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Abstract

Treating cancer using charged particles heavier than electrons is becoming more and

more popular in modern cancer management due to its increased dose to the targeted

tumors and improved sparing of surrounding normal tissues and critical structures.

Many challenging and interesting mathematical optimization problems arise in the

planning of charged particle radiation therapy. In this thesis, we study three im-

portant optimization problems in particle therapy, which includes dose optimization,

energy modulation change reduction, and LET (linear energy transfer) painting.

Generally speaking the goal of treatment planning is to use computer based algo-

rithms and software to find a therapeutic plan that maximizes the “dose” delivered to

the target tumor while at the meantime minimizing that to the surrounding normal

tissues and critical structures. The word “dose” here can refer to physical dose, i.e.,

energy imparted by the incoming ionizing radiation to the patient, radiobiological
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dose such as percentage of cells killed, or a combination of both. As an example, the

LET painting problem that we studied can be viewed as a combination of physical

dose and radiobiological dose, because the LET distribution of a treatment plan can

be viewed as a “surrogate” for beam quality and increasing the LET can lead to

increased cell killing efficiency under certain circumstances. Various machine prop-

erties are also considered in these optimizations. In most particle facilities, changing

the beam energies requires an undesirable delay; therefore, in the energy modulation

change reduction we aim to reduce the number of energy changes without compro-

mising the final physical dose distribution.

The contributions of this thesis include the following. (1) We have developed a

parameterizable prototype treatment planning system for physical dose optimizations

which implements kernel based dose calculations for non-uniform mediums, and dose

optimization using non-negative least squares. (2) We found that Voronoi partitions

can provide effective heuristic solutions to the energy modulation change reduction

and LET painting problems. In addition, this thesis also identified an array of im-

portant and challenging computational problems that are not only of importance to

the clinicians but also of considerable interests to computer scientists.
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Glossary

Anti-proton is a charged particle with the same mass and opposite exact charge

as a proton. It is the anti particle of proton and is represented by

the symbol p̄ [8].

Chemotherapy is the (invasive) use of drugs (chemicals) to target cells that repro-

duce rapidly such as cancer cells.

Dose is defined as the amount of energy deposited per unit mass (for more

details, see section 2.2.2).

DVH Dose volume histogram is a tool used to understand the quality of

a treatment plan in terms of its dose distributions. It provides the

amount of volume per biological structure that received at least a

certain percentage of the maximum dose.

FLUKA is a Monte Carlo tool for simulate particle interactions with matter.

It is the result of a combined effort of the Italian National Insti-

tute for Nuclear Physics (INFI) and the European Organization for

Nuclear Research (CERN).

GEANT4 is a Monte Carlo open source code toolkit for simulating particle

interactions with matter. It is the result of a combined effort of the

European Organization for Nuclear Research (CERN), European

xvii



Glossary

Space Agency (ESA), Istituto Nazionale di Fisica Nucleare (INFI),

Jefferson Lab, KEK, among others [9, 10].

Ionization is the effect of physically adding or removing orbital electrons from

an atom converting it into an ion.

IMRT Intensity-modulated radiation therapy is an irradiation technique

that uses non-uniform beam intensities for delivering highly confor-

mal dose to a localized tumor while sparing healthy tissues.

LET Linear Energy Transfer is a measurement of dose quality. It is de-

fined as the ratio between a differential energy lost by a charged

particle and a differential length of its track (for more details, see

section 2.2.4).

Proton is a fundamental particle that constitutes matter. It was named by

Niels Bohr in 1914 when he referred to the nucleus of the lightest

atom (hydrogen) [8]. This atom is characterized by possessing one

electron (e−) orbiting a nucleus of one proton (p+).

LVH LET volume histogram is a tool used to understand the quality of a

treatment plan in terms of LET. It provides the amount of volume

per biological structure that received at least a certain LET relative

to the highest calculated LET.

RBE Radiobiological effectiveness is the ratio of two different dose types

that produce the same cell damage (for more details, see section

2.2.5).

Stopping Power is the expected kinetic energy loss by a charged particle along its

track while interacting with matter (for more details, see section

2.2.3).

xviii



Glossary

Voronoi Partition or tessellation is a special partition of a given space determined

by distances to a specified collection of objects, where to each object

one associates a corresponding Voronoi cell containing the portion

of the given space whose distance to the given object is no greater

than its distance to the other objects. It is named after the Russian

mathematician Georgy Voronoy (for more details, see section 3).

xix



Chapter 1

Introduction

Cancer is a wide spread disease that expresses itself through the errant growth of

abnormal cells. If the uncontrolled growth of these cells is not stopped, it can cause

death [11, 12]. As the worldwide cancer’s fatal trend increases, in 2010 alone, there

were 571,950 deaths due to cancer in America, which was more than 1,500 people

per day [12]. This along with the estimated cost of $263.8 billion USD for cancer

management [13, 12] has led to an increased demand from the general public to

develop more effective tools and technologies for curing cancer.

The focus of this thesis is radiation therapy and radiosurgery, which is one of

our most effective means to treat local-regional tumors. Today, radiotherapy in

combination with surgery accounts for more than 50% of the treatments. With the

rapid advancement of medical imaging, more and more tumors are being diagnosed

in early stages when they are still local or regional. Hence, one can only expect the

percentage of patients going through radiation therapy to increase.

Radiation therapy is a modality of cancer treatment with ionizing radiations.

The ionizing radiation (e.g., high energy X-rays) damages the DNA and causes cell

death within the region being irradiated. Hence, the goal of radiation therapy is to

1



Chapter 1. Introduction

deliver a radiation dose high enough to kill all the targeted tumor cells while simul-

taneously minimizing the damage to surrounding normal structures. The quality of

a radiotherapy plan is usually judged by its dose conformity and treatment time.

The dose conformity describes how well the high radiation dose region conforms to

the targeted tumor and spares the surrounding normal tissues, while the treatment

time describes how long the treatment takes and how efficient the treatment ma-

chines are used. Any improvement on the dose conformity in radiation therapy will

likely improve tumor control and reduce the likelihood of complications, and any im-

provement in treatment time will likely lower the treatment cost and improve patient

throughput and comfort.

Many types of ionizing radiations have been experimented along the history of

radiotherapy. These include high energy photons (e.g., γ−rays and high energy x-

rays), electrons, and charged particles heavier than electrons such as protons, pions,

alpha particles, carbon ions, and even antiprotons. Generally speaking, the advan-

tage of charged particles heavier than electrons (also referred to as hardons) over

high energy photons can be attributed to their distinct energy deposition patterns.

As shown in Figure 1.1, as photons pass through the body, the energy deposited

is exponentially decreasing, resulting in a high entry dose. As a result, it is often

the case that the amount of dose deliverable to the tumor is higher than that in

the tumor, which may lead to acute side effects and can potentially cause secondary

cancer years after the initial treatment. In contrast, heavier charged particles such

as carbon ions show little interaction when they first enter the medium and deposit

the dominant portion of their energy only close to the end of their range. This leads

to an inverse dose profile, exhibiting a well-defined peak of energy deposition, called

the Bragg Peak. (The depth of the Bragg Peak depends on the energy of the ini-

tial particles.) This allows for a significant reduction of dose delivered outside the

primary target volume and leads to substantial sparing of normal tissue and nearby

organs at risk.

2



Chapter 1. Introduction

Figure 1.1: Depth-dose diagram: Comparison between photon and carbon beams [1].

In this thesis we focused on charged particle therapies. Specifically, we studied

three mathematical optimization problems that arise in charged particle therapy.

These problems include dose optimization, energy modulation change reduction, and

LET painting.

Dose Optimization: The goal of dose optimization is to create a physical dose

distribution whose high dose regions conforms to the targeted tumor while in the

meantime minimizing the dose deposition outside the target.

Energy Modulation Change Minimization: The depth of the Bragg Peak (see

Figure 1.1) is controlled by the energy of the beam’s primary particles. Thus by

varying the energy, we can create a dose distribution that is conformal to the target

volume. However, changing beam energies in particle therapy requires an undesirable

delay; therefore, a high quality treatment plan with minimum number of energy

changes is desired, which is the goal of energy modulation change minimization.

3



Chapter 1. Introduction

LET painting: Most radiation therapies delivered in today’s clinic are planned

based on physical dose distributions alone. However, when delivering a photon beam

and a heavy charged particle (e.g., carbon ion) beam to the body, even with the same

amount of physical energy deposited, the induced biological damage is typically not

the same. This is because photons usually give rise to secondary electrons that are

sparsely distributed along the photon path, while heavier particles, such as carbon

ions result in a dense distribution of ionization events. While photons produce on a

scale of typical cell dimensions an evenly spread low dose distribution, heavy charged

particles produce a very high dose on a microscopic scale, comparable to the size

of the DNA, which can inflict significant local damage to the cell. A good physical

concept to quantify the ionization density of different types of radiation is the concept

of linear energy transfer (LET) [2, 14]. Figure 1.2 shows the LET distribution of

a 150 [MeV ] proton beam. Sparsely ionizing particles such as photons (X− and

γ−rays) have a lower LET as compared to densely ionizing radiation such as heavy

ions. LET and physical dose are complimentary to each other and combining them in

planning could be a significant improvement [14, 15, 16, 17, 18]. Generally speaking,

the goal of LET painting is to localize the high LET region inside the tumor while

producing the required conformal physical dose distribution.

In this research, we explore using Voronoi diagrams to solve these optimization

problems. A Voronoi diagram segments a given space under a provided metric. Our

intuition is the tumor cells should be treated using their “nearest” beams. For LET

painting, since the high-LET region of a charged particle beam is located at the distal

edge of its Bragg peak, if a beam stops at the center of the target, its high LET region

is also likely inside the target. Thus making lower energy beams more preferable than

high energy beams. On the other hand, for dose and energy modulation change the

key observation lies in the fact that the depth of the Bragg Peak is a function of

energy, then selecting the beam “closest” to a voxel implies the selection of beams

that traverse less tissue which may reduce the number of energy changes.
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Figure 1.2: LET and depth-dose diagram for a 150 [MeV ] proton beam.

The following is a summary of the contributions of this thesis. (1) We have devel-

oped a parameterizable prototype treatment planning system for physical dose opti-

mizations which implements kernel based dose calculations for non-uniform mediums

using water-equivalent path length (for more information about this topic see section

2.2.7), and dose optimization using non-negative least squares. (2) We found that

Voronoi partitions can provide effective heuristic solutions to the energy modulation

change reduction and LET painting problems. In addition, this thesis also identified

an array of important and challenging computational problems that are not only of

importance to the clinicians but also of considerable interests to computer scientists.

These problems will lay the foundation of my future Ph.D. study.

The rest of the thesis is organized as follows. Chapter 2 presents a brief overview

on Radiation Therapy with a special focus on particle therapy and provides basic

physics concepts such as fluence, dose, stopping power, linear energy transfer, rela-

tive biological effectiveness, and water-equivalent path length. Chapter 3 introduces

5



Chapter 1. Introduction

Voronoi partitions and provides a brief walk-through its computational complex-

ity and some classical algorithms. Chapter 4 describes the concept of a treatment

planning system (TPS) and in particular our treatment planning system prototype.

Chapter 5 presents our solution to the beam energy modulation reduction and the

simultaneous dose and LET painting problems. Finally, Chapter 6 concludes the

thesis and discusses some exciting computational problems for my future Ph.D. dis-

sertation.
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Chapter 2

Radiation Therapy

2.1 Overview

Radiological physics is the science that studies ionizing radiation and its interaction

with matter. The field began in the 1890s immediately following the discovery of

X-rays by Wilhelm Röntgen [19], radioactivity by Henri Becquerel [20], and radium

by the Curies [21]. The most important types of ionizing radiations for therapeutic

usage are γ-rays, X-rays, fast electrons (positrons, β-rays, δ-rays), ions (protons,

deuterons, tritons, alpha particles, pions, etc.), and neutrons [22, 2, 3, 23].

Since the focus of this thesis is particle radiation therapy, here we provide some

background knowledge. The chapter is organized as follows. Section 2.2 introduces

some basic physical concepts. Section 2.3 presents a concise overview of treatment

planning of radiation therapy and defines the optimization model. Finally, Section

2.4 describes the model of particle therapy in this thesis.
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Chapter 2. Radiation Therapy

2.2 General Concepts

2.2.1 Fluence

Given a beam of particles, the fluence Φ is defined to be number of particles passing

through a unit area during a time interval of interest. Mathematically, fluence is

defined using equation 2.1, where N is the total number of particles passing through

an area A. As a result, the unit for fluence is
[

1
m2

]

Φ =
N

A
(2.1)

2.2.2 Dose

One of the most important concepts in radiological physics is absorbed dose (or

simply dose). Generally speaking, the absorbed dose D is the amount of energy

deposited in medium per unit mass. Equation 2.2 shows the mathematical definition

of dose, where dE is the differential of energy deposited in a mass differential dm.

The SI unit for absorbed is
[
J
kg

]
or gray [Gy][3].

D =
dE

dm
(2.2)

2.2.3 Stopping power

The stopping power S of a charged particle is defined to be its expected kinetic

energy loss, dE, along the particle track, dx (see equation 2.3). The stopping power
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S depends on the type of the particle Y , its energy E, and the atomic number Z of

the medium. The unit commonly used for expressing stopping power is
[
keV
µm

]
[22].

S =

(
dE

dx

)
Y,E,Z

(2.3)

2.2.4 Linear Energy Transfer (LET)

Interested readers may question the relation between stopping power and dose. It

turns out that not all the energy lost by the charged particles is deposited locally

and contributes to dose. Some form of this energy loss is converted to secondary

particles (e.g., high energy electrons or photons) that travel much further away.

Thus to calculate dose, one needs to remove the portion of the energy loss in dE in

equation 2.3 that is not deposited locally. This gives rise to the concept of linear

energy transfer, which is also referred to as the restricted stopping power.

Precisely, the linear energy transfer (LET) is a measure of local energy deposition

along the particle track and is defined in equation 2.4, where ∆ reflects the restriction

of the energy loss that is deposited locally [22, 17].

L∆ =

(
dE

dx

)
∆

. (2.4)

Equation 2.5 puts the concepts of dose, LET and fluence into perspective, where

the local dose is simply the product of fluence and the LET if the particles are of

the same type and energy.

D = ΦL∆. (2.5)
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In the situation where the particle fluence consists of a spectrum of particles of

different energies, i.e., Φ(E), one will need to integrate over the energy spectrum as

in equation 2.6 in order to calculate the dose.

D =

∫
Φ(E)L∆(E)dE. (2.6)

When it comes to calculating the LET of a beam of particles, one can either

invoke the track averaged LET or dose averaged LET.

Track averaged LET Lt of a beams of particles simply average the LET over the

fluence (see equation 2.7)[15, 16].

Lt =

∫
Φ(E)L∆(E)dE∫

Φ(E)dE
(2.7)

The dose averaged LET Ld is the cumulative LET weighted by the local dose

contributions of the particle (see equation 2.8). Note that the term Φ(E)L∆(E) is

the local dose contribution from the particles with energy E, while
∫

Φ(E)L∆(E)dE

is the total local dose as in equation 2.6 [15, 16].

Ld =

∫
(Φ(E)L∆(E))L∆(E)dE∫

Φ(E)L∆(E)dE
(2.8)

2.2.5 Relative biological effectiveness (RBE)

Relative biological effectiveness is defined as the ratio of a control radiation dose,

D0, and some test radiation, Dr such that the cell damaged for both radiations is
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Chapter 2. Radiation Therapy

the same (see equation 2.9) [2].

RBEr =
D0

Dr

. (2.9)

Generally, the control radiation corresponds to a X-ray beam. According to

the NBS (The National Bureau of Standards) 1954 standard (now NIST, National

Institute of Standards and Technology), this control radiation comes from a 250

[keV ] X-ray beam [2]. Nonetheless, in practice, the reference is often γ−rays from

cobalt-60 isotope (60Co).

2.2.6 RBE as a function of LET

Radiobiological experiments have shown a positive correlation between the RBE and

the LET [17]. Intuitively, this can be explained by the fact that ionizing radiation

causes cell DNA damage by either directly ionizing the DNA molecules or indirectly

through ionized water molecules. These damages may induce DNA strand breaks and

thus disrupting the reproductive cycle of cells and eventually lead to cell death [24].

In order to induce this damage, energy needs to be transferred from the incident

particles into the medium. Since the damage is a probabilistic event, the denser

the energy exchange, the more likely the damage is to occur. Figure 2.1 shows the

positive correlation between increased RBE as a function of LET [2, 25].

It is also worth noting that when the LET is beyond a certain threshold e.g., 100[
keV
µm

]
) the RBE decreases. This effect is known as the “overkill effect” [26, 27]. One

explanation of the overkill effect is that the optimal LET value occurs at 100
[
keV
µm

]
because the average distance between ionizing events coincides with the diameter of

the DNA double helix; hence, there is a higher probability of causing a double-strand

break per particle (see figure 2.2). Even though higher values of LET also produce
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Chapter 2. Radiation Therapy

Figure 2.1: RBE as a function of LET [2].

DNA double helix damage, due to a smaller distance among ionizing events, a higher

LET (beyond 100
[
keV
µm

]
) implies a higher absorbed dose, and since RBE is a ratio

of absorbed doses, the RBE decreases.

2.2.7 Water-equivalent path length (WEPL)

The presence in a patient body of many different types of tissues, each with its own

physical and chemical properties, is a big challenge for accurate dose calculations.

Accurate dose calculations typically require Monte Carlo simulations [28]. In these

simulations, random sampling is used to simulate the stochastic interactions and

energy depositions of the incident particles through all different types of materials.

Accordingly, the accuracy of the results improves with the number of particles sim-

ulated. The biggest drawback of Monte Carlo simulations is its long calculation

time.

One possibility to overcome this problem is to apply the concept of water-

equivalent path length (WEPL). The intuition behind WEPL is based on the

12
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Figure 2.2: DNA Damage. (Based on illustration from [2]).

assumption that when the same particles travel in different media, the basic shape of

the dose deposition profile is almost the same except that the range of the particles

are different. Thus one only needs to correct the ranges of the particle based on

the types of the medium if a dose distribution is already available in water. This

gives rise to the concept of water-equivalent path length which is used to correct for

inhomogeneities from precomputed dose kernels from water.

Clinically, WEPL is usually given based on the CT numbers or Hounsfield units

(i.e., pixel values found on a typical CT scan). Hounsfield units have a direct relation-

ship with electron density, and provide information of the attenuation of a radiation

beam while traversing that material [6, 29, 7]. Table 2.1 provides Hounsfield units

for different materials and their relative ranges in water.

It is also worthwhile noting that the noisy nature of the CT scan reconstruc-

tive method and the uncertainties in the composition of matter, introduce further

uncertainties in dose deposition (see section 2.2.2) and linear energy transfer calcula-
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Material HU Relative range
Compact bone 1454±35 1.6376±0.018
Muscle 41±5 1.041±0.011
Fat -108±4 0.943±0.010
Lung -750±19 0.297±0.010
Spongious bone 262±9 1.095±0.012
Solid water 32±4 1.031±0.011
RW-3 -3±5 1.025±0.011
H-800 -798±11 0.244±0.008
H-500 -485±10 0.468±0.005
H+200 227±10 0.968±0.011
H+400 420±15 1.074±0.012
H+700 792±25 1.216±0.026
H+900 962±35 1.307±0.014
H+1200 1250±65 1.450±0.030
PMMA 138±7 1.165±0.013
Polyethylene -84±4 0.993±0.011
Alderson phantom 126±5 1.101±0.012
Bovine 1974±21 1.778±0.03
Human bone 1232±265 1.6025±0.001

Table 2.1: Hounsfield Units (HU) and relative ranges in water [6, 7].

tions (see section 2.2.4), since they both depend on the stoppipng power (see section

2.2.3) which is a function of the material the beam interacts with. This nature of

Hounsfield units is reflected in table 2.1 where its values are given in terms of a

normal distribution by its mean and standard deviation.
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Figure 2.3: Lateral cut (CT scan) of a human head.

2.3 Radiation Therapy Treatment Planning

2.3.1 Overview

Modern radiation therapy treatment planning typically involves the following set of

steps: patient imaging, target definition (i.e. structure contouring), dose prescrip-

tion, beam configuration optimization, and quality assurance [30].

Imaging is performed by taking computer tomography scans (CT scans), magnetic

resonance imaging (MRI), positron emission tomography (PET) or combinations of

these depending on the type of cancer. CT scans are the mostly widely used imaging

modalities and can provide anatomical information of the patient (see Figure 2.3).

Once these images are obtained, physicians contour the tumor and organs at risk

(OARs) as well as prescribe the desired dose.

Modern radiation therapy relies on computer based optimization algorithm and

software to generate the beam ocnfiguration for delivering the prescibed treatment.

Generally speaking, the optimization model is the following:
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• Patient Representation: the computational model of a patient is repre-

sented by a 3D array of volume pixels (voxels) of some specified resolution

(e.g., 1mm× 1mm× 1mm). Each of the voxels is associated with a particular

structure such as target or some organ-at-risk.

• Ideal Dose Distribution: Aided by the prescription from the physicians, a

desired dose distribution can be obtained. There are many ways to represent

the ideal dose distribution, we shall assume the ideal dose distribution as a 3D

array of dose values in this thesis.

• Preparation Dose Calculation: The goal of treatment planning is to select

a subset of beams from a set of candidate beams to create the ideal dose

distribution. Thus the dose contribution from each candidate beam needs to

be calculated before the optimization.

• Optimization Problem: Equation 2.10 shows the conceptual optimization

problem, where D∗ is the ideal dose distribution, Dj is the dose contribution

from the j−th candidate beam, and tj is the weighting or beam-on time for

the j−th beam. The constraint tj ≥ 0 reflects that the beam-on time must

be non-negative. Thus the goal of the optimization is to find the beam-on

times tj so that the created dose distribution
∑

j Dj × tj is as close to D∗ as

possible. Many metrics can be used to model the “closeness” here, for example

the non-negative least square problem [31] as shown in equation 2.10. In certain

situations, there maybe additional constraint such as the total beam on time∑
j tj must be below a certain threshold t0. This can be accompanied with

additional constraint such as
∑

j tj ≤ t0 and thus resulting in a constrained

least square problem [31].
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min

∥∥∥∥∥∥
∑
j

Dj × tj −D∗
∥∥∥∥∥∥

2

2

subject to tj ≥ 0 (2.10)

2.4 Particle Therapy

The therapeutic use of X-rays started as early as their discovery in the 1890s and

has become the standard of modern radiation therapy [3]. X-ray depth-dose profile

characterizes by a high entrance dose and a long logarithmic decrease dose tail (see

figure 2.4). The therapeutic use of heavier charged particles was first proposed by

Robert Wilson, in his 1946 paper: “Radiological Use of Fast Protons”, where he

described the potential benefits of accelerated protons for human radiation therapy

[30, 32]. His principal argument was based on the depth dose profile of a proton

beam (see figures 2.5), which compared to photon exhibits a low entrance dose, a

high dose concentration at some depth (Bragg peak) and a steep dose fall-out after

the peak. Since Wilson’s early studies, further research has provided better insights

into the clinical benefits of charged particles and their higher RBEs compared to

photons (see section 2.2.5) [17, 14, 15, 16, 18].

The current most advanced delivery techniques for particle therapy is active scan-

ning. One of the advantages of chaged particles (e.g., protons and carbon ions) over

neutral particles (e.g., photons and neutrons) is that the beam direction of a charged

particle beam can be oriented with relative ease using a magnetic field. In active

scanning particle therapy, the target is first partitioned into layers so that each layer

can be reached using the same energy. For each layer, the beam spot (ranging from a

few milimeters in diameter to a few centimeters) scans through the layer as shown in

Figure 2.6) to deliver the prescribed dose. The planning algoirthms to be discussed

in this theis all assume a scanning beam delivery model.
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Figure 2.4: Photon beams - depth-dose diagram [3].

For readers interested in the treatment planning and dose calculations of particle

therapy, we refer them to the paper by Krämer et. al.: “Treatment planning for

heavy-ion radiotherapy: physical beam model and dose optimization”, which pro-

vides a complete walk-through of dose calculations and the usage of WEPL factors

(see section 2.2.7) [33].

Figure 2.5: Proton beams - depth-dose diagram.
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Figure 2.6: Scanning beam therapy: circles represent a targeted tumor voxel, and
line connecting circles represents the scanning path used to “paint” the tumor.

In this thesis, we will use precomputed dose and LET kernels and WEPL for dose

calculations. Our precomputed kernels were generated from two well-known Monte

Carlo engines: Fluka [34, 35] and GEANT4 [9, 10]. We use Fluka for anti-proton

dose kernels and GEANT4 for proton dose and LET kernels. Figures 2.5 and 2.7

show the depth-dose diagrams of proton and anti-proton kernels generated using

Fluka[34, 35] from 75 to 125 [MeV ] at 10 [MeV ] step. Notice how the entrance dose

of both particle types is lower and a high dose-volume is concentrated at some depth

(Bragg peak). Figure 2.8 shows LET and depth-dose of a proton beam. Notice that

the maximum of the LET distribution actually occurs after the Bragg-Peak.

19



Chapter 2. Radiation Therapy

Figure 2.7: Anti-proton therapy - depth dose diagram.
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Figure 2.8: LET and depth dose diagram for a 150 [MeV ] proton beam.
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Chapter 3

Voronoi Partitioning

3.1 Overview

In this thesis, we introduce the concept of a Voronoi diagram to assist planning

scanning beam particle therapy. A Voronoi diagram of a set of objects partitions the

metric space into cells with one cell per object, such that each cell corresponds to

the region closest to its object [36, 37, 38, 39, 4, 40, 41].

Interestingly, the concept of a Voronoi diagram or partitioning is a great deal

older than the person it is named after, the Russian mathematician Georgy Voronoy

(1868-1908) [39], and has been widely used interdisciplinarily in many fields. Just to

name a few, Voronoi diagrams have been used in astronomy, anthropology, biology,

chemistry, geography, physics, physiology, statistics, machine learning, and robotics.

The first studies using this type of space partitions were performed by Descartes in

the 16th century while showing the disposition of matter in the solar system (see figure

3.1) [39, 4, 40]. For example, in figures 3.2 and 3.3 one can see Voronoi partitions

using Euclidean distance of different objects such as for a set of points (see figure

3.2), line segments, polygons (see figure 3.3). Interestingly, Voronoi diagrams also
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Figure 3.1: Descartes’ disposition of matter in the solar system [4].

occur in nature such as in the root systems of plants and skin patterns on a giraffe

(see figure 3.4).
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Figure 3.2: Voronoi diagram of a random set of points in R2.
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Voronoi partition boundaries

Figure 3.3: Voronoi diagram of different geometrical objects in R2.

3.2 Definitions

It is a common practice to start the study of Voronoi partitioning stating the two-

dimensional version of the problem and then generalizing to its n-dimensional version.

Nonetheless, the following formulation of Voronoi partitioning tries to be as general

as possible so that it can be easily stated in any dimensionality.

Figure 3.4: Voronoi diagram in nature: the giraffe’s skin pattern is a planar Voronoi
partition.

23



Chapter 3. Voronoi Partitioning
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Figure 3.5: Voronoi diagram of nine points placed on the edges of a cube and its
center in R3.

Let, O = {o1, o2, ..., on} be a collection of n objects in some set S with a dis-

tance function defined (distances(oi, oj)), N the set of natural numbers, and R

the set of real numbers. Then, a Voronoi partition is a decomposition of S into

Voronoi cells V = {V (o1), V (o2), ..., V (on)}, such that S =
n⋃
i=2

V (oi) and V (oi) ={
o|distance(o, oi) ≤ distance(o, oj) for j 6= i

}
.

When the set O is the set of points in the real plane, R×R or R2, with euclidean

metric,

∀i, j i 6= j distanceS(oi, oj) =

√(
oj(1)− oi(1)

)2
+
(
oj(2)− oi(2)

)2

where, oi(1) and oi(2) stand for the x- the y-coordinates of point oi then the Voronoi

partition V is a planar graph [39], where each face or Voronoi cell is a polygon as

shown in Figure 3.2.

When the set O is the set of points in the three-dimensional real space, R×R×R
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or R3, with euclidean metric:

∀i, j i 6= j

distanceS(oi, oj) =

√(
oj(1)− oi(1)

)2
+
(
oj(2)− oi(2)

)2
+
(
oj(3)− oi(3)

)2

where, oi(1), oi(2), and oi(3) stand for the x-, y-, and z-coordinates of a point oi then

the Voronoi partition is a set of polyhedrons as shown in Figure 3.5.

In addition, the set of objects O can be considered as a multi-set where inhomo-

geneous elements are part of it, for example figure 3.3 shows a Voronoi partitioning of

geometrical objects such as lines and polygons of different sides. The key is that these

objects have to be representable within the metric space such that distanceS(oi, oj)

is defined for inhomogeneous objects. Hence in the case of figure 3.3, distanceS was

defined using euclidean distance that measures the distance from a point to a line

and generalizing it for a set of lines.

3.3 Complexity

On a geometric setting, a Voronoi diagram consists of a collection of regions, where

each region is defined by a set of faces, edges and vertices. The number of such faces,

edges, and vertices is referred to as the complexity of the Voronoi partition. This

complexity is also a lower bound of how long it takes to generate a Voronoi partition.

Shamos [42] in his Ph.D. dissertation proved that computing the Voronoi parti-

tioning of a set of n points in R2 is at least as difficult as sorting n real numbers,

which is a problem that requires Θ(n log n) [4]. Although, a technique known as

bucket-sort has been proved to take expected linear time [43] , O(n), to sort n ele-

ments has also been used to speed-up some of the algorithms that compute planar
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Voronoi diagrams under some special conditions [39].

In the case of higher-dimensional Voronoi diagrams, the complexity of the Voronoi

diagram increases with the dimensionality according to the number of k−faces in

the diagram which is in the order of O
(
nmin{m+1−k,[m/2]}

)
for n generators in m

dimensions and 0 ≤ k ≤ m [44, 37]. In the three-dimensional case, the number of

vertices in the Voronoi diagram is bounded by O(n2). This fact implies that the

lower bound of any algorithm that constructs a Voronoi diagram in three dimensions

is O(n2) [39, 37].

3.4 Algorithms

Many algorithms have been developed to calculate the planar Voronoi diagram of a

set of n points [45, 46, 47, 48] and later generalized to handle higher-dimensions. In

this section we describe the general strategy of three traditional optimal algorithms

to compute the Voronoi partition of a set of points in the plane as well as (some

of them) in three-dimensions for the Euclidean distance. In addition, we discuss a

hardware-aided approach to approximate generalized Voronoi diagrams using graph-

ics processing units (GPU) which are specialized hardware processors that compute

vectorized operations using fast algorithms implemented at hardware-level.

3.4.1 Incremental method

The basic idea under this algorithm is to insert a generator point ol into a Voronoi

diagram and pay the price of updating the Voronoi cell of the othl face added to the

diagram. Hence, a potential solution is to search for the closest oj and modify its

Voronoi cell to consider the new boundaries imposed by the presence of the ol genera-
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tor point. This operation can be calculated by exhaustive search min
j
distanceS(ol, oj)

for all 2 ≤ j ≤ l− 1. This approach has a total complexity of O(n2), though smarter

data structures can be used to reduce its running time to a worst-case of O(n log n)

and average runtime O(n) [45, 39, 37]. For higher dimensionality this approach takes

O
(
nd

m
2
e
)

, where m is the dimensionality of the metric space S [37].

3.4.2 Divide-and-conquer method

As in any other divide-and-conquer algorithm, this algorithm divides the input in

smaller pieces and recursively breaks down the construction of the Voronoi diagram

into simpler subproblems and then pays the price of merging the solutions of these

subproblems. Hence, if the input set is of cardinality n and n > 3, this algorithm

divides the input in Ol =
{
oi | 1 ≤ i ≤ dn

2
e
}

and Or =
{
oj | dn2 e ≤ j ≤ n

}
, then

recursively calls to solve for the Voronoi partition on Ol and on Or, merges the

solutions Vl and Vr in V , then returns V . Since, the only operation that does not

involve a constant or linear time is the merging step, this algorithm is bounded by

how fast two Voronoi partitions of size roughly n
2

can be merged. As shown in [39]

the merging process can be calculated by finding the lower common support of the

convex hull of Ol and Or which can be done efficiently in O(n) time. This results

in the recurrence relation T (n) = 2T
(
n
2

)
+ O(n), where T (n) is the running time of

this algorithm, that yields to a total total worst-case running-time of O(n log n).

3.4.3 Plane sweep method

Plane sweep algorithms are elegant computational geometry algorithms that use a

geometric structure usually a plane or line (conventionally perpendicular to an axis

in a space) to sweep the space left-to-right while computing a desired output. The

beauty on plane sweep methods lies on the ability to maintain the desired partial
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solution of the problem up to the place the sweep plane is located. In particular,

in the two-dimensional Voronoi diagram calculation requires to keep a conic data

structure to maintain track of the Voronoi boundaries that are yet to be discovered

to the right of the sweep line. This sweep line algorithm has a worst-case running

time of O(n log n) [46, 39].

3.4.4 Discrete Voronoi diagram

In a discrete setup, Voronoi diagrams can be obtained using some novel methods

such as the one proposed by Hoff et. al in [48] where they propose to use graphical

processing units (GPUs) to speed up the process of obtaining planar and volumet-

ric tessellations. In their proposed methods, they rely on this specialized hardware

to calculate (using interpolation) and impose (using the Z-buffer) an approximate

distance mesh on top of their geometry and compare (using the Z-buffer depth com-

parison) which set of pixels or voxels are closer to the each of the Voronoi generators.

Finally, they use polygon scan-conversion in order to obtain the Voronoi cell bound-

aries.

3.5 Our model

The formulation of our partitioning problem consists on a given set of beam direc-

tions, O, and a set of voxels P , whose subsets T and F , T ⊂ P and F ⊂ P , represent

tumor voxels and skin peripheral voxels of the patient respectively, in the Euclidean

space, S, with possible weighted Euclidean distance and obstacles. We want to spec-

ify for all ti ∈ T , fi ∈ F along all ok ∈ O directions the closest set of voxels to each

direction using the distance distanceS(tki , f
k
j ). Figure 3.6 a two-dimensional CT-scan

Voronoi diagram of a brain tumor for two given angles (30◦ and 150◦).
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Brain tumor slice - Tumor’s Voronoi Partition

Voronoi cells boundary

Voronoi Cell #1
Voronoi Cell #2

Figure 3.6: Voronoi diagram of a brain tumor for two beam angles.
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Treatment Planning System

Prototype

4.1 Overview

In section 2.3 we introduced the concept of a treatment planning system (TPS)

and some of the tasks that a TPS is expected to perform. In this thesis, we devel-

oped a TPS prototype taht is capable of (1) importing a representation of a patient

(e.g., raw CT images, contoured anatomies, etc), beam configurations (e.g., beam

angles, energies, and etc), and dose prescriptions, (2) performing kernel based dose

and LET calculations, (3) optimizing a given objective function using non-negative

least squares solver, and (4) outputting the final dose and LET distributions and

summaries such as DVH and LVH plots (see below for more details), and beam con-

figuration (angle, targeted tumor voxel coordinates) for the treatment plan. Figure

4.1 shows in summary the components and tasks developed in this thesis as well as

the optimization module that is taken from [5]. The components developed as part

of this thesis are described in detail in the following sections.
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Loader: configuration, 
anatomy and kernel files

Configuration
file Anatomy file

Kernel files:
Monte Carlo 
simulations –

Fluka & 
GEANT4

Preprocess: Voronoi 
partition, bounding 

boxing.

Optimization: non-
negative least squares.

Plan Analysis: final dose 
& LET distributions, 

volume histograms & 
planning generation.

Treatment 
Planning 
System 
Prototype

Dose Calculation: ideal 
distribution, random angle 
& beam selection, sigle-
beam dose calculation.

Final DOSE & 
LET

distributions
DVH & LVH Final plan

Figure 4.1: Treatment planning system prototype. In yellow: input files (config-
uration, anatomy and kernel files). In blue: treatment planning system prototype
components. In dark green: components implemented as part of this thesis. In
red: optimization component (non-negative least squares) developed by Chen [5]. In
light green: output files (dose and LET distributions, volume histograms and final
treatment plan).
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4.2 Modules

In this section, we discuss the different components (modules) implemented as part

of this thesis as well as some of the coding challenges for future work. The treatment

planning system prototype has been implemented using C programming language,

since it allows low-level and fast interaction with commodity operating systems such

as Linux and Windows. Therefore, the coding has been done carefully so that the

program runs on both UNIX (Linux) and Windows platforms.

4.2.1 Loader

This component is in charge of reading and interpreting all files in the system. We

use a configuration file for specifying the anatomy and kernel files as well as providing

initial values for the memory management process that is performed throughout the

execution of the whole system.

The anatomy file is used to describe the contoured volumes obtained from a

CT-scan as well as the prescribed ideal dose and its tolerance levels per anatomical

structure. Internally, we differentiate four hard-coded structure types: air=0, tis-

sue=1, target=2 and sensitive=3. This can be easily extended to accommodate a

finer tissue classification.

Furthermore, a water-equivalent path length anatomy mask containing WEPL

factors for each voxel is also implemented in the system for dose calculation under

inhomogeneous medium (see section 2.2.7 table 2.1 for more details). This mask

is the result of a linear interpolation from the CT numbers read and mapped to

WEPL-factors and it is obtained by a MATLAB script described in section 4.3.

The kernel files are represented using a linked list data structure which is sorted by

the beam’s Bragg Peak depth. At this point, our kernels are represented using polar
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coordinates along the beam direction with a dimension of 300 × 41 at a resolution

of 1[mm] × 1[mm]. We used a total of 21 kernels from 75[MeV ] to 175[MeV ] at a

resolution of 5[MeV ]. One could expect that with increased resolution and reduced

energy step, accesing the kernels may become a bottle neck. Thus as part of our

future work, we are considering using a file cache scheme to only load the kernels

that has been requested.

4.2.2 Pre-process

According to the flags loaded from the configuration file, this module decides whether

or not to perform a Voronoi partition from the provided anatomy. In the current

version, we provide a straight-forward approach of calculating a Voronoi partition

since we are only dealing with a small set of treatment beam angles. Although this

algorithm does not scales properly in the presence of many beam angles and a higher

voxel resolution, the current algorithm implemented is not affecting the performance

of the complete system prototype. Nonetheless in the future, we plan exploring

incremental algorithms or GPU-based algorithms for faster calculations.

In order to perform a Voronoi partition of a set of voxels with inhomogeneities,

we developed a simple ray-tracing algorithm, which for a given beam angle and a

target voxel coordinates returns a set of voxels and the total distance traversed by

the beam inside each one. Then scaling the total distance in this inhomogeneous

environment, it is just a matter of adding up each individual voxel distance multi-

plied by its medium scaling (WEPL) factor. In addition, this prototype allows to

calculate Voronoi partitions using the euclidean distance in two scenarios: distance

from targeted tumor voxel to surface, and distance from targeted tumor voxel to

tumor’s surface.

Finally, a bounding box is imposed over the tumor and organs at risk within a safe
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boundary predefine in our configuration. This bounding box allows the optimization

algorithm to consider a smaller subset of voxels to tune for the final beams to be

used during the actual treatment.

4.2.3 Dose Calculation

As mentioned in section 4.2.2, we developed a ray-tracing algorithm that is able to

return the beam path from the center of the targeted tumor voxel to the surface

of the patient along a given beam direction. Using this information, we scale the

distance if it is the case of an inhomogeneous medium, and according to the distance

we select the closest beam that can deposit its Bragg peak inside the targeted tumor

voxel. Depending on the pre-process, if a Voronoi partition was performed a beam

direction is fixed by voxel, then our random beam selection algorithm selects whether

or not to use a voxel as a target. In the case no partition was imposed, our random

angle and beam selection algorithm selects an angle with equal likelihood among the

beam directions provided and also chooses whether or not to use a voxel as a target.

Once we select the beam directions and energies, we perform dose calculations

per each beam. In addition, we generate the ideal dose distribution and execute the

non-negative least squares routines to filter out those beams that do not contribute

to the final dose distribution. This process is done iteratively in order to avoid small

contributions (beam weights less than a threshold) of some beams.

Nonetheless, there is one known issue with our implementation. Using the cur-

rent ray-tracing algorithm for performing dose calculation implies to perform multiple

distance calculations: one to know the depth where to place the Bragg peak, and

one per every other voxel to know its depth and lateral off-center distance. This

extreme ray-tracing environment provokes a considerably slow-down in performance

while performing dose calculation. Hence in order to get around this problem, we
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use our specialized ray-tracing algorithm to calculate a precise depth where to place

the Bragg peak and we estimate the lateral off-center distance by calculating the

distance from every other voxel to the vector defined from the surface to the tar-

geted tumor voxel (see figure 4.2). Although we understand that it is not a very

precise calculation, in practice this is often done since the lateral spread of a beam is

considerably smaller than the depth it traverses and the size of the volume treated.

Nonetheless, if a more accurate dose calculation is desired it is part of our future

work to develop or try faster ray-tracing algorithms. One alternative, that could help

speeding-up this process is to increase data locality by providing a cache system to

save the paths a beam traverses in one direction and reuse them for all the beams

interacting in the same or in its opposite direction.

4.2.4 Optimization

In our previous section (see section 4.2.3), we described how dose calculation is per-

formed to feed our optimization routine. In particular, we make a function call to

the non-negative least squares solver [31] implemented by [5] passing a set of point-

ers that are reserved in our main program and is filled with the data we want to

optimize. The beam interactions (dose calculation per beam), the ideal dose distri-

bution, as well as an array to place the beams weighting is passed to this function

and iteratively run until no more beams are filtered by our beam contribution thresh-

old. Furthermore, it is worth mentioning that a small bug on the non-negative least

squares solver implementation was fixed in order to address memory beyond 232 − 1

bytes. In our simulations we have used the multi-threading float precision version of

this non-negative least squares solver.
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4.2.5 Plan Analysis

Finally, once we have our final beam weighting factors, we preform a final dose cal-

culation and during this time we also calculate the LET distribution using equation

2.8. Since this process finishes, dose and LET distributions are stored in a text file.

From these final distributions, our volume histogram algorithms count the number

of voxels within a dose or LET value and produce the DVH and LVH text files (see

the glossary for the definition of DVH and LVH).

In addition, a file is produced containing the information of the beam used (en-

ergy), its direction, its weighting factor and the voxel coordinates it targeted. This

final file is the source used to compare two different treatments in terms of energy

modulation reduction.

4.3 Additional tools

In order to visualize the results of our simulations, we have developed several MAT-

LAB scripts to load and plot dose and LET distributions, as well as, load and plot

volume histograms. A brief description of the most important tools are described in

the following list:

• Distributions plotter: this script loads a dose or LET distribution file and

shows its iso-dose or iso-LET map per slice, furthermore two 2D images are

produced showing dose in green over the phantom in blue, and LET in red over

the phantom in blue.

• Tumor contouring: using MATLAB contouring functions we automatized a

procedure to manually do tumor contouring for producing the phantoms used

on this thesis.
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• Volume histograms plotter and verifier: this script reads a DVH or LVH

file and produces a plot showing the histogram. It can also produce a DVH or

LVH from an existing dose or LET distribution.

• Ray-tracing algorithm: this script was implemented as a proof-of-concept

of the algorithm used for ray-tracing in this thesis. It has allowed to create

Voronoi partition masks to avoid calculating Voronoi partitions every time we

changed the conditions of our simulations.

• Kernel interpolator: this script has been used to create new kernel informa-

tion as proof-of-concept whenever we lacked for some beam energy in order to

avoid going through a complete Monte Carlo simulation on Fluka or GEANT4.

• Phantom generator: this script was used to create the C-shaped phantom

used as part of the simulations proposed in this thesis.

• Kernel configuration helper: this tool was implemented using C#.Net and

it has been used to automatically create the kernel index file which contains

the paths of all kernel files used by the treatment planning system prototype.
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Figure 4.2: Off-center distance estimation through the projection of two vectors.
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Applications

5.1 Beam Energy Modulation Reduction

5.1.1 Problem description

Given a set of beam directions, the energy modulation reduction problem aims to

find a beam configuration to create a dose distribution as close to the ideal, while in

the meantime reducing the number of energy changes.

5.1.2 Motivation

In scanning beam therapy, beams are selected to target tumor voxels with their

highest dose (Bragg Peak). As a consequence of the Bragg Peak’s localization is a

function of the beam energy, in scanning beam therapy has to take into account the

time it takes to modulate energies to target deeper voxels (see figure 5.1). Since,

changing beam energies requires an undesirable extra treatment time, a high quality

treatment plan with minimum number of energy changes is desirable.
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Figure 5.1: Scanning beam therapy: circles represent a targeted tumor voxel, and
line connecting circles represents the scanning path used to “paint” the tumor.

5.1.3 Proposed Solution

Our new planning algorithm mainly uses 2 key steps: Voronoi partition of the patient

anatomy and plan optimization based on Voronoi partitions.

Voronoi Partition: A Voronoi partitioning of the targeted tumor for the given

beam angles is first calculated, where each Voronoi cell contains the portion of the

targeted tumor closest to its beam. Here by closest, we mean to be able to hit a target

from a beam angle with minimum penetration of normal tissues and no penetration

of critical structures. Since in scanning beam particle therapy, the source can be

viewed as a set of parallel beams, each beam is modeled as a plane in 3D space

perpendicular to the beam direction and passing through the beam source. In the

Voronoi partition, the objects are basically these 3D planes, each representing a beam

angle.

Figure 5.2 illustrates this model in coplanar beams. In this example, we are look-
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ing at a 2D slice of a 3D C-shaped tumor, where each beam direction is modeled as a

straight line perpendicular to the beam direction. The targeted tumor is partitioned

into 3 Voronoi cells. When critical structures are present between the beam source

and the targeted tumor, they are modeled as obstacles in the Voronoi partition to

either avoid being penetrated by a beam or minimize the beam path going through

them. It is also worthwhile to note that Figure 5.2 mainly serves as illustrative

purpose. The actual implemented algorithm also works for non-coplanar beams and

with arbitrary arrangement of critical structures.

Given a set O of potential beam directions whose cardinality is n, (i.e. |O| = n), a

set of voxels corresponding to a tumor of cardinality |P | = l the objective function to

minimize is as shown in equation 5.1, where distanceS

(
pki , p

k
j

)
stands for a function

that calculates the distance traversed in a beam direction k from its surface voxel i

to its targeted tumor voxel j.

min

 n∑
k=0

l∑
i=0

distanceS

(
pki , p

k
j

) (5.1)

Notice that the solution of equation 5.1 can be calculated by exhaustive search

in Θ (n ∗ p).

Optimization: During optimization, each beam only treats the tumor region within

its Voronoi cell. The final dose distribution is optimized using a combination of

randomization and non-negative least squares algorithm. In our modeling, a beam

of heavy charged particles is viewed as a high dose volume (called a “shot”) localized

in its Bragg Peak region, and the strategy of treatment planning is to route this

shot to cover a target volume. The key steps of our optimization are: (1) Geometric

and randomized techniques to select a collection of potential shots based on pre-

computed kernels of different energies. (2) Constrained least square optimization
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to filter out the final shots. (3) “Traveling salesman” algorithm to route the final

shots. (4) Interpolation of the route, performing an accurate dose calculation for

each interpolation point. (5) Constrained least square optimization to calculate the

dwelling time of each interpolation point.

5.1.4 Results

We created a C-shaped phantom (see figure 5.2) which has been preprocessed using

the modules developed in our treatment planning system prototype (see section 4)

in order to get its voronoi partitioning for a set of three angles (direction 1: 180◦,

direction 2: 0◦ and, direction 3: 90◦). In addition, we developed some MATLAB

scripts to plot our results.

Figure 5.2 shows the phantom and the setup used for this optimization problem.

In addition, we decided to compare this algorithm using two different radiation ther-

apies: proton therapy and anti-proton therapy. Although, anti-proton therapy is not

yet used in clinics we explore some of its potential benefits and properties.

Figure 5.3 shows an iso-contour dose conformity comparison map of the differ-

ent treatment plans simulated. Proton and anti-proton therapies are shown in two

scenarios, one when the Voronoi partitioning of the phantom was calculated and the

other where no partitioning was calculated. In the second approach, we let the gen-

eral randomized algorithm implemented as part of the treatment planning prototype

to choose from the list of possible beam angles which to use to target a tumor voxel.

In terms of radiation therapies, a conformal dose is obtained; although, anti-proton

therapy delivers a higher dose to the critical structure (see figures 5.4 and 5.12).

42



Chapter 5. Applications

Tumor 
Region 3

Tumor
Region 

2

Tumor
Region 

1

Critical 
Structure

Beam Direction 3

Beam Direction 1 Beam Direction 2

Voronoi Cell (3)

Voronoi Cell (2) Voronoi Cell (1) 
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Figure 5.2: Voronoi partition of a C-shaped phantom for three orthogonal angles
given.

In addition, we add a general comparison figure that provides some insights of

the benefits of each type of radiation therapy (see figure 5.12). Anti-proton therapy

allows for a lower entrance dose compared to proton therapy; on the other hand, pro-

ton therapy allows for a sharper dose fall-off protecting the critical structure from

receiving a higher dose than the one in anti-proton therapy. Furthermore, despite of

the trade-offs of each therapy high quality treatment plans are achieved.

Finally, tables 5.1 and 5.2 show the savings in the number of energies needed to

“paint” the phantom. In both cases, using Voronoi partitions to select which angle

to use before running the non-negative least squares optimization module allows for

savings in 70% of the energies compared to a randomize selection of beam angles.
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Beam direction No E.M.R. E.M.R.
1 28 7
2 22 8
3 27 8
Total 77 23
Savings 70.13%

Table 5.1: Proton therapy results comparison: Energy modulation reduction vs. no
energy modulation reduction.

Beam direction No E.M.R E.M.R
1 31 8
2 21 8
3 30 8
Total 82 24
Savings 70.73%

Table 5.2: Anti-proton therapy results comparison: Energy modulation reduction
vs. no energy modulation reduction.

5.2 Simultaneous Dose & LET painting

5.2.1 Problem description

Given a set of beam directions, the simultaneous dose & LET painting aims to find a

beam configuration that simultaneously produce a high quality dose treatment plan

with a high concentration of LET inside the tumor avoiding delivering high LET to

organs-at-risk and healthy tissues.

5.2.2 Motivation

In section 2.2.6, we described LET and its relationship with RBE. Specifically, the

fact that a higher LET (up to 100
[
keV
µm

]
) produces DNA double helix damage, which
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may disrupt cell’s reproductive abilities and eventually provoke its death. Hence, a

treatment planning algorithm that delivers a high dose and high LET into the tumor

avoiding organs-at-risk is desired.

5.2.3 Proposed Solution

Our new planning algorithm mainly uses 2 key steps: Voronoi partition of the patient

anatomy and plan optimization based on Voronoi partitions.

Voronoi Partition: A Voronoi partition of the targeted tumor for the given an-

gles is first calculated, where each Voronoi cell contains a portion of the targeted

tumor according to the metric in use. We propose the use of two metrics, one that

measures the closest beam to a tumor voxel (see definition of distanceS

(
pki , p

k
j

)
in

section 5.1.3) and another that measures the closest beam to a tumor voxel where

distanceS

(
pki , s

k
j

)
where skj is the outermost tumor voxel from tumor voxel pki along

the kth beam angle direction.

We explore LET function geometrical properties (see figure 5.6) and realize that

the highest LET region is pushed further from its Bragg Peak along the beam di-

rection. Hence, we hypothesized that overlapping several “opposing” beams would

let to a higher LET region inside the tumor where beams encounter at a virtual

boundary inside the tumor (see figures 5.7 and 5.8). Note that virtual boundaries

can be imposed by using different metrics that divide the tumor internally. Figure

5.7 shows our hypothesis of using two angles, and figure 5.8 of using three angles.

Optimization: During optimization, each beam only treats the tumor region within

its Voronoi cell. The LET distribution is calculated using the equation for dose

averaged LET (see 2.8). The final dose distribution is optimized using a combination

of randomization and non-negative least squares algorithm as previously described

in section 5.1.3.
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5.2.4 Results

Our first empirical test consisted on using 30◦ and 150◦ beam angles which are angles

that have been calculated by an angle selection algorithm which minimizes the inho-

mogeneities through the beam path. We assume this treatment plan as our starting

point and perform dose and LET calculations for two different treatment plans: one

that calculates the voronoi partition using our first metric and the second without

partitioning. Figure 5.9 shows dose and LET distributions of these plans. It is worth

mentioning that a normal treatment plan pushes the higher LET regions outside

the tumor, and in this specific case, high LET regions are pushed onto one critical

structure (the brain stem). On the other hand, despite the use of Voronoi partitions

it is noticeable that a higher LET region is localized unfortunately very close to the

brain stem although higher LET values are still deposited inside the tumor.

Dose and LET volume histograms were calculated to confirm the visual content of

figure 5.9, these histograms are shown in figure 5.10. Since, the highest LET region

is pushed close to the brain stem, we decided to test partitioning the tumor using our

second metric using three angles to avoid this high LET concentration close to the

brain stem. Figure 5.11 shows the result of using voronoi partitions using 90◦, 210◦

& 330◦ beam angles. Similarly, Dose and LET volume histograms were calculated

as shown in figure 5.12.

It is noticeable that a very high LET can be obtained and targeted inside the

tumor while delivering very low LET to critical structures using a Voronoi partition

that imposes more complex internal boundaries inside the tumor. DVH and LVH

confirm our previous observation.
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Isocontour − Minimizing Energy Changes (Plan A) − Antiproton Therapy
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Isocontour − Minimizing Energy Changes (Plan A) − Proton Therapy
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Isocontour − Normal NNLS Optimization (Plan B) − Antiproton Therapy
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Isocontour − Normal NNLS Optimization (Plan B) − Proton Therapy
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Figure 5.3: Proton and anti-proton dose distributions for energy modulation re-
duction and no energy modulation reduction. Top left (Plan A): iso-contour dose
distribution using Voronoi partitioning for anti-proton therapy. Top right (Plan B):
iso-contour dose distribution using normal optimization without partitioning for anti-
proton therapy. Bottom left (Plan A): iso-contour dose distribution using Voronoi
partitioning for proton therapy. Bottom right (Plan B): iso-contour dose distribution
using normal optimization without partitioning for proton therapy.
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Figure 5.4: Proton and anti-proton DVH comparisons for energy modulation reduc-
tion and no energy modulation reduction. Left: Plan A vs Plan B for anti-proton
therapy. Right: Plan A vs Plan B for proton therapy.
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Figure 5.5: Proton and anti-proton DVH general comparison.
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Figure 5.6: 150 [MeV ] proton beam. In green: dose deposition. In red: LET.

Skin
Tumor
Critical Structure

Figure 5.7: Two proton beams interacting with a phantom. In green: dose deposi-
tion. In red: LET deposition.

Skin
Tumor
Critical Structure

Figure 5.8: Three proton beams interacting with a phantom. In green: dose deposi-
tion. In red: LET desposition.
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Figure 5.9: Brain tumor case for 30◦ and 150◦ beam angles. Top left: dose distri-
bution for normal optimization without partitioning. Top right: dose distribution
using Voronoi partitioning. Bottom left and right: LET distributions for each case
respectively.
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Figure 5.10: DVH & LVH comparison of both treatment plans (for 30◦ and 150◦

beam angles): Plain vs. Voronoi.

Figure 5.11: Brain tumor case for 90◦, 210◦ & 330◦ beam angles. Left: dose distribu-
tion using Voronoi partitioning. Right: LET distribution using Voronoi partitioning.
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Figure 5.12: DVH & LVH comparison of both treatment plans (for 90◦, 210◦ & 330◦

beam angles): Plain vs. Voronoi.
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Conclusions and Future Work

6.1 Conclusion

In this thesis, we have developed a prototype planning system for particle therapy,

and applied Voronoi partitions to help solving the energy modulation change reduc-

tion problem and the LET painting problem. Our prototype experiments indicate

that Voronoi partitions can be an effective mechanism for solving such problems. In

the case of energy change reduction, the number of energy changes can be reduced by

as much as 70% while maintaining similar dosimetric qualities. For LET painting,

a desired LET is observed inside the target, and dose and LET distributions are

simultaneously optimized.

6.2 Future work

This thesis provides a valuable learning experience of particle therapy, and helps to

identify an array of exciting computational problems for my future PhD dissertation.
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Below, I would like to sketch some of the problems that we will be investigating in

the near future.

6.2.1 Treatment planning system prototype

In terms of enhancements of our treatment planning system prototype, we have

identified the following enhancements:

• Loader: investigate the use of hash tables and file cache schemes to improve

the manipulation of dose kernels.

• Pre-process: explore incremental algorithms for Voronoi partitioning as well as

GPU-based algorithms.

• Dose Calculation: explore new ray-tracing algorithms in order to increase data

locality to avoid redundant calculations.

6.2.2 Beam energy modulation minimization

While studying this problem, we came across an interesting computational geometry

problem that requires further studying. If we consider the patient anatomy as a

polyhedron for a given set of beam angles (lines), minimizing the beam energy mod-

ulation means to minimize the sum of the polyhedron projections onto the provided

beam angles which can also be seen as a polyhedron partitioning algorithm. The

following discussion states the two-dimensional formulation of this problem which is

helpful to understand in order to generalize for the general case and specially to find

a solution and runtime bounds for the three-dimensional case.

Definition 1 Given a simply polygon P , and a direction specified by a straight line

l, we denote the projection of P with respect to l as the line segment l(P ) obtained
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Figure 6.1: (a) Illustration of the projection length of a polygon with respect to a line
direction. (b) illustration of the projection of a polygonal domain P = P1 ∪ P2 ∪ P3.
Notice that the polygon P1 also contains a hole. (c) Illustration of the optimal
partition.

when P is projected onto l. Figure 6.1 (a) illustrates the projection of a polygon P

onto two lines l∗ and l. The length of l(P ), denoted by |l(P )| is called the projection

length of P with respect to l.

Definition 2 Definition 1 can be extended to a polygon domain P consisting of a

collection of simple polygons P1, P2, ..., Pk possibly with holes. Figure 6.1 (b) illus-

trates the projection of three polygons P1, P2, and P3 onto line l. In the case of a

polygonal domain, the projection with respect to a line direction l can consist of a

set of disjoint line segments, and its projection length the sum of the total lengths of

these line segments.

Definition 3 The projection length (or just length) of a polygon P , denoted by

len(P ) is defined to be the minimum length of P over all possible directions, i.e.,

len(P ) = minl |l(P )|. We use l∗ to denote the direction such that |l∗(P )| = len(P ).

Figure 6.1 (a) shows the projection length of a simple polygon, where l∗ is the line

direction that achieves the projection length of P .
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As part of our future work on beam energy modulation reduction, we propose

the study of the following polygon partitioning problems:

Problem 1 Given a polygon P , partition P into its k minimum number of pieces

P1, P2, ..., Pk (each piece can be a simple polygon or a polygonal domain), such that∑k
i=1 len(Pi) is minimized. (See figure 6.1 (c) for illustrations).

We are also interested in the following dual version of the problem:

Problem 2 Given a polygon P and a positive integer K. Partition P into at most

K pieces, i.e., P1, P2, ..., Pk, and k ≤ K, such that
∑k

i=1 len(Pi) is minimized.

Besides the above two problems, the following problem is also of important clinical

value:

Problem 3 Given a polygon P and a set of directions S = {l1, l2, ..., lK}. Partition

P into K pieces, i.e., P1, P2, ..., PK (each piece can be empty), such that
∑K

k=1 |lk(Pk)|

is minimized. (See Figure 6.2 for illustrations.)

Observe that one can reduce Problems 1 and 2 to Problem 3 by letting the set

S contain all possible beam directions. Notice as well that Problem 3 resembles

a classical problem in Computer Science: set cover problem of which the decision

version is known to be NP-complete [43, 49].

6.2.3 Simultaneous Dose & LET painting

This particular problem can be understood in two different ways: targeting a high

LET inside a particular region inside the tumor or enhancing LET concentration
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(b)(a)

Figure 6.2: Illustrating Problem 3. (a) A polygon and two given beam directions.
(b) Illustrating the partition of the given polygon into two pieces, where the region
with the patterns is aligned with the horizontal beam direction, and the rest is aligned
with the vertical beam direction.

in the tumor while avoiding organs at risk. Although, both seem to target similar

objective functions the first one by itself defines a region that can be modeled as

problem 1, 2, and 3 where we can partition the tumor such that the selected beams

stop inside these particular regions inside the tumor. The second version of the

problem can be solved by using a constraint least squares optimization using the

connection between dose and LET in order to express dose constraints in terms of

LET.

6.2.4 Integrated Beam Angle Selection

Our current formulations of the beam energy modulation minimization and the si-

multaneous dose & LET painting problems rely on a set of given beam angles to

find a good solution in terms of dose conformity and/or LET enhancement. The

limitation of this approach is that some beam angles might decrement the quality

of the solution (i.e. adding unnecessary energy changes or diluting LET concentra-
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tion), then a combined strategy that integrates beam angle selection is desirable.

Hence, the beam angle selection problem integrated to our problems can be stated

as: “Given a set of k beam angles, find the Voronoi partition with 2 ≤ k sites, such

that a high quality dose treatment plan is obtained while minimizing the amount of

energy changes or maximizing the LET concentration inside the tumor”.
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