
University of New Mexico
UNM Digital Repository

Biology ETDs Electronic Theses and Dissertations

7-1-2010

Always read the introduction : integrating
regulatory and coding sequence evolution in yeast
Annette Evangelisti

Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Evangelisti, Annette. "Always read the introduction : integrating regulatory and coding sequence evolution in yeast." (2010).
https://digitalrepository.unm.edu/biol_etds/33

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/biol_etds/33?utm_source=digitalrepository.unm.edu%2Fbiol_etds%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


 i 



 ii 

 
 
 

 
 
 
 

Always read the introduction: Integrating regulator y 
and coding sequence evolution in yeast 

 
 

BY 
 
 

Annette M Evangelisti  
 

B.S., Mathematics, University of Maryland, 1991 
M.A. Applied Mathematics, University of Maryland, 1998 

 
 

 
 
 
 
 
 

DISSERTATION 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Doctor of Philosophy  

 
Biology 

 
The University of New Mexico 

Albuquerque, New Mexico 
 
 

July, 2010 



 iii

 

 

 

 

 

 

 

 

 

 

 

©2010, Annette M. Evangelisti  

 

 

 

 

 

 

 

 

 



 iv 

 

DEDICATION 

 

To my mother, Edna Evangelisti, you showed me the beauty of knowledge, I 

hope you would be proud. 



 v 

ACKNOWLEDGMENTS 

I am very grateful to my committee, Don Natvig as chair, Maggie Werner-

Washburne, Rob Miller and with extra special thanks to Gavin Conant.  

Andreas Wagner also played a large role as an early advisor and coauthor on 

Chapter 4.   

This work would not be possible without the Computational Science 

Fellowship from the Department of Energy, the Research Assistantship from 

Los Alamos National Lab and the Fellowship from the National Institutes of 

Health Complexity Grant with P.I. Jim Brown.  Also, the data collection and 

discussion for Chapter 2 was performed in the labs of Vaishali Katju and Ulfar 

Bergthorsson. 

Thanks to the professors that greatly enhanced my experience as a graduate 

student while I was a Teaching Assistant in their class.  Bruce Hofkin, Sam 

Loker, Eric Toolson and Kelly Howe. 

To the people who have shared their academic space with me:  your 

camaraderie, courtesy and expertise was appreciated.  Michael Fuller, 

Michael Gilchrist, Osorio Meirelles, Jeremiah Wright and Cindy Matheisen. 

There are many people who have supported me in other ways.  They know 

which forms to fill out, they have helped me navigate the bureaucracy or 

maybe they are always available with a smile or interesting chat.  Richard 

Cripps, Catherine St Clair, Cheryl Martin, Toby Lucero, Phil Martin. 

Then there are all the other people who have offered their friendship, 

diversion fun and conversation.  Kelly Fitzpatrick, Julie McIntyre. Harriet 

Platero, Elisa LaBeau, Bonnie Lun, Michelle Forys, Sandra Melman, Jana 



 vi 

Gauntt, Patrick Hanington, Jim Cooke, Alexandra Kirk, Bill McKinney, Cris 

Pedregal Martin and Sina Sepheri. 

To my family here in New Mexico, Drew and Sabrina, I offer my sincerest 

gratitude for bringing love, peace and a center into my life.  To my clan on the 

East Coast, Anita, Llewellyn, Michael, Gloria, Jan and Dave; thanks for 

keeping me securely fastened to the ground. 



 vii 

 

 
 
 
 
 

Always read the introduction: Integrating regulator y 
and coding sequence evolution in yeast 

 
 

BY 
 
 
 
 

ANNETTE M EVANGELIST I 
 
 
 
 
 
 
 
 
 
 

ABSTRACT OF DISSERTATION 
 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Doctor of Philosophy  

 
Biology 

 
The University of New Mexico 

Albuquerque, New Mexico 
 
 

July, 2010 



 viii

 
Always read the introduction: Integrating regulator y 

and coding sequence evolution in yeast 
 

ANNETTE M EVANGELISTI 
 

B.S., Mathematics, University of Maryland, 1991 
M.A., Applied Mathematics, University of Maryland, 1998 

Ph.D., Biology, The University of New Mexico, 2010 
 

ABSTRACT 
 

We analyze duplicate genes in a yeast, Saccharomyces cerevisiae with the 

aim of determining a gene’s history and to observe that gene in its genomic 

context. In Chapter 2 we show that the fate of a duplicate gene pair is in part 

determined by its genome location.  Moreover, we show that for two classes 

of duplicate genes, resulting from either small-scale duplication or whole-

genome duplication, this fate can often be assessed by measuring the 

patterns of asymmetry in the sequence divergence of the genes in question. 

In Chapter 3 we study duplicate genes in the context of their local 

environments by comparing the patterns of evolution in the coding sequences 

of duplicate genes for ribosomal proteins with their upstream non-coding 

sequences.  We found that while the coding sequences show strong evidence 

of recent gene conversion events, similar patterns are not seen in the non-

coding regulatory elements. These duplicated ribosomal proteins are not 

functionally redundant despite their very high degree of protein sequence 

identity.  This analysis confirms that the duplicated proteins have diverged 

considerably in expression despite their similar protein sequences. 

In Chapter 4 we analyze the structure of the transcriptional regulation network 

and characterize the molecular evolution of both its transcriptional regulators 
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and their regulated genes.  We found that both subfunctionalization and 

neofunctionalization of transcription factor binding play a role in divergence. 
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Introduction 

Interpreting the genetic code is like deciphering any other language. Knowing the 

alphabet or words does not always give rise to understanding.  We study a 

language from different aspects, for each language has a history, a grammar, 

and contextual meaning.  While we know the genetic alphabet and can “read” 

genes, we cannot consistently predict the function of the protein produced.  So in 

the same manner in which one studies a language we apply this to our 

investigation of genes.  Specifically, we analyze duplicate genes in a yeast, 

Saccharomyces cerevisiae with the aim of determining a gene’s history and 

observe that gene in context to uncover the function of the resulting gene 

product. 

What is our current understanding of how genomes change?  Haldane (1933) 

first predicted the existence and evolutionary importance of gene duplication in 

1933, well before DNA sequencing techniques were developed.  In 1970, Ohno 

(1970) expanded Haldane’s ideas by suggesting that duplicated genes were 

candidates to acquire novel function.  With the considerable number of published 

genomes today, it is now known that gene duplication is a common occurrence, 

but that the rate of duplication varies both among species and among genes.  For 

the majority of duplicate genes, both duplicates experience a short period of 

relaxed selection, resulting in one member of the pair quickly losing its function 

(Lynch and Conery 2000).  The probability of loss of duplicated genes through 

genetic drift depends on the species, the mode of duplication, and the expression 

level of the gene (Taylor and Raes 2004).   
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Gene duplication occurs at different scales, ranging from whole genome 

duplication (WGD) to small scale duplications (SSD).  Many researchers believe 

that WGD (or polyploidization events) are a precursor to evolutionary innovation 

(Comai 2005; Otto 2007; Soltis et al. 2009; Wittbrodt et al. 1998).  Most WGD 

events do not survive the rigors of evolutionary selection but the WGD that have 

endured have given rise to very diverse and successful descendents (Van de 

Peer et al. 2009).  Various lineages including flowering plants (Blanc et al. 2000; 

The Arabidopsis Genome Initiative 2000; Tuskan et al. 2006), amoeba (Aury et 

al. 2006), and vertebrates (Meyer and Van de Peer 2005).  The first such event 

to be detected from a whole-genome sequencing effort was discovered in S. 

cerevisiae (Wolfe and Shields 1997).   By mapping the relative genome orders of 

S. cerevisiae and seven related species, Byrne and Wolfe (2005; Wolfe 2000) 

have provided an essentially complete list of S. cerevisiae genes that remain.   

The nature of the duplicate genes that are not lost are of interest as they  may 

include gene groupings that retain specific functional classes.   Genes such as 

transcription factors, kinases, and ribosomal proteins commonly remain 

duplicated after WGD but, surprisingly, are not generally duplicated in smaller 

events (Aury et al. 2006; Blanc and Wolfe 2004; Freeling and Thomas 2006; 

Maere et al. 2005; Seoighe and Wolfe 1999).   

Under what conditions are duplicated genes retained in a genome?  There are 

several different processes that can preserve a duplicate gene in the genome.  

First is the classic pathway of neofunctionalization whereby one of the duplicate 

genes acquires a new function (Hughes and Hughes 1993; Ohno 1970) while the 



 4

other gene retains the ancestral function.  The second model (Force et al. 1999a; 

Hughes and Hughes 1993) involves partitioning the function of the ancestral 

gene between the two duplicates (subfunctionalization).  Lastly, there is the case 

whereby the duplicate gene retains the ancestral function but the increase in 

protein expression bestows a selective advantage to the organism that may 

buffer against mutations (Conant and Wagner 2004; Gonzalez-Gaitan et al. 

1994; Gu et al. 2003; Kondrashov and Kondrashov 2006; Nowak et al. 1997; 

Wagner 1999; Wang et al. 1996).   

Methods to examine coding sequence .  Transcriptional regulators and the 

genes whose expression they regulate form large gene regulation networks 

(Guelzim et al. 2002; Lee et al. 2002; Perez-Rueda and Collado-Vides 2000; 

Salgado et al. 2004). Analyzing the structure of molecular networks opens a new 

dimension to studies of molecular evolution because it allows inquiries that go 

beyond the evolution of individual genes.  Understanding how the network 

evolves can shine light on gene evolution. On one hand, we know that mutations 

at the level of individual genes, including gene duplications, influence the 

structure of these networks.  On the other hand, natural selection acting on the 

global structure of a network may influence what kind of mutations can be 

tolerated on the gene level (Chung et al. 2003; Sole et al. 2002; van Noort et al. 

2004; Wagner 2001; Wagner 2003). 

Measures for analysis of coding sequence .  To understand the forces 

responsible for preserving a pair of duplicate genes one must study the history of 

that duplication.  One the most useful tools for analyzing that history is the DNA 
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sequence divergence between the two genes.  Two measures of divergence that 

are of particular importance are the nonsynonymous substitution rate (Ka) and 

the synonymous substitution rate (Ks).  Among the many things these measures 

can assess is whether the two duplicates have diverged at equal rates or if, on 

the contrary, one evolves more rapidly than the other.  The degree to which 

asymmetry in evolutionary rate occurs after duplication is still somewhat 

contentious.  In S. cerevisiae, differing estimates for the frequency of asymmetric 

divergence have been offered: Kellis et al., suggest 17% of duplicate genes 

produced by a genome duplication show asymmetry (Kellis et al. 2004) while 

Conant and Wagner estimated a frequency of 30% (Conant and Wagner 2003b) 

asymmetry in a more heterogeneous sample of duplicates. Thus, depending on 

the organisms studied, the genes selected for inclusion and the methods used to 

identify the divergence, asymmetry may or may not appear to play an important 

role in duplicate gene divergence.   

Methods to examine noncoding effects .  The most obvious aspect of the 

genomic context of a duplicate gene pair is the relative position of two genes in 

the genome, which is, in turn, determined by the duplication mechanism.  For 

example, it has been shown in mammals that a duplicate gene inserted into the 

genome by retrotransposition is very likely to evolve faster than its counterpart in 

the ancestral location (Cusack and Wolfe 2007).  Since S. cerevisiae underwent 

a WGD (Dietrich et al. 2004; Dujon et al. 2004; Kellis et al. 2004; Wolfe and 

Shields 1997), the resulting duplicate pairs were at least initially created with 

identical genomic contexts.  Nevertheless, even among these duplicated genes, 
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strong patterns of asymmetry, some dating to soon after the WGD, have been 

identified (Byrne and Wolfe 2007; Scannell and Wolfe 2008). 

In duplicates produced by SSD, the association between loss of synteny and 

accelerated evolution is well known (Cusack and Wolfe 2007; Katju and Lynch 

2003) and is likely related to duplication mechanism: i.e., a new duplicate lands 

in an alien genomic context and experiences relaxed selection as a result.   

Measure for analysis of noncoding sequence.  To calculate the pairwise 

divergence in the non-coding regions we first extracted the sequence between a 

gene in question and its 5’ neighbor. We then computed pairwise local 

alignments using the local alignment algorithm of Smith and Waterman (1981).  

Non-coding DNA tends to evolve rapidly (Lavoie et al. 2010), so to be sure that 

these alignments represent evolutionarily conserved regions and not simply 

statistical noise, we compared their local alignment scores against an expected 

distribution drawn from the genome at large.  Scores in the upper 5% of this 

randomized distribution were inferred to show evolutionary conservation. 

How to we apply the aforementioned methods and measures?  In Chapter 2 we 

examine genes in context by showing that the fate of a duplicate gene pair is in 

part determined by its genome location.  Moreover, we show that for two classes 

of duplicate genes, resulting from either SSD or WGD, this fate can often be 

assessed by measuring the patterns of asymmetry in the sequence divergence of 

the genes in question. 

In Chapter 3 we study duplicate genes in the context of their local environments 

by comparing the patterns of evolution in the coding sequences of duplicate 
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genes for ribosomal proteins with their upstream non-coding sequences.  We 

found that while the coding sequences show strong evidence of recent gene 

conversion events, similar patterns are not seen in the non-coding regulatory 

elements. These duplicated ribosomal proteins are not functionally redundant 

despite their very high degree of protein sequence identity.  This analysis 

confirms that the duplicated proteins have diverged considerably in expression 

despite their similar protein sequences. 

In Chapter 4 we analyze the structure of the transcriptional regulation network 

and characterize the molecular evolution of both its transcriptional regulators and 

their regulated genes.  We found that both subfunctionalization and 

neofunctionalization of transcription factor binding play a role in divergence.  

 



 8

 

Chapter 2 

 

Why neighborhoods matter: Accelerated evolution of 

relocated, duplicated genes in Saccharomyces 

cerevisiae 

 

Annette M. Evangelisti 
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Abstract  

Gene duplication is an important engine of evolutionary innovation.  The fate 

of a newly formed duplicate gene pair is in part determined by the genome 

locations of the two duplicated genes.  Moreover, this fate can often be 

assessed by analysis of the patterns of asymmetry in the sequence 

divergence of the genes in question.  For two classes of duplicate genes, 

resulting from either smaller scale duplications (SSD) or whole-genome 

duplication (WGD), I computed the relative rate of sequence divergence 

between the gene pairs and compared the gene order in a neighborhood 

around each of the genes.  Duplicates of both types (WGD and SSD) show 

asymmetric divergence and a pattern of gene loss surrounding one of the 

genes in the pair.  The gene that experiences gene loss in its neighborhood is 

also the gene with accelerated divergence.  While duplicate pairs from SSD 

are expected to have one gene that experiences gene loss and accelerated 

divergence in a local region, it is surprising to find the same pattern in the 

paralogs resulting from a WGD event given the circumstances of their birth, 

i.e. WGDs are assumed to be equal at birth.  These results illustrate the 

importance of post-duplication events in determining the fate of duplicate 

genes.  

Introduction 

Haldane (1933) first predicted the evolutionary potential of gene duplication in 

1933, well before DNA sequencing techniques were developed.  In 1970 

Ohno (1970) expanded these ideas by predicting the importance of gene 

duplication and the potential for gene duplicates to gain novel functions.  With 
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the considerable number of published genomes, it is now known that gene 

duplication is a common occurrence, but that the rate of duplication varies 

both among species and among genes. For the majority of duplicate genes, 

both duplicates would be expected to experience a short period of relaxed 

selection, resulting in one member of the pair quickly losing its function (Lynch 

and Conery 2000). The probability of loss of duplicated genes through genetic 

drift depends on the mode of duplication, the species and the expression level 

of the gene (Taylor and Raes 2004). 

Because duplicate genes which are not lost through drift have the potential to 

introduce novelty into the genome, gene duplication has a place of importance 

in any discussion concerning molecular evolution of genes and genomes (Li 

1996).  There are in fact several processes that can preserve a duplicate 

gene in the genome.  First is the classic pathway of neofunctionalization 

whereby one of the duplicate genes acquires a new function (Hughes and 

Hughes 1993; Ohno 1970) while the other gene retains the ancestral function.  

The second model (Force et al. 1999a; Hughes and Hughes 1993) involves 

partitioning the function of the ancestral gene between the two duplicates 

(subfunctionalization).  Lastly, there is the case whereby the duplicate gene 

retains the ancestral function but the increase in protein expression bestows a 

selective advantage to the organism (dosage selection) (Kondrashov and 

Kondrashov 2006).    

To understand the forces responsible for preserving a pair of duplicate genes 

it is necessary to study the history of that duplication.  One the most useful 

tools for studying this history is the DNA sequence divergence between the 

two genes.  In particular, two measures of this divergence are the 
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nonsynonymous substitution rate (Ka) and the synonymous substitution rate 

(Ks).  These measures can help determine whether the two duplicates have 

diverged at equal rates or if, on the contrary, one has evolved more rapidly 

than the other.  The degree to which asymmetry in evolutionary rates occurs 

after duplication is still somewhat contentious: estimates range from 5% 

(Kondrashov et al. 2002) to up to 50% (Dermitzakis and Clark 2001; Van de 

Peer et al. 2001).  In the yeast , Saccharomyces cerevisiae, differing 

estimates for the frequency of asymmetric divergence have been offered: 

Kellis et al., suggest 17% of duplicate genes produced by a genome 

duplication show asymmetry (Kellis et al. 2004) while Conant and Wagner, in 

a more heterogeneous sample of duplicates, estimated a frequency of 30% 

(Conant and Wagner 2003b). Thus, depending on the organisms studied, the 

genes selected for inclusion and the methods used to identify the divergence, 

asymmetry may or may not appear to play an important role in duplicate gene 

divergence.  However, some caution in the negative conclusion is warranted. 

Seoighe and Scheffler have shown that the null hypothesis of symmetric 

divergence between paralogs is difficult to reject due to issues of statistical 

power, both with standard molecular clock methods and with their own novel 

codon model of evolution (Seoighe and Scheffler 2005). Given this low power, 

even the detection of a small percentage of asymmetrically evolving 

duplicates may suggest that this process is an important one in duplicate 

gene evolution. 

In this work, I analyzed asymmetry of duplicate evolution in the context of a 

somewhat underappreciated feature of duplicated genes. While it is natural to 

assume that immediately after gene duplication the resulting two gene copies 
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are identical, this is not always the case.  A study of duplicate genes in C. 

elegans found that the median of the duplication span fell short of the average 

gene length, leading to incomplete duplicates for approximately half of the 

paralogs (Katju and Lynch 2003).. This observation suggests a more general 

principle: the genomic context of the two genes can have profound effects on 

duplicate gene evolution and in particular on the patterns of asymmetry in that 

evolution (Cusack and Wolfe 2007; Katju and Lynch 2003). 

The most obvious aspect of the genomic context of a duplicate gene pair is 

the relative position of two genes in the genome, which is, in turn, determined 

by the duplication mechanism.  For example, it has been shown in mammals 

that a duplicate gene inserted into the genome by retrotransposition is very 

likely to evolve faster than its counterpart in the ancestral location (Cusack 

and Wolfe 2007).  The organism studied here, S. cerevisiae underwent a 

whole-genome duplication (WGD) (Dietrich et al. 2004; Dujon et al. 2004; 

Kellis et al. 2004; Wolfe and Shields 1997), meaning that the resulting 

duplicate pairs were at least initially created with identical genomic contexts.  

Nevertheless, even among these duplicated genes, strong patterns of 

asymmetry, some dating to soon after the WGD, have been identified (Byrne 

and Wolfe 2007; Scannell and Wolfe 2008). 

Here, I compared the two types of duplication present in S. cerevisiae, those 

produced by WGD and by SSD to see whether, in each case, the local 

genomic neighborhood is associated with particular patterns of asymmetry. 

Interestingly, I found that the neighborhood matters in both cases: the gene in 

the less conserved genomic region is more likely to undergo rapid evolution. 
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Methods 

All sequences were downloaded from the Saccharomyces Genome Database 

(http://www.yeastgenome.org/).  Table 2lists the source address and the total 

number of genes downloaded for each genome.  S. castellii and S. kluyveri 

did not have gene names assigned so a given gene was labeled with the 

contig number followed by a number reflecting the relative position of the 

gene in the contig.  For example, the 31st coding sequence on contig 795 for 

S. kudriavzevii was named Skud795.31. 

Ka is the number of nonsynonymous (amino acid-changing) nucleotide 

substitutions per nonsynonymous site and Ks is the number of synonymous 

(amino acid-preserving) nucleotide substitutions per nucleotide site. I used 

GenomeHistory (Conant and Wagner 2002) to calculate Ka and Ks.  

GenomeHistory performs a three-step analysis.  A gapped BLASTP (Altschul 

et al. 1997) identifies candidate pairs of duplicate genes, which then undergo 

pairwise global sequence alignment (Needleman and Wunsch 1970) of the 

amino acid sequences in question.  Finally, Ks and Ka are estimated by 

maximum likelihood (Yang and Nielsen 2000). 

All seven genomes were analyzed by GenomeHistory performing an all-gene 

to all-gene comparison.  Pairs of genes qualified as paralogous in S. 

cerevisiae if Ks |ScerA, ScerB| < 1.0 and if ScerA and ScerB comprised a 

gene family of exactly two.  The outgroup for a duplicate pair of genes was 

required to be a single copy ortholog to both genes in S. cerevisiae and in the 

case where there was more than one candidate for the outgroup – I chose the 
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genome that is more closely related to S. cerevisiae.  I identified 53 triplets 

that satisfied this criterion.  The synonymous divergence between at least one  

Table 1 - Genomes and their source.   

 

Genome Download From Number of 
Genes 

S. 
cerevisiae 

ftp://genome-
ftp.stanford.edu/pub/yeast/sequence/ 
genomic_sequence/orf_dna 

6718 

S. 
paradoxus  

ftp://genome-
ftp.stanford.edu/pub/yeast/sequence/ 
fungal_genomes/S_paradoxus/MIT 

8955 

S. mikatae 
ftp://genome-
ftp.stanford.edu/pub/yeast/sequence/ 
fungal_genomes/S_mikatae/MIT 

9057 

S. 
kudriavzevii 

ftp://genome-
ftp.stanford.edu/pub/yeast/sequence/ 
fungal_genomes/S_kudriavzevii/WashU 

3768 

S. bayanus  
ftp://genome-
ftp.stanford.edu/pub/yeast/sequence/ 
fungal_genomes/S_bayanus/MIT 

9423 

S. castellii 
ftp://genome-
ftp.stanford.edu/pub/yeast/sequence/ 
fungal_genomes/S_castellii/WashU 

4677 

S. kluyveri 
ftp://genome-
ftp.stanford.edu/pub/yeast/sequence/ 
fungal_genomes/S_kluyveri/WashU 

2968 

 
The first column is the name of the organism, second column is the ftp site and the third 
column lists the number of genes downloaded for each organism. 
 

of the S. cerevisiae genes and the outgroup gene was always greater than the 

divergence between the two S. cerevisiae paralogs. 

To identify the syntenic contexts of a pair of duplicated genes in S. cerevisiae, 

I started with a triplet of genes, ScerA, ScerB and OutAB as described above.  

ScerA is a gene located on chromosome A, ScerB on chromosome B and 

OutAB on chromosome O (Figure 1).  I aligned segments of chromosome A 

and B that contained the genes ScerA and ScerB along with the segment that 
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contained the outgroup gene, OutAB.  Starting from each gene of interest 

(ScerA, ScerB, OutAB), I examined the 12 flanking genes on each side. For 

reference, I label the original gene as position 0 and then number the 

upstream genes as +1, +2, …, +12 and the downstream genes -1, -2, …, -12. 

To infer synteny conservation, the 24 genes surrounding OutAB were 

compared with the genes neighboring the two duplicate genes in the S. 

cerevisiae genome.  I thus counted the number of upstream and downstream 

neighbors of ScerA that had orthologs in the outgroup that are in the 24 gene 

neighborhood of OutAB (MA).  Similarly, MB was the number of orthologs in 

the neighborhood of ScerB that were also in the neighborhood of OutAB.  For 

each duplicate pair I compared the number of genes found 

upstream/downstream that had orthologs on either chromosome A or B.  If I 

found a majority of matches on chromosome B, for example, I concluded that 

there was evidence that the ancestral copy of the gene was on the B 

chromosome.  I used the criteria in Table 2 to determine the Consynteny.   

I used Mega4.0 (Tamura et al. 2007) to compute Tajima’s Relative Rates test.  

For all 53 data points I performed a pairwise distance analysis for the two S. 

cerevisiae duplicate pair against the outgroup. 
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Chrom A

Chrom O

Chrom B

ScerA

ScerB

OutAB

-3      -2      -1     0      +1      +2      +3

A(+1)B(+2) A(+3)A(-2) A(-1)

Homologs

Chrom A

Chrom O

Chrom B

ScerA

ScerB

OutAB

-3      -2      -1     0      +1      +2      +3

A(+1)B(+2) A(+3)A(-2) A(-1)

Homologs

 

Figure 1 - Illustration of the algorithm used to di stinguish the ancestral gene from the 
Nonconsynteny.    

The duplicate pair of S. cerevisiae genes, ScerA, ScerB and its single copy ortholog, OutAB 
are lined up in the center of the diagram on their respective chromosomes; A, B and O.  The 
position of the three paralogous genes is labeled 0, the genes upstream are labeled +1, +2, 
etc. and the genes downstream are labeled -1, -2, etc.  A(-2) indicates that the gene on 
chromosome O in position -3 is orthologous to the gene on chromosome A in position -2.  
A(+1)B(+2) indicates that the gene on chromosome O is orthologous to both the gene on 
chromosome A in position +1 and the gene on chromosome B in position +2.   
 
 

Table 2 - Criteria for Consynteny call. 

 
|MAa – MBb| Consynteny location  

≤ 2 No call 

> 2 
ScerA    if MA > MB 
ScerB    if MA < MB 

 
a: MA is the number of homologous genes that the 24 genes surrounding OutAB have in 
common with the 24 neighbors of ScerA 
b: MB is the number of homologous genes that the 24 genes surrounding OutAB have in 
common with the 24 neighbors of ScerB 
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Results  

Comparing duplicate genes pairs from S. cerevisiae with six outgroup 

Saccharomyces genomes (Figure 2) of known phylogeny (Kurtzman and 

Robnett 2003) allowed me to measure sequence divergence and 

conservation of gene order between the paralogs.  The duplicate pairs 

retained for this study met the following three criteria:  1) the two genes had 

no other close relatives in the S. cerevisiae genome (i.e. they were not 

members of a larger gene family), 2) there existed an orthologous single copy 

gene from one of the six outgroups and 3) the rate of synonymous 

substitutions per nucleotide site (Ks) was less than 1.0 (see Methods).  The S. 

cerevisiae paralogs are denoted ScerA, ScerB and their single copy ortholog 

as OutAB. 

The first question explored was whether there was evidence of significant 

asymmetry in rates of evolution for the duplicate gene pairs.  Using Tajima’s 

relative rate test (Tajima 1993),, 47% (25/53) of the pairs showed significant 

asymmetry using the nucleotide sequences (nt) and 11% (6/53) showed 

significant asymmetry using the amino acid (aa) sequences (P < 0.05 for both 

tests).  Note that all of the paralogous pairs showing significant asymmetry in 

their amino acid sequences also showed significant asymmetry in their 

nucleotide sequences.   

Next, I sought to place the asymmetry into the context of the location of the 

genes.  Genomic context has a different meaning for genes produced by 

whole-genome duplication (WGD) and for genes produced by small-scale 
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duplication (SSD).  For all the genes, regardless of duplication mechanism, I 

searched for conserved synteny between paralogs and their 

 

Figure 2 - The phylogenetic relationship among S. cerevisiae and the six outgroups 
studied (Kurtzman and Robnett 2003).   

The position of the whole genome duplication (WGD) is represented by a red dot. (Dietrich et 
al. 2004; Dujon et al. 2004; Kellis et al. 2004; Wolfe and Shields 1997). 
 

respective ortholog in the outgroup genome (OutAB; see Methods).  For the 

SSD genes, it is assumed that the derived copy has been inserted into a new 

genomic location and it will not show conserved synteny.  In the case of WGD 

genes the notion of ancestor/derived is meaningless, but the process of gene 

loss after WGD (Scannell et al. 2006) can still yield duplicate pairs with 

differing levels of local synteny.  Due to the differing origins of these variations 

in syntenic context depending on duplication mechanism, I introduce the 

generic terminology of consynteny, shorthand for conserved synteny, and 

nonconsynteny, denoting a lack of such conservation.   
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For 85% (45/53) of the duplicate gene pairs, the differences in synteny 

between the two genes was sufficient to assign consynteny/nonconsynteny 

status (see Methods).  For these pairs I calculated Ka of |Consynteny, OutAB| 

and Ka |Nonconsynteny, OutAB|, where Ka is the number of nonsynonymous 

substitutions per nucleotide site (Li 1997). A Wilcoxon’s matched paired test 

showed a significantly higher proportion of the fast evolving duplicate copies 

were in the nonconsynteny class (P = 1 x 10-3; N = 45; see Table 3).  

Since the previous analysis included gene pairs produced both by SSD and 

by WGD, the next step was to divide the data into ohnologs (duplicate genes 

derived from the WGD) and nonohnologs (duplicate genes of any other origin) 

and repeat the analysis.  The Wilcoxon’s matched paired test for Ka of 

|Consynteny, OutAB| and Ka |Nonconsynteny, OutAB| for the ohnolog and 

nonohnolog groups was significant for both groups again showing that a 

significantly higher proportion of the fast evolving duplicate are in the non 

conserved synteny group (P = 1 x 10-2 for N = 34 (ohnologs);  P = 4 x 10-2 for 

N = 11 (nonohnologs) (Table 3).  

Table 3 - Wilcoxon’s matched pairs test for asymmet ric divergence of duplicate pairs. 

 
Measure of 
divergence Genes analyzed N P value a 

Kab All 45 1 x 10-3 
Symm. AA seqsc 40 0.02 

Symm. NT seqsd 21 0.4 
Kse All 45 9 x 10-8 

Symm. AA seqsc 40 9 x 10-7 
Symm. NT seqsd 21 9 x 10-3 

 
a: P values are bold if they are significant at α = 0.05 level. 
b: Values compared were Ka|Consynteny, OutAB| vs Ka|Nonconsynteny, OutAB| 
c: Only includes sequences with non-significant asymmetry in amino acid sequence by Tajima 
test. 
d: Only includes sequences with non-significant asymmetry in nucleotide sequence by Tajima 
test. 
e: Values compared were Ks|Consynteny, OutAB| vs Ks|Nonconsynteny, OutAB| 
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In an additional test for divergence, I divided the 45 paralogous pairs between 

Ks |Consynteny, OutAB| and Ks |Nonconsynteny, OutAB| , where Ks is the 

number of synonymous substitutions per nucleotide site between two 

sequences.  The faster evolving member of the duplicate pair in terms of Ks 

was again the gene with the less conserved synteny (Wilcoxon’s test; P = 9 x 

10-8; N = 45).  This pattern is also observed for the ohnolog and nonohnolog 

groups individually ( Wilcoxon’s matched pairs test; P = 1 x 10-6; N = 34 and P 

= 3 x 10-2; N = 11, respectively). 

Discussion  

I found that both duplicate genes produced by SSD and by WGD show an 

association between increased rates of sequence evolution and loss of local 

synteny. Thus, the loss of upstream or downstream duplicated genes in the 

region surrounding one member of a duplicate pair seems to coincide with 

faster sequence evolution in that gene.  For the WGD-produced duplicates, 

this pattern is particularly interesting because such duplicates are “identical at 

birth”.  Asymmetry in such WGD duplicates has already observed (Byrne and 

Wolfe 2007; Scannell and Wolfe 2008), but its association with differences in 

genomic context appears to be novel. 

There are caveats to consider when evaluating the results of this study.  

Because the depth of coverage differs in the genome sequences considered, 

it is possible that some duplicated genes paralogous to S. cerevisiae genes 

may have been missed in the outgroup genome.  Another potential problem is 

the inherent difficulty in detecting asymmetric divergence with this data set by 

observing the nucleotide sequence alone.   
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Gene conversion, the process by which a portion of the nucleotide sequence 

of one gene in a duplicate pair replaces the nucleotide sequence in its 

corresponding gene, has been documented in S. cerevisiae (Li 1996; Sharp 

and Cowe 1991).  The effect of gene conversion is that a molecular-clock-like 

measurement of time since divergence will be reset and the duplicate pair will 

appear as if newly duplicated.  Such events could have subtle but important 

effects on this analysis. I selected the duplicate gene pairs for analysis on the 

basis that they were more closely related to each other than to the outgroup 

gene.  Gene conversion could give rise to such pairs in a manner where, 

although the two sequences are closely related, the genomic neighborhoods 

are in fact more distantly related. However, I note that at each phase of this 

study I chose the most conservative of approaches to minimize these 

potential errors. 

In duplicates produced by SSD, the association between loss of synteny and 

accelerated evolution is well known (Cusack and Wolfe 2007; Katju and Lynch 

2003) and likely related to the duplication mechanism: i.e., a new duplicate 

lands in an alien genomic context and experiences relaxed selection as a 

result.  The source of this effect in the WGD-produced duplicates is less clear. 

However, one hypothesis is that the loss of genes, particularly upstream 

genes, could have the same disruptive effects on promoters that has been 

hypothesized to underlie the asymmetry observed in mammals (Cusack and 

Wolfe 2007).  Here one can see that regardless of the mechanism that 

produced the duplicate pair the neighborhood in which a gene finds itself 

plays an important role in determining its ultimate fate. 
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Abstract 

By comparing the patterns of evolution in the coding sequences and upstream 

non-coding sequences of yeast ribosomal proteins duplicated in a genome 

duplication, we find that while the coding sequences show strong evidence of 

recent gene conversion events, similar patterns are not seen in the non-

coding regulatory elements.  This result suggests a potential explanation of 

the somewhat puzzling fact that duplicated ribosomal proteins are not 

functionally redundant despite their very high degree of protein sequence 

identity.  Analysis of the patterns of regulatory network evolution after genome 

duplication confirms that the duplicated proteins have diverged considerably 

in expression despite their similar protein sequences.

Introduction 

With the completion of the genomic sequencing of numerous organisms, it 

has become evident that polyploidization (or whole-genome duplication, 

WGD) events have occurred in diverse lineages including flowering plants 

(Blanc et al. 2000; The Arabidopsis Genome Initiative 2000; Tuskan et al. 

2006) amoeba (Aury et al. 2006) and vertebrates (Meyer and Van de Peer 

2005). The first such event to be detected in a whole-genome sequence was 

that in Saccharomyces cerevisiae (Wolfe and Shields 1997): striking 

confirmation of this event was found with the two-to-one mapping of 

chromosomal regions in S. cerevisiae to the genomes of other yeasts lacking 

the WGD (Dietrich et al. 2004; Dujon et al. 2004; Kellis et al. 2004). 

Polyploidization events are often followed by substantial losses of duplicated 

genes (Semon and Wolfe 2007). Which of the two duplicate copies is lost is 
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generally thought to be selectively neutral: if two populations lose alternative 

copies such reciprocal gene loss can contribute to reproductive isolation and 

hence speciation (Scannell et al. 2006).  The nature of the duplicate genes 

that are not lost is also of interest: functional classes of genes such as 

transcription factors, kinases and ribosomal proteins commonly remain 

duplicated after WGD but, surprisingly, are not generally duplicated in smaller 

events (Aury et al. 2006; Blanc and Wolfe 2004; Freeling and Thomas 2006; 

Maere et al. 2005; Seoighe and Wolfe 1999).  Wolfe (2000) has proposed the 

name ohnologs (in honor of Susumu Ohno) for these duplicate genes 

surviving from WGD. By mapping the relative genome orders of S. cerevisiae 

and seven related species, Byrne and Wolfe (2005) have provided an 

essentially complete list of S. cerevisiae ohnologs.  

In S. cerevisiae, approximately 10% of surviving ohnologs are in fact 

ribosomal proteins (RPs; Byrne and Wolfe 2005; Kim et al. 2009; Planta and 

Mager 1998).  It has been suggested that selection to maintain (high) relative 

gene dosage among RP genes is at least in part responsible for this over-

retention (Birchler and Veitia 2007; Freeling and Thomas 2006; Koszul et al. 

2004; Papp et al. 2003).  Given this hypothesis, it is suggestive that many of 

the RP ohnologs are very similar in sequence; in fact, it is thought that these 

genes have undergone one or more gene conversion events post-WGD 

(Kellis et al. 2004). Gene conversion occurs when nonhomologous 

recombination causes the overwriting of substitutions in one gene with the 

corresponding bases from a paralog. The net effect of such events is to erase 

the historical sequence divergence between paralogs, and one can plausibly 

argue that any functional differences between the two genes would be erased 
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simultaneously.  Curiously however, there are examples of paralogous RPs in 

yeast with high sequence identity (>97%) that nonetheless differ in their 

functional roles (Enyenihi and Saunders 2003; Kaeberlein et al. 2005; Kim et 

al. 2009; Komili et al. 2007; Ni and Snyder 2001). 

Here, we examined the patterns of gene conversion in the yeast ribosomal 

protein (RP) ohnologs, finding strong evidence for gene conversion in the 

coding regions of these genes but little evidence of such conversion events in 

the upstream non-coding regions. An analysis of the RP ohnolog expression 

network also showed dissimilar expression patterns, consistent with 

regulatory divergence between the copies being responsible for the observed 

functional divergence. 

Methods 

Data sources and orthology inference. A total of 55 previously described 

WGD-produced duplicate ribosomal proteins (RP; Conant and Wolfe 2006; 

Planta and Mager 1998) were analyzed. To this set, we added 84 pairs of 

enzyme genes duplicated at the WGD, identified by cross-referencing to the 

list of metabolic genes of Kuepfer, Sauer and Blank (2005) to the set of 

Saccharomyces cerevisiae ohnologs (Byrne and Wolfe 2005). 

For these two lists (totaling 139 duplicate pairs), we next identified the 

corresponding orthologous genes in the genome of S. bayanus . Orthology 

inference in post-WGD species is challenging due to reciprocal gene loss, 

which can give rise to paired homologous genes that are paralogous rather 

than orthologous {Figure 3`; \Scannell, 2006 #66;, 2007 #88}.  We have 

previously developed a maximum likelihood method that addresses this 

problem (Conant and Wolfe 2008).  Briefly, the analysis begins with an 
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inferred pre-WGD gene order (similar to that of Gordon, Byrne, and Wolfe; 

2009).  A model of duplicate gene loss after WGD allows us to estimate the 

relative speciation times of the taxa analyzed and the probability of all 

possible orthology assignments.  Thus, in Figure 3, we estimate with greater 

than 99.99% confidence that S. bayanus  gene number 34.11 is the ortholog 

of S. cerevisiae gene RPL26B as opposed to the alternative possible 

assignment that makes gene 34.11 the ortholog of RPL26A. Importantly, 

these inferences rest only on the relative gene orders: gene sequences are 

not considered. 

From our list of 55 ribosomal protein gene (RP) duplicates and 77 enzyme 

duplicates (MP), we thus selected the 29 RP pairs and 76 MP pairs for which 

the probability of our orthology assignment between S. cerevisiae and S. 

bayanus  was > 0.98.  Thus, these genes represent a set for which we have 

high confidence orthology information independent of the sequences 

themselves. 
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Figure 3 - Illustration of the pattern of genome ev olution after WGD in five yeast 
species in a region surrounding a pair of duplicate d ribosomal protein genes (RPL26A 
and RPL26B).  

The upper five tracks and the lower five tracks are inferred to be two orthologous groups. 
Lines connect genes that are adjacent on their respective contigs or chromosomes. Duplicate 
genes surviving from WGD are colored blue, green genes are cases where one member of 
the duplicate pair has been lost post-WGD. The orthology assignments between the paired S. 
cerevisiae and S. bayanus  genes on the upper and lower tracks are all inferred with greater 
than 99.99% confidence. 
 

Sequence analyses.  We next analyzed the sequence divergence in the 

coding regions of S. cerevisiae ohnolog pairs (Figure 4). To do so, we aligned 

sequence triplets consisting of two ohnologs from S. cerevisiae (Scer1 and 

Scer2 below) and the S. bayanus  gene orthologous to Scer1 (Sbay below) 

using T-Coffee (Notredame et al. 2000).  Using these alignments, estimates of 

the number of nonsynonymous substitutions per nonsynonymous site (Ka) for 

each of the three branches in Figure 4 were estimated by maximum likelihood 

as previously described (Conant and Wagner 2003b).  Similar calculations 

were made for the synonymous sites (Ks, data not shown). Note that for most 

S. cerevisiae ohnolog pairs, there are actually two possible triplets, because 

the corresponding S. bayanus  genes are also duplicates surviving from 
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WGD. In such cases, we performed both comparisons (meaning that the 

identity of Scer1 and Scer2 was switched in the second case). 

To test the statistical support for an inference of gene conversion between 

genes Scer1 and Scer2, we employed a likelihood ratio test (Sokal and Rohlf 

1995).  First, we identified cases where KaB > Ka1, Ka2, (i.e., the signature of 

gene conversion; Figure 4) and calculated the likelihood of the sequence 

alignment under this model (lnLH0).  We then constrained the model such that 

Ka1 = KaB and calculated the likelihood under this alternative model (lnLHA).  

We compared 2·( lnLH0- lnLHA) to a chi-square distribution with 1 degree of 

freedom. 

 

Figure 4 - Analysis of duplicated S. cerevisiae genes and a S. bayanus  ortholog.   

A) The format of our triplet-based sequence analysis.  Because the models used are time-
reversible, only a single, three taxa tree is required. Independent estimates of Ka are made 
for each branch. B) The expected pattern of branch lengths for the tree in A if the genes 
follow the known species tree.  Note that we expect Ka2 to be large as it represents both the 
divergence of the gene Scer2 as well as the shared divergence of Sbay and Scer1 post-
WGD.  C) The expected gene tree if Scer1 and Scer2 have undergone recent gene 
conversion events.  Here we expect KaB to be the largest of the three Ka values, under the 
same reasoning as in B. 
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Ribosomal gene expression network divergence after WGD. We 

have previously described an algorithm for detecting network partitioning 

among WGD-produced duplicate genes (Conant and Wolfe 2006).  As is 

illustrated in Figure 5, paralogs are divided into two columns with ohnologs 

opposite each other in a network. Gene expression data for 51 pairs of RP 

ohnologs were obtained from the expression compendia of Hughes et al. 

(2000) and overlaid as graph edges. We divide these edges into internal 

edges, connecting nodes in the same column (arcs or vertical lines in Figure 

5), and crossing edges, joining nodes in opposite columns (diagonal lines in 

Figure 5). Note that the initial assignment of a particular paralog to the first or 

second column is arbitrary, meaning that there are  2n–1 possible unique 

partitionings of the duplicates into columns. Using the previously described 

heuristic partitioning algorithm (Conant and Wolfe 2006), we search for the 

partition among these 2n-1 that gives the fewest crossing edges.  

To determine if the RP gene expression data showed fewer crossing edges 

than would be expected by chance, we randomized the networks and 

recalculated the optimal partitioning. Randomization was performed by 

selecting every possible quartet of two pairs of duplicates. These four node 

subgraphs were replaced at random by another four-node subgraph with the 

same number of edges (Conant and Wolfe 2006). The probability of each 

such subgraph was calculated based on the inherent asymmetry in interaction 

degree between paralogs. Thus, we calculated the average fraction p of the 

total number of interactions for a paralog pair that belonged to the interaction-

rich paralog. The probability of an interaction joining two interaction-rich genes 
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Figure 5 - Gene expressions networks of duplicated ribosomal proteins have diverged 
since WGD.   

Pairs of duplicated ribosomal proteins are arranged opposite each other.  Edges connect 
pairs of genes with correlation in gene expression > 0.8.  We searched among the 2n–1 
permutations of the column arrangements to find this arrangement, which has the minimal 
number of edges (102) crossing between the two partitions. The minimal number of crossing 
edges seen in randomized networks was 107, mean was 116.  Note also the high degree of 
asymmetry in the number of interactions seen between duplicated ribosomal proteins. 
 

is thus p2, while the probability of an interaction joining an interaction-rich and 

interaction-poor gene is then 2p(1–p). Subgraph probabilities are calculated 

accordingly. The number of crossing edges in the original network was then 

compared to the distribution of number of crossing edges seen in 1000 

randomized networks. 
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Results 

Strong evidence for numerous gene conversion events  among the 

duplicated ribosomal proteins . Our previous analysis of patterns of gene 

loss after WGD (Conant and Wolfe 2008) allows us to infer with high 

confidence that all of the duplicate gene loci discussed here evolved 

according to the species tree in Figure 4 (Methods).  Despite this fact, it is not 

necessarily the case that the sequences themselves will have evolved under 

this set of relationships. In particular, a gene conversion event between Scer1 

and Scer2 that occurred after the speciation of S. cerevisiae and S. bayanus  

would overwrite the historical signal in the sequences of the two genes and 

give rise to a gene tree of the form of Figure 4. 

Using estimates of Ka for triplets of ribosomal protein genes (RP; see 

Methods), we asked whether the pattern of nonsynonymous divergence in 

each triplet was most compatible with divergence after WGD (i.e., Ka2 > Ka1, 

KaB, Figure 4) or with a recent gene conversion event (KaB > Ka1, Ka2, 

Figure 4). Of the 29 pairs of duplicated RPs in Saccharomyces cerevisiae, two 

follow the pattern expected under WGD, two ohnolog pairs present conflicting 

patterns of Ka values depending on the S. bayanus  ortholog used, and the 

remaining 25 pairs have nonsynonymous divergences consistent with gene 

conversion.  We next assessed whether the signature of gene conversion in 

the sequence data was strong enough to statistically reject the possibility that 

phylogenetic relationships within the triplet were simply ambiguous.  Thus, we 

compared a model allowing gene conversion (KaB > Ka1, Ka2) to an 

alterative model where KaB was constrained to be equal to Ka1. Of the 25 RP 

duplicate pairs with signatures of gene conversion, 17 showed statistically 
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significant improvement when a model allowing gene conversion was used (P 

< 0.05, likelihood ratio test). 

Metabolic genes duplicated at WGD do not show similar patterns of gene 

conversion.  We applied the above approach to a similar set of WGD-

duplicated metabolic genes.  Among the 76 pairs considered only three show 

any signs of gene conversion and only 2 of those have significant 

improvement when the gene conversion model is used (P < 10-7, likelihood 

ratio test). This difference in the proportion of observed gene conversion 

events between the two groups is highly significant (P < 10-10; Fisher’s exact 

test). 

Ribosomal protein non-coding regions do not show ev idence of 

gene conversion .  For each of the RP gene pairs considered above, we 

measured the sequence identity in upstream non-coding regions.  Among the 

pairs considered, 15 RP ohnolog pairs had local alignment scores significantly 

larger than would be expected for unrelated regions.  For these pairs, we 

compared the alignment score S1,2 of the ohnolog pair (Scer1, Scer2) to the 

scores from the comparison of each paralog to its respective ortholog in S. 

bayanus  (i.e., S1,B for Scer1, Sbay and S2,B for Scer2, Sbay). Cases where 

S1,2 > S1,B , S2,B were interpreted as evidence of upstream gene 

conversion.  We found that only 1/15 (6%) of the pairwise non-coding 

alignments showed evidence of gene conservation compared to the 12/15 

(80%) in the coding regions (from the analysis above;  

Table 4).  This difference in the prevalence of conversion events between the 

two groups is highly significant (Table 4 - Prevalence of gene conversion in 

coding region and non-coding regions.). Interestingly, when this same 
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approach is applied to 39 MP genes, we find very few instances of gene 

conversion in either region (<10%) and no significant difference in the 

proportion of conversion events between the non-coding and coding regions ( 

Table 4). 

 

Table 4 - Prevalence of gene conversion in coding r egion and non-coding regions. 

 
Gene 
class Coding regions Upstream regions P a 

 Gene 
conversion b WGDc Gene 

conversion b WGDc  

RPd 
12 3 1 14 < .001 

MPe 1 38 5 34 .2 
 
a: P-value for the test of equal proportions of gene conversion events in the coding and 
upstream regions (Fisher’s exact test). 
b: Cases where the two S. cerevisiae paralogs share higher sequence identity to each other 
than either does to its respective ortholog (see text). 
c: Cases where at least one S. cerevisiae paralog shows higher sequence identity to its 
ortholog than to the other S. cerevisiae paralog. 
d: Ribosomal protein gene duplicates. 
e: Metabolic gene duplicates. 
 

Analysis of duplicated ribosomal protein gene expre ssion 

networks.  We calculated the network partitioning that resulted in the fewest 

number of crossing edges for the ribosomal proteins (Figure 5).  For these 

purposes, we defined an edge between any two genes if they shared a 

correlation (Pearson’s r) in gene expression of 0.8 or greater across the set of 

more than 300 experiments (a threshold of 0.75 produced similar results; data 

not shown).  The network in this analysis showed 102 crossing edges (Figure 

5), which, although it appears to be a large number, is significantly smaller 

than the number of crossing edges seen in any of the randomized networks 

(P < 0.001).  It is also relevant to note the extreme degree of asymmetry 
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evident in this figure: the paralogous ribosomal proteins, despite their 

sequence similarity, do not have identical expression patterns.  

Discussion 

We have found that while duplicated RPs created by WGD show strong 

evidence of gene conversion in their coding regions, the same is not true of 

the upstream non-coding regions. Such conservation in the coding sequences 

of RPs is not unexpected as these proteins are highly conserved across a 

wide range of taxa (Bergmann et al. 2004; McCarroll et al. 2004; Stuart et al. 

2003).  RPs are also somewhat unusual in their response to genome 

duplication: they have survived in excess after other WGDs in addition to the 

yeast WGD (Aury et al. 2006; Blanc and Wolfe 2004; Maere et al. 2005; 

Seoighe and Wolfe 1999).  

One obvious explanation for the similarity in RP coding sequences is selection 

for high dosages of these proteins.  Indeed, there is some evidence for 

dosage benefits from RP gene duplication (Koszul et al. 2004).  However, this 

explanation is not wholly convincing, particularly as we did not observe these 

same patterns of gene conversion in yeast metabolic genes, despite the fact 

that they also likely survived in duplicate partly due to dosage selection 

(Kuepfer et al. 2005).   

Moreover, a number of recent analyses have demonstrated that the 

duplicated yeast RPs are not, in fact, functionally interchangeable. Thus, 

several RPs, but not their paralogs, have been shown to be essential for 

determining bud location in S. cerevisiae (Ni and Snyder 2001) and for 

localizing proteins to that bud (Komili et al. 2007).  An equally intriguing case 

is the difference in protein localization between the RP paralogs Rpl7a and 
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Rpl7b.  Rpl7a is much more highly expressed than is Rpl7b (Ghaemmaghami 

et al. 2003) but while Rpl7a is only found in the cytoplasm, Rpl7b, despite its 

lower abundance, is found both in the cytoplasm and in the nucleolus (Kim et 

al. 2009).  This difference does not appear to be caused by differences in the 

coding sequences of the two genes: replacing the RPL7B sequence with that 

from RPL7A does not alter localization (Kim et al. 2009). These authors 

propose that the localization difference is instead driven by preferential 

incorporation of Rpl7a into ribosomal subunits, meaning that the free protein 

is rarely present at the site of ribosome subunit assembly in the nucleolus.  

However, the origins of this difference in incorporation rate remain unclear 

given the apparent functional equivalence of the two protein sequences. 

We are still in the early stages of integrating these diverse observations 

regarding RP biology.  One obvious explanation for the preservation of 

duplicate genes with (nearly) identical coding sequences is the 

subfunctionalization model of Force and coauthors (1999a). Under this model, 

the fact that RPs have what is essentially a generic function (protein 

synthesis), could imply that the selectively relevant variable is total protein 

abundance, with the relative contribution of the two paralogs to that 

abundance being effectively neutral.  Subfunctionalization could in these 

circumstances be either quantitative (only expression of both paralogs gives 

sufficient protein product) or qualitative (the expression of the two paralogs 

varies with respect to each other temporally) or a mixture of the two.   

As an aside, we note that our inference of subfunctionalization in the function 

of these ohnologs does not necessarily imply that the selective processes at 

work were purely neutral (as originally proposed by Force et al.,(1999a)). 
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Instead, while the large population sizes of yeasts may make such neutral 

partitioning relatively rare, functional partitioning through other mechanisms 

remains possible (Innan and Kondrashov 2010).  Our network analysis 

supports a general process of subfunctionalization, showing as it does groups 

of co-functional paralogs (i.e., network subfunctionalization). In the future, it 

will be useful to study the temporal and spatial patterns of RP gene 

expression to discover whether the relative dosages of the paralogs varies 

across conditions.  
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Abstract 

We analyze the structure of the yeast transcriptional regulation network, as 

revealed by chromatin immunoprecipitation experiments, and characterize the 

molecular evolution of both its transcriptional regulators and their target 

(regulated) genes. We test the hypothesis that highly connected genes are 

more important to the function of gene networks. Three lines of evidence, the 

rate of molecular evolution of network genes, the rate at which network genes 

undergo gene duplication, and the effects of synthetic null mutation in network 

genes provide no strong support for this hypothesis. In addition, we ask how 

network genes diverge in their transcriptional regulation after duplication. Both 

loss (subfunctionalization) and gain (neofunctionalization) of transcription 

factor binding play a role in this divergence, which is often rapid. On one 

hand, gene duplicates experience a net loss in the number of transcription 

factors binding to them, indicating the importance of losing transcription factor 

binding sites after gene duplication. On the other hand, the number of 

transcription factors that bind to highly diverged duplicates is significantly 

greater than expected if loss of binding played the only role in the divergence 

of duplicate genes.  

Introduction 

Transcriptional regulators and the genes whose expression they regulate – 

their target genes – form large gene regulation networks (Guelzim et al. 2002; 

Lee et al. 2002; Perez-Rueda and Collado-Vides 2000; Salgado et al. 2004). 

These and other molecular networks, such as protein interaction networks 

and metabolic networks, are intensely studied, because their characterization 
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has been greatly facilitated by new techniques in genomics and bioinformatics 

(Ito et al. 2001; Lee et al. 2002; Salgado et al. 2004; Uetz et al. 2000; von 

Mering et al. 2002). Information about the structure of molecular networks 

opens a new dimension to studies of molecular evolution, because it allows 

inquiries that go beyond the evolution of individual genes. Network evolution 

and gene evolution are of course not independent. On one hand, we know 

that mutations at the level of individual genes – including gene duplications – 

influence the structure of these networks. On the other hand, natural selection 

acting on the global structure of a network may influence what kind of 

mutations can be tolerated on the gene level (Chung et al. 2003; Sole et al. 

2002; van Noort et al. 2004; Wagner 2001; Wagner 2003).  

Put differently, the structure of the network may influence the evolution of 

genes and vice versa. This interplay is part of the reason why network 

evolution is an intriguing and increasingly popular subject of study. 

We currently know very little empirically about the evolution of large genetic 

networks. The first step towards acquiring more knowledge consists of a basic 

characterization of network structure, and how a gene’s connectivity may 

affect the gene’s evolution and the network’s function. We here present such 

a basic analysis for the yeast transcriptional regulation network. Such an 

analysis may be interesting in its own right, but it also sheds light on questions 

that biologists have been asking for decades. We illustrate this with one 

example, the question how gene functions diverge after gene duplication. 

Gene duplications play dual roles in evolution. On one hand, gene duplicates 

that retain similar functions can be a source of gene redundancy, which may 

buffer organisms against mutations (Conant and Wagner 2004; Gonzalez-
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Gaitan et al. 1994; Gu et al. 2003; Nowak et al. 1997; Wagner 1999; Wang et 

al. 1996).  On the other hand, gene duplicates that diverge in function 

contribute to evolutionary innovation on the biochemical level (Briscoe 2001; 

Hughes 1994; Zhang et al. 1998). Which of these roles is predominant? That 

is, do most gene duplicates retain similar functions long after duplication, or 

do they diverge rapidly? Furthermore, when two genes diverge in their 

functions, how does this divergence take place? The two principal possibilities 

are the acquisition of new functions (neofunctionalization) and the partitioning 

of existing functions between two duplicates. Especially the last mode of 

divergence has generated considerable recent attention, because it has been 

argued that it can account for the maintenance of many gene duplicates in 

eukaryotic genomes (Force et al. 1999a; Lynch and Force 2000; Prince and 

Pickett 2002).  However, most evidence regarding the tempo and mode of 

divergence comes from studies of individual genes and is thus anecdotal.  

To answer the above questions one must define, quantify, and compare gene 

functions. However, to do so raises enormous difficulties, which are 

encapsulated in the multiple complementary ways to categorize gene 

functions (Ashburner et al. 2000). They include the biological process a gene 

acts in, its product’s sub-cellular localization, and its biochemical activity. 

These difficulties are also illustrated by the discovery that many genes long 

thought to have one mundane and well-characterized function – such as 

enzymatic activity – also have entirely, often completely unanticipated roles 

(Jeffery 1999).  Examples include the glycolytic enzyme phosphoglucose 

isomerase, which also serves as the cell-signaling molecule neuroleukin, a 

cytokine causing immune cell maturation, and survival of some embryonic 
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spinal nerve cells (Chaput et al. 1988; Faik et al. 1988); thymidine 

phosphorylase, which catalyzes the dephosphorylation of thymidine and 

deoxyuridine, and is the same as an endothelial growth factor (Furukawa et 

al. 1992; Haraguchi et al. 1994);  aconitase, an enzyme in the tricarboxylic 

acid cycle, which also serves as a translational regulator of ferritin expression 

(Kennedy et al. 1992); and carbinolamine dehydratase, which serves in 

phenylalanine metabolism but also regulates the DNA binding activity of the 

homeodomain transcription factor hepatic nuclear factor 1α (Jeffery 1999). 

With such examples in mind, it may seem utterly hopeless to exhaustively 

quantify gene function to gain insight into the questions raised above. 

However, not all is lost. A possible alternative approach consists in studying 

only one aspect of gene function – however minute – and assay this aspect of 

gene function for many (duplicate) genes. Take the example of gene 

expression. When and where a gene is expressed may provide an indication 

of its function: There are several known cases of gene duplicates in 

developmental genes, duplicates whose biochemical activity is identical, but 

whose biological function is different because they are expressed in different 

tissues or cell populations. With the advent of microarray technology, large-

scale measurements of gene expression have become feasible. They can be 

used to compare this indicator of gene function among many duplicate genes 

and determine their rate of divergence (Gu et al. 2002; Wagner 2000).  Other 

gene function indicators include the molecular interaction partners of a gene 

product; a gene’s synthetic lethal interactions with other genes; the spectrum 

of transcription factors regulating the expression of a gene (because it may 

indicate similarity in gene expression); and – specific to genes encoding 
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transcription factors -- the regulatory targets of a transcription factor. In this 

paper, we use the last two indicators of gene function.  

The subject of this paper is the transcriptional regulation network of the yeast 

Saccharomyces cerevisiae and the evolution of its genes. While primarily 

descriptive, our analysis provides preliminary answers to the questions raised 

above, as well as several others. Do gene duplicates diverge in function or do 

they retain similar functions and thus partial redundancy for a long time? 

Which is the dominant mode of functional divergence, partitioning of existing 

transcriptional regulation interactions, or the acquisition of new interactions? 

Does a gene’s connectivity influence its chances to undergo gene duplication, 

its rate of molecular evolution, or the ability to tolerate mutations? The 

answers we obtain are preliminary, because information on the network’s 

structure is still limited. Each among several data sets on transcriptional 

regulation networks (Bhan et al. 2002; Guelzim et al. 2002; Lee et al. 2002; 

Perez-Rueda and Collado-Vides 2000; Salgado et al. 2004) has its own 

weaknesses, which include ascertainment biases and sometimes only indirect 

evidence for transcriptional regulation. We here chose to use the most recent 

and most exhaustive data available, based on a genome-wide chromatin 

immunoprecipitation experiment  (Lee et al. 2002).  This analysis involved 106 

transcriptional regulators and thousands of likely transcriptional regulation 

interactions, indicated by the binding of transcriptional regulators to a gene’s 

regulatory regions.  

Methods 

Transcriptional regulation data . To identify transcriptional regulators and 

their target genes – the genes whose expression they regulate – we used 
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results of an immunoprecipitation experiment conducted by Lee and 

collaborators (Lee et al. 2002).  This experiment determined the binding 

affinity of well-documented transcriptional regulators to regulatory regions of 

all Saccharomyces cerevisiae genes.  The authors started with the 141 best-

characterized transcription regulators in the Yeast Proteome Database 

(Costanzo et al. 2000), and constructed yeast strains in which each of these 

regulators was tagged with an epitope. Thirty-five of the regulators were 

eliminated from the study because they were not expressed under the 

experimental conditions (growth in the rich medium YPD, which contains 

yeast extract, peptone, and dextrose) or because their tagging was 

unsuccessful.  This left 106 regulators for analysis (Lee et al. 2002).   

For each of these 106 regulators, the epitope tag was used in three replicate 

chromatin immunoprecipitation experiment (Knop et al. 1999) to identify 

genomic DNA to which these regulators bound (Ren et al. 2000).  The 

immunoprecipitated DNA was hybridized to DNA microarrays containing the 

regulatory regions upstream of known yeast genes. The fluorescence intensity 

of a spot (regulatory region) on the array indicates the binding strength of a 

transcriptional regulator to the regulatory region. This indication of binding is 

quantitative, but for many analyses, a qualitative (all-none) indication of 

binding and transcriptional regulation is more useful. The authors thus 

developed an error model of binding that allowed them to assign a probability 

or P-value of binding for each transcriptional regulator to a gene’s regulatory 

region (Lee et al. 2002).  This P-value indicates the confidence one has in a 

factor’s binding to a specific DNA region. We here generally follow the 

authors’ suggestion of equating bona fide binding of a transcriptional regulator 
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to a target gene if this P-value is smaller than 10-3. This P-value minimizes the 

number of false-positive binding interactions, while maximizing the number of 

true positive regulator-target binding interactions (Lee et al. 2002).  Doing so 

results in 4358 interactions with P<10-3. We also repeated our analysis for 

drastically less-stringent (P<10-2) and more stringent (P<10-5) binding 

thresholds (results not shown), with no qualitative change to the results we 

report in detail here.    

Connectivity.   It is important to be aware that the number of regulatory 

regions bound by a transcription factors depends on the factor’s affinity to its 

binding sites, as well as on the factor’s concentration in the cell. Thus, 

connectivity is best thought of as a composite variable than a simple number. 

This does not hold only for our data but for all analyses of molecular 

interaction networks to date. With this caveat in mind, a natural representation 

of the transcriptional regulation data generated by Lee (Lee et al. 2002) is a 

directed graph.  A node represents a gene and a directed edge from gene x to 

gene y indicates that x is a transcription factor that has bound to the 

regulatory region of gene y at P<10-3.  In this case, will refer to gene x as a 

transcription factor and to gene y as its target gene.  The connectivity of a 

transcriptional regulator is then the number of edges that emanate from it, its 

outdegree, which is interpreted as the number of target genes it may regulate.  

The connectivity of a target gene is its indegree, and reflects the number of 

transcriptional regulators that bind to the regulatory region of that gene. 

Because of considerable noise in the data, and because of the influence of 

binding affinities and protein concentrations we mention above, a gene’s 

connectivity is also best interpreted as a relative measure rather than an 



 46

absolute number.  In other words, when we call a gene highly connected, we 

mean highly connected relative to other genes.  

Duplicate genes.  We identified pairs of duplicate genes in the yeast 

Saccharomyces cerevisiae using a modified version of a previously published 

genome analysis tool called GenomeHistory (Conant and Wagner 2002) 

(http://www.unm.edu/~compbio/software/GenomeHistory).  This tool determines 

the extent of synonymous and non-synonymous nucleotide divergence 

between any two sufficiently similar genes in a whole genome.   

Briefly, we used GenomeHistory to carry out a three-step analysis. The first 

step uses gapped BLASTP (Altschul et al. 1997) at an E-value threshold of 

10-7 to identify candidates for duplicate genes in a whole genome. The second 

step consists of an amino acid sequence alignment for candidate genes 

identified in step one to determine pairs of duplicate genes. For our purpose, 

a global sequence alignment in this step is less than ideal to identify 

duplicates of transcriptional regulators.  The reason is that only parts of 

transcriptional regulators, especially their DNA binding domains, evolve slowly 

and are reasonably well conserved in evolution (Ptashne 1988).  Other parts, 

most notably transcriptional activation domains, can evolve very rapidly. The 

presence of rapidly evolving domains may hinder the identification of gene 

duplicates through global sequence alignments. This is, for example indicated 

by the observation that the yeast genome harbors fewer duplicates of 

transcriptional regulators than of other classes of genes (Conant and Wagner 

2002).  For our data set, global alignment yields only five duplicate 

transcriptional regulators. We thus modified GenomeHistory to carry out a 

local alignment, using the Smith Waterman algorithm (Smith and Waterman 
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1981), of candidate genes identified in the first step. Only gene pairs whose 

local alignment extended over at least 100 amino acids, and whose amino 

acid sequence was identical in more than 40% of its residues were included 

as gene duplicates in the final, third step of the analysis. This third step 

consists of a maximum likelihood estimate of the synonymous divergence 

(Ks) and the non-synonymous divergence (Ka) of every pair of duplicate 

genes, using a method established by Yang and Nielsen (Yang and Nielsen 

2000).  Because of the well known multiple substitution problem (Li 1997), 

both synonymous and non-synonymous divergence estimates show limited 

reliability for Ka(s)>1.0 respectively. Therefore, we retained only gene pairs 

with Ka<1 for further analysis.  

Orthologous genes.  A recent study by Kellis and collaborators reported the 

genomic DNA sequences of three yeasts, Saccharomyces mikatae, 

Saccharomyces paradoxus, and Saccharomyces bayanus, closely related to 

Saccharomyces cerevisiae (Kellis et al. 2003).  From this study, we used data 

on synonymous divergence Ks and nonsynonymous divergence Ka between 

S. cerevisiae genes and their unambiguous orthologues from the yeast 

Saccharomyces mikatae (file ‘b.KaKs_details-5.xls’ at 

http://www.broad.mit.edu/annotation/fungi/comp_yeasts/).  We also used the ratio 

of non-synonymous to synonymous divergence Ka/Ks averaged for orthologs 

in the 3 species pairs, S. cerevisiae - S. bayanus , S. cerevisiae - S.  

paradoxus and S. cerevisiae - S. mikatae  (file ‘b.KaKs_average.xls’).  

Growth rates of mutant yeast strains.  We utilized results from a 

genome-scale experiment conducted by Steinmetz and collaborators, which 

assayed the growth rates of 4,706 homozygous diploid yeast deletion strains 
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(Steinmetz et al. 2002).  Briefly, the authors generated a pool containing cells 

from each deletion strain, and allowed cells in this pool to grow in a variety of 

media. These included the rich medium YPD mentioned earlier, YPDGE 

(0.1% glucose, 3% glycerol and 2% ethanol), YPE (2% ethanol), YPG (3% 

glycerol), and YPL (2% lactate). The investigators assayed the growth rate of 

individual strains by hybridizing DNA tags that identified each strain to an 

oligonucleotide microarray. The growth rate thus measured is a growth rate 

relative to the pool’s average growth rate.  

We here discuss our analysis of publicly available data from one of two 

replicate experiments  (file ‘Regression_Tc1_hom.txt’ at http://www-

deletion.stanford.edu/YDPM/YDPM_index.html) that reported the growth of 

homozygous mutant strains grown in the five different media listed above. The 

other replicate experiment yielded qualitatively identical results (not shown). 

We were able to analyze 1716 genes for which both gene deletion data and 

transcriptional regulation data was available. We discuss results in detail for 

only one of the five media, YPD, because the other four media yielded 

qualitatively identical results (not shown). However, we also report results for 

a mutant’s maximum growth rate difference among the five media to the 

pool’s average growth rate (Steinmetz et al. 2002).  This last measure of a 

gene deletion’s effect indicates the greatest growth rate reduction a strain 

suffers in any of the five media, because most gene deletion strains with a 

change in growth rate suffer a reduced growth rate. In our statistical analysis 

of this and other data, we consider the result of any statistical test that rejects 

a null-hypothesis as highly significant if P<0.001, and as non-significant if 

P>0.05.   
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Results 

Network representation.  The data we use here (Lee et al. 2002) contains 

the binding affinity of 106 yeast transcriptional regulators to regulatory regions 

of genes in the Saccharomyces cerevisiae genome. This data can be viewed 

as a directed graph whose nodes are genes. A directed edge from gene x to 

gene y indicates that x is a transcription factor likely to regulate the expression 

of gene y. We will refer to the genes whose expression a transcriptional factor 

regulates as the regulator’s target genes. The outdegree of a regulator, that 

is, the number of directed edges emanating from it, is the number of its target 

genes. The indegree of a target gene is the number of regulators that 

potentially influence the target gene’s activity by binding to its regulatory 

region. Figure 6 shows the structure of this network. The majority of the 106 

regulators and 2363 target genes are part of one large subgraph or 

component with 2925 edges.  There are four regulators that are at the center 

of disconnected components, which involve a total of 21 target genes. Both 

the distribution of indegrees and outdegrees have previously been 

characterized for transcriptional regulation networks, and we will not belabor 

them here (Bhan et al. 2002; Featherstone and Broadie 2002; Guelzim et al. 

2002; Lee et al. 2002).   Information on gene duplications can be 

superimposed onto this network by introducing undirected edges into the 

graph: Any two nodes are connected by an undirected edge, if they are the 

products of a gene duplication. Gene duplication is rampant in this 

transcriptional regulation network. For example, 27% (1688/6267) of target 

genes have at least one duplicate in the yeast genome. Figure 7 shows an 

undirected graph whose nodes correspond to only duplicated target genes,  
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Figure 6 - A graph representation of the transcript ional regulation network.  

The large red nodes represent transcriptional regulators, the small blue nodes represent 
target genes, and a green edge between two nodes represents binding of the regulator to a 
target gene’s regulatory region (P< 0.001 in the binding model of (Lee et al. 2002)).  The 
edges are shown as undirected solely to render the representation less cluttered.  Note that 
all but four regulators are connected in one giant component. 

 
Figure 7 - Gene duplications among target genes of transcriptional regulators.  

Blue nodes represent target genes. A gray edge connects two nodes if these two nodes are 
gene duplicates with amino acid divergence Ka < 1.0.  
 

 
Figure 8 - Regulatory interactions among transcript ional regulators.  

All nodes in this graph represent genes encoding transcriptional regulators. An edge between 
two nodes represents a potential regulatory relationship between regulator and its target 
gene, as indicated by the regulator’s binding to the target gene’s regulatory region (P< 0.001 
in the error model of (Lee et al. 2002)).  Three classes of transcriptional regulators are 
distinguished here, regulators that may influence the expression of other transcriptional 
regulators but are themselves not transcriptionally regulated (large red circles), regulators that 
regulate the expression of other regulators and are also transcriptionally regulated (medium 
red circles), and regulators that do not affect the expression of other transcriptional regulators 
(small red circles). Squares indicate autoregulation.   
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where an edge between two nodes indicates that they are duplicates of each 

other.  The vast majority of gene families in this graph contain fewer than four 

genes, with a few larger gene families clustered in the center.  The size and 

complexity of the graphs in Figure 6 andFigure 7 shows that little useful 

information can be extracted from a mere visualization of this data. A more 

quantitative analysis is called for, an analysis that we will pursue below. We 

will separately ask similar questions of the two classes of genes – 

transcriptional regulatory genes and their target genes – constituting the 

network depicted in Figure 6. Unfortunately, the distinction between 

transcriptional regulators and target genes is not clear-cut, because a 

regulator’s expression can itself be transcriptionally regulated. Specifically, of 

the 106 transcriptional regulators, 50.9% (54/106) are also potentially subject 

to transcriptional regulation by one of the 106 regulators. We here make the 

choice to include transcriptional regulators regulated by other regulators in our 

analysis of target genes. Doing so does not materially affect our results, 

because transcriptional regulators that are themselves regulated constitute 

only 2.3% (54/2363) of target genes. 

Transcriptional regulators.  A majority (83 among 106 or 78%) of 

regulators are single copy genes, whereas 23 regulators (22%) have at least 

one duplicate elsewhere in the genome. Ten transcriptional regulators 

constitute 5 pairs of duplicates, whereas the duplicates of the remaining 13 

duplicate regulators are not among the 106 transcriptional regulators analyzed 

by Lee and collaborators (Lee et al. 2002).  However, the duplicates of the 13 

regulators whose function has been characterized have been implicated in 

transcriptional regulation as well, according to information available in the 
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Saccharomyces Genome Database SGD (http://www.yeastgenome.org/). All of 

the duplications are ancient, as indicated by the fact that all pairs of duplicates 

involving one regulator have a synonymous divergence of Ks>1. This and the 

small number of duplicate regulators render a meaningful statistical analysis 

of functional divergence after regulator duplication difficult.  

Figure 8 shows a network representation of all the regulators that have 

regulatory interactions with other regulators.  The majority of the regulators in 

the network (87% or 66/76) are contained in one large connected component. 

For this network, we asked whether there are any systematic differences 

between regulators that affect the expression of other regulators and 

regulators that do not. We found one such difference. Regulators that do not 

affect the expression of other regulators and that have large numbers of target 

genes are underrepresented in this network Table 5). Specifically, about half 

of all regulators that regulate other regulators have fewer than 50 target 

genes, and the other half has as many as 250 target genes. In contrast, the 

vast majority (96%) of other regulators have fewer than 50 target genes, with 

the remaining 4% having between 50 and 100 target genes. An exact 

binomial test shows that this difference between the two classes of regulators 

is highly significant (P = 5.08 x 10-13; n = 51). Among those regulators that 

may affect the expression of other regulators, there is another prominent 

statistical trend: The higher a regulator’s number of target genes, the smaller 

the fraction of regulators whose expression it regulates (Figure 9). Again, this 

statistical association is highly significant (Kendall’s τ = -0.50; P = 1.17 x 10-7; 

n = 54).  
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Figure 9 - Number of target genes of transcriptiona l regulators (horizontal axis) plotted 
against the fraction of a regulators target genes t hat are regulators (vertical axis).  

Kendall’s τ = -0.50; P = 1.17 x 10-7; n = 54. 
 
 
 

Table 5 - An exact binomial test to compare the bin omial distribution of each column in 
the table.   

 
Number of Regulators that Regulators  

Target Genes Regulate Regulators That Do Not Totals  
(1, 50] 28 49 77 

(50, 275] 26 2 28 
Totals 54 51 105 

    
Binomial n = 54, p = 26                                           Pr(x ≤ 2) = 5.08 x 10-13  

 
The null hypothesis is that the columns derive from the same (binomial) distribution. We 
calculated the parameters defining a binomial distribution from the left column (n = 54, p = 
26/54) and used the value of p to find the probability that x, the number of regulators that do 
not regulate other regulators and that have more than 50 target genes, is smaller than or 
equal to 2, Pr(x ≤ 2) = 5.08 x 10-13. 
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Connectivity and importance.  The connectivity of a molecule is the result 

of multiple factors, such as the binding affinity to other molecules – DNA in the 

case of transcription factors – and a molecule’s concentration in the cell. It 

has been argued that highly connected molecules may be more important to 

the functioning of a cellular network and to fitness, such that mutations – point 

mutations, gene deletions, or gene duplications – would have on average a 

more drastic fitness effect in such molecules (Albert et al. 2000; Jeong et al. 

2001).  We examined this hypothesis in three complementary ways, by 

analyzing the effects mutations in regulators of different outdegree have on 

the organisms. First, has the removal of a highly connected regulator a more 

deleterious effect on cell growth? Figure 10 and Figure 11 show the answer to 

this question, obtained from data on the growth rates of gene deletion strains 

in yeast transcriptional regulatory genes (Steinmetz et al. 2002).  Figure 10 

shows a weak negative association between a regulator’s number of target 

genes and growth rate on rich medium. That is, deletion of highly connected 

transcriptional regulators leads to slightly slower growth. However, no 

significant association exists between a regulator’s number of target genes 

and the maximum difference in growth rate among five different media when 

the regulator is eliminated (Figure 11).  

In a second attempt to address the above hypothesis, we asked whether 

highly connected regulators evolve more slowly, that is, whether they are 

under more severe evolutionary constraints? This would indicate that their 

encoding genes could tolerate fewer mutations. Figure 12 shows the results of 

an analysis addressing this question with 51 unambiguous orthologues of the 

regulators in the genome of the yeast, S. mikatae, which is closely related to  
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Figure 10 - Growth rate and highly connected regula tors.  

The horizontal axis shows a regulator’s number of target genes. The vertical axis shows the 
growth rate of a yeast strain with a homozygous deletion mutant in a transcriptional regulator 
on the rich medium YPD (Kendall’s τ = -0.207; P = 0.011; n = 71). The growth data is 
normalized to one. That is, a value of one represents no growth change in the mutant, and a 
value of less than one indicates slower growth.  
 

 
Figure 11 - Growth rate and highly connected regula tors.  

The horizontal axis shows a regulator’s number of target genes. The vertical axis shows the 
maximum growth rate difference of a mutant to the pool average (Steinmetz et al. 2002) for 
five different growth media (Kendall’s τ = 0.114; P = 0.160; n = 71).  A value of zero indicates 
that the deletion mutant grows as fast as the wild-type in all five media. The more a value 
differs from zero, the more the mutant’s growth rate is affected in at least one medium. 
Because most deletions that affect growth cause a reduction in growth rate, this means that 
large values on the vertical axis indicate a severe growth rate reduction.  
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Figure 12 - Do highly connected genes evolve at dif ferent rates?.  

The horizontal axis shows a regulator’s outdegree, that is, its number of target genes.   The 
vertical axis shows the ratio Ka/Ks of non-synonymous to synonymous divergence of the 
regulatory gene to an unambiguous orthologue in a closely related yeast, S. mikatae (Kellis et 
al. 2003).  No significant statistical association is observed (Kendall’s τ = -0.021; P = 0.825; n 
= 51  
 
 

 
 

Figure 13 - Do highly connected genes evolve at dif ferent rates?  

The horizontal axis shows a target gene’s indegree, that is, the number of regulators that bind 
to its regulatory region. The vertical axis shows the average of the ratio Ka/Ks of non-
synonymous to synonymous divergence of the target gene to an unambiguous orthologue in 
a closely related yeast S. mikatae. No significant statistical association is observed (Kendall’s 
τ = 0.026; P = 0.285; n = 772).  
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S. cerevisiae. We plotted the ratio of non-synonymous to synonymous 

divergence Ka/Ks as an indicator of evolutionary constraints (Li 1997).  It 

shows that highly connected regulators do not evolve at rates different from 

other regulators (Kendall’s τ = -0.021; P = 0.825; n = 51).  Identical results 

(not shown) hold for non-synonymous divergence Ka instead of Ka/Ks for S. 

mikatae, and also for the average ratio Ka/Ks among orthologs in the three 

species pairs S. cerevisiae - S. bayanus , S. cerevisiae - S.  paradoxus and S. 

cerevisiae - S. mikatae.   

Third, are regulators with many target genes less likely to have undergone a 

gene duplication sometime in the past?  The answer is contained in Table 6, 

where we categorized regulators by the number of their target genes. Eighty-

nine of the 106 regulators (84%) have 80 or fewer target genes, and 17 

regulators (16%) have more than 80 target genes. An exact binomial test 

indicates that single-copy genes are not underrepresented among highly 

connected regulators (P = 0.060; n = 83).  In other words, high connectivity 

does not reduce the likelihood that a regulator’s duplicate is preserved in the 

evolutionary record. The converse question is whether a regulator’s 

connectivity may not only influence its own likelihood to undergo duplication, 

but also the likelihood that any of its target genes undergoes duplication 

without deleterious effects. We thus asked whether there is a correlation 

between a regulator’s number of target genes and the fraction of these target 

genes that have undergone duplication. Figure 14 shows that the answer is 

no (Kendall’s τ = -0.104; P = 0.114; n = 105). 
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Figure 14 - No significant association exists betwe en a regulator’s number of target 
genes (horizontal axis), and the fraction of target  genes that have undergone 
duplication (vertical axis). 

 
 
 
 

Table 6 - An exact binomial test to compare the bin omial distribution of each column in 
the table 

Number of  Duplicate  Single Copy   
Target Genes  Regulators  Regulators  Totals  

(1, 80] 16 73 89 
(80, 275] 7 10 17 

Totals 23 83 106 
    
Binomial n = 23, p = 7/23:                                                        Pr(x ≥ 10) = 0.06 
 
The null hypothesis is that the columns derive from the same (binomial) distribution. We 
calculated the parameters defining a binomial distribution from the left column (n = 23, p = 
7/23) and used the value of p to find the probability that x, the number of single copy 
regulators that have more than 80 target genes, is greater than or equal to 10, Pr(x ≥ 10) = 
0.06 
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Target genes . Just as we did for regulators, we asked, in three 

complementary ways, whether target genes with high connectivity (indegree)  

have different propensity to suffer deleterious mutations. First, has the 

removal of a highly connected target gene a more deleterious effect on cell 

growth?  Figure 15 andFigure 16 show the answer to this question, obtained 

from data on the growth rates of gene deletion strains in yeast transcriptional 

regulatory genes (Steinmetz et al. 2002).  Figure 15 shows that there is no 

statistically significant association between indegree and growth rate on rich 

medium. The same holds for Figure 16, which uses the difference between 

indegree and maximum difference in growth rate among five different media 

as an indicator of deletion effect. However, it is noteworthy that the figure 

indicates a negative association between the maximal reduction in growth rate 

on rich medium for any gene of a given indegree (Figure 15), as well as a 

negative association between the maximal difference in growth rate among 

five media and indegree (Figure 16). In other words, the maximal effect of a 

gene deletion decreases with target gene connectivity.  

Second, do highly connected target genes, target genes whose expression is 

influenced by many regulators, evolve more slowly, that is, are they under 

more severe evolutionary constraints? This would indicate that their encoding 

genes could tolerate fewer mutations.  Figure 13 shows the results of an 

analysis addressing this question with 772 unambiguous orthologues of the 

target genes in the genome of the yeast, S. mikatae, which is closely related 

to S. cerevisiae. We plotted the ratio of non-synonymous to synonymous 

divergence Ka/Ks as an indicator of evolutionary constraints (Li 1997).  It 

shows that highly connected target genes do not evolve at different rates than  
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Figure 15 - Growth rate and highly connected target  genes.  

The horizontal axis shows the number of regulators that bind to the regulatory region of a 
target gene. The vertical axis shows the growth rate on YPD medium of a yeast strain with a 
homozygous deletion mutant in a target gene (Kendall’s τ = -0.022; P = 0.164; n = 1716). The 
growth data is normalized to one. That is, a value of one represents no growth change in the 
mutant, and a value of less than one indicates slower growth  
 

 
Figure 16 - Growth rate and highly connected target  genes.  

The horizontal axis shows the number of regulators that bind to the regulatory region of a 
target gene. b) The vertical axis shows the maximum growth rate difference of a mutant to the 
pool average (Steinmetz et al. 2002) for five different growth media (Kendall’s τ = 0.026; P = 
0.101; n = 1716). A value of zero indicates that the deletion mutant grows as fast as the wild-
type in all five media. The more a value differs from zero, the more the mutant’s growth rate is 
affected in at least one medium. Because most deletions that affect growth cause a reduction 
in growth rate, this means that large values on the ordinate axis indicate a severe growth rate 
reduction. 
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other target genes (Kendall’s τ = 0.026; P = 0.285; n = 772).  Identical results 

(not shown) hold for non-synonymous divergence Ka instead of Ka/Ks for S. 

mikatae, as well as for average ratio Ka/Ks for orthologs in the 3 species pairs 

(S. bayanus , S. paradoxus  and S. mikatae), where we averaged the ratio 

Ka/Ks of the 3.  All results show that highly connected target genes do not 

evolve at different rates than other target genes. 

Third and finally, are highly connected target genes less likely to have 

undergone gene duplications sometime in the past?  The answer is contained 

in Table 7, where we categorized target genes by the number of their 

regulators.  Out of 2363 target genes, 2328 or  (98.5%) have seven or fewer 

regulators, and 35 target genes have more than 7 regulators. An exact 

binomial test indicates that there are fewer duplicated highly connected target 

genes than single-copy highly connected target genes (P = 1.9 x 10-8; n = 

492).  In other words, high connectivity may reduce the likelihood that a 

regulator’s duplicate is preserved in the evolutionary record. The converse 

question is whether the regulators of highly connected target genes show 

different propensity to undergo gene duplication.  Figure 17 shows the 

indegree of a target gene plotted against the fraction of its regulators that 

have at least one duplicate in the yeast genome. The association is weak 

(Kendall’s τ = 0.149) but highly significant (P = 2.1 x 10-27; n = 2364), showing 

that the regulators of highly connected target genes are slightly more likely to 

undergo gene duplication.  

Divergence after gene duplication.   Finally, there is the question about 

the rate and extent of functional divergence after gene duplication. We could 

not address this question for the transcriptional regulators, because of their  
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Figure 17 - Regulators of highly connected target g enes are more likely to undergo 
gene duplication  

Kendall’s τ = 0.149; P = 0.210 x 10-27; n = 2364. The horizontal axis shows the indegree of a 
target gene, i.e. the number of regulators bound to its regulatory region.  The vertical axis 
shows the fraction of a target gene’s regulators that have undergone at least one gene 
duplication. The vast majority of genes have only one potential regulator.  For the majority of 
the remaining target genes, the fraction of duplicate regulators is smaller than 0.1, in line with 
the observation that most regulators are encoded by single copy genes. 
 
 
 

Table 7 - An exact binomial test to compare the bin omial distribution of each column in 
the table.   

 

InDegree Duplicate  
Target Genes 

Single Copy  
Target Genes Totals 

(1,7] 487 1841 2328 
(7, 18] 5 30 35 
Totals 492 1871 2363 

    
Binomial n = 1871, p = 30/1871:                            Pr(x ≤ 5) = 1.90 x 10-8  

 
The null hypothesis is that the columns derive from the same (binomial) distribution. We 
calculated the parameters defining a binomial distribution from the right column (n = 1871, p = 
30/1871) and used the value of p to find the probability that x, the number of single copy 
target genes that have more than 7 regulators that influence their expression, is less than or 
equal to 5, Pr(x ≤ 5) = 1.90 x 10-8. 
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small numbers, but we can address it for target genes. The proportion of 

regulators shared by two target genes can serve as a proxy of their similarity 

in expression regulation, which is one among several indicators of gene 

function. We are well aware that two genes with similar expression patterns 

may have different transcriptional regulators, and vice versa. However, there 

must be at least some statistical association between two genes’ expression 

similarity and their similarity in the regulators bound to them. Otherwise highly 

successful approaches to identify regulatory DNA sequences through a 

combination of DNA sequence and gene expression analysis would not work 

(Bussemaker et al. 2001).   

We determined for every pair of duplicate target genes T1 and T2, the number 

d1 of regulators binding to the regulatory region of T1, the number d2 of 

regulators binding to the regulatory region of T2, as well as the number d12 of 

regulators binding both target regulatory regions. The fraction of shared 

regulators is then properly defined as d12/(d1+d2-d12). Figure 18 and Figure 

19 shows this fraction of shared regulators as a function of the non-

synonymous divergence (Ka) and synonymous or silent divergence (Ks), 

respectively, between duplicate target genes. The solid line in both panels 

indicates the average fraction of shared regulators (0.02) between any two 

randomly chosen target genes in the network. The dotted line indicates the 

average fraction of shared regulators plus one standard deviation (0.02+0.14 

= 0.16) between any two randomly chosen target genes in the network. Both 

panels show a highly significant negative association between sequence 

divergence and the fraction of shared regulators. In addition, it is evident that 

many duplicate target gene pairs with high sequence similarity have diverged  
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Figure 18 - Negative association between sequence d ivergence and regulators shared 
by duplicate target genes.  

The vertical axes show the fraction of transcriptional regulators bound to both regulatory 
regions of a duplicate pair. The solid lines in both panels indicate the average fraction of 
shared regulators (0.02) between two randomly chosen target genes in the network. The 
dotted lines indicate the average fraction of shared regulators plus one standard deviation 
(0.02 + 0.14 = 0.16) between any two randomly chosen target genes in the network. These 
lines are based on one thousand randomly chosen target gene pairs.  Sequence divergence 
as measured by the non-synonymous divergence Ka. (Kendall’s τ = -0.265; P = 3.60 x 10-36; n 
= 999 

 
Figure 19 - Negative association between sequence d ivergence and regulators shared 
by duplicate target genes.  

The vertical axes show the fraction of transcriptional regulators bound to both regulatory 
regions of a duplicate gene pair. The solid lines in both panels indicate the average fraction of 
shared regulators (0.02) between two randomly chosen target genes in the network. The 
dotted lines indicate the average fraction of shared regulators plus one standard deviation 
(0.02 + 0.14 = 0.16) between any two randomly chosen target genes in the network. These 
lines are based on one thousand randomly chosen target gene pairs). Sequence divergence 
as measured by the synonymous divergence Ks. (Kendall’s τ = -0.245; P = 1.50 x 10-21; n = 
675). 
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completely in the regulators bound to them. In fact, the statistical association 

we observe is largely due to an increasing number of duplicates with no 

shared regulators as duplicates diverge. The statistical association we 

observe here and the large number of duplicates with no shared regulators is 

not the result of a conservative binding threshold (P<0.001) we used in this 

analysis. We observe it also for greatly relaxed binding thresholds (P<0.05) 

(results not shown). In sum, divergence after duplication is often rapid.  

A very similar approach allowed us to ask whether duplicate target genes 

diverge largely through loss of transcriptional regulator binding in one of the 

genes. This is what recent models of gene divergence emphasizing 

subfunctionalization of genes suggest (Force et al. 1999a).  Conversely, it is 

possible that divergence evolves through the addition of many new 

transcriptional regulation interactions. Immediately after a gene duplication, if 

both the coding and the regulatory region are duplicated, the sum of the 

number of transcription factors binding to both duplicates' regulatory regions is 

d1+d2 = 2d, where d is the number of transcriptional regulators bound to the 

ancestral gene (before duplication). If divergence occurs only through loss of 

binding sites, then d1+d2 will decrease after duplication and approach d1+d2 

= d, the number of binding interactions before duplication. Conversely, if 

divergence involved largely addition of new interactions, then d1+d2 should 

increase after duplication.  Figure 20 clearly shows that the second scenario 

is not the case: d1+d2 decreases after duplication. 

Does this mean that only loss of binding sites occurs during divergence? No. 

It only means that there is a net loss of binding sites during divergence after 

duplication. To assess whether gain of binding sites is important, we carried 
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out a second analysis, where we focused only on those duplicate gene pairs 

that have completely diverged, that is, d12=0 so gene pairs share no 

transcriptional regulators. If loss of transcription factor binding sites is 

exclusively responsible for the divergence of duplicates, then the combined 

degrees d1+d2 of completely diverged duplicates should be identical to the 

degree d typically found in single-copy genes.  Figure 21 shows that this is not 

the case, regardless of whether one examines very young (Ks<0.25) or older 

duplicates. Completely diverged duplicate genes always show a combined 

degree significantly higher than single-copy genes, which demonstrates that 

gain of transcription factor binding sites plays a significant role in their 

divergence. 

 

 

Figure 20 - Sequence divergence and divergence of t he number of regulators affecting 
duplicate target genes.   

The horizontal axis indicates synonymous sequence divergence Ks between duplicate target 
genes. a) The vertical axis indicates the sum d1+d2 of the number of transcriptional 
regulators binding to regulatory regions of two duplicate target genes. The solid horizontal line 
indicates 2d,where d is the average number of regulators binding to the regulatory region of 
single copy genes. Standard errors for d are too close to the mean to be visible in the plot. 
The number of regulators binding to two duplicate target genes declines with synonymous 
divergence (Kendall's = -0.100; P = 0.005; n = 503 
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Figure 21 - Sequence divergence and divergence of t he number of regulators affecting 
duplicate target genes Includes only duplicate targ et gene pairs that have completely 
diverged since their duplication, i.e., gene pairs where d12 = 0.  

Gene pairs are grouped in four bins according to their synonymous divergence. We tested the 
null hypothesis that the sum of the degrees of completely diverged duplicates is identical to 
the degree d of single copy genes using a Mann-Whitney U-test (Sokal and Rohlf 1995).  The 
null-hypothesis is rejected for all four bins examined. This indicates that gain of transcriptional 
regulation interactions plays a significant role in functional divergence of duplicate target 
genes. 
 

Discussion 

Our primary focus here was a descriptive analysis of the largest available 

genome-scale experimental data set on the yeast transcriptional regulation 

network, with an emphasis on how the connectivity of a gene in the network 

can influence its molecular evolution. In such an analysis, it is expedient to 

distinguish two classes of genes, regulators and their target genes. Doing so, 

however, has a disadvantage: there are many fewer regulators than target 

genes, rendering their statistical analysis more difficult.  The problem is 

aggravated for one important class of mutations that affect a network’s 

structure, gene duplications. All duplications of transcriptional regulators in 

yeast are ancient, and transcriptional regulators have few gene duplicates 
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when compared with other classes of genes. The latter pattern has been 

observed previously in an analysis that used global sequence alignment to 

identify duplicate genes (Conant and Wagner 2002).  Because some domains 

of transcriptional regulators – especially their DNA binding domains – evolve 

slowly, whereas other domains evolve rapidly, global sequence alignments 

may miss duplicate regulators. However, the underabundance of duplicate 

regulators does not disappear when we use local instead of global sequence 

alignment to circumvent this problem. For instance, we found here that 27% of 

target genes have duplicates, whereas only 22% of regulators do. This 

indicates that duplication of transcriptional regulators has been less prevalent 

than duplication of target genes in the evolution of the yeast transcriptional 

regulation network. This paucity of gene duplication in transcriptional 

regulation gene may be specific to yeasts, because it is not observed in the 

fruit fly Drosophila melanogaster or in the worm Caenorhabditis elegans 

(Conant and Wagner 2002).  It may thus be a peculiarity of the evolutionary 

history of yeasts rather than a general feature of transcriptional regulation 

networks. If this is the case then yeast may not be the best species for this 

type of study.  For the data available and for our purpose it means that we 

have very limited data to examine the role duplications of regulatory genes 

have played in this network’s evolution.    

Caveats . The analysis we carried out here has several caveats. The first of 

them is that the nature of the experiment limits transcriptional regulators to 

DNA-binding proteins. However, it is increasingly appreciated that 

transcriptional regulation in eukaryotes involves large multi-protein 

complexes, not all of whose members contact DNA (Ptashne 1988).  Second, 
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the experiments will preferentially identify regulation of genes expressed in 

rich medium. Thirdly, the data set of 106 transcriptional regulators does not 

include all transcriptional regulators in yeast. Lastly, the binding of a 

transcription factor to a target gene’s promoter region is indicative but not 

conclusive of transcriptional regulation. We nevertheless chose to work with 

this data because it represents by far the largest unbiased body of information 

on potential transcriptional regulation. Other data sets (Bhan et al. 2002; 

Guelzim et al. 2002; Lee et al. 2002; Perez-Rueda and Collado-Vides 2000; 

Salgado et al. 2004) are not only significantly smaller, they also have other 

shortcomings, most prominently an ascertainment bias of unknown magnitude 

that could distort results in unknown ways. We are, however, aware that our 

results are preliminary and await confirmation through improved experimental 

data.  

Gene connectivity and importance . A prominent hypothesis in the study 

of biological networks suggests that highly connected molecules are more 

important to the network, in the sense that the network’s global structure – 

and hence its function – is most severely impaired when such molecules 

suffer mutations (Albert et al. 2000; Jeong et al. 2001).  To begin with, how 

does one best think of connectivity? Much genome-scale data on molecular 

networks identifies two molecules as either interacting or not interacting. 

However, the association of two molecules in a cell is governed by 

thermodynamic principles. It is influenced by parameters such as dissociation 

constants and a molecule’s concentration in the cell. Proteins have widely 

varying binding affinities to each other, and widely varying concentrations in 

the cell. Similarly, transcriptional regulators have widely varying binding 
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affinities to their sites on DNA and widely varying concentrations. Any 

qualitative data on molecular interactions, such as available genome-scale 

protein interaction data, captures such variation poorly. The problem is 

alleviated with the semi-quantitative data that we use here, because this data 

reflects the confidence one has in the binding of a factor to a regulatory 

region. However, this data cannot disentangle the effects of concentration and 

binding affinity. The total connectivity of a transcriptional regulator – its 

outdegree – should thus be understood as a composite variable influenced by 

binding affinities and transcription factor concentrations. It is with this 

qualification – which holds for all current analyses of molecular interaction 

networks – that our results should be interpreted.     

The hypothesis that connectivity relates to a molecule’s importance has been 

mostly explored with protein interaction networks, with conflicting results 

(Fraser et al. 2002; Fraser et al. 2003; Hahn et al. 2004; Jeong et al. 2001; 

Jordan et al. 2003a; Jordan et al. 2003b).  The disadvantage of protein 

interaction data is that such data contain an especially large amount of 

experimental noise (Gilchrist et al. 2004; von Mering et al. 2002), and that the 

biological significance of two proteins’ interaction is not always clear. In 

contrast, transcriptional regulation interactions have a clear interpretation: 

transcription factors regulate genes whose expression is necessary for 

biological processes. The notion that highly connected regulators are 

functionally more constrained than other regulators, because they may affect 

the expression of more target genes, is therefore especially plausible for 

transcriptional regulation networks.   
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To address this hypothesis, we first examined whether deletion of highly 

connected regulators causes more severe growth reduction in yeast. We 

found a weak statistical association supporting this notion on the rich medium 

YPD. The problem with interpreting this kind of result is that the growth 

reduction of a mutant may depend on the growth medium used. So we also 

asked whether a statistical association exists between a regulator’s number of 

target genes, and the maximal growth defect observed in five different growth 

media. The statistical association observed in YPD disappeared in this 

analysis. 

A major problem with this type of analysis, in addition to the environmental 

dependence of mutational effects, is that growth rate reductions much smaller 

than observable in the laboratory may affect a microbe’s fitness, and that a 

microbe’s fitness is not only determined by its growth rate. A complementary 

analysis thus asks whether highly connected regulators are under more 

severe evolutionary constraints, in that fewer amino acid changes are 

preserved in their evolutionary record. To this end, we compared S. cerevisiae 

transcriptional regulators to their orthologues in the closely related yeast 

Saccharomyces mikatae. We found that regulators with many target genes do 

not evolve more slowly than other regulators.  

Gene duplications are a third class of mutations – aside from gene deletions 

and point mutations – that may affect network function. A gene duplication 

can cause an increase in expression of a transcriptional regulator, which may 

affect the expression of target genes, especially if these target genes are 

regulated jointly with other regulators. It may be the case that highly 

connected regulators are less likely to undergo duplications that have been 
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preserved in the evolutionary record. However, we did not observe any such 

trend. In sum, three independent lines of evidence suggest that the 

connection between a transcriptional regulator’s high connectivity and the 

network’s sensitivity to changes in it is tenuous to nonexistent.   

An analogous question can be asked for the target genes of transcriptional 

regulators instead of the regulators themselves. A highly connected target 

gene is a target gene to whose regulatory regions many regulators bind. 

Some such target genes may be combinatorially regulated, whereas others 

may function in different biological processes, and different regulators may 

thus regulate their expression at different times. Because of their potential 

involvement in multiple processes, some highly connected target genes may 

also be more susceptible to mutations. We find, however, that deletion of 

highly connected target genes does not generally lead to slower growth. In 

addition, and contrary to what one might expect, highly connected target 

genes may evolve slightly faster than other target genes. Only gene 

duplications show a semblance of the expected pattern: Duplicate genes are 

slightly less abundant among highly connected genes. Taken together, these 

three lines of evidence show that there is no strong and consistent support for 

an association between gene connectivity and an organism’s ability to tolerate 

genetic changes in the gene.  

Divergence after gene duplication . One question that an analysis of 

gene networks can address is how gene duplicates diverge in function. This 

question has two facets, the first of which we already mentioned in the 

introduction: How rapidly do two genes diverge in their functions? Other 

studies suggest that indicators of functional similarity among duplicate genes 
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show a highly significant but only weak statistical association with sequence 

divergence or duplication age. This has been observed for similarity in gene 

expression (Gu et al. 2002; Wagner 2000) and similarity in protein interactions 

(Wagner 2001). Our analysis of duplicate target genes of transcriptional 

regulators confirms this observation. Specifically, the fraction of regulators 

shared by two duplicate target genes, that is, the fraction of regulators that 

bind to the regulatory regions of both genes decreases with the amino acid 

sequence divergence of the duplicates, as has been observed also by others  

(Maslov et al. 2004).  It also decreases with the divergence of the duplicates 

at synonymous (silent) sites, an indicator of a gene duplication’s age. These 

statistical associations, although highly significant, are weak. Part of the 

reason is that even highly similar or recently arisen gene duplicates can have 

diverged considerably in the regulators bound to them. In other words, 

divergence in gene regulation after duplication is often rapid. 

A second facet of the above question regards the mode of functional 

divergence after gene duplication. A prominent hypothesis emphasizes the 

importance of losing some of a gene’s functions after duplication, in order for 

both duplicates to be preserved (Force et al. 1999b; Lynch and Force 2000).  

Many genes have multiple functions, and when a multifunctional gene 

becomes duplicated, either duplicate can lose one or more of these functions, 

as long as they are preserved in the other duplicate. Through selective loss of 

functions, both duplicates are rendered essential and can no longer be 

eliminated from the genome.  Supporting evidence for this mode of 

divergence has come from studies of mutational effects in duplicate genes, 

and from expression studies of duplicate genes in higher organisms, 
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(reviewed in Prince and Pickett 2002).  In gene expression studies, for 

example, duplicate genes sometimes show a mode of expression restricted to 

a subset of the expression domains of their ancestral single copy gene in a 

related organism. A second mode of divergence that can render one or both 

duplicates essential is neofunctionalization, the acquisition of new functions. 

Because degenerative mutations that eliminate transcription factor binding 

and thus potentially gene expression may be more abundant than mutations 

that lead to new functions, subfunctionalization might be a much more 

important mode of divergence than neofunctionalization. However, our 

analysis here indicates that both modes of divergence play a role. On one 

hand, gene duplicates experience a net loss in the number of transcription 

factors binding to them. On the other hand, the number of transcription factors 

that bind to completely diverged duplicates is significantly greater than 

expected if loss of binding is solely responsible for the divergence of duplicate 

genes. With the benefit of hindsight, the importance of neofunctionalization 

may not be all that surprising. Recent work has shown that new transcriptional 

regulation interactions can evolve very rapidly in large microbial populations 

(Stone and Wray 2001).  Part of the reason is that binding sites for 

transcriptional regulators are short, and that they can often arise by chance 

alone (Stone and Wray 2001).  In addition, population genetic theory shows 

that genetic drift, which is necessary for the process of subfunctionalization, is 

weakest in the large populations of typical microbes, which would render 

neofunctionalization more prominent in yeast (Force et al. 1999b; Lynch and 

Force 2000) 
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Regulators of regulators.  Despite the small numbers of transcriptional 

regulators in this network, we were able to make some intriguing although 

currently unexplained observations about these regulators. One of them is 

that regulators which regulate the expression of other regulators tend to have 

more target genes overall. It would be tempting to call such regulators master 

regulators. However, the expression of such highly connected regulators is 

also influenced by other, less highly connected regulators. Thus, when faced 

with the full complexity of regulatory gene networks, a naive distinction 

between master regulators and other regulators may be unhelpful in 

understanding network structure.  

A second observation is that regulators with many target genes tend to 

regulate the expression of a smaller fraction of other regulators than 

regulators with fewer target genes. There is one obvious candidate 

explanation for this finding: Mutations in highly connected regulators may 

have strong pleiotropic effects. A mutation in such regulators may affect the 

expression of many target genes, and is more likely to be deleterious than a 

mutation in a less highly connected regulator. If such a mutation affects the 

expression of another regulator, together with the expression of this 

regulator’s target genes, the likelihood that the mutation is deleterious may be 

even greater. Highly connected regulators may thus benefit from a reduction 

in the number of other regulators they regulate. Despite the plausibility of this 

argument, our analysis of the relation between connectivity of regulators and 

their importance to the network does not support it. There is at best a weak 

link between a regulator’s number of target genes and the effects of mutations 
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in the regulator on the organism. In sum, we currently do not have a functional 

explanation for either of these regulatory patterns.   

Conclusion 

Answering questions about the evolutionary forces that affect genetic 

networks might be helpful in closing the gap between our understanding of 

biology at the molecular and organismal level of organization. The study we 

present here shows how much work remains to be done. So far, only the most 

basic associations between a gene’s connectivity and its evolution have been 

explored. Our study is no exception. The available work does not even allow 

us to exclude the possibility that the large-scale structure of regulatory 

networks has little biological significance, and that only small-scale scale 

network features may be truly of biological importance (Conant and Wagner 

2003a; Milo et al. 2002; Shen-Orr et al. 2002).  Even basic regulatory 

patterns, such as those in the preceding two paragraphs, do currently not 

have a place in a larger understanding of network structure. Not only new 

data but also new hypotheses will be necessary to assess whether the large-

scale structure of biological networks really provides a bridge between 

molecules and organisms.  

Acknowledgments 

We are very grateful to G. Conant for providing us with data on duplicate 

genes based on local sequence alignments.  A.M.E. is supported by The 

Department of Energy’s Computational Science Graduate Fellowship, 

administered by the Krell Institute.  A.W. would like to acknowledge support 



 77

through NIH grant GM 63882, as well as the continuing support of the Santa 

Fe Institute. 

 



 78 

List of References 

Albert, R., H. Jeong, and A. Barabasi. 2000. Error and attack tolerance of complex networks. 
Nature 406: 378-382. 

Altschul, S., T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman. 1997. 
Gapped Blast and Psi-Blast : A new generation of protein database search programs. 
Nucleic Acids Research 25: 3389-3402. 

Ashburner, M., C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis, K. Dolinski, S. Dwight, 
J. Eppig, M. Harris, D. Hill, L. IsselTarver, A. Kasarskis, S. Lewis, J. Matese, J. 
Richardson, M. Ringwald, G. Rubin, and G. Sherlock. 2000. Gene ontology: Tool for the 
unification of biology. Nature Genetics 25: 25-29. 

Aury, J.M., O. Jaillon, L. Duret, B. Noel, C. Jubin, B.M. Porcel, B. Segurens, V. Daubin, V. 
Anthouard, N. Aiach, O. Arnaiz, A. Billaut, J. Beisson, I. Blanc, K. Bouhouche, F. 
Camara, S. Duharcourt, R. Guigo, D. Gogendeau, M. Katinka, A.M. Keller, R. Kissmehl, 
C. Klotz, F. Koll, A. Le Mouel, G. Lepere, S. Malinsky, M. Nowacki, J.K. Nowak, H. 
Plattner, J. Poulain, F. Ruiz, V. Serrano, M. Zagulski, P. Dessen, M. Betermier, J. 
Weissenbach, C. Scarpelli, V. Schachter, L. Sperling, E. Meyer, J. Cohen, and P. 
Wincker. 2006. Global trends of whole-genome duplications revealed by the ciliate 
Paramecium tetraurelia. Nature 444: 171-178. 

Bergmann, S., J. Ihmels, and N. Barkai. 2004. Similarities and differences in genome-wide 
expression data of six organisms. PloS Biology 2: 85-93. 

Bhan, A., D. Galas, and T. Dewey. 2002. A duplication growth model of gene expression 
networks. Bioinformatics 18: 1486-1493. 

Birchler, J.A. and R.A. Veitia. 2007. The gene balance hypothesis: From classical genetics to 
modern genomics. Plant Cell 19: 395-402. 

Blanc, G., A. Barakat, R. Guyot, R. Cooke, and I. Delseny. 2000. Extensive duplication and 
reshuffling in the Arabidopsis genome. Plant Cell 12: 1093-1101. 

Blanc, G. and K.H. Wolfe. 2004. Functional divergence of duplicated genes formed by polyploidy 
during Arabidopsis evolution. Plant Cell 16: 1679-1691. 

Briscoe, A. 2001. Functional diversification of lepidopteran opsins following gene duplication. 
Molecular and Cellular Biology 18: 2270-2279. 

Bussemaker, H., H. Li, and E. Siggia. 2001. Regulatory element detection using correlation with 
expression. Nature Genetics 27: 167-171. 



 79 

Byrne, K.P. and K.H. Wolfe. 2005. The Yeast Gene Order Browser: Combining curated homology 
and syntenic context reveals gene fate in polyploid species. Genome Research 15: 1456-
1461. 

Byrne, K.P. and K.H. Wolfe. 2007. Consistent patterns of rate asymmetry and gene loss indicate 
widespread neofunctionalization of yeast genes after whole-genome duplication. 
Genetics 175: 1341-1350. 

Chaput, M., V. Claes, D. Portetelle, I. Cludts, A. Cravador, A. Aburny, H. Gras, and A. Tartar. 
1988. The neurotrophic factor neuroleukin is 90 percent homologous with 
phosphohexose isomerase. Nature 332: 454-455. 

Chung, F., L. Lu, T. Dewey, and D. Galas. 2003. Duplication models for biological networks. 
Journal of Computational Biology 10: 677-687. 

Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 
6: 836-846. 

Conant, G. and A. Wagner. 2002. GenomeHistory: A software tool and its application to fully 
sequenced genomes. Nucleic Acids Research 30: 3378-3386. 

Conant, G. and A. Wagner. 2003a. Convergent evolution in gene circuits. Nature Genetics 34: 
264-266. 

Conant, G. and A. Wagner. 2004. Duplicate genes and robustness to transient gene knock-
downs in Caenorhabditis elegans. PROCEEDINGS OF THE ROYAL SOCIETY OF 
LONDON SERIES B-BIOLOGICAL SCIENCES 271: 89-96. 

Conant, G.C. and A. Wagner. 2003b. Asymmetric sequence divergence of duplicate genes. 
Genome Research 13: 2052-2058. 

Conant, G.C. and K.H. Wolfe. 2006. Functional partitioning of yeast co-expression networks after 
genome duplication. PLoS Biology 4: e109. 

Conant, G.C. and K.H. Wolfe. 2008. Probabilistic cross-species inference of orthologous genomic 
regions created by whole-genome duplication in yeast. Genetics 179: 1681-1692. 

Costanzo, M., J. Hogan, M. Cusick, B. Davis, A. Fancher, P. Hodges, P. Kondu, C. Lengieza, J. 
Lew-Smith, C. Lingner, K. Roberg-Perez, M. Tillberg, J. Brooks, and J. Garrels. 2000. 
The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database 
(WormPD): Comprehensive resources for the organization and comparison of model 
organism protein information. Nucleic Acids Research 28: 73-76. 



 80 

Cusack, B.P. and K.H. Wolfe. 2007. Not born equal: Increased rate asymmetry in relocated and 
retrotransposed rodent gene duplicates. Molecular Biology and Evolution 24: 679-686. 

Dermitzakis, E.T. and A.G. Clark. 2001. Differential selection after duplication in mammalian 
developmental genes. Molecular Biology and Evolution 18: 557-562. 

Dietrich, F.S., S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr, R. Pohlmann, P. 
Luedi, S.W. Choi, R. A., A. Flavier, T.D. Gaffney, and P. Philippsen. 2004. The Ashbya 
gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. 
Science 304: 304-307. 

Dujon, B., D. Sherman, G. Fischer, P. Durrens, S. Casaregola, I. Lafontaine, J. De Montigny, C. 
Marck, C. Neuveglise, E. Talla, N. Goffard, F. L., A. M., V. Anthouard, A. Babour, V. 
Barbe, S. Barnay, S. Blanchin, J.M. Beckerich, E. Beyne, C. Bleykasten, A. Boisrame, J. 
Boyer, L. Cattolico, F. Confanioleri, A. De Daruvar, L. Despons, E. Fabre, C. Fairhead, H. 
Ferry-Dumazet, A. Groppi, F. Hantraye, C. Hennequin, N. Jauniaux, P. Joyet, R. 
Kachouri, A. Kerrest, R. Koszul, M. Lemaire, I. Lesur, L. Ma, H. Muller, J.M. Nicaud, M. 
Nikolski, S. Oztas, O. Ozier-Kalogeropoulos, S. Pellenz, S. Potier, G.F. Richard, M.L. 
Straub, A. Suleau, D. Swennen, F. Tekaia, M. Wesolowski-Louvel, E. Westhof, B. Wirth, 
M. Zeniou-Meyer, I. Zivanovic, M. Bolotin-Fukuhara, A. Thierry, C. Bouchier, B. Caudron, 
C. Scarpelli, C. Gaillardin, J. Weissenbach, P. Wincker, and J.L. Souciet. 2004. Genome 
evolution in yeasts. Nature 430: 35-44. 

Enyenihi, A.H. and W.S. Saunders. 2003. Large-scale functional genomic analysis of sporulation 
and meiosis in Saccharomyces cerevisiae. Genetics 163: 47-54. 

Faik, P., J. Walker, A. Redmill, and M. Morgan. 1988. Mouse glucose-6-phosphate isomerase 
and neuroleukin have identical 3' sequences. Nature 332: 455-456. 

Featherstone, D. and K. Broadie. 2002. Wrestling with pleiotropy: Genomic and topological 
analysis of the yeast gene expression network. BioEssays 24: 267-274. 

Force, A., M. Lynch, F.B. Pickett, A. Amores, Y.L. Yan, and J. Postlethwait. 1999a. Preservation 
of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-
1545. 

Force, A., M. Lynch, and J. Postlethwait. 1999b. Preservation of duplicate genes by 
subfunctionalization. Am Zool 39: 78A. 

Fraser, H., A. Hirsh, L. Steinmetz, C. Scharfe, and M. Feldman. 2002. Evolutionary rate in the 
protein interaction network. Science 296: 750-752. 

Fraser, H., D. Wall, and A. Hirsh. 2003. A simple dependence between protein evolution rate and 
the number of protein-protein interactions. BMC Evolutionary Biology 3: 11. 



 81 

Freeling, M. and B.C. Thomas. 2006. Gene-balanced duplications, like tetraploidy, provide 
predictable drive to increase morphological complexity. Genome Research 16: 805-814. 

Furukawa, T., A. Yoshimura, T. Sumizawa, M. Haraguchi, S. Akiyama, K. Fukui, M. Ishizawa, and 
Y. Yamada. 1992. Angiogenic factor. Nature 356: 668. 

Ghaemmaghami, S., W. Huh, K. Bower, R.W. Howson, A. Belle, N. Dephoure, E.K. O'Shea, and 
J.S. Weissman. 2003. Global analysis of protein expression in yeast. Nature 425: 737-
741. 

Gilchrist, M.A., L.A. Salter, and A. Wagner. 2004. A statistical framework for combining and 
interpreting proteomic datasets. Bioinformatics 20: 689-U290. 

Gonzalez-Gaitan, M., M. Rothe, E. Wimmer, H. Taubert, and H. Jackle. 1994. Redundant 
functions of the genes knirps and knirps-related for the establishment of anterior 
Drosophila head structures. Proceedings of the National Academy of Sciences of the 
United States of America 91: 8567-8571. 

Gordon, J.L., K.P. Byrne, and K.H. Wolfe. 2009. Additions, losses, and rearrangements on the 
evolutionary route from a reconstructed ancestor to the modern Saccharomyces 
cerevisiae genome. Plos Genetics 5. 

Gu, Z., D. Nicolae, H. Lu, and W. Li. 2002. Rapid divergence in expression between duplicate 
genes inferred from microarray data. Trends in Genetics 18: 609-613. 

Gu, Z., L. Steinmetz, X. Gu, C. Scharfe, R. Davis, and W. Li. 2003. Role of duplicate genes in 
genetic robustness against null mutations. Nature 421: 63-66. 

Guelzim, N., S. Bottani, P. Bourgine, and F. Kepes. 2002. Topological and causal structure of the 
yeast transcriptional regulatory network. Nature Genetics 31: 60-63. 

Hahn, M., G. Conant, and A. Wagner. 2004. Molecular evolution in large genetic networks: Does 
connectivity equal constraint? Journal of Molecular Biology 58: 203-211. 

Haldane, J.B.S. 1933. The part played by recurrent mutation in evolution. American Naturalist 67: 
679-682. 

Haraguchi, M., K. Miyadera, K. Uemura, T. Sumizawa, T. Furukawa, K. Yamada, S. Akiyama, 
and Y. Yamada. 1994. Angiogenic activity of enzymes. Nature 368: 198. 

Hughes, A. 1994. The evolution of functionally novel proteins after gene duplication. Proceedings 
of the Royal Society of London Series B-Biological Sciences 256: 119-124. 



 82 

Hughes, M. and A. Hughes. 1993. Evolution of duplicate genes in a tetraploid animal, Xenopus 
laevis. Molecular Biology and Evolution 10: 1360-1369. 

Hughes, T.R., M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, H.A. Bennett, 
E. Coffey, H.Y. Dai, Y.D.D. He, M.J. Kidd, A.M. King, M.R. Meyer, D. Slade, P.Y. Lum, 
S.B. Stepaniants, D.D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and 
S.H. Friend. 2000. Functional discovery via a compendium of expression profiles. Cell 
102: 109-126. 

Innan, H. and F. Kondrashov. 2010. The evolution of gene duplications: classifying and 
distinguishing between models. Nature Reviews Genetics 11: 97-108. 

Ito, T., T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. 2001. A comprehensive two-
hybrid analysis to explore the yeast protein interactome. Proceedings of the National 
Academy of Sciences of the United States of America 98: 4569-4574. 

Jeffery, C. 1999. Moonlighting proteins. Trends in Biochemical Sciences 24: 8-11. 

Jeong, H., S. Mason, A. Barabasi, and Z. Oltvai. 2001. Lethality and centrality in protein 
networks. Nature 411: 41-42. 

Jordan, I., Y. Wolf, and E. Koonin. 2003a. Correction: no simple dependence between protein 
evolution rate and the number of protein-protein interactions: Only the most prolific 
interactors evolve slowly. BMC Evolutionary Biology 3: 5. 

Jordan, I., Y. Wolf, and E. Koonin. 2003b. No simple dependence between protein evolution rate 
and the number of protein-protein interactions: Only the most prolific interactors tend to 
evolve slowly. BMC Evolutionary Biology 3: 5. 

Kaeberlein, M., R.W. Powers, K.K. Steffen, E.A. Westman, D. Hu, N. Dang, E.O. Kerr, K.T. 
Kirkland, S. Fields, and B.K. Kennedy. 2005. Regulation of yeast replicative life span by 
TOR and Sch9 in response to nutrients. Science 310: 1193-1196. 

Katju, V. and M. Lynch. 2003. The structure and early evolution of recently arisen gene duplicates 
in the Caenorhabditis elegans genome. Genetics 165: 1793-1803. 

Kellis, M., B.W. Birren, and E.S. Lander. 2004. Proof and evolutionary analysis of ancient 
genome duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617-624. 

Kellis, M., N. Patterson, M. Endrizzi, B. Birren, and E. Lander. 2003. Sequencing and comparison 
of yeast species to identify genes and regulatory elements. Nature 423: 241-254. 



 83 

Kennedy, M., L. Mendemueller, G. Blondin, and H. Beinert. 1992. Purification and 
characterization of cytosolic aconitase from beef-liver and its relationship to the iron-
responsive element binding-protein. Proceedings of the National Academy of Sciences of 
the United States of America 89: 11730-11734. 

Kim, T.Y., C. Ha, and W.K. Huh. 2009. Differential subcellular localization of ribosomal protein L7 
paralogs in Saccharomyces cerevisiae. Molecules and Cells 27: 539-546. 

Knop, M., K. Siegers, G. Pereira, W. Zachariae, B. Winsor, K. Nasmyth, and E. Schiebel. 1999. 
Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved 
practical routines. Yeast 15: 963-972. 

Komili, S., N.G. Farny, F.P. Roth, and P.A. Silver. 2007. Functional specificity among ribosomal 
proteins regulates gene expression. Cell 131: 557-571. 

Kondrashov, F., I. Rogozin, Y. Wolf, and E. Koonin. 2002. Selection in the evolution of gene 
duplications. Genome Biology 3. 

Kondrashov, F.A. and A.S. Kondrashov. 2006. Role of selection in fixation of gene duplications. 
Journal of Theoretical Biology 239: 141-151. 

Koszul, R., S. Caburet, B. Dujon, and G. Fischer. 2004. Eucaryotic genome evolution through the 
spontaneous duplication of large chromosomal segments. Embo Journal 23: 234-243. 

Kuepfer, L., U. Sauer, and L.M. Blank. 2005. Metabolic functions of duplicate genes in 
Saccharomyces cerevisiae. Genome Research 15: 1421-1430. 

Kurtzman, C.P. and C.J. Robnett. 2003. Phylogenetic relationships among yeasts of the 
'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast 
Research 3: 417-432. 

Lavoie, H., H. Jogues, J. Mallick, A. Sellam, A. Natel, and M. Whiteway. 2010. Evolutionary 
tinkering with conserved components of a transcriptional regulatory network. PLoS 
Biology 8: e1000329. 

Lee, T., N. Rinaldi, F. Robert, D. Odom, Z. Bar-Joseph, G. Gerber, N. Hannett, C. Harbison, C. 
Thompson, I. Simon, J. Zeitlinger, E. Jennings, H. Murray, D. Gordon, B. Ren, J. Wyrick, 
J. Tagne, T. Volkert, E. Fraenkel, D. Gifford, and R. Young. 2002. Transcriptional 
regulatory networks in Saccharomyces cerevisiae. Science 298: 799-804. 

Li, W.-H. 1996. Rates of nucleotide substitution in primates and rodents and the generation time 
effect hypothesis. Molecular Phylogenetics and Evolution 5: 182-187. 



 84 

Li, W.-H. 1997. Molecular Evolution. Sinauer Associates, Sunderland, MA. 

Lynch, M. and J. Conery. 2000. The evolutionary fate and consequences of duplicate genes. 
Science 290: 1151-1155. 

Lynch, M. and A. Force. 2000. The probability of duplicate gene preservation by 
subfunctionalization. Genetics 154: 459-473. 

Maere, S., S. De Bodt, J. Raes, T. Casneuf, M. Van Montagu, M. Kuiper, and Y. Van de Peer. 
2005. Modeling gene and genome duplications in eukaryotes. Proceedings of the 
National Academy of Sciences of the United States of America 102: 5454-5459. 

Maslov, S., K. Sneppen, K. Eriksen, and K.K. Yan. 2004. Upstream plasticity and downstream 
robustness in evolution of molecular networks. BMC Evolutionary Biology 4. 

McCarroll, S.A., C.T. Murphy, S.G. Zou, S.D. Pletcher, C.S. Chin, Y.N. Jan, C. Kenyon, C.I. 
Bargmann, and H. Li. 2004. Comparing genomic expression patterns across species 
identifies shared transcriptional profile in aging. Nature Genetics 36: 197-204. 

Meyer, A. and Y. Van de Peer. 2005. From 2R to 3R: Evidence for a fish-specific genome 
duplication (FSGD). Bioessays 27: 937-945. 

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network motifs: 
Simple building blocks of complex networks. Science 298: 824-827. 

Needleman, S.B. and C.D. Wunsch. 1970. A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48: 
443-453. 

Ni, L. and M. Snyder. 2001. A genomic study of the bipolar bud site selection pattern in 
Saccharomyces cerevisiae. Molecular Biology of the Cell 12: 2147-2170. 

Notredame, C., D.G. Higgins, and J. Heringa. 2000. T-Coffee: A novel method for fast and 
accurate multiple sequence alignment. Journal of Molecular Biology 302: 205-217. 

Nowak, M.A., M.C. Boerlijst, J. Cooke, and J. Maynard-Smith. 1997. Evolution of genetic 
redundancy. Nature 388: 167-171. 

Ohno, S. 1970. Evolution by gene duplication. Springer-Verlag, Berlin. 

Otto, S. 2007. The evolutionary consequences of polypoidy. Cell 131: 452-462. 



 85 

Papp, B., C. Pal, and L.D. Hurst. 2003. Dosage sensitivity and the evolution of gene families in 
yeast. Nature 424: 194-197. 

Perez-Rueda, E. and J. Collado-Vides. 2000. The repertoire of DNA-binding transcriptional 
regulators in Escherichia coli K-12. Nucleic Acids Research 28: 1838-1847. 

Planta, R.J. and W.H. Mager. 1998. The list of cytoplasmic ribosomal proteins of Saccharomyces 
cerevisiae. Yeast 14: 471-477. 

Prince, V. and F. Pickett. 2002. Splitting pairs: The diverging fates of duplicated genes. Nature 
Reviews Genetics 3: 827-837. 

Ptashne, M. 1988. How eukaryotic transcriptional activators work. Nature 335: 683-689. 

Ren, B., F. Robert, J.J. Wyrick, O. Aparicio, E.G. Jennings, I. Simon, J. Zeitlinger, J. Schreiber, N. 
Hannett, E. Kanin, T.L. Volkert, C.J. Wilson, S.P. Bell, and R.A. Young. 2000. Genome-
wide location and function of DNA binding proteins. Science 290: 2306-+. 

Salgado, H., S. Gama-Castro, A. Martinez-Antonio, E. Diaz-Peredo, F. Sanchez-Solano, M. 
Peralta-Gil, D. Garcia-Alonso, V. Jimenez-Jacinto, A. Santos-Zavaleta, C. Bonavides-
Martinez, and J. Collado-Vides. 2004. RegulonDB (version 4.0): transcriptional 
regulation//operon organization and growth conditions in Escherichia coli K-12. Nucleic 
Acids Research 32: D303-D306. 

Scannell, D.R., K.P. Byrne, J.L. Gordon, S. Wong, and K.H. Wolfe. 2006. Multiple rounds of 
speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440: 341-345. 

Scannell, D.R. and K.H. Wolfe. 2008. A burst of protein sequence evolution and a prolonged 
period of asymmetric evolution follow gene duplication in yeast. Genome Research 18: 
137-147. 

Semon, M. and K.H. Wolfe. 2007. Consequences of genome duplication. Current Opinion in 
Genetics & Development 17: 505-512. 

Seoighe, C. and K. Scheffler. 2005. Very low power to detect asymmetric divergence of 
duplicated genes. In Comparative Genomics, pp. 142-152. 

Seoighe, C. and K.H. Wolfe. 1999. Yeast genome evolution in the post-genome era. Current 
Opinion in Microbiology 2: 548-554. 

Sharp, P.M. and E. Cowe. 1991. Synonymous codon usage in Saccharomyces cerevisiae. Yeast 
7: 657-678. 



 86 

Shen-Orr, S., R. Milo, S. Mangan, and U. Alon. 2002. Network motifs in the transcriptional 
regulation network of Escherichia coli. Nature Genetics 31: 64-68. 

Smith, T.F. and M.S. Waterman. 1981. Identification of common molecular subsequences. 
Journal of Molecular Biology 147: 195-197. 

Sokal, R.R. and F.J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological 
research. W. H. Freeman and Co., New York. 

Sole, R., R. Pastor-Satorras, E.D. Smith, and T. Kepler. 2002. A model of large-scale proteome 
evolution. Advances in Complex Systems 5: 43-54. 

Soltis, D.E., V.A. Albert, J. Leebens-Mack, C.D. Bell, A.H. Paterson, C.F. Zheng, D. Sankoff, 
C.W. dePamphilis, P.K. Wall, and P.S. Soltis. 2009. Polyploidy and angiosperm 
diversification. American Journal of Botany 96: 336-348. 

Steinmetz, L., C. Scharfe, A. Deutschbauer, D. Mokranjac, Z. Herman, T. Jones, A. Chu, G. 
Giaever, H. Prokisch, P. Oefner, and R. Davis. 2002. Systematic screen for human 
disease genes in yeast. Nature Genetics 31: 400-404. 

Stone, J. and G. Wray. 2001. Rapid evolution of cis-regulatory sequences via local point 
mutations. Molecular Biology and Evolution 18: 1764-1770. 

Stuart, J.M., E. Segal, D. Koller, and S.K. Kim. 2003. A gene-coexpression network for global 
discovery of conserved genetic modules. Science 302: 249-255. 

Tajima, F. 1993. Simple methods for testing the molecular evolutionary clock hypothesis. 
Genetics Society of America 135: 599-607. 

Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics 
analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599. 

Taylor, J.S. and J. Raes. 2004. Duplication and divergence: The evolution of new genes and old 
ideas. Annual Review of Genetics 38: 615-643. 

The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant 
Arabidopsis thaliana. Nature 408: 796-815. 

Tuskan, G.A., S. DiFazio, S. Jansson, J. Bohlmann, I. Grigoriev, U. Hellsten, N. Putnam, S. 
Ralph, S. Rombauts, A. Salamov, J. Schein, L. Sterck, A. Aerts, R.R. Bhalerao, R.P. 
Bhalerao, D. Blaudez, W. Boerjan, A. Brun, A. Brunner, V. Busov, M. Campbell, J. 
Carlson, M. Chalot, J. Chapman, G.L. Chen, D. Cooper, P.M. Coutinho, J. Couturier, S. 
Covert, Q. Cronk, R. Cunningham, J. Davis, S. Degroeve, A. Dejardin, C. Depamphilis, J. 



 87 

Detter, B. Dirks, I. Dubchak, S. Duplessis, J. Ehlting, B. Ellis, K. Gendler, D. Goodstein, 
M. Gribskov, J. Grimwood, A. Groover, L. Gunter, B. Hamberger, B. Heinze, Y. 
Helariutta, B. Henrissat, D. Holligan, R. Holt, W. Huang, N. Islam-Faridi, S. Jones, M. 
Jones-Rhoades, R. Jorgensen, C. Joshi, J. Kangasjarvi, J. Karlsson, C. Kelleher, R. 
Kirkpatrick, M. Kirst, A. Kohler, U. Kalluri, F. Larimer, J. Leebens-Mack, J.C. Leple, P. 
Locascio, Y. Lou, S. Lucas, F. Martin, B. Montanini, C. Napoli, D.R. Nelson, C. Nelson, K. 
Nieminen, O. Nilsson, V. Pereda, G. Peter, R. Philippe, G. Pilate, A. Poliakov, J. 
Razumovskaya, P. Richardson, C. Rinaldi, K. Ritland, P. Rouze, D. Ryaboy, J. Schmutz, 
J. Schrader, B. Segerman, H. Shin, A. Siddiqui, F. Sterky, A. Terry, C.J. Tsai, E. 
Uberbacher, and P. Unneberg, et al. 2006. The genome of black cottonwood, Populus 
trichocarpa (Torr. & Gray). Science 313: 1596-1604. 

Uetz, P., L. Giot, G. Cagney, T. Mansfield, R. Judson, J. Knight, D. Lockshon, V. Narayan, M. 
Srinivasan, P. Pochart, A. QureshiEmili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. 
Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. Rothberg. 2000. A 
comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. 
Nature 403: 623-627. 

Van de Peer, Y., S. Maere, and A. Meyer. 2009. The evolutionary significance of ancient genome 
duplications. Nature Reviews Genetics 10: 725-732. 

Van de Peer, Y., J. Taylor, I. Braasch, and A. Meyer. 2001. The ghost of selection past: rates of 
evolution and functional divergence of anciently duplicated genes. Journal of Molecular 
Evolution 53: 436-446. 

van Noort, V., B. Snel, and M.A. Huynen. 2004. The yeast coexpression network has a small-
world, scale-free architecture and can be explained by a simple model. Embo Reports 5: 
280-284. 

von Mering, C., R. Krause, B. Snel, M. Cornell, S. Oliver, S. Fields, and P. Bork. 2002. 
Comparative assessment of large-scale data sets of protein-protein interactions. Nature 
417: 399-403. 

Wagner, A. 1999. Redundant gene functions and natural selection. Journal of Evolutionary 
Biology 12: 1-16. 

Wagner, A. 2000. Decoupled evolution of coding region and mRNA expression patterns after 
gene duplication: Implications for the neutralist-selectionist debate. Proceedings of the 
National Academy of Sciences of the United States of America 97: 6579-6584. 

Wagner, A. 2001. The yeast protein interaction network evolves rapidly and contains few 
redundant duplicate genes. Molecular Biology and Evolution 18: 1283-1292. 

Wagner, A. 2003. How the global structure of protein interaction networks evolves. Proceedings 
of the Royal Society of London Series B-Biological Sciences 270: 457-466. 



 88 

Wang, Y., P. Schnegelsberg, J. Dausman, and R. Jaenisch. 1996. Functional redundancy of the 
muscle-specific transcription factors Myf5 and myogenin. Nature 379: 823-825. 

Wittbrodt, J., A. Meyer, and M. Schartl. 1998. More genes in fish? Bioessays 20: 511-515. 

Wolfe, K. 2000. Robustness - it's not where you think it is. Nature Genetics 25: 3-4. 

Wolfe, K.H. and D.C. Shields. 1997. Molecular evidence for an ancient duplication of the entire 
yeast genome. Nature 387: 708-713. 

Yang, Z. and R. Nielsen. 2000. Estimating synonymous and non-synonymous substitution rates 
under realistic evolutionary models. Molecular Biology and Evolution 17: 32-43. 

Zhang, J., H. Rosenberg, and M. Nei. 1998. Positive Darwinian selection after gene duplication in 
primate ribonuclease genes. Proceedings of the National Academy of Sciences of the 
United States of America 95: 3708-3713. 

 


	University of New Mexico
	UNM Digital Repository
	7-1-2010

	Always read the introduction : integrating regulatory and coding sequence evolution in yeast
	Annette Evangelisti
	Recommended Citation


	Microsoft Word - $ASQ58463_supp_1CF28370-8F32-11DF-8FB2-CD4C9E1A67F9.doc

