
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2015

Dominion: A Game of Information Exploitation
Jacob Hobbs

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Hobbs, Jacob. "Dominion: A Game of Information Exploitation." (2015). https://digitalrepository.unm.edu/cs_etds/71

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/71?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


Jacob Hobbs

Computer Science

Trilce Estrada

Stephanie Forrest

Stephen Verzi

i



Dominion: A Game of Information
Exploitation

by

Jacob Hobbs

B.S., University of New Mexico, 2012

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2015



iii

DEDICATION

To the Sumerian goddess of knowledge. Nisaba be praised.



iv

ACKNOWLEDGEMENTS

I thank Trilce Estrada, Steve Verzi, and Stephanie Forrest for their patience and
support. I thank my wife for the hours of babysitting duties she let me avoid for
this.



v

Dominion: A Game of Information
Exploitation

by

Jacob Hobbs

B.S., University of New Mexico, 2012

M.S., Computer Science, University of New Mexico, 2015

ABSTRACT

FlipIt is an abstract cyber-security game published in 2012[23] to investigate opti-

mal strategies for managing security resources in response to Advanced Persistent

Threats. In this thesis, we place FlipIt within a more general category of ”stealthy

move” games, and provide an approach towards solving such games. We produce a

new stealthy move game, ”Dominion”, and derive Nash equilibria for it. We estab-

lish bounds for the optimal rates of play and benefits for FlipIt, and show that the

best strategy to apply to real cyber security threats includes presenting a credible

threat to potential players. We also explore the effects of initial game information

asymmetry in Dominion.
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Chapter 1

Introduction and Overview

1.1 Motivation

Because game theory is based on the study of competition, conflict, and cooperation,

it is heavily tied to the fields of sociology, economics, finance, politics, and evolution.

When the FlipIt game was developed[23], it supplied a game-theoretic framework to

investigate the use of renewal defenses against persistent, targeted attacks in cyber

security domains. What made FlipIt stand out in contrast to regular game theoretic

constructs was its employment of the idea of stealthy moves. That is, players are

allowed to move at arbitrary points in time rather than taking turns or moving

simultaneously, and the timing of their moves may be kept hidden from the other

players. Although originally the phrase ”stealthy takeover” was used, we believe

”stealthy move” is a more appropriate, general term for describing a new class of

games, since not all stealthy moves necessarily involve capturing resources.

Stealthy move games may be viewed as games of timing[18], having silent or

noisy actions with arbitrary delay. The authors of FlipIt[23] and of numerous papers

that succeeded it such as [12, 21, 25], have employed some game theoretic tools to
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investigate FlipIt and its extensions, but only under very simplified conditions. In

this thesis we begin to develop the necessary math to more fully analyze stealthy

move games.

1.2 Dominion

Dominion is a multiple player, unit interval, constant sum game, where the utility

curves have a linear gradient and may be discontinuous. It has the following rules.

The goal of the game is to have control of a ”resource” as long as possible. This

resource is simply designated as ”the resource”, and is an abstraction for something

of value to all the players. We say that the player who controls the resource is in

control. The game starts at time 0 and ends at time 1. In an n-player game, the

players are numbered from 0 to n − 1. Player 0, whom we will frequently refer to

as the defender, is in control at time 0. The other players may be referred to as

attackers.

Players have a single kind of move that they can use at any time, called a take

move, which we also refer to as taking control. A take move simultaneously gives

a player control of the resource and reveals to that player information about the

current and possibly past states of the game. If more than one player uses a take

move simultaneously, control is given to the player whose ordinal is below that of the

other players (that is, player 0 is always successful, and player 1 is only successful if

player 0 doesn’t move at the same time, etc).

All players know the starting conditions and goals of the game, but players take

control of the resource in secret. The information a player receives upon taking

control is not given to other players. Dominion is thus a stealthy move game. In

this thesis we only consider Dominion where n = 2, so there is one attacker and one

defender.
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1.3 Relation to FlipIt

Dominion was designed such that if a complete solution of it can be given, that

solution can be extended to the original FlipIt game by a reduction from FlipIt to

Dominion. Dominion is easier to analyze than FlipIt because it is constant sum and

has closed form Nash equilibria. Despite being simpler to analyze, many variations

of FlipIt can be mapped to Dominion without loss of essential details.

In a basic configuration of FlipIt, there are two players competing to control one

resource. A player is uncertain at almost any given time whether they control the

resource. This is because action by either player to take control can happen at any

time; the player who acts incurs a movement cost and takes over the resource if they

don’t own it already. If both players act at the same time, the player already in

control of the resource remains in control.

A player’s goal is to maximize her own utility, which for each player is defined as

the overall time spent controlling the resource minus the cost of all the moves she has

made. The game is assumed to be played between two players just once, but to last

indefinitely, beginning at time zero. It is assumed that the players do not cooperate

(given the imbalance of information in the game, cooperation probably requires more

trust than is warranted). Player 0, known as the ”defender”, has control of the

resource at time zero, and the ”attacker” is the player who does not have control

at time zero. Given universal knowledge of each player’s individual control move

costs and resource valuations, a number of strategies have been evaluated. Under

assumptions of certain play strategies, a priori knowledge of opponent strategies,

and varying levels of information being revealed about an opponent’s moves at the

time a player moves, optimal results and Nash equilibria have been found. However,

general optimal strategies, where play is not limited to certain strategy classes, have

not been successfully investigated and left for future research.

Dominion simplifies FlipIt in the following ways:
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• Dominion is played within a finite time horizon. Only the period from 0 to 1

is considered.

• There is no explicit cost of moving. Instead, each player has a predetermined

number of moves they may play.

• The value of controlling the resource for each player is unimportant to the anal-

ysis. The goal of the game is simply to control the resource for the maximum

possible fraction of the time, by playing a mixed strategy fully utilizing all the

moves available to a player.

This simplified setup is sufficient to capture most of the complexity of the original

FlipIt game. Beginning with a FlipIt setup, relative move costs and resource values

can be normalized and rolled up into the relative number of moves each player is

given. That is, a more valuable resource and less expensive moves both translate

into relatively more moves a player is willing make per unit time relative to the other

player, which translate into having more moves in Dominion. A longer, finite time

horizon can be incorporated by multiplying the number of moves each player is given.

An infinite time horizon can be incorporated by considering the optimal payoffs as

the number of moves for each player approaches ∞, while maintaining a constant

ratio of defender to attacker moves. Situations like discounted the value of future

gains could be employed by adding a utility function that gives different values to

different portions of the unit interval, but we are not going to concern ourselves with

this. We also do not consider asymmetric benefits for moving (such as upon moving,

the attacker receiving precise information about the last defender move, but not vice

versa), but leave that to future work.
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1.4 A Game Theoretic Framework

The concept of a stealthy move means that, aside from possibly sharing complete

knowledge of starting conditions, players only ever receive partial information about

the state of the game, and they usually receive it at different, self-selected moments in

time. We might imagine a game being played sequentially over a very large, possibly

uncountably infinite number of rounds (in the case where moves can be made at

any positive real-valued time). In any round, a player may choose to act or not to

act. Only upon acting do players receive any information as to the current state of

the game, including estimates of their current score. However, acting incurs a cost,

and so optimizing players have a cost-limited number of moves they may feasibly

make in a given period of time. Under this limited-move condition, the framework

for treating a stealthy move-based game as a series of simultaneous move subgames

is unwieldy and unable to help us go very far in our analysis. Other authors have

attempted to get around the problems raised by stealthy moves by either simplifying

the strategy search space (e.g., [14, 24]) or by discretization and simulation (e.g.,

[25]). While this is helpful, it would be preferable to find closed form solutions where

they exist.

It is possible to treat a stealthy move game as a type of Hidden Markov Model

game, where players are privy to partial information about the state of the model,

and their moves are part of the transition function[3]. However, the ability to move

at any time and in any order causes this to suffer from the same unwieldiness as

earlier.

We may consider instead differential games. In differential games, players at-

tempt to optimize the outcome of a system of continuous differential equations by

supplying input functions which influence a part of them[9]. We can try to fit stealthy

move games into this framework. Moves are discrete, but when considering mixed

strategies, they may be supplied as probability distributions instead.
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There are a few problems that have to be sorted out for a differential game

framework. One problem is that players don’t have a fixed number of moves to

make, so while a single move may be represented as a single ”control” probability

distribution, it is not clear how to represent a full game with regular control functions.

Furthermore, each time a player moves they receive information about the state of

the game, and so they may adapt their control function according to this additional

knowledge. Thus, a normal differential game framework has a hard time fitting the

concept of a ”stealthy move”.

It is possible to treat a stealthy move game as a set of simultaneous differential

games. Given an upper bound on the number of moves a player may choose to make,

we could construct a separate differential game for every combination of possible

move counts each player may make. Depending on the parameters of the original

game, the games can then be solved together in interesting ways. For instance,

consider a game where a player i has m moves to make and makes the first move.

Once player i has moved, the rest of the game can be considered as an instance of

the original game, only where player i has m − 1 moves to make, and the initial

parameters of the game are updated for the new situation.

From this point of view, it seems useful to approach a stealthy move game by

first solving instances where each player has one or fewer moves. From there we can

build solutions for higher-move count games. When the game has only two players,

we can put the expected scores for the best strategies of each game into a ”rates”

matrix M , indexed by the number of moves each player makes. That is, one player

can be called the ”row” player and the other player the ”column” player, and if

the row player has i moves in a given game, and the column player has j moves,

then their expected scores can be recorded in row i and column j of M . Then the

optimal strategy to follow for the original game may be determined by first finding

an optimal strategy for the ”rates” game on M , where each player picks an index

of M (the former row player picking the row index, and the column player picking
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the column index). Then the strategy to follow for the original game is the strategy

corresponding to the selected row or column a player chose in the ”rates” game. This

strategy can be extended in a natural way to games with additional players.

Future work should highlight under what circumstances the above strategy cor-

responds to an optimal strategy in the original game. For instance, what are the

consequences of having mixed strategy equilibria in the rates game? In this work

we will forego the direct matrix approach, and instead extend it to consider rates of

play as the matrix approaches infinite size. We begin by looking at a simple class of

stealthy move games which we call Dominion. After defining the game and its gen-

eral characteristics, we will solve it and then show how we can use the rates matrix

framework to answer questions about optimal play in FlipIt. We will then look at

extensions of Dominion that help us gain insights into optimal play under conditions

of asymmetric information. We hope our approach will be expanded on in the future

to begin solving broader classes of stealthy move games.

1.5 Contributions

This thesis contributes to the advancement of game theory by defining stealthy move

games as a new extension to games of timing in Section 1.1 and outlining an approach

to solving them in Section 1.4. We also define a simple stealthy move game called

Dominion. Dominion may be extended to incorporate additional resources to control,

types and numbers of moves, and rules about the starting conditions and goals of

the game. Chapter 2 solves a probabilistic extension of the basic two player form

of Dominion, where the defender begins in control of the unit interval each player

has one move to make. This solution may be seen as an extension to the results of

[22], dealing with resource control rather than duels. We analyze FlipIt to provide

bounds on optimal play in Chapter 3. We look at how asymmetric information

relating to starting conditions affects decision making in Dominion in Chapter 4.
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Chapter 5 concludes with additional ways our current framework may be extended

in the future.
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Chapter 2

Creating and Solving the

Equations for Dominion

2.1 Terminology

Play is defined over the time interval [0, 1). There are n players. We let pi be

a probability distribution function defined over this interval, describing the move

strategy of player i. A distribution may be generalized a function. Specifically, we

will later use the Dirac delta distribution, δ, in our equilibria.

We let Ei be the expected score for player i, given pj for all j ∈ {0...n − 1}. In

a mixed strategy, players will not necessarily have a nonzero probability of moving

over the entire range. In fact, in a Nash Equilibrium all players will only play up to

time k = 1−min
i

(Ei) We can therefore generally describe the Nash distributions pi

as being over the range [0, k].

It’s possible to consider game play wherein no one controls the resource in the

beginning. We will call this a ”neutral advantage” game. Games where a player

starts out in control of the resource are the default. If a player moves when she is
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already in control, she essentially updates her knowledge of the state of the game but

doesn’t gain or lose control because of it. To indicate how many moves each player

is allowed to use in a game, we will write {m0,m1, ...,mn−1}, where player i has mi

moves. We therefore may refer the 2 player version of Dominion where each player

has 1 move and player 0 starts out in control as the {1, 1} version of Dominion.

2.2 On the Existence of Nash equilibria

In game theory, a Nash equilibrium is a solution wherein no player can improve her

expected payouts by individually changing her strategy. In a constant sum game such

as Dominion, equilibria are guaranteed to exist so long as the payoff function is upper

or lower semicontinuous[7, 10]. Thus, we can guarantee equilibria in the 2 player

versions of Dominion if we consistently allow either the defender or the attacker

to successfully have control each time both players choose to move simultaneously,

which we have done.

Since the resource is always controlled by some player in Dominion and the total

score for the game (since it is played over the unit interval) is 1, it follows that sum

of the expected scores for all players will be 1.

2.3 Equation definitions

We will be solving the {1, 1} version of Dominion. Our basic equation for the ex-

pected score of the defender can be written as

E0 =

∫ k

0

p1(x)

(
x+

∫ k

x

(1− y) p0(y) dy

)
dx (1)

Here, k is the currently unknown upper bound of the range over which players

are willing to play. The first part of the equation, p1(x) ∗ x, describes the score
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the defender expects to get from time 0 up to the time the attacker moves. The

second part of the equation, p1(x)
∫ k
x
(1 − y)p0(y) dy, describes the additional score

the defender expects to get whenever she moves after the attacker does, up to end

of the game.

Our basic equation for the expected score of the attacker can be written as E1 =

1− E0 (since the game is zero sum), but it can also be written

E1 =

∫ k

0

p0(y)

(∫ y

0

(y − x) p1(x) dx+

∫ k

y

(1− x)p1(x) dx

)
dy (2)

Here, the expected score for the attacker is the sum of the expected score for

moving before the defender moves and the expected score for moving after the de-

fender moves. Because we are allowing generalized functions, care should be taken to

note that the last integral range is open on the low end, since if the attacker moves

at precisely the same time the defender does, she loses to the defender.

We can subsume and generalize these equations together by treating the likelihood

of being the defender, or in other words being in control at the beginning of the

game, as a variable ϕ. The main equation, then, describing the expected score for

the defender in the {1, 1} version of Dominion, is

E0(ϕ) = ϕE0 + (1− ϕ)E1

=
∫ k
0
p1(x)

(
ϕx+ (1− ϕ)

∫ x
0

(x− y) p0(y) dy +
∫ k
x
(1− y)p0(y) dy

)
dx

(3)

Note that we treated E1 as if the defender was the attacker, so p1(x) and p0(y)

switched places. Also, since we are dealing with generalized functions, in our analysis

the final integral might need to be split apart, with fraction ϕ of it covering the

interval [x, k], and the fraction 1 − ϕ of it covering the interval (x, k], as in our

discussion following Equation 2.

Since we are computing a Nash equilibrium, we can assume that the optimal

p0 forces the payoffs for each pure strategy component of the attacker equilibrium
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strategy to all be equal. This is sometimes called the condition of indifference for

mixed strategy Nash equilibria. Thus, for the purposes of finding p0 we can set

p1(x) = δ(x − T ), for some T among the set of valid values x takes in the Nash.

Thus we can simplify Equation 3, for the purposes of finding the Nash:

E0(ϕ) =
∫ k
0
δ(x− T )

(
ϕx+ (1− ϕ)

∫ x
0

(x− y) p0(y) dy +
∫ k
x
(1− y)p0(y) dy

)
dx

= ϕT + (1− ϕ)
∫ T
0

(T − y)p0(y) dy +
∫ k
T
(1− y)p0(y) dy

(4)

We now expand this equation and treat it as a function of T :

E0(ϕ, T ) = ϕT+(1−ϕ)T

∫ T

0

p0(y) dy+ϕ

∫ T

0

yp0(y) dy+

∫ k

T

p0(y) dy−
∫ k

0

yp0(y) dy

(5)

2.4 Solving the Equations

Notice that we can employ a trick to Equation 5. Since in the Nash, the choice of T

shouldn’t affect the expected score, we can set the derivative of E0(ϕ, T ) with respect

to T to 0.

∂E0(ϕ, T )

∂T
= ϕ+ (1− ϕ)

∫ T

0

p0(y) dy − (1− T )p0(T ) = 0 (6)

Equation 6 leads to the following constraint when solving for p0:

(1− T )p0(T ) = ϕ+ (1− ϕ)

∫ T

0

p0(y) dy (7)

When ϕ 6= 1, we have∫ T

0

p0(y) dy =
(1− T )p0(T )− ϕ

1− ϕ
(8)
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Since p0 is a probability distribution function, we can use our knowledge that∫ T

0

p0(y) dy +

∫ k

T

p0(y) dy = 1 (9)

(minding that one of the T integral endpoints is open, in the case of generalized

functions) to get the additional constraint:∫ k

T

p0(y) dy = 1− (1− T )p0(T )− ϕ
1− ϕ

=
1− (1− T )p0(T )

1− ϕ
(10)

We can substitute the constraints of Equation 8 and Equation 10 into Equation 5

to get

E0(ϕ, T ) = T (1−T )p0(T )+ϕ

∫ T

0

yp0(y) dy+
1− (1− T )p0(T )

1− ϕ
−
∫ k

0

yp0(y) dy (11)

We can again exploit the Nash condition of indifference as we did in Equation 4

by setting the derivative of this new equation with respect to T to 0.

∂E0(ϕ, T )

∂T
= (1− 2T )p0(T ) + T (1− T )

dp0(T )

dT

+ ϕTp0(T ) +
p0(T )− (1− T ) dp0(T )

dT

1− ϕ

=
(1− T + ϕT )

(
(2− ϕ) p0(T )− (1− T ) dp0(T )

dT

)
1− ϕ

(12)

Setting Equation 12 to 0 we find

p0(T ) =
1− T
2− ϕ

dp0(T )

dT
(13)

Thus, for some α,

p0(T ) =
α

(1− T )2−ϕ
(14)
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Applying Equation 14 to Equation 6, we get

∂E0(ϕ, T )

∂T
= ϕ+ (1− ϕ)

∫ T
0

α

(1− y)2−ϕ
dy − α

(1− T )1−ϕ

= ϕ+ α
(
(1− T )ϕ−1 − 1

)
− α

(1− T )1−ϕ

= ϕ− α

(15)

Setting this to 0 leads us to the result that ϕ = α. Thus,

p0(x) =
ϕ

(1− x)2−ϕ
(16)

Since p0 is a probability distribution function, we need p0 from 0 to k to integrate

to 1. It follows that∫ k

0

p0(x) dx =
ϕ

1− ϕ
(
(1− k)ϕ−1 − 1

)
= 1 (17)

Thus,

k = 1− ϕ
1

1−ϕ (18)

Using Equation 3, we can compute

E0(ϕ) = 1− ϕ
ϕ

1−ϕ (19)

Does Equation 3 work for both attacker and defender distributions? Checking

our work, for a pair of solutions to be Nash, we have the additional constraint that

the expected scores sum to 1. If we assume the attacker and defender draw use the

same strategy form, then the attacker likelihood of starting the game in control is

1− ϕ.

E0(ϕ) + E0(1− ϕ) = 1 (20)

Unfortunately, in our case we get

E0(ϕ) + E0(1− ϕ) = 2−
(
ϕ

ϕ
1−ϕ + (1− ϕ)

1−ϕ
ϕ

)
(21)
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This only matches our constraint at ϕ = 1
2
. We also could have noted that

the bound k(ϕ) = 1 − ϕ
1

1−ϕ for a pair of strategies (ϕ and (1 − ϕ) should be the

same, since in a Nash equilibrium if one player’s strategy stops at k, the other player

shouldn’t move beyond k either. Unfortunately this means our solution is incorrect,

or actually incomplete.

What we are missing is the fact that a strategy in this game could include nonzero

point distributions. Thus we must allow generalized functions into our solution

space. Given the nature of the equations, it only makes sense to place a point

distribution, the Dirac delta function, at time 0. Placing such a function at any

other time introduces discontinuities in the solution space, which can’t be reconciled

with the need maintain indifference among solution choices in a Nash equilibrium.

Furthermore, it only makes sense to use a delta function if ϕ ≤ 1
2

(there is no reason

to have a finite probability of moving at time 0 if you are fairly certain you are in

control at that time anyway).

Because ϕ ≤ 1
2
, we will refer to the distribution that includes a Dirac delta func-

tion as p1, and replace ϕ with ψ in all of the defender equations, to make equivalent

attacker equations. Henceforth we may assume ϕ ≥ 1
2
, and ψ = 1−ϕ. Now we have,

for some α and β,

p1(T ) =
δ(T )

β
+

α

(1− T )2−ψ
(22)

This new equation is basically orthogonal to Equation 16, with respect to being an

additional solution to the constraining Equation 8 and Equation 13, if parameterized

correctly. Solving Equation 7 with this new equation, where T 6= 0, we get

(1− T )p1(T ) = ψ + (1− ψ)

∫ T

0

p1(x) dx (23)

Assuming for the moment T 6= 0, and noting that the lower limit in the integral
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is included, we have

α

(1− T )1−ψ
= ψ + α

(
(1− T )ψ−1 − 1

)
+

1− ψ
β

(24)

Solving for α,

α =
1− ψ + ψβ

β
(25)

We can use the above to rewrite Equation 22 as

p1(T ) =
1

β

(
δ (T ) +

1− ψ + ψβ

(1− T )2−ψ

)
(26)

Lastly, we solve for β by exploiting our knowledge that p1 is a probability distri-

bution.∫ k

0

p1(T ) dT =
1

β

(
1 +

1− ψ + ψβ

1− ψ

(
(1− k)ψ−1 − 1

))
= 1 (27)

Solving for β and factoring,

β =
(1− ψ)(1− k)ψ

1− k − ψ(1− k)ψ
(28)

Applying this to Equation 3, we find

E1(ψ) =
(1− ψ + ψβ)(1− (1− k)ψ)

ψβ

=
1

ψ

(
1− ψ + ψβ

β
−
(

1− ψ + ψβ

β

) 1
1−ψ
)

(29)

We wish to maximize this expected value, and set β accordingly.

∂E1(ψ)

∂β
=

(1−ψ+ψβ
β

)
ψ

1−ψ − (1− ψ)

ψβ2
(30)



Chapter 2. Creating and Solving the Equations for Dominion 17

Setting this to 0 implies

β =
(1− ψ)2

ψ2 + (1− ψ)
1
ψ − ψ

(31)

Combining this with Equation 29 we have

E1(ψ) = (1− ψ)
1−ψ
ψ (32)

Finally, Equation 28 and Equation 31 combine to give us

k = 1− (1− ψ)
1
ψ (33)

When ψ = 1− ϕ, we have

k = 1− (1− ψ)
1
ψ = 1− ϕ

1
1−ϕ (34)

and also,

E0(φ) + E1(ψ) = 1− ϕ
ϕ

1−ϕ + (1− ψ)
1−ψ
ψ = 1− ϕ

ϕ
1−ϕ + ϕ

ϕ
1−ϕ = 1 (35)

Thus, the conditions for these equation pairs to constitute a Nash equilibrium

are satisfied. The holes from discontinuities that we ignored earlier, such as when

ϕ = 1, disappear in the limit.

In conclusion, the optimal strategies and payoffs for the {1, 1} version of Dominion

where the defender has probability ϕ ≥ 1
2

of being in control at the beginning of the

game, and the attacker has probability ψ = 1− ϕ of being in control, are

p0(x) =
ϕ

(1− x)2−ϕ
(36)
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p1(x) =
ϕ

ϕ
1−ϕ − (1− ϕ)

ϕ
δ(x) +

ϕ
ϕ

1−ϕ

(1− x)1+ϕ
(37)

k = 1− ϕ
1

1−ϕ (38)

E0(ϕ) = 1− ϕ
ϕ

1−ϕ (39)

E1(ψ) = E1(1− ϕ) = ϕ
ϕ

1−ϕ (40)

2.5 Notes on the Solution

What follows are some visualizations and remarks on the solutions that were pro-

duced in the last section.

Figure 2.1 shows the surface of equilibrium strategy distributions based on ϕ.

Note from Equation 37 that when ϕ = 0, the slope for the distribution is proportional

to 1
(1−x)2 , and from Equation 36 that when ϕ = 1, the slope is proportional to 1

1−x .

Furthermore, at the endpoint k of the distribution, p0(k) = p1(k). That is, the

likelihood of moving at any point besides x = 0 is higher for the defender than

it is for the attacker, up until the highest x-values of the distributions, where the

likelihoods overlap.

Figure 2.2 shows the equilibrium distributions for a few select values of ϕ, disre-

garding the initial δ functions where ϕ < 0.5. Where ϕ ≥ 0.5, the value at x = 0

is ϕ. The gap between the distributions shrinks as ϕ approaches 0.5, where they
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become identical. A player’s likelihood of moving over a fixed-width open interval

increases as time increases.

Figure 2.3 shows the expected payout for a player given ϕ, the likelihood that

player starts out as the defender. This figure shows that the payoff doesn’t quite

increase linearly as ϕ varies.

Figure 2.1: The equilibrium strategies, where the black line at x = 0 and phi ∈ [0, 0.5)
represents δ function strength. ”phi” is the likelihood of starting the game in control,
and ”x” is the time axis.

We can use the equations we solved in this chapter to make observations about

the roles different components of Dominion play in the expected payouts of the game.

For instance, so long as ϕ = 0.5, the expected score for the {k, k} version of Dominion

for all k ∈ N should remain as 0.5. It is the point at which disparate strategies of

”usually” attacking versus ”usually” defending players converge.

In the {1, 1} version of Dominion that we covered in this chapter, we can think



Chapter 2. Creating and Solving the Equations for Dominion 20

Figure 2.2: Equilibrium distributions for select values of ϕ.

of the defender’s initial control as a first ”bonus” move the defender automatically

has, only this move is revealed to all players. Thus, it is almost as if the defender

has twice as many ”moves” as the attacker in this game. We can ask how expected

scores will change as the number of moves each player has increases in proportion

with each other. That is, what is the defender’s expected score for the {2k − 1, k}

version of Dominion as k →∞?

The defender’s expected score in the {2k− 1, k} version of Dominion will always

fall somewhere between 1
2

and 3
4
, depending on how much information moving grants

a player. If upon moving a player receives no additional information about the state

of the game, then the defender can hide all information about the timing of her

moves. If we assume her moves partition the unit interval into roughly 2k parts,

and the attacker can only move within k of these intervals, then with no additional

knowledge she should expect to gain control of the resource for half the length of each
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Figure 2.3: The equilibrium payouts in Dominion.

interval she moves in. Thus, 3
4

is an upper bound to the defender’s expected score.

Size bias[1] suggests some strong limitations on the optimal shape of the defender

distribution in this case, which we will not further explore here.

If the attacker is able to know when the defender moves, but not vice versa, then

evenly spacing her moves guarantees the defender a score of 1
2
. It is interesting that

in the {1, 1} version of Dominion which we covered in this chapter, the defender’s

best expected score was about 16% worse than 3
4

and 26% better than 1
2
. This

can be seen as an information advantage the attacker gets for knowing the timing

of the defender’s first move. Solving the {3, 2} version of Dominion with differing

information assumptions would help us see more clearly the role information players

in formulating optimal strategies and their payoffs.
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Chapter 3

Applying Dominion to FlipIt

3.1 Application to FlipIt

The preceding chapter demonstrated the optimal strategies for the {1, 1} version

of Dominion where each player had shared, correct beliefs about her probability of

being in control in the beginning of the game. Furthermore, we showed that we can

loosely bound the expected utilities for the different move count Dominion games

based on assumptions we make about information a player receives upon moving,

and the relative number of moves each player makes.

Much of the following analysis can be fruitfully compared to the proof of The-

orem 5 in Appendix A of [23]. Suppose the defender has a − 1 moves, and the

attacker has b moves. If a is considerably greater than b, and the attacker is unable

to make use of additional information about the timing of her moves, then at best

the defender can achieve an expected score of 1− b
2a

. If instead a is relatively close

in value to b, and each player receives symmetrically the same kind of information

upon moving as the other player, then we may suppose that each player’s moves are

about as powerful as the other’s. Then the defender’s best expected score should
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instead be close to a
a+b

. Note that if we replace a with ka and b with kb, this best

expected score doesn’t change.

Let us now map this expected score to FlipIt. Let us assume the equivalent to

this Dominion game is played at a rate λ in a FlipIt game. That is, the defender

moves periodically once every 1
λ
, and then plays an additional a − 1 moves within

each period, while the attacker plays b moves within each period. Let r0 = a
λ

be

the average move rate for the defender, and r1 = b
λ

the average move rate for the

defender. Then the expected benefit rate for the defender is roughly

β0 = E0 −
a ∗ k0
λ

= E0 − r0k0 (41)

The expected benefit rate for the attacker is

β1 = (1− E0)−
b ∗ k1
λ

= (1− E0)− r1k1 (42)

Now consider what happens when we replace a with ka, b with kb, and λ with

kλ in this mapping. The expected benefits for the players remain the same, and the

period over which they play the Dominion-based strategy is lengthened by k times.

We can extend this process as k → ∞, and therefore can simply consider FlipIt

games where the average rates of play for each player is similar to the other.

Consider having the defender and attacker play a new game before playing FlipIt,

in which, for fixed costs of moving k0 and k1, the defender and attacker each simul-

taneously choose average rates of play r0 and r1 to maximize their expected payoffs

when using those rates of play in FlipIt. We can compute the expected benefit rates

β∗0 and β∗1 of these optimal strategies, even though we don’t yet know what the

strategies are. Noting that lim
k→∞

E0 = lim
k→∞

ka
ka+kb

= r0
r0+r1

, and lim
k→∞

kak0
kλ

= αk0
λ

= r0k0,
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β∗0 =
r0

r0 + r1
− r0k0 (43)

β∗1 =
r1

r0 + r1
− r1k1 (44)

We can set the derivative of Equation 43 with respect to r0 to 0 to find the best

defender move rate versus a given attacker rate.

∂β0
∂r0

=
r1

(r0 + r1)2
− k0 = 0 =⇒ r0k0 =

√
r1k0 − r1k0 (45)

This is a local maximum. Thus, given a fixed attacker average move rate, we have

the best corresponding defender rate. By symmetry, given a fixed average defender

move rate, the corresponding best attacker move rate is r1k1 =
√
r0k1 − r0k1 =⇒

r1k0 =
√
r0k1

k0
k1
− r0k0. We draw these best response curves in Figure 3.1. Note that

each curve is scaled differently. The best response curve for the attacker is scaled by

the attacker move cost, and the best response curve for the defender is scaled by the

defender move cost.

Combining the best response curves, we find the equilibrium at

r0 =
k1

(k0 + k1)2
(46)

r1 =
k0

(k0 + k1)2
(47)

Applying these to Equations 43 and 44, we have
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Figure 3.1: Best scaled move rate given an opponents’ scaled rate.

β∗0 =
k21

(k0 + k1)2
(48)

β∗1 =
k20

(k0 + k1)2
(49)

Suppose instead of this equilibrium, the defender wished to drive the attacker out

of the game. From Equation 45, we can see that r1k0 = 1 is the point at which the

defender drops out of the game, and by symmetry, r0k1 = 1 is the point at which

the attacker drops out of the game. Thus, the defender will play at an average rate

of r0 = 1
k1

. Notice that the attacker will have no incentive to play at a nonzero rate,

unlike what happens under the assumptions of periodic or exponential play in [23],
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k0
k1

r0 r1 β∗0 β∗1

(0,
√
5−1
2

] 1
k1

0 1− k0
k1

0

[
√
5−1
2
, 1+

√
5

2
] k1

(k0+k1)2
k0

(k0+k1)2
k21

(k0+k1)2
k20

(k0+k1)2

[1+
√
5

2
,∞) 0 1

k0
0 1− k1

k0

Table 3.1: Bounds on optimal strategy payoffs in FlipIt

Sections 5.2 and 5.3. The defender’s expected benefit in this case will be 1− k0
k1

. It

is more beneficial for the defender to drive the attacker out when

1− k0
k1

>
k21

(k0 + k1)2
=⇒ k21 > k20 + k0k1 =⇒ k1

k0
>

1 +
√

5

2
(50)

At the point k1
k0

= 1+
√
5

2
, the defender is indifferent to driving the attacker out

or playing her equilibrium strategy, and in either case receives an expected benefit

of 1 − 2
1+
√
5
≈ 0.382. Thus, depending on the defender strategy, the attacker may

have an expected score of 0 or (1−
√
5)2

(1+
√
5)2
≈ 0.146. Symmetric results can be derived for

when k0
k1

= 1+
√
5

2
.

Table 3.1 summarizes the results of this section. Under the assumption that each

player derives symmetric information benefits upon moving, and that their move

costs, and therefore average rates of play, are within 1+
√
5

2
of each other, we are

additionally assuming that each defender move gives her roughly the same benefit

as each attacker move gives the attacker. This is necessarily an upper bound where

k0
k1
< 1 and a lower bound where k0

k1
> 1. We can usefully compare these results to

Theorem 8 of [23], to see the most the defender can lose by playing exponentially

rather than optimally.

Figure 3.2 shows the benefits for both players playing optimally, as well as the

benefits for both players when the defender is playing exponentially and the attacker
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Figure 3.2: Optimal strategy benefits contrasted with exponential strategy benefits.

is playing at her optimal period based on the defender’s rate, as in [23]. The window

of strategies it covers is k0
k1
∈ (

√
5−1
2
, 1+

√
5

2
). To the left of the window shown, the

optimal defender benefit and the exponential defender benefit are both β0 = 1− k0
k1

.

To the right of the window shown, the optimal attacker and exponential attacker

benefits are both β1 = 1− k1
k0

.

Note that we have the defender drop out of the game if her expected benefit is

less than 0, at which point the optimal strategy for the attacker would change. [23]

doesn’t comment about this, so we deal with it here by supposing the attacker could

stick to the same strategy from the point the defender drops out of the game (this

is where the orange line remains horizontal) up to the point she would do better by

playing periodically at the rate 1
k0

. Note also that although the defender cost goes up

relative to the attacker costs, the attacker’s benefit goes down because the defender

is expending a lot of effort to reach her exponential strategy equilibrium. This is a



Chapter 3. Applying Dominion to FlipIt 28

large red flag that the players aren’t performing optimally.

Solving Dominion should allow us to close the gap and provide the strategy that

gives the optimal benefit in FlipIt. Depending again on information assumptions,

the exponential distribution seems to be a poor choice, since it assigns a higher

probability for the defender to move when the defender has a higher likelihood of

being in control, whereas an optimal strategy should call for the likelihood of moving

to correspond to the likelihood the defender is not in control. [4] also uses the

exponential strategy for a real mock application. Given our results in the last chapter,

we suggest that distributions shaped more like f(x) = 1
1−x be tried on the same

problem.

3.2 Optimal Strategies in FlipIt

Assume each player gets the same symmetric informational benefits upon moving.

The strategies we found in the last section were based on the optimistic assumption

that a player with a lower move rate can still derive the same benefit as the player

moving more frequently. If the situation is really at the other extreme, and the player

with a lower move rate derives roughly half the utility per move as the player with

the higher rate, then assuming k0 ≤ k1 =⇒ r0 ≥ r1,

β∗0 = 1− r1
2r0
− r0k0 (51)

β∗1 =
r1
2r0
− r1k1 (52)

Here the math simply follows Theorem 1 in [23] and so the optimal player strate-

gies will always be to drive the player with highest cost out of the game.

Let us assume, then, that the player with fewer moves can make better use of

them, perhaps because players receive a lot of feedback about the state of the game
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upon moving. The results of the previous section suggest that the optimal strategies

for both players in this case will form a cooperative equilibrium (see [8]), with r0

and r1 being rates just strong enough to allow each player the ability to punish the

other for deviating from cooperation. This suggests that players would be able to use

their move information to punish the other player if she deviates from cooperation,

rather than merely using her information to try to exploit her opponent. In a cyber

security situation, we may assume that it hurts the defender more to give the attacker

additional benefit in exchange for a little more benefit than it does to not receive the

extra benefit. Note by Figure 3.2 that the attacker benefits greatly if the defender

chooses to play her optimal, cooperative strategy. In this case, cooperating doesn’t

make sense.

Unfortunately, where players only receive limited information, no amount of co-

operation provides more benefits than presenting a credible threat. Figure 3.3 plots

the results of Theorem 5 in [23] against the optimal cooperative strategy from above.

If the defender credibly sticks to her strategy of guaranteeing the attacker a score of

0 or less, the attacker will not participate in the game and the defender will have a

much higher expected score as a result. In a real cyber security situation, the de-

fender presumably has the upper hand in this, being able to set a resource refreshing

schedule to discourage potential adversaries from engaging in resource competition

in the first place.
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Figure 3.3: The best cooperative strategy does worse than the best limited informa-
tion strategy
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Chapter 4

Extensions of Dominion

4.1 Asymmetric Starting Conditions

Consider the same probabilistic {1, 1} Dominion game we solved in Chapter 2, only

this time let it be a game of asymmetric information. Allow one player, who we will

refer to as the defender, to know nature’s choice for who starts the game in control of

the resource. Let the attacker and defender both know the probability nature used,

ϕ. Then we can imagine a number of scenarios, which we now examine.

4.1.1 Attacker in the Dark

Let the attacker believe the defender only knows ϕ, so the defender can exploit

her additional knowledge, since she will know the attacker’s assumed equilibrium

strategy.

The attacker’s equilibrium strategy tried to equalize the expected benefit of all

non-dominated moves the defender could make. Since the defender knows nature’s

choice and her opponent’s strategy, her optimal strategy will be pure, consisting of
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a single point move.

If nature put the defender in control, and ϕ < 1
2
, then letting ψ = 1−ϕ, we pick

T ∈ [0, k] to maximize the following:

(1− T )

∫ T

0

ψ

(1− x)2−ψ
dx (53)

If nature put the attacker in control, and ϕ < 1
2
, then letting ψ = 1− ϕ, we pick

T ∈ [0, k] to maximize:

(1− T )

∫ T

0

ψ

(1− x)2−ψ
dx+

∫ 1−ψ
1

1−ψ

T

(x− T )
ψ

(1− x)2−ψ
dx (54)

If nature put the defender in control, and ϕ ≥ 1
2
, then we pick T ∈ (0, k] to

maximize:

(1− T )

∫ T

0

ϕ
ϕ

1−ϕ − (1− ϕ)

ϕ
δ(x) +

ϕ
ϕ

1−ϕ

(1− x)1+ϕ
dx (55)

If nature put the attacker in control, and ϕ ≥ 1
2
, then we pick T ∈ (0, k] to

maximize:

(1− T )
∫ T
0
ϕ

ϕ
1−ϕ−(1−ϕ)

ϕ
δ(x) + ϕ

ϕ
1−ϕ

(1−x)1+ϕ dx

+
∫ 1−ϕ

1
1−ϕ

T
(x− T )(ϕ

ϕ
1−ϕ−(1−ϕ)

ϕ
δ(x) + ϕ

ϕ
1−ϕ

(1−x)1+ϕ ) dx
(56)

In all of these, the defender’s best move is to move at an endpoint of the attacker’s

equilibrium strategy. If ϕ < 1
2

and the defender starts in control, the defender should

move at time 1−ψ
1

1−ψ , for a total expected score of ψ
ψ

1−ψ +ψ
1

1−ψ (rather than 1− 1
e
).

If ϕ < 1
2

and the attacker starts in control, the defender should move at time 0 for

a total expected score of ψ
ψ

1−ψ (rather than 1
e
). If ϕ ≥ 1

2
and the defender starts

in control, the defender should move at time 1− ϕ
1

1−ϕ , for a total expected score of

ϕ+ϕ
1

1−ϕ (ϕ2−ϕ−1)
ϕ2 (rather than 1− 1

e
). If ϕ ≥ 1

2
and the attacker starts in control, the

defender should move at time ε > 0, as close to 0 as possible. This is assuming that

the player in control will remain in control if both players move at the same time,
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which we will assume throughout this chapter. Assuming ε adds a negligible loss,

the defender gets a total expected score of 1− ϕ
ϕ

1−ϕ (rather than 1
e
).

Figure 4.1 summarizes the results of this section, where we may see how much

the defender expects to gain from exploiting her knowledge about nature’s choice

and the attacker’s faulty assumptions about what she knows.

Figure 4.1: The expected advantage the defender gets from secretly knowing nature’s
choice of who is in control at the start of the game.

4.1.2 Defender is the Dupe

Suppose the attacker only knows the probability the defender has control, but she also

knows that the defender knows nature’s choice and will try to exploit her, assuming

her beliefs and knowledge match what we assumed in Section 4.1.1. Can she exploit

the defender?
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Section 4.1.1 tells us what the defender’s strategies will be, depending on nature’s

choice. If ϕ < 1
2
, then the attacker knows the defender will move at time 1−(1−ϕ)

1
ϕ

with probability ϕ, and at time 0 with probability 1 − ϕ. If the attacker moves at

time 0, her expected score will be 1− ϕ(1− ϕ)
1
ϕ (rather than ϕ

ϕ
1−ϕ ).

If ϕ ≥ 1
2
, then the attacker knows the defender will move at time 1− ϕ

1
1−ϕ with

probability ϕ, and at time ε with probability 1−ϕ. If the attacker knows and moves

at time ε, assuming it is negligibly close to 0, her expected score will be 1 − ϕ
2−ϕ
1−ϕ

(rather than 1− ϕ
ϕ

1−ϕ ).

Figure 4.2: How well the attacker can exploit knowing the defender’s secret.

As Figure 4.2 demonstrates, the attacker can strongly exploit her knowledge that

the defender has a secret, and so the defender might not actually want to exploit her

knowledge as previously shown if she has any doubt that her knowledge of nature’s

choice has leaked.
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Since the attacker’s strategy here was to uniformly play at time 0 (or ε) no matter

what, further extensions along these lines, such as the defender knowing the attacker

knows the defender knows nature’s choice, and also that the attacker doesn’t know

the defender knows this, are degenerate and trivial.

4.2 Common Knowledge of Asymmetry

Now suppose both players know the defender knows nature’s choice of who is in

control at the start of the game, the attacker and defender both know ϕ, and both

players know these starting conditions. In this case, the attacker will need to simul-

taneously optimize against two defender types: the one which knows it is in control

at the beginning of the game, and the one which knows it is not in control at the

beginning of the game.

We believe that in this case there is no longer any Nash equilibrium in the game.

Previous work on games with asymmetric information like this have found equilibria

when a game with the exact same initial conditions (including nature’s choice) is

repeated[2]. However, in our version the game is not repeated, so the defender has

no incentive to hide any information, and would rather exploit it immediately. This

intuitively seems to mean that if the defender starts out without control, she will

probably make a move at around time 0 to maximize her score, and if the defender

starts out with control, she will probably move at around time k, again to maximize

her score. She has no incentive to act according to a distribution rather than at

discrete points, so long as she knows the strategy the attacker has committed to.

Given any mixed strategy the attacker may commit to, she would be better off

moving as close to time 0 as she can in order to exploit the defender’s exploitative

strategy. So this situation breaks down and doesn’t have a Nash equilibrium.
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4.2.1 Defender Exploits Robust Attacker

If the attacker settles on a distribution from which to choose her move, the de-

fender will be able to exploit it. Perhaps the best the attacker can do is choose

a strategy which the defender can exploit the least. We could let the attacker as-

sume she is playing the ”defender” version of her opponent with some probability p

(not necessarily ϕ), and play her optimal strategy as if against a known defender,

p1(x) = δ(x)
e

+ 1
e∗(1−x)2 the fraction p of the time. The rest of the time, she can play

as if against a known attacker, p1(x) = 1
1−x . From the defender’s point of view, the

attacker is drawing from an overall distribution p1(x) = pδ(x)
e

+ p
e∗(1−x)2 + 1−p

1−x over

the range [0, 1− 1
e
].

The defender may select a single point T at which she will derive her highest

benefit, depending on whether nature chooses her or the attacker to be in control

at the start of the game. When nature chooses the defender to be in control at the

start of the game, we choose T ∈ (0, k] to maximize

E0 =
∫ k
0

(
pδ(x)
e

+ p
e∗(1−x)2 + 1−p

1−x

)(
x+

∫ k
x

(1− y) δ(y − T ) dy
)

dx

= p+ 1−3p
e

+ (1− T )
∫ T
0

(
pδ(x)
e

+ p
e∗(1−x)2 + 1−p

1−x

)
dx

= p+ 1−3p
e

+ (1− T )(p
e

+ pT
e(1−T ) − (1− p)ln(1− T ))

= p+ 1−2p
e
− (1− p)(1− T )ln(1− T )

(57)

We may take the derivative with respect to T to find that this is maximized for

T = k = 1 − 1
e
. This matches our results in Section 4.1.1. Playing optimally when

nature chooses the defender, E0 = 2−(3−e)p
e

. When nature chooses the attacker to be

in control at the start of the game, we choose T ∈ (0, k] to maximize
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E0 =
∫ k
0

(
pδ(x)
e

+ p
e∗(1−x)2 + 1−p

1−x

)
(∫ x

0
(x− y) δ(y − T ) dy +

∫ k
x
(1− y)δ(y − T ) dy

)
dx

=
∫ T
0

(
pδ(x)
e

+ p
e∗(1−x)2 + 1−p

1−x

)
(1− T ) dx

+
∫ k
T

(
pδ(x)
e

+ p
e∗(1−x)2 + 1−p

1−x

)
(x− T ) dx

= p
e
− (1− p)(1− T )ln(1− T )

+p
e
∗ (e− 1− 1

1−T − ln(1− T )) + (1− p) ∗ (T + ln(1− T ) + 1
e
)

+p
e
∗ (e− 1

1−T ) + (1− p) ∗ (ln(1− T ) + 1)

= p(1− T ) + 1−2p
e
− p

e
ln(1− T )

(58)

We may again take the derivative with respect to T to find that this is mini-

mized for T = 1 − 1
e
. Thus, the best solution is at T = ε, matching our results in

Section 4.1.1. Playing optimally when nature chooses the attacker, E0 ≈ 1+(e−2)p
e

.

We can now combine these expected scores together to find the optimal p to

minimize the defender’s expected score, given a ϕ likelihood of nature choosing the

defender to begin the game in control.

E0 = ϕ
2− (3− e)p

e
+ (1− ϕ)

1 + (e− 2)p

e
(59)

∂E0

∂p
=
e− 2− ϕ

e
(60)

This means the attacker is indifferent to her choice of p when ϕ = e − 2. For

ϕ < e − 2, p = 0 is her best choice (the defender can play her Nash equilibrium

strategy when nature chooses the attacker to have control at the beginning of the

game). For ϕ > e − 2, p = 1 is her best choice (the defender can play her Nash

equilibrium strategy when nature chooses the defender). Playing their best strategies,

then, where the defender knows nature’s choice, we have
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E0 =
1 + ϕ

e
, ϕ ≤ (e− 2) (61)

E0 = 1− 1

e
, ϕ > (e− 2) (62)

Note that the defender can play a robust strategy against the attacker whenever

the attacker correctly guessed the starting conditions of the game, and the rest of

the time the defender exploits the fact that the attacker was wrong. This also means

that part of the time the defender’s strategy is fragile, and open to risky exploitation

by the attacker.

4.2.2 Attacker Exploits Defender’s Privilege

How much does the attacker stand to gain by trying to exploit the defender when

the defender’s additional information is common knowledge? For ϕ < e − 2, the

defender believes the attacker is going to play as if she was in control at the start

of the game. The fraction ϕ of the time, the attacker is wrong (the defender has

control at the beginning) and the defender will exploit her by playing at time 1− 1
e
.

The rest of the time the defender will play by her robust distribution δ(x)
e

+ 1
e(1−x)2 .

The attacker can exploit these facts either by playing at time ε, or else by playing

at time 1− 1
e

+ ε.

If the attacker plays at time ε, then she gains an expected score of 1 − 1
e

when

the defender moves at time 1 − 1
e
, and she also gains an expected score of 1

e
+∫ 1− 1

e

0
1

e(1−x)2 dx = 1− 1
e

when the defender plays by the distribution δ(x)
e

+ 1
e(1−x)2 . If

the attacker plays at time 1− 1
e

+ ε, then she gains an expected score of 1
e

when the

defender moves at time 1 − 1
e
, and she gains an expected score of 1 − 1

e
when the
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defender plays by the distribution δ(x)
e

+ 1
e(1−x)2 . Thus, the exploitative attacker will

always play at time ε in this scenario.

For ϕ > e− 2, the defender believes the attacker is going to play as if she is not

in control at the start of the game. The fraction 1 − ϕ of the time, the attacker is

wrong and the defender will exploit her by playing at time ε. The rest of the time,

the attacker is correct and the defender will play her robust distribution 1
1−x . The

attacker can exploit the defender, then, by always playing at time 2ε. Her expected

score will now be (1− ϕ) + ϕ
e
.

Figure 4.3 shows how much the defender can expect to gain by playing optimally

when her asymmetric knowledge advantage is known to the attacker. Compare this

to Figure 4.1, which shows how much the defender can expect to gain by playing

optimally when her asymmetric knowledge advantage is not known to the attacker,

and note that in both cases, the defender’s strategy is exactly the same.

We believe this is the best the attacker can do. If so, it shows that she should

simply play against the version of her opponent who has the most to gain if she fails

to play against that opponent. This relates to optimal strategies with incomplete

information in [2], where the player with less information must equalize her payoffs

against all potential versions of her adversary, weighted by the likelihood of playing

against each version. One difference here is the attacker doesn’t have the ability to

equalize the payoffs against different versions of her opponent. The one that starts

the game in control has a much larger advantage no matter how the attacker plays,

and the one that starts the game without control has the most to gain by exploiting

the attacker. So unless the attacker is quite certain she’ll be playing against the

version of her opponent that starts the game in control a large majority of the time,

she maximizes her defenses against the other version of her opponent.

Figure 4.4 summarizes the results of this chapter to this point. It shows that

additional, hidden knowledge is not necessarily advantageous. The defender can
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Figure 4.3: The maximum advantage the defender gets from publicly knowing na-
ture’s choice of who is in control at the start of the game.

choose to exploit her additional knowledge, but doing so makes her position more

fragile, and open to exploitation. It may make strategic sense to announce or prove

her additional knowledge.

4.3 Bluffing

We might consider what would happen if the defender decided to bluff, and pretend

to knowledge of nature’s choice without actually having it. If the attacker believes

the defender and wants to play robustly, then she will play as if the attacker starts

out in control so long as ϕ < e− 2. The defender will then play at time k = 1− 1
e

to

get an expected score of 1
e
∗ (1− ϕ) + 2ϕ

e
= 1+ϕ

e
. If the defender had moved at time

0 instead, she would always get an expected score of 1
e
.
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Figure 4.4: Losses and advantages based on who knows and does what.

If ϕ > e − 2, the gullible attacker would play as if she starts the game without

control of the resource. The defender chooses T to maximize

E0(T ) = (1− T )
∫ T
0

1
e
(δ(x) + 1

(1−x)2 ) dx

+(1− ϕ)
∫ 1− 1

e

T
(x− T )(1

e
1

(1−x)2 ) dx+ ϕ
∫ 1− 1

e

0
1
e

x
(1−x)2 dx

= (1−T
e

+ T
e
) + (1− ϕ)(1− T − 1

e
(2 + ln(1− T ))) + ϕ(1− 2

e
)

= 1 + 1
e
− 2ϕ

e
− (1− ϕ)(T + 1

e
(2 + ln(1− T )))

(63)

This is the defender’s expected score for moving after the attacker plus her ex-

pected score for moving before the attacker when the defender doesn’t have control

in the beginning plus her expected score for being in control in the beginning times

the likelihood of being in control in the beginning. It is maximized at T = ε for an
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expected score of approximately 1− 1
e
.

Comparing these results to those in Section 4.2.1, we find that the defender can

derive the same benefits from successfully bluffing as she would had she actually

known nature’s choice for who controls the resource at the start of the game. Her

strategy, however, is much more fragile, making bluffing very risky.

4.4 Other Starting Conditions

What happens when the only the defender knows nature’s choice, and only the

attacker knows ϕ? For the sake of brevity, we only concern ourselves with the case

where these starting conditions are common knowledge.

The defender is uncertain about the attacker’s strategy. However, in Section 4.2.1,

we found that the defender doesn’t depend upon ϕ to exploit the attacker, except

to the extent of reducing the fragility of her strategy. The defender has the choice

of playing robustly, as if the attacker also knew nature’s choice, or she can play

to exploit the attacker by choosing to move at a point ε when nature chooses the

attacker to have control at the beginning, and to move at 1− 1
e

when nature chooses

the defender to have control at the beginning. She could note that her exploit is

more fragile when nature chooses the attacker to be in control in the beginning and

only exploit when she starts the game in control. She could also mix among these

options to hedge against her risks. Of course, if the game is repeated and ϕ remains

constant across the repetitions, she could estimate ϕ to bring the conditions closer

to those in Section 4.2.1. In the absence of Nash equilibria, payoffs could be scaled

to capture risk taking dispositions.

Finally, consider the case where the defender only probabilistically knows whether

she has control in the beginning of the game. That is, some fraction of the time,

she absolutely know who is in control, and the rest of the time she has the same
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knowledge as the attacker. This and related extensions could also be analyzed in

a manner similar to how we analyzed other situations in this chapter. We leave

this and other possibilities as exercises for ambitious readers, who should be able to

construct solutions using this chapter as a guide.
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Chapter 5

Future work

5.1 Additional extensions to Dominion

We hope that future work can consider many of the following questions, as well as

come up with additional unique ways to look at and solve variants of Dominion.

How does the game change if the utility for a player is the sum of her expected

score plus a function of the expected end state. It is reasonable to suppose that the

player who ends the game in control should have some benefit proportional to the

relative benefit of being in control at the beginning of the game, if we were to extend

our thinking about Dominion into repeated interaction games.

What does equilibrium look like when both players only have approximate guesses

for ϕ? What does optimal play look like when both players know that one player’s

knowledge of an initial parameter is wrong, but they only probabilistically know who

is wrong?

What happens to optimal strategies as we extend Dominion into a multiple move

game? Is there a closed form solution for different move counts? What do equilibria

look like when we include additional players? How about additional move types,
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that provide different kinds of information upon moving?

What happens when the utility for control of the resource is a strictly increasing

or decreasing function of x, rather than constant across the interval [0, 1)? How do

optimal strategies change if the utility for controlling the resource is proportional to

the longest period of control?

Our assumptions for optimal play included ”common knowledge” of the number

of moves each player would make, the number of players, the structure of payoffs in

the game, the length of the game, and the likelihood of each player’s control at the

outset of the game. What happens as we perturb these parameters, and also perturb

the nature of the knowledge of game parameters from ”common” to some weaker

form?

What are the best options when no one starts with control at the outset of the

game, so it is no longer constant sum?

5.2 Dominion’s Place Within Differential Games

Dominion makes a valuable contribution to the field of Differential Games[9]. It is

different than most other differential games in that it is based on a discrete number

of moves players are able to make, rather than continuous partial control of a utility

function. In this way it functions as a special case of a game of timing[18].

Dominion in its basic form can be treated as a unit square game. Figure 5.1 shows

the payoffs for the defender in the {1, 1} Dominion game, where the lines represent

gradients, moving from red being a low payoff, and yellow being a high payoff.

The defender chooses the x coordinate and the attacker chooses the y coordinate,

simultaneously. Since the game is constant sum, this square represents the entire

game. The attacker payoffs are 1− the defender payoffs. For a fixed attacker choice,
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it’s clear that the defender payoff function has a linear or constant gradient with one

discontinuity. The same is true for the attacker.

Figure 5.1: A complete visual description of the basic game.

Even though the game is very simple, its analysis has led to some pretty rich

results. We could try to visualize extended versions of the game, where players have

multiple moves, as a unit hypercube game. Unfortunately, we have to deal with the

time-based reveal ordering of the moves, which makes Dominion not quite fit the

paradigm. Also, players can’t move ”backwards” in time, so if they were picking

coordinates along some dimensional sequence, all their choices would be constrained

inside an upper triangle of sorts. Given the extremely redundant and linear nature
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of the payoff function even in high dimensional cases, it may be possible to compress

the set of moves and payoffs back into a unit square. This is simple to do if we

modified Dominion so that a players’ move doesn’t give them any information about

the state of the game, so that players make all their moves simultaneously. We might

call this the blind version of Dominion.

In the blind version of Dominion, we believe a space compressing map could be

constructed that walks through the hypercube describing the game in an ordered

fashion while simultaneous preserving important gradient features contained in the

hypercube. If this is indeed possible, then we could reinterpret the blind, {a, b} move

Dominion game as a unit square game in which the payoff for one player, holding the

move of the other player constant, has a linear gradient with multiple discontinuities.

We believe that solving for the equilibria in this, as well as the non-blind version of

Dominion, will add considerably to the foundations of Differential Game Theory, and

especially its extension into discrete and stealthy move games. It will also enable

us to produce a fuller solution to the basic FlipIt game, and provide an alternate

avenue of analysis for similar games.

There are many interesting questions and problems to explore in the field of

stealthy move games.
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