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Abstract 

 
The post-genomic challenge was to develop high-throughput technologies for 

measuring genome scale mRNA expression levels. Analyses of these data rely on 

computers in an unprecedented way to make the results accessible to researchers. My 

research in this area enabled the first compendium of microarray experiments for a multi-

cellular eukaryote, Caenorhabditis elegans. Prior to this research approximately 6% of 

the C. elegans genome had been studied, and little was know about global expression 

patterns in this organism. Here I cluster data from 553 different microarray experiments 

and show that the results are stable, statistically significant and highly enriched for 

specific biological functions. These enrichments allow identification of gene function for 

the majority of C. elegans genes. Tissue specific expression patterns are discovered 

suggesting the role of particular proteins in digestion, tumor suppression, protection from 

bacteria and from heavy metals. I report evidence that genome instability in males 

involves transposons, and find co-expression patterns between sperm proteins, protein 

kinases and phosphatases suggesting that sperm, that are transcriptionally inactive cells, 
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commonly use phosphorylation to regulate protein activities. My subsequent research 

addresses protein concentrations and interactions, beginning with a simultaneous 

comparison of multiple data sets to analyze Saccharomyces cerevisiae gene-expression 

(cell cycle and exit from stationary phase/G0) and protein-interaction studies. Here, I find 

that G1-regulated genes are not co-regulated during exit from stationary phase, indicating 

that the cells are not synchronized. The tight clustering of other genes during exit from 

stationary-phase does indicate that the physiological responses during G0 exit are 

separable from cell-cycle events. Subsequently, I report in vivo proteomic research 

investigating population phenotypes in stationary phase cultures using the yeast Green 

Fluorescent Protein-fusion library (4156 strains) together with flow cytometry. Stationary 

phase cultures consist of dense quiescent (Q) and less dense non-quiescent (NQ) 

fractions. The Q-cell fraction is generally composed of daughter cells with high 

concentrations of proteins involved in the citric acid cycle and the electron transport 

chain, for example Cit1p. The NQ fraction has subpopulations of cells that can be 

separated by the low and high concentrations of these mitochondrial proteins, i.e., NQ 

cells often have double intensity peaks: a bright fraction and a much dimmer fraction, 

which is the case for Cit1p. The Q fraction uses oxygen 6 times as rapidly as the NQ 

fraction, and 1.6 times as rapidly as exponentially growing cells. NQ cells are less 

reproductively capable than Q cells, and show evidence of reactive oxygen species stress. 

These phenotypes develop as early as 20-24 hours after the diauxic shift, which is as 

early as we can make a differentiating measurement using fluorescence intensities. 

Finally, I propose a new way to analyze multidimensional flow cytometry data, which 

may lead to better understanding of Q/NQ cell differentiation.  
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Chapter 1:  Introduction 

The Third Way 

A complex, dynamic system may be approached in two very different ways. The 

whole of the system may be studied to understand large scale structure and system level 

transformation. The microscopic study of dividing cells offers such an example: a mother 

cell slowly changes size and the arrangements of visible organelles, separates its visible 

structures into two parts and finally into two cells. This approach gives great insight into 

cellular life and the large-scaled cyclic, systemic processes involved. Puzzles about how 

the cell accomplishes these changes motivate a second, completely different approach. 

This second approach uses a bottom up, biochemical and mechanistic strategy. It begins 

with the details and assembles a theory from parts to wholes. 

The top down approach is particularly weak in explaining the mechanisms 

involved, while the bottom up approach explains detailed interactions but faces its own 

difficulties in synthesizing a theory of how all of the parts ultimately make and maintain 

the whole cell. There is a third way; one which begins with a system level approach, but 

captures a large collection of fine-scaled detail, such that the bottom up approach can also 

be employed to better understand the mechanisms and their system-wide interactions. 

This third approach has enabled very rapid progress in genomics, which is the 

combination of large-scale sequencing with systematic computational analysis of the 

genomes and their interaction within and between cells (Akil, et al., 2010) . 
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Microarray and Flow Cytometry Measurements 

Two separate-high-throughput measurement technologies have enabled rapid 

progress in the field of genomics. First, microarrays, a simplified and greatly scaled-up 

version of Southern/northern blotting (Alwine, Kemp, & Stark, 1977; Schena & Davis, 

2000; E. Southern, 2006; E. M. Southern, 1975) allowed the simultaneous, but indirect 

measurement of mRNA concentrations from each transcribed gene1; Chapters 2 and 3 

involve microarray experiments. Second, the use of flow cytometry (Coulter, 1956; 

Ferry, Farr, & Hartman, 1949; Fulwyler, 1965; Gucker & Okonski, 1949; Hulett, Bonner, 

Barrett, & Herzenberg, 1969; Melamed, Kamentsk, & Boyse, 1969; Shapiro, 2003) 

enables the near simultaneous measure of concentrations of fluorescently tagged proteins 

in tens of thousands of cells (Huh, et al., 2003), one at a time as they pass through a 

micro cuvette with a laser and detectors for the induced fluorescence.  

Together, these approaches allow genomic and proteomic changes to be measured 

and ordered into groups of coordinately changing molecular concentrations. Equally 

importantly, these molecular groups often suggest experiments that extend our bottom up 

knowledge of cellular mechanisms. Because protein concentrations are particularly 

important, and because the concentration can be directly measured for each cell, this 

more challenging technique is particularly useful; Chapter 4 exploits this technology. 

                                                 
1 The direct measurement of mRNA concentrations after separation by electrophoresis is referred to as a 
northern blot, see Alwine et al. (1977). While microarrays are used to measure the concentration of mRNA 
species, the measurement is not made directly using the original RNA; rather, the mRNA is reverse 
transcribed back to complementary DNA (cDNA). The concentration of cDNA molecules is measured by 
the microarray. Consequently, a microarray exists somewhere between Southern and northern blotting. 
Because they measure DNA, not RNA, they are perhaps more like a Southern blot than a northern blot, but 
the distinction is the subject of controversy.  
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Fluorescent Markers in Both Measurement Techniques 

In the case of the microarrays discussed in Chapters 2 and 3, the reverse 

transcription from sampled mRNA to cDNA included either Cy3 or Cy5 fluorescent 

bases. Measurement of the fluorescence intensity at each DNA probe location indicates 

the number of hybridized cDNA molecules and hence the concentration of the original 

mRNA. For flow cytometry Huh et al. (2003), created a library having strain-specific 

gene fusions of the wild type genes and an exogenous gene encoding green fluorescent 

protein (GFP), originally cloned from Aequorea victoria (Tsien, 1998). Consequently, the 

transcribed mRNA is translated into a fusion protein, the expression of which remains 

under the control of native transcription factors and regulation. By observing fluorescent 

intensity, protein concentration can be inferred by microscopy or in flow cytometry by 

photon counters. 

Examples of the Third Way 

The yeast Saccharomyces cerevisiae was the first eukaryote to have its genome 

sequenced (Goffeau, et al., 1996). Subsequently, Caenorhabditis elegans became the first 

multi-cellular organism to be fully sequenced (The C. elegans Sequencing Consortium, 

1998). Combining the sequence information with microarrays allowed the simultaneous 

measurement of mRNA concentrations for thousands of genes. These data together with 

new computational analyses opened the cell cycle to allow testing of both system-level 

hypotheses and of fine scaled interactions (DeRisi, et al., 1996; Spellman, et al., 1998).  

That opportunity joined together what had previously been two communities of 

separate expertise. The system level research revealed global similarities in the gene 

expression profiles through repeated cell cycles. The detailed molecular knowledge of 
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cell biologists then offered a way to propose probable functions for unstudied genes. 

Combining the patterns of similar expression allowed groups of genes to be clustered 

together, then deep knowledge of a few specific genes could be used to impute related 

functions for the genes having similar expression profiles (which then became laboratory 

testable hypotheses).  

Progress in genomics was greatly accelerated because microarray technology, a 

simplified and greatly scaled-up version of Southern blotting (DeRisi, et al., 1996; 

Schena, Shalon, Davis, & Brown, 1995; E. M. Southern, 1975) could be automated with 

inexpensive, array-printing robots (DeRisi, et al., 1996). These robots were widely 

replicated and large collections of array experiments became available, enabling a new 

kind of system level genomic analysis: the compendium approach (Hughes, et al., 2000; 

Kim, et al., 2001), where array data from very different experiments were combined and 

jointly clustered. 

With the increasing number of arrays, statistical power to detect subtle patterns 

increased. With the wider set of experimental conditions, more of the possible cellular 

states were sampled. Combined together these compendium data sets allowed greater 

precision in gene clustering. As a result, higher quality estimates for gene function 

became possible. Without the combination of top down analysis using cluster by 

similarity of co-expression and the use of detailed, bottom up knowledge we would not 

have been able to impute gene functions for the majority of the genes in C. elegans in 

Chapter 2. 
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Revisiting Steps along the Third Way  

Importantly, the genomics community developed as an open, data sharing 

community where results and whole data sets are available for sharing from online 

repositories; see for example (SGD project, May 1, 2010; Tweedie, et al., 2009; 

WormBase web site) among many others. The open availability encouraged the 

development of new tools and approaches for reanalyzing previously published data. 

Equally importantly, different data sets could be combined for meta analyses (Werner-

Washburne, et al., 2002) and further development of new algorithms and software 

packages (George S. Davidson, et al., 2007; Gentleman, et al., 2004; Martin, Davidson, 

May, Faulon, & Werner-Washburne, 2004; Reich, et al., 2006; SGD, 2010; The 

MathWorks, 2010; Tibshirani, Hastie, Narasimhan, & Chu, 2002; Wu, Chen, Hastie, 

Sobel, & Lange, 2009). Sharing and reuse of earlier data sets has been an important 

element of the progress in our understanding of genomics. 

Overview of the Research in Chapters 2-4 

My research has involved the search for biologically relevant order in huge 

collections of high-throughput data by means of similarity measurements. This research 

began with the analysis of microarray data sets from Saccharomyces cerevisiae and 

Caenorhabditis elegans experiments. My contributions have combined statistical 

analyses and computer programming to work with the data and with annotation 

databases. While these methods were applied to microarray data (as in Chapter 2), I 

extended them to compare gene expression studies with protein interaction data (Chapter 

3). Importantly, the research in Chapter 4 goes beyond expression data and beyond in 

vitro protein-protein interactions to study actual in vivo protein concentration differences 
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between exponentially (EXP) growing cells and cells from stationary phase (SP) cultures. 

This research reveals specific phenotype differences between quiescent (Q cells) and 

non-quiescent (NQ cells) in the stationary cultures.  

Chapters 2 through 4 document the evolution of this research. My paper (Kim, et 

al., 2001) in Chapter 2 is an analysis of a compendium of 553 arrays taken from C. 

elegans experiments. This paper describes the first compendium expression study of a 

multicellular organism. Consequently, it is the first compendium study to address 

expression changes though developmental stages and processes.  

My paper in Chapter 3 (Werner-Washburne, et al., 2002)  combined expression 

studies with protein-protein interaction data to jointly analyze both types of experiments 

using the visual data analysis environment, VxInsight (G. S. Davidson, Wylie, & Boyack, 

2001). This paper combined four S. cerevisiae high-throughput data sets: two protein 

interaction studies (Ito, et al., 2001; Schwikowski, Uetz, & Fields, 2000); our own 

stationary phase-expression data, and cell cycle expression changes following release 

from alpha arrest (Spellman, et al., 1998). This paper was the origin of my suite of robust 

methods for microarray analyses (George S. Davidson, et al., 2007), and for further 

research into the mechanisms of G0, and the rapid sampling equipment that enabled the 

study of mRNA changes in the earliest few seconds after refeeding stationary phase yeast 

(Allen, et al., 2006; Aragon, et al., 2005; Aragon, Quinones, Thomas, Roy, & Werner-

Washburne, 2006; Aragon, et al., 2008), a time when the cells make extensive use of 

previously sequestered, protein-bound mRNAs, which are not detected with traditional 

protocols.  
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The sequestered mRNA and in general the imperfect correlation between protein 

concentrations and mRNA concentrations motivated the need to study stationary phase 

cells by direct, high-throughput proteomic measurements reported in Chapter 4. These 

experiments exploit flow cytometry (Coulter, 1956; Ferry, et al., 1949; Fulwyler, 1965; 

Gucker & Okonski, 1949; Hulett, et al., 1969; Melamed, et al., 1969; Shapiro, 2003). The 

experiments measure protein concentrations in 10-30,000 cells (observed cell by cell) 

across 4156 strains; where each strain has a single gene modified to express mRNA from 

the native gene immediately followed by continued transcription of the gene for green 

fluorescent protein (GFP), originally cloned from Aequorea victoria (Tsien, 1998). The 

proteomic results are verified and extended by microscopy, reproductive capacity 

measurements, density gradient separations followed by further flow measurements, and 

by metabolic measurements to reveal new information about quiescent and non-quiescent 

cells. As expected, compared to exponentially growing cells, both non-quiescent and 

quiescent cells have greater accumulations of proteins involved in the citric acid cycle 

and the electron transport chain. However, the quiescent cells have a much higher 

concentration of these proteins raising the question, are the non-quiescent cells able to 

respire. Direct measurements of oxygen consumption indicate that quiescent cells 

consume oxygen about 6 times faster than non-quiescent cells, and exponentially growing 

cells are using oxygen 4 times faster than non-quiescent cells. 
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Chapter 2: A Gene Expression Map for Caenorhabditis elegans 

 
This chapter has previously appeared in substantially the same form as: Stuart K. Kim,1 

Jim Lund,1 Moni Kiraly,1 Kyle Duke,1 Min Jiang,1 Joshua M. Stuart,2 Andreas 
Eizinger,1 Brian N. Wylie,3 George S. Davidson3, “A Gene Expression Map for 
Caenorhabditis elegans”, Science, New Series, Vol. 293, No. 5537 (Sep. 14, 
2001), pp. 2087-2092. 

 
1Department of Developmental Biology and Genetics, Stanford University 
Medical School, Stanford, CA 94305, USA. 2Stanford Medical Informatics, 251 
Campus Drive, MSOB X-215, Stanford, CA 94305, USA. 3Computation, 
Computers and Mathematics Center, Sandia National Laboratories, Albuquerque, 
NM 87185-0318, USA. 

 
 
 
GSD contributions: VxInsight data processing and statistical computations; paper 
sections on VxInsight and analysis; extensive responses to reviewers; Supplemental 
Online  Material common look and feel. 
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Abstract 

 
We have assembled data from Caenorhabditis elegans DNA microarray 

experiments involving many growth conditions, developmental stages, and varieties of 

mutants. Co-regulated genes were grouped together and visualized in a three-dimensional 

expression map that displays correlations of gene expression profiles as distances in two 

dimensions and gene density in the third dimension. The gene expression map can be 

used as a gene discovery tool to identify genes that are co-regulated with known sets of 

genes (such as heat shock, growth control genes, germ line genes, and so forth) or to 

uncover previously unknown genetic functions (such as genomic instability in males and 

sperm caused by specific transposons).  

Introduction 

 
The completion of the C. elegans genome sequence has identified nearly all of the 

genes in the genome (19,282 genes) (1), but the function for most of these genes remains 

mysterious. A scant 6% of them have been studied with the use of classical genetic or 

biochemical approaches (1135 genes), and only about 53% show homology to genes in 

other organisms (10,303 genes) (2). The current challenge is to develop high-throughput 

functional genomics procedures to study many genes in parallel in order to elucidate gene 

function on a global scale (3–8). In one approach, a compendium of gene expression 

profiles was assembled from a large number of yeast DNA microarray experiments (9), 

which made it possible to ascribe potential functions to previously unknown genes by 

comparing their expression results to those of genes with known functions. Here, we have 

established a compendium of gene expression profiles for an animal, C. elegans. We 
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combined data from many DNA microarray experiments in order to identify sets of co-

regulated genes. In each experiment, RNA from one sample was used to generate Cy3-

labeled cDNA, and RNA from another sample was used to prepare Cy5-labeled cDNA. 

The two cDNA probes were simultaneously hybridized to a single DNA microarray and 

the ratio of the Cy3 to Cy5 hybridization intensities was measured.  

We have combined data from 553 experiments performed in collaboration with 30 

different laboratories (10), including 179 experiments with microarrays containing 

11,917 genes (63% of the genome) and 374 experiments using microarrays that have 

17,817 genes (94% of the genome). The experiments compare RNA between mutant and 

wild-type strains or between worms grown under different conditions. Figure 2-1(A) 

shows the types of experiments that have been done to date, including experiments on 

wild-type development, heat shock, Ras signaling, aging, the dauer stage, sex regulation, 

and germ line gene expression (6, 7, 10).  

The Experiments and Findings 

 
To find out which genes are co-expressed, we first assembled a gene expression 

matrix in which each row represents a different gene (17,817 genes) and each column 

corresponds to a different microarray experiment (553 experiments) (Fig. 2-1(B)). The 

matrix contains the relative expression level for each gene in each experiment (expressed 

as log2 of the normalized Cy3/Cy5 ratios). We calculated the Pearson correlation 

coefficient between every pair of genes. For each gene, the similarity between it and the 

20 genes with the strongest (positive) correlations were used to assign that gene to an x-y 

coordinate in a two-dimensional scatter plot with the use of force-directed placement. In 

this x-y ordination step, genes are positioned relative to each other under the influence of 
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attractive and repulsive forces. Each gene is attracted to other genes with a force 

proportional to their similarity in gene expression, but a constant force also repels each 

gene from groups of other genes. We then used a computer program called VxInsight to 

visualize the spatial distribution of the genes, resulting in a display in which genes with a 

high correlation are placed near to each other on a two-dimensional scatter plot. [Force-

directed placement and data mining with VxInsight are described in (11, 12), available 

Online at www.cs.sandia.gov/projects/VxInsight.html, and Link 1 at Science Online 

(13)]. As a further visual cue, the two-dimensional scatter plot is converted into a three-

dimensional terrain map in which the z axis denotes the density of genes within an area 

(Fig. 2-2(A)).  

 

 
Figure 2-1. Types of experiments and VxInsight terrain map. (A) Pie chart shows types of experiments 
used to generate the gene expression terrain map (10). Numbers in parentheses refer to the number of 
microarray hybridizations done for that experiment class, out of a total of 553 different microarray 
hybridizations. Some microarray hybridizations fall into multiple classes. (B) Construction of the gene 
expression terrain map by VxInsight. Expression data involving 17,661 genes and 553 experiments are 
shown. In the expression matrix, yellow denotes increased relative gene expression and blue denotes 
decreased gene expression. Only three genes and three experiments are shown for simplicity. The 
expression data are used to calculate Pearson correlations between every pair-wise combination of genes. 
The most correlated genes in the correlation matrix are used to construct a two-dimensional scatter plot. 
The scatter plot is converted to a gene expression terrain map showing the gene correlations in three 
dimensions, where the altitude of a mountain corresponds to density of the genes, denoted by red, yellow, 
and green. 
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 Figure 2-2. VxInsight map with biological groups and statistical significance. (A) Caenorhabditis 
elegans gene expression terrain map created by VxInsight at lowest resolution, showing three-dimensional 
representation of 44 gene mountains derived from 553 microarray hybridizations and consisting of 17,661 
genes (representing 98.6% of the genes present on the DNA microarrays) (31). Selected gene classes that 
are enriched in specific mountains are shown. (B) Terrain map derived from randomized data. (C and D) 
We created 56 lists of genes with similar biological function (biogroup), such as genes involved in meiosis, 
mitosis, translation, DNA synthesis, etc. We then counted the number of genes that overlap in the biogroup 
with that of the gene expression mountain. We calculated the probability of seeing the observed number of 
overlaps or more by chance (P value) for each biogroup-mountain pair assuming a hypergeometric 
distribution. Overlap P values for each biogroup with each mountain (C) and with randomly constructed 
mountains of the same size as the original mountain (D) are shown. Scale shows the log10 (P value). The 
list of biogroups and the mountains are shown in Web table 2 and Web table 3 (13), respectively. The 
biogroups and mountains are ordered so that neighbors have similar mountain profiles. 

 

The gene expression map shows gene expression clusters for nearly all of the 

genes (17,661 genes, 93% of the genome) formed by numerous, diverse microarray 

experiments (Fig. 2-2 (A)) (14). The raw C. elegans expression data can be downloaded 

from (13), and copies of VxInsight can be downloaded from 

http://cmgm.stanford.edu/~kimlab/topomap/vxinsight.htm. Genes were assigned to 

individual gene expression clusters (terrain map mountains), and each cluster was 

numbered according to size, from mount 0 (2703 genes) to mount 43 (5 genes) (Table 2-

1). Each mountain contains sets of highly correlated genes, and the mountain width 

denotes the overall level of correlation of the genes in that mountain. Mountain altitude 
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signifies the number of genes present in that mountain. It is not yet clear how well gene 

expression correlations between genes in different mountains can guide the relative 

placement of one mountain to other mountains on the map.  

To assess the significance of the topographical patterns shown in Fig. 2-2 (A), we 

first randomized the expression table by shuffling the values within each row and then 

reclustered the genes. We observed no appreciable structure in the randomized terrain 

map (Fig. 2-2 (B)), suggesting that the geography observed in the actual expression map 

(Fig. 2-2 (A)) has biological significance. Then, to assess the stability of the gene 

expression terrain map, we either rederived the map from random starting positions or 

added a small amount of noise to the data and noted that there was a high degree of 

overlap between the various derived maps [Web Links 2 and 3 (13)]. To determine which 

correlations are dependent on specific sets of experiments, we split the experiments into 

two non-overlapping sets, formed two new expression maps, and compared gene 

correlations on one map with those on the other. We observed that many genes have 

similar neighbors in both maps [Web Link 4 (13)]. 
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Table 2- 1 Characteristics of the gene groups. The R value is a measure of the correlation of the expression 
patterns of the genes in a mountain. For each mountain, the Pearson correlation between each gene and every 
other gene in that mountain was calculated. R is the median of all of these Pearson correlations. Large mountains 
tend to have lower R because genes on opposite sides of the mountain have lower correlations. Unless otherwise 
noted, representation factors are significant at P < 0.001 (17). The probability was determined using either the 
exact hypergeometric probability or using the normal distribution approximation, when appropriate.  

 

Mount 
No. of 
genes R Functional groups (representation factor) 

 0    2703    0.11     
 1    1818    0.15    Muscle (4.0X); neuronal (2.7X); PDZ genes (2.9X)   
 2    1465    0.15    Germ line-enriched (3.8X); oocyte (4.6X)   
 3    1363    0.13    Reverse transcriptase (3.0X)   
 4    1195    0.41    Sperm-enriched genes (21X); protein kinases (6.8X); protein   
       phosphatases (15X); major sperm proteins (13X)   
 5    978    0.22     
 6    909    0.21    Neuronal genes (6.5X)   
 7    810    0.43    Germ line-enriched (12X); oocyte (9.0X); meiosis (11X); mitosis (4.4X)    
 8    803    0.21    Intestine (13X); EntemebahistolyticaN-acetylmuraminidase   
       (12X); protease (6.4X); carboxylesterase (7.3X); lipases   
       (10X); antibacterial proteins (17X); UGT (2.8X)   
 9    786    0.16     
 10    635    0.19     
 11    587    0.38    Germ line-enriched (13X); oocyte (13X); meiosis (8X); mitosis   
       (10X); histone H1 (18X); retinoblastoma complex (26X)   
 12    462    0.29     
 13    396    0.10    Neuronal genes (3.1X; P<0.006); reverse transcriptase (4.0X)   
 14    353    0.38    Collagen (2.6X; P<0.005)   
 15    247    0.37     
 16    230    0.40    Muscle (24X); collagen (29X)   
 17    210    0.37    Collagen (9.6X)   
 18    190    0.38    Germ line (2.4X); oocyte (4.1X); biosynthesis (2.6X); protein synthesis (9.7X)    
 19    189    0.29    Amino acid metabolism (5.5X); lipid metabolism (5.0X); cytochrome P450 (12X)   
 20    160    0.46    Germ line-enriched (7.5X); biosynthesis (10X); protein   
       expression (16X); heat shock (10X)   
 21    154    0.30    Lipid metabolism (10X)   
 22    151    0.58    Collagen (8X)   
 23    143    0.53    Protein expression (19X); energy generation (8.6X)   
 24    133    0.37    Amino acid metabolism (3.9X); lipid metabolism (8.5X); fatty acid oxidation (22X)    
 25    102    0.44    Mariner transposases (173X)   
 26    95    0.43    Male-enriched genes (9.5X)   
 27    87    0.48    Amino acid metabolism (8X); energy generation (8.8X)   
 28    61    0.28     
 29    40    0.53     
 30    36    0.41    Protein expression (7.7X)   
 31    25    0.36     
 32    24    0.47    Nucleosomal histones (226X)   
 33    27    0.43    Tc1 transposon (538X)   
 34    17    0.44     
 35    15    0.59    Collagen (60X)   
 36    10    0.71    Heat shock (337X)   
 37    11    0.77    Tc3 transposon (1600X)   
 38    8    0.44     
 39    8    0.42     
 40    8    0.43    Protein expression (23X)   
 41    7    0.45    Protein expression (26X)   
 42    6    0.33     
 43    5    0.69     
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Lastly, we showed that the observed overlaps between clusters on the gene 

expression terrain map and groups of genes with similar biological functions are much 

higher than would be expected by random chance (Fig. 2-2 (C and D)) (13, 15). This 

demonstrates that there are strong biological patterns embedded in the expression data 

and that the clustering produced by VxInsight has biological relevance. A wide variety of 

other algorithms [such as hierarchical clustering (16)] could have been used in addition to 

VxInsight to cluster genes on the basis of their expression profiles. We chose to use 

VxInsight because depicting gene correlation data in three dimensions is extremely useful 

to visualize patterns of gene expression in large data sets.  

We studied the genes in each mountain to find patterns suggesting the underlying 

biological property for that group of genes. We also looked through 56 sets of genes that 

were previously known to function together (Web table 1) and found that 46 showed 

enrichment in one or more of the gene expression mountains (Fig. 2-2 (C)). Some of the 

gene expression mountains grouped genes together that were expressed in similar tissues 

(such as muscle, neuron, germ line), whereas other mountains grouped genes that had 

similar cellular functions (for example, histones, ribosomal genes, collagens). Overall, we 

were able to infer a potential physiological importance for 30 of the 44 mountains by 

showing that specific mountains were enriched for particular sets of genes. The 

functional interactions suggested by the gene expression terrain map are based entirely on 

expression data. Thus, in addition to biochemistry and genetics, one could now infer gene 

functions with the use of gene expression data.  

Several mountains were highly enriched for genes from particular tissues or 

organs. For example, previous microarray experiments identified a total of 650 sperm-
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enriched genes (6). Of these, 583 genes (89%) are present in mount 4 (1195 genes in 

total), which is 21 times (21X) more than the number of genes expected due to random 

chance [defined as the representation factor (17)] (Fig. 2-3 (A) and Web table 1).  

The sperm-enriched genes were defined using microarrays containing only 63% 

of the genome, and 848 of the genes in mount 4 were present on these microarrays (and, 

thus, were available to be identified as sperm enriched). Thus, highly sperm-enriched 

genes (99.9% confidence level) composed about 69% of mount 4. Much of the remainder 

of mount 4 consisted of genes that are sperm enriched but at a lower level; 775 genes in 

mount 4 were sperm-enriched at the 95% confidence level (88% of mount 4 out of 848 

genes).  

 
 

Figure 2-3. Biological categories in VxInsight mounts. (A) Mount 4 (sperm). Sperm-enriched and MSP 
genes are shown in red and green, respectively. (B) Enlarged view of MSP genes (green) and sperm-
enriched genes (red) in mount 4. (C) Germ line genes in mounts 7, 11, 18, and 20. Sperm-enriched (green), 
oocyte-enriched (blue) and germ lineÐ enriched genes (red) from (6) are shown. Numbers refer to 
mountains. (D) Mount 8 (intestine). Intestinal (green) and protease (blue) genes are shown. (E) Mount 16 
(muscle). Muscle (blue) and collagen (green) genes are shown. (F) Mount 26 (male). Male-enriched (green) 
and lectins (blue) are shown. 

 

The major sperm protein (MSP) genes, which are genes encoding proteins that 

bind each other in forming the sperm cytoskeleton and are required for sperm motility 



 17

(Fig. 2-3 (A and B)) [see movie (13)] (18), clustered together at one end of mount 4. As 

noted previously, protein kinases and phosphatases are enriched in sperm (6). These gene 

classes were also highly enriched in mount 4; specifically, 103 of 361 protein kinase 

genes (6.8X higher than random chance) and 67 of 106 protein phosphatases (15X) are 

present in mount 4 (Web table 1). Because sperm are unusual cells in that they are 

transcriptionally and translationally inactive, the high abundance of protein kinases and 

phosphatases in mount 4 suggests that sperm commonly use protein phosphorylation to 

regulate protein activity.  

Previous microarray experiments identified 258 oocyte–enriched genes and 508 

genes enriched in both sperm and oocytes (germ line–intrinsic genes) (6). The germ line–

enriched and oocyte–enriched genes were concentrated in three mountains: mount 7 (12X 

and 9X, respectively), mount 11 (13X and 13X), and mount 18 (2.4X and 4.1X). 

Additional germ line–enriched genes were also concentrated in mount 20 (7.5X) [Fig. 2-

3(C) and movies at (13)]. These four mountains contain 483 of the 766 germ line– and 

oocyte–enriched genes (63%). Of the remaining 283 germ line–enriched genes, 161 

(21%) were found in mount 2, which is a large mountain containing many genes involved 

in diverse biosynthetic pathways.  

These four mountains segregate the germ line genes according to their different 

biological roles. For example, the first two (mount 7 and mount 11) were highly enriched 

for meiosis and mitosis genes and, therefore, may reflect genes expressed in the early 

germ line. We identified a set of 23 genes known to be involved in meiosis; 12 are in 

mount 7 (11X representation factor) and six are in mount 11 (8X) (Web table 1). The list 

of meiosis genes contains six involved in forming the synaptonemal complex, and all are 
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contained in mount 7 (19). We identified a set of 80 genes known to be involved in 

mitosis (Web table 1). Of these, 16 are in mount 7 (4.4X) and 26 are in mount 11 (10X). 

The list of mitosis genes contains five that are orthologs of components of the 

mammalian retinoblastoma (Rb) tumor suppressor complex. The Rb tumor suppressor 

complex regulates cell growth and division by controlling gene expression throughout the 

cell cycle (20). In C. elegans, this complex consists of LIN-35 (Rb), HDA-1 (histone 

deacetylase), and RBA-1/RBA-2 (both RbAP48) (21). All four genes encoding proteins 

in the Rb tumor suppressor complex were present in mount 11. In addition to these four 

genes, lin-9 is implicated in Rb complex formation as lin-9 mutants have a similar 

phenotype to lin-35, hda-1 and rba-2 mutants (synthetic multivulva) (22). We observed 

that lin-9 was clustered with the Rb complex genes in mount 11. Thus, both mutant 

phenotype and microarray expression data indicate that lin-9 may play a functional role 

in the Rb complex.  

Mount 18 and mount 20 were both enriched for protein expression and 

biosynthesis genes, respectively. We identified 478 genes involved in various 

biosynthetic pathways, such as energy generation, nucleotide synthesis, carbohydrate 

metabolism, fatty acid oxidation, and amino acid synthesis (Web table 1). The 

biosynthesis genes were mildly enriched in mount 18 (2.6X) and strongly concentrated in 

mount 20 (10X). Then, we identified 390 genes involved in protein synthesis, such as 

genes encoding tRNA synthetases, ribosomal proteins, chaperones, heat shock proteins, 

protein translocation components, and RNA processing proteins (Web table 1). These 

protein synthesis genes are enriched in mount 18 (9.7X) and mount 20 (16X). 

Biosynthesis and protein expression are highly active during oogenesis, as small germ 
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line cells enlarge into enormous oocytes ready to begin growth of the new embryo. Thus, 

genes clustered in mount 18 and 20 may correspond to late germ line genes.  

Eight genes are known to be expressed primarily in the intestine (Web table 1). 

Five of the intestinal genes were expressed in mount 8, which is 13X the number 

expected given the size of this mountain (803 genes) (Fig. 2-3 (D)). Additional genes in 

mount 8 are likely to be expressed in the intestine because they encode proteins involved 

in digestion or protection from bacterial infection. Mount 8 contained five genes that are 

similar to Entemeba histolytica N-acetylmuraminidase (a bacterial lysozyme, 12X 

enriched), suggesting that these genes may be expressed in the C. elegans intestine to 

digest bacterial cell walls. There were 32 protease genes in mount 8 (out of 116 proteases 

in the genome, 6.4X enriched) that could be expressed in the intestine to break down 

bacterial proteins. Carboxylesterases are enzymes used by the intestine to metabolize 

carbohydrates and sugars; 12 (out of a total of 36 carboxylesterases in the genome, 7.3X 

enriched) are expressed in mount 8 including ges-1, which is known to be expressed in 

the intestine (23). Lipases are enzymes used by the intestine to digest lipids; 15 of the 32 

lipases in the C. elegans genome are contained in mount 8 (10X enriched). Mount 8 

contained the gene nuc-1, which encodes a deoxyribonuclease (DNase) expressed by the 

intestine for digestion of bacterial DNA (24). Two genes encoding proteins similar to the 

mammalian low-density lipoprotein (LDL) receptor were present in mount 8 and could 

function in the intestine to bind sterols in the lumen and internalize them into intestinal 

cells. Mount 8 contained two genes that encode insulin-related peptides that might be ex-

pressed in the intestine to regulate uptake of nutrients. 
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Another function of the intestine is that it protects against bacterial infection and 

from ingestion of harmful chemicals. Mount 8 contained seven out of nine genes that 

encode antibacterial proteins similar to granulysin of cytotoxic T cells (17X enrichment). 

These genes may be expressed in the intestine to protect the worm from bacterial 

infections. Mount 8 contained a metallothionein gene (mtl-2), which is known to be 

expressed in the intestine and function to bind and inactivate heavy metals (25). Mount 8 

contained eight genes encoding UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1, 

2-Nacetlyglucosaminyltransferase I (where UDP is uridine 59-diphosphate) out of a total 

of 64 such genes in the genome (2.8-fold enrichment), including gly-14, which is known 

to be expressed in the intestine (26). These genes encode enzymes that are of major 

importance in the modification and subsequent inactivation of toxic compounds. They 

could be expressed in the intestine to protect the worm from harmful chemicals.  

Thirty-nine genes are known to be expressed primarily in muscle (Web table 1). 

These genes were enriched in mount 1 (4.1X) and mount 16 (24X). Mount 1 is a large 

mountain with diverse types of genes, and it was also enriched for many neuronal 

proteins. In mount 1, the known muscle genes included primarily receptors, extra-cellular 

proteins, or receptor-associated proteins such as egl-19 (which encodes a voltage-

dependent calcium channel), unc- 52 (which encodes a component of the basement 

membrane), or egl-30 (which encodes a Galpha protein) (Fig. 2-3 (F)) (27–29). Mount 16 

included genes that make the muscle filaments themselves, such as those encoding 

myosin light chain, myosin heavy chain, paramyosin, and two types of troponin (Fig. 2-3 

(E)).  
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We examined 88 genes that are known to be enriched in neuronal cells. These 

neuronal genes were clustered in mount 1 (2.7X), mount 6 (6.5X), and mount 13 (3.1X). 

Both muscle and neuronal genes are clustered in mount 1, and the known muscle or 

neuronal genes in mount 1 tended to encode receptors or receptor-associated proteins. 

One possibility is that these genes function in synaptic transmission at neuromuscular 

junctions. For example, PDZ-containing proteins are expressed in synapses and appear to 

have a role in clustering or localizing neurotransmitter receptors in both the pre- and 

postsynaptic densities (30). There are 58 genes with PDZ domains in C. elegans, and 17 

of these were concentrated in mount 1 along with other neuromuscular genes (2.9X 

enriched). In addition to neuronal genes, mount 13 was enriched for retrotransposons 

(4.0X), suggesting that retrotransposons might be active in worm neurons.  

Previous microarray experiments comparing adult males with adult 

hermaphrodites identified 1651 male-enriched genes, consisting not only of the sperm 

genes (enriched in mount 4) but also genes expressed in the soma such as in the male 

copulatory organ or in male-specific neurons (7). Many of the male-enriched genes were 

clustered in mount 4, corresponding to sperm-enriched genes. The male-enriched genes 

were also enriched in mount 26 (9.5X) (Fig. 2-3 (F)). Of the 95 genes in mount 26, 83 are 

male-enriched (87%) and are likely expressed in the male soma. Mount 26 contained 15 

genes that encode cell surface markers (C-type lectins), suggesting that these genes may 

function to distinguish the extra-cellular surfaces of male and hermaphrodite cells.  

The second general pattern of gene clusters observed in the gene expression 

terrain map corresponds to sets of genes that form functional modules, such as genes that 

act in one biochemical pathway or encode similar types of proteins. For example, mount 
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20 and mount 36 were both enriched for heat shock genes. In particular, 7 of the 10 genes 

in mount 36 encode heat shock proteins (337X enriched). The remaining three genes 

(F26H11.3, F58E10.4, and Y43F8B.2A) were not previously known to be involved in the 

heat shock response. We performed another set of heat shock microarray experiments and 

found that all three are heat shock–regulated at the 99% confidence level (Table 2-2). 

Thus, direct experimental evidence confirmed the genetic relation suggested by the 

juxtaposition of three unknown genes with known heat shock protein genes.  

Mount 32 is highly enriched for histone genes (226X); of the 24 genes in this 

mountain, 22 are histone genes that comprise the nucleosomal core (H2A, H2B, H3, and 

H4). The other type of histone (H1) is not part of the nucleosome itself but serves as a 

linker between nucleosomal subunits on chromatin. There are five histone H1 genes, and 

three of these are in mount 11 (18X) along with early germ line genes.  

The 99 transposons in the C. elegans genome consist mainly of Mariner elements, 

Tc1, Tc3, Tc4, and Tc5 (Web table 1). In most cases, transposons of the same type fell 

into the same cluster, as was expected because different members of each transposon type 

have nearly identical sequences and would be expected to cross-hybridize. The Mariner 

transposons fell into mount 25, most Tc1 copies were in mount 33, and Tc3 copies were 

in mount 37 (Fig. 2-4 (A)). Tc4 and Tc5 show more sequence heterogeneity and were 

spread out in mounts 0, 1, 3, and 9. The expression map showed that the Tc1, Tc3, and 

Mariner transposon families were expressed differently from each other, suggesting 

different types of developmental regulation. To begin to elucidate this developmental 

control, we examined the expression profiles for the transposons in the published 

microarray data (6, 7). We found that average expression of Mariner transposons was 
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high in sperm relative to oocytes, suggesting that this transposon may have a higher 

mobilization rate in the male compared with the hermaphrodite germ line (Fig. 2-4 (B)). 

We also found that the average expression of Tc3 was high in the male soma, as it is 

enriched in males versus hermaphrodites but not in sperm versus oocytes.  

 

 
 

Figure 2-4. Transposon mounts. (A) Transposon clusters in the gene expression terrain map. Tc1 (red), 
Tc3 (blue), and Mariner (yellow) transposons are indicated. Numbers refer to mountains. (B) Transposon 
expression in males and sperm. Because different copies of each type of transposon have nearly identical 
sequences, expression for all genes of each type of transposon are averaged together. Web fig. 4 has 
expression for individual transposon copies. Male/herm., experiments comparing adult male to adult 
hermaphrodite RNAs (7); sperm/oocyte, experiments comparing fem-3(gf ) to fem-1(lf ) worms (6). 
Yellow and blue denote high- and low-expression levels, respectively. 

 
 

Additional sets of genes that cluster in the same mountain on the gene expression 

terrain map are shown in Table 2-1 and listed in Web table 1. Further investigation is 

likely to reveal many more clusters of genes on the terrain map.  

The gene expression database provides higher resolution than individual 

microarray experiments because the expression patterns of particular groups of genes are 

refined by a multitude of experiments. For example, the germ line microarray 
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experiments (6) identified 758 genes that are enriched in the hermaphrodite germ line, but 

the gene expression terrain map was able to subdivide these genes into four mountains 

(mounts 7, 11, 18, and 20) enriched for genes with distinct biological roles. Furthermore, 

the position of genes within a mountain in the terrain map often provides information 

about its function, as we frequently observed that genes with similar function were placed 

close to each other in a section of one mountain. This level of detail was not observed in 

microarray experiments comparing only two worm samples (31).  

 

Table 2-2. Heat shock induction levels for 10 genes in mount 36 

. Heat shocks were for 15 min at 33ºC, and RNA expression levels were measured 30 min after heat 
shock. Results show average expression levels (6 SE) from four independent experiments. HSP, heat 
shock protein 

 
Gene    Induction 6SE    Protein   
 C12C8.1    65.3 619.3    HSP70   

 F44E5.4    82.5 624.8    HSP70   
 F44E5.5    109.7 641.8    HSP70   

 hsp-16.11   39.7 614.7    HSP-16   
 hsp-16.1   52.3 615.0    HSP-16   

 hsp16-2   68.7 622.6    HSP-16   
 hsp16-41   39.0 65.0    HSP-16   

 F26H11.3    11.1 62.3    Bromodomain protein   
 F58E10.4    5.1 61.4    Similar to S.cerevisiae YNL155W   
 Y43F8B.2A    10.5 61.6    Similar to Y43F8B.M   

 
. 

The ability to identify candidate genes whose function can subsequently be 

confirmed by experimental testing depends greatly on the resolution of the terrain map. 

Some sets of genes (such as the heat shock genes, sperm enriched genes, nucleosomal 

histone genes, and ribosomal genes) show tight clustering in which genes that are known 

to be functionally related are adjacent to each other on the gene expression map. Other 
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groups of genes (such as the retinoblastoma complex genes) may be loosely clustered 

together in the same expression mountain.  

Although the sperm versus oocyte experiments were specifically designed to 

identify sperm and oocyte genes (hypothesis testing), the terrain map also grouped genes 

even when they were not specific targets of any of the experiments in the database 

(undirected knowledge discovery). For example, none of the experiments were 

specifically designed to reveal expression in muscle, intestine, or neurons, or to show 

expression by the histone, collagen, or transposon genes (Fig. 2-1 (A)). Nevertheless, 

these genes form discrete clusters or mountains on the terrain map, most likely because 

they showed serendipitous co-regulation in one or more of the experiments in the large 

database. In many cases, mountains on the gene expression terrain map reveal unexpected 

interactions between genes. These types of unexpected gene clusters are best revealed 

using undirected data mining of a global gene expression database rather than testing 

specific hypotheses.  

Caenorhabditis elegans is a powerful model system to analyze biological 

processes with the use of functional genomics approaches. In addition to global 

expression studies, efforts are under way to determine the mutant phenotype of most C. 

elegans genes using RNA interference and to identify protein binding interactions on a 

whole genome level using a high-throughput, yeast two-hybrid approach (32–36). Thus, 

there is a rapid accumulation of expression data, mutant phenotypes, and protein binding 

interactions, making it possible to begin to elucidate cellular, developmental, and 

organismic processes on a global scale.  
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Abstract 

 
The ongoing analyses of published genome-scale data sets is evidence that 

different approaches are required to completely mine this data. We report the use of novel 

tools for both visualization and data set comparison to analyze yeast gene-expression 

(cell cycle and exit from stationary phase/ G0) and protein-interaction studies. This 

analysis led to new insights about each data set. For example, G1-regulated genes are not 

co-regulated during exit from stationary phase, indicating that the cells are not 

synchronized. The tight clustering of other genes during exit from stationary-phase data 

set further indicates the physiological responses during G0 exit are separable from cell-

cycle events. Comparison of the two data sets showed that ribosomal-protein genes 

cluster tightly during exit from stationary phase, but are found in three significantly 

different clusters in the cell-cycle data set. Two protein-interaction data sets were also 

compared with the gene-expression data. Visual analysis of the complete data sets 

showed no clear correlation between co-expression of genes and protein interactions, in 

contrast to published reports examining subsets of the protein-interaction data. Neither 

two-hybrid study identified a large number of interactions between ribosomal proteins, 

consistent with recent structural data, indicating that for both data sets, the identification 

of false-positive interactions may be lower than previously thought. 

 

[Supplemental material is available online at http://www.genome.org and at 

http://biology.unm.edu/biology/maggieww/Public_Html/Visualcomparison.htm, 

including data sets and download information for VxInsight.] 
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Introduction 

 

Enormous amounts of data are generated by high-throughput, genome-scale 

studies. Currently, data sets are available in which the quality of the data is so good that 

numerous re-analyses have yet to mine all the information present in them. Because of 

the size of genome-scale data sets, it is currently difficult, if not impossible, for the 

average researcher to ask global questions about a single data set, much less compare 

several data sets simultaneously. For this data to be completely mined, improved methods 

for integration and analysis of this information will be necessary to extract information 

from within and between the data sets and to develop hypotheses on the basis of these 

analyses (Aach et al. 2000). Toward that end, we performed a comparative analysis of 

four data sets from the yeast Saccharomyces cerevisiae, using the ordination and 

visualization tool VxInsight (Viswave). 

As a model system for which the entire genome has been known since 1996 

(Goffeau et al. 1996), S. cerevisiae has been the subject of several genome-scale studies, 

including gene expression (Lasharki et al. 1997; Chu et al. 1998; Eisen et al. 1998; Ferea 

et al. 1999; Gasch et al. 2000), protein-protein interactions (Schwikowski et al. 2000; Ito 

et al. 2001), and gene deletions (Winzeler et al. 1999). Research using yeast and other 

model systems is now poised to reveal even greater insight into cellular dynamics. As 

information about localization, modification, and abundance of all the proteins in the cell 

is obtained, it will become possible to reconstruct the dynamic interactions between all 

the major levels of organization in living organisms. 



 33

The data sets that we used for this comparative analysis include the following: 

transcriptional analysis of exit from stationary phase and the cell cycle after release from 

α-factor arrest (Spellman et al. 1998) and two protein-protein interaction data sets 

(Schwikowski et al. 2000; Ito et al. 2001). We chose these gene-expression data sets 

because stationary phase, or G0, is an offshoot of the mitotic cell cycle, and cells exiting 

G0 reenter mitosis at G1 (Werner-Washburne et al. 1993). In addition, starvation-induced 

G0 arrest is commonly used to synchronize eukaryotic cells to study reentry into the cell 

cycle (Callard and Mazzolini 1997; Zeise et al. 1998; Hildebrand and Dahlin 2000). 

It is important to understand the relationship between the quiescent state and the 

cell cycle because most solid tumors are derived from G0 cells, and the proof-of-principal 

for chemotherapeutics is the ability to restore G0 arrest (Clark and Gillespie 1997; Zeitler 

et al. 1997; Joshi et al. 1998; Pajic et al. 2000). Additionally, a variety of important 

pathogens, such as Mycobacterium tuberculosis and Cryptoccus neoformans, are 

relatively difficult to treat because they reside in the body for extended periods of time as 

quiescent antibiotic-resistant cells (Tomee et al. 1997; Murray 1999). Finally, pathogens 

used as bio-weapons are usually stored and disseminated as quiescent cells. Thus, the 

importance of the G0 state and the relative lack of information about this phase of the life 

cycle underscore the importance of identifying the differences  and similarities between 

the mitotic cell cycle and exit from G0. 

In the visual comparison reported here, we were able to detect significant 

differences in gene clusters between the two gene-expression data sets, indicating that 

yeast cells exiting starvation-induced quiescence are not synchronous and that expression 

of ribosomal protein genes during the cell cycle shows three distinct patterns. Overlaying 
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protein-interaction data led to the rapid detection of differences in the data sets and the 

finding that neither protein-interaction data set detected interactions between ribosomal 

proteins in the same subunit, which is consistent with recently published structural data, 

and indicates that the two-hybrid assay may be less prone to false-positives than 

previously thought. 

Results 

Data Set Topographies 

 
Ordination of genes of the α-factor arrest/cell-cycle data into clusters (18 

experiments per 6000 genes; Spellman et al. 1998), as described in Methods, resulted in a 

circular pattern (Fig. 3-1 (B, C)). Hills or ridges of G1-, S-, M-, and M- G1–regulated 

genes are found on the circumference of the circle, although not all of the groups of genes 

on the circumference of the ordination are cell-cycle regulated (see Web Supplement). In 

addition, M and G1 clusters, with genes with expressions that are approximately opposite, 

are located on opposite sides of the topography. The two inner groups contain genes with 

regulation that is fairly constant throughout the cell cycle, including many genes involved 

in secretion, sterol biosynthesis, golgi function, and other constitutive pathways.  
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 Figure 3-1. α-Factor-arrest data set (18 time points) ordinated and visualized in VxInsight.  (A) Cell 
cycle gene expression after α-factor arrest and the dendogram indicating similarities of gene expression as 
presented by Spellman et al. (Reprinted, with permission, from Spellman et al. 1998.) (B) Three 
dimensional topography in which mountains are formed over clusters of genes. The height of the mountain 
corresponds to the number of genes beneath it. Typical expression profiles for genes in each mountain are 
provided. G1, S, and M: Genes in these clusters are induced during the G1, S, or M phase of the cell cycle, 
respectively. (C) Ordination of genes (dots) that underlie the topography with links (blue lines with yellow 
arrows at each end) showing strong similarities (Pearson’s R > 0.887) that exist between genes in different 
clusters. 

 

In the topography of the exit from stationary-phase data set, the 45 genes with 

mRNAs that accumulate in stationary phase are clustered in a hill at the bottom right of 

the topography (Fig. 3-2). Genes with mRNAs that accumulate rapidly as cultures exit 

stationary phase are found at the top and left sides of the topography. Background 

normalized data from membrane hybridizations were used for this analysis. Although 

there is variation in each of the expression profiles as a function of membrane and 

hybridization order, these differences were not significant, and normalization of this data 
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by several methods did not affect the clusters, although it did have an effect on the 

overall topography (data not shown). 

 

Figure 3-2. VxInsight-generated ordination of exit from stationary-phase data set. Examples of gene 
expression within each hill or cluster are shown. Along the x-axis of insert graphs are time points (0, 15, 
30, 45, and 60 min) after re-feeding. The y-axis of insert graphs indicates the fold-increase or decrease 
from time equals; 0, which is an average of four to five replicates for each time point. Numbers in the insert 
graphs indicate the maximum value of the y-axis, which indicates relative expression values obtained using 
GeneSpring (Silicon Genetics; see Methods). Data were generated as described (Methods). 

 

Visual Queries of Two Gene-Expression Data Sets 

 

Using microarray data to develop hypotheses about related biological processes 

requires the ability to make comparative queries of multiple data sets. For this analysis, 

we chose to investigate the relationships between the processes of the mitotic cell cycle 

and exit from stationary phase in yeast. Cells in stationary- phase cultures are small and 

unbudded and are considered to be in the G0 state of the cell cycle. We asked whether cell 

cycle– regulated genes that clustered in the cell-cycle data set (Fig. 3-1 (B, C)) also 
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clustered in the exit from stationary- phase data set (Fig. 3-2). A set of G1-regulated 

genes in the cell cycle topography (each represented as a white dot, see Fig. 3-3 (A)) was 

selected, and the positions of these genes were identified in the stationary-phase exit 

topography (Fig. 3-3 (B)). The selected G1-induced genes, which are tightly clustered 

during the cell cycle, were randomly positioned in the stationary-phase exit topography. 

 

Figure 3-3. Location of G1-regulated genes in two different gene-expression data sets. (A) Dots 
represent selected G1-regulated genes in α -factor– arrest cell-cycle data (Spellman et al. 1998). (B) 
Location of the same genes in the ordination of stationary-phase exit data. 

 

 

To determine whether genes were G1 regulated, each gene was assigned a value 

that reflected how purely its expression coincided with G1, which allowed us to rank 

order the subset of classical cell-cycle genes. We then examined groups of these genes. 

Of the 10 strongest G1-regulated genes— including CLB6, SWI4, MCD1, RNR1, MNN1, 

YOX1, POL30, CLN2, SVS1, and TOS4—one half of these genes were randomly 

distributed, and one half were clustered (P < 0.001) in the exit from stationary-phase data 

set (see supplemental data). When the positions of these genes were evaluated in the exit 

from stationary-phase topography, POL30 and MCD1 clustered with the genes with 
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induction that occurs almost immediately on refeeding, including CLN3 and most of the 

ribosomal protein genes. SWI4 clustered with genes with mRNAs that accumulate in the 

first 15 min and then remain fairly constant. In contrast, five of the most G1-like genes 

cluster in a region in which mRNA abundance fluctuates as a function of the particular 

membrane, but overall, the gene expression remains constant from hybridization to 

hybridization for the same membrane. These genes are CLB6, RNR1, CLN2, TOS4, and 

SVS1. The probability of finding these genes clustered in a region of 516 genes is highly 

significant (P < 0.001). 

During the cell cycle, CLN3 is induced first, followed by POL30 and MCD1, 

which are co-expressed with CLN1 (Stanford Genome Database). Although we had 

hypothesized that at least some of the patterns of gene expression might be conserved 

between the cell cycle and exit from stationary phase, the small subset of highly G1-

regulated genes does not follow this temporal relationship. Early, morphological data had 

indicated that the cells in stationary-phase cultures did not exit stationary phase 

synchronously (Johnston et al. 1977). The induction of CLN3, POL30, and MCD1 almost 

immediately on refeeding and the relatively random distribution of the majority of other 

strongly G1-regulated genes in the exit from stationary-phase data set are consistent with 

the hypothesis that cells exiting stationary phase are not synchronous. Further analysis 

will be required to determine the conditions under which cells exiting stationary phase 

can be completely synchronized. Despite the lack of co-regulation of cell-cycle genes, 

there are clusters of genes with expression that increased or decreased dramatically 

during exit from stationary phase.  
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To determine whether genes co-expressed during exit from stationary phase might 

also be co-expressed in the cell-cycle data set, we investigated the small subunit 

ribosomal-protein (RPS) genes. Fifty-three of the 59 RPS genes are found in a ridge in 

the exit data set (Fig. 3-4 (A)). When the positions of all the RPS genes are identified in 

the cell-cycle topography, they are not clustered in one group but are located mostly in 

three different groups of genes (Fig. 3-4 (B)), with gene-expression profiles that are 

significantly different (P < 0.0001). We conclude from this that RPS gene expression, 

which is tightly coregulated during exit from stationary phase and during other stress 

conditions (Gasch et al. 2000), shows at least three distinct patterns of expression during 

the mitotic cell cycle. 

 

Figure 3-4. Location of ribosomal protein genes (RPS genes) in two gene-expression data sets. . (A) 
Location of RPS genes in exit from stationary phase data. Fifty-three of 59 RPS genes are localized in the 
upper middle cluster. (B) Localization of the same RPS genes in cell-cycle data set. Arrows indicate three 
major groups of RPS genes. 

 

 

The clustering of these genes into three groups is interesting because many 

ribosomal protein genes are duplicated and found as highly conserved gene pairs. Thus, 

any separation of these pairs of genes may have evolutionary implications. Of the 46 
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genes comprising 23 pairs of ribosomal protein genes that were present in the three 

clusters, there was an almost a threefold higher chance of members of a pair being in 

different clusters (34 of 48) compared with finding them in the same cluster (12 of 48; 

data not shown). Additional experiments will be required to determine the correlation of 

expression with protein abundance and, thus, whether the differences in ribosomal gene 

expression during the cell cycle have an effect on ribosome function or biogenesis. 

Visual Analysis of Protein-Protein Interactions 

 
Hypothesizing that the cell would use ‘just in time’ production of interacting 

proteins throughout the cell cycle as part of its regulation and control repertoire, we 

evaluate the extent to which co-expressed genes were found to encode interacting 

proteins. We incorporated information from two protein-protein interaction data sets 

(Schwikowski et al. 2000; Ito et al. 2001) in the cell-cycle topography (Fig. 3-5). Ito’s 

data sets including 4549 interactions (1532 nonduplicated interactions) in the full data set 

(Ito et al. 2001) are based on yeast two-hybrid assays, whereas Schwikowski’s data set, 

reporting 2709 interactions (1157 nonduplicated interactions), was gathered from yeast 

two-hybrid, biochemical, and genetic data (Schwikowski et al. 2000). Interacting pairs of 

proteins are visualized as lines drawn between two genes on the topography. Because the 

protein-protein interaction data is binary—that is, proteins either interact or they do not—

the relative strength of the interactions is not a parameter that can be used for 

visualization. 

The impression from both data sets is that the complete set of interacting proteins 

creates a network over the entire expression topography (Fig. 3-5 (A,B); see 

supplemental data). At this level of analysis, differences in the structure of the data can 
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be detected only at the margins. When the protein interactions that are common to both 

data sets are visualized in VxInsight, the previously reported lack of overlap in the two 

data sets (Ito et al. 2001) can be clearly seen (only 19% of Schwikowski and 8.3% of 

Ito’s full data sets are in common; Fig. 3-5 (C, D)). Visualization of only the genes 

encoding interacting proteins common to both data sets (Fig. 3-5(D)) shows that 

relatively large segments of the topography contain no interacting proteins. 

 

Figure 3-5. Protein-protein interaction maps as a function of the cell-cycle gene-expression 
topography. Lines are drawn between genes encoding interacting proteins and the G1-regulated gene 
cluster is circled for clarity. (A) Schwikowski’s complete data set. (B) Ito’s full data set. (C) Protein-protein 
interactions reported from both data sets. (D) Genes encoding interacting proteins common to both data 
sets. In A and B, genes encoding proteins involved in interactions are indicated by yellow pyramids.  

 
 



 42

In both data sets, many interactions are observed between proteins encoded by 

tightly clustered G1 phase– regulated genes (Fig. 3-6). Although both data sets contain 

G1-regulated genes that interact with each other, there is little overlap between the data 

sets (Fig. 3-6 (D)). Ito’s data set (Fig. 3-6 (B)) includes many interactions between 

proteins encoded by genes in the G1 cluster and an adjacent cluster, containing genes that 

are not cell-cycle regulated. In contrast, the interactions reported in Schwikowski’s data 

set (Fig. 3-6 (C)) more closely parallel the connections based on strong similarities of 

gene expression (Fig. 3-6 (D)). In the region of M phase–regulated genes, both data sets 

report interacting proteins that parallel the strong similarities in gene expression, but with 

little overlap between the data sets (data not shown). In examining the G1-regulated genes 

reported to be involved in interactions in both data sets, Ito’s data set is much more likely 

to contain genes of unknown function (33 of 78; 42%) than is Schwikowski’s data set (5 

of 50; 10%; data not shown). Furthermore, there are no genes in the main G1-regulated 

cluster that encode interactive proteins common to both data sets (Fig. 3-6 (D)).  

 



 43

 

Figure 3-6. Interactions among proteins encoded by G1-regulated genes. (A) Topographical 
presentation of G1- regulated gene cluster with connections between genes showing strong similarities (R > 
0.887) of expression between genes. (B) Genes encoding interacting proteins from Ito’s full data set. (C) 
Genes encoding interacting proteins reported from Schwikowski’s data set. (D) Protein interactions in 
common to the two data sets. Connections between genes in B–D indicate interactions occurring between 
proteins encoded by the specific genes. 

 

 

Looking at genes within the G1-regulated gene cluster that are reported to interact 

in each data set, Schwikowski reports an interaction between MSH6 and PMS1, both 

involved in mismatch repair, whereas Ito reports an interaction between RFL2 and 

CAC1, both subunits of chromatin assembly factor (CAF-1). The lack of overlap in the 

two data sets and the presence of reasonable interacting pairs in both data sets indicate 
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that for the present time, the data sets are most useful when examined concurrently, as 

was performed in a recent paper (Ge et al. 2001). We conclude from this analysis that the 

differences in results of both studies could be indicative of the range of detection in the 

two-hybrid assay and the difficulty in obtaining sample sizes large enough to include the 

entire set of interactions. 

The structures of the two data sets are also distinct. Several genes have 

significantly more interactions in the Ito data set (Fig. 3-7(A)) than in the Schwikowski 

data set (Fig. 3-7 (B)). One of these, Nup116p, a nuclear pore protein, is reported to have 

125 interactions in the Ito full data set, 15 in the core data set (interactions observed three 

separate times), and three in the Schwikowski data set (which includes data from the 

Munich Information Center for Protein Sequences). Nup116p has been shown genetically 

or biochemically to interact with 15 proteins (www.Proteome.com), including many 

involved in nuclear pore function (Fig. 3-7 (D)). Based on information from the Munich 

Information Center for Protein Sequences, Schwikowski reported three Nup116p-

interacting proteins: Kap95p, Kap104p, and Gle2p. Ito, based solely on two-hybrid data, 

also identified three of these interacting proteins, Gle2p, Nup 82p, and Nup100p, in the 

full data set (Fig. 3-7 (B)). 

Interestingly, when interactions reported in Ito’s full data set for Nup116p are 

visualized as a function of gene expression during exit from stationary phase (Fig. 3-7 

(C)), it is striking that there are no interactions between Nup116p and proteins encoded 

by stationary-phase genes and only three interactions with proteins encoded by genes 

with expression that increases rapidly after refeeding, including those in ribosome ridge. 

If Nup116p interactions were randomly distributed, more than nine interactions would 
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have been expected with proteins encoded by these genes. In ribosome ridge alone, ~125 

proteins (of 290) are known to be ribosomal, and nine other proteins are predicted to be 

nuclear, yet there are only two interactions with proteins encoded by genes in this cluster. 

Further experiments will be necessary to determine whether this interaction pattern is 

accurate or reflective of a higher than expected rate of false negatives (Ito et al. 2001) 

with this assay. 

 

 

Figure 3-7. Protein-protein interactions between Nup116p and other proteins. (A) Ito’s full data set: 
cell-cycle expression topography. (B) Schwikowski’s full data set: cell-cycle topography. (C) Ito’s full data 
set: exit from stationary phase topography. (D) Diagram of Nup116p interactions in the nuclear pore from 
the Munich Information Center for Protein Sequences (http://vms.gsf.de/htbin/ search_code/YMR047C). 
(Reprinted, with permission, from E. Hurt, BZH; Universitaet Heidelberg.) 
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Relative Absence of Ribosomal-Protein Interactions in the Protein-Interaction Data 
Sets 

 
Because of the strong similarity in gene expression among the ribosomal protein 

genes (RPS and RPL genes) during exit from stationary phase, we were interested in 

examining the interactions among proteins encoded by genes found in ribosome ridge in 

the exit from stationary-phase data set. Surprisingly, although there was a high degree of 

similarity of gene expression and some interactions reported between nonribosomal 

proteins in ribosome ridge, there was only one interaction reported between ribosomal 

proteins (see Web Supplement). The absence of interactions among these proteins was 

surprising but consistent with recent structural data, indicating that ribosomal proteins 

interact primarily with ribosomal RNA and not with each other (Spahn et al. 2001). This 

observation, which is in contrast to results from immunoprecipitation– mass spectroscopy 

analysis of protein complexes in which ribosomal proteins are common contaminants 

(Gavin et al. 2002), actually strengthens the confidence in both two-hybrid data sets, 

indicating that the level of identification of false-positive interactions (Schwikowski et al. 

2000), at least among some groups of proteins, is relatively low. 

Discussion 

 
An integrative approach to cell function requires the tools to compile and 

integrate information from different levels of cellular organization (Ideker et al. 2001). 

We have shown the utility of visual comparison of distinct types of genome-scale data 

sets. In this process, we were able to conclude that G1- regulated genes were not 

coordinately regulated during exit from stationary phase, indicating that cells exiting 
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stationary phase are not synchronous or that a subset of G1-regulated genes is required for 

this process. 

The hypothesis that the cells in stationary-phase cultures are not synchronous is 

supported by the observation of different sizes of cells in stationary-phase cultures 

(Werner-Washburne et al. 1993) and previous studies of reentry into the cell cycle 

indicating that cells do not bud until they reach a critical size (Johnston et al. 1977). In 

addition, one report indicated that mammalian cells are not synchronized when induced 

to grow by refeeding (Cooper 1998), although G0 arrest by serum starvation is a method 

commonly used to synchronize mammalian cells (Callard and Mazzolini 1997; Zeise et 

al. 1998; Hildebrand and Dahlin 2000). If yeast cells can be synchronized during exit 

from stationary phase; for example, by isolating small unbudded cells, it should be 

possible to distinguish those changes in gene expression that are physiological in nature 

(e.g., induction of ribosomal protein genes) from those that are specific for the cell-cycle 

transition (e.g., expression of cell cycle–regulated genes). The discovery of different 

genes required for the physiological response and the cell-cycle response could easily 

lead to the development of novel drug-targeting strategies that are specific for quiescent 

cells. 

The lack of overlap in the two protein-interaction data sets from yeast 

(Schwikowski et al. 2000; Ito et al. 2001) has been a puzzle to researchers interested in 

proteomics; to date no clear reason for these differences has been determined. One 

suggestion was that the size of the cloned genes might have been a factor (Hazbun and 

Fields 2001). In our analysis, there was no clear reason to exclude data from either data 

set. A study of the relationship between cell-cycle expression and protein-interaction data 
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was recently published (Ge et al. 2001) in which the protein-interaction data were 

combined. This is consistent with our conclusions for the two data sets analyzed here. We 

hypothesize that the differences between the two data sets could be caused by the ability 

of two-hybrid analysis to detect a very wide range of interactions, and that the sample 

size, even in genome-scale analyses, may be too small to detect all of the interactions in 

one or even in several experiments. 

The process of analysis presented here, although extremely useful to researchers 

interested in the quiescent state, is also meant to serve as an example that can be used by 

biologists interested in other questions. For example, is it possible to evaluate differences 

between distinct, but related, developmental pathways by identifying genes that cluster in 

one expression data set but not in another? Is it possible to identify protein interactions 

that occur only under specific growth conditions by identifying those conditions in which 

interacting proteins are clustered as a function of gene expression? 

As multi–data set analyses become more common, they will also lead to changes 

in experimental design, for example, the increased use of time-course experiments and 

coordination or parallelization of assays for gene expression and protein interactions, 

abundance, and/or modifications. Additional pressure for these types of experiments will 

come from the need for complete characterization of complex processes, such as 

regulatory pathways, involving every level of cellular and multi-cellular organization. 

Because it is also unlikely that any one level of cellular organization will provide all the 

critical elements for diagnostics, both basic and applied research will fuel the continued 

development of more functional and intuitive software tools for this analysis. 
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Methods  

Exit From Stationary Phase: Growth Conditions, RNA Isolation, and Microarray 
Analysis 

 
Overnight cultures of yeast cells (S288C) were inoculated into rich glucose-based 

medium (YPD) and incubated at 30°C with shaking. At day 7, cells were harvested, 

washed, re-suspended to an OD600 of 2 in fresh YPD and returned to 30°C. Samples (~40 

OD600 units) were taken at t = 0, 15, 30, 45, and 60 min after cells were re-suspended in 

fresh rich medium. Cells were harvested by centrifugation at 4°C and washed once with 

ice-cold water. Cell pellets were stored at -70°C until use. 

Total RNA from ~40 OD units of cells was extracted using a modified Gentra 

protocol. Briefly, cell pellets were re-suspended in 300 μL of cell lysis buffer (Gentra) to 

which ~0.2 gm of acid-washed beads had been added. The cells were lysed by vortexing 

for 30 sec followed by 30 sec on ice (six repetitions). DNA and protein were precipitated 

from the supernatant, and the RNA was further purified with a phenol/ choloroform 

extraction and DNase treatment. 

Radiolabeled ([33P]-dCTP) cDNA “probe” was obtained by reverse transcription 

of total RNA (2 μg) following the protocol from Research Genetics (www.resgen.com). 

cDNA was purified to remove unincorporated nucleotides, and total incorporated counts 

were measured by scintillation counting. The entire probe was then hybridized to nylon 

membranes containing 6144 yeast open reading frames (Research Genetics). Five sets of 

nylon membranes were hybridized per experiment (one time point per membrane set per 

hybridization). 

Hybridization was detected by phosphor imaging, and the scanned images were 

uploaded into Research Pathways Image software (Research Genetics) and as 
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background-subtracted counts into GeneSpring (Silicon Genetics) and VxInsight 

(Viswave). Data were normalized using the 50th percentile of all measurements as a 

positive control. Each measurement was divided by this synthetic positive control to 

obtain relative expression values. 

Replicate experiments were performed by stripping the nylon membranes and 

reprobing (following the protocol from Research Genetics) with a new reverse 

transcription reaction obtained from the original RNA extracts. Four to five replicates 

were performed for each time point. 

Data Preparation and Analysis with VxInsight 

 
Gene expression values in tab-delimited data files were used to compute all pair-

wise correlations between genes. For each gene, the 20 strongest positive correlations 

were retained and used for clustering. Because the significance of correlations is 

nonlinear (a change of 0.05 is much more significant for larger correlations than for 

smaller ones), the correlations were transformed to a T-statistic, which reflects the 

statistical rareness of the correlation numbers. In each case, the two gene names and the 

T-statistic for their correlation were passed to the VxOrd clustering program. The 

algorithm used by VxOrd places genes on a two-dimensional plane with respect to their 

similarities (i.e., the T-statistics). It minimizes the potential energy of particles (genes) 

attracted to each other by forces proportional to their similarities and repulsed from each 

other by a local force proportional to the density of genes in the immediate region of each 

gene. The details of the ordination are described more fully elsewhere (Davidson et al. 

2001). The hills represent gene clusters, which are determined by similarities in gene 

expression. The topographical distance between genes and clusters is a function of the 
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similarity of expression between the genes, and the height of the hills in VxInsight 

corresponds to the number of genes beneath them. 

We decided to identify as strongly correlated, all gene pairs that could have true 

correlations, ρ exceeding 0.95. To find the appropriate critical value for R, the sample 

correlation rather than the assumed underlying true correlation, ρ, we used the approach 

described in Davidson et al. (2001). Briefly, if two genes have some true long-term 

correlations (e.g., ρ = 0.95) and we measure these two genes with only 18 microarray 

experiments, our particular sample correlation will often fall below R = 0.95. For any 

critical value we might choose, there would be a risk of some rare set of 18 experiments 

yielding a sample correlation less than our selected value. However, we can control that 

risk by choosing a critical value such that the chance of seeing one of those misleading 

sample correlations is acceptably small. So, for example, in our analysis we were willing 

to accept the chance of missing a pair of strongly correlated genes (with a true long-term 

correlation, ρ ≥ 0.95) only one time in 20. The analysis described in Davidson et al. 

(2001) indicates that the critical value for the observed sample correlations should be R > 

0.887. Gene pairs passing this test are identified as being strongly correlated in our 

analysis. 

Identification of Highly Correlated, G1-Regulated Genes 

 

Genes that are strongly up-regulated in G1-phase in the α-factor arrest/cell cycle 

data set show sharp increases in the third through fifth experiment and then again in the 

11th through 13th experiment and are much lower at all other times (Spellman et al. 

1998). To generate a list of these genes, we computed the dot product of the expression of 
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every gene with a vector having +1 values where G1-regulated genes would be expected 

to be up-regulated, and -1 values elsewhere. These dot products were sorted and the 

largest of them were used to identify the strongest G1-regulated genes. 

Testing the Significance of the Clustering for Ribosomal-Protein Genes 

 

To answer the question “Are two mountains in the VxInsight map significantly 

different from each other?” we compared the empirical distribution of pair-wise 

correlations in each mountain, and also the distributions of correlations between the two 

mountains. There are three ways clusters could systematically differ from each other: 

1. Expression correlations within each of the two mountains could be very different 

from each other and also different from the intermountain correlations. 

2. The correlations might be vaguely similar in each of the mountains, but their 

intermountain correlations could be noticeably different from the correlations in 

either mountain. 

3. The correlations in each mountain could be noticeably different from each other, 

but the intermountain correlations could have some intermediate value, such that 

the intermountain correlations could not be detected as being different from either 

of the mountains, even if the mountains were, themselves, statistically different. 

The first case corresponds to strongly separated clusters, the second to weakly 

separated clusters, and the third case corresponds to a gradual gradation from one cluster 

into another. However, there is only one way that the genes can be incorrectly separated 

into different groups: that is if all three groupings are found to be indistinguishable. If the 

gene expressions for genes in, and between, the two mountains were really 



 53

indistinguishable (the null hypothesis), then analysis of variance (ANOVA) should fail to 

detect a significant difference between the means of the three sets of correlations. We 

tested a number of clusters using ANOVA to assure ourselves that the clustering was 

significant. 

Briefly, we started with two nonintersecting gene lists, GroupA and GroupB. We 

computed all possible correlations between the genes in GroupA, all possible correlations 

between genes in GroupB, and finally the correlations between every gene in GroupA 

with every gene in GroupB. These individual correlations were transformed to their 

corresponding T-statistics, which are directly related to the P values associated with 

observing the correlations when the expressions are not actually correlated. ANOVA was 

performed to test if the mean correlations for these three different groups were 

significantly different. Under the null hypothesis, one would rarely (the ANOVA P value) 

see large F-statistics from this analysis. On the other hand, ANOVA should uncover a 

difference if the genes in the two VxInsight clusters were correctly separated into 

different groups. That is, we expect ANOVA to yield a very small P value when the 

expressions for genes in either mountain are more like the expressions for genes in the 

same mountain than they are for genes in the other mountain. Further, when the 

correlations between the two clusters are different from the correlations in at least one of 

the mountains, ANOVA should also allow us to reject the null hypothesis. In either case, 

we would conclude that the VxInsight clusters are not artifacts. 
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Abstract 

 
 
Yeast cultures enter stationary phase in rich, glucose-based medium in response to carbon 

starvation. During this process, differentiation of two major subpopulations of cells, 

termed quiescent and non-quiescent, has been observed.  Differences in mRNA 

abundance between exponentially growing and stationary-phase cultures and quiescent 

and non-quiescent cells have been identified. To measure changes in protein abundance 

between exponential and stationary-phase cultures, the yeast GFP-fusion library (4156 

strains) was examined during exponential and stationary-phases, using high-throughput 

flow cytometry (HyperCyt®).  About 5% of proteins in the library showed 2-fold or 

greater changes in median fluorescence intensity (abundance) between the two 

conditions.  We identified and characterized 38 strains exhibiting two distinct peaks of 

fluorescence-intensity in SP and determined that the two fluorescence peaks identified 

quiescent and non-quiescent cells, indicating these are the two major subpopulations.  

Most proteins that distinguished quiescent and non-quiescent cells were more abundant in 

quiescent cells and were involved in mitochondrial function, consistent with the 6-fold 

increase in respiration observed in quiescent cells.  Examination of the induction of 

quiescent-cell specific proteins found symmetry in protein accumulation in dividing cells 

after glucose exhaustion and led to a new model for the differentiation of quiescent and 

non-quiescent cells.  
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Introduction 

 
The yeast Saccharomyces cerevisiae is a major model system that is seldom 

considered for studies of cellular differentiation, especially the differentiation of cell 

types within the same culture.  However, when yeast cultures, grown in rich, glucose-

based medium, exhaust glucose, two cell fractions: quiescent (Q) and non-quiescent 

(NQ), do differentiate and, by two days after glucose exhaustion (3 days after 

inoculation), are separable by density-gradient centrifugation (Allen et al., 2006).  

Q cells, in contrast to cells in the NQ fraction, are uniform, unbudded, bright 

(refractile) by phase-contrast microscopy, relatively dense, stress-resistant, and most 

(>90%) are virgin daughters. They are synchronous when re-fed and nearly 100% 

reproductively competent.  They contain thousands of mRNAs in insoluble protein-RNA 

complexes from which specific mRNAs are released in a stress-specific manner (Aragon 

et al., 2006).  

The NQ fraction, in contrast, contains budded and unbudded cells comprised of 

approximately equal numbers of mothers and daughters, and few sequestered mRNAs.  

This fraction is not synchronous when re-fed, but retains viability while rapidly losing 

reproductive capacity, independent of replicative age, making it a model for, among 

other things, the viable but unculturable state (Lewis, 2007).  Of NQ cells that can 

reproduce, 40% form petite colonies, consistent with previous reports of genomic 

rearrangements and transpositions in stationary phase (SP) or glucose-limited cultures 

(Dunham et al., 2002; Coyle and Kroll, 2008). The most abundant, soluble mRNAs in 

NQ cells encode proteins involved in DNA recombination and repair and Ty-element 

transposition, consistent with their being genomically unstable (Aragon et al., 2008). By 
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14-days post-inoculation, about 50% of NQ cells are apoptotic.  The differences between 

Q and NQ cells and the preponderance of virgin daughters in Q fractions raise questions 

about the origins and differentiation of these populations, especially, the virgin 

daughters in Q and NQ cell fractions.  

Large, robust, transcriptome data sets are available for Q and NQ cells (Aragon et 

al., 2008), but there are no extensive proteomic data for these fractions.  Until this paper, 

the only proteomic data available were from two-dimensional, polyacrylamide gel-

electrophoretograms from studies of protein synthesis in cultures grown to stationary 

phase in rich medium (Fuge et al., 1994). That analysis demonstrated that, although 

protein synthesis decreases as cultures approached stationary phase, major changes in 

protein synthesis are observed immediately after the cultures exhaust glucose at the 

diauxic shift.  Because only a small percentage of total cellular proteins can be visualized 

in this assay, proteomic-level insight into the origins and differentiation of Q and NQ 

cells requires a more comprehensive proteomic assay.   

To obtain quantitative data for abundance of more than 2/3 of yeast proteins, the 

yeast GFP-fusion library (4156 strains, each tagged at the 3’ end (coding strand) of the 

ORF with a GFP-encoding gene) (Huh et al., 2003; Howson et al., 2005) was screened, 

in triplicate, during exponential (EXP) and stationary phase (SP), using high-throughput 

flow cytometry (HyperCyt®) (Edwards et al., 2004). The GFP-fusion library was 

developed as a tool for in vivo analysis of protein abundance and localization at the level 

of the proteome.  The strain library, which represents about 75% of all yeast genes, has 

been validated and used to localize proteins in cells in exponential phase cultures (Huh et 

al., 2003). It has also been used to examine the relationship between mRNA and protein 
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abundance (Newman et al., 2006) and this and similar libraries have been used to model 

the factors that contribute to differences in protein abundance at the cellular level (Raser 

and O'Shea, 2004, 2005; Newman et al., 2006). However, to our knowledge, the entire 

library has not previously been used to examine differences in protein abundance 

between two environmental conditions, such as EXP in rich, glucose-based medium and 

SP.   

We report here that flow-cytometry analysis of approximately 25,000 GFP-fusion 

strain samples in EXP and SP revealed that only 3% of GFP-fusion proteins showed a 

two-fold or greater change in abundance between EXP and SP.  Abundant EXP proteins 

are involved in biosynthetic processes while abundant SP proteins are involved in 

mitochondrial function. To find GFP-fusion proteins that might distinguish Q from NQ 

cells, we identified 38 strains with distinct double peaks of fluorescence in the flow 

cytometry data from unfractionated SP cultures. All 38 exhibited higher fluorescence 

intensity in the Q fraction. Most of these strains carried GFP-fusions in mitochondrial 

proteins, many of which are involved in respiration. This observation is consistent with 

our finding that respiration was significantly higher in Q than NQ cells. Examination of 

Cit1p:GFP and Acs1p:GFP strains, which express GFP-fusion proteins almost 

exclusively in Q cells, revealed that daughter cells produced after the diauxic shift 

express the same level of GFP protein as the mother, i.e., dim NQ mothers produce dim 

NQ daughters while bright, GFP-producing mothers produce bright daughters. This 

observation leads to a new model for the production of Q and NQ cells in stationary-

phase cultures.  
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Materials and Methods 

  

Growth conditions. For the GFP HyperCyt® screen, individual strains from the Yeast 

GFP Collection (Huh et al., 2003), constructed from the parental strain ATCC 201388: 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (S288C) (Brachmann et al., 1998), were 

replicated into 96 well plates containing YPD + A (2% yeast extract, 1% peptone, 2% 

glucose, 0.04 mg/mL adenine) and 50 μg/ml ampicillin; (Rose et al., 1990) using pin 

tools. The plates were covered with Breathe Easy sealing membranes (Sigma Aldrich cat 

#380059) and the strains were cultured at 30°C with aeration either overnight (for 

exponential growth) or for 7 days (for stationary-phase growth).  For the 38 

subpopulation strain analysis, wild-type (S288c) and the yeast GFP-fusion set (Huh et al., 

2003) were used for analysis.  Strains were cultured in YPD + A (2% yeast extract, 1% 

peptone, 2% glucose, 0.04 mg/mL adenine, and 50 μg/ml ampicillin) at 30°C for 7 days 

for stationary phase growth.  

Cell Separation and Harvest. PercollTM (GE Healthcare) density gradients were made 

using a solution of one part 1.5M NaCl per 8 parts of PercollTM (vol/vol) (Allen et al., 

2006). The gradients were formed using 10-ml aliquots of this solution in 15 ml Corex 

tubes which were centrifuged at 24,700 g for 15 min at 4ºC. In order to separate the 

fractions, 5 ml samples of 7 day stationary-phase yeast cultures were pelleted, 

resuspended in 500 µl of 50 mM Tris HCl buffer pH 7.5 and overlaid onto these 

gradients.  The gradients were then centrifuged at 400 g for 60 min at 25 ºC in a tabletop 

centrifuge with a swinging bucket rotor (Allegra X12-R, Beckman). The resulting 

fractions were collected and washed in 13 ml of Tris buffer. The pellets were 
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resuspended in 1 ml of Tris buffer and cell density was ascertained using the Z2 Coulter 

Counter (Beckman).  The cells were again pelleted and then suspended in 100 µl of their 

own respective stationary phase conditioned media for analysis.  

High-throughput flow-cytometric screening.  Three steps were used to prepare the 

samples for high-throughput screening. First, dilution plates were prepared by 

transferring 90 µL of peptide dilution flow buffer (30mM HEPES buffer, pH7.4, 110mM 

NaCl, 10mM KCl, 1mM MgCl2, 10mM Glucose and 0.1% BSA) into each well of the 

384-well plates (Greiner Bio-one Cat #781280) using the Biomek NXMC (Beckman 

Coulter, Fullerton, CA.) liquid handling robot. Second, 10 µL of each yeast strain were 

transferred from the 96-well growth plates into three adjacent wells of the 384-well 

dilution plates using the Biomek NXS8 (Beckman Coulter) liquid handling robot. This 

step created a 1:10 dilution and generated three technical replicates for each sample.  The 

4th, 8th, 12th, 16th, 20th, and 24th columns of the dilution plates did not contain samples, 

just buffer alone. These columns served as a wash well used between different samples to 

minimize sample carryover.  Third, the cells were sampled with a HyperCyt® (Edwards 

et al., 2004; Young et al., 2005) autosampler controlled by HyperSip software and 

interrogated for GFP fluorescence with a CYAN ADP (Dako Cytomation, Ft. Collins, 

CO) flow cytometer using excitation at 488 nm and collection of fluorescent emissions 

with a 530/40 nm filter set. The data were processed using IDLeQuery software and the 

median channel fluorescence for each sample was calculated and used for subsequent 

analyses.  

Low-throughput flow cytometry and MoFlo-based cell sorting.  For re-analysis of the 38 
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strains and Q/NQ fractions, approximately 5x106 cells were suspended in 500 μl of filter 

sterilized (0.22 µm) Tris buffer in 2-ml flow tubes.  These were analyzed for GFP 

fluorescence intensity using the Accuri C6 Flow Cytometer with the FL-1 channel. 

30,000 events were acquired for each of 3 technical replicates.  Data were analyzed with 

IDLeQuery software. For single-cell growth studies, cells were sorted based on 

fluorescence and 144 cells positioned per YPD agar plate using a MoFlo cell sorter 

(Coulter). Three plates were sorted per sample, e.g., high GRE low ROS, and results are 

means ± standard deviation    

DHE assay for quantification of ROS.  Dihydroethidium (DHE) stock solution 

(Invitrogen) was diluted 1:10 in PBS (Fluka) for a working solution.  Approximately 

1x108 S288c upper and lower fraction cells per sample were pelleted and resuspended in 

100 μl of the YPD+a, supernatant that had been filter sterilized. 1 μl DHE working 

solution was added to each sample and incubated for 6 min at room temperature in the 

dark. The samples were washed three times in PBS.  The samples were diluted to 1x106 

cells/ml in Isoton II, and 30,000 cells per sample were analyzed with a FACScan flow 

cytometer (CLONTECH Laboratories, Inc.) using 488 nm excitation and collecting 

fluorescent emission with filters at 585/42 nm for FL-1 parameter.  

Microscopy. The fluorescent images were obtained using an Axioskop 2 mot plus 

microscope (Carl Zeiss).  All of the images were taken with a 50 ms exposure time for 

the DIC image, 2000 ms exposure time for the Rhodamine filter to detect DHE staining, 

and 2000 ms and automatic exposure times for the FITC filter to detect GFP.  The 

automatic exposure image was acquired for the purpose of identifying localization of 
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protein in case the protein expression was too bright or dim for clarity in the 2000 ms 

image. Axiovision  4.7 software was used to compile and analyze the images.   

Assay for Reproductive Capacity (Colony-forming Units, CFUs). Yeast strains were 

grown to 7 days post-inoculation in YPD and separated into Q and NQ fractions by 

density gradient centrifugation. For FACS-enabled positioning of NQ and Q cells, 

samples were sorted using the MoFl cell sorter (Coulter).  For each sample, 144 cells 

(high GFP/low ROS, high ROS/low GFP, and low GFP/low ROS) were positioned on 

solid, YPD medium.  At least 3 plates of 144 cells were obtained per sorted sample, 

e.g,, high GFP/low ROS, and incubated for 2-3 days at 30 oC. The reported values 

represent the mean ±one standard deviation for each sample.   

Rate of oxygen consumption assay. Rates of oxygen consumption were determined using 

the BDTM Oxygen Biosensor System (BD Biosciences), which is a 96-well plate 

containing a fluorophore that fluoresces in the absence of oxygen.  Quiescent and 

nonquiescent cells were separated as described earlier, all samples were diluted to a 

concentration of 1x108 cells/ml; 200 µl was placed in each well and coated with mineral 

oil.  Fluorescence was measured every minute for one hour, using a microplate reader and 

SoftMax Pro software.  Relative fluorescence was normalized to the average signal of 

three wells containing conditioned media at each time point.  Normal fluorescence units 

were converted to ρO2 using the following equation: ρO2 = (DR/NRF – 1)/Ksv, where DR 

(dynamic range) is the ratio of the signal at zero oxygen to the signal at ambient 

condition, which was calculated using 100 mM sodium sulfite in PBS buffer; NRF is the 

normalized relative fluorescence; and Ksv is the Stern-Volmer constant, which was 

calculated using the following equation and then converted to units of atm-1: Ksv = (DR – 
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1)/ρO2A, where ρO2A is the partial pressure of oxygen at ambient conditions.  ρO2A was 

calculated by multiplying the mole fraction of oxygen at ambient conditions (0.209) by 

the total pressure in Albuquerque (85 kPa).  Once the ρO2 of each time point for each 

well was calculated, it was converted to moles of oxygen by dividing by Henry’s constant 

(756.5133 atm·L/mol at 25 °C for air) and multiplying by the volume (2x10-4L). Rates 

were determined from the slope of the regression line for Time(s) vs. mol O2/cell.  Final 

rates were calculated as mol O2/cell/sec and represented as an average of three biological 

replicates.  

Correlation-based reproducibility analysis comparing GFP measurements across 

laboratories.  We compared fluorescence intensities of exponentially growing cells from 

our laboratory to those from Newman et al. (2007).  After excluding proteins with no 

measurements in either data set we had a total of 2,735 proteins.  Abundances of these 

proteins were correlated using Spearman’s correlation (0.6554), Pearson’s correlation 

(0.91) and Pearson’s correlation on Savage scores of abundances (0.8290).  

Gene Ontology Relations. All fluorescence intensity data for all strains in all three 

replicates in stationary and exponential phases were log2 transformed and averaged 

before computing stationary phase data/exponential phase ratios for each strain.  For 

ratio values greater than two, the Gene Ontology (GO) terms were tabulated using the 

Gene Ontology Term Finder Database, http://www.yeastgenome.org/cgi-

bin/GO/goTermFinder.pl.  

IDLeQuery identification of subpopulations in strains.  HyperCyt® measurements 

were analyzed with the flow cytometry software, IDLeQuery, provided by the 
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University of New Mexico Flow Cytometery Facility (Young et al., 2005). Raw count 

data were gated and binned for plotting. IDLeQuery was used to plot relative 

distributions of forward scatter and side scatter intensity (the latter were log10 

transformed).  

 
Slope Differentiation Identification (SDI) Algorithm.  To identify GFP fusion strains 

having 2 fluorescence peaks, the stationary phase side scatter (SS) data set was divided 

into 100 bins; each bin was averaged to compute log-FI.  The EXP side scatter (SS) data 

set was similarly processed to yield log-SS.  Then for each bin, ∆log-FI, the difference 

between SP and EXP log-FI was computed for each of the three technical replicates.  A 

regression of ∆log-FI (from the difference between SP and EXP) vs. log-SS (from SP) 

was computed and the median of the regression slope across the three replicates was used 

to compute the SDI measure. Near-zero SDI values indicates low correlation, which is 

suggestive of a single peak of fluorescence intensity in both samples.  Higher SDI values 

occur when there is not a good overlap of peaks, either there are single, non-overlapping 

peaks in both samples or there are 2 peaks in one sample.  Evaluation of the highest 78 

strains identified by SDI revealed that 71 (91%) were strains that exhibited one peak in 

EXP and two peaks in SP (not shown).  

k-means clustering-based two peak identification.  To identify proteins with two 

fluorescence peaks, k(=20)-means clustering was performed on each data set using the 

ratio of side scatter to forward-scatter. The average profile for each cluster was 

computed, followed by visual identification of clusters with broad or jagged profiles.  

This analysis identified one cluster of 80 SP samples and one cluster with 99 EXP 
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samples.  Samples from these clusters were compared with candidate heterogeneous 

strains identified with other methods to identify strains found by all three methods.  

Results 

 
The yeast GFP-fusion library was sampled in triplicate for both EXP and SP cultures. 

Although many cDNA microarray experiments are available for EXP cultures, and some 

studies on cells in SP cultures have been published (Allen et al., 2006; Aragon et al., 

2006; Aragon et al., 2008), the only information about changes in protein abundance 

between EXP and SP is protein abundance and synthesis from 2-D gel analysis of 

radioactively labeled and unlabeled proteins (Fuge et al., 1994). To better quantify the 

change in protein abundance in cultures between these phases on a proteome scale, we 

analyzed the yeast GFP-fusion library (4156 strains, each carrying the GFP gene inserted 

into a known 3’ region of a different gene) (Huh et al., 2003) and the HyperCyt® high-

throughput flow cytometer (Edwards et al., 2004). In this assay, strains producing a GFP-

fusion protein under the control of a native promoter were assayed in triplicate under the 

two conditions (~ 25,000 samples).   

We found that fluorescence measurements in EXP and SP samples were 

extremely robust (R2= 0.995) for 96-well plates containing the same strains sampled 

more than a month apart (see supplemental data).  Previous studies, using an identical 

GFP fusion set, reported similar reproducibility (R2=0.997), i.e., measurement 

reproducibility between replicate experiments for the same strain (Newman et al., 2006). 

Comparison of the abundance of 2735 proteins between our results and those of Newman 

et al. gave R= 0.91, indicating that reproducibility between laboratories is also excellent. 

Newman found that GFP measurements and tandem affinity purification (TAP)-tag 



 71 

measurements for those proteins were closely correlated (R2=0.80), comparable to the 

precision achieved with duplicate western blots (R2=0.77). We conclude from these 

results that GFP fluorescence measurements are highly reproducible, even between 

laboratories and that there is strong evidence that GFP intensity is a true measure of 

protein abundance for the fusion protein.  

 
Of the top 20 most abundant proteins, 12 (60%) were among the most abundant in both 

EXP and SP. In comparing the top 20 most abundant proteins in EXP and SP, regardless 

of the change in expression, the 12 proteins that were found in common (Table 4-1) are 

involved in glycolysis (5 proteins), cell wall biosynthesis (1), translation (including the 

two translation elongation factors Tef1p and Tef2p that encode EF- alpha elongation 

factor andYef3p), nuclear transport (Ssa1p and Ssa2p), and Hsc82p, involved in 

proteasome assembly (Imai et al., 2003; Le Tallec et al., 2007). Proteins that were among 

the 20 most abundant in EXP but not SP were Ahp1p, a thiol-specific peroxiredoxin that 

protects against oxidative damage (Lee et al., 1999) and 3 proteins that are part of the 

ribosomal stalk.  Also included were Pgi1p, which catalyzes the inter-conversion of 

glucose-6-phosphate and fructose-6-phosphate and is required for cell cycle progression, 

and Pfk2p, a subunit of phosphofructokinase that is required for glucose induction of cell 

cycle-related genes (Aguilera, 1986). Gene ontology analysis showed that the proteins 

with high abundance in EXP were involved in biosynthetic processes, especially 

translation (40%) (Table 4-1; supplemental data).    

Proteins that were most abundant in SP, in addition to those that were in 

common between EXP and SP, included two ribosomal large-subunit proteins, 

associated with increased fitness (Rpl41a) and, surprisingly, decreased longevity 
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(Rpl22a) (SGD, http://www.yeastgenome.org/). Abundant proteins were also involved 

in an NADPH-generating step of the pentose phosphate pathway (Gnd1p), required for 

resistance to oxidative stress, and glucose phosphorylation (Hxk2p), required for 

competitive fitness and growth on fermentable carbon sources.  Finally, abundant 

proteins included the vacuolar ATPase (Tfp1p), required for resistance to oxidative 

stress, and the translation initiation factor, eIF4a (Tif2p), a DEA(D/H)-box RNA 

helicase (SGD) that is a current target for cancer therapeutics (Lindqvist and Pelletier, 

2009; Li et al., 2010). Thus, the proteins that were specifically abundant in SP cultures 

were generally involved aging and stress responses.  

 
Characteristics of changes in protein abundance in EXP and SP.  For cells undergoing 

such a major metabolic shift, moving from 2% glucose to essentially no fermentable 

carbon, only 5% of the 4156 GFP-fusion proteins showed changes in abundance ≥ 2-fold 

under the two conditions: 121 proteins were more abundant in EXP and 87 were more 

abundant in SP (Figure 4-1). Interestingly, proteins that showed large increases in 

abundance in cells in SP cultures compared with EXP cultures were typically low 

abundance proteins in EXP, while many of the proteins with significant increases in 

abundance in EXP compared with SP were relatively high abundance in cells in SP 

cultures.  In addition, only four of 121 proteins with two-fold or higher abundance in 

EXP had unknown functions (3.3%). Twenty-one of the 87 proteins (24.1%) with two-

fold or higher abundance in SP were of unknown function, suggesting that SP proteins 

have received relatively less attention than the processes involved in exponential growth.  

We conclude from this that the EXP to SP transition requires relatively few major 

changes in protein abundance, suggesting that biochemical regulation may play a major 
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role in responding to these dramatically different conditions. Secondly, proteins required 

at higher levels in SP are generally not abundant in EXP, suggesting that new functions 

might be required for survival in SP.  Finally, the significant difference in percentage of 

abundant SP proteins with unknown function may be indicative of the relatively 

understudied nature of this part of the yeast life cycle.  

 
In EXP and SP, proteins involved in different processes increase in abundance.  Gene 

Ontology analyses (SGD) revealed that proteins increasing at least 2-fold in SP cultures 

were involved in respiration, including ATP synthesis and electron transport (Table 4-2; 

supplemental data), but did not include all the proteins in particular multi-protein 

complexes.  Nine proteins were involved in stress response, primarily oxidative stress, 

including Hsp12p, and the two superoxide dismutases Sod1p and Sod2p.  A similar 

number of proteins were involved in chromatin silencing, modification, and histone 

acetylation (see supplemental data). These results are consistent with previous findings 

that mitochondrial function is important for Q cell survival and that Q cells are stress 

resistant and genomically stable (Allen et al., 2006; Aragon et al., 2008).  

 
Some GFP-producing strains exhibited two distinct fluorescent populations in SP. We 

have shown previously that there are two major cellular fractions in SP cultures:  Q and 

NQ (Allen et al., 2006). In searching for an efficient Q/NQ screen, we examined the set 

of strains with the highest fluorescence intensity in SP and found they were primarily 

mitochondrial fusion proteins.  We then did a microscopic screen of mitochondrial 

proteins and identified Cit1p:GFP, a citrate synthase, which clearly had two populations 

of cells in SP and determined that Cit1p:GFP exhibited two fluorescent peaks in SP but 



 74 

not in EXP (Figure  4-2) (note that traditional median-based analyses would miss these 

peaks, and would report a biologically misleading intensity).  Density gradient separation 

of cells from SP into NQ and Q cells clearly showed greater abundance of Cit1p:GFP in 

the Q fraction (Figure 4-3).  We tested whether Cit1p:GFP abundance could be used to 

separate Q and NQ cells by fluorescence-activated cell sorting and found that, based on 

reproductive capacity and petite formation, Cit1p:GFP-producing cells were essentially 

identical to Q cells and dim Cit1p:GFP cells were similar to the NQ fraction (see 

supplement).  

Because there are two major subpopulations of cells in SP cultures, we wanted to 

identify other proteins that had 2 peaks of fluorescence in SP.  We wanted to determine 

how many proteins showed this distribution and, based on the function of these proteins, 

what they revealed about the physiological differences between the cell types.  Three 

different methods were used to identify strains with two peaks of fluorescence intensity: 

visual evaluation of the flow-cytometry output for 4156 of ~12,500 samples; k-means 

clustering; and a statistical method we called Slope-Differentiation Identification (SDI) 

(see Materials and Methods).  Thirty-eight strains were predicted by all three methods to 

have multiple intensity peaks and were examined further.  

 
Q and NQ cells were differentiated by the fluorescence peaks of all 38 strains.  For all 

38 strains exhibiting two peaks of fluorescence, GFP-fusion proteins were more abundant 

in Q cells (Figure 4-4).  In addition, 58% (22 of 38) carried mitochondrially localized 

GFP-fusion proteins (Figure 4-4). Because respiration and oxidative phosphorylation are 

also the most significant processes for the proteins that increase two-fold or more from 

EXP to SP, we conclude that the changes in GFP-fusion protein expression in SP were 
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driven by increases in protein abundance in Q cells.  Additionally, we conclude from 

microscopic analysis that Cit1p:GFP abundance differences between Q and NQ cells are 

observed in both mothers and daughters in these fractions, i.e., it is not a function of 

replicative age.   

Q:NQ median fluorescence ratios ranged from 37 for cytoplasmic Hsp12p:GFP, 

which is involved in membrane stabilization during desiccation, to 1.4 for Cox6p:GFP, a 

cytochrome C oxidase protein.  In general, most of the strains with Q:NQ fluorescence 

ratios ≥ 5 produced GFP-fusion proteins that were mitochondrially localized, with the 

exception of three following strains: the heat shock protein Hsp12p ; the nuclear-

localized acetyl Co-A synthetase involved in histone acetylation (Acs1P); and a putative 

membrane protein of unknown function that associates with lipid rafts and is involved in 

secretion of proteins with non-classical signal sequences (Nce102p) (SGD).  Another 

protein, Inh1p, is an ATPase inhibitor with typical mitochondrial localization, suggesting 

that, while mitochondrial profiles in Q cells are robust, ATPase function may be down-

regulated.  We conclude from these results that abundant proteins in Q cells are 

consistent with mitochondrial maintenance and long-term survival.  

 
Most NQ populations in the 38 strains exhibited 2 distinct peaks of fluorescence. In the 

evaluation of separated Q and NQ fractions from the 38 strains described above, we were 

somewhat surprised to find that separation by density did not result in single peaks in 

both Q and NQ fractions. In fact, 29 of the 38 strains, carrying mostly mitochondrially 

localized GFP-fusions (Figure 4-4) showed two peaks of fluorescence intensity in the NQ 

fraction (see supplement).  These strains typically had a larger, low-fluorescence peak 

and a smaller higher-fluorescence peak, with a slightly lower fluorescence intensity than 
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that of the Q cell fraction (Figure 4-3). One strain, expressing Htb1p:GFP, a histone 2B 

GFP fusion, showed two peaks in the Q fraction in 2 of 3 analyses.  

To study the subpopulations in NQ-fractions, we examined several strains, 

including Kgd1p:GFP (a component of alpha-ketoglutarate dehydrogenase), 

Fmp16p:GFP (a mitochondrial protein of unknown function), Eno1p:GFP (cytoplasmic 

enolase), Sbp1p:GFP (RNA-binding protein), and Ndi1p:GFP (NADH:ubiquinone 

oxidoreductase) (SGD).  To identify cells with reactive oxygen species (ROS), NQ 

fractions were also stained with DHE (dihydroethidium).  Three subpopulations were 

observed prior to sorting: cells with high ROS and low GFP, cells with high GFP and low 

ROS, and cells with both low ROS and low GFP (Figure 4-3). A fourth subpopulation, 

observed during flow cytometry, had intermediate GFP and low ROS and exhibited 

colony formation that was intermediate between the high GFP and high ROS cells (see 

supplement).  Cells with both high ROS and high GFP were not observed 

microscopically, which was confirmed by flow cytometry.   

For each cell-sorting experiment, at least 3 x 144 individual cells were plated 

from each of the three populations. Sorted cells were evaluated for colony 

formation/reproductive capacity (Figure 4-5) and petite formation (see supplement).  A 

representative experiment, using the mitochondrially localized Kgd1p:GFP showed that 

cells in the NQ fraction with high levels of GFP were similar in viability and colony-

forming units to Q cells (Figure 4-5). In contrast, cells with high ROS and no GFP 

showed significant reduction in colony-forming units, typical of NQ cells. Finally, cells 

containing little or no GFP-fusion protein and low ROS exhibited an intermediate loss of 

reproductive or colony-forming capacity.  Hence, while high ROS does correlate with 
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loss of reproductive capacity in NQ cells, cells that are low ROS, low GFP show loss of 

reproductive capacity, suggesting other factors are likely to be involved in this 

phenotype.  The production of petite colonies, indicative of mutation in mitochondrial 

proteins, showed a similar pattern, with high GFP low ROS cells producing few petite 

colonies while cells with either high ROS and low GFP, or low ROS alone frequently 

produced similar numbers of petites (see supplement).  Thus, the high GFP low ROS 

cells found in the less-dense NQ fraction have several characteristics of Q cells, including 

genome stability, reproductive capacity, and mitochondrial integrity, leading to the 

conclusion that increased density may not be necessary for quiescence.  

 
Q cells have greater mitochondrial function than cells in the NQ fraction.  To 

determine whether there were significant differences in respiration between Q and NQ 

cells, we evaluated oxygen utilization using a BD™ Oxygen Biosensor System (BD 

Biosciences).  SP cultures utilized oxygen at a rate 63% of that for EXP cultures (Figure 

4-6). Because cells in SP cultures were assayed in their own medium, which is depleted 

of carbon, the low rate of respiration was not surprising.  Separated Q cells consume six 

times more oxygen than NQ cells (p≤5.5E-6) and 1.6 times more oxygen than is used by 

EXP cultures.  This result is consistent with the differences in mitochondrial protein 

abundances observed above and suggests that most cells in the NQ fraction do not respire 

or have extremely low levels of respiration in SP.  

 
Changes in fluorescence intensity shows populations diverge in the first 24 hours after 

glucose exhaustion.  We do not yet know the process leading to the differentiation of Q 

and NQ cells.  To begin studying this process, we examined cultures producing the 
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mitochondrial protein Cit1p:GFP by flow cytometry from 1–7 days after inoculation, the 

time during which cultures are in the post-diauxic phase, non-fermentable carbon sources 

are still available, and Q and NQ cells are first observed  (Figure 4-7). Initially, there was 

a general increase in Cit1p:GFP abundance in the whole population, shown by a shift in 

the single peak to higher fluorescence intensity from 3 hours prior to 9 hours after 

glucose exhaustion at the diauxic. By 10 hours post diauxic, a second, dimmer population 

appears.  The second peak becomes larger and shifts to lower fluorescence intensity 

(decreased protein concentration) through the time course, and corresponds to cells from 

an NQ fraction.  The high fluorescence intensity peak continues to increase in 

fluorescence up to 24 hours post diauxic and then broadens by 144 hours. This peak 

typically represents the Q fraction.  We conclude from this time course data that cells in 

the post diauxic phase are dynamic and that Cit1p:GFP has the potential to give valuable 

information in studying this process, especially from 2 or 3 days post diauxic (3-4 days 

post inoculation) to SP or 7 days post inoculation.  

 
In post-diauxic populations containing Cit1p:GFP or Acs1p:GFP, almost 100% of 

mother:daughter pairs are either both bright or both dim.  Cells from cultures 

producing Cit1p:GFP or the nuclear protein Acs1p:GFP, both of which typically have 

bright Q cells and dim NQ cells, were examined by fluorescence microscopy at days 3, 5, 

and 7 after inoculation. In these cultures, ~40% of the NQ cells (less dense fraction) were 

budded while none of cells in the more dense or Q fraction were budded.  We discovered 

that, at day 3, when mother:daughter relationships could be clearly determined, 

essentially all of the mother cells showed symmetry with respect to protein abundance 

(Figure 4-8). That is, bright, GFP-producing mothers gave rise to bright daughters and 
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dim mothers gave rise to dim daughters. For Acs1p:GFP, symmetric protein expression 

during cell division was found 98.7% of the time (n= 228) and for Cit1p:GFP, symmetric 

protein expression during cell division was found 100% of the time (n = 209).  Similar 

results were found for days 5 and 7 (see supplemental data).  Previous examination of 

virgin daughters in NQ fractions showed that they have the same characteristics, with 

respect to reproductive capacity and petites as the NQ mother cells (Allen et al., 2006). 

We conclude from this result that at least during the post-diauxic phase, cells are 

committed to becoming Q or NQ and produce daughters that are committed to that fate.  

Cell division takes place predominantly in the less-dense fraction, and the Q fraction is 

mostly virgin daughters, so mother cells seem to be unlikely to become dense again after 

division and probably transition to NQ cells.  Finally, because these cultures can be 

started from a single yeast cell (i.e., one cell type begets two types), cell fate must be 

fixed at some point prior to our observation of symmetry of protein abundance.  Because 

Q and NQ cells can be re-grown to produce both Q and NQ (mother and daughter) cells, 

we hypothesize that this switch is epigenetic. We do not yet know what controls cell fate 

in yeast post-diauxic cultures, but this observation clearly deserves more study.  

Discussion 

 
We have demonstrated the utility of analyzing the yeast GFP-fusion library with 

high-throughput flow cytometry to uncover underlying phenotypes and population 

structure and to interrogate previously intractable biological processes. We quantified 

protein abundance in EXP and SP and examined the origins of Q and NQ cell 

phenotypes.  We identified tools for in-depth studies of these cells and demonstrated that 

Q/NQ differentiation is more complex than previously thought.  



 80 

These studies revealed the heterogeneity of NQ fractions with respect to protein 

accumulation and reproductive capacity and the relative homogeneity of Q cells, 

consistent with previous studies (Allen et al., 2006). However, Q cells in the 

HTB1:GFP strain sometimes exhibited 2 fluorescent peaks (see supplement).  Because, 

in prototrophic cells, DNA content analysis of Q cells revealed a single peak and Q 

cells are extremely synchronous (Allen et al., 2006), we suspect this is an artifact.  We 

are currently investigating the basis for this heterogeneity.  

These results helped refine our model of this process (Figure 4-9).  The 

significance of mitochondrial function for Q cells is consistent with previous studies 

(Martinez et al., 2004; Aragon et al., 2008), but the ability to study these cells through 

fluorescence differences, especially in mitochondrial proteins, led to discoveries.  The 

surprising finding of symmetry in protein expression in post-diauxic cells is novel and 

suggests that cell fate is determined prior to Cit1p or Acs1p:GFP accumulation.  Because 

Q and NQ cells can be re-grown to produce Q and NQ cells in SP, the cell fate 

determinant is likely to be an epigenetic change.  However, once a cell has become NQ, 

its contribution to future generations becomes much less likely because of 

hypermutability, loss of reproductive capacity and mitochondrial function, and, 

ultimately, apoptosis.  Nevertheless, NQ cells can contribute significantly to species 

survival. The high viability and loss of reproductive capacity in NQ cells suggests they 

have two major roles: providing nutrients to Q cells and genetic novelty to the species.  

Nature ensures a physical connection between NQ and Q cells through flocculation of 

wild-type yeast and this has recently been suggested to provide self-self recognition and 

the ability to form biofilms (Smukalla et al., 2008). We have shown that Q cells sequester 
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many of the mRNAs that are abundant in NQ cells that would translate into proteins 

required during DNA damage, thus, in the absence of NQ cells, Q cells can become NQ.  

What we do not yet know is whether Q cells, like C. elegans egg cells (Andux and Ellis, 

2008), are programmed to enter apoptosis over time to extend the lifespan of the 

remaining population of quiescent cells.  

Published characteristics of Q cells, NQ daughters and mothers and cycling G1 

cells reveal important differences between these cells (Table 4-3).  For example, both Q 

and NQ fractions contain virgin, daughter cells that differ significantly in sequestration of 

mRNA in protein-mRNA complexes, mitochondrial function, reproductive capacity  

(Allen et al., 2006; Aragon et al., 2008). Loss of reproductive capacity has been 

suggested to be due to replication stress (Burhans and Weinberger, 2007), implying that 

NQ cells may have poor checkpoint control.  It is our hope that more comparative 

analyses will identify the regulatory-level differences between Q and NQ daughters as 

well as Q and G1-cycling cells.  

Two processes: metabolic cycling and slow growth, have been suggested to relate 

to Q cell differentiation in SP cultures.  The process of metabolic cycling is observed in 

some yeast strains under specific conditions of starvation followed by chemostat growth 

under low glucose conditions (Tu et al., 2005). These cells show respiration during G1 

and fermentation during the rest of the cell cycle.  Recently, it was shown that glycogen 

and trehalose accumulation correlate with transient density increases in the CEN.PK 

strain used to study cycling during cycling and the post-diauxic phase (Shi et al., 2010). 

However, the CEN.PK strain background, which is best for demonstrating metabolic 

cycling, does not maintain a dense cell fraction for much more than 24 hours – as 
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compared with one month or longer for our prototrophic strains (Allen et al., 2006; Li et 

al., 2009). We also observed much smaller difference in density in a glc3 mutant than did 

Shi et al (Allen et al., 2006). In metabolic cycling studies, only 50% of the cells divide 

and it is not yet known whether the non-dividing fraction of cells are NQ-like or whether 

cycling cells exhibit differences in Cit1p:GFP expression. Certainly, the oscillation 

between an oxidative, G1 phase and reductive (fermentative) S-M phases in metabolic 

cycling is reminiscent of the apparent oxidative capacity of the Q cells and the lack of 

respiration in the NQ cells, although NQ cells are typically on a path towards apoptosis.  

If Q/NQ differentiation and metabolic cycling are highly related processes, this will be a 

wonderful example of why it is important to examine a process from several directions 

and with a keen eye to the evolutionary and environmental ramifications.  However, there 

are enough differences to suggest that, while related, these two processes lead to very 

different outcomes.  

Other important, recent studies under different growth conditions provide 

additional and valuable insight into this differentiation process. The first study 

examined differentiation of yeast cells in synthetic complete medium and, among other 

important findings, concluded that Q cells were genomically unstable (Madia et al., 

2009) (in contrast to our finding in YPD that NQ cells were hypermutable (Aragon, 

2008)).  Because, we and others (Burtner et al., 2009) have found that cells begin to die 

within days in SC medium, the instability of Q cells in SC is consistent with our 

hypothesis that, under stress conditions, Q cells can become NQ cells (Aragon et al., 

2006). A second study of yeast grown in high-glucose concentrations (700g/L) showed 

these cells enter an uncoupling phase allowing fermentation without growth (Benbadis 
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et al., 2009). Uncoupled cultures develop two cell populations with similarities to Q 

and NQ cells but, after prolonged uncoupling, only the dense fraction remains.  

Interestingly, this phenotype is observed in sch9 mutants in SC, suggesting regulatory 

pathways involved in this phenotype.  The appearance of quiescent-like cells under 

high glucose conditions suggests that glucose exhaustion alone does not induce this 

differentiation.    

Finally, if glucose exhaustion does not regulate this differentiation, what does? 

There has long been a hypothesis that quiescent-like cells were present in low abundance 

in EXP, since a small but thermotolerant population is present in most populations 

(Elliott and Futcher, 1993). While this idea is appealing, elutriated cells from EXP 

cultures, which would be likely Q analogs, are not as synchronous during the first cell 

cycle and certainly not for two cycles (Spellman et al., 1998) as Q cells from SP cultures, 

suggesting that elutriated cells are not identical to Q cells. An important and answerable 

question is whether slow growth, quorum sensing, or a combination of these or other 

signals induces this differentiation. Quorum sensing has been demonstrated in yeast, 

which produce aromatic alcohols in response to nitrogen starvation that induces 

pseudohyphal growth (Chen and Fink, 2006; Sprague and Winans, 2006).  Finally, 

because of the clear evolutionary pressures for survival, we should not underestimate the 

potential complexity of this process, including the presence of other, as yet undiscovered 

regulators and components that will entertain researchers for years to come.  
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Tables 

 
  Table 4-1.  Most abundant proteins in EXP and SP       
  Systematic 

name   
Gene 
Name 

Function1 Localization Log2EXP Log2SP 

 YLR044C PDC1 Pyruvate decarboxylase c, n 10.39 8.41 
 YHR174W ENO2 Enolase II, a phosphopyruvate hydratase c, m, pm 10.12 9.47 
 YGR192C TDH3 Glyceraldehyde-3-phosphate 

dehydrogenase 
c, n, pm 10.01 8.75 

 YKL060C FBA1 Fructose 1,6-bisphosphate aldolase  c, m 9.97 8.42 
 YPR080W TEF1 Translational elongation factor EF-1 alpha  c 9.16 8.34 
 YLL024C SSA2 ATP binding protein c, n, pm 9.16 8.24 
 YBR118W TEF2 Translational elongation factor EF-1 alpha c 9.09 7.81 
 YJR009C TDH2 Glyceraldehyde-3-phosphate 

dehydrogenase 
c, m, pm 8.91 7.59 

 YAL005C SSA1 ATPase  c, n 8.71 9.05 
 YLR249W YEF3 Translational elongation factor 3 c 8.54 6.62 
 YDL055C PSA1 GDP-mannose pyrophosphorylase c 8.5 6.47 
 YMR186W HSC82 Cytoplasmic chaperone of the Hsp90 family c, m, pm 8.49 6.85 

 YLR109W AHP1 Thiol-specific peroxiredoxin c, pm 8.23 5.78 
 YBR196C PGI1 Glycolytic enzyme phosphoglucose 

isomerase 
c, m, pm 7.7 5.64 

 YMR205C PFK2 Beta subunit of heterooctameric 
phosphofructokinase 

c, m 7.66 6.16 

 YDR382W RPP2B Ribosomal protein P2 beta c 7.52 6.1 
 YDL130W RPP1B Ribosomal protein P1 beta c 7.5 5.66 
 YDL081C RPP1A Ribosomal stalk protein P1 alpha c 7.42 6.08 
 YBR189W RPS9B Protein component of the small (40S) 

ribosomal subunit 
c 7.32 5.98 

  YGL135W RPL1B N-terminally acetylated protein component 
of the large (60S) ribosomal subunit 

c 7.33 5.76 
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 YGL253W HXK2 Hexokinase isoenzyme 2 c, m, n 6.97 7.04 
 YDR070C FMP16 Putative protein of unknown function m 4.43 6.9 
 YDL185W TFP1 The A subunit of the V-ATPase V1 domain c 6.73 6.74 
 YJL138C TIF2 Translation initiation factor eIF4A c 6.83 6.61 
 YDL184C RPL41A Ribosomal protein L47 of the large (60S) 

ribosomal subunit 
c 6.74 6.55 

 YFL014W HSP12 Heat-shock protein that protects membranes 
from desiccation 

c, n, pm 3.89 6.54 

 YLR061W RPL22A Protein component of the large (60S) 
ribosomal subunit 

c 6.62 6.54 

  YHR183W GND1 6-phosphogluconate dehydrogenase 
(decarboxylating) 

c, m 6.27 6.5 
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Table 4-2. GO process of proteins expressed 2-fold or higher in SP (87 proteins) than in EXP 
(121 proteins) 

Processes for proteins higher in SP 
No. in each 

GO category 
P-value 

oxidative phosphorylation 11 2.8E-09 
generation of precursor metabolites and energy 17 1.2E-06 
electron transport chain 8 1.4E-06 
respiratory electron transport chain 8 1.4E-06 
ATP synthesis coupled electron transport 8 1.4E-06 
mitochondrial ATP synthesis coupled electron transport 8 1.4E-06 
oxidation reduction 8 1.4E-06 
cofactor metabolic process 16 5.2E-06 

Processes for proteins higher in EXP 
No. in each 

GO category 
P-value 

translation 49 5.5E-22 
biosynthetic process 79 4.1E-11 
cellular protein metabolic process  62 1.7E-10 
protein metabolic process 63 3.0E-10 
cellular biosynthetic process 74 7.6E-09 
primary metabolic process 98 4.2E-07 
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Table 4-3. Comparison of Q, cycling G1, and NQ daughters and G1 mother cells 

Q cells Cycling G1 cells NQ unbudded daughters NQ mother G1 cells 
100 % form colonies1 ND ~50% form colonies ~50% form colonies 
No petite colonies produced 
(genomically stable)2 

ND ~40% petite colonies 
(genomically unstable) 

~40% petite colonies (genomically 
unstable) 

Q cells give rise to Q daughters in the 
post-diauxic phase3 

 ND  NQ cells give rise to NQ daughters in the post-diauxic phase 

Produced concurrently with NQ 
unbudded daughters1 

 Produced concurrently with 
Q daughters 

  

Respiration3  ND Little or no respiration  
Low ROS, no apoptosis1  ND 50% with high ROS by day 

7, 50% apoptotic by day 14 
 

Typically high density (gm/cm3) 1 Low density Low density Low density 
High glycogen, trehalose1,4 Low No glycogen, low trehalose?  
Synchronous for almost 2 cell 
divisions, lag phase 1.5 hours at 7d1,5 

Not as synchronous 
as Q cells, shorter 
lag phase 

In NQ cells, atp17 and atp18 showed variability in petites and, cells 
from petite colonies produced both petite and non-petite colonies, 
suggesting epigenetic regulation of petites in these strains.   

First daughter, no delayed G1 (mother 
and daughter bud concurrently)5 

Daughters have 
delayed G1 

ND (not synchronous populations)   

~2000 mRNAs in insoluble protein-
mRNA complexes selectively released 
in response to different stresses6 

Few insoluble 
mRNAs 

Few insoluble mRNAs 
  

No observed effect of atp17 and atp18 
mutants2 

 ND In NQ cells, atp17 and atp18 showed variability in petites and, cells 
from petite colonies produced both petite and non-petite colonies, 
suggesting epigenetic regulation of the petite phenotype in these 
strains.   

1 (Allen et al., 2006) 
2 (Aragon et al., 2008) 
3 (This work) 
4 (Shi, et al, 2010) 
5 (Allen, unpublished data) 
6 (Aragon et al., 2006) 
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Figure Legends 

 
Figure 4-1. EXP and SP distributions of median peak intensities measured by high-
throughput flow cytometry for strains from the Yeast GFP-fusion library in EXP and SP. 
Diagonal, parallel lines identify strains whose difference between SP and EXP is greater 
than 2-fold. A list of these genes can be found in supplementary data. (◊) 87 GFP-fusion 
proteins with ≥ 2-fold increases in SP. (X) 121 GFP-fusion proteins with ≥ 2-fold 
increases in EXP. 
 
Figure 4-2. Histogram of fluorescence intensity distributions for Cys3p:GFP and 
Cit1p:GFP fusion strains from EXP and unfractionated SP cultures. Flow cytometry 
measurements were collected as described in Materials and Methods. 
 
Figure 4-3. Distribution of Cit1p:GFP and DHE (ROS) fluorescence intensity in 
fractionated Q and NQ fractions. Fluorescence was detected by flow cytometry (A and B) 
and microscopy (C-F). (A) Cit1p:GFP fluorescence-intensity histogram for the NQ 
fraction. (B) GFP fluorescence intensity histogram for the Q fraction. (C and E) NQ 
fraction of Cit1p:GFP stained with DHE (red) indicating reactive oxygen species. (C) 
Fluorescence of Cit1p:GFP NQ cells stained with DHE overlaid on the DIC image. (E) 
Cit1p:GFP alone for the same NQ fraction in C. (D and F) Q fraction. (D) Q fraction of 
Cit1p:GFP cells stained with DHE (red) overlaid on the DIC image. (F) Cit1p:GFP alone 
for the same Q cells as in D. White scale bars in C-F indicate 5 microns. 
 
Figure 4-4. Fluorescence intensities from flow cytometry measurements of fractionated 
Q and NQ populations from 38 GFP fusion strains grouped by cellular localization 
(SGD). Results are the average for 3 technical replicates. 
 
Figure 4-5.  Reproductive capability as measured by colony forming units for biological 
replicates of wild type (S288c) NQ and Q fractions and Kgd1p:GFP fusion strains sorted 
into GFP bright (GFP+), DHE bright (ROS+), and GFP and DHE dim (ROS-GFP-). Cells 
that were both GFP and DHE bright were not observed. 
 
Figure 4-6. Oxygen consumption measurements of s288c (prototrophic) cells from 
unfractionated EXP and SP cultures and fractionated NQ and Q fractions. The actual rate 
for EXP was 13.7 μmol/cell/sec; SP was 3.7 μmol/cell/sec; NQ was 3.6 μmol/cell/sec; 
and Q was 21.8 μmol/cell/sec. The difference between NQ and Q respiration was 
significant (p≤ 5.5E-6). 
 
Figure 4-7. GFP protein abundance in mother:daughter pairs observed by fluorescence 
microscopy for two GFP fusion proteins Cit1p:GFP and Acs1p:GFP 3 days post-
inoculation (2 days after glucose exhaustion). Insert: Examples of Cit1p:GFP bright 
►bright, dim ► dim, bright mother ► dim daughter, and dim mother ► bright daughter. 
Bright mother ►dim daughter was seen extremely rarely, and dim mother ►bright 
daughter, not at all. Symmetric and asymmetric abundance refers to whether mothers and 
daughter exhibit similar levels of GFP-fusion proteins. 
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Figure 4-8. Flow cytometry analysis of Cit1p:GFP fluorescence intensity as a function of 
time after glucose exhaustion in post-diauxic phase cultures. X-axis is not to scale. Peaks 
represent number of events at specific fluorescence intensities. 
 
Figure 4-9. Our current model for cell differentiation in yeast cultures grown in rich, 
glucose-based medium (YPD) to SP. In the post-diauxic phase after glucose exhaustion, 
mother:daughter pairs are symmetric with respect to GFP protein abundance. Dividing 
cells are typically, but not always, in the less-dense fraction. Dividing cells, both GFP-
expressing (Q) and dim (NQ), are predominantly in the less dense, fraction, consistent 
with the recent finding that density is a function of trehalose concentration (Shi, 2010). 
Because ~ 90% the cells in the Q fraction are daughters, most of the mother cells 
originally found in the Q fraction are hypothesized to become NQ cells. We do not yet 
know if mother cells found in the dense Q fraction stay dense during cell division or are a 
select group of mother cells that can become dense again after cell division. Our model 
predicts that NQ cells in SP cultures do not generate Q cells or become quiescent unless 
they are re-grown and produce Q and NQ progeny. 
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Figures 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4-1. EXP and SP distributions of median peak intensities 
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Figure 4-2. Histogram of fluorescence intensity distributions for Cys3p:GFP and Cit1p:GFP fusion 
strains  

 



 98 

 
 

Figure 4-3. Distribution of Cit1p:GFP and DHE (ROS) fluorescence intensity 
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Figure 4-4. Fluorescence intensities 



 100 

 

 

 

 

 

 

Figure 4-5. Reproductive capability as measured by colony forming units 
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Figure 4-6. Oxygen consumption measurements of s288c (prototrophic) cells 
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Figure 4-7. GFP protein abundance in mother:daughter pairs 
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Figure 4-8. Flow cytometry analysis of Cit1p:GFP fluorescence intensity 
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Figure 4-9. Our current model for cell differentiation in yeast cultures 
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Supplemental Figure Legends 
 
Figure 4-S1. Correlation plot between our EXP data and that of Newman et al. 

Figure 4-S2. Flow cytometry histograms for 38 strains separated into Q and NQ fractions 

7 days post-inoculation (SP). 

Figure 4-S3. Ratios of median fluorescence measurements for separated Q and NQ 

fractions from 38 strains 

Figure 4-S4. Example of 144 positioned cells sorted by the MoFlo cell sorter. The 

number of colonies and petite to wild type colonies is typical for Q/NQ separations. 

Figure 4-S5. Reproductive capacity (cfu) of NQ fraction of strains sorted by relative GFP 

and DHE (ROS) fluorescence and plated by the MoFlo cell sorter. 

Figure 4-S6. Petite colonies from NQ fraction of strains sorted as above. 

Figure 4-S7. Mother:daughter protein abundance for day 3, 5, and 7 post-inoculation in 

NQ populations of Cit1p:GFP and Acs1p:GFP. 
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Supplemental Figures 

 
 

 
 

Figure 4S-1. Correlation plot between our EXP data and that of Newman et al.
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Figure 4S-2. Flow cytometry histograms for 38 strains (fluorescence intensity vs. number of events)  separated into Q and NQ fractions. These strains 
all showed 2 fluorescence peaks in unseparated SP cultures. 
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Figure 4S-3. Q/NQ ratios of median fluorescence for 38 strains with 2 fluorescence peaks in SP. 
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Figure 4S-4. MoFlo plates: A) upper fraction and B) lower fraction. Similar results were obtained for Q and NQ fractions of 
S288c prototrophs and Cit1p:GFP strains sorted by fluorescence intensity.
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Figure 4S-5. Colony formation for NQ fractions separated by GFP and ROS. Each sample (144 cells) was plate on 3 plates.  
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Figure 4S-6. Analysis of petite colony formation of NQ fractions separated by GFP and ROS. 
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Figure 4S-7.  Mother:daughter analysis: symmetric vs. asymmetric GFP protein abundance in the post-diauxic phase.   
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 Chapter 5: Discussion and Conclusion 

 

Genome and transcriptome analysis led to a more complete description of cellular 

processes, for example, the gene expression levels throughout the yeast cell-cycle 

(Spellman, et al., 1998) and the tissue-specific gene expression patterns identified in C. 

elegans (Kim, et al., 2001). Still, the picture is incomplete without knowledge of 

protein/gene and protein/protein interactions (Costanzo, et al., 2010) and of protein 

concentrations and localizations (Schubert, et al., 2006), which are not directly revealed 

by gene expression measurements (Li, et al., 2004; Rual, et al., 2005; Yu, et al., 2008). 

The combination of genome and transcriptome analyses do explain some levels of 

cellular function, but they expose other complexities, which can only be answered with 

new experiments and direct measurement of in vivo protein concentrations and 

localizations. In our experiments, the combination of genomics and new high-throughput 

proteomic methods were key elements in achieving a more complete understanding of 

these complexities.  

The Challenge:  to Develop Analysis for High-Throughput Methods 

 

As explained in Chapter 2, the post-genomic challenge was the development of 

methods to exploit the new technologies. New experimental methods were developed that 

differed from earlier methods by their scope and scale (thousands of genes studied 

simultaneously). These methods required new analysis tools and relied on computers in 

an unprecedented way to make the results accessible to researchers. Progress in 

understanding how to cluster genes based on similar gene expression combined with 

deeper knowledge gained by previous and ongoing analysis of specific genes allowed us 
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to leverage this knowledge to understand the functions of the many other genes with 

similar expression patterns (a process I’ve called the third way, or the middle outward 

approach in contrast to top down descriptive biology and bottom up biochemical studies 

of cellular processes).  

The original challenge to develop methods and analysis tools for microarrays is 

largely met, and the basic approach in Chapter 2 has been extended far beyond my initial 

vision. Those analysis methods identified groups of functionally related genes by 

clustering them together based on similar gene expression profiles across a broad 

compendium of experimental results. Stuart et al. (2003), recognized that the same 

approach could be used across not just a compendium of single species results, but across 

collections of microarray experiments from many species. In their work, VxInsight 

clusters of homologous genes clearly reveal evolved units of functionality that have been 

preserved across species.  

Srinivasan et al. (2005) went even further with the same concept. Directly using 

the sequenced genomes of over two hundred microbial species, they computed a 

similarity between genes based on the number of times pairs of homologous genes appear 

together in the species. VxInsight clusters reveal genes that have moved together or been 

lost together at speciation points through evolutionary time. Consequently, genes that 

have remained together through descent are likely to be involved in the same functional 

network, a hypothesis that they were able to verify. Most interestingly, they were able to 

use this method to predict phenotypes. In short, while developed to meet the analysis 

challenge presented in Chapter 2, my tools have been used in genomics more broadly 
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than anticipated; however, the original challenge remains only partially met with respect 

to high-throughput proteomic data sets such as those in Chapter 4. 

Toward a Thorough Proteomic Analysis of GFP-Fusion Strain Flow Data 

 

The hypotheses in Chapter 4 came from questions driven by prior microarray 

analyses, but the results we found rely on a very diverse set of experimental approaches 

(cell viability studies, characterization of differential morphologies by optical and density 

gradients, oxygen consumption measurements, and direct measurements of protein 

concentrations by flow cytometry). Certainly, there is a need for more thorough analyses 

of the multi-dimensional flow cytometry data. For example, these data are known to 

contain much more information encoded in the distribution of cells across at least five 

independent measurement dimensions (forward scattering, side scattering, and at least 

three fluorescent channels), see Figure 5-1. The statistical methods in Chapter 4 can be 

developed much further, but new visualization and computer analysis tools will be 

required to understand the full range of information in these massive data sets 

(Fruhwirth-Schnatter & Pyne, 2010; Pyne, et al., 2009). The multi-dimensional analysis, 

sketched below, of the probability density functions describing our GFP flow data, is an 

example of such a combination of mathematics, computing, and visualization. 
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Figure 5- 1. Forward scatter (FS) and log side scatter (SS) for stationary phase Cit1p strain.This 
representation uses a mixture of two Gaussian distributions. Note that most of the cells are relatively small 
(low FS) and relatively uniform (low SS); however some of the larger cells (large FS) are much more 
granular (higher SS). This information can be gleaned without considering the GFP channel. 

 

The next steps toward more complete analysis of our flow cytometry data are 

becoming clearer. For example, it is possible to use dissimilarities between 

multidimensional results like those shown in Figure 5-2 and 5-3 to identify information 

that was not originally obvious in the work discussed in Chapter 4. For instance, the 

multidimensional distributions of the 38 genes identified in Chapter 4 were compared 

using the dissimilarity metric known as the Earth Mover’s Distance (EMD) (Rubner, 

Tomasi, & Guibas, 2000), which can be thought of as the work involved to move the 

probability mass as found in one distribution until it exactly matches the second 

distribution. EMD can be seen as a classical transportation problem, consequently the 

resulting dissimilarity measure can be found using efficient algorithms (Ling & Okada, 

2007; Pele & Werman, 2009). 
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Figure 5-2. Stationary phase GDPHp strain GFP (here, FL 1 Log) and log side scatter (here, SS Log) 
distributions for sampled cells. 

 
 
 

 
 

Figure 5-3. Stationary phase HTB1p strain GFP (here FL 1 Log) and log side scatter (here SS Log) 
distributions for sampled cells. HTB1p, a core histone protein regulating transcriptional activity. Note 
that the brighter GFP cells are also more granular for this histone protein, presumably the brightness 
reflects greater concentrations of the histone protein, perhaps reflecting less tightly organized chromatin in 
the dimmer, less granular cells, which may be indicative of an unsuccessful transition from glucose 
metabolism to oxidative phosphorylation. 

 

Figure 5-4 shows a gray-scale rendering of the EMD between each pair of the 38 

strains singled out in Chapter 4 as being potential flags for quiescent cells (see Appendix 

I for a list of these distances). These EMD values were computed using the three 

dimensional densities: GFP x Side Scatter x Forward Scatter, each having 10 bins for a 
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total of 10 x 10 x 10 histogram bins. The rows and columns have been sorted by 

increasing distance from Cit1p. 

To look for more structure, the table of pairwise EMD values can be compared by 

computing row similarities using Pearson correlation. Each EMD value has already, 

jointly, taken into account all of the histogram cells. Applying Pearson row by row (that 

is, gene by gene) computes the overall similarity of the Earth Mover Distances between 

each of the compared genes to all of the others. Computing all such comparisons allows 

one to display the similarities using VxInsight, as shown in Figure 5-5. Interestingly, as 

suggested by Figure 5-4, VxInsight finds at least three groups within the set of 38 strains 

growing in stationary phase, which we had not previously recognized. 

 

 

 

Figure 5- 4. Gray-scale rendering of the Earth Mover Distances (EMD) between each of 38 genes of 
interest in Chapter 4. Rows (and similarly columns) have been sorted to order the genes by 
increasing distance from Cit1p. Brighter pixels indicate larger distances (greater dissimilarity), so 
the diagonal is always black representing an EMD of zero between a gene and itself. The plot 
suggests the 38 genes may fall into at least three groups by distance from Cit1p. 
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Figure 5-5. VxInsight finds (A) three subclusters within the 38 genes from Chapter 4; (B) close-up 
view of the Nce102p subcluster; (C) and of the Cit1p subcluster; (D)  and the Faa1p subcluster.  Lines 
indicate the two genes are closely similar. 

 

The Bigger Challenge 

 

Beyond learning to make better use of the multidimensional proteomic data from 

the flow cytometers, the bigger challenge is to continue to develop analysis methods that 

simultaneously use new (and old) time course studies in combination with the 

increasingly complete model organism databases to more thoroughly analyze the data and 

extract biological implications from the results. Specifically, this middle outward way 

must be extended to exploit automatically the detailed knowledge in these databases (for 

example, the Gene Ontology projects have been useful in this manner, but a much deeper 

approach is required). 



 126 

If particularly rapid progress occurred in genomics as a result of collaboration 

between computer scientists, statisticians, and biologists, then the next burst of progress 

is likely to depend on widening the collaboration to machine learning researchers, a 

broader group of applied mathematicians, and to knowledge engineers. This much wider 

collaborative effort will be required to build the smart tools that will relate experimental 

data collected in specific laboratories with the broader knowledge reported in the 

literature, summarized in the model organism databases and in the more general gene and 

protein data resources.  

Of course, discipline-specific research remains to be accomplished as individual 

parts of the collaboration. However, the art and skill involved in engineering successful 

collaborations must also be explicitly addressed because these collaborations are not easy 

to develop. They take time to put together, they require commitment, trust, and 

sometimes excruciating honesty between collaborators. Also, they require a surprisingly 

long period of working together before the participants begin to share a common 

language, realize what is possible, and discover what each discipline offers the others. 

Consequently, the real challenge will be how to initiate and continue the training of the 

researchers required to develop the tools to continue exploiting the middle outward 

approach. 

Conclusion 

 

As discussed above, there are good theoretical reasons to believe that biologists 

will find ways to deal with even greater accumulations of details, will continue to extract 

a more comprehensive body of knowledge about cellular machinery, and will develop 

more and more powerful technologies. For example, consider how high-throughput, 

multi-level analysis is used to understand mechanisms in tissue complex eukaryotes or to 

analyze cellular microenvironments in cancer research. Biology itself, and the practice of 

biological research, remain as exciting as they ever were. They will, however, become 

much more integrated with the research programs and goals of other disciplines, which 

will present difficult but not insurmountable challenges. The integration of statistical data 

analysis, computing and information visualization with biology first motivated my 
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interactions with biologists, and has been the story of my research and of this 

dissertation; it has been a fruitful journey.
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Appendix I – Earth Mover Distances from Cit1p to 38 Genes in Chapter 4 

 
 
EMD from Cit1p to each of the 38 genes of interest in Chapter 4 (Part 1 of 4) 
 

 1 2 3 4 5 6 7 8 9 10 
 YNR001C  

(CIT1) 
YDL215C  
(GDH2) 

YBR222C  
(PCS60) 

YER024W  
(YAT2) 

YIL125W  
(KGD1) 

YAL054C  
(ACS1) 

YFL014W  
(HSP12) 

YPL078C  
(ATP4) 

YNL104C  
(LEU4) 

YDR148C  
(KGD2) 

YNR001C (CIT1) 0 364 386 388 401 499 527 558 565 578 

YDL215C (GDH2) 364 0 339 374 452 497 577 573 578 663 

YBR222C (PCS60) 386 339 0 408 313 580 446 473 644 817 

YER024W (YAT2) 388 374 408 0 461 475 491 703 510 651 

YIL125W (KGD1) 401 452 313 461 0 606 335 397 596 843 

YAL054C (ACS1) 499 497 580 475 606 0 667 830 711 893 

YFL014W (HSP12) 527 577 446 491 335 667 0 606 517 831 

YPL078C (ATP4) 558 573 473 703 397 830 606 0 738 906 

YNL104C (LEU4) 565 578 644 510 596 711 517 738 0 570 

YDR148C (KGD2) 578 663 817 651 843 893 831 906 570 0 

YBR039W (ATP3) 610 531 616 761 620 874 711 459 558 671 

YCR088W (ABP1) 619 679 681 729 608 873 651 655 420 604 

YDL181W (INH1) 653 557 457 708 547 798 545 583 553 775 

YGR019W (UGA1) 663 650 717 565 730 805 608 874 314 604 

YLL041C (SDH2) 668 454 602 758 709 807 747 693 745 811 

YHR051W (COX6) 710 881 965 827 938 1063 921 984 790 534 

YGR086C (PIL1) 713 565 746 822 823 905 842 822 656 695 

YOR065W (CYT1) 739 611 739 858 729 898 760 635 604 830 

YOR317W (FAA1) 779 682 765 772 809 786 729 883 537 802 

YMR108W (ILV2) 783 638 774 819 772 867 736 770 541 868 

YNL015W (PBI2) 799 619 764 717 896 815 797 988 643 793 

YDR298C (ATP5) 805 1015 1095 986 1082 1187 1124 1074 982 601 

YPR149W (NCE102) 835 949 1105 957 1127 1151 1112 1161 921 529 

YAL044C (GCV3) 858 952 821 726 729 1014 608 991 738 987 

YBL056W (PTC3) 868 908 1054 822 1077 1123 1022 1137 605 376 
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YGL187C (COX4) 870 1089 1120 1003 1070 1257 1118 1093 1031 726 

YFR033C (QCR6) 933 1144 1178 1104 1142 1202 1239 1171 1245 939 

YER141W (COX15) 979 783 970 1017 1026 1039 996 1012 826 994 

YLR295C (ATP14) 988 1005 924 1037 781 1214 781 684 843 1031 

YOR027W (STI1) 1071 957 971 1086 957 1079 869 1046 800 1128 

YOR136W (IDH2) 1077 1100 898 1002 828 1110 693 1091 1062 1359 

YMR092C (AIP1) 1102 967 931 1171 957 1144 932 919 931 1209 

YDR381W (YRA1) 1110 968 987 1180 1068 1161 1049 1009 1030 1242 

YDR129C (SAC6) 1134 1016 1020 1228 997 1246 1016 843 946 1188 

YDR070C (FMP16) 1152 1082 951 1260 1039 1161 1082 1008 1350 1465 

YGL062W (PYC1) 1154 921 1138 1187 1264 1208 1255 1238 1131 1122 

YBR126C (TPS1) 1360 1132 1224 1399 1332 1366 1320 1260 1295 1453 

YDR224C (HTB1) 1417 1208 1196 1380 1293 1347 1236 1306 1315 1616 
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EMD from Cit1p to each of the 38 genes of interest in Chapter 4 (Part 2 of 4) 
 
 11 12 13 14 15 16 17 18 19 20 
 YBR039W  

(ATP3) 
YCR088W  
(ABP1) 

YDL181W  
(INH1) 

YGR019W  
(UGA1) 

YLL041C  
(SDH2) 

YHR051W  
(COX6) 

YGR086C  
(PIL1) 

YOR065W  
(CYT1) 

YOR317W  
(FAA1) 

YMR108W  
(ILV2) 

YNR001C (CIT1) 610 619 653 663 668 710 713 739 779 783 

YDL215C (GDH2) 531 679 557 650 454 881 565 611 682 638 

YBR222C (PCS60) 616 681 457 717 602 965 746 739 765 774 

YER024W (YAT2) 761 729 708 565 758 827 822 858 772 819 

YIL125W (KGD1) 620 608 547 730 709 938 823 729 809 772 

YAL054C (ACS1) 874 873 798 805 807 1063 905 898 786 867 

YFL014W (HSP12) 711 651 545 608 747 921 842 760 729 736 

YPL078C (ATP4) 459 655 583 874 693 984 822 635 883 770 

YNL104C (LEU4) 558 420 553 314 745 790 656 604 537 541 

YDR148C (KGD2) 671 604 775 604 811 534 695 830 802 868 

YBR039W (ATP3) 0 455 439 590 529 868 453 313 568 472 

YCR088W (ABP1) 455 0 467 464 808 815 535 491 489 545 

YDL181W (INH1) 439 467 0 522 583 955 494 460 444 528 

YGR019W (UGA1) 590 464 522 0 701 843 514 577 425 517 

YLL041C (SDH2) 529 808 583 701 0 951 541 575 710 697 

YHR051W (COX6) 868 815 955 843 951 0 894 967 979 1062 

YGR086C (PIL1) 453 535 494 514 541 894 0 422 334 518 

YOR065W (CYT1) 313 491 460 577 575 967 422 0 417 281 

YOR317W (FAA1) 568 489 444 425 710 979 334 417 0 390 

YMR108W (ILV2) 472 545 528 517 697 1062 518 281 390 0 

YNL015W (PBI2) 676 717 516 456 649 1030 426 615 370 591 

YDR298C (ATP5) 997 878 1109 1071 1154 445 1004 1104 1119 1233 

YPR149W (NCE102) 955 954 1067 923 963 333 881 1061 1026 1149 

YAL044C (GCV3) 1084 880 959 809 1188 1096 1198 1168 1066 1093 

YBL056W (PTC3) 819 679 911 603 1027 692 774 924 839 931 

YGL187C (COX4) 1112 994 1196 1158 1290 484 1213 1247 1310 1344 

YFR033C (QCR6) 1275 1209 1356 1397 1387 752 1402 1425 1502 1530 

YER141W (COX15) 689 726 653 691 717 1122 388 481 394 491 
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YLR295C (ATP14) 779 730 798 900 1038 1129 1041 865 1034 931 

YOR027W (STI1) 792 723 635 662 844 1228 632 570 444 466 

YOR136W (IDH2) 1256 1115 978 1084 1200 1407 1337 1276 1189 1220 

YMR092C (AIP1) 752 785 585 802 771 1269 664 538 554 527 

YDR381W (YRA1) 816 844 674 902 828 1286 616 629 573 691 

YDR129C (SAC6) 691 761 703 835 804 1246 700 532 643 558 

YDR070C (FMP16) 1167 1343 1022 1334 912 1544 1272 1242 1308 1324 

YGL062W (PYC1) 929 1158 962 974 698 1305 691 882 858 927 

YBR126C (TPS1) 1020 1240 955 1124 820 1509 859 883 903 939 

YDR224C (HTB1) 1169 1374 1037 1161 933 1735 1104 1045 1051 1037 
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EMD from Cit1p to each of the 38 genes of interest in Chapter 4 (Part 3 of 4) 
 

 21 22 23 24 25 26 27 28 29 30 
 YNL015W  

(PBI2) 
YDR298C  
(ATP5) 

YPR149W 
(NCE102) 

YAL044C  
(GCV3) 

YBL056W  
(PTC3) 

YGL187C  
(COX4) 

YFR033C  
(QCR6) 

YER141W  
(COX15) 

YLR295C  
(ATP14) 

YOR027W 
(STI1) 

YNR001C (CIT1) 799 805 835 858 868 870 933 979 988 1071 

YDL215C (GDH2) 619 1015 949 952 908 1089 1144 783 1005 957 

YBR222C (PCS60) 764 1095 1105 821 1054 1120 1178 970 924 971 

YER024W (YAT2) 717 986 957 726 822 1003 1104 1017 1037 1086 

YIL125W (KGD1) 896 1082 1127 729 1077 1070 1142 1026 781 957 

YAL054C (ACS1) 815 1187 1151 1014 1123 1257 1202 1039 1214 1079 

YFL014W (HSP12) 797 1124 1112 608 1022 1118 1239 996 781 869 

YPL078C (ATP4) 988 1074 1161 991 1137 1093 1171 1012 684 1046 

YNL104C (LEU4) 643 982 921 738 605 1031 1245 826 843 800 

YDR148C (KGD2) 793 601 529 987 376 726 939 994 1031 1128 

YBR039W (ATP3) 676 997 955 1084 819 1112 1275 689 779 792 

YCR088W (ABP1) 717 878 954 880 679 994 1209 726 730 723 

YDL181W (INH1) 516 1109 1067 959 911 1196 1356 653 798 635 

YGR019W (UGA1) 456 1071 923 809 603 1158 1397 691 900 662 

YLL041C (SDH2) 649 1154 963 1188 1027 1290 1387 717 1038 844 

YHR051W (COX6) 1030 445 333 1096 692 484 752 1122 1129 1228 

YGR086C (PIL1) 426 1004 881 1198 774 1213 1402 388 1041 632 

YOR065W (CYT1) 615 1104 1061 1168 924 1247 1425 481 865 570 

YOR317W (FAA1) 370 1119 1026 1066 839 1310 1502 394 1034 444 

YMR108W (ILV2) 591 1233 1149 1093 931 1344 1530 491 931 466 

YNL015W (PBI2) 0 1211 1033 1105 814 1352 1525 551 1153 666 

YDR298C (ATP5) 1211 0 446 1266 755 344 541 1271 1268 1445 

YPR149W (NCE102) 1033 446 0 1285 649 606 828 1145 1294 1295 

YAL044C (GCV3) 1105 1266 1285 0 1073 1174 1315 1356 969 1234 

YBL056W (PTC3) 814 755 649 1073 0 835 1095 1046 1158 1158 

YGL187C (COX4) 1352 344 606 1174 835 0 371 1471 1262 1609 

YFR033C (QCR6) 1525 541 828 1315 1095 371 0 1663 1435 1815 

YER141W (COX15) 551 1271 1145 1356 1046 1471 1663 0 1193 476 

YLR295C (ATP14) 1153 1268 1294 969 1158 1262 1435 1193 0 1093 

YOR027W (STI1) 666 1445 1295 1234 1158 1609 1815 476 1093 0 

YOR136W (IDH2) 1186 1609 1587 717 1526 1560 1659 1437 1110 1224 

YMR092C (AIP1) 736 1461 1353 1345 1266 1619 1798 496 1026 290 
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YDR381W (YRA1) 760 1399 1351 1430 1319 1624 1777 434 1250 562 

YDR129C (SAC6) 858 1431 1351 1373 1254 1581 1777 592 951 388 

YDR070C (FMP16) 1261 1679 1603 1464 1713 1727 1755 1391 1111 1344 

YGL062W (PYC1) 728 1483 1212 1611 1203 1659 1786 711 1489 932 

YBR126C (TPS1) 878 1718 1512 1715 1531 1878 2008 664 1503 783 

YDR224C (HTB1) 975 2024 1786 1588 1670 2112 2224 999 1474 884 
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EMD from Cit1p to each of the 38 genes of interest in Chapter 4 (Part 4 of 4) 
 
 31 32 33 34 35 36 37 38 
 YOR136W  

(IDH2) 
YMR092C  
(AIP1) 

YDR381W  
(YRA1) 

YDR129C  
(SAC6) 

YDR070C  
(FMP16) 

YGL062W  
(PYC1) 

YBR126C  
(TPS1) 

YDR224C  
(HTB1) 

YNR001C (CIT1) 1077 1102 1110 1134 1152 1154 1360 1417 

YDL215C (GDH2) 1100 967 968 1016 1082 921 1132 1208 

YBR222C (PCS60) 898 931 987 1020 951 1138 1224 1196 

YER024W (YAT2) 1002 1171 1180 1228 1260 1187 1399 1380 

YIL125W (KGD1) 828 957 1068 997 1039 1264 1332 1293 

YAL054C (ACS1) 1110 1144 1161 1246 1161 1208 1366 1347 

YFL014W (HSP12) 693 932 1049 1016 1082 1255 1320 1236 

YPL078C (ATP4) 1091 919 1009 843 1008 1238 1260 1306 

YNL104C (LEU4) 1062 931 1030 946 1350 1131 1295 1315 

YDR148C (KGD2) 1359 1209 1242 1188 1465 1122 1453 1616 

YBR039W (ATP3) 1256 752 816 691 1167 929 1020 1169 

YCR088W (ABP1) 1115 785 844 761 1343 1158 1240 1374 

YDL181W (INH1) 978 585 674 703 1022 962 955 1037 

YGR019W (UGA1) 1084 802 902 835 1334 974 1124 1161 

YLL041C (SDH2) 1200 771 828 804 912 698 820 933 

YHR051W (COX6) 1407 1269 1286 1246 1544 1305 1509 1735 

YGR086C (PIL1) 1337 664 616 700 1272 691 859 1104 

YOR065W (CYT1) 1276 538 629 532 1242 882 883 1045 

YOR317W (FAA1) 1189 554 573 643 1308 858 903 1051 

YMR108W (ILV2) 1220 527 691 558 1324 927 939 1037 

YNL015W (PBI2) 1186 736 760 858 1261 728 878 975 

YDR298C (ATP5) 1609 1461 1399 1431 1679 1483 1718 2024 

YPR149W (NCE102) 1587 1353 1351 1351 1603 1212 1512 1786 

YAL044C (GCV3) 717 1345 1430 1373 1464 1611 1715 1588 

YBL056W (PTC3) 1526 1266 1319 1254 1713 1203 1531 1670 

YGL187C (COX4) 1560 1619 1624 1581 1727 1659 1878 2112 

YFR033C (QCR6) 1659 1798 1777 1777 1755 1786 2008 2224 

YER141W (COX15) 1437 496 434 592 1391 711 664 999 

YLR295C (ATP14) 1110 1026 1250 951 1111 1489 1503 1474 

YOR027W (STI1) 1224 290 562 388 1344 932 783 884 

YOR136W (IDH2) 0 1255 1379 1356 1133 1626 1584 1332 

YMR092C (AIP1) 1255 0 495 295 1144 967 709 815 

YDR381W (YRA1) 1379 495 0 586 1303 941 720 1018 
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YDR129C (SAC6) 1356 295 586 0 1233 1035 825 914 

YDR070C (FMP16) 1133 1144 1303 1233 0 1358 1235 1099 

YGL062W (PYC1) 1626 967 941 1035 1358 0 631 992 

YBR126C (TPS1) 1584 709 720 825 1235 631 0 728 

YDR224C (HTB1) 1332 815 1018 914 1099 992 728 0 



 143 

Appendix II – Top, Middle, and Bottom 20 Genes from Cit1p 

 
 

Genes sorted by increasing Earth Mover’s Distance from Cit1p (top, middle, and bottom of the list). 
 

Rank Order Experiment FromORF ToORF EMD In 38? gene Alt. Names Description 

Top Twenty 
          

  
  

1 SP YNR001C YNR001C 0 Yes CIT1 CS1 LYS6 Citrate synthase, catalyzes the condensation of acetyl coenzyme 
A and oxaloacetate to form citrate; the rate-limiting enzyme of the 
TCA cycle; nuclear encoded mitochondrial protein 

2 SP YNR001C YKL085W 265.82308  MDH1  Mitochondrial malate dehydrogenase, catalyzes interconversion 
of malate and oxaloacetate; involved in the tricarboxylic acid 
(TCA) cycle; phosphorylated 

3 SP YNR001C YOR374W 269.504048  ALD4 ALD7 ALDH2 Mitochondrial aldehyde dehydrogenase, required for growth on 
ethanol and conversion of acetaldehyde to acetate; 
phosphorylated; activity is K+ dependent; utilizes NADP+ or 
NAD+ equally as coenzymes; expression is glucose repressed 

4 SP YNR001C YDL215C 363.855737 Yes GDH2 GDH-B GDHB NAD(+)-dependent glutamate dehydrogenase, degrades glutamate 
to ammonia and alpha-ketoglutarate; expression sensitive to 
nitrogen catabolite repression and intracellular ammonia levels 

5 SP YNR001C YDR529C 370.02237  QCR7 COR4 CRO1 UCR7 Subunit 7 of the ubiquinol cytochrome-c reductase complex, 
which is a component of the mitochondrial inner membrane 
electron transport chain; oriented facing the mitochondrial matrix; 
N-terminus appears to play a role in complex assembly 

6 SP YNR001C YBR222C 386.286402 Yes PCS60 FAT2 Peroxisomal AMP-binding protein, localizes to both the 
peroxisomal peripheral membrane and matrix, expression is 
highly inducible by oleic acid, similar to E. coli long chain acyl-
CoA synthetase 

7 SP YNR001C YER024W 388.155838 Yes YAT2  Carnitine acetyltransferase; has similarity to Yat1p, which is a 
carnitine acetyltransferase associated with the mitochondrial 
outer membrane 

8 SP YNR001C YIL125W 400.927413 Yes KGD1 OGD1 Component of the mitochondrial alpha-ketoglutarate 
dehydrogenase complex, which catalyzes a key step in the 
tricarboxylic acid (TCA) cycle, the oxidative decarboxylation of 
alpha-ketoglutarate to form succinyl-CoA 

9 SP YNR001C YHR008C 415.9496  SOD2  Mitochondrial superoxide dismutase, protects cells against 
oxygen toxicity; phosphorylated 

10 SP YNR001C YBR269C 427.501672  FMP21  Putative protein of unknown function; the authentic, non-tagged 
protein is detected in highly purified mitochondria in high-
throughput studies 

11 SP YNR001C YHR137W 438.103701  ARO9  Aromatic aminotransferase II, catalyzes the first step of 
tryptophan, phenylalanine, and tyrosine catabolism 

12 SP YNR001C YBL015W 497.391923  ACH1  Protein with CoA transferase activity, particularly for CoASH 
transfer from succinyl-CoA to acetate; has minor acetyl-CoA-
hydrolase activity; phosphorylated; required for acetate utilization 
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and for diploid pseudohyphal growth 

13 SP YNR001C YAL054C 498.578034 Yes ACS1 FUN44 Acetyl-coA synthetase isoform which, along with Acs2p, is the 
nuclear source of acetyl-coA for histone acetlyation; expressed 
during growth on nonfermentable carbon sources and under 
aerobic conditions 

14 SP YNR001C YHR001W-A 510.716937  QCR10  Subunit of the ubiqunol-cytochrome c oxidoreductase complex 
which includes Cobp, Rip1p, Cyt1p, Cor1p, Qcr2p, Qcr6p, Qcr7p, 
Qcr8p, Qcr9p, and Qcr10p and comprises part of the 
mitochondrial respiratory chain 

15 SP YNR001C YPL262W 519.574543  FUM1  Fumarase, converts fumaric acid to L-malic acid in the TCA cycle; 
cytosolic and mitochondrial distribution determined by the N-
terminal targeting sequence, protein conformation, and status of 
glyoxylate shunt; phosphorylated in mitochondria 

16 SP YNR001C YMR189W 523.939536  GCV2 GSD2 P subunit of the mitochondrial glycine decarboxylase complex, 
required for the catabolism of glycine to 5,10-methylene-THF; 
expression is regulated by levels of 5,10-methylene-THF in the 
cytoplasm 

17 SP YNR001C YFL014W 526.61456 Yes HSP12 GLP1 HOR5 Plasma membrane localized protein that protects membranes 
from desiccation; induced by heat shock, oxidative stress, 
osmostress, stationary phase entry, glucose depletion, oleate and 
alcohol; regulated by the HOG and Ras-Pka pathways 

18 SP YNR001C YML120C 532.560443  NDI1  NADH:ubiquinone oxidoreductase, transfers electrons from NADH 
to ubiquinone in the respiratory chain but does not pump protons, 
in contrast to the higher eukaryotic multisubunit respiratory 
complex I; phosphorylated; homolog of human AMID 

19 SP YNR001C YLR393W 535.712799  ATP10  Mitochondrial inner membrane protein required for assembly of 
the F0 sector of mitochondrial F1F0 ATP synthase, interacts 
genetically with ATP6 

20 SP YNR001C YPL111W 543.917882  CAR1 LPH15 cargA Arginase, responsible for arginine degradation, expression 
responds to both induction by arginine and nitrogen catabolite 
repression; disruption enhances freeze tolerance 

[…] Middle Twenty 
            

1914 SP YNR001C YPL212C 922.678441  PUS1  tRNA:pseudouridine synthase, introduces pseudouridines at 
positions 26-28, 34-36, 65, and 67 of tRNA; nuclear protein that 
appears to be involved in tRNA export; also acts on U2 snRNA 

1915 SP YNR001C YPL183C 922.707192  RTT10  Cytoplasmic protein with a role in regulation of Ty1 transposition 

1916 SP YNR001C YJR053W 922.852167  BFA1 IBD1 Component of the GTPase-activating Bfa1p-Bub2p complex 
involved in multiple cell cycle checkpoint pathways that control 
exit from mitosis 

1917 SP YNR001C YMR178W 922.974697  MMT1     

1918 SP YNR001C YBR166C 923.083917  TYR1  Prephenate dehydrogenase involved in tyrosine biosynthesis, 
expression is dependent on phenylalanine levels 

1919 SP YNR001C YJL010C 923.182093  NOP9  Essential subunit of U3-containing 90S preribosome involved in 
production of 18S rRNA and assembly of small ribosomal 
subunit; also part of pre-40S ribosome and required for its export 
into cytoplasm; binds RNA and contains pumilio domain 

1920 SP YNR001C YBR279W 923.263052  PAF1  Component of the Paf1p complex that binds to and modulates the 
activity of RNA polymerases I and II; required for expression of a 
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subset of genes, including cell cycle-regulated genes; homolog of 
human PD2/hPAF1 

1921 SP YNR001C YLR035C-A 923.391488  MLH2     

1922 SP YNR001C YOR205C 923.710765  GEP3 AIM40 FMP38 LRC5 Protein of unknown function; null mutant is defective in 
respiration and interacts synthetically with prohibitin (phb1); the 
authentic, non-tagged protein is detected in purified mitochondria 
in high-throughput studies 

1923 SP YNR001C YBR159W 923.725569  IFA38  Microsomal beta-keto-reductase; contains oleate response 
element (ORE) sequence in the promoter region; mutants exhibit 
reduced VLCFA synthesis, accumulate high levels of 
dihydrosphingosine, phytosphingosine and medium-chain 
ceramides 

1924 SP YNR001C YPL093W 923.736015  NOG1  Putative GTPase that associates with free 60S ribosomal subunits 
in the nucleolus and is required for 60S ribosomal subunit 
biogenesis; constituent of 66S pre-ribosomal particles; member 
of the ODN family of nucleolar G-proteins 

1925 SP YNR001C YIL110W 923.841715  MNI1  Putative S-adenosylmethionine-dependent methyltransferase of 
the seven beta-strand family; deletion mutant exhibits a weak 
vacuolar protein sorting defect, enhanced resistance to 
caspofungin, and is synthetically lethal with MEN mutants 

1926 SP YNR001C YKR086W 923.879343  PRP16 PRP23 RNA16 RNA helicase in the DEAH-box family involved in the second 
catalytic step of splicing, exhibits ATP-dependent RNA unwinding 
activity 

1927 SP YNR001C YHR066W 924.06706  SSF1  Constituent of 66S pre-ribosomal particles, required for ribosomal 
large subunit maturation; functionally redundant with Ssf2p; 
member of the Brix family 

1928 SP YNR001C YER080W 924.165588  AIM9 FMP29 Putative protein of unknown function; the authentic, non-tagged 
protein is detected in highly purified mitochondria in high-
throughput studies; null mutant displays elevated frequency of 
mitochondrial genome loss 

1929 SP YNR001C YMR295C 924.447111  IBI2  Protein of unknown function that associates with ribosomes; 
green fluorescent protein (GFP)-fusion protein localizes to the cell 
periphery and bud; YMR295C is not an essential gene 

1930 SP YNR001C YDL161W 924.502035  ENT1  Epsin-like protein involved in endocytosis and actin patch 
assembly and functionally redundant with Ent2p; binds clathrin 
via a clathrin-binding domain motif at C-terminus 

1931 SP YNR001C YLR423C 924.643327  ATG17 APG17 Scaffold protein responsible for phagophore assembly site 
organization; regulatory subunit of an autophagy-specific 
complex that includes Atg1p and Atg13p; stimulates Atg1p kinase 
activity 

1932 SP YNR001C YLR005W 924.726589  SSL1  Component of the core form of RNA polymerase transcription 
factor TFIIH, which has both protein kinase and DNA-dependent 
ATPase/helicase activities and is essential for transcription and 
nucleotide excision repair; interacts with Tfb4p 

1933 SP YNR001C YLR367W 924.996678  RPS22B  Protein component of the small (40S) ribosomal subunit; nearly 
identical to Rps22Ap and has similarity to E. coli S8 and rat S15a 
ribosomal proteins 

[…] Bottom Twenty 
            

3830 SP YNR001C YLR048W 1970.51702  RPS0B NAB1B YST2 Protein component of the small (40S) ribosomal subunit, nearly 
identical to Rps0Ap; required for maturation of 18S rRNA along 
with Rps0Ap; deletion of either RPS0 gene reduces growth rate, 
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deletion of both genes is lethal 

3831 SP YNR001C YDL184C 1973.0256  RPL41A RPL47A Ribosomal protein L47 of the large (60S) ribosomal subunit, 
identical to Rpl41Bp and has similarity to rat L41 ribosomal 
protein; comprised of only 25 amino acids; rpl41a rpl41b double 
null mutant is viable 

3832 SP YNR001C YLR287C-A 1973.60828  RPS30A  Protein component of the small (40S) ribosomal subunit; nearly 
identical to Rps30Bp and has similarity to rat S30 ribosomal 
protein 

3833 SP YNR001C YGR192C 1977.29566  TDH3 GLD1 HSP35 HSP36 
SSS2 

Glyceraldehyde-3-phosphate dehydrogenase, isozyme 3, involved 
in glycolysis and gluconeogenesis; tetramer that catalyzes the 
reaction of glyceraldehyde-3-phosphate to 1,3 bis-
phosphoglycerate; detected in the cytoplasm and cell wall 

3834 SP YNR001C YGR285C 1982.17295  ZUO1  Cytosolic ribosome-associated chaperone that acts, together with 
Ssz1p and the Ssb proteins, as a chaperone for nascent 
polypeptide chains; contains a DnaJ domain and functions as a J-
protein partner for Ssb1p and Ssb2p 

3835 SP YNR001C YBR118W 1993.45624  TEF2 EF-1 alpha Translational elongation factor EF-1 alpha; also encoded by TEF1; 
functions in the binding reaction of aminoacyl-tRNA (AA-tRNA) to 
ribosomes; may also have a role in tRNA re-export from the 
nucleus 

3836 SP YNR001C YDL081C 1998.62389  RPP1A RPLA1 Ribosomal stalk protein P1 alpha, involved in the interaction 
between translational elongation factors and the ribosome; 
accumulation of P1 in the cytoplasm is regulated by 
phosphorylation and interaction with the P2 stalk component 

3837 SP YNR001C YGL031C 1998.89097  RPL24A RPL30A Ribosomal protein L30 of the large (60S) ribosomal subunit, 
nearly identical to Rpl24Bp and has similarity to rat L24 ribosomal 
protein; not essential for translation but may be required for 
normal translation rate 

3838 SP YNR001C YGL189C 2033.57593  RPS26A RPS26 Protein component of the small (40S) ribosomal subunit; nearly 
identical to Rps26Bp and has similarity to rat S26 ribosomal 
protein 

3839 SP YNR001C YKL117W 2058.09957  SBA1  Co-chaperone that binds to and regulates Hsp90 family 
chaperones; important for pp60v-src activity in yeast; 
homologous to the mammalian p23 proteins and like p23 can 
regulate telomerase activity 

3840 SP YNR001C YDR418W 2071.19489  RPL12B  Protein component of the large (60S) ribosomal subunit, nearly 
identical to Rpl12Ap; rpl12a rpl12b double mutant exhibits slow 
growth and slow translation; has similarity to E. coli L11 and rat 
L12 ribosomal proteins 

3841 SP YNR001C YCR012W 2094.01123  PGK1  3-phosphoglycerate kinase, catalyzes transfer of high-energy 
phosphoryl groups from the acyl phosphate of 1,3-
bisphosphoglycerate to ADP to produce ATP; key enzyme in 
glycolysis and gluconeogenesis 

3842 SP YNR001C YPR080W 2130.28168  TEF1 EF-1 alpha Translational elongation factor EF-1 alpha; also encoded by TEF2; 
functions in the binding reaction of aminoacyl-tRNA (AA-tRNA) to 
ribosomes; may also have a role in tRNA re-export from the 
nucleus 

3843 SP YNR001C YHR174W 2146.25996  ENO2  Enolase II, a phosphopyruvate hydratase that catalyzes the 
conversion of 2-phosphoglycerate to phosphoenolpyruvate 
during glycolysis and the reverse reaction during 
gluconeogenesis; expression is induced in response to glucose 
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3844 SP YNR001C YPR163C 2174.90351  TIF3 RBL3 STM1 Translation initiation factor eIF-4B, has RNA annealing activity; 
contains an RNA recognition motif and binds to single-stranded 
RNA 

3845 SP YNR001C YDR382W 2189.96099  RPP2B RPL45 YPA1 Ribosomal protein P2 beta, a component of the ribosomal stalk, 
which is involved in the interaction between translational 
elongation factors and the ribosome; regulates the accumulation 
of P1 (Rpp1Ap and Rpp1Bp) in the cytoplasm 

3846 SP YNR001C YDL130W 2197.61243  RPP1B RPL44' RPLA3 Ribosomal protein P1 beta, component of the ribosomal stalk, 
which is involved in interaction of translational elongation factors 
with ribosome; accumulation is regulated by phosphorylation and 
interaction with the P2 stalk component 

3847 SP YNR001C YKL060C 2200.10785  FBA1 LOT1 Fructose 1,6-bisphosphate aldolase, required for glycolysis and 
gluconeogenesis; catalyzes conversion of fructose 1,6 
bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; 
locates to mitochondrial outer surface upon oxidative stress 

3848 SP YNR001C YER131W 2202.6556  RPS26B  Protein component of the small (40S) ribosomal subunit; nearly 
identical to Rps26Ap and has similarity to rat S26 ribosomal 
protein 

3849 SP YNR001C YGL135W 2312.07257  RPL1B SSM2 N-terminally acetylated protein component of the large (60S) 
ribosomal subunit, nearly identical to Rpl1Ap and has similarity to 
E. coli L1 and rat L10a ribosomal proteins; rpl1a rpl1b double null 
mutation is lethal 
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