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Controls on microbial community structure in thermal  
environments; exploring Bacterial diversity and the relative  

influence of geochemistry and geography 
 

by 
Kendra Renee Mitchell 

 
B.S., Biology, Southwest Missouri State University, 2000 

Ph.D., Biology, The University of New Mexico, 2009 
 

 
ABSTRACT 

 
 Community wide molecular surveys have revealed incredible hidden phylogenetic 

and metabolic diversity in microbial habitats.  We have conducted the first microbial 

survey of Yellowstone National Park thermal environments, sampling 103 communities 

from across the park and across the range of conditions found.  Yellowstone is 

particularly suited for this type of research because of the large number and wide variety 

of thermal springs, which are naturally occurring chemostats enabling examination of the 

factors that control microbes and drive community structure.  In addition to samples for 

molecular microbial analysis, we collected water for extensive geochemical analysis in 

order to begin to deduce the microbes’ role in situ.  With this data we investigated 

patterns and correlations among the microbial communities, environmental geochemistry, 

and theoretical energy yield from 179 reactions that could be catalyzed by microbes.  

Prior to this work it was believed that temperature was the driver of microbial diversity in 

thermal communities, we have shown that pH is the most important factor controlling 

where communities are found.  



viii  

 Through this extensive sequencing effort we have identified five major 

community types that can be described by the dominant organisms: 

Thermocrinis/Thermus, Phototrophs, Sulfurihydrogenibium, Hydrogenobaculum, and 

Proteobacteria/Bacteriodetes.  The last group has never before been noted to be an 

important community type in thermal areas.  The Proteobacteria/Bacteriodetes group is 

also interesting because it seems to thrive in the harshest conditions measured, low pH 

and high concentrations of metals.  Additionally, sequences from 15 putative candidate 

phyla were recovered from multiple springs.  The ecosystems described in this study are 

ideal for further application of ecological theory, especially community assembly 

patterns, biogeographic theory, and macroecological experiments that take advantage of 

the high diversity of habitats and short generation time of thermal communities.  This 

work establishes a baseline of the communities inhabiting the range of thermal features in 

Yellowstone which will provide a foundation for future microbial research. 

 The taxa-area relationship is regarded as one of the few laws in ecology. Although 

it has been investigated for decades in plants, animals, and insects; the taxa-area 

relationship has only begun to be examined in microbes.  We evaluated the taxa-area and 

taxa-energy relationships in bacterial diversity of terrestrial hot spring “islands” 

representing the range of environmental conditions found in Yellowstone National Park. 

There was no significant relationship between species richness and either island size or 

energy available.  Clone libraries of microbial communities under sample the diversity of 

those communities; therefore we also tested these relationships on estimated diversity. 

This study is the first to examine a large number of natural isolated microbial 
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communities, but it is still possible that more extensive sampling is needed to detect the 

relationship between richness and island size. 

 The work described here is unique in the number of microbial habitats studied, the 

intensity of the molecular sequencing effort, and the concurrent geochemical 

investigations.  It is also the broadest application of thermodynamic energetic modeling 

done to date, which has enabled us to examine microbial communities across differing 

metabolic regimes as well as across geographic space.  The combination of molecular and 

geochemical analysis of a wide variety microbial communities with energetic modeling 

of potential metabolisms forms a basis for future ecological studies of these 

environments. 
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Chapter 1 

 

Microbial ecology and the Bacteria that inhabit Yellowstone hot springs 

 

Background 

Microorganisms account for most of the evolutionary diversity on Earth.  

However, until recently knowledge of the extent of this diversity was severely limited 

because microbiologists could only study the organisms that are capable of growing in 

isolation in the laboratory. Through the now widespread use of molecular techniques, it is 

apparent that less than 1% of microbes in the environment can be cultivated using current 

techniques (Pace, 1997, Schoenborn et al., 2004).  Community wide molecular surveys 

have revealed incredible hidden phylogenetic and metabolic diversity in microbial 

habitats (Barns et al., 1994, Casamayor et al., 2002, Ferris and Ward, 1997, Ghosh et al., 

2003, Giovannoni, 2004, Hugenholtz et al., 1998a, Sogin et al., 2006).  Twenty years ago, 

just as researchers were beginning to characterize microbial communities using 

cultivation independent approaches, there were 11 recognized phyla of Bacteria (Woese, 

1987).  One of these original 11 phyla, the Gram positive bacteria, has now been split 

into 2 phyla, the Firmicutes and Actinobacteria (Boone et al., 2001).  The first decade of 

the molecular revolution expanded our knowledge of the Bacteria and increased the 

recognized phyla to 23 with an additional 13 candidate phyla (members of these phyla are 

only known through their 16S rDNA sequence) (Hugenholtz et al., 1998a).  The most 

recent paper summarizing known phyla and candidate divisions, which is already 5 years 
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old, increases the number of phyla represented by isolates in collection to 27 and 

published candidate phyla to 26 (Rappe and Giovannoni, 2003).  

Just as the phylogenetic diversity of extreme environments is largely unknown, so 

is the metabolic diversity.  Recent discoveries have included major new metabolic 

pathways.  For example two novel photosynthetic organisms, an anaerobic phototroph 

from Mono lake that uses arsenite as the electron donor (Kulp et al., 2008) and a novel 

aerobic phototroph from Octopus spring (Bryant et al., 2007) have been described in the 

past year.  These discoveries were made using two different approaches.  The arsenite 

phototroph was discovered and cultivated using traditional microbiological tools (i.e. 

scientists noticed an interesting community in the environment and from that observation 

worked to isolate the organisms responsible).  While the novel aerobic phototroph was 

first discovered through a metagenomic analysis of one of the best studied hot springs in 

the world (Ward et al., 1998), then cultivated and characterized.  A third approach that 

could be fruitful in discovering novel metabolisms is to search not for the organisms 

directly but to use thermodynamic calculations to determine which metabolisms are 

likely energy yielding in a particular environment (Amend and Shock 2001, Spear 2005, 

Meyer-Dombard 2005).  This final approach has the advantage of being very broad.  

Cultivation based discovery is limited to the organisms that are being targeted while 

metagenomic sequencing is still too expensive to be commonly used.  Results from 

thermodynamic modeling of the metabolisms in the environment can be used to guide 

culturing efforts. 
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History of microbiology in Yellowstone National Park 

The organisms that inhabit the thermal features of Yellowstone National Park 

(YNP) have been studied throughout the history of the park.  One of the earliest research 

permits was granted to W. A. Setchell to study the “algous growth” in hotsprings 

(Wondrak Biel, 2004).  Another early microbiologist in YNP was Joseph Copeland who 

examined bacteria from a large number of springs in collaboration with the park wide 

geothermal work of Allen and Day (Allen and Day 1935; Copeland 1936).  While the 

applicability of either Setchell or Copeland’s work to modern microbiology is difficult to 

discern, given the radical transformation of the known bacterial world through molecular 

techniques, their studies were an attempt to conduct a microbial survey across 

Yellowstone and are the ideological ancestors of work described in this dissertation.   

The next wave of intensive work on YNP thermophiles began in the early 1960’s.  

Thomas Brock and collaborators isolated organisms from a number of springs across the 

park and studied the ecology of those organisms in situ (summarized in (Brock 1978)).  

This work is significant not only in the application of ecological theory to the study of a 

variety of springs and organisms, but also because two of the most significant 

microbiological findings were, at least in part, based on that work.  The first is isolation 

of Sulfolobus which was one of the organisms that Carl Woese used in demonstrating the 

existence of the Archaea (Woese et al. 1978), fundamentally changing our knowledge of 

the organization of life on Earth.  The second is the isolation of Thermus aquaticus who’s 

thermostable polymerase was integral to the development of polymerase chain reaction 

which lead to the molecular revolution in microbiology, allowing microbiologists to 

access the vast microbial diversity that is not amenable to cultivation.  Richard 
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Castenholtz and co-workers also began studying the phototrophic algae and bacteria in 

hot springs in the early 1960’s; studies which continue to the present.  Castenholtz’s 

group discovered anaerobic photosynthesis, rewriting our understanding of the evolution 

of photosynthesis (Pierson and Castenholtz 1974).  It is now believed that the earliest 

forms of photosynthesis on Earth were anaerobic and only later evolved to produce 

oxygen as a byproduct (Boone et al. 2001).   

Yellowstone is currently in a period of intensive research, started in the mid 

1990’s, that has been fueled to a large degree by the advances in molecular techniques.  

Examples of the insight gained from this research include expansion of known bacterial 

lineages (Reysenbach et al. 1994; Hugenholtz et al. 1998; Hall et al. 2008), evidence of 

biogeographic differentiation of microbial species (Papke et al. 2003; Whitaker et al. 

2003), and, by combining molecular analysis of communities with geochemical analysis 

and energetic modeling, the first estimates of the relative impact of various metabolisms 

on thermal communities (Meyer-Dombard et al. 2005; Shock et al. 2005; Spear et al. 

2005).  However, only a few studies have had the goal of inventorying the diversity of 

microorganisms populating thermal areas.  Those studies that have sought to assess the 

diversity of life in the thermal features have focused on only a few springs, usually in the 

front country of the park (Meyer-Dombard et al. 2005, Barns et al., 1994, Hugenholtz et 

al., 1998b, Ward et al., 1998) or have focused only on specific lineages (Boomer et al., 

2002, Fishbain et al., 2003, Papke et al., 2003).  The work reported here was designed to 

fill that gap in the knowledge of thermophiles in YNP by sampling microbial 

communities from across the park and across the range of conditions found.  In addition 

to samples for molecular microbial analysis, we collected water for extensive 
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geochemical analysis in order to begin to deduce the microbes’ role in situ.  With this 

data we investigated patterns and correlations among the microbial communities, 

environmental geochemistry, and theoretical energy yield from 179 reactions that could 

be catalyzed by microbes.  Yellowstone is particularly suited for this type of research 

because of the large number and wide variety of thermal springs that are naturally 

occurring chemostats enabling research into the factors that control the organisms and 

drive community structure. 

Despite an ever-expanding database of newly discovered diversity, the application 

of ecological theory to microbial ecology is largely lacking (Prosser et al., 2007).  

Terrestrial thermal springs harbor ideal microbial communities for testing ecological 

theory because the diversity is low relative to soils or more temperate habitats and, owing 

to the inability of thermophiles to thrive at lower temperatures, a single thermal spring 

represents an isolated habitat.  The studies that best demonstrate that microbes can be 

biogeographically isolated have been done in thermal environments (Takacs-Vesbach et 

al., 2008, Papke et al., 2003, Whitaker et al., 2003). Given that little is known about the 

potential of thermophiles to disperse, examination of the ecological theories such as the 

taxa area relationship among thermal communities may provide clues about the dispersal 

and extinction rates of these organisms.  

Description of Study Sites 

 The thermal areas in YNP are the most varied and largest intact thermal areas in 

the world (Rodman and Maas, 2002).  There are over 12,000 thermal features in YNP.  

We collected samples from 103 representative sites across the park, sampling from every 

major thermal area. The close spatial relationship of thermal areas and features combined  
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Figure 1.1  Sampling locations of the sites examined for this study. 
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with variable geochemistry make YNP ideally suited as a natural experiment in microbial 

biogeography.  Each thermal feature is essentially it’s own ecosystem with occasional 

inputs from outside the system.  The samples collected span the range of temperature, 

pH, and geochemical conditions found in YNP (34.8-94.7°C and 1.68-9.19) 

 My dissertation research has focused on the study of thermophilic bacterial 

communities, with the goal of identifying the relative importance of geochemistry and 

geography in controlling community structure.  Using molecular techniques, I have 

explored the diversity and distribution patterns of the Bacteria inhabiting these springs.  

In order to better understand the conditions in the hot springs, I examined both the bulk 

water geochemistry and thermodynamically modeled the energy available from 

potentially microbial mediated redox reactions.  These data allowed me to address the 

following questions: 1) What is the structure of thermal microbial communities?, 2) What 

are the most significant abiotic factors controlling thermophile diversity?, 3) Does 

energetic modeling of reactions that are potentially metabolic help differentiate the 

communities?, and 4) Can established ecological theories such as taxa-area and taxa-

energy relationships be used to explain the community structure of Bacteria in thermal 

environments? 

 This study is unique in the breadth of the samples collected, therefore it was 

important to systematically determine the best techniques for sample preservation and 

DNA extraction that worked for all sample types, Chapter 2.  The bulk of the data 

generated by this project is reported in Chapter 3, with an emphasis on using this large 

dataset to tease apart the abiotic parameters and potential metabolic processes that impact 

the thermal communities.  In Chapter 4, I test the taxa-area and taxa-energy relationships 
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in these communities.  I summarize my major findings and suggest future research in 

Chapter 5. 
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Chapter 2 

 

A comparison of methods for total community DNA preservation and extraction 

from various thermal environments 

 

Kendra R. Mitchell1 and Cristina D. Takacs-Vesbach1 

1Department of Biology, University of New Mexico, Albuquerque, NM 

 

Journal of Industrial Microbiology & Biotechnology 2008 v. 35, pp.1139-1147 

 

Abstract 

 The widespread use of molecular techniques in studying microbial communities 

has greatly enhanced our understanding of microbial diversity and function in the natural 

environment and contributed to an explosion of novel commercially viable enzymes. One 

of the most promising environments for detecting novel processes, enzymes, and 

microbial diversity is hot springs.  We examined potential biases introduced by DNA 

preservation and extraction methods by comparing the quality, quantity, and diversity of 

environmental DNA samples preserved and extracted by commonly used methods.  We 

included samples from sites representing the spectrum of environmental conditions that 

are found in Yellowstone National Park thermal features.   Samples preserved in a non-

toxic sucrose lysis buffer (SLB), along with a variation of a standard DNA extraction 

method using CTAB resulted in higher quality and quantity DNA than the other 

preservation and extraction methods tested here.  Richness determined using DGGE 
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revealed that there was some variation within replicates of a sample, but no statistical 

difference among the methods.  However, the sucrose lysis buffer preserved samples 

extracted by the CTAB method were 15-43% more diverse than the other treatments.  

Keywords: DGGE, DNA extraction, environmental microbiology, thermophile 
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Introduction 

The impact of molecular studies on our knowledge of microbial diversity cannot 

be overstated.  As a consequence, the entire field of environmental microbiology, from 

basic ecological research into the organization of microbial communities to 

bioprospecting for commercially relevant enzymes has changed.  Even with recent 

advances in culturing efforts (Schoenborn et al., 2004, Hobel et al., 2004), the majority of 

microbes in the environment still cannot be cultivated in the laboratory (Pace, 1997).  

However, inability to maintain an organism in culture is no longer a major impediment to 

accessing its genetic diversity.  Metagenomic studies similar to those that have been 

useful in exploring the diversity of uncultivated organisms have also been used to mine 

for enzymatic diversity (Kowalchuk et al., 2007).   The biotechnology applications that 

are currently targeting microbial metagenomic studies range from the search for new 

antibiotics to environmentally sound biocatalysts such as amylases (Lorenz and Eck, 

2005, Pontes et al., 2007). 

Thermal environments have been a particularly rich source of unique organisms 

(Hugenholtz et al., 1998, Barns et al., 1994, Ghosh et al., 2003, Harris et al., 2004, 

Takacs-Vesbach et al., 2008), processes (Bryant et al., 2007), novel enzymes (Hobel et 

al., 2004, Schoenfeld et al., 2008), and on-going research into the origin and diversity of 

microbes.    Fundamental to any of these studies is maximizing the detectable diversity by 

optimizing the quality and quantity of DNA examined and minimizing the biases of the 

methods.  There are layers of potential bias in molecular studies because of the sequential 

nature of the process, including those inherent in PCR (von Wintzingerode et al., 1997) 

which have been well studied and will not be addressed in this paper.  The first potential 
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source of bias in the molecular study of environmental samples is determined by the 

method used to preserve the biomass. Cultivation based studies have shown that the 

groups of organisms that can be cultured from samples change drastically if the sample is 

not adequately preserved (Haldeman et al., 1994).  However, the impact of sample 

preservation on molecular diversity surveys is rarely examined in the literature (except 

see (Harry et al., 2000)). 

Another possible source of bias includes DNA extraction methods and post-

extraction purification. The effect of DNA extraction method on detectable diversity has 

been examined in soil (Frostegard et al., 1999, Gabor et al., 2003), marine sediments 

(Luna et al., 2006), compost (LaMontagne et al., 2002, Yang et al., 2007), and volcanic 

environments (Herrera and Cockell, 2007). The results of these studies are mixed; certain 

methods are more effective for a particular type of sample than others.  Additionally, no 

reports have examined the impact that the range of environmental pH extremes may have 

on extraction efficiency, which is of particular importance for thermal samples since they 

can come from springs on either end of the pH spectrum. While there are plenty of 

studies that examine effectiveness of extraction method on a particular type of sample, 

we aim to determine the method that is best for a wide variety of sample types. 

Here we evaluated sample preservation and DNA extraction methods, to identify 

a procedure that results in high molecular weight DNA that is relatively free from 

contaminants and maximizes detectable diversity. We compared three preservation and 

four nucleic acid extraction methods.  The ideal preservation and extraction method 

would work well with a variety of samples that included high and low biomass, a wide 

range of pH, as well as different sample types including microbial mats, filamentous 
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biofilms, and sediments.  Additionally, this method should be quick to accommodate high 

throughput of large sample numbers and facilitate sample collection from the remote 

backcountry where liquid nitrogen and dry ice are not practical.  We included samples 

from the whole spectrum of environmental conditions that are found in Yellowstone 

National Park, USA (YNP) thermal features and our results are applicable to future 

studies in YNP, other extreme environments, and microbial surveys in general. 

Methods and Materials 

 Site description and sampling 

      Samples were collected from thermal features throughout YNP during the 

summer of 2002.  A subset of fifteen samples was selected for this study that 

encompassed the full range of pH, temperature, and biomass types found in the park 

(YNP sample n=15, see Table 2.1).  The pH and temperature of the samples were split 

into three ranges, low (pH 0 to 4, temperature 40 to 60 degrees Celsius), mid (pH 4.01 to 

8, temperature 60.1 to 80), and high (pH above 8.01, temperature above 80.1). The 

samples were also categorized by the type of biomass collected: microbial mat, filaments, 

or sediment.  Microbial mat samples are expected to be the highest biomass, for example, 

mats may contain up to 6.1 x 108cells cm-3 and are also high in pigments and extracellular 

proteins and polysaccharides (Brock, 1978).  Filament samples represent an intermediate 

amount of biomass (maximum cell density in culture 4.6 x 107 cells ml-1 (Nakagawa et 

al., 2005)) and are generally non-pigmented.  The sediment samples are expected to be 

the lowest biomass (2.1-3.6 x 106cells cm-3 (Meyer-Dombard et al., 2005)) and the 

highest clay content and heavy metal concentration (Allen and Day, 1935).  Additionally, 

we collected samples from two neutral thermal springs in the Jemez Mountains, New  



15 
 

Table 2.1 Sample site, description and environmental parameters. 

Sample ID Sample Area1 pH T 
(C°) Sample description Northing2   Easting2 

007-L YNP Lower GB 7.54 79.9 black powder sediment 4932385 517103 

010-L YNP Lower GB 3.55 90.6 gray clay-like sediment 4933099 515316 

022-L YNP Lower GB 6.89 85.9 black powder sediment 4933820 513269 

045-L YNP Lower GB 2.68 42.4 
brown foam, water, and 
sediment 4934500 513403 

048-L YNP Lower GB 3.39 48.8 grey mud sediment 4934417 513990 

058-L YNP Lower GB 2.96 61.4 
yellow and tan powder 
sediment 4953191 522871 

066-MV YNP Mud Volcano 6.41 67.4 
orange mat and black 
filaments 4939784 544533 

072-CH YNP Crater Hills 5.47 55.6 yellow powder sediment 4952741 523490 

088-L YNP Lower GB 8.46 52.8 orange and green mat 4935485 515973 

126-MM YNP Mary Mountain 6.58 79.8 grey powder sediment 4940597 532861 

131-LS YNP Lone Star GB 4.24 43.9 yellow filaments 4916381 514106 

139-LS YNP Lone Star GB 2.49 54.8 green mat and gray sediment 4919322 515169 

171-S YNP Shoshone GB 8.63 68.7 orange and green mat 4911109 515791 

184-S YNP Shoshone GB 8.92 77.3 tan filament 4911522 515932 

190-S YNP Shoshone GB 9.08 44.5 layered orange mat 4911267 515925 

BH Jemez Bath House 7.15 76.0 yellow filaments 3959977 347240 

GS 
Jemez Giggling Star 
Resort 6.45 53.4 green mat 3959468 347235 

 

1Geyser Basin is abbreviated GB.  2Northing and Easting are given in UTM, grid 12N for 

YNP, 13N for Jemez Springs, NM, datum NAD83 
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Mexico.  Samples (1-2.5 ml) were collected at each site with either sterile forceps or a 

syringe.   

Sample preservation 

Two replicate YNP samples were collected from each sampling site: one was preserved 

in an equal volume of sucrose lysis buffer (SLB) (20 mM EDTA, 200 mM  NaCl, 0.75 M 

sucrose, 50 mM Tris-HCl, pH 9.0) (Giovannoni et al., 1990) and the other replicate was 

preserved in an equal volume of GIT (5 M guanidine isothiocyanate, 50 mM Tris pH 7.4, 

25 mM EDTA pH 8, 0.8% 2-mercaptoethanol)(Cary et al., 1993).  The YNP samples 

were held at ambient air temperature (10 to 26 ºC) for up to five days before they were 

stored at –80 degrees Celsius.   

 The two Jemez Springs, New Mexico samples were collected from neutral 

thermal springs located at the Jemez Springs Bath House (BH) and Giggling Star Resort 

(GS).  Three replicate samples were collected.  Two of the replicates were preserved in 

SLB, one of these replicates was frozen immediately in liquid nitrogen and the other was 

held at 20°C for 7 days before being frozen at –80°C.  The third replicate sample was 

collected and mixed with molten 2% agarose while in the field for extraction the noodle 

method (see below).  

Extraction methods 

 We used four extraction methods: lysis by pulse boil, a CTAB 

(hexadecyltrimethylammonium) extraction, high molecular weight DNA agarose noodle 

(Stein et al., 1996), and the Mo Bio Soil DNA Purification kit, which combined with the 

preservation methods results in six treatments.  With the pulse boil method, nucleic acids 

were extracted from 200 µl of the YNP and Jemez samples that were preserved in 
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SLB (referred to here as “Boil”) (Reysenbach et al., 2000).   Briefly: the samples were 

boiled at 96°C then cooled to 4°C three times in a thermocycler, sodium dodecyl sulphate 

(SDS) (to a final concentration of 2%) and proteinase K (final concentration 250 µg ml-1) 

were added and the sample was incubated at 42°C for 2.5 h, then incubated at 60°C for 

30 min, extracted once with phenol/chloroform then twice with chloroform, finally the 

DNA was precipitated and washed with ethanol.   

We extracted nucleic acids from 200 µl of the YNP and Jemez SLB preserved 

samples using a variation of the CTAB method (referred to as CTAB S) (Zhou et al., 

1996).  Briefly: 2 volumes of 1% CTAB buffer (1% CTAB, 0.75 M NaCl, 50 mM Tris 

pH 8, 10 mM EDTA) and proteinase K (final concentration 100 µg ml-1) were added to 

the SLB preserved samples; incubated for one hour at 60°C, SDS (final concentration 

2%) was added and incubated one hour at 60°C, extracted once with phenol/chloroform 

then twice with chloroform, finally the DNA was precipitated with ethanol.  The YNP 

samples that were preserved in GIT (referred to as CTAB G) were also extracted using 

the CTAB method with the modification of washing the sample three times with filter 

sterilized water before the addition of CTAB to remove the GIT from the sample.  GIT is 

a protein denaturant and inhibits proteinase K activity if not removed. 

SLB (Mo Bio S) and GIT (Mo Bio G) preserved YNP samples were extracted 

using the Mo Bio Soil DNA purification kit following manufacture’s suggested protocol 

(Mo Bio Laboratories, Inc., Solana Beach, CA). 

Nucleic acids were extracted from YNP SLB preserved samples and all Jemez 

samples using the high molecular weight noodle extraction  method (Noodle) (Stein et 

al., 1996).  Briefly:  the sample was mixed with molten 2% agarose and cooled in 1 mL 



18 
 

syringes forming agarose noodles, the noodles were incubated for 3 h at 37°C in a lysis 

buffer (10 mM Tris, 50 mM NaCl, 50 mM EDTA, 0.2% SDS,  1% Sarkosyl, 1mg/ml 

lysozyme) then incubated at 37°C in ESP buffer (1% Sarkosyl, 0.1 M EDTA, 1 mg/ml 

proteinase K), the ESP buffer was changed once a day for a total of four days, the 

noodles were then stored at 4°C in TE storage buffer (10 mM Tris and 50 mM EDTA).  

The purified nucleic acids were extracted from the agarose noodles by incubating at 60°C 

to melt the agarose then adding agarase and incubating overnight at 37°C.  The nucleic 

acids were purified from the agarose/agarase slurry by extracting once with 

phenol/chloroform then twice with chloroform.  The nucleic acids were precipitated with 

ethanol.  

 Measuring extraction success 

 Environmental DNAs were electrophoresed on an ethidium bromide stained 1.2% 

agarose gel.  The size and quality (evidence of shearing etc.) of the DNA was evaluated 

using a size standard DNA ladder (EZ Load 1Kb, BioRad Laboratories).  

The purity of the extracted DNA was quantified by calculating the ratio of the 

absorbance at 260 nm and 280 nm (A260/A280).  Nucleic acids extracted from 

environmental samples are often contaminated with humic organic carbons, metals, and 

other compounds which cause the DNA concentration calculated from 260nm absorbance 

to be unreliable.  To circumvent this problem, we also quantified the DNA using 

PicoGreen dsDNA Quantitation Reagent (Molecular Probes, Inc., Eugene, OR, USA). 

Extracted DNA (5 µl) was mixed with a 1:200 solution of PicoGreen in 1X tris-acetate 

buffer (TAE) and absorbance was read in a fluorometer.  
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 The third parameter that was qualified was the ability to amplify 16S rRNA gene 

from the environmental genome of each extraction replicate.  Dilutions of the genomic 

DNA were used as template. The reaction included (1X Promega buffer with 1.5 mM 

MgCl2, bovine serum albumin (0.04 % final), 2.5 U Taq DNA polymerase (Promega 

U.S.) 2.5% Igepal CA-630 (Sigma-Aldrich), 10 µM each dATP, dGTP, dCTP, dTTP 

(BioLine USA, Inc.), 20 µM Bacterial specific primers (Lane, 1991) 338FGC 

(CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCTCCTACGGGAGGC

AGCAG) and 519R (ATTACCGCGGCTGCTGG)). The PCR reaction (50 µl) was 

incubated in a thermocycler (ABI GeneAmp 2700) for 5 min at 94.0°C then for 30 cycles 

of 30 s at 94.0°C, 30 s at 50.0°C and 30 seconds at 72.0°C.  The reaction was incubated 

at 72.0°C for 7 min for final extension.  

Richness 

Differences in relative species richness among the preservation and extraction 

methods were determined using denaturing gradient gel electrophoresis (DGGE). Ten µl 

of PCR product (approximately 500 ng) was run on a 6% (wt/vol) acrylamide gel with 

1X TAE (40 mM Tris, 20 mM acetate, and 1mM EDTA) with a denaturing gradient of 

20% (8% (vol/vol) formamide and 8.4% (wt/vol) urea) to 60% (24% formamide and 

25.2% urea).  The gels were run in a BioRad DCode Universal Mutation Detection 

System (BioRad Laboratories, Hercules, CA) at 180V for 3.5 h.  The gels were stained in 

1X TAE containing SybrGreen (100 µl L-1) for 30 min then destained in 1X TAE for 15 

min.  The gels were photographed under UV light and DGGE bands were identified and 

analyzed using Kodak 1D software.  For our analyses, only bands with a minimum 

intensity of 72% were recognized (program default).  Bands were distinguished based on 
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migration distance within each gel, as determined by the software using the DGGE 

product from Escherichia coli as a standard (Fromin et al., 2002).  Although re-

amplification and sequencing of individual DGGE bands can be particularly important in 

resolving heteroduplex fragments, we did not sequence the bands we detected in this 

study because we were interested in detecting the greatest number of bands possible.  The 

effectiveness of methods within each sample was calculated by dividing the number of 

bands detected within a treatment by the total number of unique bands found within a 

sample.  This calculation of relative species richness was computed for samples where at 

least 2 of the treatments resulted in successful amplification (YNP samples n=12). 

 Statistical analysis  

Statistical analyses were performed using Minitab software version 13 and SPSS 

11 (for Mac OS X).  The purity of the DNA among treatments was compared using the 

absolute value that resulted from subtracting the A260/A280 from 1.8, the A260/A280 of pure 

DNA (Sambrook et al., 1989).   Univariate ANOVA was used to detect statistical 

differences in the quantity and purity of the DNA and relative species richness 

(dependent variables) among the treatments and by pH, temperature, and biomass type 

(fixed factors).  For analysis of the DGGE bands, only samples where at least 2 of the 

treatments amplified were included, otherwise a statistical comparison would not be 

possible.  The Bonferroni test (which is more powerful for small sample sizes than 

Tukey’s test) was performed to identify treatments that were significantly different.  

Rarefaction curves were calculated in EstimateS version 8.0.0. 



21 
 

 

RESULTS  

Sample preservation 

 We extracted more DNA from the samples preserved in SLB than from the GIT 

replicates (paired t-test p=0.01).  The extracted DNAs were quantified using the 

PicoGreen reagent.  Using our protocol, the PicoGreen assay has a dsDNA detection limit 

of 500 pg/ml. We also compared the amount of DNA recovered from the Jemez samples 

that were frozen or mixed with agarose in the field with those that were held at ambient 

temperature; there was no statistical difference between the two replicates (paired t-test 

α=0.05).   Even when samples cannot be frozen immediately, the DNA is adequately 

preserved in SLB. 

 There was no significant difference among the preservation methods in the 

richness we detected (paired t-test α=0.05).  However, the 16S rRNA gene from the 

samples that were preserved in SLB were amplified by PCR more successfully; 80.5% of 

SLB preserved samples PCR amplified compared to just 50% of the GIT preserved 

samples. 

DNA extraction 

The CTAB extraction on SLB preserved samples resulted in the greatest yield of 

DNA.  The results of the quantification are displayed in Fig. 2.1a.  ANOVA showed a 

statistically significant difference in DNA yield among the extraction methods (p<0.001).  

Post-hoc multiple comparison analysis indicates that the CTAB S extracted samples 

resulted in the highest quantity of DNA. 
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DNA purity, as measured by A260/A280 ratio, was greatest in samples extracted 

using the Mo Bio extraction kits, however the kit results in less DNA and smaller 

fragments (presumably from shearing and the filter column used in the kit (Braid et al., 

1999)) (Fig. 2.1b).  There was no significant difference in the purity of the DNA 

extracted with the Boil, CTAB S, or CTAB G methods (ANOVA α=0.05).  The Noodle 

method did not result in sufficient DNA quantity to obtain reliable absorbance data, 

therefore it was not included in the DNA purity comparison.   Most of the amplification 

success we observed was in sample extracted with either the CTAB method (89% 

amplified) or the Mo Bio kit (95% amplified) (ANOVA and Bonferroni test p<0.001).   

The sequence diversity detected by DGGE, number of bands, varied within the 

replicates of the samples (Fig. 2.2). The only statistically significant difference we 

detected was between the CTAB S and the noodle method (p = 0.014).   However, CTAB 

S resulted in 15% to 43% more bands than the other treatments (Fig, 2.3). There were no 

differences at the fixed effects level (pH, temperature, or biomass type), nor were any 

interactions (e.g., pH X method) among the factors detected.  This suggests that CTAB S 

is appropriate for a wide range of sample types. 

DISCUSSION   

Sample preservation 

SLB preserved our extreme environment samples better than the GIT solution. 

This was likely due to more effective lysing, as the SLB initiates the lysis process while 

the sample is being stored.  Additionally, the alkaline SLB raised the pH within the 

sample vials, potentially slowing the degradation of the DNA in low pH samples.  

Raising the pH of acidic samples is likely to have two positive impacts on preserving the  
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Fig. 2.1  a) Mean DNA concentration as measured using PicoGreen assay for each 

preservation and extraction method with 95% confidence intervals, outliers are filled 

circles.  b) Mean DNA purity  with 95% confidence interval and outliers.  Pure DNA has 

a A260/A280 ratio of 1.8, shown as the gray bar.  The concentrations of the DNAs from the 

Noodle extractions were not high enough to be detected by the florometer. 
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Fig. 2.2  Example DGGE of PCR products on 6% acrylamide gel with 20%-60% 

urea/formamide denaturing gradient, stained with SybrGreen [Treatments: a) Boil; b) 

CTAB S; c) CTAB G; d) Mo Bio S; e) Mo Bio G; f) Noodle]. 
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Fig. 2.3 a) Rarefaction curves of DGGE bands detected with each extraction method.  

The 95% confidence interval for the diversity of all samples and extraction methods 

combined is in gray to demonstrate that there was no significant difference in diversity 

detected by each method.  b)  Mean diversity detected as number of DGGE bands with 

95% confidence intervals, outliers are filled circles. 
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DNA in those samples.  First, DNA degrades in acidic solutions due to depurination 

(Garrett and Grisham, 1995), raising the pH of the solution reduces the rate of this 

reaction.  Second, DNA binding to clay minerals increases as the pH decreases (Khanna 

and Stotzky, 1992).  Even when samples could not be frozen immediately, the DNA is 

adequately preserved in SLB. This result is especially important because of restrictions 

on carrying and shipping dry ice and for samples that are collected from remote areas 

where it is logistically very difficult to freeze samples immediately and maintain them 

frozen. The non-toxic nature of SLB may be an additional attraction for field 

microbiologists, and for those shipping samples either commercially or hand carrying on 

airplanes.  Although this study did not assess the relative effectiveness of the  

different methods in extracting RNA, we have successfully produced cDNA from 

samples preserved in SLB using reverse transcriptase PCR (unpublished data). 

Previous studies have suggested that the Noodle method, for very high molecular 

weight DNA (Stein et al., 1996), and storage in absolute ethanol, for samples where 

immediate freezing is not possible (Harry et al., 2000),  adequately preserve DNA.  

However, based on the results from this study, the noodle preservation method does not 

work well with the samples we collect which often have low biomass in a dense 

extracellular matrix. In many samples, the concentration of DNA recovered using the 

Noodle method was an order of magnitude less than recovered using the CTAB protocol.  

Similarly, we did not test ethanol preservation because the ethanol must be nearly 

absolute to prevent DNA degradation (Frantzen et al., 1998, Mandrioli et al., 2006) which 

would not be possible for samples that contain significant amounts of water.  Therefore, 
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we do not think that either the Noodle method or absolute ethanol preservation are 

appropriate for thermal environmental samples.  

DNA extraction efficiency and purity 

 When considering preservation alone, among the techniques we tested, SLB with 

or without freezing preserved environmental DNA best.  However, we also were 

interested in the effect of extraction method on the amount and quality of extracted DNA 

and detectable diversity. Extracting pure DNA from environmental samples is nearly as 

important as extraction efficiency and is one of the most difficult technical problems in 

using molecular techniques on environmental samples.  Most DNA extraction procedures 

co-extract humic organic carbon, pigments, heavy metals, and other contaminants.  These 

contaminants play havoc with PCR reactions and can degrade the DNA during storage.  

We found that CTAB extraction combined with SLB preserved samples resulted in the 

most DNA.  The greater efficiency of the CTAB extraction method has previously been 

found in several environments, marine sediments (Luna et al., 2006), basalt rock (Herrera 

and Cockell, 2007), and by one of us in caterpillar intestinal tracts and filtered water 

(unpublished data) indicating that this method is effective on a wide range of sample 

types.  An extraction comparison on compost microbial communities found no difference 

in the amount of DNA recovered by the CTAB method, but it resulted in the highest 

percentage of cells lysed (Yang et al., 2007).   It is likely that the combination of 

proteinase K and hot SDS lyses more cells, including cell types more resistant to lysis 

(e.g., gram-positive bacteria)(More et al., 1994).  We found two exceptions where larger 

quantities of DNA were not recovered by the CTAB method. The PicoGreen analysis on 

two samples, 066-MV and 139-LS, indicates that more DNA was extracted using the Mo 
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Bio kit than was extracted with the Boil and CTAB methods. The Boil and CTAB 

extracted DNA from these two samples was dark brown, which was most likely caused 

by pigments that were co-extracted with the DNA.  The Mo Bio kit, which produced 

clear DNA extracts, was effective at removing these organics because it is the only 

method that incorporated a post-extraction purification (Braid et al., 1999). Work on 

basalt rock samples found that only Mo Bio extracted DNA could be amplified (Herrera 

and Cockell, 2007), which is contrary to our results.  We suspect that the co-extracted 

pigments interfered with PicoGreen fluorescence, but both of these samples were 

successfully amplified with all of the extraction methods.  The co-extracted pigments 

from the Boil and CTAB methods do not appear to inhibit the PCR reaction. It should be 

noted that some of the samples with no detectable DNA, as determined using the 

PicoGreen fluorometer quantification, still had enough DNA to amplify with PCR 

(theoretical detection limit for PCR amplification < 1 pg/ml(Steffan and Atlas, 1998)). 

Richness 

Although the CTAB S treatments consistently had more bands than any of the 

other methods (15-43%), the only statistical difference detected was between the CTAB 

S and the noodle extraction method.   We also tested for fixed effects such as pH, 

temperature, and biomass type, but did not detect any statistical differences.  However, 

there were three samples that we were unable to amplify using two or more of the 

extraction treatments, those samples could not be included in the richness analyses.  It is 

interesting to note that all three of these samples were sediments from low pH systems 

(<pH 3.5), indicating that there may be a sample type or geochemistry effect on 

extraction efficiency or amplification success. This result could have been due to 
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inefficient extraction of DNA, co-extraction of PCR inhibitors, or too little target DNA in 

the original sample (i.e. if the community was dominated by Archaea to the exclusion of 

Bacteria).  For those types of extremely recalcitrant samples, it may be necessary to crush 

the sample using a sterile mortar before the enzymatic lysis step (Herrera and Cockell, 

2007).   However, CTAB worked on a majority of the samples and we suggest it should 

be used as a good general extraction method.  If unsuccessful, alternate approaches 

should be used that may more effectively lyse the biomass or better remove humics. 

 There are many methods for assessing microbial community richness, generally 

based on the 16S rRNA gene, such as clone libraries, DGGE, and T-RFLP (terminal 

restriction fragment length polymorphisms).  These analyses have greatly increased our 

understanding of microbial ecology and revealed novel enzymes. DGGE is an attractive 

method for microbial ecology studies because of the relatively rapid ease with which a 

community profile can be generated.  DGGE can resolve minor base differences among 

samples; therefore, distinct bands may represent sequences that differ by less than 1% 

(Moeseneder et al., 1999).  Depending on the nature of the study being performed, 1% 

may or may not be significant to the research question.  Conversely, we are aware that 

individual bands could be heteroduplexes (Speksnijder et al., 2001, Ferris and Ward, 

1997), comprised of several different sequences, however, because our methods were 

standardized across samples, this effect does not figure in our conclusions.  We repeated 

the PCR amplification and DGGE for selected samples to ensure reproducibility in the 

number of bands detected (data not shown, but available on request). 

It is standard practice that investigators informally evaluate methods to determine 

which are appropriate for their study.  However, few of these studies have been published 
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(Gabor et al., 2003) and often, statistical analyses are not used to determine the most 

appropriate methods (Fromin et al., 2002, Herrera and Cockell, 2007).  Additionally, 

other published studies did not evaluate the effect of extraction method on the diversity 

detected, only the quantity of DNA (Miller et al., 1999, Leuko et al., 2008).  This study 

presents a framework for the systematic comparison and evaluation of methods by 

statistical analysis.  The current interest in the organisms that inhabit extreme 

environments makes this study, which used samples from a wide variety of thermal 

environments, of importance to thermal biology researchers, and applicable to other 

microbial studies in general. 
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Abstract 

 Molecular surveys have revealed hidden phylogenetic and metabolic diversity in 

many microbial habitats, indicating that much still remains to be discovered.  We have 

conducted a microbial survey of Yellowstone thermal environments, sampling 103 

communities representing the full range of areas and conditions found in the park.  In 

addition we also collected water for geochemical analysis in order to begin to deduce the 

microbes’ role in situ.  Prior to this work it was believed that temperature was the driver 

of microbial diversity in thermal communities; we have shown that pH is the most 

important factor controlling thermophile distribution.  Additionally, sequences from 15 

candidate phyla were discovered from multiple springs.  With this data we investigated 

patterns and correlations among the microbial communities, environmental geochemistry, 

and theoretical energy yield from 179 reactions that could be catalyzed by microbes.  

Five major groupings of community types were found through MRPP analysis that can be 

described by the dominant organisms; Thermocrinis/Thermus, phototrophs, 
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Sulfurihydrogenibium, Hydrogenobaculum, and Proteobacteria/Bacteriodetes.  The last 

group has not previously been noted to be an important community type in thermal areas.  

The Proteobacteria/Bacteriodetes group is also interesting because it seems to thrive in 

the harshest conditions measured, low pH and high concentrations of metals.  The 

ecosystems described in this study are ideal for further application of ecological theory, 

especially community assembly patterns, biogeographic theory, and macroecological 

experiments that take advantage of the high diversity of habitats and short generation 

time of thermal communities. 
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Introduction 

 Microorganisms account for most of the evolutionary diversity on Earth.  

However, until recently, knowledge of the extent of this diversity was limited to the 

organisms that are capable of growing in isolation in the laboratory. Through the now 

widespread use of molecular techniques, it is apparent that less than 1% of microbes in 

the environment can be cultivated using current techniques (Pace 1997; Schoenborn et al. 

2004).  Community wide molecular surveys have revealed hidden phylogenetic and 

metabolic diversity in microbial habitats (Barns et al. 1994; Ferris and Ward 1997; 

Hugenholtz et al. 1998a; Casamayor et al. 2002; Ghosh et al. 2003; Giovannoni 2004; 

Sogin et al. 2006).  The known diversity of microbes has significantly expanded in the 

past 20 years.  In 1987, there were 11 described phyla of Bacteria (Woese 1987) while 

today 52 phyla have been described and 26 of those are only known through gene surveys 

(Rappe and Giovannoni 2003).  The diversity of the microbial world is one of the great 

unknowns left to be explored on Earth. 

Just as the phylogenetic diversity of extreme environments is largely unknown, so 

is the metabolic diversity.  Recent discoveries include two novel organisms, an anaerobic 

phototroph from Mono Lake that uses arsenite as the electron donor (Kulp et al. 2008) 

and an aerobic phototroph from Octopus spring (Bryant et al. 2007).  The arsenite 

phototroph was discovered and cultivated using traditional microbiological tools. 

Scientists noticed an interesting community in the environment and from that observation 

worked to isolate the organisms responsible.  The novel aerobic phototroph was first 

discovered through metagenomic analysis from one of the most extensively studied hot 

springs in the world (Ward et al. 1998), then cultivated and characterized.  A third 
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approach that may be fruitful in discovering novel metabolisms is to search not for the 

organisms directly but to use thermodynamic calculations to determine which metabolic 

reactions yield useful energy in a particular environment (Amend and Shock 2001, Spear 

2005, Meyer-Dombard 2005).  This approach is applicable to many habitats. Cultivation 

based discovery is limited to the organisms that are being targeted while metagenomic 

sequencing is still too expensive to be commonly used.  Results from thermodynamic 

modeling of the metabolisms in the environment can then be used to guide culturing 

efforts. 

The organisms that inhabit the thermal features of Yellowstone National Park 

(YNP) have been studied throughout the history of the park (Wondrak Biel 2004).  

Previous surveys have focused on only a few springs, usually in the front country of the 

park (Barns et al. 1994; Hugenholtz et al. 1998b; Ward et al. 1998) or have focused only 

on specific lineages (Boomer et al. 2002; Fishbain et al. 2003; Papke et al. 2003).  The 

work reported here was designed to form a baseline inventory of thermophiles in YNP by 

sampling microbial communities from across the park.  In order to begin to deduce the 

microbes’ role in situ, we collected water for extensive geochemical analysis.  With these 

data we investigated patterns and correlations among the microbial communities and 

environmental geochemistry, by calculating theoretical energy yield from 179 reactions 

that could be catalyzed by microbes.  

Methods 

Site description and sampling 

      Samples were collected from thermal features throughout Yellowstone National 

Park, USA during the summers of 2003 and 2004.  One hundred and three samples were 
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analyzed that encompassed the full range of pH, temperature, and biomass types found in 

the park.  Two to five samples were collected from each major thermal area; sampling 

locations were chosen to reflect the range of temperature and pH found in the area.  

Temperature and pH were measured using a Thermo Orion 290A+ meter, electrical 

conductivity was measured with a WTW meter with temperature correction, and site 

locations were recorded using a Trimble GeoXM and digital photographs.  Hydrogen 

sulfide was measured in the field using the methylene blue method (Hach method 8131) 

and a hand held colorimeter (Hach DR/850).  The samples were also categorized by the 

type of biomass collected: photosynthetic mat, chemotrophic filaments, sediment, or 

water.  Approximately 1-2.5 mL of sample was collected at each site with either sterile 

forceps or syringe.  For water samples, biomass was collected by filtering 0.6-1 L water 

through a 0.02 µm filter (Millipore) then preserving the filter.  Previously, we determined 

the most effective sample preservation and DNA extraction procedures to maximize the 

quality of DNA extracted and the diversity detected in the samples (Mitchell and Takacs-

Vesbach 2008).  Samples were collected from each spring and preserved in an equal 

volume of sucrose lysis buffer (SLB) (20 mM EDTA, 200 mM NaCl, 0.75 M sucrose, 50 

mM Tris-HCl, pH 9.0) (Giovannoni et al. 1990).  Samples were held at ambient 

temperature for up to eight days before they were stored at –80 ºC.  

Water for geochemical analysis was filtered (0.2 µm), unless otherwise stated, 

and preserved as appropriate for the analysis to be performed (McCleskey et al. 2004).  

Briefly, water (125 mL) was collected into deionized water washed bottles for anion 

measurement.  Water for cation analysis (30 mL) was collected in acid washed bottles 

and preserved by acidification with 0.3 mL 3N nitric acid.  Water for Fe and As species 
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was collected into opaque acid washed bottles and preserved with 1 mL of 6N HCl.  For 

SiO2, one mL of water was immediately diluted with 9 mL deionized water to prevent 

precipitation.  Water (30 mL) was preserved for ammonium analysis by the addition of 

0.3 ml of 4.5N H2SO4.  For sulfate, thiosulfate, and thiocyanate, 30 mL of water was 

preserved with 0.5 mL ZnCl2, followed by 0.5 mL NaOH.  The thiocyanate bottle also 

received 0.3 mL of KCN.  The geochemical analyses were performed according to USGS 

standard procedures (McCleskey et al. 2004). 

DNA Extraction 

DNA was extracted using a modified CTAB extraction (Zhou et al. 1996).  

Briefly: 2 volumes of 1% CTAB buffer (1% CTAB, 0.75 M NaCl, 50 mM Tris pH 8, 10 

mM EDTA) and proteinase K (final concentration 100 µg/mL) were added to the SLB 

preserved samples which were then incubated for one hour at 60°C. Sodium dodecyl 

sulphate (SDS) (final concentration 2%) was added to the samples and incubated for one 

hour at 60°C. The DNA was then extracted with chloroform and finally, precipitated with 

ethanol.   

 Dilutions of the environmental genomic DNA were used as template DNA for 

PCR amplification of the 16S rRNA gene. The reaction included 1X Promega buffer with 

1.5 mM MgCl2, bovine serum albumin (0.04 % final), 2.5 U Taq DNA polymerase 

(Promega U.S.) 2.5% Igepal CA-630 (Sigma-Aldrich), 10 µM each dATP, dGTP, dCTP, 

dTTP (BioLine USA, Inc.), 20 µM Bacterial specific primers 8F  

(AGAGTTTGATCCTGGCTCAG) and 1492R (GGTTACCTTGTTACACTT) or 1391R 

(GACGGGCGGTGTGTRCA). The PCR reaction (50 µl) was incubated in a 

thermocycler (ABI GeneAmp 2700) for 5 min at 94.0°C then for 30 cycles of 30 s at 
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94.0°C, 30 s at 50.0°C and 30 s at 72.0°C.  The reaction was incubated at 72.0°C for 7 

minutes for final extension.  The PCR products were ligated and cloned using the TOPO 

TA pCR2.1 kit (Invitrogen).  

Sequence Analysis 

 Ninety-six clones were analyzed for each library by either restriction fragment 

length polymorphism (RFLP) (n=18) or by sequencing each clone from the 5’ end 

(n=66).  For libraries screened by RFLP, unique clones were fully sequenced as described 

below.  Sequences with a PHRED score below 20 and less than 300 bases long were not 

included in subsequent analysis. Sequences were aligned using Greengenes (DeSantis et 

al. 2006), ensuring that only likely bacterial sequences were included in the analysis.  A 

distance matrix of the aligned sequences was calculated in ARB (Ludwig et al. 2003).  

Dotur (Schloss et al. 2003) analysis on the distance matrix was used to determine 1, 2, 6, 

and 15% divergent operational taxonomic units (OTUs) and to calculate Chao1 estimated 

diversity index.  A presence/absence by sample matrix was constructed for each of the 

OTU levels, which was used for the statistical analyses.  Estimation of the shared 

richness between sample groups was calculated in SONS (Schloss and Handelsman 

2006).   

Sequence identification was based on BLAST against the nr database at NCBI 

and the Greengenes classify tool using the Simrank algorithm.  Phylogenetic trees were 

built using the sequences generated by this study and a backbone of 400 high quality 

reference sequences spanning the range of bacterial diversity downloaded from 

Greengenes (July 2008).  The sequences were all aligned using the NAST aligner in 

Greengenes.  The whole dataset tree (5943 sequences from this study plus the 400 
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reference sequences) was constructed using the parsimony interactive add tool in ARB. 

For the phylogenetic tree presented here only the reference sequences were complete 

gene sequences, however simulations have shown that accuracy in trees based on 1000 

characters remains high as long as the missing data is less than 80% of the total 

characters (Weins 2003). 

Energetic Modeling 

 Total energy available to the communities was modeled based on the activities of 

chemical species and compounds measured from the environment (Appendix Table A1) 

as described in (Amend and Shock 2001; Amend et al. 2003; Shock et al. 2005).  The raw 

geochemical concentrations were speciated using the EQ3 program (Lawrence Livermore 

National Laboratories).  The activities from this program were used to calculate the Gibbs 

free energy available in each spring for 179 reactions that may be mediated by 

microorganisms.  This calculation estimates the amount of available energy per mole of 

electron transferred.  We then multiplied this value by the modeled concentration of the 

limiting reactant for each reaction, resulting in determination of energy per kg of water 

that allows for the comparison of total energy available to each spring rather than 

comparison of individual reactions.  

Statistical Analysis  

Statistical analyses, other than liner regressions, were performed using PC-ORD v 

5 (McCune et al. 2002).  The samples were grouped using polythetic agglomerative 

hierarchical cluster analysis (Goodall 1973) based on the 4 OTU level matrices (1, 2, 6, 

and 15% divergent) with rare OTUs that were only found in one sample removed for this 

analysis.  The number of clusters and clustering level were tested using multiple response 
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permutation procedure (MRPP) (Mielke 1984).  The best fitting clustering scheme was 

used to classify the samples for further analyses.  Indicator analysis (Dufrene and 

Legendre 1997) was performed on the OTU presence absence matrices, geochemical 

matrix, and energetic matrices to determine which OTUs, chemistries, or potential 

metabolic reactions defined the groups of samples. Nonmetric multidimensional scaling 

(Peterson and McCune 2001) was used to visualize the groups of samples based on OTU, 

geochemical, and energetic matrices.  The importance of the two main drivers, pH and 

temperature, on the community structure was examined by Mantel test (Mantel 1967) of 

the phyla level NMS. Linear regression of the data and of NMS values were done in 

Excel (Microsoft Office 2007).  

Results 

 The samples collected represent the range of conditions found in YNP hot springs 

(Figure 3.1). YNP spring water show a bimodal distribution of pH, with few springs 

having a pH between 4-5.5.  The samples analyzed for this study show the same bimodal 

distribution.  Earlier workers in thermal environments (e.g., Brock 1978) recognized four 

sample types: phototrophic mats, chemotrophic filaments, sediment and filtered water. 

 

Sample type Number of Samples Temperature Range pH Range 
 
Phototrophic mat 20 51.7°-70.5°C 2.64-9.19 
Chemotrophic filaments 24 50.9°-84.8°C 2.20-9.06 
Sediment 21 36.7°-87.8°C 1.94-8.96 
Water 14 34.8°-94.7°C 1.68-8.84 
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Figure 3.1.  Comparison of the distribution of pH and temperature in samples collected 

for this study and in the YNP Thermal Inventory (unpublished, Ann Rodman).  
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We recovered bacterial 16S rRNA from 84 of the samples. The majority of the 

samples that we couldn’t amplify bacterial 16S from were either sediment or water 

samples that likely have much lower biomass than the filament or mat samples.  The 

energetic modeling was performed on all samples; however all other analyses were only 

performed on the 84 samples from which we were able to obtain bacterial sequences. 

Extent of diversity 

 We amplified bacterial 16S rRNA from 84 of the 103 samples collected and 

RFLP screened or forward sequenced over 7000 clones.  The sequences (N=5943) that 

met the minimum criteria (at least 300 bases long with phrap scores > 20) were included 

in the phylogenetic and community analyses.  The diversity of the sequences detected is 

summarized both by numbers of clones analyzed and how those clones are distributed 

among the 1018 species level OTUs (2% divergence).  Aquificales were the most 

commonly detected organisms with over 2200 clones.  However, at the species level 

OTUs, there were more Proteobacteria, with 199 Proteobacteria OTU compared to 139 

Aquificales OTU.  Three percent of the clones (n=221) detected could not be identified 

(using either BLAST on the nr database NCBI or Simrank in Greengenes) even to the 

phyla level.  Some of these unidentified sequences likely belong to previously described 

candidate divisions AD3 (Zhou et. al. 2003), OP1, OP5, OP8, OP9, OP12 (Hugenholtz et 

al. 1998b; Harris et al. 2004), or Toll (Hall et al. 2008).  The other 30 OTUs, representing 

174 clones, are more than 15% divergent from any described division although most of 

these sequences have at least a few closely related sequences present in GenBank from 

previous molecular surveys.  These highly divergent sequences may represent up to 15 

novel candidate phyla (Figure 3.2). 
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Figure 3.2.  Phylogenetic tree of 5943 sequences produced by this study along with 

reference sequences.  All sequences within a phylum were collapsed into a triangle, the 

width of the triangle is proportional to the number of sequences in that phyla, while the 

length is proportional to the evolutionary diversity contained in the phyla.  All phyla that 

are black were detected in these samples, grey are phyla that were not found, and the 

putative candidate phyla discovered by this work are red and bolded. 
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Geochemistry 

 The samples studied represent the range of geochemical conditions found in YNP, 

not just in terms of the pH and temperature but also for major anions and cations, trace 

metals, nutrients, and stable isotopes (Truesdell and Fournier 1976; McCleskey et al. 

2004; Meyer-Dombard et al. 2005; Nordstrom et al. 2005; Shanks et al. 2005), (Table 

A1). The waters are generally dominated by Na+ and either Cl- or SO4
-, with some 

evidence for mixing trends (Figure 3.3).  Geothermal water in YNP generally falls into 

two major types, acid sulfate or alkaline chloride. The 103 samples collected span most 

of the range of sulfate (7.7 – 3172 mg/l) and chloride (<1 – 642 mg/l) concentrations 

reported by other workers (McCleskey et al. 2004; Meyer-Dombard et al. 2005).  The 

acid sulfate waters likely represent vapor dominated springs where meteoric or shallow 

ground water is heated by steam instead of heated by mixing with the deep hot aquifer 

(Fournier 2005).  Alkaline chloride waters, hot-water dominated regions, are common in 

the western half of YNP and are generally in topographic lows.  The source of the water 

in a sample can also be described using stable isotopes, specifically δD compared to 

either δ18O or Cl- (Figure 3.4 and 3.5 respectively).  The isotopes also confirm that the 

samples represent both meteoric (i.e. vapor dominated) and at least some mixing with the 

deep hot aquifer (hot-water dominated).  

Energetic Modeling 

 We evaluated the amount of energy available in each spring for 179 reactions 

under varying O2 (0.1, 0.5, 3, and 6 mg/l) and H2 (2, 10, 100, 325 nM) concentrations.  

When these reactions were evaluated by chemical affinity, kJ per mole of electron  
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Figure 3.3  Piper diagram of the major anions (right ternary plot) and cations (left ternary 

plot).  Both anions and cations in the lower triangles are projected up onto the diamond.  

The waters from these samples are usually dominated by a single anion cation pair 

(falling on the edges of the plots).  A few of the samples are mixtures of waters which 

plot towards the center of the graphs. 
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Figure 3.4.  Hydrogen and oxygen isotope concentrations from the samples compared to 

Vienna Standard Mean Ocean Water (VSMOW), colored by the community group found 

in each site.  The samples all fall below the global meteoric water line which could 

indicate mixing with the deep hot aquifer, subsurface boiling and steam separation, or 

open surface boiling (Shanks 2005). 
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Figure 3.5. Water isotope and Cl- concentration plotted on the 

theoretical mixing and boiling lines for the deep hot aquifer, 

colored by the community group found in each site.  The 

samples on the left (very low Cl-) are likely vapor dominated, while the others are 

meteoric water mixing with the deep hot aquifer to some degree.  (Redrawn from (Rye 

and Truesdell 1993) 
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comparison of reactions by removing the impact of the size of the compound being 

reduced (e.g. directly comparing the energy from reduction of a small molecule such as 

H2 by O2, which involves the transfer of two electrons with the reduction of methane and 

iron II by sulfate where 56 electrons are transferred).  However, this study is not 

concerned with comparing reactions but rather springs.  To compare springs, it was 

necessary to express the energy available in units of water mass rather that moles of 

electrons.  This was accomplished by multiplying the Gibbs free energy by moles of the 

limiting reactant, resulting in joules available per kilogram of water.  The results of these 

analyses for the seven models (modeling a range of O2 and H2 concentrations) are 

displayed in Figure 3.6, with the samples (Y axis) and the reactions (X axis).  Only 

reactions that resulted in greater than 1 J/kg water are included is this figure with those 

reactions bolded in Appendix Table A2.  

 

 

 

 

 

Figure 3.6 (next page)  Color-coded maps showing the amount of energy available for 

102 reactions that produce at least 1 kJ/kg H2O.  More energy available is shown by 

darker color; each sample is a row and each reaction is a column.  The samples that make 

up each community type are indicated by the color of the box around them.  The 20 

samples at the bottom of each map that are not color coded were the samples where we 

do not have bacterial sequences.  
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Clustering of samples by sequence, geochemistry, and energetics 

 Because of the large number and types of samples collected, it became possible to 

look for relationships between organisms within communities, and between community 

types and their geochemical setting.  The initial step was to classify the 16S sequences 

into OTUs and determine which level or levels of classification best described the 

community.  We tested four levels of sequence divergence, 1% (phylotype), 2% (species 

level), 6% (genus), and 15% (class or phylum) (Stackebrandt 2006), using polythetic 

hierarchical cluster analysis and MRPP to evaluate the numbers of clusters that best 

described the community and the level of clustering that best described the communities 

across the other phylogenetic levels (Fig. 3.7).  Clusters based on presence absence 

matrices at 1% divergence and species level divergence were poor predictors of 

community groups compared to matrices at the higher phylogenetic levels.  Class or 

phyla level (15%) divergence best described the communities across all phylogenetic 

levels. At this level, the samples collapsed into five community clusters with multiple 

members plus three samples that did not group with any other sample.  Clusters based on 

the genus matrix resulted in similar groupings to the class/phyla matrices but with lower 

statistical significance through the randomization procedure.  Therefore, the clusters 

presented are based on the 15% divergence matrix (Fig. 3.8). 

The same type of classification was attempted for the geochemistry data and the 

energetic modeling results.  The geochemistry data matrix produced no discernable 

pattern (Fig.3 9).  Correlation between just pH and temperature and the community 

structure showed that both were significantly related (p <  0.001).  However, pH showed 

a stronger relationship (r = 0.502) than temperature (r = 0.162).  The matrices of the  
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Figure 3.7 Rarefaction curves displaying sampling success for all the samples combined 

(top left) and for each of the five community types.  Note that the scale is different for the 

Sulfurihydrogenibium group because of the very low diversity found in those samples. 
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Figure 3.8.  Plots of the results of the nonmetric multidimensional 

scaling at four OTU cutoff levels colored by the community group 

found in each sample.  The community types cluster together across all the phylogenetic 

levels, however the groups are more distinct at the higher cutoff levels.  The percent 

variance explained by each axis is the correlation between the original distance matrix 

and the three dimensional NMS matrix.   
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Figure 3.9.  Nonmetric multidimensional scaling of geochemistry of the waters sampled, 

colored by the community group found in each site. 
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Figure 3.10. Nonmetric multidimensional scaling of energetic modeling of the springs 

sampled, colored by the community group found in each site. 
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energetic modeling showed a pattern that was consistent across all the models tested, with 

the samples split into a cluster of 64 samples distinct from a line of 39 samples (Fig 

3.10).  

Overview of five groups 

We defined the five community groups by the most common genera or phyla found in 

that community by indicator analysis. Only those OTUs that are significantly indicated 

(p<0.05, indication percentage > 50%) are addressed here.  Group 1 (n=22) is indicated 

by Thermocrinis (if a sample has Thermocrinis, it has an 89% chance of being assigned 

to group 1) followed by Thermus (52%).  Groups 2 (n=7) and 3 (n=22) both only have 

one indicating genera, Sulfurihydrogenibium (89%) and Hydrogenobaculum (80%) 

respectively.  Group 4 (n=22) consists mainly of the phototrophic communities, 

Chloroflexi (80%), Chlorobi (68%), Cyanobacteria (55%), and Acidobacteria (50%).  

The fifth group (n=8) is dominated by the Proteobacteria, including beta Proteobacteria 

(likely Comamonadaceae, 96%), alpha Proteobacteria (Bradyrhizobiales, 75% and 

Sphingomonadales, 71%), gamma Proteobacteria (Moraxellaceae 61%), and one member 

of the Bacteriodetes (Flavobacteriales, 88%).  The relationships between these groups 

was explored using SONS (Schloss and Handelsman 2006), the estimated shared richness 

between the five groups is displayed in Table 3.1. 

Discussion 

 This study is the first YNP wide survey of thermal springs for microbial diversity 

undertaken using molecular techniques. The earliest studies of Yellowstone thermophiles 

were based on microscopic observations and cultivation (Allen and Day 1935; Brock 

1978). The most striking result of this work is that pH is shown to be much more 
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important in determining the resident microbial community than temperature (Figure 

3.11), as others have suggested (Brock 1978; Ward et al. 1998; Skirnisdottir et al. 2000; 

Purcell et al. 2007).  However, the majority of the research in thermophilic bacterial 

communities has been focused on neutral or basic springs (Reysenbach et al. 1994; Ward 

et al. 1998; Reysenbach et al. 2000; Skirnisdottir et al. 2000; Madigan 2003; Papke et al. 

2003; Shock et al. 2005), as opposed to the focus on Archaea in acidic springs (Brock et 

al. 1972; Jackson et al. 2001; Whitaker et al. 2003).  This historic bias in sampling 

locations may explain the assumptions that temperature is the driving environmental 

factor controlling microbial communities in thermal environments. 

Much of the sequence diversity that we recovered spans the range of microbes 

that other researchers have found.  Aquificales, a dominant phylum in the springs 

samples, as others have found across YNP and in other thermal areas (Jackson et al. 

2001; Takacs et al. 2001; Blank et al. 2002; Kato et al. 2004; Meyer-Dombard et al. 

2005; Nakagawa et al. 2005; Reysenbach et al. 2005; Spear et al. 2005; Purcell et al. 

2007; Hall et al. 2008; Takacs-Vesbach et al. 2008), were found in 51 samples and were 

represented by 38% of the clones.  Members of the Aquificales are also a defining taxon 

for 3 of the 5 groups that we found.  This is likely due to the combined factors of the 

ubiquity of Aquificales in thermal areas coupled with the relatively low diversity of the 

sites they occupy (especially compared with phyla such as Proteobacteria). 

The five types of bacterial communities that are found in our samples are not 

completely distinct from each other.  We have estimated the amount of overlap between 

the groups at the species, genus, and class or phyla level using SONS, which calculates 
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Figure 3.11.  Temperature and pH scatter plot of the samples, colored by the community 

group found in each site. 
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Table 3.1.        
      

  

Estimated 
Richness 

(Confidence 
Interval) 

Shared with all 
other samples 

pooled Phototrophic Sulfurihydrogenibium Thermocrinis Hydrogenobaculum Bacteriodetes 
3 non-grouping 
samples, pooled 

Phototrophic         
 2% 1063 (880-1321) 108 - 8 61 2 6 0 
 6% 393 (334-489) 271 - 8 164 2 5 0 
 15% 181 (153-241 123 - 10 57 12 43 2 
Sulfurihydrogenibium        
 2% 25 (18-61) 22 8 - 15 2 2 0 
 6% 13 (11-42) 9 8 - 5 2 1 0 
 15% 11 (9-24) 12 10 - 8 4 4 2 
Thermocrinis         
 2% 290 (253-354) 73 61 15 - 10 13 1 
 6% 165 (135-228) 151 164 5 - 11 19 1 
 15% 78 (70-103) 96 57 8 - 11 18 3 
Hydrogenobaculum        
 2% 342 (278-451) 45 2 2 10 - 28 0 
 6% 124 (110-155) 38 2 2 11 - 21 0 
 15% 58 (54-74) 29 12 4 11 - 20 1 
Bacteriodetes        
 2% 555 (407-805) 42 6 2 13 28 - 0 
 6% 239 (184-346) 40 5 1 19 21 - 1 
 15% 115 (54-74) 41 43 4 18 20 - 1 
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this overlap based on the Chao1 diversity index. At the genus level and higher, the 

Thermocrinis/Thermus and the Sulfurihydrogenibium groups are subsets of the other 

groups.  The bacteria in the Thermocrinis/Thermus group are nearly a complete subset of 

the organisms in the Phototroph group.  The Sulfurihydrogenibium group is mostly a 

subset of Thermocrinis/Thermus and Phototroph, but also shares a quarter of its estimated 

diversity with the Hydrogenobaculum and Proteobacteria/Bacteriodetes groups.   

Although there is significant overlap among the species detected in the five 

bacterial communities, the communities are distinct because the structures are distinct.  

The Phototroph group is the most diverse group of communities that we examined with 

an estimated richness of over 1000 species. Contrast that with the Thermocrinis/Thermus 

group with an estimate 290 species and the extremely low diversity present in the 

Sulfurihydrogenibium group, which only has a Chao1 estimate of 25 species.  Clearly 

even though the members of the communities are similar between these groups, their 

organization is not.  The very high diversity in the Phototroph group is likely due to the 

relatively lower temperature of their habitat and the physical structure of the mats that 

creates numerous niches (Ward et al. 1998). Most of these communities were found at 

70°C or lower.  Many, but not all, of the Phototroph communities have sequences of 

likely Thermocrinis and Thermus cells, however it is not possible to know if these 

generally higher temperature bacteria (Reysenbach et al. 2005) are alive and functioning 

in the lower temperature of the phototrophic region of the runoff channel or are simply 

dead, but still intact, cells washed in from the higher temperature source springs.  

Interestingly, none of the Phototroph communities had any Sulfurihydrogenibium 

sequences.  Two of the Phototroph communities are from 78°C locations, above the 
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known limit for photosynthesis of 73°C (Madigan 2003); both of these samples were 

collected from springs that were downstream from many other pools. Whether the cells of 

the phototrophic organisms detected in these two higher temperature communities are 

still viable and contributing genetic material to the phototrophic mat downstream of the 

sampling site is unknown. However it is likely that the presence of the phototrophic 

sequences is due to the cells being washed in from cooler areas above the sampling site, 

rather than discovery of new phototrophic Bacteria that are capable of growth 5°C above 

the known limit.  Such sites of interconnected streams of thermal features could be 

interesting locations for testing biogeography of microbes that are exposed to several 

fluctuations of temperature along a relatively short spatial and temporal gradient.  

Perhaps it is more correct to think of the Thermocrinis/Thermus and Phototroph 

communities not as separate communities, but rather temperature optimized end members 

of the community that inhabit near neutral and higher pH springs.  The division between 

Thermocrinis/Thermus and Phototroph communities is the only one that can be attributed 

to temperature in these samples.   

The Sulfurihydrogenibium group can be defined by extremely low diversity, 

however it is not clear what is driving that low diversity.  These communities are all from 

springs above the pH 5.5, likely hot water dominated systems (Fournier 2005).  But they 

span a very wide temperature range (53°-85°).  Five of the seven samples that fall into 

this group form macroscopically visible filaments; whereas, the other two are from 

filtered water samples with no obvious visible biomass in the source pool or runoff 

channel.  Even more confounding, one of these samples, 03YMAM02, was collected 

from a spring in the Mammoth Hot Springs area, geographically near and geochemically 
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very similar to another sample, 03YMAM01, that had visible filaments dominated by 

several closely related Sulfurihydrogenibium sequences, but that also had Thermotoga 

and Geothermobacterium sequences and therefore grouped with the 

Thermocrinis/Thermus communities.  Whether these differences are reflective of the in 

situ community or biases in the processing of the samples is not clear at this time (Hall et 

al. 2008).  The energetic modeling shows that the Sulfurihydrogenibium communities 

have energy available from most of the metabolisms that the Phototrophic and 

Thermocrinis/Thermus communities possess with the addition of a few reactions that 

were common in the Proteobacteria/Bacteriodetes and Hydrogenobaculum communities 

(Table 3.2).  Even though the Sulfurihydrogenibium have been studied for the past decade 

(Reysenbach et al. 2000; Takacs et al. 2001; Takacs-Vesbach et al. 2008), it is clear from 

this research that there is still much to be discovered about their ecology. 

Like the samples that compose the Sulfurihydrogenibium group, those that make 

up the Hydrogenobaculum group are also indicated by only one species, 

Hydrogenobaculum.  However, unlike the Sulfurihydrogenibium group this is not because 

Hydrogenobaculum communities have low diversity, but rather that a wide range of other 

species can populate these communities without any other single species being common 

to the majority of the Hydrogenobaculum communities.  Some of the organisms that 

inhabit the Hydrogenobaculum communities and are statistically significant, but weak 

indicators, are Actinobacteria (indicator value 20%), Proteobacteria (Ralstonia 32%, 

Desulfurella 21%, Acetobacteria 18%, and Acidothiobacillus 14%), Thermotoga (18%), 

and Paenibacilla (18%).   
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Table 3.2. 
 
 
 
Community Reaction 

Terminal 
Electron 
Acceptor 

   

All 
 

 

 2MAGNETITE+1/2 O2+3H2O→6GOETHITE   (2)             O2 

 S+3/2 O2+H2O→SO4
-2+2H+   (6)  O2 

 2MAGNETITE+1/2 O2→3HEMATITE   (2)                   O2 

 PYRITE+7/2 O2+H2O→2SO4
-2+Fe+2+2H+   (14)     O2 

 3CH4+4NO2
-+5H++H2O→3HCO3

-+4NH4
+   (24)          NO2 

 3CH4+4NO2
-+8H+→3CO2+4NH4

++2H2O   (24)         NO2 

 NH4
++3/2 O2→NO2

-+2H++H2O   (6)                O2 

 NH4
++2O2→NO3

-+2H++H2O   (8)               O2 

 4S+4H2O→SO4
-2+3HS-+2H+   (6)          S 

 6MAGNETITE+SO4
-2+2H++8H2O→S+18GOETHITE   (2)        SO4 

 6MAGNETITE+SO4
-2+2H+→S+9HEMATITE+H2O   (24)             Hematite 

Hydrogenobaculum and 
Proteobacteria/Bacteriodetes 

  

 2HS-+Fe+2+1/2 O2→PYRITE+2H++H2O   (2)               O2 

 Fe+2+1/4 O2+3/2 H2O→GOETHITE+2H+   (1)      O2 

 2Fe+2+1/2 O2+2H2O→HEMATITE+4H+   (2)            O2 

 3Fe+2+1/2 O2+3H2O→Fe3O4+6H+   (2)        O2 

 HS-+1/2 O2→S+H2O   (2)  O2 

 Fe+2+2S+H2O→PYRITE+2H++1/2 O2   (2)  O2 

 2MAGNETITE+2S+Fe+2+4H2O→PYRITE+6GOETHITE+2H+   (2)  S 

 3Fe+2+7S+4H2O→3PYRITE+SO4
-2+8H+   (6)              S 

 2MAGNETITE+2S+Fe+2+H2O→PYRITE+3HEMATITE+2H+   (2)  S 

 9Fe+2+NO2
-+10H2O→3MAGNETITE+NH4

++16H+   (6)        NO2 

 3Fe+3+2S+4H2O→PYRITE+2GOETHITE+6H+   (2)         S 

 3Fe+2+2S+3H2O→PYRITE+HEMATITE+6H+   (2)           S 

 4Fe+2+2S+4H2O→PYRITE+MAGNETITE+8H+   (2)           S 

 2MAGNETITE+S+4H2O→6GOETHITE+HS-   (2)             S 

 2MAGNETITE+S+H2O→3HEMATITE+HS-   (2)             S 

 9Fe+2+SO4
-2+8H2O→S+3MAGNETITE+16H+   (6)         Magnetite 

 12Fe+2+SO4
-2+12H2O→4MAGNETITE+HS-+22H+   (8)     Magnetite 

 6Fe+2+SO4
-2+5H2O→S+3HEMATITE+10H+   (6)     Hematite 

 6Fe+2+SO4
-2+8H2O→S+6GOETHITE+10H+   (6)           Goethite 

 PYRITE+7MAGNETITE+40H+→                                                                                            
2SO4

-2+22Fe+2+20H2O   (14)     
Magnetite 

 14MAGNETITE+Fe+2+2SO4
-2+2H++20H2O→                   

PYRITE+42GOETHITE   (14) 
SO4 
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Table 3.2 cont. 
 
Community 

 
 
 
Reaction 
 
 
 
CH4+4PYRITE+8H++2H2O→CO2+4Fe+2+8HS-   (8)     

 
Terminal 
Electron 
Acceptor 
 
 
 
SO4 

 
 
 

14MAGNETITE+Fe+2+2SO4
-2+2h+→                  

PYRITE+21HEMATITE+H2O   (14) 
SO4 

 
Hydrogenobaculum and 
Proteobacteria/Bacteriodetes 
cont. 

  

 8Fe+2+SO4
-2+8H2O→4HEMATITE+HS-+14H+   (8)      Hematite 

 8Fe+2+SO4
-2+12H2O→8GOETHITE+HS-+14H+   (8)          Goethite 

 15Fe+2+2SO4
-2+13H20→PYRITE+7HEMATITE+26H+   (14)    Hematite 

 15Fe+2+2SO4
-2+20H2O→PYRITE+14GOETHITE+26H+   (14)         Goethite 

Sulfurihydrogenibium and 
Hydrogenobaculum and 
Proteobacteria/Bacteriodetes 

  

 2H++SO4
-2→HS-+2O2   (8)  O2 

 MAGNETITE+PYRITE+2H2O→2HEMATITE+2HS-   (2)        Hematite 

Sulfurihydrogenibium   

 HS-+4CO2→SO4-2+4CO+2H+   (8)                 SO4 

 CH4
++SO4

-2+H+→HCO3
-+HS-+H2O    (8)                  SO4 

 CH4+SO4
-2+2H+→CO2+HS-+2H2O   (24)                 SO4 

 CH4+4S+2H2O→CO2+4HS-   (8)                  S 

Thermocrinis/Thermus and 
Sulfurihydrogenibium 

  

 NH4
++3CO2→NO2

-+3CO+2H++H2O   (6)         NO2 

Thermocrinis/Thermus and 
Sulfurihydrogenibium and 
Phototrophs 

 

 

 7CO(aq)+2SO4
-2+2H++Fe+2→PYRITE+7CO2(aq)+H2O   (14)    SO4 

 7CH4+8SO4
-+H++4Fe+2→4PYRITE+7HCO3

-+11H2O   (56)      SO4 

 3HEMATITE+CO(aq)→2MAGNETITE+CO2(aq)   (2)       Hematite 

 S+3CO2+H2O→SO4
-2+3CO+2H+   (6)              SO4 

 7CH4+8SO4
-2+8H++4Fe+2→4PYRITE+7CO2+18H2O   (56)    SO4 

 6GOETHITE+CO(aq)→2MAGNETITE+CO2(aq)+3H2O   (2)         Goethite 

 CH4+24GOETHITE→8MAGNETITE+CO2+14H2O   (8)           Goethite 

 CH4+12HEMATITE→8MAGNETITE+CO2+2H2O   (14)          Hematite 

 3CH4+4SO4
-2+8H+→4S+3CO2+10H2O   (8)          SO4 

 SO4
-2+3H2+2H+→S+4H2O   (8)                 SO4 

 3CH4+4SO4
-2+5H+→4S+3HCO3

-+7H2O   (8)          Bicarb 
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 The Proteobacteria/Bacteriodetes and the Hydrogenobaculum groups are 

different from each other in terms of the sequences present.  As well, the sites that fall 

into each of these groups also differ from each other.  These sites are fairly diverse, the 

samples in the Proteobacteria/Bacteriodetes group have as many species level OTUs as 

all but the most diverse Phototroph samples. The vast majority of this diversity is quite 

rare however, only being identified in a single sample. As groups, the 

Proteobacteria/Bacteriodetes communities are estimated to share only 8% of their total 

OTUs with any other group, while Hydrogenobaculum shares 13% of their OTUs.  This 

is in stark contrast to the relationship between the circumneutral groups which, in 

general, appear to consist of subsets of a larger metacommunity.  The relationship 

between the low pH groups is unclear.  Although two groups best described these 

communities, it is not apparent what drives this division or even if this simple bifurcation 

is truly representative of these largely unexamined bacterial communities.   

Geochemical diversity 

 What makes this study different from previous work in thermal environments, in 

addition to the number and range of samples collected, is the extensive geochemical 

analysis that was done concurrently with the microbial analysis.  The geochemistry 

allowed us to examine the importance of a wide variety of abiotic factors that could 

potentially control the microbial communities in the springs.  But, surprisingly, the raw 

geochemical concentrations were not useful in grouping the samples (Figure 3.12).  

These analyses were performed using both the entire geochemical dataset and many 

iterations of subsets of the data (e.g., just major anion and cations or just nutrients).  Note 

that no signal in the geochemical concentrations was detected for the fundamental 
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division of pH seen in YNP thermal waters.  Lack of clustering does not mean that 

geochemistry is unimportant to these communities, but that it is not possible to predict 

the community type that inhabits a particular spring based simply on the geochemistry of 

the water. 

Indicator analysis on the raw geochemistry, which identifies the chemical species 

and compounds that are significantly higher or lower in certain groups, is shown in 

Figure 3.12.  It should be noted that the geochemical indicator analysis showed the same 

general clustering of the samples as was seen in the sequence based analyses.  The 

Thermocrinis/Thermus and the Phototroph communities share the most similar 

geochemical make up.  These two communities also share some geochemical 

composition with the Sulfurihydrogenibium group.  Likewise, the Hydrogenobaculum 

and Proteobacteria/Bacteriodetes groups share lower pH and higher concentrations of 

several metals.  However, there is no overlap between the chemical species that are 

indicated between those two larger groups (Thermocrinis/Thermus, Phototroph, and 

Sulfurihydrogenibium vs. the Hydrogenobaculum and the Proteobacteria/Bacteriodetes).  

The same major divide in the relationship among samples that is present in the 

community structure is present in the bulk geochemistry of the springs and seems to be 

based on pH.  The geochemistry suggests there may be two metacommunities in YNP hot 

springs.  However, the clustering analysis of the sequence data supported five community 

groups rather than two.  Further work is needed to determine how five community types 

are maintained in the environment when there seems to be only two geochemical settings 

amongst the springs. 
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Figure 3.12.  Indicator analysis of the geochemical parameters that are significantly 

different between community types. 
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In general, the Thermocrinis/Thermus and Phototroph communities share similar 

bulk geochemistry, i.e. higher alkalinity and fluoride and lower sulfate.  The 

Sulfurihydrogenibium group is only indicated by lower concentrations of chemicals, most 

of which are also shared with the Thermocrinis/Thermus and Phototroph communities, 

i.e. iron, aluminum, and zinc, as well as lower silica.  The lower concentration of silica is 

of interest as one possible reason for the lower diversity of Sulfurihydrogenibium 

communities.  We have observed in YNP springs that Thermocrinis/Thermus 

communities nearly always form filaments in springs that have hard (putatively siliceous) 

sinter (Christiansen 2001) deposits while Sulfurihydrogenibium communities can be 

found on both hard deposits and soft bottomed runoff channels.  This analysis gives some 

geochemical backing to our observation, and suggests that there may be a difference in 

how the members of the Aquificales attach to their environment.  This difference could 

be investigated through growth experiments as well as mineralogical studies of 

geochemically similar springs that differ in the dominant genera of Aquificales. 

The Hydrogenobaculum and Proteobacteria/Bacteriodetes samples have low pH 

and alkalinity and higher concentrations of lead, cobalt, and nickel.  Additionally, the 

Proteobacteria/Bacteriodetes sites have high levels of zinc, cadmium, beryllium, and 

copper.  While these metals may be involved in some metabolic processes, it is also 

possible that these communities do not obtain energy from, but simply have a higher 

tolerance for, these elements. With more intensive sampling efforts and a subsequent 

increase in our knowledge of the environmental interactions of these organisms, the 

significance of the metals will likely be discovered. 
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One of the major questions in microbial ecology is what controls community 

structure in natural environments.   While forty-four variables were measured during this 

study, it was expected that a smaller number of parameters capable of reliably predicting 

community types would be determined.  However, this did not prove to be the case, 

implying that the communities are not simply niche assembled because the strong pattern 

of separation between the samples based on sequences present is not similarly reflected in 

the geochemistry of the spring.    

Geochemical modeling 

 The majority of the hot spring communities, especially those above the 

temperature limit of photosynthesis, are expected to have chemoautotrophs as the primary 

producers of the system (Shock et al. 2005).  Chemoautotrophs gain energy by catalyzing 

reactions, generally reduction/oxidation coupled reactions or redox reactions, that are 

thermodynamically favorable but kinetically impeded (Amend and Shock 2001; Bach and 

Edwards 2003).  Modeling of the energy available to a system based on calculations of 

energy available from likely biologically relevant redox reactions has been used to 

predict metabolisms that are likely significant sources of energy (Amend et al. 2003; 

Hayes et al. 2006).  This type of modeling has shown some success in improving the 

applicability of one time geochemical measurements to the community (as opposed to 

multiple measurements across either short temporal or spatial distances measuring the 

production and utilization of compounds (Inskeep et al. 2004)).  Our application of this 

type of modeling is one of the broadest completed to date.  We model the O2 and H2 

concentrations across the range of values previously found in YNP hot springs; O2 from 

the detection limit of many methods (0.1 mg/L) to the highest found in typical 
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phototrophic mats in YNP (6 mg/L)(Pierson et al. 1999) and H2 spanning the range 

reported in YNP, 2nM to 325 nM (Spear et al. 2005).   Although the concentrations of 

modeled gasses spanned a wide range, very little difference in the amount of energy 

produced by the different models was detected (Appendix Table A2).  It appears, that for 

the reactions modeled, as long as there is a small amount of O2 or H2 available, the 

reactions will proceed and yield essentially the same amount of energy.  When we 

corrected the energy yielded for concentration of limiting reactant, the patterns in the data 

became more clearly defined.   Figure 3.6 shows the amount of energy per kg of water (x 

axis) that the reactions yield for each sample (y axis), the intensity of the color from 

yellow to red represents available energy.  There is very little difference in the amount of 

energy produced by any reactions across the entire range of H2 concentrations found in 

YNP hot springs; however increasing the O2 concentration does cause some reactions that 

utilize O2 as the terminal electron acceptor to yield more energy.  This difference in 

energy yield across O2 concentrations has very little effect when comparing these 

samples, as the change in energy affects the samples relatively uniformly.   

The raw data displayed in Figure 3.6 confirms that there is a pattern to the 

distribution of available energy.  It is however, very difficult to consider over 100 

variables (the reactions) simultaneously to identify the relationships among the samples. 

We therefore ordinated the energetic matrices using NMS, compressing the data into two 

axes (Figure 3.10).  A similar pattern appears across the models, with the 

Thermocrinis/Thermus, Phototroph, and Sulfurihydrogenibium samples clustering 

together and separate from the Hydrogenobaculum and Proteobacteria/Bacteriodetes 

samples.  Another pattern that is apparent in all seven models is that the 
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Hydrogenobaculum and Proteobacteria/Bacteriodetes group do not form an amorphic 

cluster, but rather a line regardless of which H2 and O2 model was used.  Because of the 

striking and consistent nature of this feature in the ordinations, we regressed the NMS 

axes against the raw geochemistry of the springs.  Four measured parameters seem to be 

driving this relationship, sulfate, aluminum, and lead concentrations increase as pH 

decreases across this ordination line.  While sulfates are likely tied to the metabolic 

processes of the communities, either as substrates to be reduced or products of sulfur 

oxidation, the presence of aluminum and lead are best explained as a result of a greater 

tolerance for these metals by the communities at the lowest pH.  Genes coding for metal 

transport ATPases have been discovered in a number of organisms including 

Proteobacteria (i.e. Ralstonia (Borremans et al. 2001)), Desulfovibrio, and Comamonas 

(Benyehuda et al. 2003)), Firmicutes (Staphylococcus (Rensing et al. 1998)), and 

Cyanobacteria (Thelwell et al. 1998), members of which are found in and are often 

indicators for the Hydrogenobaculum and Proteobacteria/Bacteriodetes communities.  

Additionally, these metal transport genes have been shown to be amenable to horizontal 

gene transfer (Coombs and Barkay 2005), which may explain several of the 

inconsistencies in the grouping of the low pH communities.  Clearer differentiation of 

these communities may be possible with further exploration of the diversity of additional 

genes likely to be involved in protecting the organisms from the harsh conditions present 

in low pH environments. 

In addition to providing insight into the metabolic processes important to these 

microbial communities, the energetic modeling is likely to advance culturing efforts by 

guiding media selection.  Much of the ecological inference we can draw from 
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phylogenetic and energetic analyses of these communities will only be confirmed through 

further directed examination.  Targeted sequencing of metabolic genes based on the 

reactions that were modeled to be high energy yielding and by targeted enrichment 

cultures and manipulation.  However, that is not to diminish the importance of this type 

of diversity surveys.  Without this type of broad discovery focused research we would not 

have shown that pH, not temperature, is the most significant factor controlling microbial 

communities in thermal areas.  Also, where previous research has been focused on either 

a single spring or type of community, we examined the range of thermal springs found in 

YNP resulting in the discovery of a previously unrecognized community type, i.e. the 

Proteobacteria/Bacteriodetes.   

That pH is a major controller of microbial community diversity is not unknown in 

the environment, however temperature was presumed to be more significant in thermal 

communities (Brock 1978, Skirnisdottir et al. 2000).  Studies on microbial communities 

from a variety of environments have found that pH is the most significant factor 

determining bacterial diversity across continent scale (Fierer and Jackson 2006), diversity 

and transcriptional activity of ammonia oxidizing bacteria and archaea (Nicol et al. 

2008), and aquatic community structure (Fierer et al. 2007).  Other work has shown a 

combination of pH and another factor to be significant: pH and soil texture related to 

bacterial community composition invariant of land use types (Lauber et al. 2008) and pH 

and C to N ratio predicted fungal and bacterial community composition in boreal forest 

soil (Hogberg et al. 2007).  However, temperature has also been found to be significant in 

controlling the organisms present in a system for Prochlorococcus in the Atlantic Ocean 

(Johnson et al. 2006) and ecotypes of cyanobacteria in YNP (Miller et al. 2009).  



 

79 
 

Temperature and sulfide combined have been used to explain differences between high 

temperature, near neutral communities inhabiting hot springs from Iceland (Skirnisdottir 

et al. 2000) and Thailand (Purcell et al. 2007).  In the studies to date it seems that 

temperature may control which ecotypes are present within similar habitats while pH 

controls the whole community across variable habitats, this hypothesis requires further 

examination. 

 Exploration of bacterial diversity in natural communities is a rapidly evolving 

field.  As such it should be expected that this type of broad diversity survey generates 

many more questions than it answers.  Future ecological research that may integrate this 

study as an initial baseline include studies more closely examining the largely unexplored 

low pH, high temperature bacterial communities similar to those in YNP, those seeking 

to further elucidate those factors controlling diversity and those seeking to determine the 

extent of the diversity present in these environments.  Also, the Sulfurihydrogenibium 

communities have been better studied than the low pH communities, but it is still not 

apparent why these habitats have such low diversity.  Is it a result of yet unmeasured 

abiotic parameters that prevent other organisms from establishing, or is there something 

about the Sulfurihydrogenibium themselves that allow them to out compete other 

organisms?  The ecosystems described in this study are ideal for further application of 

ecological theory, especially community assembly patterns, biogeographic theory, and 

macroecological experiments that take advantage of the high diversity of habitats and 

short generation time of thermal communities.  
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Abstract 

The taxa-area relationship (TAR) is regarded as one of the few laws in ecology.  

Although it has been investigated for decades in plants, animals, and insects, the taxa-

area relationship has only begun to be examined in microbes.  We evaluate the taxa-area 

relationship of bacterial diversity in terrestrial hot spring representing the range of 

environmental conditions found in Yellowstone National Park (YNP).  The pH and 

temperature of the samples spanned the range of conditions found in YNP, 1.68 to 9.19 

and 34.8°C to 94.7°C.  Species richness was determined using two types of culture 

independent molecular analyses of the 16S rDNA:  restriction fragment length 

polymorphism (RFLP) of whole gene clone libraries, n=18, and forward direction 

sequencing of whole gene clone libraries, n= 61.  Island size, energy available, and 

temperature were determined for each sample.  There was no significant relationship 

between species richness and either island size or energy available.  It is impossible to 

completely sample microbial diversity and one sample per spring is unlikely to 

approximate total richness; therefore we also tested these relationships on estimated 
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diversity.  There was also no relationship between either area or energy and the estimated 

richness.  The finding of no relationship between either species richness and island size 

or energy available could be the first evidence of a small island effect in bacterial 

communities.  This study is the first to examine a large number of natural isolated 

microbial communities, but it is still possible that more extensive sampling is needed to 

detect the relationship between richness and island size.  The relationship between 

richness and size in bacteria may only exist at the extremes of size, either very large or 

very small areas, while we sampled the middle of that range.  Also, given the broad range 

of physiochemical conditions sampled, a factor other than size could have much greater 

impact on the type and number of organisms that could inhabit a spring. 

 

 



88 

Introduction 

Our understanding of the diversity and distribution of microorganisms in the 

natural environment was radically changed by the application of molecular biology 

techniques to microbial ecology.  For example, entire phyla and domains super-kingdoms 

have been discovered and many of the underlying molecular similarities among living 

organisms have been revealed (Woese and Fox 1977; Barns et al. 1994).  Furthermore, 

although perhaps only reflections of the metabolic potential of microbial communities, 

these methods have enabled us to bring these glimpses into better focus by facilitating the 

enrichment and culturing of otherwise transparent members of the microbial flora 

(Reysenbach et al. 2000; Reysenbach et al. 2006).  Despite an ever-expanding database of 

newly discovered diversity, the application of ecological theory to microbial ecology is 

largely lacking (Prosser et al., 2007). 

The taxa-area relationship (TAR) is regarded as one of the few laws in ecology 

(Zhou et al., 2008, Lomolino, 2001).  Although it has been investigated for decades in 

plants, animals, and insects, the taxa-area relationship has only begun to be examined in 

microbes.  Work in eukaryotic microorganisms has been divided, Artic benthic 

microfauna (Azovsky, 2002) and soil fungi (Peay et al., 2007) display a positive TAR, 

while flagellates show no biogeographic pattern at all (Fenchel, 2003, Finlay and 

Fenchel, 2004, Finlay, 2002).  While some have suggested that flagellate ubiquity should 

logically apply to Bacteria (Fenchel and Finlay, 2005), experiments examining 

biogeography in microbial communities have found evidence for TAR in nested sampling 

schemes in soil (Noguez et al., 2005, Zhou et al., 2008), salt marsh (Horner-Devine et al., 

2004), and alpine lakes (Reche et al., 2005).  Contrasted with the connected habitats of 
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soil and marshes, to date, only artificial ecosystems have been used to examined bacterial 

TAR in isolated habitats: simulated tree holes (Bell et al., 2005), machine-wells (van der 

Gast et al., 2005), and membrane bioreactors (van der Gast et al., 2006).  The tree hole 

and machine-well simulated islands studies removed much of the potential sampling bias 

by homogenizing the community before analyzing the sample, this action ensured that the 

sample analyzed represented the entire community rather than one portion of a spatially 

organized biomass.   

Terrestrial thermal springs are particularly suited to addressing the existence of a 

species area relationship in microbes because the diversity is low relative to soils or more 

temperate habitats and, owing to the inability of thermophiles to thrive at lower 

temperatures, a single thermal spring represents an isolated island.  The studies that best 

demonstrate that microbes can be biogeographically isolated have been done in thermal 

environments (Takacs-Vesbach et al., 2008, Papke et al., 2003, Whitaker et al., 2003). 

Given that little is known about the potential of thermophiles to disperse, examination of 

the taxa area relationship among thermal communities may provide clues about the 

dispersal and extinction rates of these organisms.  

The controls of microbial diversity in thermal springs are not well understood.  

Previous work suggested that the most obvious parameter to consider is temperature, 

although the geochemistry of the spring is also likely to be important.  For example, 

using thermodynamic calculations to model potential energy available from putative 

chemolithotrophic reactions (Shock et al., 2005, Amend and Shock, 2001), it was found 

that the energy available to communities is more dependent on the geochemistry of the 

water than the temperature of the spring (Amend et al., 2003) and that the energy 
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available has a stronger impact on microbial community composition than temperature or 

pH (Spear et al., 2005, Meyer-Dombard et al., 2005).  Both of these studies examined a 

relatively small number of springs compared to the number included in this study, we 

found pH to be the strongest controller of both the community present in a spring and in 

the types of metabolisms that are likely to yield significant energy in situ.  The 

contradictory results from studies examining the control of community by theoretical 

energetic calculations suggests that other factors that have not been examined, such as 

taxa-energy relationship, maybe influential among thermophilic communities. 

We conducted the first baseline inventory of microbial diversity throughout 

Yellowstone National Park (YNP).   Although the thermal features of YNP have been 

studied for over a century (Wondrak Biel, 2004), many investigations were limited to 

only a few springs, usually in the front country of the park (Ward et al., 1998, Barns et 

al., 1994, Hugenholtz et al., 1998a), or were focused on a specific lineage (Boomer et al., 

2002, Fishbain et al., 2003). We have analyzed bacterial richness in 79 thermal springs in 

order to identify factors that determine species richness and community structure in these 

systems.  Molecular analysis of such a diverse collection of samples enables us to explore 

relationships among species richness and environmental factors to determine patterns of 

diversity and distribution in terrestrial thermal systems.  In extreme environments the 

community is restricted to microbes and often, except in the cases of very acidic springs, 

overwhelmingly dominated by Bacteria (Hugenholtz et al., 1998b).  With the exception 

of invertebrates that inhabit the margins of springs, grazing may be unimportant; 

therefore abiotic factors are presumably critical biotic determinants. Specifically, we 
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determined if species richness in thermal systems is limited by temperature, island size, 

or energy available. 

3.  Methods and Materials 

 Site description and sampling 

      Samples were collected from thermal features throughout Yellowstone National 

Park, USA during the summers of 2003 and 2004.  Seventy-nine samples were analyzed 

that encompassed the full range of pH, temperature, and biomass types found in the park.  

Temperature and pH were measured using a Thermo Orion  290A+ meter.  Pool or spring 

size was measured in the field or digitized from color infrared aerial photos in ArcGIS 

9.1 (ESRI) and was calculated as cm2.  The samples were also categorized by the type of 

biomass collected: sediment, photosynthetic mat, filaments, or water.  Approximately 1-

2.5 ml of sample was collected at each site with either sterile forceps or a syringe.  Water 

samples were collected by filtering 0.6-1 L water through a 0.02 µm filter (Millipore) 

then preserving the filter as described below. 

Sample preservation and extraction 

Previously, we determined the most effective sample preservation and DNA 

extraction procedure to maximize the quality of DNA extracted and the diversity detected 

in the samples (Mitchell and Takacs-Vesbach, 2008).  Samples were collected from each 

spring and were preserved in an equal volume of sucrose lysis buffer (20 mM EDTA, 200 

mM NaCl, 0.75 M sucrose, 50 mM Tris-HCl, pH 9.0) (Giovannoni et al., 1990).  Samples 

were held at ambient temperature for up to five days before they were stored at –80 ºC.  

DNA was extracted using a modified CTAB extraction (Zhou et al., 1996).  

Briefly: 2 volumes of 1% CTAB buffer (1% CTAB, 0.75 M NaCl, 50 mM Tris pH 8, 10 
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mM EDTA) and proteinase K (final concentration 100 µg/ml) were added to the SLB 

preserved samples; incubated for one hour at 60°C, sodium dodecyl sulphate (SDS) (final 

concentration 2%) was added and incubated one hour at 60°C, extracted once with 

phenol/chloroform then twice with chloroform, finally the DNA was precipitated with 

ethanol.   

 Dilutions of the environmental genomic DNA were used as template DNA for 

PCR amplification of the 16S rDNA. The reaction included 1X Promega buffer with 1.5 

mM MgCl2, bovine serum albumin (0.04 % final, 2.5 U Taq DNA polymerase (Promega 

U.S.) 2.5% Igepal CA-630 (Sigma-Aldrich), 10 µM each dATP, dGTP, dCTP, dTTP 

(BioLine USA, Inc.), 20 µM Bacterial specific primers, 8F 

(AGAGTTTGATCCTGGCTCAG) and 1492R (GGTTACCTTGTTACACTT). The PCR 

reaction (50 µl) was incubated in a thermocycler (ABI GeneAmp 2700) for 5 minutes at 

94.0°C then for 30 cycles of 30 seconds at 94.0°C, 30 seconds at 50.0°C and 30 seconds 

at 72.0°C.  The reaction was incubated at 72.0°C for 7 minutes for final extension.  The 

PCR products were ligated and cloned using the TOPO TA pCR2.1 kit (Invitrogen).  

Species richness was determined for each 96-clone library by restriction fragment length 

polymorphism (RFLP) and sequencing of the unique clones (n=18) or by sequencing 

from the 5’ end (n=62).   

 Sequences were discarded if they were less than 250 bases long and were aligned 

using GreenGenes (DeSantis et al., 2006).  A distance matrix of the aligned sequences 

was calculated in ARB (Ludwig et al., 2003).  Dotur (Schloss et al., 2003) analysis on the 

distance matrix was used to determine 2% divergent OTUs, which we have used as a 

proxy for species (Stackebrandt, 2006), and Chao1 estimator of diversity. 



93 

Energetic Modeling 

 Total energy available to the communities was modeled based on the activities of 

chemical species and compounds measured from the environment (unpublished, available 

upon request) as described in Amend et al. (2003), Amend and Shock (2001), Shock et al. 

(2005).  Briefly:  the raw geochemical concentrations were speciated using the EQ3 

program (Lawrence Livermore National Laboratories).  The activities from this program 

were used to calculate the Gibbs free energy available in each spring for 179 reactions 

that may be microbially mediated and likely to occur in thermal springs (Shock et al., 

2005).  This calculation gave the amount of energy per mole of electron transferred.  We 

multiplied this value by the modeled concentration of the limiting reactant for each 

reaction, resulting in energy per kg of water.  Evaluating the energy available from a 

particular reaction by kJ per mole of electron transferred allows comparison of reactions 

by removing the impact of the size of the compound being reduced (e.g. directly 

comparing the energy from reduction of a small molecule, such as H2 by O2, which 

involves the transfer of two electrons, with the reduction of methane and iron II by sulfate 

where 56 electrons are transferred).  However, this study is concerned with comparing 

not reactions but springs.  In order to compare springs, it was necessary to express the 

energy available in kilograms of water rather that moles of electrons. 

Statistical Analysis  

Statistical analyses were performed using SPSS 11 (for Mac OS X).  The 

relationship between richness and environmental parameters was tested by general linear 

model (GLM) univariate analysis of variance, partial correlations, and linear regression 

analysis. GLM univariate analysis was used to detect statistical differences in species 
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richness (dependent variable) by pH, temperature, biomass type, spring area, and total 

energy available (fixed factors).  

Results 

The springs included in this study ranged in size from 3.5x101 to 2.4x106 cm2.  

Diversity in the springs ranged from 1 to 41 species. Total energy available to the 

communities based on our modeling ranged from 0.59 kJ – 31.6 kJ per kg water.  All 

possible combinations of partial correlations between species richness and island area, 

energy available, temperature, and pH were calculated.  None of these correlations were 

significant. Single and multiple regressions were also run using species richness as the 

dependent variable and all possible combinations of area, energy available, temperature 

and pH as the independent variables.  The r2 for these regressions ranged from 0 to 0.05 

(Fig. 4.1 and 4.2).  GLM univariate analysis was run with the same variables to confirm 

the lack of relationship.  Since samples collected from the hot springs represent very 

different sample and community types, we also ran the regressions species richness 

against area and energy available on subsets of the data by sample type (Fig.4.3) and 

community type as determined in Chapter 3 of this dissertation (Fig. 4.4).  Again there 

was no relationship between richness and either area or energy available.  Finally, since 

there were no relationships between the measured diversity and any of the parameters 

considered, we analyzed Chao1 estimators and area and energy.  There was still no 

positive taxa-area or taxa-energy pattern, even when attempting to correct for 

undersampling. 
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Discussion 

While there is still debate whether ecosystem size influences microbial species 

richness (Fenchel and Finlay, 2005), the consensus from the few previous field and 

experimental studies is that significant TAR relationships exist (Bell et al., 2005, Reche 

et al., 2005, Horner-Devine et al., 2004).  There are a number of inferences that can be 

made from these results, because they imply that extinction, immigration, and dispersal 

rates are not consistent among the sites sampled and that variability exists in the 

availability of niches.  This study is unique from the previous studies in several aspects; 

most importantly, the samples were collected from naturally separated sites opposed to 

the contiguous sampling or experimental microcosms of previous work.  Regardless of 

how the data were partitioned (whole data set, only high or low pH or temperature, 

community type, or sample type) we were unable to find any evidence for a taxa-area or 

taxa-energy relationship.  While it is possible that we didn’t detect taxa-area and taxa-

energy relationships because area and energy are not dominant controls on thermal 

communities, there are also a number of methodological constraints that could explain 

this. 

Gene surveys of microbial communities have greatly increased our knowledge of 

the extent of microbial diversity, however they are still only snapshots of the community.  

There is certainly a portion of the community that we did not detect because of the biases 

inherent in sample preservation, DNA extraction (Mitchell and Takacs-Vesbach, 2008), 

PCR and cloning bias (von Wintzingerode et al., 1997), and the sheer abundance of 
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Figure 4.1.  Scatter plots of species richness vs. A) island size and B) energy available for 

all samples. 
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Figure 4.2.  Scatter plots of species richness vs. A) island size and B) energy available for 

each sample type. 
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Figure 4.3. Scatter plots of species richness vs. island size for each community type 

 

Figure 4.4. Scatter plots of species richness vs. energy available for each community 

type. 
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 microbes in the environment (Sogin et al., 2006).  Theoretical simulations of microbial 

communities (Woodcock et al., 2006) showed that it is mathematically unlikely to detect 

a TAR by sampling a community using techniques such as clone libraries or 

fingerprinting techniques, which either grossly undersample the community, or have a 

high detection limit, respectively.  A recent study utilizing a microarray chip to sample 

soil communities, a technique which samples more individuals than either clone libraries 

or fingerprinting, found positive, but variable, TAR across phylogenetic groups (Zhou et 

al., 2008).  Future technological developments are likely to make it possible to gain a 

much more in depth view of many communities. To date however, methods such as 

whole community sequencing are not practical for the large numbers of samples needed 

to examine the species area relationship. 

Another consideration that may explain our results is the sampling scheme.  

While we collected samples that spanned the range of temperature and pH found in each 

thermal area, approximating the range of pool sizes proved more difficult. We compared 

the median size of the pools that we included in this study with the median size of pools 

selected by a stratified (by geographic area then pH) random sampling scheme of the 

14,000 springs previously inventoried by the park service (A. Rodman personal 

communication).  The median size of pools in this study is 9.8 x 103 cm2, while the 

median size of the randomly selected pools was 6.6 x 103 cm2.  If the results described 

here are caused by the sampled pools being too large, i.e. only mainlands were included, 

it would be possible to survey more springs with the specific aim of reflecting the size 

range of pools not just the temperature and pH. 
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Finally, the work presented here represents the widest survey for bacteria that 

inhabit the hot springs in Yellowstone.  Even so, each pool is represented by a single 

sample collected at a single point in time.  The hot springs are generally thought to be 

relatively homogenous communities due to convective mixing. Interestingly, the sample 

type that should be the best mixed and represents the largest volume sampled was the 

filtered water samples (0.6 – 1 L water was filtered compared to 1-2.5 ml of the other 

sample types), which exhibited a strong negative relationship between richness and area 

(r2 = 0.451).  More extensive sampling of each pool is likely to reveal more diversity.  

Increased sampling of the pools by taking samples at several different time points would 

also be useful in determining if the small island effect is what we are seeing, to determine 

how stable the communities are across time, and if they are at equilibrium or experience 

increases in diversity followed by mass extinction of most of the community.  While it is 

always desirable to have more samples across more spatial and temporal scales, current 

methods are still too expensive and time consuming.  

Undersampling and uneven sampling of the communities present likely explain 

the lack of a TAR in these thermal springs.  However, even if we were able accurately 

measure the richness of the springs, a taxa-energy relationship may not have been 

detectable.  The direction and mechanism of the relationship between richness and energy 

are not known.  A meta-analysis of productivity and richness found a mix of positive, 

negative, unimodal, and no relationship in plants and animals (Waide et al., 1999).  The 

few microbial studies are equally mixed, unimodal in grassland fungal communities 

(Waldrop et al., 2006), increase in richness with the addition of benzoate in soil 

(Langenheder and Prosser, 2008), and no relationship between richness of sulfate 
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reducing bacteria or methanogens with the addition of carbon in coastal sediment 

(Edmonds et al., 2008).  One mesocosm experiment found different relationships 

depending on the phyla; unimodal response for CFB, U-shaped for α-Proteobacteria, and 

no relationship for β-Proteobacteria (Horner-Devine et al., 2003).  

It is also possible that we failed to detect any strong correlations among our 

parameters because we are comparing very different systems.  For example, our samples 

included acidic springs, which are likely dominated by Archaea (Reysenbach et al., 

1994), and compared them to photosynthetic mats, and chemoautotrophic communities.  

To control for this possibility we performed regression analyses on portions of the 

dataset, i.e. only including the samples with temperatures above 70°C and partial 

correlation analysis, i.e. correlation between richness and temperature controlling for pH.  

However, results of subset regressions and partial correlations did not differ from the 

whole dataset analysis.   

 Thermal springs are inhabited by species that are by necessity, specifically 

adapted to high temperature ecosystems.  Presumably, these populations are adapted to 

the conditions of a particular spring type and have a competitive advantage over other 

potential invaders. Because of the extreme temperatures and pH of these systems, 

combined with their geographic separation, colonization would be restricted and thus 

mortality or extinction would be high.  Furthermore, any traces of inferior competitors 

presumably are degraded rapidly. The application of taxa-area and –energy theory to 

microbial populations is very intriguing, although how appropriate it is to 

microorganisms is not yet clear. The power of this theory in studying thermal areas may 



102 

be its ability to help us identify and understand non-equilibrium conditions in these 

environments. 
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Chapter 5 

 

Summary  

 

 This study is the first Yellowstone (YNP) wide survey for microbial diversity 

undertaken using molecular techniques.  The most striking result of this work is that pH 

is shown to be much more important in determining the resident microbial community 

than temperature.  In addition to expanding the known distribution of many organisms, 

we found sequences belonging to 14 new candidate phyla.  

The structure of thermophilic microbial communities depends on the type of 

community.  The Thermocrinis/Thermus communities are a higher temperature subset of 

the Phototroph communities, which is not a very surprising finding because the two 

communities can be observed, macroscopically, inhabiting the same spring.  The 

Sulfurihydrogenibium community is unique in its very low species level diversity.  

However, we have shown using these communities, that there is a strong biogeographical 

pattern to the diversity of Sulfurihydrogenibium at finer phylogenetic scales across YNP.  

This could indicate that the Sulfurihydrogenibium has high ecotype diversity, allowing 

them to fill many of the niches present in a spring and out competing other organisms.  

The structure of Hydrogenobaculum and Proteobacteria/Bacteriodetes communities are 

not as clear.  Although, given the high levels of metals common in those springs, it is 

possible that the structure of those groups is controlled by tolerance of their environment 

rather than rapid growth or resource utilization that may be displayed by the 

Sulfurihydrogenibium. 
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The geochemistry has allowed us to examine the importance of a wide variety of 

abiotic factors that could potentially control the microbial communities in the springs.  

By examining a wide range of geochemistries from this large set of springs, we expected 

to find correlations between the microbial inhabitants and the abiotic conditions of the 

sites. Surprisingly, the raw geochemical concentrations were not useful in grouping the 

samples.  Therefore we modeled the energy available to a system based on Gibbs free 

energy calculations of energy available from putatively biological relevant redox 

reactions.  Oxygen and hydrogen concentrations are necessary for most of the reactions 

that we modeled, however we do not have measured O2 or H2 so we modeled the range of 

concentrations found in YNP springs.  It appears, that for the reactions modeled, as long 

as there is a small amount of O2 or H2 available the reactions will proceed and yield 

essentially the same amount of energy.  The Thermocrinis/Thermus, Phototroph, and 

Sulfurihydrogenibium samples clustering together and separate from the 

Hydrogenobaculum and Proteobacteria/Bacteriodetes samples.  Another pattern that is 

apparent in all seven models is that the Hydrogenobaculum and 

Proteobacteria/Bacteriodetes group do not form an amorphic cluster, but rather a line. 

Four measured parameters seem to be driving this relationship, sulfate, aluminum, and 

lead concentrations increase as pH decreases across this ordination line. 

Finally, I found no evidence for a taxa-area or taxa-energy relationship in these 

communities.  However, potential undersampling of the extremely diverse sample types 

preclude us from making strong conclusions from this result.  Thermal springs are 

inhabited by species that are, by necessity, specifically adapted to high temperature 

ecosystems.  Presumably, these populations are adapted to the conditions of a particular 



 

 109 

spring type and have a competitive advantage over other potential invaders. Because of 

the extreme temperatures and pH of these systems, combined with their geographic 

separation, colonization would be restricted and thus mortality or extinction would be 

high.  Furthermore, any traces of inferior competitors presumably are degraded rapidly. 

The application of taxa-area and taxa-energy theory to microbial populations is very 

intriguing, although how appropriate it is to microorganisms is not yet clear. The power 

of this theory in studying thermal areas may be its ability to help us identify and 

understand non-equilibrium conditions in these environments. 



Sample ID 03YMAM001 03YMAM002 03YWSH003 03YWSH004 03YWSH005 03YNOR006

Date 6/2/03 6/2/03 6/3/03 6/3/03 6/3/03 6/5/03
Temperature 73.5 70.0 84.8 84.5 69.0 82.9
pH 6.43 6.64 6.50 6.61 3.04 3.31
Conductivity 2230 2260 2150 2050 4460 1015
DO 0 0 0 0 0 0
DOC 0 0.0 16.8 20.8 10.1 0
Ca 290.00 280.00 19.00 19.00 38.40 4.01
K 56.00 55.00 14.00 13.00 14.20 45.70
Na 110.00 120.00 39.99 38.63 28.60 223.00
Mg 65.00 67.00 9.60 11.00 18.90 24.30
Alkalinity as HCO3- 781.5 709.4 168.2 144.6 BD BD
SO4 546.0 564.0 830.0 783.0 2049.0 153.7
Cl 163.00 163.00 0.86 0.82 5.81 329.71
Al 0.003 0.003 0.039 0.098 BD 4.000
As 0.1860 0.4920 0.0028 0.0028 0.0004 0.0500
As(III) 0.1860 0.4920 0.0025 0.0030 0.0000 0.0500
Ba 0.0550 0.0530 0.0670 0.0630 BD 0.0100
Be 0.00140 0.00110 BD BD BD 0.00300
Cd BD BD BD BD BD BD
Co BD BD BD BD BD BD
Cu 0.00220 0.00220 0.00270 0.00210 BD BD
Fe 0.008 0.018 BD 0.012 14.900 0.010
Fe(II) 0.007 0.018 BD 0.010 14.900 0.010
Li 1.6000 1.6000 0.0170 0.0160 0.0400 0.9000
Mn 0.0190 0.0150 0.1100 0.1300 0.7120 BD
Ni BD BD BD BD 0.0050 BD
P BD BD 1.0000 1.1000 3.0000 BD
Pb BD BD BD 0.0001 BD BD
Sb 0.0004 0.0002 0.0003 0.0003 BD 0.0010
Se 0.0023 0.0021 0.0002 0.0002 BD 0.0001
SiO2 51.0 50.0 178.0 152.0 233.0 390.0
Sr 1.6000 1.4000 0.1500 0.1600 0.2010 0.0800
V BD BD 0.0036 0.0130 0.0330 BD
Zn 0.0023 0.0022 0.0038 0.0042 0.0810 0.0010
NH4 0.71 0.73 281.00 263.00 571.00 1.00
NO3 BD BD BD 0.14700 BD BD
H2S BD BD 2.5250 2.0708 4.5625 0.0219
F 3.2200 2.6500 0.5240 0.8700 0.3220 1.0000
Br 0.6100 0.5880 0.1020 0.1020 0.1020 0.0100
NO2 0.0128 0.0106 0.1215 0.0204 0.0005 ND
Cr BD BD 0.0016 0.0018 BD BD
Cs 0.1800 0.1700 0.0027 0.0020 BD BD
Mo 0.0015 0.0006 0.0007 0.0007 BD BD

Northing 4979165.3 4979335.9 4956962.3 4956993.1 4956978.2 4951893.9
Easting 522886.6 523209.3 545084.6 4956993.1 545101.3 523198.8

Table A1. Geochemical measurements
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Sample ID 03YNOR007 03YNOR008 03YNOR009 03YNOR010 03YMUD011 03YMUD012

Date 5/31/03 5/31/03 6/5/03 6/1/03 6/5/03 6/5/03
Temperature 73.0 71.7 90.5 36.7 74.3 34.8
pH 3.61 7.46 6.10 3.31 1.68 1.89
Conductivity 1175 2370 2150 1469 6725 5350
DO 0 0 0 0 0 0

DOC 0 0 0 0.3 8.1 4.3
Ca 4.30 3.10 ND 2.58 53.00 40.00
K 54.00 65.00 BD 18.20 26.00 28.00
Na 190.13 398.01 ND 211.00 16.00 74.00
Mg 0.50 0.05 ND 0.05 14.00 22.00
Alkalinity as HCO3- BD 49.1 ND BD BD BD
SO4 267.0 65.5 ND 71.4 3172.0 1323.0
Cl 144.00 559.00 ND 411.00 2.72 100.00
Al 2.000 0.750 BD BD 120.000 37.000
As 0.0844 2.5500 ND 0.0760 0.0034 0.0166
As(III) 0.0112 2.4200 ND 0.0760 0.0031 0.0124
Ba 0.0650 0.0180 BD BD 0.0860 0.0490
Be 0.00790 0.00340 BD BD 0.00890 0.00120
Cd BD BD BD BD 0.00039 0.00009
Co 0.00003 BD BD BD 0.00480 0.00600
Cu 0.00250 0.00180 BD BD 0.00280 0.00340
Fe 1.270 0.261 ND 0.271 24.800 21.100
Fe(II) 0.972 0.259 ND 0.268 24.600 15.000
Li 0.9500 5.6000 BD BD 0.0300 0.0320
Mn 0.2600 0.0160 BD BD 0.7800 1.4000
Ni BD BD BD BD 0.0180 0.0190
P BD 0.0064 BD BD 0.2400 0.2000
Pb 0.0001 0.0001 BD BD 0.0150 0.0014
Sb 0.0029 0.1100 BD BD 0.0002 0.0002
Se 0.0018 0.0067 BD BD BD 0.0012
SiO2 309.0 389.0 400.0 152.0 456.0 247.0
Sr 0.0083 0.0092 BD BD 0.2500 0.3900
V BD BD BD BD 0.0460 0.0280
Zn 0.0140 0.0065 BD BD 0.2000 0.0520
NH4 1.05 0.64 ND 0.86 0.89 4.51
NO3 BD 6.15700 ND 0.11000 0.27900 BD
H2S BD BD 0.1537 BD BD 0.0016
F 4.8000 4.7100 ND 2.1600 2.7900 0.6240
Br 0.5130 1.8200 ND 1.2000 0.1020 0.3700
NO2 0.0022 0.0016 ND BD BD BD
Cr BD BD BD BD 0.0510 0.0450
Cs 0.0830 0.4200 BD BD 0.0095 0.0038
Mo 0.0063 0.1100 BD BD 0.0005 0.0006

Northing 4952118 4952119 4952350 4952901 4941783 4941233
Easting 523592 523114 523266 522783 544980 545083
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Sample ID 03YLOW013 03YLOW014 03YLOW015 03YLOW016 03YLOW017 03YLOW018

Date 6/6/03 6/6/03 6/6/03 6/6/03 6/6/03 6/6/03
Temperature 94.7 84.0 75.9 67.6 62.0 57.6
pH 8.84 8.91 8.96 9.05 9.09 9.14
Conductivity 1350 1391 1422 1431 1454 1481
DO 0 0 0 0 0 0

DOC 0.4 0 0 0 0 0
Ca 0.34 ND BD BD BD BD
K 12.40 BD 9.80 10.00 BD 10.10
Na 305.42 ND 302.00 302.00 281.00 302.00
Mg BD ND BD BD BD BD
Alkalinity as HCO3- 376.5 306.8 310.1 313.0 314.8 319.3
SO4 19.5 15.3 15.7 16.2 16.3 16.5
Cl 235.00 266.00 266.00 262.00 256.00 266.00
Al 0.290 BD BD BD BD BD
As 1.0400 1.0600 1.0800 1.1400 1.1400 1.1600
As(III) 0.4760 1.0600 1.0800 1.1400 1.1400 1.1600
Ba 0.0003 BD BD BD BD BD
Be 0.00110 BD BD BD BD BD
Cd BD BD BD BD BD BD
Co BD BD BD BD BD BD
Cu 0.00110 BD BD BD BD BD
Fe 0.006 0.006 0.006 0.004 0.004 0.004
Fe(II) 0.004 0.005 0.005 0.004 0.003 0.003
Li 1.6000 BD BD BD 1.6200 1.6800
Mn BD BD BD BD BD BD
Ni BD BD BD BD 0.0030 0.0020
P BD BD BD BD BD BD
Pb BD BD BD BD BD BD
Sb 0.0370 BD BD BD BD BD
Se 0.0024 BD BD BD BD BD
SiO2 354.0 276.0 304.0 249.0 244.0 294.0
Sr 0.0003 BD BD BD BD BD
V 0.0002 BD BD BD BD BD
Zn 0.0008 BD BD BD BD BD
NH4 0.63 0.36 0.40 0.58 0.36 0.35
NO3 0.27000 BD BD BD BD BD
H2S 0.4595 ND 0.2303 0.1841 0.1438 0.1044
F 25.2000 ND 26.7000 28.0000 28.2000 28.7000
Br 0.8370 ND 0.8770 0.8930 0.8750 0.9100
NO2 0.2391 ND 0.0010 0.0013 0.0010 0.0012
Cr BD ND BD BD BD BD
Cs 0.0660 ND BD BD BD BD
Mo 0.0200 ND BD BD BD BD

Northing 4934624 4934624 4934624 4934624 4934624 4934624
Easting 511119 511119 511119 511119 511119 511119
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Sample ID 03YLOW019 03YNOR020 03YNOR021 03YNOR022 03YGIB023 03YGIB024

Date 6/6/03 6/12/03 6/13/03 6/13/03 6/16/03 6/17/03
Temperature 54.0 70.5 84.5 59.2 73.8 62.4
pH 9.19 6.76 4.34 3.00 8.51 6.73
Conductivity 1481 1947 2130 1972 2230 875
DO 0 0 0 0 0 0

DOC 0 0 0.3 0.6 0.0 0.3
Ca BD 2.10 4.30 2.20 2.80 3.20
K 10.50 40.00 44.00 50.00 16.00 20.00
Na 309.00 328.93 382.24 265.79 457.34 160.54
Mg BD 0.11 0.02 0.06 BD 0.01
Alkalinity as HCO3- 317.9 20.6 BD BD 115.3 202.3
SO4 16.6 43.8 73.3 139.0 107.0 90.6
Cl 263.00 488.00 599.00 399.00 537.00 69.80
Al BD 0.086 0.910 2.300 0.079 0.160
As 1.1600 2.1000 2.1600 0.2000 2.4560 0.1800
As(III) 1.1600 0.6100 2.1600 0.2000 0.9210 0.0110
Ba BD 0.0130 0.0190 0.0750 0.0028 0.0044
Be BD 0.00360 0.00380 0.00370 0.00390 0.00100
Cd BD BD BD BD BD BD
Co BD BD BD BD BD BD
Cu BD 0.00230 0.00140 0.00200 0.00210 0.00300
Fe 0.005 0.243 0.033 0.743 0.020 0.002
Fe(II) 0.003 0.100 0.031 0.738 0.017 BD
Li 1.7000 3.4000 3.8000 3.9000 6.1000 0.4800
Mn BD 0.0400 0.0031 0.0072 0.0012 0.0094
Ni 0.0020 BD BD 0.0002 BD BD
P BD BD 0.0020 0.0085 0.0040 0.0066
Pb BD 0.0001 BD 0.0002 0.0001 0.0001
Sb BD 0.0600 0.0600 0.0034 0.1200 0.0120
Se BD 0.0052 0.0072 0.0056 0.0069 0.0017
SiO2 308.0 409.0 396.0 237.0 222.0 253.0
Sr BD 0.0088 0.0140 0.0140 0.0028 0.0041
V BD BD BD BD BD BD
Zn BD 0.0071 0.0160 0.0470 0.0820 0.0800
NH4 0.47 0.34 7.19 0.73 0.58 0.20
NO3 BD BD BD BD BD BD
H2S 0.0753 0.0312 0.3266 6.3083 0.0227 0.0065
F 28.6000 6.4000 8.7000 4.6400 18.9000 11.0000
Br 0.9050 1.7600 2.0100 1.3800 1.7600 0.3020
NO2 0.0012 0.0095 0.0029 0.0050 0.0050 0.1503
Cr BD BD BD BD BD BD
Cs BD 0.3100 0.4300 0.3000 0.4800 0.0400
Mo BD 0.1100 0.1000 0.0023 0.0870 0.0034

Northing 4934624 4952739 4953268 4953213 4948812 4950750
Easting 511119 523505 522980 523295 520790 525170
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Sample ID 03YLOW025 03YLOW026 03YLOW027 03YLOW028 03YVIO029 03YGAB030

Date 6/6/03 6/6/03 6/18/03 6/18/03 6/23/03 6/24/03
Temperature 83.4 91.0 86.2 64.2 68.5 54.2
pH 8.68 8.83 8.43 3.20 2.18 7.12
Conductivity 1512 1520 1487 494 4220 1010
DO 0 0 0 0 0 0

DOC 0 0 0.1 1.6 3.1 0
Ca 1.15 0.86 1.20 2.60 3.30 13.00
K 14.31 12.16 12.00 25.00 16.00 38.00
Na 337.00 316.00 323.20 45.16 9.10 >400
Mg BD BD 0.01 0.90 2.30 2.80
Alkalinity as HCO3- 210.0 220.0 210.1 BD BD 78.2
SO4 36.7 27.7 28.8 126.0 1350.0 191.0
Cl 301.82 297.12 320.00 34.50 2.86 98.30
Al BD BD 0.120 2.400 36.000 0.038
As 1.5093 1.1598 1.1200 0.4090 0.0100 0.2240
As(III) 1.5093 1.1440 1.1100 0.1970 0.0080 0.0100
Ba BD BD 0.0044 0.0850 0.0670 0.0360
Be BD BD 0.00160 0.00370 0.00200 0.00130
Cd BD BD BD 0.00004 0.00009 0.00007
Co BD BD BD 0.00008 0.00300 0.00002
Cu BD BD 0.00260 0.00300 0.00300 0.00190
Fe 0.037 0.036 0.002 6.440 19.000 0.017
Fe(II) 0.037 0.036 0.002 6.420 18.900 0.017
Li 2.8845 3.1133 2.0000 0.4100 0.0100 0.8000
Mn BD BD 0.0004 0.1400 0.1300 0.3400
Ni BD BD BD 0.0004 0.0110 BD
P BD BD 0.0099 0.0280 0.1400 0.0200
Pb 0.0011 BD 0.0001 0.0006 0.0038 0.0001
Sb BD BD 0.0780 0.0064 0.0002 0.0009
Se BD BD 0.0043 0.0007 0.0000 0.0016
SiO2 253.1 244.8 265.0 263.0 213.0 153.0
Sr BD BD 0.0085 0.0220 0.1300 0.0400
V BD BD BD 0.0014 0.0330 0.0007
Zn BD BD 0.1000 0.1500 0.0520 0.0380
NH4 0.16 0.30 0.32 0.73 7.87 BD
NO3 BD BD BD BD BD BD
H2S BD BD 0.0789 0.9250 2.6333 ND
F BD BD 35.6000 4.0000 0.5156 9.7800
Br BD BD 1.1000 0.2030 BD 0.3810
NO2 BD BD 0.0026 0.0010 0.0019 0.0300
Cr BD BD BD BD 0.0320 BD
Cs BD BD 0.2900 0.1400 0.0060 0.1100
Mo BD BD 0.0630 0.0034 0.0007 0.0160

Northing 4934192 4934123 4934078 4934044 4944381 4940181
Easting 513275 513196 513246 513372 534054 532693
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Sample ID 03YGAB031 03YHHS032 03YVIO033 03YCOF034 03YCOF035 03YJOS036

Date 6/24/03 6/24/03 6/25/03 7/3/03 7/3/03 7/4/03
Temperature 79.4 77.1 57.9 66.2 65.2 52.4
pH 6.29 2.16 7.21 6.26 5.75 6.15
Conductivity 1273 311 1185 831 555 152
DO 0 0 0 0 0 0

DOC 0.0 2.0 0.1 0.9 10.4 0.0
Ca 19.00 2.30 13.00 1.40 5.60 14.00
K 41.00 27.00 59.00 8.30 10.00 46.00
Na >400 23.76 286.02 5.06 26.76 108.84
Mg 1.10 0.37 6.70 0.13 2.60 0.76
Alkalinity as HCO3- 269.5 BD 368.3 75.3 7.8 379.5
SO4 136.0 1080.0 319.0 252.0 195.0 27.6
Cl 192.00 2.69 92.80 1.04 0.93 2.86
Al 0.016 23.000 0.005 0.150 0.360 0.004
As 0.3000 0.0020 0.3740 BD 0.0020 0.0010
As(III) 0.1780 0.0010 0.2200 BD 0.0010 BD
Ba 0.0530 0.0300 0.1300 0.0360 0.0350 0.2300
Be 0.00730 0.00370 0.00340 0.00005 0.00078 0.00350
Cd 0.00024 0.00007 BD BD BD BD
Co 0.00000 0.00032 BD BD 0.00004 BD
Cu 0.00250 0.00400 0.00180 0.00220 BD BD
Fe 0.232 6.430 0.708 0.021 5.420 0.008
Fe(II) 0.155 6.130 0.043 0.020 5.420 0.007
Li 0.8800 0.0120 1.1000 0.0022 0.0470 0.2700
Mn 0.8800 0.1400 0.2600 0.0320 0.2000 0.2500
Ni BD 0.0010 BD BD 0.0004 BD
P 0.0056 0.0240 0.0320 0.0000 0.0140 0.0079
Pb 0.0002 0.0042 BD BD BD BD
Sb 0.0003 0.0001 0.0006 0.0001 0.0001 BD
Se 0.0029 0.0000 0.0011 BD BD BD
SiO2 188.0 292.0 275.0 111.0 91.0 159.0
Sr 0.0290 0.0170 0.0630 0.0099 0.0460 0.1800
V BD 0.0010 BD BD 0.0005 BD
Zn 0.0280 0.0760 0.1100 0.0130 0.0570 0.0026
NH4 BD 0.88 0.78 103.00 39.00 7.64
NO3 BD BD BD BD BD BD
H2S ND 0.1074 BD 0.3918 0.0921 10.2917
F 12.1000 0.3310 13.2000 0.7440 0.9020 7.1000
Br 0.6310 BD 0.3380 BD BD BD
NO2 0.0107 0.0011 0.0150 0.0040 0.0033 0.0026
Cr BD BD BD BD BD BD
Cs 0.0620 0.0025 0.0380 0.0014 0.0024 0.0200
Mo 0.0660 0.0013 0.0070 0.0006 0.0003 0.0002

Northing 4940631 4939241 4944084 4955829 4955984 4954215
Easting 532910 530202 535431 554762 554771 552568
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Sample ID 03YJOS037 03YJOS038 03YHSB039 03YHSB040 03YHSB041 03YHSB042

Date 7/5/03 7/5/03 7/8/03 7/8/03 7/9/03 7/9/03
Temperature 89.6 67.3 55.4 80.0 82.4 64.5
pH 2.66 6.04 3.42 2.63 6.11 5.90
Conductivity 1136 1680 337 2220 786 1678
DO 0 0 0 0 0 0

DOC 1.4 0.0 2.5 1.4 3.4 0.6
Ca 7.20 46.00 2.00 10.00 8.50 20.00
K 30.00 62.00 10.00 66.00 11.00 53.22
Na 26.99 225.42 14.32 86.46 10.28 139.01
Mg 1.50 4.70 0.92 2.80 0.94 3.90
Alkalinity as HCO3- BD 144.0 BD BD 100.7 39.9
SO4 505.0 242.0 101.0 1070.0 232.0 701.0
Cl 1.87 299.00 0.90 2.49 1.65 1.97
Al 5.100 0.006 1.100 4.400 0.890 0.067
As 0.0290 1.2400 0.0020 0.0510 0.0930 BD
As(III) 0.0250 1.2400 0.0010 0.0350 0.0910 BD
Ba 0.0340 0.0590 0.0610 0.0420 0.2700 0.0640
Be 0.00450 0.00220 0.00054 0.00350 0.00016 0.00052
Cd 0.00020 BD BD 0.00006 0.00002 BD
Co 0.00027 BD 0.00003 0.00010 0.00100 BD
Cu 0.00054 0.00160 0.00280 0.00084 0.00480 0.00320
Fe 6.250 0.023 0.433 9.450 0.020 0.007
Fe(II) 6.230 0.022 0.431 9.440 0.019 0.007
Li 0.0150 1.8000 0.0066 0.0160 0.0070 0.0340
Mn 0.2500 0.8400 0.0320 0.1600 0.0900 0.2400
Ni 0.0014 BD 0.0003 0.0007 0.0028 BD
P 0.0120 0.0070 0.0010 0.0270 0.1300 0.0640
Pb 0.0003 BD 0.0002 0.0008 0.0049 BD
Sb 0.0004 0.0004 BD 0.0002 0.0008 BD
Se BD 0.0035 BD BD 0.0023 BD
SiO2 197.0 134.0 155.0 223.0 171.0 234.0
Sr 0.0850 0.3500 0.0300 0.0900 0.1300 0.1800
V 0.0016 BD 0.0008 0.0034 0.0009 0.0005
Zn 0.1300 0.0370 0.0093 0.0790 0.0130 0.0390
NH4 19.20 24.80 2.80 95.80 91.30 49.10
NO3 BD BD BD BD BD BD
H2S 0.2842 BD 4.0750 BD 4.6083 4.6500
F 0.6310 2.6500 0.2690 0.7810 0.4120 1.1700
Br BD 1.0100 BD BD BD BD
NO2 0.0007 0.0006 0.0004 0.0005 0.0228 0.0006
Cr BD BD BD BD BD BD
Cs 0.0062 0.0810 0.0016 0.0150 0.0046 0.0270
Mo 0.0002 0.0001 0.0002 0.0002 0.0013 0.0001

Northing 4954164 4954349 4954641 4955418 4955955 4955653
Easting 553377 553828 559724 558907 558511 558889
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Sample ID 03YRNB043 03YRNB044 03YMRY045 03YMRY046 03YMRY047 03YMKL048

Date 7/10/03 7/10/03 8/6/03 8/7/03 8/7/03 8/10/03
Temperature 73.3 54.5 69.3 86.6 80.7 48.9
pH 6.23 3.23 7.68 6.80 4.32 2.00
Conductivity 1500 1415 2230 434 1260 5660
DO 0 0 0 0 0 0

DOC 0.4 0.6 0.0 4.9 0 31.3
Ca 21.00 16.00 6.20 11.00 6.00 34.00
K 59.00 78.00 19.00 12.00 4.20 37.00
Na 277.02 102.58 463.46 66.32 4.60 37.85
Mg 8.60 5.20 0.01 6.70 4.00 13.00
Alkalinity as HCO3- 296.1 BD 82.6 53.7 BD BD
SO4 340.0 638.0 157.0 130.0 542.0 2611.0
Cl 99.80 6.73 588.00 9.03 3.67 1.35
Al 0.004 16.000 0.057 0.260 0.047 110.000
As 0.2190 0.1980 1.8700 0.0050 0.0380 0.0240
As(III) 0.2110 0.0390 0.0900 BD 0.0250 0.0240
Ba 0.0730 0.0360 0.0044 0.0940 0.0400 0.0550
Be 0.00120 0.01000 0.00310 BD 0.00022 0.00220
Cd BD 0.00025 BD BD 0.00006 0.00018
Co BD 0.00140 BD BD BD 0.00780
Cu BD 0.00350 BD 0.00094 0.00098 0.00170
Fe 0.009 BD 0.001 0.003 1.400 48.200
Fe(II) 0.009 BD BD 0.003 0.359 48.200
Li 0.5500 0.2700 6.2000 0.0730 0.0047 0.0220
Mn 0.2300 0.2800 0.0006 0.0170 0.1300 0.5000
Ni BD 0.0070 BD BD 0.0005 0.0310
P 0.0190 0.0190 0.0010 0.1100 0.0170 1.6000
Pb BD 0.0001 BD BD 0.0005 0.0071
Sb BD 0.0001 0.0910 0.0005 0.0017 BD
Se 0.0015 BD 0.0083 0.0006 BD 0.0006
SiO2 393.0 259.0 276.0 148.0 237.0 200.0
Sr 0.1300 0.2800 0.2700 0.1200 0.0190 1.1000
V 0.0003 0.0140 0.0028 0.0007 0.0009 0.1000
Zn 0.0500 0.1300 0.0330 0.0250 0.0670 0.0950
NH4 13.46 49.70 BD 2.69 BD 184.24
NO3 BD BD 0.15000 0.16000 0.23000 0.18000
H2S 0.1035 0.0019 BD 0.5926 1.1750 0.2602
F 2.5700 2.1600 18.2800 0.9100 0.2500 0.3000
Br 0.3500 BD 2.3500 0.1000 BD BD
NO2 0.0205 0.0014 BD 0.0377 BD 0.0025
Cr BD 0.0050 BD BD BD 0.1500
Cs 0.0440 0.0510 0.6200 0.0029 0.0071 0.0180
Mo 0.0009 0.0002 0.0810 0.0021 0.0006 0.0003

Northing 4957515 4957520 4929959 4933541 4933572 4942771
Easting 557702 557675 557393 555331 555234 561100

117



Sample ID 03YMKL049 04YAPT001 04YGIB002 04YWNR003 04YWNR004 04YCRT005

Date 8/10/03 6/3/04 6/7/04 6/8/04 6/8/04 6/9/04
Temperature 72.3 70.8 62.3 80.0 57.0 77.1
pH 4.35 2.20 7.17 2.76 7.07 2.59
Conductivity 1170 2250 1772 890 1821 3550
DO 0 0 0 0 0 0

DOC 1.7 0 0 0 0 0
Ca 46.00 7.24 3.95 6.83 10.10 13.90
K 23.00 33.00 21.90 11.90 9.73 85.10
Na 137.64 52.57 310.06 16.75 339.48 355.25
Mg 19.00 2.40 0.09 1.87 0.10 10.40
Alkalinity as HCO3- BD BD 55.0 BD 110.0 BD
SO4 571.0 684.0 107.0 241.0 41.0 840.0
Cl 1.82 8.12 385.00 1.26 405.00 440.00
Al 0.430 17.200 0.302 3.890 0.136 22.900
As 0.0020 0.0600 2.0500 BD 1.4900 2.7400
As(III) 0.0010 0.0360 0.0500 BD 0.3080 2.3520
Ba 0.0830 0.0168 0.0119 0.0823 0.0121 0.0185
Be 0.00025 0.00190 0.00100 0.00170 0.00320 0.00770
Cd BD 0.00004 0.00009 0.00008 0.00023 0.00034
Co 0.00003 0.00023 0.00004 0.00007 0.00003 0.00020
Cu 0.00063 0.00060 BD BD BD 0.00091
Fe 0.264 3.720 0.147 0.582 0.008 2.140
Fe(II) 0.252 3.720 0.010 0.582 0.008 2.140
Li 0.0720 0.0450 3.0700 0.0286 0.3960 2.6300
Mn 0.2900 0.1300 0.0187 0.2410 0.0631 0.8060
Ni BD 0.0012 BD 0.0006 BD 0.0023
P 0.1300 BD BD BD BD BD
Pb 0.0001 0.0006 0.0001 0.0004 BD 0.0004
Sb BD 0.0013 0.1180 BD 0.0535 0.0073
Se BD BD 0.0048 BD 0.0046 0.0066
SiO2 282.0 313.0 200.0 130.0 263.0 409.0
Sr 1.1000 0.0228 0.0054 0.0213 0.0161 0.1600
V 0.0007 0.0040 BD BD BD 0.0151
Zn 0.0780 0.0475 0.0142 0.0294 0.0069 0.0824
NH4 33.06 3.29 BD 4.45 0.59 13.83
NO3 BD BD 0.61000 BD 0.12000 BD
H2S 1.6250 2.0333 BD 0.6485 BD 0.7500
F 0.5000 0.7830 13.6000 0.7200 23.1000 15.4000
Br BD BD 1.2400 BD 1.3600 1.3700
NO2 0.0013 BD BD BD BD BD
Cr BD BD BD BD BD 0.0042
Cs 0.0091 0.0116 0.4820 0.0013 0.0725 0.4330
Mo 0.0003 BD 0.0798 BD 0.2130 0.0038

Northing 4942444 4960849 4948840 4954627 4953947 4944663
Easting 531365 521453 520782 520321 520343 540925
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Sample ID 04YCRT006 04YUPP007 04YLST008 04YLST009 04YLST010 04YLST011

Date 6/9/04 6/14/04 6/15/04 6/15/04 6/15/04 6/16/04
Temperature 79.9 53.2 56.3 79.0 73.6 60.5
pH 2.47 8.23 5.69 3.08 7.90 3.04
Conductivity 2310 1059 1025 562 1253 914
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 32.20 2.87 6.69 2.90 3.86 2.50
K 20.40 31.50 27.30 16.50 10.80 27.00
Na 38.91 205.99 188.94 10.38 208.17 57.68
Mg 13.40 0.07 0.34 0.66 0.15 0.44
Alkalinity as HCO3- BD 311.0 121.0 BD 55.0 BD
SO4 813.0 9.4 35.3 140.0 16.5 142.0
Cl 2.99 126.00 200.00 2.22 277.00 73.60
Al 11.400 0.029 0.087 1.960 0.249 3.060
As 0.0170 0.6510 0.3180 0.0060 0.8740 0.0470
As(III) 0.0130 0.0140 0.2740 0.0030 0.2550 0.0300
Ba 0.0686 0.0027 0.0384 0.0980 0.0094 0.0924
Be 0.00270 0.00050 0.00430 0.00200 0.00050 0.00160
Cd 0.00012 0.00002 BD 0.00008 0.00012 0.00003
Co 0.00432 BD BD 0.00034 0.00007 0.00006
Cu 0.00083 BD BD 0.00054 BD BD
Fe 12.400 BD 0.051 0.691 0.015 1.320
Fe(II) 12.400 BD 0.050 0.641 0.004 1.200
Li 0.0410 1.1600 0.8930 0.0555 1.1000 0.0779
Mn 0.7040 0.0463 0.2250 0.1750 0.0308 0.0822
Ni 0.0231 BD BD 0.0006 BD BD
P BD BD BD BD BD BD
Pb 0.0014 BD BD 0.0052 0.0002 0.0013
Sb BD 0.0213 0.0007 BD 0.0775 BD
Se BD 0.0023 0.0026 BD 0.0037 BD
SiO2 391.0 269.0 226.0 167.0 184.0 222.0
Sr 0.0870 0.0021 0.0178 0.0135 0.0088 0.0153
V 0.0104 BD BD BD 0.0010 BD
Zn 0.1280 0.0060 0.0034 0.0629 0.0057 0.0394
NH4 8.81 BD 0.16 2.16 BD 0.67
NO3 0.12700 0.10700 BD 0.16200 0.16300 BD
H2S BD BD 2.5833 BD 0.0213 0.0863
F 0.5060 20.6000 11.0000 0.3900 16.0000 1.3500
Br BD 0.4390 0.6630 BD 0.9270 0.3190
NO2 BD BD BD BD BD BD
Cr 0.0062 BD BD BD BD BD
Cs 0.0128 0.0559 0.1150 0.0210 0.2660 0.0320
Mo BD 0.0240 BD BD 0.1180 0.0020

Northing 4944569 4925316 4918176 4917990 4918086 4919243
Easting 540856 511887 515216 514898 515156 515189
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Sample ID 04YUPP012 04YUPP013 04YMID014 04YMID015 04YMID016 04YFOR017

Date 6/17/04 6/17/04 6/22/04 6/22/04 6/22/04 6/23/04
Temperature 78.4 60.3 74.6 78.7 67.6 45.9
pH 8.80 9.02 8.47 4.28 6.48 2.30
Conductivity 2260 2260 1475 298 363 2690
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 0.71 0.60 1.00 1.80 0.60 17.30
K 24.10 24.60 14.30 22.90 14.40 15.40
Na 413.81 459.98 330.60 38.66 72.92 26.07
Mg BD BD BD 0.09 0.04 10.80
Alkalinity as HCO3- 407.0 610.0 380.0 BD 53.0 BD
SO4 19.1 17.7 13.8 113.0 103.0 678.0
Cl 379.00 303.00 260.00 1.66 1.78 1.80
Al 0.554 0.212 0.142 1.340 0.023 11.500
As 1.8600 1.5000 1.5000 0.0020 0.0060 0.0340
As(III) 0.2200 0.0340 0.4500 0.0010 0.0010 0.0290
Ba 0.0026 0.0027 0.0048 0.0190 0.0094 0.0514
Be 0.00140 0.00160 0.00160 0.00220 0.00060 0.00290
Cd 0.00006 0.00005 0.00004 0.00003 BD 0.00007
Co 0.00002 0.00002 0.00002 0.00009 BD 0.00344
Cu BD BD BD BD BD BD
Fe BD 0.005 0.004 0.271 0.003 8.890
Fe(II) BD BD 0.004 0.219 BD 8.890
Li 3.3000 2.4600 2.8900 0.0531 0.1630 0.0933
Mn 0.0005 0.0012 0.0052 0.0800 0.0182 0.5010
Ni BD BD BD BD BD 0.0118
P BD BD BD BD 0.0001 0.0002
Pb BD 0.0001 0.0001 0.0004 0.0001 0.0024
Sb 0.1130 0.0607 0.0886 BD 0.0008 0.0033
Se 0.0052 0.0035 0.0034 BD BD BD
SiO2 416.0 370.0 239.0 253.0 202.0 205.0
Sr 0.0038 0.0025 0.0030 0.0029 0.0017 0.1890
V 0.0019 0.0007 0.0007 BD BD 0.0123
Zn 0.0097 0.0092 0.0074 0.0313 0.0505 0.0518
NH4 0.00 0.00 0.43 5.28 0.06 0.68
NO3 BD BD 0.11300 0.15100 BD 0.16100
H2S 0.2555 0.0032 0.0339 0.0379 0.0066 BD
F 36.0000 34.8000 26.2000 4.3000 6.4100 0.8900
Br 1.2500 0.9740 0.8200 BD BD BD
NO2 BD BD BD BD BD BD
Cr BD BD BD BD BD 0.0073
Cs 0.4780 0.1540 0.3500 0.0039 0.0185 0.0595
Mo 0.0568 0.0542 0.0308 0.0032 0.0097 BD

Northing 4923398 4923083 4928875 4928382 4929579 4951164
Easting 513006 511515 514754 515181 515456 541478

120



Sample ID 04YFOR018 04YSMH019 04YSMH020 04YSMH021 04YSMH022 04YSMH023

Date 6/23/04 6/29/04 6/29/04 6/29/04 6/29/04 6/30/04
Temperature 79.4 72.7 55.8 82.7 48.2 71.1
pH 2.61 3.08 4.05 8.00 8.62 2.91
Conductivity 892 1528 1538 1798 2170 1101
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 9.98 55.40 88.80 0.82 7.56 5.66
K 10.80 44.40 30.00 58.60 59.20 78.40
Na 13.75 132.60 152.53 362.51 411.04 73.35
Mg 10.10 20.60 29.10 BD 0.02 3.36
Alkalinity as HCO3- BD BD BD 207.0 88.0 BD
SO4 408.0 399.0 306.0 109.0 191.0 317.0
Cl 44.10 176.00 272.00 380.00 470.00 57.80
Al 17.100 2.140 0.263 0.117 0.106 2.730
As 0.0370 0.1710 0.2000 1.5300 2.2300 0.1840
As(III) 0.0310 0.0040 0.0050 1.5300 0.6610 0.0650
Ba 0.1230 0.0413 0.0730 0.0223 0.0160 0.0568
Be 0.00310 0.00200 0.00090 0.00060 0.00060 0.00430
Cd 0.00051 0.00005 0.00008 0.00005 0.00004 0.00006
Co 0.00279 0.00120 0.00293 BD 0.00004 0.00056
Cu 0.00056 0.00065 0.00090 BD BD BD
Fe 9.070 0.263 0.009 0.026 0.021 4.429
Fe(II) 9.070 0.039 0.003 0.026 0.021 2.723
Li 0.0458 0.4670 0.6110 2.6200 3.4700 0.4640
Mn 0.3530 0.7340 1.0700 0.0003 0.0020 0.1230
Ni 0.0112 0.0044 0.0100 BD BD 0.0022
P 0.0001 BD BD BD BD BD
Pb 0.0006 0.0001 BD BD 0.0001 0.0003
Sb 0.0011 0.0031 0.0006 0.1080 0.1240 0.0084
Se BD 0.0021 0.0035 0.0049 0.0062 0.0016
SiO2 239.0 220.0 190.0 530.0 180.0 227.0
Sr 0.0735 0.5570 1.0100 0.0302 0.2690 0.0682
V 0.0373 BD BD 0.0028 BD BD
Zn 0.2000 0.0478 0.0308 0.0146 0.0042 0.0417
NH4 6.86 14.63 16.90 2.20 1.74 11.84
NO3 0.30300 3.66000 37.00000 BD 0.44900 0.13500
H2S 1.2500 0.0144 BD 3.1667 0.0589 0.0068
F 0.9170 1.3500 0.5180 13.9000 14.1000 1.9400
Br BD 0.6380 0.9070 1.4200 1.5600 0.2830
NO2 BD BD 0.0530 0.0010 0.0230 0.0010
Cr 0.0093 BD BD BD BD BD
Cs 0.0130 0.0407 0.0480 0.2680 0.4460 0.0456
Mo BD BD BD 0.0542 0.0412 BD

Northing 4951135 4955776 4955891 4955514 4955139 4955678
Easting 541480 546216 546235 546142 546463 546136
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Sample ID 04YSMH024 04YLEW025 04YLEW026 04YSMJ027 04YSMJ028 04YSMJ029

Date 6/30/04 7/7/04 7/7/04 7/13/04 7/13/04 7/13/04
Temperature 69.7 59.0 77.0 56.2 87.8 67.7
pH 7.21 7.68 7.51 3.20 2.39 1.94
Conductivity 2050 0 0 567 1264 4470
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 47.10 5.04 3.41 2.80 0.91 0.72
K 26.10 14.00 20.20 34.80 10.20 7.89
Na 335.39 108.19 136.67 29.70 3.89 5.81
Mg 9.93 0.09 0.04 0.28 0.17 0.19
Alkalinity as HCO3- 172.0 172.0 170.0 BD BD BD
SO4 161.0 11.5 40.0 158.0 427.0 1930.0
Cl 457.00 47.00 78.00 1.91 1.65 2.96
Al 0.006 0.013 0.048 1.340 11.400 153.000
As 3.7000 BD BD BD 0.0070 BD
As(III) 3.6450 BD BD BD 0.0050 BD
Ba 0.0473 0.0227 0.0038 0.0899 0.0320 0.0352
Be 0.00010 0.00330 0.00430 0.00380 0.00110 0.00120
Cd BD BD BD 0.00002 0.00005 0.00013
Co 0.00005 BD BD BD 0.00009 0.00075
Cu BD BD BD BD BD 0.00190
Fe 0.017 0.016 0.012 2.272 1.456 2.088
Fe(II) 0.017 0.005 0.003 0.539 1.417 0.990
Li 1.8900 0.4740 0.5300 0.0178 0.0060 0.0063
Mn 0.2130 0.5640 0.0940 0.1580 0.0489 0.0134
Ni 0.0009 BD BD BD 0.0004 0.0013
P BD BD BD BD BD BD
Pb BD 0.0001 BD 0.0008 0.0059 0.0059
Sb 0.0142 0.0007 0.0066 BD BD 0.0003
Se 0.0047 BD 0.0016 0.0011 BD 0.0010
SiO2 187.0 177.0 254.0 271.0 226.0 332.0
Sr 0.9600 0.0068 0.0040 0.0064 0.0032 0.0037
V BD BD BD BD 0.0006 0.0104
Zn 0.0044 0.0164 0.0081 0.0423 0.0427 0.0296
NH4 21.89 0.06 BD 0.51 4.82 10.30
NO3 0.12400 0.14900 0.12200 0.81700 BD BD
H2S 1.1667 0.0031 0.0035 0.0030 0.1489 0.0663
F 1.9800 17.4000 15.2000 1.9700 0.4640 BD
Br 1.5300 BD 0.3340 BD BD BD
NO2 0.0020 0.0010 0.0490 0.0010 0.0010 BD
Cr BD BD BD BD BD 0.0111
Cs 0.2020 0.0319 0.0740 0.0029 0.0012 0.0008
Mo BD 0.0095 BD BD BD BD

Northing 4955775 4906902 4906562 4917244 4918771 4918667
Easting 547166 527874 527512 503295 503338 503762
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Sample ID 04YSMJ030 04YVMS031 04YVMS032 04YWST033 04YWST034 04YHRT035

Date 7/13/04 7/15/04 7/15/04 7/25/04 7/25/04 7/27/04
Temperature 54.6 50.2 59.7 67.5 77.5 50.9
pH 2.43 2.69 2.64 8.14 7.66 3.03
Conductivity 2130 1073 1056 1190 1912 503
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 0.57 2.62 2.49 0.54 0.68 0.82
K 12.50 14.00 14.50 12.20 19.40 12.70
Na 34.77 15.81 24.45 261.31 425.69 8.81
Mg 0.08 1.08 0.99 0.04 0.03 0.28
Alkalinity as HCO3- BD BD BD 400.0 526.0 BD
SO4 72.1 331.0 299.0 24.6 49.6 112.0
Cl 1.33 13.00 25.20 148.00 291.00 0.75
Al 1.190 33.400 24.600 0.109 0.159 0.769
As BD 0.2260 0.1520 1.0000 1.7500 0.0040
As(III) BD 0.0540 0.1320 0.2510 0.0530 0.0030
Ba 0.0097 0.0271 0.0146 0.0027 0.0046 0.1680
Be 0.00040 0.00080 0.00070 0.00330 0.00230 0.00020
Cd BD 0.00005 0.00002 0.00005 0.00010 0.00004
Co BD 0.00044 0.00007 BD 0.00004 0.00032
Cu BD BD BD BD BD 0.00180
Fe 0.042 7.776 5.293 0.009 0.005 0.815
Fe(II) 0.041 0.068 5.252 0.002 0.003 0.350
Li 0.0446 0.2070 0.2880 1.6700 2.5700 0.0246
Mn 0.0128 0.0364 0.0352 0.0174 0.0027 0.0221
Ni BD 0.0023 0.0008 BD BD 0.0008
P BD BD BD 0.0001 BD BD
Pb BD BD 0.0001 BD BD 0.0007
Sb BD 0.0016 0.0013 0.0561 0.1320 0.0006
Se 0.0010 BD 0.0014 0.0021 0.0036 BD
SiO2 223.0 177.0 190.0 251.0 288.0 135.0
Sr 0.0019 0.0260 0.0180 0.0010 0.0054 0.0084
V BD 0.0081 0.0086 BD 0.0008 BD
Zn 0.0038 0.0420 0.0382 0.0084 0.0144 0.0209
NH4 0.12 2.24 2.63 0.39 0.74 5.63
NO3 BD BD BD BD 0.80400 BD
H2S 2.4167 BD 1.3333 0.0075 0.0115 BD
F 3.1300 0.9270 1.1700 17.4000 35.4000 0.1680
Br BD BD BD 0.5460 0.9010 BD
NO2 0.0010 BD BD 0.0010 0.0160 0.0020
Cr BD 0.0036 0.0113 BD BD BD
Cs 0.0020 0.0191 0.0244 0.0736 0.3610 0.0037
Mo BD BD 0.0033 0.0511 0.1130 BD

Northing 4918098 4936869 4936772 4918651 4918148 4905990
Easting 503550 554437 554318 534025 534155 537694
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Sample ID 04YHRT036 04YHRT037 04YHRT038 04YHRT039 04YHRT040 04YSHO041

Date 7/27/04 7/27/04 7/27/04 7/27/04 7/28/04 8/3/04
Temperature 84.8 61.1 57.8 69.3 67.4 77.0
pH 9.06 9.15 8.63 8.93 3.05 6.49
Conductivity 1660 900 1522 1500 464 1122
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 1.37 1.93 1.35 0.89 0.38 0.70
K 30.60 11.30 8.56 12.00 2.34 21.10
Na 343.88 194.73 334.58 329.81 2.90 242.58
Mg BD 0.02 0.01 0.02 0.12 0.02
Alkalinity as HCO3- 251.0 128.0 279.0 254.0 BD 251.0
SO4 146.0 82.5 127.0 104.0 125.0 50.2
Cl 271.00 145.00 250.00 196.00 0.81 165.00
Al 0.159 0.074 0.172 0.206 2.390 0.050
As 1.0600 0.5910 1.1000 0.4460 0.0010 0.4000
As(III) 1.0520 0.2480 0.0380 0.1380 BD 0.4220
Ba 0.0016 0.0022 0.0018 0.0025 0.0541 0.0170
Be 0.00130 0.00030 0.00090 0.00090 0.00020 0.00260
Cd 0.00007 0.00004 0.00006 0.00006 BD BD
Co BD BD BD BD 0.00010 BD
Cu BD BD BD BD BD BD
Fe 0.008 0.003 0.010 0.009 0.419 0.018
Fe(II) 0.006 0.002 0.007 0.005 0.256 0.016
Li 3.1600 2.0200 2.6700 3.4800 0.0014 0.5330
Mn 0.0004 0.0003 0.0005 0.0010 0.0100 0.0209
Ni BD BD BD BD BD BD
P BD BD BD BD BD BD
Pb BD BD BD BD 0.0004 BD
Sb 0.0556 0.0276 0.0436 0.0415 BD 0.0031
Se 0.0024 0.0016 0.0024 0.0020 BD 0.0039
SiO2 308.0 160.0 235.0 177.0 116.0 256.0
Sr 0.0177 0.0144 0.0285 0.0107 0.0027 0.0013
V 0.0020 0.0008 0.0045 0.0031 BD BD
Zn 0.0105 0.0102 0.0125 0.0115 0.0225 0.0038
NH4 BD BD BD BD 4.52 0.41
NO3 BD 0.39100 1.35000 0.25700 BD 0.10200
H2S 0.6542 0.0751 BD 0.0345 0.0451 4.5833
F 28.0000 16.0000 21.3000 18.6000 0.1690 25.3000
Br 1.0400 0.5460 0.8380 0.6620 BD 0.5490
NO2 0.0130 0.0060 0.1170 0.0220 0.0020 0.0010
Cr BD BD BD BD BD BD
Cs 0.3130 0.1390 0.3290 0.2860 0.0008 0.0295
Mo 0.0800 0.0447 0.0706 0.0731 BD BD

Northing 4905827 4905824 4905025 4904299 4906448 4910921
Easting 538071 538066 538545 539046 537266 516276
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Sample ID 04YSHO042 04YSHO043 04YSHO044 04YSHO045 04YSHO046 04YBEC047

Date 8/3/04 8/3/04 8/3/04 8/3/04 8/3/04 8/5/04
Temperature 53.8 91.5 72.5 59.4 80.9 80.4
pH 3.78 7.84 8.49 8.39 8.32 6.82
Conductivity 1397 1273 1402 1316 1365 1276
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 0.35 0.71 0.62 0.69 0.71 4.82
K 15.60 12.30 13.80 14.20 12.10 10.20
Na 276.77 302.14 326.21 299.26 314.30 317.94
Mg 0.04 BD BD 0.01 BD 0.08
Alkalinity as HCO3- BD 443.0 460.0 427.0 382.0 640.0
SO4 238.0 42.0 35.9 32.6 34.4 21.9
Cl 244.00 141.00 174.00 156.00 200.00 77.40
Al 4.340 0.195 0.311 0.250 0.098 0.011
As 0.5480 0.5550 0.6000 0.5050 0.8240 0.2000
As(III) 0.5150 0.5510 0.4820 0.0330 0.8200 0.0060
Ba 0.0474 0.0038 0.0008 0.0016 0.0029 0.0095
Be 0.00030 0.00190 0.00160 0.00170 0.00140 0.00210
Cd 0.00002 0.00003 0.00011 0.00005 0.00006 0.00004
Co 0.00004 BD BD BD BD BD
Cu 0.00063 0.00390 0.00058 BD BD BD
Fe 0.386 0.013 0.005 0.026 0.010 0.006
Fe(II) 0.385 0.004 0.001 0.018 0.007 0.002
Li 0.9530 1.2300 1.3800 1.2900 0.9360 1.0400
Mn 0.0075 0.0047 0.0012 0.0051 0.0119 0.0192
Ni BD BD BD BD BD BD
P BD BD BD BD BD BD
Pb 0.0001 0.0001 BD 0.0001 BD BD
Sb 0.0015 0.0176 0.0269 0.0229 0.0347 0.0007
Se 0.0041 0.0035 0.0042 0.0049 0.0076 0.0078
SiO2 248.0 248.0 275.0 256.0 292.0 189.0
Sr 0.0018 BD BD 0.0008 0.0006 0.0084
V BD BD BD BD BD BD
Zn 0.0072 0.0086 0.0060 0.0074 0.0070 0.0172
NH4 2.07 0.41 0.40 BD 0.48 BD
NO3 BD 0.12200 1.05000 BD BD BD
H2S 5.8333 0.3982 0.0716 BD 0.2426 0.0200
F 21.8000 21.9000 23.9000 22.1000 26.3000 19.9000
Br 0.7860 0.5180 0.5160 0.5380 0.6600 0.3280
NO2 0.0010 0.0010 0.0030 0.0050 0.0030 0.0190
Cr BD BD BD BD BD BD
Cs 0.0094 0.1180 0.1580 0.1380 0.0838 0.0695
Mo 0.0126 0.0246 0.0536 0.0452 0.0641 0.0250

Northing 4911458 4911373 4910969 4910990 4910962 4903817
Easting 516234 516107 515602 515628 515877 508033
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Sample ID 04YBEC048 04YBEC049 04YBEC050 04YBEC051 04YBEC052 04YCAS053

Date 8/5/04 8/6/04 8/6/04 8/6/04 8/6/04 8/13/04
Temperature 51.7 59.6 80.6 90.8 51.6 78.3
pH 6.75 8.37 7.81 7.72 8.28 8.08
Conductivity 528 1152 1003 1148 706 841
DO 0 0 0 0 0 0

DOC 0 0 0 0 0 0
Ca 4.61 1.88 3.81 4.69 3.71 2.89
K 9.96 11.90 13.10 9.89 6.12 7.90
Na 112.00 256.91 223.36 279.54 163.24 177.06
Mg 0.08 0.03 0.02 0.04 0.11 0.08
Alkalinity as HCO3- 269.0 518.0 454.0 584.0 334.0 274.0
SO4 7.7 25.0 21.2 19.4 12.3 9.9
Cl 24.60 79.50 69.90 63.20 35.50 96.20
Al 0.003 0.050 0.045 0.032 0.042 0.041
As 0.0420 0.2120 0.1780 0.2000 0.0920 0.3030
As(III) 0.0010 0.0200 0.1540 0.1510 0.0010 0.0060
Ba 0.0198 0.0018 0.0013 0.0039 0.0025 0.0010
Be 0.00160 0.00190 0.00410 0.00370 0.00250 0.00020
Cd 0.00005 BD BD BD BD 0.00004
Co BD BD BD BD BD BD
Cu BD BD BD BD BD BD
Fe 0.003 0.012 0.037 0.021 0.009 0.004
Fe(II) 0.001 0.009 0.027 0.013 0.004 0.002
Li 0.3500 1.0900 0.9580 0.8660 0.5050 0.9810
Mn 0.0003 0.0119 0.0269 0.0469 0.0192 0.0047
Ni BD BD BD BD BD BD
P BD BD BD BD BD BD
Pb BD 0.0001 BD BD BD BD
Sb 0.0005 0.0116 0.0090 0.0065 0.0035 0.0014
Se 0.0075 0.0097 0.0105 0.0106 0.0094 0.0096
SiO2 147.0 195.0 171.0 162.0 103.0 223.0
Sr 0.0108 0.0045 0.0021 0.0092 0.0099 0.0014
V BD BD BD BD BD 0.0034
Zn 0.0227 0.0053 0.0191 0.0054 0.0064 0.0037
NH4 0.05 BD BD BD BD 0.04
NO3 0.19900 0.13100 BD BD BD BD
H2S 0.0180 0.0248 0.0654 0.2656 BD 0.0285
F 10.7000 16.9000 14.9000 16.9000 11.0000 21.1000
Br BD 0.3130 BD BD BD 0.3890
NO2 0.0010 0.0020 0.0060 0.0020 0.0030 0.0010
Cr BD BD BD BD BD 0.0113
Cs 0.0116 0.1040 0.1000 0.0865 0.0471 0.1120
Mo 0.0072 0.0037 0.0035 0.0024 BD 0.0513

Northing 4904047 4903652 4903642 4903776 4903753 4902337
Easting 508687 509668 509696 509756 509770 498469
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Sample ID 04YCAS054 04YCAS055

Date 8/13/04 8/14/04
Temperature 55.9 52.6
pH 8.44 5.63
Conductivity 871 160
DO 0 0

DOC 0 0
Ca 3.65 6.77
K 7.60 6.89
Na 193.47 22.21
Mg 0.09 1.00
Alkalinity as HCO3- 281.0 66.0
SO4 10.0 11.2
Cl 102.00 1.38
Al 0.031 0.295
As 0.3000 BD
As(III) 0.0080 BD
Ba 0.0014 0.0139
Be 0.00020 0.00270
Cd 0.00005 BD
Co BD BD
Cu 0.00053 BD
Fe 0.010 0.086
Fe(II) 0.004 0.075
Li 0.9750 0.1220
Mn 0.0235 0.8860
Ni BD BD
P BD BD
Pb BD BD
Sb 0.0011 BD
Se 0.0113 BD
SiO2 235.0 94.8
Sr 0.0020 0.0088
V BD BD
Zn 0.0095 0.0072
NH4 0.07 BD
NO3 BD BD
H2S BD BD
F 22.5000 6.2000
Br 0.3860 BD
NO2 0.0090 BD
Cr BD BD
Cs 0.1170 0.0061
Mo 0.0482 BD

Northing 4902339 4905566
Easting 498484 496746
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).
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CO(aq)+1/2 O2(aq)+H2O→HCO3
-+H+   (2)                      41.6 41.6 41.6 41.6 43.2 43.2 43.2 43.2 44.4 44.4 44.7 44.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CO+1/2 O2→CO2   (2) 41.6 41.6 41.6 41.6 43.2 43.2 43.2 43.2 44.4 44.4 44.7 44.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2HS-+Fe+2+1/2 O2→PYRITE+2H++H2O   (2)              159.1 159.1 159.1 159.1 160.7 160.7 160.7 160.7 162.0 162.0 162.4 162.4

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
H2+1/2 O2→H2O   (2) 96.6 96.6 101.6 103.1 98.1 100.2 103.1 104.6 99.3 101.3 99.6 101.6

88.0 88.0 93.9 95.7 89.7 92.2 95.7 97.5 91.1 93.6 91.5 93.9
2MAGNETITE+1/2 O2+3H2O→6GOETHITE   (2)            102.1 102.1 102.1 102.1 103.6 103.6 103.6 103.6 104.7 104.7 105.1 105.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S+3/2 O2+H2O→SO4

-2+2H+   (6) 103.4 103.4 103.4 103.4 105.2 105.2 105.2 105.2 106.6 106.6 107.0 107.0
85.4 85.4 85.4 85.4 87.0 87.0 87.0 87.0 88.2 88.2 88.5 88.5

2MAGNETITE+1/2 O2→3HEMATITE   (2)                  98.7 98.7 98.7 98.7 100.2 100.2 100.2 100.2 101.3 101.3 101.6 101.6
94.3 94.3 94.3 94.3 96.0 96.0 96.0 96.0 97.4 97.4 97.8 97.8

CH4+2O2→HCO3
-+H++H2O   (8) 41.7 41.7 41.7 41.7 43.2 43.2 43.2 43.2 44.4 44.4 44.8 44.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH4+2O2→CO2+2H2O   (8) 41.7 41.7 41.7 41.7 43.2 43.2 43.2 43.2 44.4 44.4 44.8 44.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH4+3/2 O2→CO+2H2O   (6) 41.7 41.7 41.7 41.7 43.2 43.2 43.2 43.2 44.5 44.5 44.8 44.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2H++SO4

-2→HS-+2O2   (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-102.0 -102.4 -102.4 -102.4 -104.1 -104.1 -104.1 -104.1 -105.5 -105.5 -105.9 -105.9

PYRITE+7/2 O2+H2O→2SO4
-2+Fe+2+2H+   (14)    95.7 95.7 95.7 95.7 97.5 97.5 97.5 97.5 98.9 98.9 99.3 99.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fe+2+1/4 O2+3/2 H2O→GOETHITE+2H+   (1)     105.7 105.7 105.7 105.7 107.2 107.2 107.2 107.2 108.4 108.4 108.7 108.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2Fe+2+1/2 O2+2H2O→HEMATITE+4H+   (2)           104.8 104.8 104.8 104.8 106.3 106.3 106.3 106.3 107.5 107.5 107.8 107.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3Fe+2+1/2 O2+3H2O→Fe3O4+6H+   (2)       108.3 108.3 108.3 108.3 109.8 109.8 109.8 109.8 111.0 111.0 111.4 111.4

-24.4 -24.4 -24.4 -24.4 -22.7 -22.7 -22.7 -22.7 -21.4 -21.4 -21.0 -21.0
HS-+1/2 O2→S+H2O   (2) 106.8 106.8 106.8 106.8 108.3 108.3 108.3 108.3 109.5 109.5 109.9 109.9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CO(aq)+NO3

-+H2O→HCO3
-+NO2

-+H+   (2)   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6

CO(aq)+NO3
-→CO2(aq)+NO2

-   (2)      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-63.7 -63.7 -63.7 -63.7 -63.7 -63.7 -63.7 -63.7 -63.7 -63.7 -63.7 -63.7
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).

0.1 m
g/L O

2 

2  nM
 H

2

0.1 m
g/L O

2 

10  nM
 H

2

0.1 m
g/L O

2 

100
  nM

 H
2

0.1 m
g/L O

2

325
  nM

 H
2

0.5 m
g/L O

2

2  nM
 H

2

0.5 m
g/L O

2 

10 nM
 H

2

0.5 m
g/L O

2

100 nM
 H

2

0.5 m
g/L O

2

325 nM
 H

2

3 m
g/L O

2 

2 nM
 H

2

3 m
g/L O

2

10 nM
 H

2

6 m
g/L O

2 

2 nM
 H

2

6 m
g/L O

2 

10 nM
 H

2

2HS-+NO3
-+Fe+2→PYRITE+NO2

-+2H++H2O   (2)       102.9 102.9 102.9 102.9 102.9 102.9 102.9 102.9 102.9 102.9 102.9 102.9
-83.6 -83.6 -83.6 -83.6 -83.6 -83.6 -83.6 -83.6 -83.6 -83.6 -83.6 -83.6

4CO(aq)+NO3
-+5H20→4HCO3

-+NH4
++2H+   (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5 -29.5
2MAGNETITE+NO3

-+H2O→6GOETHITE+NO2
-
   (2)       286.8 286.8 286.8 286.8 286.8 286.8 286.8 286.8 286.8 286.8 286.8 286.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S+3NO3

-+H2O→SO4
-2+3NO2

-+2H+   (6) 52.2 52.2 52.2 52.2 52.2 52.2 52.2 52.2 52.2 52.2 52.2 52.2
-100.0 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5

2MAGNETITE+NO3
-→3HEMATITE+NO2

-   (2)   45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.3 45.3
-88.2 -88.2 -88.2 -88.2 -88.2 -88.2 -88.2 -88.2 -88.2 -88.2 -88.2 -88.2

3NO2
-+CO+2H2O→3NO3

-+CH4   (6) 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5 63.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CH4+4NO3
-→HCO3

-+4NO2
-+H++H2O   (8)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-63.5 -63.5 -63.5 -63.5 -63.5 -63.5 -63.5 -63.5 -63.5 -63.5 -63.5 -63.5
NH4

++4CO2→NO3
-+4CO+2H++H2O   (8)         29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.6

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NO3

-+H2→NO2
-+H2O   (2) 41.4 41.4 46.8 48.5 41.4 43.6 46.8 48.5 41.4 43.6 41.4 43.6

-91.2 -91.2 -86.0 -84.4 -91.2 -89.0 -86.0 -84.4 -91.2 -89.0 -91.2 -89.0
CH4+4NO3

-→CO2+4NO2
-+2H2O   (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6 -63.6
3CO(aq)+NO2-+4H2O→3HCO3

-+NH4++H+   (6)      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-29.4 -29.1 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4

8HS-+NO3
-+4Fe+2→4PYRITE+NH4

++6h++3H2O   (8)   105.8 105.8 105.8 105.8 105.8 105.8 105.8 105.8 105.8 105.8 105.8 105.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PYRITE+7NO3
-+H2O→Fe+2+2SO4

-2+7NO2
-+H2O   (14) 44.5 44.5 44.5 44.5 44.5 44.5 44.5 44.5 44.5 44.5 44.5 44.5

-102.0 -101.7 -101.7 -101.7 -101.7 -101.7 -101.7 -101.7 -101.7 -101.7 -101.7 -101.7
HS-+4NO3

-→SO4
-2+4NO2

-+2H+    (8) 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2 51.2
-99.4 -99.4 -99.4 -99.4 -99.4 -99.4 -99.4 -99.4 -99.4 -99.4 -99.4 -99.4

NH4
++3CO2→NO2

-+3CO+2H++H2O   (6)        29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NO3
-+4H2+2H+→NH4

++3H2O   (8)        43.3 43.3 48.5 50.1 43.3 45.4 48.5 50.1 43.3 45.4 43.3 45.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8MAGNETITE+NO3
-+2H++13H2O→24GOETHITE+NH4

+   (8)   48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6HS-+NO2
-+3Fe+2→3PYRITE+NH4

++4H++2H2O   (6)        114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5 114.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).

0.1 m
g/L O

2 

2  nM
 H

2

0.1 m
g/L O

2 

10  nM
 H

2

0.1 m
g/L O

2 

100
  nM

 H
2

0.1 m
g/L O

2

325
  nM

 H
2

0.5 m
g/L O

2

2  nM
 H

2

0.5 m
g/L O

2 

10 nM
 H

2

0.5 m
g/L O

2

100 nM
 H

2

0.5 m
g/L O

2

325 nM
 H

2

3 m
g/L O

2 

2 nM
 H

2

3 m
g/L O

2

10 nM
 H

2

6 m
g/L O

2 

2 nM
 H

2

6 m
g/L O

2 

10 nM
 H

2

4S+3NO3
-+7H2O→4SO4

-+3NH4
++2H+   (24)    56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8MAGNETITE+NO3

-+2H++H2O→12HEMATITE+NH4
+   (8)   47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fe+2+2S+H2O→PYRITE+2H++1/2 O2   (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-89.9 -89.9 -89.9 -89.9 -91.5 -91.5 -91.5 -91.5 -92.8 -92.8 -93.2 -93.2
2Fe+2+NO3

-+3H2O→2GOETHITE+NO2
-+4H+   (2)           51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0

-140.0 -140.3 -140.3 -140.3 -140.3 -140.3 -140.3 -140.3 -140.3 -140.3 -140.3 -140.3
CH4+NO3

-+H+→HCO3
-+NH4

+   (8)             0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4

NO2
-+3H2+2H+→NH4

++2H2O   (6)                    58.3 58.3 63.5 65.1 58.3 60.4 63.5 65.1 58.3 60.4 58.3 60.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2Fe+2+NO3
-+2H2O→HEMATITE+NO2

-+4H+   (2)              50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4 50.4
-141.0 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2 -141.2

NH4
++CO2+H2O→NO3

-+CH4+2H+   (8)          29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6MAGNETITE+NO2
-+2H++10H2O→18GOETHITE+NH4

+   (6)      63.9 63.9 63.9 63.9 63.9 63.9 63.9 63.9 63.9 63.9 63.9 63.9
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S+NO2
-+2H2O→SO4

-2+NH4
+    (6) 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6MAGNETITE+NO2

-+2H++H2O→9HEMATITE+NH4
+   (6)   61.8 61.8 61.8 61.8 61.8 61.8 61.8 61.8 61.8 61.8 61.8 61.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3NH4

++4CO+5H2O→3NO3
-+4CH4+6H+   (24)             29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4 29.4

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3CH4+4NO2

-+5H++H2O→3HCO3
-+4NH4

+   (24)         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-29.3 -29.0 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3

2S+CO(aq)+Fe+2+2H2O→PYRITE+HCO3
-+3H+   (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2
3CH4+4NO2

-+8H+→3CO2+4NH4
++2H2O   (24)        0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-29.3 -29.1 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3 -29.3
HS-+NO3

-+H2O→SO4
-2+NH4

+   (8) 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4PYRITE+7NO3
-+6H++11H2O→4Fe+2+8SO4

-2+7NH4
+   (56) 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9 48.9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3Fe+2+NO3

-+3H2O→MAGNETITE+NO2
-+6H+   (2)   52.9 52.9 52.9 52.9 52.9 52.9 52.9 52.9 52.9 52.9 52.9 52.9

-168.0 -167.7 -167.7 -167.7 -167.7 -167.7 -167.7 -167.7 -167.7 -167.7 -167.7 -167.7
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).

0.1 m
g/L O

2 

2  nM
 H

2

0.1 m
g/L O

2 

10  nM
 H

2

0.1 m
g/L O

2 

100
  nM

 H
2

0.1 m
g/L O

2

325
  nM

 H
2

0.5 m
g/L O

2

2  nM
 H

2

0.5 m
g/L O

2 

10 nM
 H

2

0.5 m
g/L O

2

100 nM
 H

2

0.5 m
g/L O

2

325 nM
 H

2

3 m
g/L O

2 

2 nM
 H

2

3 m
g/L O

2

10 nM
 H

2

6 m
g/L O

2 

2 nM
 H

2

6 m
g/L O

2 

10 nM
 H

2

CH4+NO3
-+2H+→CO2+NH4

++H2O   (6)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-39.3 -39.3 -39.3 -39.3 -39.3 -39.3 -39.3 -39.3 -39.3 -39.3 -39.3 -39.3

3HS-+4NO2
-+2H++4H2O→3SO4

-2+4NH4
+   (24)  57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3PYRITE+7NO2

-+8H++10H2O→3Fe+2+6SO4
-2+7NH4

+   (42)  52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2S+CO(aq)+Fe+2+H2O→PYRITE+CO2(aq)+2H+   (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-32.3 -32.3 -32.3 -32.3 -32.3 -32.3 -32.3 -32.3 -32.3 -32.3 -32.3 -32.3

8Fe+2+NO3
-+13H2O→8GOETHITE+NH4

++14H+   (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-76.0 -76.0 -76.0 -76.0 -76.0 -76.0 -76.0 -76.0 -76.0 -76.0 -76.0 -76.0

8Fe+2+NO3
-+9H2O→4HEMATITE+NH4

++14H+   (8)  53.3 53.3 53.3 53.3 53.3 53.3 53.3 53.3 53.3 53.3 53.3 53.3
-56.8 -56.8 -56.8 -56.8 -56.8 -56.8 -56.8 -56.8 -56.8 -56.8 -56.8 -56.8

6Fe+2+NO2
-+10H2O→6GOETHITE+NH4

++10H+   (6) 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0
-9.6 -9.6 -9.6 -9.6 -9.6 -9.6 -9.6 -9.6 -9.6 -9.6 -9.6 -9.6

HS-+Fe+2+S→PYRITE+2H+   (1) 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4 110.4
-2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4

6Fe+2+NO2
-+7H2O→3HEMATITE+NH4

++10H+   (6) 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1 58.1
-9.7 -9.7 -9.7 -9.7 -9.7 -9.7 -9.7 -9.7 -9.7 -9.7 -9.7 -9.7

HS-+NO3
-→S+NO2

-+H2O   (2)       49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5
-96.3 -96.3 -96.3 -96.3 -96.3 -96.3 -96.3 -96.3 -96.3 -96.3 -96.3 -96.3

H2+2S+Fe+2→PYRITE+2H+   (2)        47.9 47.9 53.1 54.7 47.9 50.0 53.1 54.7 47.9 50.0 47.9 50.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NH4
++3/2 O2→NO2

-+2H++H2O   (6)               48.2 48.2 48.2 48.2 49.8 49.8 49.8 49.8 51.0 51.0 51.4 51.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2MAGNETITE+2S+Fe+2+4H2O→PYRITE+6GOETHITE+2H+   (2) 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

12Fe+2+NO3
-+13H2O→4MAGNETITE+NH4

++22H+   (8)        56.8 56.8 56.8 56.8 56.8 56.8 56.8 56.8 56.8 56.8 56.8 56.8
-96.9 -96.9 -96.9 -96.9 -96.9 -96.9 -96.9 -96.9 -96.9 -96.9 -96.9 -96.9

3Fe+2+7S+4H2O→3PYRITE+SO4
-2+8H+   (6)             57.4 57.4 57.4 57.4 57.4 57.4 57.4 57.4 57.4 57.4 57.4 57.4

-3.8 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.7
2MAGNETITE+2S+Fe+2+H2O→PYRITE+3HEMATITE+2H+   (2) 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NH4

++2O2→NO3
-+2H++H2O   (8)              73.8 73.8 73.8 73.8 75.3 75.3 75.3 75.3 76.5 76.5 76.8 76.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH4+8S+4Fe+2+3H2O→4PYRITE+HCO3

-+9H+   (8) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).

0.1 m
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2
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325
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2

0.5 m
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2

2  nM
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2

0.5 m
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2 
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2
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2

100 nM
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2
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2
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2
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2
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2
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g/L O

2 
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2
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g/L O

2 

10 nM
 H

2

9Fe+2+NO2
-+10H2O→3MAGNETITE+NH4

++16H+   (6)       61.7 61.7 61.7 61.7 61.7 61.7 61.7 61.7 61.7 61.7 61.7 61.7
-44.4 -44.4 -44.4 -44.4 -44.4 -44.4 -44.4 -44.4 -44.4 -44.4 -44.4 -44.4

CH4+8S+4Fe+2+2H2O→4PYRITE+CO2+8H+   (8)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2 -32.2

6S+CH4(aq)+3Fe+2+H2O→3PYRITE+CO(aq)+6H+   (6)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2H++4HS-+NO3
-→4S+NH4

++3H2O   (8) 52.4 52.4 52.4 52.4 52.4 52.4 52.4 52.4 52.4 52.4 52.4 52.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NH4
++3S+2H2O→3HS-+NO2

-+2H+   (6)   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-63.3 -63.3 -63.3 -63.3 -63.3 -63.3 -63.3 -63.3 -63.3 -63.3 -63.3 -63.3

3Fe+3+2S+4H2O→PYRITE+2GOETHITE+6H+   (2)        58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8 58.8
-73.8 -73.8 -73.8 -73.8 -73.8 -73.8 -73.8 -73.8 -73.8 -73.8 -73.8 -73.8

NO2
-+1/2 O2→NO3

-   (2)           185.9 185.9 185.9 185.9 187.4 187.4 187.4 187.4 188.6 188.6 189.0 189.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3Fe+2+2S+3H2O→PYRITE+HEMATITE+6H+   (2)          58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0 58.0
-74.1 -74.1 -74.1 -74.1 -74.1 -74.1 -74.1 -74.1 -74.1 -74.1 -74.1 -74.1

4Fe+2+2S+4H2O→PYRITE+MAGNETITE+8H+   (2)          62.1 62.1 62.1 62.1 62.1 62.1 62.1 62.1 62.1 62.1 62.1 62.1
-114.0 -114.2 -114.2 -114.2 -114.2 -114.2 -114.2 -114.2 -114.2 -114.2 -114.2 -114.2

S+CO(aq)+2H2O→HCO3
-+HS-+H+   (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8 -83.8
PYRITE+NO3

-+2H+→2S+Fe+2+NO2
-+H2O   (2)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-109.0 -109.0 -109.0 -109.0 -109.0 -109.0 -109.0 -109.0 -109.0 -109.0 -109.0 -109.0
HS-+CO2→S+CO+H2O   (2)                  83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S+H2→HS-   (2)                               12.4 12.4 17.4 19.0 12.4 14.5 17.4 19.0 12.4 14.5 12.4 14.5

-13.8 -13.8 -8.1 -6.4 -13.8 -11.5 -8.1 -6.4 -13.8 -11.5 -13.8 -11.5
2MAGNETITE+S+4H2O→6GOETHITE+HS-   (2)            17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9

-7.9 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.8
4S+4H2O→SO4

-2+3HS-+2H+   (6)         5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
-11.3 -11.3 -11.3 -11.3 -11.3 -11.3 -11.3 -11.3 -11.3 -11.3 -11.3 -11.3

2MAGNETITE+S+H2O→3HEMATITE+HS-   (2)            14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
-9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3

MAGNETITE+CO(aq)+5H+→HCO3
-+3Fe+2+2H2O   (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-88.6 -88.6 -88.6 -88.6 -88.6 -88.6 -88.6 -88.6 -88.6 -88.6 -88.6 -88.6
CH4+4S+3H2O→HCO3

-+4HS-+H+   (8)          0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).
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2Fe+2+PYRITE+4H2O→MAGNETITE+2HS-+4H+   (2)        0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-101.0 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5 -100.5

4PYRITE+NO3
-+10H+→8S+4Fe+2+NH4

++3H2O   (8)           17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4
-4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6 -4.6

CH4+4S+2H2O→CO2+4HS-   (8)                 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7 -83.7

Fe3O4+H2+6H+→3Fe2
++4H2O   (2)                        115.4 115.4 121.0 122.7 115.4 117.7 121.0 122.7 115.4 117.7 115.4 117.7

-17.9 -17.9 -12.1 -10.3 -17.9 -15.5 -12.1 -10.3 -17.9 -15.5 -17.9 -15.5
HEMATITE+CO(aq)+3H+→HCO3

-+2Fe+2+H2O   (2)         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6

2GOETHITE+CO(aq)+3H+→HCO3
-+2Fe+2+2H2O   (2)           0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2
7CO(aq)+2SO4

-2+Fe+2+6H2O→PYRITE+7HCO3
-+5H+   (14)      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4
3HS-+CO→3S+CH4+H2O   (6)                           83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CO+Fe3O4+6H+→CO2+3Fe+2+3H2O   (2)              0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-88.7 -88.7 -88.7 -88.7 -88.7 -88.7 -88.7 -88.7 -88.7 -88.7 -88.7 -88.7
9Fe+2+SO4

-2+8H2O→S+3MAGNETITE+16H+   (6)        8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6
-110.0 -110.5 -110.5 -110.5 -110.5 -110.5 -110.5 -110.5 -110.5 -110.5 -110.5 -110.5

4CO(aq)+5H2O→CH4(aq)+3HCO3
-+3H+   (6)                  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4CO(aq)+SO4

-2+4H2O→4HCO3
-+HS-+2H+   (8)              0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1
Fe+2+PYRITE+3H2O→HEMATITE+2HS-+2H+   (2)                0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9
3PYRITE+NO2

-+8H+→6S+3Fe+2+NH4
++2H2O   (6)     49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6

-1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2
2HS-+2GOETHITE+2H+→PYRITE+Fe+2+4H2O   (2)     77.1 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH4+4MAGNETITE+23H+→HCO3

-+12Fe+2+13H2O   (8)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5

H2+HEMATITE+4H+→2Fe+2+3H2O   (2)                75.3 75.3 81.0 82.7 75.3 77.6 81.0 82.7 75.3 77.6 75.3 77.6
-14.0 -14.0 -8.1 -6.3 -14.0 -11.5 -8.1 -6.3 -14.0 -11.5 -14.0 -11.5

1/2 H2+GOETHITE+2H+→Fe+2+2H2O   (1)              75.0 75.0 80.6 82.3 75.0 77.3 80.6 82.3 75.0 77.3 75.0 77.3
-14.0 -14.0 -8.1 -6.4 -14.0 -11.6 -8.1 -6.4 -14.0 -11.6 -14.0 -11.6
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).
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HEMATITE+CO(aq)+4H+→CO2(aq)+2Fe+2+2H2O   (2)         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-84.7 -84.7 -84.7 -84.7 -84.7 -84.7 -84.7 -84.7 -84.7 -84.7 -84.7 -84.7

2GOETHITE+CO(aq)+4H+→CO2(aq)+2Fe+2+3H2O   (2)      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2 -85.2

CH4+4Fe3O4+24H+→CO2+12Fe+2+14H2O   (8)     0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5

7CO(aq)+2SO4
-2+2H++Fe+2→PYRITE+7CO2(aq)+H2O   (14)   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5 -78.5
NH4

++3NO3
-→2H++4NO2

-+H2O   (6)                0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-149.0 -149.5 -149.5 -149.5 -149.5 -149.5 -149.5 -149.5 -149.5 -149.5 -149.5 -149.5

2Fe+2+S+4H2O→2GOETHITE+HS-+4H+   (2)            3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
-62.3 -62.3 -62.3 -62.3 -62.3 -62.3 -62.3 -62.3 -62.3 -62.3 -62.3 -62.3

2Fe+2+S+3H2O→HEMATITE+HS-+4H+   (2)           3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
-62.8 -62.8 -62.8 -62.8 -62.8 -62.8 -62.8 -62.8 -62.8 -62.8 -62.8 -62.8

4H2O+4PYRITE+6H+→SO4
-2+7HS-+4Fe+2   (7)       1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

-68.3 -68.3 -68.3 -68.3 -68.3 -68.3 -68.3 -68.3 -68.3 -68.3 -68.3 -68.3
CO(aq)+3Fe+2+6HS-→3PYRITE+CH4(aq)+6H++H2O   (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12Fe+2+SO4

-2+12H2O→4MAGNETITE+HS-+22H+   (8)    8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
-99.6 -99.6 -99.6 -99.6 -99.6 -99.6 -99.6 -99.6 -99.6 -99.6 -99.6 -99.6

6Fe+2+SO4
-2+5H2O→S+3HEMATITE+10H+   (6)    5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

-70.4 -70.4 -70.4 -70.4 -70.4 -70.4 -70.4 -70.4 -70.4 -70.4 -70.4 -70.4
3HEMATITE+CO(aq)+H2O→2MAGNETITE+HCO3

-+H+   (2)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0

4CO+2H2O→3CO2+CH4   (6)                       0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2

3CO(aq)+SO4
-2+2H2O→S+3HCO3

-+H+   (6)      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1

6Fe+2+SO4
-2+8H2O→S+6GOETHITE+10H+   (6)          5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

-70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0
7H2+2SO4

-2+Fe+2+2H+→PYRITE+8H2O   (14)         11.7 11.7 16.8 18.3 11.7 13.8 16.8 18.3 11.7 13.8 11.7 13.8
-7.8 -7.8 -1.8 0.0 -7.8 -5.3 -1.8 0.0 -7.8 -5.3 -7.8 -5.3

HS-+4CO2→SO4-2+4CO+2H+   (8)                85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6GOETHITE+CO(aq)→2MAGNETITE+HCO3
-+H++2H2O   (2)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).
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MAGNETITE+PYRITE+2H2O→2HEMATITE+2HS-   (2)       0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-65.8 -65.8 -65.8 -65.8 -65.8 -65.8 -65.8 -65.8 -65.8 -65.8 -65.8 -65.8

CH4+4HEMATITE+15H+→HCO3
-+8Fe+2+9H2O   (8)        0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-84.5 -84.5 -84.5 -84.5 -84.5 -84.5 -84.5 -84.5 -84.5 -84.5 -84.5 -84.5
CH4+8GOETHITE+15H+→HCO3

-+8Fe+2+13H2O   (8)     0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1

PYRITE+7MAGNETITE+40H+→2SO4
-2+22Fe+2+20H2O   (14)    111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0 111.0

-16.1 -16.1 -16.1 -16.1 -16.1 -16.1 -16.1 -16.1 -16.1 -16.1 -16.1 -16.1
MAGNETITE+PYRITE+4H2O→4GOETHITE+2HS-   (2)           0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-64.2 -64.2 -64.2 -64.2 -64.2 -64.2 -64.2 -64.2 -64.2 -64.2 -64.2 -64.2
14MAGNETITE+Fe+2+2SO4

-2+2H++20H2O→PYRITE+42GOETHITE   (14)17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
-1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6

SO4
-2+4H2+2H+→HS-+4H2O   (8)                      11.1 11.1 16.1 17.6 11.1 13.2 16.1 17.6 11.1 13.2 11.1 13.2

-14.4 -14.4 -8.4 -6.6 -14.4 -12.0 -8.4 -6.6 -14.4 -12.0 -14.4 -12.0
CO+3H2→CH4+H2O   (6)                         74.5 74.5 79.8 81.4 74.5 76.7 79.8 81.4 74.5 76.7 74.5 76.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH4+4HEMATITE+16H+→CO2+8Fe+2+10H2O   (8)        0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6 -84.6
CH4+8GOETHITE+16H+→CO2+8Fe+2+14H2O   (8)         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1 -85.1
CO(aq)+2H2O→H2(g)+HCO3-+H+   (2)                    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-74.6 -74.6 -79.9 -81.5 -74.6 -76.8 -79.9 -81.5 -74.6 -76.8 -74.6 -76.8
14MAGNETITE+Fe+2+2SO4

-2+2h+→PYRITE+21HEMATITE+H2O   (14)13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8
-14.6 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5

CH4+4PYRITE+8H++2H2O→CO2+4Fe+2+8HS-   (8)    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
137.0 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1

8MAGNETITE+SO4
-2+2H++12H2O→24GOETHITE+HS-   (8)     16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6

-8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3 -8.3
CH4+3Fe3O4+18H+→CO+9Fe+2+11H2O   (6)        0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5 -88.5
3Fe+2+S+4H2O→MAGNETITE+HS-+6H+   (2)     6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

-99.5 -99.5 -99.5 -99.5 -99.5 -99.5 -99.5 -99.5 -99.5 -99.5 -99.5 -99.5
6MAGNETITE+CO(aq)+11H2O→18GOETHITE+CH4(aq)   (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8MAGNETITE+SO4

-2+2H+→12HEMATITE+HS-   (8)      13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2
-8.1 -8.1 -8.1 -8.1 -8.1 -8.1 -8.1 -8.1 -8.1 -8.1 -8.1 -8.1
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).
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2
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2 
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7CH4+8SO4
-+H++4Fe+2→4PYRITE+7HCO3

-+11H2O   (56)     0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-78.3 -78.3 -78.3 -78.3 -78.3 -78.3 -78.3 -78.3 -78.3 -78.3 -78.3 -78.3

CH4+4PYRITE+7H++3H2O→4Fe+2+HCO3
-+8HS-   (8)   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-137.0 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1 -137.1
S+CO+3H2O→SO4

-2+CH4+2H+   (6)         86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6MAGNETITE+CO(aq)+2H2O→9HEMATITE+CH4(aq)   (6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8Fe+2+SO4
-2+8H2O→4HEMATITE+HS-+14H+   (8)     4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

-62.9 -62.9 -62.9 -62.9 -62.9 -62.9 -62.9 -62.9 -62.9 -62.9 -62.9 -62.9
CO2+4H2→CH4+2H2O   (8)                       74.6 74.6 79.9 81.5 74.6 76.7 79.9 81.5 74.6 76.7 74.6 76.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3HEMATITE+CO(aq)→2MAGNETITE+CO2(aq)   (2)      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0 -78.0
S+3CO2+H2O→SO4

-2+3CO+2H+   (6)             86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8Fe+2+SO4
-2+12H2O→8GOETHITE+HS-+14H+   (8)         5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3

-62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4 -62.4
PYRITE+CO(aq)+H++2H2O→Fe+2+HCO3

-+2HS-   (2)        0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-137.0 -137.2 -137.2 -137.2 -137.2 -137.2 -137.2 -137.2 -137.2 -137.2 -137.2 -137.2

7CH4+8SO4
-2+8H++4Fe+2→4PYRITE+7CO2+18H2O   (56)   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4 -78.4
6GOETHITE+CO(aq)→2MAGNETITE+CO2(aq)+3H2O   (2)        0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3
CH4

++SO4
-2+H+→HCO3

-+HS-+H2O    (8)                 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0

4H2(aq)+HCO3
-+H+→CH4(aq)+3H2O   (8)                0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH4+24GOETHITE→8MAGNETITE+CO2+14H2O   (8)          0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3
15Fe+2+2SO4

-2+13H20→PYRITE+7HEMATITE+26H+   (14)   12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6
-70.9 -70.9 -70.9 -70.9 -70.9 -70.9 -70.9 -70.9 -70.9 -70.9 -70.9 -70.9

15Fe+2+2SO4
-2+20H2O→PYRITE+14GOETHITE+26H+   (14)        13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5

-70.6 -70.6 -70.6 -70.6 -70.6 -70.6 -70.6 -70.6 -70.6 -70.6 -70.6 -70.6
CH4+12HEMATITE→8MAGNETITE+CO2+2H2O   (14)         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9
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Table 2. Summary of energetic calculations kJ per 
electron transferred.  The range of energy available 
across springs is shown for each reaction, maximum 
(grey) and minimum (white).
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3CH4+4SO4
-2+8H+→4S+3CO2+10H2O   (8)         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1 -86.1
CH4+SO4

-2+2H+→CO2+HS-+2H2O   (24)                0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0 -85.0

3HEMATITE+CH4(aq)+12H+→CO(aq)+6Fe+2+8H2O   (24)     0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6GOETHITE+CH4(aq)+12H+→CO(aq)+6Fe+2+11H2O   (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CH4+24GOETHITE→8MAGNETITE+H++HCO3
-+13H2O   (6)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3 -80.3
SO4

-2+3H2+2H+→S+4H2O   (8)                10.7 10.7 15.7 17.2 10.7 12.8 15.7 17.2 10.7 12.8 10.7 12.8
-15.5 -15.5 -9.5 -7.7 -15.5 -13.0 -9.5 -7.7 -15.5 -13.0 -15.5 -13.0

H2+3HEMATITE→2MAGNETITE+H2O   (6)                -2.0 -2.0 3.0 4.5 -2.0 0.0 3.0 4.5 -2.0 0.0 -2.0 0.0
-6.3 -6.3 -0.3 1.5 -6.3 -3.9 -0.3 1.5 -6.3 -3.9 -6.3 -3.9

7CH4(aq)+6SO4
-2+6H++3Fe+2→3PYRITE+7CO(aq)+17H2O   (2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CO2+H2→CO+H2O   (42)                             74.6 74.6 79.9 81.5 74.6 76.8 79.9 81.5 74.6 76.8 74.6 76.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CO2(aq)+Fe+2+2HS-→PYRITE+CO(aq)+2H++H2O   (2)   137.2 137.2 137.2 137.2 137.2 137.2 137.2 137.2 137.2 137.2 137.2 137.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CH4+12HEMATITE→8MAGNETITE+HCO3

-+H++H2O   (2)      0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9 -77.9

3CH4+4SO4
-2+5H+→4S+3HCO3

-+7H2O   (8)         0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-86.0 -86.0 -86.0 -86.0 -86.0 -86.0 -86.0 -86.0 -86.0 -86.0 -86.0 -86.0

H2+6GOETHITE→2MAGNETITE+4H2O   (24)                   0.0 0.0 0.0 1.6 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0
-6.1 -6.1 -0.5 0.0 -6.1 -3.7 -0.5 0.0 -6.1 -3.7 -6.1 -3.7

H2+PYRITE+2H+→Fe+2+2HS-   (2)           7.7 7.7 13.2 14.9 7.7 9.9 13.2 14.9 7.7 9.9 7.7 9.9
-67.5 -67.5 -61.9 -60.2 -67.5 -65.2 -61.9 -60.2 -67.5 -65.2 -67.5 -65.2

6MAGNETITE+SO4
-2+2H++8H2O→S+18GOETHITE   (2)       16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2

-9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3 -9.3
3HS-+4CO+8H2O→3SO4

-2+4CH4+6H+   (6)               85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6MAGNETITE+SO4
-2+2H+→S+9HEMATITE+H2O   (24)            12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7

-9.2 -9.2 -9.2 -9.2 -9.2 -9.2 -9.2 -9.2 -9.2 -9.2 -9.2 -9.2

137


