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Abstract

Parallel programming frameworks rapidly evolve to meet the performance demands of

High Performance Computing (HPC) applications and the concurrent evolution of super-

computing class system architectures. To meet this demand, standards and specifications

that outline the semantics and required capabilities of parallel programming models are be-

ing developed by committees of government and industry experts and then implemented

by third parties. OpenMP and MPI are particularly prominent examples of such program-

ming models and specifications, and are in common use in the HPC world. Comprehensive

testing is required to be sure that any given implementation adheres to the published stan-

dard. The type and degree of testing depends on the goals of the developers. In particular,

commercial implementations developed by companies for specialized applications (like

HPC) will have much more stringent requirements than those for general applications.
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This thesis describes the development of test suites targeted toward a subset of OpenMP

and MPI features, namely processor affinity and thread safety, as implemented in Cray

compilers and libraries. These tests, the focus of which were robustness, re-usability, and

detailed error output, contributed to software quality for the wide range of applications

for which Cray compilers are used, and continue to help Cray ensure correctness in their

OpenMP and MPI implementations as their compilers and libraries continue to evolve.
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Chapter 1

Introduction

High performance computing (HPC) hardware and applications are rapidly evolving to

meet demand for breakthroughs in fields such as biology, medicine, astrophysics, and cli-

mate modeling. These exciting and diverse domains call for ever higher performance and

drive increases in complexity and heterogeneity of networking and memory architectures.

For example, the current road-map for the development of exascale computing systems

calls for an order of magnitude reduction in power budget from our current capabilities [4]

. Because of power and cooling limitations, the speed of CPUs is no longer increased by

upping clock frequency, but by increasing the number of cores per chip [12]. In HPC sys-

tems, multi and many-core CPUs are bundled together on nodes, which are connected by

high speed interconnects. In addition, each core may run many threads. These systems can

be heterogeneous in design, and use a combination of shared and distributed memory (Fig.

1.1). Memory access speed is currently the major limitation in application performance,

and therefore communication mechanisms and pathways will determine the ultimate per-

formance achievable. This, in turn, has driven developments in networking paradigms and

chip architecture such as remote direct memory access (RDMA). These architecture de-

velopments require changes in communication and data access patterns that then must be

implemented in software.
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Chapter 1. Introduction

(a) Distributed memory architecture

(b) Shared memory architecture.

Figure 1.1: Two common memory architectures. In shared memory, for which OpenMP was de-
signed, every CPU has access to a common pool of memory through a single bus and commu-
nication between processes is implicit. In distributed memory architectures, the bus connects the
CPUs, but each CPU has it’s own local memory. Communication in distributed memory architec-
tures must be done with an explicit message passing mechanism (such as MPI). Most systems for
high-performance computing will incorporate some combination of these two architectures.

To fully take advantage of innovations and architectural changes, parallel program-

ming models such as Open Multi-Processing (OpenMP) and Message Passing Interface

(MPI) have become pervasive HPC. These take the form of standards and specifications

developed by committees of experts and implemented as compilers, libraries, and run-

time frameworks for C, Fortran, and C++. The quality, efficiency, and correctness of

results from these parallel programming models critically depend on software testing ef-

forts that can keep up as new versions of these specifications are being continually rolled

out [3][5]. The topic of this thesis is the development of test suites for key features of the

new OpenMP and MPI standards.

2



Chapter 1. Introduction

1.1 The Need for Software Quality and Correctness in

HPC Applications

It is important that the performance increases in HPC applications made possible by rapid

innovations not come at the expense of basic features such as software quality, security,

resilience, and correctness. However, test suites tailored to these quality features tend

to take a back seat to the results of performance benchmarks and software correctness is

assumed. The amount of effort put into ensuring that a given implementation conforms to

a standard and/or produces a correct result is not as visible or appreciated; the danger in

this is that mistakes could become apparent after-the-fact leading to huge economic and

human losses [6]. This becomes even more important when considering the complexity

of HPC applications: machine crashes or deadlocks are expensive and inconvenient but

an incorrect result may remain undetectable for years, leading to erroneous conclusions

resulting in a cascade of invalid research results, policy mistakes, and the resultant miss-

appropriation of resources and scarce research dollars.

1.2 Project Motivation and Scope

This thesis describes the design and development of test suites to verify the correctness

of several new features in OpenMP 4.0 and MPI 3.0 as implemented in the latest Cray

libraries and compilers. Cray is a key player in HPC, and provides HPC systems to com-

mercial and government agencies to support research into such fields as energy, financial

services, health care, and weather forecasting. These systems have stringent quality assur-

ance requirements because of the nature of their applications and the customers that they

serve. So, although test suites for both OpenMP and MPI exist and can be found on the

web, there is no assurance that they meet the targeted needs of Cray, or that documentation,

error output, and the quality of the tests themselves is adequate.

3



Chapter 1. Introduction

To fully appreciate the need for internally developed test suites, targeted to specific

compilers and applications, contrast the current situation in software quality to that of the

system in place to assure the quality of physical measurements: For every system that

purports to “traceably” measure a definable physical or electrical quality, traceability to a

national standard (itself traceable to a agreed upon international standard at the Interna-

tional Bureau of Weights and Measures, France) is required. So in the US, high-stakes

measurement systems used in government and key industries will only utilize instruments

that produce measurements that are “NIST-treacable” (NIST - The National Institute of

Standards and Technology - is the official national metrology institute for the US). The

system of standards and traceability is supported by a sophisticated system of auditors and

certification requirements and exists at huge government expense. Although NIST has a

software quality division [10] and software quality assurance is beginning to be recognized

[2], no comparable system currently exists for software quality, and there is not an exter-

nal authority to verify the correctness of any software or testing suite that is developed by

third parties.

Cost and schedule issues can also make the use of third party test suites infeasible:

The standards themselves change every few years, and re-usability of the tests is a factor:

For example, it may be advantageous from a cost standpoint to be able to evolve the tests

along with the standards, and have them run on an in-house test harness so that code

and infrastructure are both re-used to the extent possible. Intellectual property, export

controls, and licensing issues may also come into play and can be hard to keep track of

and document for third party software. Schedule is also an issue: tests must be completed

in time for the next scheduled production release of the compiler.

Given these constraints, companies like Cray often direct the development of their own

tailored test suites, so that the tests can be targeted toward their specific needs, and quality

assurance can be closely monitored and controlled. The tests described here are the result

of a collaboration between Cray and the University of New Mexico to develop robust

4



Chapter 1. Introduction

and comprehensive test suites for the latest OpenMP 4.0 and MPI 3.0 releases, which are

being implemented as libraries in evolving Cray compilers. As part of that team, I was

responsible for two major areas of testing: 1) The development of a new feature in the

OpenMP 4.0 standard that allows for thread affinity policies that allow the programmer

to specify exactly on which processor (or set of processors) a software thread will run;

and 2) Thread-safety testing in MPI 3.0 for one-sided communication and non-blocking

collectives. Both are necessary to allow for fine-grained performance tuning in OpenMP

4.0 and are especially important in ccNUMA systems [8].

1.3 Test Development for OpenMP and MPI

1.3.1 Choosing a Test Model

Software testing is still an art but the field has converged around a specific set of software

testing models and strategies, and can be seen as existing on two levels: 1) General models

that describe how testing and development should be scheduled and co-ordinated through-

out the entire development process (for example, the Waterfall or General V-model) 2)

Specific strategies (such as static code analysis or black-box testing) that describe the ex-

act method of examining or evaluating code. Although no single model or strategy may fit

a given testing scenario exactly, each one is targeted toward a specific software lifecycle

design, programming team structure, risk analysis, application domain, and roll-out sched-

ule. A very brief and general description of some of these models is provided in Chapter

3, but to summarize: This project mainly relied on black-box testing, and test cases were

developed either through examination of typical use cases (for OpenMP 4.0 processor

affinity) or simply to achieve a coverage of basic functionality (for MPI 3.0 thread-safety).

5



Chapter 1. Introduction

1.3.2 The Parallel Programing Frameworks

OpenMP is designed for shared memory systems and uses implicit communication, while

MPI uses a completely different process-based model of parallelism and communication

between processes is achieved through explicit message-passing [12]. These programming

models use compiler directives or functions to allow the programmer to direct exactly

how parallelism will be done. However, the strict division between shared and distributed

memory within architectures has become increasingly blurred so there has been increased

use of hybrid programming models such as MPI+OpenMP. With this increased flexibility

and performance potential comes extra complexity in programming as well as the need for

thread-safe implementations of MPI [7]. For this reason, the MPI thread-safety tests were

both motivated by, and necessitated MPI+OpenMP hybrid programming.

1.3.3 Results Overview

The Tests for OpenMP 4.0 processor affinity were completed for C, C++, and Fortran

Cray implementations and packaged into an automated test suite delivered to Cray. Thread

safety tests for MPI 3.0 one-sided communication and non-blocking collectives were com-

pleted in C and forwarded to Cray for use in further optimization and development. Ul-

timately all tests passed using the latest Cray compilers and libraries. More importantly,

these suites of tests provided Cray with a comprehensive and reliable method to validate

OpenMP and MPI implementations that are in a process of continual optimization.

1.3.4 Outline of This Document

The outline of this document is as follows: Chapter 2 presents an overview of OpenMP

and MPI, and challenges of each. Chapter 3 then outlines software testing models that are

in common use, and how they relate to the testing undertaken for this theses. The rest of

6



Chapter 1. Introduction

the document is devoted to details of the OpenMP and MPI test development effort itself:

Chapter 4 describes test planning, implementation and results for the development of the

OpenMP tests. Chapter 5 summarizes the same for the MPI thread safety testing. Chapter

6 provides a summary and ideas for future work.

7



Chapter 2

Background

This section first briefly describes the parallel programming models and the specific fea-

tures that were tested. Then it provides a level of technical detail about those features

sufficient to understand the scope of the tests and the challenges involved in designing

them. For OpenMP it is particularly important to understand how threads are created

when reaching a parallel region. The MPI tests focused on thread safety, so general issues

in MPI thread safety are also explored. The interested reader may explore more details of

the OpenMP and MPI standards and parallel programming in [3][5][12][11][9][8].

2.0.5 OpenMP

OpenMP [3] is a standardized, flexible, portable, and easy to use parallel programming

model specifically designed for shared-memory systems. Software threads are identified

by parallelizing the underlying code. To use OpenMP programmers must specify which

portions of the code should be parallelized using compiler directives.

In all cases, threads are launched according to a “fork-join” model (Fig. 2.1), where

a master thread launches a team of threads when encountering a parallel region. When

8



Chapter 2. Background

coming to the end of a parallel section, the thread team is synchronized and re-assigned

to the pool. The master thread then continues until encountering another parallel section.

In the case of nested parallel regions, the child threads created at the outer level each

launch teams of child threads that go to work on the inner sections, so several generations

of threads can exist. Communication speed can suffer if threads end up on processors

far from the data that they must access. Therefore it is necessary to keep the underlying

processor architecture in mind when developing programs that use OpenMP.

The Motivation for Thread Affinity Policies in OpenMP

The OpenMP specification that describes how to launch software threads identified by the

programmer in a particular application. In contrast, hardware threads are usually managed

by the underlying operations system or processor. For example, a given set of software

threads in user space could be scheduled in any particular way but the OS may bind those

threads according to its own policy. One common policy called “first touch policy”, is for

the OS to bind a thread to the first processor on which it first allocates memory. Hardware

thread implementations, such as hyper-threaded processors, will in turn, have their own

thread-scheduling models. The pattern of thread binding according to this scenario may

not be efficient for high-performance applications: Threads could eventually end up far

from their data that they must access, because data locations can change in the course of

an application.

To achieve optimum performance in OpenMP applications, the assignment of threads

to processors must be able to adapt to both changes in data location, and features of the

underlying hardware, which usually does not have a flat computational or memory topol-

ogy. In OpenMP this is achieved by giving the programmer control over the binding of

threads to processors. “Thread Affinity” is a term used to describe the process of binding

a thread to a specific processor (or set of processors).

9



Chapter 2. Background

(a) Fork-join model for non-nested parallel structure.

(b) In nested parallel sections the number of threads
can increase exponentially. This figure shows only
two generations.

Figure 2.1: Illustration of the fork-join model in OpenMP: Time proceeds horizontally (not to
scale). The horizontal blue arrows represent thread execution, and each arrow in a vertical stack
represents a thread. The master thread launches a thread team upon encountering a parallel region
(marked by a compiler directive). The master thread continues processing throughout the parallel
region as on of the threads in the team. Thread creation and destruction occur at the green and
red vertical line respectively (although many implementations will maintain thread pools to lower
thread creation overhead). There are implicit synchronization barriers at the thread creation and
destruction points. In pre-OpenMP 4.0 implementations there is no guarantee that the threads will
run on any specific set of processors or that they will not be moved to another processor at any
point along the path of execution.

Implementation Details of Thread Affinity in OpenMP 4.0

OpenMP features a rich variety of directives and constructs that specify the details of

thread creation and processor affinity. These include an environment variable that specifies
10



Chapter 2. Background

groupings of processors, and clauses that specify binding patterns. These are summarized

below:

Processor groupings can be specified as either threads, cores, or sockets. In OpenMP

terminology, a thread is the most fine-grained definition of a processor corresponding to

a single hyperthread on a single CPU. A core is a CPU. A socket is a grouping of CPUs.

Explicit groupings can be specified by setting an environment variable (OMP PLACES).

The mapping of threads to cores and sockets, as well as the numbering of processors, is

implementation defined.

The mapping of software threads to processor groups (once the groups have been spec-

ified) is set using the parameters “master”, “close”, and “spread”. These determine where

the threads are placed among the various processor groups. The “master” policy will run

all threads on the same processor that the master thread runs on. The “close” and “spread”

policies are more distributed (as the names imply). Additional policies are enacted when

an outer parallel region encounters another parallel region in the case of nested parallelism.

More details on these policies can be found in the test implementation section.

The specification also states that once a thread is assigned to a processor it cannot be

transferred to another by the OpenMP runtime, or OS.

2.0.6 Message Passing Interface (MPI)

In contrast to OpenMP, MPI was initially designed for use on distributed memory systems

and requires programmers to incorporate explicit parallelism into their code. Instead of

using threads, MPI starts multiple concurrent processes (identified by “ranks”), each with

their own address space, that communicate via explicit message passing. Like OpenMP,

MPI is a standard, not an implementation. For any particular implementation, the standard

specifies what it must supply and the semantics it must follow.

11



Chapter 2. Background

Overview of Remote Memory Access (RMA) in MPI

Remote Memory Access (RMA or “one-sided communication”) is separate from what is

known as “Remote Direct Memory Access” (RDMA) but related to it: RDMA is way of

allowing direct access of remote memory locations while bypassing the CPU and OS. In

some implementations of RDMA, hardware used for memory access is also offloaded onto

the NIC, enabling an even more efficient means of pipelining memory access to allow for

more efficient computation/communication overlap. RMA operations in MPI, on the other

hand, were developed as means to take advantage of these hardware modifications. (Earlier

MPI Standards that only included 2-sided communications were a poor match for RDMA

since both origin and target processes had to explicitly be involved in communication,

in effect nullfiying the advantages of RDMA.) All RMA operations in MPI-3 are non-

blocking and can be used effectively in situations where all of the transfer parameters

are available to one process beforehand, so that additional synchronization and broadcasts

of parameters are not necessary before transfer (which would completely obliterate any

performance advantages). The ability to initiate several message transfers and complete

them later, while doing other work, reduces effective latency. In addition, if RDMA is

implemented in the hardware, message transfers can proceed without tying up the CPU

while computation is being performed.

There are three main different methods of exposing memory to other processes and

two different synchronization methods, some with multiple choices of synchronization

functions depending on how fine-grained control is desired. Which of these is most appro-

priate for a given application will depend on the capabilities of the hardware, the pattern

and changing-nature of data access, and the tradeoffs in performance vs memory consis-

tency. A review of the various memory window creation and synchronization methods that

were tested is provided in Appendix A.

12



Chapter 2. Background

Non-Blocking Collective Operations in MPI

Collective operations in MPI are broadcast and scatter/gather operations that involve all

processes in a communicator. For example, MPI IBcast distributes the value a one process

to all other processes. MPI IScatter divides the data at one process into equal size chunks

and distributes them amongst all other processes in a communicator. MPI IGather does

the inverse operation of MPI IScatter: It gathers data distributed amongst processes into

one location at the root process. These are just a few examples of the many collective

operations available in MPI. These operations are useful because it is difficult and awk-

ward to mimic the same behavior using simple point-to-point communication. specialized

functions that do the same thing are simpler to use in the code and can be implemented

more efficiently. Collective operations have been a part of MPI before the MPI 3.0 release.

New to MPI 3.0 are non-blocking collective operations, which were added to reduce com-

munication latency.

Thread Safety in MPI

MPI provides 3 levels of thread support:

MPI THREAD SINGLE: Only a single thread runs in the entire application. Obviously,

thread safety is not an issue at this thread support level.

MPI THREAD FUNNELED: Multiple threads run throughout the program, however

only one thread makes MPI calls. This eliminates the need for thread safety withing MPI

functions, however thread safety of the application as a whole may have to be addressed.

MPI THREAD MULTIPLE: This is the thread support level that requires thread safety

testing. Multiple threads run both throughout the application as a whole, as well as in MPI

functions. This is the level that was tested for this project.

Gropp and Thakur [7] provide a convenient classification of thread-safety issues that can
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Chapter 2. Background

arise in MPI functions. to summarize the most salient points for this thesis, a subset of

these are:

Access to the same object or data structure: Multiple MPI functions may need to al-

locate or deallocate the same data structure. One example would be a read-only property

such as a function that returns the number of MPI ranks. In this case, race conditions could

arise if one process frees an object that is then needed by another. Another is reference

counts: Thread conflicts in this case could lead to erroneous results if multiple processes

accessed the count variable in non-thread-safe ways.

I/O System: Multiple threads in MPI functions access the communication or I/O system.

This will be the case for remote memory access (RMA) functions such as MPI Put or

MPI Get. Since a substantial portion of the MPI thread safety tests developed for this

thesis involve RMA operations, this form of thread safety will be the major factor for the

tests.

Allocation of Objects or Memory: MPI functions allocate memory using malloc, or

other objects such as windows or handles. MPI RMA operations allocate memory win-

dows as well as communicator and request handles. If these functions are not designed for

thread-safety, one thread may use memory already de-allocated by another, or access to

the memory may overlap in undesired ways. In the case of handles, one handle may be ac-

cessed by more than one thread, causing confusion in data destinations or synchronization

operations.
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Testing Models and Strategies

The entire software development and testing of the Cray OpenMP and MPI implementa-

tions is comprised of three levels: 1) The application of a general software development

model used for large scale projects: The General V-Model. This stage also defines the

software testing goals and priorities, so it informs other models and strategies used in

the project. 2) Development of a set of strategies that the UNM test team uses for the

testing of the OpenMP and MPI standards: Dynamic Analysis; Regression Testing; Func-

tional Testing; Verification 3) Implementation of the specific test strategy used for the test

cases that are the topic of this thesis: Black-Box Testing. These three levels provide a

good framework for explaining test models and strategies, and help to explain where this

project fits into a larger picture that involved Cray and a team of test developers at UNM.

This chapter will present details the models used at the levels, and also analyze some of

their weaknesses.
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3.1 Level 1: Software Development and Testing Models

for Large Scale Projects

There are two main models of software development: the “Waterfall Model” and the ”Gen-

eral V Model” [1]. I call these software development models because they prescribe ways

that testing can be integrated into a software development project as a whole (not just spe-

cific testing phases). In the Waterfall Model test planning and execution proceed after all

of the other development stages have been completed. In the V-Model, test design and

implementation is synchronized with various development stages and the two branches

feedback on one another.

The development stages are [1]: Requirements Definition, Functional System Design,

Technical System Design, Component System Design and Programming. In the V-Model,

they are completed along side of the test planning for each stage. Then, after the pro-

gramming stage, testing is done as the projects proceeds back up the V (See Fig. 3-1 of

[1]).

In most cases the General V-Model is the most desirable approach, however not all

test environments, software designs, and project management considerations allow it to

be implemented in detail. The spirit of the approach is to not leave all test planning and

implementation until the step just before a new software project is released to a customer.

I describe the software development models here, because they can be used to see

where the UNM testing team fit into the Cray OpenMP and MPI development project as

a whole. Whether the Waterfall or the V-Model was used, the best place the UNM testing

team would fit into the software development process is right after the Programming Stage

(in the Waterfall model this would also be after all coding has been completed). This stage

(which is called ”Component Testing” in the V-Model) is where actual code is tested to

verify its functionality. Verification of code, to ensure that it meets functional requirements
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is the domain of “Black Box testing”. Black Box testing itself, is subsumed into a more

general test technique called “Dynamic Testing”. Both Black Box and Dynamic Testing

are techniques specifically used by the UNM testing team so they will be described in the

following sections.

However, this still does not completely describe the situation: The Cray OpenMP and

MPI libraries and compilers are in a process of continual development and are either being

optimized, or changed to meet new specifications that are released on a regular basis. So

regardless of when they were originally developed, they came to us as already developed

entities that require software maintenance as they are continually updated. Also, our test

suites had to be automated and available for re-use to check that one modification did not

have unintentional side-effects on another feature that had already been tested in a previous

release cycle. These testing activities are called “Software Maintenance” and “Regression

Testing”.

So far, I have mentioned “Dynamic Testing”, “Verification”, “Black Box Testing”,

“Functional Testing”, “Software Maintenance”, and “Regression Testing” as techniques

that were used by the UNM Testing Team to verify the Cray implementationsof OpenMP

and MPI. These terms are briefly summarized below:

Dynamic Analysis: Testing that is done with code actually running on a computer,

comparing the output for a given input is dynamic. The alternative, Static testing, is done

by analysis of the code when not running.

Verification Testing: This includes testing to verify compliance to a specification. The

specification relevant to this project is the OpenMP 4.0 and MPI 3.0 specifications.

Black-Box Testing: A subset of Dynamic Analysis, Black-Box Testing views the code

as black box. The test is defined in terms of input/output behavior, not on the underlying

code or structure, which cannot be viewed by the tester.
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Functional Testing: This is to test that a program complies to specifically defined in-

put/output behavior. This behavior is described in the relevant specification document,

which constitutes the requirements definition for the tests. By contrast, non-functional

testing would pertain to performance, or quality. We did not do non-functional tests for

this project.

Software Maintenance. Unlike mechanical systems, software does not gradually degrade,

so “maintenance” refers to the gradual process of uncovering bugs, or testing additional

functionality. In particular, any upgrades or added functionality must not break the exist-

ing code.

Regression Testing: Testing that is performed throughout the software life-cycle. It can

also be intended to be sure new features do not effect older ones that have already been

tested in past releases.

3.2 Level 2: Testing by of the UNM Cray Compilers by

the UNM Testing Team

As mentioned in the previous section, Dynamic Analysis and Black Box testing were the

main techniques used to do functional verification of the Cray OpenMP and MPI im-

plementations after the programming stage. In this section I will go through Dynamic

Analysis in more detail, because it relates to how the test planning was done at UNM Test

Team level. Although Black Box Testing also pertains to this stage, it is more relevant

to the design and implementation of individual tests, which is more relevant to Level 3,

described in the following section.
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3.2.1 Dynamic Analysis

Description of Dynamic Analysis

Dynamic analysis is the process of testing code by executing it on a computer. Therefore

it requires data to be executed, a method of knowing the correct result of execution for

that data, and a test-bed for the execution. For this project, the test bed consisted of a test

harness as well as the Cray computing environment and compilers themselves. Data is

related to the selection of test cases and was specific to each test. This will be described

for the specific test case of thread affinity later on. In general, numerical input data was

randomly generated. Other data could be the selection of environment variables, configu-

ration and parameters of the test. The correct result was determined from interpretation of

the specifications and translations of that interpretation into code.

3.2.2 Dynamic Analysis Weaknesses

In Dynamic Analysis, the correctness of the tests depends on the complex interplay of

many components, each of which themselves and can be in error. For example, the test

bed must compile, link, and run the code correctly and set the configuration in a known

and reliable manner. The computing environment also presents a unique infrastructure

and computer architecture that can change the results and therefore must be taken into ac-

count. The test bed may not be inherently stable: the system can be updated, environment

variables changed, and compiler version changed on a whim. In addition, interpretation

and translation of specifications brings in the possibility of human error: mis-reading and

coding mistakes.

Given the inherent complexity of Dynamic Analysis, verification of the tests them-

selves becomes more important. One can imagine that both false positives and false nega-

tives are possible. Presumably software testing engineers will be astute enough to evaluate
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their own software (ironically one of the major pitfalls mentioned in most software testing

texts). Ideally, a third party or additional method would be used for verification of the

tests and testing process. For this project, test results and code reviews were done by test

managers at both UNM and Cray. Also, the structure of the tests and test cases themselves

made the possibility of a false negative (here meaning that the tests evaluates faulty soft-

ware as correct) improbable because of the large number of configurations of the output

data, each individually checked. However, the lack of systematic verification of the tests,

driven by cost and schedule constraints, remains one of the more significant weaknesses

of the method as it was applied to this project.

3.3 Level 3: Black Box Testing OpenMP Thread Affinity

and MPI Thread Safety

3.3.1 Application of Software Testing Strategies to the Test Develop-

ment

As part of the UNM testing team I was assigned the responsibility of writing test cases for

OpenMP 4.0 and MPI 3.0 Thread Safety. My tools were the test bed, specification docu-

ments, the Cray computing environment, and a Linux computer. The method was Black

Box Testing and the goals of the tests were functional verification of the Cray OpenMP

and MPI implementations.

The OpenMP project had a traceability matrix (a document that keeps track of the

relation between the test cases and the specification written by the test manager) from

which I picked the “proc bind” compiler directive to work on. This is the command that

specifies processor affinity in OpenMP. My task was to write the required test cases to

achieve comprehensive coverage of the various ways that processor binding can be speci-
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fied in OpenMP 4.0 for the C, C++, and Fortran compilers. This required me to examine

and understand the specification, determine a set of inputs to the tests, find out from the

specification the expected output for a given set of inputs, and translate it all into code.

The input data for the proc bind directive consists of a set of environment variables and

clauses that specify the method of processor binding. I initially exercised the compiler

with a wide variety of input settings to try to tease out any faults or misinterpretations

of the specification. Eventually the test cases were narrowed down to a few commonly

used configurations and ultimately integrated into the test harness that ran the full suite of

OpenMP 4.0 tests developed by the UNM team.

The MPI Thread Safety tests used the same test bed and tools as the OpenMP tests.

They also used Black Box testing with the goal of functional verification. Again, I had to

understand the MPI 3.0 specification. However the test themselves were packaged as a set

of files that were forwarded to the developer for use in development efforts. The tests were

validated using the MPICH library on the Cray systems (whichever one was current) and

reviewed by the developer for correctness and suitability.

The following sections will describe Black Box Testing, the main method that I used

for developing the tests.

3.3.2 Black Box Testing

Black Box Testing Description

In Black Box testing, the code being tested is not visible at all to the tester, and appears as

a “Black Box”. The code is evaluated using known inputs and pre-conditions. The result

of the test is the comparison of the actual output of the test with the expected output for

the given input. The expected output is derived from specifications and requirements. As

such it is similar to Dynamic Analysis (as described above) except that it exclude testing
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where the code is available (known as “White Box Testing”).

Black Box Testing Weaknesses

Black Box testing can efficiently verify that code gives output consistent with a specifica-

tion, but it cannot evaluate the suitability of those specifications themselves. Also, extra

functionality in the component being tested will not be discovered by the tester [1].

3.4 Summary

In this section I reviewed the various test models and strategies used in the project. I started

by describing the over-arching testing models used in large software development efforts.

Then I discussed test models, planning, and tools used by the UNM team to implement

Dynamic Analysis. Finally, I provided details of the writing of individual tests using Black

Box Testing. The goals of the tests were functional verification. The tests themselves were

validated by reviewing the code, and analyzing the behavior of the tests themselves using

the Cray libraries while running the test cases.
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OpenMP 4.0 Thread Affinity Tests

This chapter provides details the design, planning, implementation, and results of the tests.

The designs for both the the OpenMP and MPI tests are explained in terms of the Black

Box Testing Model.

4.1 OpenMP 4.0 Processor Binding Test Planning and De-

sign

4.1.1 Design of the Black Box Testing of OpenMP Thread Affinity

Input Data to the Black Box Testing Model

Recall that in black box testing the code under is test is not available to the tester. Instead

the behavior of the code is analyzed by providing a set of input data, and comparing the

resulting output data after it has been passed through the “black box”. The expected output

data for a given input is determined from the specification. The set of all possible input

data for the OpenMP Thread Affinity tests is shown in Fig. 4.1. Two diagrams are shown:
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(a) Input for one level of parallelism.

(b) Input for 2 levels of nested parallelism.

Figure 4.1: Input data for black box testing of OpenMP proc bind for one level of parallelism (top)
and two levels of nested parallelism (bottom). The number of choices for each input category is
shown in the line below each figure, and are multiplied to get the total number of configurations.

one for the cases where there was just one level of parallelism; the other is for the more

complicated case of “nested parallelism” where threads are called in the outer level, and

then each spawn a number of child threads to work on an inner level. (See Chapter 2 and

the fork-join model for details on nested parallelism.) Here I explain the input variables

for the Fig. 4.1 in detail:

Parallel Construct: OpenMP offers many ways to divide up work between threads

in a parallel region. The constructs parallel, parallel for, and parallel

section are a subset of those. In parallel, every thread executes every instruction

in the parallel region. In parallel for the threads are divided between iterations of

a for loop. In parallel section, each thread executes a separate section delineated

by the programmer. The original traceability matrix for the OpenMP 4.0 test suite had
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entries for all parallel constructs, but only these three constructs were chosen because the

remaining construct (parallel workshare) has a very restricted set of function types

that are allowed in the parallel region, precluding the system calls and array assignments

that were necessary to obtain the thread affinity. For the nested cases, only one construct

(parallel) was used to avoid redundancy.

Binding: This clause specifies exactly how the threads are bound to the processors. Ex-

actly how it works depends on the setting of the OMP PLACES environment variable

(explained below). The specification for the master clause states that all the child threads

will be bound to the master thread. The close policy places the threads in sequential or-

der starting at the master place, using wrap-around. The spread policy attempts to spread

the threads out as much as possible between the different processors. The OMP PLACES

variable for the master and close cases does not change for the master and close policies

when encountering another level of nested parallelism. However, the spread policy re-

quires a re-computation of the OMP PLACES variable which will then be different for

each child thread, which is relevant for nested cases. See the OpenMP 4.0 specification

for more details on these policies [3].

Number of Threads (outer and inner): This is just total the number of threads (for non-

nested) and the number of threads in the outer and inner loops (for nested). The number

of threads can greatly effect running time. Also, it has a large impact when combined with

the OMP PLACES variable: Some values if the number of threads may divide evenly into

the number of processors, others not.

OMP PLACES Environment Variable: Several test cases can pertain to the ability of

the compiler to parse the OMP PLACES variable correctly. The environment variable,

OMP PLACES specifies the order and grouping of processors (see Fig.4.2). There is more

than one way to set the OMP PLACES variable. For example, the syntax: OMP PLACES=
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Figure 4.2: Ways of setting the OMP PLACES environment variable.

{1, 2}, {3, 4} specifies that the first “place” is processors 1 and 2 (a thread bound to this

place can run on either processor), and the second place contains processors 3 and 4. It is

important to note that threads are bound to places, not processors. Another, equally correct

syntax, is OMP PLACES=threads(n), OMP PLACES=cores(n), or OMP PLACES=sockets(n).

These correspond to implementation-defined processor groupings (as outlined in Section

4.2). The tests must be able to parse this environment variable, compute the expected

result of the setting and compare that with results for each of the other runs.

All of the ways of combining the number of threads, the OMP PLACES Environment

variable, and the processor architecture would create many more test cases than can be run

in a reasonable amount a time. A more organized, systematic way of choosing the most

relevant test cases would entail division of this space into equivalence classes, ideally

selecting one case from each class [1]. In fact, an intuitive understanding of this motivated

an initial exploratory selection of test cases shown in 4.1. This list was not used in the

final test suite because it took over 2 hours to run which was not practical or acceptable to

Cray. But the initial exploration turned up issues that are describe in Section 4.2. The final

set of test cases used in the suite included common use cases. In the end, I added a feature
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allowing the user to chose exactly which test cases to run, so the program is flexible and

new test cases can be added as needed.

num threads/num places = k num threads/num places != k
num places/num threads = k num places/num threads != k

repeat processor numbers in a place no repeats of processor numbers
non-consecutive processor numbers consecutive processor numbers
processors appear in different places processors only appear in one place

threads > places threads < places

Table 4.1: Some Possible Test Cases for OpenMP proc bind: An attempt to divide a portion of
the test case matrix into equivalence classes. k is an integer. The program can set any of these
configurations through the setting of an environment variable. These initial test cases were used
for a smoke test to and helped uncover miss-interpretations of the specification.

Figure 4.3: A possible thread binding output for a black box test of proc bind in OpenMP.
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Output Data to the Black Box Testing Model

The output data for the Black Box Testing was the binding of the threads to the processors.

This took the form a of a matrix. Fig. 4.3 is an illustration of a thread binding scenario that

could form the output of the test. Eactly how these bindings were obtained is discussed in

the next section on implementation.

Figure 4.4: The Black Box Test Design for OpenMP Thread Affinity showing the input data, test
bed, system under test (the black box), and output data.

Overall Black Box Design

The Black Box Testing paradigm and the input and output data outlined in the previous

sections combine to make the overall test design of the thread affinity test as shown in Fig.

4.4.

4.1.2 Software Design Principles

The complexity the design of the thread affinity tests necessitated the adherence to sound

software engineering principles when designing how the code for the test itself should be

written. The code was designed around the principles of portability, modularity, and code
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re-use. Specific of these how these three design strategies were implemented are outlined

in the next chapter.

4.1.3 Test Requirements and Plan

The goal of these tests was to verify the Cray Compiler implementation of the OpenMP 4.0

specification which was released in July, 2013 [3]. This release contained major changes

from the previous OpenMP 3.1 release (July 2011). Because the test requirement is to

verify performance to a specification, the test plan consisted of a document that outlines

which OpenMP constructs and clauses differed from the previous 2.5 specification. The

task of the testing team was to test only these features.

4.1.4 Test Infrastructure

The tests themselves consisted of a set of routines in C, C++, and Fortran. Since there was

a test team (each working on a different OpenMP 4.0 feature) a local svn repository was

setup for version control. An additional svn repository was located at the customer site.

All members of the test team had access to development systems at Cray through ssh, and

local linux-based machine to use for test development.

The entire suite of tests for the OpenMP 4.0 release was run on a test-harness that

could run the entire suite, or any selection of tests which were specified through as script

file. A complete test to be run on the harness, consisted of the source code, as well as

configuration files that set environment variables.
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4.2 OpenMP Test Implementation

Here I discuss detail of the OpenMP Thread Affinity test implementation. First I present an

overview and some of the challenges which motivated the software engineering strategies

described in the following section: Modularity, Code Re-Use, and Portability. Following

these sections, implementation details are presented. The last section describes some more

specific challenges that arose during the implementation, specifically ambiguities resulting

from implementation-defined portions of the specification.

4.2.1 OpenMP Thread Affinity Test Development Challenges

The OpenMP 4.0 thread affinity tests are inherently complex in that they have to take into

account many different thread affinity scenarios. In addition, some have implementation-

defined results in which case the test designer must be able to either 1) ascertain exactly

how the developer has implemented it 2) design test cases that cover all possible imple-

mentations consistent with the specification. For this project, Cray wanted the latter so as

to be able to have the option to re-use the same tests in the event that the preferred imple-

mentation was changed, either in future revisions or for running on different architectures.

These relaxed requirements required the tests to be more general and cover more cases

than would be necessary for a more rigid specification. So even though I was testing only

one feature of OpenMP 4.0, the variety of results that I had to take into account, combined

with the information about the thread-affinity for many different ways of specifying pro-

cessor binding in the language resulted in one longer program with several modules and

sub-functions. The challenge in writing this tests was in overall program design and soft-

ware re-use as the test became increasingly complex an unwieldy without careful attention

to these software engineering principles.
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4.2.2 Implementation of Software Design Principles

Modularity and Code Re-Use

Modularity is a feature of all well-written code. The main way to realize modularity is to

structure the code so that one function accomplishes one well-defined task, and to limit

the number of returned values. I adhered to this whenever possible and greatly assisted

debugging, made it simple to make changes, and assisted in code re-use. Utility functions

that might be used by more than one program were combined into Fortran modules. Func-

tions that made system calls were written in C, and put into a single C file which was used

by all 3 compilers (C, C++, and Fortran).

Another strategy used in this project was to separate the routines that used OpenMP

directives to run the test cases from the code that was used to setup the tests, evaluate the

results, and print output. This made it possible to use the Fortran code written for these

functions in both the C and Fortran implementations (for logistical reasons the Fortran

code was developed first). To implement this, bindings for C and Fortran interoperability

were used. This was not done for the C++ version because I was not able to get the

Fortran bindings to work properly for C++. This worked out fine in the end though, since

C++ is the only object-oriented (OO) language of the three, so writing an OO version from

scratch was both instructive, and would have allowed the C++ compiler to be tested more

rigorously.

Portability

A customer requirement was that the tests should be portable, since there was a plan to run

the test suites on different machines, each with different processor topologies as well as

machines with either AMD or Intel processors. AMD and Intel number their processors

separately, and therefore the smallest unit of a process (a thread) will be numbered differ-
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ently in the OMP PLACES environment variable (Figs. 4.5a and 4.5b). For any general

OMP PLACES test this might not matter, but it does matter in the case of tasting the set-

ting threads, cores, and sockets. This is because the tests for these settings were done by

converting them to the bracketed notation. To solve this issue, I wrote a C function that

parsing the files in “sys/devices/system/cpu/cpu(n)topology/” and sorting the output to get

the correct thread numbers for the topology in use.

However, this did not completely solve the portability issue. A hidden requirement was

that the test be able to run on ARM processors. These processors expose their architecture

differently so the code did not run on them. Unfortunately, no ARM processors were made

available to the test team during development.

4.2.3 Implementation Details

Overall Program Flow

The overall program flow is shown in Fig. 4.6. The first step was to parse environment

variables that provided the test parameters as inputs to the program. Then information

was extracted through either system calls or files to translate the test parameters to run

on the architecture. Next the tests were run using the appropriate OpenMP commands

and compiler directives. The computed and actual thread affinity masks obtained and

compared. Finally, differences between the computed and actual masks were determined

and an analysis of the results provided. The first 2 sections, as well getting the affinity

mask (in the third section) were written in C, either because they tended to be closer to

the machine and required system calls, or they utilized C parsing functions. All other

functions were in C++ or Fortran, with the exception of the step that utilizes OpenMP.

Since OpenMP is what is being tested, this section had to have separate routines in all 3

languages.

32



Chapter 4. OpenMP 4.0 Thread Affinity Tests

(a) AMD Processor Numbering

(b) Intel Processor Numbering

Figure 4.5: AMD and Intel number their processors differently and this information must be ex-
tracted from linux system files for a portable implementation of the tests. Below each figure, the
OMP PLACES equivalent bracket notation for thread, cores, and sockets is shown.

Testing of Master, Close, and Spread Policies

After consultation with the test team, it was decided that all three non-nested cases (mas-

ter, close, and spread), as well as all possible combinations of nested cases for two levels

of nested parallelism should be tested (i.e. master/master, master/close, master/spread,

close/master, close/spread, etc.). The non-nested cases where the number of threads di-

vided evenly into the number of processors (or vice-versa) were relatively straightforward

and is illustrated in Fig. 4.7. This procedure is illustrated for the nested cases (Fig. 4.8)

where neither (P/T) or (T/P) has a remainder.
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Figure 4.6: The general outline of the program. The major sections are shown on the left, with
green arrows pointing to subtasks within that section. The red letters on the right indicate the
languages that each section was coded in.

4.2.4 Additional Challenges and Implementation-Defined Features in

OpenMP

Abstract Names and Processor Numbering

Some challenges arose in the case of portions of the OpenMP 4.0 specification that were

listed as “implementation defined”. One set of variables that were implementation-defined

is the definition of abstract names like “thread”, “cores”, and “sockets” in the OMP PLACES

variable, any other abstract names the developer choses to add, and the meaning of the
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Figure 4.7: Thread affinity mask for single parallel loop cases of master, close, or thread. P is the
number of places and T is the number of threads. M,C,S show the binding for the master, close,
and spread cases respectively. The case for AMD processors, with sequential thread numbering, is
shown for simplicity.

numbers in the comma-separated ordered list (when using that syntax). The compiler

developers for this project did not add any additional abstract names. The specific defi-

nitions of the threads, cores, and sockets, and numbering schemes were specified by the

developer and adhered to, however it did entail obtaining the processor numbering scheme

of the architecture, as I described in the previous section.
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The Spread Affinity Policy

Another implementation-defined feature is the thread affinity for the spread policy. This

arose in cases where the number of threads did not evenly divide into the number of places

(or vice-versa). The specification states that the placement of the remaining P − T ∗ S

partitions is implementation-defined. In this case, there are two or more configurations

that produce maximum separation between threads (see Fig. 4.9). This kind of definition

is a little tricky to test because the developer may want to leave the option open to change

the implementation in future releases, but want the test to still work without revision. (In

fact, this was a specific request from the customer.) The task then, is to figure out a rule

that can cover all configurations that are consistent with the specifications. The rule that I

chose was to check that fractional places filling was no processor has more than T/P (the

number of threads divided by the number of processors). This produces the maximum

separation between threads, but is general enough to encompass all such configurations.

The next challenge for this policy was figuring out what to do in the nested case,

where an outer spread policy case meets an inner case of any other policy. The problem

here, is that when thread adhering to a spread policy encounter another inner nested loop,

the specification requires that they each obtain a new set of places (essentially a new,

individual OMP PLACES), derived from the parent set of places. Not only is this also

implementation-defined, but I had no way of knowing what the exact affinity scheme was

used in the outer case. This was because, although I tested for a general property, it could

correspond to more than one affinity scheme, each consistent with the specification. The

developer declined a request to provide that information in real time due to performance

reasons, so I had to write a routine that deduced the actual affinity that was used according

to the rule that a thread is bound to the first place in the OMP PLACES) partition.

This still left open what to do when one arrives at the last place partition but still has

remaining threads. The obvious solution is to use warp-around, (which I did) but it failed
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cases according to a mysterious pattern. After communicating with the developer I found

out that the policy for this case was variable, and chosen on a case-by-case basis according

to no discernible, or readily-described pattern that could be used as a basis for testing. At

this point I found to different patterns that were being used and added an extra loop to

retest to the second pattern if the first failed.

4.3 OpenMP Tests Runs

Initial testing of the test-codes were done using the GNU C, C++ and Fortran compilers.

If the tests passed that step, they were then uploaded to a Cray machine for testing on

the actual compilers under test. These compilers were updated nightly, so each logon to a

customer machined required loading of the latest compiler. This was necessary because the

compilers were in a process of continuous development alongside the testing. Sometimes

tests were ready before the compiler had implemented the feature. This illustration of

“ad-hoc integration” created a dynamic environment.

4.4 OpenMP Tests: Validation, Results, and Deliverables

4.4.1 Test Validation and Results Reporting

The tests were validated by expert review and static code analysis. Tests that produced

unexpected results (if they failed using the most current Cray compiler version) were ex-

amined in more detail to detect any possible mistakes in the test itself. If none could be

found, communication with the developer was necessary to verify the correct interpreta-

tion of the specification. In theory, non-passing tests that had undergone these stages of

review would be reported as a bug in the Cray implementation (in practice this did not hap-

pen). False positives are harder to detect, and mostly relied on code review and detailed
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knowledge of the test itself.

All tests past of the most current version of the Cray OpenMP and MPI compiler and

libraries at the time of this writing. However, one goal of the testing was to have detailed

error output so that the cause of failures could be clearly and accurately determined. For

these tests, the most relevant and useful set of diagnostic parameters for any failing case

included; the parallel constructs (both inner or outer), the clause that was used (master,

close, or spread), whether it was an inner or outer case of nested parallel construct, which

thread was failing, the expected and actual thread affinity for the failing thread, if the

failing thread is on an inner nested case, what the parent thread is. The challenge was to

format it in a way that the information could be digested and scanned easily. Fig. 4.10

shows the sample output for a test rigged to fail on the 1-node/2-core/4-thread linux system

that I mainly used for test development.
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Figure 4.8: Thread affinity mask for an outer parallel loop of master, close, or thread (left). The
thread affinities when the outer loop encounters an inner loop marked with proc bind(close) (right).
M,C,S show the binding for the master, close, and spread cases respectively. The green arrows
show the mapping of the parent threads to the child threads (this is showing the case for 4 outer
loop threads and 4 inner loop child threads). Note that the letters on the right indicate the case for
the parent thread (they all use the close policy).
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Figure 4.9: Thread affinity mask for the spread policy, where the number of threads does not divide
evenly into the number of places. The bindings are implementation-defined in this case, and 4
possibilities for the outer loop are shown on the left, along with the new OMP PLACES for the
child threads. For the last option, there is ambiguity as to how to re-compute the PLACES for the
last thread (wrap-around or cut-off). The developer wanted to leave open the option to use either
arbitrarily, so each case was tested twice -once for each strategy. The figure on the right shows the
non-ambiguous close policy for comparison.

Figure 4.10: Error output for a nested test case rigged to fail
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MPI 3.0 Thread Safety Testing

This chapter will follow some of the basic structure as the previous chapter on the OpenMP

Thread Affinity Tests: Test Planning, Design, Implementation, and Results will be pre-

sented, and will be framed in terms of the Black Box Testing Model. However, the em-

phasis and organization will be slightly different: First, there will be a section on design

challenges and the overall test strategy and less emphasis on software engineering prin-

ciples. This is because these tests were implemented differently than the OpenMP tests:

Instead of one long program that could run a multiple of input configurations for one tests,

the MPI thread safety tests consisted of many individual files, written as C programs, each

of which tested one function from the specification for either RMA or non-blocking col-

lectives.

The test-bed and validation steps were identical between the OpenMP and MPI tests,

so they will not be repeated in here; Refer to the previous chapter for details on the test

harness and validation procedure.
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5.1 MPI 3.0 Test Planning and Design

5.1.1 Design of the Black Box Testing of MPI Thread Safety

Challenges in MPI Thread Safety Testing Design

In testing thread-safety of hybrid MPI+OpenMP programs both MPI and OpenMP pro-

gramming, along with the various MPI window creation methods, consistency semantics,

and synchronization operations must be understood to be able to write the tests and also

determine what is the correct result of a test.

In MPI+OpenMP, OpenMP creates threaded regions for each MPI rank. For each

thread a unique handle to the memory window and communicator is necessary. MPI

has methods to return handles to memory windows created earlier in the program using

malloc, but it can also allocate memory windows using MPI functions (see Appendix

A). The returned memory regions can be an address space unique to each rank, or shared

amongst ranks. Combined with each window creation method are a set of synchronization

functions which must be called in a specific sequence for each individual rank and thread.

Individual threads cannot be addressed directly in MPI functions, so some ingenuity is

required to design test cases that explore typical use cases and are useful to the customer,

all within a complex environment that encompasses two levels and types of parallelism

simultaneously.

For tests of the non-blocking collectives, these challenges were combined with the

necessity of translating collective calls into point-to-point communication calls. This was

necessary because Cray did not want to use any MPI calls similar to those being tested

when evaluating test results. Similarly, for the RMA testing, methods had to be devised to

send the expected result to all ranks for evaluation of the correctness of the tests. Cray did

not want RMA calls used for this purpose even outside of the threaded region, so the data
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had to either be coded using a mathematical calculation, or sent to the other ranks using

point-to-point communication.

For the tests developed for this work the challenges combined: 1) Developing the

knowledge and ability to write parallel programs with 2 different models and levels of par-

allelism 2) Understanding the basic OpenMP and MPI syntax and semantics and how they

interact. 2) Understanding Cray requirements and the wording of the MPI 3.0 standard.

Challenges 1) and 2) were a matter of practice, and study. With regard to 3): In the

MPI 3.0 Standard itself there is only one section (12.4) that addresses thread-safety and

what constitutes a “thread-compliant” implementation:

“All MPI calls are thread-safe, i.e., two concurrently running threads may make MPI

calls and the outcome will be as if the calls executed in some order, even if their execution

is interleaved.”

This is a fairly abstract statement, and any MPI programming operation that could

reveal whether this is actually true or not has an undefined result. For example, an obvious

thing to try would be to have two threads attempt to write long arrays of integers to the

same memory location and see if one or the other of the written values arrives uncorrupted.

The designers of the standard had programming flexibility of this kind as a specific goal

so concurrent writes to the same memory location are allowed. Unfortunately, the result is

undefined, so no test can be designed that uses this operation. This is an example of how

relaxed consistency semantics in MPI 3.0 can both add to the flexibility and richness of

the programming environment while at the same time make testing goals hard to define.

The weak consistency in MPI, the abstract specification regarding thread-safety in the

standard, and the nature of black-box testing made it necessary to work according to a set
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of strategies that would challenge thread-safety in a wide variety of contexts and inputs.

With this in mind, a set of strategies to be used as guidelines in the tests were developed

and included in the test plan:

1) Increasing the length and size of the input for functions that can accept arrays. The

idea is that non-atomicity of write operations to memory could cause the input from dif-

ferent threads to interleave in a non-thread safe implementation.

2) Allow for scaling and changes in number of processes and threads where possible.

3) Utilize mechanisms to address individual threads as a parameter in MPI functions in

threaded regions whenever possible.

Input Data to Black Box Testing Model for MPI Thread Safety

The input data to the Black Box Model consisted of a data array of length, M, its MPI

datatype, the number of ranks, the number of threads, the MPI memory window and syn-

chronization method, and the MPI function under test. The Black Box Model In most

cases the data consisted of an array of a length, M, that was specified as a parameter in

the program. The output data also consisted of arrays. The structure of both the input

and output the arrays depended on the exact operation of the MPI function being tested.

Fig.5.1 shows the Black Box design of the RMA thread safety tests and Fig.5.2 shows the

input data for the Non-Blocking Collectives.
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Figure 5.1: Input Data for RMA Black Box Testing: The boxes that list ”Window Creation and
Synchronization” and “RMA Function” are functions listed in the MPI 3.0 specifications document
and are too many to list.The number of choices for each input category is shown in the line below
each figure, and are multiplied to get the total number of configurations.

Output Data to the Black Box Testing Model

The output data to the tests consisted of a matrix that contains the values that were pro-

vided in the input. Where exactly the output data is placed and the exact form it takes is

dependent on the details of the MPI function being tested. The section on implementa-

Figure 5.2: Input Data for Black Box Testing of the Non-Blocking Collectives: The boxes that list
”Window Creation and Synchronization” and ”Collective Function” are functions listed in the MPI
3.0 specifications document and are too many to list, but for these tests only the MPI Win allocate()
and MPI Win fence() were used. The number of choices for each input category is shown in the
line below each figure, and are multiplied to get the total number of configurations.
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tion shows an example of input and output data matrices for a sample RMA and a sample

Non-Blocking Collectives test in Figs. 5.4 and 5.5.

Overall Black Box Design

The Black Box Testing design is presented in Fig. 5.3.

Figure 5.3: The Black Box Test Design for MPI Thread Safety showing the input data, test bed,
system under test (the black box), and output data.

5.2 MPI 3.0 Thread Safety Test Suite Implementation

5.2.1 Implementation of the RMA Functions

The MPI 3.0 thread safety test involved the development of a test suite compromising

individual test files, each examining a separate one-sided communication or non-blocking

collective operation. Each file consisted of exactly one C function and the threaded regions

were implemented using OpenMP 4.0 via “pragma omp parallel” directives. The tests used

arrays of randomly assigned or calculated values to be passed between processes. Each

thread wrote to and from separate portions of the array. The resulting tests were therefore

scalable in terms of the length of input and the number of threads used. Fig.5.4 shows the
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input and output array designs for a representative RMA function, MPI Put. The test for

this particular function instructed the ranks to send the data array to the next rank (using

wrap-around).

Figure 5.4: Input and Output Matrice for MPI Put(). The M are arrays of values of the specified
MPI datatype.

5.2.2 Implementation of the Non-blocking Collective Functions

Non-blocking collectives in MPI have the performance advantages of non-blocking func-

tions and at the same time provide collective operations that package the process of dis-

tributing data to other processes from a root process, or collecting data from other pro-

cesses. Because they are non-blocking, a request handle is provided at each initiation

of each collective operation so the process can check when it has been completed. MPI

3.0 provides many collective operations that enable the programmer to easily implement

different patterns of communication that are in common use in HPC applications. Input

output data for the MPI Ialltoall() function test is shown in Fig.5.5.
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Figure 5.5: Input and Output Matrices for MPI Ialltoall(). The M are arrays of values of the
specified MPI datatype. Here they need to be repeated np times, so that the data can be divided and
sent to multiple processors.

5.3 MPI 3.0 Thread Safety Test Results and Deliverables

5.3.1 Test Results and Deliverables for One-Sided Communication

The list below summarizes the tests produced, memory allocation and synchronization

method for the RMA tests. These tests were reviewed and accepted by the test manager at

Cray and the developer. The Cray implementations are still currently under development,

so tests were evaluated on the latest version of the MPICH library. However they are ready,

and intended for use on future, optimized implementations that are in the process of being

developed.

RMA Tests:

MPI Put, MPI Get, MPI Accumulate, MPI Get Accumulate

MPI Compare and swap, MPI Fetch and op

RMA Request Based Tests:
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MPI Rput, MPI Rget, MPI Raccumulate, MPI Rget accumulate

Window Creation Methods:

MPI Win Create, MPI Win allocate, MPI Win allocate shared

Synchronization:

MPI Win start/complete/post/wait, MPI Wait/Waitall

MPI Lock/Unlock, MPI Unlock/Unlockall

5.3.2 Test Results and Deliverables for Non-Blocking Collectives

The tests developed for the non-blocking collectives are as follows:

Non-blocking Collective Functions Tested:

MPI Ibcast, MPI Iscatter, MPI Igather, MPI Iallgather

MPI Ialltoall, MPI Iallreduce, MPI Ireduce scatter block,

MPI Ireduce scatter, MPI Iscan, MPI Iexscan

These tests went through the same review and acceptance process as the RMA tests, and

all passed with the most recent version of the Cray MPI implementation.
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Conclusions

6.1 Contributions of This Work

This work resulted in the development of regression tests for the validation of the key

aspects of the OpenMP 4.0 ad MPI 3.0 standards as implemented by Cray. The empha-

sis was in correctness, comprehensiveness, easy of use, and detailed error output. Cray

implementations of OpenMP and MPI are used in HPC applications that effect scientific

research, as well as human health and safety. Software correctness is the primary charac-

teristic for these applications to be useful, and ensures software quality in this large and

important domain.

6.2 Future Work

HPC and parallel programming are exciting and rapidly evolving fields that continually

generate new requirements and challenges in the area of software testing. In particular, the

OpenMP and MPI standards are in a continual process of revision. Regression testing will
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be required to assure that new implementations still provide correct results for old features

as well as new ones that will be inevitably incorporated into them.

As mentioned in Sect. 3.3, test validation is important in black box testing, and also a

weakness of this project. Given more time, I would like to devise a method for validation

of the OpenMP thread affinity tests. The initial division of test cases shown in 4.1 would

be a good place to start: I would like to do a more thorough and systematic analysis, and

then run the tests several times to be sure that all cases pass. Even though it would require

several hours to complete, I think the resulting increased confidence would be worth the

effort. Then a more systematic selection of which cases to be included in the final test

suite could be made. I think the ad-hoc selection of a handful of use cases that actually

occurred was not very well thought out and did not do justice to the sophistication of the

test.

This thesis just touched on hybrid programming models, however they are becoming

increasingly popular and are used with other thread models besides OpenMP (pthreads is

one obvious example). Memory affinity is being explored as an addition to OpenMP and,

if incorporates into the standard, will become an interesting area of testing along the lines

of the thread affinity tests developed here. In general, the field of software quality has not

kept up with performance testing, and new tests suites and methods will be needed as HPC

enters the exascale era.
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MPI RMA Window Creation and

Synchronization

Window Creation

MPI 3.0 has several different ways to expose “Windows” of memory to other processes

and to allocate it. The most straightforward method is for each process to allocate a buffer

using malloc and then to use the MPI Win create function to create a reference to the

window which is used in subsequent calls by other processes in the communicator group

to access the window. This allows for control over who can access the window and some

isolation to prevent corruption of the memory space. MPI also includes methods to allocate

shared memory and dynamic memory. Each MPI Window creation function uses it’s own

set of synchronization functions.

Synchronization

The two general methods of synchronization are called active target synchronization and

passive target synchronization. Both circumscribe the allowed times for processes to ac-
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cess memory into epochs: The target process opens an exposure epoch which control when

other processes can read or write it’s memory. Correspondingly, the source process uses

an access epoch which defines when it can access the memory of other processes.

Active Target Synchronization

For active target synchronization both an exposure and access window must be open at the

target and source simultaneously for the RMA functions to proceed. As the name implies,

the target process actively participates in the timing of access to it’s window. Active target

synchronization is used when memory access patterns change frequently within an appli-

cation. There are two synchronization models used with active target synchronization:

Fence and General.

Using Fence synchronization, exposure and access epochs are opened and closed for

all processes simultaneously using the MPI Win fence function. The MPI standard stip-

ulates that a communication operation will complete at the source process before it is

called. “Completion” in this context means that the associated memory buffers can either

be accessed or re-used (whichever situation is applicable). For example, with MPI Put,

MPI Fence at the source process means that the data has been transferred out of the buffer

and the buffer can safely be used. It says nothing about the completion of the transfer at

the target process. When the target process calls MPI Fence, it means that the data has

been moved to the receive buffer at the target process. Therefore a given communica-

tion operation cannot be said to have completed in a way that ensures sequential memory

consistency semantics until MPI Fence has been called at all processes.

By contrast, general synchronization allows for more fine-grained communication be-

tween process groups. Unlike fence synchronization and exposure and access epochs spec-

ify the specific processes that they apply to. General synchronization functions pose a

special problem for thread-based applications because the matching MPI Post/MPI Wait
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and MPI Start/MPI Complete must complete in a specified order for each process. In the

event that there is not a one-to-one relationship between threads and process groups this

can be challenging to keep track of.

Passive Target Synchronization

In passive target synchronization the target process is not involved in co-ordinating com-

munication so, in effect, there is always an exposure epoch open. Lock and Unlock opera-

tions control when specific groups of processes can access a given window. Shared mem-

ory window allocation will only work with passive target synchronizations and operations

on these windows use the same lock/unlock functions. There are two kinds of lock/unlock

functions: one that targets specific processes (MPI Win lock/MPI Win unlock) and one

that involves all processes (MPI Win unlock/MPI win unlockall).
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