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Abstract

Call-by-need semantics formalize the wisdom that work should be done at most
once. It frees programmers to focus more on the correctness of their code, and less
on the operational details. Because of this property, programmers of lazy functional
languages rely heavily on their compiler to both preserve correctness and generate
high-performance code for high level abstractions. In this dissertation I present a
novel technique for compiling call-by-need semantics by using shared environments
to share results of computation. I show how the approach enables a compiler that
generates high-performance code, while staying simple enough to lend itself to formal
reasoning. The dissertation is divided into three main contributions. First, I present
an abstract machine, the CE machine, which formalizes the approach. Second, I show
that it can be implemented as a native code compiler with encouraging performance
results. Finally, I present a verified compiler, implemented in the Coq proof assistant,
demonstrating how the simplicity of the approach enables formal verification.
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Chapter 1

Introduction

[L]azy functional programming is

too important to be relegated to

second-class citizenship. It is

perhaps the most powerful glue

functional programmers possess.

John Hughes

The strength of lazy functional programming languages is the freedom they give
the programmer to focus on correctness instead of operational details. In a strict
language, the programmer specifies what code will run, and when. In a lazy lan-
guage, the programmer only specifies what the result should be, leaving the compiler
responsible for ensuring that only code that is needed will be executed. Thanks to
this freedom from operational concerns, there are two properties that lazy functional
programmers tend to have. First, they reason about the correctness of their code
to a degree seen almost nowhere else in the programming community [19, 41]. Sec-
ond, they rely on compilers to generate efficient code in a way that programmers of
strict languages don’t. Essentially, they are leaving more operational decisions up
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to the compiler, and focusing their energy more on the correctness of their code. To
paraphrase John Hughes, laziness is an essential tool for modular programming. As
anyone who has done formal reasoning about programs knows, modular program-
ming is essential for reasoning about programs.

It is for this reason that we compiler implementors must take great care in the
design of our compilers for lazy languages. We must build compilers that generate
efficient code: our programmers are relying particularly heavily on our ability to
generate efficient code. We also must ensure that our compilers are correct: because
lazy functional programmers are free to reason about the correctness of their code,
we must ensure that any additional reasoning is not invalidated by bugs in the
compiler. To illustrate this point: if a lazy functional programmer has time to prove
ten theorems about his programs, while the strict language programmer only has
time to prove three, then a bug in the lazy compiler may invalidate ten theorems,
while a bug in the strict compiler may only invalidate three.

This dissertation presents a tool for attaining these two goals: a novel tech-
nique for implementing lazy semantics using shared environments, formalized as the
CE machine. Essentially, the CE machine repurposes shared environments to share
the results of computation. The thesis of this dissertation is that this approach
helps to enable compilers that achieve these two goals. I explore the performance
of the approach by implementing a native code compiler with encouraging results.
This addresses the goal of high-performance code generation. To verify correctness,
I take advantage of the simplicity of the approach to ease the proof burden, and
implement a verified compiler using the Coq proof assistant. These two implementa-
tions provide evidence that the CE machine is a powerful tool for implementing lazy
functional programming languages.

2



1.1 Outline

This dissertation is organized into six chapters. In this chapter, I provide an in-
troduction to the dissertation, including an outline of the structure, instructions for
access to artifacts and reproduction of results, a retrospective, and an overview of
the contributions. Chapter 2 provides necessary background for understanding the
dissertation, as well as further discussion of motivation. Chapter 3 defines and ex-
plains the CE machine, in both big and small-step semantics. Chapter 4 describes
the implementation of a native code compiler based on the CE machine, and analyzes
and discusses its performance. Chapter 5 presents a verified compiler, discussing the
structure of the compiler and proofs. Finally, Chapter 6 discusses threats to validity,
future work, and conclusions. The appendices are used to give further implementa-
tion details, both for the native code compiler (Appendix A) and the verified compiler
(Appendix B). In the case of the native code compiler, the appendix shares some
of the miscellaneous interesting properties of the implementation. For the verified
compiler, the purpose of the appendix is to give the reader a fuller understanding of
the structure and definitions involved in the proofs.

1.2 Reproducibility and Artifacts

The implementations presented in this dissertation are available for download to al-
low the reader to verify any claims made. All of the software is bundled as a single
tarball at http://cs.unm.edu/~stelleg/cem.tgz. Instructions are included for build-
ing, running, and proof-checking the code. For performance results, the hardware
and operating system are listed in Chapter 4. In addition to the above tarball, each
implementation continues to be developed at https://github.com/stelleg/cem and
https://github.com/stelleg/cem_coq. Finally, there is a simpler native code com-
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piler for pedagogical purposes, available at https://github.com/stelleg/cem_pearl.

1.3 On Laziness

Because this work is focused on implementing call-by-need semantics, it is worth
spending some time discussing why we care about lazy evaluation. The focus here is
on high-level reasoning and opining, leaving a more technical coverage of the topic
for Section 2.2, which defines and contrasts different evaluation strategies.

One easy argument for the importance of call-by-need is that it underlies the
widely used programming language Haskell. Technically, Haskell is a non-strict lan-
guage. This implies that both call-by-name and call-by-need are valid implementa-
tion strategies. In practice, there are some situations when one would prefer call-
by-name: when storing an intermediate value is more expensive than re-computing
it. This implies that in theory, Haskell could switch between call-by-name and call-
by-value depending on the situation. In practice, implementations effectively always
choose call-by-need, sometimes even performing compile-time transformations that
increase sharing [33].

Even amongst the Haskell community, the advantages and disadvantages of lazy
evaluation are hotly debated. For example, there exist both strictness annotations,
and even strict-by-default variants of Haskell. There are real reasons for preferring
strict evaluation in some contexts. In particular, reasoning about time and space
requirements for lazy programs is notoriously difficult. As a result, there are cases
when the time and space requirements can be surprisingly high.

The advantages of lazy semantics are most apparent when attempting to write
high-level, composable abstractions. This is a strong argument for code re-use advan-
tages in non-strict languages: by using laziness, one avoids work, non-termination,

4

https://github.com/stelleg/cem_pearl


and work-buffering where possible without additional programmer effort [19].

There are also well-known cases where composing lazy programs can result in
better asymptotics than strict composition. Consider the well-known example of
finding the minimal value in a list.

take 1 . sort

With lazy semantics, this can result in an O(n) time implementation, while the
strict implementation of compose will always result in an O(n logn) implementation
(assuming an O(n logn) sort). This kind of asymptotic improvement is a direct result
of the efficiencies gained by avoiding eager work.

1.4 Retrospective

This section tells the story of how this dissertation came to be. The hope is to convey
to the reader some context for the structure and approach that the dissertation takes.

Everything started with an appreciation of lazy evaluation and a desire to know
how it works. Thus began investigation into how call-by-need semantics are currently
implemented. Inspired by presentations of simple call-by-need approaches, such as
the three instruction machine and the lazy Krivine machine, as well as sophisticated
approaches such as the STG machine, I was afflicted with a nagging feeling that there
must be a simpler, lazier way to implement call-by-need. After a lot of experimenting
and thought, I finally discovered the approach presented here. While I was optimistic
about the performance of a compiler, I was most excited by the simplicity of the
approach. It was so easy to write a compiler! After a couple of failed attempts
at writing papers with the primary objective being to excite the reader about the
simplicity of the approach, I decided to instead focus on more concrete properties.

5



The first was performance: I hypothesized that the approach would lead to cases
where I could beat the state of the art. This was confirmed by both a virtual
machine and a native code compiler. It was also clear to me that trying to build a
high-performance compiler to outperform GHC on real-world code was likely to fail,
and I explicitly avoided making that a goal of the dissertation. Instead, I focused on
showing that there were cases that outperform flat environments, leaving integrating
shared and flat environments for future work.

Once I had shown that there were performance benefits to the approach, I still
wanted to somehow use the simplicity of the approach for some concrete benefit.
Around this time, I became aware of the field of certified programming. I realized I
could use the simplicity of the approach to make formal reasoning easier, and build
the first verified compiler for call-by-need. This was monumentally difficult. With
very little training in formal reasoning, and no training in dependent types and
machine-checked proofs, it took a long time working on my own to gain the skills to
implement a verified compiler. Much of the effort was due to being too ambitious. It
is a relatively straightforward thing to formalize and state theorems. Even when you
are certain of the truth of those theorems, it is an entirely different beast proving
them in a machine-checked logic. Every proof, definition, and theorem included in
the paper and in the Coq code was built on tens of aborted versions. Building the
verified compiler was the hardest thing I’ve ever done, by far.

Looking back, it would have been nice to have the two implementations be com-
bined into one. While nice in some respects, this combination is a daunting task.
Implementing a full native code compiler is a challenge in itself, but specifying,
implementing, and verifying a native code compiler is a massive undertaking. Com-
pCert, a verified compiler that compiles the lower level language C, took multiple
PhDs worth of work to complete [28]. That said, it would likely have worked to
verify and export into Haskell fragments of the native code compiler. For example,
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multiple times through the implementation process, the core language was extended.
Making such core changes in the presence of proofs of correctness would make for a
painful process, something that would have reduced the amount of time available for
experimenting with the implementation. Overall, I am content with the approach
of this dissertation: two separate compilers, with one focused on performance and
extensibility and the other focused on correctness. I leave combining the two for
future work, as I discuss further in Section 6.2.

1.5 Contributions

There are three primary contributions of this dissertation.

• A novel technique for implementing call-by-need semantics using shared envi-
ronments, presented in Chapter 3. The technique is formalized as the CE

machine, defined with both a big and small-step semantics.

• A full native code compiler from a simple lazy functional language with literals
and primitive operations to x86_64 machine code, presented in Chapter 4.
The implementation follows naturally from the definition of the CE machine.
I show that the compiler performs comparably to the state of the art on a
number of benchmarks. This implementation and its analysis provide evidence
supporting the thesis that shared environment call-by-need has performance
benefits in some cases over existing approaches.

• A verified compiler, presented in Chapter 5, that compiles call-by-need lambda
calculus to a simple instruction machine, along with a specification of correct-
ness and a proof that the compiler adheres to that specification. The compiler
is implemented and the proofs checked in Coq, mechanizing the CE semantics
in the process. This is the first verified compiler of a call-by-need semantics.

7



This implementation and mechanized proof provides evidence for the thesis
that the simplicity of CE implementations lends itself to formal verification

Combined, these contributions support the core thesis of this dissertation: that
shared environment call-by-need has valuable contributions to make to the study and
implementation of call-by-need compilers. Smaller, more implementation-specific
contributions are enumerated in Chapters 4 and 5.

8



Chapter 2

Background

Science is the belief in the

ignorance of experts.

Richard Feynman

This chapter provides relevant background for the CE machine and its two im-
plementations, outlining lambda calculus, evaluation strategies, Curien’s calculus of
closures, and verifying implementations in formal logic.

2.1 Preliminaries

We begin with the simple lambda calculus [5]:

t ::= x | λx.t | t t

where x is a variable, λx.t is an abstraction, and t t is an application. We will
primarily use lambda calculus with de Bruijn indices, which replaces variables with
a natural number indexing into the binding lambdas. This calculus is given by the

9



syntax:

t ::= i | λ t | t t

where i ∈ N. In both cases, we use the standard Barendregt syntax conventions,
namely that applications are left associative and the bodies of abstractions extend
as far as possible to the right [5]. A value in lambda calculus refers to an abstraction.
We are concerned only with evaluation to weak head normal form (WHNF), which
terminates on an abstraction without entering its body.

In mechanical evaluation of expressions, it would be too inefficient to perform
explicit substitution. To solve this, the standard approach uses closures [25, 11, 34, 7].
Closures combine a term with an environment, which binds the free variables of the
term to closures. Entering a closure refers to the operational process of beginning to
evaluate its term in its environment.

Because of its simplicity and its use of de Bruijn indices, we use Curien’s calculus
of closures [11] as the formal basis for closures, defined in Figure 2.1. It is a for-
malization of closures with an environment represented as a list of closures, indexed
by de Bruijn indices. We will occasionally modify this calculus by replacing the de
Bruijn indices with variables for readability, in which case variables are looked up in
the environment instead of indexed, e.g., t[x = c,y = c′]) [5]. We also add superscript
and subscript markers to denote unique syntax elements, e.g., t ′, t1 ∈ Term.

2.2 Evaluation Strategies

There are three standard evaluation strategies for lambda calculus: call-by-value,
call-by-need, and call-by-name. Call-by-value evaluates every argument to a value,
whereas call-by-need and call-by-name only evaluate an argument if it is needed. If
an argument is needed more than once, call-by-name re-computes the value, whereas

10



Syntax

t,v ::= i | λ t | t t (Term)
i ∈ N (Variable)
c ::= t [ρ] (Closure)
ρ ::= • | c ·ρ (Environment)

Semantics

t1 [ρ]⇓λ t2 [ρ ′]
t2 [t3 [ρ] ·ρ ′] ⇓ v

t1t3 [ρ] ⇓ v

ci ⇓ v
i [c0 · c1 · ... · ci ·ρ] ⇓ v

λ t [ρ] ⇓ λ t [ρ]

Figure 2.1: Curien’s calculus of closures

call-by-need memoizes the value, so it is computed at most once. Thus, call-by-need
attempts to embody the best of both worlds—never repeat work (call-by-value),
and never perform unnecessary work (call-by-name). These are intuitively good
properties to have, illustrated by the following example, modified from Danvy et
al. [13]:

m︷ ︸︸ ︷
cm(cm(· · ·(cm id

m︷ ︸︸ ︷
id) · · ·)id) true id bottom

where cn = λ s.λ z.

n︷ ︸︸ ︷
s (s · · ·(s z) · · ·), true = λ t.λ f .t, id = λx.x, and

bottom = (λx.x x)λx.x x. When evaluating this expression, call-by-value never termi-
nates, call-by-name takes exponential time, and call-by-need takes only polynomial
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time [13]. Of course, this is a contrived example, but it illustrates desirable properties
of call-by-need.

In practice, however, there are significant performance issues with call-by-need
evaluation. We focus on the following: delaying a computation and performing it later
is slower than performing it immediately. This deficiency is well understood [22, 34],
and is part of the motivation for strictness analysis [30, 47], which transforms non-
strict evaluation to strict when possible.

When compiling applications, there are two general implementation approaches.
In the first, eval/apply, the caller first evaluates the function, then applies the argu-
ments to it by knowing its arity. In the second, push/enter, the caller pushes the
arguments onto the stack, then enters the code that will evaluate to a function [29].

2.3 Existing Call-by-Need Machines

Diehl et al. [14] review the call-by-need literature in detail. Here we summarize the
most relevant points.

The most well known and widely used machine for lazy evaluation is the Spineless
Tagless G-Machine (STG machine), which underlies the Glasgow Haskell Compiler
(GHC). STG uses flat environments that can be allocated on the stack, the heap, or
some combination [34].

Two other influential lazy evaluation machines relevant to the CE machine are
the call-by-need Krivine machine [17, 23, 38], and the three-instruction machine
(TIM) [16]. Krivine machines started as implementing call-by-name evaluation, and
were later extended to call-by-need [23, 38, 13, 17]. The CE machine modifies the lazy
Krivine machine to capture the environment sharing given by the cactus environment.
The TIM is an implementation of call-by-need and call-by-name [16]. It involves, as
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the name suggests, three machine instructions, TAKE, PUSH, and ENTER. In Section 4.1,
We follow Sestoft [38] and re-appropriate these instructions for the CE machine.

There has also been recent interest in heapless abstract machines for lazy evalua-
tion. Danvy et al. [12] and Garcia et al. [37] independently derived similar machines
from the call-by-need lambda calculus [4]. These are interesting approaches, but it
is not yet clear how these machines could be implemented efficiently.

2.4 Formal Logic

With recent improvements in higher order logics, machine verification of algorithms
has become a valuable tool in software development. Instead of relying heavily
on tests to check the correctness of programs, verification can prove that algorithms
implement their specification for all inputs. Implementing both the specification and
the proof in a machine-checked logic removes the vast majority of bugs found in hand-
written proofs, ensuring far higher confidence in correctness than other standard
methods. Other approaches, such as fuzz testing, have confirmed empirically that
verified programs remove all bugs [49].

This approach applies particularly well to compilers. Often, the specification for
a compiler is complete: source level semantics for some languages are exceedingly
straightforward to specify, and target architectures have lengthy specifications that
are amenable to implementation in a machine-checked logic. In addition, writing
tests for compilers that cover all cases is even more hopeless than most domains, due
to the size and complexity of the domain and codomain. The return on investment is
also high: all reasoning about programs compiled with a verified compiler is provably
preserved.

Likely due to the complexities discussed above involved in implementing lazy lan-
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guages, among other factors, existing work on verification has focused on compiling
strict languages [10, 28, 24]. In this dissertation we use the simple CE machine as a
base for a verified compiler of a lazy language, using the Coq proof assistant.

As with many areas of research, the devil is in the details. The details, in this
context, are the specification of a what it means to be a verified compiler. Generally
speaking, a verified compiler of a functional language is one that preserves compu-
tation of values. That is, we have an implication: if the source semantics denotes a
value, then the compiled code computes an equivalent value [10]. The important thing
to note is that the implication is only in one direction. If the source semantics never
terminates, this class of correctness theorem says nothing about the behavior of the
compiled code. This has consequences for Turing-complete source languages. If we
are unsure if a source program terminates and wish to run it to check experimentally
if it does, then if we run the compiled code and it returns a value, we cannot be
certain that it corresponds to a value computed in the source semantics.

While in theory one could solve this by proving the implication in the other
direction, that is, if the compiled code computes a value then the source semantics
computes an equivalent value, in practice this is prohibitively difficult. Effectively, the
induction rules for the abstract machine make constructing such a proof challenging,
as we discuss further in Chapter 5.

One approach for getting around this issue is to try and capture the divergent
behavior by defining a diverging semantics explicitly [32]. Then one can safely claim
that if the source semantics diverges according to our diverging semantics, then the
compiled code also diverges.

This dissertation takes the approach of Chlipala [10] and defines verification as the
first implication above, focusing on the case in which the source semantics evaluates
to a value. This is still a strong result: any source program that has meaning compiles

14



to an executable with equivalent meaning. In addition, if anyone ever chooses to
augment the language with a type system that ensures termination, or some notion
of progress, then they could use that in combination with our verification proof.

2.5 Environment Representations

As mentioned in Section 2.1, environments bind free variables to closures. While any
implementation of an environment performs the same function, there is significant
flexibility in how environments can be represented. In this section we review this
design space in the context of existing work, both for call by value and call-by-need.1

There are two common approaches to environment representation: flat environ-
ments and shared environments (also known as linked environments) [2, 39]. A flat
environment is one in which each closure has its own record of the terms its free
variables are bound to. A shared environment is one in which parts of that record
can be shared among multiple closures [2, 39]. For example, consider the following
term:

(λx.(λy.t0)(λ z.t1))t2

Assuming the term t0 has both x and y as free variables, we must evaluate it in an
environment that binds both x and y. Similarly, assuming t1 contains both z and x

as free variables, we must evaluate it in an environment containing bindings for both
x and z. Thus, we can represent the closures for evaluating t0 and t1 as

t0[x = t2[•],y = c]

1Some work refers to this space as closure representation rather than environment rep-
resentation [39, 2]. Because the term part of the closure is simply a code pointer and the
interesting design choices are in the environment, we refer to the topic as environment
representation. Note also that global variables are often omitted from environments in real
implementations, we don’t consider this implementation detail here.
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and

t1[x = t2[•],z = c1]

respectively, where • is the empty environment. These are examples of flat envi-
ronments, where each closure comes with its own record of all of its free variables.
Because of the nested scope of the given term, x is bound to the same closure in the
two environments. Thus, we can also create a shared, linked environment, repre-
sented by the following diagram:

•

x = t2[•]

y = c z = c1

Now each of the environments is represented by a linked list, with the binding of x

shared between them. This is an example of a shared environment [2]. This shared,
linked structure dates back to the first machine for evaluating expressions, Landin’s
SECD machine [25].

The drawbacks and advantages of each approach are well known. With a flat
environment, variable lookup can be performed with a simple offset [34, 1]. On the
other hand, significant duplication can occur, as we discuss in Section 2.6. With
a shared environment, that duplication is removed, but at the cost of possible link
traversal upon dereference.

As with most topics in compilers and abstract machines, the design space is
actually more complex. For example, Appel and Jim show a wide range of hybrids [2]
between the two, and Appel and Shao [39] show an optimized hybrid that aims to
achieve the benefits of both approaches. And as shown in the next section, choice of
evaluation strategy further complicates the picture.
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2.6 Existing Call-by-Need Environments

Existing call-by-need machines use flat environments with a heap of closures [34,
16, 22, 8]. These environments may contain some combination of primitive val-
ues and pointers into the heap (p below). The pointers and heap implement the
memoization of results required for call-by-need. Returning to the earlier example,
(λx.(λy.t0)(λ z.t1))t2, we can view a simplified execution state for this approach when
entering t0 as follows:

Closure

t0[x = p0,y = p1]

Heap

p0 7→ t2[•]

p1 7→ λ z.t1[x = p0]

Consider t2[•], the closure at p0. If it is not in WHNF (this sort of unevaluated
closure is called a thunk [21, 35]), then if it is entered in either the evaluation of t0 or
t1, the resulting value will overwrite the closure at p0. The result of the computation
is then shared with all other instances of x in t0 and t1. In the case that terms
have a large number of shared variables, environment duplication can be expensive.
Compile-time transformation [35] (tupling arguments) helps, but we show that the
machine can avoid duplication completely.

Depending on t0, either or both of the closures created for its free variables may
not be evaluated. Therefore, it is possible that the work of creating the environment
for that thunk will be wasted. This waste is well known, and existing approaches
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address it by avoiding thunks as much as possible [34, 22]. Unfortunately, in cases like
the above example, thunks are necessary. We aim to minimize the cost of creating
such thunks.

Thunks are special in another way. Recall that one advantage of flat environments
is quick variable lookups. In a lazy language, this advantage is reduced because a
thunk can only be entered once. After it is entered, it is overwritten with a value, so
the next time that heap location is entered it is entered with a value and a different
environment. Thus, the work to ensure that the variable lookup is fast is used for at
most one evaluation of the thunk. This is in contrast to a call-by-value language, in
which every closure is a value, and can therefore be entered an arbitrary number of
times.

A more subtle drawback of the flat environment representation is that environ-
ments can vary in size, and thus a value in WHNF can be too large to fit in the
space allocated for the thunk it is replacing. This problem is discussed in Jones et
al. [34], where the proposed solution is to put the value closure in a fresh location in
the heap where there is sufficient room. The original thunk location is then replaced
with an indirection to the value at the freshly allocated location. These indirections
are removed during garbage collection, but do impose some cost, both in runtime
efficiency and implementation complexity.

We have thus far ignored a number of details with regard to current implementa-
tions. For example, the STG machine can split the flat environment, so that part is
allocated on the stack and part on the heap. The TIM allocates its flat environments
separately from its closures so that each closure is a code pointer, environment pointer
pair [16] while the STG machine keeps environment and code co-located. Still, the
basic design principle holds: a flat environment for each closure allows quick variable
indexing, but with an initial overhead.
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Flat Environment Shared Environment
Call-by-need STG [34], TIM [16], GRIN [8] CE Machine
Call-by-value ZAM [27], SML/NJ [3] ZAM, SECD [25], SML/NJ

Figure 2.2: Evaluation strategy and environment structure design space. Each
acronym refers to an existing implementation. Some implementations use multiple
environment representations.

To summarize, the flat environment representation in a call-by-need language
implies that whenever a term might be needed, the necessary environment is con-
structed from the current environment. This operation can be expensive, and it is
wasted if the variable is never dereferenced. In this work, we aim to minimize this
potentially unnecessary overhead.

Figure 2.2 depicts the design space relevant to this chapter. There are existing
call by value machines with both flat and shared environments, and call-by-need
machines with flat environments. This is the first work to use a shared environment
to implement lazy evaluation.

It is worth noting that there has been work on lazy machines that effectively use
linked environments, which could potentially be implemented as a shared environ-
ment, e.g., Sestoft’s work on Krivine machines [38], but none make the realization
that the shared environment can be used to implement sharing of results, which is
the primary contribution of this chapter.
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Chapter 3

CE Machine

The lurking suspicion that

something could be simplified is the

world’s richest source of rewarding

challenges.

Edsger Dijkstra

This chapter defines the CE machine semantics, both big-step and small-step
versions. It attempts to convey some intuition for why the shared environment
structure works as a technique for sharing results of computation. The definitions
here are the core of both implementations, the native code compiler in Chapter 4
and the verified compiler in Chapter 5. We formalize the connection between call-
by-need evaluation and shared environments in a big-step semantics in Section 3.1.
Section 3.2 implements the big-step with a small-step semantics by adding a context
(or stack). The proof that it is a correct implementation is left for Chapter 5.
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3.1 Big-Step CE

This section shows how the shared environment approach can be applied to call-by-
need evaluation. We start with a big step semantics that abstracts away environment
representation, Curien’s calculus of closures, and then shows how it can be modified
to force sharing. Recall Curien’s call-by-name calculus of closures in Figure 2.1. 1

The App rule pushes a closure onto the environment, and the Id rule indexes into
the environment, entering the corresponding closure. We show that by removing
ambiguity about how the environments are represented, and forcing them to be
represented in a parent pointer tree, we can define a novel approach to call-by-need.

To start, consider again the example from Section 2.5, this time with de Bruijn
indices: (λ (λ t0) (λ t1))t2. The terms t0 and t1, when evaluated in Curien’s calculus of
closures, would have the following environments, respectively:

c0 · t2[•] · •
c1 · t2[•] · •

As with the named case, the second closure is identical in each environment.
And again, we can represent these environments with a shared environment, this
time keeping call-by-need evaluation in mind:

•

t2[•]

c0 c1

This inverted tree structure seen earlier with the leaves pointing toward the root is
called a cactus stack (sometimes called a spaghetti stack or saguaro stack) when used

1Curien calls it a “lazy” evaluator, and there is some ambiguity with the term lazy, but
here the term is used only to mean call-by-need. Curien’s condition checking that i < m is
omitted as the semantics is only defined for closed terms.
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to implement stacks [18, 20], or a parent pointer tree in general. In this use case,
every node defines an environment as the sequence of closures in the path to the root.
If t2[•] is a thunk, and is updated in place with the value after its first reference, then
both environments would contain the resulting value. This is exactly the kind of
sharing that is required by call-by-need, and thus we can use this structure to build
a call-by-need evaluator. This is the essence of the CE machine.

Curien’s calculus of closures does not differentiate between flat and shared en-
vironment representations; it has no need to. Therefore, we must derive a new
semantics, forcing the environment to be shared. Because we can hold the closure
directly in the environment, the standard approach of a heap of closures is replaced
with a heap of environments. To enforce sharing, we extend Curien’s calculus of
closures to explicitly include the heap of environments, which we refer to as a cactus
environment (CE ). This cactus environment structure is a parent pointer tree of
closures.

See Figure 3.2 for the syntax and semantics of the CE big step semantics. Recall
that we are only concerned with evaluation of closed terms. The initial closed term
t is placed in a (t[0],ε[0 7→ •]) configuration, and evaluation terminates on a value.
Some shorthand is used to make heap notation more palatable for both the big-step
semantics presented here and the small step semantics presented in the next section.
µ(l, i) = l′ 7→ c · l′′ denotes that looking up the i’th element in the linked environment
structure starting at l results in location l′, where closure c and continuing environ-
ment l′′ reside. µ(l) = c · l′ is the statement that l 7→ c · l′ ∈ µ , and µ(u 7→ c · l′) is µ

with location u updated to map to c ·e. Two different semantics are defined, one for
call-by-name (Figure 3.1) and one for call-by-need (Figure 3.2). Having both makes
the connection to Curien’s call-by-name calculus more straightfoward. The rule for
application is identical for both semantics: each evaluates the left hand side to a
function, then binds the variable in the cactus environment, extending the current
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Syntax

t ::= i | λ t | t t (Term)
i ∈ N (Variable)
c ::= t [l] (Closure)
v ::= λ t [l] (Value)
µ ::= ε | µ [l 7→ ρ] (Heap)
ρ ::= • | c · l (Environment)

l, f ∈ N (Location)
s ::= (c,µ) (Configuration)

Semantics

µ (l, i) = l′ 7→ c · l′′ (c,µ) ⇓ (v,µ ′)

(i [l] ,µ) ⇓ (v,µ ′)
(Id)

(t0 [l] ,µ) ⇓ (λ t2 [l′] ,µ ′) f ̸∈ dom(µ ′)
(t2 [ f ] ,µ ′ [ f 7→ t3 [l] · l′]) ⇓ (v,µ ′′)

(t0 t3 [l] ,µ) ⇓ (v,µ ′′)
(App)

(λ t [l] ,µ) ⇓ (λ t [l] ,µ)
(Abs)

Figure 3.1: Big-step call-by-name CE syntax and semantics

environment.

The only difference between this semantics and Curien’s is that if we need to
extend an environment multiple times, the semantics requires sharing it among the
extensions. This makes no difference for call-by-name, but it is needed for the sharing
of results in the Id rule. The explicit environment sharing ensures that the closure
that is overwritten with a value is shared correctly.
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Syntax

t ::= i | λ t | t t (Term)
i ∈ N (Variable)
c ::= t [l] (Closure)
v ::= λ t [l] (Value)
µ ::= ε | µ [l 7→ ρ] (Heap)
ρ ::= • | c · l (Environment)

l, f ∈ N (Location)
s ::= (c,µ) (Configuration)

Semantics

µ (l, i) = l′ 7→ c · l′′ (c,µ) ⇓ (v,µ ′)

(i [l] ,µ) ⇓ (v,µ ′ [l′ 7→ v · l′′])
(Id)

(t0 [l] ,µ) ⇓ (λ t2 [l′] ,µ ′) f ̸∈ dom(µ ′)
(t2 [ f ] ,µ ′ [ f 7→ t3 [l] · l′]) ⇓ (v,µ ′′)

(t0 t3 [l] ,µ) ⇓ (v,µ ′′)
(App)

(λ t [l] ,µ) ⇓ (λ t [l] ,µ)
(Abs)

Figure 3.2: Big-step call-by-need CE syntax and semantics

3.2 Small-Step CE

Using the big-step CE from the previous section, we construct a small-step semantics
by adding a stack. The syntax and semantics are defined in Figure 3.3.

The small-step semantics operate identically to the big-step, extended only with
a context (or stack) to implement the updates from the Id subderivation (σ u) and
the operands from the App subderivation (σ c). Much like the big-step semantics,
a term t is inserted into an initial state ⟨t[0],σ ,ε[0 7→ •]⟩ . For the update rule, the
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Syntax

s ::= ⟨c,σ ,µ⟩ (State)
t ::= i | λ t | t t (Term)
i ∈ N (Variable)
c ::= t [l] (Closure)
v ::= λ t [l] (Value)
µ ::= ε | µ [l 7→ ρ] (Heap)
ρ ::= • | c · l (Environment)
σ ::=□ | σ c | σ u (Stack)

l,u, f ∈ N (Location)

Semantics

⟨v,σ u,µ⟩ → ⟨v,σ ,µ (u 7→ v · l)⟩ where c · l = µ (u) (Upd)
⟨λ t [l] ,σ c,µ⟩ → ⟨t [ f ] ,σ ,µ [ f 7→ c · l]⟩ f ̸∈ dom(µ) (Lam)
⟨t t ′ [l] ,σ ,µ⟩ → ⟨t [l] ,σ t ′ [l] ,µ⟩ (App)
⟨i [l] ,σ ,µ⟩ → ⟨c,σ l′′,µ⟩ where l′′ 7→ c · l′ = µ (l, i) (Var)

Figure 3.3: Small-step CE syntax and semantics

current closure is a value, and there is an update marker as the outermost context.
This implies that a variable was entered and that the current closure represents the
corresponding value for that variable. Thus, we update the location u that the vari-
able entered, replacing whatever closure was entered with the current closure. The
Lam rule takes an argument off the context and binds it to a variable, allocating
a fresh heap location for the bound variable. This ensures that every instance of
the variable will point to this location, and thus the bound closure will be evalu-
ated at most once. The App rule simply pushes the argument term in the current
environment. The Var rule enters the closure pointed to by the i’th environment
location.

To get some intuition for the CE machine and how it works, please refer to Fig-
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ure 3.4, which displays the steps in the evaluation of the term
(λa.(λb.b a)λc.c a) ((λ i.i)λ j. j), or (λ (λ0 1) λ0 1) ((λ0) λ0) with de Bruijn indices.
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Chapter 4

Native Code Compilation

Much of my work has come from

being lazy.

John Backus

Existing implementations of call-by-need take care in packaging a delayed com-
putation, or thunk, by building a closure with an array that contains the bindings of
all free variables [34, 8]. The overhead induced by this operation is well known, and
is one reason existing implementations avoid thunks wherever possible [22]. A key
insight of the CE Machine is that this overhead can be minimized by only recording
a location in a shared environment.

As an example, consider the application f e. In existing call-by-need implementa-
tions, e.g., the STG machine[34], a closure with a flat environment will be constructed
for e. Doing so incurs a time and memory cost proportional to the number of free
variables of e. 1 We minimize this packaging cost by recording a location in a shared
environment, which requires only two machine words (and two instructions) for the

1In some implementations, these are lambda-lifted to be formal parameters, but the
principle is the same.
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thunk: one for the code pointer, and one for the environment pointer. One way to
think about the approach is that it is lazier about lazy evaluation: in the case that
e is unneeded, the work to package it in a thunk is entirely wasted. In the spirit of
lazy evaluation, we attempt to minimize this potentially unnecessary work.

This chapter presents a simple implementation of the CE machine that compiles
a simple lazy functional language to x86_64 assembly. In addition, it presents a pre-
liminary evaluation that shows performance comparable to existing implementations
(Sections 4.1 and 4.2).

Section 4.1 describes a straightforward implementation of CE , extended with
machine literals and primitive operations, and compiling directly to native code.
Section 4.2 evaluates the implementation, showing that it is capable of performing
comparably to existing implementations despite lacking several common optimiza-
tions, and discusses the results. Section 4.3 discusses related work, limitations of the
approach, and some ideas for future work.

4.1 Implementation

This section describes how the CE machine can be mapped directly to x86_64 in-
structions. Specifically, we re-define the three instructions given by the TIM [16]:
TAKE, ENTER, and PUSH, and implement them with x86_64 assembly. We also de-
scribe several design decisions, as well as some optimizations. All implementation
and benchmark code is available at http://cs.unm.edu/~stelleg/cem.tgz.

Each closure is represented as a ⟨code pointer, environment pointer⟩ tuple. The
Context is implemented as a stack, with updates represented as a ⟨null pointer,
environment pointer⟩ tuple to differentiate them from closure arguments. The Heap,
or cactus environment, is implemented as a heap containing ⟨closure, environment
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pointer⟩ structs. When implemented on an instruction machine, each cell in the heap
takes 3 machine words.

4.1.1 Compilation

The three instructions are given below, with descriptions of their behavior.

• TAKE: Pops a context item off the stack. If the item is an update u, the instruc-
tion updates the location u with the current closure. If it is an argument c, the
instruction binds the closure c to a fresh location in the cactus environment.

• ENTER i: Enters the closure defined by variable index i, the current environ-
ment pointer, and the current cactus environment.

• PUSH m: Pushes the code location m along with the current environment pointer.

Each of these instructions corresponds directly to a lambda term: abstraction
compiles to TAKE, application to PUSH, and variables to ENTER. Each is compiled using
a direct implementation of the transition functions of the CE machine. The mapping
from lambda terms can be seen in Figure 4.1, which defines the compiler. Unlike the
TIM, our version of TAKE doesn’t have an arity; it compiles a sequence of lambdas as a
sequence of TAKE instructions. Similarly, the ENTER i instruction can be implemented
either as a loop or unrolled, depending on i, and more performance comparisons are
needed to determine the trade-off between code size and speed.

The compiler targets x86_64 assembly. Each of the three instructions is mapped
onto x86_64 instructions with a macro. The PUSH instruction is particularly simple,
consisting of only two x86_64 instructions (two pushes, one for the code pointer and
one for the environment pointer). This is an important point: thunk creation is only
two hardware instructions, regardless of environment size.
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C[[t t ′]] = PUSH labelC[[t ′]] : C[[t]]++C[[t ′]]

C[[λ t]] = TAKE : C[[t]]
C[[i]] = ENTER i

Figure 4.1: CE machine compilation scheme. C compiles a sequence of instructions
from a term. The label represents a code label: each instruction is given a unique
label. The : operator denotes prepending an item to a sequence and ++ denotes
concatenating two sequences.

Syntax

t ::= i | λ t | t t| n | op (Term)
n ∈ I (Integer)

op ::=+ | − | ∗ | / | = | > | < (PrimOp)
v ::= λ t[l] | n[l] (Value)

Integer and Primop Semantics

⟨n[l],σ c,µ,k⟩ → ⟨c,σ n[l],µ,k⟩ (Int)
⟨op[l],σ n′ n,µ,k⟩ → ⟨op(n′,n)[l],σ ,µ,k⟩ (Op)

Figure 4.2: Extensions to the syntax and semantics of the small-step CE semantics.

4.1.2 Machine Literals and Primitive Operations

Following Sestoft [38], this section describes the extension of the CE machine to
include machine literals and primitive operations. Figure 4.2 shows the parts of
syntax and semantics that are new or modified.

For a full definition of the language, see Appendix A. Data types are a common
extension which we omit [34, 8]; we take the approach of Sestoft [38], namely that
data types can be efficiently implemented with pure lambda terms. For example,
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consider a list data type (in Haskell syntax): data List a = Cons a (List a) |

Nil. In an untyped setting, this can be represented in pure lambda terms with
Cons = λh.λ t.λc.λn.c h t and Nil = λc.λn.n.

Let bindings are another construct commonly included in functional language
compilers, even in the internal representation [8, 34]. Non-recursive let is syntactic
sugar for a lambda binding and application, and is treated as such. This approach
helps ensure that arbitrary lambda terms can be compiled without pre-processing,
while other approaches generally require pre-processing [38, 16].

Recursive let bindings are a third omission. Following Rozas [36]: if it can be
represented in pure lambda terms, it should be. Recursion is implemented using the
standard Y combinator. In the case of mutual recursion, the Y combinator is used
in conjunction with a Church tuple of the mutually recursive functions. Without
the appropriate optimizations [36], this approach has high overhead, as discussed in
Section 4.2.1.

4.1.3 Optimizations

The CE implementation described in the previous section is completely unoptimized.
For example, no effort is expended to discover global functions to avoid costly jumps
to pointers in the heap [34]. Indeed, every variable reference will look up the code
pointer in the shared environment and jump to it. There is also no implementation
of control flow analysis as used by Rozas to optimize away the Y combinator. Thus,
every recursive call exhibits the large overhead involved in re-calculating the fixed
point of the function.

I do, however, implement two basic optimizations, primarily to reduce the load
on the heap:
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• POP: A TAKE instruction can be converted to a POP instruction that throws away
the operand on the top of the stack if there are no variables bound to the λ

term in question. For example, the function λx.λy.x can be implemented with
TAKE, POP, ENTER 0.

• ENTERVAL: An ENTER instruction, when entering a closure that is already a value,
should not push an update marker onto the stack. This shortcut prevents
unnecessary writes to the stack and heap [34, 17, 38].

4.1.4 Garbage Collection

I have implemented a simple mark and sweep garbage collector with the property
that it does not require two spaces, thanks to constant-sized closures in the heap
allowing a linked-list representation for the free cells.

Because the focus of this dissertation is not on the performance of garbage col-
lection, we ensure the benchmarks in Section 4.2 are not dominated by GC time.

4.2 Performance Evaluation

This section reports experiments that assess the strengths and weaknesses of the CE

machine. We evaluate using benchmarks from the nofib benchmark suite. Because
we have implemented only machine integers, and must translate the examples by
hand, we use a subset of the nofib suite that excludes floating point values and
arrays. A list of the benchmarks used and a brief description is given in Figure 4.3.

We compare the CE machine with two existing implementations:

• GHC: The Glasgow Haskell compiler: A high performance, optimizing compiler
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• exp3: A Peano arithmetic benchmark. Computes 38 and prints the result.

• queens: Computes the number of solutions to the nqueens problem for an n
by n board.

• primes: A simple primes sieve that computes the nth prime.

• digits-of-e1: A calculation of the first n digits of e using continued fractions.

• digits-of-e2: Another calculation of the first n digits of e using an infinite
series.

• fib: Naively computes the nth Fibonacci number.

• fannkuch: Counts the number of reverses of a subset of a list.

• tak: A synthetic benchmark involving basic recursion.

Figure 4.3: Description of Benchmarks

based on the STG machine [34]

• UHC: The Utrecht Haskell compiler: An optimizing compiler based on the
GRIN machine [8, 15]

We use GHC version 7.10.3 and UHC version 1.1.9.3. We compile with -O0 and
-O3, and show the results for both. Where possible, we pre-allocate a heap of 1GB
to avoid measuring the performance of GC implementations. The tests were run on
an Intel(R) Xeon(R) CPU E5-4650L at 2.60GHz, running Linux version 3.16.

4.2.1 Results

Figure 4.4 gives the benchmark results. In general, the compiler is outperformed by
GHC, sometimes significantly, and outperforms UHC. We spend the remainder of
the section analyzing these performance differences.
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CE GHC -O0 UHC -O0 GHC -O3 UHC -O3
exp3 8 1.530 1.176 3.318 1.038 2.286
tak 16 8 0 0.366 0.146 1.510 0.006 1.416
primes 1500 0.256 0.272 1.518 0.230 1.532
queens 9 0.206 0.050 0.600 0.012 0.598
fib 35 2.234 0.872 10.000 0.110 8.342
digits-of-e1 1000 3.576 1.274 21.938 0.118 22.010
digits-of-e2 1000 0.404 0.792 3.430 0.372 3.278
fannkuch 8 0.560 0.084 2.184 0.048 2.196

Figure 4.4: Machine Literals Benchmark Results. Measurement is wall clock time,
units are seconds. Times averaged over 5 runs (σ < 20%).

There are many optimizations built into the abstract machine underlying GHC,
but profiling indicates that three in particular lead to much of the performance
disparity:

• Register allocation: The CE machine has no register allocator. In contrast,
by passing arguments to functions in registers, GHC avoids much heap thrash-
ing.

• Unpacked literals: This allows GHC to keep machine literals without tags
in registers for tight loops. In contrast, the CE machine operates entirely on
the stack, and has a code pointer associated with every machine literal.

• Y combinator: Because recursion in the CE machine is implemented with a
Y combinator, it performs poorly. This could be alleviated with control flow
analysis techniques, similar to those used by Rozas [36].

Lack of register allocation is the primary current limitation of the CE machine.
The STG machine pulls the free variables into registers, allowing tight loops with
effective register allocation. However, it is less clear how to effectively allocate regis-
ters in a fully shared environment setting. That said, it is possible that being lazier

36



CE GHC -O0 UHC -O0 GHC -O3 UHC -O3
tak 14 7 0 1.610 2.428 7.936 1.016 7.782
primes 32 0.846 1.494 4.778 0.666 5.290
queens 8 0.242 0.374 1.510 0.154 1.508
fib 23 0.626 0.940 5.026 0.468 5.336
digits-of-e2 6 0.138 1.478 5.056 0.670 5.534
fannkuch 7 0.142 0.124 0.796 0.040 0.808

Figure 4.5: Church Numeral Benchmark Results. Measurement is wall clock time,
units are seconds. Times averaged over 5 runs (σ < 20%).

CE GHC -O0 UHC -O0 GHC -O3 UHC -O3
pow 3 8 0.564 1.994 4.912 0.906 4.932

Figure 4.6: Church Numeral Exponentiation Benchmark Results. Measurement is
wall clock time, units are seconds. Times averaged over 5 runs (σ < 20%).

about register allocation, e.g., not loading values into registers that may not be used,
could have some performance benefits.

To isolate the effect of register allocation and unpacked machine literals, machine
integers are replaced with Church numerals in a compatible subset of the evaluation
programs. Figure 4.5 shows the performance results with this modification, with the
CE machine occasionally even outperforming optimized GHC.

Next, we consider the disparity due to the Y-combinator, by running a simple
exponentiation example with Church numerals, calculating 38−38 = 0. In this case,
the CE machine significantly outperforms both GHC and UHC, as seen in Figure 4.6
.

These results give us confidence that by adding the optimizations mentioned
above, among others, the CE machine has the potential to be the basis of a real-
world compiler. Section 4.3 discusses how some of these optimizations can be applied
to the CE machine.
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4.2.2 The Cost of the Cactus

Recall that variable lookup is linear in the index of the variable, following pointers
until the index is zero. As one might guess, the lookup cost is high. For example,
for the queens benchmark without any optimizations, variable lookup took roughly
80−90% of the CE machine runtime, as measured by profiling. Much of that cost
was for lookups of known combinators, however, so for the benchmarks above, the
inlining mentioned in the previous section was incorporated. Still, even with this
simple optimization, variable lookup takes roughly 50% of execution time. There is
some variation across benchmarks, but this is a rough approximation for the average
cost. Section 4.3 discusses how this cost could be addressed in future work.

4.3 Discussion and Related Work

This section compares the compiler presented in this chapter with existing work, and
discusses areas for future work.

4.3.1 Closure Representation

Appel and Shao [39] and Appel and Jim [2] both cover the design space for closure
representation, and develop an approach called safely linked closures. The approach
uses flat closures when there is no duplication, and links in a way that preserves live-
ness, to prevent violation of the safe for space complexity (SSC) rule [39]. While we
do not address SSC or garbage collection in general, understanding the relationship
between SSC and shared environment call-by-need is an interesting area for future
work. In particular, hot environments with no sharing could benefit greatly from
replacing shared structure with flat.
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4.3.2 Eval/Apply vs. Push/Enter

Marlow and Peyton Jones describe two approaches to the implementation of function
application: eval/apply, where the function is evaluated and then passed the nec-
essary arguments, and push/enter, where the arguments are pushed onto the stack
and the function code is entered [29]. They conclude that despite push/enter being
a standard approach to lazy machines, eval/apply performs better. While our cur-
rent approach uses push/enter, investigating whether eval/apply could be usefully
implemented for a shared environment machine like the CE machine is an interesting
avenue for future work.

4.3.3 Collapsed Markers

Friedman et al. show how a machine can be designed to prevent multiple adjacent
update markers being pushed onto the stack [17]. This property is desirable because
multiple adjacent update markers are always updated with the same value. They
give examples showing that in some cases, these redundant update markers can cause
an otherwise constant-space stack to overflow. They implement an optimization that
collapses update markers by adding a layer of indirection between heap locations and
closures. A similar approach, but without the performance hit caused by an extra
layer of indirection should be possible, as follows: upon a variable dereference the
CE machine checks if the top of the stack is an update. If it is, instead of pushing
a redundant update marker onto the stack, the machine replaces the closure in the
heap at the marker location with an update marker pointing to the location specified
by the marker on the top of the stack. Then, the variable dereference rule checks
if there is an update marker instead of a closure in the dereferenced cell, and if
there is, then the value closure pointed to by that update marker will be copied,
overwriting the update marker. This effectively makes the update mechanism lazier,
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only updating one marker eagerly, and any equivalent markers on demand. We leave
this optimization for future work.

4.3.4 Register Allocation

One advantage of flat environments is that register allocation is straightforward [1,
34, 44]. It is less obvious how to do register allocation with the CE machine.

One possible approach that could work well with our shared environment ap-
proach would be to only load free variables into registers that are statically known
to be needed. In other words, some environment variables may not be used, so only
those that will definitely be used should be loaded into registers when a closure is
entered, while the rest could be loaded on demand from memory.

4.3.5 Characterizing Performance

While we have provided a few benchmarks and some intuition for why the shared
environments would be preferable in some situations, we haven’t really characterized
when programs will benefit from the approach. This, along with the joining of shared
and flat environments, is left for future work. It will likely require a combination
of careful performance profiling, static analysis tools, and a deeper understanding of
performance tradeoffs.
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Chapter 5

Verified Compilation

I don’t believe in empirical science.

I only believe in a priori truth.

Kurt Gödel

As discussed in Chapter 1, lazy functional programming languages like Haskell
lend themselves particularly well to reasoning about correctness. It is for this reason
we are motivated to build a verified compiler for a call-by-need semantics, the default
semantics for lazy functional languages: we want this reasoning to be preserved. Un-
fortunately, one of the challenges for formalization of non-strict compilers is that the
semantics of call-by-need abstract machines tend to be complex, incorporating com-
plex optimizations into the semantics, requiring preprocessing of terms, and closures
of variable sizes [34, 16]. In this chapter, we use the CE machine, taking advantage of
its simplicity to ease the formal reasoning burden that goes with building a verified
compiler.

Verified compilers provide powerful guarantees about the code they generate and
its relation to the corresponding source code [10, 28, 24]. In particular, for higher or-
der functional languages, they ensure that the non-trivial task of compiling lambda
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calculus and its extensions to machine code is implemented correctly, preserving
source semantics. The return on investment for verified compilers is high: any rea-
soning about any program which is compiled with a verified compiler is provably
preserved.

Existing verified compilers have focused on call-by-value semantics [10, 28, 24].
This semantics has the property of being historically easier to implement than call-by-
need, and therefore likely easier to reason about formally. This chapter formalizes the
CE machine described in Chapter 2. The Coq proof assistant [6] is used to implement
and prove the correctness of our compiler. We start with a source language of λ

calculus with de Bruijn indices:

t ::= t t | x | λ t

x ∈ N

The source semantics is the big-step operational semantics of the CE machine, which
uses shared environments to share results between instances of a bound variable. To
strengthen the result, and relate it to a better-known semantics, we also show that
the call-by-name CE machine implements Curien’s call-by-name calculus of closures.

It may surprise the reader to see that we do not start with a better known
call-by-need semantics; this concern is addressed in Section 5.6. The proof of com-
piler correctness, along with the proof that our call-by-name semantics implements
Curien’s semantics, hopefully convinces the reader that we have indeed implemented
a call-by-need semantics, despite not using a better known definition of call-by-need.

For our target, we define a simple instruction machine, described in Section 5.3.
This simple target allows us to describe the compiler and proofs concisely for the
chapter, while still allowing flexibility in eventually verifying a compiler down to
machine code for some set of real hardware, e.g., x86, ARM, or Power.

Our main result is a proof that whenever the source semantics evaluates to a

42



value, the compiled code evaluates to the same value. While there are stronger
definitions of what qualifies as a verified compiler, We argue that this is sufficient in
Section 5.6. This main result, along with the proof that the call-by-name version of
our semantics implements Curien’s calculus of closures, are the primary contributions
of this chapter.

The chapter is structured as follows. In Section 5.1 we describe the source syntax
and semantics (the big-step CE semantics) in detail. We also use this section to
define a call-by-name version of the semantics, and show that it implements Curien’s
calculus of closures [11]. In Section 5.2 we describe the small-step CE semantics and
its relation to the big-step semantics. In Section 5.3 we describe the instruction
machine syntax and semantics. In Section 5.4 we describe the compilation from
machine terms to assembly language. In Section 5.5 we describe how the evaluation of
compiled programs is related to the small-step CE semantics. We compose this proof
with the proof that the small-step semantics implement the big-step semantics to
show that the instruction machine implements the big-step semantics. In Section 5.6
we discuss threats to validity, future work, and related work. The Coq source code
with all the definitions and proofs described in this chapter is available at https:

//github.com/stelleg/cem_coq.

5.1 Big-Step CE

This section reviews our big-step source semantics. A big-step semantics has the
advantage of powerful, easy-to-use induction properties. This eases reasoning about
many program properties. We will also review the small-step semantics and prove
that it implements the big-step semantics, but by showing that our implementation
preserves the big-step semantics, we prove preservation of any inductive reasoning
on the structure of evaluation tree.
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As in Chapter 3, our source syntax is the lambda calculus with de Bruijn indices.
De Bruijn indices count the number of intermediate lambdas between the occurrence
of the variable and its binding lambda.

t ::= t t | x | λ t

x ∈ N

The essence of the CE semantics (Figure 3.2) is that it implements a shared environ-
ment, and uses its structure to share results of computations. This makes possible
a simple abstract machine that operates on the lambda calculus directly, which is
uncommon among call-by-need abstract machines [34, 26, 16, 22]. This simplifies
formalization, as we do not need to prove that intermediate transformations, e.g.,
lambda lifting, are semantics-preserving. Another advantage of the CE machine is
that it has constant-sized closures, obviating the need to reason about re-allocating
the results of computation and adding indirections required because of closure size
changes from thunk to value [34]. We operate on closures, which combine terms
with pointers into the shared environment, which is implemented as a heap. Ev-
ery heap location contains a cell, which consists of a closure and a pointer to the
next environment location, which we will refer to as the environment continuation.
Variable dereferences index into this shared environment structure, and if/when a
dereferenced location evaluates to a value, the original closure (potentially a thunk
or closure not evaluated to WHNF) will be replaced with that value. The bind-
ing of a new variable extends the shared environment structure with a new cell.
This occurs during application, which evaluates the left hand side to an abstraction,
then extends the environment with the argument term closed under the environment
pointer of the application. The App rule ensures that two variables bound to the
same argument closure will point to the same location in the shared environment.
Because they point to the same location by construction of the shared environment,
we can update that location with the value computed at the first variable derefer-
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ence, and then each subsequent dereference will point to this value. The variable rule
applies the update by indexing into the shared environment structure and replacing
the closure at that location with the resulting value. It is worth noting that while
the closures in the heap cells are mutable, the shared environment structure is never
mutated. This property is crucial when reasoning about variable dereferences. The
µ (l, i) function looks up a variable index in the shared environment structure by
following environment continuation pointers, returning the location and cell pointed
to by the final step. See the Coq source for a formal treatment. Note that we require
that fresh heap locations are greater than zero. This is required for reasoning about
compilation to the instruction machine, which we will return to in Section 5.3. While
here we constrain fresh heap locations to be fresh with respect to the entire heap
domain, for a real implementation, this is far too strong a constraint, as it doesn’t
allow any sort of heap re-use. We return to this issue in Section 5.6, and discuss how
this could be relaxed to either allow reasoning about garbage collection or direct
heap reuse.

The fact that our natural semantics is defined on the lambda calculus with de
Bruijn indices differs from most existing definitions of call-by-need, such as Ariola’s
call-by-need [4] or Launchbury’s lazy semantics [26]. These semantics are defined on
the lambda calculus with named variables. While it should be possible to relate our
semantics to these, the comparison is made more difficult by this disparity.1 A more
fruitful relation to semantics operating on the lambda calculus with named vari-
ables would likely be relating Curien’s calculus of closures to call-by-name semantics
implemented with substitution. We return to this discussion in Section 5.6.

As mentioned in Section 3, these big-step semantics do not explicitly include a
notion of nontermination. Instead, nontermination would be implied by the negation
of the existence of an evaluation relation. This prevents reasoning directly about

1Both of these well known existing semantics have known problems that arise during
formalization, as discussed in Section 5.6.
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nontermination in an inductive way, but for the purpose of our primary theorem this
is acceptable.

One interesting property of defining an inductive evaluation relation in a language
such as Coq is that computation can be done on the evaluation tree. In other words,
the evaluation relation given above defines a data type, one that computation can
be done on in standard ways. For example, we could potentially compute properties
such as size and depth, which would be related to operational properties of compiled
code.

Finally, given a term t, the initial configuration is defined as (t [0] ,ε). As dis-
cussed, the choice of the null pointer for the environment pointer is not completely
arbitrary, but chosen across our semantics uniformly to represent failed environment
lookup.

5.1.1 Call-By-Name

This section reviews the call-by-name variant of our big-step semantics and provides
a proof that it is an implementation of Curien’s call-by-name calculus of closures.

See Figure 3.1 for the definition of our call-by-name semantics. Note that the only
change from our call-by-need semantics is that we do not update the heap location
with the result of the dereferenced computation. This is the essence of the difference
between call-by-name and call-by-need.

Recall Figure 2.1 for a formalization of Curien’s call-by-name semantics. We
define a heterogeneous equivalence relation between our shared environment and
Curien’s environment. Effectively, this relation is the proposition that the shared
environment structure is a linked list implementation of the environment list in
Curien’s semantics. This is defined inductively, and we require that every closure
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reachable in the environment is also equivalent. We say two closures are equivalent
if their terms are identical and their environments are equivalent.

Given these definitions, we can prove that the call-by-name CE semantics imple-
ments Curien’s call by name semantics:

Theorem 1. If a closure c in Curien’s call-by-name semantics is equivalent to a
configuration c′, and c steps to v, then there exists a v′ that our call-by-name semantics
steps to from c′ that is equivalent to v.

Proof outline. The proof proceeds by induction on Curien’s step relation. The ab-
straction rule is a trivial base case. The variable lookup rule uses a helper lemma that
proves by induction on the variable that if the two environments are equivalent and
the variable indexes to a closure, then the µ function will look up an equivalent clo-
sure. The application rule uses a helper lemma which proves that a fresh allocation
will keep any equivalent environments equivalent, and that the new environment
defined by the fresh allocation will be equivalent to the extended environment of
Curien’s semantics.

By proving that Curien’s semantics is implemented by the call-by-name variant
of our semantics, we provide further evidence that our call-by-need is a meaningful
semantics.

One important note is that nowhere do we require that a term being evaluated
is closed under its environment. Indeed, it’s possible that a term with free variables
can be evaluated by both semantics to a value as long as a free variable is never
dereferenced. This theme will recur through the rest of the chapter, so it is worth
keeping in mind.
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5.2 Small-Step CE

In this section we review the small-step semantics of the CE machine, and show that
it implements the big-step semantics of Section 5.1. This is a fairly straightforward
transformation implemented by adding a stack. The source language is the same, and
we simply add a stack to our configuration (and call it a state). The stack elements
are either argument closures or update markers. Update markers are pushed onto the
stack when a variable dereferences that location in the heap. When they are popped
by an abstraction, the closure at that location is replaced by said abstraction, so
that later dereferences by the same variable in the same scope dereference the value,
and do not repeat the computation. Argument closures are pushed onto the stack by
applications, with the same environment pointer duplicated in the current closure and
the argument closure. Argument closures are popped off the stack by abstractions,
which allocate a fresh memory location, write the argument closure to it, write the
environment continuation as the current environment pointer, then enter the body
of the abstraction with the fresh environment pointer. This is the mechanism used
for extending the shared environment structure. The semantics is defined formally
in Figure 3.3.

5.2.1 Relation to Big Step

Here we prove that the small-step semantics implements the big-step semantics of
Section 5.1. This requires first a notion of reflexive transitive closure, which we define
in the standard way. We also make use of the fact that the reflexive transitive closure
can be defined equivalently to extend from the left or right.

Lemma 1. If the big-step semantics evaluates from one configuration to another,
then the reflexive transitive closure of the small-step semantics evaluates from the
same starting configuration with any stack to the same value configuration with that
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same stack.

Proof outline. The proof proceeds by induction on the big-step relation. We define
our induction hypothesis so that it holds for all stacks, which gives us the desired case
of the empty stack as a simple specialization. The rule for abstractions is the trivial
base case. Var rule applies as the first step, and the induction hypothesis applies to
the stack with the update marker on it. To ensure that the Upd rule applies we use
the fact that the big-step semantics only evaluates to abstraction configurations, and
the fact that the reflexive transitive closure can be rewritten with steps on the right.
For the Application rule, we take advantage of the fact that one can append two
evaluations together, as well as extend a reflexive transitive closure from the left or
the right. As with the Var rule we use the fact that the induction rule is defined for
all stacks to ensure evaluation of the left hand side to a value with the argument on
the top of the stack. Finally, we extend the environment with the argument closure,
and evaluate the result to a value by the second induction hypothesis.

Adding a stack in this fashion is a standard approach to converting between big
step and small-step semantics, and applies here in a straightforward way.

5.3 Instruction Machine

Here we describe in full the instruction machine syntax and semantics. We choose
a simple stack machine with a Harvard architecture (with separate instruction and
heap memory). We use natural numbers for pointers, though it shouldn’t be too
difficult to replace these with standard-sized machine words, e.g., 64 bits, making
the stack and malloc operations partial to better represent real-world hardware.
Our stack is represented as a list of pointers, though again it should be a relatively
straightforward exercise to represent the stack in contiguous memory. We define
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n, l,w ∈ N (Machine Word)
r := ip | ep | r1 | r2 (Registers)

wo := r | r%n (Write Operands)
ro := wo | n (Read Operands)

i := push ro | pop wo | new n wo | mov ro wo (Instructions)
bb := i : bb | jump{ro, l}ro (Basic Block)

p := bb∗ (Program)
s := w∗ (Stack)
h := (l,w)∗ (Heap)
S := ⟨r f , p,s,h⟩ (State)

Figure 5.1: Instruction Machine Syntax

our machine to have only four registers: an instruction pointer, an environment
pointer, and two scratch registers. Our instruction set is minimal, consisting only of
a conditional jump instruction, pop and push instructions, a move instruction, and an
instruction for allocating new memory. Note that for our program memory, we have
pointers to basic blocks, but for simplicity of proofs we choose to not increment the
instruction pointer within a basic block. Instead, the instruction pointer is constant
within a basic block, only changing between basic blocks. In fact, we represent the
program as a list of basic blocks, with pointers indexing into the list. This has the
advantage of letting us easily reason about sublists and their relation to terms. The
full syntax of the machine is given in Figure 5.1. Note that curly brackets {} denote
optionality, while stars ∗ denote zero or more elements, represented as a list. Note
that we’ll use some common list terminology, such as bracket notation for indexing,
i.e., l [i] accesses the i’th element in l (we don’t worry about the partiality in this
presentation of this operation; see the Coq implementation for a full jreatment). In
addition to the syntax defined in Figure 5.1, we use ++ for list concatenation, and ::

for consing an element onto the head of a list.
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We separate read (ro) and write (wo) operands. Write operands can be registers
or memory (defined by a register and a constant offset). Read operands can be any
write operand or a constant. For reading, there is the read relation, which takes a
read operand and a state and is inhabited when the third argument can be read from
that read operand in that state. Similarly, a write relation is inhabited when writing
the second argument into the first in a state defined by the third argument results
in the state defined by the fourth argument.

The machine semantics should be fairly unsurprising. A State consists of a reg-
ister file, program memory, a stack, and a heap. The push instruction takes a read
operand and pushes it onto the stack. The pop instruction pops the top of the
stack into a write operand. The mov instruction moves a machine word from a read
operand to a write operand. The jump instruction is parameterized by an optional
pair, which, if present, reads the first element of the pair from a read operand, checks
if it is zero, and if so sets the IP to the second element of the pair, which is a constant
pointer. If the condition is not zero, then it sets the IP to the instruction pointer
contained in the second jump argument. If we pass nothing as the first argument,
then it becomes an unconditional set of the IP to the value read from the second
argument. Note that the second argument is a read operand, so it can either be a
constant or read from a register or memory. This means it can be effectively either a
direct or indirect jump, both of which are used in the compilation of lambda terms.
The new instruction allocates a contiguous block of new memory and writes the re-
sulting pointer to the fresh memory into a write operand. We take the approach of
not choosing a particular allocation strategy. Instead, we follow existing approaches
and parameterize our proof on the existence of such functionality [10]. The complete
semantics of the machine is given in Figure 5.2. Note that we separate instruction
steps and basic block steps. Recall that a basic block is a sequence of instructions
that ends with a jump. The Step BB relation will execute the instructions in the
basic block in order, then set the IP in accordance with the jump semantics. The
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Step relation dereferences a basic block at the current IP, and if executing the basic
block results in a new state, then the machine executes to that state.

5.4 Compiler

In this section we describe the compiler, which compiles lambda terms with de Bruijn
indices to programs. The compiler proceeds by recursion on lambda terms, keeping a
current index into the program to ensure correct linking without a separate pass. For
variables, when we get to zero we push the current environment pointer and a null
instruction pointer to denote the update marker to the location of the closure being
entered. Then we mov the closure at that location into r1 and ep, and jump to r1,
recalling that the jump sets the ip. For nonzero variables, we replicate traversing the
environment pointer i times before loading the closure. For applications, we calculate
the program location of the argument basic block, and push that and the current
environment pointer onto the stack, effectively pushing an argument closure on top
of the stack. We then jump to the left hand side of the application, as is standard
for push-enter evaluation. For abstractions, we use a conditional jump depending on
whether the top of the stack is a null pointer (and therefore an update marker) or
a valid instruction pointer (and therefore an argument). If it is an update marker,
we update the heap location defined by the update marker with the current value
instruction pointer and the current environment pointer. We must point to the first
of the three abstractions basic blocks, as this value could later update another heap
location as well. In the case that the top of the stack was a valid instruction pointer,
we allocate a new chunk of 3 word of memory, and mov the argument closure into it,
with the current environment pointer as the environment continuation. We then set
our current environment pointer to this fresh location. This is the process by which
we extend our shared environment structure in the instruction machine. Finally, we
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perform an unconditional jump to the next basic block, which is the first basic block
of the compiled body of the lambda. As this is an unconditional jump to the next
basic block, for real machine code this jump can be omitted.

Being able to define the full compiler this simply is crucial to this verification
project. Other, more sophisticated implementations of call-by-need, such as the
STG machine, are much harder to implement and reason about. It is worth noting
that despite this simplicity, initial tests suggest that performance is reasonable, and
is often competitive with state of the art (Chapter 4).

As with the relation discussed in Section 5.1, a term does not have to be closed
to compile it. Indeed, we will happily generate code that if entered, will attempt
to dereference the null pointer, leaving the machine stuck. Because we are only
concerned with proving that the source semantics are implemented in the case that
it evaluates to a value, this is not a problem. If we wanted a more general theorem,
we could try to show that if the source semantics gets stuck trying to dereference a
free variable, the implementation would get stuck in the same way, both failing to
dereference a null pointer.

5.5 Compiler Correctness

In this section we define a relation between the state of the small-step semantics
and the state of the instruction machine semantics, and show that the instruction
machine implements the small-step semantics under that relation.

In general, we implement closures as instruction pointer, environment pointer
pairs. For the instruction pointers, we relate them to terms via the compile function
defined in Section 5.4. Essentially, we require that the instruction pointer points to
a list of basic blocks that the related term compiles to. For the current closure, we
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relate the instruction pointer register in the instruction machine to the current term
in the small-step source semantics. The environment pointers of each machine are
more similar. Given a relation between the heaps of the two machines, we define the
relation between two environment pointers as existing in the relation of the heaps,
or both being the null pointers. While it should be possible to avoid this special
case, during the proof it became apparent that not having the special case made the
proof significantly harder. This forces us to add the constraint to all machines that
pointers are non-null, which for real hardware shouldn’t be an issue.

Null pointers are crucial in two ways. First, they explicitly define the root of
the shared environment structure in both the source semantics and the machine
semantics. Second, they are used for instruction pointers. To differentiate between
update markers and pointers to basic blocks, a null pointer is used to refer to an
update marker, and a non-null pointer defines an instruction pointer for an argument
closure. Note that in fact, while the null pointers in heaps required us to only allocate
non-null fresh locations in the heaps of the CE semantics, using null pointers to
denote update markers requires no change to our program generation, due to the
fact that an argument term of an application cannot occur at position 0 in the
program.

The relation between the heaps of the small-step source semantics and the in-
struction machine is the trickiest part of the state relation. Note that for each
location in the source semantics heap, we have a cell with a closure and environment
continuation pointer. Naturally, the instruction machine represents these as three
pointers: two for the closure (the instruction pointer and environment pointer) and
one for the environment continuation. The easiest approach turned out to be to use
the structure of the heap constructs to define a one-to-three mapping between this
single cell and the three machine words. The structure used for each of the heaps
is a list of pointer, value bindings. We use the ordering of these bindings in the
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list to define a one binding to three binding mapping between the source heap and
the machine heap. We define a membership relation that defines when an element
is in our heap relation, proceeding recursively on the inductive relation structure.
This allows us to define a notion of which pairs of each type of closure are in the
heap, along with their respective locations. Due to the ordering in which they are
allocated in the heap during evaluation, each pair of memory allocations corresponds
to an equivalent cell. We use this property as a heap equivalence property that is
preserved through evaluation: every binding pair in the heap relation property de-
scribed above defines equivalent closures and environment continuations. For the
relation between our stacks, we define a similar notion. For update markers, we re-
quire that every update marker points to related environments (they are two pointers
that exist in the heap relation). For argument closures, we require that the closures
are equivalent (the instruction pointer and environment pointer are equivalent to
their respective counterparts in the small-step semantics).

In summary, we require that the current closure in the small-step semantics is
equivalent to the closure represented by the instruction pointer, environment pointer
pair, and that the stacks and the heaps are equivalent. The actual Coq implementa-
tion of this relation is too involved to relate directly here. We encourage the reader
to read the linked Coq source to fully appreciate it.

Given this relation between heaps, we can state the primary lemma.

Lemma 2. Given that an instruction machine state i is related to a small-step
semantics state s, and that small-step semantics state steps to a new state s′, the
instruction machine will step in zero or more steps to a related state i′.

Proof outline. Our proof proceeds by case analysis on the step rules for the small-
step semantics. We’ll focus on the second half of the proof, that i′ is related to s′.
The proofs that i evaluates to i′ follow fairly directly from the compiler definition
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given in Section 5.4. For the Var rule, because we need to proceed by induction,
we have to define a separate lemma and proceed by induction on a basic block
while forgetting the program, as the induction hypothesis is invalid in the presence
of the program. We then use the lemma to show that evaluation of a compiled
variable implements the evaluation of the variable in the small-step semantics. In
particular, we use the null environment as a base case for our induction, as we know
the only way lookup could fail is if both environment pointers are null, but that
cannot be the case due to the fact that we know that the small-step semantics must
have successfully looked up its environment pointer in the heap. Therefore the only
option is for both environment pointers to exist in the heap relation, which when
combined with the heap equivalence relation in the outer proof gives us the necessary
property that the environment continuations are equivalent. Finally, because the last
locations reached must have been in the heap relation, we know they are equivalent
environment pointers, and therefore the stack relation is preserved when we push the
update marker onto the heap. For the App rule, we use the definition of our compiler
to prove that the argument term and argument instruction pointer are equivalent and
that the left hand side term and instruction pointer are also equivalent. They share
an environment pointer which is equivalent by the fact that the application closures
are related. This proves that the stack relation is preserved as well as the current
closure, while the heap is unchanged. For the Lam rule, we allocate a fresh variable
and because of our stack relation we can be sure that the closures that we allocate
are equivalent, as well as the environment continuations, as they are taken from the
previous current continuation. Because of how we define it, the new allocations are
equivalent under our heap relation, and preserve heap equivalence. Finally, the Upd
rule trivially preserves the stack and current closure relations, and for proving that
the relation is preserved for the heap, we proceed by induction on the heap relation.
In addition, we must prove a supporting lemma that all environment relations are
preserved by the update.
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We now have a proof that the small-step semantics implements the big-step se-
mantics, and a proof that the instruction machine implements the small-step seman-
tics. We can now combine these to get our correct compiler theorem.

Theorem 2. If a term t placed into the initial configuration for the big-step semantics
evaluates to a value configuration v, then the instruction machine starting in the
initial state with compile 0 t as its program will evaluate to a related state v′.

Proof outline. We first require that the relation defined between the small-step se-
mantics state and the instruction machine state holds for the initial configurations.
This follows fairly directly from the definition of the initial conditions and the compile
function. Second, we have by definition of reflexive transitive closure that Lemma 2
implies that if the reflexive transitive closure of the small-step relation evaluates in
zero or more steps from a state c to a state v, then a related state of the instruc-
tion machine c′ will evaluate to a state v′ which is related to v. We use these two
facts, along with the proof that the small-step implements the big-step for any stack,
specialized on the empty stack, to prove our theorem.

It is worth recalling exactly what the relation implies about the two value states.
Namely, in addition to the value closures being equivalent, their heaps and environ-
ments are equivalent, so that every reachable closure in the environment is equivalent
between the two.

5.6 Discussion

This section reflects on the chapter, including threats to validity, future work, related
work, and general discussion of the results.
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One thing that is important to communicate is the difficulty of writing compre-
hensible proofs. The reader is discouraged from attempting to understand the proofs
in any way by reading the Coq tactic source code. While I attempted to keep the
definitions and lemmas as clean and comprehensible as possible, I found it extremely
difficult to do the same with tactics. Partially this may be a failure on my part
to become more familiar with the tactic language of Coq, but I suspect that the
imperative nature of tactic proofs prevents composability of tactic meta-programs.

Another lesson was the importance of good induction principles. For example, in
Section 5.6.1, we discuss the issue of only proving the implication of correctness in
one direction. This is effectively a product of the power of the inductive properties of
high level semantics, which makes them so much easier to reason about. Indeed, this
lesson resonates with the purpose of the chapter, which is that we’d like to reason
about high level semantics, because they are so much easier to reason about due
to their pleasant inductive properties, and have that reasoning preserved through
compilation.

5.6.1 Threats to Validity

There are a few potential threats to validity that we address in this section. The first
is the one mentioned in Section 2.4, that we only show that our compiler is correct
in the case of termination of the source semantics. In other words, if the source
semantics doesn’t terminate, the theorem says nothing about how the compiled code
behaves. This means that we could have a compiled program that terminates when
the source semantics does not terminate.

One argument in defense of verification presented here is that we generally only
care about preservation of semantics for preserving reasoning about our programs. In
other words, if we have a program that we can’t reason about, and therefore may not

58



terminate, we care less about having a proof that semantics are preserved. Of course,
this is a claim about most uses of program analysis. There are possible analyses that
could say things along the lines of if the source program terminates, then we can
conclude x. These cases are rare, and therefore the provided proof of correctness can
still be applied to most use cases.

Another potential threat to validity is the use of a high level instruction machine
language. While we claim that its high level and simplicity should make it possible to
show that a set of real ISAs implement this instruction machine, we haven’t formally
verified this step. This would make for valuable future work, and nothing in the
design of our high level instruction machine prevents such work.

As a dual to the issue of a high level instruction machine language, some readers
may take issue with calling lambda calculus with de Bruijn indices an ”input lan-
guage”. Indeed, we do not advocate writing programs in such a language. Still, the
conversion between lambda calculus with named variables and lambda calculus with
de Bruijn indices is a well understood topic, and it would distract from the presenta-
tion of the verified compiler provided here. Indeed, as noted below, semantics using
named variables and substitution can be hard to get right [9, 31], so we stand by our
decision to use a semantics based on lambda calculus with de Bruijn indices. One
potential approach for future work would be to prove that a call-by-name semantics
using substitution is equivalent to Curien’s calculus of closures, which when com-
bined with a proof that our call-by-need implements our call-by-name, would prove
the compiler implements the semantics of a standard lambda calculus with named
variables.

A third threat to the validity of this work is the question of whether we have really
proved that we have implemented call-by-need. The question naturally arises of what
exactly it means to prove an implementation of call-by-need is correct. There are
certainly well-established semantics [26, 4], so one option would be to directly prove
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that the C E semantics implements one of those existing semantics. Unfortunately,
recent work has shown that both of these have small issues that arise when formalized
that require fixes. Indeed, we did stray down this path and rediscovered one of these
issues which has been previously described in the literature [31]. This raises the
question of whether or not semantics that aren’t obviously correct are a good base
for what it means to be a call-by-need semantics. Instead, we have chosen to relate
our call-by-name semantics formally to a semantics that is obviously correct, Curien’s
calculus of closures. Along with the small modification required for memoization of
results, we hope that we have convinced the reader that it is extremely likely that the
memoization of results is correct. Of course, further evidence such as examples of
correct evaluation would go further to convince the reader, and for that we encourage
readers to play with a toy implementation at https://github.com/stelleg/cem_

pearl. Finally, a more convincing result would be a proof that the call-by-need
semantics implement the call-by-name semantics.

Yet another threat to validity is our approach (or lack of approach) to heap-reuse.
For simplicity, we have assumed that our fresh locations are fresh with respect to all
existing bindings in the heap. Of course, this is unsatisfactory when compared to
real implementations. It would be preferable to have our freshness constraint relaxed
to only be fresh with respect to live bindings on the heap. This modification should
be possible, at the cost of increased complexity in the proofs.

5.6.2 Future Work

In addition to some of the future work discussed as ways of addressing issues in
Section 5.6.1, there are some additional features that we think make for exciting
areas of future work.

One such area is reasoning about preservation of operational properties such as
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time and space requirements. This would enable reasoning about time and space
properties at the source level and ensuring that these are preserved through com-
pilation. In addition, there is the possibility of verified optimizations, where one
can prove that some optimizations are both correct, in that they provably preserve
semantics, and true optimizations, in that they only improve performance with re-
spect to some performance model. By defining a baseline compiler and proving that
it preserved operational properties such as time and space usage, one would have
a good platform for which to apply this class of optimizations, resulting in a full
compiler that verifiably preserves bounds on time and space consumption. As with
correctness, reasoning about operational properties is often likely to be easier in the
context of the easy-to-reason-about high level semantics, and having that reasoning
provably preserved would be extremely valuable.

Another exciting area of future work is powerful proofs of type preservation
through compilation. While there has been existing work on type-preserving com-
pilers, fully verified compilers like this one provide such a strong property that type-
safety should fall out directly.

One useful feature of Coq is the ability to extract Coq programs out to other
implementations, e.g., Haskell. This raises the possibility of extracting the verified
compiler out to a Haskell implementation that could be incorporated into GHC,
providing a path towards a verified Haskell compiler.

5.6.3 Relation to Ariola et al.

As mentioned above, to improve the relation to existing work, we could relate the
semantics to the operational semantics of Ariola et al., seen in Figure 5.4 [4]. Because
I spent a large amount of time attempting this, I use this section to discuss challenges
to this approach.
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One approach I tried was to show bisimulation between →N and ⇓. Unfortunately,
as mentioned in Section 5.6.1, there is an issue I discovered when formalizing this
semantics. Essentially, the rules for variable freshness are insufficient. To fix this,
one has to modify the rules to ensure global freshness. This modification is shown in
Figure 5.5. In addition to this complication, the complexity of managing the relation
between de Bruijn terms and standard named terms through a mutating heap makes
this proof extremely challenging.

5.6.4 Related Work

Chlipala implements a compiler from a STLC to a simple instruction machine in
[10]. In many ways it is more sophisticated than our work: it converts to CPS,
performs closure conversion, and proves a similar compiler correctness theorem to
the one we’ve proved here. The primary difference is that we’ve defined a call-by-need
compiler, which forces us to reason about updating thunks in the heap, a challenge
not faced by call-by-value implementations.

Breitner formalizes Launchbury’s natural semantics and proves an optimization
is sound with respect to the semantics [26, 9]. By relating his formalization with
ours, these projects could be combined to prove a more sophisticated lazy compiler
correct: one with non-trivial optimizations applied.

CakeML [24] is a verified compiler for a large subset of the Standard ML language
formalized in HOL4 [40]. Like Chlipala’s work, this is a call-by-value language,
though they prove correctness down to an x86 machine model, and are working with
a much larger real-world source language. They also make divergence arguments
along the lines of [32], strengthening their correctness theorem in the presence of
nontermination. It’s also worth noting that like [28], they are also formalizing a
front end to the compiler.
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As part of the DeepSpec project, Weirich et al. have been working on formalizing
Haskell’s core semantics [48, 41]. There is opportunity to use my work in combination
with the DeepSpec project to implement and verify a full-featured Haskell compiler.
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read ro ⟨r f , ps,h⟩ v
bb,⟨r f , p,v :: s,h⟩ →bb S

push ro : bb,⟨r f , p,s,h⟩ →bb S
(Push)

write wo w⟨r f , p,s,h⟩S′
bb,S′ →bb S

pop wo : bb,⟨r f , p,w :: s,h⟩ →bb S
(Pop)

∀i < n, f + i /∈ dom(h)
write wo f ⟨r f , p,s,zeroes n f ++h⟩S′

bb,S′ →bb S
new n wo : bb,⟨r f , p,s,h⟩ →bb S

(New)

read ro s v write wo v S S′ bb,S′ →bb S′′

mov ro wo : bb,S →bb S′′
(Mov)

read ro S 0 write ip k S S′

jump (ro,k) j,S →bb S′
(Jump 0)

l > 0 read ro S l
read j S k write ip k S S′

jump (ro,k′) j,S →bb S′
(Jump S)

read ro S l write ip l S S′

jump ro : S →bb S′
(Jump)

read ip ⟨r f , p,s,h⟩ k
p [k] = bb

bb,⟨r f , p,s,h⟩ →bb S′

⟨r f , p,s,h⟩ → S′
(Enter)

Figure 5.2: Instruction Machine Semantics
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var 0 := push ep :
push 0 :
mov (ep%0) r1 :
mov (ep%1) ep :
jump r1

var (i+1) := mov (ep%2) ep :
var i

compile i k := [var i]
compile (m n) k := let ms = compile m (k+1) in

let nk = 1+ k+ length ms in
push ep :
push nk :
jump (k+1) ::
ms++compile n nk

compile (λb) k := pop r1 :
jump (r1,k+1) (k+2) ::
pop r1 :
mov k r1%0 :
mov ep r1%1 :
jump k ::
new 3 r2 :
mov r1 (r2%0) :
pop (r2%1) :
mov ep (r2%2) :
mov r2 ep :
jump (k+3) ::
compile b (k+3)

Figure 5.3: Compiler Definition
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Φ,Ψ,ϒ ::= x1 7→ t1, . . . ,xn 7→ tn (Heap)

⟨Φ⟩t ⇓ ⟨Ψ⟩λx.t ′

⟨Φ,x 7→ t,ϒ⟩x ⇓ ⟨Ψ,x 7→ λx.t ′,ϒ⟩λx.t ′
(Id)

⟨Φ⟩λx.t ⇓ ⟨Φ⟩λx.t
(Abs)

⟨Φ⟩tl ⇓ ⟨Ψ⟩λx.tn
⟨Ψ,x′ 7→ tm⟩[x′/x]tn ⇓ ⟨ϒ⟩λy.t ′

⟨Φ⟩tl tm ⇓ ⟨ϒ⟩λy.t ′
(App)

Figure 5.4: Ariola et al.’s Operational Semantics

Φ,Ψ,ϒ ::= x1 7→ t1, . . . ,xn 7→ tn (Heap)

⟨Φ,x 7→ t,ϒ⟩t ⇓ ⟨Φ′,x 7→ t,ϒ′⟩λx.t ′

⟨Φ,x 7→ t,ϒ⟩x ⇓ ⟨Φ′,x 7→ λx.t ′,ϒ′⟩λx.t ′
(Id)

⟨Φ⟩λx.t ⇓ ⟨Φ⟩λx.t
(Abs)

⟨Φ⟩tl ⇓ ⟨Ψ⟩λx.tn
⟨Ψ,x′ 7→ tm⟩[x′/x]tn ⇓ ⟨ϒ⟩λy.t ′

⟨Φ⟩tl tm ⇓ ⟨ϒ⟩λy.t ′
(App)

Figure 5.5: Ariola et. al’s Operational Semantics (Fixed)
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Chapter 6

Conclusions

Understand as well as I may, my

comprehension can only be an

infinitesimal fraction of all I want

to understand.

Ada Lovelace

This dissertation is a thorough investigation of a shared-environment approach to
implementing call-by-need semantics. Chapter 4 investigated the runtime efficiency
advantages by implementing a simple native code compiler. Despite the compiler’s
lack of optimization framework, it was often competitive with the state of the art.
From this, the conclusion is that this approach is a promising abstract machine for
real-world compilers. Chapter 5 showed how to use the simplicity of the implemen-
tation to effectively reason formally about its correctness. While it was a significant
undertaking, the success of the verified compiler provides strong evidence that the
simplicity of the machine is a valuable property, and that property can be further
exploited in future work.

For the rest of this Chapter, we take a retrospective look at the work done for the
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dissertation, discussing both what worked well and what didn’t. The hope is that
this deeper dive into the challenges and successes throughout the dissertation can
better inform future work, both work that uses the CE machine directly, and work
that might take a different approach, but with similar goals. While some of what is
discussed in this section has been covered in previous Chapters, we try and address
big-picture conclusions here, accumulating the lessons learned along the way. In
addition, through discussions with other experts and through further introspection,
more conclusions and lessons learned have been discovered, and we use this section
to bring those to light.

More specifically, this chapter attempts to do a few things. First, it summarizes
the theses and conclusions of the dissertation. Second, it summarizes and addresses
the threats to validity of the conclusions presented. Largely motivated by addressing
these threats to validity, it then discusses future directions enabled by this work.

6.1 Threats to Validity

This section attempts to summarize and address the most pressing threats to the
validity to the theses and conclusions discussed in this dissertation. While it attempts
to enumerate the most pressing threats, any list of this nature will be incomplete,
and therefore the goal is not to create a complete list. Instead, the aim of the section
is simply to convey that possible criticisms have been seriously considered. Note
that Chapters 4 and 5 have chapter-specific threats to validity, so in this section we
instead focus on more general threats to validity.

The first, and most glaring, is that the verified compiler makes no claims about
the behaviour of the compiled code in the case of non-termination in the source
semantics. One point to make is that even if we accept that this work only applies to
total languages, and they do exist (Agda, Coq, STLC, etc.) [45], then in the context
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of those languages, this is a complete verified compiler.

Some readers may be inclined to dismiss a compiler, like the one presented here,
that doesn’t implement recursion and algebraic data types explicitly. A tangential
goal of this dissertation is to open the reader to the possibility that those are not nec-
essary for high performance code. Removing them certainly makes formal reasoning
simpler, something that hopefully the reader is convinced is an important property
for a compiler to have.

6.2 Future Work

While Chapters 4 and 5 have sections dedicated to future work specific to their topics,
we expand on those here, discussing future work that could combine the approaches
of both efforts.

The most obvious one would be to combine the efforts. By extracting the Coq
implementation of the compiler into Haskell, the language that the native code com-
piler is implemented in, we would attain a verified fragment of a true native code
compiler. One could then work towards extending the proof to cover more of the
implementation over time. When combined with the possibility of implementing a
full Haskell compiler using the native code compiler in this work, we have a viable
path towards a high performance, fully verified compiler for Haskell.

This approach neglects the fact that there are many cases where GHC significantly
outperforms the native code compiler in its current form. Recent work on verified
transformations and optimizations, when combined with our verified compiler, could
result in a verified compiler that is actually competitive with GHC in performance,
likely outperforming it in some cases due to lightweight closure creation enabled
by the CE machine. In a sense, this would be a natural next step to the existing
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type-safe core language of GHC: instead of just ensuring that transformations are
type-safe, we could have a compiler that ensures that they are correct.

While discussed briefly in the previous chapters, one exciting area for future
work is reasoning formally about performance. Reasoning about memory use of lazy
functional programs is notoriously hard, so any help that the compiler can provide is
extremely valuable. Unfortunately, heuristic approaches interacting with the many
optimizations that exist already can lead to extreme difficulty in reasoning about
memory consumption of a source program. We hope that in combination with future
language tools, one could use the simplicity of the compiler presented here to better
reason about time and space efficiencies, and help ensure that the compiler makes
better decisions about how to preserve and/or improve time and space requirements.
The lack of many intermediate representations makes this compiler an ideal target
for such reasoning.

6.3 Theses Review

There are two theses presented in this dissertation. First, shared-environments ef-
ficiently implement call-by-need semantics, as described by the CE machine. This
thesis is described in detail in Chapter 4. The conclusion of this chapter is that
there are clear efficiencies gained and efficiencies lost with the shared environment
approach. In particular, the efficiency gained by reduced thunk creation overhead
enabled more efficient lambda calculus evaluation.

The primary conclusion for this thesis is that this is a good default behavior, but
one that should be optimized away. Consider the analogue of strictness analysis. The
idea behind strictness analyses and transforms is that laziness is a good default, but
one that should be replaced with eager evaluation for efficiency where possible. In
the same way, lazy thunk creation is a good default, but one that should be replaced
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with an optimized flat environment closure where necessary for efficiency reasons.
In terms of cheap to create vs. efficient to execute, we can think of the shared-
environment closure as the most extremely cheap to create, at the cost of efficiency
to execute, whereas a just-in-time compiled closure specialized on its values might
be at the other extreme: expensive to create, but efficient to execute.

The second thesis of the dissertation is that the simplicity of the compiler that
implements the CE machine lends itself to formal reasoning. This thesis is described
in detail in Chapter 5. The evidence for this thesis is provided in the form of a
verified compiler. The implementation of the first verified compiler of a call-by-need
semantics provides compelling support for this thesis.

The conclusion for this thesis is therefore that yes, the simplicity of the compiler
indeed lends itself to formal reasoning. That said, there are still many open questions.
For example, many of the proofs are excruciatingly complex. It is therefore not at
all clear that the structure of the compiler and proofs is the best possible. Indeed,
we expect there is room for improvement, particularly in the implementation of the
proofs.

6.4 Conclusion

This dissertation has presented a novel technique for implementing call-by-need se-
mantics using shared environments, the CE machine, along with a pair of compilers
that provide evidence for the primary thesis of this dissertation: the CE machine
lends itself to high performance, easy to reason about compilers.

Given that these are desirable properties for a compiler to have, then we must
conclude that the CE machine and the compilers it enables are valuable tools for im-
plementing call-by-need. My hope is that if the compilers developed in this disserta-
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tion are not used directly in future compilers for lazy languages, the ideas underlying
them will be.

72



Appendices

73



Appendix A

Native Code Compiler
Implementation Details

In this appendix we discuss details of the native code compiler. We focus on imple-
mentation details not included in Chapter 4. This includes a complete definition of
the language, as well as extensive examples of what writing programs in the language
looks like. In part, we share these details due to a number of interesting properties
that the implementation has. Some of those properties include

• No first class recursion and let bindings. Replaced by use of Y combinator.

• No algebraic data types: Scott encoded data types.

• World type: reasoning about IO in an untyped setting by passing world values.

• No libc dependence: system calls as an explicit language construct.

• Novel syntax: explicit parentheses, a merging of lambda calculus and Lisp.
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A.1 Source Language

For a better grasp on what the CE native code compiler can do, this section defines
the syntax and core language, and provides a number of example programs and
libraries. It highlights the fact that the compiler can handle machine literals and
primitive operations, including system calls and a basic system for monadic side
effects.

One way to view this section is as the results of an experiment in how simple
we can make a call-by-need source language, and still have the ability to write real
programs.

A.1.1 Language Definition

Here we give the full language definition:

data Expr a b = Var b

| App (Expr a b) (Expr a b)

| Lam a (Expr a b)

| Lit Literal

| Op Op

| World

type Literal = Int

data Op = Add

| Sub

| Mul

| Div
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| Mod

| Eq

| Neq

| Lt

| Gt

| Le

| Ge

| Write WordSize

| Read WordSize

| Call String Int

| Syscall Int

The expressions include the three standard lambda calculus constructors, as well
as literals Lit, which are standard 32 bit machine words, machine operations Op, and
world values World, which are used for reasoning about IO.

A.1.2 Syntax

The source syntax for the compiler is also, to the best of my knowledge, unique.
There are a number of non-standard design decisions worth mentioning. The first,
and most significant one, is a non-standard use of parentheses. Instead of implicit
applications, we use () parentheses to explicitly denote left-associative applications,
and [] brackets to denote explicit right-associative applications. We use either the
unicode character for lambda λx.b the forward slash \x.b to denote lambdas, where
x is a variable and b is the body of the lambda. This choice of explicit applications
simplifies the syntax in a way that prevents ambiguity and simplifies parsing. It is
effectively standard notation but with explicit parenthesis, like Lisp, making it easier
to parse. In addition, we add syntax for let bindings in the form of curly braces. Read

76



left curly braces { as let and right curly brace } as in. The reason for this was to
avoid any keywords in the language, and therefore we require no tokenizer. Finally,
we support string and character literals in the standard way. Following Haskell, we
also define a global binding scope, implementing the following structure (with the
default compilation options):

{

<preludes>

<program source>

} (main Ω λv.λw.w)

This approach allows us to write programs, much like Haskell, with global bindings,
including a requirement to bind the variable main as our outermost function. From a
typed perspective, this results in an expression of type World, assuming the input of
Ω (the input world value). The syntax is easy enough to parse that it’s worth sharing
the parser source directly as a kind of formal grammar:

lc :: Parser SExpr

lc = Lam <$> ((char '\\' <|> char 'λ') *> word <* char '.') <^> lc

<|> Lit <$> literal

<|> Op <$> op

<|> Var <$> word

<|> World <$ char 'Ω'

<|> char '(' ^> (foldl1 App <$> many1 (notCode *> lc <* notCode)) <^

char ')'

<|> char '[' ^> (foldr1 App <$> many1 (notCode *> lc <* notCode)) <^

char ']'

<|> char '\'' *> charLit <* char '\''

<|> char '\"'
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*> (foldr (\h t -> App (App cons h) t) nil <$> many charLit) <*

char '\"'

<|> char '{' ^>

(lets <$> many (notCode *> binding <* notCode) <^>

(char '}' ^> lc))

where lets = flip $ foldr ($)

binding = mylet <$> word <^> (char '=' ^> lc)

mylet var term body = App (Lam var body) term

Note that due to our avoidance of tokenization, we directly parse any non-
numeral, parentheses, or white space string into a variable.

A.1.3 Prelude

An extremely useful tool for any language is a base set of functionality available
in global namespace. We follow Haskell terminology and refer to this set of bound
variables as a Prelude.

We start with a pure fragment of the prelude: there are no partial functions mod-
ulo termination and type-safety. Note we have wrapper functions for our machine
primitive operations that force evaluation of arguments. We also make heavy use of
right-associative applications, wrapped with square brackets []. By using this right
associative operator, along with the implementation of literals, applying themselves
to a continuation, we attain a method of forcing evaluation before applying a prim-
itive operation. This is in contrast to using an infix operator, e.g., the $ operator in
Haskell. Note the _ prefix for primitive operations.

Also note that we define the Y-combinator at the start of the prelude; this is
the source of all recursion. Whether or not this is sufficient for all call-by-need
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recursion seems to be a topic for disagreement, but we have chosen, wherever feasible,
to remove constructs from the core language when an equivalent semantics can be
achieved without it.

# Recursion!

Y = \g.(\x.[g x x] \x.[g x x])

# Boolean integer comparisons

= = \n.\m.\t.\f.[m n \n.\m._=]

!= = \n.\m.\t.\f.[m n \n.\m._\=]

>= = \n.\m.\t.\f.[m n \n.\m._>=]

<= = \n.\m.\t.\f.[m n \n.\m._<=]

< = \n.\m.\t.\f.[m n \n.\m._<]

> = \n.\m.\t.\f.[m n \n.\m._>]

# Arithmetic

+ = \n.\m.[m n \n.\m._+]

- = \n.\m.[m n \n.\m._-]

-' = (0 -)

* = \n.\m.[m n \n.\m._*]

/ = \n.\m.[m n \n.\m._/]

% = \n.\m.[m n \n.\m._%]

^ = \n.(Y \^.\l.\n*.\m.(m = 0 n* (^ (n * n*) (m - 1))) n 1)

# Booleans

false = \t.\f.f

true = \t.\f.t

and = \a.\b.(a b false)
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or = \a.\b.(a true b)

not = \a.(a false true)

# Maybe

Nothing = \n.\j.n

Just = \a.\n.\j.(j a)

# Either

Left = \v.\l.\r.(l v)

Right = \v.\l.\r.(r v)

# Lists

cons = \h.\t.\n.\c.(c h t)

: = cons

nil = true

; = nil

null = \l.(l true \h.\t.false)

# Tuple

pair = \f.\s.\p.(p f s)

fst = \p.(p \x.\y.x)

snd = \p.(p \x.\y.y)

uncurry = \f.\p.(p f)

# Monad

>>= = \c.\f.\w.(c w f)

>> = \c.\f.\w.(c w \v.f)

return = pair
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when = \b.\a.(b a (return 0))

# Misc

gcd = (Y \gcd.\a.\b.([b 0 =] a (gcd b [a b %])))

lcm = \a.\b.(a * b / (gcd a b))

even = \n.(n % 2 = 0)

odd = \n.(n % 2 = 1)

id = \x.x

const = true

compose = \f.\g.\x.[f g x]

flip = \f.\b.\a.(f a b)

until = (Y \until.\p.\f.\x.(p x x (until p f (f x))))

map = (Y \map.\f.\xs.(xs nil \h.\t.(cons (f h) (map f t))))

length = \xs.(Y \length.\xs.\acc.(xs acc \h.\t.(length t (acc + 1))) xs 0)

foldl = (Y \foldl.\f.\a.\bs.(bs a \b.\bs.(foldl f (f a b) bs)))

foldr = (Y \foldr.\f.\a.\bs.(bs a \b.\bs.(f b (foldr f a bs))))

append = \as.\bs.(foldr cons bs as)

++ = append

reverse = (foldl (flip cons) nil)

any = \p.\xs.(foldr or false (map p xs))

all = \p.\xs.(foldr and true (map p xs))

concat = (foldr append nil)

concatMap = \f.(foldr (compose append f) nil)

filter = \c.(Y \filter.\ls.(ls nil \h.\t.(c h (cons h) id (filter t))))

scanl = (Y \scanl.\f.\q.\ls.(cons q (ls nil \x.\xs.(scanl f (f q x) xs))))

scanr = (Y \scanr.\f.\q.\ls.(ls (cons q nil)

\x.\xs.(scanr f x q nil \q.\qs.(cons (f x q)))))

iterate = (Y \iterate.\f.\x.(cons x (iterate f (f x))))
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repeat = (iterate id)

take = (Y \take.\n.\xs.(xs ; \x.\xs.(n <= 0 ; (: x (take (n - 1) xs)))))

replicate = \n.\x.(take n (repeat x))

cycle = \xs.[concat repeat xs]

drop = (Y \drop.\n.\xs.(xs ; \x.\xs.(n = 1 xs (drop (n - 1) xs))))

tail = (drop 1)

splitAt = \n.\xs.(pair (take n xs) (drop n xs))

takeWhile = (Y \takeWhile.\f.\xs.(xs nil

\x.\xs.(f x (cons x (takeWhile f xs)) nil)))

dropWhile = (Y \dropWhile.\f.\xs.(xs nil

\x.\xs.(f x (dropWhile f xs) (cons x xs))))

splitHalf = (Y \sh.\xs.(xs (pair ; ;)

\h1.\t1.(t1 (pair (: h1 ;) ;) \h2.\t2.

{tails = (sh t2)} (tails \f.\s.(

(pair (: h1 f) (: h2 s)))))))

sort = \f.{merge = (Y \merge.\xs.\ys.(xs ys \x.\xts.(ys xs \y.\yts.(f x y

(: x (merge xts ys)) (: y (merge xs yts))))))}

(Y \ms.\l.(length l < 2 l (splitHalf l \f.\s.(merge (ms f) (ms s)))))

split = \f.(Y \split.\xs.(xs (pair nil nil) \h.\t.(f h

(pair nil t)

(split t \acc.\rem.(pair (cons h acc) rem)))))

showInt = \i.{showPosInt = (compose reverse (Y \showPosInt.\i.(i = 0

nil

(cons (i % 10 + 48) (showPosInt (i / 10))))))} [

(i = 0 "0")

(i < 0 (cons '-' (showPosInt (0 - i))))

(showPosInt i)

]
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readInt = (compose (Y \readInt.\n.(n 0 \h.\t.(h - 48 + (readInt t * 10))))

(compose reverse (takeWhile \h.(and (h >= 48) (h < 58)))))

showBool = \b.(b "true" "false")

forever = \c.(Y \forever.(>> c forever))

isSpace = \c.(any (= c) " \n\t\r")

partition = \f.(Y \partition.\s.\acc.(s (pair acc nil)

\h.\t.(f h (pair acc s)

(partition t (append acc)))))

splitWhen = \f.(Y \splitWhen.\xs.(split f xs \l.\r.(r

(l ; \h.\t.(: l ;))

\h.\t.{cont = (splitWhen r)}(l cont \h.\t.(: l cont)))))

words = (splitWhen isSpace)

lines = (splitWhen (= '\n'))

splitArgs = (map (map fst) (splitWhen \p.(p \e.\c.(and (not e) (c = ' ')))

(drop 1 (scanl \q.\x.(q \p.\c.(c = '\\' (pair true x) (pair false x)))

(pair false ' ')))))

intersperse = \v.(Y \intersperse.\l.(l l \h.\t.(t l

\h'.\t'.[(: h) (: v) intersperse t])))

unwords = (compose concat (intersperse " "))

if = id

from = (iterate (+ 1))

range = \s.\e.(take (e - s + 1) (from s))

then = \cont.\result.cont

sum = (foldr + 0)

max = \x.\y.(x > y x y)

min = \x.\y.(x < y x y)

unlines = (concatMap (flip append "\n"))

apply = (Y \al.\f.\l.(l f \h.\t.(al (f h) t)))
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signum = \n.(n = 0 0 (n > 0 1 (-' 1)))

abs = \n.(n < 0 (0 - n) n)

zipWith = \f.(Y \zipWith.\as.\bs.(as nil \a.\at.(bs nil \b.\bt.

(: (f a b) (zipWith at bt)))))

zip = (zipWith pair)

for = \as.\f.(Y \for.\as.(as (return id) \a.\as.(>> (f a) (for as))) as)

mapm_ = (flip for)

mapm = \f.\as.(Y \mapm.\as.\acc.(as (return acc)

\a.\as.(>>= (f a) \c.(mapm as (cons c acc)))) as nil)

replace = \l.\v.(map (const v) l)

zip-with-default = \f.\d.(Y \zwd.\as.\bs.(as

(replace bs d)

\a.\at.(bs

(replace as d)

\b.\bt.(: (f a b) (zwd at bt)))))

strcmp = \s1.\s2.(all id (zip-with-default = false s1 s2))

lookup = \elem.\eqfun.(Y \lookup.\l.(l

Nothing

\h.\t.(h \key.\value.(eqfun elem key

(Just value)

(lookup t)))))

elem = \val.\func.\list.(lookup val func list false true)

A.1.4 Side Effects and Partial Functions

A necessary feature of a real-world programming language is the ability to have side
effects. Here we define a small set of basic tools for implementing basic side effects,
including memory reads and writes, and system calls. Note we take an approach that
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avoids depending on libc, implementing analogous functionality directly in lambda
calculus with access to system calls.

For modeling side effects in lambda calculus, we take an approach inspired by the
IO monad in Haskell. We extend our language with an object of type real world, and
have our side-effectful functions consume and generate a new real-world value. This
allows us to implement and use the monad bind and return functions directly. While
we don’t have infix operators or Haskell’s do-notation, writing imperative programs
is still entirely possible, though certainly more cumbersome, much like Wadler’s early
work with monads [46] but without infix operators.

## Memory read and write wrappers ##

mvq = \val.\addr.\w.[w addr val \a.\b.\w._@q]

rdq = \addr.\w.[w addr \a.\w._$q]

mvl = \val.\addr.\w.[w addr val \a.\b.\w._@l]

rdl = \addr.\w.[w addr \a.\w._$l]

mvs = \val.\addr.\w.[w addr val \a.\b.\w._@s]

rds = \addr.\w.[w addr \a.\w._$s]

mvb = \val.\addr.\w.[w addr val \a.\b.\w._@b]

rdb = \addr.\w.[w addr \a.\w._$b]

mv = mvq

rd = rdq

## System calls ##

sys_mmap = \addr.\len.\prot.\flags.\fd.\offset.\w.

[w 9 offset fd flags prot len addr \a.\b.\c.\d.\e.\f.\t.\w._!6]

sys_write = \fd.\buf.\count.\w.[w 1 count buf fd \a.\b.\c.\t.\w._!3]

sys_read = \fd.\buf.\count.\w.[w 0 count buf fd \a.\b.\c.\t.\w._!3]

sys_open = \fname.\flags.\mode.\w.
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[w 2 mode flags fname \a.\b.\c.\t.\w._!3]

sys_close = \fd.\w.[w 3 fd \a.\t.\w._!1]

sys_exit = \code.\w.[w 60 code\a.\t.\w._!1]

sys_socket = \dom.\type.\prot.\w.[w 41 prot type dom \a.\b.\c.\t.\w._!3]

sys_getpid = \w.[w 39 \t.\w._!0]

sys_fork = \world.[world 57 \t.\w._!0]

sys_nanosleep = \rqtp.\rmtp.\w.[w 35 rmtp rqtp \a.\b.\t.\w._!2]

sys_munmap = \addr.\len.\w.[w 11 len addr \a.\b.\t.\w._!2]

sys_wait = \pid.\w.[w 61 0 0 pid \pid.\a.\b.\t.\w._!3]

sys_execve = \fname.\argv.\envp.\w.

[w 59 envp argv fname \a.\b.\c.\t.\w._!3]

sys_getdents = \fd.\dirent*.\count.\w.

[w 78 count dirent* fd \a.\b.\c.\t.\w._!3]

## Basic IO ##

pageSize = 4096

malloc = \len.(sys_mmap 0 len 255 34 (-' 1) 0)

free = \ptr.(sys_munmap ptr 1)

sleep = \sec.\nsec.(>>= (malloc 2) \p.

(>> (mvq sec p)

(>> (mvq nsec (p + 8))

(>>= (sys_nanosleep p p) \r.

(free p)))))

newPage = (malloc pageSize)

read-utf8-char-from-buf = \p.(>>= (rdb p) \c1.

(c1 / 128 = 0 (return (pair c1 1))

(>>= (rdb (p + 1)) \c2.{c2' = (2 ^ 8 * c2 + c1)}

(c2 / 128 = 0 (return (pair c2' 2))
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(>>= (rdb (p + 2)) \c3.{c3' = (2 ^ 16 * c3 + c2')}

(c3 / 128 = 0 (return (pair c3' 3)) (>>= (rdb (p + 3)) \c4.

(return (pair (2 ^ 24 * c4 + c3') 4)))))))))

write-utf8-char-to-buf = \c.\p.[

(c <= 0x7f (>> (mvb c p) (return 1)))

(c <= 0x7ff (>> (mvb (c / 0x40 + 0xc0) p)

(>> (mvb (c % 0x40 + 0x80) (p + 1)) (return 2))))

(c <= 0xffff (>> (mvb (c / 0x1000 + 0xe0) p)

(>> (mvb (c % 0x1000 / 0x40 + 0x80) (p + 1))

(>> (mvb (c % 0x40 + 0x80) (p + 2))

(return 3)))))

(>> (mvb '?' p) (return 1))]

readStrBuf = (Y \rstr.\loc.\n.(n = 0

(return nil)

(>>= (read-utf8-char-from-buf loc) \p.(p \c.\n'.

(>>= (rstr (loc + n') (n - n')) \s.(return (: c s)))))))

readStrBuf' = (Y \rstr.\loc.

(>>= (read-utf8-char-from-buf loc) \p.(p \c.\n'.

(c = 0

(return nil)

(>>= (rstr (loc + n')) \s.(return (: c s)))))))

putStrBuf = \size.\buf.{

putStrBuf = (Y \putStrBuf.\loc.\s.

{finished = (return (pair loc s))}

(s

finished

\h.\t.(loc - buf >= (size - 4)

finished
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(>>= (write-utf8-char-to-buf h loc) \n.(putStrBuf (loc + n) t)))))

}

(putStrBuf buf)

open = \fname.(>>= newPage \nameBuf.(

>> (putStrBuf pageSize nameBuf fname)

(sys_open nameBuf 66 0)))

openrd = \fname.(>>= newPage \nameBuf.(

>> (putStrBuf pageSize nameBuf fname)

(sys_open nameBuf 0 0)))

putPtrBuf = (Y \putPtrBuf.\loc.\s.(s

(>> (mv 0 loc) (return (loc + 8)))

\h.\t.(>> (mv h loc) (putPtrBuf (loc + 8) t))))

readPtrBuf = (Y \rstr.\loc.\n.(n <= 0

(return nil)

(>>= (rd loc) \p.(p = 0

(return nil)

(>>= (rstr (loc + 8) (n - 1)) \s.(return (: p s)))))))

writeFd = \fd.\str.(>>= newPage \iobuf.(>> (Y \writeFd.\str.

(>>= (putStrBuf pageSize iobuf str) \p.(p \p.\s.

(>>= (sys_write fd iobuf (p - iobuf)) \n.

(nil? s (return n) (writeFd s))))

) str) (free iobuf)))

writeFile = \fname.\str.(newPage >>= \iobuf.(

>>= (open fname) \fd.(

>> (fd > 1024 (sys_exit 2) (writeFd fd str))

(free iobuf))))

readFd = \fd.(>>= newPage \iobuf.(Y \readFd.

(>>= (sys_read fd iobuf pageSize) \n.
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(>>= (readStrBuf iobuf n) \s.

(n < pageSize

(return s)

(nil? s

(return nil)

(>>= readFd (compose return (append s)))))))))

readFile = \fname.(>>= (openrd fname) \fd.

(or (fd > 1024) (fd < 0)

(sys_exit (-' 1))

(readFd fd)))

putStr = (writeFd 1)

putStrLn = \s.(writeFd 1 (append s "\n"))

print = putStrLn

getContents = (readFd 0)

getLine = (>>= getContents \s.(return (takeWhile (!= '\n') s)))

interact = \f.(>>= getContents (compose putStr f))

# Prelude-like utilities that require IO, e.g. partial functions

fork = \c.(>>= sys_fork \n.(n = 0 (>> c (sys_exit 0)) (sys_wait n)))

error = \s.(>> (putStrLn s) (sys_exit 1) 0)

undefined = (error "undefined")

PME = (error "Pattern match error")

head = \l.(l (error "head of empty list") \h.\t.h)

index = \n.\k.(Y \index.\n.\k.\cont.(n = 0

cont

\x.(index (n - 1) k (k = n x cont))) n (n - k + 1)

(error "index failed"))

listIndex = (Y \listIndex.\n.\l.(l (error "listIndex failed")
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\h.\t.(n = 0 h (listIndex (n - 1) t))))

!! = listIndex

fst = (index 2 1)

snd = (index 2 2)

sprintf_ = \k.(Y \printf.\acc.\l.(l (k acc) \h.\t.(h = '%'

(t (append acc "%") \h.\t'.[

(h = 'd' \i.(printf (append acc (showInt i)) t'))

(h = 'c' \c.(printf (append acc (cons c nil)) t'))

(h = 's' \s.(printf (append acc s) t'))

(h = 'b' \b.(printf (append acc (showBool b)) t'))

(printf (append acc "%") t)])

(printf (append acc (cons h nil)) t))) nil)

sprintf = (sprintf_ id)

printf = (sprintf_ print)

trace = \x.(sprintf_ print 0 \w.\s.x)

putWords = (Y \putWords.\ws.\startloc.(ws

(return (pair startloc nil))

\w.\ws.

(>>= (putStrBuf pageSize startloc (++ w (: 0 ;))) \p.(p \endloc.\str.

(>>= (putWords ws endloc) \p.(p \ptrloc.\ws.

(return (pair ptrloc (cons startloc ws)))))))))

getArgs = (>>= sys_getpid \i.{fname = (sprintf "/proc/%d/cmdline" i)}

(>>= (readFile fname) \s.[return tail [splitWhen = 0] s]))

getEnv = (>>= sys_getpid \i.{fname = (sprintf "/proc/%d/environ" i)}

(>>= (readFile fname) \s.{bindings = (splitWhen (= 0) s)}

(return (map (split (= '=')) bindings))))

getRawEnv = (>>= sys_getpid \i.{fname = (sprintf "/proc/%d/environ" i)}

(>>= (readFile fname) \s.{bindings = (splitWhen (= 0) s)}
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(return bindings)))

# LS

d_ino = \ld.(rdl ld)

d_off = \ld.(rdl (ld + 8))

d_reclen = \ld.(rds (ld + 16))

d_name = \ld.(ld + 18)

# String -> IO [String]

ls = \path.(>>= newPage \buf.

(>> (putStrBuf pageSize buf path)

(>>= (sys_open buf 0x10000 0) \fd.

(fd < 0

(>> (printf "%s is not a directory" path)

(return nil))

(>>= (sys_getdents fd buf pageSize) \n.

(n < 0

(>> (printf "getdents on dir \"%s\" failed with errno %d" path n)

(return nil))

{read-dent = (Y \rdd.\ld.(ld - n >= buf

(return nil)

(>>= (d_ino ld) \ino.

(>>= (d_off ld) \off.

(>>= (d_reclen ld) \reclen.

(>>= (readStrBuf' (d_name ld)) \name.

(>>= (rdd (ld + reclen)) \names.

(return (cons name names)))))))))

}

(>>= (read-dent buf) \files.
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(>> (free buf)

(return files)))))))))

pwd = (>>= getEnv \env.(lookup "PWD" strcmp env (return "/") return))

findPath = \name.(>>= getEnv \env.

{paths = (lookup "PATH" strcmp env

(cons "/usr/bin" nil) (splitWhen (= ':')))}

{find-file = (Y \ff.\paths.(paths

(>> (printf "couldn\'t find %s" name) (return name))

\p.\ps.(>> (printf "checking %s")

(>>= (ls p) \fs.(elem name strcmp fs

(>> (printf "found %s in %s" name p)

(return (append p (cons '/' name))))

(>> (printf "couldn\'t find %s in %s" name p) (ff ps)))))))}

(find-file paths))

exec = \str.(splitArgs str (return 0) \fname.\argv.

(>>= getEnv \env.

(>> (printf "running %s with args: " fname)

(>> (mapm_ putStr argv) (>> (print ".")

(>>= (elem '/' = fname (return fname) (findPath fname)) \fullname.

(>>= newPage \buf.

(>>= (putStrBuf pageSize buf (++ fullname (: 0 ;))) \p.(p \l.\str.

(>>= (putWords argv l) \p.(p \al.\alocs.

(>>= (putPtrBuf al (cons buf alocs)) \l.

(>>= getRawEnv \env.

(>>= (putWords env l) \p.(p \el.\elocs.

(>>= (putPtrBuf el elocs) \l.

(>>= (sys_execve buf al el) \retval.

(>> (free buf)
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(return retval)))))))))))))))))))

system = (compose fork exec)

Note the use of parentheses gets pretty hairy. Despite our right associative ap-
plications, the lack of infix operators and do-notation hurts the readability of long
imperative programs significantly. Still, it is certainly possible to write programs in
this style. Note also that our heavy use of newPage shows that our lack of stack
allocated memory is a pain. Due to our use of the system stack for our argument
closures and update markers, incorporating alloca-style stack allocations would be a
significant challenge, though it should be possible.

A.1.5 Example Programs

In addition to re-writing the no-fib benchmark suite, we started writing example
programs in this source language to gauge the difficulty. These programs use the
prelude described above to implement basic programs.

We start with a canonical example of using call-by-need to implement a dynamic
programming linear time Fibonacci.

fibs = (Y \fibs.[(1 :) (1 :) (zipWith + fibs (tail fibs))])

This is an interesting example, because unlike the similar Haskell implementation,
this implementation is guaranteed to run in linear time. Because Haskell is a non-
strict language, we rely on its use of call-by-need as an optimization technique,
not a guaranteed property of the language. Note also the infix use of :. This is
possible due to the implementation of machine integers. Recall that we don’t have
algebraic data types, so the technique used by Haskell of wrapping machine literals
in a newtype is not an option. Instead, we use evaluation to force the value. In place
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of an environment pointer, we place the machine literal, and use the code pointer
to take the continuation and apply itself to it. In this case, that results in the
cons constructor applying itself to the value 1. Note that this is the approach used
in all the machine primitive operations in the prelude listed above as well. While
this is operationally equivalent the Haskell approach, it does raise questions about
referential transparency.

Another simple example shows how we can use the fork system call to implement
parallel programs. This shows how easy it is to use the IO monad without the use
of type classes.

main = (>>= sys_fork \r.(r = 0

(print "Child says hi")

(print "Parent says hi")))

Note again we use the fact that forcing r before checking equality is a perfectly
valid thing to do, though not necessary in this case as the equality check = will force
it as well.

A.2 Visualization

In addition to the native code compiler, I have implemented a graphviz-based visu-
alization tool that helps visualize how the heap changes over time. It uses variable
names in the heap instead of de Bruijn indices to increase readability. It also shows
the stack and current closure through steps of the small-step CE semantics. The
primary use is just to see how the cactus structure evolves through evaluation, and
how it ensures sharing.

For example, consider evaluation of the expression
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(\a.(\b.(b a) \c.(c a)) (\i.i \j.j))

By running the cem executable with the flags -pg, we get the following output:

Closure Context Heap

(λa.(λb.b a) λc.c a) ((λi.i) λj.j)[0] □ 0=•

Closure Context Heap

λa.(λb.b a) λc.c a[0]
(λi.i) λj.j[0]

□
0=•

Closure Context Heap

(λb.b a) λc.c a[1] □

0=•

1 : a = (λi.i) λj.j

Closure Context Heap

λb.b a[1]
λc.c a[1]

□

0=•

1 : a = (λi.i) λj.j

Closure Context Heap

b a[2] □

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

Closure Context Heap

b[2]
a[2]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

Closure
Context

Heap

λc.c a[1]

2

a[2]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

Closure Context Heap

λc.c a[1]
a[2]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a
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Closure Context Heap

c a[3] □

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a

Closure Context Heap

c[3]
a[3]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a

Closure
Context

Heap

a[2]

3

a[3]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a Closure

Context

Heap

(λi.i) λj.j[0]

1

3

a[3]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a

96



Closure

Context

Heap

λi.i[0]

λj.j[0]

1

3

a[3]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a

Closure

Context

Heap

i[4]

1

3

a[3]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a

4 : i = λj.j

Closure

Context

Heap

λj.j[0]

4

1

3

a[3]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a

4 : i = λj.j

Closure

Context

Heap

λj.j[0]

1

3

a[3]

□

0=•

1 : a = (λi.i) λj.j

2 : b = λc.c a

3 : c = a

4 : i = λj.j
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Closure
Context

Heap

λj.j[0]

3

a[3]

□

0=•

1 : a = λj.j

2 : b = λc.c a

3 : c = a

4 : i = λj.j

Closure Context Heap

λj.j[0]
a[3]

□

0=•

1 : a = λj.j

2 : b = λc.c a3 : c = λj.j

4 : i = λj.j

Closure Context Heap

j[5] □

0=•

1 : a = λj.j

2 : b = λc.c a3 : c = λj.j

4 : i = λj.j

5 : j = a

Closure Context Heap

a[3]
5

□

0=•

1 : a = λj.j

2 : b = λc.c a3 : c = λj.j

4 : i = λj.j

5 : j = a

Closure
Context

Heap

λj.j[0]

1

5

□

0=•

1 : a = λj.j

2 : b = λc.c a3 : c = λj.j

4 : i = λj.j

5 : j = a

Closure Context Heap

λj.j[0]
5

□

0=•

1 : a = λj.j

2 : b = λc.c a3 : c = λj.j

4 : i = λj.j

5 : j = a
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Closure Context Heap

λj.j[0] □

0=•

1 : a = λj.j

2 : b = λc.c a3 : c = λj.j

4 : i = λj.j5 : j = λj.j

We can see that through the evaluation, the variable a is dereferenced twice, in
two different scopes. The cactus structure ensures that the value is correctly shared
between the two instances, with the second dereference correctly dereferencing the
evaluated identity function.

A.2.1 Benchmarks

To convince the reader that the benchmarks are equivalent to the Haskell variants
described in Section 4.2, we share the source code of some of them here, alongside
their Haskell counterparts.

First, we start with the primes example. In our language, the implementation
looks as follows.

divs = \n.\x.(x % n != 0)

thefilter = \l.(filter [divs head l] (tail l))

primes = [(map head) (iterate thefilter) from 2]

main = (>>= getArgs \args.(args (error "usage: primes <n>") \n.\t.

(printf "%d" (!! (readInt n) primes))))

The Haskell version is as follows:
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import System.Environment

suCC :: Int -> Int

suCC x = x + 1

isdivs :: Int -> Int -> Bool

isdivs n x = mod x n /= 0

the_filter :: [Int] -> [Int]

the_filter (n:ns) = filter (isdivs n) ns

primes :: [Int]

primes = map head (iterate the_filter (iterate suCC 2))

main = do

[arg] <- getArgs

print $ primes !! (read arg)

Note that we use the helper function from from the prelude which uses the par-
tially applied + 1 directly, but otherwise the implementations are identical. This
is characteristic of how each of the benchmarks differ in our version compared to
the Haskell version. Both the Haskell and our versions can be found in the source
tarball.
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Appendix B

Coq Implementation Details

Proof irrelevance is an important idea in philosophy of logic. It is the notion that we
don’t really need to care how the proof was built, only that it was sound. In machine
checked proofs this notion is particularly relevant: if the machine checks the proofs
of our lemmas, we can be sure that they are valid proofs.

In contrast, we must care about the contents of the definitions and theorems.
Without them, the reader can’t be sure what’s been proved is what is being claimed
to have been proved. Therefore, we use this section to define and discuss select
Coq definitions and theorem statements in the implementation and proof of correct-
ness of the verified compiler. We attempt to convey what worked well, and what
posed significant challenges in the hope of informing future work in this area. The
formalization is available at https://github.com/stelleg/cem_coq and has been suc-
cessfully type-checked with Coq version 8.9. The version used for this dissertation is
tagged with dissertation, which at the time of writing enables it to be downloaded
as a GitHub release tarball. Inevitably, we will use definitions from both the Coq
standard libraries, or generic definitions implemented throughout the project. This
appendix covers only the most imporant definitions and theorems.
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It’s also worth noting that the reader will find many definitions, lemmas, algo-
rithms, and proofs in the repository that are unused in the final proof. This is a
byproduct of the process of proving in a computer logic. Often, when one starts
a proof it seems like a certain property or lemma will be required, so one proves
that lemma, only to discover later that it was not necessary. Such helper lemmas
sometimes prove useful later, during a different proof. Hopefully some of the unused
code will prove useful in future work.

Another point worth noting is that the Coq code makes heavy use of Unicode
characters and notations. In hindsight, the heavy use of fancy notations was almost
always a mistake, and a refactoring to remove them would likely improve readability.
Limiting use of notations to the occasional infix operator is likely a good middle
ground.

B.1 Big-Step CE Semantics

Here we define the big-step syntax and semantics, which we use as our input language
semantics. This is a formalization of the Figure 3.2.

We start with the lambda calculus with de Bruijn indices.

Inductive tm : Type :=

| var : nat → tm

| lam : tm → tm

| app : tm → tm → tm.

Next, we define other helper definitions, including closures, environments (env),
cells, heaps, configurations, what doing a lookup into the shared environment means
(clu), and what replacing a closure at a location in a heap means (update).
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Definition env := nat.

Record closure : Type := close {

cl_tm : tm;

cl_en : env

}.

Record cell : Type := cl {

cell_cl : closure;

cell_env : env

}.

Definition heap := Map nat cell.

Record configuration : Type := conf {

conf_h : heap;

conf_c : closure

}.

Fixpoint clu (v env:nat) (h:heap) : option (nat * cell) :=

match lookup env h with

| None => None

| Some (cl c a) => match v with

| S n => clu n a h

| 0 => Some (env, cl c a)

end

end.
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Fixpoint update (h : heap) (l : env) (v : closure) : heap := match h with

| [] => []

| (u, cl c e)::h => if beq_nat l u

then (u, cl v e) :: update h l v

else (u, cl c e) :: update h l v

end.

Finally, we define the actual machine big-step semantics.

Reserved Notation " c1 '⇓' c2 " (at level 50).

Inductive step : configuration → configuration → Type :=

| Id : ∀ M x y z Φ Ψ v e, clu y e Φ = Some (x, {M, z}) →

⟨Φ⟩M ⇓ ⟨Ψ⟩v →

⟨Φ⟩close (var y) e ⇓ ⟨update Ψ x v⟩v

| Abs : ∀ N Φ e, ⟨Φ⟩close (:λN) e ⇓ ⟨Φ⟩close (:λN) e

| App : ∀ N M B B' Φ Ψ Υ f e ne ae, isfresh (domain Ψ) f → f > 0 →

⟨Φ⟩close M e ⇓ ⟨Ψ⟩close (:λB) ne →

⟨Ψ, f ↦ {close N e, ne}⟩close B f ⇓ ⟨Υ⟩close (:λB') ae →

⟨Φ⟩close (M@N) e ⇓ ⟨Υ⟩close (:λB') ae

where " c1 '⇓' c2 " := (step c1 c2).

B.2 Small-Step CE Semantics

Our small-step semantics is a straightforward implementation of the big-step se-
mantics. The language is the same lambda calculus with de Bruijn indices, while
we introduce a stack to match marker updates and argument bindings to variables.
This is a formalization of Figure 3.3.

104



Most of the syntax is shared with the big-step semantics, and is imported directly
from the big-step module. We share the definitions for stacks and states, followed
directly by the small-step semantics.

Definition stack := list (closure + nat).

Inductive state : Type := st {

st_hp : heap;

st_st : stack;

st_cl : closure

}.

Reserved Notation " c1 '→_s' c2 " (at level 50).

Inductive step : transition state :=

| Upd : ∀ Φ b e l s,

st Φ (inr l::s) (close (lam b) e) →_s

st (update Φ l (close (lam b) e)) s (close (lam b) e)

| Var : ∀ Φ s v l c e e', clu v e Φ = Some (l,cl c e') →

st Φ s (close (var v) e) →_s st Φ (inr l::s) c

| Abs : ∀ Φ b e f c s, isfresh (domain Φ) f → f > 0 →

st Φ (inl c::s) (close (lam b) e) →_s st ((f, cl c e):: Φ) s (close b f)

| App : ∀ Φ e s n m,

st Φ s (close (app m n) e) →_s st Φ (inl (close n e)::s) (close m e)

where " c1 '→_s' c2 " := (step c1 c2).
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B.2.1 Relation to Big-Step

We prove that the small-step semantics implements the big-step semantics with the
following lemma. The description of the proof can be found in Section 5.2.1.

Notation " c1 '→_s*' c2 " :=

(refl_trans_clos cesm.step c1 c2) (at level 30).

Lemma cem_cesm : ∀ Φ Ψ c v,

conf Φ c ⇓ conf Ψ v → ∀ s,

st Φ s c →_s* st Ψ s v.

B.3 Instruction Machine

Finally, we change representations and describe the assembly language of the abstract
instruction machine; the target of the verified compiler. This is the formalization
of language defined in Figure 5.1. Note the use of coercions to help ease the use
of type-safe read and write operands, and an infix operator to duplicate common
syntax for real world assembly languages when indexing an offset. Note that for
our purposes, we only ever need a constant offset, but one could easily extend the
language to allow for offsets to be defined by a read operand.

Definition Word := nat.

Definition Ptr := nat.

Inductive Reg :=

| IP

| EP
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| R1

| R2.

Inductive WO :=

| WR : Reg → WO

| WM : Reg → nat → WO.

Coercion WR : Reg >-> WO.

Infix "%" := WM (at level 30).

Inductive RO :=

| RW : WO → RO

| RC : nat → RO.

Coercion RW : WO >-> RO.

Coercion RC : nat >-> RO.

Inductive Instr : Type :=

| push : RO → Instr

| pop : WO → Instr

| new : nat → WO → Instr

| mov : RO → WO → Instr.

Inductive BasicBlock : Type :=

| instr : Instr → BasicBlock → BasicBlock

| jump : option (RO*Ptr) → RO → BasicBlock.

Definition Program := list BasicBlock.
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Finally, note that we use a list of basic blocks as our program. This list is indexed
by integers in the machine semantics, so translating this to a Harvard architecture
machine semantics should be relatively straightforward.

Now that we have the language for our abstract instruction machine target, we
can look at the formal semantics for it. Without loss of generality, we choose a step
relation on instructions, wrapped by a step instruction on full basic blocks. This eases
reasoning about the relation to the small-step CE relation. This is a formalization
of the semantics described in Figure 5.2.

We start with a register file and machine state, along with a straightforward
semantics for reading and writing from operands given a machine state. We omit
some uninteresting helper functions.

Inductive RegisterFile := mkrf {

ip : Ptr;

ep : Ptr;

r1 : Ptr;

r2 : Ptr

}.

Inductive State := st {

st_rf : RegisterFile;

st_p : Program;

st_s : Stack;

st_h : Heap

}.

Open Scope nat_scope.

Inductive read : RO → State → Ptr → Type :=
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| read_reg : ∀ r s, read (RW (WR r)) s (rff (st_rf s) r)

| read_mem : ∀ r o rf p s h v,

lookup (o+rff rf r) h = Some v →

read (RW (WM r o)) (st rf p s h) v

| read_const : ∀ c s, read (RC c) s c.

Inductive write : WO → Word → State → State → Type :=

| write_reg : ∀ r rf p s h w,

write (WR r) w (st rf p s h) (st (upd r w rf) p s h)

| write_mem : ∀ r o rf p s h w,

write (WM r o) w (st rf p s h)

(st rf p s (replace beq_nat (o+rff rf r) w h)).

Given our machine definitions and read and write semantics, we can move di-
rectly to defining the step relation for instructions. The step_bb relation defines the
execution of a full basic block by induction on the instructions contained in that
basic blocks. The step relation then wraps that relation and defines how the state
changes given execution of the basic block pointed to by the instruction pointer.
Note that we don’t define an explicit halting relation. Instead, the machine will be
stuck when the current code to be executed is a value and the stack is empty, which
is where the small-step CE semantics also get stuck. In contrast, the native code
implementation has a check to ensure the stack is non-empty. A full compiler with
a sufficiently sophisticated type system could likely do away with this check, only
terminating with the main function returning a value of type World.

Inductive step_bb : BasicBlock → State → State → Type :=

| step_push : ∀ rf p s h ro is v sn,

read ro (st rf p s h) v →

step_bb is (st rf p (v::s) h) sn →
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step_bb (instr (push ro) is) (st rf p s h) sn

| step_pop : ∀ rf p s h wo is w s' sn,

write wo w (st rf p s h) s' →

step_bb is s' sn →

step_bb (instr (pop wo) is) (st rf p (w::s) h) sn

| step_new : ∀ rf p s h wo is w s' n sn,

(∀ i, i < n → not (In (i+w) (domain h))) →

w > 0 →

write wo w (st rf p s (zeroes n w ++ h)) s' →

step_bb is s' sn →

step_bb (instr (new n wo) is) (st rf p s h) sn

| step_mov : ∀ s is ro wo s' v sn,

read ro s v → write wo v s s' →

step_bb is s' sn →

step_bb (instr (mov ro wo) is) s sn

| step_jump0 : ∀ ro k j s s',

read ro s 0 →

write (WR IP) k s s' →

step_bb (jump (Some (ro, k)) j) s s'

| step_jumpS : ∀ ro k j s s' l k',

l > 0 →

read ro s l →

read j s k →

write (WR IP) k s s' →

step_bb (jump (Some (ro, k')) j) s s'

| step_jump : ∀ ro s s' l,

read ro s l →

write (WR IP) l s s' →
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step_bb (jump None ro) s s'

.

Inductive step : transition State :=

| enter : ∀ rf p s h k bb sn,

read IP (st rf p s h) k →

nth_error p k = Some bb →

step_bb bb (st rf p s h) sn →

step (st rf p s h) sn.

With our step function defined, we can start thinking about how we want to
implement our compiler, and how to relate the instruction machine to the small step
semantics of our input language.

B.3.1 Relation to Small-Step Semantics

We now have everything we need, except for the compiler definition, which we will
address in the next section. We start by assuming a new function, which is effectively
a malloc that given a heap, returns a non-null free contiguous region of memory. Of
course, in reality malloc is a partial function, but we aren’t modelling running out
of memory in this work.

Variable new : ∀ (n:nat) (h : im.Heap), sigT (λ w:nat,

prod (∀ i, lt i n → (i+w) ∉ domain h)

(w > 0)).

Definition prog_eq (p : Ptr) (pr : Program) (t : tm) :=

let subpr := assemble t p in subpr = firstn (length subpr) (skipn p pr).
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Next, we discuss heap relations between the instruction machine and the CE

machine semantics. Unfortunately, this gets incredibly involved. Despite much effort,
I was unable to find a more elegant relation between the two.

Inductive heap_rel : cesm.heap → im.Heap → Type :=

| heap_nil : heap_rel [] []

| heap_cons : ∀ l l' ne ch ih ip ep ine e t,

l ∉ domain ch → l' ∉ domain ih →

S l' ∉ domain ih → S (S l') ∉ domain ih →

l > 0 → l' > 0 →

heap_rel ch ih →

heap_rel

((l, cl (close t e) ne)::ch)

((l', ip)::(S l', ep)::(S (S l'), ine)::ih).

Fixpoint in_heap_rel (ch : cesm.heap) (ih : im.Heap)

(r : heap_rel ch ih)

(l e ne : nat) (t : db.tm)

(il ip ep nep : Ptr) : Type := match r with

| heap_nil => False

| heap_cons l' il' ne' cht iht ip' ep' nep' e' t' _ _ _ _ _ _ rt =>

if andb (beq_nat l l') (beq_nat il il') then

(ne' = ne) * (ip' = ip) * (ep' = ep) *

(nep' = nep) * (e' = e) * (t' = t)

else

if andb (negb (beq_nat l l')) (negb (beq_nat il il'))

then in_heap_rel cht iht rt l e ne t il ip ep nep

else False
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end.

Inductive env_eq (ch : cesm.heap) (ih : im.Heap) (r : heap_rel ch ih)

: nat → Ptr → Type :=

| e0 : env_eq ch ih r 0 0

| eS : ∀ l e ne t il ip ep nep,

in_heap_rel ch ih r l e ne t il ip ep nep →

env_eq ch ih r l il.

Inductive heap_eq (ch : cesm.heap) (ih : im.Heap)

(r : heap_rel ch ih) (p : Program) : Type :=

| mkheap_eq :

(∀ l e ne t il ip ep nep,

in_heap_rel ch ih r l e ne t il ip ep nep →

(prog_eq ip p t) *

(env_eq ch ih r e ep) *

(env_eq ch ih r ne nep)) →

heap_eq ch ih r p.

In words, the heap_rel defines a heap relation that simply relates an entry in the
CE heap to the three machine words in the instruction machine heap. in_heap_rel

is a decidable relation that determines whether or not a given heap location and cell
at that location and their corresponding machine analogues are related by a heap
relation object. We say environments are equal if they are either both the empty
environment or the first element of the environments are in the heap relation, and
the tails are equal. Two heaps are equivalent if for every cell, the term portions are
equivalent and the environment and environment continuations are equivalent. The

113



inductive relation on the environments is crucial for inductive reasoning on de Bruijn
indices.

Given our heap and environment relations, we can move to notions of closure,
stack, and complete state equivalences.

Inductive clos_eq (ch : cem.heap) (ih : im.Heap)

(r : heap_rel ch ih) (p : Program):

closure → Ptr → Ptr → Type :=

| c_eq : ∀ t e ip ep,

prog_eq ip p t →

env_eq ch ih r e ep →

clos_eq ch ih r p (cem.close t e) ip ep.

Inductive stack_eq (ch : cem.heap) (ih : im.Heap)

(r : heap_rel ch ih) (p : Program) :

cesm.stack → im.Stack → Type :=

| stack_nil : stack_eq ch ih r p nil nil

| stack_upd : ∀ l e ne t il ip ie ine cs is,

in_heap_rel ch ih r l e ne t il ip ie ine →

stack_eq ch ih r p cs is →

stack_eq ch ih r p (inr l::cs) (0::il::is)

| stack_arg : ∀ ip ep cs is c,

ip > 0 →

clos_eq ch ih r p c ip ep →

stack_eq ch ih r p cs is →

stack_eq ch ih r p (inl c::cs) (ip::ep::is).

Inductive state_rel (cs : cesm.state) (is : im.State) : Type :=
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| str : ∀ r,

heap_eq (st_hp cs) (st_h is) r (st_p is) →

clos_eq (st_hp cs) (st_h is) r (st_p is) (st_cl cs)

(rff (st_rf is) IP) (rff (st_rf is) EP) →

stack_eq (st_hp cs) (st_h is) r (st_p is) (st_st cs) (st_s is) →

state_rel cs is.

For the stack relation, we have either the empty stacks or two stacks with either
both update markers or both argument closures on top, and equivalent stacks below
that. For update markers, we have that the two marker locations exist in the heap
relation. For argument closures, we have that the closures are equivalent.

The closure and state relations are straightforward, the closure relation requires
that the term and subprogram are equal, and that the environments are equivalent.
The state relation requires equivalent closure and registerfile entries (IP and EP),
equivalent heaps, and equivalent stacks.

Finally, we can pose our lemma that the instruction machine implements the
small-step semantics.

Lemma cesm_im : ∀ v s s', state_rel s s' →

cesm.step s v →

sigT (λ v', prod (refl_trans_clos im.step s' v') (state_rel v v')).

This states that if we have related small-step and instruction machine states, and
we take a small step, then the instruction machine will take a step to a state that
is related to the new state of the small-step machine. While we don’t discuss the
proof in detail, it’s worth mentioning that even with many supporting definitions
and lemmas, it took on the order of 2000 Ltac (Coq’s tactic language) statements to
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prove. Note that is a single step, but the reflexive transitive closure version follows
trivially.

B.4 Compiler and Correctness

We’ve seen the assemble function referred to relate the lambda terms to the machine
instructions in the previous section. This sections defines that function, which is the
entire compiler implementation.

Infix ";" := instr (at level 30, right associativity).

Fixpoint var_inst (i : nat) : BasicBlock := match i with

| 0 => push EP ;

push (RC 0) ;

mov (EP%0) R1 ;

mov (EP%1) EP ;

jump None R1

| S i => mov (EP%2) EP ;

var_inst i

end.

Fixpoint assemble (t : tm) (k : nat) : Program := match t with

| var v => [var_inst v]

| app m n => let ms := assemble m (1+k) in

let nk := 1+k+length ms in

push EP ;

push (RC nk) ;
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jump None (RC (1+k)) ::

ms ++

assemble n nk

| lam b => pop R1 ;

jump (Some (RW (WR R1), (1+k))) (RC (2+k)) ::

(*Update*)

pop R1 ;

mov (RC k) (R1%0) ;

mov EP (R1%1) ;

jump None (RC k) ::

(*Take*)

new 3 R2 ;

mov R1 (R2%0);

pop (R2%1) ;

mov EP (R2%2) ;

mov R2 EP ;

jump None (3+k) ::

assemble b (3+k)

end.

We can see that the compiler is very simple, only requiring 35 lines of code. It is
this simplicity that enables the formal reasoning achieved in the previous section.

Finally, we can define our top level correctness theorem.

Definition compile t := assemble t 0.

Theorem compile_correct (t : db.tm) v : cem.step (cem.I t) v →

sigT (λ v', refl_trans_clos im.step (im.I (compile t)) v' *
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state_rel (cesm.st (cem.conf_h v) nil (cem.conf_c v)) v').

This theorem states that if a term steps in the big-step semantics to a value, then
the instruction machine will step in zero or more steps to a related state. Knowledge
of the state_rel relation is crucial here: it would be trivial to define a meaningless
relation, e.g. the relation defined by λ c i, True, and prove the relation trivially.
Because we know that the relation requires equivalence of term and subprogram
pointed to by IP, we know that the theorem is what we want.

B.5 Curien

To relate our implementation to a known semantics, we choose Curien’s calculus of
closures. We show that the call-by-name CE semantics implement Curien’s calculus
of closures. We start by defining Curien’s calculus of closures.

Inductive closure := | close : tm → list closure → closure.

Definition env := list closure.

Inductive step : closure → closure → Type :=

| Abs : ∀ b e, step (close (lam b) e) (close (lam b) e)

| Var : ∀ x e v c,

nth_error e x = Some c →

step c v →

step (close (var x) e) v

| App : ∀ m n b e v mve,

step (close m e) (close (lam b) mve) →

step (close b (close n e::mve)) v →

step (close (app m n) e) v.
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This is a formalization of the semantics in Figure 2.1. We relate this to the
call-by-name variant of the CE semantics. Defined in Figure 3.1, we formalize this
semantics in Coq as follows.

Reserved Notation " c1 '⇓n' c2 " (at level 50).

Inductive step : configuration → configuration → Type :=

| Id : ∀ M x z Φ Ψ y v e, clu y z Φ = Some (x, {M, e}) →

⟨Φ⟩M ⇓n ⟨Ψ⟩v →

⟨Φ⟩close (var y) z ⇓n ⟨Ψ⟩v

| Abs : ∀ N Φ e, ⟨Φ⟩close (:λN) e ⇓n ⟨Φ⟩close (:λN) e

| App : ∀ N M B B' Φ Ψ Υ f e ne ae, isfresh (domain Ψ) f →

⟨Φ⟩close M e ⇓ ⟨Ψ⟩close (:λB) ne →

⟨Ψ, f ↦ {close N e, ne}⟩close B f ⇓ ⟨Υ⟩close (:λB') ae →

⟨Φ⟩close (M@N) e ⇓ ⟨Υ⟩close (:λB') ae

where " c1 '⇓n' c2 " := (step c1 c2).

Note the only difference between this semantics and the call-by-need is the lack
of an updated heap in the Id rule (and we don’t require nonzero heap locations, but
this is unimportant). With these two semantics defined, we can relate them by first
relating environments and closures. We start by defining an inductive relation on
what it means for environments to be equivalent. A cactus environment is equivalent
a Curien environment if following the environment pointers results in equivalent
closures at each location.

Inductive env_eq (h : heap) : curien.env → cem.env → Type :=

| env_eq_nil : ∀ l, env_eq h nil l

| env_eq_cons : ∀ t e e' l l' l'',

lookup l h = Some (cl (cem.close t l') l'') →

env_eq h e l' →
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env_eq h e' l'' →

env_eq h (curien.close t e :: e') l

.

Inductive close_eq (h : heap) : curien.closure → cem.closure → Type :=

| close_equiv : ∀ t e l,

env_eq h e l →

close_eq h (curien.close t e) (cem.close t l).

With this relation, we can define and prove a helper lemma that takes advantage
of the monotonicity of the cactus environment to implement a cactus environment to
prove that if an environment is equivalent to a Curien environment, and the call-by-
name CE semantics take a step, it will stay equivalent. This is noteworthy as one of
the few places in the proof structures that would need to be changed to incorporate
a notion of heap reuse/garbage collection.

Lemma env_eq_step : ∀ h h' c v e l,

cem_name.step (conf h c) (conf h' v) →

env_eq h e l →

env_eq h' e l.

Finally, we are ready to define our correctness lemma.

Theorem step_eq : ∀ h c c' v, close_eq h c c' → curien.step c v →

sigT (λ co, match co with conf h' v' => prod

(cem_name.step (conf h c') co)

(close_eq h' v v')

end).

Note the use of sigT instead of standard ∃ syntax. This is due to our use of
the Type universe for all of our judgements, instead of Prop. I do this to enable
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the eventual possibility of doing computation on the judgements, to allow reasoning
about time and space requirements of the semantics. The impredicative nature of
Prop was never required in the proofs of this dissertation, so the use of Type was
sufficient.
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