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Abstract

Spoken programming refers to the idea that human speech can be used as input

(via dictation) to create the text of a program. Most previous research on spoken

programming has focused on enabling diction of text in existing programming lan-

guages, either by creating a spoken syntax for the existing language or by attempting

to extract the meaning from general English and using it to produce a program. We

take an alternate approach of modifying the programming language syntax to sup-

port speech: We have created a new programming language that uses English words

and phrases for its syntax. This provides several benefits to the spoken program-

ming process, including easier reuse of existing English-based speech tools and a

more direct mapping from user speech onto the visible program text.
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Programming is not just about the syntax of the language; the programming

environment is also an important part of the process. In English prose speech recog-

nition, knowledge of the context of the conversation or document being produced is

useful to disambiguate otherwise error-prone phrases or words. Our spoken program-

ming environment explores the same idea applied to programming by incorporating

several forms of context inherent in computer programs to guide and enhance the

speech recognition engine: We use the structure and grammar of the language itself,

we use scoping of symbols and identifiers, and we incorporate constraints gleaned

from type inference. Together, these sources of context allow our programming en-

vironment to further improve on the initial performance gain enabled by our new

syntax.

In this dissertation, we describe the theory and design decisions that went into

the aforementioned programming language and its supporting programming envi-

ronment, as well as the implementation details. We discuss how this setup fits in

with—and differs from—previous research in spoken programming. To test the ef-

fectiveness of this environment, we conducted a small user study, which is described.

The results of this study are presented, together with some qualitative exploration of

their implications. Finally, we conclude with some speculation about how the ideas

presented here could fit into programming as a whole and suggestions for future

research in this direction.
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Chapter 1

Introduction

Ever since the invention of general-purpose computers, entering programs into the

system has been a vital task. Over time, we advanced from setting banks of switches

to loading stacks of punch cards (which indirectly represent keyboard input, since the

punch card creating machines used keyboards), finally settling on direct keyboard

input. Modern programming environments provide GUIs and a few mouse-based

features, but the predominant mechanism for entering the program text remains the

keyboard. This keyboard-based paradigm has served programmers well for decades

now, and this research does not propose to do away with it. However, it is not ideal

in all situations.

1.1 Inadequacy of Keyboards

Keyboards seem to have been doing fine for many years as an input device. Many

programmers can type upwards of 60 words per minute, and the speed of input isn’t

really the bottleneck for most people’s ability to solve problems with a program.

So why would we want to consider alternatives? First, it is important to expand

accessibility to existing computing devices. Undoubtedly, everyone can think of a
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time when they had to balance a keyboard on an awkward surface or make a mouse

work on a non-flat surface.

Furthermore, even when an ideal setup is available, people may have many reasons

to prefer to avoid their keyboard. As a concrete example, many people who have

repetitive stress injuries (RSI), carpal tunnel syndrome, or other motor impairments

may experience considerable difficulty using a keyboard and mouse. Such an injury

causes no impairment to a person’s intelligence or cognitive abilities, leaving them

in the frustrating situation of being perfectly able to think and plan programs, but

unable to actually type them in. A well-known example of this situation is when

Richard Stallman developed severe hand pain in the early 1990s, forcing him to

dictate his work to human typists [44].

A second—perhaps more common—example of a place where the keyboard-based

paradigm breaks down is tablet computing. While keyboard-less tablet computers

have existed for many years, the recent introduction of the iPad and similar Android-

based tablets has brought new attention to the idea. Many casual users have found

that a tablet is sufficient for all of their common computing needs, and advanced

users often find it to be usable for many day-to-day tasks. Today’s generation of

tablets are suitable for viewing many forms of content, but are much more difficult

to use for creating new content.

One area where tablets are widely acknowledged to be deficient is the task of

entering and manipulating large amounts of textual data. The virtual keyboards

available on tablets are functional in terms of entering small amounts of text, but

they leave much to be desired for use as a keyboard replacement. Newly announced

products already claim support for high-resolution screens, multicore processors, and

large memory capacities, but they still will not include a keyboard. It is certainly

possible to pair a tablet with an external keyboard if a large amount of text entry

is needed, but carrying around a separate keyboard seems to defeat the main appeal

of a tablet computer.
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The text entry issue is likely to be even more pronounced when entering large

amounts of punctuation and non-English text, such as the text of a traditional pro-

gramming language. This occurs for two reasons: the keyboard layouts on mobile

devices typically include fewer non-letter keys than a standard keyboard due to the

lack of space; and because the completion and correction routines built into such

systems have been trained for English. Even if the problems of haptic feedback and

English auto-correction are resolved, the virtual keyboard takes up a large fraction

of the already limited display area, which makes it impossible to display large quan-

tities of information at the same time as text is being entered. As tablets become

more ubiquitous for everyday computing, it is only a matter of time before people

begin to use them for more advanced tasks, including programming. Before this

can become truly viable, we need a programming environment that supports non-

keyboard programming. The research presented here does not get us all the way to

a full keyboard-less programming environment, but we hope to convince the reader

by the end of this dissertation that it takes an important step in the right direction.

1.2 Programming by Voice

There are many alternatives to keyboards that can be considered. Typical tablets

today make substantial use of finger-based input, using multitouch and gestures

to increase their capabilities. Another popular choice for touch input historically

has been stylus- or pen-based input mechanisms. With the recent rise of embedded

cameras and peripherals like Microsoft Kinect [28] (or even the much older “put-that-

there” project from MIT [7]), one might even incorporating some sort of physical

gestures into programming. These ideas are all interesting research areas in their

own rights. This dissertation, however, will focus on speech. In particular, we will

show that speech can be used as a viable primary input mechanism for programming.

We will come back to these other ideas briefly in Chapter 7 when we speculate on
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how they might be combined with speech.

Once one has decided to program via speech input, one must choose a language

to program in. The previous research described in Chapter 2 has largely accepted

the syntax of existing computer languages as a given, choosing to focus on turning

human speech into the existing languages. We claim that better results may be

achievable by taking human speech as the primary consideration and modifying the

computer language instead. To this end, a primary consideration of this dissertation

is the creation of a new programming language that is designed to mimic human

(English) speech syntax.

Productive programming requires more than merely a convenient syntax. An

additional important factor is an editor that is optimized for the assumption of voice

control instead of keyboard and mouse input. Most people would find the idea of

using the same type of editor to write a memo and edit a photo to be a strange

one. Similarly, why should we expect that merely adding a few voice commands to

a primarily keyboard-driven editor will produce an excellent voice-driven editor? At

minimum, it must be possible to dictate new code as well as edit existing code with

minimal use of a keyboard or mouse. This by itself would not constitute anything

new. The contribution of this dissertation is the confirmation that the programming

environment can incorporate additional contextual information about the program-

ming task to improve the performance of speech recognition in the programming

domain like it does in other traditional areas where English speech recognition has

been used.

The first form of context we incorporate is the structure imposed by the for-

mal grammar of the language itself. Unlike English conversational speech, where

grammatical rules are largely conventions that can be stretched or broken as long

as communication is not impaired, the syntax of programming languages is fully de-

scribed and circumscribed by a formal grammar. Sentences that are ungrammatical

are also in error. Both the form of individual statements and the ways they can
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be combined to form a nested block structure are dictated by the grammar, and

we make use of this structure to let the recognizer understand which sentences are

implausible or impossible at any particular point in the program.

Our use of the program structure goes beyond merely requiring that dictated

statements conform to a context-free grammar that describes the language. We treat

programming as a dialog between the user and the environment. Just like a dialog

between two humans, the two participants have a certain context built up based on

their shared expectations and the sentences that have already been uttered. In our

case, the set of statements the computer is expecting to hear changes throughout

the conversation based on the current state of the in-progress program and user’s

statements. Just as transition words and phrases help a participant in a conversation

modify their internal context as the subject changes, various key statements and

phrases within a program trigger a change in context as well. We implement this

idea through the use of multiple grammars that are switched and modified at runtime

as the user is dictating to incorporate the knowledge that is built up in the process

of writing the program. Full details are provided in Section 4.2.1.

The second form of context considered in this dissertation is identifier scopes.

Because our language has a nested block structure similar to C, different symbols or

identifiers are visible at different places in the text. By making the recognizer aware

of which symbols are in scope at the point where the user is adding statements, we

can bias it away from introducing invalid references to unknown symbols and toward

references to the symbols that are visible. On a more sophisticated level, we can use

the principle of locality to probabilistically prefer symbols that are defined in closely-

nested scopes over those that are defined at farther nesting levels. See Section 4.2.2

for a description of the implementation.

Finally, we make use of type information that is dynamically discovered through

type inference. Like many modern programming languages, our spoken language does

not require the user to annotate all their variables with explicit type information.
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Instead, the compiler recovers it automatically when the program is compiled. Addi-

tionally, our programming environment dynamically performs limited type inference

as the user is dictating the program and feeds this into the speech recognizer to bias

its recognition decisions. Similar to the idea of preferring legal symbol references

to undefined ones, we use the type information to prefer correctly-typed symbols

references to invalid ones. The type context and grammars are updated with each

use of a symbol to help the recognizer continuously adjust to the expected uses of

variables and functions. See Section 4.2.3 for details.

1.3 Conclusions

We have created a new programming language with spoken input as a primary design

feature instead of an after-the-fact bolt-on. This language is Turing complete and

offers similar expressiveness to C. In addition, we have created a compiler for this

language and an Eclipse plugin that integrates the CMU Sphinx speech recognizer

to form a more complete spoken programming environment. Our programming envi-

ronment improves the performance of the speech recognizer not only by using syntax

that more closely matches speech, but also by incorporating additional context in-

duced by the programming task to guide the recognizer.

We have performed a user study of people’s interaction with this environment.

The results show promising (and statistically significant) improvements in several

areas: participants’ ability to complete working programs using only speech, the

speed of entering programs, and a reduction in the number of errors the system

produces.

In Chapter 2, we provide an overview of previous research in the area and relevant

background material. In Chapter 3, we describe the language syntax and program-

ming environment. Chapter 4 is a description of how we implemented the theory
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from Chapter 3. In Chapter 5, we describe the experimental setup for our user study.

Chapter 6 gives the experiment results and discussion. Finally, Chapter 7 contains

our conclusions and future work.



8

Chapter 2

Background

We start our discussion with background material and previous research. In addition

to a brief exploration of visual programming and natural language programming,

we provide an in-depth review of previous work in spoken programming. We also

describe the idea of cognitive distance as a means of qualitatively thinking about

the potential relative merits of different programming environments. The specific

contributions of this dissertation and how they fit into previous work are described

in subsequent chapters.

2.1 Alternatives to Keyboards

We first consider two alternatives to keyboards as an input mechanism. In visual

programming, the user creates a program by drawing and manipulating objects with

a stylus or mouse. These objects typically also include text values that can be edited

with the keyboard. Depending on the implementation, visual programming can

be mostly text-based or mostly drawing-based. Spoken programming is concerned

instead with using speech and voice recognition as input. The type of actions and/or

text produced as output varies as we will describe below. Some multi-modal systems
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also combine aspects of visual and spoken programming.

2.1.1 Visual Programming

Most prior approaches to spoken programming have proceeded by adding or creating

a spoken syntax for a previously existing textual or visual language. Leopold and

Ambler added voice and pen control to a visual programming language called For-

mulate [29]. Formulate was a programming environment where the user could draw

various objects on a form and set object properties to equations. The equations could

refer to values from other objects. Computation proceeded evaluating the equations

and updating objects appropriately. The original system was based on a keyboard

and mouse. Leopold and Ambler extended the system by allowing the user to select

and manipulate objects using a stylus or voice input. The system accepted a limited

set of words allowing object selection, equation entry, and menu selection through

voice commands. At the conclusion, the authors felt that they had built a system

that was completely usable without the keyboard or mouse. However, because the

main goal of their research was to investigate the combination of voice and stylus

input, they omitted voice control of certain features that they felt were better suited

to the stylus, such as text selection and editing.

2.1.2 Spoken Programming

In the realm of pure spoken programming, Désilets, Fox and Norton created Voice-

Code [10] at the National Research Center in Canada. This system combines the

Emacs text editor with a commercial voice recognition product to allow speech-based

input of multiple existing programming languages. VoiceCode addresses the differ-

ence between spoken syntax and code syntax by translating a standardized high-level

spoken syntax into code templates in whichever language is being dictated. This also
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simplifies the speech recognizer, because only the high-level language is recognized,

rather than attempting to directly speak the programming language syntax. The

system can be extended for new languages by adding grammars and suitable tem-

plates, and the feasibility of this was demonstrated by Masuoka in an undergraduate

thesis at the University of Maryland [31]. VoiceCode supports intermixed code entry

and navigation commands, using context to disambiguate. For example, the “next

one” command repeats the previous command if it was a navigation command, but is

interpreted as an identifier in other circumstances. Finally, to increase usability with

existing code, VoiceCode supports a novel mechanism of mapping between English

identifier phrases and commonly-used programmer abbreviations. For example, the

authors’ example video demonstrates the system turning the spoken “Context Sensi-

tive Command Set” into the symbol “CSCmdSet” [11]. The VoiceCode software has

been released as an open source project available online [12], but the project has seen

little activity and no major releases since 2006.

In his PhD dissertation, Andrew Begel created an environment for speaking

Java code [6]. Begel and Graham started by studying how programmers verbal-

ized code [4]. In their study, they asked a number of expert programmers to read

small programs written in Java. This study confirmed that programmers do not

simply speak every symbol on the page, but rather come up with abstractions and

spoken shorthands that describe the code. They found that several of the program-

mers did not even attempt to speak any of the code on the page; instead they used

higher-level phrases like “set all the fields of array to null.” Based on this study,

Begel and Graham developed a spoken variant of Java called Spoken Java. Spoken

Java is explicitly not meant to be a natural-language programming language, but is

“about using features of natural language to simplify the verbal input form of a con-

ventionally designed programming language” [4]. In addition, the authors compare

their syntax to VoiceCode. Because Spoken Java is meant to be Java rather than

a language agnostic meta-syntax, it is considerably more concise than VoiceCode,
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and may be subjectively more “natural” feeling. For example, the declaration of a

simple for loop in Spoken Java takes approximately half as many words as the same

declaration in VoiceCode.

In addition to the Spoken Java language syntax, Begel and Graham developed a

suitable plugin (SPEED) for the Eclipse development environment to enable speech

input [4, 5, 6]. The completed environment was evaluated by performing a small

study with human programmers. The programmers agreed that they could use the

system if they developed RSI or some other reason for a keyboard to be unavailable,

but none were willing to switch to Spoken Java for their daily programming.

Arnold, Mark and Goldthwaite proposed a system called VocalProgramming [2].

Their system was intended to take a context free grammar (CFG) for a programming

language and automatically create a “syntax-directed editor,” meaning an editor that

makes use of the programming language syntax for navigation and editing rather than

merely allowing text entry. For example, they suggested that a navigation command

like “move down to the next statement” would move to the next statement in the

program regardless of how many lines that represented. After the initial paper, the

system appears to have never been implemented, nor have any follow-on papers been

published. It was described as abandoned by Begel and Graham [4].

Shaik et al. created an Eclipse plugin called SpeechClipse to permit voice con-

trol of the Eclipse environment itself [40]. They permitted dictation of “well-known

programming language keywords,” but primarily concentrated on providing access

to the menu and keyboard commands available in Eclipse.

The approaches cited above have all tried to add direct spoken syntax for an

existing language. David Price et al. took a different approach with NaturalJava [35],

a system for generating Java code from natural English phrases. They started by

performing a “Wizard of Oz” study of novice programmers to determine how users

would interact with a programming system they could speak to [37]. This study
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revealed that more than 75% of the words and phrases used to describe program

constructs were common to all users [38]. Using this result, they created a system

that performed shallow semantic parses on the user’s input to turn it into case

frames representing programming concepts. These case frames were then used to

infer what editing operations the user intended to perform, and the actual operations

implemented using an abstract syntax tree manager to ensure that the resulting Java

code remained valid. Price’s prototype was implemented using keyboard-entered text

rather than spoken input. In his master’s thesis [36], he focused on how the Wizard

of Oz study could be used to extend the system to a full spoken programming system,

but it appears to have never been fully implemented. The NaturalJava system was

a step away from directly speaking the Java syntax, but it was still focused on

producing Java source code as its output.

A recent talk by Tavis Rudd gives an example of doing programming by voice

in the opposite, “unnatural” way [39]. He demonstrates a system that uses Python

to bridge Dragon NaturallySpeaking to Emacs, Python, and other tools he uses for

his daily programming. Rather than attempting to create code from English, he

uses made-up nonsense words and “animal grunts” to generate key presses and run

commands inside his editor, reverting to English only for identifier names, strings,

comments, and other similar prose content. He reports having over 2000 commands

in the system to drive all aspects of his daily workflow without use of the keyboard.

This includes use of the shell and remote commands, not just writing programs.

During his recovery from an RSI injury, Rudd made use of this spoken system for all

of his computer use for a period of approximately a year. Even today, several years

later, he reports that he uses the system for 40 to 60% of his programming.

While Rudd’s system provides a fascinating example of a highly productive real-

world spoken programming environment, is also open to several important criticisms.

First, his system is specialized for a single person. A second programmer who wished

to use the same technique would have to develop his own entire set of commands
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customized for his own workflow. This is not a system that can be used by multiple

people without customization, and it is not even possible for one user to train another

user unless the two happen to share a significant fraction of their commands and work

styles.

Second, the user of the system must memorize hundreds if not thousands of

made-up, non-English nonsense words. It is like learning an entire new language.

This aspect of “naturalness” will be discussed further in Section 2.3. Rudd himself

estimates that it would take a person two to three months of steady effort to become

proficient at the system. While this is clearly less effort than required to learn a new

human language, it is a significantly longer period of time than most programmers

require to become productive in a new programming language.

Outside the realm of traditional programming languages, Fateman considered

the task of speaking mathematical expressions [18]. He studied a system that cre-

ated TEX output from a spoken form of equations. Even this “simpler” form of

programming input turned out to be fraught with difficulties. He found that conven-

tional readings of equations are completely ambiguous. For example, the well-known

quadratic formula is typically spoken without any of the information necessary to

unambiguously group the elements under the radical or the fraction. Nevertheless,

he found that many mathematical expressions can be recognized in the expected way

without demanding explicit parenthesization by the application of some common us-

age rules. This dilemma is also common in programming language grammars; the

“dangling-else” problem in C is a well-known example [19].

Elliott and Bilmes also attempted to add a speech-based interface to a mathe-

matics package [17]. They started with an existing computer algebra system (CAS)

and wrote a separate speech-based front-end called CamMath that converted the

user’s speech into virtual keyboard and mouse events to control the CAS. CamMath

can be used to control the CAS and work through mathematical operations, but it

cannot be used to create standalone programs.
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2.2 Other “Natural” Programming

In addition to spoken programming, a number of researchers have investigated pro-

gramming via written natural language text. Fuchs and Schwitter created a system

called Attempto [20, 21] that converted program specification text from a restricted

subset of English—Attempto Controlled English—into executable Prolog programs.

The system supplies a predefined set of rules for English grammar and word knowl-

edge about common pronouns, articles, adverbs, etc. Users then supply domain-

specific sets of content words that are relevant for their applications. Attempto

parses the user’s input in a deterministic manner and displays its interpretation of

the text to the user. If the user is dissatisfied with the result, he must reword his

input so that Attempto finds a different parse. Once the specification has been

converted to Prolog, the system also permits the user to enter queries in ACE and

converts the Prolog output back to ACE. Thus, the user appears to interact with the

system entirely using ACE and never needs to be aware that Prolog is used behind

the scenes. Nevertheless, the user’s text is never directly compiled into an executable.

Attempto has seen ongoing development and is currently at version 6.6 [3].

In the object-oriented domain, Bryant et al. have developed a system of trans-

lating natural-language program specifications into formal specifications, and from

there into executable code [8]. Like Attempto, Bryant’s system was also based on a

subset of written natural language. Furthermore, the user does not enter the code

that will be compiled. Instead, the user enters a set of declarative statements that

create a specification for the program. The system then creates the skeleton of a

program that implements the specification, but it does not correspond directly to

anything the user has typed.
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2.3 Evaluation of Programming Environments

The idea that some programming environments might be better than others has

probably been around since machine code programmers were watching the first as-

semblers and Fortran compilers produce code. However, most ideas of productivity

and effectiveness of these environments have come down to intuitive ideas and em-

pirical studies rather than formal theories. One important attempt to codify some of

the ideas behind program environment design was Hutchins, Hollan and Norman’s

paper about direct manipulation and cognitive distance [25]. As they describe it,

cognitive distance from a computer task is split into the aspects of semantic and

articulatory distance.

Semantic distance is the difference between what the user intends to express and

what they have to actually say to do it. For example, a user may wish to pass input

data through a series of computations and then produce a graph. If they do this by

drawing lines between boxes that represent the data, computations, and the graph,

this would represent a small semantic difference because the user’s actions directly

indicate what they wish to be done. If they instead perform this task by writing

hundreds of lines of code to manipulate the data and manage passing the results

around, the semantic distance would be large. A larger semantic difference does not

mean a task cannot be achieved in a particular environment; it simply means that

the user is not able to directly specify what they wish to accomplish. Having a small

semantic distance is important because it allows the user to focus on their objective

instead of on the mechanics of making the system work.

Articulatory distance is the relationship between the physical or on-screen rep-

resentation of an expression and its meaning. For example, a picture of a square

would have a smaller articulatory distance than a list of line segments or corner

coordinates if the task was to draw a square. Nevertheless, a picture is not always

automatically the best representation. If the task is dictation, the word “English”
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would have smaller articulatory distance as a representation than the picture in Fig-

ure 2.1. Note that the computer’s internal representation is not of concern for this

measure; the waveform may very well be the computer’s desired representation for

the same dictation task.

Figure 2.1: A waveform of the word “English”

A small articulatory distance is desirable because it allows the user to rapidly

verify that their commands are being interpreted correctly and that their desired

actions are being taken. With a larger articulatory distance, the user must spend

more time mentally mapping their internal model to the inputs expected and outputs

produced by the computer.

This idea was further explored by Green and Thomas in their “match-mismatch”

theorem [22, 23], where they state that different representations are more produc-

tive for different tasks. For example, they empirically found that a declarative,

Prolog-style language was superior for performing “backwards” reasoning from given

outputs to determine plausible inputs, whereas an imperative-style chain of nested

conditionals was superior for reasoning from given inputs to expected outputs. They

found that this difference in efficiency applied regardless of the use of visual or tex-

tual programming languages, and that textual languages in fact outperformed visual

languages across all the tasks used in their studies [33].
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Chapter 3

Theory

The previous chapter provided background information about spoken programming

in general, as well as previous research in the area. With this fresh in mind, we

turn our attention in this chapter to what this specific dissertation covers and how

it differs from previous research. We provide a high-level description of our new

programming language, together with its syntax and features. We then describe the

programming environment and how it incorporates specific types of context to influ-

ence the programming process. Details of how we implemented the items described

in this chapter can be found in Chapter 4.

3.1 Rationale

The first question after deciding on spoken programming is this: What language

should we speak? An initial thought is that we should speak something like Java or

C, since those are such popular languages. However, as discussed in section 2.1.2,

attempting to speak preexisting computer languages has been problematic. Rather

than a deficiency in the efforts of previous researchers, we believe this is a deeper

problem with the whole idea of attempting to speak a traditional computer language.
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First, languages like Java are full of meaningful punctuation and other typically

non-speakable symbols. For example, in the statement

x := 5;

there are only two symbols that are part of normal spoken English (x and 5). De-

pending on their programming background, native language, English dialect, etc.,

different speakers might easily come up with different spoken variants of this state-

ment, such as:

• x colon equals 5

• x equals 5

• set x to 5

• x gets 5

• assign 5 to x

• store 5 in x

In fact, using an off-the-shelf commercial speech recognition tool to try to dictate

the line above, one must actually say

letter x space bar colon equal sign 5 semicolon new line

A larger example of the difficulty of writing programs in traditional languages with

speech recognizers designed for English is found in section 6.2.

Previous spoken programming research has largely attempted to do exactly what

was described above, namely to generate code in traditional languages by attempting

to generate normal textual language statements from some sort of spoken syntax,
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either reverse engineered from the written syntax or via some entirely new syntax.

Regardless of the exact spoken syntax chosen, the written language itself is never

modified. Our contention is that if spoken input is an important consideration, we

should instead be modifying the written language to suit speech.

Our language syntax is built from statements that use small English phrases and

a restricted subset of English sentence structure. To the largest extent possible, any-

thing that is not normally a part of spoken English has been omitted or minimized.

Identifiers and keywords are case-insensitive, since word case is not normally spo-

ken. Spacing and indentation are allowed as “secondary notation” [33], but are not

meaningful as components of the syntax. Control flow, block structure, and other

items that might traditionally be indicated with difficult-to-pronounce punctuation

are either explicitly spoken or are omitted entirely. For example, to set a variable x

to the value 5, the syntax is “set x to 5”. A few exceptions have been made for

a few well-known arithmetic symbols (e.g., ‘+’ instead of “plus”, ‘<’ instead of “less

than”, ‘=’ instead of “equals”).

This is all in keeping with the ideas of minimizing both semantic and articulatory

distance. In terms of semantic distance, the user’s intention of producing code is

nearly directly realized, i.e., the sentence they need to speak to produce a particular

line of code is essentially the exact sequence of words in that line of code. It is hard

to imagine anything more direct than that. On a slightly deeper level, the language

we provide is fairly low-level, so one might argue that there is a larger semantic

distance between the program the user wishes to write and the lines of code they

must create. This argument has merit, but the situation is no different for a person

who wishes to write a program in C. Since our language is higher level than C, the

semantic distance should be no greater.

In terms of articulatory distance, one might argue that the form of a word on

the screen doesn’t really have much to do with the actual sound or meaning of

that word, but this barrier has already been overcome when the person forms those
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associations in the process of learning to read and write. Thus, the on-screen textual

representation as English words and phrases should also present minimal articulatory

distance.

3.2 Language Design

As mentioned, our language syntax is intended to evoke the feeling of speaking En-

glish. While not being fully general English sentences, the individual statements are

built from phrases that are either grammatical—though restricted—English phrases

or are at least plausible chunks that would be spoken by an actual person. The spe-

cific syntax of each construct was determined in a fairly ad hoc manner by informal

surveys and discussions around the UNM Computer Science department. Most con-

structs had a single dominant popular choice of phrasing. In the cases where there

were alternatives with no clear winner, we chose one based on what felt most natural

to ourselves. While certainly not a rigorously formal syntax development process,

we feel that the end result is natural enough to be easily learnable and comfortably

speakable by a fluent English speaker. The truth of this claim will be explored in

Chapter 6.

The most popular languages today (Java, C, Python, etc.) are all imperative

languages. The functional and logic programming paradigms offer some appealing

benefits for the design of a language, but the use of these would require many po-

tential users to learn both a new spoken syntax and a new programming paradigm

at once. This would have made it difficult to design a study that tests the effec-

tiveness of the syntax unless we limited testers to people who already had existing

functional programming experience. We felt that this restriction would have un-

duly restricted our ability to run the study described in Section 5.2. Therefore, to

maximize accessibility of the language, we chose to make it an imperative language.
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Even in the imperative paradigm, there is a wide variety of capabilities pro-

vided by the programming language, ranging from assembly to modern high-level

object-oriented languages. Because the purpose of this research is not programming

language features per se, we have chosen to omit many of the more complex features.

The language we have built provides similar functionality to C in terms of control

structures and data types, but we have incorporated some higher-level features such

as automatic memory management and type inference. The individual features will

be described in the sections below.

Also like C, our language is statically typed. While the common trend among

recent languages seems to be in the direction of dynamic typing (consider Javascript,

Python, etc.), the use of dynamic typing discards a significant amount of contextual

information that can be used prior to runtime. Because the use of extra context to

improve programming performance is one of the key ideas in this research, we did

not wish to sacrifice this source of information; thus, static typing.

However, just because the language is statically typed does not mean we must

force the programmer to litter their code with type declarations. Instead, we use type

inference [34] to automatically recover this information at compile time (or even at

program dictation time). This allows the programmer to focus on their algorithms

rather than on the specifics of variable types, while still allowing us to make use of

type information for speech recognition purposes.

While the combination of features above do not make an interpreter impossible,

they do mean that the entire source file must be processed to infer types and re-

solve forward references before execution can begin. Because the design of runtime

language environments is also outside the scope of this research, we found it more

expedient to simply generate an executable after the initial processing rather than

create an additional runtime interpreter.

The overall combination of the decisions above results in a minimalist, C-like lan-
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guage for spoken programming. Though minimal, our language is Turing complete.

A proof of this can be found in Appendex C. Nevertheless, it is not meant to be a

“production-ready” language in the sense of being usable to build large, real-world

systems. Many features that are considered indispensable for modern software en-

gineering are missing, but this is not a problem for the purposes of investigating

spoken programming.

Next, we describe the individual language features and their syntax. The follow-

ing gives an intuitive description of the syntax and the reasons for choosing it. For

a formal grammar of the complete language, see Appendix A.

3.2.1 Variables and Data

The core of any imperative language is state manipulation, and the standard way

to provide this is through variables and variable assignments. In order to assign

variables, it is also necessary to have a syntax for literals of each of the supported

types. It seems necessary to support string and integer variables in order to perform

any non-trivial tasks. Booleans can be trivially emulated using integers, so they are

not included as a separate type. Similarly, characters can be treated as a special case

of strings. We also provide arrays of the above, but more sophisticated combinations

such as sum types (variants), product types (records/structures), and user-defined

types are all omitted.

The basic statement to create and update variables is called set. It takes an

expressions and stores it into the named variable or array reference. If the variable

did not previously exist, this creates the symbol and assigns its initial type. If the

variable already existed, the type of the new value must be compatible with the

previous type.

Examples:
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set n to 1

set y to the string Hello

set element n of x to y

Note that string literals are introduced by the words “the string.” The string

value extends from there to the end of the line. When speaking, this is indicated by

pausing at the end of the string. This is one of the few concessions to the use of non-

visible features to indicate meaning. This decision was necessitated by practicality;

further details will be provided in section 4.3.

In order to perform computations with its state, the language needs to include

statements that can combine and manipulate variables. For numeric variables, this

consists of arithmetic expressions. We have implemented addition, subtraction, mul-

tiplication, and division. More complicated expressions can be built using standard

order of operations to enforce precedence.

Sensible basic manipulations for string variables are concatenation, substring ex-

traction, and simple search (like the strstr function in C). Other string functionality

can be easily built on top of these basic operations, so additional functionality has

not been built in.

Modern languages also typically provide automatic memory management. In lan-

guages with pointers and references, this is often provided through garbage collection

or reference counting. In this language, there are no pointers and no references, so

memory for scalars can be automatically allocated and deallocated based on the call

stack at runtime. Arrays with dynamic length can require dynamic memory allo-

cation at any time, but this is handled automatically by a small runtime support

library we have written. Since the array variables cannot outlive their scope, they do

not introduce any additional difficulties with deallocation. Thus, our language does

not need to provide any explicit memory management facilities.
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Examples:

Set x to 5

Set z to x + 1

Set element z of y to z + 5 ⇤ x

3.2.2 Functions

Since Dijkstra’s famous letter on structured programming [13], it has been considered

inconceivable to program in any language that did not include structured program-

ming facilities. The most important such constructs are functions and loops.

Our language supports definition of simple functions that accept zero or more

positional parameters with the types described above. Functions return single values,

again of any of the supported variable types. Functions may also return nothing (the

equivalent of void in C). More advanced parameter schemes like optional parameters,

default values, and named parameters are not present. Because the language does

not include pointers, all function parameters are passed and returned by value.

Examples:

define function main taking no arguments as

...

end function

define function foo taking arguments x as

return x + 1

end function

define function bar taking arguments m and n as

...
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end function

define function baz taking arguments m and n and z as

...

end function

There are two small oddities to notice here: the word arguments is always plu-

ral, and argument lists are joined with and instead of commas. This is intended

both to keep the syntax regular and to avoid non-spoken content. While “taking

arguments x” may be ungrammatical, we have found that it causes no problems

for users; additionally, the speech recognizer can automatically correct if the per-

son says “taking argument x,” so there is no impediment to users’ potential word

choice here. The unusual list structure is slightly more disconcerting for people, but

the alternatives were to explicitly say “comma” between words (which would be at

cross-purposes to our design goals) or to use pauses to distinguish between identifiers

(which was neither robust nor easy for users to discover).

Unlike variable symbols, which are created at their time of first assignment, all

functions are conceptually in scope from the first line of code. Naturally, this requires

the compiler to make multiple passes over its internal abstract syntax tree (AST), but

this is not uncommon. More importantly, it enables forward references to functions

(but not variables) that have not yet been defined at the point of their reference,

and it enables recursion. Functions may call themselves recursively, and they may

be mutually recursive through some chain of intermediate functions.

Like variables, function parameter types and return types are determined via

type inference. However, functions are not polymorphic; a particular function’s types

must resolve to a single type solution. This limitation is not inherent in the language

grammar, but is simply an implementation limitation caused by the underlying code

that the compiler generates. This limitation could be lifted without modifying the
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language syntax, but because polymorphism itself is not part of this dissertation, we

have not done so.

In addition to defining functions, a programmer must be able to call them. In

order to keep the natural English feel of the language, we found it necessary to

provide two syntaxes for this. For functions where the result is thrown away (called

for purposes of side effects), the syntax is call function. If the function takes

arguments, one must append with arguments. For function calls where the result

will be stored in a variable or used in an expression, the syntax is the result of

calling function. Arguments are appended the same way as the call statement.

Examples:

call f

call f with 1

call f with 2 and x

set x to the result of calling f

set x to 5 + the result of calling factorial with 10

From a language design standpoint, it seems mathematically inelegant to offer

two syntaxes for the same purpose (of calling functions). However, the alternative

requires either verbal gymnastics or the creation of unnatural sounding statements

such as “set x to 5 + call f”. Does that statement mean “set x to 5, plus (also) call f”,

or does it mean “call f, add 5 to the result, and store that value in x?” We know the

grammar restrictions that it means the second, but our casual daily use of “plus” to

mean “also” can lead to the wrong intuition. Rather than either of these alternatives,

we provide the two separate function call syntaxes.
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3.2.3 Looping

There are two basic kinds of loops: definite and indefinite. In a definite loop, the loop

body will execute some fixed number of times, while an indefinite loop is repeated an

arbitrary number of times as long as its guard condition remains true. It is simple

to simulate a definite loop using an indefinite loop plus a counter variable, but it

is impossible to simulate an indefinite loop using a definite loop. Therefore, the

language includes syntax for indefinite loops and omits definite loops.

The syntax for indefinite loops is the very typical while condition do. Exactly

as one would expect, the condition is evaluated each time the while statement is

reached, and the body will be executed repeatedly as long as it remains true.

Examples:

while 1 = 1 do

...

end while

while x < 5 do

...

end while

The body of the loop is a nested scope. It inherits the symbols visible in the

parent scope, but any new variables created within the loop body will not be visible

beyond the execution of the loop.

3.2.4 Conditionals

In theory, it is possible to simulate conditional statements (if-then-else) using a

combination of indefinite loops and extra guard variables. The same reasoning that
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justifies omitting definite loops could also justify omitting conditionals. However,

conditionals are so common, and the emulation is so cumbersome in comparison,

that this seems unreasonable. Therefore, in the interests of avoiding the Turing tar

pit [32], we have also included a built-in syntax for conditional statements. Like

many functional languages, our if-then always includes an else and an explicit

terminating end if. The primary purpose of this decision is simply consistency,

although it does also have the benefit of avoiding the “dangling-else” problem.

Because this may then result in unwanted else blocks, we also provide the state-

ment nothing, which allows the user to state that nothing should happen. This

statement is primarily intended for use in otherwise-empty else blocks, but it is

valid anywhere a statement can go.

Examples:

if x < 5 then

...

else

...

end if

if x > 1 and x < 10 then

...

else

nothing

end if

if not z = y or y >= 0 then

nothing

else

...
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end if

Like the body of the while loop, both the true and false branches of the condi-

tional introduce new nested scopes.

3.2.5 Booleans

Although we declared in section 3.2.1 that Boolean variables were unnecessary due

to the inclusion of integers, both conditionals and indefinite loops require Boolean

tests. Thus, simple Boolean tests and logic must be provided. These values can

be used in while conditions and if statements, but cannot be directly stored into

variables or otherwise treated as first-class values.

For all variables, we include tests for equality via the normal equals sign (=). For

numeric variables, we also permit numeric comparisons (<, >, <=, >=). In order

to complete Boolean logic, we will also need to be able to combine these with AND,

OR, and NOT.

Examples can be found in the previous two sections.

3.2.6 Input and Output

Any program that cannot perform input and output is only useful for turning your

CPU into a space heater. Thus, we have naturally provided some basic I/O facili-

ties. The print statement evaluates an expression and prints the result to standard

output. It does not produce a new line after its output. We provide the new line

statement to explicitly control line breaks.

Examples:

print 5
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print x ⇤ 2

print element 5 of a

new line

print the string Hello

The read statement reads a value from the user and stores it in the named

variable. Like the set statement, this automatically creates the variable if it did not

previously exist within the current scope. The type of the variable is automatically

determined by the type inference procedure based on other uses of the variable, and

the read statement automatically coerces the input into the correct type.

Examples:

read x

read element 1 of y

All modern operating systems provide support for redirection of a program’s

standard input and output to and from files. Therefore, it is not necessary to provide

explicit support for file I/O. Network sockets, shared memory, and other interprocess

communication facilities are also omitted.

Most languages support some kind of external library linkage. This is a vital

feature that would need to be present in any programming language made for serious

use, but it is not necessary to demonstrate the viability of spoken programming. In

addition, interfacing to external libraries written in other languages re-introduces

the problem of trying to create a spoken syntax for other programming languages.

Therefore, this feature has been omitted, but this will be an important area for future

study.
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3.3 Making Use of Context

Given the spoken programming language described above, one might expect that

a regular, off-the-shelf English recognizer would perform significantly better than

it would when trying to dictate C or Java. But can we further improve the pro-

gramming experience by incorporating additional context information? Generalized

speech recognition is all about context; the most successful products typically work

in limited domains where the user’s vocabulary can be interpreted within a specific

task-oriented frame of reference. Even commercial “general English” speech recog-

nition packages are often specialized for special domains such as legal or medical

dictation [15].

Similarly, when writing a program, we don’t just have the text coming out of

the recognizer. We also have many additional types of context induced by both

the program text and the process of writing the program. This research shows

that recognition accuracy can be improved in the programming domain by making

use of these additional programming-specific contexts. Because context is an open-

ended concept, this research will focus on three specific areas: Language grammar,

identifier scope and type inference. In addition to providing a starting point for future

research, this will serve to confirm that the lessons learned in decades of research in

general speech recognition still apply in the development of a spoken programming

environment.

In the following sections, we provide a high-level description of the three areas

of context we are considering and how they can be used in a spoken programming

environment. Specific details of exactly how we have implemented these ideas are

found in Chapter 4.
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3.3.1 Language Grammar

The first—and arguably most obvious—source of context is the language grammar

itself. Chomsky’s claims notwithstanding, most speech recognition software today

has moved away from attempting to find a generative grammar for English and into

the realm of probabilistic models. Moreover, people typically communicate with

one another using incomplete sentences and other non-grammatical utterances. This

presents no barrier to our day-to-day conversations, but even in this environment the

speakers typically share a context that they use to interpret each other’s utterances.

For example, in the context of reading this document, the sentence “I like squirrels”

would be a non sequitur that would be a distraction at best, or an impediment to

understanding the surrounding material at worst.

Similarly, when writing a program, the programmer and programming environ-

ment immediately share the context of attempting to create a program. Utterances

by the user should be interpreted not as random bits of English, but as attempts

to either create a program statement or perform an editing command. Unlike En-

glish, a computer language does have a complete grammar of all valid sentences in

the language. We can use this knowledge to significantly restrict what we expect

the user to say, but in fact we can do even better: Because a program has not just

a set of valid statements, but an entire structure, we can use the partially created

program’s context to guide the recognizer’s decision about which statements are the

most plausible. For example, consider the following partially dictated program:

define function f taking arguments x as

while x < 10 do

...

If the user says “end *garble*” at this point in the program, what kind of a state-

ment are they trying to dictate? It could either be end while or end function. If

we insert end function, we produce an invalid program because the while loop is
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not correctly terminated. Similarly, the user probably did not say end if because

it doesn’t make sense (and isn’t valid) to try to terminate an if-then block when

we aren’t inside one. Thus, we can deduce that the user probably said end while

and bias the recognizer toward that expectation.

3.3.2 Identifier Scoping

Because the symbol scoping in our language follows the nested block structure, dif-

ferent symbols are visible at different points in the program. We make use of this

symbol scope information to guide the recognizer. At the basic level, by know-

ing which symbols are defined in any particular scope, we can ensure that the user

doesn’t refer to symbols that are not visible, and we can even do a limited amount

of correction for mispronunciations or similar minor disfluencies.

Simply including or excluding symbols from the grammar based on the scope is

a fairly blunt tool. On a more nuanced level, the principle of locality suggests that

variable references that are near together in the code are more likely to refer to the

same variable than references that are far apart. Many existing editors use scoping

with auto-completion to suggest variable names, functions, etc., that are in scope

when the user types the first few characters of the name. Using the scope to make

more closely-defined symbols appear closer to the top of the list of alternatives often

saves time.

In spoken programming, traditional auto-completion is not needed, because the

programmer will be inclined to speak full words. Having to stop and spell out the

first few symbols of an identifier would be a net time loss over simply speaking

it out even if the auto-completion always guessed the correct symbol. However,

locality of reference still applies. Given a probabilistic language model that most

speech recognizers implement, the extension of auto-completion to voice input is

then conceptually straightforward: Instead of auto-completing symbols based on
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the first few characters typed, a vocal programming system should use scoping to

automatically raise the expected probability of more closely scoped symbols and lower

the probability of more remote symbols. This will reduce the number of recognition

errors and improve accuracy. A number of prior researchers have made use of scoping

to keep a simple list of variables in scope for the voice recognizer [10, 29], but they do

not appear to have used the information in the more sophisticated manner examined

here.

3.3.3 Type Information

Our final use of context is the type system. To save the programmer from the

burden of declaring the types of all their variables, many modern languages are

either dynamically typed or make use of type inference. Dynamic typing is powerful

and easy for the programmer, but prevents the editor from knowing anything about

the types before runtime. With type inference, on the other hand, the programmer

is still free to use variables without worrying about type signatures, but the compiler

is still able to perform compile-time validation. More importantly for the purposes

of this project, the editor can also perform type inference to gain additional context

information about symbols in the program. This additional context can be used

similarly to scoping to enhance the selection of spoken symbols.

Based on type information, we can also determine if a particular symbol represents

a function (valid for calling), an array (valid for extracting elements), an integer

(valid for array indexes and arithmetic), or a string (valid for concatenation). We

can determine the arity of a function (functions must be called with the correct

number of arguments), and we can determine function argument types and return

types. Other uses of the type system can easily be imagined, but have not been

considered for this research.

For example, suppose that functions “flop” and “flap” are both in scope. Without



Chapter 3. Theory 35

further context, it will be difficult to distinguish between these two functions when

spoken. If “flop” is known to take an integer and “flap” is known to take a string,

then the editor can immediately improve its accuracy by entering the correct function

based on which type of variable the user passes as a parameter. Similar choices can

be made when the user passes a variable into a function with a known signature, sets

a variable to the result of a function with a known return type, etc.

3.4 Programming Environment

The programming environment acts as the glue that holds all the other pieces to-

gether. During dictation, it provides the visible UI for the user, accepts proposed

program fragments from the speech recognizer, and updates the recognizer based on

the context the user is creating. It runs the compiler when needed and handles saving

and opening files. A schematic of the overall system design is shown in Figure 3.1.

CMU Sphinx

Define function factorial taking parameter x as
If x <= 1 then

Return 1
Else

Return call factorial on x - 1
End if

End function

Set i to 1
While i < 5 do

Set f to call factorial on i
Increment i

End while

Eclipse

User Speech

Spoken 
Programming 
Eclipse Plugin

Sentence
 Fragments

Recognizer
Updates

Program
Text

Figure 3.1: Design of the Spoken Programming Environment
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Ultimately, the programming environment must also address other tasks in the

programming workflow such as editing, source code navigation, and debugging. For

the purposes of this research, we have kept these additions as simple as possible.

We have ignored debugging entirely. Existing Java debuggers can be used to do

debugging of our generated code, but a full spoken debugger is left to future re-

search. Similarly, since we are studying initial program dictation, we provide no text

navigation commands. Other researchers have studied spoken source code naviga-

tion [2, 29, 40], and their techniques could be combined with our system without

dramatically changing either one.

Finally, we do provide editing, but only a single command: “fix that” or “no”

causes the environment to back up a line and allow the user to try again. Though sim-

ple, this command provides everything necessary for interactive program dictation.

More advanced editing facilities would be necessary for post-dictation corrections,

but that topic seems best addressed in combination with spoken code navigation

rather than in the initial prototype. In any case, more advanced editing commands

would not have changed the design of our user study.
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Chapter 4

Implementation

In Chapter 3, we described the rationale and design of our new language, as well as

the programming environment and the context-based features it incorporates. In this

chapter, we provide more specific details of how we implemented the ideas previously

described.

4.1 Compiler

Once the language syntax has been established, the first component necessary to

make a language do something is a compiler. Our compiler is a pretty standard

pipeline, starting with lexing and parsing into an abstract syntax tree (AST). We then

make several passes over the AST to resolve references and perform type inference.

Finally, we output generated code. The trivial program in Figure 4.1 will form an

example that we use throughout this section.

The entire compiler is written in Java, using the ANTLR parser generator [1]

for all lexing and parsing tasks. In the first pass, we convert the input file into

tokens and parse the token stream into an AST. With ANTLR, the form of the AST
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1 define function main taking no arguments as
2 read x
3 set y to x + 5
4 print y
5 end function

Figure 4.1: Example Program for Chapter 4

is disconnected from the original source code, using generic node types instead of

tokens from the source code. This pass ensures the correctness of the syntax but

does not perform variable resolution or type inference. The AST for the program in

Figure 4.1 is shown in a Lisp-like format in Figure 4.2.

1 (FUNCTION main
2 (BLOCK
3 (read x)
4 (set y
5 (EXPR +
6 (EXPR x) (EXPR 5)
7 )
8 )
9 (print

10 (EXPR y)
11 )
12 )
13 )

Figure 4.2: AST generated from program in Figure 4.1

The second pass performs initial variable resolution. It fills out the symbol table

with both function and variable references. All variables can be resolved at this time

because we require that variables be set to an initial value (with set or read) before

they are otherwise used. Function calls, however, can contain forward references

to functions that are not yet defined at the point in the source code where the call

occurs. When this happens, we leave a placeholder reference in the symbol table that
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is resolved later. Function calls that refer to functions that are already defined get

resolved immediately. After this pass, all variable references and backwards function

references have been resolved. In this pass, we catch any use of undefined symbols,

variables that are read before being written, etc.

After processing the AST in Figure 4.2, the two x references will point to the

symbol table entry created at line three, and the two y entries will point to the

entry created at line 4. The main reference will point to the entry created at line 1.

Table 4.1 shows what would be represented, with nested scopes shown separated by

pairs of colons (::). Note that the entries for the same symbol actually point to the

same symbol table entry even though they show up on two different lines.

Line Symbol Type Definition
1 main unknown 1
3 main::x unknown 3
4 main::y unknown 4
6 main::x unknown 3
10 main::y unknown 4

Table 4.1: Symbol Table After Pass 2

The third pass performs both type inference and symbol resolution for the leftover

function call forward references from the second pass. Our type inference algorithm

follows the scheme laid out by Damas and Milner [9]. As we process the AST, each

node in the tree that requires a type generates a type constraint. These may be of the

form typeof(var) = typeof(expression) or typeof(expression) = type. Once the full set

of constraints is generated, we use a unification algorithm [30] to generate a solution

and set the types of every symbol. If there are type clashes during unification, we

stop and report the mismatch to the user.

In our example, there are no forward function references or undefined variables in

this program, so this third pass does not resolve any additional symbols. The type

constraints generated are shown in Table 4.2, along with the line that creates each
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one. Note that the line numbers from the AST are shown in the order that the nodes

are processed in the depth-first traversal, so they are out of order numerically.

Line Constraints
1 typeof(main) = function; typeof(main::args) = empty
6 typeof(5 ) = int
5 typeof(main::x ) = typeof(5 ); typeof(main::x+5 ) = int
4 typeof(main::y) = typeof(main::x+5 )
12 typeof(main::return) = empty

Table 4.2: Type Constraints from Figure 4.2

After generating all the type constraints, we apply unification to solve them

and find that typeof(main::x ) = int, typeof(main::y) = int, and typeof(main) =

functionhempty,emptyi. Notice that main’s type includes the fact that it is a function

as well as its return type and argument types. We then update the entries in Table 4.1

to yield Table 4.3.

Line Symbol Type Definition
1 main functionhempty,emptyi 1
3 main::x int 3
4 main::y int 4
6 main::x int 3
10 main::y int 4

Table 4.3: Symbol Table After Type Inference

Despite the simplicity of the type system this language provides, it is still possible

to fail to generate a unique solution to the type constraints. If there are untyped

variables left at the end of unification, this is handled in many type inference systems

by setting those variables to some type of generic type or “Object” superclass. Since

we do not provide a generic type or any object hierarchy, we instead stop and report

this as an error. This situation arises only if the symbols in question were not used

as part of any computation that imputes a type. The program in Figure 4.1 did not

have this problem, but the program in Figure 4.3 would fall into this situation. Since
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the program can’t do anything useful with such a symbol, we have not provided a

generic type to handle the problem. Instead, if the user requires a symbol that is

used this way, they need to provide a dummy calculation that uses the symbol to

force its type (such as adding 0 to make it an integer or setting it to an empty string

prior to reading it to force a string).

define function main taking no arguments as
read x
print x

end function

Figure 4.3: An Untypable Program

The final pass is code generation. We use the StringTemplate library that comes

with ANTLR to produce Java code as output. To use StringTemplate, we walk the

AST and generate a tree of nested templates that mirrors the AST. Each template

takes parameters and produces strings as output, either directly or by referring to

embedded child templates. Once the tree is built, the StringTemplate library com-

bines all the parameters with the templates to produce the final output. The Java

code generated by the user’s program is combined with a small support library we

wrote to handle tasks like array auto-extension and input type conversion, and the

complete program is linked into a runnable Java class.

We generate Java as output primarily because the rest of the system is written in

Java, and this keeps everything consistent. However, there is nothing fundamental

about the use of Java; by swapping the StringTemplate templates and writing an

appropriate support library, this compiler should be able to support any modern

language as output (or even assembly with enough effort put into the support library).

Since we create a Java program as output, an interesting future expansion would

be to allow linking to the myriad existing Java libraries. However, since we did not

provide spoken syntax for Java, we also omitted this ability from the compiler.
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4.2 Programming Environment

A programming environment is not just a programming language; it also provides all

the program creation and editing features that make a programmer productive. Our

environment is provided in the form of an Eclipse [16] plugin that integrates CMU

Sphinx [41] speech recognition with the existing Eclipse editing capabilities and the

compiler described above. Because Eclipse and Sphinx are both written in Java, our

plugin is also entirely written in Java. Details of each of these will be provided below.

A common design feature of a voice recognition system is a probabilistic language

model. The language grammar describes possible sentences, and the probabilistic

model adds a measure of likelihood of sentences. For example, the phrase “go to

town” is much more likely to be found in an English sentence than the phrase “go

to towel.” To create a model that can represent these probabilities, large corpora

of speech or written text are divided into n-grams and the resulting co-occurrence

frequencies are analyzed [27]. For maximum effectiveness, the corpora are preferably

recorded in the same domain anticipated for subsequent speech. However, since part

of our goal is to reuse existing English speech recognition, we have not developed a

separate spoken programming corpus. We use the built-in English models provided

with Sphinx.

In the CMU Sphinx system, there are three types of models. At the lowest

level, the acoustic model allows the system to turn raw audio data into a sequence of

phones. Next, the phonetic dictionary provides mappings of words onto phones. This

allows the recognizer to produce lists of possible words based on the phone sequence.

At the highest level, the language model restricts which combinations of words can

be produced. The language model is not an absolute listing of possibilities, but is a

probability distribution learned from training on appropriate corpora.

In programming, a high-level English-trained language model is of limited use,

because many common programming idioms will not correspond to normal conversa-
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tional English. We reuse the two lower-level models unmodified, and instead replace

the top-level models with grammars derived from our spoken language syntax as

described in 3.2.

4.2.1 Grammars

Sphinx accepts grammars written in the JSpeech Grammar Format (JSGF) [26]. A

JSGF file contains a grammar in a format similar to a BNF grammar, but with some

extensions for probabilistic recognition and tagging. The initial grammar is loaded

from disk, but can be subsequently modified or swapped at runtime.

Our use of grammars has gone through some significant evolution throughout the

process of building the environment. Initially, we simply took our ANTLR grammar

and converted it to JSGF. While this produced accurate results, it had an important

shortcoming: Because Sphinx attempts to process entire “sentences” from the gram-

mar at once, it required the user to speak their entire program in a single breath

without pauses! This makes a nice trick to show off at parties, but is obviously

unusable from a programming point of view.

Our second attempt was to break down the grammar structure into small phrases

and snippets that could be comfortably and logically spoken between pauses. This

idea is similar to n-grams, but instead of using fixed-size chucks of words, we split

the grammar at approximately statement boundaries. For compound statements, we

split while condition do and end while into separate statements for grammar

purposes, but simple statements like print and set variable to expression

are recognized as a single chunk. Each of the sample programs presented throughout

this dissertation is split into lines at the same boundaries where we have divided the

grammar chunks.

Compared to the first attempt, it was now easy to speak individual statements,



Chapter 4. Implementation 44

but nearly impossible to dictate a complete program. Without the context imposed

by the original grammatical structure, the recognizer could (and did) insert state-

ments in any order. Instead of mistaking a symbol name or a literal value, it would

mistake an entire construct for another. The accuracy was so low as to be unusable.

The final attempt came about when we hit on the idea that programming can be

treated as a dialog. Like our second attempt, individual sentences at any particu-

lar time are relatively freeform and interchangeable. But like our first attempt, the

ongoing context of the conversation imposes an overall structure and circumscribes

the sentences that are relevant. Certain transition words and phrases alert the par-

ticipants that the context is being adjusted or changed. Like a human dialog, the

participants take turns, and the context tells them if the other participant’s most re-

cent utterance makes sense. Of course, there are also differences: An out-of-context

utterance in a human conversation is generally a non sequitur that can be recov-

ered after the other person “figures out” what happened, whereas an out-of-context

utterance in a program is simply an error.

To implement this dialog idea, we split our second grammar into multiple gram-

mars. Each smaller grammar contains only the chunks that make sense within a

particular programming context. For example, the only construct allowed at the top

level of the program is function definition, so the top-level grammar only contains

chunks related to defining a function. Once a function definition has been completed,

that acts as the transition phrase that tells the system to push the context onto a

stack and switch to the function body grammar. In the function body, all chunks

that introduce a legal statement are part of the grammar. Statements that intro-

duce further nested blocks and nested scopes cause new grammars to be loaded as

the context switches again. For example, the end while statement only makes sense

inside the “while body” context because an end while that comes before the cor-

responding while-do would never be part of a correct program. Other statements

that introduce new blocks (and new grammars) are if-then, else and strings. The
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reason why strings require a separate grammar will be described further below. We

make use of the JSGF tagging feature to enable these transitions whenever a certain

grammar rule is triggered without looking for specific words in the source code.

When a block comes to an end, we need to return to the previous context. Since

the structure of nested contexts largely mirrors the nested block structure, we can

use the same stack structure to pop out and return to the previous context whenever

an “out” transition is called for. However, allowing editing puts a large wrinkle into

this concept. For example, if the user says end function then we would pop the

function context they are in and return to the global context and its associated

grammar. If the next thing they say is “no” or “fix that” (our editing command),

the environment must back up a line and allow the user to try again. This requires

us to “un-pop” the stack and restore the function context. Since we dynamically

modify the grammars as the user is programming, it is not even sufficient to reload

the previous grammar. Instead, we attach a pointer from every line of source code

to a sort of closure that represents the full state of the stack at that line. When the

user wants to make a correction, we can restore the stack directly from the code at

that point where the correction is being made.

4.2.2 Scoping

To implement the identifier scoping we described in Section 3.3.2, we dynamically

modify the grammar rules as the user is dictating. The grammar contains rules for

how to form legal identifiers, but rather than a single rule for an identifier, places

that make different use of the symbols have different rules. For example, expressions

refer to existing variables; they cannot create new variables. Thus, we have a rule for

definedVars that encapsulates all the known variables. A set statement, on the other

hand, potentially creates a new variable, so it will refer to a rule called possibleVars.

In addition to the known variables, possibleVars also allows the introduction of new
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variables.

Each time a new block is entered, a fresh copy of the base grammar for that ap-

propriate context is created. The new grammar is then modified so that definedVars

and possibleVars contain references to all the defined that are visible from the new

scope. This list is built by walking up the scope tree and getting a list of all symbols

defined at that level. The symbols at that level are appended to the partial list

created at the lower levels. For the case of definedVars, this process stops once the

top-level scope is reached. For the case of possibleVars, the rule to match a generic

identifier is then appended to the end of the list.

The description above explains how pure scope visibility can be implemented, but

we can actually be a little more sophisticated. JSGF allows each rule to have a weight.

The weights are not true probabilities, but they do factor into the probabilities Sphinx

uses when it turns the grammar into a speech model. Instead of purely appending

each symbol list as described above, our implementation starts with a fixed weight

and reduces it by a small fraction for each level it moves up the tree. When appending

the symbols, they have whatever weight is calculated for their level attached. The

optimal weight adjustment value needs to be determined empirically, but because

our test programs turned out to be too small to see any large changes from varying

the weights, we have not attempted to find an optimum. We have left this as an area

for further research once a larger user study is performed.

Each time a statement is dictated that may modify the set of variables in scope,

the algorithm above is executed to update the current grammar. This includes set,

read, and entrance to a new scope. When a scope is exited, we pop the current

grammar as part of the process described in the previous section, so it is not necessary

to explicitly update the grammar rules. The context for our dialog grows steadily

by the introduction of new symbols, and then shrinks back down as the user stops

talking about a particular block and moves on to the next one.
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4.2.3 Type Inference

The type inference context feature is built on top of the scoping described in the

previous section (you have to know what is in scope before you can attempt to give

it a type). Much of it works conceptually the same, but the details are enhanced

to add type information. Instead of a single definedVars rule, we have definedInts,

definedStrings, etc. Functions are tracked at the grammar level based only on arity,

so we have rules for function0args, function1arg, etc. The possibleVars rule is split

into possibleInts, possibleArrays, etc.

Our full type inference algorithm is not practical for generating these rules at

runtime for several reasons. First, the algorithm expects to be run on a complete

AST from a syntactically correct program; it does not have provisions for dealing

with undefined variables, incomplete functions, or other similar partial or incorrect

constructs that occur in the process of creating a program. Second, the full type

inference algorithm is not incremental; it expects to generate and solve all the type

constraints for a complete program at once rather than add them individually as

lines are added. Last, the algorithm is a little too slow to be used for realtime type

inference without introducing user-visible delays. This is an implementation issue

rather than a fundamental computational complexity issue, but taken in combination

with the first two reasons, it makes the full algorithm unsuitable for the programming

environment runtime.

Instead, we wrote a restricted version of the type inference algorithm that uses

pattern matching to detect when variables have a definite type. For example, defin-

ing a function with three arguments is easily matched by a regular expression and

can’t be confused with a function with two arguments or four arguments. Similarly,

statements such as set X to 5 or set element X of A to 5 strongly indicate

that X is an integer and A is an array. Anything that doesn’t match one of the

“easy” cases caught by the pattern matching is left as an unknown type.
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When generating the lists for all of the new rules, we walk up the scope chain

just as described in the implementation of the scoping context. However, instead

of fetching a list of all symbols at each scope, we only fetch a list of all integers

or all strings or whichever type we are building the rule for. In addition, we must

account for the symbols with unknown types. Because we don’t know what type these

variables are, we include them as candidates for every rule. The statement read X

creates a variable X that shows up in definedInts, definedStrings, possibleInts, etc.,

until the user dictates a statement that constraints the type of X. Once that occurs,

the rules get rebuilt and X appears only in the rules that match its newly inferred

type.

4.2.4 String Handling

Strings are a bit different from other grammatical constructs. Unlike statements in

the program, strings can generally contain anything from single characters and words

to full English prose. Sixty years of AI research has established that grammars are

not well-suited for recognizing this kind of unstructured chaos, but the rest of our

implementation is built on top of JSGF grammars. How can these be reconciled? It

turns out that when we swap grammars in Sphinx as described above, we are actually

swapping the entire recognizer engine. It is entirely possible to load an entire n-gram

model or other more advanced recognizer and swap it into place when a string needs

to be input.

For the purposes of this dissertation, we have created our string recognizer as

another simple rule-based grammar that contains a couple dozen words and phrases

that were used throughout our sample programs. A more production-ready ver-

sion of this environment could replace our trivial recognizer with whatever level of

sophistication it needed, as described above.

The compiler has a simpler time. Since it takes text that has already been



Chapter 4. Implementation 49

translated from speech, it only needs to be able to detect the beginning and end

of a string. We have handled this by making it accept a string as any sequence of

characters from the beginning of the string (indicated by the string in the syntax)

through the end of the line. While this does add one instance of whitespace sensitivity

to the language, it seems better than the alternative of requiring the user to say “end

string” or similar terminating commands.

4.3 Practical Considerations

A few of our implementation decisions were driven by software limitations or practical

considerations. We describe these here.

First, we have attempted to avoid the use of prosody or other linguistic concepts

that can’t be directly translated into text. An early proposal suggested that prosody

might provide a valuable additional source of context for programming. Instead, we

found that users’s pauses and speech speeds were too unpredictable to be used for

anything. We made one necessary concession to this: When the user pauses for about

half a second, Sphinx takes their audio up to that point and tries to recognize it as

a sentence in the grammar. We used this by breaking our grammar into chunks that

were small enough to speak without pauses, as described in Section 4.2.1. We also

incorporated this into the programming environment by breaking the program into

lines at the places where the user pauses. Since the chunks correspond approximately

to statements, this results in the program being generated line-by-line.

We have also attempted to minimize dependence on any non-visible features of

the textual language, such as whitespace. Line breaks are inserted as described

above, but programs can largely be compiled regardless of the location of line breaks

or indentation. One important exception is in strings. As mentioned in Section 4.2.4,

we require that strings be terminated with a new line. This has not proved to be
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any hinderance or surprise to users in our study.

Although the compiler is case-insensitive, we only generate lowercase output from

Sphinx. Some of the sample programs are written with mixed case to demonstrate

that it works, but we felt that the effort to produce similar output was not relevant

for the outcome of this research.
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Chapter 5

Experiments

In Chapter 3, we described the design of our spoken programming language and

environment. In Chapter 4, we described the implementation details of the same.

In this chapter, we now explain how the environment was evaluated: first through a

preliminary case study, but primarily through the user study described below.

5.1 Case Study: Comparison to Dictation of C

In an initial case study, we used a commercial speech recognition product (Dragon

Dictate 3.0 for Mac [14]) to compare the experience of dictating a program in C to

a comparable program in our new language. C was chosen instead of other, more

modern languages because it came the closest to giving a one-to-one correspondence

in lines of source code and functionality per line. The C program is here:

#include <stdio.h>

int main(int argc, char ⇤⇤argv) {

int i = 1;

while ( i <= 10 ) {
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printf("%d",i);

printf("\n");

i = i + 1;

}

return 0;

}

The corresponding program in our language is here:

define function main taking no arguments as

set i to 1

while i <= 10 do

print i

new line

set i to i + 1

end while

end function

Both programs print the numbers from 1 through 10 (inclusive), one number per

line. The C program has an additional first line (the #include) that is required to

make use of printf, and an additional return statement that is necessary due to

the calling convention for main.

To perform this experiment, we first performed the initial training steps required

by Dragon and worked through the tutorials to learn its syntax. We then experi-

mented with the system for approximately an hour to learn how to pronounce and/or

spell each punctuation symbol and non-English word. Dragon also has rules for au-

tomatic capitalization and spacing, so we learned how to incorporate the commands

needed to override the rules where needed. Finally, we dictated the C program and

our program. We tried each program three times and measured the number of cor-

rections needed and the time needed to complete the program. The results reported



Chapter 5. Experiments 53

in Section 6.2 are the average of the three attempts. In each case, we were able to

dictate the exact program text (up to non-meaningful differences in spacing), so we

have not reported accuracy numbers.

As a second part of this experiment, we also compared the results of dictating

the spoken program in Dragon to dictating the exact same program in the spoken

environment. The results of this are reported in Section 6.3.

5.2 User Study Description

While the case study described above with Dragon provides some intuitive validation

of the claim that our English-derived syntax is easier to recognize with a standard

English-trained speech recognizer, it does not provide any data about the full pro-

gramming environment. To investigate the full system, we performed a user study

as described here.

We recruited subjects from around the university. To participate, the subjects

had to meet the following criteria:

1. Native speaker of English

2. General American accent (similar to what one would expect to hear on a net-

work news broadcast in the United States)

3. No known speech impediments

4. Completed several semesters of Computer Science coursework or equivalent

professional experience

The purpose of criteria 1–3 was not to discriminate against people of other back-

grounds, but because Sphinx is known to produce variable results depending on
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users’ accents and speech patterns. To eliminate this variable from the study as

much as possible, we selected an accent that was known to work well and required

all participants to have a similar accent. The purpose of criterion 4 was to ensure

that difficulties with writing our sample programs would not stem from users’ inex-

perience or discomfort with writing short programs.

We started with thirteen initial subjects, but one was removed because his accent

differed from General American by too much for Sphinx to produce usable results. Of

the twelve subjects who were included in the final results, ten were male and two were

female. Two had prior experience with voice recognition software, but ten reported

having never used it. Two participants were self-described as novice programmers,

five as intermediate, and five as expert. Two participants were undergraduates, two

were non-students, and eight were graduate students.

Prior to the study, we wrote ten sample program that exhibit all of the legal

constructs in our language. We arranged them into a series that built up from trivial

programs to modest programs that sort a list of numbers or compute Fibonacci series.

The full text of the programs can be found in Appendix B.

Each subject came in for a one hour recording session. We divided each session

into three sections. In the first section, the subjects read each program without

access to the interactive system. They simply read from the paper without reference

to anything that was happening on the screen. Each program was read three times:

once silently to become familiar with the text, once at their natural speaking pace,

and once in a line-by-line manner. We recorded the full section, and later divided

the audio into chunks that contain individual recordings.

In the second section of the session, we turned on the interactive programming

environment and explained its use to the subject. The subject then re-read each

of the ten programs, but instead of reading straight through, they were asked to

interact with the IDE to try to arrive at the exact printed sample program. They
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discovered the phrasing and reading speed that produced the best results, and they

used the provided commands to make corrections when the system produced errors.

Again, we recorded the full section and later divided up the audio into individual

attempts.

In the final section of the session, we provided three programming challenges (e.g.,

“write a program that reads ten numbers from the user and prints their average.”).

The subject was supplied with a “cheat sheet” to refresh their memory on the syntax

that had been covered in the first two sections, and then was asked to use their

remaining time to attempt to write programs to solve the challenges. This section

was also recorded for later analysis.

Finally, we asked each subject a few informal questions about their experience

and their perception of spoken programming at the end of the session. The responses

were not recorded in audio form, but were simply noted.

5.3 A Criticism

In this section, we take a small detour from the description of what we have done

to address an important criticism of the design of both our case study and the user

study: Real programming is not so linear. An environment that forces the pro-

grammer to go line-by-line from top to bottom without deviation is an environment

that is not likely to be used for programs larger than a few dozen lines. Unlike our

test cases where we first wrote out the intended program and then attempted to

dictate it, a real program is typically written in small pieces, and the programmer

jumps around between the pieces as inspiration and convenience dictate. Even for

the programming challenges where we did not pre-write the intended solution for the

subject, the limited editing and navigation capabilities of our spoken programming

environment still essentially force the user to attempt to dictate the program start
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to finish in a single pass.

We agree that real programs are not generally written in such a linear fashion,

and that more advanced editing capabilities are necessary before this environment

would be usable for serious programming. Possible future work along these lines is

suggested in Chapter 7. However, we do not believe that this lack invalidates the

results presented in this dissertation. The concept of using context to improve the

recognizer’s accuracy is still highly relevant even if chunks of code are dictated or

edited out of order.

The analogy of treating program creation as a dialog is less clear-cut if the pro-

gram is built out of order, but it is not entirely invalid. The language is still con-

strained by the grammar, and at any particular point in the program, there is still a

set of reasonable expected statements that is dictated by the code around that point.

For example, it still would not make sense to end a while loop prior to starting it

regardless of whether the programmer prefers to write the loop bounds first or fill in

the inner statements first.

The thing that changes about the dialog with more advanced navigation is the

complexity of the transitions between contexts. Instead of an orderly progression

of contexts that mirror the program structure, the user might jump backwards into

a previously created context at any time. However, as described in section 4.2.1,

we already have a limited form of this situation when the user backs up to make a

correction. In order to support restoring the previous context, we already keep track

of the complete context that existed at every line of source code. This suggests that

it is not too much of a stretch to imagine that a similar implementation might be

able to support the necessary jumps into arbitrary prior contexts.

Like the idea of a dialog, scoping and type inference are still relevant regardless

of the order of program statement creation. Variables still have a scope and a type

even if they’re added to the program after the initial dictation. One wrinkle in this
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situation is that a programmer might easily add a line to refer to a variable that they

plan to go back and define later. Since this is at cross purposes to our proposals here

of biasing the recognizer against that situation, the idea initially sounds problematic.

We believe it is likely to be solvable with some additional syntax or command to the

environment that tells it the programmer intended that situation.

To gain some intuition for how this might work, imagine programming with a

partner. If you say, “Now set x to 5” and there isn’t an x in the program, your

partner is going to be confused. They may say something along the lines of “but

there isn’t an x,” or “did you mean this other variable?” or “where did x come

from?” If instead you say, “We’re going to want an x. I’ll tell you where to put it

in a minute, but for now set it to 5,” then there is no such confusion. They insert

the assignment and proceed, confident in your promise that you’ll fix the problem

later. Similarly, the extra syntax would tell the spoken environment that you meant

to refer to a variable that you haven’t told it about yet.

Taken together, these considerations suggest that it should be possible to enable

non-linear spoken programming without discarding the ideas we have investigated

here. We make the initial step in this dissertation of showing that context is useful in

the simple case, and we expect that future work will extend this to more complicated

situations.
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Chapter 6

Results and Discussion

Now that the preceding chapters have described our programming environment, its

features, and the user study designed to measure its effectiveness, we finally have

everything needed to present the study results. In this chapter, we first present the

outcome of the initial case study. The bulk of the chapter is devoted to a description

and discussion of the result of the full user study. Final discussion of the implications

of the results and future work building on this study are deferred to Chapter 7.

6.1 Data Analysis and Error Classification

Before moving on to the actual results, we first provide a description of how we

turned the raw audio data generated by our subjects into measurable and comparable

quantities, as well as an explanation of why these particular measures were chosen.
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6.1.1 Procedure

To analyze the data, we first divided the recordings into segments containing a single

program reading. We then processed each segment using the programming environ-

ment with whatever settings were appropriate for that particular test. By processing

the audio files directly rather than replaying through a microphone or asking the par-

ticipants to re-dictate, the analysis completely eliminates variables caused by envi-

ronmental factors, such as microphone distance, room/background noise, participant

speech variations, etc. Furthermore, even though Sphinx contains a probabilistic lan-

guage model inside, it produces the same output when given the same input as long

as no parameters or grammar rules have changed. This means that the audio files

represent a set of completely reproducible textual outputs, and we did not need to

average multiple runs or do similar probabilistic smoothing.

Each run of the environment with a particular file produces an instance of pro-

gram text. We hand-classified each instance based on what was being measured in

that test.

6.1.2 Word Error Rate

The specific details of each test will be described below, but first a note about what

we have not reported on: In many speech recognition tasks, researchers report fairly

standardized metrics such as word error rate (WER). We have chosen not to report

these because it is not clear that they are meaningful in this type of environment.

Word error rate is typically defined as

WER =
S +D + I

N

where S is the number of substitutions, D is the number of deletions, I is the number

of insertions, and N is the number of words in the correct text. There are two major

problems with this in our environment.



Chapter 6. Results and Discussion 60

First, errors are not independent. For example, if a while is missed at the

beginning of a statement, not only is the do after the guard also going to be missed,

but the end while that should normally come at the end of the block will also be

missed. Thus, a single deletion error is turned into at least 4 errors. Other types of

insertions or substitutions could potentially prevent successful processing of the entire

remainder of the program. These types of errors are not nearly so devastating for

interactive use; the user notices the problem and simply corrects it before continuing.

The second reason WER is not appropriate in this environment is that not all

errors are equally important, but the formula weights all errors equally. This is also

true for normal English prose recognition, but the effect is magnified for a program.

A human reader of an English transcription with some errors can often get the gist of

the message, but a compiler has no way to “fill in the gaps” or correct for nonsensical

changes.

6.1.3 Low-level Error Classification

Rather than reporting WER, we have come up with a number of error classifications

and task classifications that seem pertinent to the goal of spoken programming. First,

we have classified the errors in each program into the following five types:

1. Missed utterances (unexpected). This occurs when the recognizer misses an

entire utterance and there was no reason to believe it should have done so.

This produces an incorrect program and indicates an error occurred in the

recognizer.

2. Missed utterances (expected). This occurs when the recognizer misses an entire

utterance, but it should have done so as a result of an earlier error. For example,

if a while statement is missed, the end while should also be missed. While
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this also produces an incorrect program, it indicates that the grammar-based

component of the context is working as expected.

3. Wrong construct. This is an unexpected substitution of one construct for an-

other, such as a print statement instead of a function call or a single parameter

expression instead of multiple parameters.

4. Wrong variable (first). This occurs when the recognizer produces an incorrect

variable name on the first instance of that name.

5. Wrong variable (subsequent). This occurs when the recognizer produces an

incorrect variable name on a subsequence instance of that name.

6. Wrong value/literal. This occurs when the recognizer substitutes a valid literal

for another literal or a variable of the same type (e.g., 10 instead of n).

Of the errors above, some are expected to be correctable by the context-based

features and others are not. Unexpected missed utterances are generally not cor-

rectable, because they occur when the recognizer simply fails to produce a result

for a particular utterance. Expected missed utterances are not correctable because

they are part of the expected behavior of the system. Wrong constructs are largely

not correctable, because they are produced when the recognizer generates a wholly

incorrect sentence from the grammar for a particular utterance. If the errors are lim-

ited to substitutions of variables and literals, they would be classified in one of the

other categories. Wrong initial uses of variables may be correctable or uncorrectable

depending on the previously used symbols. For example, if the system substitutes

an n for an m in an assignment and neither name is in scope, there is no reason to

believe that the context-based features we are testing would make any difference in

that error. If however, one of n or m is already in use in a way that precludes its

use in that assignment, we would expect the context-based features to help reduce

instances of that error. Subsequent variable uses are often correctable as long as the
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incorrectly generated variable name wasn’t also a valid choice. For example, if n and

m are both in scope at the same level and both integers, the system does not have

any additional context to help distinguish between them, but if one has a different

type or a different scope, we would expect our context-based changes to make a

difference. Finally, the wrong value errors occur when a legal value or variable is

substituted for another. Since the erroneous value is legal at the place of its use,

there is no reason to believe that the additional context would steer the system away

from it.

6.1.4 Task Classification

When dictating a program, what is the user’s real goal? We claim that the goal is

to create a program that does whatever the user has in mind. As such, the partic-

ular types of errors produced are of less interest to the user than the questions of

whether they produced a compilable and/or correct program. After analyzing all

the user sessions and categorizing the errors as described above, we realized that it

simply produces a sea of numbers that provide no real insight into whether the user

is achieving their goal. To support a more insightful analysis of the data, we have

also classified each program produced based on three more coarse-grained descrip-

tions: program compiles, program follows the expected structure, and program is

functionally equivalent to the original. Further details of these descriptions will be

provided with the relevant data below. The raw low-level error counts have not been

presented here, but the explanation is helpful to understand what kinds of errors can

cause the tasks below to fail.
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6.1.5 Statistical Significance of Results

In order to make claims about the performance differences between the spoken envi-

ronment baseline and the additional context-based features, we first need to deter-

mine exactly what we are comparing and how we will test it (in the statistical sense).

The goal is to choose a comparison method and statistical test that allows us to de-

termine if the differences are statistically significant, while also ensuring that the

differences can be attributed to our context-based features rather than some other

environmental factor. As described in section 6.1.1, we eliminate environmental fac-

tors by re-processing the same audio file in our spoken environment while varying

which features are enabled. Thus, our population of subjects is being sampled mul-

tiple times, with the sets of samples for comparison being “programs dictated with

baseline features,” “programs dictated with scoping enabled,” and “programs dictated

with scoping and typing” (abbreviated as “baseline,” “scoped,” and “typed” below).

This still leaves open the question of what kind of statistical test will accurately

measure the performance differences.

Because users vary widely in speech speed, disfluencies, and other characteristics

that will affect their baseline ability to use a spoken system, it is not reasonable to

assume that the error rates and entry rates will be normally distributed within each

population. This means that we cannot compare users to each other. Even within a

single user’s set of programs, it is probably not reasonable to assume their errors are

normally distributed between programs. Thus, we cannot use the common Student’s

t-test [42] to compare the different sets of samples, because the t-test requires that

the two populations be normally distributed.

However, because of the reuse of audio files, a particular user’s performance in

dictating a set of programs with one set of features enabled can be directly compared

to that same user’s performance on the same set of programs using a second set

of features. For example, suppose that subject n’s audio files produce 5 correct
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programs out of 10 dictated programs when run with the baseline, and suppose that

subject n’s audio files produce 7 correct programs out of 10 dictated programs when

run with scoping. Regardless of the exact distribution or causes of subject n’s errors,

because of the way the audio was re-processed, we can say that the difference of 2

programs is attributed to the addition of scoping.

In this situation, a Wilcoxon signed-rank test [43] is appropriate. In the Wilcoxon

test, we do not need to assume that the data are normally distributed. We need

only assume that each pair of data points are from the same population, represent

independent observations, and that they are comparable numerically. To perform the

test, each user’s performance in the first sample is compared to their performance

in the second sample, and we take the sign of the difference. The differences are

ranked based on the magnitude of the difference, the ranks are summed separately

for positive and negative differences, and the total is looked up in appropriate critical

value tables to determine if the result is statistically significant, i.e., produces a p-

values less than 0.05. Intuitively, the result is significant if a large enough fraction

of the differences have a positive sign (meaning those users showed improvement).

Unless otherwise specified, we have used the Wilcoxon signed-rank test to evaluate

the raw results below.

6.2 Case Study: Comparison to Dictating C

The first results are from our initial case study. Recall from the previous description

that this involved a single user comparing Dragon speech recognition software versus

our spoken programming environment to dictate a simple program. The text of the

C and equivalent spoken syntax are given in section 5.1.

Here is a transcript of the words necessary to recreate the C program in Dragon.

Each bullet represents the words for a single line. During dictation, we paused at
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the end of each line to ensure that the line was correctly recognized. Additional

explicit pauses needed to let Dragon recognize the text to that point are indicated

with pause.

• hash sign include less than sign no caps letter s letter t letter d letter i letter

o dot no caps letter h no space greater than sign new line

• no caps letter i letter n letter t pause main open parenthesis no caps letter i

letter n letter t pause no caps letter a letter r letter g letter c comma char space

bar star star no caps letter a letter r letter g letter v close parenthesis open

brace new line

• tab key no caps letter i letter n letter i pause letter i equals sign one semicolon

new line

• tab key while open parenthesis letter i less than sign equals sign ten close

parenthesis open brace new line

• tab key tab key print no space no caps letter f open parenthesis open quotes

percent sign no space no caps letter d close quotes comma letter i close paren-

thesis semicolon new line

• tab key tab key print no space no caps letter f open parenthesis open quotes

backslash no caps letter n close quotes close parenthesis semicolon new line

• tab key tab key letter i equals sign letter i plus sign one semicolon new line

• tab key close brace new line

• tab key return zero semicolon new line

• close brace new line
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Here is a transcript of the words needed to recreate the equivalent spoken program

in Dragon. Note that even though it is mostly English, the line breaks, tabs, and

punctuation still have to be spelled out explicitly.

• define function main taking no arguments as new line

• tab key set letter i pause to numeral one new line

• tab key while letter i less than sign equals sign ten do new line

• tab key tab key print letter i new line

• tab key tab key new pause line new line

• tab key tab key set letter i pause to letter i plus sign one new line

• tab key no caps letter e letter n letter d pause while new line

• end function new line

At a glance, it is immediately clear that far fewer words overall are needed to coax

the desired program out in the second case. This alone should lead one to expect

faster program entry and fewer corrections, and this assumption is borne out by the

results, as shown in Table 6.1.

Time to Dictate Program Corrections Required
C Program 159± 27s 8± 6

Spoken Program 69± 17s 2± 2

Table 6.1: Dictating C and Spoken Language with Dragon Dictate

This demonstrates that even using an unspecialized commercial speech recogni-

tion package with no built-in knowledge of programming, simply switching to the

spoken syntax makes a large improvement. Speaking the program takes less than

half as long on average (35% less time even comparing the worst trial of the spoken
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syntax to the best trial of the C syntax), and the average number of corrections

needed is also reduced.

This large difference in speaking time can be partly attributed to the relatively

fewer number of words needed for the spoken syntax. It can also partly be attributed

to the “naturalness” of the mental mapping required for the spoken syntax; even

after over an hour of practice on the same program, we found that we kept losing

our place when dictating a line of C and had to pause to remember the syntax for

various punctuation symbols. Qualitatively, the programming experience was also

improved with the spoken syntax. Because we were not focused on speaking out all

the punctuation, we were able to pay closer attention to what the code actually said.

Due to the large amount of training required on Dragon and the very strong

results, we did not re-run this part of the experiment on any of our other subjects

during the user study.

6.3 Case Study: Dragon Compared to the Spoken

Programming Environment

As a continuation of the experiment above, we dictated the same spoken program

into our programming environment. The results are shown in Table 6.2. Note that

the results for Dragon are the same as shown in Table 6.1; they are duplicated here

for clarity.

Time to Dictate Program Corrections Required
Dragon 69± 17s 2± 2

Spoken IDE 22± 6s 1± 1

Table 6.2: Dictating Spoken Program with Dragon Dictate and Spoken IDE

As the table shows, moving from spoken syntax alone to spoken syntax combined



Chapter 6. Results and Discussion 68

with an environment that incorporates programming context resulted in a dramatic

reduction of the time needed to enter the program text. In two of the trials, the

spoken IDE required 0 corrections; in the other case, the corrections were due to a

misstatement by the speaker rather than an error produced by the system.

Qualitatively, the programming experience was again improved due to the in-

creasing simplicity of the mental map between text and speech. When using the

spoken IDE, we did not have to remember to pause between certain symbols and did

not have to remember which lines required us to say “numeral one” instead of just

“one.”

6.4 User Study: Spoken Programming with Context-

based Features

The case study described above provides a data point that suggests our claims about

spoken programming are on the right track, but the real test comes from the experi-

ments that were enabled by our user study. In the following sections, we will describe

the data that resulted from each of the three study components (offline/reading tests,

interactive tests, programming challenges) and analyze the results.

6.4.1 Offline Tests

In the offline tests, we processed each audio file three times: once with only the

grammar-based context enabled (baseline), once with the scoping turned on (scoped),

and once with both scoping and typing turned on (typed). Because the type inference

depends on having scope information, there is no separate run for typing without

scoping.
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Block Structure

The first measure is whether the program produced has the same block structure as

the correct program. This means that it has the same number of functions taking

the same arguments, the same nesting structure of while and if statements, and all

the blocks are terminated correctly. It does not mean that the symbol names are the

same (or even consistent), or even that the program is compilable. For example, if the

program has an identical block structure but contains erroneous variable references

or invalid function calls, it may not compile at all. Table 6.3 shows the results of

this measurement. The maximum number of correct programs for each subject in

this test is 10.

Subject Baseline Scoped Typed
1 5 5 4
2 6 6 6
3 8 8 7
4 8 8 9
5 9 8 9
6 8 8 8
7 10 10 10
8 7 8 8
9 9 9 9
10 10 10 10
11 8 8 8
12 8 8 8

Table 6.3: Block Structure Successfully Produced in Contexts

The majority of subjects experienced no change in the number of programs with

correct block structure as a result of the context-based features. Of those who saw

a difference, some were positive and some negative. However, the differences are

not statistically significant. Using Wilcoxon’s test, we have W = 71.5 with a p-

value of 0.52 moving from the baseline to scoped context. Adding typed context,

we have W = 76, p = 0.42. Finally, going from baseline to fully typed, we have
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W = 75, p = 0.44.

This result is not much of a surprise, since the context-based improvements we

have been considering should affect identifier recognition much more than the overall

program structure or basic statement constructs. However, since that is the case,

one question that might be raised is why any of the users should have experienced

a decrease in correctly structured programs. Moreover, why does the decrease only

happen when typing is added? This will be discussed in section 6.4.5.

Compilable

The second measure is whether the resulting program is compilable. This not a

superset of the previous block structure measure. A program in which some loops

or conditionals get lost may still be compilable even though it would not have the

same block structure. The combination of compilable and correctly structured will

be separately considered in the next section.

Leaving aside potential missing block structure elements, programs that are com-

pilable may still not be correct. A compilable program could contain incorrect oper-

ators in arithmetic or Boolean expressions, incorrect (but legitimate) uses of literal

values or variables, calls to incorrect (but defined and properly typed) functions, etc.

Compared to the block structure test, we should expect to see a larger effect for

compilable programs from the context-based features. Errors such as using undefined

variables or calling non-existent functions should be reduced or eliminated by the

scoping, and we can expect errors such as adding a string to a number to be similarly

reduced by the addition of typing. The actual results are shown in Table 6.4. Again,

the maximum number of correct programs for each subject in this test is 10.

Unlike the block structure test, no users experienced a decrease when adding

context-based features. Some had an increase in compilable programs when adding
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Subject Baseline Scoped Typed
1 3 4 6
2 5 5 6
3 3 6 7
4 6 6 10
5 3 7 7
6 5 7 8
7 8 8 10
8 5 5 7
9 4 6 9
10 4 6 10
11 5 6 8
12 3 6 9

Table 6.4: Compilable Programs Produced in Contexts

scoping, some when adding typing, and some in both cases. Intuitively, this tells

us that the context-based features have the expected effect, but formally we can

check using Wilcoxon’s test again. We find that W = 117, p = 3.9⇥ 10�3 for adding

scoping to the baseline. Adding typing, we get W = 125, p = 9.4 ⇥ 10�4. Finally,

going from baseline to fully typed, we get W = 137, p = 8.7⇥ 10�5. These p-values

indicate very strongly that the increase in the number of compilable programs is

not due to chance. The scoping and typing are individually statistically significant

improvements, and the combination even more so.

We also see in these results that the two types of context we have been considering

are able to fix different types of errors. As predicted, the scoping feature gets rid of

errors where the recognizer produces a reference to an undefined variable or function,

but it cannot help distinguish between similar-sounding identifiers that are both in

scope. Adding the typing removes these ambiguities by ensuring that variables are

used in a type-compatible way.
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Compilable and Structured Correctly

Since compilable programs may not exhibit the correct block structure and vice versa,

it is also relevant to compare the outcomes for programs that are both compilable and

correctly structured. This combination represents programs that compile and follow

the structure laid out by the programmer, but they may still not be perfect. The

type of bugs that may be present are limited to basic typos like having an incorrect

comparison operator in a Boolean expression or substituting an incorrect value where

a variable was expected. See Table 6.5 for the results. The maximum number of

correct programs for each subject in this test is 10.

Subject Baseline Scoped Typed
1 2 3 3
2 5 5 6
3 3 6 7
4 6 6 9
5 3 7 7
6 5 7 8
7 8 8 10
8 5 5 7
9 4 6 8
10 4 6 10
11 5 6 8
12 3 6 8

Table 6.5: Correctly Structured Compilable Programs in Context

Intuitively, we can see that there are improvements for every subject and no re-

gressions, so the context-based features appear to be a clear improvement. Perform-

ing our usual Wilcoxon test to verify this formally, we find W = 115, p = 6.0⇥ 10�3

for adding scoping to the baseline. Adding typing to this, we get W = 118.5, p =

3.3 ⇥ 10�3. And finally, going from the baseline to the fully typed setup, we get

W = 128, p = 6.0 ⇥ 10�4. Like the previous section, we have a statistically signifi-

cant improvement on each feature separately, as well as in combination.
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Even though the improvements are large, we can see from Table 6.5 that most of

the subjects still did not manage to get 10 out of 10 programs. Nevertheless, at this

level of correctness, it seems plausible to describe the results as a “working program

with a bug” instead of “wrong program.” The remaining errors are the types of errors

that a normal person typing a program at the keyboard might easily make.

Functionally Equivalent

The final measure for our offline tests is whether the output programs are functionally

equivalent to the intended programs. What this means is that the produced program

compiles, is structurally identical to the intended program, and contains no incorrect

variable names or literal values. The only difference allowed from the input program

is renaming variables as long as the change does not alter the program behavior.

For example, if the recognizer replaces a with k everywhere and k wasn’t otherwise

used, the generated code and program behavior remains the same and the program

is considered functionally equivalent. The results for this measure are shown in

Table 6.6. The maximum number of correct programs for each subject in this test is

10.

The results here are not quite so clear-cut. Adding scoping to the baseline, we

get W = 92.5, p = 0.12, so this is not strong enough to claim significance. Adding

typing, we get W = 78, p = 0.37, even less strongly supported. But going from the

baseline to fully typed, we get W = 96.5, p = 0.08, which is just shy of the 0.05 bar

of statistical significance.

This level of near-perfect output is obviously the most desirable, and it is dis-

appointing to see that our results in this case do not support a claim of statisti-

cally significant improvement. However, this is mitigated by two factors. First, as

mentioned in the previous section, it is entirely common and even “normal” for a

programmer using a keyboard to produce programs that are not perfect even though
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Subject Baseline Scoped Typed
1 1 2 1
2 3 2 2
3 3 4 4
4 5 6 7
5 2 4 4
6 4 5 5
7 8 7 9
8 5 5 5
9 3 3 3
10 3 5 5
11 3 3 4
12 2 4 5

Table 6.6: Functionally Equivalent Programs Produced in Contexts

they compile (e.g., how many security bugs have resulted from an accidental “<”

where “<=” was meant?). If this were not true, there would not be areas of research

and entire companies dedicated to helping reduce errors and debug programs. Since

error-free-on-the-first-try programs are not generally achievable with traditional pro-

gramming, it is too high of a bar to imagine that spoken programming will produce

them.

Second, many of the errors these programs contained turned out to be easily

noticed and quickly fixed by the user in interactive use. Due to the nature of the

dictation process for this offline part of the study, no corrections could be made, so

the number of errors overestimates the number produced in real use of the system.

This will be discussed further in section 6.4.2.

Comparison by Programs

In addition to the breakdowns by subject described in the previous sections, it is

also useful to see if the performance of the system is affected by the program itself.

In order to see if the improvements from the context-based features varied by the
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structure of the program as well as by the user, we performed similar analysis broken

down by program. Because the combination of correctly structured and compilable

programs represents the most useful case, we only performed this analysis for this

particular case. The resulting data for the combination of correctly structured and

compilable is shown in Table 6.7. In this table, the maximum possible is 12 instead

of 10, because we are counting the number of subjects who get each program correct

instead of the number of programs each subject gets.

Program Baseline Scoped Typed
1 10 10 10
2 12 12 12
3 10 12 12
4 4 10 10
5 7 11 11
6 3 10 10
7 2 3 10
8 0 0 5
9 4 2 7
10 1 1 4

Table 6.7: Users Completing Correctly Structured Compilable Programs

Calculating our Wilcoxon test, we get W = 60, p = 0.23 for the change from

baseline to scoped. Adding typing from scoped, we get W = 59.5, p = 0.24. Finally,

going from baseline to fully typed, get get W = 77.5, p = 0.019. Thus, the changes

are individually not statistically significant, but the full set of both scoping and

typing makes a large enough improvement to be significant.

Looking at the programs individually, we can try to come up with explanations for

which features are problematic and which features are helped by the different types

of context. The full text for all ten programs can be found in Appendix B, but we

will briefly discuss them individually here. Programs 1–3 are trivial programs with

no nesting or looping. They simply set a variable of different types and then print it.

As the results show, these programs didn’t benefit much from the additional context.
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Most people got them even in the baseline, and there wasn’t much improvement from

adding the context (nor much room for improvement).

Program 4 first introduces a while loop. This appears to have been a large

problem, as the number of people who got it in the baseline drops by 60%. Adding

the scoping restored the performance back because the missed variables in the con-

dition are now corrected by knowing what is in scope. Program 5 introduces the

if-then-else construct and shows a similar story. In program 6, we have both

a while loop and an array variable, and the overall result is similar. These three

programs still have just a couple of variables of a single type each, but they have

started to introduce some structure. Thus, the scoping brings a large improvement,

but the additional information from typing doesn’t add much more.

Finally, programs 7–10 are longer and more complex. They contain multiple

functions with lots of variables and a more deeply nested block structure. Merely

knowing the block structure of these programs doesn’t help to get all the variables

right, and this is borne out by the fact that adding scoping alone didn’t make much

improvement. Once typing was added, all the mistakes of attempting to add an array

variable to an integer or to set an element of an integer variable disappear, and the

number of viable programs jumps accordingly. We observed that the while loop in

program 4 seemed to cause some severe difficulty, and this is empirically confirmed

by program 8. Program 8 has a doubly-nested set of while loops with an if-then

block inside that. This was complicated enough that nobody managed to get all the

right variable references in place without the help of the typing.

Summary

These offline tests provide a direct comparison of whether the context-based features

improve the outcome for a particular user. We found that these features are likely

not needed for capturing the basic block structure of the program; most participants
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exhibited good performance in the baseline and the differences from the context-

based features were not significant.

While the ultimate goal might be to dictate a perfect program, we unfortunately

found that the improvements here were also not statistically significant. However,

given the fact that people who enter programs via keyboard and mice don’t auto-

matically produce perfect programs without tweaking, either, we suggest that this

might not be a realistic goal. A more realistic goal is to capture the structure of the

user’s program and produce compilable output. Subsequent problems are bugs that

can be found through normal debugging and testing. Considered on this metric, we

found very strong support for the claim that the context-based features help produce

programs.

When considering the results by program instead of by user, we found that pro-

grams require a certain initial complexity before the additional context has any room

to help. Once a program has a small amount of block structure with a couple of vari-

ables, the scoping makes a large difference. Once the program passes some threshold

in terms of complexity, scoping alone is no longer adequate, either. For these more

complex programs, the type-based context makes a substantial difference. The com-

bination of scoping and typing produced significant improvements overall with a

p-value of 0.019.

6.4.2 Interactive Tests

The second section of the user study was the interactive tests. As described in

Section 5.2, the user was directly interacting with the running programming envi-

ronment for this part of their session. They were able—and encouraged—to make

corrections when the system produced incorrect output. This means that unlike the

offline recordings described in the previous section, the interactive sessions can’t be

replayed through the system with different settings later. The user’s interaction is
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dependent on the specific behavior of the system at the time they used it.

Instead of replaying each user’s recording multiple times to evaluate the context-

based features, we randomly divided the participants into two groups. Of our twelve

participants, six used the baseline system (group 1) and six used the full system with

scoping and typing (group 2). Because of the small size of our study, we did not have

any participants record with scoping only. Due to a recording error, interactive data

for two of the participants was unusable; thus, we have five people in each group.

Within each group, we have numbered the subjects from 1–5 without regard to their

numbering in the offline section; thus, subject 1 in group 1 does not necessarily

correspond to subject 1 from the offline tests. More importantly, subject 1 in group

1 is not the same person as subject 1 in group 2. The tables below have been divided

by a vertical space to help visually reinforce this warning.

Because each participant was encouraged to make corrections as needed, we did

not record whether the programs were perfect. For each subject, we recorded only

whether they were able to complete each program within a 5-minute time limit. For

completed programs, we also recorded how long it took and how many corrections

were necessary.

Since we are comparing separate groups of people instead of comparing each par-

ticipant to themselves, we cannot use the Wilcoxon signed rank test (the Wilcoxon

test requires that the data pairs come from the same population). As described pre-

viously, we still cannot assume that the number of programs completed or numbers

of corrections are normally distributed. We can assume only that the study partic-

ipants are independent observations and that the numbers are comparable to each

other. In this scenario, the Mann-Whitney U test is more appropriate for determin-

ing if the performance difference between the two groups is significant, so this will

be the statistical test used throughout the following sections.
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Programs Completed

The first measure was the number of programs completed. None of the participants

in the baseline group were able to complete more than 4 out of 10 programs. All of

the participants in group 2 completed at least 8 out of 10 programs within 5 minutes,

and 4 out of the 5 completed all 10 successfully. From this description alone, it is

clear that group 2 was more successful than group 1. However, to present the result

formally, we computed the Mann-Whitney test and found that U = 25, p = 4.6⇥10�3.

The data is shown in Table 6.8.

Baseline Group Completed Scoped and Typed Group Completed
1 2 1 8
2 4 2 10
3 3 3 10
4 2 4 10
5 4 5 10

Table 6.8: Programs Completed in Interactive Session

Corrections Needed

In addition to the raw number of programs completed, it is interesting to ask whether

the number of corrections necessary to complete the program changed with the addi-

tion of the context-based features. The programs were different lengths, so we cannot

simply compare the number of corrections directly. Instead, we have normalized by

computing a “corrections per line of code” correction rate. In Table 6.9, we present

the average correction rate for participants over all programs that each participant

completed.

We did not include programs that were not completed in the calculation because

it is impossible to know how many corrections might have been needed to finish

whatever part remained. We observed that for incomplete programs, subjects had
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typically accumulated dozens of corrections before they either gave up or ran out of

time. Had all of these corrections been included, the correction rates shown here for

the baseline subjects would have been at least an order of magnitude larger.

Baseline Group Rate (err/line) Scoped and Typed Group Rate (err/line)
1 0.17 1 0.25
2 0.73 2 0.32
3 0.44 3 0.21
4 2.31 4 0.20
5 0.26 5 0.14

Table 6.9: Average Correction Rate Interactive Session

Performing the Mann-Whitney test, we find that U = 5, p = 0.07. Thus, this

result was not statistically significant. We can see from Table 6.9 that the range

of correction rates was significantly reduced by the addition of the context-based

features (0.18 versus 2.14), but we cannot say that the overall distribution is definitely

improved.

However, averaging in this way causes different numbers of programs to be in-

cluded for each participant. To determine if the rates were affected by the inclusion of

the extra programs for group 2, we performed the same calculation on a program-by-

program basis for programs 1–3 (since these were completed by most participants).

The data is shown in Tables 6.10, 6.11, and 6.12. In these tables, the value “N/A”

indicates that that particular participant did not complete that program, while a

value of 0.0 indicates that the program was completed with no corrections required.

Baseline Group Rate (err/line) Scoped and Typed Group Rate (err/line)
1 0.20 1 0.60
2 0.80 2 0.40
3 0.0 3 0.0
4 4.2 4 0.0
5 1.0 5 0.20

Table 6.10: Interactive Correction Rate Program 1
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Baseline Group Rate (err/line) Scoped and Typed Group Rate (err/line)
1 N/A 1 0.0
2 1.0 2 0.83
3 0.0 3 0.17
4 N/A 4 0.0
5 0.0 5 0.17

Table 6.11: Interactive Correction Rate Program 2

Baseline Group Rate (err/line) Scoped and Typed Group Rate (err/line)
1 N/A 1 0.0
2 0.0 2 0.0
3 1.33 3 0.17
4 N/A 4 0.33
5 0.0 5 0.0

Table 6.12: Interactive Correction Rate Program 3

For program 1, we find U = 6.5, p = 0.12. For program 2, we find U = 8, p = 0.63.

For program 3, we find U = 7, p = 0.5. Thus, even comparing directly equal program

to equal program, we see about the same results as comparing the overall average

correction rates. The span of error rates is smaller with the context-based features

enabled, but the overall distribution is not definitively improved.

One notable outlier that jumps out of the tables above is the particularly poor

performance of subject 4 from group 1. This person had an error correction rate of

more than 3 times the next highest person! Was there something about subject 4

that made their performance so much worse? As it turns out, subject 4 was one of

our two female subjects. This will be discussed in more detail in section 6.4.5.

Completion Time

The final comparison we performed between the groups was to see if the context-

based features reduce the time needed to dictate a program. Like the corrections, we
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cannot directly compare the times. Not only are the programs different lengths, but

different users have different natural speech rates, different pause lengths, etc. We

normalized the times by dividing the seconds needed to complete the program by the

number of lines to yield a seconds per line dictation rate. We averaged the dictation

rates across the completed programs, and the results are shown in Table 6.13.

Baseline Group Rate (sec/line) Scoped and Typed Group Rate (sec/line)
1 4.8 1 12.20
2 7.14 2 9.96
3 3.86 3 8.77
4 30.0 4 8.54
5 6.33 5 4.87

Table 6.13: Average Dictation Rates Interactive Session

Calculating our Mann-Whitney test, we find that U = 18, p = 0.16. Thus, we

see the same picture as Section 6.4.2: The range of dictation rates is tightened up

considerably with the context-based features in group 2, but the overall distribution

is not improved in a statistically significant way.

As in the previous section, we repeated the analysis of programs 1–3 for the

dictation rate measurement to determine if the individual results differed from the

average. The results are shown in Tables 6.14, 6.15, and 6.16. A value of “N/A”

means the program was not completed.

Baseline Group Rate (sec/line) Scoped and Typed Group Rate (sec/line)
1 4.8 1 28.4
2 5.6 2 7.8
3 2.4 3 3.2
4 44.4 4 3.2
5 13.6 5 3.8

Table 6.14: Interactive Dictation Rate Program 1

For program 1, we get U = 10, p = 0.34. For program 2, U = 10, p = 0.80. For

program 3, U = 7, p = 0.50. Thus, we see again that the range of values is smaller,
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Baseline Group Rate (sec/line) Scoped and Typed Group Rate (sec/line)
1 N/A 1 25
2 12.0 2 9.67
3 2.67 3 5.17
4 N/A 4 3.17
5 3.33 5 3.67

Table 6.15: Interactive Dictation Rate Program 2

Baseline Group Rate (sec/line) Scoped and Typed Group Rate (sec/line)
1 N/A 1 2.67
2 2.33 2 3.0
3 6.5 3 4.83
4 N/A 4 4.83
5 3.5 5 2.67

Table 6.16: Interactive Dictation Rate Program 3

but the overall change in distribution is not statistically significant.

We can see two oddities in these results. Once again, we see that subject 4 in

group 1 shows much worse performance than the others. This is due to the fact that

she had to make so many corrections (as we saw in the previous section), so it simply

took far longer to get each line correct.

The second big outlier is subject 1 from group 2. This subject did not show the

same increased error rate as subject 4 in the previous section, so why did they take

so much longer to dictate each line? The fact that subject 1 was tied for the fastest

rate in program 3 suggests that this was not merely a matter of speaking more

slowly. The actual explanation is that subject 1 had to repeat each line multiple

times before it was recognized. Instead of producing erroneous lines that required

corrections (and thereby increasing the error counts), Sphinx had so much trouble

with most of the utterances that it simply produced nothing. This phenomenon

occurred occasionally for every subject, but it was particularly prevalent for subject

1. Perhaps not coincidentally, subject 1 from group 2 was our other female subject.
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We will discuss this further in section 6.4.5.

A final observation about these results is the correlation (or lack thereof) between

the error rate and the dictation rate. For group 2, other than subject 1, there is

a perfect rank correlation between the two, i.e., as the number of errors per line

increases, so does the time needed to dictate each line. This makes intuitive sense,

since the more time the user spends making corrections, the longer it takes to dictate

a program.

Group 1, on the other hand, presents a different story. Aside from subject 4, there

is no obvious relationship between the error rate and the time needed to dictate a

line. While we do not have a rigorous explanation for this behavior, we believe it

may be related to the “strangeness” of the errors produced. With the context-based

features enabled, the errors produced by the voice recognizer were typically simple,

uninteresting errors such as incorrect variable names or Boolean operators. The user

was able to quickly see that a line was incorrect, repeat the line as needed, and move

on. With the baseline, however, the errors ranged from simple to completely wacky.

For example, one run turned this input:

set i to the result of calling m with f and n � 1

set element n of f to z + i

into this:

set i to the result of calling m with f and 10 � 1

and 11 and 10 and f and z + i

Without the scoping and type information, there is no way to know that m is a

function taking two arguments instead of a function taking 6 arguments, so the

output produced was a potentially legal statement.

When a particularly weird error came out, some users stopped to puzzle over

it and try to figure out how the recognizer could have made that error. Since the
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level of strangeness was fairly random, the time taken to study the errors did not

correspond to the exact number of errors; thus, the time taken does not have an

obvious relation to the number of errors corrected.

Summary

For interactive use, the context-based features make a large difference in helping users

complete programs. All of the users who used the context-based features completed

more programs than any of the users who did not use the context-based features.

When comparing programs that users in both groups 1 and 2 completed, the

variance in rates of corrections per line and seconds to dictate each line were much

smaller. However, when compared as an overall distribution, the results were not

statistically significant.

The combination of these two observations leads us to speculate that for the

programs that were simple enough to be completed with the baseline features, they

were also simple enough to not benefit greatly from the context-based features. These

same programs are also those that did not show significant improvement in the offline

comparisons in Section 6.4.1, so this is not a large surprise. For the programs that

were large enough and complicated enough to benefit from the context-based features,

the use of context made a very large difference.

6.4.3 Challenges

The third section of the user study was the programming challenges. In this section,

we offered the user three small programming challenges, and they attempted to write

programs to solve one or more of these challenges. Each of the challenges could be

solved with less than 20 lines of code.
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We gave the users freedom to solve the challenges in any way they liked, and

every user had a different approach. Some users thought things through before they

started dictating, while others started dictating immediately and then paused to

think after every couple of lines. Some users had many more lines than others. Some

users wrote almost exactly the solution we had expected, while others came up with

something entirely different.

When counting a successful solution, we simply accepted whatever program was

produced when the user stopped and told us they thought it was solved. If they

stopped short, we counted that as a failure. Some of the programs actually were

solutions to the problems given, but others contained logic errors or compilation

problems that went unnoticed by the programmer. This seems no different than

what one would expect if asking people to type in a solution with a keyboard instead

of dictating it.

We observed that the problems were split between difficulties with using the new

language correctly and errors caused by the spoken programming. For the users who

seemed more comfortable with the language after the first two sections, they had little

trouble dictating programs to solve the challenges. Their errors were largely limited

to incorrect variable substitutions, literal values, etc., similar to the errors observed

in the offline testing. Those users who seemed less comfortable with the language

syntax had significantly more trouble solving the challenges, but it wasn’t necessarily

because the spoken environment was making errors. In many cases, we observed that

they were failing to dictate certain constructs because they were speaking incorrect

syntax (e.g., “set function” instead of “define function” or “x equals 5” instead of “set

x to 5”). Based on our observation, these users likely would have done much better

with more practice. Since we did not control for training effects or attempt to ensure

that users fully understood the spoken syntax prior to giving them the challenge

programs, we did not investigate this possibility further.

One user did not attempt any challenges due to running out of time during the
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first two sections of the session. The other users all attempted at least one challenge.

Six users attempted two problems, and one subject attempted all three.

One user did not solve any challenge problems in spite of attempting one, while

the others who tried one or more solved at least one. Three of the six users who

attempted two problems solved both, and the subject who attempted all three solved

all three.

We think this is likely to be another manifestation of the situation described

above, i.e., the people who felt confident in the language syntax had less trouble

with the first challenge, and the positive feedback from completing it successfully

made them more willing to attempt a second or even a third challenge. Conversely,

the people who struggled to complete the first challenge program were unmotivated

to try any additional spoken programming.

6.4.4 Informal Survey

Before each participant left, we informally asked them a few questions about their

experience. Responses were generally positive about the idea of spoken programming,

especially for the idea of using it on a tablet or smartphone. Users suggested various

potential applications for spoken programming, ranging from RSI relief to rapid

prototyping on their tablet to some kind of Google Glass integration.

On the negative side, two users commented that they didn’t like the idea of

spoken programming at all and wouldn’t want to talk to their computer under any

circumstances. These particular users were very comfortable with their existing

keyboard-based setups and had no interest in considering alternatives. A third person

liked the concept of spoken programming, but worried that it might be less efficient

than keyboard programming.

Users were also generally positive about the syntax. They found it relatively
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intuitive, although the syntax difficulties we observed in the challenges may be at

odds with this belief. Users generally had suggestions for additional flexibility in

the syntax, particularly syntax for various additional higher-level features. One user

wanted a way to switch between program syntax and prose within a single document,

à la literate programming. One user wished we had chosen a functional programming

style instead of imperative, but he also suggested that would have been an impractical

decision.

Users were less excited about the specific environment we asked them to use for

the study. The primary comments were about the lack of sophisticated editing facili-

ties. Since the environment was intended as a research tool rather than a production

programming language and these omissions were intentional, this was not an unex-

pected shortcoming. A related comment made by several users was that dictating

programs as we asked them to do in the study was “too linear.” They felt it was

important to be able to jump around in their code freely without completing each

individual construct first. Our own programming experience accords with this com-

plaint; we believe that the addition of more voice-controlled editing facilities beyond

the simple line correction we provided would address both of these areas.

The users who were the least positive about the environment were those who

used the baseline version. They commented more on the voice recognition problems

and the frustration of getting through a program, whereas the subjects who used

the environment with the context-based features enabled seemed to feel that the

voice recognition aspect was adequate. This seems to indicate that once the system

reaches some level of accuracy, users don’t feel unduly burdened by the need to make

an occasional correction.
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6.4.5 Other Observations and Unexpected Results

In the process of conducting the study, we observed a few other interesting occur-

rences that didn’t fit into any of the previous analysis. They are presented here as a

sort of “laundry list” of extra tidbits.

First, we found that while-do statements seemed to be the most problematic

statement from a speech recognition standpoint. Every participant had trouble with

them. Nobody had any difficulty with the syntax; they were probably one of the most

intuitive statements we presented to participants. Nevertheless, while statements

were rarely produced correctly without at least one correction. Program 8 contains

nested while loops, and it was also the program that gave the most problems to

participants. The grammar for if-then statements is similar to the point of sharing

the rules for the condition part of the two statements, but it did not present the

same problems. We do not have a definite explanation for this phenomenon, but we

did observe that the pronunciation of the word “while” had more variation than most

of the other language keywords. The condition was the problem far more often than

the word “while” in a while statement, but it may still be related.

On an intuition level, we found that our syntax for set statements was the

most troublesome. The recognizer had little trouble recognizing our set var to

expression syntax, but some participants had consistent difficulty remembering it.

The expression x equals 5 was the most common attempted substitution for set x

to 5, but define x to 5 and set function f ... also showed up surprisingly

often. This kind of mental word swapping probably indicates that further practice

is needed to become fully fluent in our syntax.

Although we divided errors into “fixable” and “unfixable” in Section 6.1.3, we

found that a number of “unfixable” errors were fixed by the addition of the type

system. For example, the spoken input “call f with x and n - 2” might have initially

been turned into “call f with x / 2”. This would have been classified as an unfixable
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error, since the “and”, “n”, and “-” are entirely missing and the “/” has mysteriously

appeared. After enabling typing and giving the recognizer the information that f

needs two arguments, it suddenly reinterpreted the same sounds into the correct out-

put. We also observed a few instances of entirely wrong constructs being turned into

the correct construct after scoping and/or typing was enabled. Not only were iden-

tifiers whose rules we explicitly manipulated being recognized differently, but other

untouched words in rules were now being processed differently. This phenomenon

was initially puzzling, but eventually we decided that what must be happening is

that the internal phoneme transitions on the state machine inside Sphinx must be

different enough with the context-based grammar rule changes to affect the words

around them as well. Unfortunately, this effect was not entirely limited to the positive

direction. We also observed three instances of originally correctly recognized words

turning into incorrect words after the scoping and typing were added. In particular,

this was the explanation for subject 3’s decreased performance in Table 6.3.

Last, we found that our two female subjects had a great deal of difficulty using

the system interactively. Their results were not noticeably worse than the male par-

ticipants in the offline tests, but they both had a very difficult time being understood

by the system when using it interactively. One female subject consistently produced

statements with errors that had to be corrected multiple times before a line was cor-

rect. The other had a great deal of difficulty getting Sphinx to produce any output

from her speech at all. She would have to repeat a line as many as ten times before

it would show up, but then it was often perfect. We do not have any explanation

for this behavior. Since their offline results look fine and the same Sphinx recognizer

was used in both cases, we cannot even blame a hypothetical lack of female subjects

in the Sphinx training data.
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Chapter 7

Conclusions and Future Work

This dissertation has presented the design of a new programming language that

uses English words and phrases as its syntax. This design reduces the semantic

and articulatory distances for users who wish to use speech as an input method for

programming, and it also enables reuse of the software techniques and models learned

from decades of English prose speech recognition research.

Together with the new language, we have built an Eclipse plugin that provides

a programming environment optimized for spoken programming. In addition to the

necessary integration of speech recognition software, the plugin incorporates contex-

tual information extracted from the in-progress program as it is being dictated. In

this dissertation, we have explored three particular sources of context: the program-

ming language grammar and structure, the visibility of symbols as dictated by the

nested block structure and scoping in the program, and type information gained from

performing type inference.

Our initial case study demonstrates that state-of-the-art speech recognition soft-

ware for English prose is not automatically good software for writing programs.

Switching from C to an equivalent program written with our spoken syntax, we

saw a dramatic improvement in Dragon’s performance simply by bringing the user’s
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speech significantly closer to what Dragon expects to hear. We saw further im-

provements by repeating the same program in our spoken programming environment

where the additional types of context we considered could be brought to bear. This

provides intuitive validation of the idea that a specialized environment for spoken

programming is important.

On a more formal level, we completed a user study of our programming environ-

ment in which we analyzed the performance gains contributed by our three forms

of context. We found strong statistically significant improvements in participants’

ability to create correctly structured, compilable programs. Unfortunately, use of

our environment did not lead to a statistically significant increase in programs that

were dictated error-free. Since programmers using keyboards and mice typically do

not produce perfect programs without further debugging and editing, we believe that

this outcome does not invalidate the idea of spoken programming.

When analyzed on a per-program level instead of a per-participant level, we found

that the amount of improvement associated with the context-based features varied

based on the complexity of the program. Simple programs with little nested structure

could be successfully dictated with or without the additional context. However,

dictation of complex programs with multiple levels of nesting and larger numbers of

in-scope variables showed large improvements with the additional context. This is

not dissimilar to English prose dictation; simple sentences can be produced with a

grammar or simple n-gram model, but dictating full paragraphs and larger documents

is significantly improved by larger models that incorporate topic modeling and other

additional forms of context.

Since real programming is an interactive task rather than a reading task, we

also asked our study participants to perform some interactive programming with

our environment. Here we found the most striking results of all: All participants

who used the context-based features were able to complete more programs than

any participants who did not have the context-based features enabled. This result
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was statistically significant with p = 4.6 ⇥ 10�3. In terms of reductions in errors

and improvements in the speed of programming, we found that the range of values

exhibited by participants was much tighter, but the overall improvement on these

metrics was not statistically significant.

The final task for participants in our study was to write small programs to solve

some simple programming challenges. We saw mixed results here, with some partici-

pants doing very well and others struggling. While our population size was too small

to come up with any definite reasons for this, we observed that the participants who

seemed more comfortable with the syntax after the initial reading were the same

participants who had more success with the challenges. This suggests that further

training could eliminate this particular difference. The experience with the chal-

lenges also suggests that this may not be an ideal language for initial programming

learners. Our study criteria required that participants have already completed the

equivalent of several semesters of programming classes, yet some of them still had

trouble with the syntax after 30–40 minutes of initial reading practice.

Taken all together, this research paints a picture of a possible future for spo-

ken programming. Lacking physical keyboards, tablets are currently unsuited for

major programming tasks, but being able to enter programs via speech eliminates

one major obstacle to their use for that purpose. Even given the idea of speaking

programs, speaking C, Java, or other traditional computer languages is likely to run

into similar limitation to those found in previous research. Rather than attempting

to turn human speech into existing computer languages, we have demonstrated that

significantly better spoken results can be achieved by molding the computer language

to human speech patterns.

Of course, before our new spoken language could be a serious alternative to Java

or C, plenty of further research is needed. There are many possible avenues for

further study in this area, but we will mention just a few here. The first obvious

area is to perform a more systematic study of the syntax used. As we observed in
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section 6.4.5, some statements are more intuitive than others. The most intuitive

statement is not always the statement with the best recognizer performance (e.g.,

while) and the statements with good recognizer performance are not always the

easiest to remember (e.g., set).

For spoken programming to be successful, the initial hurdle of remembering syn-

tax and achieving successful program entry must be overcome. However, once that

is in place, most programmers spend more time editing and debugging than on the

initial program entry, so navigation and editing are vital areas for future study. One

of the most common comments made by our study participants was that they wished

for more advanced editing capabilities. Several of the papers mentioned in Chap-

ter 2 have already proposed navigation mechanisms for spoken programming. These

mechanisms were designed for navigating programs written in traditional computer

languages, but many of the ideas could be applied for our spoken syntax with minimal

changes.

Spoken navigation is also an area ripe for consideration of multi-modal inter-

faces. Saying “go up three lines” may be intuitive, but “select this line” with an

accompanying screen touch is probably even more so. Once touch is incorporated,

many selection or movement tasks can much more easily be described with a gesture

than with a wordy description. One can easily imagine the user circling or tapping

variables, lines, or whole functions of interest to tell the editor where to make their

spoken changes.

Related to editing, spoken debugging is an important area missing from the cur-

rent prototype. We are not aware of any literature that covers spoken debugging.

It is possible that good results could be achieved by something as simple as adding

a few spoken commands for “step over,” “step into,” “examine variable” and similar

common debugging commands. It also seems likely that just as spoken programming

itself benefits from a syntax optimized for human speech, the process of debugging

may benefit from a re-thought from the human perspective.
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Once we can edit and debug our programs, we need to be able to link them with

other libraries and programs. Since we currently produce Java as intermediate code

and run on the JVM, it might make sense to be able to call out to existing Java

libraries. In this scenario, we suddenly need a spoken syntax for existing Java code

after all. Since this is exactly what much of the previous research into spoken pro-

gramming covered, potentially those techniques could be integrated into our spoken

syntax. Alternatively, we could require that foreign function wrappers be created to

map the external libraries to some sort of spoken syntax developed by the wrapper

creator. The wrapper itself would be a hybrid of the two languages and would have

to be developed in the traditional keyboard-and-mouse environment. This type of

requirement is typical of the foreign function interfaces in many existing languages.

The first approach would more rapidly enable the use of many existing libraries with

minimal wrapper creation effort, but the second approach would plausibly result in

superior speech-like syntax in the long run.

The final area of future research we will mention here is higher-level language con-

structs. The language we developed is around the level of C, with a few additions like

automatic memory management and type inference. However, most programming

languages today supply significantly more built-in functionality. Since the language

is Turing complete, it might be argued that all of these features are merely syntactic

sugar, but if that made no difference, people would never have developed anything

beyond C. The syntactic sugar is not merely pleasant; in many cases it is a core part

of a language and a source of programmer productivity. We suggest that spoken syn-

tax for more advanced type systems and object-oriented programming represents an

important next step. Once the programmer can use improved types, more advanced

looping constructs are sure to become vital. Beyond there, any number of modern

high-level constructs could become candidates for being re-imagined into the spoken

programming paradigm.

In this dissertation, we have taken a baby step in the direction of a new way to
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think about programming environment design: speech first instead of speech as an

afterthought. Tablets and similar devices are here to stay; if programmers aren’t al-

ready asking to program on their tablets, they will be soon. Giving them a bluetooth

keyboard and a Java compiler is unlikely to be a satisfactory answer for long, but we

hope that more baby steps in the toward spoken programming will eventually lead

to a large jump in the right direction.
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Appendix A

Complete Grammar

A full BNF grammar for the spoken language syntax follows. This is neither the

ANTLR grammar used by the compiler nor the JSGF grammars used by the Sphinx

recognizer. Instead, it is an equivalent grammar in a form hopefully more suited

for human consumption. It contains various ambiguities (such as order of opera-

tions in expressions), but these have been left in place to make the rules simpler to

understand.

hprogrami ::= hfunctioni+

hfunctioni ::= hfunc-introi hblocki ‘end function’

hfunc-introi ::= ‘define function’ hidenti ‘taking no arguments as’

| ‘define function’ hidenti ‘taking arguments’ harg-listi ‘as’

harg-listi ::= hidenti

| hidenti ‘and’ harg-listi

hblocki ::= hstatementi

| hstatementi hblocki
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hstatementi ::= hassignmenti

| hprint-stmti

| hread-stmti

| hcall-stmti

| hloopi

| hconditionali

| hreturn-stmti

| hempty-stmti

hassignmenti ::= ‘set’ hlvaluei to hexpri

hprint-stmti ::= ‘print’ hexpri

| ‘new line’

hread-stmti ::= ‘read’ hlvaluei

hcall-stmti ::= ‘call’ hidenti

| ‘call’ hidenti ‘with’ harg-listi

hloopi ::= ‘while’ hbool-expri ‘do’ hblocki ‘end while’

hconditionali ::= ‘if’ hbool-expri ‘then’ hblocki ‘else’ hblocki ‘end if’

hreturn-stmti ::= ‘return’ hexpri

hempty-stmti ::= ‘nothing’

hbool-expri ::= ‘not’ hbool-expri

| hbool-expri ‘and’ hbool-expri

| hbool-expri ‘or’ hbool-expri

| hexpri hbool-opi hexpri

hbool-opi ::= ‘=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’
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hexpri ::= hexpri hint-opi hexpri

| hexpri hstring-opi hexpri

| hfunction-calli

| hatomi

hint-opi ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

hstring-opi ::= ‘followed by’

hfunction-calli ::= ‘the result of calling’ hidenti

| ‘the result of calling’ hidenti ‘with’ harg-listi

hatomi ::= hidenti

| harray-ref i

| hstring-literali

| hint-literali

hint-literali ::= ( ‘0’..‘9’ )+

hstring-literali ::= ‘the string’ .* ‘\n’

| ‘space’

hlvaluei ::= hidenti

| harray-ref i

harray-ref i ::= ‘element’ hexpri ‘of’ hlvaluei

hidenti ::= ( ‘a’..‘z’ | ‘A’..‘Z’ ) ( ‘a’..‘z’ | ‘A’..‘Z’ | ‘0’..’9’ | ‘_’ )*
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Appendix B

Programs Used in User Study

These are the ten programs presented to users in the study. Note that several of the

programs contain logic errors that would cause problems at runtime, but they can

all be entered and compiled.

B.1 Program 1: Intro

define function main taking no arguments as

set X to 3

print X

new line

end function
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B.2 Program 2: Arithmetic Expressions

define function main taking no arguments as

read X

set Y to 2 ⇤ X

print Y

new line

end function

B.3 Program 3: Strings

define function main taking no arguments as

set X to the string

hello

print X

new line

end function

B.4 Program 4: Loops

define function main taking no arguments as

read N

set I to 1

while I <= N do

print I

new line

end while

end function
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B.5 Program 5: Conditionals and Function Calls

define function f taking arguments n as

if n < 2 then

print 1

new line

return 1

else

set R to the result of calling f with n � 1

print R ⇤ n

new line

return R ⇤ n

end if

end function

define function main taking no arguments as

read X

call f with X

end function

B.6 Program 6: Arrays

define function main taking no arguments as

read N

set I to 1

while I <= N do

set element I of A to N

end while

end function
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B.7 Program 7: Fibonacci

define function m taking arguments f and x as

return element x of f

end function

define function main taking no arguments as

read X

set element 1 of f to 1

set element 2 of f to 1

set N to 3

while N <= X do

set z to the result of calling m with f and N � 2

set i to the result of calling m with f and N � 1

set element N of f to z + i

set N to N + 1

end while

print f

new line

end function
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B.8 Program 8: Bubble Sort

define function sort taking arguments a and n as

set i to 1

while i < n do

set j to i + 1

while j <= n do

if element i of a > element j of a then

set short to element i of a

set element i of a to element j of a

set element j of a to short

else

nothing

end if

set j to j + 1

end while

set i to i + 1

end while

return a

end function

define function main taking no arguments as

set i to 1

set element 1 of X to 0

while i <= 10 do

read element i of X

set i to i + 1

end while

set short to the result of calling sort with X and 10
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print short

end function
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B.9 Program 9: Miscellaneous Functions

define function f taking arguments a and n as

set x to n + 5

print x

return a ⇤ 2

end function

define function g taking no arguments as

print 5

return 1

end function

define function m taking arguments z as

set n to 2

set x to the result of calling f with n and z

print x

end function

define function y taking no arguments as

call m with 10

end function

define function z taking no arguments as

return 2

end function

define function main taking no arguments as

set i to 1
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call y

set c to the result of calling z

call m with c

set x to 3

print the result of calling f with x and i

end function
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B.10 Program 10: Miscellaneous Functions

define function y taking arguments x and n as

return x ⇤ n

end function

define function g taking no arguments as

print the string

g

end function

define function c taking arguments x as

print x

end function

define function main taking no arguments as

set z to 5

set d to the string

hello

read n

set i to the result of calling y with z and n

if i < 20 then

call g

else

call c with i

end if

read x

set element i of m to x + n

set k to i
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call c with element k of m

end function
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Appendix C

Turing Machine Simulator

In this section, we present a Turing machine simulator written in our spoken lan-

guage. This provides both a fun proof of Turing completeness as well as an example

of a larger program. In the following explanation, we follow Hopcroft and Ullman’s

convention [24] in defining our machine as the 7-tuple

M = hQ,�, b,⌃, q0, F, � : Q \ F ⇥ � ! Q⇥ �⇥ {L,N,R}i

with the following restrictions:

1. States Q are numbered from 0 to N . Since the number of states is required to

be finite, this does not impose any limitation.

2. Tape symbols � are numbered from 0 to M . Again, this is not a limitation

because the number of symbols is required to be finite.

3. The blank symbol b is 0.

4. As a result of the above, valid input symbols ⌃ range from 1 to M .

5. The only final state F is 0. States 1 through N are used for computation. Al-

though this appears at first glance to be a restriction on the original definition,
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the extension from a set of accepting states to a single accepting state is trivial

and does not change the computational power.

6. In additional to the original {L,R} moves allowed in �, we also permit N to

indicate “no move.” This does not increase the machine’s computational power.

As input, the program first reads N , M , and the initial state q0, in that order:

define function main taking no arguments as

read N

read M

read Q

It then reads � as a set of 5-tuples:

1. current state: from 1 to N

2. current tape symbol : from 0 to M

3. output tape symbol : from 0 to M

4. move direction: �1 for left, 0 for no move, 1 for right

5. new state: from 0 to N

The list of tuples is terminated by reading two zeros (current state and current

symbol). The state-symbol pair is used to populate the two-dimensional matrix of

�’s input, i.e., Q \ F = (1..N, 0..M). This matrix is represented in the three one-

dimensional arrays update, move, and next via the standard transform

index = state ·N + symbol

This code is shown here:
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set I to 0

set done to 0

set S to N ⇤ N

set S to S + M

set element S of update to 0

set element S of move to 0

set element S of next to 0

while done = 0 do

read state

read symbol

if state = 0 and symbol = 0 then

set done to 1

else

set row to state � 1

set index to row ⇤ N + symbol

read element index of update

read element index of move

read element index of next

set I to I + 1

end if

end while

The final input is the initial tape contents. This is read as a list of integers

terminated by a 0. The tape contents are stored in the array tape. All tape cells

that are not written to are considered blank, containing a b symbol (0). Because a

computer cannot store an infinite tape, we only write to the specified cells at first.

Other cells are written as b only when the tape pointer reaches them. This allows

us to simulate an infinite tape up to the limits of the machine. Note that in a real

Turing machine, the tape extends infinitely in both directions. To simplify the code,



Appendix C. Turing Machine Simulator 114

this simulator only includes positive tape cells. If negative cells are desired, the tape

lookup could be transformed from arbitrary n to a positive index by the formula

index =

8
<

:
2n+ 1 if n >= 0

�2n if n < 0

in constant time without changing the overall simulator. Thus, this omission does

not invalidate this Turing simulator as a proof of Turing completeness. The tape

reading code is here:

set element 1 of tape to 1

set I to 1

set done to 0

while done = 0 do

read T

if T = 0 then

set done to 1

else

set element I of tape to T

set I to I + 1

end if

end while

Now, the program sets up some bookkeeping variables and performs the following

loop until it halts (or forever):

1. Look up the current state and tape symbol in the arrays representing �

2. Write the symbol from update to the tape

3. Move the tape pointer in the direction indicated by move

4. Change the state to the new state indicated by state
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5. Print out the current state and tape contents for the user

6. If the new state is 0, halt. Otherwise, continue

set max to I � 1

set pointer to 1

set state to 1

set done to 0

set step to 1

while done = 0 do

if pointer > max then

set element pointer of tape to 1

set max to pointer

else

nothing

end if

set row to state � 1

set col to element pointer of tape

set index to row ⇤ N + col

print the string

Step

print space

print step

new line

print the string

State

print space

print state

new line

call output with tape and max and pointer
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set element pointer of tape to

element index of update

set pointer to pointer + element index of move

set state to element index of next

if state = 0 then

set done to 1

else

nothing

end if

set step to step + 1

end while

Finally, the program prints out the final tape contents and exits:

print "Program completed"

new line

call output with tape and max and pointer

end function

We also use a support function output to print the tape contents, including “^”

to indicate the current tape pointer:

define function output

taking arguments tape and length and pointer as

print the string

Tape contents

new line

set I to 1

while I < length+1 do

set X to element I of tape + 0

print X
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set I to I + 1

end while

new line

set I to 1

while I < pointer do

print space

set I to I + 1

end while

print the string

^

new line

end function

Here is a sample program:

1

2

1

1 1 2 1 1

1 2 1 1 0

0 0

1 1 2 0

This creates a Turing machine with a single state (called 1) and input symbols

(1 and 2). The start state is 1. It has two rules corresponding to seeing each input

symbol on the tape in its only non-terminal state. The result of the rules is to replace

each 1 on the tape with a 2 until a 2 is reached; then the program terminates.

Based on this analysis and the initial tape contents of 1, 1, and 2, we expect the

final output to be 2, 2, 2, with the tape pointer pointing to element 4.
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Here is the output from running the sample program:

Step 1

State 1

Tape contents

112

^

Step 2

State 1

Tape contents

212

^

Step 3

State 1

Tape contents

222

^

Program completed

Tape contents

2210

^

Note that a 0 appears on the tape in element 4 when the pointer reaches it. This

indicates that the tape element is blank. The abstract tape has 0 in every cell that

hasn’t been overwritten by the machine’s operation, but since this can’t be shown,

only the cells that the pointer has passed over contain an actual 0.
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