
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

7-1-2013

Front Rendering on the GPU
Jeffrey Bowles

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Bowles, Jeffrey. "Front Rendering on the GPU." (2013). https://digitalrepository.unm.edu/cs_etds/63

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/63?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


� � � � �
� �

������ � � � � �
�������&DQGLGDWH��
������
������ � � � � �
�����'HSDUWPHQW�
������
�
�����7KLV�WKHVLV�LV�DSSURYHG��DQG�LW�LV�DFFHSWDEOH�LQ�TXDOLW\�DQG�IRUP�IRU�SXEOLFDWLRQ��
�
�����$SSURYHG�E\�WKH�7KHVLV�&RPPLWWHH��
�
�������� � � � � � � �
������ � � � � � � � � � � � � � ��&KDLUSHUVRQ�
��
�
������ � � � � �
�
�
������ � � � � �
�
�
������ � � � � �
�
�
������ � � � � �
�
�
������ � � � � �
�
�
������� � � � � �
�
�
������� � � � � �
�
�
������� � � � � �
�
�
��

Jeffrey Bowles
Jeffrey Bowles

Jeffrey Bowles
Computer Science

Jeffrey Bowles
Joe Kniss

Jeffrey Bowles
George Luger

Jeffrey Bowles
Ed Angel



Font Rendering on the GPU

By

Jeffrey R. Bowles
B.S., Computer Science, University of New Mexico, 1997

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Masters of Science
Computer Science

The University of New Mexico
Albuquerque, New Mexico

May 2013



DEDICATION

This work is dedicated to my wife, Amanda Quintana-Bowles, a talented artist with a passion for
fonts and typography.

iii



ACKNOWLEDGMENTS

I would like to thank Professor Ed Angel for fostering and manifesting a passion for computer
graphics, starting with his introduction to C++ in 1993. I highly appreciate Professor George

Luger for his encouragement and allowing me the flexibility to transform my studies in his class on
an overview of languages into a graphics course. Lastly, I would like to express my thanks to my

advisor, Professor Joe Kniss, for his tireless work and patience in introducing many advanced
techniques in computer graphics and mathematics, and showing me that the impossible is

achievable through daring, imagination and belief in oneself.

iv



Font Rendering Using the GPU

By

Jeffrey R. Bowles
B.S., Computer Science, University of New Mexico, 1997
M.S., Computer Science, University of New Mexico, 2013

ABSTRACT

The glyphs described in a font are usually rendered using software that runs on the CPU. This
can be done very quickly and is a well understood process. These techniques work well when the
glyph is rendered such that each point on the rendered glyph maps one-to-one to pixels on the
screen. When this one-to-one mapping is removed, visual quality can degrade dramatically.

This thesis describes a method to avoid this degradation by moving the rendering of glyphs
from the CPU to the Graphics Processing Unit (GPU). This method extracts glyph metrics from
Truetype font files using the FreeType library, processes all glyph data in the font file and places
it into a form that can be used by GPU shader programs to draw the glyphs such that the visual
quality does not degrade regardless of the applied transformations.
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1 Introduction

During various graphics projects, I have frequently identified the need to add text to three-dimensional
scenes. For example, I have had requests to integrate an interactive console. Alternately, I have
had the occasion to label points in a graph that represent contributors to a source code repository.
One can imagine all sorts of scenarios where high quality, realtime rendering of text is needed in a
three-dimension scene, for instance, in computer games that are set within a city with signs, bill-
boards and cloth banners. To ensure that users stay immersed in the environment, this text must
look good from any camera position. Life is not pixellated.

When I started this project, I believed this to be a solved problem and spent time searching
for an open source project that could be incorporated into my projects. I did not find any freely
available software that met all of my criteria:

• OpenGL: the ”Open Graphics Library” is a platform-independent software interface to graph-
ics hardware [7].

• Open 3.2 Core Profile: a user selectable OpenGL state that does not allow deprecated
functionality [7] and is the only available method to use OpenGL 3.2 specific features under
OS X.

• TrueType fonts: an openly defined outline font standard developed by Apple Computer [1].
The open source project FreeType [4] can parse font files in this format and is available on all
targeted platforms (OS X, Windows and Linux).

• High quality, non-pixellated rendering regardless of transforms applied to the text or the
geometry onto which the text is mapped.

The first three criteria were chosen to maximize portability between platforms and to allow the
use of the most advanced features of OpenGL on each of the targeted platforms. The fourth criterion
was chosen to maximize visual quality.

Various freely available software packages were evaluated and it was found that none met the
criteria, as described in Section 4. The time spent implementing these methods was well spent and
served as an introduction to font rendering. For example, I learned that a font, which is alternately
called a typeface, is composed of a set of glyphs and the data that describes how those glyphs
interact. A glyph is a set of contours that describe a character and a contour is a set of curves and
lines that form a closed loop. The interactions between glyphs is called kerning, which describes the
amount of space to add or subtract between two glyphs that are placed next to each other.

After the search for existing software failed to turn up acceptable libraries, this thesis was started
in an effort to show that a GPU-based implementation that renders high quality text regardless of
how the glyphs are transformed or the geometry onto which they are mapped is possible.

2 Overview

In Section 3, there is a brief overview of existing software packages used to render text in OpenGL
and why those packages do not meet the criteria listed in the introduction. Section 4 discusses
work performed to utilize existing CPU-based methods for rendering text and using the results with
OpenGL. Section 5 discusses some background that is needed to understand the method used to
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render glyphs on the GPU. Section 6 discusses the methods used to preprocess glyph data on the
CPU, how that data is formatted for use on the GPU and the shaders used to render the glyphs.
The final sections show the rendered glyphs, discuss future work and the conclusion.

3 Existing Software Packages

Many packages exist that render glyphs in a three dimensional environment, but none met the
requirements. Only Open Source packages were evaluated. One of the requirements is that a font
rendering system needed to work in an OpenGL 3.2 core context. It was found that most packages
required functionality that was deprecated in OpenGL 3.2 and only worked when used with an
OpenGL compatibility context.

3.1 GLUT

GLUT has font rendering functionality, but the rendering method is only available for OpenGL 2.1
compatible contexts due to its use of the deprecated function call glRasterPos. It also does not
render text onto arbitrary geometry, nor does it use Truetype fonts.

3.2 FTGL

FTGL is a very well written font handling library that uses Truetype fonts, but it is dependent on
the deprecated gluTess family of function calls, which are not available when using the OpenGL 3.2
core profile. FTGL can be used to place text onto an arbitrary surface, but requires generating a
texture map of the text on the CPU. This works well when the text is billboarded, e.g., the geometry
is flat and perpendicular to the view, and when the exact size of the text is known in screen space.

3.3 VSOFont

VSOFont uses its own font format and requires the user of the library to create their own fonts. It
also relies on OpenGL 2.1 fixed-functionality that was deprecated in OpenGL 3.2.

4 Rendering Text Using the CPU

The research into rendering fonts in a three dimensional scene starting during a project that needed
to label a large number of point sprites. A point sprite is a graphics primitive that renders a single
point as a square that always faces the camera. In my previous projects, FTGL was used for this
purpose, and it worked well. For the reasons listed in the introduction, this project required OpenGL
3.2 specific functionality. This made FTGL an unsuitable solution for this project.

Because the project used a small subset of FTGL’s functionality, it was determined that FreeType
could be used for rendering text. This was expected to be an easy task. The expectation was that
FreeType would render a string of text into a bitmap that would be applied as a texture to a quad.

FreeType is not as simple to use as one might hope. It does not have the capability of rendering
a string of text. It can only render a glyph at a time, which can be copied into a texture map. While
there is some trickiness with getting FreeType to render glyphs, it is more tedious than difficult to
get the process correct. The process has two passes. The first pass determines the size of the texture
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Figure 1: Glyph metrics

map based on the string to be rendered and the second pass renders the string into a bitmap. That
bitmap is then uploaded to the GPU and applied as a texture to the surface that will display the
label.

Before a FreeType based text layout and rendering algorithm can be presented, it is important
to understand glyph metrics.

4.1 Glyph Metrics

To understand how text layout is performed, it is important to understand the various metrics used
when describing a glyph. The standard unit of measurement is the point. The size of a glyph is
defined by its point size. A point is 1/72 of an inch, thus making the glyphs in a 72 point font
approximately 1 inch tall.

FreeType uses 1/64th of pixel as a measurement in some cases. It is convenient to divide by 64
using bit shift operators, which is very fast as opposed to using floating point arithmetic to divide
by 72. The FreeType documentation does not specify which units are being used, leaving it to the
user of the library to empirically determine the units being used in any particular function call or
data structure member. Table 1 and figure 1 show how each of the metrics are used as part of the
description of a glyph’s positioning.

3



Table 1: Glyph Metrics

Metric Description Units
Min Y Minimum Y position of a point in the glyph pixels
Max Y Maximum Y position of a point in the glyph pixels
Min X Minimum X position of a point in the glyph pixels
Max X Maximum X position of a point in the glyph pixels
Bearing X Distance from origin to min X pixels
Bearing Y Distance from origin to max Y pixels
Advance The amount to advance to the next glyph 1/64th pixel
Kerning The distance to subtract between two glyphs 1/64th pixel

Definitions of important glyph metrics. These are shown visually in figure 1.

4.2 Building a Texture Map with FreeType

The process of creating an OpenGL-compatible texture map that contains a horizontally laid out
string is text is presented using pseudo-code.

// Initialize free type library

initialize_freetype_library();

load_font_face();

set_point_size_and_dpi();

...

max_height = 0;

// First pass - determine width and height of destination bitmap

for(glyph : text_string) {

height = glyph.get_height();

width = glyph.get_width();

min_y_position = glyph.get_minimum_y_position();

advance = glyph.get_advance();

if(first_iteration) {

kerning = 0;

} else {

kerning = kerning between this glyph and the previous glyph;

}

glyph_max_y = glyph_min_y + height;

glyph_max_x = prev_x_pos + advance - kerning;

width += glyph_max_x;

if(height > max_height) {
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max_height = height;

}

}

// Allocation destination bitmap

destination_bitmap = new Bitmap(glyph_max_x, max_height);

// Second pass - render text

for(glyph : text_string) {

// Using the previously calculated positions when determining

// the width and height of the bitmap

set_x_position();

set_y_position();

render_glyph();

}

...

// Call glTexImage2D or glTexSubImage2D

upload_texture_to_gpu();

// Display text in scene

display_quad_textured_with_bitmap();

This algorithm produces good results when it is known exactly how the textured quads will map
into screen space and the one-to-one mapping of texels to pixels is preserved. It also works well
when there is not a large amount of text in the scene. However, this violates visual quality and low
memory usage constraints. In some instances, all of the texture maps for each of the labels required
3GB of memory. Figure 2 shows how visual quality degrades when the one-to-one mapping of texels
to screen pixels begins to break down as the transformation of the quads puts the images farther
away from the viewer. In this case, the texture map was very detailed and looked good when viewed
up close and became foggy as the images moved away from the viewer.

Because it was not known how the textured quad would map into screen space, the texture maps
need to be very high resolution in order to combat aliasing problems. There were times where up
to 3GB of memory would be used to hold high quality textures for the hundreds of labels that were
being placed in some scenes. The problem of high memory usage was the first problem that needed
to be addressed. While the aliasing and fogginess are undesirable, the text is still readable, as seen
in figure 2.

A large amount of work was performed in an effort to make the rendering of glyphs on the CPU
work better and provide better results. For example, in an effort to reduce memory usage, a glyph
texture map was created that contains the set of all of the glyphs in a font. This glyph texture map
is then uploaded to the GPU. To use this map, a single quad is drawn for each glyph in a string.
The CPU lays out the quads along the y-axis with the correct spacing between the quads to render
nicely kerned text. Each quad is given texture coordinates that index into the glyph texture map so
that the correct glyph is displayed on each quad. Further work was done to move the layout onto
the GPU by passing the string of characters to be rendered in a uniform variable to a geometry
shader. The geometry shader then created the set of quads to be rendered in the scene. This moved
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Figure 2: Font rendering using texture maps for each string

more of the computation onto the GPU, but did not solve the aliasing and fogginess problems. It
also did not allow for an easy method of placing text onto arbitrary geometry with relative ease and
with high quality results.

5 Background

5.1 Bézier Curves

Bézier curves may be more accurately called curves that were used and made popular by Pierre
Bézier, who used these curves in the design of automobile bodies. It was Paul de Casteljau that
developed de Casteljau’s algorithm that allows these curves to be evaluated in a numerically stable
manner.

Bernstein Polynomial:

Bn
i (t) =

(
n

i

)
ti(1− t)n−i

A Bézier curve of order n is the sum of (0, n) Bernstein polynomials where each term of the sum
scales the ith control point. Control points are vectors and are written as pi

C(t) =

n∑
i=0

Bn
i (t)pi
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t ranges from 0 to 1. Notice that C(0) = p0 and C(1) = pn.
A second order, or quadratic, Bézier curve function has the form:

C(t) =

(
2

0

)
t0(1− t)2p0 +

(
2

1

)
t1(1− t)p1 +

(
2

2

)
t2(1− t)0p2

C(t) = (1− t)2p0 + 2t(1− t)p1 + t2p2

This can be rewritten in terms of a matrix-vector multiplication:

C(t) = P

 (1− t)2

2t(1− t)
t2


Where P is a matrix whose column vectors are the control points:

P =

 p0x p1x p2x
p0y p1y p2y
p0w p1w p2w


The vector portion of this equation can also be written as a matrix-vector multiplication operation

where the vector is the power basis Rewrite the left hand term in the dot product as a matrix
multiplied against the power basis, b = [1, t, t2]. This is desirable because it creates an invertible
operation and allows for a change of basis.

Let M(t) be the left side of the dot product:

M(t) =
[
(1− t)2, 2t(1− t), t2

]
Make each component of the vector the same by introducing terms that are multiplied by zero:

M(t) =
[
1− 2t + t2, 0 + 2t− 2t2, 0 + 0t + t2

]
How do we figure out what the operation looks like that produces this vector? What does this

matrix look like? Because we are searching for an operation that produces a 3x1 vector, we only
have find three dot products that produce the elements of M(t):

M(t)0 = [1,−2, 1] · [1, t, t2] = 1− 2t + t2

M(t)1 = [0, 2,−2] · [1, t, t2] = 0 + 2t− 2t2

M(t)2 = [0, 0, 1] · [1, t, t2] = 0 + 0t + t2

Resulting in the coefficient matrix Q:

Q =

 1 -2 1
0 2 -2
0 0 1
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The function, C(t) can be written as:

C(t) = PQb

Solve for b and determine if the point C(t) = [xt, yt, wt] is on the curve:

b = Q−1P−1C(t)

The point [xt, yt, wt] is on the curve if b has the form
[
1, t, t2

]
. The point is under the curve if

xt− yt
2 ≥ 0 and yt ∈ (0, 1). This is the key to filling the area under the curve in a fragment shader.

5.2 Winding Numbers

Winding numbers are used to distinguish between the inside and the outside of a glyph. The
information about each glyph in a font can be reduced to:

• A glyph outline describes a set of contours.

• A contour is made up of a set of segments.

• A segments can be a line or a section of a curve

• A contour always starts and ends at the same point.

With this information, it is up to the programmer to determine if a point contributes to a glyph.
Winding numbers are used to determine a point’s contribution. If a point’s winding number is non-
zero, then that point contributes to the glyph. The method used to calculate winding numbers is
described in the TrueType Reference Manual [1]. To briefly summarize, a ray is created that starts
at the point to be tested and is cast off to infinity. In practice, rays point from left to right or top
to bottom. In this implementation, rays are cast from left to right. The initial winding number is
zero.

When a ray crosses a curve, it’s winding number increases if the transition is on on transition,
or the winding number decreases if it is an off transition. And on transition occurs when the ray
crosses the contour from right to left. An off transition occurs when the ray crosses the contour
from left to right.

We use the incenters of triangles as ray starting points.

5.3 Finding the Centers of the Triangles

The algorithm presented in this thesis needs to find a point on the inside of a triangle to cast a
ray from left to right to determine whether or not a triangle is a contributing triangle or a non-
contributing triangle. The center of the triangle is chosen as this point. There are many different
types of centers and for this algorithm, and the incenter was arbitrarily chosen.

The incenter is the center of a circle that is tangent to the three line segments that form a
triangle. This circle is called the incircle. The center of the incircle can be found by bisecting the
angle at each corner of the triangle and casting rays towards the inside of the triangle. The point
where they intersect is the center of the incircle.

To bisect two vectors, Take two vectors, AB and AC, and then add them together. The resulting
vector will bisect the two original vectors. When this process is applied to vectors formed by the
sides of a triangle, the intersection point of those three vectors is the incenter of that triangle as
shown in figure 3.
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s0 s1

s2 d0d1

p

Figure 3: Finding the incenter of the triangle s0, s1, s2 by bisecting the vectors s2 − s0 and s1 − s0
and calculating the intersection p.
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The two rays d0 and d1intersect at point p if the following system equations can be solved with
the constraint that u, v ≥ 0.

p = s0 + d0u
p = s1 + d1v

These equations can be broken up into their x and y components and set equal to each other,
resulting in two equations and two unknowns:

s0x + d0xu = s1x + d1xv
s0y + d0yu = s1y + d1yv

This system of equations can be rearranged such that u, v are on the left and the constants are
on the right:

d0xu− d1xv = s1x − s0x
d0yu− d1yv = s1y − s0y

Recall that Cramer’s rule takes a system of equations in the form:

au + bv = c
du + ev = f

and solves them with:
D = ae− bd
u = (cd− fb)/D
v = (af − dc)/D

Applying Cramer’s rule to the two lines defined by (s0, d0) and (s1, d1) results in:

D = d1xd0y − d0xd1y
∆x = s1x − s0x
∆y = s1y − s0y
u = (d1x∆y − d1y∆x)/D
v = (d0x∆y − d0y∆x)/D

5.4 Determining if a Point Lies to the Left of a Line

One might naively decide to check to see if a ray intersects a Bézier curve to determine if the winding
number of that point will change. However, all rays cast by this algorithm are horizontal, meaning
that ∆y = 0, so only the starting point is needed. Furthermore, since all of the Bézier curves will
be contained within a triangle and the rays we care about will start from outside of the triangle, it
is only necessary to discover if the starting point of the ray lies to the left of the line that creates
the base of the triangle. Pseudo code is presented to describe this algorithm.

float leftOfLine(vec2 s0, vec2 p0, vec2 p1) {

// Initialize return value to false

float isLeft = 0; // 0 for false, 1 for true
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float deltaX = p1.x - p0.x;

if(deltaX > 0 || deltaX < 0) {

// In the non-vertical line case, the slope of the line is

// needed. A divide operation can be eliminated if

// the reciprocal of the slope is used.

float rslope = deltaX / (p1.y - p0.y);

if(((s0.y - p0.y) * rslope) + p0.x >= s0.x) {

retval = 1;

} else {

retval = 0;

}

} else {

// If this is a vertical line, the test is fairly simple. If

// the point’s x value is less than the line’s x value,

// it is to the left

if(s0.x < p0.x) {

retval = 1;

} else {

retval = 0;

}

}

return isLeft;

}

5.5 Determining if a Point is Inside a Triangle

Using Barycentric coordinates, any point, p, in the plane defined by the three points, p0, p1 and p2
can be written as:

p = p0 + s(p1 − p0) + t(p2 − p0)

If (s, t) ∈ (0, 1), then p is located inside of the triangle. In section 6.14, where the fragment shader
is described, the point p is known and (s, t) are unknown. (s, t) can be found by creating a system
of two equations. First, simplify the Barycentric equation to:

v2 = sv0 + tv1

Where the vector vi are defined as:

v0 = p1 − p0
v1 = p2 − p0
v2 = p− p0

Create two equations by dotting with v0 and v1:

v1 · v2 = s(v0 · v1) + t(v1 · v1)
v0 · v2 = s(v0 · v0) + t(v0 · v1)

Solving for s and t:

s =
(v1 · v1)(v0 · v2)− (v0 · v1)(v1 · v2)

(v0 · v0)(v1 · v1)− (v0 · v1)(v0 · v1)
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t =
(v0 · v0)(v1 · v2)− (v0 · v1)(v0 · v2)

(v0 · v0)(v1 · v1)− (v0 · v1)(v0 · v1)

6 Rendering Glyphs on the GPU

To solve the problems with rendering glyphs using FreeType on the CPU, the decision was made
to move the rendering into a fragment shader that runs on the GPU. Thiss allow the one-to-one
mapping of points on a glyph to screen space to be preserved, thus eliminating the sampling artifacts
problem, and by using parameterized texture coordinates, the glyphs could be easily rendered onto
arbitrary surfaces.

It was not clear how this could be accomplished. It is known that the data that describes a
glyph is defined as a set of curves. Because of the work of Jim Blinn and Charles Loop [3], it
is also known that it is possible to render filled quadratic Bézier curves on the GPU. Based on
procedure described in their paper, it was also decided to use their method of constrained Delaunay
triangulation to break the glyphs up into a set of triangles. These triangles fall into three classes:
triangles whose internal points all have non-zero winding numbers, triangles whose internal points
all have a winding number of zero, and triangles that contain curves. The Blinn-Loop method
then sends these triangles through the graphics pipeline and uses a shader program to render the
curves. This method introduces some difficulty when rendering text onto arbitrary geometry. It
seems necessary to retesselate the surface so that the triangles that hold the glyphs will fit onto the
surface properly. Also, if the text is being combined with another texture map, there may be some
trickiness in handling texture coordinates. These problem are not insurmountable, but it seems that
graphics hardware has advanced enough that the problems can be avoided and that more of the
process can be placed on the GPU.

Instead, this thesis proposes to perform the triangulation and put the list of triangles into a
texture map. The fragment shader searches the triangle list to discover if the fragment contributes
to the glyph. This allows for texturing of arbitrary surfaces without retesselation and for easy
combination with other textures and effects, such as bump mapping. There is no need to fit the
triangles into an existing mesh.

In both this thesis and the Blinn-Loop method, there are two high level steps when using a GPU
to render text:

• Pre-process the font data and place it into a form suitable for use on the GPU. In this thesis,
this step takes place on the CPU.

• Use the data from the previous step to render glyphs using a fragment shader that runs on
the GPU.

6.1 Overview of Glyph Pre-Processing

The goal of glyph pre-processing is to assist the GPU in determining which set of fragments make
up a glyph.

• Extract font data that describes the segments that make up the contours in each glyph

• Classify the orientation of the contours as either clockwise or counter-clockwise
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• Perform constrained Delaunay triangulation

• Compute change in winding numbers for each segment as a ray traverses this segment from
left to right

• Find the incenters for each triangle

• Determine the winding number at the incenter of each triangle

• Mark triangles that do not contain a curve whose incenter is zero as non-contributing

• For triangles that contain a curve, determine if the curve is filled above or below.

– In rare cases, some curves are filled both above and below. Mark this triangles as con-
tributing

• Place glyph data into texture maps

6.2 Extracting Glyph Data Using FreeType

FreeType is used to parse TrueType font files and extract the data needed to render the glyph set. It
was initially assumed that the required data would be provided by loading the font using FreeType
library calls and then inspecting the data structures associated with the font face. After much
frustrating and tedious work, the simpler method of inspecting the glyph outline decomposition
process by registering callback functions was chosen. The segments that make up the contours are
emitted by the FreeType library, which are then captured and stored in custom data structures for
further processing.

The C++ code for starting the decomposition is:

// Set up FreeType callback functions for outline decomposition

FT_Outline_Funcs cb;

// Set the pointer to the move callback

cb.move_to = &moveEmitted_cb;

// Set the pointer to the line callback

cb.line_to = &lineEmitted_cb;

// Set the pointer to the cubic Bezier curve callback

cb.cubic_to = &cubicEmitted_cb;

// Set the pointer to the quadratic Bezier curve callback

cb.conic_to = &conicEmitted_cb;

cb.shift = 0;

cb.delta = 0;

// Start the callback loop to decompose the outline.

FT_Outline_Decompose(&outline, &cb, this);

There are four types of segments that are emitted by the FreeType outline decomposition process:

• Move: When a move is emitted, a new contour has started. The number of contours is
increased and this point is marked as the starting point for the next segment
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Figure 4: Determining contour orientation using the angle between segments over whole contours

• Line: Many glyphs contain straight segments that do not need to be described by a curve.
Some glyphs are poorly defined and have contours that consist of a single line segment that
starts and ends at the same point. These contours, lines and vertices are discarded.

• Quadratic Bézier: This is the interesting part of this thesis. The control points are stored
so that the coefficient matrix, Q, can be created.

• Cubic Bézier: Cubic Bézier curves are not handled by this library. If font contains any cubic
Bézier curves, an exception is thrown.

Lines that start and end at the same vertex are quite common. These contours are detected and
eliminated to simplify processing.

6.3 Contour Orientation Classification

Knowing the orientation of a contour is critical component in determining the winding number of
a point. By treating all of the points in a contour as forming a closed loop, the orientation can
be determined. This is computed by iterating over each pair of joined segments in a contour and
calculating the difference in angle between the previous two segments. Each of the differences is
summed. If the sum of the differences is less than zero, the orientation is clockwise. Otherwise, the
orientation is counter-clockwise.

6.4 Delaunay Triangulation

Glyphs are decomposed into a set of triangles that covers the entire area of the glyph. In this thesis,
a constrained Delaunay triangulation is performed. The segments and curve containing triangles
extracted from the font data are passed to the triangulation library as existing connections between
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Figure 5: Constraining the Delaunay triangulation: on the left, no holes specified for the triangles
that contain curves results in an unneccesary triangle. On the right, the desired result when holes
are added to the triangles that contain curves

Figure 6: Delaunay triangulation applied to glyph outline data

vertices. A very important, but subtle step, is to pass in a list of holes that reside inside of the curve-
containing triangles. If this step is not performed, the triangulation may subdivide curve-containing
triangles, which may result in an improperly rendered glyph. See Figure 5 for an example of what
can happen when a list of holes is not generated. The list of holes is created by finding the incenters
of the curve-containing triangles.

An external program, Triangle [8], is used to generate the triangulation. This generates an easily
parsed file. Triangle can be built as a library and linked to the executable. It was decided to call
the program and not link to the library so as to not be bound by its licensing terms. The licensing
terms are not onerous, but it is an undesired complication.

The Delaunay
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∆y Orientation Crossing ∆ Winding Number
0 clockwise no crossing or 2 opposite crossings 0
0 counter-clockwise no crossing or 2 opposite crossings 0
negative clockwise left → right -1
negative counter-clockwise left → right -1
positive clockwise right → left 1
positive counter-clockwise right → left 1

Figure 7: Calculating change to winding number as a ray passes through a triangle that contains
either a curve or a line.

6.5 Computing Change in Winding Number for each Triangle

To make later preprocessing stages faster, the results of a ray passing through a triangle that contains
a segment of a contour is calculated and stored. Because rays always pass from left to right through
contour segments, the change to the winding number for a point is always the same regardless of
where the ray passes through the containing triangle. Figure 8 displays this visually.

The calculation is performed by iterating over each triangle and checking the change in the y-
coordinate of line segment and the orientation of the contour in that segment. In the case of a curve,
this line segment is formed by creating a line from the two outer control points. Figure 7 shows
the possible contour orientations and line slopes and how that effects the change, or delta winding
number. A slope of zero is not considered because there is no change to the winding number either
because two opposing intersections will occur, no intersection at all, or the ray will run tangent to
the line segment which also results in no change to the winding number.

Pseudo-code is provided to better understand how the change in winding number is calcu-
lated:

for(tri : triangle_set) {

if(tri contains a curve or a line segment) {

slope = slope of line that forms base of triangle;

if(slope < 0) {

if(tri->orientation() == CW) {

tri.crossing = RIGHT_TO_LEFT;

} else {

tri.crossing = LEFT_TO_RIGHT;

}

} else if(slope > 0) {

if(tri->orientation() == CW) {

tri.crossing = LEFT_TO_RIGHT;

} else {

tri.crossing = RIGHT_TO_LEFT;

}

} else { // slope == 0

// ray travels parallel to the base and either transitions on/off,

// off/on or not at all

// resulting in no change to the winding number
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(a) right ! left: -1 (b) left ! right: +1 (c) left ! right ! left: 0

(d) left ! right: +1 (e) right ! left: -1 (f) right ! left ! right: 0

(g) right ! left: -1 (h) left ! right: +1 (i) left ! right ! left: 0

(j) left ! right: +1 (k) right ! left: -1 (l) right ! left ! right: 0

Figure 8: Marching rays from left to right through triangles that contain curves and resulting the
change to the winding number. The top row (a,b,c) shows curves that have a clockwise orientation
and the second row (d,e,f), shows curves with a counter-clockwise orientation. The bottom two rows
(g,h,i) and (j,k.l), show the how the side of the curve that is filled has no effect on the winding
number calculation.
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Figure 9: Finding the incenter of each of the triangles in a glyph outline

tri.crossing = ZERO_SUM;

}

}

}

6.6 Finding Incenters for all Triangles

In the following step, calculating the winding number for all triangles, requires that the incenter for
all triangles be found. Previously, only curve containing triangles had their incenters calculated. In
this step, the incenter algorithm as described in section 5.3 is applied to all triangles. The result of
applying this equation to all of the triangles in a glyph can be seen in figure 9.

6.7 Calculating the Winding Number for Incenters of the Triangles

The information calculated in sections 6.5 and 6.6 are used when calculating the winding number
for the incenters of the triangles. The triangles that do not contain curved contour segments define
an area of points whose winding numbers fall into one either the zero or non-zero category.

When rendering a filled glyph, knowing if a triangle’s interior points fall into the non-zero or
zero category corresponds to a triangle that is in the interior or exterior of a glyph.

// Iterate over all triangles generated by the Delaunay triangulation.

// None of these triangles contain curved contour segments

for(tri : triangle_set) {

int winding_number = 0;

vec2 incenter = tri->getIncenter();
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Figure 10: Triangulation after non-contributing triangles have been removed

// Iterate over all of the segments that contain curved contours. Check to see

// if the incenter is to the left of the segment.

for(seg : segment_set) {

if(rayIntersects(incenter, seg)) {

// The delta winding was computed during contour classification

windingNumber += seg->getDeltaWinding();

}

}

// This is the method that matches the spec. A point in a glyph is colored

// if its winding number is non-zero

if(windingNumber != 0) {

tri->setContributing(true);

}

}

After the winding numbers for all incenters are found, verification of the algorithm up to this point
was performed by creating figure 10. In this figure, all of the non-contributing triangles have been
removed. This verification step is performed to help with the debugging process. In section 6.14, a
fragment shader has been created that uses the triangle data to determine the shading of a fragment.
Fragment shaders can be difficult to debug. Part of the difficulty lies in determining if the data being
sent to the GPU is incorrect or if the shader is incorrect. This step of generating a figure that shows
the non-contributing triangles being removed helps to verify the data prior to passing it to the GPU.
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(a) Below curve filled (b) Above curve filled

Figure 11: Filling the above and below the curve

6.8 Side of Curve to Fill

After calculating the winding numbers for the incenters of all triangles, the side of the curves to be
filled is determined. Curves contained within triangles need to be characterized as either having the
area above or below the curve filled. The difference between filling above and below the curve can
be seen in figure 11. Filling below the curve is defined as filling the area between the curve and the
base of the triangle formed by the outer two control points. Filling above the curve is defined as
filling in the opposite.

To determine the side to fill, a ray is cast from left to right starting at the center of the base
of the curve containing triangle. If the ray intersects any of the contour segments, including the
contour segment included in this triangle, the winding number for that point is changed by the
amount calculated in section 6.5. A non-zero winding number may be an indicator that this triangle
contains a curve that is filled below. A winding number of zero definitely indicates that this triangle
contains a curve that is filled above.

A ray is also cast from the point opposite the base of the triangle. If this point also has a non-zero
winding number, then both sides of the curve are filled and the triangle is reclassified from being
a curve containing triangle to simply a contributing triangle. It is also possible that the winding
number of both points is zero, which turns this into a non-contributing triangle.

Psuedo-code is included to better describe this algorithm:

for(curve : curve_set) {

// Winding number

int wnBase = 0;

// Create a ray that starts at the point opposite the base of the triangle

vec2 rayAbove = _vertices[(*tri)->indices()[1]];

// Create a ray that starts at the midpoint of the base of the triangle

vec2 rayBelow = _vertices[(*tri)->indices()[2]] - _vertices[(*tri)->indices()[0]];

rayBelow *= 0.5;

// Check to see if

for(seg : segment_set) {

if(seg->rayIntersects(rayAbove)) {

wnAbove += seg->getDeltaWinding();

}

if(seg->rayIntersects(rayBelow)) {

wnBelow += (*testSeg)->getDeltaWinding();
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Figure 12: Glyphs with their curves and triangles filled using the proper above and below filling
schemes

}

}

if(wnAbove != 0) {

if(wnBelow != 0) {

curve->setFillCurve(ABOVE_AND_BELOW)

curve->setContributing(true);

} else {

curve->setFillCurve(ABOVE);

}

} else if(wnBelow != 0) {

curve->setFillCurve(BELOW);

} else {

// Both winding numbers are zero, this is a strange case,

// but could be possible. Do not fill above or below, mark

// this triangle as non-contributing

curve->setFillCurve(NONE);

curve->setContributing(false);

}

}

6.9 Verification of Triangle and Curve Data

An additional debugging step was performed prior to writing the shader program. In figure 12, it is
verified that non-contributing and contributing triangles are properly classified and that curve fill is
proper classified.
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6.10 Mapping Control Points into (0,1)

After decomposition is complete and before the triangle and curve data can be sent to the GPU,
this data needs to be mapped from glyph space, which is measured in 1/64ths of an inch into the
range (0,1). Care needs to be taken during this step to preserve the glyph’s aspect ratio while at the
same time mapping into this space such that glyphs are scaled and translated relative to each other.
For example, the character ’f’ has it’s bottommost point at the baseline, but the character ’g’ has a
descender that goes below the baseline. See figure 1 in section 4.1 for a description of glyph metrics.

When this mapping is performed, the minimum and maximum positions of points in all of the
glyphs in a font need to be taken into account. An affine transformation that maps the y range
(minimum y, maximum y) to (0,1). It is tempting to do use minimums and maximums on a per
glyph basis, but this does not preserve the descenders.

After the y-range is mapped, the x-range needs to be mapped to (0,1) such that the aspect ratio
and the bearing is preserved.

6.11 Creating Inverse Matrices

Section 5.1 describes the math for determining if a point lies under a curve. The matrix Q−1P−1

is calculated and passed to the GPU so that the fragment shader can determine if a fragment that
lies inside of a segment containing triangle should be shaded.

// The matrix Q as described in the Bezier Curves

// section of the thesis

vec3 q0(1.0f, -2.0f, 1.0f);

vec3 q1(0.0f, 2.0f, -2.0f);

vec3 q2(0.0f, 0.0f, 1.0f);

mat3 Q = inverse(mat3(q0, q1, q2)));

mat3 P(vec3(v[0], 1), vec3(v[1], 1), vec3(v[2], 1));

mat3 inv = Q * inverse(P);

_invData.push_back(inv);

6.12 Placing Data into Texture Map

Two texture maps are created for each glyph. The first texture map contains information about
the triangles, specifically the points that make up those triangles and whether or not the triangle
contributes to the glyph. The second texture map contains data that defines inverse matrices
described in section 6.11

In figure 13, data is packed tightly into two texels. This data contains the vertices of the triangle,
whether or not it is a contributing triangle, and if the triangle contains a curve, the alpha component
of the second texel indicates if the triangle is filled above or below the curve. The blue component
of the second texel takes on the following values:

• -2 if the triangle is non-contributing and is not filled

• -1 if the entire triangle contributes to the glyph
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Figure 13: Triangle data packed into two contiguous RGBA texels. The first texel holds data for
two of the points of a triangle, the second texel holds the third point. C determines if the triangle
is non-contributing, contributing, or curve containing. If C ≥ 0, the triangle contains a curve and
C is an index into the inverse matrix texture map. F = −1 if a curve-containing triangle is filled
below the curve, F = 1 if filled above the curve.
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Figure 14: Copying the inverse matrix data from CPU memory to GPU memory. Each row in the
3x3 matrix is placed into a RGBA texel. The alpha element of each texel is unused.

• 0 or greater if the triangle contains a curve. In this case, this value is used as an index into
the texture map that contains the inverse matrices.

In figure 14, it can be seen that the data is not tightly packed. Each row of the 3x3 inverse
matrix is packed into three separate RGBA texels. The alpha component is unused. This matrix is
used by the fragment shader to determine on which side of the curve a fragment lies.

6.13 Vertex Shader

The vertex shader is very simple. The vertex positions are transformed into the canonical view
volume and the texture coordinates are passed through untouched. The input texture coordinates
range from (0,0) to (1,1)

#version 150

in vec4 vertex;

in vec2 texcoord;

out vec2 tc;

out vec4 pos;

uniform mat4 mvp;

void main(void) {

gl_Position = mvp * vertex;

pos = gl_Position;
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tc = texcoord;

}

6.14 Fragment Shader

The fragment shader shader is where the majority of the GPU-based computation occurs. This is
where it is determined whether or not a fragment contributes to the glyph. The fragment shader
consists of five parts:

• Main loop

• Triangle Search

• Determine if the fragment is inside of a triangle

• Determine if the fragment is part of a curve

• Antialiasing

6.14.1 Main Loop

In the main loop of the fragment shader, the triangle list is searched to determine if a fragment
contributes to the glyph. If the fragment is in a non-contributing triangle, return 0. If the fragment
is inside of a contributing triangle, return 1. If the fragment is within a triangle that contains a
curve, an additional test is performed to determine if the fragment is below or above the curve, and
depending on the side to fill, a 0 or a 1 is returned.

float searchTriangles(vec2 s0) {

for(int i = 0; i < numTriangles; ++i) {

vec4 part0 = texelFetch(triangleData, ivec2(i * 2 + 0, 0));

vec4 part1 = texelFetch(triangleData, ivec2(i * 2 + 1, 0));

float inside = insideTriangle(s0, part0.rg, part0.ba, part1.rg);

if(inside > 0) {

if(part1.b <= -2) { // Non-contributing triangle

return 0;

} else {

if(part1.b <= -1) { // Contributing triangle

return 1;

} else { // Contains curve

// Index into the texture map that contains the inverse matrices

// using part1.z and pass in the inflection parameter from part1.w

return underCurve(s0, int(part1.z), part1.w);

}

}

}

}
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// If flow gets here, the fragment is in an area that is not

// covered by a triangle. Do not fill in this area

return 0;

}

6.14.2 Checking Triangle Boundaries

This function uses the math described in section 5.5 to determine if a fragment lies within a triangle.

/**

* Check to see if a point is inside a triangle

*

* @param p0,p1,p2

* The points the define the triangle

* @param x

* The point to test

*

* @return 1.0 if the point is inside the triangle, 0.0 otherwise

*/

float insideTriangle(vec2 x, vec2 p0, vec2 p1, vec2 p2)

{

vec2 v1 = p1.xy - p0.xy;

vec2 v2 = p2.xy - p0.xy;

float denom = 1.0 / (v1.x * v2.y - v1.y * v2.x);

float det_x_v2 = x.x * v2.y - x.y * v2.x;

float det_p0_v2 = p0.x * v2.y - p0.y * v2.x;

float det_x_v1 = x.x * v1.y - x.y * v1.x;

float det_p0_v1 = p0.x * v1.y - p0.y * v1.x;

float a = (det_x_v2 - det_p0_v2) * denom;

float b = (det_p0_v1 - det_x_v1) * denom;

float retval;

if(a > 0 && b > 0 && a + b < 1) {

retval = 1.0;

} else {

retval = 0.0;

}

return retval;

}
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6.14.3 Checking Above and Below the Curve

If a fragment lies within a triangle that contains a curve, then it needs to be determined if the
fragment is contributing to the glyph by using the math described in section 5.1. The side of the
curve that is checked is determined by the inflection parameter. This parameter is precomputed in
section 6.8 and placed into the inverse matrices texture map.

/**

* Check to see if a point is under (or above the curve)

*

* @param s0

* The point to check

* @param idx

* Index into the array of inverse matrices

* @param inflection

* -1 to check under the curve, 1 to check above the curve

* @return

* If inflection is -1, return value is 0 if the point is above

* the curve, 1 if the point is under the curve. If the inflection

* is 1, the return value is 1 if the point is above the curve,

* 0 if below

*/

float underCurve(vec2 s0, int idx, float inflection) {

vec3 q0 = texelFetch(invMatrices, ivec2(idx * 3 + 0, 0)).rgb;

vec3 q1 = texelFetch(invMatrices, ivec2(idx * 3 + 1, 0)).rgb;

vec3 q2 = texelFetch(invMatrices, ivec2(idx * 3 + 2, 0)).rgb;

mat3 invMat = mat3(q0, q1, q2);

vec3 t = invMat * vec3(s0, 1);

// Does the solution have the form [1, t, t^2]? If it does,

// Then t.z == t.y * t.z, or t.z - t.y * t.y will be close to zero

float diff = inflection * (t.z - t.y * t.y);

float retval;

if((diff >= 0 && t.y >= 0 && t.y <= 1)) {

retval = 1;

} else {

retval = 0;

}

return retval;

}
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6.14.4 Antialiasing

Antialiasing is performed by sampling the glyph at multiple sub fragments. Acceptable results were
achieved by sampling on a 3x3 grid for a total of nine samples. The built in GLSL functions, dFdx
and dFdy were used to find the distance from the current fragment to the neighboring fragments in
texture space.

float glyph(vec2 s0) {

// Find the derivative with respect to x and y for the coord

// variable by considering coord’s values in the adjacent

// fragments.

vec2 deltaToNextPixelX = dFdx(s0);

vec2 deltaToNextPixelY = dFdy(s0);

float width = 3;

float alpha = 0;

int count = 0;

int idx = 0;

// Take width*width number of samples

vec2 stepX = 2 * deltaToNextPixelX / width;

vec2 stepY = 2 * deltaToNextPixelY / width;

vec2 xpos = tc - deltaToNextPixelX;

for(int i = 0; i < width; ++i)

{

vec2 ypos = - deltaToNextPixelY;

for(int j = 0; j < width; ++j)

{

vec2 cpos = xpos + ypos;

alpha += glyphTriangle(cpos);

ypos += stepY;

}

xpos += stepX;

}

// Normalize the color value

alpha /= (width * width);

return alpha;

}

7 Rendered Glyphs

In this figure 15, the result of the final program is seen. A selection of Unicode characters are
presented to demonstrate capabilities of this software. Figure 16 shows the results of placing a
glyph onto non-flat geometry. As expected, resolution and geometry independence with high-quality
rendering are achieved.
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Figure 15: Various glyphs rendered using the GPU-based algorithm described in this thesis

8 Future Work

Future work should involve speeding up the algorithm. In the algorithm’s current form, all triangles
may need to be searched to find out if the point is contributing to the glyph. However, it should be
possible to do a low resolution rendering of a glyph, for example on an 8x8 square, and record the list
of triangles that are within each of those 64 texels. This information could be used in more detailed
renderings by determining which of the 8x8 texels are being drawn an only search the triangles
within this restricted set.

Also, typesetting entire strings should be added to the library. The current version of the library
only renders a single glyph at a time. Instead, an entire string of glyphs could be rendered. The
method I propose is to lay out the text on the CPU and to pass in a texture map that contains
indices to the glyphs to be rendered at that position in the texture map.

Another interesting option to try is to completely eliminate the Delaunay triangulation. Instead
of searching the set of triangles, search for ray/contour intersections in the fragment shader to
determine the winding number. This may require a greater amount of computation within the
fragment shader, but it could also be sped up in the same manner that was previously mentioned.

The most promising idea is to creating a texture map that samples a signed distance function.
This distance function would take an (s, t) texture coordinate as input and return the distance to
the contour. The sign can be used to determine if the texel lies with the glyph outline. This may
also require an encoding of the derivative of the slope of the curves and lines of the contours to
ensure that sharp edges are preserved.

There are two problems that I believe exist with the approach presented in this thesis. Outlines
of glyphs cannot be rendered and the fragment shader runs in O(n) time. I believe that the signed
distance function approach would eliminate both of these problems. Sampling the distance to the
contour and storing the result in a texture map would allow the rendering of glyph outlines and
would also change the running time to O(1).

9 Conclusion

High quality, resolution and transformation rendering of glyphs defined by the contours a font face
is possible to do within a fragment shader. Testing showed that when the glyphs took up a small
amount of screen space, performance was quite good, but when a glyph filled the screen, performance
became slow. This method should be investigated more carefully and turned into a full featured
freely available library to provide graphics developers with easy access to this method of high quality
rendering.
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(a) Zoom level 1

(b) Zoom level 2

(c) Zoom level 3

Figure 16: A glyph applied to non-flat geometry. No loss of quality is experienced at all zoom levels.
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