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ABSTRACT 

 Muscle development is an evolutionarily conserved process. Mechanisms 

that govern the development of specific muscles in invertebrates can inform our 

understanding of how vertebrate muscles form. Understanding these processes 

allows us to translate developmental mechanisms to disease pathogenesis, as 

similar genes and developmental processes are affected by these diseases. In 

this dissertation, CG14614 is identified as the gene responsible for the wings 

apart phenotype in Drosophila melanogaster. This mutation leads to a loss of the 

adult jump muscle (TDT) in most cases and a greater than 60% reduction in 

muscle fibers in its least severe form. wap mutants fail to properly form 

neuromuscular junctions to the TDT, resulting in degeneration of the muscle.  

Regulation of Myocyte enhancer factor 2 (Mef2) expression in the 

developing mesoderm, which gives rise to somatic, visceral, and cardiac muscle, 

by the transcription factors Twist and Mad was also investigated. Our results 

indicate these are both involved in regulation of the Mef2 enhancer but additional 

complexity exists in its regulation that remains to be fully elucidated.  



 v 

TABLE OF CONTENTS 

LIST OF FIGURES .............................................................................................. VI 

 

LIST OF TABLES .............................................................................................. VII 

 

INTRODUCTION .................................................................................................. 1 

 

CHAPTER 1 ......................................................................................................... 9 

IDENTIFICATION OF CG14614 AS THE TRASCRIPTIONAL UNIT OF THE 
WINGS APART GENE IN DROSOPHILA............................................................ 9 

ABSTRACT ............................................................................................................ 10 
INTRODUCTION ..................................................................................................... 10 
MATERIALS AND METHODS .................................................................................... 15 
RESULTS .............................................................................................................. 20 
DISCUSSION ......................................................................................................... 51 

 

CHAPTER 2 ....................................................................................................... 62 

TRANSCRIPTIONAL REGULATION OF THE EARLY MESODERMAL MEF2 
ENHANCER BY TWIST AND MAD ................................................................... 62 

ABSTRACT ............................................................................................................ 63 
INTRODUCTION ..................................................................................................... 63 
MATERIALS AND METHODS .................................................................................... 67 
RESULTS .............................................................................................................. 71 
DISCUSSION ......................................................................................................... 78 

 

SUMMARY ......................................................................................................... 85 

 

LITERATURE CITED ......................................................................................... 88 



 vi 

LIST OF FIGURES 

CHAPTER 1  

FIGURE 1: THE WINGS APART (WAP) MUTATION IS CHARACTERIZED BY 
THREE PHENOTYPES ...................................................................................... 22 

FIGURE 2: WAP WAS PREVIOUSLY MAPPED TO REGION 20A2-3 OF THE 
PROXIMAL X CHROMOSOME .......................................................................... 23 

FIGURE 3: WAP MUTATIONS ARE LETHAL WHEN HETEROZYGOUS WITH 
FOUR OF THE TESTED DEFICIENCIES .......................................................... 26 

FIGURE 4: DP(1;3)DC389 RESCUES DF(1)EXEL6255/WAP2 AND DF(1)DCB1-
35C/WAP2 HETEROZYGOTES ......................................................................... 36 

FIGURE 5: REFINED MAP OF THE PROXIMAL X CHROMOSOME ................ 38 

FIGURE 6: KNOCK DOWN OF CG14614 REPRODUCES THE TDT 
PHENOTYPE OBSERVED IN WAP MUTANTS ................................................. 42 

FIGURE 7: KNOCK DOWN OF CG14619 RECAPITULATES THE PHENOTYPE 
OBSERVED IN INTRO MUTANTS ..................................................................... 45 

FIGURE 8: FOUNDER CELLS ARE SPECIFIED EARLY IN DEVELOPMENT 
BUT ARE LATER LOST IN WAP MUTANTS ..................................................... 48 

FIGURE 9: THE POSTERIOR DORSAL MESOTHORACIC NERVE (PDMN) IS 
RESTRUCTURED TO REACH THE TDT .......................................................... 50 

FIGURE 10: NEUROMUSCULAR JUNCTIONS (NMJS) ARE NOT OBSERVED 
IN WAP MUTANTS ............................................................................................ 51 

 

CHAPTER 2 

FIGURE 1: A 1,059 BP ENHANCER CONTROLS MEF2 EXPRESSION IN THE 
DORSAL MESODERM ....................................................................................... 72 

FIGURE 2: THE E1 BINDING SITE IS REQUIRED FOR MEF2 ACTIVITY AND 
DIRECTLY BINDS TWIST PROTEIN ................................................................. 74 

FIGURE 3: DELETION OF MAD/MEDEA BINDING SITES ON THE MEF2 
ENHANCER REDUCES DORSAL MESODERM EXPRESSION OF MEF2 ...... 75 

FIGURE 4: THE DM3 ENHANCER IS ACTIVATED IN DROSOPHILA SL2 
CELLS. ............................................................................................................... 77 

 



 vii 

LIST OF TABLES 

 

CHAPTER 1 

TABLE 1: VIABILITY OF DEFICIENCIES MAPPED TO THE OTHER 
DEFICIENCIES .................................................................................................. 28 

TABLE 2: VIABILITY OF MUTATIONS MAPPED BY DEFICIENCIES .............. 32 

TABLE 3: RESCUE OF MUTATIONS BY X CHROMOSOME DUPLICATIONS 34 

TABLE 4: GENES KNOCKED DOWN BY RNAI ................................................ 40 

 



1 

 

INTRODUCTION 

The study of myogenesis is critically important to understand the function 

and maintenance of specific muscles, failure of which can lead to muscular 

dystrophies.  These diseases are primarily characterized by skeletal muscle 

wasting and weakness of varying distribution and severity (Campbell, 1995 and 

Emery, 2002).  Such diseases can result from specific genetic defects common 

to all muscle cell nuclei, yet in many cases selectively affect individual muscles 

throughout the body (Lamminen, 1990).  The selective effects on different 

muscles or muscle groups make management of the disease in specific 

individuals dependent on the type and severity of dystrophy (Emery, 2002).  

Mutations in specific genes associated with muscular dystrophies have been 

identified and protein products from these genes are being analyzed in several 

animal models (Campbell, 1995).  This research has shown that common 

understanding of the molecules and mechanisms involved in muscular 

dystrophies has been oversimplified and further analyses are necessary to 

understand the disease mechanisms (Emery, 2002).   

The mechanisms involved in invertebrate muscle development are similar 

to those for vertebrate muscle formation, making the animal model Drosophila 

melanogaster well suited for studies of myogenesis (Baylies and Michelson, 

2001). In flies, the basic patterning and specification of the somatic, or skeletal, 

musculature is similar for all muscle fibers. Moreover, early embryonic 

myogenesis in Drosophila is completed within a few hours (Bate, 1990). These 

facts, alongside the utility of Drosophila to apply a genetic approach to the study 
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of biological processes, make this system highly amenable to uncovering basic 

and broadly relevant aspects of muscle development.  

 The mechanisms of Drosophila muscle development occur as a series of 

consecutive events. The outcome of each event is usually the measure through 

which the investigator assesses the extent of myogenesis in wild-type and 

mutant combinations.  

Prior to formation of the somatic musculature, the mesoderm must first be 

specified. This specification of this germ layer is determined by expression of the 

dorsal (FBgn0260632) group genes along the dorsoventral axis of the embryo, 

which leads to activation of genes such as twist (FBgn0003900) and snail 

(FBgn0003448, Leptin, 1991, and Jiang et al., 1991). twist and snail are 

expressed in cells of the ventral side of the embryo. The snail expressing cells 

give rise to the presumptive mesoderm that invaginates immediately upon 

reaching a critical threshold of twist expression (Leptin et al., 1992). This first 

phase of mesoderm invagination is achieved in less than twenty minutes and 

forms a tube of cells through a process of cell shape changes, creating what is 

known as the ventral furrow (Kam et al., 1991). Formation of the mesoderm 

occurs when cells from the presumptive mesoderm tube disperse and spread 

into a single layer of cells over the ventral ectoderm (Leptin, et al., 1991). At this 

point, snail expression is not longer detected, but twist expression persists 

(Kosman et al., 1991). 

Following specification, the mesoderm becomes segmented along both 

the dorsoventral axis and the anteroposterior axis of the embryo. The gradient of 
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Dorsal protein established at the onset of embryogenesis along with ectodermal 

signal induction by decapentaplegic (Dpp, FBgn0000490) and wingless (wg, 

FBgn0004009) signaling leads to activation of genes necessary for dorsoventral 

segmentation of the mesoderm. High concentrations of Dorsal protein are found 

at the ventral side of the embryo and activate genes such as twi. Dpp is required 

for induction of the dorsal mesoderm segregation by activating genes like 

bagpipe (bap, FBgn0004862) and maintaining levels of tinman (tin, 

FBgn0004110) dorsally and repressing ventrally expressed genes, (reviewed in 

Maqbool and Jagla, 2007). The signal induction allows the dorsal mesoderm to 

form the midgut visceral mesoderm, dorsal muscles, and heart (Azpiazu and 

Frasch, 1993, Bodmer, 1993, Azpiazu et al., 1996). This regional dorsoventral 

subdivision of the mesoderm is conserved from invertebrates and vertebrates 

(reviewed in Azpiazu and Frasch 1993).  

After segmentation of the dorsoventral compartments, the mesoderm is 

organized into parasegmental units with anterior and posterior portions adopting 

different developmental fates (Azpiazu et al., 1996). Cells in the posterior portion 

of the parasegments express high levels of twist, ultimately leading to formation 

of the somatic musculature (Azpiazu et al. 1996, Baylies and Bate, 1996, 

Castanon et al., 2001, and Furlong et al., 2001) by activation of myogenic 

regulators such as Myocyte enhancer factor 2 (Mef2, FBgn0011656) (Lilly et al., 

1995). A small population of high Twist-expressing cells postpones differentiation 

and is set aside for adult muscle development during pupal metamorphosis. 

These cells are situated at very specific locations, associated with the peripheral 
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nerves of the abdomen and imaginal discs of the thorax, and prespecify the 

pattern of the adult musculature  (reviewed in Roy and VijayRaghavan, 1999). In 

the remainder of these cells, twist expression decreases and allows for 

differentiation of the embryonic musculature (Baylies and Bate, 1996). 

Following subdivision of the mesoderm, embryonic skeletal muscle 

development initiates upon specification of a unique founder cell (FC) for each 

skeletal muscle fiber, and the genetic segregation of that cell from unspecified 

fusion-competent myoblasts (FCMs) within the mesoderm (Bate, 1990). FCs are 

specified by the Ras signaling pathway (Artero et al., 2004, Stute et al., 2004) 

and are differentiated from FCMs by expression of specific genetic markers, such 

as Kin of Irre/Dumbfounded (FBgn0028369), Roughest/Irregular Chiasm 

(FBgn0003285), and Rolling Pebbles/Antisocial (FBgn0041096). The FCs then 

attract the unspecified FCMs to the site of muscle formation, for fusion to 

generate precursors of the individual muscles of the somatic musculature 

(reviewed in Chen and Olson, 2004). The FCs are critical determinants of muscle 

fate. It is widely thought that the FC is responsible for conferring upon the 

resulting muscle many of the characteristics unique to that muscle: sites of 

muscle attachment to the cuticle, orientation of the muscle in the embryo, and 

muscle size (Rushton et al., 1995). 

 Following specification of FCs and FCMs, myoblast fusion is mediated by 

genetic factors governing orientation, adhesion, and eventually fusion of the cells 

to form myotubes (reviewed in Haralalka et al. 2010).  The fusion process 

includes FC-specific markers as well as FCM-specific markers, such as Sticks 
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and Stones (FBgn0024189), Hibris (FBgn0029082), and Lame Duck 

(FBgn0039039) (Artero et al., 2004).  Other markers expressed during myoblast 

fusion are molecules of the Rac GTPase signaling pathway and the Ras activator 

myoblast city (FBgn0015513, Laurin et al., 2008), Loner (FBgn0026179), kette 

(FBgn0011771, Menon et al., 2005), and blown fuse (FBgn0004133, Schroter et 

al., 2004). Multiple rounds of fusion between FCs and FCMs are required for 

growth of muscles in the embryo (Bate, 1990, Menon et al., 2005). Cues from the 

overlying ectoderm, such as secretion of Dpp and wg proteins are also 

necessary for specification of cell type, myoblast fusion and differentiation (Bate, 

1990, Rushton et al., 1995, Currie and Bate, 1991, and Baylies et al., 1995).   

 Specific muscle gene sets are selectively activated in the individual 

myoblasts and myotubes by myogenic regulatory proteins such as MEF2 

(Sandmann et al., 2006), including the contractile proteins Myosin heavy chain, 

Troponins I, T, and C, and muscle-specific actins (Arbeitman et al., 2002, Lin et 

al., 1996, Kelly et al., 2002, and Kelly Tanaka et al., 2008). Accumulation of 

these contractile proteins, or their mRNA transcripts is indicative of terminal 

muscle differentiation and are expressed synchronously with genes expressed in 

the central nervous system (Arbeitman et al. 2002).  

 During the larval stage, muscles specified in the embryo undergo a 

profound degree of hypertrophy, without overt addition of new myoblasts, nor of 

nuclear division within the muscles syncitium (Demontis and Perrimon, 2009).  

Also occurring during the larval stage is the active proliferation of twist-

expressing cells. These cells form precursors of adult muscles (Bate et al., 
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1991).  The precursors for the adult head and thorax are stored in the larval 

imaginal discs and will contribute to the adult-specific muscle pattern during 

pupal development (Bate et al., 1991, Rivlin et al., 2000, and reviewed in Roy 

and VijayRaghavan, 1999). 

 The pattern of adult muscles bears little resemblance to the pattern of 

larval muscles. In order to form the adult muscles, at metamorphosis most larval 

muscles histolyze and adult muscles are formed de novo by migration and fusion 

of adult muscle precursor cells (Currie and Bate, 1991, Fernandes et al., 1991). 

Within these migrating populations, the new adult muscles develop in much the 

same manner as is observed for embryonic/larval muscles: founder cells are 

specified early during the pupal stage and myoblast fusion occurs, presumably 

through a mechanism similar to that defined for the embryo (Rivlin et al., 2000, 

Dutta et al., 2004, Atreya and Fernandes, 2008). 

 The nervous system plays a crucial role in the formation and patterning of 

adult muscles (Fernandes and Keshishian, 2004) but not in embryonic muscles 

(Broadie and Bate, 1993).  Adult muscle development proceeds in parallel with 

neuronal restructuring during metamorphosis allowing one to interact with and 

influence the other (Fernandes and VijayRaghavan, 1993). In the absence of 

innervation, founder cell markers of the dorsal longitudinal muscles are lost 

around the time fusion would occur and the proliferation of myoblasts is reduced. 

It is unclear whether this occurs for other muscle types. Fusion of myoblasts is 

initiated when the developing neuron is denervated, however, muscle 

development cannot be sustained (reviewed in Roy and VijayRaghavan, 1999). 
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Adult muscles that develop de novo following histolysis of larval muscles are 

more sensitive to denervation than adult muscles formed by fusion of myoblasts 

to larval muscle scaffolds, such as the dorsal longitudinal muscles (Fernandes 

and Keshishian, 1998, Fernandes and Keshishian, 2004).     

 The final pattern of adult muscles is far more complex than that of the 

embryo (reviewed in Bernstein et al., 2003). While each individual embryonic 

muscle is composed of a single syncytial fiber, adult muscles are composed of 

multiple myofibers (reviewed in Baylies et al. 1998). The muscles of the embryo 

are arranged in a repeated segmental pattern with thirty muscles per 

hemisegment. By contrast, the adult musculature contains muscles that are 

larger and can span multiple segments. In addition to the differences in size and 

fiber number, the musculature of the Drosophila embryo and adult differ by the 

relative importance of innervation for proper muscle specification, the role of the 

epidermis in establishing muscle attachments and guiding myoblast migration to 

proper sites of development, and the role of hormone signaling in specifying the 

identity of the muscles (reviewed in Roy and VijayRaghavan, 1999). The adult fly 

is characterized by a vast diversity in muscle types, which differ from each other 

ultrastructurally, physiologically, and at the level of gene expression. Since each 

muscle of the adult fly has its own unique identity, in spite of undergoing a similar 

myogenic program to other muscles, it is important to study the mechanisms by 

which specific muscles are formed. 

 The study presented in Chapter 1 of this dissertation aims to further 

elucidate the mechanisms that are important for proper formation of the Tergal 
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Depressor of Trochanter (TDT or "jump") muscle in Drosophila. Specifically, the 

study aims to identify the gene that is affected by a mutation called wings apart 

(wap) that causes loss of the TDT. Both the genetic basis of the wap mutation 

and the phenotypic consequences of this mutation are explored. In addition, the 

mechanism by which the mutation causes loss of the TDT in adult flies is 

examined. 

 Chapter 2 focuses on the regulation of the Mef2 gene in early mesodermal 

development. Although much is known about how this myogenic regulator is itself 

regulated, direct regulators at the earliest stages of development are yet to be 

fully characterized. This chapter assesses the potential combinatorial roles of the 

candidate transcription factors Twist and Mad on regulation of the early Mef2 

enhancer. 
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WINGS APART GENE IN DROSOPHILA 
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Abstract 

 The wings apart (wap, FBgn0004000) phenotype is due to a semi-lethal 

mutation located on the proximal X chromosome, mapped to region 20A. The 

wap mutation results in loss of the TDT. Prior to my study, it was unknown what 

transcription unit is mutated to produce the observed wap phenotype, nor which 

process of TDT development is affected by this mutation. In this study, 

complementation mapping and RNAi knockdown technology were used to 

identify CG14614 (FBgn0031186) as the annotated gene model affected by the 

wap mutation. CG14614 encodes a WD40 repeat protein homologous to the 

vertebrate wdr68 gene found in skeletal muscle. Results of the RNAi knockdown 

also allowed for identification of CG14619 (FBgn0031187) as the annotated gene 

model affected by the intro mutation. Analysis of TDT development in wap 

mutants indicated that TDT-specific founder cells are specified early in 

development but are later lost. The neuron that innervates the TDT reaches its 

target in wap mutants but neuromuscular junctions do not form properly. Insights 

from this study can help us elucidate mechanisms of neuromuscular 

development and facilitate understanding of neuromuscular diseases that may 

result from mis-expression of muscle-specific or neuron-specific genes. 

Introduction 
 

The degree to which many muscle diseases impact muscles often differs 

between distinct subsets of muscles, and some muscle diseases affect only 

specific muscle types (Tixier et al. 2010).  Although as many as 25 genes have 

been implicated in congenital and degenerative muscle diseases, there remain 

some muscle diseases for which causative mutant genes are unidentified (Guyon 
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et al. 2007). It is well known that morphologically and functionally distinct subsets 

of muscles arise from a uniform pool of mesodermal cells and are regulated by 

similar genes and developmental mechanisms (Roy and VijayRaghavan, 1999). 

It is, therefore, important to understand how distinct muscle subsets are properly 

formed to better understand the genetic defects that lead to muscle diseases.  

Muscle development is well conserved from insects to mammals 

(reviewed in Buckingham, 2006) and the basic structure of muscle fibers is also 

conserved from insects to mammals (Schulz et al., 1991). Furthermore, different 

subtypes of human muscle diseases are affected by mutations in genes with 

muscle specific-orthologs in Drosophila (Tixier, et al 2010). For these reasons, 

research using the model organism Drosophila melanogaster can provide insight 

into the basic mechanisms of muscle formation and patterning in more complex 

animals, such as vertebrates.  

Two sets of muscles are formed during Drosophila development and serve 

different purposes throughout the fly life cycle. The embryonic musculature 

histolyzes at the onset of metamorphosis at which time the adult musculature is 

formed. The adult muscles are more complex and sophisticated than embryonic 

muscles (Fernandes et al., 2005) and more closely resemble those of vertebrate 

muscle systems (reviewed in Maqbool and Jagla, 2007). For example, adult 

muscles in Drosophila often are composed of multiple individual fibers; in 

addition, some adult muscles have been shown to require innervation for their 

normal development. The majority of information available regarding adult 

muscle development is based on studies of the thoracic musculature, including 
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the indirect flight muscles (IFMs) and the Tergal Depressor of Trochanter (TDT) 

(Roy and VijayRaghavan, 1999).  

 The TDT or “jump” muscle in adult Drosophila is necessary for the escape 

response (Nachtigall and Wilson, 1967) and is stimulated by excitation of the 

giant fiber system (Allen et al., 2000).  During early metamorphosis, after 

histolysis of larval muscles, two populations of twist-expressing adepithelial 

myoblasts from the T2 leg imaginal disc migrate to the site of TDT myogenesis.  

The early developing TDT consists of 12-13 closely packed imaginal pioneer (IP 

or founder) cells (identified by elongated shape and large nuclei) surrounded by 

many small myoblasts (Rivlin et al., 2000).  As fusion of founders and myoblasts 

proceeds, the TDT elongates dorsoventrally and makes contact with the 

epidermal cells on the dorsal side of the animal (Rivlin et al., 2000).  At 24 hours 

after puparium formation (APF), the TDT appears as a group of fibers 

surrounding a core of mitotic myoblasts with unfused mitotic myoblasts located at 

the dorsal end (Rivlin et al., 2000).   

The mature TDT spans the dorsoventral axis of the adult thoracic cavity 

(Miller, 1950) between the DVM I and DVM II muscles (Fernandes and 

VijayRaghavan, 1993) and attaches to the dorsal notum of the second leg tendon 

(Miller, 1950, referenced by Rivlin et al., 2000).  It is innervated by the Posterior 

Dorsal Mesothoracic Nerve (PDMN), which is restructured from the larval 

Intersegmental Nerve (ISN) branching off of the ventral ganglion (Fernandes and 

VijayRaghavan, 1993). 
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The TDT is a tubular muscle comprised of 26-28 large and 4 small fibers 

organized into a rosette pattern, but can be drastically altered by defects in the 

genetic program specifying the TDT.  Jaramillo et al. (Jaramillo et al. 2009) 

showed that components of the TGF-β signaling pathway are involved in 

regulating the specification of TDT-specific founder cells and subsequently the 

number of muscle fibers found in the mature TDT. Similarly, the vertebrate TGF-

β molecule myostatin regulates fiber number. In addition to its role in the 

development of muscle fibers, the TGF-β pathway also influences multiple 

tissues in a context-dependent manner (reviewed in Kollias and McDermott, 

2008).  

The TGF-β signaling pathway is also required for proper wing 

morphogenesis (Khalsa et al., 1998) and signaling events are heightened within 

the presumptive wing crossveins (Ralston and Blair, 2005). Since components of 

the TGF-β signaling pathway have been shown to modulate developmental 

events in both the wing and TDT, mutations in crossvein patterning genes were 

examined to determine if these genes are components of the TGF-β pathway 

and if these genes play a role in specification of the TDT pattern (Cripps, 

unpublished data). One such mutant identified is wings apart (wap).   

 wap is a semi-lethal gene with mutant lethality occurring in the pupal 

stage, despite showing no delay in developmental timing (Schalet and Lefevre, 

1973). wap escapers become entrapped in the food medium and die shortly after 

eclosion (Schalet and Lefevre, 1973). Escapers exhibiting the wap phenotype are 

characterized by wings slightly set apart, a darker than normal thorax, and one or 
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more additional crossveins between the second and third longitudinal veins of the 

adult wings (Schalet, 1972 and Schalet and Lefevre, 1973). Complementation 

mapping of polytene X chromosomes using wap alleles, induced by X-rays, 

chemicals, and p-element transpositions, indicate wap is localized to the 20A3-4 

region of the X chromosome (Lifschytz and Falk, 1968, Lifschytz and Falk, 1969, 

and Eeken et al., 1985).  It is thought to most likely be between the extra organs 

(eo, FBgn0000580) and uncoordinated-like (uncl, FBgn0003951) loci, 20A2 and 

20A5, respectively (Schalet, 1972).  The exact location of the wap gene had not 

previously been definitively mapped to a single transcription unit due to difficulty 

in evaluating the proximal end of the X chromosome, most likely because of its 

strongly heterochromatic nature, and the large number of transposable elements 

in that region (Schalet and Lefevre, 1973, Eeken et al., 1985, and FlyBase 

FB2012_03).  It is currently unknown what annotated gene model within this 

region is responsible for the phenotype associated with wap escapers.  

 In this study I show that the wap mutation not only affects the patterning of 

the wing crossveins but also causes a defect in TDT formation. Many of the wap 

mutant escapers completely lack the TDT while a very small percentage of these 

escapers exhibit a greater than 60% reduction in the number of muscle fibers. 

We also identify CG14614, a WD40 repeat protein, as the transcriptional unit that 

is mutated to cause the wap phenotype. In addition, we show that the founder 

cells that specify the TDT are present in the wap mutant early in development but 

are later lost leading to degeneration of the muscle. This degeneration is shown 
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to be due to defects in synaptogenesis at the neuromuscular junctions between 

the TDT muscle and the PDM nerve. 

Materials and Methods 
 

Drosophila stocks 

 Drosophila were grown on Carpenter's medium (Carpenter, 1950) at 25oC 

unless otherwise specified. Fly stocks used in the X chromosome deficiency 

screening, mutation mapping crosses, Gal4 driver lines and X chromosome 

duplication screening were obtained from the Bloomington Drosophila Stock 

Center, with exception to those noted below. The stock carrying the wap3 allele 

was obtained from the Drosophila Genetic Resource Center, Kyoto Institute of 

Technology. The Act79B-Gal4 driver was made by Anton Bryantsev 

(unpublished). Mary Baylies (Memorial Sloan Kettering Cancer Center, NY) 

generously provided the rP298-lacZ transgenic line. UAS-RNAi lines were 

obtained from the Vienna Drosophila Stock Center (VDRC), except two UAS-

DIP1 RNAi lines obtained from the Transgenic RNAi Project (TRiP) at Harvard 

Medical School.  

Deficiency screens 

 Each genetic cross was composed of equal numbers of virgin females and 

males and maintained at 25oC. For deficiency screening with wap alleles, each 

mutant allele was crossed with the deficiency lines Df(1)Exel6255 (Exelixis, Inc.), 

Df(1)BSC708, Df(1)LB6, Df(1)54, Df(1)DCB1-35c, Df(1)DCB1-35b, and Df(1)R8A 

(Schalet and Finnerty, 1968, Schalet and Lefevre, 1973 and Rahman and 

Lindsley, 1981). The number of progeny eclosed from each individual cross was 
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counted. Comparisons between the total numbers of female progeny with 

balancer/mutation genotype and female progeny with the deficiency/mutation 

genotype were performed using Student's t-test. Lethality of a combination was 

concluded only if crosses with each allele of the mutation resulted in lethality. 

Analyses of TDT and wing crossvein phenotypes were performed for both 

balancer/wap and deficiency/wap genotypes as described below. 

The previously-mentioned deficiency lines were also crossed with each 

other to further refine the X chromosome map. These same deficiency lines were 

used to map other proximal X chromosome mutations thought to be within the 

region spanning 20A to 20C: l(1)G0179, eo16-2-27, eo25, intro3, uncl1, uncl10, soz1, 

l(1)20Cb2, l(1)20Cb6, l(1)20Ca1, l(1)20Ca2, and l(1)G1096.  

Duplication screens 

 Virgin females of each mutation used in the deficiency screens were also 

crossed with equal numbers of males from X chromosome duplication lines 

spanning the region deleted by the Df(1)Exel6255 deficiency. The duplication 

lines used in these experiments were Dp(1;3)DC382, Dp(1;3)DC383, 

Dp(1;3)DC384, Dp(1;3)DC562, Dp(1;3)DC386, Dp(1;3)DC387, Dp(1;3)DC388, 

Dp(1;3)DC389, and Dp(1;3)DC390 (Popodi et al., 2010). Not all combinations of 

mutations and duplications were tested against one another since some 

mutations are complemented by deficiencies of the duplicated region. For those 

duplications tested, the number of eclosing male progeny with the genotype 

balancer/Y;duplication/+ were compared with male progeny of the 
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mutation/Y;duplication/+ genotype using Student’s t-test to assess the ability of 

each duplication tested to rescue the phenotype of the mutations.  

 To insure that any phenotypic rescue observed in the previous duplication 

analysis with wap was not due to rescue of a secondary mutation, lines were 

generated that had the genotype Df(1)Exel6255/FM7a;duplication/duplication 

and/or Df(1)DCB1-35c/FM7a;duplication/duplication for the each of the following 

duplications: Dp(1,3)DC383, Dp(1,3)DC384, Dp(1,3)DC562, Dp(1,3)DC386, 

Dp(1,3)DC387, Dp(1,3)DC388, and Dp(1,3)DC389. These lines were crossed 

with wap2/Dp(1,y)y+mal171 males. Female FM7a/wap2;duplication/+ progeny were 

compared with female deficiency/wap2;duplication/+ progeny to assess whether 

the wap mutation can be rescued by the duplications. The TDT and wing 

crossvein phenotypes were assessed as described below for rescue by 

duplication. 

 RNAi knock-down 

 The Gal4/UAS system was utilized for RNAi knockdown experiments 

(Brand and Perrimon, 1993). Equal numbers of virgin female and male flies were 

allowed to mate three days at 25oC at which point crosses were transferred to 

29oC to activate the Gal4 drivers. tub-Gal4 and da-Gal4 were used as ubiquitous 

drivers for initial RNAi analysis. To determine tissue specific effects of RNAi 

knockdown, Act79B-Gal4 and 1151-Gal4 drivers were used for muscle-specific 

knockdown and elav-Gal4 was used for knockdown in the nervous system. UAS-

RNAi lines were utilized for knockdown of DIP1 (VDRC lines 50206, 50207, and 

108186 and TRiP lines 35226 and 35333), CG14614 (line 107076), CG14619 
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(lines 37929 and 37930), CG14618 (lines 24879 and 47451), CG12576 (lines 

51205 and 104261), and Cp110 (lines 24874, 24875, and 101161). RNAi 

knockdowns were assessed for viability. TDT formation was assessed by 

cryosections of pharate pupae of the pupal lethal knockdowns as described in 

the following sections.  

Recombination experiment 

 To obtain flies carrying both the wap mutation and the founder cell-specific  

rP298-lacZ transgene (described in Ruiz-Gomez et al., 2000), I performed 

recombination crosses. Female FM7i,GFP/wap mutants were crossed with equal 

numbers of rP298-lacZ transgenic males. Both the wap2 and wap9 alleles were 

used for these crosses. rP298-lacZ/wap female progeny from the F1 generation 

were selected as virgins and crossed with FM7i,GFP/Y males. Each female of 

the F2 generation was isolated individually as virgins and again crossed with 

FM7i,GFP/Y males to establish stable stocks.  

 Progeny from these crosses were assessed for presence of the wap 

mutation by observing the Bar-eye phenotype associated with the FM7i, GFP 

balancer. The presence of males with wild-type eye morphology indicated that 

the lethal wap mutation could not be present in the generated stock. To screen 

for the presence of the rP289-lacZ transgenic marker, two adult flies from each 

line positive for the wap mutation were filleted and stained overnight at 37oC in 

XGAL solution [1X PBS, 100 mM K4[Fe(CN)6], 100 mM K3[Fe(CN)6], 150 mM 

NaCl, 1 mM MgCl2, and 0.2% w/v X-Gal (Sigma)]. Stocks positive for both the 
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wap mutation and rP298-lacZ transgene were used in pupal dissections 

described below. 

Preparation of samples for microscopy 

 Samples  to be analyzed for TDT structure were prepared for paraffin 

sectioning according to methods described by Lyons et al. (Lyons et al., 1990), 

modified by Cripps et al. (Cripps et al. 1998). Sections were cut at 10 µm and 

stained with Hematoxylin and Eosin (Sigma). Stained slides were dehydrated 

through 100% ethanol, soaked in xylene, and mounted in Cytoseal-XYL (VWR 

Scientific products).  

 Cryosections were prepared by removing pharate pupae from the pupal 

case, embedding in OTC medium and freezing. Sections were cut at 10 µm at -

18oC and air dried. Samples were fixed for 8 minutes at room temperature with 

3.7% v/v formaldehyde in PBTx [1XPBS, 0.2% v/v Triton-X100, 0.2% w/v 

Blocking Agent (Roche)], washed and used for antibody staining as described in 

the following section. 

 For pupal dissections to assess founder cell specification and 

neuromuscular junction formation, new white prepupae were selected and aged 

until the appropriate time for dissection. Pupal samples were dissected in a 

Sylgard-coated petri dish (Dow Corning) and pinned open. Samples were fixed 

for 30 min on ice in 5% formaldehyde in 1X PBS, washed in PBTx, then 

subjected to blocking and incubated with antibody (described below). 

 For analysis of the crossveins of the adult wings, wings were removed 

from adult flies and stored overnight in 70% (v/v) ethanol. Wings were transferred 
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twice into 100% ethanol and soaked in 100% xylene prior to being mounted in 

Cytoseal-XYL (VWR Scientific Products) for imaging. 

Immunohistochemistry of prepared samples and imaging 

 Fixed and washed samples were stained with antibodies as described by  

Patel (Patel, 1994) and modified by Molina and Cripps (Molina and Cripps, 

2001). Primary antibodies used for cryosections were anti-βPS-integrin 1:10 

(Brower et al., 2008) (University of Iowa Developmental Studies Hybridoma 

Bank). For pupal dissections, primary antibodies used were mouse anti-β-

galactosidase 1:400 (Promega), rabbit anti-MEF2 1:1000 (Lilly et al., 1995) 

(provided by Bruce Paterson, NIH), mouse anti-22C10 1:100 (University of Iowa 

Developmental Studies Hybridoma Bank), rabbit anti-HRP 1:25 (GenScript), and 

mouse anti-Dlg 1:10 (University of Iowa Developmental Studies Hybridoma 

Bank). For immunofluorescence of sections, Alexa conjugated (Molecular 

Probes) secondary antibodies were mixed with Alexa-488 phalloidin at 1:500 

(Molecular Probes) and 2 µg/mL DAPI (Sigma). Alexa-conjugated secondary 

antibodies were diluted to 1:2000 for pupal stains.  

 An Olympus BX-51 stereomicroscope with DIC or fluorescent optics was 

used to collect images. Adobe Photoshop was used to compile digitally collected 

images into figures. 

Results 
 

wings apart (wap) mutants are characterized by three phenotypes 

 Mutants with defects in the crossveins of the adult wings were examined 

to determine if these mutants also exhibit TDT defects since components of 
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signaling pathways involved in wing vein development are also involved in proper 

TDT development. Mutant thoraces were visualized in paraffin sections cut 

horizontally to the muscle axis (unpublished data). One of the mutants analyzed 

was the wings apart (wap) mutant that is characterized by three phenotypes 

(Figure 1). Figure 1A shows the wing of an adult wild-type fly. In a wild-type wing, 

there are five longitudinal veins and two crossveins. By contrast, the wings apart 

mutant has supernumerary crossveins located between the second and third 

longitudinal veins (arrows in Figure 1B). The TDT of the wild-type fly is organized 

in a rosette pattern, between the DVM I and DVM II muscles (Figure 1C). When 

paraffin sections of the thoracic muscles were visualized in the wap mutant, we 

observed that the TDT is absent while no other thoracic muscles are affected 

(asterisk in Figure 1D). In addition to the wing and TDT phenotypes, wap mutants 

are semi-lethal as homozygotes (Schalet, 1972) and this semi-lethal phenotype 

is observed in heteroallelic combinations of three wap alleles (Figure 1E). Since 

the phenotypes are observed in all homozygous lines of wap mutants, as well as 

in heteroallelic combinations of the alleles, we can conclude that the phenotypes 

all arise from the same mutation. 
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wap is located in region 20C in the proximal X chromosome 

 Mapping of the wap mutations by Lifschytz and Falk suggested that wap is 

located on the proximal X chromosome in region 20A3-4 (Lifschytz and Falk, 

1968, grey highlighted region in Figure 2). To more precisely localize the 

Figure 1: The wings apart (wap) mutation is characterized by three phenotypes. (A, B) Wings 
from wap escapers (B) have additional crossveins (arrows) between the second and third 
longitudinal veins compared with wild-type wings (A). (C, D) The TDT in wild-type flies is located 
between the DVM I and DVM II (C). The TDT is absent in wap mutants (asterisk in D). (E) 
Compared to wild-type flies, wap heteroallelic mutants exhibit a semi-lethal phenotype, similar to 
that of wap homozygous mutants. (*p<0.01, **p<0.001) 
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transcriptional unit affected by the wap mutation, each of the wap mutant alleles 

was crossed with the deficiency lines Df(1)Exel6255 (Exelixis Inc.), 

Df(1)BSC708, Df(1)LB6, Df(1)54, Df(1)DCB1-35c, Df(1)DCB1-35b, and Df(1)R8A 

(Schalet and Finnerty, 1968, Schalet and Lefevre, 1973 and Rahman and 

Lindsley, 1981). 

  

  

 

 

 

Results from complementation mapping of wap alleles with the deficiency 

lines indicated in Figure 2 (red bars) indicate that the deficiency lines 

Df(1)BSC708, Df(1)LB6, and Df(1)R8A complement wap. The data in Figure 3A 

Figure 2: wap was previously mapped to region 20A2-3 of the proximal X chromosome. 
The map of the proximal X chromosome indicates annotated genes (light blue bars) located 
between 19F6 and 20C1 of the X chromosome. The deficiencies used in this study are shown 
on the map by the red bars. Deficiencies Df(1)Exel6255 and Df(1)BSC708 are molecularly 
mapped. Other deficiencies were added to the map based on computed cytological location, 
but have undefined breakpoints (denoted by pink bars). Lower blue bars indicate the positions 
of molecularly defined duplication lines used in this study. The grey highlighted region 
denotes the region where wap was initially mapped. (Image was adapted from the map on 
FlyBase (FB2012_02).)  
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represent aggregate results for the wap2 and wap9 alleles. The wap3 allele was 

not included in the aggregated results but exhibited significantly reduced viability 

with the Df(1)BSC708 and Df(1)R8A deficiencies (data not shown). These two 

deficiencies nevertheless complemented wap, since wap2 and wap9 show strong 

viability in trans to the deletions. It is likely that the wap3 chromosome contains a 

second lethal mutation on it that is uncovered by Df(1)BSC708. The lethality 

observed for the Df(1)R8A deficiency with wap3 was due to the presence of the 

Df(1)R36 (Rahman and Lindsley, 1981) deletion on the same chromosome as 

the wap3 allele. If data from the wap3 allele is included in the analyses of these 

deficiencies, the percentage of eclosed females heterozygous for wap and the 

Df(1) BSC708 and Df(1)R8A deficiencies decreases to 63.5% and 52.3%, 

respectively, while these data for the other complementation analyses remain 

unaffected (data not shown). 

There are also four deletion lines, Df(1)Exel6255, Df(1)54, Df(1)DCB1-

35c, and Df(1)DCB1-35b, that are semi-lethal when heterozygous with the wap 

mutant (Figure 3A). These data suggest the region proximal to the Df(1)BSC708 

deletion and distal to the Df(1)R8A deletion is the region in which wap is located. 

To confirm that these escapers show all three wap phenotypes, the wings and 

thoraces of females heterozygous for the deficiencies and wap were analyzed by 

for the presence of the wing and TDT phenotype characteristic of wap. Those 

heterozygous females from the deficiency lines that complemented wap had 

normal wings and the TDT was present (Figure B and C, results from 

Df(1)BSC708/wap2 shown). The escapers from the semi-lethal heterozygotes 



 25 

exhibited an additional crossvein between the second and third longitudinal vein, 

characteristic of wap homozygous mutants (Figure 3D). The TDT in almost all of 

these heterozygous females was completely absent (Figure 3E, results from 

Df(1)Exel6255/wap2). It is important to note that although almost all escapers 

lack the TDT muscle, a small percentage of the escapers, 3% (n=64), had a TDT; 

however, the muscle exhibited abnormal morphology and a greater than 60% 

reduction in the number of fibers compared with a wild-type TDT muscle (10 to 

12 fibers in mutants compared with 30-32 fibers in wild-type). 

 Results of these analyses and previously published work (Lifschytz and 

Falk, 1968) suggest that a likely candidate for the wap phenotype is DIP1, as it is 

the only gene deleted by all four deficiencies located in region 20A, as long as 

we assume that the polytene band annotations to the genome are accurate. We 

sought to confirm this result using molecular analysis by sequencing the entire 

DIP1 gene in both the wap2 and wap9 alleles. We observed no non-synonymous 

amino acid substitutions within the coding region of the wap2 allele relative to the 

Drosophila melanogaster reference sequence (FB2012_03) and only a single 

variation within the coding region of the wap9 allele (data not shown). It remained 

unclear whether this mutation observed in the wap9 allele was significant to the 

function of DIP1 or if it was alternatively due to variation in the DIP1 gene among 

individual flies. Additionally, we were unable to reproduce the wap phenotypes by 

RNAi knockdown of DIP1 when using a number of different RNAi lines, and 

different Gal4 drivers (data not shown). 
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 Due to inconsistencies between the initial deficiency mapping of wap and 

the molecular analysis of DIP1, we sought to refine our mapping by performing 

complementation tests of the deficiencies themselves. This was done based on 

the possibility that annotated, computed breakpoints obtained from the FlyBase 

Figure 3: wap mutations are lethal when heterozygous with four of the tested 
deficiencies. (A) Proportion of eclosed females heterozygous for wap and the indicated 
deficiencies. Lethality was observed when wap was heterozygous with Df(1)54 (n = 104), 
Df(1)Exel6255 (n = 508), Df(1)DCB1-35c (n = 275), and Df(1)DCB1-35b (n = 114). (*p<0.01, 
**p<0.001) Df(1)BSC708 (n = 774), Df(1)LB6 (n = 304), and Df(1) R8A (n = 564) 
complemented wap. (B, C) Wings and thoraces of wap flies heterozygous with 
complementing deficiencies resemble the wild-type phenotype. (D, E) Wings and thoraces of 
mutants heterozygous for lethal deficiencies recapitulated the phenotype observed for wap 
homozygous mutants. The presence of an additional crossvein (arrow in D) was observed 
for with the lethal deficiencies. These deficiencies also resulted in loss of the TDT (asterisk 
in E) when heterozygous with wap.  
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database (FB2012_02) for several of the deficiencies (Df(1)LB6, Df(1)54, 

Df(1)DCB1-35c, Df(1)DCB1-35b, and Df(1)R8A) may not be located within the 

predicted region (indicated by the map in Figure 2). In this scenario, those genes 

located in region 20C1 and that are deleted by Df(1)Exel6255 cannot be ruled 

out as candidates for wap. Results found in Table 1 demonstrate 

complementation of Df(1)BSC708 and Df(1)LB6 with Df(1)DCB1-35c, suggesting 

that the proximal breakpoints for both Df(1)BSC708 and Df(1)LB6 are to the left 

(i.e., centromere distal) of the distal breakpoint for Df(1)DCB1-35c. The proximal 

breakpoints for Df(1)54 and Df(1)DCB1-35c are left of the distal breakpoint for 

Df(1)R8A, as both of these are complemented by the Df(1)R8A deficiency (Table 

1, last column). The distal breakpoint of Df(1)R8A is also more proximal than the 

proximal breakpoint of Df(1)Exel6255 as inferred from complementation between 

these two deficiencies. The Df(1)DCB1-35b deficiency spans the entire region 

tested, as previously reported (Schalet and Finnerty, 1968) and does not 

complement Df(1)R8A.   



28 

 

 

 

 

 

 

  

 

  Deficiency mapped 

Deficiency/Deficiency Df(1)BSC708 Df(1)LB6 Df(1)54 Df(1)Exel6255 
Df(1)DCB1-

35c 
Df(1)DCB1-

35b Df(1)R8A 

Df(1)BSC708 - - - - - - + 
Df(1)LB6 

 
- - - + - + 

Df(1)54 
  

- - - - + 
Df(1)Exel6255 

   
- - - + 

Df(1)DCB1-35c 
    

- - + 
Df(1)DCB1-35b 

     
- - 

Df(1)R8A             - 

Table 1: Viability of deficiencies mapped to the other deficiencies.  
NT indicates the deficiency lines were not crossed.  
+ indicates complementation of the deficiencies,  
- indicates lethality. 
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 While the mapping of the deficiencies resolved some of the 

inconsistencies in the locations of deficiency breakpoints, it was still not adequate 

to completely refine the map of this genetic region. I therefore complementation 

mapped additional mutations previously known to be located within the same 

region of the proximal X chromosome, for which the corresponding transcriptional 

units have yet to be identified from among the annotated gene models. These 

mutations are thought to affect predominantly single genes rather than multiple 

genes. If the mapping has sufficient resolution, candidate genes for the different 

mutants could be inferred (Table 2, mutants arranged according the predicted 

order on the chromosome).  

 The mutant/deficiency complementation data suggested that the locations 

of the mutations, relative to each of the other mutations tested, remain in the 

original map order, with the exception of l(1)20Ca and l(1)20Cb, for which the 

order was switched. However, the regions to which each of these mutations are 

located on the chromosome map does change.  

 The results presented in Table 2 indicate that the mutant l(1)G0179 is 

deleted by both Df(1)LB6 and Df(1)54, but not by the other deletions. l(1)G0179 

is complemented by Df(1)BSC708 suggesting its actual location on the 

chromosome is distal to region 19E7, where the breakpoint of Df(1)BSC708 is 

located (based upon annotation of cytological regions relative to annotated 

genomic coordinates on FlyBase, FB2012_02). It also suggests that the distal 

breakpoint of Df(1)54 extends even further distal to its computed breakpoint of 
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19F1 and the mapped breakpoint of Df(1)BSC708, although the exact extent of 

the deletion remains unknown.   

 Table 2 also indicated that the lethal extra organs (eo, FBgn0000580) 

mutation lies between the Df(1)BSC708 and Df(1)DCB1-35c deficiencies but is 

not complemented by Df(1)LB6, suggesting that the proximal breakpoint for the 

Df(1)LB6 deficiency is to the right of the proximal breakpoint for Df(1)BSC708.   

 The complementation results for the introverted (intro, FBgn0001268) 

mutation were very similar to those obtained for the wap mutation (Table 2 and 

Figure 3A). For both of these mutants, the mutation was localized to the region 

between the proximal breakpoint of Df(1)LB6 and the between the proximal and 

distal breakpoints of Df(1)DCB1-35c.  

 The uncoordinated-like (uncl, FBgn0003951) mutant was complemented 

by all the deficiencies except Df(1)54 and Df(1)DCB1-35b. This suggests that the 

mutation lies proximal to Df(1)Exel6255 and distal to Df(1)R8A. What is also 

suggested by these results is that one breakpoint of the Df(1)54 deficiency must 

also be found within the region between the breakpoints of these deficiencies. It 

is important to note that results were not consistent between the two uncl alleles 

used for the mapping (denoted by the asterisk in Table 2). A condition for lethality 

in this analysis is that the deficiency tested must fail to complement all alleles 

tested for a specific mutant. The analysis of these mutant alleles indicated that 

the uncl1 allele was lethal with all deficiencies except Df(1)LB6, suggesting that 

additional mutations may be present in the proximal region of the X chromosome 

in uncl1 mutants. 
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 Both the sozzled (soz, FBgn0001568) and l(1)20Ca (FBgn0001569) 

mutants were complemented by all the deficiencies except Df(1)DCB1-35c. This 

indicates that the location of these two mutations lies between the breakpoints of 

Df(1)Exel6255 and Df(1)R8A and proximal to uncl and the proximal breakpoint of 

Df(1)54. Lastly, the l(1)20Cb (FBgn0001570) mutant is complemented by all 

deficiencies, except for Df(1)R8A. 
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Mutation mapped 

 Deficiency/mut l(1)G0179 eo intro wap uncl soz l(1)20Cb l(1)20Ca 

Df(1)BSC708 + + + + - + + + 
Df(1)LB6 - - + + + + + + 
Df(1)54 - - - - - + + + 

Df(1)Exel6255 + - - - - + + + 
Df(1)DCB1-35c + + - - + + + + 
Df(1)DCB1-35b NT - - - - - + - 

Df(1)R8A + + + + + + - + 

Table 2: Viability of mutations mapped by deficiencies. 
Two alleles of each mutation, except l(1)G0179, intro, and soz, were crossed to each deficiency.  
NT indicates the mutation was not tested with the deficiency. 
*Two alleles of uncl were tested with inconsistent results between the alleles. 
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 To provide additional rigor to the deletion mapping data, each mutation 

tested in the above experiments was subjected to complementation experiments 

using duplication lines (blue bars in Figure 2) to rescue the phenotype observed 

in the mutants (Table 3). The duplication lines selected were those that span the 

region deleted by the Df(1)Exel6255 deficiency, since this deletion failed to 

complement wap; moreover, the breakpoints of this deficiency have been 

molecularly mapped. Not all of the duplications were tested with all the 

mutations, since the deficiency analysis suggested some mutations cannot be 

located in the regions duplicated. The analysis showed that, consistent with our 

deficiency screen data, the l(1)G0179, l(1)20Cb, and l(1)20Ca mutations cannot 

be rescued by any of the duplication constructs tested.  

The eo mutation also could not be rescued by any of the tested 

duplications. This could be due to the presence of more than one lethal mutation 

on the eo mutant chromosome or perhaps, the entire region required for 

expression of the eo gene product or some key regulatory region is not 

duplicated by the duplication line being tested. It is not surprising that the uncl 

mutation cannot be rescued by any of the duplications since the results from the 

deficiency screen suggested that multiple sites on the X chromosome were 

affected by the uncl mutation. soz was rescued by the Dp(1;3)DC390 duplication, 

refining the location of this gene to the region mapped in the complementation 

analysis. 

Table 2: Viability of mutations mapped by deficiencies. 
Two alleles of each mutation, except l(1)G0179, intro, and soz, were crossed to each deficiency.  
NT indicates the mutation was not tested with the deficiency. 
*Two alleles of uncl were tested with inconsistent results between the alleles. 
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  Mutation mapped 

Duplication/mutation l(1)G0179 eo intro wap Deficiency/wap uncl soz l(1)20Cb l(1)20Ca 

Dp(1;3)DC382 - - NT - NT - - NT NT 

Dp(1;3)DC383 - - NT - - - - NT NT 

Dp(1;3)DC384 - - NT - NT - - NT NT 

Dp(1;3)DC562 NT - - - - - - NT NT 

Dp(1;3)DC386 NT - - - - - - NT NT 

Dp(1;3)DC387 NT - - - - - - NT NT 

Dp(1;3)DC388 NT - - - - - - - - 

Dp(1;3)DC389 NT - + + + - - - - 

Dp(1;3)DC390 NT NT - - NT - + - - 

 

 

  

  

 

Table 3: Rescue of mutations by X chromosome duplications. 
intro and wap are rescued by Dp(1;3)DC389.  
soz is rescued by Dp(1;3)DC390.  
NT indicates the mutation was not tested with the duplication. 
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Data presented in Table 3 also indicate the ability of Dp(1;3)DC389 to 

rescue both intro and wap. This alone suggests that intro and wap are both 

located in the 92,593 bp region duplicated by Dp(1;3)DC389. Thus, DIP1 cannot 

be the gene responsible for wap, as the deficiency analysis previously 

suggested. When we crossed lines of Df(1)Exel6255/FM7a; 

Dp(1;3)DC389/Dp(1;3)DC389 with wap2/Dp(1,Y)y+mal171 males, we were able to 

rescue Df(1)Exel6255/wap2 females that were lethal in the absence of the 

duplication (Figure 4A). We were also able to rescue Df(1)DCB1-35c/wap2 

females with the Dp(1;3)DC389 duplication using the same approach; however, 

this result is less significant considering that the Df(1)DCB1-35c deficiency can 

itself be fully rescued by the Dp(1;3)DC389 duplication (data not shown). 

Thoraces from the both Df(1)Exel6255/wap2;Dp(1;3)DC389/+ females and 

Df(1)DCB1-35c/wap2;Dp(1;3)DC389/+ female have a wild-type wing phenotype 

(Figure 5B, see Figure 1A for comparison) and have a fully formed TDT (Figure 

5C, see Figure 1C). A few escapers eclosed from the lines with the 

Dp(1;3)DC383, Dp(1;3)DC386, and Dp(1;3)DC388 duplications. These flies were 

not considered to be rescued by these duplications as all escapers died shortly 

after eclosion, had extra wing veins, and lacked the TDT muscles (data not 

shown). 
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Based on the above information, it is necessary to draw a new map of 

region 20A to 20C. Figure 5 incorporates all the data obtained from this study 

into a new map presenting a clearer picture of the wap location. The map 

presented extends the region deleted in Df(1)LB6 beyond the proximal 

breakpoint of Df(1)BSC708. Although it remains unclear where the proximal 

breakpoint of Df(1)LB6 is located (pink bars in Figure 5), it cannot extend beyond 

the touch insensitive larva B (tilB, FBgn0014395) gene as this deficiency can 

complement tilB mutations (Kavlie et al. 2010). 

Figure 4: Dp(1;3)DC389 rescues Df(1)Exel6255/wap
2
 and Df(1)DCB1-35c/wap

2
 

heterozygotes. (A) Df(1)Exel6255/wap
2
 (n = 410) and Df(1)DCB1-35c/wap

2
 (n = 234) are 

lethal but can be rescued by Dp(1;3)DC389 (n = 53 and n = 108, respectively). (*p<0.01, 
**p<0.001) (B, C) Df(1)Exel6255/wap2;Dp(1;3)DC389/+ females have wild-type phenotypes. 
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The region deleted by the Df(1)54 deficiency can also be extended such 

that the map reflects the proximal breakpoint of this deletion being located 

between the proximal breakpoint of Df(1)Exel6255 and the distal breakpoint of 

Df(1)R8A and within the region duplicated by Dp(1;3)DC390, but cannot 

definitively say where this breakpoint is located. As is the case with the proximal 

breakpoints of Df(1)LB6 and Df(1)54, the position of the distal breakpoint of 

Df(1)R8A cannot accurately be defined. However, it is clear from the data that 

this deletion does not overlap with any of the other deficiencies used in this 

screen except for Df(1)DCB1-35b. It was also established that the entire deletion 

in the Df(1)DCB1-35c deficiency line is located in the region where the 

Dp(1;3)DC389 is located. The location of the distal breakpoint can also be 

restricted to the region proximal to tilB since this gene is complemented by 

Df(1)DCB1-35c (Kavlie et al. 2010). The regions where the eo, wap, intro, uncl, 

soz, and l(1)20Ca mutations are most likely found can be added to this map.  

eo is located within the region between the proximal breakpoint of  

Df(1)BSC708 and tilB, in which there are three genes—DIP1, CG14621, and 

CG14615. The key to identifying what transcriptional unit is affected by this 

mutant is to determine the precise molecular coordinates of the Df(1)LB6 

proximal breakpoint. uncl, soz, and l(1)20Ca are located proximal to 

Dp(1;3)DC389 but further analysis is required to define their precise locations.  
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CG14614 is the gene responsible for the wap phenotype 

Both wap and intro are found within the region defined by Df(1)DCB1-35c 

and Dp(1;3)DC389. Six genes, CG14614 (FBgn0031186), CG14619 

(FBgn0031187), CG14613 (FBgn0031188), CG14618 (FBgn0031189), CG12576 

(FBgn0031190), Cp110 (FBgn0031191), and l(1)G1096 (FBgn0027279), are 

found in this region. wap was complemented by a l(1)G0196 mutant suggesting 

l(1)G0196 is not the gene responsible for the wap phenotype (data not shown). 

For the other genes in the region, RNAi was performed to knock down 

expression of the products encoded by each gene using the well-established 

Drosophila Gal4/UAS system (Brand and Perrimon, 1993). The rationale for this 

Figure 5: Refined map of the proximal X chromosome. The map from Figure 2 was 
redrawn based on the results of mapping experiments. Positions of breakpoints for 
Df(1)LB6, Df(1)54, Df(1)DCB1-35c, and Df(1)R8A were adjusted but are still not 
molecularly defined. Undefined breakpoint are represented by pink bars. Green bars 
indicate the region where mutations must be located. 
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experiment was that by individually knocking down expression of each of the 

remaining candidate genes, it should be possible to recapitulate the wap 

phenotypes when the correct gene is knocked down. I initially carried out the 

knockdowns using the constitutively expressed Gal4 lines tub-Gal4 and da-Gal4.  

Table 4 lists the genes in the region for which RNAi constructs were 

available, along with the results of the knockdown with both the tub-Gal4 (Lee 

and Luo, 1999) and da-Gal4 (Dura, 2005.12.4) drivers. Knock down of CG14613 

was not tested due to unavailability of an RNAi construct. No lethality was 

observed in a CG14618 knock down and the knock down flies had a normal TDT. 

This gene was therefore ruled out as a candidate for wap. Viability was also 

observed when da-Gal4 was used to knock down CG14619 (line 37929), 

CG12576 (line 51205), and Cp110 (all lines). Lethality was observed when da-

Gal4 was used to drive knock down of CG14614 and CG14619 (line 37930). The 

tub-Gal4 driver was able to cause lethality when used to knock down CG14614, 

CG14619 (both lines), CG12576 (line 104261), and Cp110 (line 101161). All but 

one (CG12576) of the lethal tub-Gal4 knockdowns were lethal in the pupal stage. 

We were able to rule out CG12576 as a candidate for wap since wap mutants 

survive until the pupal stage. This left CG14614, CG14619, CG14613, and 

Cp110 as candidates for the gene responsible for the wap phenotype.
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Gene 
targeted 

VDRC Line 
number 

Off 
targets tub-Gal4 driver phenotype da-Gal4 driver phenotype 

CG14614 
 

107076 
 

0 
 

pupal lethal,  
reduced or absent TDT 

lethal 2 days post eclosion,  
reduced or absent TDT 

CG14619 
 

37929 
 

23 
 

pupal lethal,  
failure of head eversion 

viable, 
 normal TDT 

 

37930 
 

23 
 

pupal lethal,  
failure of head eversion 

pupal lethal,  
failure of head eversion 

CG14618 24879 0 viable viable, normal TDT 

 
47451 0 viable viable, normal TDT 

CG12576 51205 1 viable viable, normal TDT 

 
104261 0 larval lethal NT 

Cp110 24874 0 viable viable, normal TDT 

 
24875 0 viable viable, normal TDT 

  101161 0 pupal lethal, normal TDT viable, normal TDT 

Table 4: Genes knocked down by RNAi. 
UAS-RNAi lines for the indicated genes were obtained from VDRC stock center. 
Genes were tested using both the tub-Gal4 and da-Gal4 drivers. 
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I next wanted to determine if I had reproduced the wap TDT phenotype 

with any of the knock down experiments for the remaining candidates. Since 

CG14614, CG14619, and Cp110 are all lethal in the pupal stage, pharate pupae 

were removed from their pupal cases and cryogenically sectioned to assess the 

TDT morphology. Figure 6A is an example of the adult thoracic musculature. The 

TDT is positioned on the lateral side of the thorax, between DVMs I and II. The 

TDTs of Cp110 and CG14619 knockdown flies developed normally compared 

with the wild type flies (Figure 6B and C, arrows). Based on this observation, 

both Cp110 and CG14619 can be ruled out as candidates for wap. RNAi knock 

down of CG14614 resulted in flies that had absent TDT muscles (asterisk in 

Figure 6D) or reduced TDT fiber number (arrows in Figures 6E and 6F). In these 

knock downs, like the wap mutants, the majority of the flies analyzed were 

missing their TDTs with a few exhibiting a fifty percent or greater reduction in the 

number of TDT fibers. There were also some flies that exhibited both 

phenotypes, with a reduced phenotype TDT on one side of the thorax and one 

missing TDT on the contralateral side. These results strongly suggest that the 

gene that is mutated to give rise to the wap phenotype is CG14614. 
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Figure 6: Knock down of CG14614 reproduces the TDT phenotype observed in wap mutants. Pharate pupae from RNAi experiments 
resulting in pupal semi-lethal phenotype were sectioned cryogenically and stained with phalloidin (green) to label the muscles, βPS-integrin 
(red) to visualize membranes, and DAPI (blue) to label nuclei. (A) The TDT (arrow) is positioned between DVM I and DVM II. (C, D) Knock 
down of Cp110 and CG14619 with tub-Gal4 did not affect TDT formation. The indirect flight muscles in (C) are clearly affected by the knock 
down but the observed disorganization is presumably due to the presence of head structures in the thorax. (D-F) Knock down of CG14614 
with tub-Gal4 and da-Gal4 resulted in TDT absence (asterisk in D) or reduced number of TDT fibers (E, F). 
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CG14619 is a likely candidate gene mutated in intro mutants 

CG14619 was ruled out as a candidate for wap based on the presence of 

a normally developed TDT. However, prior to sectioning, there was noticeable 

difference in the pupae of these knock downs (Figure 7). While wild-type flies had 

three obvious body segments and fully elongated wings and legs (bracket in A') 

located in the middle region of the pupa (Figure 7A-7A’’), the knock down of 

CG14619 resulted in the presence of only two developed body segments, the 

thorax and abdomen, and failure of head eversion (Figure 7B-7B’’). The 

phenotype was even more obvious when the pupa was removed from the pupal 

case (Figure 7B’’’ compared with wild-type in Figure 7A’’’). This phenotype is 

reminiscent of the described pupal phenotype of intro mutants (described as 

mutation 23 by Lifschytz and Falk, 1969). In addition to the failure of head 

eversion, the wing and leg discs in these knockdowns did not fully elongate and 

were located at the top of the pupal case where the thorax is located (brackets in 

B'). 

Since there are a number of off-targets associated with the RNAi lines 

used for the CG14619 analysis (see Table 4), I wanted to confirm that my results 

were due to knock down of CG14619 and not due to effects of off-target knock 

down. Our earlier mapping data suggested that the intro mutation is found within 

the 20C1 region we analyzed by RNAi. As the phenotype observed for CG14619 

knockdown were similar to the intro phenotype described by Lifschytz and Falk 

(1969), we also analyzed the pharate pupal phenotype of intro homozygous 

mutants. When the CG14619 knock downs were compared with intro mutants, 
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both exhibited the same failure of head eversion and wing and leg elongation 

(Figure 7C-7C’’’). These results indicate that CG14619 is the most likely 

candidate gene affected by the intro mutation. 

In summary for the genetic mapping analysis, I have demonstrated that 

the wap gene is located close to the heterochromatin of the proximal X 

chromosome, adjacent to other mapped mutations in the region. wap appears to 

be allelic to CG14614 based upon the precise recapitulation of the viability and 

TDT wap phenotypes when CG14614 was knocked down. The knock down of 

CG14614 did not recapitulate the wing vein phenotypes that was observed in a 

subset of wap mutants, but since the wing vein phenotype is not fully penetrant, it 

is most likely that we have simply yet to sample sufficient flies to observe this 

effect. In addition, many of the flies that do eclose fail to expand their wings, 

making it difficult to determine if the subtle wing vein defect is present. 

Having identified the gene responsible for the wap mutation, I next sought 

to determine the basis of the TDT phenotype. 
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Figure 7: Knock down of CG14619 recapitulates the phenotype observed in intro 
mutants. (A-A’’) Dorsal, ventral, and lateral view of wild-type flies in the pupal cases 
shows normal development of the head, wings, and legs in the pupal case. (A’’’) When the 
pupa is removed from the pupal case, the fly resembles a fully formed adult. (B-B’’’) 
Knockdown of CG14619 results in failure of head eversion and wing and leg extension. 
The pupa has only two observable body segments, the abdomen and thorax. (C-C’’’) intro 
homozygous mutants exhibit the same phenotypes as those seen in CG14619 
knockdowns. 
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TDT founder cells are specified early in development in wap mutants but 

are later lost 

Muscle founder cells are required for proper specification of individual 

muscles. Since these cells have all the genetic information to give the muscle its 

unique identity, and since the wap mutant phenotype is specific to the TDT, we 

hypothesized that TDT-specific founder cells are not specified in wap mutants. 

The wap2 and wap9 mutations were recombined with the founder cell duf-lacZ 

line (also referred to as rP298) that shows lacZ expression in all muscle founder 

cells. Next pupae were dissected at 4 hour intervals beginning at 16 After 

Puparium Formation (APF) and flanking the early stages of TDT development 

(Fernandes and VijayRaghavan, 1993). Dissected samples were stained for the 

myoblast nuclei marker MEF2 (red) and β-Gal expressed by the rP298-lacZ 

marker of founder cell nuclei (green). Our results indicated that founder cells 

were specified early in development but were later lost (Figure 8). 

  In 16 hr APF FM7i/rP298-lacZ,wap heterozygous females, although the 

founder cells cannot be seen, the TDT is found located between DVM I and DVM 

II that were used landmarks for the presumptive location of the TDT (Figure 8A). 

In rP298-lacZ,wap/Y mutant males, the developing TDT muscle was present next 

to the DVM I (Figure 8B). At 20 hr APF, the TDT in FM7i/rP298-lacZ,wap pupae 

have more structured musculature and the presence of founder cells were 

evident in the TDT (green labeled cells, Figure 8C). By contrast, the 20 hr APF 

rP298-lacZ,wap/Y males had largely reduced staining of TDT-specific founder 

cells but did not exhibit a reduction in founder cell staining in the DVMs (Figure 
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8D). In addition to this, the mutant TDT (Figure 8D) is much less structured 

compared with the ordered nature of the wild-type TDT (Figure 8C). By 24 hr 

APF, the FM7i/rP298-lacZ,wap pupal musculature had a well developed pattern 

with the TDT nestled between the DVMs (Figure 8E). By contrast, in the 24 hr 

APF mutant rP298-lacZ,wap/Y males, the TDT is completely absent (Figure 8F). 

 The results of this study demonstrate the requirement for wap early in TDT 

development. Although specification and myoblast fusion are initiated in wap 

mutants, development cannot be sustained and TDT degeneration occurs. I next 

examined the cause for the degeneration of the TDT at so early a stage of 

development. 
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Figure 8: Founder cells are specified early in development but are later lost in wap 
mutants. (A, B) Formation of the TDT at 16 hours APF indicates that development of the 
TDT in wild-type (A) and wap mutants (B)  is normal at this stage. (C, D) At 20 hours APF, 
the developing TDT in wild-type flies (C) is more structured than the TDT of wap mutants 
(D). The number of TDT-specific founder cells in the mutant is reduced compared to wild-
type, even though there is no reduction in the founder cells of adjacent muscles. (E, F) By 24 
hour APF, the mature TDT in wild-type flies (E) is well developed. By contrast, the TDT of 
wap mutants is absent (asterisk in F). 
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The Posterior Dorsal Mesothoracic Nerve (PDMN) reaches its intended 

muscle target, the TDT 

My results indicated that the TDT is initially formed early in development 

but degenerates due to loss of TDT-specific founder cells. Adult muscle 

formation and neuron restructuring proceed in parallel with one another and the 

two processes are also dependent on one another. In studies of IFM 

development, when neuron restructuring is disrupted, the intended muscle target 

degenerates (Fernandes and VijayRaghavan, 1993). For this reason, we 

assessed whether the Posterior Dorsal Mesothoracic Nerve (PDMN), which 

innervates the TDT, is restructured properly. Since the innervation pattern is first 

observed at 18 hours APF and does not change markedly afterwards (Fernandes 

and VijayRaghavan, 1993), the correspondence of this process with the time 

points at which wap mutant phenotypes were apparent further supported 

neuronal defects as a possible mechanism for the wap TDT phenotype. 

Therefore, I dissected pupae at this stage from wap/Y males and compared the 

innervation pattern (visualized with anti-22C10, marking Futsch expression) with 

heterozygous FM7i/wap females. Figure 9 shows a normal innervation pattern for 

the TDT indicated by the arrow in the heterozygous FM7i/wap females. The 

PDMN reached the TDT in wap/Y mutant male pupae; however, the morphology 

of the nerve endings in the mutants differed from those of the heterozygotes. The 

nerves appeared to spread over the muscles but the boutons at the 

neuromuscular junctions appear to lack the structure observed in the wild-type 

neurons. 
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To visualize if these neuromuscular junctions (NMJs) are indeed absent in 

wap mutants, pupae were again dissected but visualized with anti-HRP (green) 

to observe the neurons, and anti-Dlg (red) to stain the muscles and NMJs (Figure 

10). In the heterozygous FM7i/wap females, the nerves were visible and the HRP 

and Dlg antibodies were co-localized along the muscle. In contrast, the neurons 

of the wap/Y mutants were visible but did not make contact with muscles as 

indicated by the lack of co-localization of the HRP and Dlg. These results 

suggest that the NMJs are not properly formed in wap mutants. Since proper 

muscle formation is dependent on interactions between the developing muscles 

and nerves, the failure to form neuromuscular junctions may be the mechanism 

by which the wap mutation affects TDT development. 

 

  

Figure 9: The Posterior Dorsal Mesothoracic Nerve (PDMN) is restructured to reach 
the TDT. 18 hour APF pupae were dissected and stained with anti-22C10 to label 
neurons and adult muscle. The stereotypical branching pattern of the PDMN is indicated 
by the arrow in the wild-type pupa. In wap mutant, the PDMN reaches the TDT but the 
morphology of the nerve branches does not reflect the characteristic pattern of the 
PDMN. 
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Discussion 
 

 Different genes that exhibit similar mutant phenotypes often function within 

the same signal transduction pathway. Such signaling pathways require 

robustness to resist changes both in the environment and in the cells where the 

signaling is taking place. Without such robustness, development does not 

proceed normally. Mutants with observable phenotypes typically exhibit a 

complete breakdown of the signaling pathways that control proper development 

of the affected tissue types (reviewed in Friedman and Perrimon, 2007). Two 

distinct cell types, wing crossveins and adult muscles, each require the function 

of the same signal transduction networks for proper development (Jaramillo et 

al., 2009, Khalsa et al., 1998, Ralston and Blair, 2005). Known mutants with wing 

crossvein defects were therefore screened to identify potential defects in the 

morphology of the Drosophila jump muscle.  

 The wings apart mutant analyzed in this study exhibits an observable 

phenotype that affects not only the adult wing, but also the viability of the flies 

Figure 10: Neuromuscular junctions (NMJs) are not observed in wap mutants. In 
wild-type, the presence of NMJs are visible by the co-localization of HRP (green) and Dlg 
(red) indicated by the arrows. There is no co-localization of HRP and Dlg in wap mutants, 
indicating the NMJs are not properly formed. 
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and the formation of the TDT muscle. The observed TDT phenotype is similar to 

that of crossveinless (cv, FBgn0000394) mutants and other TGF-β mutants 

(Jaramillo et al., 2009) but does not exhibit the same wing crossvein phenotype 

as in those mutants. Since cv mutants that lacked the posterior crossvein of the 

adult wing also showed decreased numbers of TDT muscle fibers, and wap 

mutants have extra wing crossveins, we initially expected the wap mutants to 

have increased fiber number in the TDT. However, the observed downregulation 

of TDT formation by the wap mutant can be explained by at least two different 

possibilities.  

The first possibility is that wap is involved in the TGF-β signaling pathway, 

like cv, but may interact with components of the pathway that do not interact with 

cv. The TGF-β pathway has many different ligands, different types of receptors, 

and various intracellular components that associate with each other in varying 

combinations in a context dependent manner (Khalsa et al. 1998). MAN1 

(FBgn0034964) protein products antagonize the TGF-β pathway (Wagner et al., 

2010) and MAN1 mutation leads to the presence of ectopic wing crossveins 

(Pinto et al., 2008).  These mutants do not have an observable muscle defect or 

abnormal neuromuscular junctions but affect synaptic transmission, providing 

further evidence for context dependence in TGF-β signaling activity. 

 A second possibility is that, although wap acts on the same tissues as cv 

and other TGF-β components, it may be part of a different signaling pathway. 

The Epidermal Growth Factor receptor (Egfr, FBgn0003731) pathway is also 

required for the proper formation of wing crossveins (Ralston and Blair, 2005) 
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and also functions in the formation of muscles (Maqbool and Jagla, 2007). 

Angulo et al. (Angulo et al., 2004) show that absent, small, or homeotic discs 2 

(ash2, FBgn0000139) represses EGFR signaling. Mutations in ash2 also result in 

ectopic wing veins (Angulo et al., 2004) and neural defects (Beltran et al. 2003).  

Other options are that wap functions in multiple pathways or act with sets 

of genes that are activated multiple times throughout development (Friedman 

and Perrimon, 2007). The only way to distinguish among these possibilities is to 

identify the transcriptional unit that is mutated to produce the observed 

phenotypes. In our initial mapping experiments, two deficiency lines were utilized 

that were induced using the FLP recombinase as described in Parks et al. (Parks 

et al. 2004) and thus has molecularly mapped breakpoints.  The breakpoints for 

the other deficiencies were determined by cytogenetic analysis of X-ray induced 

deficiencies (Schalet and Finnerty, 1968, Schalet and Lefevre, 1973, and 

Rahman and Lindsley, 1981) and computed breakpoints were obtained from 

FlyBase (FB2012_02). Due to the presence of intercalating β-heterochromatin 

found within the proximal region of the X chromosome and the error commonly 

associated with imprecise breakpoint estimates in cytogenetic mapping 

(reviewed in Schalet and Lefevre, 1973, and Matthew et al., 2009), assumptions 

made based on deletions with cytogenetically determined breakpoints may not 

be entirely accurate.  

In this study, evidence for such inaccuracy was obtained. For example, 

initial mapping based solely on these deficiency chromosomes suggested that 

DIP1 was the candidate gene model mutated in wap flies. However, additional 
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complementation mapping, using deficiency chromosomes, point mutations and 

duplications, and other published results (Kavlie et al. 2010), DIP1 was excluded 

as the transcriptional unit for the wap gene. I was unable to definitively map the 

breakpoints of the deficiencies and the other mutations used in this study but 

closer estimates of the breakpoint and mutation locations were obtained by the 

combined conclusions of the cross results. In order to molecularly define the 

breakpoints, deep sequencing, using NextGen sequencing techniques, of the X 

chromosome in the deficiency lines is necessary. However, the refined mapping 

results suggest wap is located within the region between the tilB and l(1)G0196 

genes (genomic coordinates X:21,851,573…X:21,889,016.  

Using RNAi analysis and the pupal semi-lethality phenotype of wap, I was 

able to rule out two of the six genes found in this region, CG14618 and 

CG12576. In addition, by characterization of the thoracic muscles in the region, 

we were able to determine that the gene responsible for the wap phenotype was 

CG14614. CG14614 is lethal in the late pupal stage during which wap mutant 

lethality is observed (Schalet, 1972), as well as the period in which wing 

crossveins develop (Waddington, 1940).  

Temporal expression profiles for CG14614 indicate moderately high to 

high expression in the embryonic stages beginning at 0 hours and decreasing 

through 16-18 hours (Graveley et al., 2011). Expression returns to moderately 

high levels in the late L3 larval stage and maintains this level of expression 

through day 3 of the pupal stage (Graveley et al., 2011). Formation of larval and 

adult somatic musculature, respectively, and peak expression of clusters of 
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muscle differentiation genes are expressed during these times (Arbeitman et al., 

2002).  

CG14614 is a gene that encodes a WD40 repeat domain protein with 

orthologs found in organisms ranging from yeast to plants, such as the TTG1 

gene that regulates root, shoot, and leaf patterning in Arabidopsis (Walker et al., 

1999, FlyBase, FB2012_02), to vertebrate craniofacial and muscle patterning 

genes (Nissen et al., 2006, FlyBase, FB2012_02). WD40 repeat proteins mediate 

protein-protein interactions and contain 4-10 repeating units of 44-60 residues 

ending in tryptophan and aspartate (WD) (reviewed in Holm et al., 2001 and 

reviewed in Suganuma et al., 2008). These repeats form propeller-like structures, 

termed β-propellers, created by the folding of four antiparallel β-sheets (reviewed 

in Holm et al., 2001). This protein family is known to have roles in signal 

transduction, mRNA processing, gene regulation, vesicular trafficking, and 

regulation of cell cycle (reviewed in Skurat and Dietrich, 2004 and reviewed in 

Suganuma et al., 2008). 

One particular vertebrate ortholog for CG14614, is the vertebrate wdr68 

gene that is involved in craniofacial patterning in zebrafish (Nissen et al., 2006) 

but has also been isolated in rabbit skeletal muscle (Skurat and Dietrich, 2004). 

The zebrafish severe craniofacial defect observed in wdr68 mutants can be 

rescued by CG14614 suggesting that the function of the wdr68 gene is 

conserved in animals from invertebrates to vertebrates, even in developmental 

processes not found in the invertebrate animals (Nissen et al., 2006).  
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Wdr68 associates with members of the Dual-specificity tyrosine 

phosphorylation-regulated kinase gene family, Dyrk1a and Dyrk1b. Dyrk1a plays 

a role in phosphorylation of glycogen synthase and is expressed at high levels in 

the central nervous system, heart and skeletal muscle (Skurat and Dietrich, 

2004). Mutations in Dyrk1a genes in humans and mice are associated with 

neurological defects (Martinez de Lagran et al., 2004). Dyrk1b, which is activated 

by Rho-GTPase family members, has increased expression in skeletal muscles 

and regulates the transition from growth to differentiation. Knockdown in mouse 

C2C12 cell lines displays a loss of myogenin expression and leads to failure in 

muscle differentiation (Deng et al., 2003). Dyrk1 also has a conserved function 

between vertebrates and invertebrates. The Drosophila gene minibrain (mbn) is a 

functional ortholog of the vertebrate Dyrk1a and is shown to be required in proper 

formation of post-embryonic neurons (Tejedor et al., 1995 and reviewed in 

Kinstrie et al., 2006).  

The Wdr68/Dyrk1 complex is required for proper differentiation of multiple 

tissues in a conserved manner and cellular localization of this complex is 

dynamic (reviewed in Nissen et al., 2006). Moreover, given that the WD40 

repeats contained in the Wdr68 protein can facilitate protein-protein interactions 

(reviewed in Holm et al., 2001), it is possible that the Wdr68/Dyrk1 complex 

functions as part of a signaling pathway. It is unknown whether mbn is localized 

in the same tissues as wap (CG14614) and whether the two proteins genetically 

interact in Drosophila as do their vertebrate homologs. Further analyses such as 

in situ hybridization and immunostaining of flies for wap and mbn are necessary 
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to resolve whether the gene products are colocalized in the developing adult 

muscle or neurons in Drosophila pupae. In addition, much work is needed to 

characterize CG14614 in the context of the wap mutation.  

Based on our data, CG14614 is the gene that gives rise to the wap 

phenotype. In order to confirm these results, rescue of wap by the protein 

encoded by CG14614 will be performed. The initial rescue of the wap mutation 

was performed using a large duplication of the X chromosome. Since gene 

expression of the CG14613 gene was not tested by RNAi, this is a necessary 

step to ensure CG14613 is not also involved in the phenotype of the wap 

mutation. It would also be interesting to determine if the wap mutation can be 

rescued by zebrafish Wdr68 protein in a reciprocal rescue experiment to that 

performed by Nissen et al. (Nissen et al., 2006). It is also important to determine 

where the wap mutations are located in the CG14614 gene. Sequencing of the 

CG14614 gene in the wap mutants is necessary for further analysis of this 

mutation, to define its role in muscle development, and to understand its 

molecular mode of action. 

The RNAi results not only allowed the ubiquitin-specific protease encoding 

gene CG14619 to be ruled out as the gene affected by the wap mutation but also 

helped identify this gene as the most likely gene responsible for the intro 

mutation. At the end of the larval stage, a pulse of ecdysone is released, inducing 

pupariation and the onset of metamorphosis (Thummel, 1996). At 12 hours APF, 

another pulse of ecdysone is released, resulting in contractions of the abdomen 

allowing the prepupa to move posteriorly to make room for the head in the 
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anterior end of the pupal case. This contraction creates internal pressure that 

causes head eversion and final elongation of the wings and legs (reviewed in 

Forier et al., 2003). The pupae from the RNAi knock downs displayed failure of 

head eversion. The presence of the head structures can be seen in the thorax 

sections in Figure 6. In the phenotype observed in Figure 7 the tub-

Gal4/CG14619 (37929), the pupa is characterized by only two visible body 

segments, the abdomen and thorax. The results of tub-Gal4/CG14619 (37930) 

RNAi knock down (not shown) were similar to those obtained for line 37929. The 

same phenotype can be observed in intro mutants.  

This phenotype is reminiscent of the phenotype observed in ecdysone-

response genes, such as β-FTZ-F1 (FBgn0001078, Fortier et al., 2003), and 

cryptocephal (crc, FBgn0000370) (Hewes et al., 2000). In these mutations, head 

eversion fails and, in some cases, there is a leg disc elongation defect (Hewes et 

al., 2000) that is also observed in CG14619 knockdowns. Before the conclusion 

can be made definitively that CG14619 is the most likely gene affected by intro 

mutants, rescue of the intro phenotype by expression of CG14619 protein is 

necessary. The lines used in this study both had off-target hits to 23 genes other 

than CG14619, some of which can also be induced by ecdysone. Whether the 

phenotype we are seeing is the result of knockdown of intro or the result of 

knockdown of another target is still unknown. While it is possible that the 

phenotype observed may be due to off-target hits by the RNAi constructs used, 

the recapitulation of the phenotype observed in the intro homozygous mutants 

suggest this is unlikely. Another way to address this problem is to knock down 
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expression of CG14619 with a different RNAi construct with no off-targets to 

determine if the same phenotype is observed. Nevertheless, the potential 

function of CG14619 in head eversion identifies it as a possible genetic target of 

one of the cryptocephal genes, each of which encodes regulatory proteins. 

To determine a mechanism by which wap affects the development of the 

TDT, I first analyzed whether TDT-specific founder cells are specified in these 

mutants. Founder cells provide the unique identity of individual muscles 

Specification of muscle founders is dependent on intrinsic expression of genes 

and extrinsic signaling pathways acting on the cells in combinations that are 

unique for each specific muscle (reviewed in Maqbool and Jagla, 2007). These 

cells can competently form thin muscles at properly specified locations even 

when fusion of additional myoblasts fails to occur (Dutta et al., 2004) further 

suggesting that these cells are important components of proper muscle 

development. When we observed the development of the TDT over time, we 

found that the muscles begin to form normally and include the presence of TDT-

specific founder cells, marked by expression of the rP298-lacZ transgene. As 

development progresses, we observed a loss of founder cells and a subsequent 

disorganization of the TDT by 20 hrs APF, followed by degeneration of the TDT 

by 24 hrs APF.  

Muscle identity is not only determined by founder cell specification, it is 

also determined by its innervation pattern. The innervation of a specific muscle is 

stereotypical and therefore exhibits a precise and unvarying wiring pattern 

(Keshishian, et al., 1996). As development progresses, the growth cones of the 
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motor neuron explore the surfaces of myotubes, searching for the correct 

synapse partner. To accomplish specific targeting of the motor neuron, cell 

surface molecules must be expressed on the founder cells (reviewed in 

Keshishian et al., 1996). In the absence of founder cells, defasciculation of axons 

is inhibited and neurons do not branch to reach their targets (Landgraf et al. 

1999). The final step of innervation of a muscle target is the formation of the 

synapse (reviewed by Shishido et al., 1998). Synapse formation requires proper 

formation of both the pre-synaptic active zones and differentiation of the post-

synaptic muscle (Prokop et al., 1996). Studies involving the dorsoventral muscles 

of the adult thorax indicated that ablation of the nerve that innervates these 

muscles blocks formation of muscle fibers, even though myoblast fusion was 

initiated. These results suggest that interaction between the nerve and its 

postsynaptic muscle target are critical for maintenance of the synapse and 

therefore for proper formation of the muscle (Fernandes and Keshishian, 1998). 

Results from this study show that formation of the PDMN occurs normally 

and reaches its target. Morphology of the neuron branches in wap mutants is not 

the same as that observed in the wild-type. Based on this morphology, we 

determined if the NMJs are properly formed in the mutants. In wild-type pupae, 

NMJ formation was observed, however, synapses were not apparent in the wap 

mutants. These results suggest the mechanism by which wap affects 

development of the TDT is failure of proper motor neuron synapse formation. It is 

still necessary to determine whether this effect is due to a defect in the 

presynaptic neuron or the postsynaptic muscle. To determine this, tissue specific 
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knockdown of the identified wap gene, CG14614 will be performed in the muscle, 

using the myoblast 1151-Gal4 driver, and also in the neuron, using the elav-Gal4 

driver. 

This tissue-specific analysis is crucial to understanding what effect this 

gene has on the development of the muscles. Since orthologs of CG14614 and 

their interaction partners are found in both skeletal muscle and nerves (Skurat 

and Dietrich, 2004), the effect could potentially be on either side of the synapse.  

The relevance of understanding the effects of the wap mutation may not 

be immediately apparent in terms of the specificity of the Drosophila muscle it 

affects. However, this study indicates CG14614 has an evolutionarily conserved 

function, which is consistent with the findings that the Drosophila gene can 

rescue genetic defects found in vertebrates (Nissen et al., 2006). Thus, this 

system may allow us to determine how CG14614 and its vertebrate homologues 

function in establishing formation of muscle and neuromuscular junctions. 

Insights gleaned from vertebrate models have indicated that muscle 

degeneration/atrophy results from improper formation of neuromuscular 

junctions, even when neurons reach their intended targets (Williams et al., 2009). 

Furthermore, neuromuscular junctions are conserved from flies to humans at the 

genetic, molecular, and physiological levels (Lloyd and Taylor, 2010). Nervous 

system involvement is frequently found in different muscular dystrophies 

(reviewed in Guyon et al., 2007) making it important to study the molecular basis 

of these diseases in organisms that can facilitate a basic understanding on the 

processes involved.  
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CHAPTER 2 
 

 

TRANSCRIPTIONAL REGULATION OF THE EARLY MESODERMAL MEF2 

ENHANCER BY TWIST AND MAD 
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Abstract 
 

 Mesoderm formation is one of the key events in early development of 

organisms from invertebrates to vertebrates, and the resulting germ layer gives 

rise to diverse cell fates. Myocyte Enhancer Factor 2 (Mef2) is required for proper 

formation of the mesoderm and all lineages of muscle. Expression of Mef2 must 

be tightly regulated to ensure precise spatiotemporal activity of the gene 

throughout the developmental process. A 1,059 base pair enhancer is required 

for proper expression of Mef2 in the developing dorsal mesoderm that eventually 

forms the visceral muscle, dorsal somatic muscles, and heart. In this study, we 

assess the contributions of the transcription factors Twist and Mad/Medea to 

Mef2 expression via this enhancer. Activation of the enhancer requires both 

Twist and Mad/Medea binding sites in vivo. Moreover, these transcription factors 

can activate the enhancer in tissue culture, although not synergistically. The 

transcription factor Dorsal may also interact with this enhancer to facilitate both 

activation and repression of Mef2 activity. These studies define the enhancer that 

regulates expression of Mef2 in the developing mesoderm and the contributions 

of Twist and Mad to enhancer activation. The study also highlights the 

complexities of mesodermal Mef2 enhancer activation in vivo.  

Introduction 
 

Coordinated inputs of signaling and transcription networks allow for 

acquisition of specific cell fates during embryogenesis (Sandmann et al., 2007). 

Proper development of the mesoderm is critical for the developing embryos of all 

triploblastic animals. The mesoderm is the middle germ layer of the developing 
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embryo composed of pluripotent cells that give rise to the somatic, visceral, and 

cardiac muscles.  Its development is initiated by high nuclear concentrations of 

the transcription factor Dorsal in ventral cells of the embryo which, in turn, 

activates the twist and snail genes. Activation of twist and snail lead to the 

induction of gene expression critical for the maintenance and further 

development of mesodermal tissues (Leptin et al., 1991).  

Mef2 is activated early in the developing mesoderm and is required for 

proper development (Sandmann et al.2007).  MEF2 is part of the Myocyte 

Enhancer Factor 2 family of transcription factors containing a MADS (MCM1, 

Agamous, Deficiens, serum response factor) domain that binds to the regulatory 

region of myogenic and muscle structural genes (reviewed in Cripps and Olsen 

2002).  Mef2 is the only gene known to regulate the entire muscle differentiation 

process, including both the spatial and temporal distribution of myogenic cells, 

and is expressed in precursors to all muscle lineages. Early in development, it is 

expressed throughout the mesoderm.   

After gastrulation, MEF2 is also found ubiquitously within the mesoderm 

and after the mesoderm layer spreads to the dorsal region, Mef2 is enriched at 

the dorsal region of the embryo.  This suggests that there is very stringent 

regulation of Mef2 in both the early and late stages of development (Nguyen and 

Xu 1998). There are at least twelve different upstream enhancers of Mef2 that 

direct the differential regulation of this gene in the various tissues and 

developmental stages (reviewed in Black and Olson, 1998).  One such Mef2 

enhancer active early in mesoderm development is regulated by the transcription 
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factor Twist (Cripps et al. 1998) and later by the Mad and Medea transcription 

factors (Nguyen and Xu 1998).  This early mesodermal enhancer is 

approximately 4 Kb in length (from position -3564 to +521).   A core portion of 

this sequence is active in imaginal discs, controlled by a 175 bp region, and 

regulates adult somatic muscle precursors. However, the minimal 175-bp 

enhancer is not fully active in the embryonic mesoderm (Cripps et al. 1998). 

 Twist is a basic helix-loop-helix (bHLH) transcription factor that specifically 

binds to E-box consensus sequences (CANNTG) and directly activates Mef2 

(reviewed in Castanon et al., 2001).  The 175 bp early Mef2 enhancer contains 

two E-box sites in Drosophila melanogaster, each of which has conserved 

locations between D. melanogaster and D. virilis.  Of these E-box sites, E1 is 

identical in sequence between the two organisms and E2 has a differing core 

sequence. In adult muscle precursors, E1 is essential for Mef2 expression 

(Cripps et al. 1998).  A loss in Twist binding to this site and not the others results 

in loss of enhancer activity.  It is, however, unknown whether Mef2 is directly 

activated by Twist at the early mesodermal stage because even when E1 is 

mutated, there is still weak, non-uniform expression of Mef2 in the developing 

mesoderm and the enhancer is not fully active when Twist is uniformly present.  

At this stage of development there may be other enhancer sequences outside 

the 175 bp Mef2 enhancer that are active in adult muscle precursors (Cripps et 

al. 1998). It is possible that Twist acts in combination with other factors to 

regulate Mef2 throughout early mesodermal development, but this has not yet 

been established.  As it has been shown by Nguyen and Xu (1998), the 



 66 

mesodermal Mef2 enhancer contains binding sites for Mad/Medea transcription 

factors. However, it has not been determined if these sites are important for 

proper enhancer activity. 

 Mothers against dpp (Mad) and Medea (Med) are members of the Smad 

family of transcription factors that transduce signals from receptors of the TGF-β 

family proteins to promoters of target genes.  Mad is an ortholog of mammalian 

Smad 1/5 and Med is an ortholog of mammalian Smad4 (Massague et al. 2005, 

Wisotzkey et al.1998).  Smad1/5 is an example of a receptor-regulated Smad (R-

Smad) that interacts with Smad4, Co-Smad, upon activation by a TGF-β 

receptor. This complex migrates into the nucleus and binds DNA at Smad-

binding elements (SBEs) containing the core GTCT sequence via a β-hairpin 

structure in one domain of the protein (Massague et al. 2005).  The binding 

affinity at a single SBE is too low for Smad complex binding and it has been 

found that many Smad-binding promoter sequences have multiple SBEs (Shi et 

al. 1998).  Having multiple SBEs is likely to allow for tighter binding of the Smad 

transcriptional complex and also may require additional factors in the complex to 

effectively bind DNA (Seoane et al. 2004).  Some Smads can also interact with 

the GC rich sequence GCCGnCGC (Xu et al. 1998).  The mesodermal Mef2 

enhancer region has three GC-rich regions that are capable of binding Mad and 

Med.  It has not yet been established whether the three Mad/Med sites are 

functionally important or whether there are mesodermally expressed transcription 

factors, such as Twist, which can act synergistically with the Mad/Med complex 

to induce Mef2 expression (Nguyen and Xu 1998).   
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 This study aims to determine how the transcription factors Twist, and 

Mad/Med interact in the enhancer region of the Mef2 gene to regulate early 

development of the mesoderm. In order to accomplish this goal, the binding 

capabilities of Twist are initially verified using electrophoretic mobility shift assays 

(EMSAs), whereas previously performed analyses for the Mad/Med sites have 

already confirmed that Mad/Med binds to all three sites of the Mef2 enhancer 

(Nguyen and Xu 1998).  In vivo studies using P-element mediated germ-line 

transformation are then conducted to determine the functional significance of 

each of the binding sites on the Mef2 enhancer region for the developing 

mesoderm.  We also assess whether interaction between the transcription 

factors is required for the activation of the Mef2 gene. 

Materials and Methods 
 

Generation and analysis of enhancer constructs 

 Transgenic DNA constructs for the Mef2 early enhancer were generated 

using standard PCR methods. Primers were designed to amplify the Mef2 

enhancer region. The forward primer for all enhancer constructs was 5’-

GGGAATTCAAGCTTGTTGGCTTGTCTTGGC. For the DM1, Twi1, and Mad3 

constructs, the reverse primer was 5’-GATATTATTTACCTTAAACACGC. The 

reverse primer for the DM2 construct was 5'-

GTTCTAACCCATATAGGAAATGATTTTGC. We used the reverse primer 5'-

ATGATTTTGCGCCTATTTATAC for the generation of the DM3 fragment. 

Mutation in the first Twist binding site of the Mef2 enhancer was induced using 

PCR-based site directed mutagenesis described by Horton et al. (Horton et al., 
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1993) changing the Twist binding site from 5'-CACATGTG to 5'CGGCCGTG. 

Mutation of the three Mad/Med binding sites was performed by site-directed 

mutagenesis using the GeneTailor mutagenesis kit (Invitrogen), following 

manufacturer’s instructions. The Mad1 binding site (GC-3 in Nguyen and Xu, 

1998), was changed from 5'-CTGTGCGCCGTACGGTTGATGCTG to 5'-

ATGAGCACCA, the Mad2 binding site (GC-2) was changed from 5'-

GCCGCCCGGC to 5'-ACCACCAGGA, and the Mad3 binding site (GC-1) was 

changed from 5'-CCCTCGCCTCTCGGCGGCG to 5'-

ACCACGACTATCAGCAGCA. 

 PCR products were cloned into pCaSpeR-hsp43-AUG-β-gal (CHAB) P-

element transformation vector containing a lacZ reporter gene downstream of a 

minimal hs43 heat-shock promoter (Thummel and Pirrotta, 1992). P-element 

mediated germ-line transformation was performed as described by Cripps et al., 

(Cripps et al., 1999). Cloned constructs were injected into y w embryos and 

transgenic lines were identified in the G1. Independent lines were maintained by 

backcrossing to y w and selecting for homozygotes in subsequent generations 

based on darker eye color.  A minimum of three independent lines were analyzed 

for each enhancer tested. Flies were raised in Carpenter’s medium at 25oC. 

Immunohistochemistry 

 Embryos were collected and stained as described by Patel (1994). 

Primary antibodies were mouse anti-β-galactosidase 1:1000 (Promega). The 

Vectastain Elite Kit (Vector Laboratories) and diaminobenzidine (DAB) stain were 

used for secondary detection according to manufacturer’s instructions. Samples 
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were mounted for photography using an Olympus BX51 photomicroscope with 

DIC optics, after being cleared in glycerol. Images were collected digitally and 

figures made using Adobe Photoshop.  

Electrophoretic Mobility Shift Assay 

 Twist protein was generated using T7 polymerase and the TnT Coupled 

Transcription/Translation system (Promega) and pAR-Twist (Cripps et al., 1998). 

Two oligos of the sequence 5'-GGATGCACTCAACACATGTGCAACATGCGG-3' 

and 5'-GGCCGCATGTTGCACATGTGTTGAGTGCAT-3' were annealed and the 

5'-GG overhangs filled with Klenow enzyme (New England Biolabs) and (α-

32P)dCTP to generate radiolabeled E1 probe DNA. Probes were purified on an 

illustra Autoseq G-50 Dye Terminator Removal Kit spin column (GE Healthcare) 

and 50,000 cpm were used in each assay. E2 wild-type binding site 

oligonucleotides have the sequence 5'-

GGCGGATATACACACATGGATCGTTTGC and 5'-

GGGCAAACGATCCATGTGTGTATATCCG. Wild-type sequences for the E3 

binding sites are 5'-GGATTTAAATGCCATATGGTAATGGCTA and 5'-

GGTAGCCATTACCATATGGCATTTAAAT. For competition experiments, wild-

type E1 and mutant E1 oligonucleotides were used in the reactions at 100x 

concentrations. E1 mutant oligonucleotides were generated in the same way 

using the sequences 5'-GGATGCACTCAACACGGCGGCAACATGCGG and 5'-

GGCCGCATGTTGCGGCCGTGTTGAGTGCAC. Mutant E2 oligonucleotide 

sequences are 5'-GGCGGATATACACCCGGGGATCGTTTGC and 5'-

GGGCAAACGATCCCCGGGTGTATATCCG and mutant E3 oligonucleotides are 
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5'-GGATTTAAATGCGACGTCGTAATGGCTA and 5'-

GGTAGCCATTACGACGTCGCATTTAAAT. Electrophoretic mobility shift assays 

(EMSAs) were performed using standard methods (Sambrook et al., 1989). 

Binding reactions were incubated at room temperature and gels were run at a 

constant temperature of 4oC. Dried gels were subjected to autoradiography. 

Cell culture and transfection 

 For co-transfections assays, the expression plasmid pBRAcPA-Tkv was 

generously provided by Michael O'Connor (University of Minnesota, Twin Cities). 

We cloned Mad cDNA from the RE72705 DGRC Gold expression plasmid 

(Stapleton et al., 2002) into pAW using Gateway Cloning Technology (Invitrogen) 

according to manufacturer's instructions. The expression plasmid pPac-Twi was 

also used in cell culture assays. Reporter constructs used for the P-element 

mediated germ-line transformation were used in cell culture experiments. SL2 

cells were maintained at 25oC in Schneider's Drosophila medium supplemented 

with 10% heat-inactivated fetal bovine serum (FBS) (both from Invitrogen). Cells 

were transfected as described in Kelly Tanaka et al. (Kelly Tanaka et al., 2008).  

The ratio of transcription factor coding DNA to reporter DNA used was 1:9. DNA 

was transfected into the cells using Cellfectin transfection reagent (Invitrogen). 

Each treatment was transfected into two well per trial for three trials. 

β-galactosidase assays 

 β-galactosidase assays were performed in transfected cells using a 

mammalian β-galactosidase assay kit (Pierce Biotechnology) according to 

manufacturer's recommendations as described in Kelly Tanaka et al. (Kelly 
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Tanaka et al., 2008). Sample absorbance was read at 405 nm in an OpsysMR 

multiplate reader (Dynex Technologies) warmed to 37oC. Five absorbance 

measurements were taken at ten minute intervals beginning with t=0. Assay plate 

remained incubating in the plate reader between measurements. Activation folds 

were measured as the average of the measured β-galactosidase activity over 

time, normalized to non-transfected cells. Standard error was calculated for each 

activation fold and statistical comparisons between treatments were determined 

by Student's t-test. 

Results 
 

 Earlier studies suggested that the Mef2 enhancer that is capable of 

directing expression in the entire mesoderm is located from -3572 to +521 

(Cripps et al., 1998). A study by Nguyen and Xu (1998) also indicated that the 

early mesoderm and dorsal mesoderm enhancers are located in smaller regions 

than reported full mesoderm expression of Mef2, of sizes 280 bp and 460 bp, 

respectively (Nguyen and Xu, 1998). Successive 5' and 3' deletions of the 

mesoderm enhancer were performed by Cripps et al. to determine what 

upstream regulatory region is necessary for expression of the Mef2 dorsal 

mesoderm enhancer (Cripps et al., 1998). It was determined that a 1,059 base 

pair region within the Mef2 enhancer described by Cripps et al. (1998) is 

necessary for expression of Mef2 in the developing dorsal mesoderm (Figure 

1A).  

The 1,059-bp enhancer region was cloned into pCaSpeR-hs43-AUG-β-gal 

(CHAB) and its lacZ expression was tested in the developing embryo. Mef2 
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enhancer activity was present in the dorsal mesoderm (Figure 1B), and to some 

extent, the early mesoderm (not shown). Interestingly, in an 848 base pair 

enhancer fragment with 211 base pairs removed from the 3’ end, all expression 

of the lacZ reporter was lost (Figure 1B). However, when another 20 base pairs 

were removed from the 3’ end of the enhancer, some Mef2 activity was restored 

in the dorsal mesoderm, but this activity was not quite as strong as that of the 

1,059 bp enhancer (Figure 1B). These results suggest that the 1,059-bp 

enhancer is sufficient to drive expression of the lacZ reporter. Furthermore, the 

data suggest that the 211-bp at the 3' end of the enhancer is critical to enhancer 

activity and that there must be a repressor within the -1593 to -1573 region of the 

enhancer since enhancer activity is restored when this 20 bp region is deleted. 

  

 

 

 

 

Figure 1: A 1,059 bp enhancer controls Mef2 expression in the dorsal mesoderm. (A) Map 
of the Mef2 gene showing the location of the mesodermal enhancer (gray highlighted region). 
(B) The 1,059 bp mesoderm enhancer DM1, regulates expression of Mef2 in the dorsal 
mesoderm (arrow). Red circles on this map indicate the presence of E-box binding sites which 
bind the transcription factor Twist. Blue circles indicate the presence of three Mad/Medea 
binding sites located on the enhancer. Deletion of 211 bp from the DM1 enhancer creating an 
848 bp enhancer, DM2, abolishes Mef2 expression in the mesoderm. The DM3 enhancer 
contains an additional 20 bp deletion from this enhancer and restores some of the dorsal 
mesoderm expression of Mef2. 
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Three E box consensus sites were present in the 1,059 bp enhancer. 

Although only two of the E box sites are conserved I tested the ability of the 

bHLH transcription factor Twist to bind each of the sites. Twist lysate was 

generated by in vitro transcription and translation. As previously reported, Twist 

was able to bind specifically to the E1 binding site (Figure 2A). Unlabeled wild-

type E1 probe was able compete for binding to the E1 site, but unlabeled mutant 

E1 probe was not, indicating that the interaction between Twist and the E1 site 

was sequence-specific. Twist was not able to bind the E2 site on the enhancer. 

The E3 site was not conserved in all species of Drosophila and was therefore not 

previously tested for ability to bind Twist. Our results show that Twist can bind 

this site, although not as strongly as it binds the E1 site (Figure 2A). This binding 

is specific since unlabeled wild-type probe can compete for Twist binding and 

mutant probe is unable to bind Twist. These results indicate Twist can bind two E 

box sites located on the mesodermal enhancer but that binding is stronger at the 

E1 site, suggesting this is the primary binding site occupied by Twist. 

To determine the functionality of the Twist binding sites, I generated an 

enhancer fragment (Twi1) in which we mutated the E1 site of the 1,059 bp 

construct, since Twist exhibited the highest affinity for this site. This fragment 

was cloned into the CHAB vector and injected into embryos to assess Mef2 

expression in this mutant construct (Figure 2B). When we analyzed lacZ 

expression of this transgenic line, we observed that enhancer activity was 

completely abolished by the mutation (Figure 2B). This suggested that not only is 
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this binding site required for dorsal mesodermal expression of Mef2, but that the 

presence of another binding site to which the Twist protein is able to directly bind, 

is not sufficient to compensate for the loss of the E1 site. This E1 site is the 

functional Twist binding site on the Mef2 enhancer. 

 

 

 

 

Figure 2: The E1 binding site is required for Mef2 activity and directly binds Twist 
protein. (A) Electrophoretic mobility shift assay (EMSA) indicates direct, specific binding of 
Twist protein to the E1 and E3 binding sites of the Mef2 enhancer. Binding to the E1 site is 
much stronger than binding to the E3 site. (B) Mutation of the E1 binding site on the Mef2 
enhancer ablates all mesodermal enhancer activity (arrow) and reveals a requirement for 
Twist binding to this site. The presence of the E2 and E3 binding sites cannot compensate 
for loss of binding to the E1 site. 
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Also found within this enhancer sequence are three Mad/Med binding 

sites. These sites can each specifically bind both Mad and Med protein, although 

the Med protein binds the Mad1 (denoted GC-3 in Nguyen and Xu, 1998) binding 

site with lower affinity than Mad. Additionally, this binding site does not exhibit the 

same specificity of binding Mad as do the other binding sites as it is not 

competed by unlabeled Mad1 (GC-3) probe as efficiently as this competitor 

probe competes with the other two sites (Nguyen and Xu, 1998).  

Since Mad/Medea was able to bind all three binding sites to varying 

degrees and specificities, we generated a Mef2-lacZ line termed Mad3 with all 

three Mad/Med binding sites mutated to determine whether these sites are 

necessary for expression of the Mef2 enhancer. These transgenic animals 

maintained some of the expression observed in the non-mutated 1,059 bp DM1 

enhancer, but reporter gene expression was clearly reduced (Figure 3). These 

data are consistent with those reported by Nguyen and Xu in which the 

expression of Mef2 is lost in mutants of the dpp signaling pathway (Nguyen and 

Xu, 1998), but more importantly it demonstrates that the Dpp signal is transduced 

through the identified sequences. It was suggested that residual expression of 

the Mef2 enhancer in the dpp mutants could potentially be due to continued 

expression from earlier stages of development.  

  

 

 

Figure 3: Deletion of Mad/Medea binding sites on the Mef2 enhancer reduces dorsal 
mesoderm expression of Mef2. Although expression of Mef2 is reduced when all three 
Mad/Medea sites are mutated, expression persists in the dorsal mesoderm (arrow). 
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Since Twist binds the enhancer directly and since Dpp signaling is 

necessary for Mef2 enhancer activity, we examined the possibility of cooperative 

interaction of these factors in activating the mesoderm enhancer in a cell culture 

system. No activation for the 1,059 bp DM1 enhancer was observed for any of 

the transcription factors (Figure 4A). The activation folds in this experiment were 

less than 2, the threshold set by our method for activation. This is unexpected 

since the enhancer is able to activate expression in the embryo. In co-

transfection experiments using the DM2 enhancer (Figure 4B), as expected, 

there was no activation of the DM2 enhancer as all levels for this enhancer were 

below the 1.5 fold activation level. When we tested the 828 bp DM3 construct, we 

saw similar activation levels with Twist and Mad alone as observed for activity 

levels in the DM1 construct (Figure 4C). The presence of Twist and Mad in 

combination did not result in much of a difference in the activation levels of the 

enhancer. Mad phosphorylation is required for translocation of Mad into the 

nucleus of the cell (reviewed in Wisotzkey et al. 1998). In order to ensure Mad 

was being translocated into the nucleus we co-transfected Mad with activated 

Thickveins receptor (Tkv, FBgn0003716). When we included this receptor in our 

cell culture experiments, activity of the DM3 enhancer was significantly increased 

from levels observed for Twist alone, Mad alone, and Twist and Mad in 

combination (p<0.01). There was no difference in the activation of Twist, Mad, 

and Tkv* in combination with each other from that observed when only Mad and 

Tkv* are present, suggesting these factors do not act together to drive 
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expression of the Mef2 enhancer. Med did not influence activation of any line 

(data not shown). 

 

 

 

 

 

Figure 4: The DM3 enhancer is activated in Drosophila SL2 cells. (A, B) Activation fold 
levels for transcription factor treatments co-transfected with either the DM1 (n = 12) or DM2 (n = 
6) reporter do not reach the threshold level to conclude these factors activate the enhancer. This 
suggests there is no significant difference in the ability of Twist or Mad alone or together to 
influence enhancer activity unless activated Thickveins (Tkv*) receptor is included in the co-
transfections (A). All combinations of activators in the co-transfection experiments with the DM2 
reporter were significantly different from one another and different activity with Twist or Mad 
alone (B). (C) Significant activation of the enhancer was observed when Mad and Tkv* or when 
Twist, Mad, and Tkv* were co-transfected with the DM3 (n = 10) enhancer. (*p<0.05, **p<0.01) 
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Discussion 
 

 Precise regulation of gene activation throughout development is critical for 

proper formation of many tissues and organs. Since many of the same genes are 

involved in very different processes, different combinatorial interactions of protein 

products must be utilized to ensure precision of spatiotemporal expression of any 

given gene involved in the developmental process (Adryan and Teichmann, 

2010). Mef2 is an example of such a gene that is conserved from invertebrates to 

vertebrates and varies in spatiotemporal expression regulated by more than a 

dozen different enhancers throughout development (Black and Olson, 1998). 

One of the enhancers used in this study is a 1,059 bp enhancer, termed DM1, 

which controls expression of the Mef2 gene in mesodermal tissues.  

  Early mesodermal expression in the developing embryos of DM1 

transgenic flies is not as strong as that published by Nguyen and Xu (1998) for a 

larger 4,285 bp enhancer, suggesting this enhancer is missing some region of 

the Mef2 regulatory region necessary for full enhancer expression in the early 

mesoderm. This region is sufficient to drive expression in the dorsal mesoderm. 

When dorsoventral patterning occurs in the embryo, Mef2 expression becomes 

enriched in the dorsal mesoderm (Nguyen and Xu, 1998), a region that will 

eventually form the visceral mesoderm, dorsal muscle, and heart (reviewed in 

Azpiazu et al., 1996). 

 Mef2-lacZ expression was almost entirely abrogated within the mesoderm 

with an enhancer construct (DM2) that lacks 211 bp of the 3’ end of the DM1 

enhancer. This suggests a region between -3,572 and -3,480 is also required for 
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early mesoderm expression of Mef2 in addition to the 280 bp region reported by 

Nguyen and Xu (1998). However, this conclusion is contradicted by the 

observation that smaller fragments can show mesoderm-specific activity. The 

DM2 construct may be less active because of a particular combination of binding 

sites is present that provide a repressor activity; and when larger or small 

fragments are used that alter this combination of sites the repressor activity is 

lost. A putative Dorsal binding site is found in the region of the Mef2 enhancer 

deleted by DM2, and it is possible that changing from two putative sites to one 

putative site alters fundamentally the activity of the enhancer. Alternatively, it is 

possible that the plasmid used for this study was defective in some way. While 

the enhancer region inserted was sequenced for verification, perhaps a point 

mutation occurred elsewhere in the plasmid, such as in the lacZ gene, which 

would prevent reporter expression from being observed. 

 Dorsal is a sequence-specific transcription factor that binds to cis-

regulatory elements at the consensus sequence GGG(T)4-5CC (Pan and Courey, 

1992).  The primary function of Dorsal is activation of genes; however, Dorsal 

can repress expression of some genes through interactions with co-repressors. 

The combination of DNA-bound Dorsal and its co-repressors, mostly bHLH 

proteins, can attract other repressors from the WD40 repeat protein family that 

do not have DNA binding capabilities but can directly bind Dorsal protein 

(Dubnicoff et al. 1997, Fisher et al., 1996, and Neer et al., 1994). When an 

additional 20 bp is deleted from the Mef2 enhancer (DM3 enhancer), partial Mef2 

expression is restored. Analysis of this region shows the presence of an 
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additional Dorsal binding site that may be responsible for mediating restriction of 

Mef2 from the ventral mesoderm at later stages. 

 Three E-boxes were found in the enhancer region in this study. Cripps et 

al. (1998) demonstrated the requirement of the E1 site of the enhancer for Twist-

mediated expression in the mesoderm and the adult somatic muscle precursors 

(Cripps et al., 1998). In this study, we assessed the importance of the other two 

E-box sites for their roles in mesodermal Mef2 expression. Our analysis 

confirmed that Twist can directly and robustly bind the E1 site and does not bind 

the E2 site. Both E2 and the E3 binding site were previously untested for direct 

binding of Twist. Our study shows that Twist can bind the E3 binding site but not 

as robustly as the E1 site. We mutated the E1 site to test the requirement for this 

site in vivo and also to test whether the E3 binding site can compensate for the 

loss of the E1 site. Our results show that mutation in the E1 site eliminates Mef2 

expression. This indicates that although Twist is required for Mef2 expression 

and can physically bind the E3 site, this site is not necessary for activation of 

Mef2 in the developing mesoderm.  

The bHLH protein Twist binds to E-box consensus sequences and 

mediates development of the mesoderm, regulating specification of different cell 

fates within this lineage. This protein can exist in both homodimer and 

heterodimer combinations facilitated by the HLH domain and different 

combinations of homodimer/heterodimer interactions result in differential DNA 

binding affinity, target preference, and biological activity (reviewed in Castanon et 

al., 2001). The differing abilities of Twist binding to each of the three E-box 
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binding sites on the Mef2 enhancer could be indicative of different bHLH factors 

also being involved in regulating Mef2. Perhaps the E2 and E3 sites serve as 

preferential binding sites for bHLH factors other than Twist to bind Mef2 and 

regulate its expression, adding more complexity to the regulation of this 

enhancer.  

The results obtained from the DM1, DM2, DM3, and Twi1 enhancer 

constructs suggest the Twist and Dorsal (dl, FBgn0260632) may work together to 

activate the Mef2 enhancer in the mesoderm. Levine and Davidson (2005) have 

discussed that Dorsal and Twist function in an additive fashion to activate genes 

in the ventral mesoderm prior to gastrulation.  It has also been observed that 

interactions between Dorsal and bHLH transcription factors, such as Twist, can 

be either in close proximity or can bind DNA at regions far from one another 

(Szymanski and Levine, 1995).  Twist has also been shown to directly bind the 

Drosophila Toll (Tl, FBgn0262473) enhancer, possibly regulating zygotic 

expression of the Toll receptor (Sandmann et al., 2007) which is required for 

refining Dorsal gradients in other insects, such as Tribolium castaneum (Chen et 

al., 2000).  It has yet to be shown whether Twist and Dorsal act together to 

promote Mef2 expression in the developing mesoderm.  If there is an interaction 

between the two, is the interaction a direct interaction or do the factors bind 

independently of one another? It is also necessary to determine if Dorsal can 

bind directly to the Mef2 enhancer and whether it acts as an activator or 

repressor of Mef2.  
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Nguyen and Xu (1998) showed the transcription factors Mad and Medea 

can both physically bind the Mef2 enhancer at three sites. This study also 

showed a requirement for Dpp signaling pathway in Mef2 expression in the 

mesoderm. What was not determined was whether this dependence on Dpp 

signaling resulted from the direct binding of Mad/Med to the three binding sites of 

the enhancer or if Dpp signaling affected the enhancer indirectly. We created a 

construct with all three Mad/Med binding sites mutated and assessed its 

expression in the embryo. Our results indicate that this enhancer construct 

(Mad3) maintained partial expression in the dorsal mesoderm. This could be due 

to residual expression from earlier stages, as previously suggested by Nguyen 

and Xu (1998), or may indicate that other transcription factors may bind these 

Mad binding sites. It has been shown that the Brinker (brk, FBgn0024250) 

protein can compete in vitro for binding to Mad sites on the Ultrabithorax (Ubx, 

FBgn0003944) enhancer and can prevent Mad from activating Dpp targets in 

vivo. Brinker is also repressed by Dpp signaling (Saller and Bienz (2001). The 

possibility that this mechanism may be occurring with the Mef2 enhancer adds 

complexity to the regulation of the enhancer within mesoderm development.   

Due to the requirement for both Twist binding and Mad activity, we sought 

to determine if these factors interact with one another in cells. Our results 

showed that the only Mef2 enhancer activated in the cell culture system was the 

DM3 enhancer. This enhancer was activated by the presence of Mad with an 

activated Thickveins receptor and well as by these two proteins in combination 

with Twist. The results from the cell culture analyses are inconsistent with the 
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results obtained from our in vivo assays. This could be due to the procedure 

used in our cell culture assays. For example, in these assays, we used a 

reporter:activator ratio of 9:1. This ratio was the optimized ratio from experiments 

where the Actin 57B (Act57B, FBgn0000044) enhancer was activated by MEF2 

protein (Kelly Tanaka et al., 2008). The mesoderm is specified by morphogen 

gradients that activate different gene programs in dose dependent manners, 

leading to variation in the combinations of factors expressed through space and 

time (Leptin et al., 1991, Xu et al., 1998, Sandmann et al., 2007, Reeves and 

Stathopoulos, 2009). It is possible that by using the same 9:1 ratio of 

reporter:activator, we are not addressing the complexity of the interactions 

between the various factors involved in Mef2 regulation. Titrations of the different 

transcription factors will be necessary to determine if there is a requirement for 

differential concentrations of transcription factors for activation of theMef2 

enhancer.  

Additionally, as discussed earlier, many other factors could potentially play 

a role in the expression patterns we observe in embryos by competing for binding 

sites or by interacting with binding proteins to regulate Mef2 enhancer 

expression. These levels of complexity have not been tested in our cell culture 

system but possibly influence the results of these assays.  

Twist activates at least 62 different targets required for mesoderm 

formation (Sandmann et al., 2007). These targets could potentially affect Mef2 

activation through indirect interactions with proteins that can directly bind the 

enhancer. The necessity for Dpp signaling in regulation of the Mef2 enhancer 
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has been demonstrated previously (Nguyen and Xu, 1998) and Mad is capable of 

activating the enhancer is cell culture.  However, mutation of Mad specific 

binding sites does not abolish expression of Mef2 in the way dpp null mutants do. 

There is also the possibility that Dorsal protein may be acting to both activate and 

repress Mef2 expression. Further optimization of our Mef2 enhancer for activity in 

cell culture is necessary before any solid conclusions can be made regarding the 

interactions of these proteins. It would also be useful to determine if Dorsal binds 

this enhancer and if any or all of these factors can occupy the enhancer 

simultaneously. 

It is necessary for Mef2 to be precisely regulated throughout development 

since it is required for proper mesoderm specification and for differentiation of all 

lineages of muscle. The full complexity of regulation, while extensively studied, 

remains poorly understood (reviewed in Black and Olson 1998, reviewed in 

Ciglar and Furlong, 2009). MEF2 is an evolutionarily conserved protein that 

affects many cellular and developmental processes from yeast to vertebrates 

(reviewed in Potthoff and Olson, 2007). Understanding the processes involved in 

regulating the diverse functions of Mef2 within Drosophila can guide future 

studies in vertebrate models where redundancy caused by multiple Mef2 genes 

can confound analysis. 
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SUMMARY 
 

 Mechanisms of muscle development are conserved in invertebrates and 

vertebrates. For this reason, Drosophila melanogaster is a model organism well 

suited for the study of such mechanisms. The utility of this model organism also 

makes it amenable to the types of molecular and genetic analysis that allows 

researchers to understand the very basal mechanisms involved in these 

developmental processes from general to cell-specific regulation. The genes that 

regulate the development of muscle precursors and mature muscle fibers are 

shown to have functions in other invertebrates and most vertebrate species. 

 In this dissertation, the gene CG14614 was identified as a gene required 

for the formation of the neuromuscular junction between the Tergal depressor of 

trochanter (TDT) muscle and the Posterior dorsal mesothoracic nerve (PDMN), 

which innervates this muscle. In the absence of this innervation, as observed in 

wings apart (wap) mutants, the TDT muscle degenerates within 24 hours after 

the onset of metamorphosis.  

 The protein encoded by CG14614 exhibits a conserved function in 

vertebrates. This is demonstrated by the observation that CG14614 protein can 

functionally rescue a severe craniofacial defect observed in the zebrafish wdr68 

mutant. This is very striking observation since vertebrate craniofacial 

development occurs in tissues that are absent in Drosophila. The protein has 

also been isolated from rabbit skeletal muscle, complexed with Dyrk proteins that 

are encoded by genes that also have a Drosophila ortholog, minibrain (mbn). 

Based upon these observations, it would be interesting to determine if there is a 
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functional interaction between CG14614 and mbn and if such an interaction is 

required for proper formation of the neuromuscular junction. 

 In addition to the identification of CG14614 as the gene responsible for the 

wap mutation, we were also able to identify the gene CG14619 as the gene 

affected by a mutation known as introverted (intro). This gene is likely an 

ecdysone response gene and functions in the process of head eversion as well 

as wing and leg disc extension. This gene may also function in either the 

development or maintenance of the abdominal muscles, since contractions of the 

abdominal muscles in response to pulses of ecdysone are required for proper 

head eversion in the fly. 

 Regulation of the Mef2 dorsal mesoderm enhancer was also analyzed for 

the requirement of interactions of Twist, Mad, and Medea binding. Twist is 

required for Mef2 activation. Although a requirement for Dpp signaling has 

previously been demonstrated for expression of the Mef2 enhancer, mutation of 

the binding sites to which Mad and Med bind does not completely abolish 

expression. The presence of two putative Dorsal binding sites on the enhancer 

suggest there may be a dual activator-repressor role for Dorsal in the regulation 

of the mesodermal Mef2 enhancer. Further investigation is necessary to assess 

the added complexity of Mef2 regulation highlighted by this study. 

 Since the factors regulating specification of the mesoderm and the 

somatic muscle are conserved across many animal groups, the principles guiding 

the general developmental process can most likely be extrapolated from simple 

invertebrate organisms to more complex organisms, such as humans, where 
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study of these mechanisms is far more challenging and complex. The research 

presented in this dissertation is intended to shed light on such mechanisms in 

order to gain a better understanding of both vertebrate muscle formation and the 

diseases affecting these muscles. 
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