reset

within edges so that it can be reused in the next substep.

Step 3c revisits Steps 1 and 2 for a single sequence string. First, workingAvoidanceSet

is updated by assigning a new randomly generated length n sequence string to the old

maxowner index. Next, all the subsequence strings of the new sequence string are deter-

mined and searched for within dictionary blackSubseq. Any new subsequence strings are

added as new keys, with a value list holding only the old maxowner index. If a subsequence

string is found as already existing in blackSubseq, its value list is simply augmented to

include the maxowner instance. Reverse-complements of all the new subsequence strings

are computed and used to additionally update blackSubseq and also dictionary edges.

Step 4 is reached after iterating through Step 3 substeps until no more conflict subsequence

strings are present in any of the sequence strings of workingAvoidanceSet. Once this

status is achieved, all sequence strings are decoded back into A-C-G-T format to produce a

satisfying set of sequence strings that possess no Watson-Crick subsequence complements

larger than length k−1.

Time and resource usage is based on the expected number of iterations through the main

loop. The space of all length n sequence string c-sets is 4nc. There is always a satisfying

solution, despite the exponentially sized space that is searched. Trivially, for any com-

67

Chapter 3. Algorithms

bination of c, n, and k, sequence strings can consist of all ”A” nucleotides, or all ”C”

nucleotides, or be composed from only ”A” and ”C” nucleotides. There are additional

symmetric cases that similarly satisfy the problem statement. There are many more sat-

isfying string subsets beyond the trivial cases as well that we identify as safe sets of the

total solution space. Safe sets are composed from length k subsequence strings that are not

pairable. For example, if k = 2 and n = 3, one possible safe set is:

{TAA,AAA,AAC,ACA,CCC,ACC,CCA,CTC,TCA,GCA,CAC,CCT,TCT,TCC,CAA}.

A variant safe set replaces element TAA with TAC. Further safe sets result from additional

single element switch-outs, and from considering different subsets of the 43 = 64 space of

length 3 sequence strings. Safe sets are heavily intersected, since each n-mer string that is

non-self complementary at and below the avoidance length k will belong to multiple safe

sets.

The action of the algorithm is to find one of the safe sets over the course of execution,

and return sequence strings from this set. It does so by virtue of the greedy selection step,

which at each iteration replaces the sequence string with the highest number of conflicts.

The remaining sequence strings each have fewer conflicts unless there is a tie for max-

owner; in general the smaller conflict count means each remaining string is closer to the

conflict-free ideal, and closer to each other in terms of which safe set they might be in. The

maxowner will continually be reselected for replacement until its conflict count reduces to

lower than that of the next highest neighbor, which serves to push it closer to the locus of

the safe subsets, and eventually cluster all elements into only one safe set. The algorithm

ultimately chooses the safe set through random selection, because the greedy strategy is

only counting conflicts and not insisting on membership into any one safe set. This means

the safe set will most likely change over the course of the algorithm until one starts to

dominate and exert an attractive pull on the remaining n-mers.

68

Chapter 3. Algorithms

Algorithm Non-Intersecting Sequence Set
Input: Count c, sequence length n, avoidance length k.

Output: A set of c length n strands with no Watson-Crick pairable

subsequences greater than length k-1.
\∗ Key T: 00, C: 01, A: 10, G: 11 ∗\
\∗ Standard list append function used to build up vectors of ∗\
\∗ indices; standard list duplicate removal function used to ∗\
\∗ eliminate repeats; standard list sort function used used ∗\
\∗ to numerically sort low to high index lists; standard list ∗\
\∗ delete function used to remove entries. ∗\
1: workingAvoidanceSet ← []

2: blackSubseq ← []

3: edges ← []

{Step 1.}
4: i ← 0

5: for i < c do
6: rndmseq ← RandomNucleotides(n)

7: workingAvoidanceSet[i] ← rndmseq

8: subseqs ← SectionNucleotides(rndmseq,n,k)

9: j ← 0

10: for j < |subseqs| do
11: elt ← subseqs[j]

12: if blackSubseq[elt] then
13: blackSubseq[elt] ← append(blackSubseq[elt], i)

14: else
15: blackSubseq[elt] ← [i]

16: j← j+1

17: i← i+1

{Step 2.}
18: i ← 0

19: for i < |blackSubseq| do
20: conflictSubseq ← RevComp(blackSubseq[i],k)

21: if blackSubseq[conflictSubseq] then
22: nodes ← blackSubseq[conflictSubseq]

23: j ← 0

24: for j < |nodes| do
25: edges[j] ←

append(edges[nodes[j]], blackSubseq[conflictSubseq])

69

Chapter 3. Algorithms

26: j← j+1

27: i← i+1

{Step 3.}
28: while true do
29: maxcount ← 0

30: i ← 0

31: for i < |edges| do
32: if |edges[i]| > maxcount then
33: maxcount ← |edges[i]|

34: maxowner ← i

35: if maxcount < 1 then
36: break

{Step 3a.}
37: maxsubs ← SectionNucleotides(workingAvoidanceSet[maxowner],n,k)

38: killsubseqs ← removeDuplicates(maxsubs)

39: i ← 0

40: for i < |killsubseqs| do
41: owners ← sort(blackSubseq[i])

42: j ← 0

43: while j < |owners| do
44: if owners[j] > maxowner then
45: break
46: if owners[j] == maxowner then
47: delete(owners[j])

48: else
49: j← j+1

50: if |owners| > 0 then
51: blackSubseq[i] ← owners

52: else
53: delete(blackSubseq[i])

54: i← i+1

{Step 3b.}
55: killnodes ← edges[maxowner]

56: i ← 0

57: for i < |killnodes| do
58: nodes ← sort(edges[i])

59: j ← 0

60: while j < |nodes| do
61: if nodes[j] > maxowner then

70

Chapter 3. Algorithms

62: break
63: if nodes[j] == maxowner then
64: delete(nodes[j])

65: else
66: j ← j+1

67: edges[i] ← nodes

68: i ← i+1

69: edges[maxowner] ← []

{Step 3c.}
70: newrndmseq ← RandomNucleotides(n)

71: workingAvoidanceSet[maxowner] ← newrndmseq

72: newsubseqs ← SectionNucleotides(newrndmseq,n,k)

73: newconflicts ← []

74: i ← 0

75: for i < |newsubseqs| do
76: if blackSubseq[i] then
77: blackSubseq[i] ← append(blackSubseq[i], maxowner)

78: else
79: blackSubseq[i] ← [maxowner]

80: newconflicts ←
append(newconflicts, RevComp(blackSubseq[i],k))

81: i ← i+1

82: i ← 0

83: for i < |newconflicts| do
84: if blackSubseq[i] then
85: newconflictNodes ← blackSubseq[i]

86: edges[maxowner] ← append(edges[maxowner],newconflictNodes)

87: j ← 0

88: for j < |newconflictNodes| do
89: edges[j] ←

append(edges[newconflictNodes[j]],maxowner)

90: j ← j+1

91: i ← i+1

{Step 4.}
92: mutualAvoidanceSet ← []

93: i ← 0

94: for i < c do
95: mutualAvoidanceSet[i] ← decodeNT(workingAvoidanceSet[i],n)

96: i← i+1

71

Chapter 3. Algorithms

97: return mutualAvoidanceSet

Example algorithm output using inputs c = 5, n = 100, and k = 5 is as follows. The first

5-mer of Sequence 1 is ATAGT. The complement is TATCA, and the reverse complement

is ACTAT, neither of which is found elsewhere within Sequence 1, nor within Sequences

2-5. This property is true for every single 5-mer within all five sequences, and as well for

all subsequences with lengths greater than 5.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Seq 1 A T A G T T G C G G G G G C T T G G G T
Seq 2 G T A T A T T T T G G A T G G T T G C A
Seq 3 T G G A G A A T T G G T G C G G T T C G
Seq 4 C A T A A T A G G T G T T A G G T C C G
Seq 5 A G G T T G A G G A C G T G A A T T G C
index 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Seq 1 A G C G T C T G T T G A T G T A T A G C
Seq 2 T A G G T T C T G T A G T T T C G G G T
Seq 3 G C T A A G T T G G G C A G G G G T G G
Seq 4 T A T T G T G G G T T G G A C T C T C G
Seq 5 T C T G T C C C A G G T G C T T G T G T
index 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Seq 1 G T T G A T T G A A G C G G C T T G G A
Seq 2 G G C G T G C G T C G C A T A G G T C A
Seq 3 T T C A T T T T C G T C T A A G G A T A
Seq 4 C A G C G T T T A T T T C C T A C T G A
Seq 5 G C C G T A T G G G G G T G G G T G A G
index 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Seq 1 T A G T G G G T T A G G T T G G A G T G
Seq 2 T A A C G G T G G G G A A T C T A C T T
Seq 3 G T C T G G A G C G A A G G T C A T G G
Seq 4 T A G C G T G G G G T C C G A G G G G G
Seq 5 G G C T C T T G G T C T G C T C G T A T
index 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
Seq 1 G G C A G G T G C A T G T T T A A T T T
Seq 2 C T G G T C A A G T G T T C T G T A G C
Seq 3 C C C G G C T G A G T T T G T G T A G C
Seq 4 T T T A G T A T G T T T G C A G C G G A
Seq 5 T T A A G T C G T G A G T T G T A C T C

Table 3.3: Five 100-mer DNA sequences with no reverse-complementary subsequences
greater than length 4.

72

Chapter 3. Algorithms

3.2 Structure Algorithms

3.2.1 ISO/Dot-Parenthesis Conversion

Due to the heavy use of dot-parenthesis in thermodynamic models, the conversion al-

gorithms are for transforming back and forth between dot-parenthesis and ISO. First, to

transform dot-parenthesis notation into ISO, a linear scan of the input string yields two

lists of open and close parentheses. Repeating until list stackclose is empty, we exam-

ine list stackopen from the end forward to find the corresponding opening parenthesis.

From this location, the largest stem-loop possible is built and saved as a complete ISO

triple. Participating stackopen and stackclose elements are removed as each ISO triple

completes.

To transform an ISO list into dot-parenthesis notation, we require additional length infor-

mation input. We form a list of full stop (dot) characters to the input length, and replace

each with either open or close parenthesis symbols based on examination of each ISO

structure in the list. We then convert the list into a string as output.

Both algorithms have O(n) running time and space usage for a length n dot-parenthesis

string.

Algorithm Dot-Parenthesis to ISO Conversion

Algorithm dp2iso
Input: Dot-Parenthesis string oligo.

Output: List of ISO triples.
\∗ Standard list append function used to build up vectors of ∗\
\∗ indices; list delete function used to remove entries; sort ∗\
\∗ function used to numerically sort low to high index lists. ∗\
1: open ← []

73

Chapter 3. Algorithms

2: close ← []

3: triples ← []

4: idx ← 0

5: while idx < len(oligo) do
6: if oligo[idx] ≡ “(” then
7: open ← append(open,idx)

8: if oligo[idx] ≡ “)” then
9: close ← append(close,idx)

10: idx ← idx + 1

11: if |open| < 1 then
12: return triples

13: while |close| > 0 do
14: anchorClose ← close[0]

15: openIdx ← |open| - 1

16: while anchorClose < open[openIdx] do
17: openIdx ← openIdx - 1

18: i ← open[openIdx]

19: s ← 1

20: o ← anchorClose - open[openIdx] - 1

21: openDel ← [open[openIdx]]

22: closeDel ← [close[0]]

23: prevOpen ← open[openIdx]

24: prevClose ← close[0]

25: openIdx ← openIdx - 1

26: closeIdx ← 1

27: while openIdx > 1 ∧ closeIdx < |close| do
28: if close[closeIdx] - prevClose ≡ 1 ∧

prevOpen - open[openIdx] ≡ 1 then
29: i ← i - 1

30: s ← s + 1

31: openDel ← append(openDel, open[openIdx])

32: closeDel ← append(closeDel, close[closeIdx])

33: prevOpen ← open[openIdx]

34: prevClose ← close[closeIdx]

35: openIdx ← openIdx - 1

36: closeIdx ← closeIdx + 1

37: else
38: break
39: triples ← append(triples,(i,s,o))

74

Chapter 3. Algorithms

40: for all elt ∈ openDel do
41: open ← delete(open,elt)

42: for all elt ∈ closeDel do
43: close ← delete(close,elt)

44: return sort(triples)

Algorithm ISO to Dot-Parenthesis Conversion

Algorithm iso2dp
Input: List of triples, length n.

Output: Dot-Parenthesis string dpstring.
\∗ Standard list append function ∗\
\∗ used to build up vector of dots. ∗\
1: dpstring ← []

2: i ← 0

3: while i < n do
4: dpstring ← append(dpstring,".")

5: i ← i+1

6: for all iso ∈ triples do
7: j ← 0

8: while j < iso[1] do
9: dpstring[iso[0]+j] ← "("

10: dpstring[iso[0]+iso[1]+iso[2]+j] ← ")"

11: j ← j+1

12: return dpstring

3.2.2 Shape Inference

Shapes, also termed motifs, are unbound contiguous single-stranded regions enclosed by

one or more double helical regions. Shapes can be identified as bulges, stem-loops, internal

loops, and as r-way multibranches. Naming reflects the induced forms as shown in Figure

75

Chapter 3. Algorithms

2.2 (Page 42). In that example, there are eight double helical regions that start at addresses

2, 8, 17, 21, 24, 29, 40, and 82. There are two stem-loops, one defined by the stem at

address 40, and one defined by the stem at address 82. There is one bulge defined by the

two stems at addresses 24 and 29. Relative to the 5’ end, there are three internal loops.

The first internal loop is defined by the stems at addresses 8 and 17, the second internal

loop is defined by the stems at addresses 17 and 21, and the third internal loop is defined

by the stems at addreses 21 and 24. Lastly, there is one 3-way multibranch defined by

stems at addresses 2, 8, and 82.

Alternative naming and shape classification variants are possible. In this work, a stem-

loop means a single stem enclosing a single loop of unpaired bases. Some authors refer to

stem-loops as hairpins, however here we reserve the term hairpin to mean a stem with no

attached loop. Although this is not a typical natural form, in self-assembled systems there

are often examples where the secondary structure can be described as a stem-loop with a

size 0 loop. To distinguish this case, we refer to it as a hairpin. Bulges may be further

described as being either upper or lower, where the additional terms respectively refer to

pucker location as relative to either the 5’ or the 3’ end of the strand. As a general rule,

naming helps to meaningfully differentiate small variations. Bulges and internal loops

are indeed nearly the same thing. The key characteristic of a bulge is that the pucker

of unpaired bases exists between either the opening bases of the two defining stems, or

between the closing bases of the two defining stems, but not both. If the pucker does exist

between both the opening and closing bases of the two defining stems, then it is identified

as an internal loop.

The shape algorithms infer presence, location, and sizes of defining ISO triples. All in-

stances meeting the shape criteria are returned as property vectors, thus empty vectors

indicate absence of a shape within an input structure. Addressing for each inference al-

gorithm is relative to the 5’ end of the strand. In many cases, if a pseudoknot is present,

76

Chapter 3. Algorithms

the algorithm will fail, or return partly incorrect results. The pseudoknot inference algo-

rithm can be executed as a required preprocessing step, as needed, with knotted base pairs

filtered out before checking for shapes and their properties. All algorithms in this group

work for one strand, or multiple strands. If more than one strand is represented by the ISO

input then reported shape addresses will change with each strand order permutation.

Algorithm Stem-Loop Inference

Each triple in an ISO list is examined. A check is made (Line 16) to determine reaching

the last triple in the list, or if the next triple is completely downstream of the current one.

This check ensures that only true stem-loops are reported by looking for the innermost

triple within any nested triples that may be present. The algorithm has O(k) running time

and space usage for a length k ISO. Example output for a more complicated structure,

illustrated in Figure 3.5, is shown in Appendix B.1.

Algorithm Stem-Loop Filter
Input: List of triples iso.

Output: For each unique stem-loop, defining triples list

stemloopTriples, stem lengths list stemLengths, loop counts list

loopCounts, and addresses list stemloopAddresses.

\∗ Standard list append function used to build output lists. ∗\
1: stemloopTriples ← []

2: stemLengths ← []

3: loopCounts ← []

4: stemloopAddresses ← []

5: current ← 0

6: while current < |iso| do
7: triple ← iso[current]

8: if current+1 < |iso| then
9: tripleNext ← iso[current+1]

10: ijp1 ← tripleNext[0]

11: else

77

Chapter 3. Algorithms

12: ijp1 ← -1

13: ij ← triple[0]

14: sj ← triple[1]

15: oj ← triple[2]

16: if ijp1 < 0 ∨ ijp1 > ij + 2*sj + oj - 1 then
17: if oj > 0 then
18: stemloopTriples ← append(stemloopTriples,triple)

19: stemLengths ← append(stemLengths,sj)

20: loopCounts ← append(loopCounts,oj)

21: stemloopAddresses ← append(stemloopAddresses,ij)

22: current ← current+1

23: return stemloopTriples,stemLengths,loopCounts,stemloopAddresses

Algorithm Hairpin Filter

This algorithm is almost identical to Stem-Loop Filter. A stem with no contained bases is

seen in an ISO as a triple with an opening of 0. Although this shape is not that common in

natural system structures, it is found in synthetic designs. A differentiating logic at the end

of the algorithm checks to see if a hairpin is occurring as a binding using bases from the

beginning and ending of the entire oligonucleotide(s) being structurally represented. With

this special case there are no overhanging unpaired bases (“sticky ends”). The algorithm

has O(k) running time and space usage for a length k ISO. Example output for the structure

shown in Figure 3.5 is in Appendix B.1.

Algorithm Hairpin Filter
Input: List of triples iso, length n.

Output: For each unique hairpin, defining triples list hairpinTriples,

stem lengths list stemLengths, and addresses list hairpinAddresses.

\∗ Standard list append function used to build output lists. ∗\
1: hairpinTriples ← []

2: stemLengths ← []

78

Chapter 3. Algorithms

3: hairpinAddresses ← []

4: while current < |iso| do
5: triple ← iso[current]

6: if current+1 < |iso| then
7: tripleNext ← iso[current+1]

8: ijp1 ← tripleNext[0]

9: else
10: ijp1 ← -1

11: ij ← triple[0]

12: sj ← triple[1]

13: oj ← triple[2]

14: if ijp1 < 0 ∨ ijp1 > ij + 2*sj + oj - 1 then
15: if oj ≡ 0 then
16: hairTriples ← append(hairpinTriples,triple)

17: stemLengths ← append(stemLengths,sj)

18: hairpinAddresses ← append(hairpinAddresses,ij)

19: if ij ≡ 0 ∧ ij + 2*sj + oj ≡ length then
20: hairTriples ← append(hairpinTriples,triple)

21: stemLengths ← append(stemLengths,sj)

22: hairpinAddresses ← append(hairpinAddresses,ij)

23: current ← current+1

24: return hairpinTriples,stemLengths,hairpinAddresses

Algorithm Bulge Filter

Bulges are puckers of unpaired bases that are present only on one side of a helical region.

Relative to the 5’ end of one or more represented oligonucleotides, a one-sided pucker

closest to the 5’ end is an “upper” bulge while one closest to the 3’ end is a “lower” bulge.

Figures 3.1 and 3.2 show the distinction.

Each triple in an ISO list is examined. Relationships between triples are checked to deter-

mine if there is a bulge of unpaired bases between consecutive triples. Relativity to the 5’

end of the first oligonucleotide represented structurally by its ISO defines whether a bulge

79

Chapter 3. Algorithms

[(0,4,9),(4,3,0)]

[(0,4,9),(7,3,0)]

Examples of lower and upper bulges

 5!

 5!

 3!

 3!

Figure 3.1: An example of an upper bulge, with unpaired bases on the 5’-most side be-
tween two double-helical regions.

[(0,4,9),(4,3,0)]

[(0,4,9),(7,3,0)]

Examples of lower and upper bulges

 5!

 5!

 3!

 3!

Figure 3.2: An example of an lower bulge, with unpaired bases on the 3’-most side be-
tween two double-helical regions.

is upper (5’-most) or lower (3’-most). Extra checks (Lines 24 and 30) ensure that there

are no other stems emanating from the bulge region. If more than two stems surround a

puckered out region of unpaired bases, the shape is instead defined as a multibranch. The

algorithm has O(k) running time and space usage for a length k ISO.

Algorithm Bulge Filter
Input: List of triples iso.

Output: For each unique bulge, defining triples list bulgeTriples,

stem lengths list stemLengths, loop counts list loopCounts, and

addresses list bulgeAddresses.

\∗ Standard list append function used to build output lists. ∗\
1: bulgeTriples ← []

2: stemLengths ← []

3: loopCounts ← []

4: bulgeAddresses ← []

5: current ← 0

6: while current < |iso| - 1 do
7: triple ← iso[current]

80

Chapter 3. Algorithms

8: tripleNext ← iso[current+1]

9: ij ← triple[0]

10: sj ← triple[1]

11: oj ← triple[2]

12: ijp1 ← tripleNext[0]

13: sjp1 ← tripleNext[1]

14: ojp1 ← tripleNext[2]

15: if current + 2 < |iso| then
16: tripleNextNext ← iso[current+2]

17: ijp2 ← tripleNextNext[0]

18: else
19: ijp2 ← -1

20: upper ← false

21: lower ← false

22: if ijp1 - (ij + sj) > 0 then
23: if (ij + sj + oj) - (ijp1 - 2*sjp1 + ojp1) ≡ 0 then
24: if (ijp2 < 0) ∨ (ijp2 > (ij + 2*sj + oj)) then
25: upper ← true

26: bulgeInit ← ij + sj - 1

27: bulgeStop ← ijp1

28: if ijp1 - (ij + sj) ≡ 0 then
29: if (ij + sj + oj) - (ijp1 + 2*sjp1 + ojp1) > 0 then
30: if (ijp2 < 0) ∨ (ijp2 > (ij + 2*sj + oj)) then
31: lower ← true

32: bulgeInit ← ijp1 + 2*sjp1 + ojp1 - 1

33: bulgeStop ← ij + sj + oj

34: if upper ∨ lower then
35: bulgeTriples ← append(bulgeTriples,[triple,tripleNext])

36: stemLengths ← append(stemLengths,[sj,sjp1])

37: loopCounts ← append(loopCounts,bulgeStop - bulgeInit - 1)

38: bulgeAddresses ← append(bulgeAddresses,[ij,ijp1])

39: current ← current + 1

40: return bulgeTriples,stemLengths,loopCounts,bulgeAddresses

81

Chapter 3. Algorithms

Algorithm Internal Loop Filter

The algorithm works very similarly to bulge inference, but differs in computing loop size

and the check for a loop. As before, each triple in an ISO list is examined. Line 22 checks

to ensure the unpaired bases between two stems are not part of a multibranch. Where there

are unpaired bases on both the 5’-most (“upper”) and 3’-most (“lower”) regions between

two consecutive stems, the shape is an internal loop. The algorithm has O(k) running time

and space usage for a length k ISO.

Algorithm Internal Loop Filter
Input: List of triples iso.

Output: For each unique internal loop, defining triples list

internalloopTriples, stem lengths list stemLengths, loop counts list

loopCounts, and addresses list internalloopAddresses.

\∗ Standard list append function used to build output lists. ∗\
1: internalloopTriples ← []

2: stemLengths ← []

3: loopCounts ← []

4: internalloopAddresses ← []

5: current ← 0

6: while current < |iso| - 1 do
7: triple ← iso[current]

8: tripleNext ← iso[current+1]

9: ij ← triple[0]

10: sj ← triple[1]

11: oj ← triple[2]

12: ijp1 ← tripleNext[0]

13: sjp1 ← tripleNext[1]

14: ojp1 ← tripleNext[2]

15: if current + 2 < |iso| then
16: tripleNextNext ← iso[current+2]

17: ijp2 ← tripleNextNext[0]

18: else
19: ijp2 ← -1

20: if ijp1 - (ij + sj) > 0 then

82

Chapter 3. Algorithms

21: if ((ij + sj + oj) - (ijp1 + 2*sjp1 + ojp1)) > 0 then
22: if (ijp2 < 0) ∨ (ijp2 > ij + 2*sj + oj) then
23: internlloopTriples ←

append(internalloopTriples,[triple,tripleNext])

24: stemLengths ← append(stemLengths,[sj,sjp1])

25: internalloopAddresses ←
append(internalloopAddresses,[ij,ijp1])

26: upperInit ← ij + sj - 1

27: upperStop ← ijp1

28: upperLoopcount ← upperStop - upperInit - 1

29: lowerInit ← ijp1 + 2*sjp1 + ojp1 - 1

30: lowerStop ← ij + sj + oj

31: lowerLoopcount ← lowerStop - lowerInit - 1

32: loopCounts ←
append(loopCounts,upperLoopcount + lowerLoopcount)

33: current ← current + 1

34: return internaloopTriples,stemLengths,loopCounts,

internalloopAddresses

83

Chapter 3. Algorithms

Algorithm Parent-Child Determination

This algorithm is directly required by Algorithm Multibranch Inference. Multibranches

are internal loops with more than two stems emanating from the loop region. There is no

limit on the number of stems. Because the ISO triple list naturally orders triples depth-

first, we can start at the end of the list and note that for each triple, if it has a parent, the

parent is the tighest numerically enclosing triple that precedes it in the list. Each triple

can have more than one child, but can only have a single parent. The algorithm has O(k2)

running time and space usage for a length k ISO and uses precise binding pair locations as

shown in Figure 3.3.

!"#"$%&'"()*$"'#+,-&./(0".*#&1'2-&32

41$("*5-(#$&3."(&'(678

911:;3(&'/"<(1=(13"'&'>(&'&#&*.(?*2"(.15*#&1'(*2(&(*'/(2#1$"(&'(.&2#(2#*$#13"'2

911:;3(&'/"<(1=(13"'&'>(!'*.(?*2"(.15*#&1'(*2(&@2+A(*'/(2#1$"(&'(.&2#("'/13"'2

911:;3(&'/"<(1=(5.12&'>(&'&#&*.(?*2"(.15*#&1'(*2(&@2@1(*'/(2#1$"(&'(.&2#(2#*$#5.12"2

911:;3(&'/"<(1=(5.12&'>(!'*.(?*2"(.15*#&1'(*2(&@B2@1+A(*'/(2#1$"(&'(.&2#("'/5.12"2

6'&#&*.&C"(5-&./(.&2#(*2("%3#D

6'&#&*.&C"(3*$"'#(*2(+A(E'1(3*$"'#(&'/&5*#1$F

41$("*5-(#$&3."(&'(678G("<*%&'"/(&'($"H"$2"(1$/"$G(2#*$#&'>(

I&#-('"<#(#1(.*2#(1'"G(5*..(&#(J#-&2K

6'&#&*.&C"(%&'&%;%(2#*$#(/".#*(#1(2#$*'/(."'>#-

6'&#&*.&C"(%&'&%;%("'/(/".#*(#1(2#$*'/(."'>#-

41$("*5-(#$&3."(&'(678G("<*%&'"/(&'($"H"$2"(1$/"$G(2#*$#&'>(

I&#-(#$&3."(3$"5"/&'>(J#-&2KG(5*..(&#(J;32#$"*%K

L3/*#"(2#*$#(/".#*(*2(/&""$"'5"(?"#I""'(

2#*$#13"'2(J#-&2K(*'/("'/13"'2(J;32#$"*%K

L3/*#"("'/(/".#*(*2(/&""$"'5"(?"#I""'(

2#*$#5.12"2J;32#$"*%K(*'/("'/5.12"2J#-&2K

64(2#*$#(/".#*(*'/("'/(/".#*(*$"(?1#-(312&#&H"(*'/("*5-(

&2(2%*.."$(#-*'(#-"($"23"5#&H"(%&'&%;%2

L3/*#"(%&'&%;%("'/(/".#*(I&#-("'/(/".#*

L3/*#"(3*$"'#(1=(J#-&2K(*2(J;32#$"*%K

L3/*#"(%&'&%;%(2#*$#(/".#*(I&#-(2#*$#(/".#*

M'/(9113

M'/(9113

M'/(9113

MN!64

41$("*5-(&#"%(&'(3*$"'#(.&2#

64(&#"%(-*2(*(3*$"'#

L3/*#"(5-&./(.&2#(=1$(#-*#(3*$"'#

MN!64

M'/(9113

O"D(8?2"$H*#&1'P((678('*#;$*..D

1$/"$2(#$&3."2(*2(/"3#-(!$2#G(

#-"$"=1$"(I"(5*'(2#*$#(*#(#-"(

"'/(1=(#-"(678(.&2#(*'/(=1$(

"*5-(#$&3."G(&=(&#(-*2(*(3*$"'#G(

#-"(3*$"'#(&2(#-"(#&>-#"2#

"'5.12&'>(#$&3."(#-*#(3$"5"/"2(

&#(&'(#-"(.&2#Q

!

!"#$% !"#"&

!"'#"&$%
R S

T

T

S

,

,

R

, T

S R

#()*(+&,-.

-./+&,-. #()*(+01&#-

-./+01&#-

(((6N)LSP((678(.&2#G(#1#*.(2#$*'/E2F(."'>#-

8LS)LSP((,-&./(.&2#(*'/()*$"'#(.&2#

Figure 3.3: Index naming convention used by Parent-Child.

84

Chapter 3. Algorithms

Algorithm Parent-Child
Input: List of triples iso, total length n of represented

oligonucleotides.

Output: A list parent, showing for each triple a sublist of other

directly adjacent and contained triples, and a list children, showing

the containing parent for each triple.

\∗ Standard list append function used to build output lists. ∗\
1: startOpens ← []

2: endOpens ← []

3: startCloses ← []

4: endCloses ← []

5: children ← []

6: i ← 0

7: for i < |iso| do
8: children ← append(children,[])

9: i ← i+1

10: current ← 0

11: while current < |iso| do
12: triple ← iso[current]

13: startOpens ← append(startOpens,triple[0])

14: endOpens ← append(endOpens,triple[0] + triple[1] - 1)

15: startCloses ←
append(startCloses,triple[0] + triple[1] + triple[2])

16: endCloses ←
append(endCloses,triple[0] + 2*triple[1] + triple[2] - 1)

17: current ← current + 1

18: i ← 0

19: for i < |iso| do
20: parent ← i

21: if |iso| > 0 then
22: parent[0] ← -1

23: i ← |iso|-1

24: for i > 0 do
25: minimumStartDelta ← n

26: minimumEndDelta ← n

27: upstream ← i-1

28: for upstream > -1 do
29: startDelta ← startOpens[i] - endOpens[upstream]

85

Chapter 3. Algorithms

30: endDelta ← startCloses[upstream] - endCloses[i]

31: if startDelta > 0 ∧ endDelta > 0 then
32: if startDelta < minimumStartDelta ∧

endDelta < minimumEndDelta then
33: minimumStartDelta ← startDelta

34: minimumEndDelta ← endDelta

35: parent[i] ← upstream

36: upstream ← upstream-1

37: if parent[i] ≡ i then
38: parent[i] ← -1

39: i ← i-1

40: i ← 0

41: for i < |iso| do
42: children[parent[i]] ← append(children[parent[i]],i)

43: i ← i+1

44: return parent,children

Algorithm R-Way Multibranch Inference

With the use of algorithm Parent-Child, the inference of multibranches is almost imme-

diate. Recall that each triple represents a separate binding stem, and all triples are ordered

based on their address location relative to the 5’ end of the first (or only) oligonucleotide

structurally described by its ISO. Given a triple α , any other triples β , γ , . . . that occur in

the ISO list after α by definition have larger-valued addresses for their initiating locations.

The entire extent of a binding feature in ISO terms is the total mapped footprint which

includes the starting bases, any unpaired bases, and the closing bases. When we combine

the initiating location addresses (i), along with the footprints (i+ 2s+ o), it is straight-

forward to infer presence of a multibranch. An occurrence of three or more stems where

one is a left-most triple in the ISO list, and the remaining have initiating addresses within

the footprint of the left-most triple, can either be a junction or a multibranch. If there are

86

Chapter 3. Algorithms

unpaired bases between the stems, as in a bulge or internal loop, then the feature qualifies

as a multibranch. If there are no open bases between the stems, then the feature qualifies

as a junction. Figure 3.4 (structure with a junction only) and Figure 3.5 (structure with

multibranches) show this distinction.

5'

5'

5'

3'

3'

3'

Figure 3.4: Synthetically designed junction structure. The structure is perfectly symmetric
thus any ordering of oligonucleotides yields ISO [(0,5,20),(5,5,0),(10,5,0)].

87

Chapter 3. Algorithms

FIG. 12

124
125

126
127

128
129

130
131
132
133

134

116

123
122

121
120

119
118

117

107
108

109

110
95

96
97

9899

106
105

104
103

102
101

100

111
112

115
114

93
94

92

135
136

137

80

91
90

138
139
14089

88 141
14287

86 143
14485

84 145
14683

82 147
148

113

149
150

78

81

71
70

151
169

170
69 171

79

175
176

63

65

7
6

177
218

219
5 220

64

183
184

180

182

215

214

191
198

199
213 200

181
58

59
42

44

28
27

60

10
11

26 12

43

777675 153152
154

727374
166

165

156
155

167168

158157

160

159

164
163

161

162
68 172
67
66

173
174

54
53

179178

216217

6261

89

193192

196197

194

195

41

29

40

30

47
46

55
56

45 57

39

48

51 52

49

50

36
37

31

38

25
24

34

35

13
14

33 32

23 15

21

22

17

16

19
20

0
18

4 221
3
2

222
223

1 224

5'
3'

185

188
187

189

186

190

203
202
201

210
211
212

206

205
204

208
209

207

STEM
LOOP

STEM
LOOP

STEM
LOOP

STEM
LOOP

MULTI-
BRANCH

HAIRPIN

STEM
LOOP

STEM
LOOP

STEM
LOOP

MULTI-
BRANCH

HAIRPIN

HAIRPIN

ISO LIST

 [(1 5 214) 0
 (7 4 49) 1
 (12 4 7) 2
 (28 4 7) 3
 (44 4 7) 4
 (65 5 101) 5
 (71 4 0) 6
 (80 12 46) 7
 (93 3 14) 8
 (114 3 14) 9
 (151 4 11) 10
 (177 4 34) 11
 (182 4 0) 12
 (191 4 0) 13
 (200 4 6)] 14

TR
IP

LE
 #

L = 225

9

8

7

6

5
4

3
0

2 1 14

13

MULTI-
BRANCH

MULTI-
BRANCH

10

11
12

MULTI-
BRANCH

GRAND MULTIBRANCH

Figure 3.5: Synthetically designed structure with nested multibranches, multiple stem-
loops, and hairpins.

88

Chapter 3. Algorithms

Since Parent-Child determines the relationships between triples, we can read off the child

information of each triple in the list to determine if some triple subset represents a multi-

branch. A leftmost triple (a parent) with at least two fully contained triples (children), and

at least one unpaired base within the parent footprint, must exist. Therefore, algorithm

Multibranch Filter proceeds exactly this way. First, each triple is examined, along with

its children. Since the left-most parent triple counts as one of the branches, the algorithm

checks to see if there is more than one child to make up the additional branches. Next,

footprint information from the parent and children are combined to determine if there are

unpaired bases. The running time and space usage of the algorithm is driven by the re-

quirement to call Parent-Child for relationship information, and thus is O(k2) in time and

space usage for a length k ISO. Example output for the structure shown in Figure 3.5 is in

Appendix B.1.

Algorithm Multibranch Filter
Input: List of triples iso, total length n of represented

oligonucleotides.

Output: For each unique multibranch, defining triples list

multibranchTriples, stem lengths list stemLengths, loop counts list

loopCounts, and addresses list multibranchAddresses.

\∗ Standard list append function used to build output lists. ∗\
1: multibranchTriples ← []

2: stemLengths ← []

3: loopCounts ← []

4: multibranchAddresses ← []

5: parents,children ← Parent-Child(iso,n)

6: index ← 0

7: for index < |iso| do
8: if |children[index]| > 1 then
9: triples ← [iso[index]]

10: stems ← [iso[index][1]]

11: addresses ← [iso[index][0]]

12: daughter ← 0

13: for daughter < |children[index]| do

89

Chapter 3. Algorithms

14: triples ← append(triples,iso[daughter])

15: stems ← append(stems,iso[daughter][1])

16: addresses ← append(addresses,iso[daughter][0])

17: daughter ← daughter+1

18: encloserOpening ← triples[0][2]

19: childFootprints ← 0

20: child ← 1

21: for child < |triples| do
22: childFootprints ←

childFootprints + 2*triples[child][1] + triples[child][2]

23: child ← child+1

24: unpaired ← encloserOpening - childFootprints

25: if unpaired > 0 then
26: multibranchTriples ← append(multibranchTriples,triples)

27: stemLengths ← append(stemLengths,stems)

28: multibranchAddresses ←
append(multibranchAddresses,addresses)

29: loopCounts ← append(loopCounts,unpaired)

30: return multibranchTriples,stemLengths,loopCounts,

multibranchAddresses

Algorithm Pseudoknot Filter

Pseudoknots are non-symmetric. Their bindings are not nested nor linearly separated, and

instead cross over each other. Natural RNA folds into pseudoknots [118] as a result of ad-

ditional stacking plane hydrogen bond opportunities, which yield stability benefits despite

the asymmetric and jumbled appearance. RNA has evolved to use pseudoknots for a va-

riety of cellular functions including self-cleavage of ribozymes, frameshifting the coding

regions for viruses during translation, processing activity of telomerases, and autoregula-

tion of viral gene expression [17].

The representation of pseudoknots is problematic. Dot-parenthesis notation requires the

addition of new symbols to distinguish between pairing regions, typically square brackets

90

Chapter 3. Algorithms

!

"

#$

#%

#"&!

&"

$&

'!

'' (!

((

%$

(

)

%

Figure 3.6: Hepatitis delta virus (HDV) ribozyme secondary structure, the fastest natural
self-cleaving ribozyme with a cleavage rate greater than 1 per second [118, 127]. The
structure is [(0,7,23),(9,7,51),(16,3,8),(20,2,15),(42,3,15)].

([,]) or curly braces ({,}). As an example, ((.....)), and ()..() are properly nested, while

(([[..))]] is pseudoknotted. Each new intercalated binding region requires a new match-

ing symbol. Suggestions have also been made to show each distinct intercalated binding

region with a different color1. To demonstrate these difficulties, the sequence and full dot-

parenthesis representation of the pseudoknot in Figure 3.6 is shown in Table 3.4 where four

symbols must be used to cover the recursively knotted structure. Pseudoknots as well can-

not be represented by rooted trees, nor planar graphs. With ISO, pseudoknots are handled

by list inspection since the numeric representation makes clear start and stop regions for

each binding. If a new binding initiates before an old one completes, there is a pseudoknot.

Checking for pseudoknots in this example shows the benefit of ISO as a regular language.

Despite the complicated form adopted by HDV, its structure in ISO only requires parsing

1Luca Cardelli, personal communication, 2011.

91

Chapter 3. Algorithms

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
base G G C C G G C A U G G U C C C A G C C U
symbol (((((((. . [[[[[[[{ { { .
index 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
base C C U C G C U G G C G C C G G C U G G G
symbol < < } } }))))))) > > .
index 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
base C A A C A X X X X X X X X X X X X X X X
symbol . . (((.
index 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
base U G G C G A A U G G G A C C
symbol)))]]]]]]]

Table 3.4: HDV sequence and structural representation using dot-parenthesis, the bases
corresponding to the U1A-RBD domain are not shown.

by a regular expression, whereas use of dot-parenthesis requires four separate stacks to

track the intercalations, and indication of which symbols are in use.

The algorithm to deduce pseudoknots works by first forming all
(k

2

)
pair combinations of

k triples in an ISO list, starting from the head of the list. Each pair (α,β) is examined to

determine if the address βi occurs before the α start close location αi +αs +αo and the

β start close location βi +βs +βo occurs after the α end close location αi +2αs +αo−1

(Figure 3.3). Any pair achieving these conditions indicates intercalation between the α

and β binding regions. The algorithm has O(k2) running time and space usage for k ISO

triples, driven by forming all triple pairs. For the HDV structure (Figure 3.6) there are

three pseudoknots reported by the algorithm as (1) [(0, 7, 23), (9, 7, 51)], (2) [(0, 7, 23),

(20, 2, 15)], and (3) [(16, 3, 8), (20, 2, 15)].

Algorithm Pseudoknot Filter
Input: List of triples iso.

Output: The defining triples for each pseudoknot, knots.
\∗ Standard list append function used to ∗\
\∗ build lists. ∗\
1: subsets ← []

2: i ← 0

3: for i < |iso|-1 do
4: j ← i+1

5: for j < |iso| do

92

Chapter 3. Algorithms

6: subsets ← append(subsets,[iso[i],iso[j]])

7: j ← j+1

8: i ← i+1

9: knots ← []

10: triples ← 0

11: for triples < |subsets|-1 do
12: ij ← subsets[triples][0][0]

13: sj ← subsets[triples][0][1]

14: oj ← subsets[triples][0][2]

15: ik ← subsets[triples][1][0]

16: sk ← subsets[triples][1][1]

17: ok ← subsets[triples][1][2]

18: if ik < (ij + sj + oj) then
19: if (ik + sk + ok) >= (ij + 2*sj + oj) then
20: knots ← append(knots,triples)

21: triples ← triples+1

22: return knots

3.3 Binding Characterization

Algorithm To Determine All Bound Regions

The algorithm iteratively scans the triples in an ISO string, examines each triple to extract

the bases involved in the represented binding regions, stores these bases into an unsorted

list, and ends with a sort to return the bound bases in order. Each triple demarcates the

location of a bound region, and each bound region is constituted by a continuous run of

base-pairs. For each triple, opening bases initiate at address i, and are continuous through

address i+ s, and closing bases initiate at address i+ s+ o, and are continuous through

address i+ 2s+ o. The algorithm returns a list of base addresses, where each address is

involved in a base-pair.

93

Chapter 3. Algorithms

At best, no bindings are present and an empty list is returned in constant time. At worst,

there are two maximal binding cases to consider for a length n oligonucleotide. Case 1

is n/2 base pairs arranged one after the other represented by n/2 triples each with a stem

length of 1, hence requiring n/2 constant time opening and closing address range com-

putations. Case 2 is one large binding represented by one triple with a n/2 stem length,

requiring single n/2 time opening and closing range computations. The algorithm bot-

tleneck though is the final sort that correctly orders results for inputs with nested binding

regions, therefore algorithm running time and space usage is O(n log n). Example output

for the structure shown in Figure 3.5 is in Appendix B.1.

Algorithm Bindings
Input: List of triples iso.

Output: List of bound indices bindings.
\∗ Standard list append function used to build up vectors ∗\
\∗ of indices; list sort function used to numerically sort ∗\
\∗ low to high index lists. ∗\
1: bindings ← []

2: if |iso| > 0 then
3: for all triple ∈ iso do
4: i ← triple[0]

5: s ← triple[1]

6: o ← triple[2]

7: openrange ← [i,. . .,i+s]
8: closerange ← [i+s+o,. . .,i+2*s+o]
9: bindings ← append(bindings,openrange)

10: bindings ← append(bindings,closerange)

11: return sort(bindings)

94

Chapter 3. Algorithms

Algorithm To Determine All Unbound Regions

The algorithm finds all bases not implicated in a binding region. The algorithm depends

on algorithm Bindings and performs an index by index comparison with the resulting

BoundList and the full index range [0,n− 1] for a length n oligonucleotide to aggregate

the indices that are unbound. An index guard BoundCountGuard is employed to jump out

of checking the Boundlist after its last entry is handled. The remaining bases through

index n−1, if any, are filled in to complete the list. Since the bound region list is sorted,

and indices are iterated in order, the final list of all unbound, open bases is also sorted. The

algorithm uses O(n) time and space to visit each index [0,n− 1] for a length n oligonu-

cleotide. Example output for the structure shown in Figure 3.5 is in Appendix B.1.

Algorithm Unbound
Input: List of triples iso, length n.

Output: List of unbound base indices.
\∗ Standard list append function used to build up vectors ∗\
\∗ of indices. ∗\
1: BoundList ← bindings(iso,length)

2: if |BoundList| ≡ 0 then
3: NotBoundList ← [0,. . .,n-1]
4: return NotBoundList

5: BoundCountGuard ← |BoundList|-1

6: NotBoundList ← []

7: idx ← 0

8: bdx ← 0

9: while idx < n do
10: if idx ≡ BoundList(bdx) then
11: if bdx < BoundCountGuard then
12: bdx ← bdx+1

13: else
14: break
15: else
16: NotBoundList ← append(NotBoundList,idx)

17: idx ← idx+1

95

Chapter 3. Algorithms

18: RemainingUnbound ← [BoundList(bdx)+1,. . .,n-1]
19: NotBoundList ← append(NotBoundList,RemainingUnbound)

20: return NotBoundList

Algorithm To Determine All Binding Partners

This algorithm performs similarly to algorithm Bindings, but instead returns a list of base-

pairs for each binding region. As before, the algorithm iteratively scans the triples in

an ISO string, and examines each triple to extract the bases involved in the represented

binding regions. The matching opening a and closing b base addresses are saved into a list

as base-pair (a,b), for each individual base-pair constituted within s, starting at address i,

for each triple. In this case rather than working with opening and closing address ranges

for each bound region, the algorithm determines the exactly matching opening and closing

base addresses. Base-pairs are returned in sorted order using the opening bases as a sort

key. The algorithm has O(n) running time and space usage for a length n oligonucleotide.

Example output for the structure shown in Figure 3.5 is in Appendix B.1.

Algorithm Partners
Input: List of triples iso.

Output: List of base-pairs.
\∗ Standard list append function ∗\
\∗ used to build up vectors of ∗\
\∗ indices. ∗\
1: partners ← []

2: for all triple ∈ iso do
3: i ← triple[0]

4: s ← triple[1]

5: o ← triple[2]

6: index ← 0

7: while s > 0 do

96

Chapter 3. Algorithms

8: basepair ← (index+i, index+i+2*s+o-1)

9: partners ← append(partners,basepair)

10: i ← i+1

11: s ← s-1

12: return partners

3.3.1 Exhaustive Generation Method For All Possible Structures

An interesting research problem is how many secondary structures are possible for a given

length, where length can represent a single oligonucleotide, or be summed from multiple

oligonucleotides concatenated together. If there is more than one oligonucleotide, the

ISO of the secondary structure changes based on the ordering since base indices reflect

ordering, consistent with all methods of representing structure. Structure enumeration

can be posed regardless of oligonucleotide number however, as many oligonucleotides

concatenated together are equivalent to a single one with the same sequence. Enumeration

of the total number of bonding patterns without pseudoknots was shown by Waterman

and Smith [130]. Enumeration of structures with a particular class of pseudoknots using

arc-crossing diagrams is found in Jin and Reidys [62].

Use of ISO triples for enumeration and generation.

With ISO, a different approach is possible for the structure enumeration problem that

yields a straightforward construction algorithm. The key to this approach is that each

triple in an ISO list is complete and self-contained, therefore it can act as a building block.

Triples identify points in 3D space and are subject to several constraints. For a length n,

the address i must be in [0,n−2], the stem-length s must be in [1,bn/2c], and the opening

o must be in [1,n−2], subject to fitting the i+2s+o footprint within [0,n−1].

97

Chapter 3. Algorithms

As an example, consider an oligonucleotide with six bases. We can enumerate a list of

satisfying triples in a series of tableaux as shown in Table 3.5 and graphically in Figure 3.7.

The numeric symmetries for each dimension reflect satisfying these constraints. Biological

realism aside, as a combinatorial object of interest, we note in the top tableau that the first

row shows the five different ways a s = 1 structure can be located by starting at the 5’-

most side and moving one index at a time towards 3’. The extent is always size 2, thus

it can occupy base index locations (0-1), (1-2), (2-3), (3-4) and (4-5). The second row

expands the opening by one base, now the extent is always size 3, and it can occupy

base index locations (0-2), (1-3), (2-4), (3-5). Each subsequent row expands the opening,

thereby giving up location space for the address between the 5’ and 3’ ends. The additional

tableaux for s = 2 and s = 3 similarly show the different ways a triple with these stem-

lengths can satisfy the constraints.

o ↓ i→ 0 1 2 3 4 s
0 (0,1,0) (1,1,0) (2,1,0) (3,1,0) (4,1,0) 1
1 (0,1,1) (1,1,1) (2,1,1) (3,1,1) 1
2 (0,1,2) (1,1,2) (2,1,2) 1
3 (0,1,3) (1,1,3) 1
4 (0,1,4) 1
0 (0,2,0) (1,2,0) (2,2,0) 2
1 (0,2,1) (1,2,1) 2
2 (0,2,2) 2
0 (0,3,0) 3

Table 3.5: For a length 6 oligonucleotide, 22 possible triples can fit.

The constraint symmetries lead to a general expression of the total number of legal triples

for a length n oligonucleotide. The minimum stem-length s is 1 and the maximum is n
2 ,

and for each increase in stem-length in s = [1, n
2], 2 bases are used. Each stem-length,

as part of a triple, can be initiated with an address in the range i = [0,n− 2] as long as

i+2s+o < n. Combining these two facts leads to variant results for oligonucleotide odd

98

Chapter 3. Algorithms

Figure 3.7: 3D view of 22 satisfying triples for a length 6 oligonucleotide.

and even length n values. The maximum possible stem size s is identical, but odd lengths

n allow for expansion in the i and o dimensions by one since otherwise there would be

space for an entire additional base-pair and thus a greater by one stem-length.

The basis for counting legal triples hinges on stem-length. Given any stem-length s, space

must be reserved for the opening and closing bases, exactly 2s locations, leaving n− 2s

remaining locations for placement of the triple (i), or expansion of its opening (o). First

consider s = 1 and place its opening base at address i = 0, there are now n− 1 ways to

locate the closing base within the remaining indices in [1,n−1]. If we move the opening

base forward to i = 1, there are now n− 2 ways to locate the closing base within the

remaining indices [2,n− 1]. Since there are overall n− 1 ways to position the opening

base within indices [0,n−2], we can sum total number of options to locate a stem-length

1 structure as (n−1)+(n−2)+ · · ·+1 = ∑
n−1
1 i as address i ranges between 0 and n−2.

Increasing the stem-length s to 2 doubles the base count to 4, leaving n− 3 remaining

99

Chapter 3. Algorithms

locations for the closing base, such that now the total number of placement options is

∑
n−3
1 . Ultimately there are n

2 sums possible as the stem-length increases, where each plus

1 increment in stem-length lowers the upper bound on the inner summation by 2. Even

lengths n cause the upper bound n− 1 to be an odd such that the progression of sums is

1,3,5, . . . ,n− 1. Odd lengths n cause the upper bound n− 1 to be an even making this

progression 2,4,6, . . . ,n−1. The sum of sums for each reduce as follows.

Even-length n.

|triples|=
n−1

∑
j=1, j+2

j

∑
1

i (3.1)

Combining summations, counting only the odd increments j = 1,3,5, . . . ,n− 1 for each

stem-length, and using the equation for the sum of the first j = 2k+1 integers yields:

= 1+

n−1
2

∑
k=1

(2k+1)((2k+1)+1)
2

(3.2)

= 1+

n−1
2

∑
k=1

[2k2 +3k+1] (3.3)

= 1+2

n−1
2

∑
k=1

k2 +3

n−1
2

∑
k=1

k+
n−1

2
(3.4)

Letting x = n−1
2 , and substituting equations for sums of squares and sums of integers:

100

Chapter 3. Algorithms

= 1+2
x

∑
1

k2 +3
x

∑
1

k+ x (3.5)

= x+1+2
[

x(x+1)(2x+1)
6

]
+3
[

x(x+1)
2

]
(3.6)

= x+1+
1
3
[
(x2 + x)(2x+1)

]
+

3
2
(
x2 + x

)
(3.7)

= x+1+
(

2x+1
3

+
3
2

)
(x2 + x) (3.8)

=
2
3

x3 +
5
2

x2 +
17
6

x+1 (3.9)

Simplifying through several steps, and reinstating n−1
2 = n

2 −1 since n is even for x:

=
2
3

(n
2
−1
)3

+
5
2

(n
2
−1
)2

+
17
6

(n
2
−1
)
+1 (3.10)

=
1

12

(
n3 +

3
2

n2−n
)

(3.11)

Odd-length n compute similarly over the even increments 2,4,6, . . . ,n−1 to yield:

101

Chapter 3. Algorithms

|triples|=
n−1

∑
j=2, j+2

j

∑
1

i =
1

12

(
n3 +

3
2

n2−n− 3
2

)
(3.12)

Exhaustive enumeration of all structures, without pseudoknots, can be accomplished con-

structively by combining triples such that they have numerically nested footprints, serially

ordered footprints, or a combination thereof. Exhaustive enumeration of all structures

with pseudoknots adds to the pseudoknot-free enumeration by breaking up footprints to

allow intercalations of opening and closing bases from different triples. This approach

allows construction algorithms that accordingly establish an ordering of all structures.

Considering the subsets of legal triples, the upper bound on all possible secondary struc-

tures, including pseudoknots, is O(2n3
) since there are O(n3) possible triples in a length n

oligonucleotide.

Support Algorithms

Algorithm Triples computes legal triples, such as those shown in Table 3.5. The algorithm

has O(n3) running time and space usage for a length n oligonucleotide.

Algorithm Triples
Input: Length n.

Output: List of individual triples (i,s,o).
\∗ Standard list append function used to build up vector ∗\
\∗ of triples. ∗\
1: triples ← []

2: i ← 0

3: for i < n-1 do
4: s ← 1

5: for s < (n/2+1) do
6: o ← 1

7: for o < n-2 do

102

Chapter 3. Algorithms

8: if i + 2*s + o < n then
9: triples ← append(triples,(i,s,o))

10: o ← o+1

11: s ← s+1

12: i ← i+1

13: return triples

Algorithm ValidISO checks triple combinations to ensure there are no bindings occupying

the same locations. It employs algorithm Bindings, which causes it to have O(n log n)

running time and space usage for a length n oligonucleotide.

Algorithm ValidISO
Input: List of triples iso, length n.

Output: True or False boolean.
\∗ Assumes bindings returned in ∗\
\∗ sorted order. ∗\
1: if |iso| < 1 then
2: return True

3: allbindings ← bindings(iso)

4: idx ← 0

5: while idx < |allbindings|-1 do
6: if allbindings[idx] ≡ allbindings[idx+1] then
7: return False

8: idx ← idx+1

9: return True

Algorithm Exhaustive Multitriples generates all secondary structures using a brute-force

approach that first generates all triples, then all combinations of triples, and finally filters

out ones that are invalid. The running time and space usage is driven by whatever approach

is used to compute and store the combinations, thus this is not an efficient algorithm.

Algorithm Exhaustive Multitriples
Input: Length n.

103

Chapter 3. Algorithms

Output: Exhaustive list of all possible pseudoknot-free secondary

structures.
\∗ Assumes function to compute combinations and standard ∗\
\∗ append function to build up final answer. ∗\
1: allTriples ← triples(n)

2: allCombinations ← combinations(allTriples)

3: legalCombinations ← []

4: idx ← 0

5: for idx < |allcombinations| do
6: if ValidISO(allCombinations[idx] then
7: legalCombinations ←

append(legalCombinations,allCombinations[idx])

8: idx ← i+1

9: return legalCombinations

104

Chapter 4

Implementation

Ultimately, we can do chemical synthesis. A chemist comes to us and says, “Look, I want a

molecule that has the atoms arranged thus and so; make me that molecule.” – Richard P. Feyn-

man [39]

A process flow for creating deoxyribozyme computation instances that can replace the

current process shown in Figure 2.1 incorporates the following steps.

1. Determine requirements: write DNADL file.

2. Determine molecule netlist: use Pyxis to search solution space for netlist that satis-

fies requirements specified in DNADL file.

3. Verify design: laboratory build and test.

4. Iterate Steps 1-3 until satisfying solution is verified.

5. Incorporate Step 3 findings into DNADL and Pyxis.

105

Chapter 4. Implementation

In this chapter we cover implementation development of the abstractions, algorithms and

methods into the DNADL language, the KCA simulation and the Pyxis compiler.

4.1 DNADL: DNA Description Language

DNADL is used to specify instances of chemical reaction network systems that use DNA

or RNA and are devised for synthetic function purposes. We saw in Chapter 1 where pro-

gramming deoxyribozyme platforms has started from three different places: a truth table,

a decision tree, and an encoding to produce a dot-matrix display. A high-level language

will need to be able to equivalently generate the same set of final Boolean formulas worked

out by hand using these previous methods. At present, the only consistent thread is in fact

the set of Boolean formulas, and their distribution into each of the wells. Equally impor-

tant is how the chemistry should work. This disjoint set of concerns is not intrinsic in the

training of a programmer, nor is logic part of the training of a chemist, hence our approach

is a description-based design language that can serve as the target of a true higher-level

programming language and as well be decomposed into finer chemical-level details.

A descriptive specification of a chemical reaction network requires a modification to the

set of concepts that we normally associate with chemical systems, and with building pro-

grammable devices and machines. Are we describing a machine acting as a chemical reac-

tion network, or a chemical system acting as a machine? The semantics of chemical sys-

tems include properties such as the stoichiometric balance of the involved tranformation

mechanisms, the concentrations of reactants and products, heat loss or gain, and elapsed

time. The semantics of device or machine building include operating characteristics, re-

source requirements, waste products, and environmental conditions such as temperature

and pressure. The semantics of programmable devices are trickier since a wide variety of

outcomes may be possible using the same basic substrate, hence leading to a construction-

106

Chapter 4. Implementation

centric focus. Missing are the familiar and concrete notions of state and time, as neatly

digital units, because the nucleic acid basis of a chemical system that is realizing a pro-

grammable device brings with it the attendant characteristics of a many-bodied system

undergoing continuous change. In this regime, the states are uncountable, and reaction

events occur in time ranges rather than at specific and identifiable instances.

DNADL handles these issues through operational semantics, analogous to hardware de-

scription languages devised for electronic design automation. DNADL allows definition

of Boolean logic formulae, what the system components are, and how they should indi-

vidually behave and together interact. A linkage of logic to components is provided to

show how deductions are worked out as one or more physical reaction steps. The tex-

tual description, allows simulation or emulation testing its design at the degree dictated

by the description. Since the textual description is also a specification, it serves as a re-

quirements document for initiating the automated search for one or more sets of satisfying

nucleic acid oligonucleotides operating within multiple possible environments. The tex-

tual format with a preset type keyword lexicon also yields standardization benefits and a

consistent record-keeping of designs and programs.

4.1.1 Description Levels

To break up the attendant complexity of DNA chemistry and enable expanded functional-

ity and construction scale, DNADL separates description into three levels of concerns.

• Level 1 The device or program in purpose and functional logic terms. A Level 1 de-

scription of a program and platform to carry out propositional logic deduction states

107

Chapter 4. Implementation

the premisses, deducible conclusions, and evaluation order, without any appeal to

how these will be effected. This basic treatment serves as a foundation for layering

a more sophisticated language above it.

• Level 2 The active physical events and behavioral aspects of the chemistry that

together can instantiate the purpose and functional expectations of the preceding

level. A Level 2 description covers how reaction steps can serve as premisses and

conclusions, and what required actions must take place to set up these steps.

• Level 3 The individual elements and their properties which will behave as described

in the preceding level. This is the level of the molecular groups, how they are to be

formed, and whatever characteristics the elements must possess in order to carry out

required behaviors and interactions. For reactions carrying out propositional logic,

this corresponds to the set of DNA oligonucleotides and what reporting molecules

will be attached to signal final Boolean outputs.

4.1.2 Types and Identifiers

Every DNADL description line is uniquely identified and typed to provide uniform con-

straints on exactly how descriptions can be declared, and what bounds are present on the

strings, natural numbers, or predefined sets that each is defined with. The format for all de-

scriptions is type name, followed by identifiers of that type. Effectively in DNADL, typing

acts as a data and process abstraction technique. Data and process terms may be elemental,

such that decomposition into something smaller does not meaningfully relate to the overall

description, or they may be a collection of elemental terms that act as a record. Record-

style descriptions are akin to abstract data types found in several mainstream programming

languages as they allow at-will type creation that wraps distinct concepts together reflec-

tive of their physical interconnectedness. Elemental descriptions are classified as single

108

Chapter 4. Implementation

entities, while collection descriptions are classified as compound entities. In contrast to

mainstream programming languages, there is no association between the type declaration

and how much memory is required for each identifier. Memory usage is not yet relevant

because there has not been any capability demonstration of a true data store that is both

readable and overwritable within a reaction network.

Types are usually not associated with hardware descriptions languages, because languages

of this genre are not thought of as true programming languages. However, this view is

short-sighted. Types in any language create benefits. The benefits we are in need of for a

chemical reaction network are safety, abstract model building, and automation of finding

and verifying checkable properties of the systems being described. All of these support

determination of correctness. Similar to traditional circuits and programming languages,

there are often possible redundant designs that will equally satisfy the goals of the de-

vice. This redundancy portends the need for ranking of solutions, but according to what

measure? Low cost and high reliability are suitable attributes to shoot for, but we need

a way to say exactly what is meant with these terms. Cost may not just imply materials

and personnel time, it may also make sense to consider a complexity measure and prove

a bounded range of time for system operation. Reliability suggests ease of replication by

other researchers outside a laboratory devising a new and better DNA system. And while

replicating results across labs is not currently a goal of the university funding environ-

ment, moving DNA nanotechnology out of research labs and into manufacturing arenas

will demand reliability measures. Since we can’t say what is important, and can see that

ranking schemes will vary across labs, instead we aim to incorporate the ability to work

these issues out when it becomes a real priority to do so.

The following table and subsections show the DNADL base types. Programmed device or

machine functionality is described in Layer 1 and is customized to the logic goals of the

109

Chapter 4. Implementation

intended application. Levels 2 and 3 cover data and process abstractions for the physical

steps the reaction network must take. The type PHYSICALMAP is outside the layers

and shows the mapping between device steps outlined in Layer 1, to data, processes, and

attributes outlined in Layers 2 and 3. The purpose of this type is to show a clear linkage

between device construction and operational steps, to events within the chemical reaction

network that is realizing the device.

Layer Classification Type
1 single ADDRESS
1 single PROGRAM
1 compound PREMISS
1 compound CONCLUSION
2 compound ENTRY
2 compound TRANSITION
2 compound EXECUTIONMECHANISM
2 compound SIGNAL
2 compound EVENTSTREAM
3 single LENGTH
3 single FLUOROPHORE
3 single QUENCHER
3 single SEQUENCE
3 single DOMAIN
3 single ISO
3 single CONCENTRATION
3 compound STRAND
- compound PHYSICALMAP

Table 4.1: DNADL Base Types

110

Chapter 4. Implementation

Layer 1 Base Types

Definition ADDRESS. An identifier a of type ADDRESS gives the grid location for a

chemical reaction network within a well plate a=(row,col)∈N2 where (0,0) corresponds

to the lower left well. Reaction networks constructed in single vessels and not using a well

plate are declared with the address type, but are not given a value.

ADDRESS

/* a1 at row 10, col 11 on well plate, potMAIN self-contained */

a1 = (10, 11);

potMAIN;

Definition PROGRAM. An identifier prog of type PROGRAM denotes a complete pro-

gram expressed in propositional logic where each formula is composed of literals and

propositional connectives AND (∧), OR (∨), NOT (¬), or IMPLICATION (→), formatted

with each line numbered.

PROGRAM program4layer

1: (E2 ∧ SCS2) → ACT2;

2: (E3 ∧ SCS3) → ACT3;

Definition PREMISS. An identifier p of type PREMISS denotes the assignment of a

formula f to a vessel or well plate located at ADDRESS a, p= (a, f), where f is a logically

valid formula composed of literals and propositional connectives AND (∧), OR (∨), NOT

(¬), or IMPLICATION (→).

111

Chapter 4. Implementation

PREMISS

p13 = (a1, I14);

p14 = (a1, I21 ∧ I62);

p110 = (a1, I62 ∧ I23 ∧ ¬ I21);

Definition CONCLUSION. An identifier c of type CONCLUSION denotes the logical

deduction f of a vessel or well plate located at ADDRESS a, c = (a, f), where f is a

logically valid formula composed of literals and propositional connectives AND (∧), OR

(∨), NOT (¬), or IMPLICATION (→).

CONCLUSION

conclusion2 = (a2, I22);

conclusion8 = (a8, I61 ∧ I12 ∧ ¬ I82);

Layer 2 Base Types

Definition ENTRY. An identifier e of type ENTRY denotes the complete action of intro-

ducing a STRAND s at CONCENTRATION c into a well at ADDRESS a, e = (a,s,c).

ENTRY

enZYME1INH1 = (potMAIN,strDNAZYME1INH1,100);

enZYME2INH2 = (potMAIN,strDNAZYME2INH2,100);

enZYME3INH3 = (potMAIN,strDNAZYME3INH3,100);

112

Chapter 4. Implementation

Definition TRANSITION. An identifier t of type TRANSITION denotes a transforma-

tion happening in a vessel or well at ADDRESS a. Transformations may be one STRAND

sa taking on a new structural form sb through an alternative hybridization pattern (fold),

STRAND sa and STRAND sb becoming a complex sc through hybridization (bind), com-

plex sc dissociating into strands sa, sb (unbind), strands sa, sb becoming a longer strand

sc through backbone linkage (ligate), a complex and a single oligonucleotide undergo-

ing strand exchange (exchange), or a complex or single oligonucleotide sa splitting along

a backbone linkage into parts (cleave). Transitions are described through use of the fold,

bind, unbind, ligate, exchange or cleave operators t = (a,sa,sb,sc,sd,op), where inclusion

of STRAND entities sa, sb, sc, or sd depends on choice of operator op.

• fold is an unary operation on a STRAND sa to produce sb with the same sequence

and length, but with a different structure, sb = f old(sa).

• bind is a binary operation on two STRAND entities sa,sb to produce a new com-

plexed STRAND entity sc, sc = bind(sa,sb).

• unbind is a unary operation on one STRAND sc to produce two STRAND entities sa

and sb, sa,sb = unbind(sc).

• ligate is a binary operation on two STRAND entities sa and sb to produce a new lig-

ated STRAND sc, sc = ligate(sa,sb).

• exchange is a binary operation on two STRAND entities sa and sb to swap single

oligonucleotides and form sc and sd . The operator implicitly expects that at least sa

113

Chapter 4. Implementation

or sb be a complex of at least two oligonucleotides and that at least one of sc or sd

be a complex of at least two oligonucleotides, sc,sd = exchange(sa,sb).

• cleave is a unary operation on one STRAND sa to create two STRAND entities sb,sc,

sb,sc = cleave(sa).

TRANSITION

tzymeinh1 = (potPREPZYME,strDNAZYME1,strINH1,strDNAZYME1INH1,bind);

tzyme2scs2split = (potMAIN,strDNAZYME2SCS2.stage2,strZYME2WASTE2,

strACT2FOLDED,cleave);

treleasezyme1 = (potMAIN,strDNAZYME1INH1,strACT2UNFOLDED,

strDNAZYME1UNFOLDED,strACT2INH1,exchange);

Definition EXECUTIONMECHANISM. An identifier em of type EXECUTIONMECH-

ANISM denotes an ordered sequence of TRANSITION entities t0, t1, Any reordering of

transitions, insertions of new transitions, or deletions of transitions from the ordered tran-

sition sequence is an off-nominal mechanism that may not correctly carry out the required

physical changes instantiating some device operational step.

EXECUTIONMECHANISM

layer2releaseactivator = [tzyme2scs2stage1, tzyme2scs2stage2,

tzyme2scs2split, tzyme2recovery];

layer2releasegate = [treformact2,treleasesyme1,tactive1];

layer1signal = [tzyme1substrate1];

114

Chapter 4. Implementation

Definition SIGNAL. An identifier z of type SIGNAL denotes the observation of threshold

fluorescence color resulting from a free in solution FLUOROPHORE f l phr at ADDRESS a,

z = (a,color). The value of color must be either red, green, pink or purple, corresponding

to a subset of FRET capabilities.

SIGNAL

visualgreen = (potMAIN, green);

Definition EVENTSTREAM. An identifier exec of type EVENTSTREAM denotes the

ordered stream of events occuring at ADDRESS a. Events may be of types ENTRY, SIG-

NAL, or EXECUTIONMECHANISM and their particular ordering stipulates exactly how the

reaction network correctly functions. In absence of a system clock, with physical events

occurring in tightly precise intervals, the ordered stream describes the chemical pipeline

of directed physical activity. The stream is formatted in the style of a program, with each

event numbered in order. Events that occur together, with no expectation of a local or-

dering, are grouped together on a single line and distinguished by surrounding < and >

characters.

EVENTSTREAM

execCASCADE

1: <enZYME1INH1,enZYME2INH2,enZYME2INH3>;

2: <enSCS2FOLDED,enSCS3FOLDED,enSCS4FOLDED>;

3: enDNAZYME4;

4: layer4releaseactivator;

115

Chapter 4. Implementation

Layer 3 Base Types

Definition LENGTH. An identifier l of type LENGTH denotes oligonucleotide length.

The value must be nonzero and within N.

LENGTH

/* SCS and INH strand lengths in nt */

lengthSCS2 = 47;

lengthSCS3 = 46;

lengthSCS4 = 46;

lengthINH = 23;

Definition FLUOROPHORE. An identifier f of type FLUOROPHORE indicates selec-

tion of a fluorescent signaling molecule used as part of the FRET reporting scheme. The

value must be either FAM or TAMRA.

FLUOROPHORE

FAM;

Definition QUENCHER. An identifier q of type QUENCHER indicates selection of a

fluorescent absorbing molecule used as part of the FRET reporting scheme. The value

must be either BH2 or TAMRA.

QUENCHER

BH2;

116

Chapter 4. Implementation

Definition SEQUENCE. An identifier seq of type SEQUENCE is the primary sequence

string of a DNA oligonucleotide seq = q0q1 . . .qn−1, qi ∈ Σ,Σ = {A,C,G,T},n > 2. For

an RNA oligonucleotide the alphabet changes to Σ = {A,C,G,U}. SEQUENCE values may

be described using DOMAIN identifiers, or as mixture between strings drawn from Σ and

DOMAIN identifiers. SEQUENCE values may also be described as reverse complements of

other SEQUENCE values through use of the revcomp operator. However a value of type

SEQUENCE is described, it is always formatted using the biological 5′ to 3′ convention.

• revcomp is a unary operation on a sequence or domain to produce a new reverse

complemented sequence or domain of the same length, where complementation

follows Watson-Crick A : T and C : G, sb = revcomp(sa),sa = q0q1 . . .qn−1,sb =

qn−1qn . . .qo,qi/qi′[A/T,T/A,C/G,G/C].

Concatenation of two or more sequences seqa, seqb, . . . uses a short dash − between

sequences.

SEQUENCE

seqSCS2 = CGCCCTAATCTTAGGTCGAAAACTAAGATACATACTAGGGCGTGATG;

seqINH1 = ATGTATCTTAGTTTTCGACCGGC;

seqCOMPLEX = seqDNAZYME2-seqSCS2;

Definition DOMAIN. An identifier dom of type DOMAIN is a subsequence string of

any sequence seq. Domains may be described as reverse complements of other domains

through use of the revcomp operator. Concatenation of two or more DOMAIN subsequence

strings doma, domb uses a short dash − between them.

117

Chapter 4. Implementation

DOMAIN

domENZ = TCCGAGCCGGTCGAAA;

Definition ISO. An identifier struct of type ISO is the secondary structure of an oligonu-

cleotide in ISO format. ISO describes secondary structure as a list of numeric triples

(i,s,o), i,s,o ∈ N where each triple defines a distinct binding region for a sequence string

q0q1 . . .qn−1. iso = [(i,s,o)0,(i,s,o)1, . . . ,(i,s,o)m−1] is a unique representation of sec-

ondary structure such that for each binding region:

• i defines the zero-based indexing location relative to the q0 5′ end,

• s defines the length of binding,

• o defines the opening enclosed by s, equal to the number of bases, paired or unpaired,

which are intermediate between the last opening base and first closing base of the

binding stem.

ISO

structSUBSTRATE = [];

structSCS2 = [(0,7,28),(7,7,8)];

structSCS3 = [(0,7,28),(7,6,10)];

Definition CONCENTRATION. An identifier conc of type CONCENTRATION is the

nanomolar concentration of a strand, c ∈ R,c > 0.

CONCENTRATION

concSUBSTRATE = 100.;

118

Chapter 4. Implementation

Definition STRAND. An identifier s of type STRAND is a single oligonucleotide o or

complex of n oligonucleotides o0,o1, . . . ,on−1 characterized by its SEQUENCE sSEQ, ISO

sST RC, and LENGTH sL, s = (sSEQ,sST RC,sL). In cases where sSEQ has already been com-

pletely described, the length information is redundant. In cases where a compiler or some

other tool will be used to find a satisfying sSEQ, the inclusion of length information is

required since the ISO structure encoding does not implicitly provide length information.

Signaling molecules are prepended and appended to sSEQ if the behavior of s includes

reporting.

• sSEQ is a SEQUENCE entity for oligonucleotide s or a concatenation of SEQUENCE

entities s0,s1 . . .sn−1, sSEQ = s0− s1− ·· ·− sn−1, where each si is the SEQUENCE

entity for oligonucleotides oi ordered 5′ to 3′ as part of a complex.

• sST RC is the ISO entity, sST RC = [(i,s,o)0, . . .] for one or more oligonucleotides with

primary sequence sSEQ and length sL. Note that ISO handles single oligonucleotides,

or multiple oligonucleotides bound as a complex, hence there is no compositing

scheme of individual structure strings required.

• sL is the length of the single oligonucleotide o, or the total length of n oligonu-

cleotides o0, o1, . . . , on−1 lengths, sL = l0 + l1,+ · · ·+ ln−1 if s is a complex of n

oligonucleotides.

STRAND

strACT2INH1 = (seqACT2-seqINH1,[(13,20,3)],lengthACT+lengthINH);

strACT3INH2 = (seqACT3-seqINH2,[(13,20,3)],lengthACT+lengthINH);

strACT4INH3 = (seqACT4-seqINH3,[(11,22,3)],lengthACT+lengthINH);

strSUBSTRATE1 = (FAM-seqSUBSTRATE1-TAM,[],lengthSUBSTRATE1);

119

Chapter 4. Implementation

Definition PHYSICALMAP. An identifier map of type PHYSICALMAP describes a

matching between the union of Level 1 sets P of PREMISS entities and C of CONCLUSION

entities, to a subset of the union of Level 2 sets E of ENTRY entities and EM of EXECU-

TIONMECHANISM entities, and Level 3 set S of STRAND entities, {x↔ y|x ∈ P∪C,y ∈

Y,Y ⊆ E ∪EM∪S}. If the Level 1 propositional logic description uses PROGRAM prog in

alternative, then the set of prog numbered lines replaces P∪C.

mapCASCADE

1 ↔ layer2releaseactivator; /* (E2 ∧ SCS2) → ACT 2 */

2 ↔ layer3releaseactivator; /* (E3 ∧ SCS3) → ACT 3 */

3 ↔ layer4releaseactivator; /* (E4 ∧ SCS4) → ACT 4 */

4.1.3 Four Layer Cascade Example

A recent example of a four layer cascade [18] uses a new enzyme-based logic gate de-

sign that combines deoxyribozymes and strand-displacement. A single active deoxyri-

bozyme, termed a DNAzyme, initiates a domino effect of releasing and activating subse-

quent DNAzymes through use of additional single oligonucleotides with particular sec-

ondary structure. The additional oligonucleotides are termed structured chimeric substrate

(SCS) molecules by virtue of their ability to conditionally switch between two shapes. Op-

eration of the four layer cascade depends on attaining specific structural forms, binding be-

tween the SCS molecules and active DNAzymes, and strand-exchange between inhibited

DNAzymes and intermediately produced stem-loop oligonucleotides aptly termed Activa-

tors. Inhibited DNAzymes are created a priori of the cascade operation through binding of

the DNAzymes to complementary single-stranded oligonucleotides termed Inhibitors.

120

Chapter 4. Implementation

The development time for debugging the cascade required over 12 months. An advantage

of using a textual description is to make this effort programmable to the fullest extent pos-

sible, and therefore reduce development time by at least 50%. The cascade steps are uni-

form, and clearly amenable to a programming approach. The complete description using

DNADL is shown in Appendix C.1 corresponding to the illustrations shown in Appendix

C.21.

4.1.4 Deoxyribozyme Logic Gates

For the original Stefanovic and Stojanovic deoxyribozyme-based logic gates, the desired

behaviors are well understood and amenable to subtyping. The YES and AND gates sig-

nal in response to the specific presence of positive input, whereas the NOT, AND-NOT,

and AND-AND-NOT require both presence of required positive input, and absence of the

negated input. Since the “yes” function is essentially a recognition, the main application

of this gate is in a detector device. Implicitly, more than one recognizer (yes) gate within

the same vessel or well plate location is a logical or formula.

Recognizer Logic

Signal generating case: when input is present transitions as 5 stages

→ from no shape to stem-loop structure:

s-stage1 = fold(s-stage0)

→ from stem-loop structure to binding with input strand:

s-stage2 = bind(s-stage1,s-input)

→ opened stem with enzyme exposed:

1Figures from [18] reproduced with permission of Matthew Lakin, 2014.

121

Chapter 4. Implementation

s-stage3 = fold(s-stage2)

→ from activated gate to binding with substrate strand:

s-stage4 = bind(s-stage3,s-substrate)

→ substrate cut in half:

s-substrateF, s-substrateQ = cleave(s-substrate)

Transition subtypes:

TCASE1RECOG0-1 = (a, s-stage0, s-stage1, fold);

TCASE1RECOG1-2 = (a, s-stage1, s-inputa, s-stage2, bind);

TCASE1RECOG2-3 = (a, s-stage2, s-stage3, fold);

TCASE1RECOG3-4 = (a, s-stage3, s-substrate, s-stage4, bind);

TCASE1RECOG4-SIGNAL = (a, s-substrate, s-substrateF, s-substrateQ, cleave);

Not Logic

Signal generating case: when input is absent transitions as 3 stages

→ from no shape to stem-loop structure:

s-stage1 = fold(s-stage0)

→ from activated gate to binding with substrate strand:

s-stage2 = bind(s-stage1,s-substrate)

→ substrate cut in half:

s-substrateF, s-substrateQ = cleave(s-substrate)

Transition subtypes:

TCASE1NEGATE0-1 = (a, s-stage0, s-stage1, fold);

122

Chapter 4. Implementation

TCASE1NEGATE1-2 = (a, s-stage1, s-substrate, s-stage2, bind);

TCASE1NEGATE2-SIGNAL = (a, s-substrate, s-substrateF, s-substrateQ, cleave);

And Logic

Signal generating cases: +inputa+inputb, +inputb+inputa transitions as 6 stages

→ from no shape to two stem-loops:

s-stage1 = fold(s-stage0)

→ from stem-loops to binding with one input strand:

s-stage2 = bind(s-stage1,s-inputa)

→ from stem-loops with one binding to both bindings:

s-stage3 = bind(s-stage2,s-inputb)

→ from input bindings to exposed enzyme region:

s-stage4 = fold(s-stage3)

→ from activated enzyme to binding with substrate strand:

s-stage5 = bind(s-stage4,s-substrate)

→ substrate cut in half:

s-substrateF, s-substrateQ = cleave(substrate)

123

Chapter 4. Implementation

Transition subtypes:

TCASE1AND0-1 = (a, s-stage0, s-stage1, fold);

TCASE1AND1-2 = (a, s-stage1, s-inputa, s-stage2, bind);

TCASE1AND2-3 = (a, s-stage2, s-inputb, s-stage3, bind);

TCASE1AND3-4 = (a, s-stage3, s-stage4, fold);

TCASE1AND4-5 = (a, s-stage4, s-substrate, s-stage5, bind);

TCASE1AND5-SIGNAL = (a, s-substrate, s-substrateF, s-substrateQ, cleave);

And-Not Logic

Signal generating case: +input transitions as 5 stages

→ from no shape to two stem-loops:

s-stage1 = fold(s-stage0)

→ from stem-loops to binding with input strand:

s-stage2 = bind(s-stage1,s-input)

→ from input binding to exposed enzyme region:

s-stage3 = fold(s-stage2)

→ from activated enzyme to binding with substrate strand:

s-stage4 = bind(s-stage3,s-substrate)

→ substrate cut in half:

s-substrateF, s-substrateQ = cleave(substrate)

Transition subtypes:

TCASE1ANDNOT0-1 = (a, s-stage0, s-stage1, fold);

TCASE1ANDNOT1-2 = (a, s-stage1, s-input, s-stage2, bind);

124

Chapter 4. Implementation

TCASE1ANDNOT2-3 = (a, s-stage2, s-stage3, fold);

TCASE1ANDNOT3-4 = (a, s-stage3, s-substrate, s-stage4, bind);

TCASE1ANDNOT4-SIGNAL = (a, s-substrate, s-substrateF, s-substrateQ, cleave);

And-And-Not Logic

Signal generating cases: +inputa+inputb, +inputb+inputa transitions as 6 stages

→ from no shape to three stem-loops:

s-stage1 = fold(s-stage0)

→ from stem-loops to binding with one input strand:

s-stage2 = bind(s-stage1, s-input)

→ from stem-loops with one binding to both input bindings:

s-stage3 = bind(s-stage2,s-input)

→ from input binding to exposed enzyme region:

s-stage4 = fold(s-stage3)

→ from activated enzyme to binding with substrate strand:

s-stage5 = bind(s-stage4,s-substrate)

→ substrate cut in half:

s-substrateF, s-substrateQ = cleave(substrate)

Transition subtypes:

TCASE1ANDANDNOT0-1 = (a, s-stage0, s-stage1, fold);

TCASE1ANDANDNOT1-2 = (a, s-stage1, s-input, s-stage2, bind);

TCASE1ANDANDNOT2-3 = (a, s-stage2, s-input, s-stage3, bind);

TCASE1ANDANDNOT3-4 = (a, s-stage3, s-stage4, fold);

TCASE1ANDANDNOT4-5 = (a, s-stage4, s-substrate, s-stage5, bind);

125

Chapter 4. Implementation

TCASE1ANDANDNOT5-SIGNAL = (a, s-substrate, s-substrateF, s-substrateQ, cleave);

4.1.5 MAYAII revisited

The MAYAII application [73] played 76 tic-tac-toe games on the same board, where both

marks and responses, and the board itself were all realized as 9 chemical reaction networks

in 9 separate wells in a standard 384 well-plate. Another way to view how this was done

is to consider the board as a constructed platform and the games as 76 different proposi-

tional logic programs that were executed on the platform. Through writing out exactly the

requirements for every aspect of the programs and the machine they executed on, we are

able to identify what the constraints are on the entire set of DNA oligonucleotides. This

enables automatic search for a satisfying set within a compiler program. Efficiency gains

in the overall process may cut down on development time, and allow scaling to larger

propositional logic realizations.

Each game used a subset of premisses named as inputs and a conclusions set named as

outputs, and can be treated as an individual program, as shown below for Game 18, Quar-

ter D within the game tree. The remaining premisses were named gates and were identical

for all games. In the example, conclusions are denoted in blue text and follow from the

premisses. Premisses are divided into two groups indicated using black text for gates and

red text for inputs. Deduced conclusions were physically persistent, and did not always

result in an observable signal. The example DNADL file in Appendix C.3 shows the com-

plete description for all 76 games and the platform. The size reflects the full complexity of

what was accomplished over 36 months of development time 2 solely using nucleic acid

chemistry.

2Joanne Macdonald, personal communication, 2008.

126

Chapter 4. Implementation

MAYA II Quarter D, Game 18 (M2QDG18) Propositional Logic Execution

Well 1 Well 2

I11 ∨ I12 ∨ I13 ∨ I14 I21 ∨ I22 ∨ I23 ∨ I24 ∨ I61 ∨ I91

I21 ∧ I62 I62 ∧ I13

I33 ∧ I44 I93 ∧ I34

I82 ∧ I73 I11 ∧ I32 ∧ ¬ I22

I71 ∧ I42 I11 ∧ I42 ∧ ¬ I22

I62 ∧ I73 ∧ ¬ I21 I11 ∧ I62 ∧ ¬ I22

I62 ∧ I83 ∧ ¬ I21 I11 ∧ I72 ∧ ¬ I22

I62 ∧ I23 ∧ ¬ I21 I11 ∧ I92 ∧ ¬ I22

I42 ∧ I73 ∧ ¬ I71 I41 ∧ I12 ∧ ¬ I22

I42 ∧ I33 ∧ ¬ I71 I41 ∧ I32 ∧ ¬ I22

I42 ∧ I23 ∧ ¬ I71 I41 ∧ I62 ∧ ¬ I22

I41 ∧ I72 ∧ ¬ I22

I41 ∧ I92 ∧ ¬ I22

I31 I31

⇒ � ⇒ �

I62 I62

⇒ � ⇒ �

I13 I13

⇒ I13 ⇒ I13 ∧ I62

I74 I74

⇒ I13 ⇒ I13 ∧ I62

127

Chapter 4. Implementation

Well 3 Well 4

I31 ∨ I32 ∨ I33 ∨ I34 I41 ∨ I42 ∨ I43 ∨ I44 ∨ I21 ∨ I31

I11 ∧ I22 I22 ∧ I73

I61 ∧ I82 I33 ∧ I14

I42 ∧ I13 I81 ∧ I92 ∧ ¬ I42

I93 ∧ I24 I81 ∧ I72 ∧ ¬ I42

I22 ∧ I63 ∧ ¬ I11 I81 ∧ I32 ∧ ¬ I42

I22 ∧ I93 ∧ ¬ I11 I81 ∧ I22 ∧ ¬ I42

I22 ∧ I13 ∧ ¬ I11 I81 ∧ I12 ∧ ¬ I42

I82 ∧ I63 ∧ ¬ I61 I71 ∧ I92 ∧ ¬ I42

I82 ∧ I43 ∧ ¬ I61 I71 ∧ I82 ∧ ¬ I42

I82 ∧ I13 ∧ ¬ I61 I71 ∧ I32 ∧ ¬ I42

I71 ∧ I22 ∧ ¬ I42

I71 ∧ I12 ∧ ¬ I42

I31 I31

⇒ I31 ⇒ I31

I62 I62

⇒ I31 ⇒ I31

I13 I13

⇒ I31 ⇒ I31

I74 I74

⇒ I31 ⇒ I31

128

Chapter 4. Implementation

Well 5 Well 6

True I61 ∨ I62 ∨ I63 ∨ I64 ∨ I71 ∨ I81

I73 ∧ I94

I82 ∧ I33

I21 ∧ I92 ∧ ¬ I62

I21 ∧ I82 ∧ ¬ I62

I21 ∧ I72 ∧ ¬ I62

I21 ∧ I32 ∧ ¬ I62

I21 ∧ I12 ∧ ¬ I62

I31 ∧ I92 ∧ ¬ I62

I31 ∧ I82 ∧ ¬ I62

I31 ∧ I72 ∧ ¬ I62

I31 ∧ I22 ∧ ¬ I62

I31 ∧ I12 ∧ ¬ I62

I31 I31

⇒ True ⇒ �

I62 I62

⇒ True ⇒ I62

I13 I13

⇒ True ⇒ I62

I74 I74

⇒ True ⇒ I62

129

Chapter 4. Implementation

Well 7 Well 8

I71 ∨ I72 ∨ I73 ∨ I74 I81 ∨ I82 ∨ I83 ∨ I84 ∨ I11 ∨ I41

I41 ∧ I22 I13 ∧ I74

I62 ∧ I93 I42 ∧ I93

I13 ∧ I84 I91 ∧ I72 ∧ ¬ I82

I91 ∧ I82 I91 ∧ I62 ∧ ¬ I82

I22 ∧ I93 ∧ ¬ I41 I91 ∧ I42 ∧ ¬ I82

I22 ∧ I63 ∧ ¬ I41 I91 ∧ I32 ∧ ¬ I82

I22 ∧ I43 ∧ ¬ I41 I91 ∧ I12 ∧ ¬ I82

I82 ∧ I93 ∧ ¬ I91 I61 ∧ I92 ∧ ¬ I82

I82 ∧ I43 ∧ ¬ I91 I61 ∧ I72 ∧ ¬ I82

I82 ∧ I13 ∧ ¬ I91 I61 ∧ I42 ∧ ¬ I82

I61 ∧ I32 ∧ ¬ I82

I61 ∧ I12 ∧ ¬ I82

I31 I31

⇒ � ⇒ �

I62 I62

⇒ � ⇒ �

I13 I13

⇒ � ⇒ �

I74 I74

⇒ I74 ⇒ I13 ∧ I74

130

Chapter 4. Implementation

Well 9

I91 ∨ I92 ∨ I93 ∨ I94

I73 ∧ I64

I22 ∧ I33

I31 ∧ I62

I81 ∧ I42

I62 ∧ I83 ∧ ¬ I31

I62 ∧ I73 ∧ ¬ I31

I62 ∧ I33 ∧ ¬ I31

I42 ∧ I83 ∧ ¬ I81

I42 ∧ I33 ∧ ¬ I81

I42 ∧ I23 ∧ ¬ I81

I31

⇒ �

I62

⇒ I31 ∧ I62

I13

⇒ I31 ∧ I62

I74

⇒ I31 ∧ I62

131

Chapter 4. Implementation

4.2 Examining Cross-Talk Using The Kinetic Cellular

Automaton (KCA) Simulation

Synthetically designed DNA chemical reaction networks do not execute perfectly. De-

graded performance, where results differ from expectation, can occur naturally and nor-

mally. The ease of precise helix formation by way of sequence selection is what makes

DNA an engineerable material, yet the basic promiscuity of DNA polymers to form hy-

drogen bonds wherever there are complementary subsequences also leads to off-nominal,

accidental reactions resulting in unwanted helices. Unwanted helix formation is infor-

mally termed the “cross-talk” problem. Cross-talk covers any bindings that are not part

of the design plan. Such bindings may outcompete designed bindings, leading to dimin-

ished overall output signalling, or output signal generation at the wrong time. Effectively,

cross-talk represents system noise in a chemical reaction network.

An example of how cross-talk can arise is found in the yes-gate reaction sequence shown

in Table A.2.1.1 (Appendix A). The expected reaction order is: (1) the logic gate strand

Ga binds to the input Ia and becomes activated, (2) the logic gate strand then binds to

the substrate S, followed by (3) cleavage of the substrate into two short strands where

one strand Pf has the attached fluorophore and the the other strand Pq has the attached

quencher. Sequence assignments for the 8.17.1 substrate and 8.17.1 Left Yes gate strands

are shown in Tables A.1 and A.2. As designed, the gate strand has a base assignment in

the stem region which allows it to self-bind and form the stem, and also to bind to the

substrate after the gate has been activated by way of gate-input binding. Since the same

subsequence is used in two different places, there is the possibility of a race condition

if both gate and substrate strands are introduced simultaneously as shown in Figure 4.1.

There is additionally the possibility that two gate strands will hybridize together, rather

than each folding separately into the expected stem-loop form.

132

Chapter 4. Implementation

5′

A G A T C A T +
5′

A T G A T C T

5′

A
T C T A G T A

5′

G A T C A T

Figure 4.1: Subsequence AGATCAT, present on the gate strand starting at base 3, and
on the substrate strand starting at base 10, is the reverse complement of subsequence AT-
GATCT, present on the gate strand starting at base 25. These regions admit a binding and
can hybridize with opposing directions as shown on the right.

Each of these off-nominal reactions is possible cross-talk and to the degree that they oc-

cur in solution, a reduced percentage of required reactants and products are available at

each step of the reaction pathway. Cross-talk may result in a false logical yes when some

number of gate and substrate strands hybridize before the gate strands form their stems.

These “leaky” gates are simply playing out a game of chance: unless there is zero pos-

sibility of unwanted bindings, eventually some number of strands with complementary

subsequences will find each other in solution and bind even if they were never intended

to do so. Similarly, some number of gate strands may bind together rather than self-fold,

a different form of cross-talk that yields a reduced number of correctly formed gates able

to support the overall reaction pathway and leading to a weaker output signal. Drexler in

his Ph.D. thesis comments on misreactions similarly and notes that “In diffusive synthesis,

achieving 95% yield in each of a long series of steps is typically considered excellent.

At the end of a 100-step process, however, the net product would be about 0.6%.” Thus

the overall technology limitation is not construction, but rather the difficulty of avoiding

mistaken additions [32].

Estimating Potential Cross-Talk Scale

Since more than one strand set S may serve to execute a programmed chemical reaction

network, choosing a satisfying set that minimizes cross-talk is part of the compile cy-

cle. To this end, we can cast mitigating cross-talk within a network using optimization

133

Chapter 4. Implementation

terminology. We consider only unimolecular reactions where a strand folds with partic-

ular secondary structure, or bimolecular where two strands hybridize to form a complex.

This assumption is consistent with preceding approaches for stochastic chemical kinetic

simulation where trimolecular and reversible reactions occur primarily as a series of uni-

molecular or bimolecular events [50]. Let S be a putative satisfying strand set for some

programmed reaction network. At each step where a new species xi ∈ S is introduced,

there are n pairings between strand xi and each of the n existing strand species to con-

sider for potential duplex formation plus one considering two xi species binding together.

Assuming that these potential duplex products–hybridizations–will use at least three con-

tiguous complementary bases from each strand, there are li− l j + 1 ways to hybridize x j

to xi within the extent of xi, and (l j − 3) ∗ 2 ways to hybridize x j to xi where x j over-

hangs on either side, leading to li + l j−5 overall possible duplex reactions where we are

assuming l j ≤ li. These orientation variations exist for all
(n

2

)
co-located species xi,x j,

and for every xi species alone where in the second case the sequence strings are identical

but the resulting possible molecules are different in their secondary structures. For the

purpose of quantifying cross-talk, every possible new molecule production is considered

since we characterize a molecule using the sequence of the underlying nucleic acid bases,

its secondary structure, and total base-count. Considering the expected value of potential

hybridizations, and the unlimited size solution set S since we always have a possibility of

a better solution by adding more species, cross-talk minimization is then the search for set

Sk such that:

mink∈S
(n

2

)
(li + l j−5)∗ 1

ri j
+n(li + li−5)∗ 1

ri
:

|Sk|= n,

∀ strands xi,x j ∈ Sk, with lengths of li, l j,

and hybridization probabilities 1
ri j

(between strands), 1
ri

(intra-strand).

134

Chapter 4. Implementation

Not only is it infeasible to examine all solution sets to find a minimal one, the cross-talk

problem is also subtle because the classification of a reaction as off-nominal is not always

straightforward. An off-nominal reaction might technically be an unwanted one, but if

such a reaction occurs as an intermediate within a larger reaction event chain that even-

tually yields sufficient desired final species concentration production, then we might be

inclined to say that an alternative acceptable reaction pathway exists. This observation

gets at the heart of the cross-talk problem: we cannot know given current state-of-the-art

experimental techniques what is actually happening, even for a trivially small system. No

modality yet exists to precisely capture the full interplay of one or more DNA species in

solution. This restricts all modeling and simulation approaches and makes validation dif-

ficult. Regardless of this constraint, attempting to understand a chemical reaction system

remains a critical task. It is pursued here for the single purpose of quantifying unwanted

species production for any arbitrary DNA strand set considered as a possible solution to a

programming problem.

Approaches To Characterizing Cross-Talk

The cross-talk problem can be approached in two ways. The first approach is to avoid

unwanted bindings by ensuring sequence assignments contain no reverse complementary

subsequences that are not deliberately planned. This approach is the well-studied DNA

codeword problem, and is solved in this work with Algorithm Non-Intersecting Sequence

Set. Other codeword methods [8, 45] endeavor to choose sequences that possess minimal

cross-talk between them, and may include thermodynamic property table look-ups to fur-

ther predict binding formation. The second approach is worked out in the laboratory,

through arranging reactions within a mechanism such that possible unwanted reactions

are not particularly competitive. A further variation is a base by base modification iterated

until results are acceptable [73], but this quickly becomes unsustainable in terms of time

135

Chapter 4. Implementation

and materials costs.

Our kinetics-based approach is to simulate the chemical reaction network and consider

diffusive transport and hybridization reactions between all pairs of oligonucleotides con-

currently present for determination of likely species production. This treatment assumes

all possible hybridizations as not equally probable, consistent with physical reality, and in

contrast to codeword methods which often make the opposite assumption. Furthermore,

combinatorially generating all possible hybridizations and then subjecting them one at a

time to thermodynamic modeling is computationally impractical because the number of

combinations grows steeply even for small sets of initial reactants. Although a compiler

program can be directed to look at all possible reactions, the subsequent output data itself

is also too large and creates a different type of noise: design noise. It becomes impractical

to separate useful findings from the entire data mass. Other researchers have previously

described this situation as a “combinatorial explosion.” Therefore, we simulate potential

system designs as a way to infer the most probable combinations without paying the pro-

hibitive modeling cost.

4.2.1 DNA Chemistry

DNA chemical reaction networks are reaction-diffusion systems. With the use of enzymes,

there is a range of reaction rates that generally can be classified as either fast or slow. Use

of enzymes entails a multi-step mechanism including enzyme-substrate binding, substrate

cleavage, and enzyme recovery such that it is available to repeat the cycle with the next

encountered substrate molecule. Use of strand-displacement entails a different multi-step

mechanism wherein one oligonucleotide displaces another in an existing duplex. KCA

covers a subset of the following DNA properties and interactive behaviors for measuring

cross-talk, and provides a suitable foundation which can be developed further into a full-

136

Chapter 4. Implementation

fledged simulation of any arbitrary DNA chemical reaction network.

Physical Chemistry of Hybridization Reactions

A number of factors influence the kinetics of DNA hybridization, dictating how duplex

formation nucleates and proceeds base-by-base in a zippering fashion to form a double

helix between two single-stranded oligonucleotides, or a partial helix between any two re-

gions that have unbound bases available for pairing. Duplex formation is not a continuous

one-way event, and may involve intermediates that influence the on-rate reaction kinet-

ics [83, 97]. Duplex stability, the tendency of a helical region to stay bound, is a function

of denaturation off-rates which also may involve visiting intermediate forms. Additional

kinetic rate dependencies are stem-length, loop size, sequence composition, and presence

of a buffer salt such as NaCl [83]. Hybridization reaction rates slow in the presence of

secondary structure [44], an important consideration since chemical reaction networks de-

signed for non-trivial function all rely on precise formation of structure.

Physical Chemistry of Diffusion

Molecules in liquid are so close together that collisions are the billion to one dominant ef-

fect suffered by a single molecule moving in solution [14]. Yet collisions are not equivalent

to reactions, and these collisions are part of the overall transport mechanism that moves

molecules from higher to lower concentrations within local areas. Collision-induced mo-

tion creates diffusion as a spontaneous net flux process that proceeds as a result of fol-

lowing negative system free energy (∆G). This free energy decrease is a natural con-

sequence of systems moving towards equilibrium in absence of introduction of external

energy sources. As a counter example, membrane-transport biochemistry in a cell must

employ metabolic energy to do work in the form of moving a solute against a concentration

137

Chapter 4. Implementation

gradient [141].

Diffusion can be regarded as a random walk with z2 spatial displacement for some position

vector~z. It is expressed as a partial differential equation linking concentration n change in

time t to concentration change in space z [98]:

∂n
∂ t

= D
∂ 2n
∂ z2 (4.1)

The diffusion coefficient D has been measured experimentally for DNA and found to have

dependence on length and topology [99], however these measurements are for homoge-

neous populations of DNA at a minimum of 6k base-pairs. This scale is not consistent

with systems we aim to capture with KCA, and requires a molecular dynamics approach.

4.2.2 Simulation and Modeling Approaches

Techniques for kinetics-based capture of DNA interactions are classified as continuous

and deterministic, discrete and stochastic, or continuous and stochastic [56]. Each reflects

a degree of knowledge of the underlying physical chemistry factors, and a belief as to how

they should be mirrored in an artificial version of real system activity.

Deterministic models assume each species type in the system is known a priori, and that it

is quantitatively understood how the reactions they can undergo will proceed. These mod-

els also assume that each species can be adequately represented as continuous concentra-

tion variables in one or more rate equations, and that it is sufficient to ignore stochasticity

of the physical system [40]. When species, rates, and all reactions are known, and the

assumptions are acceptable, comprehensive simulation codes can evolve overall system

behavior in time [60, 91].

138

Chapter 4. Implementation

Stochastic models vary in what is tracked in evolving the system over an artificial time-

line using the same assumption of species types, and their possible reactions. System

assessment is computed over the simulation time course using probabilistic decision mak-

ing of which reactions will occur, and how diffusion will affect participants. An early

stochastic model is that from McQuarrie who put forth what is now termed the Chemical

Master Equation in 1967. This model defines a system as a set of N species S0, . . . ,SN−1

participating in M reactions R0, . . . ,RM−1, and tallies system state using a vector X(t) =

(X0(t),X1(t), . . . ,XN(t)) where each Xi(t) counts the discrete number of species molecules

Si at time t [79]. A Bayesian probability function P(X(t)|X(t−dt)) advances the system

at each time step by computing the likelihood of the system being found in some state

X(t) given only the known system state vector X0 at initiating time t0. The conditional

probability makes use of an expected value of discrete species counts termed a propensity

function. In practice, the method is impractical because the state space is too large.

Gillespie found a work-around to the state space problem with development of the Stochas-

tic Simulation Algorithm in 1976 [48]. Gillespie’s model instead computes realizations of

X(t) by sampling the M possible reactions using the propensity function and a Poisson dis-

tributed waiting time until a chosen one will occur [56]. Gillespie additionally contributed

a version of the Chemical Langevin Equation [49] that computes N different probability

distributions for each of the N species [56] in place of computing the probability distribu-

tion of all possible system states. As a continuous and stochastic approach, this model ac-

tively considers diffusive movement undertaken by system constituents through evolution

of a set of stochastic differential equations intended to match the average and covariance

of each species concentration to that computed by the Chemical Master Equation at any

time point t [56, 80].

Within the camp of discrete and stochastic, inspiration for the KCA comes from [41] and

[46]. Gerhardt and Schuster reported good simulation results of the Belousov-Zhabotinsky

139

Chapter 4. Implementation

reaction using a cellular automata rule they named the “hodge-podge machine” [46].

Belousov-Zhabotinsky reactions are non-linear oscillators that produce recurrent concen-

tration maxima for two different products. These maxima trade off and persist in a non-

equilibrium cycling state for long time periods. Their visually compelling spiral patterns

mimic biochemical reactions, where local interaction effects across spatial and temporal

scales confer gene regulation and organism adaptability in variable environments [41].

Weimar additionally used cellular automata to simulate enzymatic reaction networks with

excellent reproduction of the standard Michaelis-Menten rate equations typically used to

model enzymes [133]. The most significant use of a discrete simulation approach for bio-

chemical systems has been in the area of random boolean networks pioneered by Kauffman

[65].

4.2.3 KCA Implementation

A stochastic method with rule-based updating yields a straightforward simulation of chem-

ical reaction networks. The typical reaction rate equation approaches fail in this context

because there are too many possible reactions to anticipate, many of which are not part of

any planned reaction sequence and for which we don’t actually have a way to determine

their rates. Additionally, rate equations are only approximate formalisms representing the

most likely outcomes of their underlying stochastic systems, and are only accurate at a

large scale [50, 56]. The milieu of intended and unintended reactions resemble a branch-

ing process describable as an n-ary tree where edges are labelled with the probability

of proceeding from node to node and each node describes the state of the system. This

conception is the same as the Chemical Master Equation with the key difference that the

reaction set M is not written down ahead of time. Instead, we get to the branching pro-

cess tree through dynamic discovery starting with an initial species population, and using

140

Chapter 4. Implementation

a stochastic update rule to either execute a reaction between co-located strands found to

have reverse-complemented subsequences, or allow diffusive movement. Possible reac-

tions are exhaustively identified with the chance of selection based on reactant discrete

counts and kinetic, rather than thermodynamic, factors.

KCA is a 2.3K line C code. It accepts an input lattice dimension, and a vector of oligonu-

cleotide species presented as sequence and nanomolar concentration pairs. The single grid

dimension n is used to create an n x n lattice world of initially empty cells. Dynamic

cell update follows a von Neumann neighborhood such that each cell is affected by its

four neighbors as shown in Figure 4.2. As needed, movement between cells and neighbor

look-up wraps around at the boundaries over the course of the simulation. Starting real-

valued nanoscale concentrations for each input species are converted to discrete molecule

counts, and then evenly distributed into the lattice cells via random selection to complete

simulation initialization.

Each automaton cell acts as an independent reaction vessel such that system evolution is

the sum effect of parallel update over all cells with non-zero discrete species counts. We

employ the same abstract triple of (sequence, secondary structure, length), termed a strand

in DNADL, to serve as a unique species. This means that two oligonucleotides with the

same sequence and length but differing secondary structures are considered as two unique

species. KCA maintains a global store of all system-wide species. Initially, these are just

the input species, but upon simulation execution as reactions are fired and new species are

created, the global store is updated to include them. KCA additionally manages a global

store of all possible hybridization reactions by pair-wise examination of all species using

the FindAllHybrids algorithm. As shown in Section 3.1.1., this algorithm determines all

possible hybridization opportunities including complete or partial double helices that are

at least three base-pairs in length. KCA combines opportunity information along with the

141

Chapter 4. Implementation

Figure 4.2: 24x24 KCA lattice. Each of the blue cells update based on the status of their
directly adjacent red neighbor cells.

current structure status of each reactant to filter out cases where existing strand structure

precludes a further hybridization because one or more of the required bases are not avail-

able. We recall that FindAllHybrids is a sequence-only algorithm, hence this extra step is

necessary in the context of the simulation where species are more than just their sequences.

When a cell is selected for update, KCA consults the global reaction store along with

the local population of species, and builds a possible local reaction set. All hybridization

reactions are treated as bimolecular and thus there must be a count of at least one for each

of the reactants. This decision is consistent with the observation that biological-based

reactions are either monomolecular or biomolecular because collisions involving three

or more molecules are unlikely [50, 141]. We allow the possibility of identical species

142

Chapter 4. Implementation

hybridizing (A + A → AA), or two different species hybridizing (A + B → AB), but do

not include single species transformations such as self-folding. Monomolecular reactions

are considered secondary effects in the hunt for new species production that may constitute

cross-talk, and as well they are separately addressed through thermodynamic modeling in

other parts of the Pyxis compiler program. In addition to the local possible reaction set,

KCA treats diffusion as another possible event that may be randomly selected for execution

as the cell update. Reassignment of species from one cell to a neighbor occurs in high-to-

low fashion where the chosen neighbor results in the best overall local average count for

that species. In cases where more than one neighbor has the same locally minimum count

compared to the update cell, a random selection is made to break the tie.

All cells are examined and updated in a randomly reshuffled order with each automaton

iteration to prevent location bias in diffusive movement and reaction firing. Similar to

the Gillespie Stochastic Simulation Algorithm, a propensity to fire is computed for each

reaction factoring in the discrete molecule count for each of the reactants, the number

of bound bases, length of the shortest reactant strand, and sequence complexity of the

local reactant strand. Diffusion propensity is computed based on the minimum discrete

molecule count within the local area. The set of reaction propensities, and the diffusion

propensity, are normalized together. A [0,1] uniform random number probabilisitically

chooses which reaction fires, or if a diffusive move is made instead.

4.3 Pyxis

A chemical reaction network has structure, requires energy supplied as chemical species,

and performs work by transforming reactants into products. These characteristics are con-

sistent with the meaning of a machine. Within the network, at least one transformative

trajectory is not incidental and produces output. A key distinction, which may in time be

143

Chapter 4. Implementation

eliminated, is that current verified reaction networks working in laboratories are single use

only. They cannot be powered up and down or renewed in any way. They are constructed,

and execute directed function a single time. Function may include computation [89, 96],

diagnostic sensing and drug delivery [53, 75], data storage and playback [22, 51], or build-

ing devices for specific applications [30, 54]. In all these scenarios it is imperative to

optimize set-up precision to better the opportunity for overall success.

A common need to achieve these goals and allow for scaling to greater functionality is

to get away from special purpose or one-off design and manufacturing techniques. While

other groups have gravitated towards graphical CAD-style drawing tools [31], the goal of

Pyxis is ultimately to head in the opposite direction and focus on building an abstraction

stack that can support synthesis testing and compiler function. Pyxis is currently a com-

mand line interaction-based 15K line Python application that originated as both a modeling

framework and ensemble code to combine the results of multiple models.

4.3.1 Compiling DNA Systems

Traditional compilers transform programs written in high-level languages into machine

code operable on specific architectures, hence we use the term compile loosely and make

two observations. First, the analogies between silicon and molecular computing apply in

some areas, but not all. Present-day molecular computing is akin to computer hardware

engineering, and although the effort to arrange logic execution within a chemical network

is computation, it is much closer to combinational circuit design. Second, the concept of

compiling fits all forms of DNA chemical reaction network engineering, including those

areas that do not specifically align as a computation, because the nature of a chemical

reaction network remains consistent between application areas. Whether the goal is a

motor, sensor, transporter, storage device, crystalline deposition template, or algorithm

144

Chapter 4. Implementation

executor, the goal must be written down and ultimately converted to DNA sequences and

step-wise laboratory procedures. The utility of a compiler is to systematize design and

build process steps, allow benchmarking, and provide a motivation for creating true high-

level languages at a later date.

For consistency and building up an abstraction stack, compiler input requires a uniform

method of encoding design specifications. The description language DNADL was created

with this in mind. It functions analogously to hardware description languages, and there-

fore is not high-level. Instead, it is anticipated that a true high-level language will later be

developed with DNADL taking on an universal instruction set role within Pyxis.

4.3.2 Pyxis Features

System design and architecture requires coupled search through sequence and structure

spaces. Acting as a synthesizer, Pyxis exposes a full suite of sequence and structure

evaluation methods to allow for by-hand testing and exploration. Acting as a compiler,

Pyxis will conduct a search in a generation-evaluation loop using a subset of the sequence

and structure methods, until application-specific results indicate threshold clearance of

overall system functionality. For deoxyribozyme-based computing systems this entails

assigning gates to formulas, designing sequences for gates and inputs, and evaluating

gate/input/substrate interactions as a whole system.

Pyxis features include the following. Features have been grouped into six areas including

1) sequence and structure generation, 2) sequence analysis, 3) structure analysis, 4) whole

system interaction analysis, 5) database interaction, and 6) utilities.

145

Chapter 4. Implementation

Sequence and Structure Generation

1. Exhaustive generation of all oligonucleotide sequence n-mers for any length n, or

random sample generation from all possible n-mers for any length n.

2. Exhaustive generation of all secondary structures for an oligonucleotide of any

length n, or random sample generation from all possible secondary structures for

any length n oligonucleotide.

3. Generation of minimally reactive sequences using the Non-Intersecting Sequence

Set algorithm.

4. Generation of all possible n− k + 1 k-mer subsequences for a length n oligonu-

cleotide sequence string.

5. Method to generate all deoxyribozyme gates from the original gate set (Table 1.1)

for user-provided inputs.

6. Methods to generate all single input deoxyribozyme gates from the original gate set

in high-throughput fashion (Table 1.1, page 8) using templates for the fixed domains

and three different options for the loop recognition regions. The first option reads in

15-mers from a user supplied comma separated value (CSV) format file, the second

option parses GenBank [2, 10] genome .gb files, and the third option parses FASTA

input files. With options two and three, all possible gates are built from slicing

parsed input into all possible 15-mers via a sliding window. Since gates are usually

evaluated with inputs, the reverse complement of each 15-mer is inserted into the

appropriate place within the gate subsequence string, and the original 15-mer is

saved as an input. A variety of gate naming methods support user-directed names,

or generation of unique names.

146

Chapter 4. Implementation

Sequence Analysis Features

1. Oligonucleotide sequence analysis using BioPython [1] library routines including

GC-content, information content (as a measure of sequence complexity) [43, 68],

melting temperature, and molecular weight.

2. Sequence edit distance computation between two sequences using the Hamming

distance algorithm.

3. Sequence edit distance computation between two sequences using the Levenshtein

distance algorithm [71]. This distance measure supersedes Hamming distance and

is much closer in spirit to the conformational search played out by two oligonu-

cleotides in a potential binding, therefore it is a better way to determine whether

two strands will remain agnostic in solution together, or attempt to bind. A small

study comparing the two distance measures for a selection of oligonucleotide pairs

was undertaken to confirm this finding. DNA codeword approaches often only in-

corporate Hamming distance as a metric, and while this was appropriate for the

original signal transmission problems it was invented for, it has less applicability

for biological-based signals. Any length oligonucleotides are handled; for two se-

quences with lengths n and m respectively, the algorithm has O(nm) time and space

usage.

4. A cost function to compute the range of oligonucleotide materials cost with and

without purification. Cost factors including length and purification are based on

supplier provided data.

147

Chapter 4. Implementation

Structure Analysis Features

1. A novel function, SelfFoldQuantification, to determine the tendency of a single

oligonucleotide to self-fold. The algorithm was originally designed as a quick check

for 15-mer input oligonucleotides and runs in O(n2) time and space for a length n

sequence. The basis for the algorithm is the observation that where a sliding win-

dow comparison between a sequence and its reverse complement yields indices with

identical values, all possible hybridization pairs within the sequence itself can be

written down. This is a unique approach, and it is not the same thing as the n to-

tal pair bonds between a length n sequence string and its reverse complement. For

example, the short sequence GTTGCA yields a self-fold pair count of 4, located at

indices (0,4), (1,5), (2,5), and (3,4).

2. Two conversion functions to convert secondary structure dot-parenthesis strings to

ISO strings, and ISO strings to dot-parenthesis strings.

3. A function to identify the largest binding region (longest stem) within a secondary

structure.

4. Functions to report on the binding status of an oligonucleotide secondary structure

including binding partner data, and lists of all bound and unbound bases.

5. Functions to identify and report on all secondary structure shapes such as upper and

lower bulges, internal loops, and isolated stem-loops.

6. A function to identify and report on all secondary structure multibranches, including

nested multibranches.

7. A function to identify hierarchical parent-child relationships between secondary

structure sub-features.

148

Chapter 4. Implementation

8. A function to identify and report on all secondary structure pseudoknots.

9. A function to compute structure edit distance between two oligonucleotide sec-

ondary structures using a novel metric algorithm.

10. A function to compute structure base-weighted edit distance between two oligonu-

cleotide secondary structures; algorithm performs a weighted base-by-base compar-

ison, using user provided indication of which areas are important to match.

11. A function to compute secondary structure utility scores for the 8.17.1 Left Yes

deoxyribozyme gate from the original gate catalog (Table 1.1) for the gate alone,

and gate with input, modeling scenarios. The score is computed from a custom

secondary structure evaluation rule set based on deoxyribozyme gate engineering

laboratory experience. The complete evaluation scoring tables for all gates in the

original catalog are shown in Appendix D, Deoxyribozyme Gate Evaluation Rules.

Whole System Interaction Analysis Features

1. A function to generate all possible Boolean expressions that can be built from the

original deoxyribozyme logic connectives shown in Table 1.1, for any input literal

count. Additional functions return subsets such as all positive literal expressions, all

negative literal expressions, all and-not expressions, etc. A second variant function

set generates random samples of the exhaustive sets.

2. Custom interface to the NUPACK Version 2.1 thermodynamic model, allowing up to

four oligonucleotides to be tested together. NUPACK comprises eleven separate but

related executables listed below. The web-based version was useful in verifying that

no errors were introduced in interfacing to the direct source code within Pyxis; how-

ever, to support high-throughput analysis of potentially millions of oligonucleotide

149

Chapter 4. Implementation

combinations as part of large-scale studies, the web interface was not realistic. Ad-

ditionally, an error in the web version was discovered as part of a special study

done to understand the impact of setting a flag for inclusion of dangling-end energy

contributions.

(a) pfunc, calculation of the partition function

(b) pairs, calculation of base-pairing observables

(c) mfe, determination of the minimum free energy (MFE) structure

(d) subopt, determination of all secondary structures within a specified free energy

gap of the MFE

(e) count, determination of the total number of structures found in the ensemble

(f) energy, calculation of free energy and secondary structure for a particular se-

quence

(g) prob, calculation of the equilibrium probability of a particular secondary struc-

ture

(h) defect, calculation of a measure “ensemble defect” defined as the average num-

ber of incorrectly paired nucleotides evaluated over the ensemble

(i) complexes, calculation of the partition function of all complexes up to a speci-

fied size

(j) concentrations, calculation of complex concentrations

(k) distributions, calculation of complex population distribution

3. Incorporation of Python ctypes library code to speed up execution of NUPACK mod-

eling. NUPACK is a C program that is input/output bound through use of small,

temporarily used input files. Input type handling and a direct interface into the main

150

Chapter 4. Implementation

NUPACK modeling functions bypasses the out-of-the-box program organization re-

sulting in run-time reduction of at least 60%.

4. A combinatorial strategy to handle all unique strand orderings for NUPACK testing.

The underlying dynamic programming algorithm incorporated within NUPACK or-

ders oligonucleotides based on user input, yet the documentation notes that non-

circularly related orderings will yield different answers. For example, in a two strand

test order A-B yields equivalent results to order B-A, but in a three strand test orders

A-B-C and A-C-B may yield different results. Pyxis determines all unique order-

ings, and automatically tests each one. NUPACK results are collected to find the

true MFE structure, average reported MFE, etc., for all tested unique orderings.

5. Two test matrix submission methods for submitting NUPACK model executions.

The first reads inputs directly from a CSV file containing user directed combinations

such as a gate tested alone, a gate and its designated input, a gate and a substrate, or a

gate, input, and substrate together. The second method allows for several variations

of exhaustive testing by automatically generating the following four sets of length n

subsequences:

(a) A random sample from a set of all possible n-mers, up to all n elements, with

handling to prevent duplicate n-mers.

(b) The set of all possible n-mers.

(c) A single specific n-mer.

(d) A range of n-mers, starting with a specific one, where remaining n-mers follow

by virtue of a custom encoding within a Kyoto Cabinet database.

6. Integrated handling of NUPACK subopt executable output. Supoptimal modeling

returns tens to thousands of all predicted secondary structures and their free ener-

gies within an energy gap above that of the minimum free energy (MFE) secondary

151

Chapter 4. Implementation

structure. Each reported free energy is converted into a probability of occurrence

and is combined with a secondary structure evaluation to compute an overall expec-

tation value. Structure evaluation is computed using either the custom rules shown

in Appendix D, or a structure edit difference result between a reported secondary

structure and an ideal template form using one or both of the structure edit distance

functions.

Database Interaction

1. An interface to an early version of an oligonucleotide library holding gate and input

sequences is available such that arbitrary combinations of stored gates and inputs

can be tested together. The library is set up as an PostgreSQL [3] database.

2. A general PostgreSQL database interface is incorporated. Methods have been writ-

ten for new table creation, row insert or update, multiple extraction variations, as

well as CSV format input and output.

3. Exhaustive or random generation of oligonucleotide n-mers may be stored and re-

trieved from a DBM-based database, Kyoto Cabinet [57]. Kyoto Cabinet is written

in C++ and has a Python interface; the code allows for customization of how the

underlying name-value data records are stored. Currently the B+-tree option with

O(logn) operation cost is in use, with additional internal optimization to facilitate

sequential access useful for exhaustive combinatorial test matrix execution.

Utilities

1. Standard command line argument parsing using the Python argparse module for a

UNIX-like command line user experience.

152

Chapter 4. Implementation

2. An array of output reporting into CSV files is available. The CSV format was ini-

tially chosen to provide ease of use when moving reports into an Excel spreadsheet,

and over time has proven to be a highly practical format overall in the handling of

copious amounts of data.

3. A custom set of methods rewritten in Python such as the UNIX cut function for CSV

files, and various functional language list processing techniques.

4. Methods to compute basic statistical measures such as average, standard deviation,

minimum and maximum.

5. Output plot creation using the R Project for Statistical Computing [4] library. R is

a free software environment and has grown in popularity, due to its comprehensive

feature set, to the point of supporting its own refereed journal. Scatter plots, sun-

flower scatter plots (a technique borrowed from astrophysics studies to handle >1M

points), bar charts, and 3D surface plots may be produced.

153

Chapter 5

Conclusion

I would like to describe a field, in which little has been done, but in which an enormous amount

can be done in principle. – Richard P. Feynman [39]

The central thesis question has been answered constructively. A summary of contributions

to the fields of DNA nanotechnology and genomics are the following conceptions, origi-

nal ideas, and development. Artifacts include novel abstractions, algorithms, methods, a

language, a simulation, and a DNA compiler program, as documented in this thesis. It is

hoped that these efforts will further the fields of nanotechnology and genomics such that

Feynman gets his wish.

There are many directions that this research project can develop further, pending a success-

ful outcome in the highly competitive research and development grant arena. These direc-

tions include follow-on development of DNADL, KCA, and Pyxis, to ultimately bring all

three together into a single package published for distribution and mainstream use. Con-

tinued laboratory validation and interaction is the single best way to achieve an eventual

UNM DNA nanotechnology software package. Efforts in this direction, over the course of

154

Chapter 5. Conclusion

project development, include (1) initial reconstruction of the MAYA II experiments [34],

(2) multiple detailed evaluations of deoxyribozyme gate designs for detection of six differ-

ent flaviviruses (Murray Valley, Koutango, Japanese Encephalitis, St. Louis, Usutu, and

West Nile), (3) creation and maintenance of a virus detection platform development in-

tranet, the McogVirusDetection Web, (4) training and one-on-one assistance for Columbia

University laboratory personnel experiencing intranet usage and interaction difficulties,

(5) creation of multiple proposals for an Oligonucleotide Library, also documented in the

McogVirusDetection Web, and (6) internal Pyxis versions that have contributed to suc-

cessful laboratory outcomes at the Columbia University and UNM laboratories [18, 92].

5.1 Contributions of Thesis

DNA chemistry has been used in the construction of a variety of devices and machines,

many of which are recapitulations of what was achieved in silicon decades ago. For

sensing and computing applications, the current technological capability is at the level

of propositional logic and rudimentary circuits. For building nanoscale templates or trans-

port modules, DNA origami and branched lattice techniques are able to build nearly any

two dimensional shape and should shortly achieve any three dimensional shape. These

accomplishments have largely been won by getting very good at hacking the bare metal,

or in this case, precise designs to guide the chemistry to specific ends, not just specific

yields. The goal of this thesis has been to build on the pioneering work accomplished by

others in the field, and enable further achievements in scale with commensurate decrease

in development time and materials costs.

1. Abstract numeric representation of nucleic acid sequences. Binary represen-

tation of sequences is not new, however, encoding of base-pairing inference as a

155

Chapter 5. Conclusion

bit-level operation is. There are obvious extensions to this theme which enable

high-throughput sequence motif search, one of the most frequently required low-

level tasks in mainstream genomics, particularly in identifying gene coding regions

and function for newly sequenced organisms.

2. Abstract numeric representation of nucleic acid secondary structure. This con-

tribution is the first structure representation that is completely numeric. As a regular

language it is superior to competing approaches [38, 47, 59] in measures of sim-

plicity, efficiency, and analytical ability. We show a linear time algorithm to convert

dot-parenthesis string representation [59] into ISO that makes ISO compatible with

thermodynamic modeling codes.

3. Abstract representation of reactions. Reactions are abstracted in the style of func-

tional programming where reactants and products are arguments and function appli-

cation is chemical transformation. This idea is deeper than what has been explored

in this thesis. Cheminformatics, and the enumeration of chemical reactions are old

and venerable research areas. As a contrast to the various graph formalisms for

reactions, a functional programming treatment marries the underlying concept of

recursion to chemistry which may yield new insights.

4. Sequence algorithms. Both algorithms are enabled by the numeric representation

of sequences and are first-ever algorithms that solve these enumeration and search

problems through exploitation of bit-level operations and bitstrings for sequence

strings.

(a) Find All Hybrids. Dirks [26] reports O(n4) time and O(n3) space resource us-

age to consider formation of the complete ensemble of secondary structures for

a length n oligonucleotide. Shapiro [114] reports O(n3) time. This algorithm

uses O(n3) time and space resource usage.

156

Chapter 5. Conclusion

(b) Non-Intersecting Sequence Set. The algorithm differs from competitors in

two distinct ways. First, there is no dependence on thermodynamic lookup ta-

bles [8, 45, 63], yet results show confirmation of minimal hybridization when

separately tested with the NUPACK thermodynamic modeling code [139].

Second, all variations of possible hybridization are tested, which supersedes

methods that only use Hamming distance such as [45, 63]. Because this ap-

proach is solely based on sequence strings, it can be adapted to any other search

problem with the same Θ(4n) space.

5. Structure algorithms. The structure algorithms are unique. The RNA as Graphs

approach [38] dispenses with stem-lengths and unpaired regions, thus cannot be

used to track basic bound/unbound state in a secondary structure. Giegerich [47]

introduces a term ”shreps” as a descriptor of shape, but fails to give resource analy-

sis of grammar-based secondary structure inference. To the best of our knowledge,

there are no representation methodologies or analytical tools able to accomplish

all aspects of ISO and the related algorithms below. Resource usage analysis as a

function of the number of ISO triples maps to usage in the length of an oligonu-

cleotide as shown below since a linear time step occurs prior to filtering to convert

dot-parenthesis strings into ISO. Other basic representations, such as just a list of

paired bases, will also only pay linear time in conversion to ISO since each pair only

must be examined once.

(a) Dot-Parenthesis to ISO Conversion. Enables direct parsing of thermody-

namic modeling output which can then serve as input into one or more of the

shape filters. Algorithm is linear time.

(b) ISO to Dot-Parenthesis Conversion. The reverse conversion algorithm is

added for completeness. Algorithm is linear time.

157

Chapter 5. Conclusion

(c) Stem-Loop Inference. This basic algorithm identifies all stem-loops. A pos-

sible genomics application is high-throughput screening of microRNAs which

have been implicated as biomarkers for certain cancers [78]. Algorithm is lin-

ear time.

(d) Hairpin Filter. Hairpins are often given the same meaning, a stem with a

loop of unpaired bases, as our classification of stem-loop in this work. The

distinction given here is important for synthetic DNA constructions that may

use this shape without intervening bases. Algorithm is linear time.

(e) Bulge Filter. Linear time algorithm to infer bulges.

(f) Internal Loop Filter. Linear time algorithm to infer internal loops.

(g) Parent-Child Determination. Hierarchical relationship inference between

stems that handles any degree of nesting in quadratic time.

(h) R-Way Multibranch Inference. Filter for multibranches that supports any

degree of nesting in quadratic time.

(i) Pseudoknot Filter. Linear time algorithm to infer pseudoknots. We know of

no other representation capable of handling pseudoknots as a simple check.

(j) Bindings, Unbound, Partners. Three linear time algorithms to characterize

bound and unbound regions in an oligonucleotide.

(k) Multitriples Exhaustive. A straightforward cubic time algorithm that writes

out all legal individual stems for an oligonucleotide. It is intuited, but not

yet proven, that this approach will lead to simpler expressions for structure

enumeration. As a construction algorithm it naturally gives an ordering to all

individual possible stem regions.

6. The DNA description language (DNADL). A design language for architecting

molecular computing devices constructed from DNA. The language formalizes the

158

Chapter 5. Conclusion

low-level attributes and behaviors required to achieve programmed function.

DNADL instances act as system requirements documents and can both serve as a

target of higher-level languages and as a parsable file for compiler program input.

7. The Kinetic Cellular Automaton (KCA) kinetics-based simulation. A discrete

stochastic DNA simulation that determines likely DNA species which can form from

initial species at nanoscale concentrations. A Gillespie-style propensity function

comprising kinetic factors such as length, number of bound bases and concentration

of reactants is employed to make probabilistic decisions at each time step to either

fire a reaction, or make a diffusive move, for each cell within a cellular automaton.

8. The Pyxis synthesizer and compiler program. A fully featured design and anal-

ysis program for DNA systems comprising a number of specialized sequence and

structure algorithms, reporting tools, database interaction capability, and a custom

high-throughput port of the NUPACK thermodynamic modeling program. The pro-

gram admits addition of modules to expand further physico-chemical modeling and

simulation studies of DNA properties and interactions.

159

Appendix A

Deoxyribozyme Gate Catalog

A.1 Gate Catalog

A.1.1 Gate Schematics

8.17 LEFT YES

5’ |— stem (10 nt) —|— loop (15 nt) —|— stem (10 nt) —|— core (20 nt) —| 3’, gate

5’ |— (15 nt) —| 3’, activating input

5’ |— (17 nt) —| 3’, substrate

8.17 RIGHT YES

5’ |— core (20 nt) —|— stem (10 nt) —|— loop (15 nt) —|— stem (10 nt) —| 3’, gate

5’ |— (15 nt) —| 3’, activating input

5’ |— (17 nt) —| 3’, substrate

E6 LEFT YES

5’ |— stem (7 nt) —|— loop (15 nt) —|— stem (7 nt) —|— core (29 nt) —| 3’, gate

160

Appendix A. Deoxyribozyme Gate Catalog

5’ |— (15 nt) —| 3’, activating input

5’ |— (15 nt) —| 3’, substrate

E6 RIGHT YES

5’ |— core (28 nt) —|— stem (8 nt) —|— loop (15 nt) —|— stem (8 nt) —| 3’, gate

5’ |— (15 nt) —| 3’, activating input

5’ |— (17 nt) —| 3’, substrate

E6 NOT

5’ |— (12 nt) —|— stem (5 nt) —|— loop (15 nt) —|— stem (5 nt) —|— (15 nt) —| 3’, gate

5’ |— (15 nt) —| 3’, inhibitory input

5’ |— (17 nt) —| 3’, substrate

8.17 AND

5’ |— stem (10 nt) —|— loop (15 nt) —|— stem (10 nt) —|— core (10 nt) —|

|— stem (10 nt) —|— loop (15 nt) —|— stem (10 nt) —| 3’, gate

5’ |— (15 nt) —| 3’, activating input a

5’ |— (15 nt) —| 3’, activating input b

5’ |— (17 nt) —| 3’, substrate

E6 AND

5’ |— stem (8 nt) —|— loop (15 nt) —|— stem (8 nt) —|— core (20 nt) —|

|— stem (8 nt) —|— loop (15 nt) —|— stem (8 nt) —| 3’, gate

5’ |— (15 nt) —| 3’, activating input a

5’ |— (15 nt) —| 3’, activating input b

5’ |— (15 nt) —| 3’, substrate

E6 AND-NOT

5’ |— stem (7 nt) —|— loop (15 nt) —|— stem (7 nt) —|— (7 nt) —|

|— stem (5 nt) —|— loop (15 nt) —|— stem (5 nt) —|— (15 nt) —| 3’, gate

161

Appendix A. Deoxyribozyme Gate Catalog

5’ |— (15 nt) —| 3’, activating input

5’ |— (15 nt) —| 3’, inhibitory input

5’ |— (15 nt) —| 3’, substrate

E6 AND-AND-NOT

5’ |— stem (8 nt) —|— loop (15 nt) —|— stem (8 nt) —|— (4 nt) —|

|— stem (5 nt) —|— loop (15 nt) —|— stem (5 nt) —|— (7 nt) —|

|— stem (8 nt) —|— loop (15 nt) —|— stem (8 nt) —| 3’, gate

5’ |— (15 nt) —| 3’, activating input a

5’ |— (15 nt) —| 3’, activating input b

5’ |— (15 nt) —| 3’, inhibitory input

5’ |— (15 nt) —| 3’, substrate

162

Appendix A. Deoxyribozyme Gate Catalog

A.1.2 Gate Sequence Specifications

Substrate Sequences
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8.17.1 T A G T A A C T rA G A G A T C A T
E6 T C A C T A T rA G G A A G A G

Table A.1: Sequences listed 5’ to 3’ for substrates that recognize the 8.17.1 and E6 en-
zymes.

163

Appendix A. Deoxyribozyme Gate Catalog

8.17.1 Left Yes Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
G G A A G A T C A T a a a a a

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
a a a a a a a a a a A T G A T

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
C T T C C G A G C C G G T C G

45 46 47 48 49 50 51 52 53 54
A A A G T T A C T A

Table A.2: Sequence listed 5’ to 3’ for the 8.17.1 Left Yes Deoxyribozyme Logic Gate.

164

Appendix A. Deoxyribozyme Gate Catalog

8.17.1 Right Yes Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A T G A T C T T C C G A G C C

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
G G T C G A A A G T T A C T A

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
a a a a a a a a a a a a a a a

45 46 47 48 49 50 51 52 53 54
T A G T A A C T T T

Table A.3: Sequence listed 5’ to 3’ for the 8.17.1 Right Yes Deoxyribozyme Logic Gate.

165

Appendix A. Deoxyribozyme Gate Catalog

E6 Left Yes Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T G A A G A G a a a a a a a a

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
a a a a a a a C T C T T C A G

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
C G A T G G C G A A G C C C A

45 46 47 48 49 50 51 52 53 54 55 56 57
C C C A T G T T A G T G A

Table A.4: Sequence listed 5’ to 3’ for the E6 Left Yes Deoxyribozyme Logic Gate.

166

Appendix A. Deoxyribozyme Gate Catalog

E6 Right Yes Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C T C T T C A G C G A T G G C

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
G A A G C C C A C C C A T G T

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
T A G T G A a a a a a a a a a

45 46 47 48 49 50 51 52 53 54 55 56 57 58
a a a a a a T C A C T A A C

Table A.5: Sequence listed 5’ to 3’ for the E6 Right Yes Deoxyribozyme Logic Gate.

167

Appendix A. Deoxyribozyme Gate Catalog

E6 Not Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C T C T T C A G C G A T G A C

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
T G a a a a a a a a a a a a a

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
a a C A G T C C A C C C A T G

45 46 47 48 49 50 51
T T A G T G A

Table A.6: Sequence listed 5’ to 3’ for the E6 Not Deoxyribozyme Logic Gate.

168

Appendix A. Deoxyribozyme Gate Catalog

8.17.1 And Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
G G A A G A T C A T a a a a a

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
a a a a a a a a a a A T G A T

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
C T T C C G A G C C G G T C G

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
A A A G T T A C T A b b b b b

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
b b b b b b b b b b T A G T A

75 76 77 78 79
A C T T T

Table A.7: Sequence listed 5’ to 3’ for the 8.17.1 And Deoxyribozyme Logic Gate.

169

Appendix A. Deoxyribozyme Gate Catalog

E6 And Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C T G A A G A G a a a a a a a

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
a a a a a a a a C T C T T C A

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
G C G A T G G C G A A G C C C

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
A C C C A T G T T A G T G A b

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
b b b b b b b b b b b b b b T

75 76 77 78 79 80 81
C A C T A A C

Table A.8: Sequence listed 5’ to 3’ for the E6 And Deoxyribozyme Logic Gate.

170

Appendix A. Deoxyribozyme Gate Catalog

E6 Left AndNot Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T G A A G A G a a a a a a a a

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
a a a a a a a C T C T T C A G

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
C G A T G A C T G b b b b b b

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
b b b b b b b b b C A G T C C

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
A C C C A T G T T A G T G A

Table A.9: Sequence listed 5’ to 3’ for the E6 Left AndNot Deoxyribozyme Logic Gate.

171

Appendix A. Deoxyribozyme Gate Catalog

E6 Right AndNot Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C T C T T C A G C G A T G A C

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
T G b b b b b b b b b b b b b

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
b b C A G T C C A C C C A T G

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
T T A G T G A a a a a a a a a

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
a a a a a a a T C A C T A A C

Table A.10: Sequence listed 5’ to 3’ for the E6 Right AndNot Deoxyribozyme Logic Gate.

172

Appendix A. Deoxyribozyme Gate Catalog

E6 AndAndNot Gate Sequence
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C T G A A G A G a a a a a a a

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
a a a a a a a a C T C T T C A

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
G C G A T G A C T G c c c c c

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
c c c c c c c c c c C A G T C

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
C A C C C A T G T T A G T G A

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
b b b b b b b b b b b b b b b

90 91 92 93 94 95 96 97
T C A C T A A C

Table A.11: Sequence listed 5’ to 3’ for the E6 AndAndNot Deoxyribozyme Logic Gate.

173

Appendix A. Deoxyribozyme Gate Catalog

A.1.3 Gate Structure Specification

Gate Identifier Input
Count

Length Secondary Structure

8.17 Left Yes 1 55 [(0,10,15),(32,2,5)]
8.17 Right Yes 1 55 [(8,3,3),(20,10,5)]
E6 Left Yes 1 58 [(0,7,15),(34,3,3),(43,3,8)]
E6 Right Yes 1 59 [(12,3,3),(28,8,15)]
E6 Not 1 52 [(12,5,15),(37,3,8)]
8.17 And 2 80 [(0,10,15),(38,2,0),(45,10,15)]
E6 And 2 82 [(0,8,15),(35,3,3),(51,8,15)]
E6 Left AndNot 2 74 [(0,7,15),(34,5,15)]
E6 Right AndNot 2 75 [(12,5,15),(44,8,15)]
E6 AndAndNot 3 98 [(0,8,15),(35,5,15),(67,8,15)]

Table A.12: Expected structure for all deoxyribozyme logic gates in absence of input or
substrate.

174

Appendix A. Deoxyribozyme Gate Catalog

A.1.4 Gate Stem-Loop Specification

Stem-Loop Start Stop Stem Loop Extent
Loop Identifier Index Index Length Opening
8.17 Left Yes Activating A 0 34 10 15 35
8.17 Right Yes Activating A 20 54 10 15 35
E6 Left Yes Activating A 0 28 7 15 29
E6 Right Yes Activating A 28 58 8 15 31
E6 Not Inhibitory A 12 36 5 15 25
8.17 And Activating A 0 34 10 15 35
8.17 And Activating B 45 79 10 15 35
E6 And Activating A 0 30 8 15 31
E6 And Activating B 51 81 8 15 31
E6 Left AndNot Activating A 0 28 7 15 29
E6 Left AndNot Inhibitory B 34 58 5 15 25
E6 Right AndNot Activating A 44 74 8 15 31
E6 Left AndNot Inhibitory B 34 58 5 15 25
E6 Right AndNot Activating A 44 74 8 15 31
E6 Right AndNot Inhibitory B 12 36 5 15 25
E6 AndAndNot Activating A 0 30 8 15 31
E6 AndAndNot Activating B 67 97 8 15 31
E6 AndAndNot Inhibitory C 35 59 5 15 25

Table A.13: Expected stem-loop formation for all deoxyribozyme logic gates in absence
of input or substrate.

175

Appendix A. Deoxyribozyme Gate Catalog

A.1.5 Gate-Input Binding Structure Specification

Gate Identifier Inputs Length
8.17 Left Yes act a 71
8.17 Right Yes act a 71
E6 Left Yes act a 74
E6 Right Yes act a 75
E6 Not inh a 68
8.17 And act a, act b 112
E6 And act a, act b 114
E6 Left AndNot act a, inh b 106
E6 Right AndNot act a, inh b 108
E6 AndAndNot act a, act b, inh c 146

Table A.14: Gates, inputs and total complex lengths for all deoxyribozyme logic gates
bound to programmed input.

Gate Identifier Ordering Secondary Structure
8.17 Left Yes (5’)g+(3’)ia [(10,15,31)]
8.17 Right Yes (5’)g+(3’)ia [(30,15,11)]
E6 Left Yes (5’)g+(3’)ia [(7,15,37)]
E6 Right Yes (5’)g+(3’)ia [(36,15,9)]
E6 Not (5’)g+(3’)ia [(17,15,21)]
8.17 And (5’)g+(3’)ia+(3’)ib [(10,15,56),(55,15,27)]
E6 And (5’)g+(3’)ia+(3’)ib [(8,15,60),(59,15,25)]
E6 Left AndNot (5’)g+(3’)ia+(3’)ib [(7,15,53),(39,15,37)]
E6 Right AndNot (5’)g+(3’)ib+(3’)ia [(17,15,44),(52,15,25)]
E6 AndAndNot (5’)g+(3’)ia+(3’)ic+(3’)ib [(8,15,76),(40,15,60),(75,15,41)]

Table A.15: Expected structure, per given strand ordering, for all deoxyribozyme logic
gates bound to programmed input.

176

Appendix A. Deoxyribozyme Gate Catalog

A.1.6 Gate-Input Binding Stem-Loop Specification

Stem-Loop Start Stop Stem Loop Extent
Loop Identifier Index Index Length Opening
8.17 Left Yes Activating A 10 70 15 31 61
8.17 Right Yes Activating A 30 70 15 11 41
E6 Left Yes Activating A 7 73 15 37 67
E6 Right Yes Activating A 36 74 15 9 39
E6 Not Inhibitory A 17 67 15 21 51
8.17 And Activating A 10 95 15 56 86
8.17 And Activating B 55 111 15 27 57
E6 And Activating A 8 97 15 60 90
E6 And Activating B 59 113 15 25 55
E6 Left AndNot Activating A 7 89 15 53 83
E6 Left AndNot Inhibitory B 39 105 15 37 67
E6 Right AndNot Activating A 52 106 15 25 55
E6 Right AndNot Inhibitory B 17 90 15 44 74
E6 AndAndNot Activating A 8 113 15 76 106
E6 AndAndNot Activating B 75 145 15 41 71
E6 AndAndNot Inhibitory C 40 129 15 60 90

Table A.16: Expected stem-loop formation for all deoxyribozyme logic gates bound to
programmed input.

177

Appendix A. Deoxyribozyme Gate Catalog

A.1.7 Gate-Substrate Structure Specification

Gate Identifier Substrate Ordering Length Secondary Structure
8.17 Left Yes 8.17.1 (5’)g+(3’)s 73 [(25,8,23),(47,8,10)]
8.17 Right Yes 8.17.1 (5’)g+(3’)s 73 [(0,8,48),(22,8,35)]
E6 Left Yes E6 (5’)g+(3’)s 74 [(22,6,31),(52,6,10)]
E6 Right Yes E6 (5’)g+(3’)s 75 [(0,6,54),(30,6,33)]
E6 Not E6 (5’)g+(3’)s 68 [(0,6,47),(46,6,10)]
8.17 And 8.17.1 (5’)g+(3’)s 96 [(25,8,48),(47,8,35)]
E6 And E6 (5’)g+(3’)s 98 [(23,6,54),(53,6,33)]
E6 Left AndNot E6 (5’)g+(3’)s 90 [(22,6,47),(68,6,10)]
E6 Right And-
Not

E6 (5’)g+(3’)s 92 [(0,6,70),(46,6,33)]

E6 AndAndNot E6 (5’)g+(3’)s 114 [(23,6,70),(69,6,33)]

Table A.17: Expected gate-substrate binding for all deoxyribozyme logic gates.

178

Appendix A. Deoxyribozyme Gate Catalog

Stem-Loop Start Stop Stem Loop Extent
Loop Identifier Index Index Length Opening
8.17 Left Yes Docking Arm A 25 63 8 23 39
8.17 Left Yes Docking Arm B 47 72 8 10 26
8.17 Right Yes Docking Arm A 0 63 8 48 64
8.17 Right Yes Docking Arm B 22 72 8 35 51
E6 Left Yes Docking Arm A 22 64 6 31 43
E6 Left Yes Docking Arm B 52 73 6 10 22
E6 Right Yes Docking Arm A 0 65 6 54 66
E6 Right Yes Docking Arm B 30 74 6 33 45
E6 Not Docking Arm A 0 58 6 47 59
E6 Not Docking Arm B 46 67 6 10 22
E6 Not Docking Arm A 0 58 6 47 59
E6 Not Docking Arm B 46 67 6 10 22
8.17 And Docking Arm A 25 88 8 48 64
8.17 And Docking Arm B 47 97 8 35 51
E6 And Docking Arm A 23 88 6 54 66
E6 And Docking Arm B 53 97 6 33 45
E6 Left AndNot Docking Arm A 22 80 6 47 59
E6 Left AndNot Docking Arm B 68 89 6 10 22
E6 Right AndNot Docking Arm A 0 81 6 70 82
E6 Right AndNot Docking Arm B 46 90 6 33 45
E6 AndAndNot Docking Arm A 23 104 6 70 82
E6 AndAndNot Docking Arm B 69 113 6 33 45

Table A.18: Expected gate-substrate binding stem-loop specifications for all deoxyri-
bozyme logic gates.

A.2 Reactions

Using standard chemical reaction notation where reactant species listed on the left side of

an arrow are converted into product species listed on the right side, the relevant reactions

for the basic set of deoxyribozyme logic gates are shown. There are several reversible re-

actions; in physical terms this corresponds to hybridization proceeding in the left-to-right

179

Appendix A. Deoxyribozyme Gate Catalog

direction, and dissociation proceeding in the right-to-left direction. Inputs I are indexed as

a, b, and c. Since their sequence reverse complements are part of the gate sequences, gates

have been similarly named with the addition of an overbar to indicate the reverse comple-

mentarity status of the input sequence(s) they are designed to recognize. For the signalling

reactions, substrate S is cleaved to form products Pf (fluorophore) and Pq (quencher).

A.2.1 Reactions for gates with only positive inputs.

When input is added to a solution containing gates and substrates, three reactions com-

mence: a) gates and inputs reversibly bind together, b) gate-input complexes reversibly

bind to substrates, and c) substrates are cleaved into products. We assume the binding kon

and koff rates in the first two steps are the same. Since the last step recovers the gate-input

complex, it acts as a catalyst and is able to either bind to and cleave other substrates, or

fall apart. Accumulation of Pf allows fluorescence build-up for the on-state signal. In the

case of the AND gate, if only one of the required inputs is introduced, the opposing stem

loop remains intact and therefore half of the substrate binding region remains sequestered.

This prevents correct gate-input-substrate complex formation, and no signal is produced.

Gate Reactions

YES (1) Ga + Ia
kon−−⇀↽−−
koff

GaIa

(2) GaIa +S
kon−−⇀↽−−
koff

GaIaS

(3) GaIaS kcat−−→ GaIa +Pf +Pq

Table A.2.1.1: Reaction sequence for the YES gate that requires a single positive input.

180

Appendix A. Deoxyribozyme Gate Catalog

Gate Reactions

AND (1) Gab + Ia + Ib
kon−−⇀↽−−
koff

GabIaIb

(2) GabIaIb +S
kon−−⇀↽−−
koff

GabIaIbS

(3) GabIaIbS kcat−−→ GabIaIb +Pf +Pq

Table A.2.1.2: Reaction sequence for the AND gate that requires two positive inputs.

181

Appendix A. Deoxyribozyme Gate Catalog

A.2.2 Reactions for a gate with a single negative input.

The reaction sequences for the NOT gate are shown both with and without input introduc-

tion. The action of this gate is based on interaction with the deoxyribozyme core region.

Lack of input introduction leads to gate activation, while presence of input leads to gate

inhibition.

Gate Reactions

NOT (1) Gc + Ic
kon−−⇀↽−−
koff

GcIc

(2) GcIc +S
kon−−⇀↽−−
koff

GcIcS

Table A.2.2.1: Reaction sequence for the NOT gate when input is introduced. With input,
the gate core region is distorted such that the gate-input-substrate complex is rendered
inactive. No signal occurs, thus negating the input.

Gate Reactions

NOT (1) GcS kcat−−→ Gc +Pf +Pq

Table A.2.2.2: Reaction sequence for the NOT gate when input is not introduced. In this
case the gate is immediately active and signaling occurs.

182

Appendix A. Deoxyribozyme Gate Catalog

A.2.3 Reactions for gates with positive inputs and a single negative

input.

These gates combine aspects of the simpler architectures to provide signals only when the

correct positive inputs have been introduced, and no inhibitory input is present. In the

case of the ANDANDNOT gate, similar to the AND gate, if only one of the required positive

inputs is introduced, again correct gate-input-substrate binding fails to occur and no signal

is produced.

Gate Reactions

ANDNOT (1) Gac + Ia + Ic
kon−−⇀↽−−
koff

GacIaIc

(2) GacIaIc +S
kon−−⇀↽−−
koff

GacIaIcS

Table A.2.3.1: Reaction sequence for the ANDNOT gate when both the single positive input
and single negative input are introduced. Since the negative input Ic acts as an inhibitor,
the core is deformed and the gate fails to be activated.

Gate Reactions

ANDNOT (1) Gac + Ia
kon−−⇀↽−−
koff

GacIa

(2) GacIa +S
kon−−⇀↽−−
koff

GacIaS

(3) GacIaS kcat−−→ GacIa +Pf +Pq

Table A.2.3.2: Reaction sequence for ANDNOT gate when only the positive input is in-
troduced. Since the inhibitory input Ic is not present, the gate is activated and a signal is
produced.

183

Appendix A. Deoxyribozyme Gate Catalog

Gate Reactions

ANDANDNOT (1) Gabc + Ia + Ib + Ic
kon−−⇀↽−−
koff

GabcIaIbIc

(2) GabcIaIbIc +S
kon−−⇀↽−−
koff

GabcIaIbIcS

Table A.2.3.3: Reaction sequence for ANDANDNOT gate when both positive inputs and
the negative input are introduced. Since the inhibitory input Ic is present, no signal is
produced.

Gate Reactions

ANDANDNOT (1) Gabc + Ia + Ib
kon−−⇀↽−−
koff

GabcIaIb

(2) GabcIaIb +S
kon−−⇀↽−−
koff

GabcIaIbS

(3) GabcIaIbS kcat−−→ GabcIaIb +Pf +Pq

Table A.2.3.4: Reaction sequence for ANDANDNOT gate when both the positive inputs are
introduced, but not the negative (inhibitory) one, leading to signal production.

184

Appendix A. Deoxyribozyme Gate Catalog

A.3 Logic Examples

A.3.1 Adders

Each adder uses a single well, and is able to support simultaneous signaling for both the

red and green channels. For the half-adder, the logic does not strictly require two-color

signaling, but the full-adder does when both the sum and carry bit are on in the case of

012 +012 = 112.

Formula Half-Adder; sum bit signaled in red, carry bit signaled in green.

A.3.1.2 Well 1.

RED (TAMRA-BH2 FRET):

(i1∧¬i2)∨ (i2∧¬i1)

GREEN (FLUORESCEIN-BH1 FRET):

(i1∧ i2)

Formula Full-Adder; sum bit signaled in red, carry bit signaled in green.

A.3.1.2 Well 1.

RED (TAMRA-BH2 FRET):

(i1∧¬i2∧¬i3)∨ (i2∧¬i1∧¬i3)∨ (i3∧¬i1∧¬i2)∨ (i1∧ i2∧ i3)

GREEN (FLUORESCEIN-BH1 FRET):

(i1∧ i2)∨ (i2∧ i3)∧ (i1∧ i3)

A.3.2 MAYA2

There are two indices used for naming each literal. The first index denotes the tic-tac-toe

square number, where the upper left of the board is square 1 and the lower right is square 9.

185

Appendix A. Deoxyribozyme Gate Catalog

The second index denotes the play number made by the human, since up to four plays are

possible in some games this index ranged from 1 through 4. Each well has two formulas,

where the first encodes human moves signaled with green fluorescence and the second

encodes automaton response moves signaled with red fluorescence. Only a single color

is signaled because a square can be claimed at most once in game play. Since the two

formulas per well are coexistent in solution, low-level programming requires screening

formulas against each other to ensure intended logic is not compromised by unwanted

interactions. Well 5 is always claimed by the automaton as the initial move of all games,

therefore it is a formula consisting of a single literal signaled in red.

Formula A.3.2.1 Well 1.

GREEN (FLUORESCEIN-BH1 FRET):

i11∨ i12∨ i13∨ i14

RED (TAMRA-BH2 FRET):

(i21∧ i62)∨ (i33∧ i44)∨ (i73∧ i82)∨ (i42∧ i71)∨ (i62∧ i73∧¬i21)∨ (i62∧ i83∧¬i21)∨

(i23∧ i62∧¬i21)∨ (i42∧ i73∧¬i71)∨ (i33∧ i42∧¬i71)∨ (i23∧ i42∧¬i71)

Formula A.3.2.2 Well 2.

GREEN (FLUORESCEIN-BH1 FRET):

i21∨ i22∨ i23∨ i24

RED (TAMRA-BH2 FRET):

i61∨ i91∨ (i13∧ i62)∨ (i34∧ i93)∨ (i11∧ i32∧¬i22)∨ (i11∧ i42∧¬i22)∨ (i11∧ i62∧¬i22)∨

(i11∧ i72∧¬i22)∨(i11∧ i92∧¬i22)∨(i41∧ i12∧¬i22)∨(i41∧ i32∧¬i22)∨(i41∧ i62∧¬i22)∨

(i41∧ i72∧¬i22)∨ (i41∧ i92∧¬i22)

Formula A.3.2.3 Well 3.

GREEN (FLUORESCEIN-BH1 FRET):

186

Appendix A. Deoxyribozyme Gate Catalog

i31∨ i32∨ i33∨ i34

RED (TAMRA-BH2 FRET):

(i11∧ i22)∨ (i61∧ i82)∨ (i13∧ i42)∨ (i24∧ i93)∨ (i22∧ i63∧¬i11)∨ (i22∧ i93∧¬i11)∨

(i22∧ i13∧¬i11)∨ (i82∧ i63∧¬i61)∨ (i82∧ i43∧¬i61)∨ (i82∧ i13∧¬i61)

Formula A.3.2.4 Well 4.

GREEN (FLUORESCEIN-BH1 FRET):

i41∨ i42∨ i43∨ i44

RED (TAMRA-BH2 FRET):

i21∨ i31∨ (i22∧ i73)∨ (i14∧ i33)∨ (i81∧ i22∧¬i42)∨ (i81∧ i92∧¬i42)∨ (i81∧ i72∧¬i42)∨

(i81∧ i32∧¬i42)∨(i81∧ i12∧¬i42)∨(i71∧ i92∧¬i42)∨(i71∧ i82∧¬i42)∨(i71∧ i32∧¬i42)∨

(i71∧ i22∧¬i42)∨ (i71∧ i12∧¬i42)

Formula A.3.2.5 Well 5.

RED (TAMRA-BH2 FRET):

i50

Formula A.3.2.6 Well 6.

GREEN (FLUORESCEIN-BH1 FRET):

i61∨ i62∨ i63∨ i64

RED (TAMRA-BH2 FRET):

i71∨ i81∨ (i73∧ i94)∨ (i33∧ i82)∨ (i21∧ i12∧¬i62)∨ (i21∧ i32∧¬i62)∨ (i21∧ i72∧¬i62)∨

(i21∧ i82∧¬i62)∨(i21∧ i92∧¬i62)∨(i31∧ i12∧¬i62)∨(i31∧ i22∧¬i62)∨(i31∧ i72∧¬i62)∨

(i31∧ i82∧¬i62)∨ (i31∧ i92∧¬i62)

Formula A.3.2.7 Well 7.

GREEN (FLUORESCEIN-BH1 FRET):

187

Appendix A. Deoxyribozyme Gate Catalog

i71∨ i72∨ i73∨ i74

RED (TAMRA-BH2 FRET):

(i22∧ i41)∨ (i62∧ i93)∨ (i13∧ i84)∨ (i82∧ i91)∨ (i22∧ i63∧¬i41)∨ (i22∧ i93∧¬i41)∨

(i22∧ i43∧¬i41)∨ (i82∧ i93∧¬i91)∨ (i82∧ i43∧¬i91)∨ (i82∧ i13∧¬i91)

Formula A.3.2.8 Well 8.

GREEN (FLUORESCEIN-BH1 FRET):

i81∨ i82∨ i83∨ i84

RED (TAMRA-BH2 FRET):

i11∨ i41∨ (i13∧ i74)∨ (i42∧ i93)∨ (i91∧ i72∧¬i82)∨ (i91∧ i62∧¬i82)∨ (i91∧ i42∧¬i82)∨

(i91∧ i32∧¬i82)∨(i91∧ i12∧¬i82)∨(i61∧ i92∧¬i82)∨(i61∧ i72∧¬i82)∨(i61∧ i42∧¬i82)∨

(i61∧ i32∧¬i82)∨ (i61∧ i12∧¬i82)

Formula A.3.2.9 Well 9.

GREEN (FLUORESCEIN-BH1 FRET):

i91∨ i92∨ i93∨ i94

RED (TAMRA-BH2 FRET):

(i64∧ i73)∨ (i22∧ i33)∨ (i31∧ i62)∨ (i42∧ i81)∨ (i62∧ i73∧¬i31)∨ (i62∧ i83∧¬i31)∨

(i62∧ i33∧¬i31)∨ (i42∧ i83∧¬i81)∨ (i42∧ i33∧¬i81)∨ (i42∧ i23∧¬i81)

A.3.3 Sensor Platform

For the H1N1 example, the following formulas are required. If we wanted further sensing

capability for additional pathogens we would first need to select a short human-readable

identifier, and then or together all single literals clauses where the display called for using

the same wells for the dot-matrix display. We add square brackets to the formulas to

distinguish the individual wells, and address each well in 2-D grid format where the bottom

188

Appendix A. Deoxyribozyme Gate Catalog

left well is located at (0,0), and the top right well is located at (23,15), using 0-based

numbering for the row and column positions of a 384-well plate respectively.

Formula A.3.3.1 H1N1

[ih1n1]3,6, [ih1n1]3,5, [ih1n1]3,4, [ih1n1]3,3, [ih1n1]3,2, [ih1n1]4,4, [ih1n1]5,4, [ih1n1]6,6

[ih1n1]6,5, [ih1n1]6,4, [ih1n1]6,3, [ih1n1]6,2, [ih1n1]8,6, [ih1n1]8,5, [ih1n1]8,4, [ih1n1]8,3

[ih1n1]8,2, [ih1n1]10,6, [ih1n1]10,5, [ih1n1]10,4, [ih1n1]10,3, [ih1n1]10,2, [ih1n1]11,5, [ih1n1]12,4

[ih1n1]13,3, [ih1n1]14,6, [ih1n1]14,5, [ih1n1]14,4, [ih1n1]14,3, [ih1n1]14,2, [ih1n1]16,6, [ih1n1]16,5

[ih1n1]16,4, [ih1n1]16,3, [ih1n1]16,2

189

Appendix B

Structure Shape and Binding Inference

Report

B.1 Inference report for multibranch structure.

The combined output from shape inference and binding characterization algorithms for

the 4-level multiply nested multibranch-stemloop-hairpin structure shown in Figure 3.5 is

the following.

structure is [(1,5,214),

(7,4,49),

(12,4,7),

(28,4,7),

(44,4,7),

(65,5,101),

(71,4,0),

190

Appendix B. Structure Shape and Binding Inference Report

(80,12,46),

(93,3,14),

(114,3,14),

(151,4,11),

(177,4,34),

(182,4,0),

(191,4,0),

(200,4,6)]

length is 225

bindings are [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 23, 24,

25, 26, 28, 29, 30, 31, 39, 40, 41, 42, 44, 45, 46, 47, 55, 56, 57,

58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77,

78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95,

110, 111, 112, 114, 115, 116, 131, 132, 133, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 166,

167, 168, 169, 171, 172, 173, 174, 175, 177, 178, 179, 180, 182,

183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196,

197, 198, 200, 201, 202, 203, 210, 211, 212, 213, 215, 216, 217,

218, 220, 221, 222, 223, 224]

partners are [(1, 224), (2, 223), (3, 222), (4, 221), (5, 220),

(7, 63), (8, 62), (9, 61), (10, 60), (12, 26), (13, 25), (14, 24),

(15, 23), (28, 42), (29, 41), (30, 40), (31, 39), (44, 58),

(45, 57), (46, 56), (47, 55), (65, 175), (66, 174), (67, 173),

(68, 172), (69, 171), (71, 78), (72, 77), (73, 76), (74, 75),

191

Appendix B. Structure Shape and Binding Inference Report

(80, 149), (81, 148), (82, 147), (83, 146), (84, 145), (85, 144),

(86, 143), (87, 142), (88, 141), (89, 140), (90, 139), (91, 138),

(93, 112), (94, 111), (95, 110), (114, 133), (115, 132),

(116, 131), (151, 169), (152, 168), (153, 167), (154, 166),

(177, 218), (178, 217), (179, 216), (180, 215), (182, 189),

(183, 188), (184, 187), (185, 186), (191, 198), (192, 197),

(193, 196), (194, 195), (200, 213), (201, 212), (202, 211),

(203, 210)]

base state is [(0, ’U’), (1, 224), (2, 223), (3, 222), (4, 221),

(5, 220), (6, ’U’), (7, 63), (8, 62), (9, 61), (10, 60), (11, ’U’),

(12, 26), (13, 25), (14, 24), (15, 23), (16, ’U’), (17, ’U’),

(18, ’U’), (19, ’U’), (20, ’U’), (21, ’U’), (22, ’U’), (23, 15),

(24, 14), (25, 13), (26, 12), (27, ’U’), (28, 42), (29, 41),

(30, 40), (31, 39), (32, ’U’), (33, ’U’), (34, ’U’), (35, ’U’),

(36, ’U’), (37, ’U’), (38, ’U’), (39, 31), (40, 30), (41, 29),

(42, 28), (43, ’U’), (44, 58), (45, 57), (46, 56), (47, 55),

(48, ’U’), (49, ’U’), (50, ’U’), (51, ’U’), (52, ’U’), (53, ’U’),

(54, ’U’), (55, 47), (56, 46), (57, 45), (58, 44), (59, ’U’),

(60, 10), (61, 9), (62, 8), (63, 7), (64, ’U’), (65, 175),

(66, 174), (67, 173), (68, 172), (69, 171), (70, ’U’), (71, 78),

(72, 77), (73, 76), (74, 75), (75, 74), (76, 73), (77, 72),

(78, 71), (79, ’U’), (80, 149), (81, 148), (82, 147), (83, 146),

(84, 145), (85, 144), (86, 143), (87, 142), (88, 141), (89, 140),

(90, 139), (91, 138), (92, ’U’), (93, 112), (94, 111), (95, 110),

(96, ’U’), (97, ’U’), (98, ’U’), (99, ’U’), (100, ’U’), (101, ’U’),

(102, ’U’), (103, ’U’), (104, ’U’), (105, ’U’), (106, ’U’),

192

Appendix B. Structure Shape and Binding Inference Report

(107, ’U’), (108, ’U’), (109, ’U’), (110, 95), (111, 94),

(112, 93), (113, ’U’), (114, 133), (115, 132), (116, 131),

(117, ’U’), (118, ’U’), (119, ’U’), (120, ’U’), (121, ’U’),

(122, ’U’), (123, ’U’), (124, ’U’), (125, ’U’), (126, ’U’),

(127, ’U’), (128, ’U’), (129, ’U’), (130, ’U’), (131, 116),

(132, 115), (133, 114), (134, ’U’), (135, ’U’), (136, ’U’),

(137, ’U’), (138, 91), (139, 90), (140, 89), (141, 88), (142, 87),

(143, 86), (144, 85), (145, 84), (146, 83), (147, 82), (148, 81),

(149, 80), (150, ’U’), (151, 169), (152, 168), (153, 167),

(154, 166), (155, ’U’), (156, ’U’), (157, ’U’), (158, ’U’),

(159, ’U’), (160, ’U’), (161, ’U’), (162, ’U’), (163, ’U’),

(164, ’U’), (165, ’U’), (166, 154), (167, 153), (168, 152),

(169, 151), (170, ’U’), (171, 69), (172, 68), (173, 67), (174, 66),

(175, 65), (176, ’U’), (177, 218), (178, 217), (179, 216),

(180, 215), (181, ’U’), (182, 189), (183, 188), (184, 187),

(185, 186), (186, 185), (187, 184), (188, 183), (189, 182),

(190, ’U’), (191, 198), (192, 197), (193, 196), (194, 195),

(195, 194), (196, 193), (197, 192), (198, 191), (199, ’U’),

(200, 213), (201, 212), (202, 211), (203, 210), (204, ’U’),

(205, ’U’), (206, ’U’), (207, ’U’), (208, ’U’), (209, ’U’),

(210, 203), (211, 202), (212, 201), (213, 200), (214, ’U’),

(215, 180), (216, 179), (217, 178), (218, 177), (219, ’U’),

(220, 5), (221, 4), (222, 3), (223, 2), (224, 1)]

unbound is [0, 6, 11, 16, 17, 18, 19, 20, 21, 22, 27, 32, 33, 34,

35, 36, 37, 38, 43, 48, 49, 50, 51, 52, 53, 54, 59, 64, 70, 79, 92,

96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

193

Appendix B. Structure Shape and Binding Inference Report

113, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,

129, 130, 134, 135, 136, 137, 150, 155, 156, 157, 158, 159, 160,

161, 162, 163, 164, 165, 170, 176, 181, 190, 199, 204, 205, 206,

207, 208, 209, 214, 219]

hairpin triples are [[(71, 4, 0)], [(182, 4, 0)], [(191, 4, 0)]]

hairpin stem lengths are [[4], [4], [4]]

hairpin stem addresses are [[71], [182], [191]]

stemloop triples are

[[(12, 4, 7)], [(28, 4, 7)], [(44, 4, 7)], [(93, 3, 14)],

[(114, 3, 14)], [(151, 4, 11)], [(200, 4, 6)]]

stemloop stem lengths are

[[4], [4], [4], [3], [3], [4], [4]]

stemloop stem addresses are

[[12], [28], [44], [93], [114], [151], [200]]

stemloop loop counts are

[[7], [7], [7], [14], [14], [11], [6]]

bulge triples are []

bulge stem lengths are []

bulge stem addresses are []

bulge loop counts are []

internalloop triples are []

internalloop stem lengths are []

internalloop stem addresses are []

194

Appendix B. Structure Shape and Binding Inference Report

internalloop loop counts are []

multibranch triples are

[[(1, 5, 214), (7, 4, 49), (65, 5, 101), (177, 4, 34)],

[(7, 4, 49), (12, 4, 7), (28, 4, 7), (44, 4, 7)],

[(65, 5, 101), (71, 4, 0), (80, 12, 46), (151, 4, 11)],

[(80, 12, 46), (93, 3, 14), (114, 3, 14)],

[(177, 4, 34), (182, 4, 0), (191, 4, 0), (200, 4, 6)]]

multibranch stem lengths are

[[5, 4, 5, 4], [4, 4, 4, 4], [5, 4, 12, 4], [12, 3, 3],

[4, 4, 4, 4]]

multibranch stem addresses are

[[1, 7, 65, 177], [7, 12, 28, 44], [65, 71, 80, 151],

[80, 93, 114], [177, 182, 191, 200]]

multibranch loop counts are

[4, 4, 4, 6, 4]

parent-child relationships are

reported from parent perspective (my child triples are these)

[[1, 5, 11], [2, 3, 4], [], [], [], [6, 7, 10], [], [8, 9], [], [],

[], [12, 13, 14], [], [], []]

report from the child perspective (my parent is this)

[-1, 0, 1, 1, 1, 0, 5, 5, 7, 7, 5, 0, 11, 11, 11]

195

Appendix C

Four Layer Cascade DNADL File

C.1 Four Layer Cascade DDL File

/* 4 Layer Cascade */

LEVEL 1

ADDRESS

potMAIN;

potPREPZYME;

potPREPSCS;

PROGRAM

program_4layer

1: (potMAIN, (E2 ^ SCS2) -> ACT2);

2: (potMAIN, (E3 ^ SCS3) -> ACT3);

3: (potMAIN, (E4 ^ SCS4) -> ACT4);

4: (potMAIN, (E1INH ^ ACT2) -> E1);

5: (potMAIN, (E2INH ^ ACT3) -> E2);

196

Appendix C. Four Layer Cascade DNADL File

6: (potMAIN, (E3INH ^ ACT4) -> E3);

7: (potMAIN, SCS2);

9: (potMAIN, SCS4);

10: (potMAIN, E1INH);

11: (potMAIN, E2INH);

12: (potMAIN, E3INH);

13: (potMAIN, E4);

14: (potMAIN, ACT4); /* by 3, 9, 13, modus ponens */

15: (potMAIN, E3); /* by 6, 12, 14, modus ponens */

16: (potMAIN, ACT3); /* by 2, 8, 15, modus ponens */

17: (potMAIN, E2); /* by 5, 11, 16, modus ponens */

18: (potMAIN, ACT2); /* by 1, 7, 17, modus ponens */

19: (potMAIN, E1); /* by 4, 10, 18, modus ponens */

LEVEL 2

ENTRY

enDNAZYME1 = (potPREPZYME,strDNAZYME1UNFOLDED,100);

enDNAZYME2 = (potPREPZYME,strDNAZYME2UNFOLDED,100);

enDNAZYME3 = (potPREPZYME,strDNAZYME3UNFOLDED,100);

enINH1 = (potPREPZYME,strINH1,125);

enINH2 = (potPREPZYME,strINH2,125);

enINH3 = (potPREPZYME,strINH3,125);

enSCS2 = (potPREPSCS,strSCS2UNFOLDED,100);

enSCS3 = (potPREPSCS,strSCS3UNFOLDED,100);

enSCS4 = (potPREPSCS,strSCS4UNFOLDED,100);

enZYME1INH1 = (potMAIN,strDNAZYME1INH1,100);

enZYME2INH2 = (potMAIN,strDNAZYME2INH2,100);

enZYME3INH3 = (potMAIN,strDNAZYME3INH3,100);

enSCS2FOLDED = (potMAIN,strSCS2FOLDED,100);

enSCS3FOLDED = (potMAIN,strSCS3FOLDED,100);

enSCS4FOLDED = (potMAIN,strSCS4FOLDED,100);

enDNAZYME4 = (potMAIN,strDNAZYME4,100);

enSUBSTRATE1 = (potMAIN,strSUBSTRATE1,250);

197

Appendix C. Four Layer Cascade DNADL File

SIGNAL

visualgreen = (potMAIN, green);

TRANSITION

tzymeinh1 = (potPREPZYME,strDNAZYME1,strINH1,strDNAZYME1INH1,bind);

tzymeinh2 = (potPREPZYME,strDNAZYME2,strINH2,strDNAZYME2INH2,bind);

tzymeinh3 = (potPREPZYME,strDNAZYME3,strINH3,strDNAZYME3INH3,bind);

tscs2 = (potPREPSCS,strSCS2UNFOLDED,strSCS2FOLDED,fold);

tscs3 = (potPREPSCS,strSCS3UNFOLDED,strSCS3FOLDED,fold);

tscs4 = (potPREPSCS,strSCS4UNFOLDED,strSCS4FOLDED,fold);

tzyme2scs2stage1 =

(potMAIN,strDNAZYME2,strSCS2FOLDED,strDNAZYME2SCS2.stage1,bind);

tzyme2scs2stage2 =

(potMAIN,strDNAZYME2SCS2.stage1,strDNAZYME2SCS2.stage2,bind);

tzyme2scs2split =

(potMAIN,strDNAZYME2SCS2.stage2,strZYME2WASTE2,strACT2FOLDED,cleave);

tzyme2recovery =

(potMAIN,strZYME2WASTE2,strDNAZYME2,strWASTE2,unbind);

tzyme3scs3stage1 =

(potMAIN,strDNAZYME3,strSCS3FOLDED,strDNAZYME3SCS3.stage1,bind);

tzyme3scs3stage2 =

(potMAIN,strDNAZYME3SCS3.stage1,strDNAZYME3SCS3.stage2,bind);

tzyme3scs3split =

(potMAIN,strDNAZYME3SCS3.stage2,strZYME3WASTE3,strACT3FOLDED,cleave);

tzyme3recovery =

(potMAIN,strZYME3WASTE3,strDNAZYME3,strWASTE3,unbind);

tzyme4scs4stage1 =

(potMAIN,strDNAZYME4,strSCS4FOLDED,strDNAZYME4SCS4.stage1,bind);

tzyme4scs4stage2 =

(potMAIN,strDNAZYME4SCS4.stage1,strDNAZYME4SCS4.stage2,bind);

tzyme4scs4split =

(potMAIN,strDNAZYME4SCS4.stage2,strZYME4WASTE4,strACT4FOLDED,cleave);

tzyme4recovery =

(potMAIN,strZYME4WASTE4,strDNAZYME4,strWASTE4,unbind);

198

Appendix C. Four Layer Cascade DNADL File

treformact2 =

(potMAIN,strACT2FOLDED,strACT2UNFOLDED,fold);

treleasezyme1 =

(potMAIN,strDNAZYME1INH1,strACT2UNFOLDED,strDNAZYME1UNFOLDED,

strACT2INH1,exchange);

treformact3 = (potMAIN,strACT3FOLDED,strACT3UNFOLDED,fold);

treleasezyme2 =

(potMAIN,strDNAZYME2INH2,strACT3UNFOLDED,strDNAZYME2UNFOLDED,

strACT3INH2,exchange);

treformact4 = (potMAIN,strACT4FOLDED,strACT4UNFOLDED,fold);

treleasezyme3 =

(potMAIN,strDNAZYME3INH3,strACT4UNFOLDED,strDNAZYME3UNFOLDED,

strACT4INH3,exchange);

tactive1 = (potMAIN,strDNAZYME1UNFOLDED,strDNAZYME1,fold);

tactive2 = (potMAIN,strDNAZYME2UNFOLDED,strDNAZYME2,fold);

tactive3 = (potMAIN,strDNAZYME3UNFOLDED,strDNAZYME3,fold);

tzyme1substrate1 = (potMAIN,strDNAZYME1,strSUBSTRATE1,

strDNAZYME1SUBSTRATE1,bind);

EXECUTIONMECHANISM

layer2releaseactivator = [tzyme2scs2stage1, tzyme2scs2stage2,

tzyme2scs2split, tzyme2recovery];

layer3releaseactivator = [tzyme3scs3stage1, tzyme3scs3stage2,

tzyme3scs3split, tzyme3recovery];

layer4releaseactivator = [tzyme4scs4stage1, tzyme4scs4stage2,

tzyme4scs4split, tzyme4recovery];

layer2releasegate = [treformact2,treleasesyme1,tactive1];

layer3releasegate = [treformact3,treleasezyme2,tactive2];

layer4releasegate = [treformact4,treleasezyme3,tactive3];

layer1signal = [tzyme1substrate1];

EVENTSTREAM

annealSCS

199

Appendix C. Four Layer Cascade DNADL File

1: <enSCS2,enSCS3,enSCS4>;

2: <tscs2,tscs3,tscs4>;

annealDNAZYMES

1: <enDNAZYME1,enDNAZYME2,enDNAZYME3>;

2: <enINH1,enINH2,enINH3>;

3: <tzymeinh1,tzymeinh2,tzymeinh3>;

execCASCADE

1: <enZYME1INH1,enZYME2INH2,enZYME2INH3>;

2: <enSCS2FOLDED,enSCS3FOLDED,enSCS4FOLDED>;

3: enDNAZYME4;

4: layer4releaseactivator;

5: layer4activategate;

6: layer3releaseactivator;

7: layer3activategate;

8: layer2releaseactivator;

9: layer2activategate;

10: enSUBSTRATE1;

11: layer1signal;

12: visualgreen;

LEVEL 3

FLUOROPHORE

FAM;

QUENCHER

TAMRA;

LENGTH

lengthSCS2 = 47;

lengthSCS3 = 46;

lengthSCS4 = 46;

lengthINH = 23;

lengthDNAZYME = 31;

lengthACT = 36;

lengthWASTE2 = 11;

200

Appendix C. Four Layer Cascade DNADL File

lengthWASTE3 = 10;

lengthWASTE4 = 10;

lengthSUBSTRATE1 = 20;

ISO

structSUBSTRATE = [];

structSCS2 = [(0,7,28),(7,7,8)];

structSCS3 = [(0,7,28),(7,6,10)];

structSCS4 = [(0,7,28),(7,6,10)];

structDNAZYME1ACTIVE = [(10,3,5)];

structDNAZYME2ACTIVE = [(10,3,5)];

structDNAZYME3ACTIVE = [(10,3,5)];

SEQUENCE

seqSUBSTRATE1 = TCTTAGTTAGGATAGTTCAT;

seqSCS2 = CGCCCTAATCTTAGGTCGAAAACTAAGATACATACTAGGGCGTGATG;

seqSCS3 = GCCGCTAATACATGGTCGAAAGTATGTATCCCCTGTAGCGGCATGT;

seqSCS4 = CGCGCTATTCCCCGGTCGAAACAGGGGAACTTCTGTAGCGCGACAG;

seqINH1 = ATGTATCTTAGTTTTCGACCGGC;

seqINH2 = GGGGATACATACTTTCGACCGGC;

seqINH3 = GAAGTTCCCCTGTTTCGACCGGC;

seqDNAZYME1 = GAACTATCTCCGAGCCGGTCGAAAACTAAGA;

seqDNAZYME2 = ATCACGCCTCCGAGCCGGTCGAAAGTATGTA;

seqDNAZYME3 = ACATGCCGTCCGAGCCGGTCGAAACAGGGGA;

seqDNAZYME4 = CTGTCGCGTCCGAGCCGGTCGAAACAGAAGT;

seqACT2 = CGCCCTAATCTTAGGTCGAAAACTAAGATACATACT;

seqACT3 = GCCGCTAATACATGGTCGAAAGTATGTATCCCCTGT;

seqACT4 = CGCGCTATTCCCCGGTCGAAACAGGGGAACTTCTGT;

seqWASTE2 = AGGGCGTGATG;

seqWASTE3 = AGCGGCATGT;

seqWASTE4 = AGCGCGACAG;

201

Appendix C. Four Layer Cascade DNADL File

seqZYME2 = ATCACGCCTCCGAGCCGGTCGAAAGTATGTA;

seqZYME3 = ACATGCCGTCCGAGCCGGTCGAAACAGGGGA;

seqZYME4 = CTGTCGCGTCCGAGCCGGTCGAAACAGAAGT;

STRAND

strDNAZYME1 = (seqDNAZYME1,[(10,3,5)],lengthDNAZYME);

strDNAZYME2 = (seqDNAZYME2,[(10,3,5)],lengthDNAZYME);

strDNAZYME3 = (seqDNAZYME3,[(10,3,5)],lengthDNAZYME);

strDNAZYME4 = (seqDNAZYME4,[(10,3,5)],lengthDNAZYME);

strDNAZYME1UNFOLDED = (seqDNAZYME1,[],lengthDNAZYME);

strDNAZYME2UNFOLDED = (seqDNAZYME2,[],lengthDNAZYME);

strDNAZYME3UNFOLDED = (seqDNAZYME3,[],lengthDNAZYME);

strINH1 = (seqINH1,[],lengthINH);

strINH2 = (seqINH2,[],lengthINH);

strINH3 = (seqINH3,[],lengthINH);

strSCS2UNFOLDED = (seqSCS2,[],lengthSCS2);

strSCS3UNFOLDED = (seqSCS3,[],lengthSCS3);

strSCS4UNFOLDED = (seqSCS4,[],lengthSCS4);

strSCS2FOLDED = (seqSCS2,structSCS2,lengthSCS2);

strSCS3FOLDED = (seqSCS3,structSCS3,lengthSCS3);

strSCS4FOLDED = (seqSCS4,structSCS4,lengthSCS4);

strDNAZYME1INH1 = (seqDNAZYME1-seqINH1,

[(13,18,5)],lengthDNAZYME1+lengthINH1);

strDNAZYME2INH2 = (seqDNAZYME2-seqINH2,

[(13,18,5)],lengthDNAZYME2+lengthINH2);

strDNAZYME3INH3 = (seqDNAZYME3-seqINH3,

[(13,18,5)],lengthDNAZYME3+lengthINH3);

strDNAZYME2SCS2.stage1 = (seqDNAZYME2-seqSCS2,

[(0,8,61)],lengthDNAZYME+lengthSCS2);

strDNAZYME2SCS2.stage2 = (seqDNAZYME2-seqSCS2,

[(0,8,61),(23,7,30),(38,7,8)],lengthDNAZYME+lengthSCS2);

strDNAZYME2SCS2.stage3 = (seqDNAZYME2-seqACT2-seqWASTE2,

[(0,8,61),(23,7,30),(38,7,8)],lengthDNAZYME+lengthACT);

strZYME2WASTE2 = (seqZYME2-seqWASTE2,

202

Appendix C. Four Layer Cascade DNADL File

[(0,8,25)],lengthDNAZYME+lengthWASTE2);

strDNAZYME3SCS3.stage1 = (seqDNAZYME3-seqSCS3,

[(0,8,61)],lengthDNAZYME+lengthSCS3);

strDNAZYME3SCS3.stage2 = (seqDNAZYME3-seqSCS3,

[(0,8,61),(23,7,30),(38,7,8)],lengthDNAZYME+lengthSCS3);

strDNAZYME3SCS3.stage3 = (seqDNAZYME3-seqACT3-seqWASTE3,

[(0,8,61),(23,7,30),(38,7,8)],lengthDNAZYME+lengthACT);

strZYME3WASTE3 = (seqZYME3-seqWASTE3,

[(0,8,25)],lengthDNAZYME+lengthWASTE3);

strDNAZYME4SCS4.stage1 = (seqDNAZYME4-seqSCS4,

[(0,8,61)],lengthDNAZYME+lengthSCS4);

strDNAZYME4SCS4.stage2 = (seqDNAZYME4-seqSCS4,

[(0,8,61),(23,7,30),(38,6,10)],lengthDNAZYME+lengthSCS4);

strDNAZYME4SCS4.stage3 = (seqDNAZYME4-seqACT-seqWASTE4,

[(0,8,61),(23,7,30),(38,6,10)],lengthDNAZYME+lengthACT);

strZYME4WASTE4 = (seqZYME4-seqWASTE4,

[(0,8,25)],lengthDNAZYME+lengthWASTE4);

strACT2FOLDED = (seqACT2,[(7,7,8)],lengthACT);

strACT3FOLDED = (seqACT3,[(7,7,8)],lengthACT);

strACT4FOLDED = (seqACT4,[(7,6,10)],lengthACT);

strACT2UNFOLDED = (seqACT2,[],lengthACT);

strACT3UNFOLDED = (seqACT3,[],lengthACT);

strACT4UNFOLDED = (seqACT4,[],lengthACT);

strACT2INH1 = (seqACT2-seqINH1,[(13,20,3)],lengthACT+lengthINH);

strACT3INH2 = (seqACT3-seqINH2,[(13,20,3)],lengthACT+lengthINH);

strACT4INH3 = (seqACT4-seqINH3,[(11,22,3)],lengthACT+lengthINH);

strSUBSTRATE1 = (FAM-seqSUBSTRATE1-TAM,[],lengthSUBSTRATE1);

strDNAZYME1SUBSTRATE1 = (seqDNAZYME1-seqSUBSTRATE1,

[(0,8,33),(23,8,0)],lengthDNAZYME+lengthSUBSTRATE1);

PHYSICALMAP

mapCASCADE

with program_4layer

203

Appendix C. Four Layer Cascade DNADL File

1 <-> layer2releaseactivator; /* (E2 ^ SCS2) -> ACT2 */

2 <-> layer3releaseactivator; /* (E3 ^ SCS3) -> ACT3 */

3 <-> layer4releaseactivator; /* (E4 ^ SCS4) -> ACT4 */

4 <-> layer2releasegate; /* (E1INH ^ ACT2) -> E1 */

5 <-> layer3releasegate; /* (E2INH ^ ACT3) -> E2 */

6 <-> layer4releasegate; /* (E3INH ^ ACT4) -> E3 */

7 <-> enSCS2; /* SCS2 */

8 <-> enSCS3; /* SCS3 */

9 <-> enSCS3; /* SCS4 */

10 <-> enZYME1INH1; /* E1INH */

11 <-> enZYME2INH2; /* E2INH */

12 <-> enZYME3INH3; /* E3INH */

13 <-> enDNAZYME4; /* E4 */

14 <-> strACT4FOLDED; /* ACT4 */

15 <-> strDNAZYME3; /* E3 */

16 <-> strACT3FOLDED; /* ACT3 */

17 <-> strDNAZYME2; /* E2 */

18 <-> strACT2FOLDED; /* ACT2 */

19 <-> strDNAZYME1; /* E1 */

204

Appendix C. Four Layer Cascade DNADL File

C.2 Four Layer Cascade Diagrams

a

b

Time (hours)

F
lu

o
re

sc
en

ce

0 1 2

On

Off

0

100

200

300

400

500 2 layer
3 layer
4 layer

Q

F

4th layer reactions:

QF

3rd layer reactions: 2nd layer reactions: 1st layer reactions:
Inactive DNAzyme

Act4
+Waste

SCS4

Active DNAzyme

+Waste +Waste
Act3SCS3

Act2
Reporter
substrateSCS2

Signal
Inactive DNAzymeActive DNAzyme Inactive DNAzymeActive DNAzyme Active DNAzyme

Figure C.1: The four layers of the cascade were linked using the Structured Chimeric
Molecule (SCS) to enable layer-to-layer signal propagation. Each layer contained an in-
activated deoxyribozyme-based gate designed to respond to an output product oligonu-
cleotide from the preceding layer. The final layer used FRET signaling.

Figure C.2: The multi-step mechanism of the SCS and the deoxyribozyme gate encom-
passed structural conformation changes and critical binding events.

205

Appendix C. Four Layer Cascade DNADL File

C.3 Maya II DDL File

/* MAYA 2 Level 1 Description */

/* indexing scheme prefix+address+number */

/* first formula is prefix = p, i=1, j=0: p10 */

/* second formula is prefix = p, i=1, j=1: p11 */

/* ... */

/* last formula is prefix = p, i=9, j=13: p913 */

LEVEL 1

ADDRESS

a1 = (ROW 10, COL 11); a2 = (ROW 10, COL 12); a3 = (ROW 10, COL 13);

a4 = (ROW 10, COL 14); a6 = (ROW 10, COL 16); a7 = (ROW 10, COL 17);

a8 = (ROW 10, COL 18); a9 = (ROW 10, COL 19);

PREMISS

with a1formulas

p10 = (a1, I11);

p11 = (a1, I12);

p12 = (a1, I13);

p13 = (a1, I14);

p14 = (a1, I21 ^ I62);

p15 = (a1, I33 ^ I44);

p16 = (a1, I73 ^ I82);

p17 = (a1, I42 ^ I71);

p18 = (a1, I62 ^ I73 ^ neg I21);

p19 = (a1, I62 ^ I83 ^ neg I21);

p110 = (a1, I62 ^ I23 ^ neg I21);

p111 = (a1, I42 ^ I73 ^ neg I71);

p112 = (a1, I42 ^ I33 ^ neg I71);

p113 = (a1, I42 ^ I23 ^ neg I71);

206

Appendix C. Four Layer Cascade DNADL File

with a2formulas

p20 = (a2, I21);

p21 = (a2, I22);

p22 = (a2, I23);

p23 = (a2, I24);

p24 = (a2, I61);

p25 = (a2, I91);

p26 = (a2, I13 ^ I62);

p27 = (a2, I93 ^ I34);

p28 = (a2, I11 ^ I32 ^ neg I22);

p29 = (a2, I11 ^ I42 ^ neg I22);

p210 = (a2, I11 ^ I62 ^ neg I22);

p211 = (a2, I11 ^ I72 ^ neg I22);

p212 = (a2, I11 ^ I92 ^ neg I22);

p213 = (a2, I41 ^ I12 ^ neg I22);

p214 = (a2, I41 ^ I32 ^ neg I22);

p215 = (a2, I41 ^ I62 ^ neg I22);

p216 = (a2, I41 ^ I72 ^ neg I22);

p217 = (a2, I41 ^ I92 ^ neg I22);

with a3formulas

p30 = (a3, I31);

p31 = (a3, I32);

p32 = (a3, I33);

p33 = (a3, I34);

p34 = (a3, I11 ^ I22);

p35 = (a3, I61 ^ I82);

p36 = (a3, I42 ^ I13);

p37 = (a3, I93 ^ I24);

p38 = (a3, I22 ^ I63 ^ neg I11);

p39 = (a3, I22 ^ I93 ^ neg I11);

p310 = (a3, I22 ^ I13 ^ neg I11);

p311 = (a3, I82 ^ I63 ^ neg I61);

p312 = (a3, I82 ^ I43 ^ neg I61);

p313 = (a3, I82 ^ I13 ^ neg I61);

with a4formulas

p40 = (a4, I41);

p41 = (a4, I42);

207

Appendix C. Four Layer Cascade DNADL File

p42 = (a4, I43);

p43 = (a4, I44);

p44 = (a4, I21);

p45 = (a4, I31);

p46 = (a4, I22 ^ I73);

p47 = (a4, I33 ^ I14);

p48 = (a4, I81 ^ I22 ^ neg I42);

p49 = (a4, I81 ^ I92 ^ neg I42);

p410 = (a4, I81 ^ I72 ^ neg I42);

p411 = (a4, I81 ^ I32 ^ neg I42);

p412 = (a4, I81 ^ I12 ^ neg I42);

p413 = (a4, I71 ^ I92 ^ neg I42);

p414 = (a4, I71 ^ I82 ^ neg I42);

p415 = (a4, I71 ^ I32 ^ neg I42);

p416 = (a4, I71 ^ I22 ^ neg I42);

p417 = (a4, I71 ^ I12 ^ neg I42);

with a6formulas

p60 = (a6, I61);

p61 = (a6, I62);

p62 = (a6, I63);

p63 = (a6, I64);

p64 = (a6, I71);

p65 = (a6, I81);

p66 = (a6, I73 ^ I94);

p67 = (a6, I82 ^ I33);

p68 = (a6, I21 ^ I12 ^ neg I62);

p69 = (a6, I21 ^ I32 ^ neg I62);

p610 = (a6, I21 ^ I72 ^ neg I62);

p611 = (a6, I21 ^ I82 ^ neg I62);

p612 = (a6, I21 ^ I92 ^ neg I62);

p613 = (a6, I31 ^ I12 ^ neg I62);

p614 = (a6, I31 ^ I22 ^ neg I62);

p615 = (a6, I31 ^ I72 ^ neg I62);

p616 = (a6, I31 ^ I82 ^ neg I62);

p617 = (a6, I31 ^ I92 ^ neg I62);

with a7formulas

p70 = (a7, I71);

208

Appendix C. Four Layer Cascade DNADL File

p71 = (a7, I72);

p72 = (a7, I73);

p73 = (a7, I74);

p74 = (a7, I41 ^ I22);

p75 = (a7, I62 ^ I93);

p76 = (a7, I13 ^ I84);

p77 = (a7, I91 ^ I82);

p78 = (a7, I22 ^ I63 ^ neg I41);

p79 = (a7, I22 ^ I93 ^ neg I41);

p710 = (a7, I22 ^ I43 ^ neg I41);

p711 = (a7, I82 ^ I93 ^ neg I91);

p712 = (a7, I82 ^ I43 ^ neg I91);

p713 = (a7, I82 ^ I13 ^ neg I91);

with a8formulas

p80 = (a8, I81);

p81 = (a8, I82);

p82 = (a8, I83);

p83 = (a8, I84);

p84 = (a8, I11);

p85 = (a8, I41);

p86 = (a8, I13 ^ I74);

p87 = (a8, I42 ^ I93);

p88 = (a8, I91 ^ I72 ^ neg I82);

p89 = (a8, I91 ^ I62 ^ neg I82);

p810 = (a8, I91 ^ I42 ^ neg I82);

p811 = (a8, I91 ^ I32 ^ neg I82);

p812 = (a8, I91 ^ I12 ^ neg I82);

p813 = (a8, I61 ^ I92 ^ neg I82);

p814 = (a8, I61 ^ I72 ^ neg I82);

p815 = (a8, I61 ^ I42 ^ neg I82);

p816 = (a8, I61 ^ I32 ^ neg I82);

p817 = (a8, I61 ^ I12 ^ neg I82);

with a9formulas

p90 = (a9, I91);

p91 = (a9, I92);

p92 = (a9, I93);

p93 = (a9, I94);

209

Appendix C. Four Layer Cascade DNADL File

p94 = (a9, I73 ^ I64);

p95 = (a9, I22 ^ I33);

p96 = (a9, I31 ^ I62);

p97 = (a9, I81 ^ I42);

p98 = (a9, I62 ^ I73 ^ neg I31);

p99 = (a9, I62 ^ I83 ^ neg I31);

p910 = (a9, I62 ^ I33 ^ neg I31);

p911 = (a9, I42 ^ I83 ^ neg I81);

p912 = (a9, I42 ^ I33 ^ neg I81);

p913 = (a9, I42 ^ I23 ^ neg I81);

with board

a1formulas;

a2formulas;

a3formulas;

a4formulas;

a6formulas;

a7formulas;

a8formulas;

a9formulas;

with i1

with gameC1, gameC2, gameC3, gameC4, gameC5,

gameC11, gameC12, gameC13, gameC18, gameC19

input1 = (a1, I11);

input2 = (a2, I11);

input3 = (a3, I11);

input4 = (a4, I11);

input6 = (a6, I11);

input7 = (a7, I11);

input8 = (a8, I11);

input9 = (a9, I11);

with i1

with gameD1, gameD2, gameD3, gameD4, gameD5,

gameD11, gameD12, gameD13, gameD14

input1 = (a1, I21);

input2 = (a2, I21);

210

Appendix C. Four Layer Cascade DNADL File

input3 = (a3, I21);

input4 = (a4, I21);

input6 = (a6, I21);

input7 = (a7, I21);

input8 = (a8, I21);

input9 = (a9, I21);

with i1

with gameD6, gameD7, gameD8, gameD9, gameD10,

gameD15, gameD16, gameD17, gameD18, gameD19

input1 = (a1, I31);

input2 = (a2, I31);

input3 = (a3, I31);

input4 = (a4, I31);

input6 = (a6, I31);

input7 = (a7, I31);

input8 = (a8, I31);

input9 = (a9, I31);

with i1

with gameC6, gameC7, gameC8, gameC9, gameC10,

gameC14, gameC15, gameC16, gameC17

input1 = (a1, I41);

input2 = (a2, I41);

input3 = (a3, I41);

input4 = (a4, I41);

input6 = (a6, I41);

input7 = (a7, I41);

input8 = (a8, I41);

input9 = (a9, I41);

with i1

with gameA1, gameA2, gameA3, gameA4, gameA5,

gameA11, gameA12, gameA13, gameA14

input1 = (a1, I61);

input2 = (a2, I61);

input3 = (a3, I61);

input4 = (a4, I61);

211

Appendix C. Four Layer Cascade DNADL File

input6 = (a6, I61);

input7 = (a7, I61);

input8 = (a8, I61);

input9 = (a9, I61);

with i1

with gameB6, gameB7, gameB8, gameB9, gameB10,

gameB16, gameB17, gameB18, gameB19

input1 = (a1, I71);

input2 = (a2, I71);

input3 = (a3, I71);

input4 = (a4, I71);

input6 = (a6, I71);

input7 = (a7, I71);

input8 = (a8, I71);

input9 = (a9, I71);

with i1

with gameB1, gameB2, gameB3, gameB4, gameB5,

gameB11, gameB12, gameB13, gameB14, gameB15

input1 = (a1, I81);

input2 = (a2, I81);

input3 = (a3, I81);

input4 = (a4, I81);

input6 = (a6, I81);

input7 = (a7, I81);

input8 = (a8, I81);

input9 = (a9, I81);

with i1

with gameA6, gameA7, gameA8, gameA9, gameA10,

gameA15, gameA16, gameA17, gameA18, gameA19

input1 = (a1, I91);

input2 = (a2, I91);

input3 = (a3, I91);

input4 = (a4, I91);

input6 = (a6, I91);

input7 = (a7, I91);

212

Appendix C. Four Layer Cascade DNADL File

input8 = (a8, I91);

input9 = (a9, I91);

with i2

with gameA1, gameA6, gameB1, gameB6, gameC6,

gameD1, gameD6

input1 = (a1, I12);

input2 = (a2, I12);

input3 = (a3, I12);

input4 = (a4, I12);

input6 = (a6, I12);

input7 = (a7, I12);

input8 = (a8, I12);

input9 = (a9, I12);

with i2

with gameB2, gameB7, gameC11, gameC12, gameC13, gameC14,

gameC15, gameC16, gameC17, gameC18, gameC19, gameD7

input1 = (a1, I22);

input2 = (a2, I22);

input3 = (a3, I22);

input4 = (a4, I22);

input6 = (a6, I22);

input7 = (a7, I22);

input8 = (a8, I22);

input9 = (a9, I22);

with i2

with gameA2, gameA7, gameB3, gameB8, gameC1,

gameC7, gameD2

input1 = (a1, I32);

input2 = (a2, I32);

input3 = (a3, I32);

input4 = (a4, I32);

input6 = (a6, I32);

input7 = (a7, I32);

input8 = (a8, I32);

input9 = (a9, I32);

213

Appendix C. Four Layer Cascade DNADL File

with i2

with gameA3, gameA8, gameB11, gameB12, gameB13, gameB14,

gameB15, gameB16, gameB17, gameB18, gameB19, gameC2

input1 = (a1, I42);

input2 = (a2, I42);

input3 = (a3, I42);

input4 = (a4, I42);

input6 = (a6, I42);

input7 = (a7, I42);

input8 = (a8, I42);

input9 = (a9, I42);

with i2

with gameA9, gameC3, gameC8, gameD11, gameD12, gameD13,

gameD14, gameD15, gameD16, gameD17, gameD18, gameD19

input1 = (a1, I62);

input2 = (a2, I62);

input3 = (a3, I62);

input4 = (a4, I62);

input6 = (a6, I62);

input7 = (a7, I62);

input8 = (a8, I62);

input9 = (a9, I62);

with i2

with gameA4, gameA10, gameB4, gameC4, gameC9,

gameD3, gameD8

input1 = (a1, I72);

input2 = (a2, I72);

input3 = (a3, I72);

input4 = (a4, I72);

input6 = (a6, I72);

input7 = (a7, I72);

input8 = (a8, I72);

input9 = (a9, I72);

214

Appendix C. Four Layer Cascade DNADL File

with i2

with gameA11, gameA12, gameA13, gameA14, gameA15, gameA16,

gameA17, gameA18, gameA19, gameB9, gameD4, gameD9

input1 = (a1, I82);

input1 = (a2, I82);

input1 = (a3, I82);

input1 = (a4, I82);

input1 = (a6, I82);

input1 = (a7, I82);

input1 = (a8, I82);

input1 = (a9, I82);

with i2

with gameA5, gameB5, gameB10, gameC5, gameC10,

gameD5, gameD10

input1 = (a1, I92);

input1 = (a2, I92);

input1 = (a3, I92);

input1 = (a4, I92);

input1 = (a6, I92);

input1 = (a7, I92);

input1 = (a8, I92);

input1 = (a9, I92);

with i3

with gameA11, gameA15, gameB14, gameC14, gameD18, gameD19

input1 = (a1, I13);

input2 = (a2, I13);

input3 = (a3, I13);

input4 = (a4, I13);

input6 = (a6, I13);

input7 = (a7, I13);

input8 = (a8, I13);

input9 = (a9, I13);

with i3

with gameB11, gameB15, gameD15

input1 = (a1, I23);

215

Appendix C. Four Layer Cascade DNADL File

input2 = (a2, I23);

input3 = (a3, I23);

input4 = (a4, I23);

input6 = (a6, I23);

input7 = (a7, I23);

input8 = (a8, I23);

input9 = (a9, I23);

with i3

with gameA18, gameA19, gameB12, gameB16, gameC15, gameD11

input1 = (a1, I33);

input2 = (a2, I33);

input3 = (a3, I33);

input4 = (a4, I33);

input6 = (a6, I33);

input7 = (a7, I33);

input8 = (a8, I33);

input9 = (a9, I33);

with i3

with gameA12, gameA16, gameC11

input1 = (a1, I43);

input2 = (a2, I43);

input3 = (a3, I43);

input4 = (a4, I43);

input6 = (a6, I43);

input7 = (a7, I43);

input8 = (a8, I43);

input9 = (a9, I43);

with i3

with gameA17, gameC12, gameC16

input1 = (a1, I63);

input2 = (a2, I63);

input3 = (a3, I63);

input4 = (a4, I63);

input6 = (a6, I63);

input7 = (a7, I63);

216

Appendix C. Four Layer Cascade DNADL File

input8 = (a8, I63);

input9 = (a9, I63);

with i3

with gameA13, gameB13, gameC18, gameC19, gameD12, gameD16

input1 = (a1, I73);

input2 = (a2, I73);

input3 = (a3, I73);

input4 = (a4, I73);

input6 = (a6, I73);

input7 = (a7, I73);

input8 = (a8, I73);

input9 = (a9, I73);

with i3

with gameB17, gameD13, gameD17

input1 = (a1, I83);

input2 = (a2, I83);

input3 = (a3, I83);

input4 = (a4, I83);

input6 = (a6, I83);

input7 = (a7, I83);

input8 = (a8, I83);

input9 = (a9, I83);

with i3

with gameA14, gameB18, gameB19, gameC13, gameC17, gameD14

input1 = (a1, I93);

input2 = (a2, I93);

input3 = (a3, I93);

input4 = (a4, I93);

input6 = (a6, I93);

input7 = (a7, I93);

input8 = (a8, I93);

input9 = (a9, I93);

with i4

217

Appendix C. Four Layer Cascade DNADL File

with gameA18

input1 = (a1, I14);

input2 = (a2, I14);

input3 = (a3, I14);

input4 = (a4, I14);

input6 = (a6, I14);

input7 = (a7, I14);

input8 = (a8, I14);

input9 = (a9, I14);

with i4

with gameB18

input1 = (a1, I24);

input2 = (a2, I24);

input3 = (a3, I24);

input4 = (a4, I24);

input6 = (a6, I24);

input7 = (a7, I24);

input8 = (a8, I24);

input9 = (a9, I24);

with i4

with gameB19

input1 = (a1, I34);

input2 = (a2, I34);

input3 = (a3, I34);

input4 = (a4, I34);

input6 = (a6, I34);

input7 = (a7, I34);

input8 = (a8, I34);

input9 = (a9, I34);

with i4

with gameA19

input1 = (a1, I44);

input2 = (a2, I44);

input3 = (a3, I44);

input4 = (a4, I44);

218

Appendix C. Four Layer Cascade DNADL File

input6 = (a6, I44);

input7 = (a7, I44);

input8 = (a8, I44);

input9 = (a9, I44);

with i4

with gameC18

input1 = (a1, I64);

input2 = (a2, I64);

input3 = (a3, I64);

input4 = (a4, I64);

input6 = (a6, I64);

input7 = (a7, I64);

input8 = (a8, I64);

input9 = (a9, I64);

with i4

with gameD18

input1 = (a1, I74);

input2 = (a2, I74);

input3 = (a3, I74);

input4 = (a4, I74);

input6 = (a6, I74);

input7 = (a7, I74);

input8 = (a8, I74);

input9 = (a9, I74);

with i4

with gameD19

input1 = (a1, I84);

input2 = (a2, I84);

input3 = (a3, I84);

input4 = (a4, I84);

input6 = (a6, I84);

input7 = (a7, I84);

input8 = (a8, I84);

input9 = (a9, I84);

219

Appendix C. Four Layer Cascade DNADL File

with i4

with gameC19

input1 = (a1, I94);

input2 = (a2, I94);

input3 = (a3, I94);

input4 = (a4, I94);

input6 = (a6, I94);

input7 = (a7, I94);

input8 = (a8, I94);

input9 = (a9, I94);

CONCLUSION

with o1

with gameC1, gameC2, gameC3, gameC4, gameC5, gameC11,

gameC12, gameC13, gameC18, gameC19

conclusion1 = (a1, I11);

conclusion8 = (a8, I11);

with o1

with gameD1, gameD2, gameD3, gameD4, gameD5, gameD11,

gameD12, gameD13, gameD14

conclusion2 = (a2, I21);

conclusion4 = (a4, I21);

with o1

with gameD6, gameD7, gameD8, gameD9, gameD10, gameD15,

gameD16, gameD17, gameD18, gameD19

conclusion3 = (a3, I31);

conclusion4 = (a4, I31);

with o1

with gameC6, gameC7, gameC8, gameC9, gameC10, gameC14,

gameC15, gameC16, gameC17

conclusion4 = (a4, I41);

conclusion8 = (a8, I41);

220

Appendix C. Four Layer Cascade DNADL File

with o1

with gameA1, gameA2, gameA3, gameA4, gameA5, gameA11,

gameA12, gameA13, gameA14, gameA15

conclusion6 = (a6, I61);

conclusion2 = (a2, I61);

with o1

with gameB6, gameB7, gameB8, gameB9, gameB10, gameB15,

gameB16, gameB17, gameB18, gameB19

conclusion7 = (a7, I71);

conclusion6 = (a6, I71);

with o1

with gameB1, gameB2, gameB3, gameB4, gameB5, gameB11,

gameB12, gameB13, gameB14

conclusion8 = (a8, I81);

conclusion6 = (a6, I81);

with o1

with gameA6, gameA7, gameA8, gameA9, gameA10, gameA16,

gameA17, gameA18, gameA19

conclusion9 = (a9, I91);

conclusion2 = (a2, I91);

with o2

with gameA1, gameA6, gameB1, gameB6, gameC6, gameD1, gameD6

conclusion1 = (a1, I12);

with o2

with gameD1

conclusion6 = (a6, I21 ^ I12 ^ ~I62);

with o2

221

Appendix C. Four Layer Cascade DNADL File

with gameD6

conclusion6 = (a6, I31 ^ I12 ^ ~I62);

with o2

with gameC6

conclusion2 = (a2, I41 ^ I12 ^ ~I22);

with o2

with gameA1, gameA6

conclusion8 = (a8, I61 ^ I12 ^ ~I82);

with o2

with gameB6

conclusion4 = (a4, I71 ^ I12 ^ ~I42);

with o2

with gameB1

conclusion4 = (a4, I81 ^ I12 ^ ~I42);

with o2

with gameB2, gameB7, gameC11, gameC12, gameC13, gameC14,

gameC15, gameC16, gameC17, gameC18, gameC19, gameD7

conclusion2 = (a2, I22);

with o2

with gameC11, gameC12, gameC13, gameC18, gameC19

conclusion3 = (a3, I11 ^ I22);

with o2

with gameD7

conclusion6 = (a6, I31 ^ I22 ^ ~I62);

with o2

222

Appendix C. Four Layer Cascade DNADL File

with gameC14, gameC15, gameC16, gameC17

conclusion7 = (a7, I41 ^ I22);

with o2

with gameB2

conclusion4 = (a4, I81 ^ I22 ^ ~I42);

with o2

with gameB7

conclusion4 = (a4, I71 ^ I22 ^ ~I42);

with o2

with gameA2, gameA7, gameB3, gameB8, gameC1, gameC7, gameD2

conclusion3 = (a3, I32);

with o2

with gameC1

conclusion2 = (a2, I11 ^ I32 ^ ~I22);

with o2

with gameD2

conclusion6 = (a6, I21 ^ I32 ^ ~I62);

with o2

with gameC7

conclusion2 = (a2, I41 ^ I32 ^ ~I22);

with o2

with gameA2

conclusion8 = (a8, I61 ^ I32 ^ ~I82);

with o2

with gameB8

223

Appendix C. Four Layer Cascade DNADL File

conclusion4 = (a4, I71 ^ I32 ^ ~I42);

with o2

with gameB3

conclusion4 = (a4, I81 ^ I32 ^ ~I42);

with o2

with gameA3, gameA8, gameB11, gameB12, gameB13, gameB14,

gameB15, gameB16, gameB17, gameB18, gameB19, gameC2

conclusion4 = (a4, I42);

with o2

with gameC2

conclusion2 = (a2, I11 ^ I42 ^ ~I22);

with o2

with gameA3

conclusion8 = (a8, I61 ^ I42 ^ ~I82);

with o2

with gameB15, gameB16, gameB17, gameB18, gameB19

conclusion1 = (a1, I71 ^ I42);

with o2

with gameB11, gameB12, gameB13, gameB14

conclusion9 = (a9, I81 ^ I42);

with o2

with gameA9, gameC3, gameC8, gameD11, gameD12, gameD13,

gameD14, gameD15, gameD16, gameD17, gameD18, gameD19

conclusion6 = (a6, I62);

with o2

224

Appendix C. Four Layer Cascade DNADL File

with gameC3

conclusion2 = (a2, I11 ^ I62 ^ ~I22);

with o2

with gameD11, gameD12, gameD13, gameD14

conclusion1 = (a1, I21 ^ I62);

with o2

with gameD15, gameD16, gameD17, gameD18, gameD19

conclusion9 = (a9, I31 ^ I62);

with o2

with gameC8

conclusion2 = (a2, I41 ^ I62 ^ ~I22);

with o2

with gameA7

conclusion8 = (a8, I91 ^ I32 ^ ~I82);

with o2

with gameA8

conclusion8 = (a8, I91 ^ I42 ^ ~I82);

with o2

with gameA9

conclusion8 = (a8, I91 ^ I62 ^ ~I82);

with o2

with gameA4, gameA10, gameB4, gameC4, gameC9, gameD3, gameD8

conclusion7 = (a7, I72);

with o2

with gameC4

225

Appendix C. Four Layer Cascade DNADL File

conclusion2 = (a2, I11 ^ I72 ^ ~I22);

with o2

with gameD3

conclusion6 = (a6, I21 ^ I72 ^ ~I62);

with o2

with gameD8

conclusion6 = (a6, I31 ^ I72 ^ ~I62);

with o2

with gameC9

conclusion2 = (a2, I41 ^ I72 ^ ~I22);

with o2

with gameA4

conclusion8 = (a8, I61 ^ I72 ^ ~I82);

with o2

with gameB4

conclusion4 = (a4, I81 ^ I72 ^ ~I42);

with o2

with gameB5

conclusion4 = (a4, I81 ^ I92 ^ ~I42);

with o2

with gameA10

conclusion8 = (a8, I91 ^ I72 ^ ~I82);

with o2

with gameA11, gameA12, gameA13, gameA14, gameA15, gameA16,

gameA17, gameA18, gameA19, gameB9, gameD4, gameD9

226

Appendix C. Four Layer Cascade DNADL File

conclusion2 = (a2, I82);

with o2

with gameD4

conclusion6 = (a6, I21 ^ I82 ^ ~I62);

with o2

with gameD9

conclusion6 = (a6, I31 ^ I82 ^ ~I62);

with o2

with gameA11, gameA12, gameA13, gameA14

conclusion3 = (a3, I61 ^ I82);

with o2

with gameB9

conclusion4 = (a4, I71 ^ I82 ^ ~I42);

with o2

with gameB10

conclusion4 = (a4, I71 ^ I92 ^ ~I42);

with o2

with gameA15, gameA16, gameA17, gameA18, gameA19

conclusion7 = (a7, I91 ^ I82);

with o2

with gameB5, gameB10, gameC5, gameC10, gameD5, gameD10

conclusion9 = (a9, I92);

with o2

with gameC5

conclusion2 = (a2, I11 ^ I92 ^ ~I22);

227

Appendix C. Four Layer Cascade DNADL File

with o2

with gameD5

conclusion6 = (a6, I21 ^ I92 ^ ~I22);

with o2

with gameD10

conclusion6 = (a6, I31 ^ I92 ^ ~I22);

with o2

with gameC10

conclusion2 = (a2, I41 ^ I92 ^ ~I22);

with o3

with gameA11, gameA15, gameB14, gameC14, gameD18, gameD19

conclusion1 = (a1, I13);

with o3

with gameC14

conclusion3 = (a3, I22 ^ I13 ^ ~I11);

with o3

with gameB14

conclusion3 = (a3, I42 ^ I13);

with o3

with gameA11

conclusion7 = (a7, I82 ^ I13 ^ ~I91);

with o3

with gameD18, gameD19

conclusion2 = (a2, I62 ^ I13);

228

Appendix C. Four Layer Cascade DNADL File

with o3

with gameA15

conclusion3 = (a3, I82 ^ I13 ^ ~I61);

with o3

with gameB11, gameB15, gameD15

conclusion2 = (a2, I23);

with o3

with gameD15

conclusion1 = (a1, I62 ^ I23 ^ ~I21);

with o3

with gameB11

conclusion1 = (a1, I42 ^ I23 ^ ~I71);

with o3

with gameB15

conclusion9 = (a9, I42 ^ I23 ^ ~I81);

with o3

with gameA18, gameA19, gameB12, gameB16, gameC15, gameD11

conclusion3 = (a3, I33);

with o3

with gameC15

conclusion9 = (a9, I22 ^ I33);

with o3

with gameB12

conclusion1 = (a1, I42 ^ I33 ^ ~I71);

229

Appendix C. Four Layer Cascade DNADL File

with o3

with gameB16

conclusion9 = (a9, I42 ^ I33 ^ ~I91);

with o3

with gameD11

conclusion9 = (a9, I62 ^ I33 ^ ~I31);

with o3

with gameA18, gameA19

conclusion6 = (a6, I82 ^ I33);

with o3

with gameA12, gameA16, gameC11

conclusion4 = (a4, I43);

with o3

with gameC11

conclusion7 = (a7, I22 ^ I43 ^ ~I41);

with o3

with gameA16

conclusion3 = (a3, I82 ^ I43 ^ ~I61);

with o3

with gameA12

conclusion7 = (a7, I82 ^ I43 ^ ~I91);

with o3

with gameA17, gameC12, gameC16

conclusion6 = (a6, I63);

with o3

230

Appendix C. Four Layer Cascade DNADL File

with gameC12

conclusion7 = (a7, I22 ^ I63 ^ ~I41);

with o3

with gameC16

conclusion3 = (a3, I22 ^ I63 ^ ~I11);

with o3

with gameA17

conclusion3 = (a3, I82 ^ I63 ^ ~I61);

with o3

with gameA13, gameB13, gameC18, gameC19, gameD12, gameD16

conclusion7 = (a7, I73);

with o3

with gameC18, gameC19

conclusion4 = (a4, I22 ^ I73);

with o3

with gameB13

conclusion1 = (a1, I42 ^ I73 ^ ~I71);

with o3

with gameD12

conclusion9 = (a9, I62 ^ I73 ^ ~I31);

with o3

with gameD16

conclusion1 = (a1, I62 ^ I73 ^ ~I21);

with o3

with gameA13

231

Appendix C. Four Layer Cascade DNADL File

conclusion1 = (a1, I82 ^ I73);

with o3

with gameB17, gameD13, gameD17

conclusion3 = (a3, I83);

with o3

with gameD17

conclusion1 = (a1, I62 ^ I83 ^ ~I21);

with o3

with gameD13

conclusion9 = (a9, I62 ^ I83 ^ ~I31);

with o3

with gameB17

conclusion9 = (a9, I42 ^ I83 ^ ~I81);

with o3

with gameA14, gameB18, gameB19, gameC13, gameC17, gameD14

conclusion9 = (a9, I93);

with o3

with gameC13

conclusion7 = (a7, I22 ^ I93 ^ ~I41);

with o3

with gameC17

conclusion3 = (a3, I22 ^ I93 ^ ~I11);

with o3

with gameB18, gameB19

conclusion8 = (a8, I42 ^ I93);

232

Appendix C. Four Layer Cascade DNADL File

with o3

with gameD14

conclusion7 = (a7, I62 ^ I93);

with o3

with gameA14

conclusion7 = (a7, I82 ^ I93 ^ ~I91);

with o4

with gameA18

conclusion1 = (a1, I14);

conclusion4 = (a4, I33 ^ I14);

with o4

with gameB18

conclusion2 = (a2, I24);

conclusion3 = (a3, I93 ^ I24);

with o4

with gameB19

conclusion3 = (a3, I34);

conclusion2 = (a2, I93 ^ I34);

with o4

with gameA19

conclusion4 = (a4, I44);

conclusion1 = (a1, I33 ^ I44);

with o4

with gameC18

conclusion6 = (a6, I64);

conclusion9 = (a9, I73 ^ I64);

233

Appendix C. Four Layer Cascade DNADL File

with o4

with gameD18

conclusion7 = (a7, I74);

conclusion8 = (a8, I13 ^ I74);

with o4

with gameD19

conclusion8 = (a8, I84);

conclusion7 = (a7, I13 ^ I84);

with o4

with gameC19

conclusion9 = (a9, I94);

conclusion6 = (a6, I73 ^ I94);

/* M2 Level 2 Description */

LEVEL 2

ENTRY

/* gameC1, gameC2, gameC3, gameC4, gameC5, */

/* gameC11, gameC12, gameC13, gameC18, gameC19 */

en1I11 = (a1, str.lI11, 100);

en2I11 = (a2, str.lI11, 100);

en3I11 = (a3, str.lI11, 100);

en4I11 = (a4, str.lI11, 100);

en6I11 = (a6, str.lI11, 100);

en7I11 = (a7, str.lI11, 100);

en8I11 = (a8, str.lI11, 100);

en9I11 = (a9, str.lI11, 100);

/* gameD1, gameD2, gameD3, gameD4, gameD5, */

/* gameD11, gameD12, gameD13, gameD14 */

en1I21 = (a1, str.lI21, 100);

en2I21 = (a2, str.lI21, 100);

en3I21 = (a3, str.lI21, 100);

234

Appendix C. Four Layer Cascade DNADL File

en4I21 = (a4, str.lI21, 100);

en6I21 = (a6, str.lI21, 100);

en7I21 = (a7, str.lI21, 100);

en8I21 = (a8, str.lI21, 100);

en9I21 = (a9, str.lI21, 100);

/* gameD6, gameD7, gameD8, gameD9, gameD10, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

en1I31 = (a1, str.lI31, 100);

en2I31 = (a2, str.lI31, 100);

en3I31 = (a3, str.lI31, 100);

en4I31 = (a4, str.lI31, 100);

en6I31 = (a6, str.lI31, 100);

en7I31 = (a7, str.lI31, 100);

en8I31 = (a8, str.lI31, 100);

en9I31 = (a9, str.lI31, 100);

/* gameC6, gameC7, gameC8, gameC9, gameC10, */

/* gameC14, gameC15, gameC16, gameC17 */

en1I41 = (a1, str.lI41, 100);

en2I41 = (a2, str.lI41, 100);

en3I41 = (a3, str.lI41, 100);

en4I41 = (a4, str.lI41, 100);

en6I41 = (a6, str.lI41, 100);

en7I41 = (a7, str.lI41, 100);

en8I41 = (a8, str.lI41, 100);

en9I41 = (a9, str.lI41, 100);

/* gameA1, gameA2, gameA3, gameA4, gameA5, */

/* gameA11, gameA12, gameA13, gameA14 */

en1I61 = (a1, str.lI61, 100);

en2I61 = (a2, str.lI61, 100);

en3I61 = (a3, str.lI61, 100);

en4I61 = (a4, str.lI61, 100);

en6I61 = (a6, str.lI61, 100);

en7I61 = (a7, str.lI61, 100);

en8I61 = (a8, str.lI61, 100);

en9I61 = (a9, str.lI61, 100);

/* gameB6, gameB7, gameB8, gameB9, gameB10, */

/* gameB16, gameB17, gameB18, gameB19 */

235

Appendix C. Four Layer Cascade DNADL File

en1I71 = (a1, str.lI71, 100);

en2I71 = (a2, str.lI71, 100);

en3I71 = (a3, str.lI71, 100);

en4I71 = (a4, str.lI71, 100);

en6I71 = (a6, str.lI71, 100);

en7I71 = (a7, str.lI71, 100);

en8I71 = (a8, str.lI71, 100);

en9I71 = (a9, str.lI71, 100);

/* gameB1, gameB2, gameB3, gameB4, gameB5, */

/* gameB11, gameB12, gameB13, gameB14, gameB15 */

en1I81 = (a1, str.lI81, 100);

en2I81 = (a2, str.lI81, 100);

en3I81 = (a3, str.lI81, 100);

en4I81 = (a4, str.lI81, 100);

en6I81 = (a6, str.lI81, 100);

en7I81 = (a7, str.lI81, 100);

en8I81 = (a8, str.lI81, 100);

en9I81 = (a9, str.lI81, 100);

/* gameA6, gameA7, gameA8, gameA9, gameA10, */

/* gameA15, gameA16, gameA17, gameA18, gameA19 */

en1I91 = (a1, str.lI91, 100);

en2I91 = (a2, str.lI91, 100);

en3I91 = (a3, str.lI91, 100);

en4I91 = (a4, str.lI91, 100);

en6I91 = (a6, str.lI91, 100);

en7I91 = (a7, str.lI91, 100);

en8I91 = (a8, str.lI91, 100);

en9I91 = (a9, str.lI91, 100);

/* gameA1, gameA6, gameB1, gameB6, gameC6, */

/* gameD1, gameD1, gameD6 */

en1I12 = (a1, str.lI12, 100);

en2I12 = (a2, str.lI12, 100);

en3I12 = (a3, str.lI12, 100);

en4I12 = (a4, str.lI12, 100);

en6I12 = (a6, str.lI12, 100);

en7I12 = (a7, str.lI12, 100);

en8I12 = (a8, str.lI12, 100);

en9I12 = (a9, str.lI12, 100);

236

Appendix C. Four Layer Cascade DNADL File

/* gameB2, gameB7, gameC11, gameC12, gameC13, gameC14, */

/* gameC15, gameC16, gameC17, gameC18, gameC19, gameD7 */

en1I22 = (a1, str.lI22, 100);

en2I22 = (a2, str.lI22, 100);

en3I22 = (a3, str.lI22, 100);

en4I22 = (a4, str.lI22, 100);

en6I22 = (a6, str.lI22, 100);

en7I22 = (a7, str.lI22, 100);

en8I22 = (a8, str.lI22, 100);

en9I22 = (a9, str.lI22, 100);

/* gameA2, gameA7, gameB3, gameB8, gameC1, gameC7, gameD2 */

en1I32 = (a1, str.lI32, 100);

en2I32 = (a2, str.lI32, 100);

en3I32 = (a3, str.lI32, 100);

en4I32 = (a4, str.lI32, 100);

en6I32 = (a6, str.lI32, 100);

en7I32 = (a7, str.lI32, 100);

en8I32 = (a8, str.lI32, 100);

en9I32 = (a9, str.lI32, 100);

/* gameA3, gameA8, gameB11, gameB12, gameB13, gameB14, */

/* gameB15, gameB16, gameB17, gameB18, gameB19, gameC2 */

en1I42 = (a1, str.lI42, 100);

en2I42 = (a2, str.lI42, 100);

en3I42 = (a3, str.lI42, 100);

en4I42 = (a4, str.lI42, 100);

en6I42 = (a6, str.lI42, 100);

en7I42 = (a7, str.lI42, 100);

en8I42 = (a8, str.lI42, 100);

en9I42 = (a9, str.lI42, 100);

/* gameA9, gameC3, gameC8, gameD11, gameD12, gameD13, */

/* gameD14, gameD15, gameD16, gameD17, gameD18, gameD19 */

en1I62 = (a1, str.lI62, 100);

en2I62 = (a2, str.lI62, 100);

en3I62 = (a3, str.lI62, 100);

en4I62 = (a4, str.lI62, 100);

en6I62 = (a6, str.lI62, 100);

en7I62 = (a7, str.lI62, 100);

237

Appendix C. Four Layer Cascade DNADL File

en8I62 = (a8, str.lI62, 100);

en9I62 = (a9, str.lI62, 100);

/* gameA4, gameA10, gameB4, gameC4, gameC9, gameD3, gameD8 */

en1I72 = (a1, str.lI72, 100);

en2I72 = (a2, str.lI72, 100);

en3I72 = (a3, str.lI72, 100);

en4I72 = (a4, str.lI72, 100);

en6I72 = (a6, str.lI72, 100);

en7I72 = (a7, str.lI72, 100);

en8I72 = (a8, str.lI72, 100);

en9I72 = (a9, str.lI72, 100);

/* gameA11, gameA12, gameA13, gameA14, gameA15, gameA16, */

/* gameA17, gameA18, gameA19, gameB9, gameD4, gameD9 */

en1I82 = (a1, str.lI82, 100);

en2I82 = (a2, str.lI82, 100);

en3I82 = (a3, str.lI82, 100);

en4I82 = (a4, str.lI82, 100);

en6I82 = (a6, str.lI82, 100);

en7I82 = (a7, str.lI82, 100);

en8I82 = (a8, str.lI82, 100);

en9I82 = (a9, str.lI82, 100);

/* gameA5, gameB5, gameC5, gameC10, gameD5, gameD10 */

en1I92 = (a1, str.lI92, 100);

en2I92 = (a2, str.lI92, 100);

en3I92 = (a3, str.lI92, 100);

en4I92 = (a4, str.lI92, 100);

en6I92 = (a6, str.lI92, 100);

en7I92 = (a7, str.lI92, 100);

en8I92 = (a8, str.lI92, 100);

en9I92 = (a9, str.lI92, 100);

/* gameA11, gameA15, gameB14, gameC14, gameD18, gameD19 */

en1I13 = (a1, str.lI13, 100);

en2I13 = (a2, str.lI13, 100);

en3I13 = (a3, str.lI13, 100);

en4I13 = (a4, str.lI13, 100);

en6I13 = (a6, str.lI13, 100);

en7I13 = (a7, str.lI13, 100);

238

Appendix C. Four Layer Cascade DNADL File

en8I13 = (a8, str.lI13, 100);

en9I13 = (a9, str.lI13, 100);

/* gameB11, gameB15, gameD15 */

en1I23 = (a1, str.lI23, 100);

en2I23 = (a2, str.lI23, 100);

en3I23 = (a3, str.lI23, 100);

en4I23 = (a4, str.lI23, 100);

en6I23 = (a6, str.lI23, 100);

en7I23 = (a7, str.lI23, 100);

en8I23 = (a8, str.lI23, 100);

en9I23 = (a9, str.lI23, 100);

/* gameA18, gameA19, gameB12, gameB16, gameC15, gameD11 */

en1I33 = (a1, str.lI33, 100);

en2I33 = (a2, str.lI33, 100);

en3I33 = (a3, str.lI33, 100);

en4I33 = (a4, str.lI33, 100);

en6I33 = (a6, str.lI33, 100);

en7I33 = (a7, str.lI33, 100);

en8I33 = (a8, str.lI33, 100);

en9I33 = (a9, str.lI33, 100);

/* gameA12, gameA16, gameC11 */

en1I43 = (a1, str.lI43, 100);

en2I43 = (a2, str.lI43, 100);

en3I43 = (a3, str.lI43, 100);

en4I43 = (a4, str.lI43, 100);

en6I43 = (a6, str.lI43, 100);

en7I43 = (a7, str.lI43, 100);

en8I43 = (a8, str.lI43, 100);

en9I43 = (a9, str.lI43, 100);

/* gameA17, gameC12, gameC16 */

en1I63 = (a1, str.lI63, 100);

en2I63 = (a2, str.lI63, 100);

en3I63 = (a3, str.lI63, 100);

en4I63 = (a4, str.lI63, 100);

en6I63 = (a6, str.lI63, 100);

en7I63 = (a7, str.lI63, 100);

en8I63 = (a8, str.lI63, 100);

239

Appendix C. Four Layer Cascade DNADL File

en9I63 = (a9, str.lI63, 100);

/* gameA13, gameB13, gameC18, gameC19, gameD12, gameD16 */

en1I73 = (a1, str.lI73, 100);

en2I73 = (a2, str.lI73, 100);

en3I73 = (a3, str.lI73, 100);

en4I73 = (a4, str.lI73, 100);

en6I73 = (a6, str.lI73, 100);

en7I73 = (a7, str.lI73, 100);

en8I73 = (a8, str.lI73, 100);

en9I73 = (a9, str.lI73, 100);

/* gameB17, gameD13, gameD17 */

en1I83 = (a1, str.lI83, 100);

en2I83 = (a2, str.lI83, 100);

en3I83 = (a3, str.lI83, 100);

en4I83 = (a4, str.lI83, 100);

en6I83 = (a6, str.lI83, 100);

en7I83 = (a7, str.lI83, 100);

en8I83 = (a8, str.lI83, 100);

en9I83 = (a9, str.lI83, 100);

/* gameA14, gameB18, gameB19, gameC13, gameC17, gameD14 */

en1I93 = (a1, str.lI93, 100);

en2I93 = (a2, str.lI93, 100);

en3I93 = (a3, str.lI93, 100);

en4I93 = (a4, str.lI93, 100);

en6I93 = (a6, str.lI93, 100);

en7I93 = (a7, str.lI93, 100);

en8I93 = (a8, str.lI93, 100);

en9I93 = (a9, str.lI93, 100);

/* gameA18 */

en1I14 = (a1, str.lI14, 100);

en2I14 = (a2, str.lI14, 100);

en3I14 = (a3, str.lI14, 100);

en4I14 = (a4, str.lI14, 100);

en6I14 = (a6, str.lI14, 100);

en7I14 = (a7, str.lI14, 100);

en8I14 = (a8, str.lI14, 100);

en9I14 = (a9, str.lI14, 100);

240

Appendix C. Four Layer Cascade DNADL File

/* gameB18 */

en1I24 = (a1, str.lI24, 100);

en2I24 = (a2, str.lI24, 100);

en3I24 = (a3, str.lI24, 100);

en4I24 = (a4, str.lI24, 100);

en6I24 = (a6, str.lI24, 100);

en7I24 = (a7, str.lI24, 100);

en8I24 = (a8, str.lI24, 100);

en9I24 = (a9, str.lI24, 100);

/* gameB19 */

en1I34 = (a1, str.lI34, 100);

en2I34 = (a2, str.lI34, 100);

en3I34 = (a3, str.lI34, 100);

en4I34 = (a4, str.lI34, 100);

en6I34 = (a6, str.lI34, 100);

en7I34 = (a7, str.lI34, 100);

en8I34 = (a8, str.lI34, 100);

en9I34 = (a9, str.lI34, 100);

/* gameA19 */

en1I44 = (a1, str.lI44, 100);

en2I44 = (a2, str.lI44, 100);

en3I44 = (a3, str.lI44, 100);

en4I44 = (a4, str.lI44, 100);

en6I44 = (a6, str.lI44, 100);

en7I44 = (a7, str.lI44, 100);

en8I44 = (a8, str.lI44, 100);

en9I44 = (a9, str.lI44, 100);

/* gameC18 */

en1I64 = (a1, str.lI64, 100);

en2I64 = (a2, str.lI64, 100);

en3I64 = (a3, str.lI64, 100);

en4I64 = (a4, str.lI64, 100);

en6I64 = (a6, str.lI64, 100);

en7I64 = (a7, str.lI64, 100);

en8I64 = (a8, str.lI64, 100);

en9I64 = (a9, str.lI64, 100);

241

Appendix C. Four Layer Cascade DNADL File

/* gameD18 */

en1I74 = (a1, str.lI74, 100);

en2I74 = (a2, str.lI74, 100);

en3I74 = (a3, str.lI74, 100);

en4I74 = (a4, str.lI74, 100);

en6I74 = (a6, str.lI74, 100);

en7I74 = (a7, str.lI74, 100);

en8I74 = (a8, str.lI74, 100);

en9I74 = (a9, str.lI74, 100);

/* gameD19 */

en1I84 = (a1, str.lI84, 100);

en2I84 = (a2, str.lI84, 100);

en3I84 = (a3, str.lI84, 100);

en4I84 = (a4, str.lI84, 100);

en6I84 = (a6, str.lI84, 100);

en7I84 = (a7, str.lI84, 100);

en8I84 = (a8, str.lI84, 100);

en9I84 = (a9, str.lI84, 100);

/* gameC19 */

en1I94 = (a1, str.lI94, 100);

en2I94 = (a2, str.lI94, 100);

en3I94 = (a3, str.lI94, 100);

en4I94 = (a4, str.lI94, 100);

en6I94 = (a6, str.lI94, 100);

en7I94 = (a7, str.lI94, 100);

en8I94 = (a8, str.lI94, 100);

en9I94 = (a9, str.lI94, 100);

SIGNAL

/* FLUORESCEIN produces green */

/* TAMRA produces red */

visual1green = (a1, green);

visual1red = (a1, red);

visual2green = (a2, green);

visual2red = (a2, red);

visual3green = (a3, green);

visual3red = (a3, red);

242

Appendix C. Four Layer Cascade DNADL File

visual4green = (a4, green);

visual4red = (a4, red);

visual6green = (a6, green);

visual6red = (a6, red);

visual7green = (a7, green);

visual7red = (a7, red);

visual8green = (a8, green);

visual8red = (a8, red);

visual9green = (a9, green);

visual9red = (a9, red);

TRANSITION

with tCase1recog0-1

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA6, gameA7, */

/* gameA8, gameA9, gameA10, gameA11, gameA12, gameA13, gameA14, */

/* gameA15, gameA16, gameA17, gameA18, gameA19, */

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB6, gameB7, */

/* gameB8, gameB9, gameB10, gameB11, gameB12, gameB13, gameB14, */

/* gameB15, gameB16, gameB17, gameB18, gameB19, */

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC6, gameC7, */

/* gameC8, gameC9, gameC10, gameC11, gameC12, gameC13, gameC14, */

/* gameC15, gameC16, gameC17, gameC18, gameC19, */

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD6, gameD7, */

/* gameD8, gameD9, gameD10, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t1I11 = (a1, str.rI11.stage0, str.rI11.stage1,fold);

t1I12 = (a1, str.rI12.stage0, str.rI12.stage1,fold);

t1I13 = (a1, str.rI13.stage0, str.rI13.stage1,fold);

t1I14 = (a1, str.rI14.stage0, str.rI14.stage1,fold);

t2I21 = (a2, str.rI21.stage0, str.rI21.stage1,fold);

t2I22 = (a2, str.rI22.stage0, str.rI22.stage1,fold);

t2I23 = (a2, str.rI23.stage0, str.rI23.stage1,fold);

t2I24 = (a2, str.rI24.stage0, str.rI24.stage1,fold);

t2I61 = (a2, str.rI61.stage0, str.rI61.stage1,fold);

t2I91 = (a2, str.rI91.stage0, str.rI91.stage1,fold);

t3I31 = (a3, str.rI31.stage0, str.rI31.stage1,fold);

243

Appendix C. Four Layer Cascade DNADL File

t3I32 = (a3, str.rI32.stage0, str.rI32.stage1,fold);

t3I33 = (a3, str.rI33.stage0, str.rI33.stage1,fold);

t3I34 = (a3, str.rI34.stage0, str.rI34.stage1,fold);

t4I31 = (a4, str.rI31.stage0, str.rI31.stage1,fold);

t4I41 = (a4, str.rI41.stage0, str.rI41.stage1,fold);

t4I42 = (a4, str.rI42.stage0, str.rI42.stage1,fold);

t4I43 = (a4, str.rI43.stage0, str.rI43.stage1,fold);

t4I44 = (a4, str.rI44.stage0, str.rI44.stage1,fold);

t4I21 = (a4, str.rI21.stage0, str.rI21.stage1,fold);

t6I61 = (a6, str.rI61.stage0, str.rI61.stage1,fold);

t6I62 = (a6, str.rI62.stage0, str.rI62.stage1,fold);

t6I63 = (a6, str.rI63.stage0, str.rI64.stage1,fold);

t6I64 = (a6, str.rI64.stage0, str.rI64.stage1,fold);

t6I71 = (a6, str.rI71.stage0, str.rI71.stage1,fold);

t6I81 = (a6, str.rI81.stage0, str.rI81.stage1,fold);

t7I71 = (a7, str.rI71.stage0, str.rI71.stage1,fold);

t7I72 = (a7, str.rI72.stage0, str.rI72.stage1,fold);

t7I73 = (a7, str.rI73.stage0, str.rI73.stage1,fold);

t7I74 = (a7, str.rI74.stage0, str.rI74.stage1,fold);

t8I81 = (a8, str.rI81.stage0, str.rI81.stage1,fold);

t8I82 = (a8, str.rI82.stage0, str.rI82.stage1,fold);

t8I83 = (a8, str.rI83.stage0, str.rI83.stage1,fold);

t8I84 = (a8, str.rI84.stage0, str.rI84.stage1,fold);

t8I11 = (a8, str.rI11.stage0, str.rI11.stage1,fold);

t8I41 = (a8, str.rI41.stage0, str.rI41.stage1,fold);

t9I91 = (a9, str.rI91.stage0, str.rI91.stage1,fold);

t9I92 = (a9, str.rI92.stage0, str.rI92.stage1,fold);

t9I93 = (a9, str.rI93.stage0, str.rI93.stage1,fold);

t9I94 = (a9, str.rI94.stage0, str.rI94.stage1,fold);

with tCase1recog1-2

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC11, gameC12, */

/* gameC13, gameC18, gameC19 */

t1I11 = (a1, str.rI11.stage1, slI11, str.rI11.stage2, bind);

244

Appendix C. Four Layer Cascade DNADL File

t8I11 = (a8, str.rI11.stage1, slI11, str.rI11.stage2, bind);

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD11, gameD12, */

/* gameD13, gameD14 */

t2I21 = (a2, str.rI21.stage1, slI21, str.rI21.stage2, bind);

t4I21 = (a4, str.rI21.stage1, slI21, str.rI21.stage2, bind);

/* gameD6, gameD7, gameD8, gameD9, gameD10, gameD15, gameD16, */

/* gameD17, gameD18, gameD19 */

t3I31 = (a3, str.rI31.stage1, slI31, str.rI31.stage2, bind);

t4I31 = (a4, str.rI31.stage1, slI31, str.rI31.stage2, bind);

/* gameC6, gameC7, gameC8, gameC9, gameC10, gameC14, gameC15, */

/* gameC16, gameC17 */

t4I41 = (a4, str.rI41.stage1, slI41, str.rI41.stage2, bind);

t8I41 = (a8, str.rI41.stage1, slI41, str.rI41.stage2, bind);

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA11, gameA12, */

/* gameA13, gameA14, gameA15 */

t2I61 = (a2, str.rI61.stage1, slI61, str.rI61.stage2, bind);

t6I61 = (a6, str.rI61.stage1, slI61, str.rI61.stage2, bind);

/* gameB6, gameB7, gameB8, gameB9, gameB10, gameB15, gameB16, */

/* gameB17, gameB18, gameB19 */

t6I71 = (a6, str.rI71.stage1, slI71, str.rI71.stage2, bind);

t7I71 = (a7, str.rI71.stage1, slI71, str.rI71.stage2, bind);

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB11, gameB12, */

/* gameB13, gameB14 */

t6I81 = (a6, str.rI81.stage1, slI81, str.rI81.stage2, bind);

t8I81 = (a8, str.rI81.stage1, slI81, str.rI81.stage2, bind);

/* gameA6, gameA7, gameA8, gameA9, gameA10, gameA16, gameA17, */

/* gameA18, gameA19 */

t2I91 = (a2, str.rI91.stage1, slI91, str.rI91.stage2, bind);

t9I91 = (a9, str.rI91.stage1, slI91, str.rI91.stage2, bind);

/* gameA1, gameA6, gameB1, gameB6, gameC6, gameD1, gameD6 */

t1I12 = (a1, str.rI12.stage1, slI12, str.rI12.stage2, bind);

/* gameB2, gameB7, gameC11, gameC12, gameC13, gameC14, gameC15, */

245

Appendix C. Four Layer Cascade DNADL File

/* gameC16, gameC17, gameC18, gameC19, gameD7 */

t2I22 = (a2, str.rI22.stage1, slI22, str.rI22.stage2, bind);

/* gameA2, gameA7, gameB3, gameB8, gameC1, gameC7, gameD2 */

t3I32 = (a2, str.rI32.stage1, slI32, str.rI32.stage2, bind);

/* gameA3, gameA8, gameB11, gameB12, gameB13, gameB14, gameB15, */

/* gameB16, gameB17, gameB18, gameB19, gameC2 */

t4I42 = (a4, str.rI42.stage1, slI42, str.rI42.stage2, bind);

/* gameA9, gameC3, gameC8, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t6I62 = (a6, str.rI62.stage1, slI62, str.rI62.stage2, bind);

/* gameA4, gameA10, gameB4, gameC4, gameC9, gameD3, gameD8 */

t7I72 = (a7, str.rI72.stage1, slI72, str.rI72.stage2, bind);

/* gameA11, gameA12, gameA13, gameA14, gameA15, gameA16, gameA17, */

/* gameA18, gameA19, gameB9, gameD4, gameD9 */

t8I82 = (a8, str.rI82.stage1, slI82, str.rI82.stage2, bind);

/* gameA5, gameB5, gameB10, gameC5, gameC10, gameD5, gameD10 */

t9I92 = (a9, str.rI92.stage1, slI92, str.rI92.stage2, bind);

/* gameA11, gameA15, gameB14, gameC14, gameD18, gameD19 */

t1I13 = (a1, str.rI13.stage1, slI13, str.rI13.stage2, bind);

/* gameB11, gameB15, gameD15 */

t2I23 = (a2, str.rI23.stage1, slI23, str.rI23.stage2, bind);

/* gameA18, gameA19, gameB12, gameB16, gameC15, gameD11 */

t3I33 = (a3, str.rI33.stage1, slI33, str.rI33.stage2, bind);

/* gameA12, gameA16, gameC11 */

t4I43 = (a4, str.rI43.stage1, slI43, str.rI43.stage2, bind);

/* gameA17, gameC12, gameC16 */

t6I63 = (a6, str.rI63.stage1, slI63, str.rI63.stage2, bind);

/* gameA13, gameB13, gameC18, gameC19, gameD12, gameD16 */

t7I73 = (a7, str.rI73.stage1, slI73, str.rI73.stage2, bind);

246

Appendix C. Four Layer Cascade DNADL File

/* gameB17, gameD13, gameD17 */

t8I83 = (a8, str.rI83.stage1, slI83, str.rI83.stage2, bind);

/* gameA14, gameB18, gameB19, gameC13, gameC17, gameD14 */

t9I93 = (a9, str.rI93.stage1, slI93, str.rI93.stage2, bind);

/* gameA18 */

t1I14 = (a1, str.rI14.stage1, slI14, str.rI14.stage2, bind);

/* gameB18 */

t2I24 = (a2, str.rI24.stage1, slI24, str.rI24.stage2, bind);

/* gameB19 */

t3I34 = (a3, str.rI34.stage1, slI34, str.rI34.stage2, bind);

/* gameA19 */

t4I44 = (a4, str.rI44.stage1, slI44, str.rI44.stage2, bind);

/* gameC18 */

t6I64 = (a6, str.rI64.stage1, slI64, str.rI64.stage2, bind);

/* gameD18 */

t7I74 = (a7, str.rI74.stage1, slI74, str.rI74.stage2, bind);

/* gameD19 */

t8I84 = (a8, str.rI84.stage1, slI84, str.rI84.stage2, bind);

/* gameC19 */

t9I94 = (a9, str.rI94.stage1, slI94, str.rI94.stage2, bind);

with tCase1recog2-3

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC11, gameC12, */

/* gameC13, gameC18, gameC19 */

t1I11 = (a1, str.rI11.stage2, str.rI11.stage3,fold);

t8I11 = (a8, str.rI11.stage2, str.rI11.stage3,fold);

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD11, gameD12, */

/* gameD13, gameD14 */

247

Appendix C. Four Layer Cascade DNADL File

t2I21 = (a2, str.rI21.stage2, str.rI21.stage3,fold);

t4I21 = (a4, str.rI21.stage2, str.rI21.stage3,fold);

/* gameD6, gameD7, gameD8, gameD9, gameD10, gameD15, gameD16, */

/* gameD17, gameD18, gameD19 */

t3I31 = (a3, str.rI31.stage2, str.rI31.stage3,fold);

t4I31 = (a4, str.rI31.stage2, str.rI31.stage3,fold);

/* gameC6, gameC7, gameC8, gameC9, gameC10, gameC14, gameC15, */

/* gameC16, gameC17 */

t4I41 = (a4, str.rI41.stage2, str.rI41.stage3,fold);

t8I41 = (a8, str.rI41.stage2, str.rI41.stage3,fold);

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA11, gameA12, */

/* gameA13, gameA14, gameA15 */

t2I61 = (a2, str.rI61.stage2, str.rI61.stage3,fold);

t6I61 = (a6, str.rI61.stage2, str.rI61.stage3,fold);

/* gameB6, gameB7, gameB8, gameB9, gameB10, gameB15, gameB16, */

/* gameB17, gameB18, gameB19 */

t6I71 = (a6, str.rI71.stage2, str.rI71.stage3,fold);

t7I71 = (a7, str.rI71.stage2, str.rI71.stage3,fold);

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB11, gameB12, */

/* gameB13, gameB14 */

t6I81 = (a6, str.rI81.stage2, str.rI81.stage3,fold);

t8I81 = (a8, str.rI81.stage2, str.rI81.stage3,fold);

/* gameA6, gameA7, gameA8, gameA9, gameA10, gameA16, gameA17, */

/* gameA18, gameA19 */

t2I91 = (a2, str.rI91.stage2, str.rI91.stage3,fold);

t9I91 = (a9, str.rI91.stage2, str.rI91.stage3,fold);

/* gameA1, gameA6, gameB1, gameB6, gameC6, gameD1, gameD6 */

t1I12 = (a1, str.rI12.stage2, str.rI12.stage3,fold);

/* gameB2, gameB7, gameC11, gameC12, gameC13, gameC14, gameC15, */

/* gameC16, gameC17, gameC18, gameC19, gameD7 */

t2I22 = (a2, str.rI22.stage2, str.rI22.stage3,fold);

/* gameA2, gameA7, gameB3, gameB8, gameC1, gameC7, gameD2 */

248

Appendix C. Four Layer Cascade DNADL File

t3I32 = (a3, str.rI32.stage2, str.rI32.stage3,fold);

/* gameA3, gameA8, gameB11, gameB12, gameB13, gameB14, gameB15, */

/* gameB16, gameB17, gameB18, gameB19, gameC2 */

t4I42 = (a4, str.rI42.stage2, str.rI42.stage3,fold);

/* gameA9, gameC3, gameC8, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t6I62 = (a6, str.rI62.stage2, str.rI62.stage3,fold);

/* gameA4, gameA10, gameB4, gameC4, gameC9, gameD3, gameD8 */

t7I72 = (a7, str.rI72.stage2, str.rI72.stage3,fold);

/* gameA11, gameA12, gameA13, gameA14, gameA15, gameA16, gameA17, */

/* gameA18, gameA19, gameB9, gameD4, gameD9 */

t8I82 = (a8, str.rI82.stage2, str.rI82.stage3,fold);

/* gameA5, gameB5, gameB10, gameC5, gameC10, gameD5, gameD10 */

t9I92 = (a9, str.rI92.stage2, str.rI92.stage3,fold);

/* gameA11, gameA15, gameB14, gameC14, gameD18, gameD19 */

t1I13 = (a1, str.rI13.stage2, str.rI13.stage3,fold);

/* gameB11, gameB15, gameD15 */

t2I23 = (a2, str.rI23.stage2, str.rI23.stage3,fold);

/* gameA18, gameA19, gameB12, gameB16, gameC15, gameD11 */

t3I33 = (a3, str.rI33.stage2, str.rI33.stage3,fold);

/* gameA12, gameA16, gameC11 */

t4I43 = (a4, str.rI43.stage2, str.rI43.stage3,fold);

/* gameA17, gameC12, gameC16 */

t6I63 = (a6, str.rI63.stage2, str.rI63.stage3,fold);

/* gameA13, gameB13, gameC18, gameC19, gameD12, gameD16 */

t7I73 = (a7, str.rI73.stage2, str.rI73.stage3,fold);

/* gameB17, gameD13, gameD17 */

t8I83 = (a8, str.rI83.stage2, str.rI83.stage3,fold);

249

Appendix C. Four Layer Cascade DNADL File

/* gameA14, gameB18, gameB19, gameC13, gameC17, gameD14 */

t9I93 = (a9, str.rI93.stage2, str.rI93.stage3,fold);

/* gameA18 */

t1I14 = (a1, str.rI14.stage2, str.rI14.stage3,fold);

/* gameB18 */

t2I24 = (a2, str.rI24.stage2, str.rI24.stage3,fold);

/* gameB19 */

t3I34 = (a3, str.rI34.stage2, str.rI34.stage3,fold);

/* gameA19 */

t4I44 = (a4, str.rI44.stage2, str.rI44.stage3,fold);

/* gameC18 */

t6I64 = (a6, str.rI64.stage2, str.rI64.stage3,fold);

/* gameD18 */

t7I74 = (a7, str.rI74.stage2, str.rI74.stage3,fold);

/* gameD19 */

t8I84 = (a8, str.rI84.stage2, str.rI84.stage3,fold);

/* gameC19 */

t9I94 = (a9, str.rI94.stage2, str.rI94.stage3,fold);

with tCase1recog3-4

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC11, gameC12, */

/* gameC13, gameC18, gameC19 */

t1I11 = (a1, str.rI11.stage3, substrateFAM, str.rI11.stage4, bind);

t8I11 = (a8, str.rI11.stage3, substrateTAMRA, str.rI11.stage4, bind);

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD11, gameD12, */

/* gameD13, gameD14 */

t2I21 = (a2, str.rI21.stage3, substrateFAM, str.rI21.stage4, bind);

t4I21 = (a4, str.rI21.stage3, substrateTAMRA, str.rI21.stage4, bind);

/* gameD6, gameD7, gameD8, gameD9, gameD10, gameD15, gameD16, */

250

Appendix C. Four Layer Cascade DNADL File

/* gameD17, gameD18, gameD19 */

t3I31 = (a3, str.rI31.stage3, substrateFAM, str.rI31.stage4, bind);

t4I31 = (a4, str.rI31.stage3, substrateTAMRA, str.rI31.stage4, bind);

/* gameC6, gameC7, gameC8, gameC9, gameC10, gameC14, gameC15, */

/* gameC16, gameC17 */

t4I41 = (a4, str.rI41.stage3, substrateFAM, str.rI41.stage4, bind);

t8I41 = (a8, str.rI41.stage3, substrateTAMRA, str.rI41.stage4, bind);

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA11, gameA12, */

/* gameA13, gameA14, gameA15 */

t2I61 = (a2, str.rI61.stage3, substrateTAMRA, str.rI61.stage4, bind);

t6I61 = (a6, str.rI61.stage3, substrateFAM, str.rI61.stage4, bind);

/* gameB6, gameB7, gameB8, gameB9, gameB10, gameB15, gameB16, */

/* gameB17, gameB18, gameB19 */

t6I71 = (a6, str.rI71.stage3, substrateTAMRA, str.rI71.stage4, bind);

t7I71 = (a7, str.rI71.stage3, substrateFAM, str.rI71.stage4, bind);

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB11, gameB12, */

/* gameB13, gameB14 */

t6I81 = (a6, str.rI81.stage3, substrateTAMRA, str.rI81.stage4, bind);

t8I81 = (a8, str.rI81.stage3, substrateFAM, str.rI81.stage4, bind);

/* gameA6, gameA7, gameA8, gameA9, gameA10, gameA16, gameA17, */

/* gameA18, gameA19 */

t2I91 = (a2, str.rI91.stage3, substrateTAMRA, str.rI91.stage4, bind);

t9I91 = (a9, str.rI91.stage3, substrateFAM, str.rI91.stage4, bind);

/* gameA1, gameA6, gameB1, gameB6, gameC6, gameD1, gameD6 */

t1I12 = (a1, str.rI12.stage3, substrateFAM, str.rI12.stage4, bind);

/* gameB2, gameB7, gameC11, gameC12, gameC13, gameC14, gameC15, */

/* gameC16, gameC17, gameC18, gameC19, gameD7 */

t2I22 = (a2, str.rI22.stage3, substrateFAM, str.rI22.stage4, bind);

/* gameA2, gameA7, gameB3, gameB8, gameC1, gameC7, gameD2 */

t3I32 = (a3, str.rI32.stage3, substrateFAM, str.rI32.stage4, bind);

/* gameA3, gameA8, gameB11, gameB12, gameB13, gameB14, gameB15, */

/* gameB16, gameB17, gameB18, gameB19, gameC2 */

251

Appendix C. Four Layer Cascade DNADL File

t4I42 = (a4, str.rI42.stage3, substrateFAM, str.rI42.stage4, bind);

/* gameA9, gameC3, gameC8, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t6I62 = (a6, str.rI62.stage3, substrateFAM, str.rI62.stage4, bind);

/* gameA4, gameA10, gameB4, gameC4, gameC9, gameD3, gameD8 */

t7I72 = (a7, str.rI72.stage3, substrateFAM, str.rI72.stage4, bind);

/* gameA11, gameA12, gameA13, gameA14, gameA15, gameA16, gameA17, */

/* gameA18, gameA19, gameB9, gameD4, gameD9 */

t8I82 = (a8, str.rI82.stage3, substrateFAM, str.rI82.stage4, bind);

/* gameA5, gameB5, gameB10, gameC5, gameC10, gameD5, gameD10 */

t9I92 = (a9, str.rI92.stage3, substrateFAM, str.rI92.stage4, bind);

/* gameA11, gameA15, gameB14, gameC14, gameD18, gameD19 */

t1I13 = (a1, str.rI13.stage3, substrateFAM, str.rI13.stage4, bind);

/* gameB11, gameB15, gameD15 */

t2I23 = (a2, str.rI23.stage3, substrateFAM, str.rI23.stage4, bind);

/* gameA18, gameA19, gameB12, gameB16, gameC15, gameD11 */

t3I33 = (a3, str.rI33.stage3, substrateFAM, str.rI33.stage4, bind);

/* gameA12, gameA16, gameC11 */

t4I43 = (a4, str.rI43.stage3, substrateFAM, str.rI43.stage4, bind);

/* gameA17, gameC12, gameC16 */

t6I63 = (a6, str.rI63.stage3, substrateFAM, str.rI63.stage4, bind);

/* gameA13, gameB13, gameC18, gameC19, gameD12, gameD16 */

t7I73 = (a7, str.rI73.stage3, substrateFAM, str.rI73.stage4, bind);

/* gameB17, gameD13, gameD17 */

t8I83 = (a8, str.rI83.stage3, substrateFAM, str.rI83.stage4, bind);

/* gameA14, gameB18, gameB19, gameC13, gameC17, gameD14 */

t9I93 = (a9, str.rI93.stage3, substrateFAM, str.rI93.stage4, bind);

/* gameA18 */

252

Appendix C. Four Layer Cascade DNADL File

t1I14 = (a1, str.rI14.stage3, substrateFAM, str.rI14.stage4, bind);

/* gameB18 */

t2I24 = (a2, str.rI24.stage3, substrateFAM, str.rI24.stage4, bind);

/* gameB19 */

t3I34 = (a3, str.rI34.stage3, substrateFAM, str.rI34.stage4, bind);

/* gameA19 */

t4I44 = (a4, str.rI44.stage3, substrateFAM, str.rI44.stage4, bind);

/* gameC18 */

t6I64 = (a6, str.rI64.stage3, substrateFAM, str.rI64.stage4, bind);

/* gameD18 */

t7I74 = (a7, str.rI74.stage3, substrateFAM, str.rI74.stage4, bind);

/* gameD19 */

t8I84 = (a8, str.rI84.stage3, substrateFAM, str.rI84.stage4, bind);

/* gameC19 */

t9I94 = (a9, str.rI94.stage3, substrateFAM, str.rI94.stage4, bind);

with tCase1and0-1

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA6, gameA7, */

/* gameA8, gameA9, gameA10, gameA11, gameA12, gameA13, gameA14, */

/* gameA15, gameA16, gameA17, gameA18, gameA19, */

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB6, gameB7, */

/* gameB8, gameB9, gameB10, gameB11, gameB12, gameB13, gameB14, */

/* gameB15, gameB16, gameB17, gameB18, gameB19, */

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC6, gameC7, */

/* gameC8, gameC9, gameC10, gameC11, gameC12, gameC13, gameC14, */

/* gameC15, gameC16, gameC17, gameC18, gameC19, */

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD6, gameD7, */

/* gameD8, gameD9, gameD10, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t1I21I62 = (a1, str.aI21I62.stage0, str.aI21I62.stage1,fold);

t1I71I42 = (a1, str.aI71I42.stage0, str.aI71I42.stage1,fold);

253

Appendix C. Four Layer Cascade DNADL File

t1I82I73 = (a1, str.aI82I73.stage0, str.aI82I73.stage1,fold);

t1I33I44 = (a1, str.aI33I44.stage0, str.aI33I44.stage1,fold);

t2I62I13 = (a2, str.aI62I13.stage0, str.aI62I13.stage1,fold);

t2I93I34 = (a2, str.aI93I34.stage0, str.aI93I34.stage1,fold);

t3I11I22 = (a3, str.aI11I22.stage0, str.aI11I22.stage1,fold);

t3I61I82 = (a3, str.aI61I82.stage0, str.aI61I82.stage1,fold);

t3I42I13 = (a3, str.aI42I13.stage0, str.aI42I13.stage1,fold);

t3I93I24 = (a3, str.aI93I24.stage0, str.aI93I24.stage1,fold);

t4I22I73 = (a4, str.aI22I73.stage0, str.aI22I73.stage1,fold);

t4I33I14 = (a4, str.aI33I14.stage0, str.aI33I14.stage1,fold);

t6I82I33 = (a6, str.aI82I33.stage0, str.aI82I33.stage1,fold);

t6I73I94 = (a6, str.aI73I94.stage0, str.aI73I94.stage1,fold);

t7I41I22 = (a7, str.aI41I22.stage0, str.aI41I22.stage1,fold);

t7I91I82 = (a7, str.aI91I82.stage0, str.aI91I82.stage1,fold);

t7I62I93 = (a7, str.aI62I93.stage0, str.aI62I93.stage1,fold);

t7I13I84 = (a7, str.aI13I84.stage0, str.aI13I84.stage1,fold);

t8I42I93 = (a8, str.aI42I93.stage0, str.aI42I93.stage1,fold);

t8I13I74 = (a8, str.aI13I74.stage0, str.aI13I74.stage1,fold);

t9I31I62 = (a9, str.aI31I62.stage0, str.aI31I62.stage1,fold);

t9I81I42 = (a9, str.aI81I42.stage0, str.aI81I42.stage1,fold);

t9I22I33 = (a9, str.aI22I33.stage0, str.aI22I33.stage1,fold);

t9I73I64 = (a9, str.aI73I64.stage0, str.aI73I64.stage1,fold);

with tCase1and1-2

/* gameC11, gameC12, gameC13, gameC18, gameC19 */

t3I11I22 = (a3, str.aI11I22.stage1, slI11,

str.aI11I22.stage2, bind);

/* gameC14, gameC15, gameC16, gameC17 */

t7I41I22 = (a7, str.aI41I22.stage1, slI41,

str.aI41I22.stage2, bind);

254

Appendix C. Four Layer Cascade DNADL File

/* gameB15, gameB16, gameB17, gameB18, gameB19 */

t1I71I42 = (a1, str.aI71I42.stage1, slI71,

str.aI71I42.stage2, bind);

/* gameB11, gameB12, gameB13, gameB14 */

t9I81I42 = (a9, str.aI81I42.stage1, slI81,

str.aI81I42.stage2, bind);

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t9I31I62 = (a9, str.aI31I62.stage1, slI31,

str.aI31I62.stage2, bind);

/* gameA11, gameA12, gameA13, gameA14 */

t3I61I82 = (a3, str.aI61I82.stage1, slI61,

str.aI61I82.stage2, bind);

/* gameD11, gameD12, gameD13, gameD14 */

t1I21I62 = (a1, str.aI21I62.stage1, slI21,

str.aI21I62.stage2, bind);

/* gameA15, gameA16, gameA17, gameA18, gameA19 */

t7I91I82 = (a7, str.aI91I82.stage1, slI91,

str.aI91I82.stage2, bind);

/* gameB18, gameB19 */

t8I42I93 = (a8, str.aI42I93.stage1, slI42,

str.aI42I93.stage2, bind);

/* gameD14 */

t7I62I93 = (a7, str.aI62I93.stage1, slI62,

str.aI62I93.stage2, bind);

/* gameB14 */

t3I42I13 = (a3, str.aI42I13.stage1, slI42,

str.aI42I13.stage2, bind);

/* gameA18 */

t4I33I14 = (a4, str.aI33I14.stage1, slI33,

str.aI33I14.stage2, bind);

/* gameB18 */

255

Appendix C. Four Layer Cascade DNADL File

t3I93I24 = (a3, str.aI93I24.stage1, slI93,

str.aI93I24.stage2, bind);

/* gameB19 */

t2I93I34 = (a2, str.aI93I34.stage1, slI93,

str.aI93I34.stage2, bind);

/* gameA19 */

t1I33I44 = (a1, str.aI33I44.stage1, slI33,

str.aI33I44.stage2, bind);

/* gameC18 */

t9I73I64 = (a9, str.aI73I64.stage1, slI73,

str.aI73I64.stage2, bind);

/* gameD18 */

t8I13I74 = (a8, str.aI13I74.stage1, slI13,

str.aI13I74.stage2, bind);

/* gameD19 */

t7I13I84 = (a7, str.aI13I84.stage1, slI13,

str.aI13I84.stage2, bind);

/* gameC19 */

t6I73I94 = (a6, str.aI73I94.stage1, slI73,

str.aI73I94.stage2, bind);

/* gameD18, gameD19 */

t2I62I13 = (a2, str.aI62I13.stage1, slI62,

str.aI62I13.stage2, bind);

/* gameC15 */

t9I22I33 = (a9, str.aI22I33.stage1, slI22,

str.aI22I33.stage2, bind);

/* gameA18, gameA19 */

t6I82I33 = (a6, str.aI82I33.stage1, slI82,

str.aI82I33.stage2, bind);

/* gameC18, gameC19 */

t4I22I73 = (a4, str.aI22I73.stage1, slI22,

256

Appendix C. Four Layer Cascade DNADL File

str.aI22I73.stage2, bind);

/* gameA13 */

t1I82I73 = (a1, str.aI82I73.stage1, slI82,

str.aI82I73.stage2, bind);

with tCase1and2-3

/* gameC11, gameC12, gameC13, gameC18, gameC19 */

t3I11I22 = (a3, str.aI11I22.stage2, slI22,

str.aI11I22.stage3, bind);

/* gameC14, gameC15, gameC16, gameC17 */

t7I41I22 = (a7, str.aI41I22.stage2, slI22,

str.aI41I22.stage3, bind);

/* gameB15, gameB16, gameB17, gameB18, gameB19 */

t1I71I42 = (a1, str.aI71I42.stage2, slI42,

str.aI71I42.stage3, bind);

/* gameB11, gameB12, gameB13, gameB14 */

t9I81I42 = (a9, str.aI81I42.stage2, slI42,

str.aI81I42.stage3, bind);

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t9I31I62 = (a9, str.aI31I62.stage2, slI62,

str.aI31I62.stage3, bind);

/* gameA11, gameA12, gameA13, gameA14 */

t3I61I82 = (a3, str.aI61I82.stage2, slI82,

str.aI61I82.stage3, bind);

/* gameD11, gameD12, gameD13, gameD14 */

t1I21I62 = (a1, str.aI21I62.stage2, slI62,

str.aI21I62.stage3, bind);

/* gameA15, gameA16, gameA17, gameA18, gameA19 */

t7I91I82 = (a7, str.aI91I82.stage2, slI82,

str.aI91I82.stage3, bind);

257

Appendix C. Four Layer Cascade DNADL File

/* gameB18, gameB19 */

t8I42I93 = (a8, str.aI42I93.stage2, slI93,

str.aI42I93.stage3, bind);

/* gameD14 */

t7I62I93 = (a7, str.aI62I93.stage2, slI93,

str.aI62I93.stage3, bind);

/* gameB14 */

t3I42I13 = (a3, str.aI42I13.stage2, slI13,

str.aI42I13.stage3, bind);

/* gameA18 */

t4I33I14 = (a4, str.aI33I14.stage2, slI14,

str.aI33I14.stage3, bind);

/* gameB18 */

t3I93I24 = (a3, str.aI93I24.stage2, slI24,

str.aI93I24.stage3, bind);

/* gameB19 */

t2I93I34 = (a2, str.aI93I34.stage2, slI34,

str.aI93I34.stage3, bind);

/* gameA19 */

t1I33I44 = (a1, str.aI33I44.stage2, slI44,

str.aI33I44.stage3, bind);

/* gameC18 */

t9I73I64 = (a9, str.aI73I64.stage2, slI64,

str.aI73I64.stage3, bind);

/* gameD18 */

t8I13I74 = (a8, str.aI13I74.stage2, slI74,

str.aI13I74.stage3, bind);

/* gameD19 */

t7I13I84 = (a7, str.aI13I84.stage2, slI84,

str.aI13I84.stage3, bind);

/* gameC19 */

258

Appendix C. Four Layer Cascade DNADL File

t6I73I94 = (a6, str.aI73I94.stage2, slI94,

str.aI73I94.stage3, bind);

/* gameD18, gameD19 */

t2I62I13 = (a2, str.aI62I13.stage2, slI13,

str.aI62I13.stage3, bind);

/* gameC15 */

t9I22I33 = (a9, str.aI22I33.stage2, slI33,

str.aI22I33.stage3, bind);

/* gameA18, gameA19 */

t6I82I33 = (a6, str.aI82I33.stage2, slI33,

str.aI82I33.stage3, bind);

/* gameC18, gameC19 */

t4I22I73 = (a4, str.aI22I73.stage2, slI73,

str.aI22I73.stage3, bind);

/* gameA13 */

t1I82I73 = (a1, str.aI82I73.stage2, slI73,

str.aI82I73.stage3, bind);

with tCase1and3-4

/* gameC11, gameC12, gameC13, gameC18, gameC19 */

t3I11I22 = (a3, str.aI11I22.stage3, str.aI11I22.stage4,fold);

/* gameC14, gameC15, gameC16, gameC17 */

t7I41I22 = (a7, str.aI41I22.stage3, str.aI41I22.stage4,fold);

/* gameB15, gameB16, gameB17, gameB18, gameB19 */

t1I71I42 = (a1, str.aI71I42.stage3, str.aI71I42.stage4,fold);

/* gameB11, gameB12, gameB13, gameB14 */

t9I81I42 = (a9, str.aI81I42.stage3, str.aI81I42.stage4,fold);

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t9I31I62 = (a9, str.aI31I62.stage3, str.aI31I62.stage4,fold);

259

Appendix C. Four Layer Cascade DNADL File

/* gameA11, gameA12, gameA13, gameA14 */

t3I61I82 = (a3, str.aI61I82.stage3, str.aI61I82.stage4,fold);

/* gameD11, gameD12, gameD13, gameD14 */

t1I21I62 = (a1, str.aI21I62.stage3, str.aI21I62.stage4,fold);

/* gameA15, gameA16, gameA17, gameA18, gameA19 */

t7I91I82 = (a7, str.aI91I82.stage3, str.aI91I82.stage4,fold);

/* gameB18, gameB19 */

t8I42I93 = (a8, str.aI42I93.stage3, str.aI42I93.stage4,fold);

/* gameD14 */

t7I62I93 = (a7, str.aI62I93.stage3, str.aI62I93.stage4,fold);

/* gameB14 */

t3I42I13 = (a3, str.aI42I13.stage3, str.aI42I13.stage4,fold);

/* gameA18 */

t4I33I14 = (a4, str.aI33I14.stage3, str.aI33I14.stage4,fold);

/* gameB18 */

t3I93I24 = (a3, str.aI93I24.stage3, str.aI93I24.stage4,fold);

/* gameB19 */

t2I93I34 = (a2, str.aI93I34.stage3, str.aI93I34.stage4,fold);

/* gameA19 */

t1I33I44 = (a1, str.aI33I44.stage3, str.aI33I44.stage4,fold);

/* gameC18 */

t9I73I64 = (a9, str.aI73I64.stage3, str.aI73I64.stage4,fold);

/* gameD18 */

t8I13I74 = (a8, str.aI13I74.stage3, str.aI13I74.stage4,fold);

/* gameD19 */

t7I13I84 = (a7, str.aI13I84.stage3, str.aI13I84.stage4,fold);

/* gameC19 */

t6I73I94 = (a6, str.aI73I94.stage3, str.aI73I94.stage4,fold);

260

Appendix C. Four Layer Cascade DNADL File

/* gameD18, gameD19 */

t2I62I13 = (a2, str.aI62I13.stage3, str.aI62I13.stage4,fold);

/* gameC15 */

t9I22I33 = (a9, str.aI22I33.stage3, str.aI22I33.stage4,fold);

/* gameA18, gameA19 */

t6I82I33 = (a6, str.aI82I33.stage3, str.aI82I33.stage4,fold);

/* gameC18, gameC19 */

t4I22I73 = (a4, str.aI22I73.stage3, str.aI22I73.stage4,fold);

/* gameA13 */

t1I82I73 = (a1, str.aI82I73.stage3, str.aI82I73.stage4,fold);

with tCase1and4-5

/* gameC11, gameC12, gameC13, gameC18, gameC19 */

t3I11I22 = (a3, str.aI11I22.stage4, substrateTAMRA,

str.aI11I22.stage5, bind);

/* gameC14, gameC15, gameC16, gameC17 */

t7I41I22 = (a7, str.aI41I22.stage4, substrateTAMRA,

str.aI41I22.stage5, bind);

/* gameB15, gameB16, gameB17, gameB18, gameB19 */

t1I71I42 = (a1, str.aI71I42.stage4, substrateTAMRA,

str.aI71I42.stage5, bind);

/* gameB11, gameB12, gameB13, gameB14 */

t9I81I42 = (a9, str.aI81I42.stage4, substrateTAMRA,

str.aI81I42.stage5, bind);

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t9I31I62 = (a9, str.aI31I62.stage4, substrateTAMRA,

str.aI31I62.stage5, bind);

/* gameA11, gameA12, gameA13, gameA14 */

t3I61I82 = (a3, str.aI61I82.stage4, substrateTAMRA,

261

Appendix C. Four Layer Cascade DNADL File

str.aI61I82.stage5, bind);

/* gameD11, gameD12, gameD13, gameD14 */

t1I21I62 = (a1, str.aI21I62.stage4, substrateTAMRA,

str.aI21I62.stage5, bind);

/* gameA15, gameA16, gameA17, gameA18, gameA19 */

t7I91I82 = (a7, str.aI91I82.stage4, substrateTAMRA,

str.aI91I82.stage5, bind);

/* gameB18, gameB19 */

t8I42I93 = (a8, str.aI42I93.stage4, substrateTAMRA,

str.aI42I93.stage5, bind);

/* gameD14 */

t7I62I93 = (a7, str.aI62I93.stage4, substrateTAMRA,

str.aI62I93.stage5, bind);

/* gameB14 */

t3I42I13 = (a3, str.aI42I13.stage4, substrateTAMRA,

str.aI42I13.stage5, bind);

/* gameA18 */

t4I33I14 = (a4, str.aI33I14.stage4, substrateTAMRA,

str.aI33I14.stage5, bind);

/* gameB18 */

t3I93I24 = (a3, str.aI93I24.stage4, substrateTAMRA,

str.aI93I24.stage5, bind);

/* gameB19 */

t2I93I34 = (a2, str.aI93I34.stage4, substrateTAMRA,

str.aI93I34.stage5, bind);

/* gameA19 */

t1I33I44 = (a1, str.aI33I44.stage4, substrateTAMRA,

str.aI33I44.stage5, bind);

/* gameC18 */

t9I73I64 = (a9, str.aI73I64.stage4, substrateTAMRA,

str.aI73I64.stage5, bind);

262

Appendix C. Four Layer Cascade DNADL File

/* gameD18 */

t8I13I74 = (a8, str.aI13I74.stage4, substrateTAMRA,

str.aI13I74.stage5, bind);

/* gameD19 */

t7I13I84 = (a7, str.aI13I84.stage4, substrateTAMRA,

str.aI13I84.stage5, bind);

/* gameC19 */

t6I73I94 = (a6, str.aI73I94.stage4, substrateTAMRA,

str.aI73I94.stage5, bind);

/* gameD18, gameD19 */

t2I62I13 = (a2, str.aI62I13.stage4, substrateTAMRA,

str.aI62I13.stage5, bind);

/* gameC15 */

t9I22I33 = (a9, str.aI22I33.stage4, substrateTAMRA,

str.aI22I33.stage5, bind);

/* gameA18, gameA19 */

t6I82I33 = (a6, str.aI82I33.stage4, substrateTAMRA,

str.aI82I33.stage5, bind);

/* gameC18, gameC19 */

t4I22I73 = (a4, str.aI22I73.stage4, substrateTAMRA,

str.aI22I73.stage5, bind);

/* gameA13 */

t1I82I73 = (a1, str.aI82I73.stage4, substrateTAMRA,

str.aI82I73.stage5, bind);

with tCase1andandnot0-1

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA6, gameA7, */

/* gameA8, gameA9, gameA10, gameA11, gameA12, gameA13, gameA14, */

/* gameA15, gameA16, gameA17, gameA18, gameA19, */

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB6, gameB7, */

/* gameB8, gameB9, gameB10, gameB11, gameB12, gameB13, gameB14, */

263

Appendix C. Four Layer Cascade DNADL File

/* gameB15, gameB16, gameB17, gameB18, gameB19, */

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC6, gameC7, */

/* gameC8, gameC9, gameC10, gameC11, gameC12, gameC13, gameC14, */

/* gameC15, gameC16, gameC17, gameC18, gameC19, */

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD6, gameD7, */

/* gameD8, gameD9, gameD10, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

t1I42I73I71 = (a1, str.aanI42I73I71.stage0,

str.aanI42I73I71.stage1,fold);

t1I42I33I71 = (a1, str.aanI42I33I71.stage0,

str.aanI42I33I71.stage1,fold);

t1I42I23I71 = (a1, str.aanI42I23I71.stage0,

str.aanI42I23I71.stage1,fold);

t1I62I73I21 = (a1, str.aanI62I73I21.stage0,

str.aanI62I73I21.stage1,fold);

t1I62I83I21 = (a1, str.aanI62I83I21.stage0,

str.aanI62I83I21.stage1,fold);

t1I62I23I21 = (a1, str.aanI62I23I21.stage0,

str.aanI62I23I21.stage1,fold);

t2I11I32I22 = (a2, str.aanI11I32I22.stage0,

str.aanI11I32I22.stage1,fold);

t2I11I42I22 = (a2, str.aanI11I42I22.stage0,

str.aanI11I42I22.stage1,fold);

t2I11I62I22 = (a2, str.aanI11I62I22.stage0,

str.aanI11I62I22.stage1,fold);

t2I11I72I22 = (a2, str.aanI11I72I22.stage0,

str.aanI11I72I22.stage1,fold);

t2I11I92I22 = (a2, str.aanI11I92I22.stage0,

str.aanI11I92I22.stage1,fold);

t2I41I12I22 = (a2, str.aanI4I12I22.stage0,

str.aanI41I12I22.stage1,fold);

t2I41I32I22 = (a2, str.aanI41I32I22.stage0,

str.aanI41I32I22.stage1,fold);

t2I41I62I22 = (a2, str.aanI41I62I22.stage0,

str.aanI41I62I22.stage1,fold);

t2I41I72I22 = (a2, str.aanI41I72I22.stage0,

str.aanI41I72I22.stage1,fold);

t2I41I92I22 = (a2, str.aanI41I92I22.stage0,

str.aanI41I92I22.stage1,fold);

264

Appendix C. Four Layer Cascade DNADL File

t3I22I13I11 = (a3, str.aanI22I13I11.stage0,

str.aanI22I13I11.stage1,fold);

t3I22I63I11 = (a3, str.aanI22I63I11.stage0,

str.aanI22I63I11.stage1,fold);

t3I22I93I11 = (a3, str.aanI22I93I11.stage0,

str.aanI22I93I11.stage1,fold);

t3I82I31I61 = (a3, str.aanI82I13I61.stage0,

str.aanI82I13I61.stage1,fold);

t3I81I43I61 = (a3, str.aanI82I43I61.stage0,

str.aanI82I43I61.stage1,fold);

t3I82I63I61 = (a3, str.aanI82I63I61.stage0,

str.aanI82I63I61.stage1,fold);

t4I71I12I42 = (a4, str.aanI71I12I42.stage0,

str.aanI71I12I42.stage1,fold);

t4I71I22I42 = (a4, str.aanI71I22I42.stage0,

str.aanI71I22I42.stage1,fold);

t4I71I32I42 = (a4, str.aanI71I32I42.stage0,

str.aanI71I32I42.stage1,fold);

t4I71I82I42 = (a4, str.aanI71I82I42.stage0,

str.aanI71I82I42.stage1,fold);

t4I71I92I42 = (a4, str.aanI71I92I42.stage0,

str.aanI71I92I42.stage1,fold);

t4I81I12I42 = (a4, str.aanI81I12I42.stage0,

str.aanI81I12I42.stage1,fold);

t4I81I22I42 = (a4, str.aanI81I22I42.stage0,

str.aanI81I22I42.stage1,fold);

t4I81I32I42 = (a4, str.aanI81I32I42.stage0,

str.anI81I32I42.stage1,fold);

t4I81I72I42 = (a4, str.aanI81I72I42.stage0,

str.anI81I72I42.stage1,fold);

t4I81I92I42 = (a4, str.aanI81I92I42.stage0,

str.sanI81I92I42.stage1,fold);

t6I21I12I62 = (a6, str.aanI21I12I62.stage0,

str.aanI21I12I62.stage1,fold);

t6I21I32I62 = (a6, str.aanI21I32I62.stage0,

str.aanI21I32I62.stage1,fold);

t6I21I72I62 = (a6, str.aanI21I72I62.stage0,

str.aanI21I72I62.stage1,fold);

265

Appendix C. Four Layer Cascade DNADL File

t6I21I82I62 = (a6, str.aanI21I82I62.stage0,

str.aanI21I82I62.stage1,fold);

t6I21I92I62 = (a6, str.aanI21I92I62.stage0,

str.aanI21I92I62.stage1,fold);

t6I31I12I62 = (a6, str.aanI31I12I62.stage0,

str.aanI31I12I62.stage1,fold);

t6I31I22I62 = (a6, str.aanI31I22I62.stage0,

str.aanI31I22I62.stage1,fold);

t6I31I72I62 = (a6, str.aanI31I72I62.stage0,

str.aanI31I72I62.stage1,fold);

t6I31I82I62 = (a6, str.aanI31I82I62.stage0,

str.aanI31I82I62.stage1,fold);

t6I31I92I62 = (a6, str.aanI31I92I62.stage0,

str.aanI31I92I62.stage1,fold);

t7I22I43I41 = (a7, str.aanI22I43I41.stage0,

str.aanI22I43I41.stage1,fold);

t7I22I63I41 = (a7, str.aanI22I63I41.stage0,

str.aanI22I63I41.stage1,fold);

t7I22I93I41 = (a7, str.aanI22I93I41.stage0,

str.aanI22I93I41.stage1,fold);

t7I82I13I91 = (a7, str.aanI82I13I91.stage0,

str.aanI82I13I91.stage1,fold);

t7I82I43I91 = (a7, str.aanI82I43I91.stage0,

str.aanI82I43I91.stage1,fold);

t7I82I93I91 = (a7, str.aanI82I93I91.stage0,

str.aanI82I93I91.stage1,fold);

t8I61I12I82 = (a8, str.aanI61I12I82.stage0,

str.aanI61I12I82.stage1,fold);

t8I61I32I82 = (a8, str.aanI61I32I82.stage0,

str.aanI61I32I82.stage1,fold);

t8I61I42I82 = (a8, str.aanI61I42I82.stage0,

str.aanI61I42I82.stage1,fold);

t8I61I72I82 = (a8, str.aanI61I72I82.stage0,

str.aanI61I72I82.stage1,fold);

t8I61I92I82 = (a8, str.aanI61I92I82.stage0,

str.aanI61I92I82.stage1,fold);

t8I91I12I82 = (a8, str.aanI91I12I82.stage0,

str.aanI91I12I82.stage1,fold);

t8I91I32I82 = (a8, str.aanI91I32I82.stage0,

266

Appendix C. Four Layer Cascade DNADL File

str.aanI91I32I82.stage1,fold);

t8I91I42I82 = (a8, str.aanI91I42I82.stage0,

str.aanI91I42I82.stage1,fold);

t8I91I62I82 = (a8, str.aanI91I62I82.stage0,

str.aanI91I62I82.stage1,fold);

t8I91I72I82 = (a8, str.aanI91I72I82.stage0,

str.aanI91I72I82.stage1,fold);

t9I42I23I81 = (a9, str.aanI42I23I81.stage0,

str.aanI42I23I81.stage1,fold);

t9I42I33I81 = (a9, str.aanI42I33I81.stage0,

str.aanI42I33I81.stage1,fold);

t9I42I83I81 = (a9, str.aanI42I83I81.stage0,

str.aanI42I83I81.stage1,fold);

t9I62I33I31 = (a9, str.aanI62I33I31.stage0,

str.aanI62I33I31.stage1,fold);

t9I62I73I31 = (a9, str.aanI62I73I31.stage0,

str.aanI62I73I31.stage1,fold);

t9I62I83I31 = (a9, str.aanI62I83I31.stage0,

str.aanI62I83I31.stage1,fold);

with tCase1andandnot1-2

/* gameD1 */

t6I21I12I62 = (a6, str.aanI21I12I62.stage1, slI21,

str.aanI21I12I62.stage2, bind);

/* gameD6 */

t6I31I12I62 = (a6, str.aanI31I12I62.stage1, slI31,

str.aanI31I12I62.stage2, bind);

/* gameC6 */

t2I41I12I22 = (a2, str.aanI41I12I22.stage1, slI41,

str.aanI41I12I22.stage2, bind);

/* gameA1, gameA6 */

t8I61I12I82 = (a8, str.aanI61I12I82.stage1, slI61,

str.aanI61I12I82.stage2, bind);

/* gameB6 */

267

Appendix C. Four Layer Cascade DNADL File

t4I71I12I42 = (a4, str.aanI71I12I42.stage1, slI71,

str.aanI71I12I42.stage2, bind);

/* gameB1 */

t4I81I12I42 = (a4, str.aanI81I12I42.stage1, slI81,

str.aanI81I12I42.stage2, bind);

/* gameD7 */

t6I31I22I62 = (a6, str.aanI31I22I62.stage1, slI31,

str.aanI31I22I62.stage2, bind);

/* gameB2 */

t4I81I22I42 = (a4, str.aanI81I22I42.stage1, slI81,

str.aanI81I22I42.stage2, bind);

/* gameB7 */

t4I71I22I42 = (a4, str.aanI71I22I42.stage1, slI71,

str.aanI71I22I42.stage2, bind);

/* gameC1 */

t2I11I32I22 = (a2, str.aanI11I32I22.stage1, slI11,

str.aanI11I32I22.stage2, bind);

/*gameD2 */

t6I21I32I62 = (a6, str.aanI21I32I62.stage1, slI21,

str.aanI21I32I62.stage2, bind);

/* gameC7 */

t2I41I32I22 = (a2, str.aanI41I32I22.stage1, slI41,

str.aanI41I32I22.stage2, bind);

/* gameA2 */

t8I61I32I82 = (a8, str.aanI61I32I82.stage1, slI61,

str.aanI61I32I82.stage2, bind);

/* gameB8 */

t4I71I32I42 = (a4, str.aanI71I32I42.stage1, slI71,

str.aanI71I32I42.stage2, bind);

/* gameB3 */

t4I81I32I42 = (a4, str.aanI81I32I42.stage1, slI81,

268

Appendix C. Four Layer Cascade DNADL File

str.aanI81I32I42.stage2, bind);

/* gameC2 */

t2I11I42I22 = (a2, str.aanI11I42I22.stage1, slI11,

str.aanI11I42I22.stage2, bind);

/* gameA3 */

t8I61I42I82 = (a8, str.aanI61I42I82.stage1, slI61,

str.aanI61I42I82.stage2, bind);

/* gameC3 */

t2I11I62I22 = (a2, str.aanI11I62I22.stage1, slI11,

str.aanI11I62I22.stage2, bind);

/* gameC8 */

t2I41I62I22 = (a2, str.aanI41I62I22.stage1, slI41,

str.aanI41I62I22.stage2, bind);

/* gameA7 */

t8I91I32I82 = (a8, str.aanI91I32I82.stage1, slI91,

str.aanI91I32I82.stage2, bind);

/* gameA8 */

t8I91I42I82 = (a8, str.aanI91I42I82.stage1, slI91,

str.aanI91I42I82.stage2, bind);

/* gameA9 */

t8I91I62I82 = (a8, str.aanI91I62I82.stage1, slI91,

str.aanI91I62I82.stage2, bind);

/* gameC4 */

t2I11I72I22 = (a2, str.aanI11I72I22.stage1, slI11,

str.aanI11I72I22.stage2, bind);

/* gameD3 */

t6I21I72I62 = (a6, str.aanI21I72I62.stage1, slI21,

str.aanI21I72I62.stage2, bind);

/* gameD8 */

t6I31I72I62 = (a6, str.aanI31I72I62.stage1, slI31,

str.aanI31I72I62.stage2, bind);

269

Appendix C. Four Layer Cascade DNADL File

/* gameC9 */

t2I42I72I22 = (a2, str.aanI41I72I22.stage1, slI41,

str.aanI41I72I22.stage2, bind);

/* gameA4 */

t8I61I72I82 = (a8, str.aanI61I72I82.stage1, slI61,

str.aanI61I72I82.stage2, bind);

/* gameA5 */

t8I61I92I82 = (a8, str.aanI61I92I82.stage1, slI61,

str.aanI61I92I82.stage2, bind);

/* gameB4 */

t4I81I72I42 = (a4, str.aanI81I72I42.stage1, slI81,

str.aanI81I72I42.stage2, bind);

/* gameB5 */

t4I81I92I42 = (a4, str.aanI81I92I42.stage1, slI81,

str.aanI81I92I42.stage2, bind);

/* gameA10 */

t8I91I72I82 = (a8, str.aanI91I72I82.stage1, slI91,

str.aanI91I72I82.stage2, bind);

/* gameD4 */

t6I21I82I62 = (a6, str.aanI21I82I62.stage1, slI21,

str.aanI21I82I62.stage2, bind);

/* gameD9 */

t6I31I82I62 = (a6, str.aanI31I82I62.stage1, slI31,

str.aanI31I82I62.stage2, bind);

/* gameB9 */

t4I71I82I42 = (a4, str.aanI71I82I42.stage1, slI71,

str.aanI71I82I42.stage2, bind);

/* gameB10 */

t4I71I92I42 = (a4, str.aanI71I92I42.stage1, slI71,

str.aanI71I92I42.stage2, bind);

270

Appendix C. Four Layer Cascade DNADL File

/* gameC5 */

t2I11I92I22 = (a2, str.aanI11I92I22.stage1, slI11,

str.aanI11I92I22.stage2, bind);

/* gameD5 */

t6I21I92I22 = (a6, str.aanI21I92I22.stage1, slI21,

str.aanI21I92I22.stage2, bind);

/* gameD10 */

t6I31I92I22 = (a6, str.aanI31I92I22.stage1, slI31,

str.aanI31I92I22.stage2, bind);

/* gameC10 */

t2I41I92I22 = (a2, str.aanI41I92I22.stage1, slI41,

str.aanI41I92I22.stage2, bind);

/* gameC14 */

t3I22I13I11 = (a3, str.aanI22I13I11.stage1, slI22,

str.aanI22I13I11.stage2, bind);

/* gameA11 */

t7I82I13I91 = (a7, str.aanI82I13I91.stage1, slI82,

str.aanI82I13I91.stage2, bind);

/* gameA15 */

t3I82I13I61 = (a3, str.aanI82I13I61.stage1, slI82,

str.aanI82I13I61.stage2, bind);

/* gameD15 */

t1I62I23I21 = (a1, str.aanI62I23I21.stage1, slI62,

str.aanI62I23I21.stage2, bind);

/* gameB11 */

t1I42I23I71 = (a1, str.aanI42I23I71.stage1, slI42,

str.aanI42I23I71.stage2, bind);

/* gameB15 */

t9I42I23I81 = (a9, str.aanI42I23I81.stage1, slI42,

str.aanI42I23I81.stage2, bind);

/* gameB12 */

271

Appendix C. Four Layer Cascade DNADL File

t1I42I33I71 = (a1, str.aanI42I33I71.stage1, slI42,

str.aanI42I33I71.stage2, bind);

/* gameB16 */

t9I42I33I91 = (a9, str.aanI42I33I91.stage1, slI42,

str.aanI42I33I91.stage2, bind);

/* gameD11 */

t9I61I33I31 = (a9, str.aanI62I33I31.stage1, slI62,

str.aanI62I33I31.stage2, bind);

/* gameC11 */

t7I22I43I41 = (a7, str.aanI22I43I41.stage1, slI22,

str.aanI22I43I41.stage2, bind);

/* gameA16 */

t3I82I43I61 = (a3, str.aanI82I43I61.stage1, slI82,

str.aanI82I43I61.stage2, bind);

/* gameA12 */

t7I81I43I91 = (a7, str.aanI82I43I91.stage1, slI82,

str.aanI82I43I91.stage2, bind);

/* gameC12 */

t7I22I63I41 = (a7, str.aanI22I63I41.stage1, slI22,

str.aanI22I63I41.stage2, bind);

/* gameC16 */

t3I22I63I11 = (a3, str.aanI22I63I11.stage1, slI22,

str.aanI22I63I11.stage2, bind);

/* gameA17 */

t3I81I63I61 = (a3, str.aanI82I63I61.stage1, slI82,

str.aanI82I63I61.stage2, bind);

/* gameB13 */

t1I41I73I71 = (a1, str.aanI42I73I71.stage1, slI42,

str.aanI42I73I71.stage2, bind);

/* gameD12 */

t9I62I73I31 = (a9, str.aanI62I73I31.stage1, slI62,

272

Appendix C. Four Layer Cascade DNADL File

str.aanI62I73I31.stage2, bind);

/* gameD16 */

t1I62I73I21 = (a1, str.aanI62I73I21.stage1, slI62,

str.aanI62I73I21.stage2, bind);

/* gameD17 */

t1I62I83I21 = (a1, str.aanI62I83I21.stage1, slI62,

str.aanI62I83I21.stage2, bind);

/* gameD13 */

t9I62I83I31 = (a9, str.aanI62I83I31.stage1, slI62,

str.aanI62I83I31.stage2, bind);

/* gameB17 */

t9I42I83I81 = (a9, str.aanI42I83I81.stage1, slI42,

str.aanI42I83I81.stage2, bind);

/* gameC13 */

t7I22I93I41 = (a7, str.aanI22I93I41.stage1, slI22,

str.aanI22I93I41.stage2, bind);

/* gameC17 */

t3I22I93I11 = (a3, str.aanI22I93I11.stage1, slI22,

str.aanI22I93I11.stage2, bind);

/* gameA14 */

t7I82I93I91 = (a7, str.aanI82I93I91.stage1, slI82,

str.aanI82I93I91.stage2, bind);

with tCase1andandnot2-3

/* gameD1 */

t6I21I12I62 = (a6, str.aanI21I12I62.stage2, slI12,

str.aanI21I12I62.stage3, bind);

/* gameD6 */

t6I31I12I62 = (a6, str.aanI31I12I62.stage2, slI12,

str.aanI31I12I62.stage3, bind);

273

Appendix C. Four Layer Cascade DNADL File

/* gameC6 */

t2I41I12I22 = (a2, str.aanI41I12I22.stage2, slI12,

str.aanI41I12I22.stage3, bind);

/* gameA1, gameA6 */

t8I61I12I82 = (a8, str.aanI61I12I82.stage2, slI12,

str.aanI61I12I82.stage3, bind);

/* gameB6 */

t4I71I12I42 = (a4, str.aanI71I12I42.stage2, slI12,

str.aanI71I12I42.stage3, bind);

/* gameB1 */

t4I81I12I42 = (a4, str.aanI81I12I42.stage2, slI12,

str.aanI81I12I42.stage3, bind);

/* gameD7 */

t6I31I22I62 = (a6, str.aanI31I22I62.stage2, slI22,

str.aanI31I22I62.stage3, bind);

/* gameB2 */

t4I81I22I42 = (a4, str.aanI81I22I42.stage2, slI22,

str.aanI81I22I42.stage3, bind);

/* gameB7 */

t4I71I22I42 = (a4, str.aanI71I22I42.stage2, slI22,

str.aanI71I22I42.stage3, bind);

/* gameC1 */

t2I11I32I22 = (a2, str.aanI11I32I22.stage2, slI32,

str.aanI11I32I22.stage3, bind);

/* gameD2 */

t6I21I32I62 = (a6, str.aanI21I32I62.stage2, slI32,

str.aanI21I32I62.stage3, bind);

/* gameC7 */

t2I41I32I22 = (a2, str.aanI41I32I22.stage2, slI32,

str.aanI41I32I22.stage3, bind);

/* gameA2 */

274

Appendix C. Four Layer Cascade DNADL File

t8I61I32I82 = (a8, str.aanI61I32I82.stage2, slI32,

str.aanI61I32I82.stage3, bind);

/* gameB8 */

t4I71I32I42 = (a4, str.aanI71I32I42.stage2, slI32,

str.aanI71I32I42.stage3, bind);

/* gameB3 */

t4I81I32I42 = (a4, str.aanI81I32I42.stage2, slI32,

str.aanI81I32I42.stage3, bind);

/* gameC2 */

t2I11I42I22 = (a2, str.aanI11I42I22.stage2, slI42,

str.aanI11I42I22.stage3, bind);

/* gameA3 */

t8I61I42I82 = (a8, str.aanI61I42I82.stage2, slI42,

str.aanI61I42I82.stage3, bind);

/* gameC3 */

t2I11I62I22 = (a2, str.aanI11I62I22.stage2, slI62,

str.aanI11I62I22.stage3, bind);

/* gameC8 */

t2I41I62I22 = (a2, str.aanI41I62I22.stage2, slI62,

str.aanI41I62I22.stage3, bind);

/* gameA7 */

t8I91I32I82 = (a8, str.aanI91I32I82.stage2, slI32,

str.aanI91I32I82.stage3, bind);

/* gameA8 */

t8I91I42I82 = (a8, str.aanI91I42I82.stage2, slI42,

str.aanI91I42I82.stage3, bind);

/* gameA9 */

t8I91I62I82 = (a8, str.aanI91I62I82.stage2, slI62,

str.aanI91I62I82.stage3, bind);

/* gameC4 */

t2I11I72I22 = (a2, str.aanI11I72I22.stage2, slI72,

275

Appendix C. Four Layer Cascade DNADL File

str.aanI11I72I22.stage3, bind);

/* gameD3 */

t6I21I72I62 = (a6, str.aanI21I72I62.stage2, slI72,

str.aanI21I72I62.stage3, bind);

/* gameD8 */

t6I31I72I62 = (a6, str.aanI31I72I62.stage2, slI72,

str.aanI31I72I62.stage3, bind);

/* gameC9 */

t2I41I72I22 = (a2, str.aanI41I72I22.stage2, slI72,

str.aanI41I72I22.stage3, bind);

/* gameA4 */

t8I61I72I82 = (a8, str.aanI61I72I82.stage2, slI72,

str.aanI61I72I82.stage3, bind);

/* gameA5 */

t8I61I92I82 = (a8, str.aanI61I92I82.stage2, slI92,

str.aanI61I92I82.stage3, bind);

/* gameB4 */

t4I81I72I42 = (a4, str.aanI81I72I42.stage2, slI72,

str.aanI81I72I42.stage3, bind);

/* gameB5 */

t4I81I92I42 = (a4, str.aanI81I92I42.stage2, slI92,

str.aanI81I92I42.stage3, bind);

/* gameA10 */

t8I91I72I82 = (a8, str.aanI91I72I82.stage2, slI72,

str.aanI91I72I82.stage3, bind);

/* gameD4 */

t6I21I82I62 = (a6, str.aanI21I82I62.stage2, slI82,

str.aanI21I82I62.stage3, bind);

/* gameD9 */

t6I31I82I62 = (a6, str.aanI31I82I62.stage2, slI82,

str.aanI31I82I62.stage3, bind);

276

Appendix C. Four Layer Cascade DNADL File

/* gameB9 */

t4I71I82I42 = (a4, str.aanI71I82I42.stage2, slI82,

str.aanI71I82I42.stage3, bind);

/* gameB10 */

t4I71I92I42 = (a4, str.aanI71I92I42.stage2, slI92,

str.aanI71I92I42.stage3, bind);

/* gameC5 */

t2I11I92I22 = (a2, str.aanI11I92I22.stage2, slI92,

str.aanI11I92I22.stage3, bind);

/* gameD5 */

t6I21I92I22 = (a6, str.aanI21I92I22.stage2, slI92,

str.aanI21I92I22.stage3, bind);

/* gameD10 */

t6I31I92I22 = (a6, str.aanI31I92I22.stage2, slI92,

str.aanI31I92I22.stage3, bind);

/* gameC10 */

t2I41I92I22 = (a2, str.aanI41I92I22.stage2, slI92,

str.aanI41I92I22.stage3, bind);

/* gameC14 */

t3I22I13I11 = (a3, str.aanI22I13I11.stage2, slI13,

str.aanI22I13I11.stage3, bind);

/* gameA11 */

t7I82I13I91 = (a7, str.aanI82I13I91.stage2, slI13,

str.aanI82I13I91.stage3, bind);

/* gameA15 */

t3I82I13I61 = (a3, str.aanI82I13I61.stage2, slI13,

str.aanI82I13I61.stage3, bind);

/* gameD15 */

t1I62I23I21 = (a1, str.aanI62I23I21.stage2, slI23,

str.aanI62I23I21.stage3, bind);

277

Appendix C. Four Layer Cascade DNADL File

/* gameB11 */

t1I42I23I71 = (a1, str.aanI42I23I71.stage2, slI23,

str.aanI42I23I71.stage3, bind);

/* gameB15 */

t9I42I23I81 = (a9, str.aanI42I23I81.stage2, slI23,

str.aanI42I23I81.stage3, bind);

/* gameB12 */

t1I42I33I71 = (a1, str.aanI42I33I71.stage2, slI33,

str.aanI42I33I71.stage3, bind);

/* gameB16 */

t9I42I33I91 = (a9, str.aanI42I33I91.stage2, slI33,

str.aanI42I33I91.stage3, bind);

/* gameD11 */

t9I62I33I31 = (a9, str.aanI62I33I31.stage2, slI33,

str.aanI62I33I31.stage3, bind);

/* gameC11 */

t7I22I43I41 = (a7, str.aanI22I43I41.stage2, slI43,

str.aanI22I43I41.stage3, bind);

/* gameA16 */

t3I82I43I61 = (a3, str.aanI82I43I61.stage2, slI43,

str.aanI82I43I61.stage3, bind);

/* gameA12 */

t7I82I43I91 = (a7, str.aanI82I43I91.stage2, slI43,

str.aanI82I43I91.stage3, bind);

/* gameC12 */

t7I22I63I41 = (a7, str.aanI22I63I41.stage2, slI63,

str.aanI22I63I41.stage3, bind);

/* gameC16 */

t3I22I63I11 = (a3, str.aanI22I63I11.stage2, slI63,

str.aanI22I63I11.stage3, bind);

/* gameA17 */

278

Appendix C. Four Layer Cascade DNADL File

t3I82I63I61 = (a3, str.aanI82I63I61.stage2, slI63,

str.aanI82I63I61.stage3, bind);

/* gameB13 */

t1I42I73I71 = (a1, str.aanI42I73I71.stage2, slI73,

str.aanI42I73I71.stage3, bind);

/* gameD12 */

t9I62I73I31 = (a9, str.aanI62I73I31.stage2, slI73,

str.aanI62I73I31.stage3, bind);

/* gameD16 */

t1I62I73I21 = (a1, str.aanI62I73I21.stage2, slI73,

str.aanI62I73I21.stage3, bind);

/* gameD17 */

t1I62I83I21 = (a1, str.aanI62I83I21.stage2, slI83,

str.aanI62I83I21.stage3, bind);

/* gameD13 */

t9I62I83I31 = (a9, str.aanI62I83I31.stage2, slI83,

str.aanI62I83I31.stage3, bind);

/* gameB17 */

t9I42I83I81 = (a9, str.aanI42I83I81.stage2, slI83,

str.aanI42I83I81.stage3, bind);

/* gameC13 */

t7I22I93I41 = (a7, str.aanI22I93I41.stage2, slI93,

str.aanI22I93I41.stage3, bind);

/* gameC17 */

t3I22I93I11 = (a3, str.aanI22I93I11.stage2, slI93,

str.aanI22I93I11.stage3, bind);

/* gameA14 */

t7I82I93I91 = (a7, str.aanI82I93I91.stage2, slI93,

str.aanI82I93I91.stage3, bind);

with tCase1andandnot3-4

279

Appendix C. Four Layer Cascade DNADL File

/* gameD1 */

t6I21I12I62 = (a6, str.aanI21I12I62.stage3,

str.aanI21I12I62.stage4,fold);

/* gameD6 */

t6I31I12I62 = (a6, str.aanI31I12I62.stage3,

str.aanI31I12I62.stage4,fold);

/* gameC6 */

t2I41I12I22 = (a2, str.aanI41I12I22.stage3,

str.aanI41I12I22.stage4,fold);

/* gameA1, gameA6 */

t8I61I12I82 = (a8, str.aanI61I12I82.stage3,

str.aanI61I12I82.stage4,fold);

/* gameB6 */

t4I71I12I42 = (a4, str.aanI71I12I42.stage3,

str.aanI71I12I42.stage4,fold);

/* gameB1 */

t4I81I12I42 = (a4, str.aanI81I12I42.stage3,

str.aanI81I12I42.stage4,fold);

/* gameD7 */

t6I31I22I62 = (a6, str.aanI31I22I62.stage3,

str.aanI31I22I62.stage4,fold);

/* gameB2 */

t4I81I22I42 = (a4, str.aanI81I22I42.stage3,

str.aanI81I22I42.stage4,fold);

/* gameB7 */

t4I71I22I42 = (a4, str.aanI71I22I42.stage3,

str.aanI71I22I42.stage4,fold);

/* gameC1 */

t2I11I32I22 = (a2, str.aanI11I32I22.stage3,

str.aanI11I32I22.stage4,fold);

280

Appendix C. Four Layer Cascade DNADL File

/* gameD2 */

t6I21I32I62 = (a6, str.aanI21I32I62.stage3,

str.aanI21I32I62.stage4,fold);

/* gameC7 */

t2I41I32I22 = (a2, str.aanI41I32I22.stage3,

str.aanI41I32I22.stage4,fold);

/* gameA2 */

t8I61I32I82 = (a8, str.aanI61I32I82.stage3,

str.aanI61I32I82.stage4,fold);

/* gameB8 */

t4I71I32I42 = (a4, str.aanI71I32I42.stage3,

str.aanI71I32I42.stage4,fold);

/* gameB3 */

t4I81I32I42 = (a4, str.aanI81I32I42.stage3,

str.aanI81I32I42.stage4,fold);

/* gameC2 */

t2I11I42I22 = (a2, str.aanI11I42I22.stage3,

str.aanI11I42I22.stage4,fold);

/* gameA3 */

t8I61I42I82 = (a8, str.aanI61I42I82.stage3,

str.aanI61I42I82.stage4,fold);

/* gameC3 */

t2I11I62I22 = (a2, str.aanI11I62I22.stage3,

str.aanI11I62I22.stage4,fold);

/* gameC8 */

t2I41I62I22 = (a2, str.aanI41I62I22.stage3,

str.aanI41I62I22.stage4,fold);

/* gameA7 */

t8I91I32I82 = (a8, str.aanI91I32I82.stage3,

str.aanI91I32I82.stage4,fold);

/* gameA8 */

281

Appendix C. Four Layer Cascade DNADL File

t8I91I42I82 = (a8, str.aanI91I42I82.stage3,

str.aanI91I42I82.stage4,fold);

/* gameA9 */

t8I91I62I82 = (a8, str.aanI91I62I82.stage3,

str.aanI91I62I82.stage4,fold);

/* gameC4 */

t2I11I72I22 = (a2, str.aanI11I72I22.stage3,

str.aanI11I72I22.stage4,fold);

/* gameD3 */

t6I21I72I62 = (a6, str.aanI21I72I62.stage3,

str.aanI21I72I62.stage4,fold);

/* gameD8 */

t6I31I72I62 = (a6, str.aanI31I72I62.stage3,

str.aanI31I72I62.stage4,fold);

/* gameC9 */

t2I41I72I22 = (a2, str.aanI41I72I22.stage3,

str.aanI41I72I22.stage4,fold);

/* gameA4 */

t8I61I72I82 = (a8, str.aanI61I72I82.stage3,

str.aanI61I72I82.stage4,fold);

/* gameA5 */

t8I61I92I82 = (a8, str.aanI61I92I82.stage3,

str.aanI61I92I82.stage4,fold);

/* gameB4 */

t4I81I72I42 = (a4, str.aanI81I72I42.stage3,

str.aanI81I72I42.stage4,fold);

/* gameB5 */

t4I81I92I42 = (a4, str.aanI81I92I42.stage3,

str.aanI81I92I42.stage4,fold);

/* gameA10 */

t8I91I72I82 = (a8, str.aanI91I72I82.stage3,

282

Appendix C. Four Layer Cascade DNADL File

str.aanI91I72I82.stage4,fold);

/* gameD4 */

t6I21I82I62 = (a6, str.aanI21I82I62.stage3,

str.aanI21I82I62.stage4,fold);

/* gameD9 */

t6I31I82I62 = (a6, str.aanI31I82I62.stage3,

str.aanI31I82I62.stage4,fold);

/* gameB9 */

t4I71I82I42 = (a4, str.aanI71I82I42.stage3,

str.aanI71I82I42.stage4,fold);

/* gameB10 */

t4I71I92I42 = (a4, str.aanI71I92I42.stage3,

str.aanI71I92I42.stage4,fold);

/* gameC5 */

t2I11I92I22 = (a2, str.aanI11I92I22.stage3,

str.aanI11I92I22.stage4,fold);

/* gameD5 */

t6I21I92I22 = (a6, str.aanI21I92I22.stage3,

str.aanI21I92I22.stage4,fold);

/* gameD10 */

t6I31I92I22 = (a6, str.aanI31I92I22.stage3,

str.aanI31I92I22.stage4,fold);

/* gameC10 */

t2I41I92I22 = (a2, str.aanI41I92I22.stage3,

str.aanI41I92I22.stage4,fold);

/* gameC14 */

t3I22I13I11 = (a3, str.aanI22I13I11.stage3,

str.aanI22I13I11.stage4,fold);

/* gameA11 */

t7I82I13I91 = (a7, str.aanI82I13I91.stage3,

str.aanI82I13I91.stage4,fold);

283

Appendix C. Four Layer Cascade DNADL File

/* gameA15 */

t3I82I13I61 = (a3, str.aanI82I13I61.stage3,

str.aanI82I13I61.stage4,fold);

/* gameD15 */

t1I62I23I21 = (a1, str.aanI62I23I21.stage3,

str.aanI62I23I21.stage4,fold);

/* gameB11 */

t1I42I23I71 = (a1, str.aanI42I23I71.stage3,

str.aanI42I23I71.stage4,fold);

/* gameB15 */

t9I42I23I81 = (a9, str.aanI42I23I81.stage3,

str.aanI42I23I81.stage4,fold);

/* gameB12 */

t1I42I33I71 = (a1, str.aanI42I33I71.stage3,

str.aanI42I33I71.stage4,fold);

/* gameB16 */

t9I42I33I91 = (a9, str.aanI42I33I91.stage3,

str.aanI42I33I91.stage4,fold);

/* gameD11 */

t9I62I33I31 = (a9, str.aanI62I33I31.stage3,

str.aanI62I33I31.stage4,fold);

/* gameC11 */

t7I22I43I41 = (a7, str.aanI22I43I41.stage3,

str.aanI22I43I41.stage4,fold);

/* gameA16 */

t3I82I43I61 = (a3, str.aanI82I43I61.stage3,

str.aanI82I43I61.stage4,fold);

/* gameA12 */

t7I82I43I91 = (a7, str.aanI82I43I91.stage3,

str.aanI82I43I91.stage4,fold);

284

Appendix C. Four Layer Cascade DNADL File

/* gameC12 */

t7I22I63I41 = (a7, str.aanI22I63I41.stage3,

str.aanI22I63I41.stage4,fold);

/* gameC16 */

t3I22I63I11 = (a3, str.aanI22I63I11.stage3,

str.aanI22I63I11.stage4,fold);

/* gameA17 */

t3I82I63I61 = (a3, str.aanI82I63I61.stage3,

str.aanI82I63I61.stage4,fold);

/* gameB13 */

t1I42I73I71 = (a1, str.aanI42I73I71.stage3,

str.aanI42I73I71.stage4,fold);

/* gameD12 */

t9I62I73I31 = (a9, str.aanI62I73I31.stage3,

str.aanI62I73I31.stage4,fold);

/* gameD16 */

t1I62I73I21 = (a1, str.aanI62I73I21.stage3,

str.aanI62I73I21.stage4,fold);

/* gameD17 */

t1I62I83I21 = (a1, str.aanI62I83I21.stage3,

str.aanI62I83I21.stage4,fold);

/* gameD13 */

t9I62I83I31 = (a9, str.aanI62I83I31.stage3,

str.aanI62I83I31.stage4,fold);

/* gameB17 */

t9I42I83I81 = (a9, str.aanI42I83I81.stage3,

str.aanI42I83I81.stage4,fold);

/* gameC13 */

t7I22I93I41 = (a7, str.aanI22I93I41.stage3,

str.aanI22I93I41.stage4,fold);

/* gameC17 */

285

Appendix C. Four Layer Cascade DNADL File

t3I22I93I11 = (a3, str.aanI22I93I11.stage3,

str.aanI22I93I11.stage4,fold);

/* gameA14 */

t7I82I93I91 = (a7, str.aanI82I93I91.stage3,

str.aanI82I93I91.stage4,fold);

with tCase1andandnot4-5

/* gameD1 */

t6I21I12I62 = (a6, str.aanI21I12I62.stage4, substrateTAMRA,

str.aanI21I12I62.stage5, bind);

/* gameD6 */

t6I31I12I62 = (a6, str.aanI31I12I62.stage4, substrateTAMRA,

str.aanI31I12I62.stage5, bind);

/* gameC6 */

t2I41I21I22 = (a2, str.aanI41I12I22.stage4, substrateTAMRA,

str.aanI41I12I22.stage5, bind);

/* gameA1, gameA6 */

t8I61I12I82 = (a8, str.aanI61I12I82.stage4, substrateTAMRA,

str.aanI61I12I82.stage5, bind);

/* gameB6 */

t4I71I12I42 = (a4, str.aanI71I12I42.stage4, substrateTAMRA,

str.aanI71I12I42.stage5, bind);

/* gameB1 */

t4I81I12I42 = (a4, str.aanI81I12I42.stage4, substrateTAMRA,

str.aanI81I12I42.stage5, bind);

/* gameD7 */

t6I31I22I62 = (a6, str.aanI31I22I62.stage4, substrateTAMRA,

str.aanI31I22I62.stage5, bind);

/* gameB2 */

t4I81I22I42 = (a4, str.aanI81I22I42.stage4, substrateTAMRA,

str.aanI81I22I42.stage5, bind);

286

Appendix C. Four Layer Cascade DNADL File

/* gameB7 */

t4I71I22I42 = (a4, str.aanI71I22I42.stage4, substrateTAMRA,

str.aanI71I22I42.stage5, bind);

/* gameC1 */

t2I11I32I22 = (a2, str.aanI11I32I22.stage4, substrateTAMRA,

str.aanI11I32I22.stage5, bind);

/* gameD2 */

t6I21I32I62 = (a6, str.aanI21I32I62.stage4, substrateTAMRA,

str.aanI21I32I62.stage5, bind);

/* gameC7 */

t2I41I32I22 = (a2, str.aanI41I32I22.stage4, substrateTAMRA,

str.aanI41I32I22.stage5, bind);

/* gameA2 */

t8I61I32I82 = (a8, str.aanI61I32I82.stage4, substrateTAMRA,

str.aanI61I32I82.stage5, bind);

/* gameB8 */

t4I71I32I42 = (a4, str.aanI71I32I42.stage4, substrateTAMRA,

str.aanI71I32I42.stage5, bind);

/* gameB3 */

t4I81I32I42 = (a4, str.aanI81I32I42.stage4, substrateTAMRA,

str.aanI81I32I42.stage5, bind);

/* gameC2 */

t2I11I42I22 = (a2, str.aanI11I42I22.stage4, substrateTAMRA,

str.aanI11I42I22.stage5, bind);

/* gameA3 */

t8I61I42I82 = (a8, str.aanI61I42I82.stage4, substrateTAMRA,

str.aanI61I42I82.stage5, bind);

/* gameC3 */

t2I11I62I22 = (a2, str.aanI11I62I22.stage4, substrateTAMRA,

str.aanI11I62I22.stage5, bind);

287

Appendix C. Four Layer Cascade DNADL File

/* gameC8 */

t2I41I62I22 = (a2, str.aanI41I62I22.stage4, substrateTAMRA,

str.aanI41I62I22.stage5, bind);

/* gameA7 */

t8I91I32I82 = (a8, str.aanI91I32I82.stage4, substrateTAMRA,

str.aanI91I32I82.stage5, bind);

/* gameA8 */

t8I91I42I82 = (a8, str.aanI91I42I82.stage4, substrateTAMRA,

str.aanI91I42I82.stage5, bind);

/* gameA9 */

t8I91I62I82 = (a8, str.aanI91I62I82.stage4, substrateTAMRA,

str.aanI91I62I82.stage5, bind);

/* gameC4 */

t2I11I72I22 = (a2, str.aanI11I72I22.stage4, substrateTAMRA,

str.aanI11I72I22.stage5, bind);

/* gameD3 */

t6I21I72I62 = (a6, str.aanI21I72I62.stage4, substrateTAMRA,

str.aanI21I72I62.stage5, bind);

/* gameD8 */

t6I31I72I62 = (a6, str.aanI31I72I62.stage4, substrateTAMRA,

str.aanI31I72I62.stage5, bind);

/* gameC9 */

t2I41I72I22 = (a2, str.aanI41I72I22.stage4, substrateTAMRA,

str.aanI41I72I22.stage5, bind);

/* gameA4 */

t8I61I72I82 = (a8, str.aanI61I72I82.stage4, substrateTAMRA,

str.aanI61I72I82.stage5, bind);

/* gameA5 */

t8I61I92I82 = (a8, str.aanI61I92I82.stage4, substrateTAMRA,

str.aanI61I92I82.stage5, bind);

/* gameB4 */

288

Appendix C. Four Layer Cascade DNADL File

t4I81I72I42 = (a4, str.aanI81I72I42.stage4, substrateTAMRA,

str.aanI81I72I42.stage5, bind);

/* gameB5 */

t4I81I92I42 = (a4, str.aanI81I92I42.stage4, substrateTAMRA,

str.aanI81I92I42.stage5, bind);

/* gameA10 */

t8I91I72I82 = (a8, str.aanI91I72I82.stage4, substrateTAMRA,

str.aanI91I72I82.stage5, bind);

/* gameD4 */

t6I21I82I62 = (a6, str.aanI21I82I62.stage4, substrateTAMRA,

str.aanI21I82I62.stage5, bind);

/* gameD9 */

t6I31I82I62 = (a6, str.aanI31I82I62.stage4, substrateTAMRA,

str.aanI31I82I62.stage5, bind);

/* gameB9 */

t4I71I82I42 = (a4, str.aanI71I82I42.stage4, substrateTAMRA,

str.aanI71I82I42.stage5, bind);

/* gameB10 */

t4I71I92I42 = (a4, str.aanI71I92I42.stage4, substrateTAMRA,

str.aanI71I92I42.stage5, bind);

/* gameC5 */

t2I11I92I22 = (a2, str.aanI11I92I22.stage4, substrateTAMRA,

str.aanI11I92I22.stage5, bind);

/* gameD5 */

t6I21I92I22 = (a6, str.aanI21I92I22.stage4, substrateTAMRA,

str.aanI21I92I22.stage5, bind);

/* gameD10 */

t6I31I92I22 = (a6, str.aanI31I92I22.stage4, substrateTAMRA,

str.aanI31I92I22.stage5, bind);

/* gameC10 */

t2I41I92I22 = (a2, str.aanI41I92I22.stage4, substrateTAMRA,

289

Appendix C. Four Layer Cascade DNADL File

str.aanI41I92I22.stage5, bind);

/* gameC14 */

t3I22I13I11 = (a3, str.aanI22I13I11.stage4, substrateTAMRA,

str.aanI22I13I11.stage5, bind);

/* gameA11 */

t7I82I13I91 = (a7, str.aanI82I13I91.stage4, substrateTAMRA,

str.aanI82I13I91.stage5, bind);

/* gameA15 */

t3I82I13I61 = (a3, str.aanI82I13I61.stage4, substrateTAMRA,

str.aanI82I13I61.stage5, bind);

/* gameD15 */

t1I62I23I21 = (a1, str.aanI62I23I21.stage4, substrateTAMRA,

str.aanI62I23I21.stage5, bind);

/* gameB11 */

t1I42I23I71 = (a1, str.aanI42I23I71.stage4, substrateTAMRA,

str.aanI42I23I71.stage5, bind);

/* gameB15 */

t9I42I23I81 = (a9, str.aanI42I23I81.stage4, substrateTAMRA,

str.aanI42I23I81.stage5, bind);

/* gameB12 */

t1I42I33I71 = (a1, str.aanI42I33I71.stage4, substrateTAMRA,

str.aanI42I33I71.stage5, bind);

/* gameB16 */

t9I42I33I91 = (a9, str.aanI42I33I91.stage4, substrateTAMRA,

str.aanI42I33I91.stage5, bind);

/* gameD11 */

t9I62I33I31 = (a9, str.aanI62I33I31.stage4, substrateTAMRA,

str.aanI62I33I31.stage5, bind);

/* gameC11 */

t7I22I43I41 = (a7, str.aanI22I43I41.stage4, substrateTAMRA,

str.aanI22I43I41.stage5, bind);

290

Appendix C. Four Layer Cascade DNADL File

/* gameA16 */

t3I82I43I61 = (a3, str.aanI82I43I61.stage4, substrateTAMRA,

str.aanI82I43I61.stage5, bind);

/* gameA12 */

t7I82I43I91 = (a7, str.aanI82I43I91.stage4, substrateTAMRA,

str.aanI82I43I91.stage5, bind);

/* gameC12 */

t7I22I63I41 = (a7, str.aanI22I63I41.stage4, substrateTAMRA,

str.aanI22I63I41.stage5, bind);

/* gameC16 */

t3I22I63I11 = (a3, str.aanI22I63I11.stage4, substrateTAMRA,

str.aanI22I63I11.stage5, bind);

/* gameA17 */

t3I82I63I61 = (a3, str.aanI82I63I61.stage4, substrateTAMRA,

str.aanI82I63I61.stage5, bind);

/* gameB13 */

t1I42I73I71 = (a1, str.aanI42I73I71.stage4, substrateTAMRA,

str.aanI42I73I71.stage5, bind);

/* gameD12 */

t9I62I73I31 = (a9, str.aanI62I73I31.stage4, substrateTAMRA,

str.aanI62I73I31.stage5, bind);

/* gameD16 */

t1I62I73I21 = (a1, str.aanI62I73I21.stage4, substrateTAMRA,

str.aanI62I73I21.stage5, bind);

/* gameD17 */

t1I62I83I21 = (a1, str.aanI62I83I21.stage4, substrateTAMRA,

str.aanI62I83I21.stage5, bind);

/* gameD13 */

t9I62I83I31 = (a9, str.aanI62I83I31.stage4, substrateTAMRA,

str.aanI62I83I31.stage5, bind);

291

Appendix C. Four Layer Cascade DNADL File

/* gameB17 */

t9I42I83I81 = (a9, str.aanI42I83I81.stage4, substrateTAMRA,

str.aanI42I83I81.stage5, bind);

/* gameC13 */

t7I22I93I41 = (a7, str.aanI22I93I41.stage4, substrateTAMRA,

str.aanI22I93I41.stage5, bind);

/* gameC17 */

t3I22I93I11 = (a3, str.aanI22I93I11.stage4, substrateTAMRA,

str.aanI22I93I11.stage5, bind);

/* gameA14 */

t7I82I93I91 = (a7, str.aanI82I93I91.stage4, substrateTAMRA,

str.aanI82I93I91.stage5, bind);

EXECUTIONMECHANISM

with cmCase1recog

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA6, gameA7, */

/* gameA8, gameA9, gameA10, gameA11, gameA12, gameA13, gameA14, */

/* gameA15, gameA16, gameA17, gameA18, gameA19, */

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB6, gameB7, */

/* gameB8, gameB9, gameB10, gameB11, gameB12, gameB13, gameB14, */

/* gameB15, gameB16, gameB17, gameB18, gameB19, */

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC6, gameC7, */

/* gameC8, gameC9, gameC10, gameC11, gameC12, gameC13, gameC14, */

/* gameC15, gameC16, gameC17, gameC18, gameC19, */

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD6, gameD7, */

/* gameD8, gameD9, gameD10, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

c1I11 = [tCase1recog0-1.t1I11];

c1I12 = [tCase1recog0-1.t1I12];

c1I13 = [tCase1recog0-1.t1I13];

c1I14 = [tCase1recog0-1.t1I14];

c2I21 = [tCase1recog0-1.t2I21];

c2I22 = [tCase1recog0-1.t2I22];

292

Appendix C. Four Layer Cascade DNADL File

c2I23 = [tCase1recog0-1.t2I23];

c2I24 = [tCase1recog0-1.t2I24];

c2I61 = [tCase1recog0-1.t2I61];

c2I91 = [tCase1recog0-1.t2I91];

c3I31 = [tCase1recog0-1.t3I31];

c3I32 = [tCase1recog0-1.t3I32];

c3I33 = [tCase1recog0-1.t3I33];

c3I34 = [tCase1recog0-1.t3I34];

c4I41 = [tCase1recog0-1.t4I41];

c4I42 = [tCase1recog0-1.t4I42];

c4I43 = [tCase1recog0-1.t4I32];

c4I44 = [tCase1recog0-1.t4I44];

c4I21 = [tCase1recog0-1.t4I21];

c4I31 = [tCase1recog0-1.t4I31];

c6I61 = [tCase1recog0-1.t6I61];

c6I62 = [tCase1recog0-1.t6I62];

c6I63 = [tCase1recog0-1.t6I63];

c6I64 = [tCase1recog0-1.t6I64];

c6I71 = [tCase1recog0-1.t6I71];

c6I81 = [tCase1recog0-1.t6I81];

c7I71 = [tCase1recog0-1.t7I71];

c7I72 = [tCase1recog0-1.t7I72];

c7I73 = [tCase1recog0-1.t7I73];

c7I74 = [tCase1recog0-1.t7I74];

c8I81 = [tCase1recog0-1.t8I81];

c8I82 = [tCase1recog0-1.t8I82];

c8I83 = [tCase1recog0-1.t8I83];

c8I84 = [tCase1recog0-1.t8I84];

c8I11 = [tCase1recog0-1.t8I11];

c8I41 = [tCase1recog0-1.t8I41];

c9I91 = [tCase1recog0-1.t9I91];

c9I92 = [tCase1recog0-1.t9I92];

c9I93 = [tCase1recog0-1.t9I93];

c9I94 = [tCase1recog0-1.t9I94];

293

Appendix C. Four Layer Cascade DNADL File

with cmCase1and

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA6, gameA7, */

/* gameA8, gameA9, gameA10, gameA11, gameA12, gameA13, gameA14, */

/* gameA15, gameA16, gameA17, gameA18, gameA19, */

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB6, gameB7, */

/* gameB8, gameB9, gameB10, gameB11, gameB12, gameB13, gameB14, */

/* gameB15, gameB16, gameB17, gameB18, gameB19, */

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC6, gameC7, */

/* gameC8, gameC9, gameC10, gameC11, gameC12, gameC13, gameC14, */

/* gameC15, gameC16, gameC17, gameC18, gameC19, */

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD6, gameD7, */

/* gameD8, gameD9, gameD10, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

c1I21I62 = [tCase1and0-1.t1I21I62];

c1I33I44 = [tCase1and0-1.t1I33I44];

c1I82I73 = [tCase1and0-1.t1I82I73];

c1I71I42 = [tCase1and0-1.t1I71I42];

c2I62I13 = [tCase1and0-1.t2I62I13];

c2I93I34 = [tCase1and0-1.t2I93I34];

c3I11I22 = [tCase1and0-1.t3I11I22];

c3I61I82 = [tCase1and0-1.t3I61I82];

c3I42I13 = [tCase1and0-1.t3I42I13];

c3I93I24 = [tCase1and0-1.t3I93I24];

c4I22I73 = [tCase1and0-1.t4I22I73];

c4I33I14 = [tCase1and0-1.t4I33I14];

c6I73I94 = [tCase1and0-1.t6I73I94];

c6I82I33 = [tCase1and0-1.t6I82I33];

c7I41I22 = [tCase1and0-1.t7I41I22];

c7I62I93 = [tCase1and0-1.t7I62I93];

c7I13I84 = [tCase1and0-1.t7I13I84];

c7I91I82 = [tCase1and0-1.t7I91I82];

c8I13I74 = [tCase1and0-1.t8I13I74];

294

Appendix C. Four Layer Cascade DNADL File

c8I42I93 = [tCase1and0-1.t8I42I93];

c9I73I64 = [tCase1and0-1.t9I73I64];

c9I22I33 = [tCase1and0-1.t9I22I33];

c9I31I62 = [tCase1and0-1.t9I31I62];

c9I81I42 = [tCase1and0-1.t9I81I42];

with cmCase1andandnot

/* gameA1, gameA2, gameA3, gameA4, gameA5, gameA6, gameA7, */

/* gameA8, gameA9, gameA10, gameA11, gameA12, gameA13, gameA14, */

/* gameA15, gameA16, gameA17, gameA18, gameA19, */

/* gameB1, gameB2, gameB3, gameB4, gameB5, gameB6, gameB7, */

/* gameB8, gameB9, gameB10, gameB11, gameB12, gameB13, gameB14, */

/* gameB15, gameB16, gameB17, gameB18, gameB19, */

/* gameC1, gameC2, gameC3, gameC4, gameC5, gameC6, gameC7, */

/* gameC8, gameC9, gameC10, gameC11, gameC12, gameC13, gameC14, */

/* gameC15, gameC16, gameC17, gameC18, gameC19, */

/* gameD1, gameD2, gameD3, gameD4, gameD5, gameD6, gameD7, */

/* gameD8, gameD9, gameD10, gameD11, gameD12, gameD13, gameD14, */

/* gameD15, gameD16, gameD17, gameD18, gameD19 */

c1I62I73I21 = [tCase1andandnot0-1.t1I62I73I21];

c1I62I83I21 = [tCase1andandnot0-1.t1I62I83I21];

c1I62I23I21 = [tCase1andandnot0-1.t1I62I23I21];

c1I42I73I71 = [tCase1andandnot0-1.t1I42I73I71];

c1I42I33I71 = [tCase1andandnot0-1.t1I42I33I71];

c1I42I23I71 = [tCase1andandnot0-1.t1I42I23I71];

c2I11I32I22 = [tCase1andandnot0-1.t2I11I32I22];

c2I11I42I22 = [tCase1andandnot0-1.t2I11I42I22];

c2I11I62I22 = [tCase1andandnot0-1.t2I11I62I22];

c2I11I72I22 = [tCase1andandnot0-1.t2I11I72I22];

c2I11I92I22 = [tCase1andandnot0-1.t2I11I92I22];

c2I41I12I22 = [tCase1andandnot0-1.t2I41I12I22];

c2I41I32I22 = [tCase1andandnot0-1.t2I41I32I22];

c2I41I62I22 = [tCase1andandnot0-1.t2I41I62I22];

c2I41I72I22 = [tCase1andandnot0-1.t2I41I72I22];

c2I41I92I22 = [tCase1andandnot0-1.t2I41I92I22];

295

Appendix C. Four Layer Cascade DNADL File

c3I22I63I11 = [tCase1andandnot0-1.t3I22I63I11];

c3I22I93I11 = [tCase1andandnot0-1.t3I22I93I11];

c3I22I13I11 = [tCase1andandnot0-1.t3I22I13I11];

c3I82I63I61 = [tCase1andandnot0-1.t3I82I63I61];

c3I82I43I61 = [tCase1andandnot0-1.t3I82I43I61];

c3I82I13I61 = [tCase1andandnot0-1.t3I82I13I61];

c4I81I22I42 = [tCase1andandnot0-1.t4I81I22I42];

c4I81I92I42 = [tCase1andandnot0-1.t4I81I92I42];

c4I81I72I42 = [tCase1andandnot0-1.t4I81I72I42];

c4I81I32I42 = [tCase1andandnot0-1.t4I81I32I42];

c4I81I12I42 = [tCase1andandnot0-1.t4I81I12I42];

c4I71I92I42 = [tCase1andandnot0-1.t4I71I92I42];

c4I71I82I42 = [tCase1andandnot0-1.t4I71I82I42];

c4I71I32I42 = [tCase1andandnot0-1.t4I71I32I42];

c4I71I22I42 = [tCase1andandnot0-1.t4I71I22I42];

c4I71I12I42 = [tCase1andandnot0-1.t4I71I12I42];

c6I21I12I62 = [tCase1andandnot0-1.t6I21I12I62];

c6I21I32I62 = [tCase1andandnot0-1.t6I21I32I62];

c6I21I72I62 = [tCase1andandnot0-1.t6I21I72I62];

c6I21I82I62 = [tCase1andandnot0-1.t6I21I82I62];

c6I21I92I62 = [tCase1andandnot0-1.t6I21I92I62];

c6I31I12I62 = [tCase1andandnot0-1.t6I31I12I62];

c6I31I22I62 = [tCase1andandnot0-1.t6I31I22I62];

c6I31I72I62 = [tCase1andandnot0-1.t6I31I72I62];

c6I31I82I62 = [tCase1andandnot0-1.t6I31I82I62];

c6I31I92I62 = [tCase1andandnot0-1.t6I31I92I62];

c7I22I63I41 = [tCase1andandnot0-1.t7I22I63I41];

c7I22I93I41 = [tCase1andandnot0-1.t7I22I93I41];

c7I22I43I41 = [tCase1andandnot0-1.t7I22I43I41];

c7I82I93I91 = [tCase1andandnot0-1.t7I82I93I91];

c7I82I43I91 = [tCase1andandnot0-1.t7I82I43I91];

c7I82I13I91 = [tCase1andandnot0-1.t7I82I13I91];

c8I91I72I82 = [tCase1andandnot0-1.t8I91I72I82];

c8I91I62I82 = [tCase1andandnot0-1.t8I91I62I82];

c8I91I42I82 = [tCase1andandnot0-1.t8I91I42I82];

c8I91I32I82 = [tCase1andandnot0-1.t8I91I32I82];

c8I91I12I82 = [tCase1andandnot0-1.t8I91I12I82];

296

Appendix C. Four Layer Cascade DNADL File

c8I61I92I82 = [tCase1andandnot0-1.t8I61I92I82];

c8I61I72I82 = [tCase1andandnot0-1.t8I61I72I82];

c8I61I42I82 = [tCase1andandnot0-1.t8I61I42I82];

c8I61I32I82 = [tCase1andandnot0-1.t8I61I32I82];

c8I61I12I82 = [tCase1andandnot0-1.t8I61I12I82];

c9I62I73I31 = [tCase1andandnot0-1.t9I62I73I31];

c9I62I83I31 = [tCase1andandnot0-1.t9I62I83I31];

c9I62I33I31 = [tCase1andandnot0-1.t9I62I33I31];

c9I42I83I81 = [tCase1andandnot0-1.t9I42I83I81];

c9I42I33I81 = [tCase1andandnot0-1.t9I42I33I81];

c9I42I23I81 = [tCase1andandnot0-1.t9I42I23I81];

with emCase1recog

e1I11 = [tCase1recog1-2.t1I11, tCase1recog2-3.t1I11,

tCase1recog3-4.t1I11];

e1I12 = [tCase1recog1-2.t1I12, tCase1recog2-3.t1I12,

tCase1recog3-4.t1I12];

e1I13 = [tCase1recog1-2.t1I13, tCase1recog2-3.t1I13,

tCase1recog3-4.t1I13];

e1I14 = [tCase1recog1-2.t1I14, tCase1recog2-3.t1I14,

tCase1recog3-4.t1I14];

e2I21 = [tCase1recog1-2.t2I21, tCase1recog2-3.t2I21,

tCase1recog3-4.t2I21];

e2I22 = [tCase1recog1-2.t2I22, tCase1recog2-3.t2I22,

tCase1recog3-4.t2I22];

e2I23 = [tCase1recog1-2.t2I23, tCase1recog2-3.t2I23,

tCase1recog3-4.t2I23];

e2I24 = [tCase1recog1-2.t2I24, tCase1recog2-3.t2I24,

tCase1recog3-4.t2I24];

e2I61 = [tCase1recog1-2.t2I61, tCase1recog2-3.t2I61,

tCase1recog3-4.t2I61];

e2I91 = [tCase1recog1-2.t2I91, tCase1recog2-3.t2I91,

tCase1recog3-4.t2I91];

e3I31 = [tCase1recog1-2.t3I31, tCase1recog2-3.t3I31,

tCase1recog3-4.t3I31];

e3I32 = [tCase1recog1-2.t3I32, tCase1recog2-3.t3I32,

297

Appendix C. Four Layer Cascade DNADL File

tCase1recog3-4.t3I32];

e3I33 = [tCase1recog1-2.t3I33, tCase1recog2-3.t3I33,

tCase1recog3-4.t3I33];

e3I34 = [tCase1recog1-2.t3I34, tCase1recog2-3.t3I34,

tCase1recog3-4.t3I34];

e4I41 = [tCase1recog1-2.t4I41, tCase1recog2-3.t4I41,

tCase1recog3-4.t4I41];

e4I42 = [tCase1recog1-2.t4I42, tCase1recog2-3.t4I42,

tCase1recog3-4.t4I42];

e4I43 = [tCase1recog1-2.t4I43, tCase1recog2-3.t4I43,

tCase1recog3-4.t4I43];

e4I44 = [tCase1recog1-2.t4I44, tCase1recog2-3.t4I44,

tCase1recog3-4.t4I44];

e4I21 = [tCase1recog1-2.t4I21, tCase1recog2-3.t4I21,

tCase1recog3-4.t4I21];

e4I31 = [tCase1recog1-2.t4I31, tCase1recog2-3.t4I31,

tCase1recog3-4.t4I31];

e6I61 = [tCase1recog1-2.t6I61, tCase1recog2-3.t6I61,

tCase1recog3-4.t6I61];

e6I62 = [tCase1recog1-2.t6I62, tCase1recog2-3.t6I62,

tCase1recog3-4.t6I62];

e6I63 = [tCase1recog1-2.t6I63, tCase1recog2-3.t6I63,

tCase1recog3-4.t6I63];

e6I64 = [tCase1recog1-2.t6I64, tCase1recog2-3.t6I64,

tCase1recog3-4.t6I64];

e6I71 = [tCase1recog1-2.t6I71, tCase1recog2-3.t6I71,

tCase1recog3-4.t6I71];

e6I81 = [tCase1recog1-2.t6I81, tCase1recog2-3.t6I81,

tCase1recog3-4.t6I81];

e7I71 = [tCase1recog1-2.t7I71, tCase1recog2-3.t7I71,

tCase1recog3-4.t7I71];

e7I72 = [tCase1recog1-2.t7I72, tCase1recog2-3.t7I72,

tCase1recog3-4.t7I72];

e7I73 = [tCase1recog1-2.t7I73, tCase1recog2-3.t7I73,

tCase1recog3-4.t7I73];

e7I74 = [tCase1recog1-2.t7I74, tCase1recog2-3.t7I74,

tCase1recog3-4.t7I74];

298

Appendix C. Four Layer Cascade DNADL File

e8I81 = [tCase1recog1-2.t8I81, tCase1recog2-3.t8I81,

tCase1recog3-4.t8I81];

e8I82 = [tCase1recog1-2.t8I82, tCase1recog2-3.t8I82,

tCase1recog3-4.t8I82];

e8I83 = [tCase1recog1-2.t8I83, tCase1recog2-3.t8I83,

tCase1recog3-4.t8I83];

e8I84 = [tCase1recog1-2.t8I84, tCase1recog2-3.t8I84,

tCase1recog3-4.t8I84];

e8I11 = [tCase1recog1-2.t8I11, tCase1recog2-3.t8I11,

tCase1recog3-4.t8I11];

e8I41 = [tCase1recog1-2.t8I41, tCase1recog2-3.t8I41,

tCase1recog3-4.t8I41];

e9I91 = [tCase1recog1-2.t9I91, tCase1recog2-3.t9I91,

tCase1recog3-4.t9I91];

e9I92 = [tCase1recog1-2.t9I92, tCase1recog2-3.t9I92,

tCase1recog3-4.t9I92];

e9I93 = [tCase1recog1-2.t9I93, tCase1recog2-3.t9I93,

tCase1recog3-4.t9I93];

e9I94 = [tCase1recog1-2.t9I94, tCase1recog2-3.t9I94,

tCase1recog3-4.t9I94];

with emCase1and

e1I21I62 = [tCase1and1-2.t1I21I62, tCase1and2-3.t1I21I62,

tCase1and3-4.t1I21I62, tCase1and4-5.t1I21I62];

e1I33I44 = [tCase1and1-2.t1I33I44, tCase1and2-3.t1I33I44,

tCase1and3-4.t1I33I44, tCase1and4-5.t1I33I44];

e1I82I73 = [tCase1and1-2.t1I82I73, tCase1and2-3.t1I82I73,

tCase1and3-4.t1I82I73, tCase1and4-5.t1I82I73];

e1I71I42 = [tCase1and1-2.t1I71I42, tCase1and2-3.t1I71I42,

tCase1and3-4.t1I71I42, tCase1and4-5.t1I71I42];

e2I62I13 = [tCase1and1-2.t2I62I13, tCase1and2-3.t2I62I13,

tCase1and3-4.t2I62I13, tCase1and4-5.t2I62I13];

e2I93I34 = [tCase1and1-2.t2I93I34, tCase1and2-3.t2I93I34,

tCase1and3-4.t2I93I34, tCase1and4-5.t2I93I34];

e3I11I22 = [tCase1and1-2.t3I11I22, tCase1and2-3.t3I11I22,

299

Appendix C. Four Layer Cascade DNADL File

tCase1and3-4.t3I11I22, tCase1and4-5.t3I11I22];

e3I61I82 = [tCase1and1-2.t3I61I82, tCase1and2-3.t3I61I82,

tCase1and3-4.t3I61I82, tCase1and4-5.t3I61I82];

e3I42I13 = [tCase1and1-2.t3I42I13, tCase1and2-3.t3I42I13,

tCase1and3-4.t3I42I13, tCase1and4-5.t3I42I13];

e3I93I24 = [tCase1and1-2.t3I93I24, tCase1and2-3.t3I93I24,

tCase1and3-4.t3I93I24, tCase1and4-5.t3I93I24];

e4I22I73 = [tCase1and1-2.t4I22I73, tCase1and2-3.t4I22I73,

tCase1and3-4.t4I22I73, tCase1and4-5.t4I22I73];

e4I33I14 = [tCase1and1-2.t4I33I14, tCase1and2-3.t4I33I14,

tCase1and3-4.t4I33I14, tCase1and4-5.t4I33I14];

e6I73I94 = [tCase1and1-2.t6I73I94, tCase1and2-3.t6I73I94,

tCase1and3-4.t6I73I94, tCase1and4-5.t6I73I94];

e6I82I33 = [tCase1and1-2.t6I82I33, tCase1and2-3.t6I82I33,

tCase1and3-4.t6I82I33, tCase1and4-5.t6I82I33];

e7I41I22 = [tCase1and1-2.t7I41I22, tCase1and2-3.t7I41I22,

tCase1and3-4.t7I41I22, tCase1and4-5.t7I41I22];

e7I62I93 = [tCase1and1-2.t7I62I93, tCase1and2-3.t7I62I93,

tCase1and3-4.t7I62I93, tCase1and4-5.t7I62I93];

e7I13I84 = [tCase1and1-2.t7I13I84, tCase1and2-3.t7I13I84,

tCase1and3-4.t7I13I84, tCase1and4-5.t7I13I84];

e7I91I82 = [tCase1and1-2.t7I91I82, tCase1and2-3.t7I91I82,

tCase1and3-4.t7I91I82, tCase1and4-5.t7I91I82];

e8I13I74 = [tCase1and1-2.t8I13I74, tCase1and2-3.t8I13I74,

tCase1and3-4.t8I13I74, tCase1and4-5.t8I13I74];

e8I42I93 = [tCase1and1-2.t8I42I93, tCase1and2-3.t8I42I93,

tCase1and3-4.t8I42I93, tCase1and4-5.t8I42I93];

e9I73I64 = [tCase1and1-2.t9I73I64, tCase1and2-3.t9I73I64,

tCase1and3-4.t9I73I64, tCase1and4-5.t9I73I64];

e9I22I33 = [tCase1and1-2.t9I22I33, tCase1and2-3.t9I22I33,

tCase1and3-4.t9I22I33, tCase1and4-5.t9I22I33];

e9I31I62 = [tCase1and1-2.t9I31I62, tCase1and2-3.t9I31I62,

tCase1and3-4.t9I31I62, tCase1and4-5.t9I31I62];

e9I81I42 = [tCase1and1-2.t9I81I42, tCase1and2-3.t9I81I42,

tCase1and3-4.t9I81I42, tCase1and4-5.t9I81I42];

300

Appendix C. Four Layer Cascade DNADL File

with emCase1andandnot

e1I62I73I21 = [tCase1andandnot1-2.t1I62I73I21,

tCase1andandnot2-3.t1I62I73I21,

tCase1andandnot3-4.t1I62I73I21,

tCase1andandnot4-5.t1I62I73I21];

e1I62I83I21 = [tCase1andandnot1-2.t1I62I83I21,

tCase1andandnot2-3.t1I62I83I21,

tCase1andandnot3-4.t1I62I83I21,

tCase1andandnot4-5.t1I62I83I21];

e1I62I23I21 = [tCase1andandnot1-2.t1I62I23I21,

tCase1andandnot2-3.t1I62I23I21,

tCase1andandnot3-4.t1I62I23I21,

tCase1andandnot4-5.t1I62I23I21];

e1I42I73I71 = [tCase1andandnot1-2.t1I42I73I71,

tCase1andandnot2-3.t1I42I73I71,

tCase1andandnot3-4.t1I42I73I71,

tCase1andandnot4-5.t1I42I73I71];

e1I42I33I71 = [tCase1andandnot1-2.t1I42I33I71,

tCase1andandnot2-3.t1I42I33I71,

tCase1andandnot3-4.t1I42I33I71,

tCase1andandnot4-5.t1I42I33I71];

e1I42I23I71 = [tCase1andandnot1-2.t1I42I23I71,

tCase1andandnot2-3.t1I42I23I71,

tCase1andandnot3-4.t1I42I23I71,

tCase1andandnot4-5.t1I42I23I71];

e2I11I32I22 = [tCase1andandnot1-2.t2I11I32I22,

tCase1andandnot2-3.t2I11I32I22,

tCase1andandnot3-4.t2I11I32I22,

tCase1andandnot4-5.t2I11I32I22];

e2I11I42I22 = [tCase1andandnot1-2.t2I11I42I22,

tCase1andandnot2-3.t2I11I42I22,

tCase1andandnot3-4.t2I11I42I22,

tCase1andandnot4-5.t2I11I42I22];

e2I11I62I22 = [tCase1andandnot1-2.t2I11I62I22,

tCase1andandnot2-3.t2I11I62I22,

tCase1andandnot3-4.t2I11I62I22,

tCase1andandnot4-5.t2I11I62I22];

301

Appendix C. Four Layer Cascade DNADL File

e2I11I72I22 = [tCase1andandnot1-2.t2I11I72I22,

tCase1andandnot2-3.t2I11I72I22,

tCase1andandnot3-4.t2I11I72I22,

tCase1andandnot4-5.t2I11I72I22];

e2I11I92I22 = [tCase1andandnot1-2.t2I11I92I22,

tCase1andandnot2-3.t2I11I92I22,

tCase1andandnot3-4.t2I11I92I22,

tCase1andandnot4-5.t2I11I92I22];

e2I41I12I22 = [tCase1andandnot1-2.t2I41I12I22,

tCase1andandnot2-3.t2I41I12I22,

tCase1andandnot3-4.t2I41I12I22,

tCase1andandnot4-5.t2I41I12I22];

e2I41I32I22 = [tCase1andandnot1-2.t2I41I32I22,

tCase1andandnot2-3.t2I41I32I22,

tCase1andandnot3-4.t2I41I32I22,

tCase1andandnot4-5.t2I41I32I22];

e2I41I62I22 = [tCase1andandnot1-2.t2I41I62I22,

tCase1andandnot2-3.t2I41I62I22,

tCase1andandnot3-4.t2I41I62I22,

tCase1andandnot4-5.t2I41I62I22];

e2I41I72I22 = [tCase1andandnot1-2.t2I41I72I22,

tCase1andandnot2-3.t2I41I72I22,

tCase1andandnot3-4.t2I41I72I22,

tCase1andandnot4-5.t2I41I72I22];

e2I41I92I22 = [tCase1andandnot1-2.t2I41I92I22,

tCase1andandnot2-3.t2I41I92I22,

tCase1andandnot3-4.t2I41I92I22,

tCase1andandnot4-5.t2I41I92I22];

e3I22I63I11 = [tCase1andandnot1-2.t3I22I63I11,

tCase1andandnot2-3.t3I22I63I11,

tCase1andandnot3-4.t3I22I63I11,

tCase1andandnot4-5.t3I22I63I11];

e3I22I93I11 = [tCase1andandnot1-2.t3I22I93I11,

tCase1andandnot2-3.t3I22I93I11,

tCase1andandnot3-4.t3I22I93I11,

tCase1andandnot4-5.t3I22I93I11];

e3I22I13I11 = [tCase1andandnot1-2.t3I22I13I11,

tCase1andandnot2-3.t3I22I13I11,

tCase1andandnot3-4.t3I22I13I11,

tCase1andandnot4-5.t3I22I13I11];

302

Appendix C. Four Layer Cascade DNADL File

e3I82I63I61 = [tCase1andandnot1-2.t3I82I63I61,

tCase1andandnot2-3.t3I82I63I61,

tCase1andandnot3-4.t3I82I63I61,

tCase1andandnot4-5.t3I82I63I61];

e3I82I43I61 = [tCase1andandnot1-2.t3I82I43I61,

tCase1andandnot2-3.t3I82I43I61,

tCase1andandnot3-4.t3I82I43I61,

tCase1andandnot4-5.t3I82I43I61];

e3I82I13I61 = [tCase1andandnot1-2.t3I82I13I61,

tCase1andandnot2-3.t3I82I13I61,

tCase1andandnot3-4.t3I82I13I61,

tCase1andandnot4-5.t3I82I13I61];

e4I81I22I42 = [tCase1andandnot1-2.t4I81I22I42,

tCase1andandnot2-3.t4I81I22I42,

tCase1andandnot3-4.t4I81I22I42,

tCase1andandnot4-5.t4I81I22I42];

e4I81I92I42 = [tCase1andandnot1-2.t4I81I92I42,

tCase1andandnot2-3.t4I81I92I42,

tCase1andandnot3-4.t4I81I92I42,

tCase1andandnot4-5.t4I81I92I42];

e4I81I72I42 = [tCase1andandnot1-2.t4I81I72I42,

tCase1andandnot2-3.t4I81I72I42,

tCase1andandnot3-4.t4I81I72I42,

tCase1andandnot4-5.t4I81I72I42];

e4I81I32I42 = [tCase1andandnot1-2.t4I81I32I42,

tCase1andandnot2-3.t4I81I32I42,

tCase1andandnot3-4.t4I81I32I42,

tCase1andandnot4-5.t4I81I32I42];

e4I81I12I42 = [tCase1andandnot1-2.t4I81I12I42,

tCase1andandnot2-3.t4I81I12I42,

tCase1andandnot3-4.t4I81I12I42,

tCase1andandnot4-5.t4I81I12I42];

e4I71I92I42 = [tCase1andandnot1-2.t4I71I92I42,

tCase1andandnot2-3.t4I71I92I42,

tCase1andandnot3-4.t4I71I19I42,

tCase1andandnot4-5.t4I71I92I42];

e4I71I82I42 = [tCase1andandnot1-2.t4I71I82I42,

tCase1andandnot2-3.t4I71I82I42,

tCase1andandnot3-4.t4I71I82I42,

tCase1andandnot4-5.t4I71I82I42];

303

Appendix C. Four Layer Cascade DNADL File

e4I71I32I42 = [tCase1andandnot1-2.t4I71I32I42,

tCase1andandnot2-3.t4I71I32I42,

tCase1andandnot3-4.t4I71I32I42,

tCase1andandnot4-5.t4I71I32I42];

e4I71I22I42 = [tCase1andandnot1-2.t4I71I22I42,

tCase1andandnot2-3.t4I71I22I42,

tCase1andandnot3-4.t4I71I22I42,

tCase1andandnot4-5.t4I71I22I42];

e4I71I12I42 = [tCase1andandnot1-2.t4I71I12I42,

tCase1andandnot2-3.t4I71I12I42,

tCase1andandnot3-4.t4I71I12I42,

tCase1andandnot4-5.t4I71I12I42];

e6I21I12I62 = [tCase1andandnot1-2.t6I21I12I62,

tCase1andandnot2-3.t6I21I12I62,

tCase1andandnot3-4.t6I21I12I62,

tCase1andandnot4-5.t6I21I12I62];

e6I21I32I62 = [tCase1andandnot1-2.t6I21I32I62,

tCase1andandnot2-3.t6I21I32I62,

tCase1andandnot3-4.t6I21I32I62,

tCase1andandnot4-5.t6I21I32I62];

e6I21I72I62 = [tCase1andandnot1-2.t6I21I72I62,

tCase1andandnot2-3.t6I21I72I62,

tCase1andandnot3-4.t6I21I72I62,

tCase1andandnot4-5.t6I21I72I62];

e6I21I82I62 = [tCase1andandnot1-2.t6I21I82I62,

tCase1andandnot2-3.t6I21I82I62,

tCase1andandnot3-4.t6I21I82I62,

tCase1andandnot4-5.t6I21I82I62];

e6I21I92I62 = [tCase1andandnot1-2.t6I21I92I62,

tCase1andandnot2-3.t6I21I92I62,

tCase1andandnot3-4.t6I21I92I62,

tCase1andandnot4-5.t6I21I92I62];

e6I31I12I62 = [tCase1andandnot1-2.t6I31I12I62,

tCase1andandnot2-3.t6I31I12I62,

tCase1andandnot3-4.t6I31I12I62,

tCase1andandnot4-5.t6I31I12I62];

e6I31I22I62 = [tCase1andandnot1-2.t6I31I22I62,

tCase1andandnot2-3.t6I31I22I62,

tCase1andandnot3-4.t6I31I22I62,

tCase1andandnot4-5.t6I31I22I62];

304

Appendix C. Four Layer Cascade DNADL File

e6I31I72I62 = [tCase1andandnot1-2.t6I31I72I62,

tCase1andandnot2-3.t6I31I72I62,

tCase1andandnot3-4.t6I31I72I62,

tCase1andandnot4-5.t6I31I72I62];

e6I31I82I62 = [tCase1andandnot1-2.t6I31I82I62,

tCase1andandnot2-3.t6I31I82I62,

tCase1andandnot3-4.t6I31I82I62,

tCase1andandnot4-5.t6I31I82I62];

e6I31I92I62 = [tCase1andandnot1-2.t6I31I92I62,

tCase1andandnot2-3.t6I31I92I62,

tCase1andandnot3-4.t6I31I92I62,

tCase1andandnot4-5.t6I31I92I62];

e7I22I63I41 = [tCase1andandnot1-2.t7I22I63I41,

tCase1andandnot2-3.t7I22I63I41,

tCase1andandnot3-4.t7I22I63I41,

tCase1andandnot4-5.t7I22I63I41];

e7I22I93I41 = [tCase1andandnot1-2.t7I22I93I41,

tCase1andandnot2-3.t7I22I93I41,

tCase1andandnot3-4.t7I22I93I41,

tCase1andandnot4-5.t7I22I93I41];

e7I22I43I41 = [tCase1andandnot1-2.t7I22I43I41,

tCase1andandnot2-3.t7I22I43I41,

tCase1andandnot3-4.t7I22I43I41,

tCase1andandnot4-5.t7I22I43I41];

e7I82I93I91 = [tCase1andandnot1-2.t7I82I93I91,

tCase1andandnot2-3.t7I82I93I91,

tCase1andandnot3-4.t7I82I93I91,

tCase1andandnot4-5.t7I82I93I91];

e7I82I43I91 = [tCase1andandnot1-2.t7I82I43I91,

tCase1andandnot2-3.t7I82I43I91,

tCase1andandnot3-4.t7I82I43I91,

tCase1andandnot4-5.t7I82I43I91];

e7I82I13I91 = [tCase1andandnot1-2.t7I82I13I91,

tCase1andandnot2-3.t7I82I13I91,

tCase1andandnot3-4.t7I82I13I91,

tCase1andandnot4-5.t7I82I13I91];

e8I91I72I82 = [tCase1andandnot1-2.t8I91I72I82,

tCase1andandnot2-3.t8I91I72I82,

tCase1andandnot3-4.t8I91I72I82,

305

Appendix C. Four Layer Cascade DNADL File

tCase1andandnot4-5.t8I91I72I82];

e8I91I62I82 = [tCase1andandnot1-2.t8I91I62I82,

tCase1andandnot2-3.t8I91I62I82,

tCase1andandnot3-4.t8I91I62I82,

tCase1andandnot4-5.t8I91I62I82];

e8I91I42I82 = [tCase1andandnot1-2.t8I91I42I82,

tCase1andandnot2-3.t8I91I42I82,

tCase1andandnot3-4.t8I91I42I82,

tCase1andandnot4-5.t8I91I42I82];

e8I91I32I82 = [tCase1andandnot1-2.t8I91I32I82,

tCase1andandnot2-3.t8I91I32I82,

tCase1andandnot3-4.t8I91I32I82,

tCase1andandnot4-5.t8I91I32I82];

e8I91I12I82 = [tCase1andandnot1-2.t8I91I12I82,

tCase1andandnot2-3.t8I91I12I82,

tCase1andandnot3-4.t8I91I12I82,

tCase1andandnot4-5.t8I91I12I82];

e8I61I92I82 = [tCase1andandnot1-2.t8I61I92I82,

tCase1andandnot2-3.t8I61I92I82,

tCase1andandnot3-4.t8I61I92I82,

tCase1andandnot4-5.t8I61I92I82];

e8I61I72I82 = [tCase1andandnot1-2.t8I61I72I82,

tCase1andandnot2-3.t8I61I72I82,

tCase1andandnot3-4.t8I61I72I82,

tCase1andandnot4-5.t8I61I72I82];

e8I61I42I82 = [tCase1andandnot1-2.t8I61I42I82,

tCase1andandnot2-3.t8I61I42I82,

tCase1andandnot3-4.t8I61I42I82,

tCase1andandnot4-5.t8I61I42I82];

e8I61I32I82 = [tCase1andandnot1-2.t8I61I32I82,

tCase1andandnot2-3.t8I61I32I82,

tCase1andandnot3-4.t8I61I32I82,

tCase1andandnot4-5.t8I61I32I82];

e8I61I12I82 = [tCase1andandnot1-2.t8I61I12I82,

tCase1andandnot2-3.t8I61I12I82,

tCase1andandnot3-4.t8I61I12I82,

tCase1andandnot4-5.t8I61I12I82];

e9I62I73I31 = [tCase1andandnot1-2.t9I62I73I31,

tCase1andandnot2-3.t9I62I73I31,

tCase1andandnot3-4.t9I62I73I31,

306

Appendix C. Four Layer Cascade DNADL File

tCase1andandnot4-5.t9I62I73I31];

e9I62I83I31 = [tCase1andandnot1-2.t9I62I83I31,

tCase1andandnot2-3.t9I62I83I31,

tCase1andandnot3-4.t9I62I83I31,

tCase1andandnot4-5.t9I62I83I31];

e9I62I33I31 = [tCase1andandnot1-2.t9I62I33I31,

tCase1andandnot2-3.t9I62I33I31,

tCase1andandnot3-4.t9I62I33I31,

tCase1andandnot4-5.t9I62I33I31];

e9I42I83I81 = [tCase1andandnot1-2.t9I42I83I81,

tCase1andandnot2-3.t9I42I83I81,

tCase1andandnot3-4.t9I42I83I81,

tCase1andandnot4-5.t9I42I83I81];

e9I42I33I81 = [tCase1andandnot1-2.t9I42I33I81,

tCase1andandnot2-3.t9I42I33I81,

tCase1andandnot3-4.t9I42I33I81,

tCase1andandnot4-5.t9I42I33I81];

e9I42I23I81 = [tCase1andandnot1-2.t9I42I23I81,

tCase1andandnot2-3.t9I42I23I81,

tCase1andandnot3-4.t9I42I23I81,

tCase1andandnot4-5.t9I42I23I81];

EVENTSTREAM

/* Platform creation */

ttt = [<e0>,<cmCase1recog,cmCase1and,cmCase1andandnot>];

/* Program for game A1 */

programA1 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I12,en2I12,en3I12,en4I12,en6I12,en7I12,en8I12,en9I12>,

<emCase1recog.e1I12,emCase1andandnot.e8I61I12I82>,

<visual1green,visual8red>

];

/* Program for game A2 */

programA2 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

307

Appendix C. Four Layer Cascade DNADL File

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I32,en2I32,en3I32,en4I32,en6I32,en7I32,en8I32,en9I32>,

<emCase1recog.e3I32,emCase1andandnot.e8I61I32I82>,

<visual3green,visual8red>

];

/* Program for game A3 */

programA3 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1andandnot.e8I61I42I82>,

<visual4green,visual8red>

];

/* Program for game A4 */

programA4 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I72,en2I72,en3I72,en4I72,en6I72,en7I72,en8I72,en9I72>,

<emCase1recog.e7I72,emCase1andandnot.e8I61I72I82>,

<visual7green,visual8red>

];

/* Program for game A5 */

programA5 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I92,en2I92,en3I92,en4I92,en6I92,en7I92,en8I92,en9I92>,

<emCase1recog.e9I92,emCase1andandnot.e8I61I92I82>,

<visual9green,visual8red>

];

/* Program for game A6 */

programA6 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I12,en2I12,en3I12,en4I12,en6I12,en7I12,en8I12,en9I12>,

<emCase1recog.e1I12,emCase1andandnot.e8I61I12I82>,

<visual1green,visual8green>

];

308

Appendix C. Four Layer Cascade DNADL File

/* Program for game A7 */

programA7 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I32,en2I32,en3I32,en4I32,en6I32,en7I32,en8I32,en9I32>,

<emCase1recog.e3I32,emCase1andandnot.e8I91I32I82>,

<visual3green,visual8red>

];

/* Program for game A8 */

programA8 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1andandnot.e8I91I42I82>,

<visual4green,visual8red>

];

/* Program for game A9 */

programA9 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1andandnot.e8I91I62I82>,

<visual6green,visual8red>

];

/* Program for game A10 */

programA10 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I72,en2I72,en3I72,en4I72,en6I72,en7I72,en8I72,en9I72>,

<emCase1recog.e7I72,emCase1andandnot.e8I91I72I82>,

<visual7green,visual8red>

];

/* Program for game A11 */

programA11 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

309

Appendix C. Four Layer Cascade DNADL File

<en1I82,en2I82,en3I82,en4I82,en6I82,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1recog.e3I61I82>, <visual8green,visual3green>

<en1I13,en2I13,en3I13,en4I13,en6I13,en7I13,en8I13,en9I13>,

<emCase1recog.e1I13,emCase1andandnot.e7I82I13I91>,

<visual1green,visual7red>

];

/* Program for game A12 */

programA12 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1recog.e3I61I82>, <visual8green,visual3green>

<en1I43,en2I43,en3I43,en4I43,en6I43,en7I43,en8I43,en9I43>,

<emCase1recog.e4I43,emCase1andandnot.e7I82I43I91>,

<visual4green,visual7red>

];

/* Program for game A13 */

programA13 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1recog.e3I61I82>, <visual8green,visual3green>

<en1I73,en2I73,en3I73,en4I73,en6I73,en7I73,en8I73,en9I73>,

<emCase1recog.e7I73,emCase1.e1I82I73>, <visual7green,visual1red>

];

/* Program for game A14 */

programA14 =

[<en1I61,en2I61,en3I61,en4I61,en6I61,en7I61,en8I61,en9I61>,

<emCase1recog.e6I61,emCase1recog.e2I61>, <visual6green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1recog.e3I61I82>, <visual8green,visual3green>

<en1I93,en2I93,en3I93,en4I93,en6I93,en7I93,en8I93,en9I93>,

<emCase1recog.e9I93,emCase1andandnot.e7I82I93I91>,

<visual9green,visual7green>

];

/* Program for game A15 */

programA15 =

310

Appendix C. Four Layer Cascade DNADL File

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1and.e7I91I82>, <visual8green,visual7red>,

<en1I13,en2I13,en3I13,en4I13,en6I13,en7I13,en8I13,en9I13>,

<emCase1recog.e1I13,emCase1andandnot.e3I82I13I61>,

<visual1green,visual3red>

];

/* Program for game A16 */

programA16 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1and.e7I91I82>, <visual8green,visual7red>,

<en1I43,en2I43,en3I43,en4I43,en6I43,en7I43,en8I43,en9I43>,

<emCase1recog.e4I43,emCase1andandnot.e3I82I43I61>,

<visual4green,visual3red>

];

/* Program for game A17 */

programA17 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1and.e7I91I82>, <visual8green,visual7red>,

<en1I63,en2I63,en3I63,en4I63,en6I63,en7I63,en8I63,en9I63>,

<emCase1recog.e6I63,emCase1andandnot.e3I82I63I61>,

<visual6green,visual3red>

];

/* Program for game A18 */

programA18 =

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1and.e7I91I82>, <visual8green,visual7red>,

<en1I33,en2I33,en3I33,en4I33,en6I33,en7I33,en8I33,en9I33>,

<emCase1recog.e3I33,emCase1and.e6I82I33>, <visual3green,visual6red>,

<en1I14,en2I14,en3I14,en4I14,en6I14,en7I14,en8I14,en9I14>,

<emCase1recog.e1I14,emCase1and.e4I33I14>, <visual1green,visual4red>

311

Appendix C. Four Layer Cascade DNADL File

];

/* Program for game A19 */

[<en1I91,en2I91,en3I91,en4I91,en6I91,en7I91,en8I91,en9I91>,

<emCase1recog.e9I91,emCase1recog.e2I91>, <visual9green,visual2red>,

<en1I82,en2I82,en3I82,en4I82,en6I18,en7I82,en8I82,en9I82>,

<emCase1recog.e8I82,emCase1and.e7I91I82>, <visual8green,visual7red>,

<en1I33,en2I33,en3I33,en4I33,en6I33,en7I33,en8I33,en9I33>,

<emCase1recog.e3I33,emCase1and.e6I82I33>, <visual3green,visual6red>,

<en1I44,en2I44,en3I44,en4I44,en6I44,en7I44,en8I44,en9I44>,

<emCase1recog.e4I44,emCase1and.e1I33I44>, <visual4green,visual1red>

];

/* Program for game B1 */

programB1 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I12,en2I12,en3I12,en4I12,en6I12,en7I12,en8I12,en9I12>,

<emCase1recog.e1I12,emCase1andandnot.e4I81I12I42>,

<visual1green,visual4red>

];

/* Program for game B2 */

programB2 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1andandnot.e4I81I22I42>,

<visual2green,visual4red>

];

/* Program for game B3 */

programB3 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I32,en2I32,en3I32,en4I32,en6I32,en7I32,en8I32,en9I32>,

<emCase1recog.e3I32,emCase1andandnot.e4I81I32I42>,

<visual3green,visual4red>

];

/* Program for game B4 */

312

Appendix C. Four Layer Cascade DNADL File

programB4 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I72,en2I72,en3I72,en4I72,en6I72,en7I72,en8I72,en9I72>,

<emCase1recog.e7I72,emCase1andandnot.e4I81I72I42>,

<visual7green,visual4red>

];

/* Program for game B5 */

programB5 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I92,en2I92,en3I92,en4I92,en6I92,en7I92,en8I92,en9I92>,

<emCase1recog.e9I92,emCase1andandnot.e4I81I9242>,

<visual9green,visual4red>

];

/* Program for game B6 */

programB6 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I12,en2I12,en3I12,en4I12,en6I12,en7I12,en8I12,en9I12>,

<emCase1recog.e1I12,emCase1andandnot.e4I71I12I42>,

<visual1green,visual4red>

];

/* Program for game B7 */

programB7 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1andandnot.e4I71I22I42>,

<visual2green,visual4red>

];

/* Program for game B8 */

programB8 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I32,en2I32,en3I32,en4I32,en6I32,en7I32,en8I32,en9I32>,

<emCase1recog.e3I32,emCase1andandnot.e4I71I32I42>,

313

Appendix C. Four Layer Cascade DNADL File

<visual3green,visual4red>

];

/* Program for game B9 */

programB9 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I82,en2I82,en3I82,en4I82,en6I82,en7I82,en8I82,en9I82>,

<emCase1recog.e2I82,emCase1andandnot.e4I71I82I42>,

<visual2green,visual4red>

];

/* Program for game B10 */

programB10 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I92,en2I92,en3I92,en4I92,en6I92,en7I92,en8I92,en9I92>,

<emCase1recog.e9I92,emCase1andandnot.e4I71I92I42>,

<visual9green,visual4red>

];

/* Program for game B11 */

programB11 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e9I81I42>, <visual4green,visual9red>,

<en1I23,en2I23,en3I23,en4I23,en6I23,en7I23,en8I23,en9I23>,

<emCase1recog.e2I23,emCase1andandnot.e1I42I23I71>,

<visual2green,visual1red>

];

/* Program for game B12 */

programB12 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e9I81I42>, <visual4green,visual9red>,

<en1I33,en2I33,en3I33,en4I33,en6I33,en7I33,en8I33,en9I33>,

<emCase1recog.e3I33,emCase1andandnot.e1I42I33I71>,

<visual3green,visual1red>

314

Appendix C. Four Layer Cascade DNADL File

];

/* Program for game B13 */

programB13 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e9I81I42>, <visual4green,visual9red>,

<en1I73,en2I73,en3I73,en4I73,en6I73,en7I73,en8I73,en9I73>,

<emCase1recog.e7I73,emCase1andandnot.e1I42I73I71>,

<visual7green,visual1red>

];

/* Program for game B14 */

programB14 =

[<en1I81,en2I81,en3I81,en4I81,en6I81,en7I81,en8I81,en9I81>,

<emCase1recog.e8I81,emCase1recog.e6I81>, <visual8green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e9I81I42>, <visual4green,visual9red>,

<en1I13,en2I13,en3I13,en4I13,en6I13,en7I13,en8I13,en9I13>,

<emCase2recog.e1I13,emCase1and.e3I42I13>, <visual1green,visual3red>

];

/* Program for game B15 */

programB15 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e1I7I42>, <visual4green,visual1red>,

<en1I23,en2I23,en3I23,en4I23,en6I23,en7I23,en8I23,en9I23>,

<emCase1recog.e2I23,emCase1andandnot.e9I42I23I81>,

<visual2green,visual9red>

];

/* Program for game B16 */

programB16 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e1I7I42>, <visual4green,visual1red>,

<en1I33,en2I33,en3I33,en4I33,en6I33,en7I33,en8I33,en9I33>,

315

Appendix C. Four Layer Cascade DNADL File

<emCase1recog.e3I33,emCase1andandnot.e9I42I33I91>,

<visual3green,visual9red>

];

/* Program for game B17 */

programB17 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e1I7I42>, <visual4green,visual1red>,

<en1I83,en2I83,en3I83,en4I83,en6I83,en7I83,en8I83,en9I83>,

<emCase1recog.e8I83,emCase1andandnot.e9I42I83I81>,

<visual8green,visual9red>

];

/* Program for game B18 */

programB18 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e1I7I42>, <visual4green,visual1red>,

<en1I93,en2I93,en3I93,en4I93,en6I93,en7I93,en8I93,en9I93>,

<emCase1recog.e9I93,emCase1and.e8I42I93>, <visual9green,visual8red>,

<en1I24,en2I24,en3I24,en4I24,en6I24,en7I24,en8I24,en9I24>,

<emCase1recog.e2I124,emCase2and.e3I93I24>, <visual2green,visual3green>

];

/* Program for game B19 */

programB19 =

[<en1I71,en2I71,en3I71,en4I71,en6I71,en7I71,en8I71,en9I71>,

<emCase1recog.e7I71,emCase1recog.e6I71>, <visual7green,visual6red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1and.e1I7I42>, <visual4green,visual1red>,

<en1I93,en2I93,en3I93,en4I93,en6I93,en7I93,en8I93,en9I93>,

<emCase1recog.e9I93,emCase1and.e8I42I93>, <visual9green,visual8red>,

<en1I34,en2I34,en3I34,en4I34,en6I34,en7I34,en8I34,en9I34>,

<emCase1recog.e3I34,emCase1and.e2I93I34>, <visual3green,visual2red>

];

/* Program for game C1 */

programC1 =

316

Appendix C. Four Layer Cascade DNADL File

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I32,en2I32,en3I32,en4I32,en6I32,en7I32,en8I32,en9I32>,

<emCase1recog.e3I32,emCase1andandnot.e2I11I32I22>,

<visual3green,visual2red>

];

/* Program for game C2 */

programC2 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I42,en2I42,en3I42,en4I42,en6I42,en7I42,en8I42,en9I42>,

<emCase1recog.e4I42,emCase1andandnot.e2I11I42I22>,

<visual4green,visual2red>

];

/* Program for game C3 */

programC3 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1andandnot.e1I11I62I22>,

<visual6green,visual2red>

];

/* Program for game C4 */

programC4 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I72,en2I72,en3I72,en4I72,en6I72,en7I72,en8I72,en9I72>,

<emCase1recog.e7I72,emCase1andandnot.e2I11I72I22>,

<visual7green,visual2red>

];

/* Program for game C5 */

programC5 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I92,en2I92,en3I92,en4I92,en6I92,en7I92,en8I92,en9I92>,

<emCase1recog.e9I92,emCase1andandnot.e2I11I92I22>,

<visual9green,visual2red>

317

Appendix C. Four Layer Cascade DNADL File

];

/* Program for game C6 */

programC6 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I12,en2I12,en3I12,en4I12,en6I12,en7I12,en8I12,en9I12>,

<emCase1recog.e1I12,emCase1andandnot.e2I41I12I22>,

<visual1green,visual2red>

];

/* Program for game C7 */

programC7 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I32,en2I32,en3I32,en4I32,en6I32,en7I32,en8I32,en9I32>,

<emCase1recog.e3I32,emCase1andandnot.e2I41I32I22>,

<visual3green,visual2red>

];

/* Program for game C8 */

programC8 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1andandnot.e2I41I62I22>,

<visual6green,visual2red>

];

/* Program for game C9 */

programC9 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I72,en2I72,en3I72,en4I72,en6I72,en7I72,en8I72,en9I72>,

<emCase1recog.e7I72,emCase1andandnot.e2I41I72I22>,

<visual7green,visual2red>

];

/* Program for game C10 */

programC10 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

318

Appendix C. Four Layer Cascade DNADL File

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I92,en2I92,en3I92,en4I92,en6I92,en7I92,en8I92,en9I92>,

<emCase1recog.e9I92,emCase1andandnot.e2I41I92I22>,

<visual9green,visual2red>

];

/* Program for game C11 */

programC11 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1and.e3I11I22>, <visual2green,visual3red>,

<en1I43,en2I43,en3I43,en4I43,en6I43,en7I43,en8I43,en9I43>,

<emCase1recog.e4I43,emCase1andandnot.e7I22I43I41>,

<visual4green,visual7red>

];

/* Program for game C12 */

programC12 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1and.e3I11I22>, <visual2green,visual3red>,

<en1I63,en2I63,en3I63,en4I63,en6I63,en7I63,en8I63,en9I63>,

<enCase1recog.e6I63,emCase1andandnot.e7I22I63I41>,

<visual6green,visual7red>

];

/* Program for game C13 */

programC13 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1and.e3I11I22>, <visual2green,visual3red>,

<en1I93,en2I93,en3I93,en4I93,en6I93,en7I93,en8I93,en9I93>,

<emCase1recog.e9I93,emCase1andandnot.e7I22I93I41>,

<visual9green,visual7red>

];

/* Program for game C14 */

programC14 =

319

Appendix C. Four Layer Cascade DNADL File

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e1I22,emCase1and.e7I41I22>, <visual2green,visual7red>,

<en1I13,en2I13,en3I13,en4I13,en6I13,en7I13,en8I13,en9I13>,

<emCase1recog.e1I13,emCase1andandnot.e3I22I13I11>,

<visual1green,visual3red>

];

/* Program for game C15 */

programC15 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e1I22,emCase1and.e7I41I22>, <visual2green,visual7red>,

<en1I33,en2I33,en3I33,en4I33,en6I33,en7I33,en8I33,en9I33>,

<emCase1recog.e3I33,emCase1and.e9I22I33>, <visual3green,visual9red>

];

/* Program for game C16 */

programC16 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e1I22,emCase1and.e7I41I22>, <visual2green,visual7red>,

<en1I63,en2I63,en3I63,en4I63,en6I63,en7I63,en8I63,en9I63>,

<emCase1recog.e6I63,emCase1andandnot.e3I22I63I11>,

<visual6green,visual3red>

];

/* Program for game C17 */

programC17 =

[<en1I41,en2I41,en3I41,en4I41,en6I41,en7I41,en8I41,en9I41>,

<emCase1recog.e4I41,emCase1recog.e8I41>, <visual4green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e1I22,emCase1and.e7I41I22>, <visual2green,visual7red>,

<en1I93,en2I93,en3I93,en4I93,en6I93,en7I93,en8I93,en9I93>,

<emCase1recog.e9I93,emCase1andandnot.e3I22I93I11>,

<visual9green,visual3red>

];

320

Appendix C. Four Layer Cascade DNADL File

/* Program for game C18 */

programC18 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1and.e3I11I22>, <visual2green,visual3red>,

<en1I73,en2I73,en3I73,en4I73,en6I73,en7I73,en8I73,en9I73>,

<emCase1recog.e7I73,emCase1and.e4I22I73>, <visual7green,visual4red>,

<en1I64,en2I64,en3I64,en4I64,en6I64,en7I64,en8I64,en9I64>,

<emCase1recog.e6I64,emCase1and.e9I73I64>, <visual6green,visual9red>

];

/* Program for game C19 */

programC19 =

[<en1I11,en2I11,en3I11,en4I11,en6I11,en7I11,en8I11,en9I11>,

<emCase1recog.e1I11,emCase1recog.e8I11>, <visual1green,visual8red>,

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1and.e3I11I22>, <visual2green,visual3red>,

<en1I73,en2I73,en3I73,en4I73,en6I73,en7I73,en8I73,en9I73>,

<emCase1recog.e7I73,emCase1and.e4I22I73>, <visual7green,visual4red>,

<en1I94,en2I94,en3I94,en4I94,en6I94,en7I94,en8I94,en9I94>,

<emCase1recog.e9I94,emCase1and.e6I73I94>, <visual9green,visual6red>

];

/* Program for game D1 */

programD1 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I12,en2I12,en3I12,en4I12,en6I12,en7I12,en8I12,en9I12>,

<emCase1recog.e1I12,emCase1andandnot.e6I21I12I62>,

<visual1green,visual6red>

];

/* Program for game D2 */

programD2 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I32,en2I32,en3I32,en4I32,en6I32,en7I32,en8I32,en9I32>,

<emCase1recog.e3I32,emCase1andandnot.e2I21I32I62>,

<visual3green,visual6red>

];

321

Appendix C. Four Layer Cascade DNADL File

/* Program for game D3 */

programD3 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I72,en2I72,en3I72,en4I72,en6I72,en7I72,en8I72,en9I72>,

<emCase1recog.e7I72,emCase1andandnot.e6I21I72I62>,

<visual7green,visual6red>

];

/* Program for game D4 */

programD4 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I82,en2I82,en3I82,en4I82,en6I82,en7I82,en8I82,en9I82>,

<emCase1recog.e1I82,emCase1andandnot.e6I21I82I62>,

<visual8green,visual6red>

];

/* Program for game D5 */

programD5 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I92,en2I92,en3I92,en4I92,en6I92,en7I92,en8I92,en9I92>,

<emCase1recog.e9I92,emCase1andandnot.e6I21I92I22>,

<visual9green,visual6red>

];

/* Program for game D6 */

programD6 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I12,en2I12,en3I12,en4I12,en6I12,en7I12,en8I12,en9I12>,

<emCase1recog.e1I12,emCase1andandnot.e6I31I12I62>,

<visual1green,visual6red>

];

/* Program for game D7 */

programD7 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

322

Appendix C. Four Layer Cascade DNADL File

<en1I22,en2I22,en3I22,en4I22,en6I22,en7I22,en8I22,en9I22>,

<emCase1recog.e2I22,emCase1andandnot.e6I31I22I62>,

<visual2green,visual6red>

];

/* Program for game D8 */

programD8 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I72,en2I72,en3I72,en4I72,en6I72,en7I72,en8I72,en9I72>,

<emCase1recog.e7I72,emCase1andandnot.e6I31I72I62>,

<visual7green,visual6red>

];

/* Program for game D9 */

programD9 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I82,en2I82,en3I82,en4I82,en6I82,en7I82,en8I82,en9I82>,

<emCase1recog.e2I82,emCase1andandnot.e6I31I82I62>,

<visual2green,visual6red>

];

/* Program for game D10 */

programD10 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I92,en2I92,en3I92,en4I92,en6I92,en7I92,en8I92,en9I92>,

<emCase1recog.e9I92,emCase1andandnot.e6I31I92I22>,

<visual9green,visual6red>

];

/* Program for game D11 */

programD11 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e1I12I62>, <visual6green,visual1red>,

<en1I33,en2I33,en3I33,en4I33,en6I33,en7I33,en8I33,en9I33>,

<emCase1recog.e3I33,emCase1andandnot.e9I62I33I31>,

<visual3green,visual9red>

323

Appendix C. Four Layer Cascade DNADL File

];

/* Program for game D12 */

programD12 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e1I12I62>, <visual6green,visual1red>,

<en1I73,en2I73,en3I73,en4I73,en6I73,en7I73,en8I73,en9I73>,

<emCase1recog.e7I73,emCase1andandnot.e9I62I73I31>,

<visual7green,visual9red>

];

/* Program for game D13 */

programD13 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e1I12I62>, <visual6green,visual1red>,

<en1I83,en2I83,en3I83,en4I83,en6I83,en7I83,en8I83,en9I83>,

<emCase1recog.e3I83,emCase1andandnot.e1I62I83I31>,

<visual3green,visual9red>

];

/* Program for game D14 */

programD14 =

[<en1I21,en2I21,en3I21,en4I21,en6I21,en7I21,en8I21,en9I21>,

<emCase1recog.e2I21,emCase1recog.e4I21>, <visual2green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e1I12I62>, <visual6green,visual1red>,

<en1I93,en2I93,en3I93,en4I93,en6I93,en7I93,en8I93,en9I93>,

<emCase1recog.e9I93,emCase1and.e7I62I93>, <visual9green,visual7red>

];

/* Program for game D15 */

programD15 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e9I31I62>, <visual6green,visual9red>,

<en1I23,en2I23,en3I23,en4I23,en6I23,en7I23,en8I23,en9I23>,

324

Appendix C. Four Layer Cascade DNADL File

<emCase1recog.e2I23,emCase1andandnot.e1I62I23I21>

];

/* Program for game D16 */

programD16 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e9I31I62>, <visual6green,visual9red>,

<en1I73,en2I73,en3I73,en4I73,en6I73,en7I73,en8I73,en9I73>,

<emCase1recog.e7I73,emCase1andandnot.e1I62I73I21>,

<visual7green,visual1red>

];

/* Program for game D17 */

programD17 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e9I31I62>, <visual6green,visual9red>,

<en1I83,en2I83,en3I83,en4I83,en6I83,en7I83,en8I83,en9I83>,

<emCase1recog.e8I83,emCase1andandnot.e1I62I83I21>,

<visual8green,visual1red>

];

/* Program for game D18 */

programD18 =

[<en1I31,en2I31,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e9I31I62>, <visual6green,visual9red>,

<en1I13,en2I13,en3I13,en4I13,en6I13,en7I13,en8I13,en9I13>,

<emCase1recog.e1I13,emCase1and.e2I62I13>, <visual1green,visual2red>,

<en1I74,en2I74,en3I74,en4I74,en6I74,en7I74,en8I74,en9I74>,

<emCase1recog.e7I74,emCase1and.e8I13I74>, <visual7green,visual8red>

];

/* Program for game D19 */

programD19 =

[<en1I31,en2I13,en3I31,en4I31,en6I31,en7I31,en8I31,en9I31>,

<emCase1recog.e3I31,emCase1recog.e4I31>, <visual3green,visual4red>,

325

Appendix C. Four Layer Cascade DNADL File

<en1I62,en2I62,en3I62,en4I62,en6I62,en7I62,en8I62,en9I62>,

<emCase1recog.e6I62,emCase1and.e9I31I62>, <visual6green,visual9red>,

<en1I13,en2I13,en3I13,en4I13,en6I13,en7I13,en8I13,en9I13>,

<emCase1recog.e1I13,emCase1and.e2I62I13>, <visual1green,visual2red>,

<en1I84,en2I84,en3I84,en4I84,en6I84,en7I84,en8I84,en9I84>,

<emCase1recog.e8I84,emCase1and.e7I13I84>, <visual8green,visual7red>,

];

/* M2 Level 3 Description */

LEVEL 3

LENGTH

lengthI = 15;

lengthE817 = 17;

lengthE6 = 15;

lengthE817LeftYes = 55;

lengthE817RightYes = 55;

lengthE6LeftYes = 58;

lengthE6RightYes = 59;

length817And = 80;

lengthE6And = 82;

lengthE6AndAndNot = 98;

SEQUENCE

/* recognizer gate templates */

seqE817LeftYes = GGAAGATCAT-ia-ATGATCTTCCGAGCCGGTCGAAAGTTACTA;

seqE817RightYes = ATGATCTTCCGAGCCGGTCGAAAGTTACTA-ia-TAGTAACTTT;

seqE6LeftYes = TGAAGAG-ia-CTCTTCAGCGATGGCGAAGCCCACCCATGTTAGTGA;

seqE6RightYes = CTCTTCAGCGATGGCGAAGCCCACCCATGTTAGTGA-ia-TCACTAAC;

/* and gate templates */

seqE817And = GGAAGATCAT-ia-ATGATCTTCCGAGCCGGTCGAAAGTTACTA-ib-TAGTAACTTT;

seqE6And = CTGAAGAG-ia-CTCTTCAGCGATGGCGAAGCCCACCCATGTTAGTGA-ib-TCACTAAC;

326

Appendix C. Four Layer Cascade DNADL File

/* and and not gate template */

seqE6AndAndNot = CTGAAGAG-ia-CTCTTCAGCGATGACTG-ic-

CAGTCCACCCATGTTAGTGA-ib-TCACTAAC;

/* substrate sequences */

seqE817 = TAGTAACTAGAGATCAT;

seqE6 = TCACTATAGGAAGAG;

/* sequences serving in literal strands */

seq.lI11;

seq.lI12;

seq.lI13;

seq.lI14;

seq.lI21;

seq.lI22;

seq.lI23;

seq.lI24;

seq.lI31;

seq.lI32;

seq.lI33;

seq.lI34;

seq.lI41;

seq.lI42;

seq.lI43;

seq.lI44;

seq.lI61;

seq.lI62;

seq.lI63;

seq.lI64;

seq.lI71;

seq.lI72;

seq.lI73;

seq.lI74;

seq.lI81;

seq.lI82;

seq.lI83;

seq.lI84;

seq.lI91;

seq.lI92;

327

Appendix C. Four Layer Cascade DNADL File

seq.lI93;

seq.lI94;

/* sequences serving in recognition function strands */

seq.rI11;

seq.rI12;

seq.rI13;

seq.rI14;

seq.rI21;

seq.rI22;

seq.rI23;

seq.rI24;

seq.rI31;

seq.rI32;

seq.rI33;

seq.rI34;

seq.rI41;

seq.rI42;

seq.rI43;

seq.rI44;

seq.rI61;

seq.rI62;

seq.rI63;

seq.rI64;

seq.rI71;

seq.rI72;

seq.rI73;

seq.rI74;

seq.rI81;

seq.rI82;

seq.rI83;

seq.rI84;

seq.rI91;

seq.rI92;

seq.rI93;

seq.rI94;

/* sequences serving in and function strands */

seq.aI21I62;

328

Appendix C. Four Layer Cascade DNADL File

seq.aI71I42;

seq.aI82I73;

seq.aI33I44;

seq.aI62I13;

seq.aI93I34;

seq.aI11I22;

seq.aI61I82;

seq.aI42I13;

seq.aI93I24;

seq.aI22I73;

seq.aI33I14;

seq.aI82I33;

seq.aI73I94;

seq.aI41I22;

seq.aI91I82;

seq.aI62I93;

seq.aI13I84;

seq.aI42I93;

seq.aI13I74;

seq.aI31I62;

seq.aI81I42;

seq.aI22I33;

seq.aI73I64;

/* sequences serving in and-and-not function strands */

seq.aanI42I73I71;

seq.aanI42I33I71;

seq.aanI42I23I71;

seq.aanI62I73I21;

seq.aanI62I83I21;

seq.aanI62I23I21;

seq.aanI11I32I22;

seq.aanI11I42I22;

seq.aanI11I62I22;

seq.aanI11I72I22;

seq.aanI11I92I22;

seq.aanI41I12I22;

seq.aanI41I32I22;

seq.aanI41I62I22;

seq.aanI41I72I22;

329

Appendix C. Four Layer Cascade DNADL File

seq.aanI41I92I22;

seq.aanI22I13I11;

seq.aanI22I63I11;

seq.aanI22I93I11;

seq.aanI82I13I61;

seq.aanI82I43I61;

seq.aanI82I63I61;

seq.aanI71I12I42;

seq.aanI71I22I42;

seq.aanI71I32I42;

seq.aanI71I82I42;

seq.aanI71I92I42;

seq.aanI81I12I42;

seq.aanI81I22I42;

seq.aanI81I32I42;

seq.aanI81I72I42;

seq.aanI81I92I42;

seq.aanI21I12I62;

seq.aanI21I32I62;

seq.aanI21I72I62;

seq.aanI21I82I62;

seq.aanI21I92I62;

seq.aanI31I12I62;

seq.aanI31I22I62;

seq.aanI31I72I62;

seq.aanI31I82I62;

seq.aanI31I92I62;

seq.aanI22I43I41;

seq.aanI22I63I41;

seq.aanI22I93I41;

seq.aanI82I13I91;

seq.aanI82I43I91;

seq.aanI82I93I91;

seq.aanI61I12I82;

seq.aanI61I32I82;

seq.aanI61I42I82;

seq.aanI61I72I82;

seq.aanI61I92I82;

seq.aanI91I12I82;

seq.aanI91I32I82;

seq.aanI91I42I82;

330

Appendix C. Four Layer Cascade DNADL File

seq.aanI91I62I82;

seq.aanI91I72I82;

seq.aanI42I23I81;

seq.aanI42I33I81;

seq.aanI42I83I81;

seq.aanI62I33I31;

seq.aanI62I73I31;

seq.aanI62I83I31;

ISO

/* recognizer gate structures */

with stage1

structE817LeftYes = [(0,10,15),(35,2,5)];

structE817RightYes = [(8,3,3),(20,10,15)];

structE6LeftYes = [(0,7,15),(34,3,3),(43,3,8)];

structE6RightYes = [(12,3,3),(28,8,15)];

with stage2

structE817LeftYes = [(10,15,31)];

structE817RightYes = [(30,15,11)];

structE6LeftYes = [(7,15,37)];

structE6RightYes = [(36,15,9)];

with stage4

structE817LeftYes = [(25,8,23),(47,8,10)];

structE817RightYes = [(0,8,48),(22,8,35)];

structE6LeftYes = [(22,6,31),(52,6,10)];

structE6RightYes = [(0,6,54),(30,6,33)];

/* and gate structures */

with stage1

structE817And = [(0,10,15),(38,2,0),(45,10,15)];

structE6And = [(0,8,15),(35,3,3),(51,8,15)];

331

Appendix C. Four Layer Cascade DNADL File

with stage2

structE817And = [(10,15,56)];

structE6And = [(8,15,60)];

with stage3

structE817And = [(55,15,27)];

structE6And = [(59,15,25)];

with stage5

structE817And = [(25,8,48),(47,8,35)];

structE6And = [(23,6,54),(53,6,33)];

/* and-and-not gate structures */

with stage1

structE6AndAndNot = [(0,8,15),(35,5,15),(67,8,15)];

with stage2

structE6AndAndNot = [(8,15,76)];

with stage3

structE6AndAndNot = [(75,15,41)];

with stage5

structE6AndAndNot = [(23,6,70),(69,6,33)];

FLUOROPHORE

FAM <-> green;

TAMRA <-> red;

JOE <-> pink;

ROX <-> purple;

QUENCHER

332

Appendix C. Four Layer Cascade DNADL File

BH2;

STRAND

/* substrate variations */

substrateE817FAM = (FAM-seqE817-BH2,[],lengthE817);

substrateE817TAMRA = (TAMRA-seqE817-BH2,[],lengthE817);

substrateE6FAM = (FAM-seqE6-BH2,[],lengthE6);

substrateE6TAMRA = (TAMRA-seqE6-BH2,[],lengthE6);

substrateFAM = substrateE817FAM || substrateE817TAMRA;

substrateTAMRA = substrateE6FAM || substrateE817TAMRA;

/* literal strands */

str.lI11 = (seq.lI11,[],lengthI);

str.lI12 = (seq.lI12,[],lengthI);

str.lI13 = (seq.lI13,[],lengthI);

str.lI14 = (seq.lI14,[],lengthI);

str.lI21 = (seq.lI21,[],lengthI);

str.lI22 = (seq.lI22,[],lengthI);

str.lI23 = (seq.lI23,[],lengthI);

str.lI24 = (seq.lI24,[],lengthI);

str.lI31 = (seq.lI31,[],lengthI);

str.lI32 = (seq.lI32,[],lengthI);

str.lI33 = (seq.lI33,[],lengthI);

str.lI34 = (seq.lI34,[],lengthI);

str.lI41 = (seq.lI41,[],lengthI);

str.lI42 = (seq.lI42,[],lengthI);

str.lI43 = (seq.lI43,[],lengthI);

str.lI44 = (seq.lI44,[],lengthI);

str.lI61 = (seq.lI61,[],lengthI);

str.lI62 = (seq.lI62,[],lengthI);

str.lI63 = (seq.lI63,[],lengthI);

str.lI64 = (seq.lI64,[],lengthI);

str.lI71 = (seq.lI71,[],lengthI);

str.lI72 = (seq.lI72,[],lengthI);

str.lI73 = (seq.lI73,[],lengthI);

str.lI74 = (seq.lI74,[],lengthI);

333

Appendix C. Four Layer Cascade DNADL File

str.lI81 = (seq.lI81,[],lengthI);

str.lI82 = (seq.lI82,[],lengthI);

str.lI83 = (seq.lI83,[],lengthI);

str.lI84 = (seq.lI84,[],lengthI);

str.lI91 = (seq.lI91,[],lengthI);

str.lI92 = (seq.lI92,[],lengthI);

str.lI93 = (seq.lI93,[],lengthI);

str.lI94 = (seq.lI94,[],lengthI);

/* recognizer gate strands */

build (rI11,lI11), (rI12,lI12), (rI13,lI13), (rI14,lI14),

(rI21,lI21), (rI22,lI22), (rI23,lI23), (rI24,lI24),

(rI31,lI31), (rI32,lI32), (rI33,lI33), (rI34,lI34),

(rI41,lI41), (rI42,lI42), (rI43,lI43), (rI44,lI44),

(rI61,lI61), (rI62,lI62), (rI63,lI63), (rI64,lI64),

(rI71,lI71), (rI72,lI72), (rI73,lI73), (rI74,lI74),

(rI81,lI81), (rI82,lI82), (rI83,lI83), (rI84,lI84),

(rI91,lI91), (rI92,lI92), (rI93,lI93), (rI94,lI94)

seq.*1 = seqE817LeftYes | ia = revcomp(seq.*2);

str.*1.stage0 = (seq.*1,[],lengthE817LeftYes);

str.*1.stage1 = (seq.*1,stage1.structE817LeftYes,lengthE817LeftYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE817LeftYes,

lengthE817LeftYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE817FAM,stage4.structE817LeftYes,

lengthE817LeftYes+lengthE817); ||

seq.*1 = seqE817RightYes | ia = revcomp(seq.*2);

str.*1.stage0 = (seq.*1,[],lengthE817RightYes);

str.*1.stage1 = (seq.*1,stage1.structE817RightYes,lengthE817RightYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE817RightYes,

lengthE817RightYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE817FAM,stage4.structE817RightYes,

lengthE817RightYes+lengthE817); ||

seq.*1 = seqE6LeftYes | ia = revcomp(seq.*2);

str.*1.stage0 = (seq.*1,[],lengthE6LeftYes);

str.*1.stage1 = (seq.*1,stage1.structE6LeftYes,lengthE6LeftYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE6LeftYes,

lengthE6LeftYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE6FAM,stage4.structE6LeftYes,

lengthE6LeftYes+lengthE6); ||

seq.*1 = seqE6RightYes | ia = revcomp(seq.*2);

334

Appendix C. Four Layer Cascade DNADL File

str.*1.stage0 = (seq.*1,[],lengthE6RightYes);

str.*1.stage1 = (seq.*1,stage1.structE6RightYes,lengthE6RightYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE6RightYes,

lengthE6RightYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE6FAM,stage4.structE6RightYes,

lengthE6RightYes+lengthE6);

build (rI11,lI11), (rI21,lI21), (rI31,lI31), (rI41,lI41),

(rI61,lI61), (rI71,lI71), (rI81,lI81), (rI91,lI91)

seq.*1 = seqE817LeftYes | ia = revcomp(seq.*2);

str.*1.stage0 = (seq.*1,[],lengthE817LeftYes);

str.*1.stage1 = (seq.*1,stage1.structE817LeftYes,

lengthE817LeftYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE817LeftYes,

lengthE817LeftYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE817TAMRA,stage4.structE817LeftYes,

lengthE817LeftYes+lengthE817); ||

seq.*1 = seqE817RightYes | ia = revcomp(seq.*2);

str.*1.stage0 = (seq.*1,[],lengthE817RightYes);

str.*1.stage1 = (seq.*1,stage1.structE817RightYes,lengthE817RightYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE817RightYes,

lengthE817RightYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE817TAMRA,stage4.structE817RightYes,

lengthE817RightYes+lengthE817); ||

seq.*1 = seqE6LeftYes | ia = revcomp(seq.*2);

str.*1.stage0 = (seq.*1,[],lengthE6LeftYes);

str.*1.stage1 = (seq.*1,stage1.structE6LeftYes,lengthE6LeftYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE6LeftYes,

lengthE6LeftYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE6TAMRA,stage4.structE6LeftYes,

lengthE6LeftYes+lengthE6); ||

seq.*1 = seqE6RightYes | ia = revcomp(seq.*2);

str.*1.stage0 = (seq.*1,[],lengthE6RightYes);

str.*1.stage1 = (seq.*1,stage1.structE6RightYes,lengthE6RightYes);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE6RightYes,

lengthE6RightYes+lengthI);

str.*1.stage4 = (seq.*1-substrateE6TAMRA,stage4.structE6RightYes,

lengthE6RightYes+lengthE6);

/* and gate strands */

335

Appendix C. Four Layer Cascade DNADL File

build (aI21I62,lI21,lI62), (aI71I42,lI71,lI42), (aI82I73,lI82,lI73),

(aI33I44,lI33,lI44), (aI62I13,lI62,lI13), (aI93I34,lI93,lI34),

(aI11I22,lI11,lI22), (aI61I82,lI61,lI82), (aI42I13,lI42,lI13),

(aI93I24,lI93,lI24), (aI22I73,lI22,lI73), (aI33I14,lI33,lI14),

(aI82I33,lI82,lI33), (aI73I94,lI73,lI94), (aI41I22,lI41,lI22),

(aI91I82,lI91,lI82), (aI62I93,lI62,lI93), (aI13I84,lI13,lI84),

(aI42I93,lI42,lI93), (aI13I74,lI13,lI74), (aI31I62,lI13,lI62),

(aI81I42,lI81,lI42), (aI22I33,lI22,lI33), (aI73I64,lI73,lI64)

seq.*1 = seqE6And | ia = revcomp(seq.*2), ib = revcomp(seq.*3);

str.*1.stage0 = (seq.*1,[],lengthE6And);

str.*1.stage1 = (seq.*1,stage1.structE6And,lengthE6And);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE6And,lengthE6And+lengthI);

str.*1.stage3 = (seq.*1-seq.*3,stage3.structE6And,lengthE6And+lengthI);

str.*1.stage5 = (seq.*1-substrateE6TAMRA,stage5.structE6And,

lengthE6And+lengthE6); ||

seq.*1 = seqE817And | ia = revcomp(seq.*2), ib = revcomp(seq.*3);

str.*1.stage0 = (seq.*1,[],lengthE817And);

str.*1.stage1 = (seq.*1,stage1.structE817And,lengthE817And);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE817And,

lengthE817And+lengthI);

str.*1.stage3 = (seq.*1-seq.*3,stage3.structE817And,

lengthE817And+lengthI);

str.*1.stage5 = (seq.*1-substrateE817TAMRA,stage5.structE817And,

lengthE817And+lengthE817);

/* and-and-not gate strands */

build (aanI42I73I71,lI42,lI73,lI71), (aanI42I33I71,lI42,lI33,lI71),

(aanI42I23I71,lI42,lI23,lI71), (aanI62I73I21,lI62,lI73,lI21),

(aanI62I83I21,lI62,lI83,lI21), (aanI62I23I21,lI62,lI23,lI21),

(aanI11I32I22,lI11,lI32,lI22), (aanI11I42I22,lI11,lI42,lI22),

(aanI11I62I22,lI11,lI62,lI22), (aanI11I72I22,lI11,lI72,lI22),

(aanI11I92I22,lI11,lI92,lI22), (aanI41I12I22,lI41,lI12,lI22),

(aanI41I32I22,lI41,lI32,lI22), (aanI41I62I22,lI41,lI62,lI22),

(aanI41I72I22,lI41,lI72,lI22), (aanI41I92I22,lI41,lI92,lI22),

(aanI22I13I11,lI22,lI13,lI11), (aanI22I63I11,lI22,lI63,lI11),

(aanI22I93I11,lI22,lI93,lI11), (aanI82I13I61,lI82,lI13,lI61),

(aanI82I43I61,lI82,lI43,lI61), (aanI82I63I61,lI82,lI63,lI61),

(aanI71I12I42,lI71,lI12,lI42), (aanI71I22I42,lI71,lI22,lI42),

(aanI71I32I42,lI71,lI32,lI42), (aanI71I82I42,lI71,lI82,lI42),

(aanI71I92I42,lI71,lI92,lI42), (aanI81I12I42,lI81,lI12,lI42),

336

Appendix C. Four Layer Cascade DNADL File

(aanI81I22I42,lI81,lI22,lI42), (aanI81I32I42,lI81,lI32,lI42),

(aanI81I72I42,lI81,lI72,lI42), (aanI81I92I42,lI81,lI92,lI42),

(aanI21I12I62,lI21,lI12,lI62), (aanI21I32I62,lI21,lI32,lI62),

(aanI21I72I62,lI21,lI72,lI62), (aanI21I82I62,lI21,lI82,lI62),

(aanI21I92I62,lI21,lI92,lI62), (aanI31I12I62,lI31,lI12,lI62),

(aanI31I22I62,lI31,lI22,lI62), (aanI31I72I62,lI31,lI72,lI62),

(aanI31I82I62,lI31,lI82,lI62), (aanI31I92I62,lI31,lI92,lI62),

(aanI22I43I41,lI22,lI43,lI41), (aanI22I63I41,lI22,lI63,lI41),

(aanI22I93I41,lI22,lI93,lI41), (aanI82I13I91,lI82,lI13,lI91),

(aanI82I43I91,lI82,lI43,lI91), (aanI82I93I91,lI82,lI93,lI91),

(aanI61I12I82,lI61,lI12,lI82), (aanI61I32I82,lI61,lI32,lI82),

(aanI61I42I82,lI61,lI42,lI82), (aanI61I72I82,lI61,lI72,lI82),

(aanI61I92I82,lI61,lI92,lI82), (aanI91I12I82,lI91,lI12,lI82),

(aanI91I32I82,lI91,lI32,lI82), (aanI91I42I82,lI91,lI42,lI82),

(aanI91I62I82,lI91,lI62,lI82), (aanI91I72I82,lI91,lI72,lI82),

(aanI42I23I81,lI42,lI23,lI81), (aanI42I33I81,lI42,lI33,lI81),

(aanI42I83I81,lI42,lI83,lI81), (aanI62I33I31,lI62,lI33,lI31),

(aanI62I73I31,lI62,lI73,lI31), (aanI62I83I31,lI62,lI83,lI31)

seq.*1 = seqE6AndAndNot | ia = revcomp(seq.*2), ib = revcomp(seq.*3),

ic = revcomp(seq.*4);

str.*1.stage0 = (seq.*1,[],lengthE6AndAndNot);

str.*1.stage1 = (seq.*1,stage1.structE6AndAndNot,lengthE6AndAndNot);

str.*1.stage2 = (seq.*1-seq.*2,stage2.structE6AndAndNot,

lengthE6AndAndNot+lengthI);

str.*1.stage3 = (seq.*1-seq.*3,stage3.structE6AndAndNot,

lengthE6AndAndNot+lengthI);

str.*1.stage5 = (seq.*1-substrateE6TAMRA,stage5.structE6AndAndNot,

lengthE6AndAndNot+lengthE817);

PHYSICALMAP

/* premiss maps */

a1formulas.p10 <-> cmCase1recog.c1I11;

a1formulas.p11 <-> cmCase1recog.c1I12;

a1formulas.p12 <-> cmCase1recog.c1I13;

a1formulas.p13 <-> cmCase1recog.c1I14;

a1formulas.p14 <-> cmCase1and.c1I21I62;

a1formulas.p15 <-> cmCase1and.c1I33I44;

a1formulas.p16 <-> cmCase1and.c1I82I73;

337

Appendix C. Four Layer Cascade DNADL File

a1formulas.p17 <-> cmCase1and.c1I71I42;

a1formulas.p18 <-> cmCase1andandnot.c1I62I73I21;

a1formulas.p19 <-> cmCase1andandnot.c1I62I83I21;

a1formulas.p110 <-> cmCase1andandnot.c1I62I23I21;

a1formulas.p111 <-> cmCase1andandnot.c1I42I73I71;

a1formulas.p112 <-> cmCase1andandnot.c1I42I33I71;

a1formulas.p113 <-> cmCase1andandnot.c1I42I23I71;

a2formulas.p20 <-> cmCase1recog.c2I21;

a2formulas.p21 <-> cmCase1recog.c2I22;

a2formulas.p22 <-> cmCase1recog.c2I23;

a2formulas.p23 <-> cmCase1recog.c2I24;

a2formulas.p24 <-> cmCase1recog.c2I61;

a2formulas.p25 <-> cmCase1recog.c2I91;

a2formulas.p26 <-> cmCase1and.c2I62I13;

a2formulas.p27 <-> cmCase1and.c2I93I34;

a2formulas.p28 <-> cmCase1andandnot.c2I11I32I22;

a2formulas.p29 <-> cmCase1andandnot.c2I11I42I22;

a2formulas.p210 <-> cmCase1andandnot.c2I11I62I22;

a2formulas.p211 <-> cmCase1andandnot.c2I11I72I22;

a2formulas.p212 <-> cmCase1andandnot.c2I11I92I22;

a2formulas.p213 <-> cmCase1andandnot.c2I41I12I22;

a2formulas.p214 <-> cmCase1andandnot.c2I41I32I22;

a2formulas.p215 <-> cmCase1andandnot.c2I41I62I22;

a2formulas.p216 <-> cmCase1andandnot.c2I41I72I22;

a2formulas.p217 <-> cmCase1andandnot.c2I41I92I22;

a3formulas.p30 <-> cmCase1recog.c3I31;

a3formulas.p31 <-> cmCase1recog.c3I32;

a3formulas.p32 <-> cmCase1recog.c3I33;

a3formulas.p33 <-> cmCase1recog.c3I34;

a3formulas.p34 <-> cmCase1and.c3I11I22;

a3formulas.p35 <-> cmCase1and.c3I61I82;

a3formulas.p36 <-> cmCase1and.c3I42I13;

a3formulas.p37 <-> cmCase1and.c3I93I24;

a3formulas.p38 <-> cmCase1andandnot.c3I22I63I11;

a3formulas.p39 <-> cmCase1andandnot.c3I22I93I11;

a3formulas.p310 <-> cmCase1andandnot.c3I22I13I11;

a3formulas.p311 <-> cmCase1andandnot.c3I82I63I61;

a3formulas.p312 <-> cmCase1andandnot.c3I82I43I61;

a3formulas.p313 <-> cmCase1andandnot.c3I82I13I61;

338

Appendix C. Four Layer Cascade DNADL File

a4formulas.p40 <-> cmCase1recog.c4I41;

a4formulas.p41 <-> cmCase1recog.c4I42;

a4formulas.p42 <-> cmCase1recog.c4I43;

a4formulas.p43 <-> cmCase1recog.c4I44;

a4formulas.p44 <-> cmCase1recog.c4I21;

a4formulas.p46 <-> cmCase1and.c4I22I73;

a4formulas.p47 <-> cmCase1and.c4I33I14;

a4formulas.p48 <-> cmCase1andandnot.c4I81I22I42;

a4formulas.p49 <-> cmCase1andandnot.c4I81I92I42;

a4formulas.p410 <-> cmCase1andandnot.c4I81I72I42;

a4formulas.p411 <-> cmCase1andandnot.c4I81I32I42;

a4formulas.p412 <-> cmCase1andandnot.c4I81I12I42;

a4formulas.p413 <-> cmCase1andandnot.c4I71I92I42;

a4formulas.p414 <-> cmCase1andandnot.c4I71I82I42;

a4formulas.p415 <-> cmCase1andandnot.c4I71I32I42;

a4formulas.p416 <-> cmCase1andandnot.c4I71I22I42;

a4formulas.p417 <-> cmCase1andandnot.c4I71I12I42;

a6formulas.p60 <-> cmCase1recog.c6I61;

a6formulas.p61 <-> cmCase1recog.c6I62;

a6formulas.p62 <-> cmCase1recog.c6I63;

a6formulas.p63 <-> cmCase1recog.c6I64;

a6formulas.p64 <-> cmCase1recog.c6I71;

a6formulas.p65 <-> cmCase1recog.c6I81;

a6formulas.p66 <-> cmCase1and.c6I73I94;

a6formulas.p67 <-> cmCase1and.c6I82I33;

a6formulas.p68 <-> cmCase1andandnot.c6I21I12I62;

a6formulas.p69 <-> cmCase1andandnot.c6I21I32I62;

a6formulas.p610 <-> cmCase1andandnot.c6I21I72I62;

a6formulas.p611 <-> cmCase1andandnot.c6I21I82I62;

a6formulas.p612 <-> cmCase1andandnot.c6I21I92I62;

a6formulas.p613 <-> cmCase1andandnot.c6I31I12I62;

a6formulas.p614 <-> cmCase1andandnot.c6I31I22I62;

a6formulas.p615 <-> cmCase1andandnot.c6I31I72I62;

a6formulas.p616 <-> cmCase1andandnot.c6I31I82I62;

a6formulas.p617 <-> cmCase1andandnot.c6I31I92I62;

a7formulas.p70 <-> cmCase1recog.c7I71;

a7formulas.p71 <-> cmCase1recog.c7I72;

a7formulas.p72 <-> cmCase1recog.c7I73;

339

Appendix C. Four Layer Cascade DNADL File

a7formulas.p73 <-> cmCase1recog.c7I74;

a7formulas.p74 <-> cmCase1and.c7I41I22;

a7formulas.p75 <-> cmCase1and.c7I62I93;

a7formulas.p76 <-> cmCase1and.c7I13I84;

a7formulas.p77 <-> cmCase1and.c7I91I82;

a7formulas.p78 <-> cmCase1andandnot.c7I22I63I41;

a7formulas.p79 <-> cmCase1andandnot.c7I22I93I41;

a7formulas.p710 <-> cmCase1andandnot.c7I22I43I41;

a7formulas.p711 <-> cmCase1andandnot.c7I82I93I91;

a7formulas.p712 <-> cmCase1andandnot.c7I82I43I91;

a7formulas.p713 <-> cmCase1andandnot.c7I82I13I91;

a8formulas.p80 <-> cmCase1recog.c8I81;

a8formulas.p81 <-> cmCase1recog.c8I82;

a8formulas.p82 <-> cmCase1recog.c8I83;

a8formulas.p83 <-> cmCase1recog.c8I84;

a8formulas.p84 <-> cmCase1recog.c8I11;

a8formulas.p85 <-> cmCase1recog.c8I41;

a8formulas.p86 <-> cmCase1and.c8I13I74;

a8formulas.p87 <-> cmCase1and.c8I42I93;

a8formulas.p88 <-> cmCase1andandnot.c8I91I72I82;

a8formulas.p89 <-> cmCase1andandnot.c8I91I62I82;

a8formulas.p810 <-> cmCase1andandnot.c8I91I42I82;

a8formulas.p811 <-> cmCase1andandnot.c8I91I32I82;

a8formulas.p812 <-> cmCase1andandnot.c8I91I12I82;

a8formulas.p813 <-> cmCase1andandnot.c8I61I92I82;

a8formulas.p814 <-> cmCase1andandnot.c8I61I72I82;

a8formulas.p815 <-> cmCase1andandnot.c8I61I42I82;

a8formulas.p816 <-> cmCase1andandnot.c8I61I32I82;

a8formulas.p817 <-> cmCase1andandnot.c8I61I12I82;

a9formulas.p90 <-> cmCase1recog.c9I91;

a9formulas.p91 <-> cmCase1recog.c9I92;

a9formulas.p92 <-> cmCase1recog.c9I93;

a9formulas.p93 <-> cmCase1recog.c9I94;

a9formulas.p94 <-> cmCase1and.c9I73I64;

a9formulas.p95 <-> cmCase1and.c9I22I33;

a9formulas.p96 <-> cmCase1and.c9I31I62;

a9formulas.p97 <-> cmCase1and.c9I81I42;

a9formulas.p98 <-> cmCase1andandnot.c9I62I73I31;

a9formulas.p99 <-> cmCase1andandnot.c9I62I83I31;

340

Appendix C. Four Layer Cascade DNADL File

a9formulas.p910 <-> cmCase1andandnot.c9I62I33I31;

a9formulas.p911 <-> cmCase1andandnot.c9I42I83I81;

a9formulas.p912 <-> cmCase1andandnot.c9I42I33I81;

a9formulas.p913 <-> cmCase1andandnot.c9I42I23I81;

/* literal maps */

i1.gameA1 <-> en1I61;

i1.gameA2 <-> en1I61;

i1.gameA3 <-> en1I61;

i1.gameA4 <-> en1I61;

i1.gameA5 <-> en1I61;

i1.gameA6 <-> en1I91;

i1.gameA7 <-> en1I91;

i1.gameA8 <-> en1I91;

i1.gameA9 <-> en1I91;

i1.gameA10 <-> en1I91;

i1.gameA11 <-> en1I61;

i1.gameA12 <-> en1I61;

i1.gameA13 <-> en1I61;

i1.gameA14 <-> en1I61;

i1.gameA15 <-> en1I91;

i1.gameA16 <-> en1I91;

i1.gameA17 <-> en1I91;

i1.gameA18 <-> en1I91;

i1.gameA19 <-> en1I91;

i1.gameB1 <-> en1I81;

i1.gameB2 <-> en1I81;

i1.gameB3 <-> en1I81;

i1.gameB4 <-> en1I81;

i1.gameB5 <-> en1I81;

i1.gameB6 <-> en1I71;

i1.gameB7 <-> en1I71;

i1.gameB8 <-> en1I71;

i1.gameB9 <-> en1I71;

i1.gameB10 <-> en1I71;

i1.gameB11 <-> en1I81;

i1.gameB12 <-> en1I81;

i1.gameB13 <-> en1I81;

i1.gameB14 <-> en1I81;

341

Appendix C. Four Layer Cascade DNADL File

i1.gameB15 <-> en1I71;

i1.gameB16 <-> en1I71;

i1.gameB17 <-> en1I71;

i1.gameB18 <-> en1I71;

i1.gameB19 <-> en1I71;

i1.gameC1 <-> en1I11;

i1.gameC2 <-> en1I11;

i1.gameC3 <-> en1I11;

i1.gameC4 <-> en1I11;

i1.gameC5 <-> en1I11;

i1.gameC6 <-> en1I41;

i1.gameC7 <-> en1I41;

i1.gameC8 <-> en1I41;

i1.gameC9 <-> en1I41;

i1.gameC10 <-> en1I41;

i1.gameC11 <-> en1I11;

i1.gameC12 <-> en1I11;

i1.gameC13 <-> en1I11;

i1.gameC14 <-> en1I41;

i1.gameC15 <-> en1I41;

i1.gameC16 <-> en1I41;

i1.gameC17 <-> en1I41;

i1.gameC18 <-> en1I11;

i1.gameC19 <-> en1I11;

i1.gameD1 <-> en1I21;

i1.gameD2 <-> en1I21;

i1.gameD3 <-> en1I21;

i1.gameD4 <-> en1I21;

i1.gameD5 <-> en1I21;

i1.gameD6 <-> en1I31;

i1.gameD7 <-> en1I31;

i1.gameD8 <-> en1I31;

i1.gameD9 <-> en1I31;

i1.gameD10 <-> en1I31;

i1.gameD11 <-> en1I21;

i1.gameD12 <-> en1I21;

i1.gameD13 <-> en1I21;

i1.gameD14 <-> en1I21;

i1.gameD15 <-> en1I31;

342

Appendix C. Four Layer Cascade DNADL File

i1.gameD16 <-> en1I31;

i1.gameD17 <-> en1I31;

i1.gameD18 <-> en1I31;

i1.gameD19 <-> en1I31;

i2.gameA1 <-> en2I12;

i2.gameA2 <-> en2I32;

i2.gameA3 <-> en2I42;

i2.gameA4 <-> en2I72;

i2.gameA5 <-> en2I92;

i2.gameA6 <-> en2I12;

i2.gameA7 <-> en2I32;

i2.gameA8 <-> en2I42;

i2.gameA9 <-> en2I62;

i2.gameA10 <-> en2I72;

i2.gameA11 <-> en2I82;

i2.gameA12 <-> en2I82;

i2.gameA13 <-> en2I82;

i2.gameA14 <-> en2I82;

i2.gameA15 <-> en2I82;

i2.gameA16 <-> en2I82;

i2.gameA17 <-> en2I82;

i2.gameA18 <-> en2I82;

i2.gameA19 <-> en2I82;

i2.gameB1 <-> en2I12;

i2.gameB2 <-> en2I22;

i2.gameB3 <-> en2I32;

i2.gameB4 <-> en2I72;

i2.gameB5 <-> en2I92;

i2.gameB6 <-> en2I12;

i2.gameB7 <-> en2I22;

i2.gameB8 <-> en2I32;

i2.gameB9 <-> en2I82;

i2.gameB10 <-> en2I92;

i2.gameB11 <-> en2I42;

i2.gameB12 <-> en2I42;

i2.gameB13 <-> en2I42;

i2.gameB14 <-> en2I42;

i2.gameB15 <-> en2I42;

i2.gameB16 <-> en2I42;

343

Appendix C. Four Layer Cascade DNADL File

i2.gameB17 <-> en2I42;

i2.gameB18 <-> en2I42;

i2.gameB19 <-> en2I42;

i2.gameC1 <-> en2I32;

i2.gameC2 <-> en2I42;

i2.gameC3 <-> en2I62;

i2.gameC4 <-> en2I72;

i2.gameC5 <-> en2I92;

i2.gameC6 <-> en2I12;

i2.gameC7 <-> en2I32;

i2.gameC8 <-> en2I62;

i2.gameC9 <-> en2I72;

i2.gameC10 <-> en2I92;

i2.gameC11 <-> en2I22;

i2.gameC12 <-> en2I22;

i2.gameC13 <-> en2I22;

i2.gameC14 <-> en2I22;

i2.gameC15 <-> en2I22;

i2.gameC16 <-> en2I22;

i2.gameC17 <-> en2I22;

i2.gameC18 <-> en2I22;

i2.gameC19 <-> en2I22;

i2.gameD1 <-> en2I12;

i2.gameD2 <-> en2I32;

i2.gameD3 <-> en2I72;

i2.gameD4 <-> en2I82;

i2.gameD5 <-> en2I92;

i2.gameD6 <-> en2I12;

i2.gameD7 <-> en2I22;

i2.gameD8 <-> en2I72;

i2.gameD9 <-> en2I82;

i2.gameD10 <-> en2I92;

i2.gameD11 <-> en2I62;

i2.gameD12 <-> en2I62;

i2.gameD13 <-> en2I62;

i2.gameD14 <-> en2I62;

i2.gameD15 <-> en2I62;

i2.gameD16 <-> en2I62;

i2.gameD17 <-> en2I62;

344

Appendix C. Four Layer Cascade DNADL File

i2.gameD18 <-> en2I62;

i2.gameD19 <-> en2I62;

i3.gameA11 <-> en3I13;

i3.gameA12 <-> en3I43;

i3.gameA13 <-> en3I73;

i3.gameA14 <-> en3I93;

i3.gameA15 <-> en3I13;

i3.gameA16 <-> en3I43;

i3.gameA17 <-> en3I63;

i3.gameA18 <-> en3I33;

i3.gameA19 <-> en3I33;

i3.gameB11 <-> en3I23;

i3.gameB12 <-> en3I33;

i3.gameB13 <-> en3I73;

i3.gameB14 <-> en3I13;

i3.gameB15 <-> en3I23;

i3.gameB16 <-> en3I33;

i3.gameB17 <-> en3I83;

i3.gameB18 <-> en3I93;

i3.gameB19 <-> en3I93;

i3.gameC11 <-> en3I43;

i3.gameC12 <-> en3I63;

i3.gameC13 <-> en3I93;

i3.gameC14 <-> en3I13;

i3.gameC15 <-> en3I33;

i3.gameC16 <-> en3I63;

i3.gameC17 <-> en3I93;

i3.gameC18 <-> en3I73;

i3.gameC19 <-> en3I73;

i3.gameD11 <-> en3I33;

i3.gameD12 <-> en3I73;

i3.gameD13 <-> en3I83;

i3.gameD14 <-> en3I93;

i3.gameD15 <-> en3I23;

i3.gameD16 <-> en3I73;

i3.gameD17 <-> en3I83;

i3.gameD18 <-> en3I13;

345

Appendix C. Four Layer Cascade DNADL File

i3.gameD19 <-> en3I13;

i4.gameA18 <-> en4I14;

i4.gameA19 <-> en4I44;

i4.gameB18 <-> en4I24;

i4.gameB19 <-> en4I34;

i4.gameC18 <-> en4I64;

i4.gameC19 <-> en4I94;

i4.gameD18 <-> en4I74;

i4.gameD19 <-> en4I84;

/* conclusion maps */

o1.gameA1.conclusion6 <-> emCase1recog.e6I61;

o1.gameA1.conclusion2 <-> emCase1recog.e2I61;

o2.gameA1.conclusion1 <-> emCase1recog.e1I12;

o2.gameA1.conclusion8 <-> emCase1andandnot.e8I61I12I82;

o1.gameA2.conclusion6 <-> emCase1recog.e6I61;

o1.gameA2.conclusion2 <-> emCase1recog.e2I61;

o2.gameA2.conclusion3 <-> emCase1recog.e3I32;

o2.gameA2.conclusion8 <-> emCase1andandnot.e8I61I32I82;

o1.gameA3.conclusion6 <-> emCase1recog.e6I61;

o1.gameA3.conclusion2 <-> emCase1recog.e2I61;

o2.gameA3.conclusion4 <-> emCase1recog.e4I42;

o2.gameA3.conclusion8 <-> emCase1andandnot.e8I61I42I82;

o1.gameA4.conclusion6 <-> emCase1recog.e6I61;

o1.gameA4.conclusion2 <-> emCase1recog.e2I61;

o2.gameA4.conclusion7 <-> emCase1recog.e7I72;

o2.gameA4.conclusion8 <-> emCase1andandnot.e8I61I72I82;

o1.gameA5.conclusion6 <-> emCase1recog.e6I61;

o1.gameA5.conclusion2 <-> emCase1recog.e2I61;

o2.gameA5.conclusion9 <-> emCase1recog.e9I92;

o2.gameA5.conclusion8 <-> emCase1andandnot.e8I61I92I82;

346

Appendix C. Four Layer Cascade DNADL File

o1.gameA6.conclusion9 <-> emCase1recog.e9I91;

o1.gameA6.conclusion2 <-> emCase1recog.e2I91;

o2.gameA6.conclusion1 <-> emCase1recog.e1I12;

o2.gameA6.conclusion8 <-> emCase1andandnot.e8I61I12I82;

o1.gameA7.conclusion9 <-> emCase1recog.e9I91;

o1.gameA7.conclusion2 <-> emCase1recog.e2I91;

o2.gameA7.conclusion3 <-> emCase1recog.e3I32;

o2.gameA7.conclusion8 <-> emCase1andandnot.e8I91I32I82;

o1.gameA8.conclusion9 <-> emCase1recog.e9I91;

o1.gameA8.conclusion2 <-> emCase1recog.e2I91;

o2.gameA8.conclusion4 <-> emCase1recog.e4I42;

o2.gameA8.conclusion8 <-> emCase1andandnot.e8I91I42I82;

o1.gameA9.conclusion9 <-> emCase1recog.e9I91;

o1.gameA9.conclusion2 <-> emCase1recog.e2I91;

o2.gameA9.conclusion6 <-> emCase1recog.e6I62;

o2.gameA9.conclusion8 <-> emCase1andandnot.e8I91I62I82;

o1.gameA10.conclusion9 <-> emCase1recog.e9I91;

o1.gameA10.conclusion2 <-> emCase1recog.e2I91;

o2.gameA10.conclusion7 <-> emCase1recog.e7I72;

o2.gameA10.conclusion8 <-> emCase1andandnot.e8I91I72I82;

o1.gameA11.conclusion6 <-> emCase1recog.e6I61;

o1.gameA11.conclusion2 <-> emCase1recog.e2I61;

o2.gameA11.conclusion2 <-> emCase1recog.e8I82;

o2.gameA11.conclusion3 <-> emCase1and.e3I61I82;

o3.gameA11.conclusion1 <-> emCase1recog.e1I13;

o3.gameA11.conclusion7 <-> emCase1andandnot.e7I82I13I91;

o1.gameA12.conclusion6 <-> emCase1recog.e6I61;

o1.gameA12.conclusion2 <-> emCase1recog.e2I61;

o2.gameA12.conclusion2 <-> emCase1recog.e8I82;

o2.gameA12.conclusion3 <-> emCase1and.e3I61I82;

o3.gameA12.conclusion4 <-> emCase1recog.e4I43;

o3.gameA12.conclusion7 <-> emCase1andandnot.e7I82I43I91;

o1.gameA13.conclusion6 <-> emCase1recog.e6I61;

o1.gameA13.conclusion2 <-> emCase1recog.e2I61;

347

Appendix C. Four Layer Cascade DNADL File

o2.gameA13.conclusion2 <-> emCase1recog.e2I82;

o2.gameA13.conclusion3 <-> emCase1and.e3I61I82;

o3.gameA13.conclusion7 <-> emCase1recog.e7I73;

o3.gameA13.conclusion1 <-> emCase1and.e1I82I73;

o1.gameA14.conclusion6 <-> emCase1recog.e6I61;

o1.gameA14.conclusion2 <-> emCase1recog.e2I61;

o2.gameA14.conclusion8 <-> emCase1recog.e8I82;

o2.gameA14.conclusion3 <-> emCase1and.e3I61I82;

o3.gameA14.conclusion9 <-> emCase1recog.e9I93;

o3.gameA14.conclusion7 <-> emCase1andandnot.e7I82I93I91;

o1.gameA15.conclusion6 <-> emCase1recog.e6I61;

o1.gameA15.conclusion2 <-> emCase1recog.e2I61;

o2.gameA15.conclusion2 <-> emCase1recog.e2I82;

o2.gameA15.conclusion7 <-> emCase1and.e7I91I82;

o3.gameA15.conclusion1 <-> emCase1recog.e1I13;

o3.gameA15.conclusion3 <-> emCase1andandnot.e3I82I13I61;

o1.gameA16.conclusion9 <-> emCase1recog.e9I91;

o1.gameA16.conclusion2 <-> emCase1recog.e2I91;

o2.gameA16.conclusion2 <-> emCase1recog.e2I82;

o2.gameA16.conclusion7 <-> emCase1and.e7I91I82;

o3.gameA16.conclusion4 <-> emCase1recog.e4I43;

o3.gameA16.conclusion3 <-> emCase1andandnot.e3I82I43I61;

o1.gameA17.conclusion9 <-> emCase1recog.e9I91;

o1.gameA17.conclusion2 <-> emCase1recog.e2I91;

o2.gameA17.conclusion2 <-> emCase1recog.e2I82;

o2.gameA17.conclusion7 <-> emCase1and.e7I91I82;

o3.gameA17.conclusion6 <-> emCase1recog.e6I63;

o3.gameA17.conclusion3 <-> emCase1andandnot.e3I82I63I61;

o1.gameA18.conclusion9 <-> emCase1recog.e9I91;

o1.gameA18.conclusion2 <-> emCase1recog.e2I91;

o2.gameA18.conclusion2 <-> emCase1recog.e2I82;

o2.gameA18.conclusion7 <-> emCase1and.e7I91I82;

o3.gameA18.conclusion3 <-> emCase1recog.e3I33;

o3.gameA18.conclusion6 <-> emCase1and.e6I82I33;

o4.gameA18.conclusion1 <-> emCase1recog.e1I14;

o4.gameA18.conclusion4 <-> emCase1and.e4I33I14;

348

Appendix C. Four Layer Cascade DNADL File

o1.gameA19.conclusion9 <-> emCase1recog.e9I91;

o1.gameA19.conclusion2 <-> emCase1recog.e2I91;

o2.gameA19.conclusion2 <-> emCase1recog.e8I82;

o2.gameA19.conclusion7 <-> emCase1and.e7I91I82;

o3.gameA19.conclusion3 <-> emCase1recog.e3I33;

o3.gameA19.conclusion6 <-> emCase1and.e6I82I33;

o4.gameA19.conclusion4 <-> emCase1recog.e4I44;

o4.gameA19.conclusion1 <-> emCase1and.e1I33I44;

o1.gameB1.conclusion8 <-> emCase1recog.e8I81;

o1.gameB1.conclusion6 <-> emCase1recog.e6I81;

o2.gameB1.conclusion1 <-> emCase1recog.e1I12;

o2.gameB1.conclusion4 <-> emCase1andandnot.e4I81I12I42;

o1.gameB2.conclusion8 <-> emCase1recog.e8I81;

o1.gameB2.conclusion6 <-> emCase1recog.e6I81;

o2.gameB2.conclusion2 <-> emCase1recog.e2I22;

o2.gameB2.conclusion4 <-> emCase1andandnot.e4I81I22I42;

o1.gameB3.conclusion8 <-> emCase1recog.e8I81;

o1.gameB3.conclusion6 <-> emCase1recog.e6I81;

o2.gameB3.conclusion3 <-> emCase1recog.e3I32;

o2.gameB3.conclusion4 <-> emCase1andandnot.e4I81I32I42;

o1.gameB4.conclusion8 <-> emCase1recog.e8I81;

o1.gameB4.conclusion6 <-> emCase1recog.e6I81;

o2.gameB4.conclusion7 <-> emCase1recog.e7I72;

o2.gameB4.conclusion4 <-> emCase1andandnot.e4I81I72I42;

o1.gameB5.conclusion8 <-> emCase1recog.e8I81;

o1.gameB5.conclusion6 <-> emCase1recog.e6I81;

o2.gameB5.conclusion9 <-> emCase1recog.e9I92;

o2.gameB5.conclusion4 <-> emCase1andandnot.e4I81I92I42;

o1.gameB6.conclusion7 <-> emCase1recog.e7I71;

o1.gameB6.conclusion6 <-> emCase1recog.e6I71;

o2.gameB6.conclusion1 <-> emCase1recog.e1I12;

o2.gameB6.conclusion4 <-> emCase1andandnot.e4I71I12I42;

o1.gameB7.conclusion7 <-> emCase1recog.e7I71;

349

Appendix C. Four Layer Cascade DNADL File

o1.gameB7.conclusion6 <-> emCase1recog.e6I71;

o2.gameB7.conclusion2 <-> emCase1recog.e2I22;

o2.gameB7.conclusion4 <-> emCase1andandnot.e4I71I22I42;

o1.gameB8.conclusion7 <-> emCase1recog.e7I71;

o1.gameB8.conclusion6 <-> emCase1recog.e6I71;

o2.gameB8.conclusion3 <-> emCase1recog.e3I32;

o2.gameB8.conclusion4 <-> emCase1andandnot.e4I71I32I42;

o1.gameB9.conclusion7 <-> emCase1recog.e7I71;

o1.gameB9.conclusion6 <-> emCase1recog.e6I71;

o2.gameB9.conclusion2 <-> emCase1recog.e2I82;

o2.gameB9.conclusion4 <-> emCase1andandnot.e4I71I82I42;

o1.gameB10.conclusion7 <-> emCase1recog.e7I71;

o1.gameB10.conclusion6 <-> emCase1recog.e6I71;

o2.gameB10.conclusion9 <-> emCase1recog.emCase1recog.e9I92;

o2.gameB10.conclusion4 <-> emCase1andandnot.e4I71I92I42;

o1.gameB11.conclusion8 <-> emCase1recog.e8I81;

o1.gameB11.conclusion6 <-> emCase1recog.e6I81;

o2.gameB11.conclusion4 <-> emCase1recog.e4I42;

o2.gameB11.conclusion9 <-> emCase1and.e9I81I42;

o3.gameB11.conclusion2 <-> emCase1recog.e2I23;

o3.gameB11.conclusion1 <-> emCase1andandnot.e1I42I23I71;

o1.gameB12.conclusion8 <-> emCase1recog.e8I81;

o1.gameB12.conclusion6 <-> emCase1recog.e6I81;

o2.gameB12.conclusion4 <-> emCase1recog.e4I42;

o2.gameB12.conclusion9 <-> emCase1and.e9I81I42;

o3.gameB12.conclusion3 <-> emCase1recog.e3I33;

o3.gameB12.conclusion1 <-> emCase1andandnot.e1I42I33I71;

o1.gameB13.conclusion8 <-> emCase1recog.e8I81;

o1.gameB13.conclusion6 <-> emCase1recog.e6I81;

o2.gameB13.conclusion4 <-> emCase1recog.e4I42;

o2.gameB13.conclusion9 <-> emCase1and.e9I81I42;

o3.gameB13.conclusion7 <-> emCase1recog.e7I73;

o3.gameB13.conclusion1 <-> emCase1andandnot.e1I42I73I71;

o1.gameB14.conclusion8 <-> emCase1recog.e8I81;

350

Appendix C. Four Layer Cascade DNADL File

o1.gameB14.conclusion6 <-> emCase1recog.e6I81;

o2.gameB14.conclusion4 <-> emCase1recog.e4I42;

o2.gameB14.conclusion9 <-> emCase1and.e9I81I42;

o3.gameB14.conclusion1 <-> emCase1recog.e1I13;

o3.gameB14.conclusion3 <-> emCase1and.e3I42I13;

o1.gameB15.conclusion7 <-> emCase1recog.e7I71;

o1.gameB15.conclusion6 <-> emCase1recog.e6I71;

o2.gameB15.conclusion4 <-> emCase1recog.e4I42;

o2.gameB15.conclusion1 <-> emCase1and.e1I71I42;

o3.gameB15.conclusion2 <-> emCase1recog.e2I23;

o3.gameB15.conclusion9 <-> emCase1andandnot.e9I42I23I81;

o1.gameB16.conclusion7 <-> emCase1recog.e7I71;

o1.gameB16.conclusion6 <-> emCase1recog.e6I71;

o2.gameB16.conclusion4 <-> emCase1recog.e4I42;

o2.gameB16.conclusion1 <-> emCase1and.e1I71I42;

o3.gameB16.conclusion3 <-> emCase1recog.e3I33;

o3.gameB16.conclusion9 <-> emCase1andandnot.e9I42I33I91;

o1.gameB17.conclusion7 <-> emCase1recog.e7I71;

o1.gameB17.conclusion6 <-> emCase1recog.e6I71;

o2.gameB17.conclusion4 <-> emCase1recog.e4I42;

o2.gameB17.conclusion1 <-> emCase1and.e1I71I42;

o3.gameB17.conclusion3 <-> emCase1recog.e3I83;

o3.gameB17.conclusion9 <-> emCase1andandnot.e9I42I83I81;

o1.gameB18.conclusion7 <-> emCase1recog.e7I71;

o1.gameB18.conclusion6 <-> emCase1recog.e6I71;

o2.gameB18.conclusion4 <-> emCase1recog.e4I42;

o2.gameB18.conclusion1 <-> emCase1and.e1I71I42;

o3.gameB18.conclusion9 <-> emCase1recog.e9I93;

o3.gameB18.conclusion8 <-> emCase1and.e8I42I93;

o4.gameB18.conclusion2 <-> emCase1recog.e2I24;

o4.gameB18.conclusion3 <-> emCase1and.e3I93I24;

o1.gameB19.conclusion7 <-> emCase1recog.e7I71;

o1.gameB19.conclusion6 <-> emCase1recog.e6I71;

o2.gameB19.conclusion4 <-> emCase1recog.e4I42;

o2.gameB19.conclusion1 <-> emCase1and.e1I71I42;

o3.gameB19.conclusion9 <-> emCase1recog.e9I93;

351

Appendix C. Four Layer Cascade DNADL File

o3.gameB19.conclusion8 <-> emCase1and.e8I42I93;

o4.gameB19.conclusion3 <-> emCase1recog.e3I34;

o4.gameB19.conclusion2 <-> emCase1and.e2I93I34;

o1.gameC1.conclusion1 <-> emCase1recog.e1I11;

o1.gameC1.conclusion8 <-> emCase1recog.e8I11;

o2.gameC1.conclusion3 <-> emCase1recog.e3I32;

o2.gameC1.conclusion2 <-> emCase1andandnot.e2I11I32I22;

o1.gameC2.conclusion1 <-> emCase1recog.e1I11;

o1.gameC2.conclusion8 <-> emCase1recog.e8I11;

o2.gameC2.conclusion4 <-> emCase1recog.e4I42;

o2.gameC2.conclusion2 <-> emCase1andandnot.e2I11I42I22;

o1.gameC3.conclusion1 <-> emCase1recog.e1I11;

o1.gameC3.conclusion8 <-> emCase1recog.e8I11;

o2.gameC3.conclusion6 <-> emCase1recog.e6I62;

o2.gameC3.conclusion2 <-> emCase1andandnot.e2I11I62I22;

o1.gameC4.conclusion1 <-> emCase1recog.e1I11;

o1.gameC4.conclusion8 <-> emCase1recog.e8I11;

o2.gameC4.conclusion7 <-> emCase1recog.e7I72;

o2.gameC4.conclusion2 <-> emCase1andandnot.e2I11I72I22;

o1.gameC5.conclusion1 <-> emCase1recog.e1I11;

o1.gameC5.conclusion8 <-> emCase1recog.e8I11;

o2.gameC5.conclusion9 <-> emCase1recog.e9I92;

o2.gameC5.conclusion2 <-> emCase1andandnot.e2I11I92I22;

o1.gameC6.conclusion4 <-> emCase1recog.e4I41;

o1.gameC6.conclusion8 <-> emCase1recog.e8I41;

o2.gameC6.conclusion1 <-> emCase1recog.e1I12;

o2.gameC6.conclusion2 <-> emCase1andandnot.e2I41I12I22;

o1.gameC7.conclusion4 <-> emCase1recog.e4I41;

o1.gameC7.conclusion8 <-> emCase1recog.e8I41;

o2.gameC7.conclusion3 <-> emCase1recog.e3I32;

o2.gameC7.conclusion2 <-> emCase1andandnot.e2I41I32I22;

o1.gameC8.conclusion4 <-> emCase1recog.e4I41;

o1.gameC8.conclusion8 <-> emCase1recog.e8I41;

352

Appendix C. Four Layer Cascade DNADL File

o2.gameC8.conclusion6 <-> emCase1recog.e6I62;

o2.gameC8.conclusion2 <-> emCase1andandnot.e2I41I62I22;

o1.gameC9.conclusion4 <-> emCase1recog.e4I41;

o1.gameC9.conclusion8 <-> emCase1recog.e8I41;

o2.gameC9.conclusion7 <-> emCase1recog.e7I72;

o2.gameC9.conclusion2 <-> emCase1andandnot.e2I41I72I22;

o1.gameC10.conclusion4 <-> emCase1recog.e4I41;

o1.gameC10.conclusion8 <-> emCase1recog.e8I41;

o2.gameC10.conclusion9 <-> emCase1recog.e9I92;

o2.gameC10.conclusion2 <-> emCase1andandnot.e2I41I92I22;

o1.gameC11.conclusion1 <-> emCase1recog.e1I11;

o1.gameC11.conclusion8 <-> emCase1recog.e8I11;

o2.gameC11.conclusion2 <-> emCase1recog.e2I22;

o2.gameC11.conclusion3 <-> emCase1and.e3I11I22;

o3.gameC11.conclusion4 <-> emCase1recog.e4I43;

o3.gameC11.conclusion7 <-> emCase1andandnot.e7I22I43I41;

o1.gameC12.conclusion1 <-> emCase1recog.e1I11;

o1.gameC12.conclusion8 <-> emCase1recog.e8I11;

o2.gameC12.conclusion2 <-> emCase1recog.e2I22;

o2.gameC12.conclusion3 <-> emCase1and.e3I11I22;

o3.gameC12.conclusion6 <-> emCase1recog.e6I63;

o3.gameC12.conclusion7 <-> emCase1andandnot.e7I22I63I41;

o1.gameC13.conclusion1 <-> emCase1recog.e1I11;

o1.gameC13.conclusion8 <-> emCase1recog.e8I11;

o2.gameC13.conclusion2 <-> emCase1recog.e2I22;

o2.gameC13.conclusion3 <-> emCase1and.e3I11I22;

o3.gameC13.conclusion9 <-> emCase1recog.e9I93;

o3.gameC13.conclusion7 <-> emCase1andandnot.e7I22I93I41;

o1.gameC14.conclusion4 <-> emCase1recog.e4I41;

o1.gameC14.conclusion8 <-> emCase1recog.e8I41;

o2.gameC14.conclusion2 <-> emCase1recog.e2I22;

o2.gameC14.conclusion7 <-> emCase1and.e7I41I22;

o3.gameC14.conclusion1 <-> emCase1recog.e1I13;

o3.gameC14.conclusion3 <-> emCase1andandnot.e3I22I13I11;

353

Appendix C. Four Layer Cascade DNADL File

o1.gameC15.conclusion4 <-> emCase1recog.e4I41;

o1.gameC15.conclusion8 <-> emCase1recog.e8I41;

o2.gameC15.conclusion2 <-> emCase1recog.e2I22;

o2.gameC15.conclusion7 <-> emCase1and.e7I41I22;

o3.gameC15.conclusion3 <-> emCase1recog.e3I33;

o3.gameC15.conclusion9 <-> emCase1and.e9I22I33;

o1.gameC16.conclusion4 <-> emCase1recog.e4I41;

o1.gameC16.conclusion8 <-> emCase1recog.e8I41;

o2.gameC16.conclusion2 <-> emCase1recog.e2I22;

o2.gameC16.conclusion7 <-> emCase1and.e7I41I22;

o3.gameC16.conclusion6 <-> emCase1recog.e6I63;

o3.gameC16.conclusion3 <-> emCase1andandnot.e3I22I63I11;

o1.gameC17.conclusion4 <-> emCase1recog.e4I41;

o1.gameC17.conclusion8 <-> emCase1recog.e8I41;

o2.gameC17.conclusion2 <-> emCase1recog.e2I22;

o2.gameC17.conclusion7 <-> emCase1and.e7I41I22;

o3.gameC17.conclusion9 <-> emCase1recog.e9I93;

o3.gameC17.conclusion3 <-> emCase1andandnot.e3I22I93I11;

o1.gameC18.conclusion1 <-> emCase1recog.e1I11;

o1.gameC18.conclusion8 <-> emCase1recog.e8I11;

o2.gameC18.conclusion2 <-> emCase1recog.e2I22;

o2.gameC18.conclusion3 <-> emCase1and.e3I11I22;

o3.gameC18.conclusion7 <-> emCase1recog.e7I73;

o3.gameC18.conclusion4 <-> emCase1and.e4I22I73;

o4.gameC18.conclusion6 <-> emCase1recog.e6I64;

o4.gameC18.conclusion9 <-> emCase1and.e9I73I64;

o1.gameC19.conclusion1 <-> emCase1recog.e1I11;

o1.gameC19.conclusion8 <-> emCase1recog.e8I11;

o2.gameC19.conclusion2 <-> emCase1recog.e2I22;

o2.gameC19.conclusion3 <-> emCase1and.e3I11I22;

o3.gameC19.conclusion7 <-> emCase1recog.e7I73;

o3.gameC19.conclusion4 <-> emCase1and.e4I22I73;

o4.gameC19.conclusion9 <-> emCase1recog.e9I94;

o4.gameC19.conclusion6 <-> emCase1and.e6I73I94;

o1.gameD1.conclusion2 <-> emCase1recog.e2I21;

o1.gameD1.conclusion4 <-> emCase1recog.e4I21;

354

Appendix C. Four Layer Cascade DNADL File

o2.gameD1.conclusion1 <-> emCase1recog.e1I12;

o2.gameD1.conclusion6 <-> emCase1andandnot.e6I21I12I62;

o1.gameD2.conclusion2 <-> emCase1recog.e2I21;

o1.gameD2.conclusion4 <-> emCase1recog.e4I21;

o2.gameD2.conclusion3 <-> emCase1recog.e3I32;

o2.gameD2.conclusion6 <-> emCase1andandnot.e2I21I32I62;

o1.gameD3.conclusion2 <-> emCase1recog.e2I21;

o1.gameD3.conclusion4 <-> emCase1recog.e4I21;

o2.gameD3.conclusion7 <-> emCase1recog.e7I72;

o2.gameD3.conclusion6 <-> emCase1andandnot.e6I21I72I62;

o1.gameD4.conclusion2 <-> emCase1recog.e2I21;

o1.gameD4.conclusion4 <-> emCase1recog.e4I21;

o2.gameD4.conclusion2 <-> emCase1recog.e2I82;

o2.gameD4.conclusion6 <-> emCase1andandnot.e6I21I82I62;

o1.gameD5.conclusion2 <-> emCase1recog.e2I21;

o1.gameD5.conclusion4 <-> emCase1recog.e4I21;

o2.gameD5.conclusion9 <-> emCase1recog.e9I92;

o2.gameD5.conclusion6 <-> emCase1andandnot.e6I21I92I22;

o1.gameD6.conclusion3 <-> emCase1recog.e3I31;

o1.gameD6.conclusion4 <-> emCase1recog.e4I31;

o2.gameD6.conclusion1 <-> emCase1recog.e1I12;

o2.gameD6.conclusion6 <-> emCase1andandnot.e6I31I12I62;

o1.gameD7.conclusion3 <-> emCase1recog.e3I31;

o1.gameD7.conclusion4 <-> emCase1recog.e4I31;

o2.gameD7.conclusion2 <-> emCase1recog.e2I22;

o2.gameD7.conclusion6 <-> emCase1andandnot.e6I31I22I62;

o1.gameD8.conclusion3 <-> emCase1recog.e3I31;

o1.gameD8.conclusion4 <-> emCase1recog.e4I31;

o2.gameD8.conclusion7 <-> emCase1recog.e7I72;

o2.gameD8.conclusion6 <-> emCase1andandnot.e6I31I72I62;

o1.gameD9.conclusion3 <-> emCase1recog.e3I31;

o1.gameD9.conclusion4 <-> emCase1recog.e4I31;

o2.gameD9.conclusion2 <-> emCase1recog.e2I82;

355

Appendix C. Four Layer Cascade DNADL File

o2.gameD9.conclusion6 <-> emCase1andandnot.e6I31I82I62;

o1.gameD10.conclusion3 <-> emCase1recog.e3I31;

o1.gameD10.conclusion4 <-> emCase1recog.e4I31;

o2.gameD10.conclusion9 <-> emCase1recog.e9I92;

o2.gameD10.conclusion6 <-> emCase1andandnot.e6I31I92I22;

o1.gameD11.conclusion2 <-> emCase1recog.e2I21;

o1.gameD11.conclusion4 <-> emCase1recog.e4I21;

o2.gameD11.conclusion6 <-> emCase1recog.e6I62;

o2.gameD11.conclusion1 <-> emCase1and.e1I21I62;

o3.gameD11.conclusion3 <-> emCase1recog.e3I33;

o3.gameD11.conclusion9 <-> emCase1andandnot.e9I62I33I31;

o1.gameD12.conclusion2 <-> emCase1recog.e2I21;

o1.gameD12.conclusion4 <-> emCase1recog.e4I21;

o2.gameD12.conclusion6 <-> emCase1recog.e6I62;

o2.gameD12.conclusion1 <-> emCase1and.e1I21I62;

o3.gameD12.conclusion7 <-> emCase1recog.e7I73;

o3.gameD12.conclusion9 <-> emCase1andandnot.e9I62I73I31;

o1.gameD13.conclusion2 <-> emCase1recog.e2I21;

o1.gameD13.conclusion4 <-> emCase1recog.e4I21;

o2.gameD13.conclusion6 <-> emCase1recog.e6I62;

o2.gameD13.conclusion1 <-> emCase1and.e1I21I62;

o3.gameD13.conclusion3 <-> emCase1recog.e3I83;

o3.gameD13.conclusion9 <-> emCase1andandnot.e1I62I83I31;

o1.gameD14.conclusion2 <-> emCase1recog.e2I21;

o1.gameD14.conclusion4 <-> emCase1recog.e4I21;

o2.gameD14.conclusion6 <-> emCase1recog.e6I62;

o2.gameD14.conclusion1 <-> emCase1and.e1I21I62;

o3.gameD14.conclusion9 <-> emCase1recog.e9I93;

o3.gameD14.conclusion7 <-> emCase1and.e7I62I93;

o1.gameD15.conclusion3 <-> emCase1recog.e3I31;

o1.gameD15.conclusion4 <-> emCase1recog.e4I31;

o2.gameD15.conclusion6 <-> emCase1recog.e6I62;

o2.gameD15.conclusion9 <-> emCase1and.e9I31I62;

o3.gameD15.conclusion2 <-> emCase1recog.e2I23;

o3.gameD15.conclusion1 <-> emCase1andandnot.e1I62I23I21;

356

Appendix C. Four Layer Cascade DNADL File

o1.gameD16.conclusion3 <-> emCase1recog.e3I31;

o1.gameD16.conclusion4 <-> emCase1recog.e4I31;

o2.gameD16.conclusion6 <-> emCase1recog.e6I62;

o2.gameD16.conclusion9 <-> emCase1and.e9I31I62;

o3.gameD16.conclusion7 <-> emCase1recog.e7I73;

o3.gameD16.conclusion1 <-> emCase1andandnot.e1I62I73I21;

o1.gameD17.conclusion3 <-> emCase1recog.e3I31;

o1.gameD17.conclusion4 <-> emCase1recog.e4I31;

o2.gameD17.conclusion6 <-> emCase1recog.e6I62;

o2.gameD17.conclusion9 <-> emCase1and.e9I31I62;

o3.gameD17.conclusion3 <-> emCase1recog.e3I83;

o3.gameD17.conclusion1 <-> emCase1andandnot.e1I62I83I21;

o1.gameD18.conclusion3 <-> emCase1recog.e3I31;

o1.gameD18.conclusion4 <-> emCase1recog.e4I31;

o2.gameD18.conclusion6 <-> emCase1recog.e6I62;

o2.gameD18.conclusion9 <-> emCase1and.e9I31I62;

o3.gameD18.conclusion1 <-> emCase1recog.e1I13;

o3.gameD18.conclusion2 <-> emCase1and.e2I62I13;

o4.gameD18.conclusion7 <-> emCase1recog.e7I74;

o4.gameD18.conclusion8 <-> emCase1and.e8I13I74;

o1.gameD19.conclusion3 <-> emCase1recog.e3I31;

o1.gameD19.conclusion4 <-> emCase1recog.e4I31;

o2.gameD19.conclusion6 <-> emCase1recog.e6I62;

o2.gameD19.conclusion9 <-> emCase1and.e9I31I62;

o3.gameD19.conclusion1 <-> emCase1recog.e1I13;

o3.gameD19.conclusion2 <-> emCase1and.e2I62I13;

o4.gameD19.conclusion8 <-> emCase1recog.e8I84;

o4.gameD19.conclusion7 <-> emCase1and.e7I13I84;

357

Appendix D

Deoxyribozyme Gate Evaluation Rules

Version 1.5 secondary structure evaluation rules and associated scores for observed sec-

ondary structure are given. ISO is used to formulate simple arithmetic relations that focus

on different aspects which are experimentally known to confer good performance. For the

scenario of the gate alone, we check whether or not stems have adequately formed, and

how much structure is present in the loops. Perfect form is a complete stem with no miss-

ing or shifted base-pairs, and a loop devoid of any internal binding. For the scenario of

the gate and input, we check how completely the input has bound to the gate loop region.

Perfect form is a full 15 nt binding.

In each table, the first column denotes the evaluation rule identifier, the second column

denotes the check for the first ISO triple, the third column denotes the check for any sub-

sequent triples, and the fourth column gives the score. These rules are used together with

the results of NUPACK suboptimal modeling, where the entire flood of reported secondary

structures is converted into ISO, and then evaluated against the rules. Each resulting score,

for each reported structure, is used in determining the overall utility expectation.

358

Appendix D. Deoxyribozyme Gate Evaluation Rules

Critical Structure Stem-Loop Location Evaluation Rules
Rule Triple (i,s,o) j Score
gate-loc-1 i j ≥ StartIndex, 1.00
location within footprint i j +2s j +o j ≤ StopIndex
gate-loc-2 i j < StartIndex 0.00
incorrect starting location
gate-loc-3 i j +2s j +o j > StopIndex 0.00
incorrect stopping location

Critical Structure Stem Evaluation Rules
Rule Triple (i,s,o) j Score
gate-stem-1 i j = StartIndex, 1.00
perfect form s j > StemLength−1
gate-stem-2 i j = StartIndex+1, 0.90
shifted by 1 nt s j > StemLength−2
gate-stem-3 i j = StartIndex, 0.90
too short by 1 nt s j = StemLength−1
gate-stem-4 0.00
any other stem pattern

359

Appendix D. Deoxyribozyme Gate Evaluation Rules

Critical Structure Loop Evaluation Rules 1-7
Rule Triple (i,s,o) j Triple(s) (i,s,o)k Score
gate-loop-1 o j > LoopOpening case k > j: 1.00
perfect form ik > StopIndex

case k < j:
ik +2sk +ok < i j

gate-loop-2 s j = StemLength+1, case k > j: 0.80
stem encroaching o j = LoopOpening−2 ik > StopIndex
by 1 bp case k < j:

ik +2sk +ok < i j
gate-loop-3 s j = StemLength+2, case k > j: 0.60
stem encroaching o j = LoopOpening−4 ik > StopIndex
by 2 bp case k < j:

ik +2sk +ok < i j
gate-loop-4 s j > StemLength+2, case k > j: 0.00
stem encroaching o j < LoopOpening−4 ik > StopIndex
by > 2 bp case k < j:

ik +2sk +ok < i j
gate-loop-5 o j > LoopOpening case k > j: 0.90
1 bp i j + s j−1 < ik <
intermediate StopIndex− s j− (2+ok),

sk = 1,
|(i,s,o)k| = 1
case k < j:
ik +2sk +ok < i j

gate-loop-6 o j > LoopOpening case k > j: 0.80
2 bp i j + s j−1 < ik <
intermediate StopIndex− s j− (4+ok),

sk = 2,
|(i,s,o)k| = 1
case k < j:
ik +2sk +ok < i j

gate-loop-7 o j > LoopOpening case k > j: 0.70
3 bp i j + s j−1 < ik <
intermediate StopIndex− s j− (6+ok),

sk = 3,
|(i,s,o)k| = 1
case k < j:
ik +2sk +ok < i j

360

Appendix D. Deoxyribozyme Gate Evaluation Rules

Critical Structure Loop Evaluation Rules 8-12
Rule Triple (i,s,o) j Triple(s) (i,s,o)k Score
gate-loop-8 o j > LoopOpening case k > j: 0.00
> 3 bp i j + s j−1 < ik <
intermediate StopIndex− s j− (2sk +ok),

sk > 3,
|(i,s,o)k| = 1
case k < j:
ik +2sk +ok < i j

gate-loop-9 s j = StemLength+1, case k > j: 0.70
stem encroaching o j = LoopOpening−2 i j + s j−1 < ik <
by 1 bp and StopIndex− s j− (2+ok),
1 bp sk = 1,
intermediate |(i,s,o)k| = 1

case k < j:
ik +2sk +ok < i j

gate-loop-10 s j = StemLength+1, case k > j: 0.50
stem encroaching o j = LoopOpening−2 i j + s j−1 < ik <
by 1 bp and StopIndex− s j− (4+ok),
2 bp sk = 2,
intermediate |(i,s,o)k| = 1

case k < j:
ik +2sk +ok < i j

gate-loop-11 s j = StemLength+1, case k > j: 0.00
stem encroaching o j = LoopOpening−2 i j + s j−1 < ik <
by 1 bp and StopIndex− s j− (2sk +ok),
> 2 bp sk > 2,
intermediate |(i,s,o)k| = 1

case k < j:
ik +2sk +ok < i j

gate-loop-12 s j = StemLength+2, case k > j: 0.50
stem encroaching o j = LoopOpening−4 i j + s j−1 < ik <
by 2 bp and StopIndex− s j− (2+ok),
1 bp sk = 1,
intermediate |(i,s,o)k| = 1

case k < j:
ik +2sk +ok < i j

361

Appendix D. Deoxyribozyme Gate Evaluation Rules

Critical Structure Loop Evaluation Rules 13-14
Rule Triple (i,s,o) j Triple(s) (i,s,o)k Score
gate-loop-13 s j = StemLength+2, case k > j: 0.00
stem encroaching o j = LoopOpening−4 i j + s j−1 < ik <
by 2 bp and StopIndex− s j− (2sk +ok),
> 1 bp sk > 1,
intermediate |(i,s,o)k| = 1

case k < j:
ik +2sk +ok < i j

gate-loop-14 0.00
any other loop
pattern

Input Binding Location Evaluation Rules
Rule Triple (i,s,o) j Score
gateinput-loc-1 i j ≥ StartIndex, 1.00
location within footprint i j +2s j +o j ≤ StopIndex
gateinput-loc-2 i j < StartIndex 0.00
incorrect starting location
gateinput-loc-3 i j +2s j +o j > StopIndex 0.00
incorrect stopping location

362

Appendix D. Deoxyribozyme Gate Evaluation Rules

Input Binding Formation Evaluation Rules
Rule Triple (i,s,o) j Triple(s) (i,s,o)k Score

k > j, l > k
gateinput-bind-1 i j = StartIndex, 1.00
perfect form s j = StemLength,

o j = LoopOpening
gateinput-bind-2 i j = StartIndex, 0.70
missed input binding s j = StemLength−1
by 1 nt at 3’ end
gateinput-bind-3 i j = StartIndex+1, 0.70
missed input binding s j = StemLength−1
by 1 nt at 5’ end
gateinput-bind-4 i j = StartIndex s j + sk = StemLength−1, 0.70
missed input binding ok = LoopOpening
by 1 nt within interior
gateinput-bind-5 i j = StartIndex, 0.40
missed input binding s j = StemLength−2
by 2 nt at 3’ end
gateinput-bind-6 i j = StartIndex+2, 0.40
missed input binding s j = StemLength−2
by 2 nt at 5’ end
gateinput-bind-7 i j = StartIndex+1, 0.40
missed input binding s j = StemLength−2
by 1 nt at 3’ and 5’ ends
gateinput-bind-8 i j = StartIndex s j + sk = StemLength−2, 0.40
missed input binding ok = LoopOpening+2
by 1 nt at 3’ end and by
1 nt within interior
gateinput-bind-9 i j = StartIndex+1 s j + sk = StemLength−2, 0.40
missed input binding ok = LoopOpening
by 1 nt at 5’ end and by
1 nt within interior
gateinput-bind-10 i j = StartIndex s j + sk + sl = 0.40
missed input binding StemLength−2,
by 1 nt within interior
twice

o1 = LoopOpening

gateinput-bind-11 0.00
any other binding pattern

363

Appendix D. Deoxyribozyme Gate Evaluation Rules

Substrate Binding Location Evaluation Rules
Rule Triple (i,s,o) j Score
gatesubstrate-loc-1 i j ≥ StartIndex, 1.00
location within footprint i j +2s j +o j ≤ StopIndex
gatesubstrate-loc-2 i j < StartIndex 0.00
incorrect starting location
gatesubstrate-loc-3 i j +2s j +o j > StopIndex 0.00
incorrect stopping location

Substrate Binding Formation Evaluation Rules
Rule Triple (i,s,o) j Triple(s) (i,s,o)k, Score

k > j
gatesubstrate-bind-1 i j = StartIndex, 1.00
perfect form s j = StemLength,

o j = LoopOpening
gatesubstrate-bind-2 i j = StartIndex, 0.40
missed substrate binding s j = StemLength−1
by 1 nt at 3’ end
gatesubstrate-bind-3 i j = StartIndex+1, 0.40
missed substrate binding s j = StemLength−1
by 1 nt at 5’ end
gatesubstrate-bind-4 i j = StartIndex s j + sk = 0.40
missed substrate binding StemLength−1
by 1 nt within interior ok = LoopOpening
gatesubstrate-bind-5 0.00
any other binding pattern

364

References

[1] Biopython. http://biopython.org.

[2] NCBI GenBank. http://www.ncbi.nih.gov/genbank/.

[3] PostgreSQL. http://www.postgresql.org.

[4] The R Project for Statistical Computing. http://r-project.org.

[5] Ádám Halász, Vijay Kumar, Marcin Imieliński, Calin Belta, Oleg Sokolsky, Sen
Pathak, and Harvey Rubin. Analysis of lactose metabolism in E. Coli using reach-
ability analysis of hybrid systems. IET Systems Biology, 1(2):130–140, 2007.

[6] Leonard M. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 266(5187):1021–1024, 1994.

[7] Mirela Andronescu, Rosalia Aguirre-Hernandez, Anne Condon, and Holger Hoos.
RNAsoft: a suite of RNA secondary structure prediction and design software tools.
Nucleic Acids Research, 31(13):3414–3422, 2003.

[8] Mirela Andronescu, Danielle Dees, Laura Slaybaugh, Yinglei Zhao, Anne Condon,
Barry Cohen, and Steven Skiena. Algorithms for testing that sets of DNA word de-
sign avoid unwanted secondary structure. In Masami Hagiya and Azuma Ohuchi,
editors, DNA Computing: 8th International Workshop on DNA-Based Computers,
volume 2568 of Lecture Notes in Computer Science, pages 182–195. Springer,
2003.

[9] Yaakov Benenson, Binyamin Gil, Uri Ben-Dor, Rivka Adar, and Ehud Shapiro. An
autonomous molecular computer for logical control of gene expression. Nature,
429:423–429, 2004.

365

References

[10] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and
Eric W. Sayers. GenBank. Nucleic Acids Research, 39:D32–D37, 2011.

[11] Staš Bevc, Janez Konc, Jure Stojan, Milan Hodošček, Matej Penca, Matej Praprot-
nik, and Dušanka Janežič. ENZO: a Web Tool for Derivation and Evaluation of
Kinetic Models of Enzyme Catalyzed Reactions. PLoS ONE, 6(7), 2011.

[12] Guy E. Blelloch and Bruce M. Maggs. Parallel Algorithms. The Computer Science
Handbook. Chapman and Hall, 2004.

[13] Max Born and Herbert S. Green. A kinetic theory of liquids. Nature,
159(4034):251–254, 1947.

[14] James E. Brady and Gerald E. Humiston. General Chemistry Principles and Struc-
tures. John Wiley and Sons, 1975.

[15] Ronald R. Breaker. DNA enzymes. Nature Biotechnology, 15:427–431, 1997.

[16] Ronald R. Breaker and Gerald F. Joyce. A DNA enzyme with Mg2+-dependent
RNA phosphoesterase activity. Chemistry and Biology, 2:655–660, 1995.

[17] Ian Brierley, Simon Pennell, and Robert Gilbert. Viral RNA pseudoknots: versatile
motifs in gene expression and replication. Nature Reviews Microbiology, 5:598–
610, 2007.

[18] Carl W. Brown, III, Matthew R. Lakin, Eli K. Horwitz, M. Leigh Fanning, Han-
nah E. West, Darko Stefanovic, and Steven W. Graves. Signal Propogation in
Multi-Layer DNAzyme Cascades Using Structured Chimeric Substrates. Ange-
wandte Chemie International Edition, 53(28):7183–7187, 2014.

[19] Michael Burrows and David J. Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[20] Luca Cardelli. Strand algebras for DNA computing. In Russell J. Deaton and Akira
Suyama, editors, DNA Computing and Molecular Programming, volume 5877 of
Lecture Notes in Computer Science, pages 12–24. Springer, 2009.

[21] Thomas R. Cech. The chemistry of self-splicing RNA and RNA enzymes. Science,
236(4808):1532–1539, 1987.

[22] George M. Church, Yuan Gao, and Sriram Kosuri. Next-generation digital informa-
tion storage in DNA. Science, 28:1628, 2012.

366

References

[23] Richard F. Clippinger. A logical coding system applied to the ENIAC (Electronic
Numerical Integrator and Computer). Ballistic Research Laboratories, Report No.
673, Project No. TB3-0007, Research and Development Division, Ordnance De-
partment, Aberdeen Proving Ground, 1948.

[24] B. Jack Copeland. Colossus, The Secrets of Bletchley Park’s Codebreaking Com-
puters. Oxford University Press, Great Britain, 2006.

[25] Diana K. Darnell, Simran Kaur, Stacey Stanislaw, Jay K. Konieczka, Tatiana A.
Yatskievych, and Parker B. Antin. MicroRNA expression during chick embryo
development. Developmental Dynamics, 235(11):3156–3165, 2006.

[26] Robert M. Dirks, Justin S. Bois, Joseph M. Schaeffer, Erik Winfree, and Niles A.
Pierce. Thermodynamic analysis of interacting nucleic acid strands. SIAM Review,
49(1):65–88, 2007.

[27] Robert M. Dirks, Milo Lin, Erik Winfree, and Niles A. Pierce. Paradigms for com-
putational nucleic acid design. Nucleic Acids Research, 32(4):1392–1403, 2004.

[28] Robert M. Dirks and Niles A. Pierce. A partition function algorithm for nucleic acid
secondary structure including pseudoknots. Journal of Computational Chemistry,
24:1664–1677, 2003.

[29] Robert M. Dirks and Niles A. Pierce. An algorithm for computing nucleic acid base-
pairing probabilities including pseudoknots. Journal of Computational Chemistry,
25:1295–1304, 2004.

[30] Shawn M. Douglas, Hendrik Dietz, Tim Liedl, Bjorn Hogberg, Franziska Graf, and
William M. Shih. Self-assembly of DNA into nanoscale three-dimensional shapes.
Nature, 459:414–418, 2009.

[31] Shawn M. Douglas, Adam H. Marblestone, Surat Teerapittayanon, Alejandro
Vasquez, George M. Church, and William M. Shih. Rapid prototyping of 3D DNA-
origami shapes with caDNAno. Nucleic Acids Research, 37(15):5001–5006, 2009.

[32] K. Eric Drexler. Molecular Machinery and Manufacturing With Applications to
Computation. Massachusetts Institute of Technology, 1991.

[33] Johann Elbaz, Michael Moshe, and Itamar Wilner. Coherent activation of DNA
tweezers: A “SET-RESET” logic system. Angewandte Chemie International Edi-
tion in English, 48(21):3834–3837, 2009.

367

References

[34] M. Leigh Fanning, Joanne Macdonald, and Darko Stefanovic. Advancing the
Deoxyribozyme-Based Logic Gate Design Process. In Russell J. Deaton and Akira
Suyama, editors, DNA Computing and Molecular Programming, volume 5877 of
Lecture Notes in Computer Science, pages 45–54. Springer, 2009.

[35] M. Leigh Fanning, Joanne Macdonald, and Darko Stefanovic. ISO: Numeric repre-
sentation of nucleic acid forms. In Proceedings of the ACM International Confer-
ence on Bioinformatics and Computational BIology, ACM-BCB, 2011.

[36] Udo Feldkamp. CANADA: Designing nucleic acid sequences for nanobiotechnol-
ogy applications. Journal of Computational Chemistry, 31(3):660–663, 2010.

[37] Udo Feldkamp, Hilmar Rauhe, and Wolfgang Banzhaf. Software tools for DNA
sequence design. Genetic Programming and Evolvable Machines, 4:153–171, 2003.

[38] Daniela Fera, Nahmee Kim, Nahum Shiffeldrim, Julie Zorn, Uri Laserson,
Hark Hin Gan, and Tamar Schlick. RAG: RNA-as-graphs web resource. BMC
Bioinformatics, 5:88, 2004.

[39] Richard P. Feynman. There’s Plenty of Room at the Bottom. Journal of Microelec-
tromechanical Systems, 1(1):60–66, 1992.

[40] Carl A. J. M. Firth and Dennis Bray. Stochastic Simulation of Cell Cycle Regula-
tion. In James M. Bower and Hamid Bolouri, editors, Computational Modeling of
Genetic and Biochemical Networks, pages 263–286. MIT Press, 2001.

[41] Gary William Flake. The Computational Beauty of Nature. MIT Press, Cambridge,
Massachusetts, 1998.

[42] Walter Fontana, Danielle A. M. Konings, Peter Stadler, and Peter Schuster. Statis-
tics of RNA secondary structures. Biopolymers, 33:1389–1404, 1993.

[43] Andrei Gabrielian and Alexander Bolshoy. Sequence complexity and DNA curva-
ture. Computers and Chemistry, 23(3-4):263–274, 1999.

[44] Yang Gao, Lauren K. Wolf, and Rosina M. Georgiadis. Secondary structure effects
of DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids
Research, 34(11):3370–3377, 2006.

[45] Max H. Garzon and Kiran C. Bobba. A Geometric Approach to Gibbs Energies and
Optimal DNA Codeword Design. In Andrew Turberfield and Darko Stefanovic,
editors, DNA18-DNA Computing and Molecular Programming, volume 7433 of
Lecture Notes in Computer Science, pages 73–85. Springer, 2012.

368

References

[46] Martin Gerhardt and Heike Schuster. A Cellular Automaton Describing The Forma-
tion Of Spatially Ordered Structures In Chemical Systems. Physica D, 36(3):209–
221, 1989.

[47] Robert Giegerich, Björn Voß, and Marc Rehmsmeier. Abstract shapes of RNA.
Nucleic Acids Research, 32(16):4843–4851, 2004.

[48] Daniel T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics,
22:403–434, 1976.

[49] Daniel T. Gillespie. The Chemical Langevin Equation. The Journal of Chemical
Physics, 113:297–306, 2000.

[50] Daniel T. Gillespie, Andreas Hellander, and Linda R. Petzold. Perspective:
Stochastic algorithms for chemical kinetics. The Journal of Chemical Physics,
138(170901):1–14, 2013.

[51] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M. LeP-
roust, Botond Sipos, and Ewan Birney. Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA. Nature, 494:77–80, 2013.

[52] Jan Gorodkin, Ivo L. Hofacker, Elfar Torarinsson, Zizhen Yao, Jakob H. Havgaard,
and Walter L. Ruzzo. De novo prediction of structured RNAs from genomic se-
quences. Trends in Biotechnology, 28(1):9–19, 2009.

[53] Elton Graugnard, Amber Cox, Jeunghoon Lee, Cheryl Jorcyk, Bernard Yurke, and
William L. Hughes. Operation of a DNA-based autocatalytic network in serum. In
DNA Computing and Molecular Programming, volume 6518 of Lecture Notes in
Computer Science, pages 83–88. Springer, 2011.

[54] Hongzhou Gu, Jie Chao, Shou-Jun Xiao, and Nadrian Seeman. A proximity-based
programmable DNA nanoscale assembly line. Nature, 465:202–205, 2010.

[55] John L. Hennessy and David R. Patterson. Computer Architecture A Quantitative
Approach. Morgan Kauffman Publishers, Inc., 2nd edition, 1995.

[56] Desmond J. Higham. Modeling and Simulating Chemical Reactions. University of
Strathclyde Mathematics Research Report, 2007.

[57] Mikio Hirabayashi. Kyoto cabinet. http://fallabs.com.

369

References

[58] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer, Manfred
Tacker, and Peter Schuster. Fast folding and comparison of RNA secondary struc-
tures (The Vienna RNA package). Monatshefte für Chemie, 255:279–284, 1994.

[59] Paulien Hogeweg and Burt Hesper. Energy directed folding of RNA sequences.
Nucleic Acids Research, 12(1):67–74, 1984.

[60] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia
Simus, Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. COPASI –
a COmplex PAthway SImulator. Bioinformatics, 22:3067–3074, 2006.

[61] Ann B. Jacobson and Michael Zuker. Structural Analysis by Energy Dot Plot of a
Large mRNA. Journal of Molecular Biology, 233(2):261–269, 1993.

[62] Emma Y. Jin and Christian M. Reidys. Asymptotic enumeration of RNA structures
with pseudoknots. Bulletin of Mathematical Biology, 70:951–970, 2008.

[63] Zhang Kai, Qiang Xiao Li, Zhao Dong Ming, and Xu Jin. General nucleic acid
sequence design using implicit enumeration. Bio-Inspired Computing, pages 1–10,
2009.

[64] Yan Karklin, Richard F. Meraz, and Stephen R. Holbrook. Classification of non-
coding RNA using graph representations of secondary structure. Pacific Symposium
on Biocomputing, pages 4–15, 2005.

[65] Stuart A. Kauffman. Emergent properties in random complex automata. Physica
D, 10(1-2):145–156, 1984.

[66] Mugdha Khaladkar, Vivian Bellofatto, Jason Wang, Bin Tian, and Bruce Shapiro.
RADAR: a web server for RNA data analysis and research. Nucleic Acids Research,
35(2):W300–W304, 2007.

[67] Dmitry M. Kolpashchikov and Milan N. Stojanovic. Boolean control of aptamer
binding states. Journal of the American Chemical Society, 127:11348–11351, 2005.

[68] Andrzej K. Konopka. Sequence complexity and composition. http://www.els.

net, 2005.

[69] Harvey Lederman, Joanne Macdonald, Darko Stefanovic, and Milan Stojanovic.
Deoxyribozyme-based three-input logic gates and construction of a molecular full
adder. Biochemistry, 45:1194–1199, 2006.

370

References

[70] Neocles B. Leontis, Aurelie Lescoute, and Eric Westhof. The building blocks and
motifs or RNA architecture. Current Opinion in Structural Biology, 16(xx):279–
287, 2006.

[71] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

[72] Chunhua Liu, Natasha Jonoska, and Nadrian Seeman. Reciprocal DNA nanome-
chanical devices controlled by the same set strands. Nano Letters, 9(7):2641–2647,
2009.

[73] Joanne Macdonald, Yang Li, Marko Sutovic, Harvey Lederman, Kiran Pen-
dri, Wanhong Lu, Benjamin Andrews, Darko Stefanovic, and Milan Stojanovic.
Medium scale integration of molecular logic gates in an automaton. Nano Letters,
6(11):2598–2603, 2006.

[74] Amit Marathe, Anne E. Condon, and Robert M. Corn. On combinatorial DNA word
design. Journal of Computational Biology, 8:201–220, 1999.

[75] Laerke B. Marcussen, Morten L. Jepson, Emil L. Kristofferson, Oskar Franch,
Joanna Proszek, and Yi-Ping Ho. DNA-based sensor for real-time measurement
of the enzymatic activity of human topoisomerase I. Sensors, 13(4):4017–4028,
2013.

[76] Adam A. Margolin and Milan N. Stojanovic. Boolean calculations made easy (for
ribozymes). Nature Biotechnology, 23:1374–1376, 2005.

[77] Nicholas Markham and Michael Zuker. DINAMelt web server for nucleic acid
melting prediction. Nucleic Acids Research, 33:W577–W581, 2005.

[78] William C. McBee, Amy S. Gardiner, Robert P. Edwards, Jamie L. Lesnock, Rohit
Bhargava, R. Marshall Austin, Richard S. Guido, and Saleem A. Khan.

[79] Donald A. McQuarrie. Stochastic approach to chemical kinetics. Journal of Applied
Probability, 4:413–478, 1967.

[80] Bence Mélykúti, Kevin Burrage, and Konstantinos C. Zygalakis. Fast stochas-
tic simulation of biochemical reaction systems by alternative formulations of the
chemical Langevin equation. The Journal of Chemical Physics, 132(164109):1–12,
2010.

[81] Bernard M. Moret. The Theory of Computation. The Computer Science Handbook.
Addison-Wesley, 1998.

371

References

[82] Clint Morgan, Darko Stefanovic, Christopher Moore, and Milan N. Stojanovic.
Building the components for a biomolecular computer. In C. Ferretti, G. Mauri, and
C. Zandron, editors, DNA Computing: 10th International Workshop on DNA-Based
Computers, volume 3384 of Lecture Notes in Computer Science, pages 247–257.
Springer, 2005.

[83] Rajesh K. Nayak, Olve B. Peersen, Kathleen B. Hall, and Alan Van Orden. Mil-
lisecond Time-Scale Folding and Unfolding of DNA Hairpins Using Rapid-Mixing
Stopped-Flow Kinetics. Journal of the American Chemical Society, 134:2453–
2456, 2012.

[84] Jacques Ninio. Properties of nucleic acid representations I. Topology. Biochemie,
5:485–494, 1971.

[85] Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleitman. Algo-
rithms For Loop Matchings. SIAM Journal on Applied Mathematics, 35(1):68–82,
1978.

[86] Amy E. Pasquinelli. MicroRNAs and their targets: recognition, regulation and an
emerging reciprocal relationship. Nature Reviews Genetics, 13(4):271–282, 2012.

[87] Giulio Pavesi, Giancarlo Mauri, Marco Stefani, and Graziano Pesole. RNAprofile:
an algorithm for finding conserved secondary structure motifs in unaligned RNA
sequences. Nucleic Acids Research, 32(10):3258–3269, 2004.

[88] Hai Pei, Na Lu, Yanli Wen, Shiping Song, Yan Liu, Hao Yan, and Chunhai Fan. A
DNA nanostructure-based biomolecular probe carrier platform for electrochemical
biosensing. Advanced Materials, 22(42):4754–4758, 2010.

[89] Renjun Pei, Elizabeth Matamoros, Manhong Liu, Darko Stefanovic, and Milan Sto-
janovic. Training a molecular automaton to play a game. Nature Nanotechnology,
5:773–777, 2010.

[90] Andrew Philips and Luca Cardelli. A programming language for composable DNA
circuits. Journal of the Royal Society Interface, 6(4):S419–S436, 2009.

[91] Andrew Phillips, Matthew Lakin, and Loic Pauleve. Stochastic simulation of pro-
cess calculi for biology. Electronic Proceeedings in Theoretical Computer Science,
40:1–5, 2010.

[92] Julia E. Poje, Tamara Kastratovic, Andrew R. Macdonald, Ana C. Guillermo,
Steven E. Troetti, Omar J. Jabado, M. Leigh Fanning, Darko Stefanovic, and Joanne

372

References

Macdonald. Visual Displays that Directly Interface and Provide Read-Outs of
Molecular States Via Molecular Graphics Processing Units. Angewandte Chemie
International Edition, 2014.

[93] Lulu Qian and Erik Winfree. A simple DNA gate motif for synthesizing large-
scale circuits. In Ashish Goel, Friedrich C. Simmel, and Petr Sosı́k, editors, DNA
Computing, pages 70–89. Springer-Verlag, Berlin, Heidelberg, 2009.

[94] Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA
strand displacement cascades. Science, 332(6034):1196–1201, 2011.

[95] Lulu Qian and Erik Winfree. A simple DNA gate motif for synthesizing large-scale
circuits. The Journal of the Royal Society Interface, 8(62):1281–1297, 2011.

[96] Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with
DNA strand displacement cascades. Nature, 475:368–372, 2011.

[97] Brittany Rauzan, Elizabeth McMichael, Rachel Cave, Lesley R. Sevcik, Kara Os-
trosky, Elisabeth Whitman, Rachel Stegemann, Audra L. Sinclair, Martin J. Serra,
and Alice A. Deckert. Kinetics and Thermodynamics of DNA, RNA, and Hybrid
Duplex Formation. Biochemistry, 52:765–772, 2013.

[98] Frederick Reif. Fundamentals of Statistical and Thermal Physics. McGraw Hill,
1965.

[99] Rae M. Robertson, Stephan Laib, and Douglas E. Smith. Diffusion of isolate
DNA molecules: Dependence on length and topology. Proceedings of the National
Academy of Sciences, 103(19):7310–7314, 2006.

[100] Alberto Rodriguez-Pulido, Aline I. Kondrachuk, Deepak K. Prusty, Jia Gao,
Maria A. Loi, and Andreas Herrmann. Light-triggered sequence-specific
cargo release from DNA block copolymer-lipid vesicles. Angewandte Chemie,
125(3):1042–1046, 2013.

[101] Robert Rosen. The Polarity Between Structure and Function. The Center for The-
oretical Biology Dialogue Discussion Paper, November 22, 1971.

[102] Paul W. K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-
assembly of DNA sierpinski triangles. PLoS Biology, 2(12):2041–2053, 2004.

[103] Rick Russell, Ian S. Millett, Mark W. Tate, Lisa W. Kwok, Bradley Nakatani, Sol M.
Gruner, Simon G. J. Mochrie, Vijay Pande, Sebastian Doniach, Daniel Herschlag,

373

References

and Lois Pollack. Rapid compaction during RNA folding. Proceedings of the
National Academy of Science, 99(7):4266–4271, 2002.

[104] John SantaLucia, Jr. A unified view of polymer, dumbbell, and oligonucleotide
DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of
Sciences (PNAS), 95(4):1460–1465, 1998.

[105] Stephen W. Santoro and Gerald F. Joyce. A general purpose RNA-cleaving DNA
enzyme. Proceedings of the National Academy of Science, 94:4262–4266, 1997.

[106] Yonatan Savir and Tsvi Tlusty. Optimal design of a molecular recognizer: Molec-
ular recognition as a bayesian signal detection problem. IEEE Journal of Selected
Topics in Signal Processing, 2(3):390–399, 2008.

[107] Georg Seelig, David Soloveichik, David Zhang, and Erik Winfree. Enzyme-free
nucleic acid logic circuits. Science, 314:1585–1588, 2006.

[108] Nadrian Seeman. Nanomaterials based on DNA. Annual Review of Biochemistry,
79:65–87, 2010.

[109] Nadrian C. Seeman. Biomolecular stereodynamics. In R. H. Sarma, editor, Nu-
cleic Acid Junctions: Building Blocks for Genetic Engineering in Three Dimen-
sions, pages 269–277. Adenine Press, 1981.

[110] Nadrian C. Seeman. De novo design of sequences for nucleic acid structural engi-
neering. Journal of Biomolecular Structure and Dynamics, 8:573–581, 1990.

[111] Nadrian C. Seeman and Neville R. Kallenbach. Design of immobile nucleic acid
junctions. Biophysical Journal, 44:201–209, 1983.

[112] Bruce Shapiro. An algorithm for comparing multiple RNA secondary structures.
Bioinformatics, 4(3):387–393, 1988.

[113] Bruce Shapiro and Kaizhong Zhang. Comparing multiple RNA secondary struc-
tures using tree comparisons. Computer Applications in Biosciences, 6(4):309–318,
1990.

[114] Bruce A. Shapiro, Yaroslava G. Yingling, Wojciech Kasprzak, and Eckart Binde-
wald. Bridging the gap in RNA structure prediction. Current Opinion in Structural
Biology, 17:157–165, 2007.

[115] Adam Shea, Brian Fett, Marc D. Riedel, and Keshab Parhi. Writing and compiling
code into biochemistry. Pacific Symposium on Biocomputing, 15:456–464, 2010.

374

References

[116] Seung Woo Shin. Compiling and verifying DNA-based chemical reaction network
implementations. M. S. Thesis, California Institute of Technology, 2011.

[117] Scott K. Silverman. DNA as a versatile chemical component for catalysis, encoding,
and stereocontrol. Angewandte Chemie International Edition, 49:7180–7201, 2010.

[118] David W. Staple and Sam E. Butcher. Pseudoknots: RNA structures with diverse
functions. PLoS Biology, 3(6), 2005.

[119] Milan Stojanovic, Tiffany Elizabeth Mitchell, and Darko Stefanovic.
Deoxyribozyme-based logic gates. Journal of the American Chemical Soci-
ety, 124:3555–3561, 2002.

[120] Milan Stojanovic and Darko Stefanovic. A deoxribozyme-based molecular automa-
ton. Nature Biotechnology, 21(9):1069–1074, 2003.

[121] Milan Stojanovic and Darko Stefanovic. Deoxyribozyme-based half-adder. Journal
of the American Chemical Society, 125:6673–6676, 2003.

[122] Milan N. Stojanovic, Paloma de Prada, and Donald W. Landry. Fluorescent sen-
sors based on aptamer self-assembly. Journal of the American Chemical Society,
122:11547–11548, 2000.

[123] Milan N. Stojanovic and Dmitry M. Kolpashchikov. Modular aptameric sensors.
Journal of the American Chemical Society, 126:9266–9270, 2003.

[124] Guinevere Strack, Marcos Pita, Maryna Ornatska, and Evgeny Katz. Boolean logic
gates that use enzymes as input signals. ChemBioChem, 9(8):1260–1266, 2008.

[125] Lubert Stryer. A fluorescence energy transfer as a spectroscopic ruler. Annual
Review Biochemistry, 47:819–846, 1978.

[126] Oleg N. Temkin, Andrew V. Zeigarnik, and Danail Bonchev. Chemical Reaction
Networks: A Graph Theoretical Approach. CRC Press, 1996.

[127] Gilbert Thill, J. Marc Vasseur, and N. Kyle Tanner. Structural and sequence ele-
ments required for the self-cleaving activity of the hepatitis delta virus ribozyme.
Biochemistry, 32:4254–4262, 1993.

[128] Ram S. Verma. Genes and Genomes. Elsevier, 1998.

[129] Virgile Viasnoff, Amit Meller, and Herve Isambert. DNA nanomechanical switches
under folding kinetics control. Nano Letters, 6(1):101–104, 2006.

375

References

[130] Michael Waterman and Temple F. Smith. RNA Secondary Structure: A Complete
Mathematical Analysis. Mathematical Biosciences, pages 257–266, 1978.

[131] Thomas Way, Tao Tao, and Bryan Wagner. Compiling mechanical nanocomputer
components. Global Journal of Computer Science and Technology, 10(2):36–42,
2010.

[132] Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from
single-stranded DNA tiles. Nature, 485:623–626, 2012.

[133] Jorg R. Weimar. Cellular Automata Approaches to Enzymatic Reaction Networks.
In Stefania Bandini, Bastien Chopard, and Marco Tomassini, editors, Cellular Au-
tomata for Research and Industry (ACRI), volume 2493 of Lecture Notes in Com-
puter Science, pages 294–303. Springer-Verlag, 2002.

[134] Shelley F. J. Wickham, Jonathan Bath, Yousuke Katsuda, Masayuki Endo, Kumi
Hidaka, Hiroshi Sugiyama, and Andrew J. Turberfield. A DNA-based molecular
motor that can navigate a network of tracks. Nature Nanotechnology, 7(3):169–
173, 2012.

[135] Sarah A. Woodson. Compact intermediates in RNA folding. Annual Reviews of
Biophysics, 39:61–77, 2010.

[136] Sarah A. Woodson. Taming free energy landscapes with RNA chaperones. RNA
Biology, 7(6):677–686, 2010.

[137] Gang Wu, Natasha Jonoska, and Nadrian Seeman. Construction of a DNA nano-
object directly demonstrates computation. Biosystems, 98(2):80–84, 2009.

[138] Bernard Yurke, Andrew J. Turberfield, Allen P. Mills Jr., Friedrich C. Simmel, and
Jennifer Neumann. A DNA-fuelled molecular machine made of DNA. Nature,
406:605–608, 2000.

[139] Joseph N. Zadeh, Conrad Steenberg, Justin S. Bois, Brian R. Wolfe, Marshall B.
Pierce, Asif R. Khan, Robert M. Dirks, and Niles A. Pierce. NUPACK: analysis
and design of nucleic acid systems. Journal of Computational Chemistry, 32:179–
173, 2011.

[140] David Yu Zhang, Andrew J. Turberfield, Bernard Yurke, and Eric Winfree. En-
gineering entropy-driven reactions and networks catalyzed by DNA. Science,
318:1121–1125, 2007.

376

References

[141] Geoffrey Zubay. Biochemistry. Macmillan Publishing Company, 1988.

[142] Michael Zuker. Mfold web server for nucleic acid folding and hybridization pre-
diction. Nucleic Acids Research, 31(13):3406–3415, 2003.

[143] Michael Zuker and David Sankoff. RNA secondary structures and their prediction.
Bulletin of Mathematical Biology, 46(4):591–621, 1984.

377

