# University of New Mexico UNM Digital Repository

## **Biology ETDs**

**Electronic Theses and Dissertations** 

7-1-2012

# Effects of translocation and climatic events on the population genetic structure of black bears in New Mexico

Frederic Winslow

Follow this and additional works at: https://digitalrepository.unm.edu/biol\_etds

## **Recommended** Citation

Winslow, Frederic. "Effects of translocation and climatic events on the population genetic structure of black bears in New Mexico." (2012). https://digitalrepository.unm.edu/biol\_etds/115

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Frederic W. Winslow

Biology

Department

This thesis is approved, and it is acceptable in quality and form for publication:

Approved by the Thesis Committee:

Blair O. Wolf, Chairperson

Joseph Cook

Gary W. Roemer

## EFFECTS OF TRANSLOCATION AND CLIMATIC EVENTS ON THE POPULATION GENETIC STRUCTURE OF BLACK BEARS IN NEW MEXICO

by

## FREDERIC S. WINSLOW

## B.S., WILDLIFE MANAGEMENT, HUMBOLDT STATE UNIVERSITY, 1989

## THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

## Master of Science Biology

The University of New Mexico Albuquerque, New Mexico

## July 2012

#### ACKNOWLEDGEMENTS

I would like to thank the New Mexico Department of Game and Fish employees for their encouragement and dedication to helping collect data, particularly the Northwest Area Office. I give special thanks to past employees William Dunn and Mike Johnson, who pushed me to pursue my ideas. Lance Tyson of our Information Services Division was particularly helpful with GIS mapping and information. My thesis committee, Blair Wolf, Joseph Cook and Gary Roemer, are thanked for their patience and suggestions that made this a better project. Brad Truett generated most of the laboratory genetic data and Cheryl Parmenter and Jon Dunnum helped with the permanent archiving of tissues at the Museum of Southwestern Biology, UNM. The patience of my family and my girlfriend, Kate Field, is appreciated. I would particularly like to thank my mother and father, Fred Winslow and Barbara Winslow for monetary assistance when the tap was dry!

iii

# EFFECTS OF TRANSLOCATION AND CLIMATIC EVENTS ON THEPOPULATION GENETIC STRUCTURE OF BLACK BEARS IN NEW MEXICO

By

Frederic S. Winslow

B.S., Wildlife Management, Humboldt State University, 1989M.S., Biology, University of New Mexico, 2012

## ABSTRACT

Population structure of the American black bear (*Ursus americanus*) in New Mexico has been shaped by anthropogenic and natural forces. Black bears occur in habitat islands throughout New Mexico with natural movement among islands influenced by periodic drought, resource limitations and dispersal. Both natural movement and human mediated translocations primarily involve male black bears because of their tendency to move farther distances and more frequent conflict with human dominated landscapes than females. Using DNA microsatellite analysis to investigate the degree of differentiation between different population segments ( $F_{st}$  =0.025 across genetic loci, range = 0.018-0.032) we determined that black bear populations in New Mexico are relatively undifferentiated. Lack of genetic structure is due to bear movement from a combination of distance between population clusters, climatic variation affecting resource availability, anthropogenic-mediated movement of nuisance bears and potentially a population

contraction during the early part of the 1900's. Testing matrilineages through mitochondrial DNA of this species with high female philopatry would help to answer the question of how much anthropogenic movement has affected population structure.

# **TABLE OF CONTENTS**

| LIST OF TABLES                                                 | viii |
|----------------------------------------------------------------|------|
| LIST OF FIGURES                                                | viii |
| INTRODUCTION                                                   | 1    |
| MATERIALS AND METHODS                                          | 6    |
| DNA extraction and microsatellite typing                       | 6    |
| Analysis of microsatellite data                                | 7    |
| Hardy-Weinberg equilibrium and linkage disequilibrium analysis | 8    |
| Translocation data                                             | 9    |
| La Niña weather data analysis                                  | 10   |
| RESULTS                                                        | 10   |
| Characteristics of microsatellite loci                         | 10   |
| Hardy-Weinberg and linkage disequilibrium analysis             | 10   |
| Analysis of population structure                               | 11   |
| Translocation analysis                                         | 12   |
| DISCUSSION                                                     | 12   |
| Natural movements of black bears and population genetics       | 13   |
| The potential effects of human translocation on black bear     |      |
| population genetics                                            | 18   |
| Do we see the effects of a population bottleneck on black bear |      |
| genetics?                                                      | 20   |
| Conclusions                                                    | 22   |
| APPENDICES                                                     | 36   |

| APPENDIX A | 37 |
|------------|----|
| APPENDIX B | 43 |
| REFERENCES | 46 |

# LIST OF TABLES

| Table 1. Twelve variable microsatellites         | 24 |
|--------------------------------------------------|----|
| Table 2. Population statistics                   | 25 |
| Table 3. Hardy-Weinberg exact test results       | 26 |
| Table 4. Distance between sub-populations        | 27 |
| Table 5. Mean population statistics across range | 28 |

# LIST OF FIGURES

| Figure 1. New Mexico bear habitat model      | 29 |
|----------------------------------------------|----|
| Figure 2. GENELAND assignment maps           | 30 |
| Figure 3. STRUCTURE Harvester results        | 32 |
| Figure 4. STRUCTURE assignment results       | 33 |
| Figure 5. Mortality and precipitation graphs | 34 |

## Introduction

The American black bear (*Ursus americanus*) is primarily found in forested habitats throughout North America (Stirling and Derocher 1989). Black bears are large (NM males = 120 kg, NM females 70 kg) forest omnivores that can utilize a variety of nutritional resources including both hard and soft mast crops such as acorns (*Quercus spp.*), piñon nuts (*Pinus spp.*), squaw root (*Conophilus spp.*) and choke cherries (*Prunus spp.*). They also forage on anthropogenic food supplies such as garbage, orchards, and beehives when they are available: this sets up a potential conflict with humans.

Black bears range from Nova Scotia to Florida in the east, and from Alaska to Zacatecas, Mexico in the west. Two lineages of North America black bears (western and eastern) are recognized and are believed to have diverged from a common ancestor approximately 1.8 million years ago, (Byun, Koop and Reimchen 1997; Wooding and Ward 1997; Stone and Cook 2000). The Pleistocene glaciation is believed to be responsible for this separation and the lineages appear to be mixing in the northwestern and mid-west (Wooding and Ward 1997, Stone and Cook 2000, Peacock et al. 2007, Pelletier et al. 2011). During the 2-3 million years black bears have lived in sympatry with three other bear species, including the extinct short-faced bear (*Arctodus simus*), the extinct North American spectacled bear (*Tremarctos floridanus*) and the brown or grizzly bear (*Ursus arctos*) with which it still occurs in the northern part of its range (Stirling and Derocher 1989, Wooding and Ward 1997, Costello et al. 2001).

Black bear habitat in New Mexico is widely distributed in mid to high elevation (approximately 2000 – 3700 meters) mountainous regions containing coniferous habitat types. Primary habitat types used by black bears include ponderosa pine, piñon-juniper woodland, mixed conifer, oak scrub, riparian, spruce/fir and their associations with only occasional use above tree line (Costello et al. 2001). These habitats are patchily distributed in the basin and range topography of southern and central New Mexico and in the southern Rocky Mountains. Marginal habitats include forest fringes and piñon-juniper woodlands that provide seasonal food resources, but that do not provide refuges and other resources needed by bears.

Pelton and Vanmanen (1994) estimated that black bears still inhabit 62 percent of their historic range and now occur sympatrically with the brown bear in the northern part of the species' range. While both species occurred in the Southwest in modern times, the brown bear was extirpated from New Mexico within the last 100 years. It thought that brown bears occupied more open habitats such as the Great Plains and valleys (Costello et al. 2001) and it is likely that black bears have expanded their range into more open habitats in the Southwest in the absence of competition from grizzly bears. Most of the state is not suitable black bear habitat, so most bears are found in habitat "islands" that are often separated by large expanses of unsuitable habitat (Figure 1. Costello et al. 2001). Low lying basins

between mountain islands do not provide adequate resources for year-round existence for black bears, but they do travel through these areas and may use riparian corridors extensively.

In the 1800s and early 1900s widespread persecution and hunting, which included the use of poisons greatly reduced New Mexico's black bear populations (NMDGF 1926, Bailey 1932, Brown 1985). During this period, black bears, grizzly bears (Ursus arctos horribilis), jaguars (Panthera onca) and cougars (Puma concolor) were actively pursued to eliminate the threat to cattle and sheep production. By the 1920s, the black bear was considered rare in most regions of the state and was confined to back country and wilderness areas (NMDGF 1926). At the time, the game and fish department estimated that the state population was fewer than 660 animals (NMDGF 1926). In some mountain ranges, such as the Sandias, black bears were nearly extirpated during the early 1900s (Hayes 1990) due to conflicts with domestic shepherds. In 1924, over the region which included New Mexico, Arizona, Utah and southern Colorado, the US Forest Service estimated the population at no more than 1,500 black bears (Brown 1985). In 1926 the black bear was protected as a game species and the state mammal. Since they were protected they have recolonized available habitat statewide. Four decades later, the black bear population in New Mexico was estimated at 3,000 animals based on harvest results and hunter surveys (Lee 1967). Current population estimates places the population at 5,500-7,000 animals (Costello et al. 2001, NMDGF 2012).

Population estimates do, however, vary greatly and all of the estimates discussed above are highly speculative and not based on a validated population estimation tool. Black bears and other large secretive carnivores are very difficult to census and population estimates are often based on the quantity of suitable habitat that is are subject to variations in habitat quality, natural population cycles and environmental variability. Current population estimates are based on density estimates or extrapolations of density estimates determined through mark/recapture studies of radio tagged bears in two different study areas in New Mexico which attempted capture of all bears on each study area (Costello et al. 2001).

The NMDGF is tasked with responding to incidences of nuisance bear activity or depredation and has translocated and recorded the movements of numerous bears across New Mexico as a result of management actions (NMDGF unpublished data, Appendix B). The public reacts to increased bear activity and demands management action on the part of the NMDGF (NMDGF SGC Meeting Transcripts 2001-2011). Management action can take the form of trapping and translocation, education, citation for illegal wildlife feeding, or no action at all. Translocation of nuisance bears complicates the integrity of their genetic structure by moving bears into areas or populations where they may not have moved naturally. Translocations records for New Mexico, where bears were moved and then encountered at some later date, show that translocated animals sometimes move long distances (male max 515 kilometers, female max 208 kilometers)

(NMDGF unpublished data). Because black bears are naturally highly vagile and capable of making large movements in pursuit of nutritional resources or mating opportunities (Costello et al. 2001) a combination of induced and natural movements suggest the potential for a high amount of gene flow and reduced population structure in the black bear population of New Mexico (Hellgren et al. 2005; Peacock et al. 2007). However, the fragmented distribution of suitable habitat and the often long distances between habitat islands might predict the opposite - low gene flow between disjunct population segments across the region.

The goal of this study was to examine the population structure of black bears in New Mexico as it currently exists and relates to available habitat. Our working hypothesis was that the desert basins and human dominated valleys isolate black bear populations on mountain islands creating genetically distinct population segments. Other studies looking at movement of black bears across similar landscapes have determined that while separated populations can be considered meta-populations some structure still exists (Atwood et al. 2011, Onorato et al. 2007, Varas-Nelson 2010), more than seems to occur in New Mexico populations. The main reason for these differences may be shorter distances between population clusters and a higher degree of anthropogenic movement. Our secondary goals included exploring whether a population bottleneck occurred in the state during the period of active predator control and persistent hunting during the early part of the 1900's. To accomplish these goals, we collected tissue

samples for genetic analysis from black bears across the state (Figure 1) and used these samples to analyze population structure throughout New Mexico.

## **Materials and Methods**

The NMGDF requires that human-caused black bear mortalities be reported by the hunter or a Conservation Officer reporting the kill. The pelt of a harvest must be tagged within 5 days of reporting the kill, a tooth is removed for aging, a genetic sample is taken and the location of the kill is recorded. This information is used by the NMGDF to regulate the harvest of bears statewide across bear management zones (BMZs). There may be some discrepancies with hunter reported kill locations as they may try to manipulate closure times of BMZs. This may cause some error in reported kill location but the amount of error is unknown and believed to be small.

DNA Extraction and microsatellite typing - We extracted DNA from 143 muscle and ear plug samples using DNeasy nucleic acid isolation kit (Qiagen Inc., Valencia, California). Samples were selected to cover the existing range of black bears in New Mexico, limited by sample availability (Figure 1). A total of 13 microsatellite DNA loci (CXX20, CXX110, G1A, G1D, G10B, G10C, G10J, G10L, G10M, G10O, G10P, UarMU50, and UarMU59) were selected (Paetkau et al 1998, Table 1). For preliminary screening, each locus was amplified individually to test for variability in New Mexico bears. A total of 8 individuals

across the state were selected at random. Thermal cycler conditions were obtained from a previous study (Robinson et al. 2007). Reactions were performed in a total volume of 10uL, 3.51µL ddH20, 2.4µL Applied Biosystems (AB) BufferII, 0.96µL AB MgCl<sub>2</sub> Solution, 1.2µL dNTP mix (2mM), 0.3µL Primer Forward (20uM), 0.3µL Primer Reverse (20uM), 0.13µL AB AmpliTag and  $1.0\mu$ L of 50ng/ $\mu$ L extraction. From the original 13 loci, 12 showed variability. For the 10 most variable loci a modified multiplexing scheme was applied (Robinson et al. 2007). Multiplexing was split into 5 marker sets: set1- (G1A, G10B, G10C), set2- (Gxx20, G10J), set3- (G10L, G1D), set4- (Mu50, G10M), and set5- (G10P). PCR was performed in 96 well plates. In each plate reaction both a positive and a negative control were included. PCR conditions were optimized for chemistry and cycling conditions. PCR products were combined with Genescan 400HD [ROX] Size Standard, and sent for fragment analysis at the University of New Mexico Molecular Biology Facility. PCR products were sized using fluorescence fragment analysis technology (ABI Prism 3130, Applied Biosystems, Foster City, CA). Microsatellite fragment sizes were collected and scored using Genotyper 1.0 (Applied Biosystems) software. We used 12 of the loci (Cxx110, Cxx20, G1A, G10B, G10C, G10D, G10J, G10L, G10M, G10P, Mu50, UarMU59) (Table 1) for all individuals with complete genotypes.

*Analysis of microsatellite data* – Data input files were created using Microsatellite Toolkit 3.1 (Park 2001) and CONVERT 1.31 (Glaubitz 2004). Microsatellite Toolkit, FSTAT (Goudet 2001) and GENEPOP Version 4.1.10 (Raymond and Rousset 1995, Rousset 2008) were used to calculate expected and observed heterozygosity ( $H_E$  and  $H_O$  respectively), allele frequencies and diversity statistics (Table 2).

*HWE and linkage disequilibrium analysis* – We conducted tests for Hardy-Weinberg expectations and linkage disequilibrium globally and for each locus using GENEPOP (version 4.1.10; Raymond and Rousset 1995 and Rousset 2008).

*Genetic structure analysis*– Clusters of genetically related individuals were defined using the software GENELAND (Guillot et al. 2005a, 2005b, and 2009) in R version 2.13.1 (R 2011), a Bayesian modeling package utilizing geographic locations but creating populations based upon genetic relatedness and geographic location as *a priori* information. GENELAND was used to describe related groups and reveal population connectivity across the state. The default settings and the spatial model (200,000 iterations using 40 for thinning for 5000 retained iterations) in GENELAND was used due to the expected close relationships and migration/movement between the potential population clusters. Ten independent runs of the model using K = 1-6 (where K equals the putative number of populations) were made to assess consistency of results. We chose the K that best fit the data and fit the posterior probability analysis of population assignments by the model. A final run used the same parameters but set K to the inferred number of subpopulations determined by the runs with variable K. The posterior probability of subpopulation membership was determined using a burn-in of 1000

iterations and individuals with a posterior probability of population membership of greater than 0.75 were unambiguously assigned to that subpopulation. The software STRUCTURE version 2.1 (Pritchard et al. 2000) was also used to test assumptions arising from other model usage. STRUCTURE is a Bayesian clustering algorithm that uses multilocus genotype data to estimate the probability of the data (X) given the number of genetically distinct clusters (K), and classifies individuals into the most likely cluster (Pritchard et al. 2000). STRUCTURE does not assume *a priori* information on geographic location or gene frequencies, individuals are assigned to clusters that best reflect HWE and linkage equilibrium across loci (Pritchard et al. 2000, Evanno et al. 2005). STRUCTURE Harvester (Evanno et al. 2005, Dent and vonHoldt 2012) was used to perform the  $\Delta K$ method to estimate the most likely number of genetically distinct clusters (K).

*Translocation Data* – Data from bears translocated by the NMDGF in the Northwest area of New Mexico were compiled from the original records (NMDGF unpublished data) after the bear, identified by an ear tag, had been killed. Much of these data were recorded inconsistently and incompletely over the years, so we assembled only the highest quality records from one quarter of the state. Data were recorded on individual bears as they were relocated in the course of nuisance activities, basic information recorded included: location of capture (physical and UTM grid location), activity, location moved to, dates of capture and release, and ear tag number and color. We added calculated distance moved and determined reason for mortality (Appendix B).

*La Niña weather pattern analysis* – We compared years with high levels of bear nuisance activity and road kill, and to a lesser extent harvest with La Niña years. During La Nina periods the precipitation is generally lower and bear nuisance levels and road kills rise as bears search for nutrients outside of their normal home ranges (Costello et al. 2001). Statewide precipitation data and ENSO data were plotted with bear mortality and the relationship was explored (http://www.ncdc.noaa.gov/temp-and-precip/time-series.html, http://www.elnino.noaa.gov/lanina.html).

## Results

*Characteristics of microsatellite loci* – All 12 loci were polymorphic with an average of 4.8 alleles/locus (range: 2-13 alleles/locus). H<sub>o</sub> (0.559, SD=0.14), determined using Nei's estimation of heterozygosity (Nei 1988), was within the range reported for black bears (0.36-0.81 – Clarke et al. 2001, Paetkau et al. 1998, Paetkau and Strobeck 1994, Brown et al. 2009), and did not differ significantly from H<sub>E</sub> (0.601, SD=0.14, p > 0.069 at 95%). Using Weir and Cockerham's (1984) estimation of F<sub>st</sub> for all loci (0.025, range = 0.018-0.032) and jackknifing over all loci (0.026, SE = 0.010), we found that the bears sampled from New Mexico show low overall genetic differentiation.

*HWE and linkage disequilibrium analysis* – Global tests for the pooled dataset revealed Hardy-Weinberg equilibrium was significantly different across loci but

was not significantly different (P = 0.1625, S.E.= 0.003) overall (Table 5). This is not unexpected due to underlying population subdivisions. Linkage disequilibrium was not observed with no P < 0.05 across all loci comparisons.

*Analysis of population structure* - Using the program GENELAND (Guillot et al.) to create posterior probability analysis of genetic clusters and population assignments, resulted in 5 populations being assigned. Ten independent runs were performed with an additional run performed at the inferred number of populations. GENELAND assigned 5 population clusters (pop. 1: 11 individuals, pop. 2: 2 individuals, pop. 3: 85 individuals and pop. 5: 29 individuals, no individuals were assigned to pop. 4). Probability of population membership assignments was very low, with the range of probability of assignment ranging from 10.0% to 43.0%. No individuals were unambiguously assigned indicating a high degree of admixture. The maps of K = 1-5 clusters that GENELAND produced are informative in that they are all very similar indicating low probability of specific cluster assignment and further indicating a lack of genetic differentiation between clusters (Figure 2).

Five independent runs were performed in STRUCTURE (Pritchard et al. 2000) for K = 1-6 (to account for putative population origin based upon biogeographic regions within New Mexico) and the final K was determined by the best fit for the data using STRUCTURE Harvester (Dent and vonHoldt 2012, Figure 2). The runs were performed with 100,000 Markov Chain Monte Carlo repetitions after a burn-in period of 30,000 using the admixture model with correlated allele frequencies allowed between subpopulations to account for the expectation of high gene flow. Individuals were assigned to subpopulations during a final run using a burn-in of 100,000 and 500,000 iterations at the inferred K = 3. Inferred ancestry assignment values for K = 3 ran from 0.08 to 0.80. Only 9 individuals were unambiguously assigned to any given population cluster (assignment value > 0.75, 3 individuals to C1, 5 individuals to C2 and 1 individual to C3), indicating a high amount of movement between subpopulations. Two bar plot representations, one for K = 3 and one for K = 6, of each individual's ancestry have little discernible pattern of population assignment other than a high level of admixture (Figure 3).

*Translocation results* – Of 105 tagged-bear mortalities from the Northwest Area of New Mexico, the NMGDF moved bears an average of 68 km (standard deviation = 55.7 km, range 8-280 km) between 2000 and 2011 (Appendix B).

#### Discussion

Investigation of the degree of relatedness of a sample of New Mexico's black bears using DNA microsatellites illustrates that bears in New Mexico show a higher degree of admixture and lower overall differentiation than bears studied nearby in Arizona, Mexico and Texas (Atwood et al. 2011, Hellgren et al. 2005, Onorato et al. 2007, Varas-Nelson 2010). The high degree of admixture in New Mexico's black bear populations are likely to be explained by: 1) migration (eruptive bear activity) from small habitat islands due to density dependent factors in search of nutritional resources, or, in the case of males, dispersal and mating opportunities (Rogers 1987, Onorato et al 2004, Costello 2010); and 2) anthropogenic translocations based on management activities aimed at lessening human-bear conflict, and 3) the potential for a population bottleneck to have occurred before black bears were protected in 1926 and the founder effects and out-breeding depression that would have occurred with it. We discuss each of these potential effects on black bear genetic population differentiation in the following discussion.

## Natural movements of black bears and population genetics

Black bears move for a variety of reasons and long distance movements between habitat fragments is frequent and likely varies with both age and sex. These movements may be prompted by several drivers that are both density dependent and density independent and include: resource limitation due to climate or specific weather events, dispersal by young males, and rare dispersal by older aged animals or females.

Other researchers have had some results that varied somewhat from New Mexico's regarding the structural relationship between different habitat segments. In general while the bear populations studied elsewhere in the Southwest were related; they showed higher amounts of differentiation than we have ( $F_{st} = 0.025$ , 95% CI: 0.018-0.032). Atwood et al. (2011) found significant differentiation between two sub-populations in Arizona, one in the east-central highlands (Mogollon Rim and White Mountains) and one in the border region ( $F_{st} = 0.111$ ; 95% CI: 0.056-0.156; Patagonia, Huachuca, Whetstone, Rincon, Galiuro and Chiricahua Mountains). The potential corridors between these various population segments are compromised by human development and lack of black bear habitat. Varas-Nelson (2010) found that black bears from isolated sky islands, including the Huachuca, Peloncillo, Pinaleno, Chiricahua, Catalina, and Rincon Mountains, the Mogollon Rim Mountains (Four Peaks and Mount Ord, the Nutrioso Mountains and the Apache National Forest) in Arizona and the Sierra Los Ajos, Sierra San Luis and Sierra El Nido in México could be considered the same population ( $F_{st} = 0.07$  between populations) but that distance between each population affected the degree of differentiation and that little exchange occurs between Mexican and United States populations except on the border, and that exchange could be compromised by border security activities. Onorato et al. (2007) found differences between black bears from isolated mountain ranges in West Texas (Black Gap, Big Bend National Park and the Trans-Pecos) and México (Sierra del Carmen and Serranias del Burro Mountains), including  $\phi_{st}$  = 0.63 values between sampling localities, but these populations did show some connectivity ( $\phi_{st}$  is an index of mitochondrial DNA structuring). Higher levels of genetic structuring observed in those studies, relative to New Mexico may be a consequence of at least two factors.

First, New Mexico populations are closer together (30-60 kilometers vs. 100-120 kilometers in Arizona/Mexico and 40-300 kilometers in Texas/Mexico, Table 4); second, they are also separated by areas that provide less navigable habitat for black bears than that in New Mexico. Arizona and the border region with Mexico have a rapidly growing human population and related infrastructure. Texas bear distributions are characterized by long distances of non-habitat between potential habitat segments and intervening human development.

The second is that there has not been as much anthropogenic movement in these populations, although managers in Arizona historically moved bears (Varas-Nelson et al. 2010). The character and quality of the habitat in between the mountain ranges, and the ability of bears to move through it, is also important. In New Mexico, there are still relatively clear movement corridors between most of the sub-populations with some exceptions (e.g. Tijeras Canyon between the Sandia and Manzano Mountains has continuous human development and Interstate 40, Interstate 25 through Raton Pass near the Colorado border is a significant barrier accounting for numerous road kills annually). The Rio Grande Bosque also provides a movement corridor in New Mexico running straight through the middle of the state and passing close to numerous habitat islands. In Arizona, Mexico and Texas, habitat between the ranges is human dominated, extremely arid, and dangerous for bears to cross, as it is in New Mexico, but more

so. Most human mediated bear translocations occur between habitat patches in relatively close proximity.

Migration pulses that accompany precipitation/drought cycles in the arid southwest (Southern Oscillation Index, Zack et al. 2003) appear to have large effects on localized population movement and structure, leading to the observed patterns (Figure 5, A., B. and C.). The NMDGF has anecdotal records of increased levels of bear movement and activity related to droughts going back 8 decades. These records continue through the present with much more accurate data collected regarding type of mortality and locational information. In 2011 alone, a very strong La Nina year with accompanying late frosts that killed oak buds, there were 479 sport harvested bears, 223 depredation/nuisance related mortalities and 58 road kills for a total of 777 total bear kills by the end of November. These are the highest numbers ever recorded for depredation/nuisance kills and road kill. Additionally, the 12-year average total mortality (since 2000 at the beginning of the last La Nina cycle and the highest recorded mortality preceding 2011's) has been 439 and 2011's harvest alone exceeds that, and the total mortality exceeds it by 43% (NMDGF bear harvest records 2011). Records are somewhat scattered, still during the 2011 season over 200 bears were translocated. Some of these were later euthanized, but others may have contributed to the gene pool in a new location.

Zack et al. (2003) theorized that eruptive black bear activity could be predicted using the Southern Oscillation Index (ENSO). This pattern is consistent for La Niña years, when precipitation is lower than average (Avg. = 14.49" from 1979-2011), bear-human interactions increase with a weak relationship ( $r^2 = 0.1414$ ) between bear mortality and precipitation (Figure 4c). Human-caused bear mortality levels (hunter harvest, road kill and departmental/landowner removals) have been reasonably accurately tracked since the late 1980s in New Mexico (Figure 5). Discernible peaks in mortality and nuisance activity, including translocations, road kill and euthanasia of problem bears; follow La Niña years although other fluctuations (e.g. mast crop failures due to late freezes that destroy oak flowers and/or do not allow fruit set) occur. Other factors are obviously confounding the accuracy of ENSO prediction. Wet periods occurring for 2 or more years may allow local populations to expand, leading to eruptive patterns despite climatic variation. This pattern may have a stronger effect overall than the La Niña related pattern. Localized populations that do not suffer resource limitations grow in between periodic droughts leading to density dependent dispersal by males, and potential anthropogenic movement of nuisance animals.

Some local populations of black bears that are surrounded by more urbanized portions of the state or are directly adjacent to high quality bear habitat, such as the Sandia Mountains, Albuquerque and its bedroom communities, Raton, and Ruidoso have consistently higher levels of bear human interactions (Figure 1). Bear human interactions increase near human population centers and include

incidents involving a bear utilizing human provided food, intentionally or not. In this system, the number of bears that a habitat segment can support fluctuates based upon precipitation/drought cycles. The implication is that the habitat islands in the Basin and Range system, and the mountainous portions of New Mexico, can only support a certain number of bears. Density estimates used by the NMGDF to estimate bear populations which derive from Costello et al. (2001) may be accurate some years and descriptive of the ability of the habitat to support bears, but inaccurate in others when precipitation is either lower or higher than normal or other climatic factors such as late frosts occur.

### The potential effects of human translocations on black bear genetics

The above mentioned climatic effects are coupled with the movement of individual nuisance animals by departmental actions, leading to the observed pattern of diminished population structure in individual habitat islands. In the past, state agencies such as the NMGDF or the Arizona Department of Game and Fish generally took the pragmatic approach of moving a nuisance bear to a nearby mountain range or habitat segment. In New Mexico this generally meant moving the bear 80-100 kilometers (straight-line distance). Similar transplant distances occurred in Arizona (Ron Thompson, AZDGF ret., pers. com; Varas-Nelson 2010), but current policies forbid translocation of nuisance animals as a regular course of action (Ron Day, AZDGF, pers. com). Occasionally, nuisance bears are moved short distances, generally to the nearest available habitat patch and then

aversely conditioned. These movement distances may be <10 kilometers, but bears are moved as far as 250 kilometers. Longer distance translocations occurred when convenient, or in particular cases, such as a female bear with young cubs. Management direction has changed with most agencies moving fewer animals and either euthanizing or subjecting them to aversive conditioning (Western Black Bear Workshop, MT, 2012). Bears that are "multiple offenders" are generally euthanized.

Between 2000 and 2011, a minimum of 964 bears were translocated in New Mexico, some of them multiple times, only 28% of those bears were female. Eighty percent or more of these bears were moved 80-100 kilometers from their place of capture. The remainder were either moved shorter distances as opportunity presented itself, for aversive conditioning, or longer distances if the potential to rehabilitate the individual bear seemed valuable. Unfortunately records of bear translocations throughout the state have been of poor quality, negating the possibility of rigorous analysis. During this same period (2000-2011), 346 bears (36%) that had been handled previously died from either 1) being hit by vehicles, 2) were euthanized because of repeated nuisance activity or 3) were harvested by hunters. Fifty percent of the subset of 346 bears was translocated during the same time period.

Records for bears moved prior to 2000 were inconsistent making it impossible to determine the origin of many ear tagged bears. Records since 2000 are better, but

remain incomplete. I used the highest quality subset of the records, from the Northwest Area, to assess movement. Substantial anthropogenic movement significantly confuses our ability to characterize the genetic structure of bear populations statewide, particularly when females and/or females with cubs are moved. Females are generally philopatric, while males disperse further distances (Elowe and Dodge 1989, Beck 1991, Costello et al. 2008, Costello 2010, Pelletier et al. 2011). Costello (2010) found that female black bears in New Mexico (n=99) only dispersed 0-7 kilometers, while males (n=53) dispersed 22 to 67 kilometers from their natal ranges. Average translocation distances for the Northwest Area of the state from 2000-2011 were slightly larger than natural dispersal distances at 68 km, yet we still see little structure between population centers. Uncontrolled and/or planned translocations by humans of female bears to areas where they were unlikely to disperse naturally may have a major effect on overall genetic variability.

#### Do we see the effects of a population bottleneck on black bear genetics?

During the early history of New Mexico, black bears and grizzly bears, along with cougar, jaguar, gray wolves (*Canis lupus*) and virtually all other carnivores, were persecuted. Many of these species had federal or local bounties due to their predation on ungulate resources, both wild and domestic. Since the black bear was protected in 1926, harvest has varied, possibly stabilizing only within the last several decades (NMDGF 2012 unpublished data). During the early portion of

this protection from persecution, black bear numbers in New Mexico were increasing in suitable habitats in mountainous, conifer-dominated ecosystems statewide.

By the mid-1920's the population of black bears in New Mexico was estimated at around 660 animals. Estimation techniques used were not well explained, but were probably a combination of sightings, animals trapped for cattle/sheep killing, sport harvested animals, etc. With a current estimate of 5,500 - 7,000, the New Mexico population has potentially expanded by at least ten-fold in the last 80-90 years.

This rapid expansion raises the question, have there been population genetic effects of this rapid expansion? Founder effects and/or out-breeding depression could account for and explain some of the low level of differentiation between population segments which was found. A small starting population of 660, spread across the state, with the somewhat slow growth potential of black bears (Stirling 1990a, Costello et al. 2001) may have led to a fairly limited gene pool for the expanding population. Mitochondrial DNA can be used to determine whether or not a bottleneck may have occurred through the analysis of parentage and matrilineal lines which can explain population substructure more completely than nuclear DNA techniques such as microsatellite analysis which determines the effect of bi-parentally inherited genes (Pelletier et al. 2011).

Some of the lack of differentiation found could be due to recent recolonization of unoccupied habitat segments and founder effects in those recolonizing populations. Allelic diversity is somewhat low in New Mexico compared to other areas and studies (Table 5) which supports a bottleneck in recent history despite a robust bear population currently. Before the 1980s, nuisance bear activity was generally a local problem in New Mexico tied to town dumps or other easily available sources of nutrients. Only since the mid-1980s or so, have habitat islands become saturated to the point that bears have had to make long distance movements out of individual mountain ranges to disperse or in search of nutritional resources or breeding opportunities in the case of males (Costello 2010).

## **Conclusions**

Matrilineages should be analyzed using mtDNA to determine whether or not females and males show a different pattern due to female philopatry and the effects of anthropogenic movements. The result of these movements is that local black bear populations in New Mexico, and potentially Arizona, Mexico, and Texas are very difficult to quantify and describe the population genetics of accurately without long-term monitoring of the bear populations and in-depth analysis of the population genetics. An ideal regional assessment of population connectivity, size, genetic differentiation and viability would be large in scale and cooperation but would be expensive. To set the stage for future management and

such a large-scale study, an emphasis should be placed on building extensive archives of bear samples that are rigorously preserved and that have associated accurate geo-referenced locality information.

While the above stated issues make management decisions more difficult in the short term, it also means that the genetic integrity of the statewide meta-population does not appear to be in jeopardy of losing isolated and divergent genotypes in the near future. It also emphasizes the need to maintain corridors for dispersing animals. Potentially, management of the regional population, including adjacent portions of Arizona and Colorado may be more appropriate than current management based on political or biogeographic boundaries. Based on the current existence of a meta-population, managing most of New Mexico as one population rather than the current 14 bear management zones seems appropriate.

Translocations are generally ineffective at relieving the problem of nuisance bears and a significant portion of translocated animals are destroyed soon after removal. Long range translocations may complicate efforts to use genetic methods to monitor population dynamics. Humane euthanasia of offending animals before they become habitual offenders (Hopkins et al. 2012) and development of longterm, spatially extensive collections should be implemented.

| Locus                | 5' Primer                   | 3' Primer                | Label |
|----------------------|-----------------------------|--------------------------|-------|
| CXX20 <sup>a</sup>   | AGCAACCCCTCCCATTTACT        | TTGTCTGAATAGTCCTCTGCG    | FAM   |
| CXX110 <sup>ª</sup>  | TGCTTTGGGTTAAATCTAAGCC      | CCCCAGAGATGTGGCATC       | HEX   |
| G1A <sup>b</sup>     | ACCCTGCATACTCTCCTCTGATG     | GCACTGTCCTTGCGTAGAAGTGAC | HEX   |
| $G1D^{b}$            | ACAGATCTGTGGGTTTATAGGTTACA  | CTACTCTTCCTACTCTTTAAGAG  | FAM   |
| G10B <sup>b</sup>    | GCCTTTTAATGTTCTGTTGAATTTG   | GACAAATCACAGAAACCTCCATCC | FAM   |
| G10C <sup>c</sup>    | AAAGCAGAAGGCCTTGATTTCCTG    | GGGGACATAAACACCGAGACAGC  | FAM   |
| G10J                 | GATCAGATATTTTCAGCTTT        | AACCCCTCACACTCCACTTC     | FAM   |
| G10L <sup>b</sup>    | GTACTGATTTAATTCACATTTCCC    | GAAGATACAGAAACCTACCCATGC | TET   |
| G10M <sup>b</sup>    | TTCCCCTCATCGTAGGTTGTA       | AATAATTTAAGTGCATCCCAGG   | TET   |
| G10P <sup>b</sup>    | ATCATAGTTTTACATAGGAGGAAGAAA | TCATGTGGGGAAATACTCTGAA   | FAM   |
| UarMU50 <sup>c</sup> | GGAGGCGTTCTTTCAGTTGGT       | TGGAACAAAACTTAACACAAATG  | TET   |
| UarMU59 <sup>c</sup> | GCTGCTTTGGGACATTGTAA        | CAATCAGGCATGGGGAAGAA     | TET   |

 Table 1. Twelve variable microsatellite loci selected and amplified.

<sup>a</sup>Ostrander et al. 1993; <sup>b</sup>Paetkau et al. 1995; <sup>c</sup>Taberlet et al. 1997

| Population Statistics |        |      |        |        |        |        |        |         |  |  |
|-----------------------|--------|------|--------|--------|--------|--------|--------|---------|--|--|
|                       |        | Loci |        |        |        |        | No     | No      |  |  |
|                       | Samp   | type | Exp.   | Exp.   |        | Obs H  | Allele | Alleles |  |  |
| Population            | . size | d    | Hz     | Hz SD  | Obs H  | SD     | S      | SD      |  |  |
| Black Range           | 7      | 12   | 0.6337 | 0.0474 | 0.6310 | 0.0527 | 3.58   | 1.24    |  |  |
| Burros&North          | 8      | 12   | 0.6184 | 0.0449 | 0.6012 | 0.0505 | 4.42   | 1.24    |  |  |
| GMU 17                | 9      | 12   | 0.6055 | 0.0516 | 0.5061 | 0.0510 | 3.92   | 1.38    |  |  |
| JemezMtns             | 19     | 12   | 0.5879 | 0.0590 | 0.5659 | 0.0350 | 4.92   | 1.51    |  |  |
| MtTaylor              | 8      | 12   | 0.5417 | 0.0659 | 0.5863 | 0.0513 | 3.67   | 1.61    |  |  |
| NGila                 | 15     | 12   | 0.5974 | 0.0464 | 0.4642 | 0.0380 | 4.67   | 1.67    |  |  |
| SSanJuans             | 12     | 12   | 0.6439 | 0.0417 | 0.5335 | 0.0419 | 5.33   | 1.61    |  |  |
| Sacramentos           | 9      | 12   | 0.6131 | 0.0527 | 0.5939 | 0.0479 | 4.00   | 1.48    |  |  |
| SandiasManza          | 21     | 12   | 0.6227 | 0.0452 | 0.5664 | 0.0321 | 5.08   | 1.56    |  |  |
| Sangres               | 14     | 12   | 0.5773 | 0.0481 | 0.5543 | 0.0395 | 5.08   | 1.24    |  |  |
| Zunis                 | 5      | 12   | 0.5426 | 0.0724 | 0.5500 | 0.0642 | 3.42   | 1.38    |  |  |

**Table 2.** Population statistics of the 11 separate discrete habitat units sampled.

**Table 3**. Hardy-Weinberg Exact test results across all loci from GENEPOP showing anoverall P-value of 0.1625 which is not significant at the 95% level. HWE tests betweenloci show significant differences.

| Locus   | P-Val  | S.E.   | Switches (ave.) |
|---------|--------|--------|-----------------|
| G10C    | 0.1402 | 0.0048 | 9332.22         |
| G10D    | 0.0945 | 0.0066 | 14938.40        |
| G10L    | 0.0027 | 0.0008 | 10547.55        |
| G1A     | 0.0602 | 0.0041 | 9644.45         |
| G10B    | 0.0000 | 0.0000 | 14977.91        |
| Gxx20   | 0.0072 | 0.0013 | 10362.18        |
| G10J    | 0.0330 | 0.0034 | 12193.09        |
| Mu50    | 0.0000 | 0.0000 | 21741.09        |
| G10M    | 0.0002 | 0.0001 | 17325.45        |
| G10P    | 0.0021 | 0.0005 | 12143.50        |
| UarMu59 | 0.6100 | 0.0155 | 6086.73         |
| Cxx110  | 1.0000 | 0.0000 | 21337.91        |
| All:    | 0.1625 | 0.0030 | 13385.87 (ave.) |

**Table 4**. Distances in kilometers between centralized sub-populations of black bears inNew Mexico, Arizona (Atwood et al. 2011, Varas-Nelson et al. 2010) and Texas(Onorato et al. 2007).

|            | 0 101            | 0.1 0.1            |             |
|------------|------------------|--------------------|-------------|
| State      | Central Sub-     | Other Sub-         | Distance in |
|            | nonulation       | nonulation         | Vilomators  |
|            | population       | population         | KHOIHEIEIS  |
| New Mexico | Sandias/Manzanos | Southern San Juans | 30 km       |
|            |                  |                    |             |
| New Mexico | Sandias/Manzanos | Sangre de Cristos  | 40 km       |
| New Mexico | Sandias/Manzanos | Zunis/Mt. Taylor   | 60 km       |
| Now Monico | Sandias/Manzanas | Cile Decier        | (0.1rm      |
| New Mexico | Sandias/Manzanos | Gila Region        | 60 KM       |
| New Mexico | Sandias/Manzanos | Sacramentos        | 60-90 km    |
| Arizona    | Chiricahuas      | Mogollon Rim       | 120 km      |
|            |                  | 0                  |             |
| Arizona    | Chiricahuas      | Sierra el Nido     | 100 km      |
| Arizona    | Chiricahuas      | Catalinas          | 100 km      |
| Texas      | Big Bend         | Fort Davis Mts     | 140 km      |
| Texus      | Dig Dena         | i on Duvis ints.   |             |
| Texas      | Big Bend         | Sierra del Carmen  | 40 km       |
| Texas      | Big Bend         | Guadalupe Mts.     | 300 km      |
|            | C                | L                  |             |

|                 | Sample | Loci  |             |       | Avg. No. |
|-----------------|--------|-------|-------------|-------|----------|
| Population      | size   | typed | HE          | НО    | Alleles  |
| New Mexico      | 127    | 12    | 0.601       | 0.559 | 4.8      |
| Arizona*        | 155.36 | 11    | 0.534       | .0508 | 6.27     |
| Arizona/Mexico* | 173    | 10    | 0.79        | 0.78  | 13.9     |
| California*     | 574    | 13    | 0.58        | 0.53  | 8.3      |
| Colorado*       | 512    | 7     | 0.73        | 0.70  | 8.6      |
| Quebec*         | 141    | 10    | 0.842       | 0.829 | 11.5     |
| Alaska*         |        |       | 0.54-0.80   |       |          |
| Wisconsin*      |        | 6     | 0.77        | 0.84  | 8        |
| Across Range*   |        |       | 0.36 - 0.81 |       |          |

Table 5. Mean population study statistics from across North American black bear range

\*Arizona (Atwood et al. 2011), Arizona/Mexico (Varas-Nelson et al. 2010), California (Brown et al. 2009), Colorado (Apker et al. 2009, pers. com), Texas (Onorato et al. 2004), Quebec (Bernatchez et al.), Alaska (Peacock et al. 2007) across range (Paetkau & Strobeck 1994, Paetkau 1998, Clarke et al. 2001, Brown et al. 2009) **Figure 1.** New Mexico bear habitat model (Costello et al. 2001) including, areas of high bear nuisance activity and road kill locations in New Mexico from 2000-2011.



**Figure 2**. Maps of posterior probability clusters K=1-5 showing very little differentiation between genetic and geographic *a priori* information. The lighter the color, the higher the probability of belonging to the indicated cluster, each individual is a black circle. Interestingly the highest probability of assignment for all individuals appears to be cluster 4, to which no individuals were assigned.



A.















**Figure 3.** STRUCTURE Harvester output showing the  $\Delta K$  indicating best fit using the Evanno Technique and an inferred most likely cluster of 3 populations.



Figure 4. Genetic assignment results from program STRUCTURE for N=3 and N=6 using the admixture model with correlated alleles option. Individuals are grouped according to putative population assignments (1 = NWNM, 2 = NENM, 3 = WCNM, 4 =ECNM, 5 = SWNM and 6 = SENM). Genetic population clusters are coded with different colors, and the percentage of any color for an individual represents the probability of assignment to a specific cluster. For both N=3 and N=6 the assignments to specific clusters are very low, indicating low a low quantity of differentiation between population segments and a high degree of admixture.



**Figure 5.** Black bear harvest and mortality across 3 decades. La Nina years correspond to periods of low precipitation statewide. Total harvest includes all known mortality and tends to be high, with a lag after identified low precipitation years (NOAA.GOV and NMDGF). High mortality occurs when bears are moving about more seeking resources during drought periods when they are more visible to humans, and therefore more subject to both hunter harvest and more likely to engage in nuisance activity and/or become road kill.



A. Total Statewide precipitation and Total Bear Mortality, 1979-2011.

B. Total Statewide Precipitation and Non-harvest Bear Mortality, 1983-2011.





C. Total mortality from 1983 - 2011 plotted with total statewide precipitation from the same period shows a weak relationship  $r^2 = 0.1414$ .

## APPENDICES

Appendix A. Museum of Southwestern Biology catalog of samples

**Appendix B.** Bear mortality, capture and release table and statistics for management bears from 2000-11 in the Northwest Supervisory Area, New Mexico Game and Fish Department.

| MSWB # | Sample Location  | Pelt Tag # | Sex | Date       | GMU | Location                                | Zone | Easting | Northing | Туре        |
|--------|------------------|------------|-----|------------|-----|-----------------------------------------|------|---------|----------|-------------|
| 212706 | S. San Juans     | 17084      | m   | 8/30/2002  | 51  | N of El Rito                            | 13   | 390000  | 4027000  | SP          |
| 212708 | Black Range      | 17118      | m   | 7/25/2002  | 21  | Decker Canyon                           | 13   | 254000  | 3632000  | Depredation |
| 212709 | S. San Juans     | 17406      | m   | 10/3/2002  | 51  | Canjilon                                | 13   | 377000  | 4030000  | SP          |
| 212763 | Sacramentos      | 17567      | m   | 8/29/2003  | 54  | Urraca Mesa                             | 13   | 500000  | 4030000  |             |
| 212713 | N. Gila          | 20144      | m   | 9/7/2008   | 16  | Collin's Park                           | 12   | 746233  | 3633566  |             |
| 212714 | Sangres          | 20276      | m   | 7/31/2008  | 55  | Ponil Camp                              | 13   | 500000  | 4050000  | dep         |
| 212716 | Zuni Mts         | 20437      | m   | 10/25/2008 | 10  | Paxton Spgs.<br>Arroyo de Macho         | 12   | 768200  | 3880300  | sp          |
| 212764 | Sacramentos      | 21373      | m   | 8/29/2009  | 37  | Cnyn                                    | 13   | 450000  | 3705000  |             |
| 212765 | N. Gila          | 21529      | m   | 8/29/2009  | 16  | Below John Kerr                         | 12   | 730000  | 3720000  |             |
| 212807 | Sandias/Manzanos | 22039      | m   | ??         | 8   | NE Heights                              | 13   | 365200  | 3894000  | dep         |
| 212718 | Zuni Mts         | 22046      | m   | 10/3/2008  | 10  | Zuni Canyon                             | 12   | 697600  | 3838800  | sp          |
| 212719 | Mt. Taylor       | 22047      | m   | 10/4/2008  | 9   | San Mateo Canyon<br>Grants, Cibola Co., | 13   | 262500  | 3910600  | sp          |
| 212720 | Mt. Taylor       | 22050      | m   | 5/13/2008  | 9   | NM<br>Rio Puerco W. of                  | 13   | 238000  | 3894000  | road        |
| 212808 | Sandias/Manzanos | 22103      | m   | 7/2/2008   | 8   | Burque                                  | 13   | 330000  | 3880000  | road        |
| 212721 | Sangres          | 22105      | m   | 9/28/2008  | 45  | Rita de la Cueva Cny.                   | 13   | 335000  | 3965000  | sp          |
| 212723 | Jemez Mtns       | 22115      | m   | 9/19/2008  | 6   | Pedro Spgs.<br>Marquez Canyon,          | 13   | 351000  | 3980000  | sport       |
| 212809 | Mt. Taylor       | 22161      | f   | 8/1/2008   | 9   | Marquez WMA                             | 13   | 289000  | 3910000  | sport       |
| 212726 | Sandias/Manzanos | 22162      | m   | 8/10/2008  | 14  | Mountainaire                            | 13   | 375500  | 3822000  | Dep.        |
| 212727 | N. Gila          | 22163      | f   | 8/17/2008  | 16  | Cordoroy Cny.                           | 12   | 767000  | 3708000  | sport       |

Appendix A. Museum of Southwestern Biology catalog of samples

| 212766 | Sandias/Manzanos | 22168 | m | 9/7/2009  | 14 | 4th of July Cnyn                       | 13 | 378000 | 3850000 | sport |
|--------|------------------|-------|---|-----------|----|----------------------------------------|----|--------|---------|-------|
| 212728 | N. Gila          | 22292 | f | 8/17/2008 | 16 | Reserve                                | 12 | 708500 | 3732200 | sport |
| 212729 | N. Gila          | 22293 | m | 8/18/2008 | 15 | Potato Patch                           | 12 | 693850 | 3737030 | sport |
| 212810 | Burros and North | 22298 | m | 9/3/2008  | 23 | Frieborn Canyon                        | 12 | 687200 | 3732400 | sport |
| 212730 | Black Range      | 22339 | m | 9/23/2008 | 21 | Jaralosa Mt.                           | 13 | 264000 | 3703000 |       |
| 212811 | Sangres          | 22475 | m | 8/31/2008 | 48 | Ortega Mesa                            | 13 | 496000 | 4030000 | sport |
| 212734 | Sangres          | 22479 | m | 9/4/2008  | 57 | Trinchera Pass<br>Paloma Ranch, Indian | 13 | 585000 | 4088000 |       |
| 212812 | Sangres          | 22592 | m | 10/9/2008 | 57 | Head                                   | 13 | 598000 | 4090000 | sport |
| 212767 | Sacramentos      | 22631 | f | 8/22/2009 | 34 | Alamo Pk.                              | 13 | 425000 | 3638500 |       |
| 212770 | Sacramentos      | 22718 | f | 8/16/2009 | 36 | Nogal Cny.                             | 13 | 426555 | 3750555 |       |
| 212736 | Sangres          | 23244 | m | 9/30/2008 | 48 | Heck Cnyn.                             | 13 | 508000 | 4019000 | sp    |
| 212771 | Jemez Mtns       | 23253 | f | 10/7/2009 | 6  | Rio de Vacas                           | 13 | 347000 | 4020000 |       |
| 212813 | Sangres          | 23309 | f | 8/25/2008 | 57 | WO Doherty Ranch                       | 13 | 597000 | 4097000 | sport |
| 212772 | GMU 13           | 23341 | f | 8/29/2009 | 13 | Datil Mts.                             | 13 | 238000 | 3800000 |       |
| 212739 | Sandias/Manzanos | 23345 | F | 8/20/2008 | 14 | Sandia Mts.                            | 13 | 368588 | 3888095 | road  |
| 212740 | N. Gila          | 23401 | f | 8/18/2008 | 16 | John Kerr Area                         | 12 | 727000 | 3748000 | sport |
| 212741 | Sangres          | 23402 | m | 8/19/2008 | 49 | US Hill of FR 439                      | 13 | 453000 | 4009000 | sport |
| 212742 | N. Gila          | 23404 | m | 8/17/2008 | 16 | Sand Canyon                            | 12 | 727000 | 3745000 | sport |
| 212743 | Mt. Taylor       | 23406 | m | 8/23/2008 | 9  | L-Bar Rch                              | 13 | 284000 | 3940000 | sport |
| 212802 | N. Gila          | 23408 | m | 9/1/2008  | 15 | Mangas Mt.                             | 12 | 741000 | 3766000 |       |
| 212746 | Jemez Mtns       | 23409 | ? | 9/3/2008  | 6  | Jemez Mts.                             | 13 | 332000 | 3980000 | sport |
| 212748 | Sangres          | 23420 | F | 8/18/2008 | 49 | Frijoles Cnyn., FR 49                  | 13 | 461000 | 4011000 | sport |
| 212749 | Zuni Mts         | 23491 | f | 9/8/2008  | 10 | PO Flats                               | 13 | 738000 | 3898000 | sport |
| 212750 | Sangres          | 23492 | m | 9/8/2008  | 48 | Ortega Mesa                            | 13 | 502000 | 4013800 | sport |
| 212751 | Sacramentos      | 23493 | m | 9/9/2008  | 38 | Gallina Pk                             | 13 | 431000 | 3788000 | sport |

| 212752 | Jemez Mtns       | 23494 | m | 9/29/2008  | 6  | Cuba area                                 | 13 | 333000 | 3984000 | sport |
|--------|------------------|-------|---|------------|----|-------------------------------------------|----|--------|---------|-------|
| 212753 | Jemez Mtsn       | 23495 | f | 9/10/2008  | 5  | Gallina Pk                                | 13 | 341000 | 4040000 | sport |
| 212754 | Jemez Mtns       | 23496 | m | 9/15/2008  | 6  | Pinos Negras                              | 13 | 331000 | 3985000 | sport |
| 212755 | Jemez Mtns       | 23497 | f | 9/15/2008  | 6  | Colvares Canyon                           | 13 | 348000 | 3979000 | sport |
| 212758 | Jemez Mtns       | 23500 | f | 9/22/2008  | 6  | Jemez Mts.                                | 13 | 330000 | 3990000 | sport |
| 212773 | GMU 17           | 23540 | m | 8/23/2009  | 20 | Valle Verde                               | 13 | 320000 | 3730000 |       |
| 212759 | N. Gila          | 23564 | m | 9/29/2008  | 16 | E. Elk Mt.                                | 12 | 748000 | 3712000 |       |
| 212760 | Black Range      | 23566 | m | 11/7/2008  | 21 | S. Palomas Cnyn                           | 13 | 247000 | 3673000 | sp    |
| 212774 | Sacramentos      | 23644 | f | 9/26/2009  | 34 | Agua Chiquita                             | 13 | 468433 | 3641348 |       |
| 212775 | S. San Juans     | 23704 | f | 10/3/2009  | 51 | S. Mogote Rdg.                            | 13 | 383000 | 4036000 |       |
| 212776 | S. San Juans     | 23705 | m | 10/8/2009  | 51 | Yeso Tank                                 | 13 | 379000 | 4030000 |       |
| 212777 | S. San Juans     | 23706 | f | 10/11/2009 | 52 | Cruces Basin                              | 13 | 380000 | 4093000 |       |
| 212780 | N. Gila          | 23728 | m | 8/16/2009  | 15 | Starkweather Cny                          | 12 | 702771 | 3735415 |       |
| 212612 | Sacramentos      | 23767 | m | 10/14/2008 | 38 | Gallinas Mts., Corona<br>Rinconda Canyon, | 13 | 428000 | 3790000 | sp    |
| 212613 | Mt. Taylor       | 23768 | m | 10/16/2008 |    | Cibola Co.                                | 13 | 257500 | 3891000 | sp    |
| 212619 | Zuni Mts         | 23802 | m | 11/13/2008 | 12 | Zuni Mts.                                 | 12 | 477000 | 3905000 | sp    |
| 212628 | S. San Juans     | 23820 | f | 9/22/2008  | 51 | Trout Lakes                               | 13 | 376600 | 4052157 | sp    |
| 212632 | S. San Juans     | 23826 | m | 9/23/2009  | 4  | Chama                                     | 13 | 360000 | 4080000 |       |
| 212633 | S. San Juans     | 23827 | m | 9/23/2009  | 4  | Chama                                     | 13 | 360000 | 4080000 |       |
| 212630 | Sangres          | 23831 | m | 9/24/2008  | 45 | Windsor Crk.                              | 13 | 437000 | 3968000 | sp    |
| 212634 | Sandias/Manzanos | 23848 | m | 4/21/2008  | 8  | Sandias                                   | 13 | 375000 | 3883000 | road  |
| 212635 | Sangres          | 23851 | m | 6/10/2009  | 43 | Clines Corners, 10 m.<br>east             | 13 | 460000 | 3875000 | road  |
| 212637 | GMU 17           | 23856 | m | 8/17/2009  | 17 | San Mateo Mts.                            | 13 | 263000 | 3754000 |       |
| 212638 | GMU 17           | 23857 | m | 8/18/2009  | 17 | Tubucka Rch.                              | 13 | 302000 | 3748550 |       |
| 212642 | S. San Juans     | 23901 | m | 9/22/2008  | 51 | Hondo Tank #2                             | 13 | 405000 | 4052000 | sport |

| 212644 | Jemez Mtns       | 23903 | m | 9/26/2008  | 6  | Jemez Mts.                           | 13 | 338000 | 3987000 | sport |
|--------|------------------|-------|---|------------|----|--------------------------------------|----|--------|---------|-------|
| 212645 | Sangres          | 23904 | m | 9/29/2008  | 48 | Ortega Mesa<br>Jemez Mts., S. of San | 13 | 492000 | 4022000 | sport |
| 212646 | Jemez Mtns       | 23905 | m | 9/29/2008  | 6  | Pedro Parks                          | 13 | 333000 | 3988000 | sport |
| 212647 | Mt. Taylor       | 23906 | f | 10/3/2008  | 9  | Water Canyon WMA                     | 13 | 271000 | 3902000 | sp    |
| 212651 | Burros and North | 23911 | f | 10/14/2008 | 23 | Horse Mesa                           | 12 | 687000 | 3734000 | sp    |
| 212654 | Burros and North | 23914 | m | 10/19/2008 | 23 | Pueblo Crk.                          | 12 | 682000 | 3718000 | sp    |
| 212657 | GMU 13           | 23917 | f | 11/13/2008 | 13 | Sierra Lucero                        | 13 | 299000 | 3835000 | sp    |
| 212803 | Sangres          | 23941 | m | 10/17/2008 | 46 | Mora                                 | 13 | 477000 | 3973000 | road  |
| 212658 | S. San Juans     | 23962 | m | 9/15/2009  | 4  | W. of Chama                          | 13 | 360000 | 4080000 |       |
| 212660 | Black Range      | 26016 | m | 9/5/2009   | 21 | N. Seco                              | 13 | 244000 | 3662000 |       |
| 212661 | GMU 17           | 26048 | f | 10/6/2009  | 17 | Bear Trap Cny.                       | 13 | 257000 | 3732000 |       |
| 212662 | GMU 17           | 26049 | m | 10/7/2009  | 17 | White Water Cny.                     | 13 | 272000 | 3747000 |       |
| 212663 | Black Range      | 26050 | m | 10/5/2009  | 21 | 10 m. E. of Hermosa                  | 13 | 250000 | 3687000 |       |
| 212664 | Black Range      | 26061 | m | 10/14/2009 | 21 | Las Palomas Cny.                     | 13 | 300010 | 3610100 |       |
| 212667 | S. San Juans     | 26307 | f | 9/26/2009  | 51 | Trout Lakes<br>W. of Bandalier Nat'l | 13 | 380000 | 4045000 |       |
| 212668 | Jemez Mtns       | 26312 | m | 9/29/2009  | 6  | Mon.                                 | 13 | 355000 | 3960000 |       |
| 212669 | Jemez Mtns       | 26313 | m | 10/5/2009  | 5  | N. of Llaves                         | 13 | 331000 | 4035000 |       |
| 212671 | Jemez Mtns       | 26318 | f | 9/14/2009  | 6  | Encino LO                            | 13 | 365000 | 4003000 |       |
| 212805 | N. Gila          | 26322 | f | 8/16/2009  | 15 | Underwood                            | 12 | 686841 | 3755880 |       |
| 212675 | Burros and North | 26325 | f | 8/19/2009  | 23 | Big Pine Cny.                        | 12 | 687308 | 3684548 |       |
| 212676 | Burros and North | 26326 | m | 8/19/2009  | 23 | Smoothing Iron                       | 12 | 684331 | 3687207 |       |
| 212677 | N. Gila          | 26333 | m | 8/27/2009  | 15 | Torriette Lakes                      | 12 | 704523 | 3749417 |       |
| 212678 | Burros and North | 26335 | f | 9/13/2009  | 23 | White Rocks                          | 12 | 683631 | 3709668 |       |
| 212680 | Burros and North | 26340 | m | 10/12/2009 | 23 | Brushy Mt.                           | 12 | 689278 | 3686403 |       |
| 212681 | N. Gila          | 26348 | f | 9/7/2009   | 16 | Indian Crk.                          | 12 | 751000 | 3708000 |       |

| 212683 | Burros and North | 26360 | m | 10/9/2009  | 24 | Sheep Corral                                                  | 12 | 683321 | 7000210 |
|--------|------------------|-------|---|------------|----|---------------------------------------------------------------|----|--------|---------|
| 212684 | N. Gila          | 26461 | m | 10/14/2009 | 15 | Torriette Lakes<br>Between Dome and                           | 12 | 705000 | 3753000 |
| 212686 | Jemez Mtns       | 26502 | m | 10/4/2009  | 6  | Tower                                                         | 13 | 375000 | 3961000 |
| 212687 | Jemez Mtns       | 26503 | m | 10/12/2009 | 6  | Chucoma/Polvadera                                             | 13 | 372000 | 3493000 |
| 212688 | Sacramentos      | 26508 | m | 10/2/2009  | 37 | FS Rd. 483<br>S. of Los Pinos                                 | 13 | 465000 | 3720000 |
| 212689 | Jemez Mtns       | 26517 | m | 9/29/2009  | 6  | Trhead<br>S. of Los Pinos                                     | 13 | 331000 | 4000000 |
| 212691 | Jemez Mtns       | 26519 | f | 9/28/2009  | 6  | Trhead<br>S. of Los Pinos                                     | 13 | 331000 | 4000000 |
| 212692 | Jemez Mtns       | 26520 | f | 10/2/2009  | 6  | Trhead                                                        | 13 | 331000 | 4000000 |
| 212693 | Sandias/Manzanos | 26632 | m | 9/5/2009   | 14 | FR 275/422                                                    | 13 | 370000 | 3824000 |
| 212694 | Zuni Mts         | 26633 | m | 9/6/2009   | 10 | Rico Rch.                                                     | 12 | 745000 | 3918000 |
| 212695 | Sandias/Manzanos | 26634 | m | 9/10/2009  | 14 | 4th of July Cny.                                              | 13 | 371000 | 3851000 |
| 212696 | Jemez Mtns       | 26635 | f | 9/13/2009  | 5  | Gallina Pk.                                                   | 13 | 342000 | 4033000 |
| 212697 | Sacramentos      | 26637 | m | 9/15/2009  | 36 | W. of Bonito Lake                                             | 13 | 425000 | 3701000 |
| 212698 | Mt. Taylor       | 26639 | m | 9/18/2009  | 9  | W. of Ranger Tank                                             | 13 | 260000 | 3899000 |
| 212699 | Sandias/Manzanos | 26640 | f | 9/16/2009  | 14 | 4th of July Cny.                                              | 13 | 373000 | 3849000 |
| 212700 | S. San Juans     | 26646 | m | 10/12/2009 | 51 | FR 124                                                        | 14 | 381000 | 4051000 |
| 212701 | GMU 17           | 26649 | m | 10/17/2009 | 17 | SE of Water Cny.                                              | 14 | 307000 | 3766000 |
| 212702 | N. Gila          | 26650 | f | 10/24/2009 | 16 | SW of Yellow Mt.                                              | 12 | 749000 | 3692000 |
| 212703 | GMU 17           | 26652 | f | 9/26/2009  | 17 | Beartrap Cnyn.                                                | 13 | 260000 | 3742000 |
| 212704 | Black Range      | 26695 | f | 10/9/2009  | 21 | S. of Lookout Mt.                                             | 13 | 241000 | 3698000 |
| 212705 | Mt. Taylor       | 26696 | m | 10/10/2009 | 9  | Horace Mesa                                                   | 13 | 262000 | 3901000 |
| 212782 | Sandias/Manzanos | 37514 | m | 9/15/2002  |    | M53 rt., large male,<br>Albq., Bern. Co.<br>F198 rt., 170 lb. | 13 | 363926 | 3882241 |
| 212785 | Sandias/Manzanos | 37803 | f | 7/1/2003   |    | female, Inlow Babtist                                         | 13 | 375103 | 3849638 |

|        |                  |           |   |           | Camp, Torr. Co.        |    |        |         |
|--------|------------------|-----------|---|-----------|------------------------|----|--------|---------|
|        |                  |           |   |           | F191 rt., Inlow        |    |        |         |
|        |                  |           |   |           | Babtist Camp,          |    |        |         |
| 212783 | Sandias/Manzanos | 37816     | f | 7/14/2003 | Torrance Co.           | 13 | 375103 | 3849638 |
|        |                  |           |   |           | M201 grn. Rt., 250#,   |    |        |         |
|        |                  |           |   |           | eating fruit, Sandoval |    |        |         |
| 212788 | Sandias/Manzanos | 37834     | m | 8/1/2003  | Co.                    | 13 | 370889 | 3907754 |
|        |                  |           |   |           | M227, Near             |    |        |         |
|        |                  |           |   |           | Mountainair,           |    |        |         |
| 212790 | Sandias/Manzanos | 37836     | m | 8/3/2003  | Torrance Co.           | 13 | 375778 | 3828857 |
|        |                  |           |   |           | M247, Cedar Crest,     |    |        |         |
| 212794 | Sandias/Manzanos | 37839     | m | 8/6/2003  | Bern. Co.              | 13 | 375807 | 3891219 |
|        |                  |           | - |           | F175/215, Adelino,     |    |        |         |
| 212795 | Sandias/Manzanos | 37841     | f | 8/8/2003  | Valencia Co.           | 13 | 341000 | 3840000 |
|        |                  |           |   |           | F248/193, subad., in   |    |        |         |
|        |                  |           |   |           | backyard, Rio          |    |        |         |
|        | ~ ~ ~ ~ ~        |           |   |           | Rancho, Sandoval       |    |        |         |
| 212798 | Sandias/Manzanos | 37855     | f | 8/22/2003 | Co.                    | 13 | 352000 | 3905000 |
| 212789 | Sandias/Manzanos | 38055     | F | 8/2/2003  | M226, Sandia Mts.      | 13 | 391200 | 3898270 |
|        |                  |           |   |           | F67/232, Albq., Bern.  |    |        |         |
| 212799 | Sandias/Manzanos | 38162     | F | 6/24/2004 | Co.                    | 13 | 364559 | 3899727 |
|        |                  |           |   |           | Sulphur Cnyn.,         |    |        |         |
| 233407 | Sandias/Manzanos | 134.034.1 | F | 8/25/2008 | Sandia Mts.            | 13 | 374200 | 3893300 |
| 233406 | Sandias/Manzanos | R569      | m | 9/8/2008  | Sandia Mts.            | 13 | 391200 | 3898270 |

| Kill | Sex   | Ane | Kill Date  | Release     | Dif.<br>Mos | Capture            | Release         | Release<br>Kilometers |
|------|-------|-----|------------|-------------|-------------|--------------------|-----------------|-----------------------|
| dep  | <br>F | 10  | 09/22/01   | 8/16/2001   | 1           | Alba               | Monte Largo     | 41                    |
| SD   | F     | 5   | 10/09/01   | 0, 10, 2001 |             | La Jara            | Largo GMU 2b    | 90                    |
| SD   | F     | 6   | 09/10/01   | 9/3/2001    | 0           | La Jara            | Largo GMU 2b    | 70                    |
| sp   | F     | 4   | 10/14/01   | 8/4/2001    | 2           | Tijeras            | GMU 9           | 66                    |
| sp   | F     | 12  | 09/25/01   | 8/3/2001    | 2           | ,<br>Tijeras       | Rice Park       | 71                    |
| sp   | F     | 15  | 09/16/01   | 9/14/2001   | 0           | Aztec              | Cottonwood      | 85                    |
| sp   | F     | 10  | 8/1/2002   | 8/21/2001   | 12          | Cuba               | 2b              | 21                    |
| dep  | F     | 9   | 9/18/2002  | 7/19/2002   | 2           | Espanola           | dead            | 62                    |
| dep  | F     | 8   | 9/19/2002  |             |             | East Mts.          | dead            | 66                    |
| sp   | F     | 4   | 10/12/2002 |             |             | Ice Caves          | GMU 9           | 112                   |
| road | F     | 9   | 10/22/2002 | 10/12/2002  | 0           | Raven Rd.          | Ellis Trail     | 113                   |
| sp   | F     | 6   | 10/5/2002  |             |             | Espanola           | dead            | 82                    |
| dep  | F     | 3   | 08/27/03   | 8/22/2003   | 0           | Sandias            | dead            | 82                    |
| sp   | F     | 0   | 08/03/03   | 7/7/2002    | 13          | Ponderosa          | dead            | 118                   |
| sp   | F     | 5   | 09/25/03   | 7/14/2003   | 2           | Inlow              | Rice Park       | 72                    |
| sp   | F     | 7   | 09/13/03   | 7/17/2003   | 2           | Inlow              | Rice Park       | 179                   |
| sp   | F     | 0   | 10/02/03   |             |             | Santa Fe           | dead            | 185                   |
| dep  | F     |     | 07/25/05   | 7/25/2004   | 12          | Moriarty           | dead            | 166                   |
| dep  | F     |     | 07/13/05   | 7/13/2004   | 12          | Gallup             | dead            | 50                    |
| sp   | F     | 2   | 09/27/05   | 7/30/2005   | 2           | Zunis              | San Pedro Parks | 8                     |
| sp   | F     | 3   | 10/05/05   |             |             | Santa Fe           | dead            | 75                    |
| dep  | F     |     | 07/25/05   | 7/25/2004   | 12          | Tijeras            | dead            | 150                   |
| sp   | F     |     | 09/30/06   | 8/31/2003   | 35          | El Morro           | Marquez         | 10                    |
| sp   | F     | 2   | 08/26/07   | 5/22/2007   | 3           | Santa Fe           | Monte Largo     | 57                    |
| dep  | F     |     | 07/28/08   | 6/14/2008   | 1           | Lindreth           | dead            | 96                    |
| sp   | F     | 4   | 09/28/08   | 8/30/2003   | 1           | La Cueva           | Indian Crk.     | 14                    |
| road | F     |     | 06/22/09   | 7/9/2008    | 11          | Albq.              | Capilla Peak    | 23                    |
| sp   | F     | 6   | 10/06/09   | 9/9/2006    | 1           | Albq.<br>Hyde Park | Rice Park       | 85                    |
| dep  | F     |     | 07/12/10   | 6/18/2010   | 1           | twice              | Caracas         | 100                   |
| dep  | F     | 12  | 09/08/10   | 8/2/2009    | 13          | Santa Fe           | Gallinas Mts.   | 71                    |
| sp   | F     | 2   | 10/02/10   | 7/19/2010   | 3           | Santa Fe           | GMU 51          | 103                   |
| road | F     |     | 12/22/10   | 10/28/2010  | 2           | Chama              | Cabresto Cny.   | 188                   |
| dep. | F     |     | 06/24/11   | 6/19/2011   | 0           | Fenton             | San Gregorio    | 167                   |
| dep. | F     |     | 07/07/11   | 6/30/2010   | 12          | Cuba               | Mesa Alta       | 67                    |
| dep. | F     |     | 08/03/11   | 10/20/2009  | 22          | Tesuque            | GMU 6           | 56                    |
| dep. | F     |     | 08/15/11   | 7/5/2007    | 49          | Cedar Gr.          | dead            | 185                   |

**Appendix B.** Bear mortality, capture and release table and statistics for management bears from 2000-11 in the Northwest Supervisory Area, New Mexico Game and Fish Department.

| dep. | F |    | 09/14/11   | 8/29/2011  | 0  | Los Alamos   | Bluebird Mesa            | 185 |
|------|---|----|------------|------------|----|--------------|--------------------------|-----|
| sp   | F |    | 10/01/11   | 7/5/2010   | 3  | La Cueva     | Mud Springs              | 80  |
| sp   | F |    | 10/02/11   | 8/14/2011  | 2  | San Pedro    | GMU 52                   | 80  |
| dep. | F |    | 10/05/11   | 10/4/2011  | 0  | Santa Fe     | Humphries                | 64  |
| road | F |    | 11/01/11   | 9/5/2011   | 2  | Santa Fe     | Bluebird Mesa            | 60  |
| sp   | М | 3  | 10/16/00   | 7/26/2000  | 3  | Cuba         | Chiquito                 | 21  |
| sp   | М | 8  | 11/02/00   | 8/24/2000  | 3  | Santa Fe     | Rio Cebolla              | 96  |
| sp   | Μ | 2  | 11/14/00   | 9/28/2000  | 2  | Santa Fe     | GMU 6                    | 62  |
| sp   | М | 7  | 09/11/01   | 8/27/2001  | 1  | Cedar Crest  | Kayser Tr.               | 185 |
| sp   | М | 0  | 06/23/01   | 6/7/2001   | 1  | Bluewater    | Marquez release          | 56  |
| road | М | 7  | 09/07/01   | 8/19/2001  | 1  | Placitas     | Marquez release          | 44  |
| sp   | М | 9  | 09/19/01   | 6/22/2001  | 3  | Kettner      | Oso                      | 140 |
| dep  | М | 3  | 09/24/01   | 9/4/2001   | 1  | Cedar Crest  | Kayser Tr.               | 200 |
| sp   | Μ | 4  | 09/29/01   | 8/22/2000  | 13 | Wingate      | Marquez<br>Rio Cebolla   | 68  |
| sp   | М | 4  | 10/14/01   | 8/23/2001  | 2  | Pecos        | GMU 6                    | 215 |
| sp   | М | 8  | 09/15/01   | 8/31/2001  | 1  | Jemez Sprgs. | French Mesa 5b           | 78  |
| sp   | М | 3  | 11/10/01   | 7/17/2001  | 4  | Inlow        | Rice Park                | 96  |
| sp   | М | 2  | 11/17/01   | 8/7/2001   | 3  | Placitas     | Rice Park                | 56  |
| dep  | М | 3  | 7/24/2002  | 8/18/2001  | 11 | Tramway      | 10-k                     | 68  |
| sp   | М | 4  | 10/2/2002  | 8/11/2000  | 26 | Tijeras      | Marquez                  | 96  |
| sp   | М | 3  | 10/19/2002 | 10/8/2002  | 0  | Cedar Crest  | 10k                      | 164 |
| dep  | М | 4  | 07/01/03   | 10/10/2002 | 9  | Timberlake   | GMU 9                    | 70  |
| sp   | Μ | 5  | 08/25/03   | 6/24/2002  | 14 | Bluewater    | Marquez<br>Rio Cebolla   | 73  |
| sp   | М | 5  | 08/17/03   | 6/3/2001   | 26 | Canyoncito   | GMU 6                    | 100 |
| sp   | М | 16 | 09/07/03   | 8/1/2003   | 1  | Edgewood     | Rice Park                | 51  |
| dep  | М | 5  | 09/19/03   | 8/6/2003   | 2  | Cedar Crest  | Monte Largo              | 130 |
| sp   | М | 6  | 09/25/03   | 9/4/2003   | 1  | Santa Fe Tr. | GMU 6                    | 56  |
| sp   | М | 7  | 10/05/03   | 8/4/2003   | 2  | Manzano      | Crest cut                | 92  |
| sp   | М | 2  | 09/29/04   | 6/30/2001  | 39 | Grants       | Rice Park                | 164 |
| sp   | М | 9  | 09/14/04   | 6/24/2002  | 27 | Kettner      | Oso Cnyn.<br>Mesa de las | 90  |
| road | М |    | 06/06/04   | 6/3/2004   | 0  | Hyde Park    | Viejas                   | 165 |
| road | М |    | 06/07/04   | 11/19/2003 | 7  | Jemez Mts.   | 5b                       | 260 |
| sp   | М | 3  | 08/21/04   | 8/5/2003   | 12 | Paliza       | Rice Park                | 222 |
| sp   | М | 6  | 10/23/04   | 7/18/2003  | 15 | Milan        | Marquez                  | 91  |
| road | М |    |            |            |    | Raven        | Monte Largo              | 60  |
| dep  | М |    | 07/02/05   | 7/12/2004  | 12 | GMU 4        | dead                     | 62  |
| road | М |    | 02/28/06   | 8/18/2001  | 64 | Carnuel      | Kayser                   | 45  |
| sp   | Μ | 2  | 09/14/06   |            |    | Espanola     | dead                     | 98  |
| sp   | Μ | 5  | 10/03/06   | 7/13/2006  | 3  | Raton        | Cruces Basin             | 205 |
| sp   | Μ | 6  | 09/26/06   | 4/14/2004  | 29 | Los Alamos   | French Mesa 5b           | 48  |
| sp   | М | 2  | 09/26/06   | 8/17/2001  | 61 | Tijeras      | GMU 9                    | 160 |

| dep  | Μ             | 3  | 06/28/07 | 6/28/2006  | 12        | Placitas    | Ranger Tank         | 80       |
|------|---------------|----|----------|------------|-----------|-------------|---------------------|----------|
| road | М             |    | 09/15/07 | 10/9/2002  | 59        | Cedar Crest | Monte Largo         | 184      |
| sp   | М             | 6  | 09/06/07 | 9/8/2001   | 72        | Santa Fe    | TWC                 | 71       |
| dep  | М             | 3  | 08/01/08 | 7/17/2008  | 0         | Zuzax       | Sedgewick           | 112      |
| road | Μ             | 2  | 08/08/08 | 7/24/2008  | 0         | Albq.       | dead                | 151      |
| sp   | Μ             | 6  | 08/16/08 | 7/1/2008   | 1         | Albq.       | Beaverhead          | 100      |
| road | М             |    | 08/28/08 | 8/2/2003   | 1         | Santa Fe    | Rice Park           | 40       |
| sp   | Μ             | 11 | 09/08/08 | 8/28/2006  | 0         | Manzano     | GMU 6               | 50       |
| dep  | М             |    | 07/26/09 | 7/26/2008  | 12        | Lindreth    | dead                | 120      |
| dep  | Μ             | 10 | 07/24/09 | 7/21/2009  | 0         | Santa Fe    | GMU 51              | 21       |
| sp   | М             |    | 09/06/09 | 6/18/2008  | 15        | MacIntosh   | Rice Park           | 50       |
| sp   | Μ             | 2  | 09/10/09 | 6/9/2009   | 3         | Four Hills  | Monte Largo         | 85       |
| dep  | Μ             |    | 06/25/10 | 6/20/2010  | 0         | Cuba        | Trout Lakes         | 20       |
| dep  | М             |    | 08/02/10 | 7/2/2010   | 1         | Chama       | French Mesa         | 80       |
| sp   | М             | 3  | 09/07/10 | 6/26/2006  | 51        | El Dorado   | Gallina Peak        | 75       |
| sp   | М             | 6  | 09/21/10 | 7/21/2010  | 2         | Lindreth    | Mud Springs         | 70       |
| road | М             |    | 05/08/11 | 7/27/2010  | 10        | Sufi        | Marquez             | 280      |
| dep. | М             |    | 07/19/11 | 5/14/2011  | 2         | Albq.       | Marquez             | 75       |
| dep. | М             |    | 07/24/11 | 6/4/2010   | 13        | Los Alamos  | Valles Caldera      | 85       |
| dep. | Μ             |    | 08/02/11 | 8/11/2010  | 12        | Hyde Park   | GMU 6               | 48       |
| dep. | М             |    | 08/16/11 | 7/23/2010  | 13        | Cedar Hill  | Indian Crk.         | 48       |
| dep. | М             |    | 08/25/11 | 8/26/2001  | 120       | Santa Fe    | GMU 6               | 98       |
| sp   | М             |    | 08/28/11 | 7/21/2011  | 1         | Four Hills  | Marquez             | 110      |
| sp   | М             |    | 09/30/11 | 8/14/2011  | 1         | Los Alamos  | Bluebird Mesa       | 71       |
| sp   | Μ             |    | 10/02/11 | 7/23/2010  | 2         | Chama       | dead<br>Mesa de las | 104      |
| sp   | М             |    | 10/03/11 | 7/31/2011  | 2         | Santa Fe    | Viejas              | 153      |
| road | М             |    | 10/06/11 | 6/5/2011   | 4         | Edgewood    | Tres Piedras        | 180      |
| sp   | U             | 2  | 09/30/06 | 6/12/2005  | 3         | Santa Fe    | GMU 51              | 95       |
|      |               |    |          | Tot =      | 1046      |             |                     | 10198    |
|      |               |    |          | N =        | 97        |             |                     | 105      |
|      | 41<br>Females |    |          | Δνα –      | 2         |             |                     | 68       |
|      | 63 Males      |    |          | StDev -    | ے<br>18 0 |             |                     | 55 71626 |
|      | 1             |    |          | Median -   | 3         |             |                     | 82       |
|      | 10            |    |          | Var –      | 358       |             |                     | 3104 302 |
|      |               |    |          | Confidence | 000       |             |                     | 5104.502 |
|      |               |    |          | =          | 3.77      |             |                     | 10.65701 |
|      |               |    |          | Min. =     | 0         |             |                     | 8        |
|      |               |    |          | Max. =     | 120       |             |                     | 280      |
|      |               |    |          | Conf. T =  | 3.81      |             |                     | 10.78247 |

#### REFERENCES

- Atwood, T. C., J. K. Young, J. P. Beckman, S. W. Breck, J. Fike, O. E. Rhodes Jr., and K.D. Bristow. 2011. Modeling connectivity of black bears in a desert sky island archipelago. *Biological Conservation*, doi:10.1016/j.biocon.2011.08.002.
- Bailey, V. 1932. Mammals of New Mexico. North American Fauna, 53, 1-412.
- Beck, T. D. I. 1991. Black bears of west-central Colorado. Colorado Division of Wildlife, Fort Collins, Technical Publication 39:1-86.
- Brown, D. E. 1985. The grizzly in the Southwest. University of Oklahoma Press, Norman. 274pp.
- Byun, A. S., Koop, B. F. and Reimchen, T. E. 1997. North American black bear mtDNA phylogeography: implications for morphology and the Haida Gwaii glacial refugium controversy. *Evolution*, **51**, 1647-1653.
- Chen, C., E. Durand, F. Forbes, and O. Francois. 2007. Bayesian clustering algorithms Ascertaining spatial population structure: a new computer program and a comparison study. *Molecular Ecology Notes*, 7, 747-756.
- Costello, C. M. 2010. Estimates of dispersal and home-range fidelity in American black bears. *Journal of Mammalogy*, **91**, 116-121.
- Costello, C. M., D. E. Jones, K. E. Green Hammond, R. M. Inman, K. H. Inman, B. C. Thompson, R. A. Deitner, and H. B. Quigley. 2001. A Study of Black Bear Ecology in New Mexico with Models for Population Dynamics and Habitat Suitability. Final Report, Federal Aid in Wildlife Mexico Department of Game and Fish, Santa Fe, New Mexico, USA.
- Costello, C. M., S. R. Creel, S. T. Kalinowsky, N. V. Vu, and H. B. Quigley. 2008. Sex-biased natal dispersal and inbreeding avoidance in American black bears as revealed by spatial genetic analysis. *Molecular Ecology*, 17, 4713-4723.
- Corander, J., P. Martinen, J. Siren, and J. Tang. 2006. BAPS: Bayesian analysis of population structure: manual version 4.0. Department of Mathematics, University of Helsinki, Helsinki, Finland.

Dent E. A. and B. M. vonHoldt. 2012.STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources*, **4**, 359-361 doi: 10.1007/s12686-011-9548-7

Core version: vA.1 March 2012 Web version: v0.6.92 March 2012

- Elowe, K. D., and W. E. Dodge. 1989. Factors affecting black bear reproductive success and cub survival. *Journal of Wildlife Management*, **53**:962-968.
- Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of Individuals using the software STRUCTURE: a simulation study. *Molecular Ecology*, **14**, 2611-2620.
- Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin version 3.0: an integrated package for population genetics data analysis. *Evolutionary Bioinformatics Online*, **1**, 47-50.
- Glaubitz, J. C. 2004. CONVERT: a user friendly program to reformat diploid genetypic data for commonly used population and genetic software packages. *Molecular Ecology Notes*, **4**, 309-310.
- Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation Indices (version 2.9.3).
- Guedj, B. and G. Guillot. 2011. Estimating the location and shape of hybrid zones. *Molecular Ecology Resources*, **11**, 1119-1123.
- Guillot, G. 2005. Geneland: a computer package for landscape genetics. Contributed R package.<u>http://www2.imm.dtu.dk/gigu/Geneland/Geneland-Doc.pdf</u>.
- Guillot, G. 2008. Inference of structure in divided populations at low levels of genetic differentiation. The correlated allele frequencies model revisited. *Bioinformatics*,**24**, 2222-2228.
- Guillot, G., A. Estoup, F. Mortier, and J. F. Cosson. 2005a. A spatial statistical model for landscape genetics. *Genetics*, **170**, 1261-1280.
- Guillot, G., F. Mortier, and A. Estoup. 2005b. GENELAND: a computer package for landscape genetics. *Molecular Ecology Notes*, **5**, 712-715.
- Guillot, G., and F. Santos. 2009. A computer program to simulate multilocus genotype data with spatially augocorrelated allele frequencies. *Molecular Ecology Resources*, **9**, 1112-1120.
- Hayes, F. 1990. Black bear information review, Sandia Mountain, Cibola National Forest. In service report, 31 pp.
- Hellgren, E. C., Onorato, D. P. and Skiles, J. R. 2005. Dynamics of a black bear

Population within a desert metapopulation. *Biological Conservation*, **122**, 131-140.

- Hopkins, J. B. III, Koch, P. L., Schwartz, C. C., Ferguson, J. M., Greenleaf, S. S. Kalinowski, S. T. 2012. Stable Isotopes to Detect Food-Conditioned Bears and to Evaluate Human-Bear Management. *Journal of Wildlife Management*, **76** (4), 703-713.
- Hornick, K. 2011. The R FAQ. ISBN 3-900051-08-9. {http://CRAN.R-Project.org/doc/FAQ/R-FAQ.html}
- LeCount, A. L. 1987. Characteristics of a northern Arizona black bear population. Final Rep. F.A. Proj. W-78-R, WP2J22. Arizona Game and Fish Dept., Phoenix.
- Lee, L. 1967. Bears in New Mexico wildlife management. New Mexico Department of Game and Fish, Santa Fe. 250 pp.
- Mollohan, C. M. 1987. Black bear habitat use in northern Arizona. Final Rep. F.A. Proj.W-78-R, WP4J19. Arizona Game and Fish Dept., Phoenix.
- Nei, M. 1988. Molecular Evolutionary Genetics. Columbia University Press, New York.
- New Mexico Department of Game and Fish. 1926. Report of the fiscal years 1925-1926. New Mexico Department of Game and Fish, Santa Fe.
- New Mexico Department of Game and Fish. 2010. Black Bear Population Assessment and Harvest Management Matrix. New Mexico Department of Game and Fish, Santa Fe.
- NOAA, National Oceanic and Atmospheric Administration, United States Department of Commerce Website, Temperature and Precipitation Page and La Nina Page, URL: http://www.elnino.noaa.gov/lanina.html, http://www.ncdc.noaa.gov/temp-and-precip/time-series.html ...
- Onorato, D. P., E. C. Hellgren, R. A. Van Den Bussche, D. L. Doan-Crider and J. R. Skiles, Jr. 2007. Genetic structure of American black bears in the desert southwest of North America: conservation implications for recolonization. *Conservation Genetics*, 8, 565-576.
- Ostrander, E. A., G. F. Sprague, J. Rine. 1993 Identification and Characterization of Dinucleotide Repeat (CA)<sub>n</sub> Markers for Genetic Mapping in Dog. *Genomics*, **16**, 207-213.
- Paetkau, D. and C. Strobeck. 1994. Microsatellite Analysis of Genetic-Variation

in Black Bear Populations. *Molecular Ecology*, **3**, 489-495.

- Paetkau, D., W. Calvert I., Stirling, and C. Strobeck. 1995. Microsatellite Analysis of Population Structure in Canadian Polar Bears. *Molecular Ecology*, **4**, 347-354.
- Paetkau, D., G. Shields, and C. Strobeck. 1998. Gene Flow Between Insular, Coastal and Interior populations of Brown Bears in Alaska. *Molecular Ecology*, 7, 1283-1292.
- Park S. MS\_Tools.xla. Genetics Dept, TCD, Ireland, 12th July 2001.
- Peacock, E., M. M. Peacock and K. Titus. 2007. Black bears in Southeast Alaska: the fate of two ancient lineages in the face of contemporary movement. *Journal of Zoology*, **271**, 445-454.
- Pelton, M. R. and F. T. Vanmanen. 1994. Distribution of black bears in North America. Proc. Eastern Workshop on Black Bear Research and Management. 12, 133-138.
- Pelletier A., M. E. Obbard, B. N. White, C. Doyle and C. J. Kyle. 2011. Smallscale genetic Structure of American black bears illustrates potential postglacial recolonization routes. *Journal of Zoology*, 92(**3**), 629-644.
- Pritchard, J. K., M. Stephens, P. Donnelly. 2000 Inference of population structure using multilocus genotype data. *Genetics*, **155**, 945-959.
- R Development Core Team. 2011. R: A Language and Environment for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.Rproject.org/.
- Raymond M. & Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. *J. Heredity*, **86**, 248-249.
- Roberts, N. M. and S. M. Crimmins. 2010 Bobcat Population Status and Management in North America: Evidence of Large-Scale Population Increase. *Journal of Fish and Wildlife Management*, Vol. 1, Issue 2, 169-174.
- Robinson, S., L. Waits, and I. Martin. 2007. Evaluating Population Structure of Black Bears on the Kenai Peninsula Using Mitochondrial and Nuclear DNA Analyses. *Journal of Mammalogy*, 88(5), 1288-1299.
- Rogers, L. L. 1987. Effects of food supply an kinship on social behavior, movements, and population growth on black bears in northeastern Minnesota. *Wildlife Monographs* 97, 1-72.

- Rousset, F., 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. *Mol. Ecol. Resources* **8**, 103-106.
- Stirling, I. and A. E. Derocher. 1989. Factors affecting the evolution and behavioral Ecology of the modern bears. International Conference on Bear Research and Management 8, 213-218.
- Stirling, S. D. 1990a. Population management of bears in North America. International Conference on Bear Research and Management. **8**, 357-373.
- Stone, K. D. and Cook, J. A. 2000. Phylogeography of black bears (Ursus americanus) of the Pacific Northwest. Canadian Journal of Zoology, 78, 1218-1223.
- Taberlet, P., J-J. Camarra, and S., Griffin. 1997. Noninvasive genetic tracking of the endangered Pyrenean brown bear population. *Molecular Ecology*, 6, 869-876.
- Varas-Nelson, A. C. 2010. Conservation Genetics of Black Bears in Arizona and Northern Mexico. Dissertation, University of Arizona.
- Weir, B. S. and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of Population structure. *Evolution*, **38**, 1358-1370.
- Wooding, S. and Ward, R. 1997. Phylogeography and Pleistocene evolution in the North American black bear. *Molecular Biology and Evolution*, 14, 1096-1105.
- Zack, C. S., B. T. Milne and W. C. Dunn. 2003. Southern oscillation index as an indicator encounters between humans and black bears in New Mexico. *Wildlife Society Bulletin*, 31(2), 517-520.