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Abstract 

Jennifer M. Speth 

 

DEFINING THE MECHANISM OF PROSTAGLANDIN E2- ENHANCED HEMATOPOIETIC STEM 

AND PROGENITOR CELL HOMING 

 

 Hematopoietic stem cell (HSC) transplantation is a lifesaving therapy for a 

number of hematological disorders. However, to be effective, transplanted HSCs must 

efficiently “home” to supportive niches within the bone marrow. Limited HSC number 

and poor function are complications of transplant in some circumstances, and can lead 

to delayed engraftment and immune reconstitution, or in some cases, bone marrow 

failure. Enhancing HSC homing is a strategy to improve stem cell transplantation 

efficiency. We have previously shown that ex vivo treatment of mouse or human HSCs 

with 16-16 dimethyl PGE2 (dmPGE2) increases their bone marrow homing efficiency and 

engraftment, resulting in part from upregulation of surface CXCR4 expression. We now 

show that pulse-treatment of mouse or human HSPCs with dmPGE2 stabilizes HIF1α in 

HSPCs, and that similar treatment with the hypoxia mimetic DMOG produces analogous 

effects to dmPGE2 on HSPC CXCR4 expression and homing. This suggests that HIF1α is 

responsible for PGE2’s enhancing effects on HSPCs. Pharmacological inhibition of HIF1α 

stabilization in vitro with Sodium Nitroprusside (SNP), confirms the requirement of 

HIF1α for dmPGE2-enhanced migration and CXCR4 upregulation. Additionally, we 

confirm the requirement for HIF1α in dmPGE2-enhanced in vivo homing using a 
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conditional knockout mouse model of HIF1α gene deletion. Finally, we validate that the 

hypoxia response element located 1.3kb from the transcriptional start site within the 

CXCR4 promoter is required for enhanced CXCR4 expression after PGE2 treatment. 

Interestingly, we also observe an increase in the small GTPase Rac1 after dmPGE2 

treatment, as well as a defect in PGE2-enhanced migration and CXCR4 expression in 

Rac1 knockout HSPCs. Using state-of-the-art imaging technology we, confirm an 

increase in Rac1 and CXCR4 colocalization after dmPGE2 treatment that likely explains 

enhanced sensitivity of PGE2-treated HSPCs to SDF-1. Taken together, these results 

define a precise mechanism through which ex vivo pulse treatment of HSPC with 

dmPGE2 enhances HSPC function through alterations in cell motility and homing, and 

describe a role for hypoxia and HIF1α in enhancement of hematopoietic transplantation.  

 

 

 

Louis M. Pelus, Ph.D., Chairman 
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Chapter 1. Introduction 

  The human body’s blood forming system is a complex network of cells that, 

through a variety of unique functions, has the ability to provide for physiological 

demand and adapt and defend against a wide array of pathogens and infections. Blood 

cell production is maintained throughout the lifetime of the host. Approximately 1 

trillion blood cells are produced in one single day in an averaged sized adult male 

(Ogawa, 1993) to maintain steady state levels in peripheral blood. This continuous 

production of blood cells is termed “hematopoiesis” after the Greek words haima 

meaning “blood”, and poiein, meaning “to make”. Hematopoiesis is a multifaceted 

process involving both stochastic and inductive mechanisms, and the focus of this 

chapter is to provide a brief overview of the main cellular player responsible for 

hematopoiesis: the hematopoietic stem cell (HSC), including its function, identification, 

and relationship to environmental mediators, particularly prostaglandins and hypoxia.  

 

Multiple Origins of Hematopoietic Cells  

 The origin of blood and blood-forming cells has been at the center of debate for 

almost an entire century. It is generally accepted that the origin of most primitive 

hematopoietic cells is the aorta-gonad-meso-nephros (AGM) region of the embryo 

(Medvinsky & Dzierzak, 1996), and pioneering studies by Moore and Metcalf elegantly 

showed that the yolk sac is a source of definitive hematopoietic cells (Moore & Metcalf, 

1970). More recently, much stronger evidence confirms the yolk sac as being the single 

origin of definitive adult hematopoietic cells (Tanaka et al., 2012). 
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Interestingly, studies in the early 20th century suggested the presence of a cell in 

the embryonic yolk sac that could produce both hematopoietic and endothelial cells 

based on the observation of “blood islands”, in which clusters of red blood cells (RBCs) 

and macrophages were in close proximity to vascular endothelial cells (Sabin, 1920). 

However, these precursor cells were not fully identified until recently. Now, studies 

show the existence of a distinctive population of cells, termed “hemangioblasts”, that 

can give rise to adult hematopoietic cells as well as endothelial cells  (Choi et al., 1998; 

Ciraci et al., 2011).  

 

The Hematopoietic stem cell- Its identification and function 

 Hematopoietic stem cells are defined by their ability to self-renew, as well as 

their ability to differentiate into mature blood cells of all cell lineages. However, the idea 

that a specific population of cells were capable of and necessary for maintenance of the 

entire blood system became evident when it was discovered that hematopoiesis could 

be restored after lethal irradiation, only if bone marrow (BM) and spleen cells were 

administered to the irradiated recipient (Jacobson et al., 1950a; Jacobson et al., 1950b). 

Later, more interesting studies performed by Till and McCulloch revealed that there 

were single clonogenic cells that existed within the bone marrow and when injected into 

a lethally irradiated host, could create nodules in the spleen that were in similar 

proportion to the number of cells that were originally injected into the recipients. These 

cells were also found to have the ability to self-renew and restore hematopoiesis, thus 

suggesting the existence of a hematopoietic stem cell (Till & McCulloch, 1961; Becker et 
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al., 1963; Siminovitch et al., 1963; Wu et al., 1968). This assay, termed a colony unit-

forming spleen (CFU-S) assay, is still utilized as a surrogate measure of HSCs in vivo, 

although we now know CFU-S is not a measure of true stem cells, but perhaps  short-

term repopulating hematopoietic progenitor cells (HPCs). In addition to CFU-S, in vitro 

assays such as the cobblestone area-forming cell (CAFC) assay (Ploemacher et al., 1989) 

and long-term culture initiating cell (LTC-IC) assay (Sutherland et al., 1990) are currently 

utilized and are also surrogate measures of more immature populations of HPCs.  

While the aforementioned assays are still particularly useful for determining the 

members and function of these progenitor cells, the only true definitive measure of HSC 

function is the ability to rescue a lethally irradiated host via full reconstitution of the 

hematopoietic system (Harrison, 1972). Primitive assays involved the transplant of bone 

marrow cells into irradiated recipients, which were then monitored for a period of 

weeks for both survival and complete lineage reconstitution. However, this method only 

reveals the “presence” of HSCs within the graft, and does not quantify the number of 

HSCs present. Thus, a “competitive” repopulation assay was developed by Harrison in 

which a donor graft was combined with a “competing” graft and then transplanted into 

an irradiated recipient (Harrison, 1980). Based on distinct markers on each graft, the 

contribution (termed “chimerism”) and repopulating ability of each graft could be 

determined using a formula to calculate repopulating units (RU) (Harrison, 1993).  

An even more sensitive method for calculating HSC frequency is the limiting 

dilution competitive transplant, in which a series of dilutions of the donor graft is 

“competed” against a constant number of “competitor” cells. Xi-square statistics are 
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then utilized to calculate a minimum threshold of recipient chimerism (typically set at 2-

5%), and the number of recipients per group that are not reconstituted based on this 

threshold is determined. These “negatives” allow for the frequency of HSCs within the 

donor grafts to be determined using Poisson statistics (Szilvassy et al., 1990). Typically, 

sample groups with fewer negatives will possess a higher frequency of HSCs and vice 

versa.  

Common methods for competitive transplants today involve the use of congenic 

mouse strains possessing two different isoforms of the CD45 antigen, a pan-leukocyte 

marker. These methods utilize the strains C57Bl6 (expressing CD45.2 antigen) and 

B6.SJL-PtrcAPep3B/BoyJ (BoyJ) (expressing CD45.1 antigen). These distinct strains can 

be distinguished by flow cytometry using monoclonal fluorescent-conjugated 

antibodies, which easily allow for the assessment of donor contribution within the 

recipient.  

Primary transplants are a strong indication of enhanced HSC number and 

function, however, based on studies in which serial transplantation of CFU-S led to 

decreased self-renewal capabilities of the donor cells (Vos & Dolmans, 1972; Vos, 1972) 

it has been suggested that HSCs have varying abilities for long-term self-renewal. This 

observation, paired with the more recent ability to phenotypically characterize HSC 

populations by FACS analysis have revealed separate populations of HSCs with differing 

reconstitution capabilities. HSCs possessing  full reconstitution capabilities of up to 16 

weeks are termed short-term HSCS (ST-HCS), whereas intermediate HSCs (IT-HSCs) 

possess reconstitution abilities for up to 32 weeks , and long-term HSCs (LT-HSCs) 
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provide reconstitution for longer than 32 weeks (Benveniste et al., 2010). The discovery 

of these populations emphasizes the importance of performing at least secondary 

transplants to truly determine long-term HSC reconstitution potential. While a 

successful primary transplant confirms the presence of both short-term and multipotent 

progenitors, it does not confirm the presence and self-renewal of LT-HSCs. Successful 

engraftment and most importantly full multilineage reconstitution after removing 

primary engrafted cells after 32 weeks and transplanting them into a second recipient, 

can only result from the presence of LT-HSCs. 

With the advent of fluorescence-activated cell sorting (FACS) analysis, the ability 

to determine the presence and abundance of multiple HSC and HPC populations became 

possible. However, the characterization of more mature HPC populations was 

established well before this technology was available. In vitro progenitor assays, also 

known as “colony-forming unit (CFU)” assays have been used since the late 1960’s to 

measure bone marrow hematopoietic cell clonogenic and regenerative potential.  

Depending on the specific growth factors present within semi-solid media, 

progenitors capable of producing granulocyte-macrophage (CFU-GM) (Bradley & 

Metcalf, 1966; Ichikawa et al., 1966), erythroid (BFU-E) (Cooper et al., 1974; Iscove & 

Sieber, 1975), and mixed multipotent (CFU-GEMM) (Fauser & Messner, 1978; Fauser & 

Messner, 1979; Ash et al., 1981) colonies can be enumerated and consequently, the 

functional capabilities of the particular cell population can be assessed.  With the 

exception of CFU-GEMM, which appears to have robust secondary replating capacity, 

but diminished tertiary capacity (Carow et al., 1991), subsequent recloning studies 
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revealed that these purified lineage-restricted progenitors had limited to no self-

renewal capabilities (Purton & Scadden, 2007).  

While the pioneering in vitro colony assays were the first to allow for functional 

characterization and clonogenic potential of hematopoietic cell populations, phenotypic 

identification did not come until later, when FACS analysis allowed for more precise 

characterization of different stem and progenitor populations. The first population 

determined to be enriched for hematopoietic stem and progenitor cells (HSPCS) were 

found to lack markers for mature blood cells such as erythrocytes, neutrophils, 

macrophages, natural killer cells, T cells and B cells. This population was therefore 

referred to as Lineageneg (Muller-Sieburg et al., 1986). Later, the cell surface markers 

stem cell antigen-1 (Sca-1) (Spangrude et al., 1988) and stem cell factor (SCF) receptor 

(c-kit) (Ikuta & Weissman, 1992) were added to further define HSPC populations and 

this phenotypic designation is still widely accepted as a population that contains HSCs. 

This particular population will be referred to as Sca-1pos c-kitpos Lineageneg  (SKL) cells 

throughout the remainder of this dissertation. 

Murine HSCs can also be identified by their low retention of fluorescent dyes 

such as Hoechst 33342 and appear as a “side” population when analyzed by flow 

cytometry. This side population represents approximately 0.05% of whole bone marrow 

cells and is highly enriched for functional HSCs, even more so that the SKL population 

(Goodell et al., 1996; Lin & Goodell, 2006). Inconsistent staining and variation based on 

slight staining modifications can lead to less purified HSC populations, therefore this 

particular method for identifying HSCs is best when paired with SKL staining.  
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More recently, a number of different surface markers have been identified that 

further define HSC based on lineage commitment and multipotency. Most notably, the 

signaling lymphocytic activation molecule (SLAM) markers, including CD150, CD48 and 

CD244, in conjunction with SKL markers, define a highly enriched HSC population with 

long-term renewal capabilities (Kiel et al., 2005; Chen et al., 2008). In addition to SLAM 

markers, CD34 is commonly used to distinguish long-term versus short-term HSCs. 

Osawa first discovered that murine hematopoietic cells lacking CD34 expression 

exhibited multilineage reconstitution ability (Osawa et al., 1996). It is now widely 

accepted that phenotypic differentiation between long and short-term HSCs is based on 

CD34 and SLAM expression, where LT-HSCs are defined as Lineageneg, c-kitpos, Sca-1pos, 

CD34neg, SLAMpos and ST-HSCs are Lineageneg, c-kitpos, Sca-1pos, CD34pos, SLAMneg 

(Weissman & Shizuru, 2008).  

Apart from HSCs, progenitor cells can be phenotypically distinguished  by a 

multitude of cell surface markers and differentiation patterns, and can be placed in a 

differentiation “hierarchy” (Figure 1A). These progenitors include the common myeloid 

progenitor (CMP), common lymphoid progenitor (CLP), Granulocyte macrophage 

progenitor (GMP) and Megakaryocyte erythroid progenitor (MEP), all giving rise to the 

cells indicated in their names. In mice, the CLP population is distinguished by its low 

expression of both c-kit and Sca-1, as well as expression of IL7Rα . It is phenotypically 

defined as Lineageneg, c-kitlow, Sca-1low, IL7Rαpos.  Common myeloid progenitors are 

distinguished by their lack of Sca-1 expression, and are classified as Lineageneg, c-kitpos, 

Sca-1neg, CD34pos. These progenitors can give rise to both GMP and MEP, which lack Sca-
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1 and CD34 expression, and can be distinguished from each other based on expression 

of FcγR. They are classified as Lineageneg, c-kitpos, Sca-1neg, CD34neg, FcγRpos, and 

Lineageneg, c-kitpos, Sca-1neg, CD34neg, FcγRneg for GMP and MEP, respectively (Kondo et 

al., 1997; Akashi et al., 2000).  

Different from the murine classification, human HSCs are typically defined by 

their expression of CD34 (Civin et al., 1984; Andrews et al., 1986). However, this 

population is still heterogeneous for both stem and progenitor cells. With the addition 

of CD38, human HSCs could be distinguished as mature (CD34pos CD38pos) and primitive 

(CD34pos CD38neg) HSCs (Terstappen et al., 1991), which are analogous to short and long-

term HSCs in mice. The Nolta lab introduced an alternative phenotype for identifying 

human HSCs by expression of aldehyde dehydrogenase activity (ALDH) and CD133 

expression. They found that ALDHhiCD133posLineageneg populations were highly enriched 

for long-term repopulating primitive HSCs with reconstitution ability over serial 

transplantations (Hess et al., 2006). However, for the purpose of this dissertation, 

human HSPC-containing populations will be defined as CD34pos.  

Progenitor populations were later defined for CLP, CMP, MEP and GMP 

populations, and are distinguished from mature progenitors by CD10 expression in the 

case of CLP populations (Galy et al., 1995), and varying expression levels of IL3Rα for 

myeloid progenitors (Manz et al., 2002) (Figure 1B).  
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Figure 1 
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Figure 1. Hematopoietic hierarchy.  

Shown is a very simplistic graphical representation of the stem cell hierarchy and 

differentiation patterns, based on current understandings of the hematopoietic process. 

Starting from  the top, a LT-HSC with long-term renewal capabilities can differentiate 

into a ST-HSC, with limited or lack of ability to self-renew, but still capable of 

differentiating down all lineages. Division of this multipotent progenitor can produce 

either myeloid or lymphoid progenitors, which further differentiate into oligopotent and 

then lineage-restricted progenitors, and finally into mature blood cells. In addition, a 

primitive hemangioblast can produce either endothelial cells or multipotent 

hematopoietic progenitors.  
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The Hematopoietic Stem Cell Niche- Roles for CXCR4 and Hypoxia 

While blood cells can be found in a majority of organs and tissues throughout 

the body, it was first suggested by Schofield that HSCs are maintained in very specific 

and defined microenvironments, termed “niches”, where signals regulate HSC 

maintenance (Schofield, 1978). We now know that the primary physiological HSC niche 

in most higher organisms is the bone marrow, which is comprised of hematopoietic 

cells, mesenchymal stromal cells, and a milieu of extracellular matrix proteins, 

chemokines, cytokines, collagens, fibronectins and proteoglycans (Yoder & Williams, 

1995). Bone-forming cells, or osteoblasts, have been shown to have proximal interaction 

with HSCs within the endosteal niche (Calvi et al., 2003; Arai et al., 2004; Visnjic et al., 

2004), and co-transplant with osteoblasts or osteolineage cells increases HSC 

engraftment (El-Badri et al., 1998), suggesting that these cells are an extremely 

important component of the bone marrow niche and are crucial for HSC maintenance 

and function.  

Osteocytes, which differentiate from osteoblasts, are the most abundant cell 

type in the bone matrix (Bonewald, 2011). Osteocytes are another integral cell for HSC 

maintenance and their retention within the niche. It appears that osteocytes may 

release anabolic factors such as nitric oxide (NO) and prostaglandins into the 

extracellular matrix (Klein-Nulend et al., 1995), which are known to have positive effects 

on hematopoietic cell-supporting osteoblasts. Furthermore, absence of osteocytes 

results in severely impaired mobilization of HSCs in response to granulocyte-colony 

stimulating factor (G-CSF), despite no alterations in numbers of HSCs within the bone 
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marrow (Asada et al., 2013), suggesting that osteocytes may be crucial for HSC retention 

and trafficking from the bone marrow.   

Despite HSCs’ close proximity to osteoblastic or “endosteal” regions of the bone 

marrow, the theory of other distinct niches has been proposed and debated. Studies 

have suggested that HSCs expressing SLAM markers are associated with sinusoidal 

endothelium (Kiel et al., 2005), and that loss of bone marrow sinusoidal endothelial cells 

results in impaired HSC engraftment (Hooper et al., 2009; Butler et al., 2010), thus 

suggesting the presence of a “vascular” niche. Additionally, specific markers expressed 

on bone marrow endothelial cells such as E-selectin have been shown to be important 

for regulation of HSC proliferation (Winkler et al., 2012). On the other hand, recent 

reports show that the vascular niche is not necessary for HSPC expansion (Soki et al., 

2013), and other studies reveal a crucial role for perivascular stromal cells in HSC 

maintenance (Corselli et al., 2013) suggesting the presence of a non-endothelial 

“perivascular” niche.  

 While the idea of distinct bone marrow niches will continue to be the topic of 

debate for many years, it is known that HSCs can interact with cells from  all three 

niches through a number of different adhesion and extracellular molecules such as 

α4β1- Very late antigen 4 (VLA-4), α5β1- Very late antigen 5 (VLA-5) (Levesque et al., 

1995; Peled et al., 2000), osteopontin (OPN) (Nilsson et al., 2005; Grassinger et al., 2009) 

and Nestin (Mendez-Ferrer et al., 2010), and these molecules have been shown to be 

necessary for maintaining HSCs within the bone marrow. However, the CXC chemokine 

receptor 4 (CXCR4) and Stromal-cell derived factor-1 (SDF-1) interaction has been 



13 
 

considered to be one of the most important for regulation of HSPC trafficking to and 

from the bone marrow. CXCR4 is expressed by HSCs, and its ligand, SDF-1, is expressed 

by osteoblasts (Ponomaryov et al., 2000), endothelial and perivascular cells (Katayama 

et al., 2006) as well as specialized reticular cells (Sugiyama et al., 2006) within the bone 

marrow, and the interaction between CXCR4 and SDF-1 has positive effects on HSC 

proliferation and survival (Broxmeyer et al., 2003; Broxmeyer et al., 2005; Broxmeyer et 

al., 2007).  

 Another unique characteristic of the bone marrow niche is its oxygen content. 

Compared to the rest of the body, the bone marrow is distinctly less oxygenated and is 

considered “hypoxic” (Harrison et al., 2002). During embryogenesis, oxygen levels in the 

embryo are also low (Rodesch et al., 1992), and hemangioblast differentiation into 

endothelial and hematopoietic cells is dependent on hypoxia (Phillips et al., 1995; 

Adelman et al., 1999). Furthermore, early studies revealed a protective effect of hypoxia 

on the bone marrow and spleen  (Rambach et al., 1954). Taken together, these studies 

indicate that hypoxia may have a positive effect on both development as well as 

maintenance of hematopoietic cells. Indeed, more recent evidence suggests that HSCs 

with long-term population capacity are located in hypoxic areas and are not in close 

proximity to the highly oxygenated capillaries (Parmar et al., 2007; Kubota et al., 2008). 

 A major transcription factor regulated by hypoxia is Hypoxia Inducible Factor-1 

(HIF1). HIF1 was initially characterized as a hypoxia-inducible protein and was shown to 

upregulate Erythropoietin (Epo) in response to both hypoxia and cobalt chloride (Wang 

& Semenza, 1993). Later, it was determined that HIF1 was a heterodimeric basic helix-
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loop-helix (bHLH) DNA-binding protein, containing a Per-ARNT-Sim (PAS) domain and 

consisting of two subunits, HIF1α and HIF1β (Wang & Semenza, 1995; Wang et al., 1995) 

(Figure 2A). In normoxic conditions, prolyl hydroxylases add a hydroxyl group to specific 

proline residues in the oxygen-dependent degradation domain (ODDD) within the HIF1α 

subunit (Ivan et al., 2001), allowing it to bind to the E3 ubiquitin ligase, von Hippel 

Lindau (vHL) protein (Ohh et al., 2000). HIF1α is subsequently ubiquitinated and 

ultimately undergoes proteasomal degradation (Salceda & Caro, 1997; Maxwell et al., 

1999; Kamura et al., 2000). In hypoxia, the prolyl hydroxylases are inhibited due to their 

requirement for oxygen as a substrate, thus allowing HIF1α to dimerize with HIF1β and 

translocate to the nucleus. Once in the nucleus, the HIF1α/β dimer binds to hypoxia 

response elements (HREs) located within the promoter region of responsive genes 

(Figure 2B). HIF1 affects the expression of a number of downstream genes that regulate 

angiogenesis, survival and migration, such as VEGF (Liu et al., 1995), Survivin (Yang et al., 

2004; Peng et al., 2006; Wei et al., 2006) and CXCR4, respectively. Interestingly, CXCR4 

contains several HREs within its promoter (Schioppa et al., 2003; Staller et al., 2003; 

Phillips et al., 2005; Zagzag et al., 2006; Wang et al., 2008; Ishikawa et al., 2009), 

indicating it can be transcriptionally regulated by HIF1.  

The hypoxic state of the bone marrow suggests that HIF1 may be important for 

HSC maintenance within the niche. Elegant studies by Takubo et al. demonstrate that 

precise regulation of HIF1α expression is necessary for optimal HSC cell cycle regulation 

(Takubo et al., 2010), and specific roles for hypoxia and HIF1α in HSC function and 

maintenance will be discussed in length later in the dissertation. 
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 Another member of the HIF family, HIF2α, shares close sequence homology to 

HIF1α (Ema et al., 1997) and is known to regulate several hypoxia-responsive genes such 

as VEGF and Adrenomedullin (Hu et al., 2003). However, it was recently established 

that, although HIF1α and HIF2α are structurally similar, they play varying roles in certain 

physiological processes such as angiogenesis and tumor formation (Imtiyaz et al., 2010; 

Skuli et al., 2012) that appear to be non-overlapping. And while it has been shown that 

HIF2α can respond to hypoxia similarly to HIF1α (Ema et al., 1997), it does not appear to 

regulate CXCR4 or other genes involved in HSPC function.  

  



16 
 

Figure 2 
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Figure 2. HIF1 regulation by hypoxia. 

(A) The HIF1α protein consists of a basic helix-loop-helix (bHLH) DNA-binding domain, as 

well as a Per-ARNT-Sim (PAS) domain and oxygen-dependent degradation domain 

(ODDD). Two specific proline residues located at 402 and 564 flank the ODDD region and 

are required for HIF1α degradation by the von Hippel Lindau (VHL) protein. (B) 

Schematic of HIF1 in hypoxia or normoxia. Briefly, HIF1α is hydroxylated at two proline 

residues In normoxia by prolyl hydroxylases. The hydroxylated prolines are then 

recognized and ubiquitinated by the E3 Ubiquitin ligase VHL, and HIF1α is degraded 

through the proteasomal pathway. In hypoxia, prolyl hydroxylases are inhibited, 

allowing HIF1α to be stabilized and bind to the HIF1β subunit, also known as Aryl 

Hydrocarbon Nuclear Translocator (ARNT), and together are translocated to the nucleus 

to bind to hypoxia response elements (HREs) within the promoter of responsive genes.   
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Hematopoietic stem cell homing and motility 

 One of the hallmarks of HSCs is their ability to engraft and fully reconstitute the 

blood forming system of transplant recipients. In order to do this, however, it is 

essential that they find their way back to the bone marrow after transplant. This 

process, termed “homing”, is a relatively quick process that lasts no longer than 48 

hours. During this short period of time, stem cells must navigate through a barrage of 

chemokines and cytokines in the blood, cross a blood/bone marrow endothelial barrier, 

lodge themselves within supportive cellular niches of the bone and begin proliferating. 

Homing is a process distinct from engraftment, and does not require cell division 

(Lapidot et al., 2005). Therefore, while effective homing is necessary for engraftment, it 

does not necessarily assure that engraftment will be successful.  

A unique aspect of stem cell homing is the seemingly preferential localization of 

HSCs to the bone marrow after transplant. Several studies investigated the organ 

distribution of HSCs post-transplant and found that the majority of HSCs localized to the 

bone marrow, and did not remain or proliferate in other organs for extended periods of 

time (Kollet et al., 2001; Matsuzaki et al., 2004), suggesting that the bone marrow 

contains specific factors that not only attract HSCs, but are necessary for HSC lodgment. 

More detailed studies revealed that certain adhesion molecules expressed by both HSCs 

and bone marrow niche cells, such as CXCR4, are extremely important in HSC homing 

(Peled et al., 1999). Subsequently, studies confirmed that increases in CXCR4 expression 

on HSCs correlates with an enhanced homing and subsequent engraftment (Brenner et 

al., 2004; Kahn et al., 2004).   
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Preferential homing and retention in the bone marrow suggests that HSCs can 

direct their movement to specific locations within the body. This directional movement, 

termed cell polarization or cell motility, is an extremely complex and tightly regulated 

process involving a combination of signal cascades and cytoskeleton rearrangement via 

actin polymerization, usually in response to chemokine gradients (Fukata et al., 2003). 

Cell movement typically begins by the formation of lamellipodia towards a chemokine 

gradient via activation of actin filaments (Bailly et al., 1998). The lamellopod is then 

stabilized by the formation of adhesions to the cellular microenvironment, and then the 

posterior of the cell is able to retract and the cell moves forward, repeating the process 

over and over until the cell has reached its destination (Bailly et al., 1998; Condeelis et 

al., 2001; Ananthakrishnan & Ehrlicher, 2007). Movement of cells is entirely dependent 

on actin polymerization at the leading edge of the cell (Ridley & Hall, 1992a; Ridley & 

Hall, 1992b; Tang & Anfinogenova, 2008), and this polymerization is tightly regulated by 

a specific family of small GTPases, also known as the “Rho” family (Ridley & Hall, 1992a; 

Ridley & Hall, 1992b).  

Collectively, GTPases are extremely important for cell movement, and essentially 

all aspects of motility including polarity, cytoskeletal reorganization and signal 

transduction are controlled by GTPases (Sahai & Marshall, 2002; Tang & Anfinogenova, 

2008). The Rho GTPases are a family made up of 6 small, 20-40kDa proteins that include 

RhoA, RhoB, RhoC (Madaule & Axel, 1985), Cdc42 (Shinjo et al., 1990), Rac1 and Rac2 

(Ridley & Hall, 1992a). While these proteins share some homology, Cdc42, Rac1 and 

Rac2 have distinct functions and are vital for cell motility (Fukata et al., 2003). However, 
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despite their downstream functional differences, they all behave as typical GTPases. In 

their inactive GDP-bound form, they are sequestered in the cell cytoplasm, however 

when activated, Guanine nucleotide exchange factors (GEFs) exchange GDP for GTP and 

the GTPase moves to the cellular membrane and interact with downstream effector 

proteins (Schmidt & Hall, 2002). Deactivation requires GTPase-activating proteins 

(GAPs), which hydrolize GTP into GDP (Figure 3).  

Certain members of the Rho family, specifically Rac1 and Rac2 have been shown 

to be involved in HSC function and trafficking. Interestingly, Rac proteins can be 

activated by SDF-1 and are indispensable for HSC homing and engraftment (Yang et al., 

2001; Gu et al., 2003; Cancelas et al., 2005). Gu et al. dissected the roles of Rac1 and 

Rac2 in HSC cell function, and determined that Rac1 played important roles in endosteal 

homing, growth-factor stimulated proliferation and cell motility, specifically in regards 

to cell retraction. Rac2 was more important for cell regulation of apoptosis and F-actin 

assembly, and both were required for normal cell migration to SDF-1 and retention 

within the bone marrow (Gu et al., 2003). Furthermore, while Rac2 may be the only Rac 

exclusively expressed on hematopoietic cells (Williams et al., 2008), Rac1 can colocalize 

with CXCR4 within lipid rafts of hematopoietic cells (Wysoczynski et al., 2005) and has 

been shown to be required for HIF1 activity (Hirota & Semenza, 2001) . This evidence, 

along with others suggesting that HIF1α and CXCR4 are crucial for HSC maintenance and 

homing, strongly indicate Rac1 as being an indispensable component of HSC trafficking.   
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Figure 3 
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Figure 3. GTPase regulation by GEFs and GAPs.  

Schematic of Rac GTPase activation and de-activation. Rac is turned “ON” by the activity 

of Guanine nucleotide exchange factors (GEFs) and conversion of GDP to GTP, normally 

in response to stimuli such as chemokines such as SDF-1. Once activated, Rac is localized 

to the cell membrane and interacts with downstream effectors that can influence cell 

motility and proliferation. GTPase-activating proteins (GAPs) de-activate Rac by 

hydrolyzing GTP into GDP, and inactive Rac is then sequestered in the cytoplasm until 

activated again.   
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Prostaglandins: Synthesis, Signaling and Roles in Hematopoiesis 

 Prostaglandins are a series of highly pleotropic lipid messengers within the large 

Eicosanoid family of bioactive lipids, and are formed by the oxidation of 20-carbon 

arachadonic acid (AA). Prostaglandin E2 (PGE2) is the most abundant eicosanoid (Serhan 

& Levy, 2003; Murakami & Kudo, 2006), and is synthesized by all nucleated cells (Miller, 

2006). PGE2 has an array of physiological effects, but is a well-known facilitator of 

inflammation (Hinson et al., 1996; Murakami & Kudo, 2006; Samuelsson et al., 2007) , 

fever (Coceani et al., 1989; Ivanov & Romanovsky, 2004; Lazarus, 2006), pain (Schweizer 

et al., 1988; Stock et al., 2001) and cancer (Hull et al., 2004; Murakami & Kudo, 2006). 

Due to its extremely short half-life, it is thought to signal in an autocrine or paracrine 

fashion (Tsuboi et al., 2002).  

 Biosynthesis of PGE2 is largely initiated by inflammatory signaling and activation 

of cytosolic Phospholipase A2 (cPLA2) (Figure 4). Phospholipase A2 is the predominant 

phospholipase that initiates PGE2 synthesis and can cPLA2 be activated by a number of 

different molecules, such as Transforming growth factor-alpha (TGF-α) (Liu et al., 1993). 

Once activated, cPLA2 frees AA from cellular membrane phospholipids. Arachadonic acid 

then interacts with cyclooxygenase (COX) enzymes 1 and 2. At steady state, COX1 is 

ubiquitously expressed at low levels, however COX2 expression is induced by 

inflammatory stimuli such as LPS (Miller, 2006; Murakami & Kudo, 2006; Park et al., 

2006).  During this step, the intermediate prostaglandin G2 (PGG2) is formed by 

cyclization of AA through the addition of a 15-hydroperoxy group, followed by reduction 

of PGG2 to form the unstable intermediate prostaglandin H2 (PGH2).  
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Figure 4 
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Figure 4. Prostaglandin E2 biosynthesis.  

Schematic of PGE2 synthesis. Stimulation by an inflammatory signal such as cytokines, 

lipopolysaccharide (LPS) or radiation activates cytosolic Phospholipase A2 (cPLA2), which 

then cleaves a membrane phospholipid into the 20-carbon arachadonic acid (AA). 

Arachadonic acid is oxidized by Cyclooxygenases 1 and 2 (COX 1 and 2) to form the 

unstable intermediate PGH2, which is then further converted into Prostaglandins D2, F2, 

I2 and E2 by specific Prostaglandin Synthases.   
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From this step, PGH2 interacts with specific prostaglandin synthases that convert it into 

the various prostaglandin families such as PGE2, PGD2, PGF2 or PGI2 (Urade et al., 1995; 

Folco & Murphy, 2006; Park et al., 2006).  

 Once synthesized, PGE2 can interact with four different G-protein coupled 

receptors (GPCRs) with distinct, overlapping and opposite activities, resulting in multiple 

biological effects (Breyer et al., 2001; Tsuboi et al., 2002; Hull et al., 2004; Sugimoto & 

Narumiya, 2007) (Figure 5). The E Prostanoid (EP) receptor EP1 activates Phospholipase 

C (PLC) and increases intracellular calcium levels and Protein kinase C (PKC) activity 

(Breyer et al., 2001; Tsuboi et al., 2002). The EP3 receptor acts by inhibiting adenylate 

cyclase and cyclic adenosine monophosphate (cAMP) signaling (Lazarus, 2006; Sugimoto 

& Narumiya, 2007). Both EP2 and EP4 receptors activate cAMP through Protein kinase A 

(PKA) signaling (Breyer et al., 2001; Tsuboi et al., 2002; Hull et al., 2004; Sugimoto & 

Narumiya, 2007), but EP4 can also increase Phosphoinositide 3-Kinase (PI3K) activity in 

addition to cAMP (Fujino et al., 2003; Vo et al., 2013). Due to overlapping and opposite 

effects of the four EP receptors, PGE2 signaling is mainly dependent on the expression 

and availability of the receptors as well as PGE2 concentrations. Variations in either will 

result in different signaling outcomes (Hull et al., 2004).   

 As mentioned previously, almost all nucleated cells can synthesize PGE2. 

However, within the bone marrow, the primary cell types responsible for synthesizing 

PGE2 appear to be osteoblasts (Raisz et al., 1979; Chen et al., 1997; Miyaura et al., 2003) 

and macrophages (Pelus et al., 1979; Shibata, 1989). Other cell types such as 

mesenchymal stromal cells and fibroblasts have been reported to secrete PGE2 as well, 
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albeit at lower levels (Ylostalo et al., 2012). Based on the ability of multiple marrow 

stromal cells to produce PGE2 and their roles in HSC maintenance within the niche, it is 

logical to hypothesize that PGE2 is involved in HSC regulation and function. Indeed, early 

studies showed that PGE2 plays an important role in hematopoiesis with both 

stimulatory and inhibitory effects, which were dependent on specific dose and duration 

of PGE2 exposure. In vivo PGE2 administration inhibits colony-forming unit granulocyte 

macrophage (CFU-GM) frequency and cell-cycle rate (Kurland et al., 1978; Pelus et al., 

1979; Pelus et al., 1981; Gentile et al., 1983; Gentile & Pelus, 1987; Gentile & Pelus, 

1988; Pelus, 1989), while ex vivo pulsing of cells with PGE2 induces cycling of quiescent 

hematopoietic cells and increased number of HPCs, suggesting that PGE2 may act on 

primitive cell populations as well as more mature progenitor cells (Pelus et al., 1982; 

Pelus, 1982). PGE2 was also shown to have stimulatory effects on erythroid and 

multipotent progenitors in vitro (Rossi et al., 1980; Lu et al., 1984; Lu et al., 1986), 

reiterating PGE2’s pleotropic effects on different cell populations. More recent studies 

reveal that PGE2 enhances bone marrow engraftment after transplantation in mice as a 

consequence of enhanced homing, survival and proliferation of HSC (Hoggatt et al., 

2009).  
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Figure 5 
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Figure 5. Prostaglandin signaling through EP receptors.  

Four different EP receptors have similar and opposing effects based on their expression 

and PGE2 concentration.   
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Chapter 2. HIF1α is Necessary for Enhanced HSPC Homing After Prostaglandin E2 

Treatment 

 

Introduction:  

Hematopoietic stem cell (HSC) transplant is a life-saving treatment option for a 

variety of hematological malignancies, inherited metabolic diseases and congenital 

immunodeficiencies, and is also an attractive strategy for gene therapy (Kondo et al., 

2003; Magnani et al., 2013) . Primary sources of HSC for transplant include mobilized 

peripheral blood (MPB) (Ringden et al., 2000; Fruehauf & Seggewiss, 2003; 

Papayannopoulou, 2004), bone marrow (Goldman & Horowitz, 2002), and umbilical 

cord blood (UCB) (Broxmeyer et al., 1989; Kurtzberg, 2009; Gluckman, 2011; Broxmeyer, 

2012). Transplantation success is dictated by the quality and number of donor cells 

transplanted, and is dependent on their ability to home to their appropriate bone 

marrow niche, undergo self-renewal and subsequently differentiate to reconstitute the 

recipient’s hematopoietic system. Some sources of stem cells, however, such as UCB or 

peripheral blood HSCs from donors who mobilize poorly, display reduced engraftment 

efficiency due to inadequate HSC number. Inability to efficiently home to the bone 

marrow can also result in impaired engraftment, for example, in the case of gene 

transduced HSPCs (Broxmeyer et al., 2006; Hall et al., 2006). Identifying strategies to 

enhance homing, engraftment and expansion of HSCs after transplantation represent 

areas to improve transplant efficiency, particularly when HSC number is limited. 
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We have previously shown that ex vivo pulse exposure of mouse and human 

HSCs to the lipid messenger 16-16 dimethyl prostaglandin E2 (dmPGE2) increases 

homing, survival and proliferation (Hoggatt et al., 2009), making it an attractive 

therapeutic strategy to improve HSC transplantation. PGE2 enhances HSC homing 

primarily by increasing expression of the homing receptor CXCR4 on HSCs, however the 

mechanism(s) behind this effect has not been well defined.  

As previously mentioned, the transcription factor Hypoxia-inducible Factor 1 

alpha (HIF1α) has been implicated in HSC maintenance (Takubo et al., 2010) and is 

thought to regulate HSC proliferation (Eliasson et al., 2010) and transcriptional 

regulation of CXCR4 (Schioppa et al., 2003; Staller et al., 2003; Pore & Maity, 2006; 

Zagzag et al., 2006; Ishikawa et al., 2009). Several studies suggest a link between PGE2 

and HIF1α, however, direct effects on HSC homing after specific manipulation of HIF1α 

have not been reported, and the effect of PGE2 on HIF1α stabilization/expression has 

not been studied in primary hematopoietic cells. 

In this chapter, we show that dmPGE2 stabilizes HIF1α in HSPCs and the hypoxia 

mimetic Dimethyloxalyl Glycine (DMOG) confers similar effects on HSC function to that 

of dmPGE2 treatment, including enhanced homing, engraftment and CXCR4 expression. 

We also show that PGE2-induced CXCR4 upregulation is mediated through binding of 

HIF1α to the hypoxia response element (HRE) located 1.3kb upstream from the 

transcriptional start site within the CXCR4 promoter. In summary, we provide novel 

insight into the molecular mechanism through which PGE2 regulates HSC homing and 

identify additional targets for HSC manipulation. 
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Materials and Methods: 

Mice and human cord blood  

C57BL/6 (CD45.2), B6.SJL-Ptprca Pep3b/BoyJ (BoyJ) (CD45.1), B6.129-Hif1atm3Rsjo/J (HIF1a 

Flox) and B6.Cg-Tg(UBC-cre/ESR1)1Ejb/J (Tamoxifen-Cre) mice were purchased from 

Jackson Laboratory (Bar Harbor, ME) and maintained in the Indiana University School of 

Medicine (IUSM) animal facility. C57BL/6 x BoyJ F1 Hybrid (CD45.1/CD45.2 F1) mice 

were bred and maintained in-house. Conditional HIF1α knockout mice were generated 

by breeding HIF1α Flox/Flox mice with Tamoxifen-Cre mice. The resulting hemizygous 

floxed pups were crossed with homozygous HIF1α Flox/Flox mice and the resulting 

Cre+HIF1αFlox/Flox mice were used in experiments. Mice used in transplant studies 

received doxycycline feed for 30 days post-transplantation. All mouse experiments were 

approved by the Institutional Animal Care and Use Committee (IACUC) of IUSM. Human 

umbilical cord blood (UCB) was obtained from Wishard Hospital (Indianapolis, IN) with 

IRB approval. 

 

dmPGE2 and DMOG pulse-exposure  

16-16 dimethyl prostaglandin E2 (dmPGE2) in methyl acetate (Cayman Chemical, Ann 

Arbor, MI) was evaporated on ice under N2 and reconstituted in 100% ethanol at a 

concentration of 0.1M. Lyophilized DMOG (Cayman Chemical) was dissolved in 100% 

ethanol at a concentration of 0.1M. For pulse-exposure experiments, 1x106 cells/mL 

were incubated with either 1uM dmPGE2 or 5uM DMOG diluted in PBS at 37°C with 5% 

CO2 for 2 hours and were washed twice prior to use in experiments. Vehicle-treated cells 
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were treated in the same manner, using an equivalent volume of ethanol. For 

experiments involving SNP treatment, 5uM SNP (EMD Millipore, Billerica, MA) was 

added concomitantly with dmPGE2 or DMOG and the cells were incubated for 2 hours at 

37°C, 5% CO2. 

 

Flow cytometry analysis  

Bone marrow was harvested from the femurs and tibias of mice and single-cell 

suspensions were prepared in PBS with 2% HI-FBS (Thermo Scientific HyClone, Logan, 

UT). Total nucleated cell counts were obtained using a Hemavet-950 (Drew Scientific, 

Waterbury, CT). All antibodies were purchased from BD Biosciences (San Jose, CA) 

unless otherwise noted. For detection of mouse Lineageneg Sca-1pos ckitneg (SKL) 

populations, c-kit-APC or APC-Cy7, Sca-1-PE or PE-Cy7, Lineage-V450, APC or FITC, 

CD45.1-PE and CD45.2-FITC were used. For post-transplant multilineage analysis, 

CD11d-APC-Cy7, B22-PE-Cy7 and CD3-APC were used. CXCR4 was quantitated using 

CXCR4-PE. Events were collected using an LSRII flow cytometer (BD Biosciences) and 

analyses were performed using either CellQuest (BD Biosciences) or FlowJo (Tree Star 

Inc., Ashland, OR)  software.  

 

Analysis of hematopoietic stem and progenitor cell homing   

Whole bone marrow from CD45.2 mice was obtained by flushing the femurs and tibias, 

and Lineagepos cells were depleted using MACS microbeads (Miltenyi Biotech, Auburn, 

CA). The resulting Lineageneg cells were treated with 1uM dmPGE2, 5uM DMOG, or 
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vehicle. The cells were washed and 2x106 cells were transplanted into lethally irradiated 

CD45.1 mice. After 16 hours, recipient bone marrow was collected and the mononuclear 

cell fraction was isolated using Lympholyte-M (CedarLane Labs, Burlington, ON). CD45.2 

SKL events were quantitated by FACS. To evaluate the role of CXCR4 in homing, donor 

cells were treated with dmPGE2, DMOG, or Vehicle with or without the selective CXCR4 

receptor antagonist AMD3100 (Genzyme, Cambridge, MA) 10 minutes prior to 

transplant.   

 

Tamoxifen treatment of HIF1α KO mice 

To conditionally delete HIF1α, Cre+HIF1α Flox/Flox mice and Cre-HIF1α Flox/Flox  littermate 

controls were treated i.p.  with 1mg of Tamoxifen resuspended in sunflower oil  for 3 

consecutive days. The mice were rested for 3 days and 3 more subsequent treatments 

were administered. After two weeks, bone marrow was harvested for experimental 

analysis and HIF1α knockdown confirmed using real-time PCR.  

 

Migration assays 

Chemotaxis to SDF-1 was determined using a two-chamber Costar Transwell (6.5-mm 

diameter, 5um pore; Cambridge, MA) system as previously described (Fukuda & Pelus, 

2008). Briefly, Lineageneg bone marrow cells were treated with dmPGE2, DMOG and 

vehicle for 2 hours at 37°C with 5% CO2, washed twice and cultured in RPMI/10% HI-FBS 

overnight to allow for up-regulation of CXCR4. After incubation, cells were washed and 

resuspended at 1x106 cells/mL in RPMI/0.5% BSA (0.1 mL was added to the top chamber 
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of the transwells, with 100ng/mL rmSDF-1 (R&D Systems, Minneapolis, MN) in the 

bottom chamber), and incubated for 4 hours at 37°C. Total cells migrating to the bottom 

chamber were collected and cell events were obtained for 30 seconds on high speed 

using a LSRII Flow Cytometer (BD Biosciences). Percent migration was calculated by 

dividing the total live cell counts in the lower well by the cell input multiplied by 100. 

Migrated cells were then stained with Lineage-FITC, Sca-1-PE and ckit-APC antibodies 

(BD Biosciences), and SKL cell migration was determined by comparing the proportion of 

SKL cells in input and migrated populations.  

 

Head to head competitive limiting dilution transplants 

Whole bone marrow cells from CD45.1 and CD45.2 mice were treated with either 5µM 

DMOG or vehicle for 2 hours at 37°C. After treatment, cells were washed twice and 

mixed with 2x105 CD45.1/CD45.2 F1 competitor bone marrow cells at ratios of 1:1, 

0.5:1, 0.25:1 and 0.075:1 and were transplanted into lethally irradiated (1100 cGy, split 

dose) CD45.1/CD45.2 recipients. The proportion of CD45.1, CD45.2 and CD45.1/CD45.2 

cells in peripheral blood was determined at 16 and 24 months post-transplant. For 

secondary transplants, 2x106 whole bone marrow from previously transplanted 

CD45.1/CD45.2 mice were transplanted into lethally irradiated CD45.1/CD45.2 

recipients.  
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Culture of HIF1β mutant cells 

Mouse hepatoma cell lines with mutant or wild-type HIF1β were a generous gift from 

Dr. Mircea Ivan (Indiana University School of Medicine, Indianapolis, IN) and were 

cultured in DMEM plus 10% HI-FBS (Thermo Scientific HyClone, Logan, UT) with 

penicillin-streptomycin at 37°C, 5% CO2.  

 

Quantitative real-time PCR  

Total cellular RNA was extracted using the PureLink® RNA Mini Kit (Life Technologies, 

Carslbad, CA) per the manufacturer’s instructions. Two micrograms of RNA was reversed 

transcribed using an AccuScript™ High Fidelity 1st strand cDNA synthesis kit (Agilent 

Technologies, Santa Clara, CA). Two to five microliters of cDNA was used for real-time 

polymerase chain reaction (RT-PCR). Primers sequences for SYBR Green RT-PCR are 

listed in Table 1. RT-PCR was performed using Platinum SYBR Green qPCR supermix UDG 

with ROX (Invitrogen, Carlsbad, CA) in an MxPro-3000 (Agilent Technologies) 

thermocycler. Dissociation curves were obtained for each primer set to confirm only one 

PCR product. HPRT expression was used as an internal normalization control.  

 

Western blot analysis 

Lineageneg cells were treated with either 1uM PGE2 or 5uM DMOG and cultured for 6 

hours at 37°C. Cell lysates were prepared by incubating cell pellets in cold RIPA buffer 

containing protease inhibitor cocktail (Thermo Fisher, Rockford, IL) on ice for 30 

minutes. The lysates were centrifuged at 10,000xg for 10 minutes and supernatants 
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were resolved by SDS-Page gel electrophoresis and transferred onto a PVDF membrane.  

Membranes were incubated with a polyclonal anti-HIF1α (C-Term) antibody (Cayman 

Chemical). Anti-β-actin (Cell Signaling Technology, Danvers, MA) was used as a loading 

control.  

 

Luciferase reporter assays 

One million human embryonic kidney (HEK) cells were seeded in 100mm tissue culture 

dishes and cultured in EMEM with 10% HI-FBS at 37°C with 5% CO2 to ~75% confluency. 

Approximately 24 hours later, the cells were transfected with 2ug of pGL2-CXCR4-Luc 

vector containing portions of the CXCR4 promoter (Kind gifts from Dr. Wilhelm Krek) 

and 6ul FUGENE 6 HD Reagent (Promega, Madison, WI). The transfected cells were 

incubated for an additional 24 hours, washed, trypsinized and then split into 12-well 

plates in equal numbers. After allowing the cells to adhere for an additional 6 hours, the 

cells were treated with 1uM dmPGE2 or vehicle and incubated overnight at 37°C with 5% 

CO2. After incubation, cells were harvested and 2ul of the lysates used to measure 

luciferase activity using the Firefly Luciferase Reporter Assay System (Promega) 

according to the manufacturer's instructions. 

 

Statistical analysis 

Data are expressed as mean ± SEM and were compared by two-tailed t tests or One-

Way ANOVA with Bonferroni post-hoc analysis as appropriate. P values less than 0.05 

were considered statistically significant.  
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Table 1 

Gene F/R Primer Sequence 

EP1 
F 5′ - GCTCCTTGCGGCATTAGTGTG- 3′ 

R 5′ - TGCGGTCTTTCGGAATCGT- 3′ 

   
EP2 

F 5′ - CGTTATCCTCAACCTCATTCGC - 3′ 

R 5′ - TCCGTCTCCTCTGCCATCG - 3′ 

   
EP3 

F 5′ - TTGCTGGCTCTGGTGGTGAC - 3′ 

R 5′ - GCTGGACTGCGAGACGGC - 3′ 

   
EP4 

F 5′ - TGACCCAAGCAGACACCACCT - 3′ 

R 5′ - TCCCACTAACCTCATCCACCAA - 3′ 

   
CXCR4 

F 5′ - CTCGCTATTGTCCACGCCAC - 3′ 

R 5′ - CCCTGACTGATGTCCCCCTG - 3′ 

   
Adm 

F 5' - CACCCTGATGTTATTGGGTTCA - 3' 

R 5' - TTAGCGCCCACTTATTCCACT - 3'  

   
GLUT1 

F 5' - CTCTGTCGGCCTCTTTGTTAAT - 3'  

R 5' - CCAGTTTGGAGAAGCCCATAAG - 3' 

   
HIF1α 

F 5' - ACCTTCATCGGAAACTCCAAAG - 3' 

R 5'- ACTGTTAGGCTCAGGTGAACT - 3' 

   
HPRT 

F 5′ - TTGCTGACCTGCTGGATTAC - 3′ 

R 5′ - TATGTCCCCCGTTGACTGA - 3′ 

 

Forward (F) and reverse (R) primers used are indicated as shown.   
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Results:  

PGE2 and the hypoxia mimetic DMOG stabilize HIF1α in HSPCs 

 PGE2 increases HIF1α protein stabilization without affecting HIF1α mRNA in 

prostate cancer cells and renal proximal tubular cells (Liu et al., 2002; Fernandez-

Martinez et al., 2012). Inhibition of PGE biosynthesis by non-steroidal inflammatory 

drugs (NSAIDs) reduces HIF1α protein and HIF-responsive genes (Palayoor et al., 2003). 

Moreover, in HEK cells and in microglial cells, HIF1α has been reported to upregulate 

CXCR4 gene expression by interacting with HREs within the CXCR4 promoter (Staller et 

al., 2003; Wang et al., 2008). Since we previously demonstrated that PGE2 upregulates 

CXCR4 in HSPCs that favors enhanced in vitro chemotaxis and homing in vivo (Hoggatt et 

al., 2009), we hypothesized that the enhancing effect of PGE2 on these HSPC functions 

could be a result of stabilization of HIF1α. We first determined whether PGE2 stabilizes 

HIF1α in primary mouse and human HSPCs. Treatment of mouse Lineageneg bone 

marrow mononuclear cells with 1uM dmPGE2 for 2 hours significantly increased HIF1α 

protein expression by ~35% determined by Western Blot analysis (Figure 6A).  

 As a positive control, the hypoxia mimetic DMOG was used. DMOG increases 

HIF1α protein accumulation by blocking the prolyl hydroxylases necessary for targeting 

HIF1α for degradation, resulting in stabilization of protein even in normoxic conditions 

(Asikainen et al., 2005). Since DMOG is a potent stabilizer of HIF1α, we first performed 

dose-response experiments to determine the appropriate concentration of DMOG to 

mimic the effects of dmPGE2 treatment on HIF1α protein levels. It was determined that 

5uM DMOG treatment resulted in a similar ~35% increase in HIF1α protein levels (Figure 
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6B), and this concentration was used for the remainder of experiments as a positive 

control or dmPGE2 “mimetic”.  

Despite the modest increase in HIF1α protein stabilization with both 1uM PGE2 

and 5uM DMOG treatment, message levels of downstream HIF1 responsive genes 

Adrenomedullin (Adm) and Glucose transporter 1 (GLUT1) were significantly increased 

after both treatments (Figure 7), indicating an increase in HIF1 transcriptional activity. 

As previously reported with PGE2 treatment, message levels of HIF1α were not 

increased, indicating that PGE2 mainly affects protein stabilization. Overall, these data 

indicate that both dmPGE2 and the hypoxia mimetic DMOG have the same effect on 

HIF1α protein and downstream activity, and therefore can be used comparatively to 

assess HSPC function.   
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Figure 6 
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Figure 6. PGE2 increases HIF1α protein in mouse and human HSPCs. 

(A) (Top) Representative blot of HIF1α protein after treatment with vehicle, 1uM 

dmPGE2 or 5uM DMOG. (Bottom left) Densitometry analysis of HIF1α protein expression 

in mouse Lineageneg bone marrow cells treated with vehicle, 1uM dmPGE2 or 5uM 

DMOG. Data are expressed as mean percent change in protein levels ± SEM over vehicle 

control from three separate experiments. (Bottom right) Densitometry analysis of HIF1α 

protein expression in human UCB CD34pos cells treated with vehicle, 1uM dmPGE2 or 

5uM DMOG from two patient samples. Data are expressed as Mean ± SD, N=2. (B) Dose 

response curve of DMOG treatment compared to 1uM dmPGE2 treatment. Data is 

expressed as percent change in HIF1α:β-actin ratio compared to vehicle control. 

*p<0.05. 
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Figure 7  
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Figure 7. PGE2 increases expression of HIF1 downstream responsive genes.  

Expression of HIF1 responsive genes in mouse Lineageneg bone marrow cells after 

treatment with dmPGE2 and DMOG as determined by SYBR Green qRT-PCR. Data are 

expressed as mean ± SEM, N=3. *p< 0.05.   



45 
 

DMOG treatment results in increased HSPC CXCR4 expression and enhances in vitro 

migration to SDF-1 and enhances in vivo homing to bone marrow 

Since PGE2 and DMOG have similar effects on HIF1α stabilization, we 

investigated whether DMOG treatment would confer similar effects on HSPC function to 

that normally seen following dmPGE2 treatment. As expected, DMOG produced an 

equivalent effect to dmPGE2 on mouse and human HSPC CXCR4 expression (Figure 8A). 

Transwell migration assays are an in vitro alternative to homing in which HSPCs 

selectively migrate to an SDF-1 gradient (Kim & Broxmeyer, 1998). Although simplistic in 

nature, migration assays are thought to accurately reflect cells’ potential homing 

capacity in vivo.  Treatment of Lineageneg bone marrow with DMOG resulted in 

approximately a 50% increase in SKL chemotaxis to SDF-1 compared to vehicle control 

(Figure 8B), and was similar to dmPGE2 treatment. These data indicate that DMOG-

enhanced CXCR4 expression also results in enhanced migration capacity . 

In an in vivo homing model utilizing two different congenic mouse strains, pulse 

exposure of bone marrow cells with DMOG for 2 hours ex vivo duplicates the enhanced 

SKL cell homing in vivo normally seen with dmPGE2 (Figure 9A) . As we previously 

reported (Hoggatt et al., 2009), the enhanced homing effect of ex vivo pulse exposure to 

dmPGE2 could be blocked by the selective CXCR4 antagonist, AMD3100 (Figure 9B). In a 

similar fashion, the enhanced homing effect of DMOG on SKL cell homing was 

completely blocked by treatment of pulsed cells with AMD3100, indicating that, like 

dmPGE2, the specific effect is CXCR4 dependent.  
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Figure 8 
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Figure 8. DMOG increases HSPC CXCR4 and migration to SDF-1. 

(A) (Top) CXCR4 expression (Mean ± SEM; N=3) on murine SKL cells 24 hours after 

treatment with dmPGE2 or DMOG. CXCR4 cell surface expression was measured as mean 

fluorescence intensity (MFI) based on isotype control. Data are expressed as percent 

change in MFI of CXCR4 over vehicle. (Bottom) Similar experiment using human UCB 

CD34pos cells isolated from two patient samples. Data are expressed as Mean ± SD, N=2. 

(B) In vitro Transwell Migration of murine SKL cells. 1x106  Lineageneg cells were treated 

with vehicle, 1uM dmPGE2 or 5uM DMOG for 16 hours at 37°C. Cells were assayed for 

the ability to migrate to 100ng/mL rmSDF-1 for 4 hours at 37°C. Data are expressed as 

mean ± SEM, N=9. *p<0.05. 
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Figure 9 
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Figure 9. DMOG enhances HSPC homing.  

(A) Bone marrow cells from CD45.1 mice were treated with vehicle, 1uM dmPGE2, or 

5uM DMOG and 1x106 treated  Lineageneg cells were transplanted into lethally irradiated 

CD45.2 mice. Sixteen hours later bone marrow was analyzed for homed SKL cells. Data 

are represented as mean ± SEM from two separate experiments (N=4-5 mice per group, 

per experiment, each assayed individually). (B) Similar homing experiment with or 

without the addition of AMD3100 10 minutes prior to transplant. Data are represented 

as mean ± SEM from two separate experiments (N=4-5 mice per group, per experiment, 

each assayed individually) *p<0.05.  
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DMOG enhances HSC engraftment 

To test DMOG’s effects on HSC engraftment, we utilized a limiting-dilution, head 

to head transplant model employing three different congenic mouse strains, allowing us 

to determine HSC competitiveness and contribution of both DMOG and vehicle-treated 

cells within the same recipient using flow cytometry (Figure 10A). Treatment of donor 

bone marrow cells with DMOG for 2 hours prior to transplant significantly increased 

peripheral blood (PB) chimerism at 6 months post-transplant compared to cells treated 

with vehicle control (Figure 10B), with no apparent differences in lineage reconstitution 

observed between recipients receiving vehicle and DMOG-treated cells (Figure 10C). 

Enhanced chimerism as a result of DMOG treatment also correlated with a 2-fold 

increase in HSC frequency determined by Poisson statistics (Figure 11A), and an ~2-fold 

increase in competitive repopulating units (CRU) (Figure 11B), calculated by the method 

of Harrison (Harrison, 1980). Due to both PGE2 and DMOG’s effects on HSPC homing, 

the increased chimerism and resulting increase in HSC frequency is most likely a result 

of increased homing and retention of HSPCs within the bone marrow.  These results 

indicate that the enhancing effects of dmPGE2 on HSPC homing and engraftment we 

previously reported can be mimicked in part by the hypoxia mimetic DMOG, and 

suggest that the effects of PGE2 on HSPC function mediated through CXCR4 results as a 

consequence of stabilization of HIF1α.  
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Figure 10 
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Figure 10. DMOG enhances HSC engraftment.  

(A) (Left) Representative diagram of competitive head-to-head transplant model. Bone 

marrow from BoyJ (CD45.1) and C57Bl6 (CD45.2) mice was isolated and treated with 

either DMOG or vehicle for 2 hours at 37°C. The cells were then transplanted at various 

dilutions along with 2x105 competitor cells (CD45.1/CD45.2 F1) into individual lethally 

irradiated CD45.1/CD45.2 F1 recipients. (Right) Representative flow plot detecting 

donor marrow chimerism of DMOG (CD45.1) and vehicle (CD45.2) treated cells at 6 

months post-transplant. (B) Percent contribution (chimerism) of DMOG and vehicle 

treated cells in peripheral blood 6 months post-transplant. Data are represented as 

mean ± SEM from two pooled experiments. (N=5 mice/group/expt. each assayed 

individually) *p<0.05. (C) Multilineage analysis for primary transplants (24 weeks). 

Vehicle-treated cells were (mean ± SEM) 28.5% ± 2.7% Myeloid, 53.8% ± 2.2% B cells, 

17.7% ± 1.6% T cells, and DMOG-treated cells were 24.9% ± 0.8% Myeloid, 56.9% ± 1.4% 

B cells, 18.2% ± 1.1% T cells.  
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Figure 11 
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Figure 11. DMOG increases HSC frequency after transplantation.  

(A) Frequency analysis for vehicle (solid line) and DMOG (dashed line) determined by 

Poisson statistics using L-Calc software (Stem Cell Technologies, Vancouver, Canada). 

P0= 121,319 (Vehicle) and P0= 53,956 (DMOG). (B) Competitive repopulating units (CRU) 

of DMOG and vehicle treated cells in peripheral blood 6 months post-transplant. Data 

are represented as mean ± SEM from two pooled experiments. (N=5 mice/group/expt. 

each assayed individually) *p<0.05.   
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HIF1α transcriptional activity is required for PGE2-induced CXCR4 upregulation.  

 As previously stated, the transcription factor HIF1α is ubiquitinated and targeted 

for proteasomal degradation under normoxic conditions (Salceda & Caro, 1997; Maxwell 

et al., 1999; Kamura et al., 2000). In the absence of oxygen (a hypoxic state), HIF1α is 

stabilized and translocated to the nucleus by the beta subunit (HIF1β), also known as 

the Aryl Hydrocarbon nuclear translocator (ARNT). The translocated HIF complex 

interacts with HREs within the promoter of responsive genes (Kaluz et al., 2008) 

containing a core consensus A/GCGTG sequence, affecting the transcription of a number 

of genes that regulate migration, proliferation and survival, such as CXCR4 (Schioppa et 

al., 2003; Staller et al., 2003; Phillips et al., 2005; Zagzag et al., 2006; Wang et al., 2008; 

Ishikawa et al., 2009) and Survivin (Yang et al., 2004; Peng et al., 2006; Wei et al., 2006).  

To further investigate a HIF1α requirement for PGE2-induced CXCR4 

upregulation, we utilized a mutant mouse hepatoma cell line lacking the HIF1β nuclear 

translocator, rendering HIF1α unable to translocate to the nucleus and initiate gene 

transcription (Watson et al., 1992). Both the mutant and wild-type cell lines expressed 

detectable surface CXCR4 (Figure 12A) and mRNA for all four Prostanoid (EP) receptors 

(Figure 12B). In wild-type cells, pulse-treatment with dmPGE2 resulted in an ~3-fold 

increase in CXCR4 mRNA and an ~2-fold increase in CXCR4 surface expression, while 

HIF1β(-) mutant cells failed to show a significant increase in either CXCR4 mRNA or 

protein following dmPGE2 treatment (Figure 13), suggesting that HIF1α transcriptional 

activity is required for PGE2-induced CXCR4 upregulation.  
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Figure 12 
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Figure 12. Mutant HIF1β cells express CXCR4 and PGE2 EP receptors.  

(A) Representative FACS histograms showing CXCR4 expression on HIF1β(-) and HIF1β(+) 

cells compared to isotype control. (B) Amplification plots detecting PGE2 receptor 

message.  Primers specifically for mouse EP1, EP2, EP3, or EP4 were used for qRT-PCR  

and plots with an activation step of 50°C for 2 minutes, denaturation at 95°C for 2 

minutes, and amplification for 45 cycles at 95°C for 15 seconds, 50°C for 30 seconds, and 

72°C for 30 seconds are shown.   
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Figure 13 
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Figure 13. HIF1α transcriptional activity is necessary for PGE2-induced CXCR4 

upregulation. 

(A) CXCR4 expression (mean ± SEM; N=3) in HIF1β(+) and HIF1β(-) cells 2 hours after 

treatment with vehicle or dmPGE2 determined by SYBR Green qRT-PCR. (B) CXCR4 cell 

surface expression (mean ± SEM; N=3) on HIF1β(+) and HIF1β(-) cells 24 hours after 

treatment with dmPGE2. CXCR4 cell surface expression was determined by flow 

cytometry. Data are expressed as percent change in mean fluorescence intensity (MFI) 

of CXCR4 over vehicle. *p<0.05.   
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The -1.3kb hypoxia response element is required for PGE2-induced CXCR4 

upregulation. 

There are three potential HRE’s within the CXCR4 promoter, located 2.0, 1.3 and 

1.0 kilobases upstream from the transcriptional start site (Staller et al., 2003). By means 

of sequential exclusion of each HRE, it was determined that the HRE located at the          

-1.3kb position is required for upregulation of CXCR4 in hypoxia. Using the same 

truncated luciferase promoter vectors containing specific combinations of HREs within 

the CXCR4 promoter (Figure 14A), we observed a significant increase in luciferase 

activity in dmPGE2-treated cells transfected with the vector containing the -1.3kb HRE. 

However, when the -1.3kb HRE was either absent (ΔHRE2) or mutated (HRE2 Mut), no 

change in luciferase activity (Figure 14B) was observed, indicating that the -1.3kb HRE is 

required for CXCR4 regulation by both hypoxia and dmPGE2 treatment. This further 

supports the hypothesis that PGE2 can act as a hypoxia mimetic by stabilizing HIF1α as 

well as increasing downstream HIF-responsive genes. Furthermore, the mutant HIF1β 

data indicate that HIF1α nuclear translocation is required for PGE2’s effects on CXCR4, 

and that gene transcription of CXCR4 after PGE2 treatment occurs through nuclear 

translocation and binding to a specific HRE within the CXCR4 promoter.  
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Figure 14  
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Figure 14. The -1.3kb HRE is required for enhanced CXCR4 after PGE2 treatment. 

(A) Schematic of pGL2b luciferase reporter constructs containing various regions of the 

murine CXCR4 promoter. (B) In vitro Luciferase reporter assay. 293T cells were 

transfected with either full-length CXCR4 promoter constructs containing all HREs (Full), 

truncated constructs containing two (Δ HRE1) or one HRE (Δ HRE2), or a mutated 1.3kb 

HRE (HRE 2 Mut). After 24 hours, cells were split equally and treated with either vehicle 

or dmPGE2  for 16 hours at 37°C. Luciferase activity was measured using the Firefly 

Luciferase assay kit (Promega). Data are represented as mean ± SEM from two separate 

experiments (N=6). *p<0.05.  
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HIF1α is required for CXCR4 upregulation and enhanced migration in PGE2-treated 

HSPCs. 

 To further support the hypothesis that HIF1α is required for transcriptional 

regulation of CXCR4 after PGE2 treatment, we investigated whether the effects of PGE2 

on increasing CXCR4 expression and migration to SDF-1 in primary HSPCs could be 

blocked by treatment with sodium nitroprusside (SNP). SNP inhibits the stabilization of 

HIF1α by acting as a nitric oxide (NO) donor and providing an oxygen substrate for prolyl 

hydroxylase activity (Sogawa et al., 1998). Treatment of Lineageneg mouse bone marrow 

with both dmPGE2 and SNP inhibited both the increase in HIF1α stabilization (Figure 

15A) as well as upregulation of the HIF responsive genes Adm and GLUT1 (Figure 15B). 

Addition of SNP also blocked the increase in CXCR4 expression and migration to SDF-1, 

normally seen with PGE2 treatment (Figure 15C). To further link the effect of PGE2 to 

HIF1α we created a conditional HIF1α knockout (KO) mouse model by breeding HIF1α 

flox/flox mice with ERT2-Cre mice, creating a Cre+HIF1αflox/flox mouse in which Cre 

recombinase is under the control of the estrogen receptor. Treatment with tamoxifen 

results in HIF1α gene deletion, as evident in a ~99% knockdown of HIF1α mRNA (Figure 

16). Using this model of HIF1α gene deletion, we observed no increase in functional 

HSPC homing in HIF1α KO cells after dmPGE2 treatment, compared to a 2-fold increase 

in their floxed wild-type (WT) counterparts (Figure 17A). In addition, no increase in 

CXCR4 expression was observed after dmPGE2 treatment in the HIF1α KO cells (Figure 

17B), further supporting that HIF1α is required for PGE2-induced CXCR4 upregulation.
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Figure 15 
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Figure 15. Blockade of HIF1α stabilization and activity by SNP inhibits PGE2-enhanced 

migration and CXCR4 expression.  

(A) (Top) Representative blot of HIF1α protein 4 hours after treatment with vehicle or 

dmPGE2, with or without the addition of SNP. (Bottom) Expression of HIF1 responsive 

genes after treatment with vehicle or dmPGE2 with or without SNP. Data are expressed 

as mean ± SEM, N=3. (B) (Left) In vitro Transwell migration of murine SKL cells to 

100ng/mL SDF-1. Lineageneg cells were treated with vehicle or 1uM dmPGE2 with or 

without 100µM sodium nitroprusside (SNP) for 2 hours at 37°C. Data are expressed as 

mean ± SEM, N=3. *p<0.05. (Right) Representative FACS histogram showing CXCR4 

expression on SKL cells compared to isotype control.  
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Figure 16 
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Figure 16. Tamoxifen treatment of Cre+HIF1αflox/flox mice results in HIF1α gene 

deletion.  

(Top) HIF1α message determined by SYBR Green qRT-PCR fourteen days post-tamoxifen 

treatment relative to wild-type expression. (Bottom) Representative amplification plot 

of HIF1α mRNA from three individual mice.   
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Figure 17 
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Figure 17. HIF1α is required for functional HSPC homing after PGE2 treatment.  

(A) In vivo homing of HIF1α KO cells. Bone marrow cells from conditional HIF1α KO or 

Floxed control (CD45.2) mice were treated with vehicle or dmPGE2 and 1x106 treated 

Lineageneg cells were transplanted into lethally irradiated BoyJ (CD45.1) mice.  Sixteen 

hours later bone marrow was analyzed for homed SKL cells. Data are represented as 

mean ± SEM from one experiment (N=4-5 mice per group, per experiment, each assayed 

individually). (B) CXCR4 expression (mean ± SEM) on HIF1α KO and HIF1α Floxed SKL 

cells 24 hours after treatment with dmPGE2. N=3 individual mice. *p<0.05. 
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Discussion 

While hypoxia and HIF1α are widely known for their roles in steady-state and 

tumor angiogenesis, their role in hematopoiesis is now becoming more apparent. Given  

the low O2 content in the bone marrow compared to the rest of the body (Harrison et 

al., 2002) and perturbation of hematopoiesis by elevated reactive oxygen species (ROS) 

in environments with high O2 levels (Jang & Sharkis, 2007), it is logical to believe that 

hypoxia and HIF1α would be involved in HSC function and maintenance. Interesting 

evidence from Parmar et al. suggested that more quiescent stem cells were located in 

highly hypoxic areas of the bone marrow based on their uptake of Hoechst 33342 

diffusion dye, as well as their ability to produce long-term HSCs after transplant (Parmar 

et al., 2007). Kubota et al. demonstrated that highly quiescent stem cells were located 

furthest away from capillaries and closer to the bone surface within the hematopoietic 

bone marrow niche (Kubota et al., 2008).  

More recently, HIF1α specifically has been revealed as an important factor in 

cell-cycle regulation of HSCs and it appears that a specific level of HIF1α stabilization is 

necessary for optimal HSC maintenance. Takubo et al. demonstrated that loss of HIF1α 

in HSCs resulted in devastating effects on their long-term hematopoietic reconstitution, 

due to a loss of HSC quiescence (Takubo et al., 2010). Conversely, overexpression of 

HIF1α via deletion of the HIF degradation-targeting ubiquitin ligase VHL, resulted in an 

increase in the number of HSCs in G0 phase and impaired reconstitution after 

transplantation. Most interestingly, they observed a surprising increase in PB chimerism 

after transplant with partial stabilization of HIF1α via heterozygous loss of VHL, while 
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total loss of VHL and overexpression of HIF1α resulted in impaired homing ability and 

stem cell exhaustion. Additionally, it was shown by Roy et al. that human CD34+ cells 

cultured in hypoxic conditions exhibited higher colony-forming and SCID-repopulating 

potential, as well as elevated levels of CXCR4 (Roy et al., 2012). These observations 

corroborate the idea that minimal levels of HIF1α stabilization are beneficial to HSC 

function and maintenance within the bone marrow niche. Indeed, we now provide 

evidence that modest increases in HIF1α stabilization by dmPGE2 treatment result in 

significant improvements to HSC homing and engraftment, mainly due to upregulation 

of CXCR4.  

Our previous studies suggested that pulse-exposure to dmPGE2 has pleotropic 

effects on HSCs, including effects on apoptosis and cell cycle progression, resulting in a 

four-fold increase in HSC frequency after engraftment. The four-fold increase in 

frequency was attributed to a two-fold increase in homing paired with a two-fold 

increase in cells entering into cell cycle. In the current study, we only observed a two-

fold increase in HSC frequency after pulse treatment with DMOG, as well as complete 

abolishment of DMOG-enhanced homing after CXCR4 antagonism, suggesting that 

stabilizing HIF1α may only be affecting HSC engraftment through upregulation of CXCR4 

that results in increased homing, but not cell proliferation. Despite Takubo’s observed 

effects of HIF1α on cell cycle regulation, it is possible that PGE2’s influence on HSC cell 

cycle is not specifically due to HIF1α stabilization. Conversely, they did not see any 

effects on apoptosis in HIF1α KO mice, despite evidence linking both HIF1α and PGE2 to 

regulation of the anti-apoptotic protein Survivin (Hoggatt et al., 2009; Li et al., 2013; Bai 
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et al., 2013). It is therefore entirely possible that PGE2, due to its multiple and 

sometimes opposing receptor signaling pathways, could be affecting different molecules 

independent of each other. Furthermore, despite our novel evidence that PGE2 

enhances HSC homing through stabilization of HIF1α, the exact mechanism through 

which it is exerting its effects specifically on HIF1α remains unknown. Therefore, further 

studies are needed in order to elucidate the specific receptor/pathway involved in each 

aspect of PGE2’s effects on HSC function. It is also important not to rule out effects on 

HIF2α, as it has been well established that HIF1 and HIF2 have varying roles in cell 

function (Hu et al., 2003). It is entirely possible that the pleotropic effects we observe on 

PGE2-treated cells could involve both proteins and their differential roles in gene 

regulation.  

In summary, we have provided new mechanistic insight into PGE2’s effects on 

HSC functional homing and engraftment. A modest but significant increase of HIF1α 

protein is observed in HSPCs after dmPGE2 pulse-exposure, and when mimicked by 

DMOG treatment, this slight increase in HIF1α protein translates to a two-fold increase 

in homing and HSC engraftment. This is the first evidence that HIF1α stabilization by 

DMOG improves HSC homing and engraftment, and along with recent evidence that in 

vivo administration of DMOG enhances HSC recovery after total body irradiation 

(Forristal et al., 2013), reveals a new potential therapeutic tool to enhance HSC function 

after transplant both in vitro and in vivo.   
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Chapter 3. Rac1: A player in the PGE2/HIF1α/CXCR4 axis. 

 

Introduction 

In Chapter 2, we demonstrated that HIF1α is required for PGE2 to upregulate 

HSPC CXCR4 expression and enhance function after transplant. However, the exact 

mechanism through which PGE2 is exerting its effects on HIF1α remains unclear. Our 

previous studies suggest that pulse-exposure to dmPGE2 has pleotropic effects on HSCs 

as a consequence of interaction with its four receptors, and several pathways 

downstream of PGE2 have been linked to HIF1α regulation, such as cAMP/PKA/Wnt/β-

catenin (Goessling et al., 2009; Lee et al., 2009) and PI3K/Akt (Jiang et al., 2001). 

Intriguingly, both pathways have been linked to regulation of the small GTPase Rac1 

(Hirota & Semenza, 2001; Bachmann et al., 2013). As previously described, Rac1 is a 

member of the Rho family of small GTPases that are known to influence actin 

polymerization and facilitate cell motility. Rac proteins consist of three different 

isoforms, Rac1, Rac2 and Rac3, all with high sequence similarity. Rac1 is ubiquitously 

expressed throughout the body, whereas Rac2 is restricted to hematopoietic cells and 

Rac3 to the heart, brain and placenta. Interestingly, hematopoietic cells are the only 

cells that express all three isoforms (Williams et al., 2008).  

Despite the separate and overlapping roles of Rac1 and Rac2 in hematopoietic 

cell function (Gu et al., 2003; Walmsley et al., 2003; Filippi et al., 2004), Rac1 has been 

shown to be most important for HSC homing and engraftment (Gu et al., 2003; Cancelas 

et al., 2005; Cancelas et al., 2006) and is required for HIF1 α activity (Hirota & Semenza, 
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2001). In addition to its involvement in HIF1α regulation, Rac1 can colocalize with CXCR4 

within lipid rafts in the cell membrane (Wysoczynski et al., 2005), suggesting Rac1 as a 

potential link in the PGE2/ HIF1α /CXCR4 axis. In an attempt to further dissect the 

mechanism behind PGE2’s enhancing effects on HSCs, we hypothesized that PGE2 may 

influence HIF1α protein through modulation of Rac1 protein. 
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Materials and Methods 

Mice 

C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and 

maintained in the Indiana University School of Medicine (IUSM) animal facility. 

Conditional MxCre- Rac1 and germline Rac2 KO mice were provided by Dr. Rueben 

Kapur, Department of Pediatrics, Indiana University School of Medicine (IUSM). Rac1 

gene deletion was initiated by five consecutive daily injections of PolyI:PolyC, followed 

by a 7 day rest period. All mouse experiments were approved by the Institutional Animal 

Care and Use Committee (IACUC) of IUSM.  

 

dmPGE2 Pulse-exposure 

16-16 dimethyl prostaglandin E2 (dmPGE2) in methyl acetate (Cayman Chemical, Ann 

Arbor, MI) was evaporated on ice under N2 and reconstituted with 100% ethanol at a 

concentration of 0.1 M. For pulse-exposure experiments, 1x106cells/mL were incubated 

with dmPGE2 at 37°C with 5% CO2 for 2 hours, and were washed twice prior to use in 

experiments.  Vehicle-treated cells were treated in the same manner, using an 

equivalent volume of ethanol. 

 

Flow cytometry analysis  

Bone marrow was harvested from the femurs and tibias of mice and single-cell 

suspensions were prepared in PBS with 2% HI-FBS (Thermo Scientific HyClone, Logan, 

UT). Total nucleated cell counts were obtained using a Hemavet-950 (Drew Scientific, 
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Waterbury, CT). All antibodies were purchased from BD Biosciences (San Jose, CA) 

unless otherwise noted. For detection of mouse Lineageneg Sca-1pos ckitneg (SKL) 

populations, c-kit-APC or APC-Cy7, Sca-1-PE or PE-Cy7, Lineage-V450, APC or FITC, 

CD45.1-PE and CD45.2-FITC were used. CXCR4 was quantitated using CXCR4-PE. For 

detection of intracellular Rac1, cells were stained for cell surface molecules before being 

fixed and permeabilized with the BD Fix/Perm kit (BD Biosciences) and then stained with 

Rac1-FITC. Events were collected using an LSRII flow cytometer (BD Biosciences) and 

analyses performed using either CellQuest (BD Biosciences) or FlowJo (Tree Star Inc., 

Ashland, OR) software. For image analysis of Rac1 and CXCR4 colocalization, Lineageneg 

bone marrow cells were treated with vehicle or 1uM dmPGE2. Twenty-four hours post-

treatment, bright field and fluorescent cell images were acquired using an ImageStream 

flow cytometer(Amnis, Seattle, WA) by excitation with 488-nm and 635-nm lasers and a 

time-delay integration charged-coupled device camera. Five thousand events were 

analyzed using ImageStream data exploration and analysis software. Compensation was 

digitally performed on a pixel-by-pixel basis prior to data analysis. Cell populations were 

gated on in focus, live, single cells and Bright Detail Similarity of FITC and APC staining 

was used to quantify Rac1 and CXCR4 colocalization. The Bright Detail Similarity feature 

is the log transformed Pearson’s correlation coefficient of the localized bright spots with 

a radius of 3 pixels or less within the masked area of two input images. Correlation 

values fall between 0 and 1, where 0 is uncorrelated and 1 is perfect correlation. 
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Migration Assays 

Chemotaxis to SDF-1 was determined using a two-chamber Costar Transwell (6.5-mm 

diameter, 5um pore; Cambridge, MA) system as previously described (Fukuda et al., 

2005).  Briefly, Lineageneg bone marrow cells from WT, Rac1 and Rac2 mice were treated 

with dmPGE2 and vehicle for 2 hours at 37°C, 5% CO2, washed twice and cultured in 

RPMI/10% HI-FBS overnight to allow for up-regulation of CXCR4. After incubation, cells 

were washed, resuspended at 1x106 cells/mL in RPMI/0.5% BSA and 0.1 mL added to the 

top chamber of the transwells, with 100 ng/mL rmSDF-1 (R&D Systems, Minneapolis, 

MN) in the bottom chamber. Cultures were incubated for 4 hours at 37°C and total cells 

migrating to the bottom chamber were quantitated using a LSRII Flow Cytometer (BD 

Biosciences). Percent migration was calculated by dividing the total live cell counts in 

the lower well by the cell input multiplied by 100. Input cells and cells migrated to the 

lower chamber were stained with Lineage-FITC, Sca-1-PE and ckit-APC antibodies (BD 

Biosciences), and SKL cell migration determined by comparison to the proportion of 

input SKL cells.  

 

Western Blot Analysis 

Lineageneg cells from WT and Rac1 KO mice were treated with 1uM dmPGE2 and 

cultured for 6 hours at 37°C, 5% CO2. Cell lysates were obtained by incubating cell 

pellets in cold RIPA buffer containing protease inhibitor cocktail (Thermo Fisher, 

Rockford, IL) on ice for 30 minutes. The lysates were centrifuged at 10,000xg for 10 

minutes and supernatants were resolved by SDS-Page gel and transferred onto a PVDF 
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membrane.  Membranes were incubated with a monoclonal anti-Rac1 antibody (Clone 

23A8) (Millipore, Temecula, CA). Anti-β-actin (Cell Signaling Technology, Danvers, MA) 

was used as a loading control. 
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Results 

PGE2 treatment increases the small GTPase Rac1.  

 As previously mentioned, the Rho family of small GTPases are involved in cell 

polarization and cytoskeletal rearrangement (Hall, 1998; Tapon & Hall, 1997), and Rac1 

and Rac2 have been implicated in HSPC survival, migration, homing and engraftment 

(Gu et al., 2003). Moreover, Rac1 can colocalize with CXCR4 to promote HSPC migration 

(Wysoczynski et al., 2005) and is required for activation of HIF1α (Hirota & Semenza, 

2001). This suggests that the enhancing effect of PGE2 on HSPC homing may be a result 

of modulation of HSPC Rac1 levels. We therefore first wanted to determine whether 

dmPGE2 treatment could upregulate Rac1 protein in HSPCs. Treatment of mouse 

Lineageneg bone marrow cells with dmPGE2 for 2 hours demonstrated a consistent and 

significant increase in Rac1 protein expression in SKL cells measured by flow cytometry 

(Figure 18A), and an increase in Rac1 protein in Lineageneg cells measured by western 

blot (Figure 18B).  
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Figure 18 
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Figure 18. PGE2 increases Rac1 in HSPCs.  

(A) (Left) Representative flow plots detecting intracellular Rac1 in mouse SKL cells 24 

hours after treatment with 1uM dmPGE2. (Right) Quantification of Rac1 positive SKL 

cells after dmPGE2 treatment by flow cytometry. Data are expressed as mean percent 

cells positive for Rac1 ± SEM. N = 3. (B) Densitometry analysis of Rac1 protein in 

Lineageneg cells treated with 1uM dmPGE2, determined by western blot. Data are 

expressed as mean Rac1: β-actin ratio  ± SEM. N = 3. *p<0.05. 
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 PGE2 treatment increases Rac1 and CXCR4 colocalization.  

 It is believed that activation of Rac and its downstream effectors controls 

membrane ruffling and actin polymerization both of which contribute to cell migration 

and adhesion (Ridley & Hall, 1992a; Ridley et al., 1992). Rac1 has been shown to 

colocalize with and be subsequently activated by CXCR4, mainly through the binding of 

SDF-1 (Wysoczynski et al., 2005). This colocalization event facilitates enhanced 

migration of HSPCs. Along with the observation that in vivo biallelic loss of Rac1 and 

Rac2 results in massive egress of HSPCs from the bone marrow, and that Rac1 null cells 

are unable to home to the endosteal regions of the bone marrow, these observations 

suggest that Rac1 and CXCR4 colocalization are crucial for movement of HSPCs to and 

from the bone marrow niche. Based on our evidence that PGE2 can increase both Rac1 

and CXCR4 expression, we hypothesized that the colocalization of these two proteins 

would also be enhanced after dmPGE2 treatment. Using state-of-the-art imaging 

technology, we found that Rac1 and CXCR4 colocalization in Lineageneg bone marrow 

cells was indeed increased after 1uM dmPGE2 treatment (Figure 19A). After 

normalization, the Bright Detail Similarity coefficient for vehicle treated cells was 0.095, 

indicating that there was little to no correlation between Rac1 and CXCR4 localization. 

However, the correlation coefficient for dmPGE2 treated cells was 0.778, confirming 

higher colocalization between the two proteins.  

 Additionally, analysis of dose-response curves of SDF-1 concentration and HSPC 

migration revealed a significantly lowered half maximal effective concentration (EC50) of 

SDF-1 by approximately 10-fold in PGE2-treated cells (Figure 19B), indicating that PGE2 
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treatment and increased Rac1 and CXCR4 colocalization enhances HSPC’s sensitivity to 

SDF-1. Taken together, these data confirm that PGE2 treatment not only increases 

expression of both Rac1 and CXCR4, but facilitates their colocalization, priming the cells 

for enhanced migration in response to SDF-1 and/or other chemokines. Similar effects 

may occur for other chemokines, however this remains to be tested. 
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Figure 19 
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Figure 19. PGE2 increases Rac1 and CXCR4 colocalization in HSPCs.  

(A) Representative ImageStream  images of a selection of Lineageneg bone marrow cells 

24 hours after treatment with vehicle or 1uM dmPGE2. Arrows indicate areas of 

Rac1:CXCR4 colocalization. (B) Half maximal effective concentration analysis of SDF-1 in 

PGE2 and vehicle treated cells as a function of SKL migration. Line of best fit equation for 

vehicle and PGE2 treated cells are y = 5.6893ln(x) + 9.6 and  y = 7.079ln(x) + 14.8, 

respectively.   
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Rac1, but not Rac2 is required for PGE2-enhanced HSPC migration.  

Given the finding that dmPGE2 treatment enhances the expression and 

colocalization of Rac1 and CXCR4 and the known fact that colocalization of Rac1 and 

CXCR4 enhances HSPC sensitivity to SDF-1 (Wysoczynski et al., 2005), we next evaluated 

a role for Rac1 in the enhancing effect of PGE2 on HSPC function in a functional 

migration assay. Bone marrow cells from conditional Rac1 and germline Rac2 KO mice 

were treated with dmPGE2 and CXCR4 expression and migration to SDF-evaluated in 

vitro. Treatment of Mx-Cre Rac1flox/flox mice with PolyI:C effectively reduces Rac1 protein 

in bone marrow cells (Figure 20A western blot). While SKL cells from WT mice showed 

increased migration to SDF-1 (Figure 20A) and enhanced CXCR4 expression (Figure 20B) 

following dmPGE2 treatment, Rac1 KO cells failed to show the same increase. 

Conversely, similar treatment of Rac2 KO cells with dmPGE2 resulted in an 

increase SKL migration (Figure 21A) and enhanced CXCR4 expression (Figure 21B) 

equivalent to wild-type, suggesting that despite its exclusivity to hematopoietic cells, 

Rac2 is dispensable for PGE2’s effects on HSPC function. Overall, these studies indicate 

that Rac1, but not Rac2 is required for PGE2-induced enhanced CXCR4 expression and 

HSPC migration.   
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Figure 20 
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Figure 20. Loss of Rac1 abolishes PGE2-enhanced HSPC migration.  

(A) (Top) Western blot of Rac1 protein representing knockout of Rac1 after PolyI:C 

treatment. (Bottom) In vitro Transwell Migration of murine WT or Rac1 KO SKL cells. 

1x106  Lineageneg cells were treated with vehicle or 1uM dmPGE2 for 16 hours at 37°C. 

Cells were assayed for the ability to migrate to 100ng/mL rmSDF-1 for 4 hours at 37°C. 

Data are expressed as mean ± SEM, N=3. (B) CXCR4 expression (Mean ± SEM; N=3) on 

WT or Rac1 KO SKL cells 24 hours after treatment with dmPGE2. CXCR4 cell surface 

expression was measured as mean fluorescence intensity (MFI) based on isotype 

control. Data are expressed as percent change in MFI of CXCR4 over vehicle.  *p<0.05. 
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Figure 21 
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Figure 21. Rac2 is dispensable for PGE2-enhanced HSPC migration.  

(A) In vitro Transwell Migration of murine WT or Rac2 KO SKL cells. 1x106  Lineageneg cells 

were treated with vehicle or 1uM dmPGE2 for 16 hours at 37°C. Cells were assayed for 

the ability to migrate to 100ng/mL rmSDF-1 for 4 hours at 37°C. Data are expressed as 

mean ± SEM, N=3. (B) CXCR4 expression (Mean ± SEM; N=3) on WT or Rac2 KO SKL cells 

24 hours after treatment with dmPGE2. CXCR4 cell surface expression was measured as 

mean fluorescence intensity (MFI) based on isotype control. Data are expressed as 

percent change in MFI of CXCR4 over vehicle.  *p<0.05. 
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Discussion 

 We now provide compelling evidence that the small GTPase Rac1 is involved in 

facilitating HSC motility and enhanced migration after dmPGE2 treatment. Not only does 

loss of Rac1 abolish PGE2-enhanced CXCR4 upregulation, but also the ability of PGE2 to 

enhance migration to SDF-1. Recently, it was discovered that Rac1 is required for 

regulation of CXCR4 conformation and activation, and loss of Rac1 expression and 

activity resulted in blocked receptor internalization and impaired SDF-1 induced Gαi 

protein activation (Zoughlami, 2012). Our results using Rac1 KO mice validate the 

concept that Rac1 is necessary for modulation and activation of CXCR4, specifically after 

PGE2 treatment. Furthermore, our findings support other published data suggesting that 

Rac1 is more important for HSC homing than Rac2 by showing that PGE2-enhanced 

CXCR4 upregulation and migration is maintained in Rac2 KO cells.  

 Interestingly, we also provide evidence that dmPGE2 treatment enhances 

Rac1:CXCR4 colocalization within the cell membrane. Since homing is a relatively rapid 

event (within 48 hours of transplant) (Lapidot et al., 2005), it will be necessary to 

determine whether this colocalization event is more important early within the 

temporal span of the homing process. It has been suggested that the Rac1:CXCR4 

colocalization event is necessary for enhanced sensitivity to SDF-1 (Wysoczynski et al., 

2005). On the other hand, Rac1 is necessary for HIF1α activity, which we have shown is 

necessary for CXCR4 upregulation after PGE2 treatment. Since PGE2’s effect on CXCR4 is 

transcriptional in nature and thus the upregulation effect is seen at a later time point, it 

is possible that early colocalization of Rac1 and CXCR4 already present on the cells 



92 
 

facilitates initial directional movement towards the bone marrow; the concomitant 

stabilization of HIF1α increases CXCR4 expression and allows the cells to be retained in 

the bone marrow once they arrive within the niche. Further dissection of the temporal 

events involving Rac1, HIF1α and CXCR4 will be necessary to form a more clear timeline 

of events , and these studies will be discussed within the Future Directions chapter. 
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Chapter 4. Future Directions 

 

DMOG in HSC transplants 

Studies presented in this dissertation represent the first demonstration of 

enhanced homing and engraftment of HSCs resulting from ex vivo pulse-exposure of the 

hypoxia mimetic DMOG. Interestingly, we did not observe HSC engraftment equivalent 

to dmPGE2 treatment. This suggests that DMOG and HIF1α stabilization may only be 

partially responsible for a portion of PGE2’s effects on HSC function, mainly working 

through upregulation of CXCR4 expression and enhanced homing of HSCs, and not 

through increased cell cycling and proliferation (Figure 22). Based on Takubo’s 

observation that increased HIF1α stabilization increases HSCs quiescence, it makes 

sense that increased HIF1α stabilization by DMOG would not result in more cell 

proliferation. So while ex vivo treatment of DMOG alone may not represent a more 

effective method for enhancing HSC function in transplant, it may remain an option in 

certain circumstances. For example, it has already been well established that the 

opposing effects of EP receptors can lead to differential signaling within cells, and that 

the expression and availability of the receptors can also affect signaling outcomes (Hull 

et al., 2004). Additionally, it has been shown in certain cases such as disease states and 

trauma, that cells can display decreases sensitivities to PGE2 (Santarpia et al., 1993; 

Laudanski et al., 2004; Huang et al., 2010). DMOG may present an alternative treatment 

option to PGE2 in cases of decreased PGE2 sensitivity or aberrant EP receptor function 

and expression.  
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Figure 22  
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Figure 22. Cell cycle analysis in SKL after DMOG treatment. 

Representative FACS cell cycle analysis in SKL cells. Lineageneg bone marrow cells were 

pulsed for 2 hours with either vehicle or 5uM DMOG. Twenty-four hours later, cells 

were stained with Hoechst and Pyronin-y dyes and cell cycle was analyzed in SKL 

populations. The proportion of quiescent cells (cells in Go) was determined by gating on 

Hoechstneg and Pyroninneg populations. Data are expressed as mean ± SEM from three 

experiments.    
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In addition to DMOG’s potential ex vivo role in HSC transplants in certain cases, 

daily in vivo  treatment with DMOG prior to severe sublethal irradiation increases blood 

recovery and protects HSCs after radiation exposure (Forristal et al., 2013). We have 

shown similar radiomitigative effects with in vivo PGE2 treatment post-irradiation 

(Hoggatt et al., 2013b), and in vivo  treatment with Cobalt (II) Chloride (CoCl2), another 

hypoxia mimetic, results in higher colony-forming cells (CFCs) post-irradiation analogous 

to PGE2 treatment (Hoggatt & Pelus,  unpublished). Initial blood recovery after 

transplant is necessary for patient recovery and resistance to infection, therefore DMOG 

may be a potential therapeutic tool to not only enhance HSC donor cell function, but 

also to facilitate a speedier recipient recovery after irradiation and transplant (Figure 

23).  
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Figure 23 
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Figure 23. DMOG in HSC Transplant. 

Based on recent evidence that DMOG enhances blood recovery after severe sub-lethal 

irradiation, our studies that show post-irradiation treatment with CoCl2 increases HSPCs, 

as well as the work presented in this dissertation suggesting DMOG enhances HSPC 

homing and engraftment, DMOG could potentially play a therapeutic role by enhancing 

both post-irradiation recovery and HSC function after transplant.   
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Defining the EP receptor responsible for HIF1α stabilization 

 While we have very comprehensively defined a mechanism in which HIF1α is 

necessary for PGE2-enhanced HSC homing, the exact receptor through which this is 

occurring remains undetermined. Preliminary studies utilizing EP receptor KO mice 

indicate that both EP2 and EP4 may be involved. Loss of either receptor results in 

decreased HIF1α stabilization in Lineageneg cells (Figure 24A), as well as lack of CXCR4 

upregulation in SKL populations (Figure 24B). Recent evidence from our lab suggests a 

role for EP4 in retention of HSCs within the bone marrow (Hoggatt et al., 2013a). We 

show that blockade or loss of EP4 signaling in conjunction with other HSC mobilizing 

agents resulted in significantly enhanced egress of HSPCs from the bone marrow to the 

peripheral blood.  

Therefore, based on the current knowledge that EP2 and EP4 both increase 

cAMP, this strongly indicates that cAMP signaling may be the mechanism through which 

PGE2 affects HIF1α stabilization. This could be tested by treating WT as well as EP2 and 

EP4 knockout cells with compounds that increase intracellular cAMP, such as β-agonists, 

synthetic nucleotides such as dbcAMP, or phosphodiesterase inhibitors. If increases in 

HIF1α protein and CXCR4 expression are restored and similar to levels seen in PGE2-

treated WT cells, it would suggest a requirement for cAMP in HIF1α and CXCR4 

regulation after PGE2 treatment.  

 However, as was mentioned before, EP4 can signal through both cAMP as well as 

PI3K (Breyer et al., 2001; Tsuboi et al., 2002; Fujino et al., 2003; Hull et al., 2004; 

Sugimoto & Narumiya, 2007; Vo et al., 2013). Based on current literature, both 
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pathways can result in either Rac1 upregulation, or HIF1α stabilization (Figure 25). 

Future work should utilized the lab’s individual EP2 and EP4 knockout mice and focus on 

the use of specific EP agonists, antagonists as well as PI3K and cAMP inhibitors to 

precisely determine which pathway is responsible for PGE2’s effects on Rac1, HIF1α and 

CXCR4.  
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Figure 24 
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Figure 24. EP2 and EP4 receptors are necessary for PGE2-induced HIF1α stabilization 

and CXCR4 upregulation.  

(A) (Top) Representative western blot showing HIF1α protein levels after dmPGE2 

treatment in EP KO mouse cells. (Bottom) Densitometry analysis of HIF1α protein 

expression in mouse Lineageneg EP KO bone marrow cells treated with vehicle or 1uM 

dmPGE2. Data shown is from one experiment. (B) Representative FACS histograms 

showing CXCR4 expression after dmPGE2 treatment on EP KO cells compared to isotype 

control. Within each histogram, CXCR4 expression (Mean ± SEM; N=3) on EP KO SKL cells 

24 hours after treatment with dmPGE2 is shown. CXCR4 cell surface expression was 

measured as mean fluorescence intensity (MFI) based on isotype control. Data are 

expressed as percent change in MFI of CXCR4 over vehicle.    
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Figure 25 
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Figure 25. Proposed mechanism(s) for PGE2’s effects on Rac1 and HIF1α.  

A schematic of potential signaling pathways that could affect Rac1 activity and 

localization, HIF1α and ultimately homing based on our evidence as well as current 

literature.  
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Digging deeper into Rac1’s involvement in HSPC motility after PGE2 treatment  

 Our current observations involving PGE2 and Rac1 suggest that increased 

colocalization of Rac1 and CXCR4 may enhance HSC migration to SDF-1 after PGE2 

treatment. Previous studies by others also suggest a role for Rac1 in HIF1α activity 

(Hirota & Semenza, 2001). However, the kinetics of these interactions in regards to cell 

motility and homing are not very well defined. All of our prior studies involving HSPC 

migration and homing are done approximately 24 hours post-PGE2 treatment, based on 

prior evidence that CXCR4 protein upregulation is at its greatest approximately 20 hours 

after exposure to PGE2. HIF1α stabilization by PGE2 occurs within 4-6 hours after 

treatment, supporting the theory that it is facilitating downstream transcriptional 

upregulation of CXCR4. It is not yet known whether Rac1 is involved early or late in this 

series of events. Preliminary studies reveal that in Rac1 KO HSPCs, overall HIF1α protein 

stabilization is decreased compared to WT, and this stabilization remains the same after 

PGE2 treatment (Figure 26), supporting the idea that Rac1 is necessary for HIF1α 

stabilization and activity. This suggests that Rac1 is upstream of HIF1α and explains the 

lack of CXCR4 upregulation in Rac1 KO cells after PGE2 treatment. However it is still 

necessary to determine the kinetics of PGE2’s effects on Rac1 expression by performing 

timecourse experiments measuring Rac1 protein at 2, 6, 12 and 24 hours post-PGE2 

treatment. Furthermore, as was previously mentioned, it is possible that Rac1 and 

CXCR4 colocalization early on may initiate directional movement of cells immediately 

after transplant. ImageStream timecourse experiments at 2, 6 12 and 24 hours post-

PGE2 treatment may also be utilized to determine at which point Rac1 and CXCR4 



106 
 

colocalization is at its greatest. It would also be interesting to investigate whether 

DMOG treatment results in the same effects on Rac1and CXCR4 colocalization. This 

would further define HIF1α’s involvement in the steps necessary to enhance HSPC 

homing.   

 Additionally, despite the fact that Rac2 is not involved in PGE2-enhanced HSPC 

migration and CXCR4 upregulation, it is important to rule out its role in CXCR4 

colocalization and altered SDF-1 sensitivity by performing additional colocalization 

experiments involving Rac2. It may also be beneficial to determine PGE2’s effects on 

overall Rac2 expression, due to Rac2’s involvement in apoptosis and cell survival 

(Cancelas, 2011).   
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Figure 26 
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Figure 26. Loss of Rac1 abolishes PGE2-enhanced HIF1α stabilization.  

Representative western blot (Top) and densitometry analysis (Bottom) of HIF1α protein 

in Rac1 KO and WT Lineageneg bone marrow cells after treatment with1uM dmPGE2. 

Data is from a single experiment.   
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