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Abstract

Chapter 1: River discharge and montane snowpack play a central role in controlling

processes at all levels of ecological organization, so the identification of dominant

hydrological periods is an important issue in relating the physical system to the

biological system. To quantitatively study the Rio Grande discharge along with

the closely related snowpack, we determine the spectral densities as a function of

frequency in addition to coherence estimates. This is quality-controlled through a

signal to noise ratio, which also allows us to create a transfer function to model

the relationship between river discharge and snowpack. By using frequency domain

techniques, it becomes apparent that there are in fact three signal peaks at distinct

frequencies (every 365 days, every 182 days, and every 122 days) for the riparian

ecosystem of the Rio Grande in New Mexico, USA. By generalizing power spectral

estimates, seasonal variation can be quantified (spring snowmelt in addition to sum-

mer monsoons) through spectrograms, yielding further amplitude estimates across a

large band of frequencies of interest.
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Chapter 2: To find events in both river discharge data and snow water equivalent

data for the Rio Grande, New Mexico, an event detector is created through moving

averages (short term average over long term average, STA/LTA). Additionally, a

cross-correlation is performed on the data from the United States Geological Survey

and the National Resource Conservation Service (1981-2010) to see the relationship

between the river discharge data and the snow water equivalent data. Using lag times

calculated from the cross correlation, the differences in peak times from discharge

and snowmelt indicates a shift in snowmelt to earlier in the spring. Because of the

high correlation between snow water equivalent and river discharge, plus the results

of the cross-correlation, it is found that the peak in snowmelt is occurring earlier in

the year and that the time lag between peak snowpack and peak river discharge is

decreasing, meaning that the snowpack is generally melting faster. One implication

resulting from hydrologic changes such as these is the adaptation of aquatic and

terrestrial species depending on the system for survival.

Chapter 3: The temperature and moisture responses of heterotrophic soil respira-

tion are crucial for a reliable prediction of carbon dynamics with respect to climatic

change. Despite numerous studies regarding temperature and moisture effects on soil

decomposition, open questions remain regarding local ecosystem response to large-

scale changes in climate (i.e. If annual average soil temperature increases, will faster

decay alter net ecosystem carbon exchanges?). The objective of this study was to

analyze the influence of different soil and temperature response functions on decom-

position rates over a time, depth, and spatial continuum, using data obtained from

the USDA NRCS. According to the CENTURY soil decomposition model, decompo-

sition was predominantly defined by temperature controls, but soil moisture provides

the pulse-like activity of decomposition across the state of New Mexico. This study

suggests that as the local climate changes, so will decomposition rates, which ulti-

mately affects levels of carbon sequestration. Current measurements are on a daily

time-step, but more frequent data collection could identify diel variability.
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Chapter 4: In order to study the idea of teaching mainstream students how to be

scientists, a literature review is performed and the data are quantitatively analyzed.

The data are compared across the educational research papers and similar statistical

results are then categorized and analyzed for similarities in the papers utilized. It is

found that similarities in how the data are collected groups the normalized data to

an extent, but the quantitative analysis finds that a more scientific approach needs

to be applied to all research fields, minimizing subjective results and maximizing

objective results for a given research study. A conclusion is drawn that all students

need to be taught the scientific process and need to understand the importance of

questioning facts and the need to critically, quantitatively, study data.
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Chapter 1

Correlated Frequency Excitation

of Snowpack and River Discharge

This work was published as: Tichy, J.L. Correlated discrete frequency excitation of

Rio Grande Discharge and New Mexico Snowpack Data. 2011. Journal of Environ-

mental Hydrology 19:1-14.

1.1 Introduction

Because river discharge is a function of factors such as spring snowmelt, precipita-

tion, temperature, catchment characteristics, and anthropogenic forcings, scientists

have attempted to quantify and explain regional sensitivities for particular systems

(Sang et al. 2009, Hanson et al. 2004, and Daniels 2007). For example, in the

western United States, approximately 50-70% of the precipitation falls as snow, and

spring/early summer snowmelt runoff accounts for approximately 50-80% of the total

annual runoff for snowmelt-dominated basins (Serreze et al. 1999). Despite these

figures, it is predicted that there may be a reduction in mountain snowpack and

1



Chapter 1. Correlated Frequency Excitation of Snowpack and River Discharge

changes in snowmelt runoff timing to be earlier in the year (IPCC 2007, Daniels

2007 and Zhang et al. 2007). If the peak in snowmelt runoff is earlier in the year

than it is presently, the montane storage of snowpack will be decreased, and there

will be an increase in the need for alternative water management practices (Daniels

2007, Krishna 2005, and Leon et al. 2009).

Snow cover decrease has the potential to produce polar amplification of global

warming caused by snow’s high albedo (Stewart 2009), which could further the ef-

fects of climate change and therefore produce a positive warming feedback. Warmer

winters yield less snowpack due to precipitation falling as rain rather than snow, and

additionally move the peak snowmelt runoff to an earlier date, forcing severe declines

in aquatic population abundance and community composition (Cayan et al. 2001,

Platt and Connell 2003, and Scheffer et al. 2001). Earlier mountain snowmelt runoff

results in a longer summer drought season and lessened summer and fall stream flow

in adjacent dry regions. These types of changes in the annual hydrograph may cause

stresses on ecosystems owing to lower flows and warmer stream temperatures (Cayan

et al. 2001).

To quantify sources for environmental variation and thus how the environment

may impact ecological systems, Fourier techniques are applied to create spectral

densities and a transfer function to predict stream flow based on snowpack. Spectral

densities allow us to see how time series data is viewed in the frequency domain

(Shi et al. 2007). With this technique, the amplitude of the signal is represented

as a function of frequency rather than as a function of time (Hameed 1984). The

tool allows us to objectively analyze data through mathematical techniques and the

strength of repetitive events in the data becomes visible (Schepers et al. 1992). For

instance, it is expected that there will be a strong signal every 365 days, given our

knowledge of spring river discharge. One step beyond creating the power spectrum

is the spectrogram analysis, which is the process of converting the time domain

2



Chapter 1. Correlated Frequency Excitation of Snowpack and River Discharge

representation of a signal to a frequency domain representation that shows how

different frequency components contribute to the overall signal (Sabo and Post 2008).

The idea of using power spectra to analyze hydrological data has been utilized

previously around the world, but has not yet been done extensively for the semi-arid

ecosystem of the Rio Grande in New Mexico, USA. Pelletier and Turcotte (1997) cal-

culated power spectra of time series data for river discharges (636 monthly records)

and precipitation (49 annual records) averaged over hundreds of stations worldwide.

The average power spectrum of river discharge was found to have a power-law depen-

dence on frequency S(f) ∼ f 1/2 for time scales from 1 month to 10 years. However,

they found that precipitation is spectrally white (uncorrelated, Sabo and Post 2008

and Wang et al. 2008). Because of this, the snowpack values that are directly related

to the Rio Grande discharge can be analyzed in order to specify the fluctuations in

this system. The analysis presented here determines if the data from the Rio Grande

are spectrally white or if a signal can be teased from the data.

Others took the spectral analysis one step further by way of modeling (e.g. Dol-

gonosov 2008, Guo et al. 2003, Renard and Lang 2007, Mantilla et al. 2006, and

Molotch and Margulis 2008). Time series data were used to model annual oscillations

of river discharge through converting time series data into empirical power spectra of

river discharges. The time series data were also used to construct theoretical power

spectra by fitting model parameters to the data (Schaefli et al. 2007 and Labat

2005).

The aim of this paper is to use two approaches in studying data collected by

the Natural Resources Conservation Service (NRCS, measuring snow water equiva-

lent) and the United States Geological Survey (USGS, measuring river discharge) to

answer our questions regarding the ecosystems surrounding the river system. With

the frequency analysis, any wavelike signal can be graphically or mathematically

depicted in either of two forms - the time domain and the frequency domain, as

3



Chapter 1. Correlated Frequency Excitation of Snowpack and River Discharge

described above. The second method is through a transfer function, which depicts

the functional relationship between the Rio Grande discharge data and the NRCS

data. These two approaches quantify the data and allow us to make predictions of

notable frequencies in the data, such as peak spring snowmelt (fundamental mode)

and the subharmonics of the data (secondary modes caused by other forcings on the

system). The frequency analysis allows us to see that there are in fact three distinct

peaks during different times of the year (every 365 days, every 182 days, and every

122 days).

1.2 Methods

In this analysis, NRCS SNOTEL (for SNOwpack TELemetry) data from the NRCS

website (http://www.wcc.nrcs.usda.gov/snow/) at the Quemazon site in New

Mexico is analyzed. The site number is 708, the county is Los Alamos, the lat-

itude is 35 deg 55 min N, the longitude is 106 deg 24 min W, and the elevation

is 9500 feet (Figure 1.1). The daily data, including snow water equivalent (SWE),

precipitation, various air temperature quantities, and snow depth were downloaded

from January 1981 through May 2010. The parameter of interest for this study is the

SWE, measured in inches. To measure this parameter, a snow pillow is positioned

so that it measures the water-content of the snow covering. The working principle of

the sensor is based on the detection of the hydrostatic pressure caused by the layer

of snow (Peterson et al. 2000). This SNOTEL site is located north of the USGS

stream gauge monitoring river discharge for this project (Figure 1.1).

Additionally, United States Geological Survey stream gauge data from the USGS

website (http://water.usgs.gov/) at the Rio Grande at Otowi Bridge site in New

Mexico is analyzed. The site number is USGS 08313000, the county is Santa Fe, the

latitude is 35 deg 52 min 28.2 sec, the longitude is 106 deg 8 min 32.8 sec, and the

4



Chapter 1. Correlated Frequency Excitation of Snowpack and River Discharge

elevation is 5488 feet (Figure 1.1). The daily data, including river discharge, were

downloaded from January 1981 through May 2010. Historically, the Otowi gauge

used several different types of instruments, but the technology today is the following:

The stream channel cross section is divided into numerous vertical subsections and

in each subsection the area is obtained by measuring the width and depth of the

subsection, and the water velocity is determined using a current meter. The discharge

in each subsection is computed by multiplying the subsection area by the measured

velocity. The total discharge is then computed by summing the discharge of each

subsection. This site is located south of the NRCS SNOTEL site used for this project

(Figure 1.1).
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Figure 1.1: New Mexico map depicting the NRCS SNOTEL site at Quemazon and
the USGS stream gauge site at the Otowi Bridge.
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The fist step of the analysis is to compute power spectra of both the river dis-

charge and the SWE data, individually. Power is the multiplication of a Fast Fourier

Transform (FFT) and its conjugate, and for an FFT, a grouping of the original data

set is separated and is called the window. For this analysis, an overlap of 50% is

used, meaning that each window except the first and the last is analyzed twice. If

there are leftover data points in the original vector, they will be discarded. Each

window is then multiplied by applying a Hamming window:

w(n) = 0.54− 0.46 cos
(
2π

n

N

)
, 0 ≤ n ≤ N (1.1)

where n is the nth data point and N is the number of points in the data set. This

Hamming window multiplication begins the process of analyzing time-series data

with cosines.

The “pwelch” function in Matlab is used with the following parameters, unless

otherwise noted: window size of 256, 128 signal samples (elements of the original

data vector) that are common to two adjacent segments (i.e. windows of 256 days

with 50% overlap), and a sampling frequency of 1 per day. The FFT is detailed in

the fully functional form:

FFT = X(k) =
N∑

j=1

x(j)ω(j−1)(k−1)
N (1.2)

where j is the index of the data point in the given window, N is the number of values

in the window, and k is the kth term.

x(j) = (1/N)
N∑

k=1

X(k)ω−(j−1)(k−1)
N (1.3)

where

ωN = e(−2πi)/N = cos
(−2π

N

)
+ i sin

(−2π

N

)
(1.4)
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Once each window is multiplied by a Hamming window, the FFT is taken of the

result, and we can take an average to determine power:

X =
X1 + X2 + · · · + Xm

m
(1.5)

power = (X)(X∗) (1.6)

where X∗ is the conjugate of X. The power can then be converted into decibels by

taking the 10 log10 of the FFT times its conjugate, i.e.

power in decibels = 10 log10((X)(X∗)) (1.7)

A power spectra is typically plotted with either period (units of time) or fre-

quency (units of 1/time) on the horizontal axis and power (units of [units of original

data]2*days)2 on the vertical axis. Depending on the data, the plot may be semi-log

or linear. Additionally, it is important to take note of the Nyquist frequency, which

allows us to recover all Fourier components of a periodic waveform. For this to hap-

pen, the sampling rate must be at least twice the highest waveform frequency. In

other words, with our sampling rate of 1/day, our Nyquist frequency is 1/2 day. If

we are not cognizant of the Nyquist frequency, we are at risk of aliasing (Sabo and

Post 2008).

To further analyze the power spectra, a signal to noise ratio (SNR) is calculated

(Sang et al. 2009). This is performed by dividing the power spectral density by

the noise in an attempt to compare noise levels to distinctive signals of biological

interest. Noise in hydrological data is simply fluctuations in the flow that aren’t

recuring (Sabo and Post 2008). The signal to noise ratio is computed separately for

both the river discharge data and the SWE data with the following equation:

SNR = 10 log10(VS/VN) (1.8)
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where VS is the spectral density power and VN is the noise power.

After this value is calculated, it is plotted with period (in days) on the horizontal

axis and power (in decibels, dB, relative to 1 ([unit]2day)2) on the vertical axis, with

[unit] being either cubic feet per second (cfs) or inches (in) for this analysis. Because

of how the FFTs are calculated, parts of the resulting plots are not usable (see results

and discussion sections).

In order to look at the power spectral densities for each year, a spectrogram is

created. This allows us to see each year’s spectral density stacked with the rest of

the data set. Because of the window size of 256 and an overlap of 50%, only the

years 1985 through 2004 are clearly identified in this analysis.

Depending on the parameters set in the analysis, a spectrogram is able to tease

further information out of the initial power spectra that would not otherwise be

visible. In this analysis, the parameters are set in such a way to analyze seasonal

data, closely looking at how the river and snowpack vary throughout the year as

well as throughout a larger data set. Spectrograms are plotted with time on the

horizontal axis, period (in days) on the vertical axis, and power (in dB relative to 1

([unit]2day)2) shown as a color bar, with reds and oranges indicating higher power

and blues indicating lower power.

The second approach used in this paper is a transfer function to represent the

relationship between river discharge and SWE. The relationship between SWE and

discharge is commonly studied (e.g. Hanson et al. (2004)), allowing us to relate the

two parameters. To calculate the amplitude system response, the “pwelch” function

is again used to calculate the power spectral densities of both the river discharge

and the SWE, with a 5 point moving average to smooth the data. The mathematics

behind the transfer function are as follows:

Xdischarge = YSWE ∗ Tsystem (1.9)
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where Tsystem is the overall transfer function of the system. If we then take the Fast

Fourier Transform of all components, we have the following:

X̂discharge = ŶSWE ∗ T̂system (1.10)

X̂discharge

ŶSWE

= T̂system. (1.11)

If we then multiply all components by their respective conjugates to yield the power

spectra, we can see that

X̂discharge · X̂∗
discharge

ŶSWE · Ŷ ∗
SWE

= T̂system · T̂ ∗
system. (1.12)

We can then define X̂discharge · X̂∗
discharge as PXX and ŶSWE · Ŷ ∗

SWE as PY Y and take

10 log10 of the values to change them into decibels (dB).

10 log10

PXX

PY Y
= 10 log10(PXX)− 10 log10(PY Y ) (1.13)

Plotting by way of a logarithmic frequency, the amplitude system response with

period (in days) on the horizontal axis and the normalized amplitude (in dB) on the

vertical axis, we will be able to see the constant relationship between river discharge

and SWE. The figure will give us the constant that relates the two parameters, thus

creating a simple model.

To then determine differences in frequencies over time, the data are divided into

5 year blocks and spectral densities are calculated with the following parameters:

window size of the length of the 5 year data vector, 0 signal samples (elements of

the original data vector) that are common to two adjacent segments (no overlap

of windows because we were looking at the distinct 5 year periods), enough Fast

Fourier Transforms (again using the above equations) to have twice the number of
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data points in the 5 year vector, and a sampling frequency of 1 per day. Because

of the 5-year blocks, only the years 1985 through 2005 are clearly identified in this

analysis. In addition to the individual values, the means and standard deviations

are also calculated. This allows us to see if the data changes over time.

1.3 Results

As described in the Methods section, the power spectra of both the Rio Grande

discharge data and the Quemazon SWE data from the mountain region feeding the

river are calculated with Fast Fourier Transforms. Figures 1.2 and 1.3 show the two

respective power spectra. Because both plots have significant peaks under 400-day

periods, both are plotted on linear plots rather than semi-log plots.

The power spectra of the discharge data (Figure 1.2) shows approximately three

points of interest. There is a peak with high power at 365 days (3.81 x 109 Power

((cfs2day)2), a second peak with a period of 182 days (1.38 x 109 Power ((cfs2day)2),

and a third peak with a period of 122 days (3.83 x 108 Power ((cfs2day)2). Addition-

ally, the power spectra of the SWE data (Figure 1.3) also shows approximately three

points of interest. There is a peak with high power at 365 days (4.14 x 104 Power

((in2day)2), a second peak with a period of 182 days (1.12 x 104 Power ((in2day)2),

and a third peak with a period of 122 days (2.66 x 103 Power ((in2day)2).
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Figure 1.2: Power spectra of 1981-2010 daily Rio Grande discharge data (cfs) at the
USGS Otowi gauge. The window for this analysis is the entire length of the data set
with an overlap of zero.
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Figure 1.3: Power spectra of 1981-2010 daily snow water equivalent data (in) at the
NRCS Quemazon site. The window for this analysis is the entire length of the data
set with an overlap of zero.
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To then separate the signal from the noise in the data, a signal to noise ratio

is calculated and plotted for both the river discharge data and the SWE data (Fig-

ures 1.4 and 1.5). It is common to accept a signal to noise ratio around 20 - 40 dB

(Swayze et al. 2003), meaning that there is not too much noise clouding the signal.

The way that these ratios are calculated creates a band of unusable data under a

period of about 50 days. The data are daily, so calculating frequencies is best done

on longer periods from approximately 50 to 400 days. Additionally, powers less than

zero do not make physical sense, so it is best to focus on the signal to noise ratios

around our periods of interest (122 days, 182 days, and 365 days).

On the signal to noise ratio of the Rio Grande discharge data (Figure 1.4), it

is apparent that the SNR around the points of interest is between 20 and 40 dB,

thus showing acceptable values. Because these data have been quality-controlled,

they can be used for further analyses. On the signal to noise ratio of the Quemazon

SWE data (Figure 1.5), it is apparent that the SNR around the points of interest is

between 0 and 40 dB, thus showing acceptable values. Given that these values are

not as high quality as the Rio Grande discharge data, however, we must be cautious

in further analyses.

To see the power spectra for the entire data set as individual time periods, spec-

trograms are created for both the river discharge data and the SWE data (Figures 1.6

and 1.7). Each vertical band in the spectrograms represents a small time period (on

the order of several months) with the period length along the vertical axis. Because

of the window size and overlap used for these calculations, only the years 1985-2004

are complete, thus shortening the overall data set. The power of the spectra is seen

through the color bar. The spectrogram of the daily Rio Grande discharge data

(Figure 1.6) shows relatively high power almost every year during the early part of

the data set in the longer periods. Later in the data set, however, the signals are

not as strong for this seasonal-like signal. Despite this, there are seasonal signals
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Figure 1.4: Signal to noise ratio of 1981-2010 daily Rio Grande discharge data (cfs)
at the USGS Otowi gauge.

on the lower end of the power spectrum in shorter periods. The spectrogram of the

daily Quemazon SWE data (Figure 1.7) shows relatively high power almost every

year during the entirety of the data set as a seasonal repetition of strong power.

There also are seasonal signals on the lower end of the power spectrum in the shorter

periods.
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Figure 1.5: Signal to noise ratio of 1981-2010 daily snow water equivalent data (in)
at the NRCS Quemazon site.
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Figure 1.6: Spectrogram of 1985-2004 daily Rio Grande discharge data (cfs) at the
USGS Otowi gauge. The window for this analysis is 256 with an overlap of 50%.
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Figure 1.7: Spectrogram of 1985-2004 daily snow water equivalent data (in) at the
NRCS Quemazon site. The window for this analysis is 256 with an overlap of 50%.

Using the transfer function analysis, an amplitude system response is created to

see the relationship between river discharge and SWE (Figure 1.8). Because of the

lack of data points, the data beyond about 100 days is unusable. Therefore, the

normalized amplitude is best viewed on shorter periods.

To then look at blocks of time to see if the peak frequencies have changed over

time, a power spectra analysis is performed on five year blocks of time, 1981-1985,

1986-1990, 1991-1995, 1996-2000, and 2001-2005. From each of the 5 power spectra

created, the three major peaks are selected and recorded in Table 1.1. The mean of
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Figure 1.8: Amplitude system response of 1981-2010 Rio Grande discharge data and
Quemazon snow water equivalent data.

each of the three peaks and the standard deviation are also calculated. In addition to

the table, a figure is created to visually show the power spectra of the 5 year blocks

of time (Figure 1.9).
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Major Peak 2nd Peak 3rd Peak
Block of Years 365 days 182 days 122 days

1981-1985 2.27 x 109 1.02 x 109 2.78 x 108

1986-1990 5.98 x 108 2.50 x 108 2.53 x 107

1991-1995 1.77 x 109 7.30 x 108 2.20 x 108

1996-2000 4.46 x 108 1.79 x 108 1.32 x 108

2001-2005 2.08 x 108 4.12 x 107 1.69 x 107

mean 1.06 x 109 4.34 x 108 1.34 x 108

standard deviation 9.05 x 108 4.13 x 108 1.16 x 108

Table 1.1: Power spectra of 5 year blocks of river discharge data (cfs). The power
of the three major peaks is presented, with all units in Power ((cfs2day)2). See
Figure 1.9 for a visual of the 3 main peak representation.
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Figure 1.9: Power spectra of 5 year blocks of river discharge data (cfs). The window
for this analysis is the length of a 5 year block of data with an overlap of zero.
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1.4 Discussion

With predicted climate changes, there may be a reduction in mountain snowpack and

changes in snowmelt runoff timing in addition to more winter precipitation falling

as rain rather than snow (Sang et al. 2009, Peterson et al. 2000, and Stewart

2009). It is predicted that the peak spring runoffs will occur earlier in the year, thus

reducing the montane storage of snowpack and increasing the need for alternative

management practices such as reservoir storage (Peterson et al. 2000). Therefore, to

ensure arid and semiarid regional water needs are met, it is important to understand

the processes of snow accumulation, snowmelt, and river discharge.

To answer our questions, we can now state that there is a constant dB value

that relates SWE in Quemazon to the Rio Grande discharge at the Otowi Bridge

(Figure 1.8). We can use this information to effectively work backward to make

predictions of summer flows. Since we know how the amplitude system response

was created, we can create power spectra for SWE data and use the response of the

system to predict discharge values. We can use the mathematical equations from the

methods section to see the following:

10 log10(PXX)− 10 log10(PY Y ) = [constant from Figure 1.8] (1.14)

It is then apparent to see that the SWE power spectra for any specific winter can be

substituted for PY Y and PXX can be easily solved (river discharge predictions based

on power spectral densities, Figure 1.8). In order to test the transfer function, the

Rio Grande discharge and Quemazon snow water equivalent data were downloaded

for 2010-2011. The constant determined from the transfer function and Figure 1.8

was then used to predict the river discharge power for 2010-2011. Since the data were

available, however, the actual river discharge spectral densities (power) for 2010-2011

were also calculated using the same methods listed above. The predicted and actual

values were then plotted against each other to determine the accuracy of the transfer
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Figure 1.10: Transfer function test with the actual power (in decibels) of the 2010-
2011 river discharge on the x-axis and the predicted power (in decibels) of the 2010-
2011 river discharge on the y-axis.

function model. As seen in Figure 1.10, the transfer function is quite accurate, as

the plot shows a clear linear trend.
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The annual fluctuations of the Rio Grande are caused by several different physical

parameters. The clear peak at 365 days is due to spring snowmelt runoff. High SWE

and river discharge in New Mexico is generally associated with the El Niño weather

phenomenon, a pattern in which warmer ocean temperatures near the equator mean

more moisture for the southwestern U.S. In addition to the high yearly peak caused by

springtime snowmelt, our analyses show two subharmonics, one every 182 days and

one every 122 days. The analysis has revealed that these peaks are most likely due

to precipitation events such as the summer monsoon and winter precipitation. The

frequencies reflect regional variables such as soil saturation, catchment size, rainfall

duration, and travel time from rainfall to the river. For example, in New Mexico,

between 50 and 70% of the total annual precipitation falls between the months of

June and September through the North American monsoon (Gosz et al. 1995), which

is also reflected in our analyses. It has been found that the monsoon variability is

due to surges in low-level moisture from the Gulf of California (Adams and Comrie

1997), which ultimately affects the strength of the monsoon affecting New Mexico

(Hanson et al. 2004), and therefore the peaks found in our analyses.

The two spectrograms in Figures 1.6 and 1.7 show seasonal variation, indicating

the presence of subharmonics due to the above parameters. The spectrogram of

discharge data (Figure 1.6) shows relatively regular low power bands (blue bands),

which most likely indicate winter, low flow time periods. There are also some high

power bands that most likely represent spring snowmelt, but they appear to be

regular during the early years of the data set but tend to fade in the later years

(red/orange bands), indicating the existence of long-term trends throughout the data

set analyzed. Additionally, in looking at the time series plot of the river discharge

during this time, we can say that there was a period of relatively low flow from

1988 - 1991, and another from 1998 - 2004. These “dry” periods clearly affect the

spectrograms. The spectrogram of SWE data (Figure 1.7) shows relatively regular

low power bands (blue bands), which most likely indicate summer, no snow periods.
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There are also some very distinct high power bands (red/orange bands) that most

likely represent the period just before spring snowmelt, when the SWE values are the

greatest. In general, the SWE spectrogram has a stronger pattern than the discharge

spectrogram. This is most likely due to the more regular and less dynamic nature

of snow as compared to water flow. In looking at time series plots of the data, it is

apparent that there also were several spikes of high SWE, and these years are also

evident on the spectrogram (1987, 1993, and 1997).

The five year block data analysis shows that if we assume a normal distribution,

we can say that 68% of the major peaks occurring at 365 days are within 9.05 x 108

(cfs2day)2 of the mean 1.06 x 109 (cfs2day)2 and 95% of the major peaks occurring

at 365 days are within 1.81x 109 (cfs2day)2 of the mean 1.06 x 109 (cfs2day)2. For

the second peak, 68% of them occurring at 182 days are within 4.13 x 108 (cfs2day)2

of the mean 4.34 x 108 (cfs2day)2 and 95% of them occurring at 182 days are within

8.26 x 108 (cfs2day)2 of the mean 4.34 x 108 (cfs2day)2. For the third peak, 68% of

them occurring at 122 days are within 1.16 x 108 (cfs2day)2 of the mean 1.34 x 108

(cfs2day)2 and 95% of the them occurring at 122 days are within 2.32 x 108 (cfs2day)2

of the mean 1.34 x 108 (cfs2day)2.

The snowpack and stream flow analysis presented here allows us to make a quan-

titative analysis of how the two physical parameters are related and how snowpack

can be used to predict streamflow through the transfer function. Over time, there

has been a general decrease in the amplitude of peaks on the spectrograms (Table 1.1

and Figure 1.9), which is evidence for a long-term trend showing a decrease in peak

amplitudes at yearly frequencies.

Further questions were raised in performing this analysis, such as: What else may

be causing the subharmonics found in the spectral analyses? Are there other forces

on the system that could be causing the stress? It is only through further work

that we will continue to understand the system and thus make the best management
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decisions possible.
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Chapter 2

Coherence/Event Detection of Rio

Grande Flow and SWE in NM

This work was published as: Tichy, J.L. Coherence and event detection methodology

of river discharge and snow water equivalent in New Mexico, USA. 2012. Journal of

Environmental Hydrology 20:1-13.

2.1 Introduction

New Mexico, like many regions that rely on snowpack for water supply, is partic-

ularly vulnerable to climate change and the possibility of peak snowmelt occurring

earlier in the year (Serreze et al. 1999). In the western United States, for example,

approximately 50-70% of the precipitation falls as snow, and spring/early summer

snowmelt runoff accounts for approximately 50-80% of the total annual runoff for

snowmelt-dominated basins (Serreze et al. 1999), thus creating a need to study the

interaction of spring snowmelt runoff and river discharge (Adams and Comrie 1997,

Pelletier and Turcotte 1997, and Peterson et al. 2000). April 1st is typically used
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as the date of maximum snow accumulation (Maurer et al. 2007 and Graf 2006)

but models show that a 1 degree - 2 degree C temperature increase could yield a 10

- 15 day peak shift of discharge (IPCC 2007). Additionally, a 3 degree C temper-

ature increase (under mid to high green house gas emission scenarios), could shift

peak streamflow by 30 days (IPCC 2007). Additionally, snow has a high albedo, so

there will be a positive feedback of polar amplification of global warming if there

is a decrease in yearly snowpack (Mote 2003). Warmer winters yield less snowpack

due to precipitation falling as rain rather than snow, and additionally move the peak

snowmelt runoff to an earlier date. If the peak of spring snowmelt shifts to be earlier

in the year, water managers will be faced with an annual challenge of storing winter

precipitation for use later in the year (Stewart 2009).

Previous studies have found hydroclimatological changes in the last 50 years in the

western United States. The changes are evident in the timing of spring runoff (Stew-

art 2009), in the fraction of rain versus snow (Knowles et al. 2006), in the amount

of water contained in the snow (Mote 2003), in the fraction of annual streamflow

throughout the year (e.g. Hidalgo et al. 2009 found that the March fraction of

annual streamflow has increased while the April July fraction of annual streamflow

has decreased), and in climate-sensitive biological variables (Cayan et al. 2001). It

is thought that these changes are related mainly to temperature increases as they

affect snowmelt-dominated basins in ways predicted in response to warming (Mote

2003), and it is suspected that the warming trends causing the changes are in part

due to anthropogenic effects. Recent studies have shown that snowpack volumes

and snowmelt runoff have varied with climate on many temporal and spatial levels

(Zhang et al. 2007), but recent global surface temperature increases due to anthro-

pogenic greenhouse gas emissions are now well recognized along with their potential

implications on the hydrologic system.

In this study, two methods are used to quantify spring snowpack and snowmelt.
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The first method is an averaging method that uses the STA/LTA algorithm, which is

a short time running average divided by a long time running average. This method

can be used to pick events out of time series data based on a threshold level (Wong et

al. 2010). The use of this moving time-averaging method is necessary for a quantita-

tive analysis of river discharge and SWE data because it mathematically calculates

ratios without an inherent subjectivity. Additionally, with an event detector such

as this, we can make proper decisions regarding water quality linked to events of

interest and other management concerns (Cayan et al. 2001). The second method

is a cross-correlation to analyze the similarities and differences between snowpack

and spring snowmelt runoff. Lag times between peaks are also calculated in order

to determine if the timing of snowmelt runoff has shifted in the last 30 years, how

sensitive the Rio Grande Catchment is to mountain snowpack runoff, and if the lag

time between peak snowpack and peak river discharge has also shifted in the last 30

years.

Each year, the National Weather Service and the Soil Conservation Service issue

monthly forecasts of the streamflow that can be expected during the main runoff

period, April through July, for much of the western United States (Redmond and

Koch 1991). These forecasts are mostly based on the existing snowpack but also

on expected future precipitation. They are used extensively throughout the western

United States to develop reservoir operation plans for flood control and water supply

plans; in turn, decisions regarding the management of many agricultural operations

are also based on expected water availability (Graf 2006 and Walton and Hunter

2009). The importance of these predictions indicates the economic implications of

improved estimates of snowpack and spring runoff.

Redmond and Koch (1991) suggest that the confidence interval on a water supply

forecast made very early in the water year (e.g. October or November) might be

increased by as much as 15% due to climate change. It is for this reason that it is
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better to make predictions later in the water year. These late predictions may not

give water managers sufficient time to make critical decisions regarding water use.

Thus, it is important to accurately quantify the high correlation between snowpack

and spring runoff (Krishna 2005).

Others have used various methods to quantify event data from hydrologic time

series (e.g. Guralnik and Srivastava 1999, Smith et al. 1998, and Hamed 1998), but

Norbiato et al. (2007), for instance, use the index variable method to do regional

frequency analyses, allowing them to use data from nearby or similar sites to estimate

quantiles of the underlying variable at their given sites. They find that attributing

a single return period to a storm event is not realistic and that using a traditional

rain gauge network can be too sparse to provide adequate sampling (radar data can

give an advantage over actual rain gauge data (Delrieu et al. 1997 and Velasco-

Forero et al. 2009)). Despite these findings, standard gauges can be used for the

analysis presented here since we are studying events rather than entire volumes of

precipitation for a given watershed.

Guralnik and Srivastava (1999) use a modeling approach to detect a change point

by detecting the change of a model (or the parameters of the model) that describe

the underlying data, and Smith et al. (1998) use wavelets to identify transient

features to quantify the temporal variability of streamflow. Their study estimates

precise locations of both stochastic and periodic events in time that revealed subtle

structures not seen in time series data. Hamed (1998) then went on to use the

Mann-Kendall test to detect trends in hydrological data. Since the test is not overly

sensitive to outliers, it is accepted as a decent statistical method for hydrology.

Given the previous work, it has been recognized that further analyses and corre-

lations will be useful information for water management techniques. The magnitude

of a given peak, plus its time, are the two most important features of a hydrograph

(Jain and Indurthy 2003), so those are the parameters that are analyzed here.
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2.2 Methods

In this analysis, we analyze National Resource Conservation Service (NRCS) SNO-

TEL (for SNOwpack TELemetry) data at the Quemazon site in New Mexico from

the NRCS website (http://www.wcc.nrcs.usda.gov/snow/). The site number is

708, the county is Los Alamos, the latitude is 35 deg 55 min N, the longitude is 106

deg 24 min W, and the elevation is 9500 feet (Figure 2.1). The daily data, including

snow water equivalent (SWE), precipitation, various air temperature quantities, and

snow depth were downloaded from January 1981 through May 2010. The parameter

of interest for this study is the SWE, measured in inches. To measure this parameter,

a snow pillow is positioned so that it measures the water-content of the snow cover-

ing. The working principle of the sensor is based on the detection of the hydrostatic

pressure caused by the layer of snow (Peterson et al. 2000). This SNOTEL site is

located north of the USGS stream gauge monitoring river discharge for this project

(Figure 2.1).

Additionally, we also analyze United States Geological Survey (USGS) stream

gauge data from the USGS website (http://water.usgs.gov/) at the Rio Grande

at Otowi Bridge site in New Mexico. The site number is USGS 08313000, the county

is Santa Fe, the latitude is 35 deg 52 min 28.2 sec, the longitude is 106 deg 8 min

32.8 sec, and the elevation is 5488 feet (Figure 2.1). The daily data, including river

discharge, were downloaded from January 1981 through May 2010. Historically, the

Otowi gauge used several different types of instruments, but the technology today

is the following: The stream channel cross section is divided into numerous vertical

subsections and in each subsection the area is obtained by measuring the width and

depth of the subsection, and the water velocity is determined using a current meter.

The discharge in each subsection is computed by multiplying the subsection area

by the measured velocity. The total discharge is then computed by summing the

discharge of each subsection. This site is located south of the NRCS SNOTEL site
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used for this project (Figure 2.1).
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Figure 2.1: New Mexico map depicting the NRCS SNOTEL site at Quemazon and
the USGS stream gauge site at the Otowi Bridge.
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2.2.1 STA/LTA

The first step of the moving average analysis is to calculate short term averages

(STA) and long term averages (LTA). Let xi be the time series representing either

river discharge or SWE data. Let the number of points in a short term window be

ns and the number of points in a long term window be nl with nl > ns. Then the

average values in the short term and the long term windows preceding the index i

are as follows:

STA =
1

ns

i∑

j=i−ns

x2
j (2.1)

LTA =
1

nl

i∑

j=i−nl

x2
j (2.2)

If j <= 0, set xj = (x1 +x2)/2 (Wong et al. 2010). We can then define the STA/LTA

ratio:

ri =
STA

LTA
(2.3)

For both the river discharge and the SWE calculations, ns = 100 and nl = 400.

These values are determined by optimizing the length of the data set with the length

of the yearly discharge event peaks. It is not surprising that the ns and nl values for

both data sets are the same, given the facts that both data sets are daily and of the

same number of years. To calculate the STA/LTA, the “filter” function is utilized in

Matlab. This function filters the original time series data by the ns and nl values,

giving a smoothed, averaged value. The STA/LTA is then plotted for each original

data point of the time series data. A threshold value is also set in order to make

a quantitative cut-off point of significant events. Based on the moving average, the

threshold value is set at ri = 1 for discharge and ri = 1.5 for SWE. This is determined
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through careful exploration of average values among the years (i.e. percentages of

points falling above and below the cut-off).

2.2.2 Cross Correlation

To perform the cross correlational analysis, the following procedure is employed for

both the discharge data and the SWE data. To find an “average year,” each annual

peak is shifted to an arbitrary time scale. This allows us to normalize the data for

lag time. For example, if we simply averaged each block of 365 days, there would be

some years with an earlier peak and some years with a later peak. These off-years

would not be included in the average and thus would not be fully represented. The

goal is to see the peak of data without initially looking at the timing of the event.

Once each year’s maximum peak event is overlaid on the other peaks from the 30

year data set, one average year can be determined. This information is plotted as

both a 2D and a 3D plot.

The Matlab function “xcorr” is used to shift each year’s peak of data through

the following sequence:

r(d) =

∑

i

[x(i)−mx ∗ (y(i− d)−my]

√∑

i

(x(i)−mx)2
√∑

i

(y(i− d)−my)2
(2.4)

where x(i) and y(i) are the two data sets being compared, mx and my are the

respective means, and d is the delay. If we assume mx and my to be zero, we have

the following:

r(d) =

∑

i

[x(i) ∗ (y(i− d)]

√∑

i

(x(i))2
√∑

i

(y(i− d))2
(2.5)
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To figure the lag times associated with the correlations, a series of delays (d) are

run through the above equation and the maximum value is determined. This is equal

to the lag time. This function computes raw correlations without normalization, so

a separate process is then employed to normalize the calculations. To do this, a

cross correlation is performed between the average year and each separate year, the

average year with itself, and each separate year with itself. The aforementioned 3

cross correlations are then compared. This allows us to determine the normalized

correlation between each year and the average year previously determined. These

calculations also allow us to determine the lag time between each year’s peak and

the average year’s peak. The correlations are then plotted as time series to see the

correlation of each year’s peak to the average year’s peak. Additionally, the lag times

are plotted as a time series to see the time difference between each year’s peak and

the average year’s peak (with the mean removed to normalize the data).

To then see the correlation and the lag times between each SWE peak and the

consecutive river discharge peak, a cross correlation is performed between each sea-

sonal peak (i.e. each SWE peak versus its corresponding discharge peak). This

allows us to see how, exactly, each year’s SWE data relates to the following spring’s

river discharge. We then plot a time series graph for both the correlations and the

lag times. Finally, to see how the lag times and the correlations compare among

both the SWE peaks and the river discharge peaks, a plot is created to compare the

correlations of each SWE year to the average SWE year versus the correlations of

each river discharge year to the average river discharge year. Additionally, another

plot is created to compare the lag times of each SWE year from the average SWE

year versus the lag times of each river discharge year from the average river discharge

year.
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Figure 2.2: Short term average over long term average of Rio Grande discharge data
at the Otowi Gauge, 1981-2010. The threshold for a significant peak on the discharge
STA/LTA is 1.

2.3 Results

STA/LTA values are plotted for both the Rio Grande discharge data and the SWE

data. These are presented in Figures 2.2 and 2.3, respectively. The ratio is on the

vertical axis and time is on the horizontal axis. The threshold values are also plotted

on each graph. The threshold for a significant peak on the discharge STA/LTA is 1

while the threshold value for the significant peak on the SWE STA/LTA is 1.5.
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Figure 2.3: Short term average over long term average of snow water equivalent data
at the Quemazon Gauge, 1981-2010. The threshold for a significant peak on the
SWE STA/LTA is 1.5.

To view the average discharge year with each individual year peak, a plot is cre-

ated with the shifted yearly peaks, as mentioned in the methods section. Figure 2.4

shows the average discharge peak with each of the other years’ discharge peaks shifted

to a generic time scale. The importance of the plot is the discharge peak value, not

the time that the peak occurs. Figure 2.5 is a surface plot that shows each year’s

peak discharge shifted to the generic time scale. Discharge values are shown through

a color bar as well as on a third axis. Trends over the 30 year time period can be

seen.
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Figure 2.4: Average discharge peak and each individual discharge peak, shifted to a
generic time scale for the Rio Grande discharge data at the Otowi Bridge, 1981-2010,
measured in cubic feet per second.

To view the average SWE year with each individual year peak, a plot is created

with the shifted yearly peaks, as mentioned in the methods section. Figure 2.6 shows

the average SWE peak with each of the other years’ SWE peaks shifted to a generic

time scale. The importance of the plot is the SWE peak value, not the time that the

peak occurs. Figure 2.7 is a surface plot that shows each year’s peak SWE shifted

to the generic time scale. SWE values are shown through a color bar as well as on a

third axis. Trends over the 30 year time period can be seen.
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Student Version of MATLAB

Figure 2.5: Each individual discharge peak, shifted to a generic time scale for the
Rio Grande discharge data at the Otowi Bridge, 1981-2010, measured in cubic feet
per second.

Several other relationships are plotted in Figures 2.8, 2.9, 2.10, and 2.11:

the correlation of each year’s discharge peak with the average discharge peak, the

time difference of each year’s discharge peak with the average discharge peak, the

correlation of each year’s SWE peak with the average SWE peak, and the time

difference of each year’s SWE peak with the average SWE peak.

The correlations are then calculated and plotted for each SWE peak and its

corresponding discharge peak (Figure 2.12) where the normalized correlations are
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Figure 2.6: Average snow water equivalent peak and each individual snow water
equivalent peak, shifted to a generic time scale for the SWE data at the Quemazon
gauge, 1981-2010, measured in inches.

plotted on the vertical axis and the years are plotted on the horizontal axis. The

lag times are then calculated and plotted for each SWE peak and its corresponding

discharge peak (Figure 2.13) where the lag times are plotted on the vertical axis and

the years are plotted on the horizontal axis.

To see the correlations between each year and the average year of both the dis-

charge data and the SWE data, a plot is created with the normalized SWE correla-

tions on the vertical axis and the normalized discharge correlations on the horizontal
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Student Version of MATLAB

Figure 2.7: Each individual snow water equivalent peak, shifted to a generic time
scale for the SWE data at the Quemazon gauge, 1981-2010, measured in inches.

axis (Figure 2.14). To see how the lag times between each year and the average year

of both the discharge data and the SWE data, another plot is created with the nor-

malized SWE lag times on the vertical axis and the normalized discharge lag times

on the horizontal axis (Figure 2.15).
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Figure 2.8: Normalized correlation between each year’s discharge peak and the av-
erage discharge peak. Data are from the Rio Grande Otowi gauge.

2.4 Discussion

In this study, two methods are used to quantify spring snowpack and snowmelt. The

first method is an averaging method that uses the STA/LTA algorithm. This method

is used to pick events out of time series data based on a threshold level (Wong et

al. 2010). Interannual variability is clearly visible in the time series data of both

river discharge and SWE so the STA/LTA method allowed us to smooth the data into

detecting events of significance. Figure 2.2 shows that there was a significant amount

43



Chapter 2. Coherence/Event Detection of Rio Grande Flow and SWE in NM

1980 1985 1990 1995 2000 2005 2010−50

−40

−30

−20

−10

0

10

20

30

Time (year)

No
rm

al
ize

d 
La

g 
Ti

m
e 

fro
m

 A
ve

ra
ge

 Y
ea

r (
da

ys
)

Normalized Lag Time from Average Discharge Data

Student Version of MATLAB

Figure 2.9: Normalized lag time between each year’s discharge peak and the average
discharge peak. Data are from the Rio Grande Otowi gauge.

of discharge in most years, but there were a few dry years within the 30-year data

set (e.g. 1988 and 1996). The drought in 1988 was part of a drought that covered

36% of the United States and had a large effect on crop production (Riebsame et al.

2001), while the drought in 1996 covered much of Texas, New Mexico, California,

Nevada, Utah, Colorado, Oklahoma, and Kansas. The depletion of ground water

during both of these years affected the ecosystem for many years (Reuters 1996).

Figures 2.4, 2.5, 2.6, and 2.7 show the shifted yearly peaks with the average

peaks on a generic time scale, for both river discharge and snow water equivalent,
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Figure 2.10: Normalized correlation between each year’s SWE peak and the average
SWE peak. Data are from the Quemazon gauge.

respectively. The importance of the plots is the peak values in the respective units,

not the time that the peaks occurred. Due to the interannual variability of river

discharge and SWE, the peaks appear diverse, which allows a further analysis of

each peak’s correlation and time lag in relation to the average peak as seen in the

figure. Figures 2.4, 2.5, 2.6, and 2.7 also show each year’s peak shifted to the

generic time scale, which gives a nice visual representation of the variability over

time. For instance, there are several large peaks earlier in the data sets that are not

in the later part of the data sets. These results indicate a general decrease in both
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Figure 2.11: Normalized lag time between each year’s SWE peak and the average
SWE peak. Data are from the Quemazon gauge.

peak discharge and peak SWE over time.

In order to see the correlation of each year’s discharge peak with the average

discharge peak, a time series plot is created (Figure 2.8), which shows that the

correlations may have a subharmonic throughout time. There is a weak oscillation

among the 30 years that would have to be further studied before any conclusions

can be drawn. Each year’s discharge peak has a correlation of at least 0.7 with the

average discharge peak, meaning that most years are similar to each other and thus

the average year. Figure 2.9 shows the difference in time between each individual
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Figure 2.12: Normalized correlation between each year’s SWE peak and the corre-
sponding discharge peak. Data are from the Rio Grande at the Otowi Bridge gauge
(river discharge) and the Quemazon gauge (snow water equivalent).

year of discharge data with the average discharge curve. The lag times seem to

fluctuate around the zero line, with a big, distinct drop in the late 80s. In the years

that have a positive lag time, the peak in discharge is actually later than average, and

in the years that have a negative lag time (e.g., 1987, 1988, and 1989), the peak in

discharge is actually earlier than the average. Given the drought of 1988 (Riebsame

et al. 1991), the discharge that year is smaller and earlier than other years in the

data set.
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Figure 2.13: Lag times between each year’s SWE peak and the corresponding dis-
charge peak. Data are from the Rio Grande at the Otowi Bridge gauge (river dis-
charge) and the Quemazon gauge (snow water equivalent).

Figure 2.10 presents the correlation of each year’s SWE peak with the average

SWE peak, and shows that the correlations may have subharmonic throughout time

(perhaps every 8 years). There is a weak oscillation among the 30 years that would

have to be further studied to make a conclusion. Each year’s SWE peak has a

correlation of at least 0.9 with the average SWE peak, meaning that the yearly SWE

is quite consistent. Figure 2.11 shows that during the beginning of the data set, there

are positive lag times between the yearly SWE peaks and the average SWE peak, but

over time, this value switches to be primarily negative. Having a negative lag time
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Figure 2.14: Snow water equivalent correlations between each SWE year and the
average SWE year versus discharge correlations between each discharge year and the
average discharge year.

means that the SWE peaks are becoming earlier in the year. SWE peaks are being

seen earlier in the year, showing evidence for the hypothesis that water will have to be

stored for longer periods of time given this shift. If this trend continues, the biological

organisms around the Rio Grande will be forced to change their reproductive cycles

to match the river system, potentially having adverse affects while the species adapt.

Figure 2.12 shows the correlation between each winter’s SWE peak and each

spring’s discharge peak, in an attempt to see the close relationship between the two.
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Figure 2.15: Snow water equivalent lag times between each SWE year and the average
SWE year versus discharge lag times between each discharge year and the average
discharge year.

The correlations range from 0.3 to 0.9, meaning that there is a high correlation in

some years but not in all. This leads us to the conclusion that there are multiple

other factors affecting river discharge. The STA/LTA analysis also hints at this on/off

relationship, but it is apparent here. The groundwater and surface water relationship

most likely has a high effect on this system (Wang et al. 2008), in addition to other

anthropogenic forcings (Burkholder 1997).

In the same manner that the correlations between each winter’s SWE peak and
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the corresponding spring’s discharge peak are not uniformly strong, neither are the

lag times between each winter’s SWE peak and the corresponding spring’s discharge

peak. The time between the 2 peaks for each year ranges from 30 to 130 days

(Figure 2.13). In 1990, there is an unusually high lag time between the winter’s

peak in SWE and the spring’s river discharge (128 days), which could indicate a

colder-than-normal spring and in 2001 there is an unusually low lag time between

the winter’s peak in SWE and the spring’s river discharge (33 days), which could

indicate a warmer-than-normal spring.

Additionally, to see how the correlations compare among both the SWE peaks

and the river discharge peaks, Figure 2.14 compares the correlations of each SWE

year to the average SWE year versus the correlations of each river discharge year to

the average river discharge year. This figure shows that, in general, when there is a

high correlation between the SWE peak and the average SWE peak, there is also a

high correlation between the yearly discharge peak and the average discharge peak.

Although there are several years where there is a high SWE correlation with a low

discharge correlation and several years where there is a high discharge correlation

with a low SWE correlation, in general, most correlations are high for both SWE and

discharge. The years with a high SWE correlation and a low discharge correlation

(upper left hand corner of Figure 2.14) and the years with a high discharge correlation

and a low SWE correlation (lower right hand corner of Figure 2.14) give us indication

that other factors are at play in river discharge values. Rainfall and temperatures

could have played a role with these outliers. It is interesting to see that none of the

years had both a low SWE correlation and a low discharge correlation, indicating

that the overarching factors of SWE and discharge are strongly related.

A comparison of the lag times of each SWE year from the average SWE year

versus the lag times of each river discharge year from the average river discharge

year (Figure 2.15) shows that some of the years in this 30 year data set have both a
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positive SWE lag time and a positive discharge lag time, meaning that these years

have peaks later than the average year for both SWE and discharge (Quadrant I).

Just a few years have a positive SWE lag time and a negative discharge lag time,

meaning that these years have a later-than-normal SWE peak but an earlier-than-

normal discharge peak (Quadrant II). Still other years have negative lag times for

both the SWE peak and the discharge peak, meaning that these years have an earlier-

than-normal SWE peak and an earlier-than-normal discharge peak (Quadrant III).

The final grouping of data has a positive discharge lag time and a negative SWE lag

time, meaning that these years have an earlier-than-normal SWE peak and a later

than normal discharge peak (Quadrant IV).

Quadrants I and III show the same-sided correlation between SWE and river

discharge, meaning that the lag times are either both positive or both negative. If

both lag times are positive, the peaks occur after the average peak, but if both lags

are negative, the peaks occur before the average peak. With the SWE peak analysis,

it is shown that the peak occurs after the average peak in the early part of the data

set, but in recent years the peak occurs before the average peak. Quadrants II and

IV show us that there are other factors at play in the system, such as groundwater

and other anthropogenic forcings.

The analysis presented here allows us to answer several questions regarding snow-

pack and snowmelt but also raises others. It is found that the peak in snowmelt

is occurring earlier in the year and that there is generally a high correlation be-

tween SWE and discharge. Future studies will need to analyze yearly data with an

STA/LTA event detection. This will allow us to see events smaller than the annual

cycle, pulling further information out of the data being collected. From this and

other studies of the Rio Grande (e.g. Vivoni et al. 2009), proper management de-

cisions can be made. Ideally, management will focus on restoring river processes,

allowing the biological communities to naturally adjust to the system (Hanson et al.
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2004).
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Chapter 3

Effects of soil moisture and

temperature on NM

decomposition potential

3.1 Introduction

Understanding the impact of changing climate on local ecosystems is one of the most

important and challenging tasks of the 21st century. During the 100 years from 1906

to 2005, the accumulation of greenhouse gases in the atmosphere has increased global

surface temperatures between 0.56 and 0.92◦C, with concurrent changes in local

precipitation patterns including extreme weather events, which have likely changed

in frequency and or intensity (IPCC 2007). At present, the terrestrial ecosystem is

thought to be a significant sink for atmospheric carbon (C), but the future course

of this sink under rising CO2 concentrations and temperature is uncertain (Ise and

Moorcroft 2006). Therefore, the heterotrophic respiration due to the decomposition

of above- and below-ground plant detritus and thus pools of carbon should not be
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overlooked (Jones et al. 2002). Since the amount of carbon stored in soil is estimated

to be 1500 PgC (the largest pool of carbon in terrestrial ecosystems is not living

organic matter but rather plant detritus and soil organic matter), approximately

double as much as that in the atmosphere (Dungait et al. 2012, Gholz et al. 2000,

McMurtrie et al. 2001), the potential magnitude of positive carbon feedbacks is

strong. Decomposition returns nutrients to mineral forms that are needed for primary

production and also transforms plant litter into humus, improving the soil quality

and thus furthering the impact on carbon sequestration (Gholz et al. 2000, Moorhead

and Sinsabaugh 2006, Rastetter et al. 1997).

Using a modified CENTURY model to further understand how changing climate

will affect carbon cycling, specifically ecosystem respiration in the arid southwest,

we analyzed a database of soil moisture and temperature assembled from 13 sites

in the state of New Mexico (http://www.wcc.nrcs.usda.gov/, Ise and Moorhead

2006). The CENTURY model is a general model of plant-soil nutrient cycling, which

has been used to simulate carbon and nutrient dynamics for different ecosystems

including grasslands, agricultural lands, forests, and savannas in relation to climate,

environmental factors, and land use (Parton et al. 1993, Parton 1996).

The CENTURY model is composed of a soil organic matter/decomposition sub-

model, a water budget model, a forest production submodel, and management and

events scheduling functions (Chilcott et al. 2007). It computes the flow of car-

bon, nitrogen, phosphorus, and sulfur through the models compartments, and takes

into account the monthly average, maximum and minimum air temperature, monthly

precipitation, soil texture, plant nitrogen, phosphorus, and sulfur content, lignin con-

tent of plant material, atmospheric and soil nitrogen inputs, and initial soil carbon,

nitrogen, phosphorus, and sulfur contents (Bolker et al. 1998).

The soil organic matter submodel includes three soil organic model pools (active,

slow, and passive, with the decomposition term of interest being directly proportional
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to the slow/passive pool of carbon: Cslowα
∫

A(t), where Cslow is the slow/passive

pool of carbon, A is the decomposition term, and t is time). The slow/passive pool

contains chemically recalcitrant materials derived from the transformed structural

soil pool. A is the intrinsic decomposition rate for the slow/passive soil organic

carbon (SOC) pool but as in the original CENTURY model, we assume that the

environmental dependencies of the decomposition rates of all three pools are identical.

The slow and passive pools are the largest reservoirs of carbon and have the most

influence on long-term carbon sequestration in soil, since these pools function on

very long time scales (Bolker et al. 1998). The submodel also includes different

potential decomposition rates for each pool (focusing on the slow/passive pool in

this study), above and below ground litter pools, and a surface microbial pool, which

is associated with decomposing surface litter. The simplified water budget model

calculates monthly evaporation, transpiration, the water content of the soil layers,

snow water content, and saturated flow of water between soil layers, assuming that

maximum plant production rates are controlled by temperature and moisture, but

limited by nutrients if necessary (Finzi et al. 2007, Ise and Moorcraft 2006). As

in many terrestrial ecosystem models (Ise and Moorcroft 2006), the effects of soil

texture on SOC decomposition are not represented.

Temperature has a strong influence on all biological and physiochemical processes

in the soil, so effects of this variable are most studied in the framework of soil organic

matter (SOM) decomposition (Jones et al. 2002, Thongjoo et al. 2005). However,

controversial discussions within the scientific community show that the treatment

of temperature effects is still an unresolved problem (Davidson and Janssens 2006,

Neff et al. 2002). For example, Knorr et al. (2005) found higher temperature sensi-

tivity for more stable carbon fractions, indicating that increased soil decomposition

occurs at higher temperatures, thus resulting in increased carbon dioxide emissions

from soils (Eliasson et al. 2005). However, Fang et al. (2005) found no significant

differences between the temperature sensitivity of labile and more stable carbon,
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suggesting that soil decomposition is not dependent on temperature but rather the

heterogeneity of soil carbon. If the decomposition of soil labile carbon is sensitive to

temperature variation but the resistant components are not sensitive to temperature

variation, then this resistant carbon or organic matter in mineral soil is unresponsive

to climate warming (Fang et al. 2005). The activation energy for mineralization of

recalcitrant soil organic matter is greater than that of more labile material, such as

litter, fine roots, and exudates, so the passive pool in theory should have the great-

est relative temperature sensitivity, but other factors such as physical protection

and nutrient availability also influence apparent temperature responses. In addition,

some of these apparent discrepancies among studies may be related to the types of

measurements used and the length of the monitoring periods (Sierra 2012).

By definition, the temperature sensitivity of SOM decomposition is the change

in SOM decomposition rate with temperature under otherwise constant conditions

(Fang et al. 2005), but the direct estimation of the temperature response of SOM

decomposition is complicated by several compounding factors, including soil moisture

(Thongjoo et al. 2005). Soil moisture content regulates several processes involved

in the SOM decomposition such as the accessibility of substrates and nutrients for

the microorganisms, diffusion rates, and osmotic potentials (Davidson et al. 2006,

Pregitzer et al. 2008). These effects are particularly significant for aridlands because

most rainfall events are small and spatially heterogeneous (Collins et al. 2008).

Because of these pulse-like events, primary production and decomposition may not

be closely coupled on short time scales. If decomposition potential exceeds primary

production, the nutrient cycling may be more dependent on primary production than

the mineralization of stored SOM (Epstein et al. 2002). Several authors have recently

called for a greater understanding of microbial processes in belowground ecosystems

and therefore the impacts of decomposition on carbon sequestration (e.g. Jones et

al. 2002, Mansoni and Porporato 2009).
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While soil moisture is of paramount importance to the carbon cycle of arid re-

gions, such New Mexico, temporal and spatial changes in SOM quality and quantity

due to inputs of fresh litter material (quality dependent on the C:N ratio, lignin con-

tent, etc., Gallo et al. 2005) or the alteration of SOM in the course of decomposition

itself. Previous studies have shown that the attenuation and phase shift of both soil

temperature and moisture varies with depth (Bauer et al. 2008, Jones et al. 2002,

Paul 2001), again complicating the question of how soil moisture and temperature

affect belowground processes.

The most common expression for the temperature sensitivity is the Q10 equation:

λ = λ0Q
(T−Tref )/10
10 where λ0 is the decomposition rate at the reference temperature

Tref and Q10 is the factor for which the decomposition rate increases for a temperature

increment of 10K (Knorr et al. 2005, Vitousek et al. 2004). However, Ise and

Moorcraft (2006) devised a decomposition term that is directly proportional to soil

temperature and soil moisture: A = TdMd where A is the decomposition term, Td is

the function describing the effects of temperature on the decomposition rate and Md

is the function describing the effects of moisture on the decomposition rate. In the

CENTURY model, the total SOC in the grid cell is given by:

Ctotal = Cmet + Cstr + Cslow (3.1)

where Ctotal is the total SOC in the grid cell and Cmet, Cstr, and Cslow are SOC

densities in metabolic, structural, and slow/passive pools, respectively. The rates of

change of SOC in the three pools follow:

dCslow

dt
= 0.7AkstrCstr − AkslowCslow, (3.2)

dCmet

dt
= NPP (Fmet)− AkmetCmet, (3.3)

dCstr

dt
= NPP (1− Fmet)− AkstrCstr, (3.4)
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Figure 3.1: Schematic depiction of decomposition model, modified from Parton et
al. (1996) and Bolker et al. (1998). NPP is assumed to be equal to the litter input
for a steady state, long-term condition. Seventy percent of the Structural SOC pool
is gradually transformed into the Slow/passive SOC pool. Each pool has a unique
rate of decomposition.

where NPP is the total net primary productivity of the grid cell and Fmet is a fraction

by which NPP goes into the metabolic pool. The function A modifies the intrinsic

decomposition rate for each SOC pool based on the temperature and moisture con-

ditions within the grid cell, and it is assumed that there is no transfer of material

between the metabolic and slow/passive SOC pools. The amount of SOC in each

pool is assumed to reach an equilibrium with constant input and output rates, and

we solve the differential equations for an equilibrium (Figure 3.1, Parton et al. 1996).
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3.2 Methods and Materials

In this analysis, NRCS (National Resources Conservation Service) SCAN (Soil Cli-

mate Analysis Network) and SNOTEL (SNOwpack TELemetry, which also includes

soil moisture and temperature) data from the US Department of Agriculture NRCS

website (http://www.wcc.nrcs.usda.gov/) at 13 sites across the state of New Mex-

ico is used (Figure 3.2 and Table 3.1)). The daily data, including soil moisture and

soil temperature, were downloaded from 2010-2012 at depths of 2 inches, 8 inches,

and 20 inches. The soil moisture (percent) was collected by a dielectric constant

measuring device was derived from the specific soil type equation (e.g. silt, loam).

The soil temperature (degrees Celsius) were collected by an encapsulated thermis-

tor. The data were transmitted to the NRCS computer center through meteor burst

telemetry and then quality validated against limits. Values that fell outside preset

windows were flagged and then examined and edited. Both parameters were graphed

and verified to be within an acceptable range.
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Table 3.1: Collection sites of data in New Mexico, U.S.A. Measurements of soil
moisture and soil temperature were collected at 2 inch, 8 inch, and 20 inch depths.
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Figure 3.2: SCAN and SNOTEL sites of the NRCS in New Mexico, U.S.A. Daily
data from 2010-2012 at soil depths of 2 inches, 8 inches and 20 inches were collected
for soil moisture and soil temperature. Figure was created through Google Earth.
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The first step of this work was to determine the decomposition variable A from

temperature and moisture, which emphasizes the passive carbon pool and answering

to the question of using the modified Century model as the more flexible model

(Bolker et al. 1998). We defined

A = TdMd (3.5)

The term Td describes the effects of temperature on the decomposition rate as a

function of time and depth

Td(Tm) = t2t
(tda)
1 , (3.6)

where

t1 =
Tmax − Tm

Tmax − Topt
(3.7)

with Tmax = 45◦C, Tm = 30 day moving average, and Topt = 35◦C (Ise and Moorcroft

2006). Additionally,

t2 = e
( tda

tdb
(1−ttda

1 ))
(3.8)

where tda = 0.2 and tdb = 2.63 (fitted parameters per Ise and Moorcroft 2006). The

function Md describing the effects of moisture on the decomposition rate is also a

function of time and depth:

Md(PPT/PET ) =
M∗

d

M∗
dwithPPT

PET = 1
(3.9)

For New Mexico, the PPT (precipitation) is ≤ PET (potential evapotranspiration)

and is proportional to soil moisture. Furthermore,

M∗
d =

1

1 + mdae−mdb
PPT
PET

(3.10)
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with mda = 30 and mdb = 8.5 being constants via fitted parameters (per Ise and

Moorcroft 2006). When PPT = PET, the moisture conditions are considered optimal

and Md = 1, which is the reasoning behind Equation 3.9. If PPT is < PET, the

environment is dry and decomposition is moisture limited, but if PPT is > PET,

the decomposition rate declines linearly with increasing precipitation, with mda and

mdb set as constants via the original Century model (Parton et al. 1996). We

calculated the decomposition term A for New Mexico across a time, depth, and

spatial continuum. These data were then used to determine an average value for

decomposition across the state of New Mexico.

In order to see how Td, Md, and A vary as the soil temperature and moisture

vary, a range of values were put into this modified Century model (Figures 3.6 and

3.7, Ise and Moorcroft 2006). The maximum temperature for decomposition was also

included (45 C, per Ise and Moorcroft 2006). For the moisture function, PPT/PET

values from 0 to 1 were included. Equation 3.5 was then utilized to calculate the

decomposition value as a function of both temperature and moisture from values

ranging between -30 C and 50 C and PPT/PET from 0 to 1 (Figure 3.8).

3.3 Results

Time series plots of data indicate that seasonal variability as well as pulse-like pre-

cipitation events are prominent in New Mexico (example sites shown in Figure 3.3).

For instance, the soil temperature values at both the Red River Pass #2 site (silt,

9850 ft) and the Alcalde site (loam, 5693 ft) show strong seasonal variability, but the

soil temperatures also vary differently with depth. The lower elevation site, Alcalde,

shows temperatures increasing from 2 inches to 20 inches, and then to 8 inches (rang-

ing from -6 C to 35 C). However, the higher elevation site, Red River Pass #2, shows

that temperatures are warmest at 20 inches during the summers but also the coldest
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at this depth during the winters (ranging from -3 C to 14 C). The moisture plots for

these same two sites (Figure 3.3) indicate that the soil moisture at 20 inches at the

Alcalde site remains relatively constant through the year but pulse-like precipitation

events affect the soil moisture at lesser depths (characteristic of loamy soils with a

range from 1 percent to 33 percent moisture). Conversely, the soil moisture at the

Red River Pass #2 site is more affected by precipitation events throughout the soil

layers, indicating a higher permeability of the silty soil to greater depths (ranging

from 0 percent to 28 percent moisture, Figure 3.3).
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Figure 3.3: Soil moisture (%) and soil temperature (C) at depth for two sites from
2010 May 2012. Site 715 is a high elevation site (Red River Pass #2, 9850 ft) with
the predominant soil type being silt. Site 2172 is a lower elevation site (Alcalde, 5693
ft) with the predominant soil type being loam.
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Figure 3.4 shows the mean Td and Md values as well as the mean A values for the

state of New Mexico across 13 sites. The equations described in the methods section

were used to calculate the individual site values and then all sites were averaged

together over the time series to create a state-wide mean value at every given time at

every given depth. It is clear that decomposition varies as a function of temperature,

moisture, and depth. The plots suggest that the greatest amount of decomposition,

on average, occurs at shallow depths and is highly dependent on pulse-like rain

events that occur during warm temperatures. Rainfall events in New Mexico are

characteristically small, which indicates that the moisture is generally unable to

penetrate to greater depths where further decomposition could occur. Thus, the

majority of decomposition takes place in the shallow soil layers. However, it is clear

that water penetration through soil is site dependent (Figure 3.3).

Tables 3.2, 3.3, and 3.4 show the mean and maximum Td, Md, and A values

for each site across the state. These tables average the values across the time series

in order to make comparisons across the sites. The minimum value for all three

parameters at all sites is zero, meaning that the range of values for all sites goes

from 0 to the maximum value. The sites are ordered from the lowest elevation

(Crossroads site at 4055 ft) to the highest elevation (Taos Powderhorn site at 11057

ft). The site with the highest mean decomposition value at all three horizons was the

Navajo Whiskey Ck site with a mean value of 0.3764 at 2 inches, 0.3435 at 8 inches,

and 0.3852 at 20 inches. Again, this value is unitless according to the original model

(Ise and Moorcroft 2006).
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Figure 3.4: Mean Td (temperature function), Md (moisture function), and A (de-
composition) values for all 13 SCAN and SNOTEL sites across New Mexico, U.S.A.
from 2010 through May 2012. Values at 2 inch, 8 inch, and 20 inch depths are
depicted.
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Anomalous sites are of interest in this study (Figure 3.5) because they differ

from the state average in such ways that indicate site-specific variability. The Taos

Powderhorn site at 11057 feet and the Los Lunas Pmc site at 4846 feet both have

one anomalous horizon, 2 inches and 20 inches, respectively. It appears that the

decrease in decomposition in the 2-inch region at the high-elevation Taos site could

be due to cooler temperatures or other compounding factors and that the decrease

in decomposition in the 20-inch region at the Los Lunas site could be due to lesser

permeability of the soil. The Jornada Exp Range site at 4360 ft is relatively close

to the mean throughout the time series and The Navajo Whiskey Ck site at 9050

ft is relatively far from the mean throughout the time series. The Jornada Exp

Range is in the northern Chihuahuan desert and is characterized by high amounts of

solar radiation, wide diurnal ranges of temperature, low relative humidity, extremely

variable precipitation, and high potential rates of evaporation. These characteristics

are typical of New Mexico, indicating the reason for the Jornada site being close to

the state mean. On the other hand, the Navajo Whiskey site is located on the far

western side of the state in the Chuska Mountains, which characteristically receive

higher rainfall than the surrounding lowlands and also regular winter snowfall. This

higher water content affects the site to the point where there is a relatively large

deviation from the statewide mean.
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Table 3.2: Mean and maximum Td values for 13 sites across New Mexico from 2010
to May 2012 (unitless). The minimum value for all sites for Td is zero.
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Table 3.3: Mean and maximum Md values for 13 sites across New Mexico from 2010
to May 2012 (unitless). The minimum value for all sites for Md is zero.
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Table 3.4: Mean and maximum A values for 13 sites across New Mexico from 2010
to May 2012 (unitless). The minimum value for all sites for A is zero.
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Figure 3.5: Deviation from the decomposition mean at 4 of the 13 sites. Sites 1168
(Taos Powderhorn, 11057 ft) and 2169 (Los Lunas Pmc, 4846 ft) have one anomalous
depth, 2 inches and 20 inches, respectively. Site 2168 (Jornada Exp Range, 4360 ft)
is relatively close to the mean throughout the time series and site 1138 (Navajo
Whiskey Ck, 9050 ft) is relatively far from the mean throughout the time series.
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Figures 3.6, 3.7, and 3.8 depict the variability of the temperature function, the

moisture function, and the decomposition function, respectively. Per the modified

Century model for this analysis, Td increases as the soil temperature increases, up to

45 C. 45 C is set as the maximum temperature of decomposition activity through the

original model (Ise and Moorcroft 2006), which explains the non-realistic behavior

of the model at 45 C. Values greater than 45 C are irrevelant. Td is a function of

the maximum temperature, the optimal temperature, and a 30-day moving average

of the measured temperature. However, due to the mechanized model, Td does not

increase exponentially as the temperature increases. The small increase in Td as

the temperature increases is due to the mathematical nature of the original model

with the set constants for the maximum temperature, the optimal temperature,

and the fit parameters of tda and tdb. Since PPT/PET is directly proportional to

soil moisture, it is clear that Md shows a sigmoid/logarithmic growth curve as the

PPT/PET value ranges from 0 to 1. The decomposition function, A, varies as both

temperature and moisture vary, as is show in Figure 3.8. According to the results of

this model, it is apparent that both high temperatures and soil moisture are required

for decomposition to occur.
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Figure 3.6: Variability of Td (temp. function) as the soil temperature varies, per the
Century model. 45 C is the maximum temperature of decomposition activity per
the original model, meaning that values greater than 45 C are erroneous.
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Figure 3.7: Variability of Md (moisture function) as the ratio of precipitation over
potential evaporation varies from 0 to 1. The ratio of PPT/PET is proportional to
soil moisture.
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Student Version of MATLAB

Figure 3.8: Variability of A (decomposition function) with varied soil temperature
and moisture inputs. 45 C is the maximum temperature of decomposition activity
per the original Century model.
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3.4 Discussion

The feedbacks of the carbon cycle have been shown to be very important in predicting

climate change over the next century, with a potentially large positive feedback

coming from the release of carbon from soils as global temperatures increase (Gholz

et al. 2000). The magnitude of this feedback and whether or not it drives the

terrestrial carbon cycle to become a net source, rather than a net sink of carbon

during the next century depends on the response of soil respiration to temperature.

Quantifying decomposition is thus becoming increasingly important in understanding

these feedback systems. The uncertainty is large, but is becoming more understood

as questions about local systems and thus global systems are answered. The modeling

of these ecosystems has demonstrated that climate-nutrient-carbon cycles may have

a large impact on atmospheric carbon dioxide concentrations in the coming years

(Rastetter et al. 1997).

Decomposition is typically fit to models based on a synthesis of experimental data

from microcosm decomposition studies using radio-labeled substrates and consequent

fitting of data bases on the experimental results (Del Grosso et al. 2009, Li et al.

1992, Parton et al. 1993, Thornton and Rosenbloom 2005). Several models use this

idea to estimate decomposition, including the CENTURY model, the DayCENT

model, and the DNDC (DeNitrification-DeComposition) model, but these models

assume that the fitted decomposition rates are not limited by the availability of

water or mineral nitrogen (Del Grosso et al. 2009, Li et al. 1992, Parton et al.

1993). The work presented here, however, uses soil moisture and temperature to

directly calculate the decomposition rate, rather than fitting a decomposition rate

to experimental decomposition data.

As seen in Figures 3.3 - 3.5 and Appendices A-C, it is clear that the sites in

New Mexico indicate that as the temperature increases, so does the decomposition
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rate. This indicates that as global temperatures increase, soil decomposition will

also increase (although to an unknown extent) and net carbon stores in terrestrial

ecosystems could become a net source for atmospheric carbon, thus further contribut-

ing to the positive feedback system of global climate change. Seasonal variability is

expected and as more data is collected over time, these feedbacks will be quantifi-

able and further predictions can be created. In the mean time, it is important to

understand that moisture also controls soil decomposition in New Mexico, but that

soil type, water permeability, and precipitation events also control this process. The

pulse-like events continue to present challenges to the synchronization of soil decom-

position and production. The main questions answered through this work are that

decomposition does vary with time, depth, and through a spatial context. Previous

models have used average decomposition rates for sites, rather than varying decom-

position rates through time. However, shortcomings of this work include the use of

fitted parameters tda, tdb, mda, and mdb (set as constants), missing data and there-

fore erroneous values, and the use of the soil decomposition submodel without use

of the entire water budget submodel.

In comparing the thirteen sites, the results presented here indicate that the biome

plays a large role in the decomposition values across the state of New Mexico. The

sites found in the Colorado Plateau Shurb-Steppe biome had the highest values of de-

composition throughout the sites analyzed (Navajo Whiskey Creek, Palo, Red River

Pass #2, Shuree, and Taos Powderhorn at the 20 inch horizon). The sites found in

the Conifer Woodland biome had the lowest values of decomposition (Alacalde and

Sierra Blanca at the 20 inch horizon). The values calculated here for decomposition

are significantly different from current representations within terrestrial ecosystem

models (Ise and Moorcroft 2006). In particular, the temperature dependencies of

heterotrophic respiration are weaker than the current values, indicating that accel-

eration in decomposition rates that occur with increasing temperatures will likely

be less significant, meaning that temperature and moisture effects tend to converge
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over large scale comparisons of decomposition.

In comparison to the DayCENT and the DNDC models, the use of the CEN-

TURY model on a modified daily time-step is able to calculate decomposition rates

as a function of time, space, and depth, which indicates that the rate varies con-

tinuously. However, this analysis did not take into account the flux of carbon and

nitrogen between the atmosphere, vegetation and soil; and definitely has room to

improve regarding the growth of plants via nutrient availability, water, and tempera-

ture. The nutrient supply is a function of SOM decomposition and external nutrient

additions, but only temperature and moisture were analyzed here. Additionally,

daily maximum/minimum temperature and precipitation, the timing and descrip-

tions of management events, and soil texture were not included in the determination

of the decomposition rate (much like the DayCENT model, Parton et al. 1998). The

DayCENT and CENTURY models also include nitrogen dynamic in soil carbon de-

composition and consequently show a tendency for reduced heterotrophic respiration

(Bonan et al. 2002). Further questions to be answered surround the comparison of

ecosystem models, such as the CLM (Bonan et al. 2002) and the DNDC (Li et al.

1992).

3.5 Appendices

3.5.1 Appendix A

The dependence of decomposition on temperature (Td) as a function of time for 13

sites across New Mexico from 2010 through May 2012 at three distinct soil depths

(2 inches, 8 inches, and 20 inches).
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3.5.2 Appendix B

The dependence of decomposition on moisture (Md) as a function of time for 13

sites across New Mexico from 2010 through May 2012 at three distinct soil depths

(2 inches, 8 inches, and 20 inches).
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3.5.3 Appendix C

Decomposition (A) as a function of temperature and moisture for 13 sites across New

Mexico from 2010 through May 2012 at three distinct soil depths (2 inches, 8 inches,

and 20 inches).
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Chapter 4

A Quantitative Look at Science

Education

4.1 Introduction

Traditionally, there has been a gap between those who teach science at the K-12

level and those who do science. Few K-12 science teachers ever have science research

experiences in their training, yet they attempt to teach students how science works

(Druger and Allen 1998). Research scientists are the true experts in science, but

they work at universities, colleges, and research institutions and generally have little

to do with K-12 education. Several programs in recent years have tried to bridge

this disconnect with one example being The Center for Science, Mathematics and

Engineering Education at the National Research Council (the operating agency of

the National Academy of Sciences, the National Academy of Engineering, and the

Institute of Medicine). They have established Resources for Involving Scientists in

Education (RISE), with the idea to “effectively engage the scientific community in the

systemic reform of K-12 education” (Druger and Allen 1998). Beyond this national
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program, many universities have created programs to bring research scientists into K-

12 classrooms directly or through professional development. It is not always clear how

to make partnerships between teachers and scientists productive, so it is important

to carefully design programs to maximize the knowledge transfer (Drayton and Falk

2006).

In order to improve the connection between research scientists and teachers, both

ends must reach out to the other. Most often, if asked to present an occasional

lecture, or asked to do something on a short-term basis, scientists are willing to help,

so it is usually up to the teachers to ask (McKeown 2003). Long-term commitments

are harder to come by, but this is where professional development can play a key

role. Teaching teachers is ideal, allowing the knowledge to be passed along to the

classrooms (Druger and Allen 1998).

In both the research literature and in the everyday approach of teachers, it is

commonly assumed that the greatest contribution science teaching can make to so-

ciety is to spread a broad acquaintance with currently accepted concepts, theories,

and methods of problem solving. However, most teachers simply teach scientific

facts to students that are then sometimes forgotten soon after the exam. Dewey

(1910/1964) stated that “Science has been taught too much as an accumulation of

ready-made material with which students are to be made familiar, not enough as a

method of thinking, an attitude of mind, after the pattern of which mental habits

are to be transformed.” So then why is it that still today we are teaching students

to memorize facts rather than to understand the process of scientific thinking?

Teachers are told to ensure that their students can do the following: identify

questions and concepts that guide scientific investigations, design and conduct sci-

entific investigations, use technology and mathematics to improve investigations and

communications, formulate and revise scientific explanations and models using logic

and evidence, recognize and analyze alternative explanations and models, and com-
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municate and defend a scientific argument (O’Neill and Polman 2004). However,

Ma (1999) found four aspects of true knowledge in comparing Chinese students to

American students:

1. Connnectedness of material to prior knowledge and new material

2. Multiple Perspectives

3. Basic ideas that the teacher can portray to the students since the teacher knows

the most important, fundamental ideas

4. Longitudinal Coherence

To reiterate these four points, several other research studies suggest that strug-

gling (and even failing) to create and carry out empirical investigations in science

may teach students more meaningful lessons about how science is pushed forward

rather than simply executing cookbook labs or solving carefully formulated problems

(Sandoval and Reiser 2003). Because people in many walks of life (including but not

limited to careers in pure and applied science) must make decisions on which sci-

entific research and its methods have strong bearing, such practice-based scientific

knowledge should have a much more prominent place in schooling. To make this

large shift in pedagogy, a long-term investment in teacher professional development

plus student-performed research studies would be necessary (O’Neill and Polman

2004).

In addition, various researchers suggest that involving students in processes of

inquiry that include the planning of long-term, empirical research has unique and

demonstrable benefits compared with the conceptual coverage for which pre-college

science education typically strives (O’Neill and Polman 2004). They recommended

that educators encourage students to create opinions on scientific matters that may

pertain to everyday life, whether they be moral or political. Students should also be
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encouraged to have a healthy skepticism of scientific “fact.” It is only through further

questioning and hypothesizing that scientific discoveries can be made. Despite this,

it is all to easy to accept current scientific knowledge as the truth, thus decreasing the

furthering of science. Ideally, teachers should emphasize this questioning and further

investigation through the scientific process, rather than simply teaching students

memorizable facts (Tamir et al. 1998).

Typically, however, the scientific method in science classrooms is taught as dis-

crete, ordered steps meant to guide student inquiry, but research scientists do not

use the scientific method in the same manner (Tang et al. 2009). In reality, inquiry

is a complex form of human thought that has developed over thousands of years, and

it is a cultural legacy that can be employed and changed (Herrenkohl et al. 1999).

Because of this, students should not be expected to come to some understanding

of the nature of scientific thinking simply by being exposed to interesting materials

and problems. Rather, they need to learn the true scientific process from research

scientists (White and Frederiksen 1998).

In order to teach the actual scientific process, professional development must play

a large role (Jang 2008). One professional development program, for instance, was

designed to facilitate change in teachers use of inquiry-based practices in their own

classrooms (Jeanpierre et al. 2005). Scientists, teachers, and students formed a learn-

ing community, which allowed a tight-knit relationship between research scientists

and the classroom environment. A key job of this learning community was to create

plans for implementation of inquiry processes, allowing the professional development

to assure that the teachers came to understand the nature of science through actual

research experience in the field and to help them to build new and personal views

of what it meant to practice real science in their own classrooms (Jeanpierre et al.

2005).

Professional development literature emphasizes the need to give teachers ongoing
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support as they incorporate changes in their classroom, so it is important that schools

and organizations remain in contact with the teachers well after the course has been

completed (Jeanpierre et al. 2005).

Buczynski and Hansen (2010) created an Inquiry Learning Partnership for pro-

fessional development between a university, science center, and two urban school dis-

tricts to offer teachers specific science content and pedagogical techniques intended

to integrate inquiry-based instruction into classrooms. Inquiry-based teaching is

strongly recommended by the American Association for the Advancement of Science

(AAAS) and the National Research Council (NRC) as a strategy to develop deeper

student understanding of science and the ability to apply it to the everyday world

(Blanchard et al. 2008).

Studies have indicated that although students can be thoughtful in designing

investigations and in planning procedures by thinking about controls, about samples,

and about how to organize data collection, students also have trouble focusing on

the scientific importance of questions generated and systematically collecting and

analyzing data. It is for these reasons that teacher structuring and questioning are

crucial in encouraging students to be thoughtful about the various aspects of inquiry

(Krajcik et al. 1998).

Because of these recommendations, Buczynski and Hansen (2010), attempted to

design a professional development program focusing on inquiry-based teaching and

learning. From their pre/post content exams, professional development surveys, focus

groups, and assessment data, they found that teachers increased their science content

knowledge and began to incorporate inquiry-based techniques into their classrooms.

They did, however, determine several issues with their professional development pro-

gram. They discovered that resources cannot be a limiting factor, time must be

maximized, and classroom management must be addressed in the future (Buczynski

and Hansen 2010).
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Ideally, however, preservice teachers would receive the training necessary to teach

science before entering the classroom. Prospective teachers should be taught by sci-

ence educators with the ability to give them opportunities to enhance their knowl-

edge of the structure, function, and development of science. These science educators

can facilitate active participation of prospective teachers in content-specific methods

courses, allowing them to understand and appreciate the importance of scientific

knowledge (El Khalick and BouJaoude 1997).

El Khalick and BouJaoude (1997) presented an example for preservice teacher

training. These preservice teachers would be assigned scientific concepts, asked to

present them in alternate forms for different age groups, and then critiqued by the

science educators. The scientific accuracy and developmental appropriateness would

be evaluated, allowing the preservice teachers to gain as much as possible from the

course. To bring this idea to the level of more advanced scientific thinking, preservice

teachers could also do an exercise finding the complexities of scientific concepts and

common areas of confusion among first-time learners.

Understanding common misconceptions allows teachers to bridge the gaps be-

tween complex material. In finding these difficult areas of understanding, preservice

teachers can then design activities or instructional sequences that target such concep-

tions. These types of courses for preservice teachers would allow a constant interplay

between learning the conceptual side of science and designing an appropriate teaching

method (El Khalick and BouJaoude 1997).

4.2 Background

While the idea of teaching scientific practices is a hot topic, so is the idea of teaching

the nature of science and its social practices (Wong and Hodson 2008). Most teachers

have good intentions when it comes to teaching science, but all too often students
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are left feeling confused and without a solution to what they have learned. In order

to reverse this process, it is important to take a step back and to look at science

education with a critical eye (Osborne et al. 2003). There must be some level of

agreement among the standardized curriculum, allowing students to understand how

science works.

Teaching students about the nature of science is as important as developing a

knowledge of its content (Osborne et al. 2003) and teaching the nature of science

(NOS) needs to become a core rather than a secondary part of the science curriculum

according to some authors (Schwartz et al. 2004). However, teaching about the

nature of science cannot be a single, simple solution to the problem. No one method

and no one group of individuals can provide a universal solution as to what should

be the essential elements of a present day science curriculum, and it is for these

reasons that teaching about science and certainty of results means also inspecting

the reliability and validity of empirical evidence. Osborne et al. (2003) suggested

that it might be a mistake to create a curriculum in terms of a requirement to teach

the components of the nature of science separately. Rather, they suggested that

best practice teaching can be addressed through sets of well chosen case studies with

discussions of science and its nature. Since the nature of science is fundamental to

the science as a process way of learning, learning about the nature of science should

naturally arise from the classroom environment (Osborne et al. 2003).

Wong et al. (2008) presented a two hour self-directed workshop for preservice

teachers to construct mind maps on elements of NOS and scientific inquiry and it

was found that a few connections were identified (such as links between science,

technology, and society, and links between the changing nature of scientific inquiry

and newer methods of collecting evidence). They used case studies on topics such

as the severe acute respiratory syndrome as an attempt to understand the NOS, but

it appears that this topic is greater than simply studying case studies. The nature
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of science can also be studied through the scientific process and through thorough

understanding of how research scientists do their work. Again, preservice teacher

training and professional development may be the key to the understanding of the

nature of science (Osborne et al. 2003).

Despite the ideals of science teaching, there have also been several studies re-

garding science teacher confidence in the classroom. With preservice training and

professional development, it is important to determine the long-term effects of the

training procedures. Murphy et al. (2007) compared the findings from a survey of

teacher confidence in teaching science with the results of a seminal report carried out

10 years prior to the survey distribution. The survey indicated that there were still

serious concerns relating to teacher’s confidence in properly teaching science. Their

study also showed that professional development in science can be effective, but it

is important to link the teacher’s prior knowledge to the professional development

content (Murphy et al. 2007).

Despite this, research has shown that some teachers feel confident teaching con-

cepts to students, but when diagnostically tested, they share many of the same

misconceptions of their pupils (Varelas et al. 2005). Because of this, it is clear that

more professional development is needed. This could be done through local univer-

sities and organizations, or through the establishment of new regional and national

Science Learning Centers that could offer more regarding the wider dissemination of

good practice in science professional development to schools. It is clear that teachers

need the proper training to fully teach students (Murphy et al. 2007).

In order to align scientific research with classroom practices, Ford and Wargo

(2006) suggested using routines, roles and responsibilities. These three ‘R’s include

information that implicitly governs school performance and provide a way to study

what matters most for student learning about the basics of science as researchers

study science. Ideally, this would eliminate common student inquiries such as “Is
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this right? and would encourage “This supports my hypothesis.” With training such

as this and direct apprenticeship with research scientists (Richmond 1998), it is

thought that students will learn to be scientists and not simply robots that export

textbook facts.

Finally, it should be noted that the classroom is a very complex entity. The

constraints that govern the conditions necessary for bringing scientific research into

the classroom are extremely varied and cannot be controlled simply (Taylor et al.

2008). Rather, social and cultural environments, along with individual differences

between students, are among the factors that need to be understood when furthering

our understanding of good teaching and learning inside the science classroom (El

Khalick and BouJaoude 1997).

The purpose of this study is to analyze educational research data through a

quantitative analysis. By looking at the data and then working backward to find

similarities among the studies, we can see how educational research can be analyzed

and whether or not scientific practices are performed through research studies that

aren’t strictly scientific.

4.3 Methods

In order to quantify educational research into objective results, several studies are

analyzed for their similarities regarding their respective educational data. Table 4.1

shows the papers used for this analysis, along with metadata on the analysis and a

small summary of the research. All of the data collected from the papers in Table 4.1

are then converted to a 0-100 scale, normalizing the values.

To then see how the normalized, quantitative data were related, the mean, me-

dian, mode, standard deviation, minimum, and maximum are calculated for each
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data set. These values are then compared among the 10 papers described in Ta-

ble 4.1. If the original works did not present raw data, only the statistical data

presented is used in this analysis.
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Study Paper Data Summary

1 O’Neill and Polman

(2004)

The data are mean

assignment scores after

interacting with online

mentor.

This paper paired stu-

dents with scientists for a

mentoring relationship.

2 Osborne et al.

(2003)

The data are the aver-

age ratings of the impor-

tance of scientific knowl-

edge for secondary ed-

ucation, as surveyed by

scientists.

This study interviewed

research scientists to de-

termine the best prac-

tices for teaching science.

3 El Khalick and

BouJaoude (1997)

These values are the re-

sults of testing teacher

ability compared to sci-

entist ability on a web di-

agram of a concept.

This study described

the knowledge base of a

group of science teachers

in terms of their knowl-

edge of the structure,

function, and develop-

ment of their disciplines,

and their understanding

of the nature of science.
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Study Paper Data Summary

4 Jeanpierre et al.

(2005)

These values are the per-

centage increase to in-

quiry based instruction

after a professional devel-

opment course.

This paper studied the

outcome of a profes-

sional development op-

portunity that consisted

of 2 week long resident

institutes for teams con-

sisting of a secondary sci-

ence teacher and two stu-

dents.

5 Druger and Allen

(1998)

This is the percentage of

scientists surveyed that

thought K-12 science ed-

ucation is fair.

This paper surveyed re-

search scientists regard-

ing their thoughts on sci-

ence education.

6 Wong et al. (2008) These values are the per-

centage increase after a

course on the nature of

science (view points).

This paper presented the

results of interviews with

key scientists involved

in research on severe

acute respiratory syn-

drome, together with an

analysis of the case stud-

ies and aspects of nature

of science with authentic

scientific inquiry.
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Study Paper Data Summary

7 Murphy et al.

(2007)

These values are the per-

centage of teachers feel-

ing confident in teach-

ing science and devel-

oping children’s science

skills.

This paper compared the

findings of a large-scale

teacher survey on their

confidence in teaching

science.

8 Wilson et al. (2010) This is the difference

between a commonplace

test and an inquiry-based

test. The inquiry-based

group did 8 percent bet-

ter than the common-

place group.

This study analyzed the

effectiveness of inquiry-

based instruction.

9 Buczynski and

Hansen (2010)

This is the percent in-

crease from a pre-test

to a post-test after pro-

fessional development for

the teacher.

This study analyzed the

results of a professional

development program

with a university and a

science learning center.

10 Blanchard et al.

(2008)

These are the percent in-

crease from a pre-test to

a post-test after teach-

ers participated in an in-

quiry project.

This study sent teach-

ers through an inquiry

project and analyzed the

results of their expe-

rience and how they

related their new-found

skills to their classrooms.
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Study Paper Data Summary

Table 4.1: Research articles used for a quantitative anal-

ysis of educational research.

4.4 Results

In order to see the mean values of all studies, a plot is created with the studies on

the vertical axis, as identified by Table 4.1, and the mean (converted to a scale of

0-100) on the horizontal axis. The means are grouped into low, medium, and high

categories, allowing further analysis (Figure 4.1).
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Figure 4.1: Mean value for each of the 10 studies analyzed, normalized on a scale of
0-100.
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Figure 4.2: Median and mode values for each of the 10 studies analyzed, normalized
on a scale of 0-100.

The median and mode for each of the data sets are also calculated and plot-

ted (Figure 4.2). Constraints are due to data availability. If the raw data weren’t

presented, only the statistical calculations mentioned in the original paper could be

utilized.
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Figure 4.3: Standard deviation for each of the 10 studies analyzed, normalized on a
scale of 0-100.

The standard deviation for each of the data sets is also calculated and plotted

(Figure 4.3). Constraints are due to data availability. If the raw data weren’t pre-

sented, only the statistical calculations mentioned in the original paper could be

utilized.
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Figure 4.4: Maximum and minimum values for each of the 10 studies analyzed,
normalized on a scale of 0-100.

The maximum and minimum for each of the data sets are also calculated and

plotted (Figure 4.4). Constraints are due to data availability. If the raw data weren’t

presented, only the statistical calculations mentioned in the original paper could be

utilized.
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4.5 Discussion

In looking at Figure 4.1, it is clear that the ten studies analyzed fit into three distinct

categories, low, medium, and high. Studies 8, 9, and 10 fall into the low category.

Wilson et al. (2010), Buczynski and Hansen (2010), and Blanchard et al. (2008)

are the studies in this low category. In comparing them, we can see that all of

the data are percent differences between either pre- and post-tests or between two

different groups. The notability of this finding is that inquiry-based instruction and

professional development with research scientists positively benefits the students.

Studies 1, 2, 3, 5, and 6 fall into the medium category (Figure 4.1). O’Neill and

Polman (2004), Osborne et al. (2003), El Khalick and BouJaoude (1997), Druger

and Allen (1998), and Wong et al. (2008) are the studies in this medium category.

In comparing them, we can see that we have a combination of various types of

studies. Two of the studies are specific ratings, with Osborne et al. (2003) rating

the importance of scientific knowledge for secondary education and Druger and Allen

(1998) rating K-12 science education. Given how these values are collected and

averaged, it is reasonable that they fall into the medium category. A second pair of

the studies in this category are the results of assessment, with O’Neill and Polman

(2004) assessing the importance of students working with online mentors and El

Khalick and BouJaoude (1997) assessing teacher ability compared to scientist ability.

The final member of this category is the study by Wong et al. (2008) who tested

the knowledge of the nature of science following a professional development course.

Given this final study, it is more likely that this type of study would fall into the low

category with the Wilson et al. (2010), Buczynski and Hansen (2010), and Blanchard

et al. (2008) studies, due to the type of data collected. The Wong et al. (2008) study,

however, does fall on the low side of the medium category.

Studies 4 and 7 fall into the high category (Figure 4.1). Jeanpierre et al. (2005)
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and Murphy et al. (2007) are the studies in this high category. In comparing them, we

can see that the two studies are diverse as well. The Jeanpierre et al. (2005) study

analyzed the percentage increase to inquiry based instruction after a professional

development course while the Murphy et al. (2007) study analyzed the percentage

of teachers feeling confident in teaching science and developing children’s science

skills. Given the nature of these two studies, it would have been thought that the

Jeanpierre et al. (2005) study would have fallen into the low category since the data

were based on percent increase and that the Murphy et al. study would have fallen

into the medium category with the Osborne et al. (2003) and the Druger and Allen

(1998) studies since the data were based on ratings.

Given data constraints, the medians and modes could not be calculated for all

of the studies (Figure 4.2), but we can see various trends in these calculations for

the studies in which the data were available. Study 10 (Blanchard et al. 2008) has a

relatively low median and mode while study 7 (Murphy et al. 2007) has a relatively

high, and close, median and mode. In comparing these two papers, we can see

that the the two papers used different methods for collecting data but both have

similar medians and modes, respectively. In other words, both papers have similar

“middles” to their data sets with the most re-occurring values being close to the

respective middle.

Again, the data are constrained due to the original papers, but the standard de-

viations for most of the studies are quite reasonable (Figure 4.3). All of the reported

standard deviations are less than 20 except study 4 (Jeanpierre et al. 2005). This pa-

per studied the percentage increase to inquiry based instruction after a professional

development course, but with this high standard deviation, it is clear that the data

are quite spread and are not centered around the average. Jeanpierre et al. (2005)

mentioned that their study was subjective but attempted to be as objective as pos-

sible. Their data were based on surveys, field notes, and tests, but this is sometimes
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seen as an inherent problem with educational research (Jeanpierre et al. 2005).

In comparing educational research to scientific research, there are additional fac-

tors at play. How can survey data be quantified? How can field notes be quantified?

How can pre- and post-tests be strictly controlled (Jeanpierre et al. 2005)? These are

questions that are asked with educational research and it is important to understand

that this analysis alone has seen the issues arising from obtaining quantitative data

from somewhat qualitative results. Educational data cannot, due to the nature of

educational research, be as objective as scientific data (Druger and Allen 1998). It

is important to understand these differences and do the best possible analysis with

what is presented.

The minimums and maximums of the data sets (Figure 4.4) also provide some

insight into data quality. In the studies where the minimums and maximums were

available, there is an average range of 52.8 on the 0-100 scale. This information

should be taken into account with the other statistical information to come to the

conclusion regarding this educational research data. Again, the data presented here

are relatively subjective (Jeanpierre et al. 2005) and the complexities of a classroom

and educational research must be better understood.

The gap that has existed between science in the classroom and research science

has contributed to the subjectivity of educational research data (Jeanpierre et al.

2005). If there is a greater connection between the two, the need for objective

research will be presented earlier to students and later-life interests will be pursued

with greater scientific meaning. Because few K-12 science teachers have scientific

research in their training, they are unable to transfer these skills to their students

(Druger and Allen 1998). Several programs created in recent years have tried to

bridge this disconnect, and many universities have created programs to bring research

scientists into K-12 classrooms directly or through professional development.
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Dewey (1910/1964) stated that “Science has been taught too much as an accu-

mulation of ready-made material with which students are to be made familiar, not

enough as a method of thinking, an attitude of mind, after the pattern of which

mental habits are to be transformed,” and to this day, it is thought that the scien-

tific process is not adequately taught in schools, leading to a misunderstanding of

scientific data collection and analysis (O’Neill and Polman 2004).

Several research studies suggest that struggling to create and carry out scientific

investigations in class may teach students more meaningful lessons about how science

is pushed forward rather than simply executing cookbook labs or solving carefully

formulated problems (Sandoval and Reiser 2003). In reading the newspaper or mag-

azine articles, it is important for all people to understand science in a way that they

can understand a scientific article. For example, O’Neill and Polman (2004) pre-

sented the following scenario: “Imagine that you and your spouse are in the midst

of trying to conceive your first child. After 2 years of failing to conceive, you have

begun to contact fertility clinics. One Sunday the local newspaper reveals concerns

about a number of practices at fertility clinics, including the use of specific drugs.

Being personally invested in the issue, you read the newspaper article from start to

finish. Some of the accounts in the newspaper article are alarming. People have

gotten seriously ill, and even died unexpectedly while undergoing fertility treatment.

Health care providers have not always warned patients of known risks. But you,

personally, are considering some of these drugs, and you desperately want a child.

What are you to do?” Given this scenario, it is important to be able to understand

the findings of the drugs and understand the tests from a scientific standpoint. Were

the researchers objective in their studies? What errors were made in the analysis?

It’s because of a situation such as this that the scientific process must be taught in

schools. In order to teach the actual scientific process, professional development must

play a large role (Jang 2008). Professional development literature emphasizes the
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need to give teachers ongoing support as they incorporate changes in their classroom,

so it is important that schools and organizations remain in contact with the teachers

well after the course has been completed (Jeanpierre et al. 2005).

Buczynski and Hansen (2010), designed a professional development program fo-

cusing on inquiry-based teaching and learning. From their assessment data, they

found that teachers increased their science content knowledge and began to incor-

porate inquiry-based techniques into their classrooms. Inquiry-based teaching is

strongly recommended by the American Association for the Advancement of Science

and the National Research Council as a strategy to develop deeper student under-

standing of science and the ability to apply it to the everyday world (Blanchard et al.

2008).

However, if preservice teachers receive the training necessary to teach science

before entering the classroom, many of the issues described here would be elimi-

nated. Prospective teachers should be taught by science educators with the ability

to give them opportunities to enhance their knowledge of the structure, function,

and development of science. These science educators can facilitate active participa-

tion of prospective teachers in content-specific methods courses, allowing them to

understand and appreciate the importance of scientific knowledge (El Khalick and

BouJaoude 1997).

In order to align scientific research with classroom practices, it is important to

combine preservice training with professional development aided by scientific re-

searchers. There needs to be a greater connection between the scientific community

and classrooms, allowing students to learn the proper process from the beginning

(O’Neill and Polman 2004). Science is prominent in the everyday lives of most peo-

ple and it is important for all people to understand the process for decisions that

they make in their own lives.
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Future work on this analysis will be to contact the authors of the papers used

in this study directly in an attempt to increase the data set. Many of the studies

used in this analysis simply stated basic statistical values without providing data. It

would be interesting to expand upon the quantitative results in an attempt to see if

the analyses were in fact objective or if there remained a subjectivity to the studies.
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