
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2009

Term rewriting with built-in numbers and
collection data structures
Stephan Falke

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Falke, Stephan. "Term rewriting with built-in numbers and collection data structures." (2009). https://digitalrepository.unm.edu/
cs_etds/5

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/5?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/5?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Term Rewriting with Built-In Numbers
and Collection Data Structures

by

Stephan Falke

Dipl.-Inform., RWTH Aachen University, Germany, 2004

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2009

c©2009, Stephan Falke

iii

Acknowledgments

First and foremost, I would like to thank Deepak Kapur for his support and help
in developing the ideas presented in this dissertation. His insistence on intuitive
explanations and illustrative examples has greatly improved the presentation of the
technical material.

Special thanks go to Jürgen Giesl for detailed and helpful comments on drafts of
this dissertation, for our enlightening discussions in Aachen, and for inviting me to
present my work at several MOVES seminars.

Thanks are also due to Bob Veroff for valuable comments on this dissertation
and to Bill McCune for his support in experimenting with Mace4 for the automatic
generation of polynomial interpretations.

Sincere thanks go to Peter Schneider-Kamp for proof-reading much of this docu-
ment and commenting on my ideas.

The implementation of parts of this work in the termination prover AProVE would
not have been possible without the help of the following members of the AProVE-
team: Peter Schneider-Kamp, Carsten Fuhs, Carsten Otto, and Lars Noschinski.

Finally, my thanks go to Lynne Jacobsen and Lourdes McKenna for their admin-
istrative assistance.

This work has been partially supported by NSF grants CCF-0113611, CCF-
0541315, and CNS-0831462.

Stephan Falke

iv

Term Rewriting with Built-In Numbers
and Collection Data Structures

by

Stephan Falke

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2009

Term Rewriting with Built-In Numbers
and Collection Data Structures

by

Stephan Falke

Dipl.-Inform., RWTH Aachen University, Germany, 2004

Ph.D., Computer Science, University of New Mexico, 2009

Abstract

Term rewrite systems have been extensively used in order to model computer pro-

grams for the purpose of formal verification. This is in particular true if the termi-

nation behavior of computer programs is investigated, and automatic termination

proving for term rewrite systems has received increased interest in recent years. Or-

dinary term rewrite systems, however, exhibit serious drawbacks. First, they do not

provide a tight integration of natural numbers or integers. Since the pre-defined

semantics of these primitive data types cannot be utilized, reasoning about termi-

nation of ordinary term rewrite systems operating on numbers is often cumbersome

or even impossible. Second, ordinary term rewrite system cannot accurately model

collection data structures such as sets or multisets which are supported by many

high-level programming languages such as Maude or OCaml.

This dissertation introduces a new class of term rewrite systems that addresses

both of these drawbacks and thus makes it possible to accurately model computer

vi

programs using a high level of abstraction in a natural formalism. Then, the prob-

lem of automatically proving termination for this new class of term rewrite systems

is investigated. The resulting dependency pair framework provides a flexible and

modular method for proving termination. In addition to unrestricted rewriting, ter-

mination of rewriting with the innermost strategy or a context-sensitive rewriting

strategy is investigated as well.

The techniques for proving termination that are developed in this dissertation

have been implemented in the well-known termination prover AProVE. An empirical

evaluation shows that the implementation succeeds in automatically proving termi-

nation of a large collection of computer programs that are modeled using the new

class of term rewrite systems developed in this work.

Next, the use of this new class of term rewrite systems in the context of induc-

tive theorem proving is investigated. This makes it possible to reason about the

semantics of computer programs. The inductive theorem proving method developed

in this dissertation provides a tight integration of inductive reasoning with a decision

procedure, thus resulting in a high degree of automation.

Finally, conditions under which the inductive theorem proving method is guaran-

teed to succeed in proving or disproving a conjecture without any user intervention

are identified. Thus, the inductive theorem proving method can be applied as a

“black box” if these conditions are satisfied.

The inductive theorem proving method and checks for the conditions under which

it provides a decision procedure have been implemented in the prototype prover Sail2.

An empirical evaluation shows that Sail2 is very efficient, and the high degree of

automation makes it possible to use Sail2 in a push-button mode for formal program

verification.

vii

Contents

List of Figures xv

1 Introduction 1

1.1 Using TRSs for Formal Verification 2

1.2 Shortcomings of Ordinary TRSs . 3

1.3 Overview of Contributions . 7

1.4 Detailed Outline . 9

1.4.1 Termination and Operational Termination 11

1.4.2 Termination under Strategies 13

1.4.3 Inductive Reasoning . 17

1.5 Structure of the Dissertation . 18

1.6 Published Contributions and New Contributions 23

1.7 Related Work . 25

2 Many-Sorted Term Rewriting 27

viii

Contents

2.1 Terms and Substitutions . 27

2.2 Relations . 32

2.3 Equations and Rewrite Rules . 33

2.4 Equational Rewriting . 36

3 Constrained Equational Rewrite Systems 41

3.1 Built-In Numbers as Canonizable Theories 41

3.2 Canonizable Collection Data Structures 47

3.3 Constrained Equational Rewrite Systems 48

3.4 Innermost and Restricted Rewriting 54

3.5 Summary . 58

4 Translating Imperative Programs 59

4.1 A Simple Imperative Language . 60

4.2 Translating Imperative Programs into CERSs 62

4.3 Utilizing Static Program Analysis . 65

4.4 Summary . 67

5 The Dependency Pair Framework 68

5.1 Dependency Pairs . 69

5.2 DP Framework . 72

5.3 Summary . 75

ix

Contents

6 DP Processors Operating on Dependency Pairs 76

6.1 Unsatisfiable Constraints . 77

6.2 Reducible Left-Hand Sides . 78

6.3 Dependency Graphs . 79

6.4 Reducing Right-Hand Sides . 83

6.5 Dependency Pair Narrowing . 84

6.6 Subterm Criterion . 87

6.7 Summary . 91

7 Reduction Pairs 93

7.1 Ordinary Reduction Pairs . 94

7.2 ThN-Reduction Pairs . 97

7.3 ThZ-Reduction Pairs . 103

7.4 Summary . 111

8 Usable Rules and Function Dependencies 113

8.1 Usable Rules . 114

8.2 Removal of Rules . 116

8.3 Function Dependencies . 120

8.4 Removal of Rules Revisited . 127

8.5 Summary . 128

x

Contents

9 Implementation 130

9.1 Implementing EDG . 130

9.2 Generation of ThZ-Polynomial Interpretations 133

9.3 Summary . 140

10 Conditional Rewriting 142

10.1 Conditional CERSs . 144

10.2 Termination and Operational Termination 147

10.3 Elimination of Conditions . 151

10.4 Summary . 154

11 Context-Sensitive Rewriting and Dependency Pairs 156

11.1 Context-Sensitive Rewriting . 158

11.2 Context-Sensitive Conditional Rewriting 163

11.3 Context-Sensitive Dependency Pairs 164

11.4 Summary . 171

12 Context-Sensitive DP Processors 173

12.1 Dependency Graphs . 174

12.2 Subterm Criterion . 177

12.3 Reduction Pairs . 178

12.4 Function Dependencies . 180

xi

Contents

12.5 Function Dependencies for Strongly Conservative Systems 184

12.6 Implementation . 189

12.7 Summary . 189

13 Inductive Theorem Proving with CERSs 191

13.1 Preliminaries . 194

13.2 Quasi-Reductivity and Confluence . 198

13.3 Inductive Theorem Proving . 201

13.4 Summary . 210

14 Inductive Theorem Proving as a Decision Procedure 211

14.1 Simple Decidable Conjectures . 212

14.2 Simple Decidable Conjectures with Nesting 218

14.3 Safe Generalizations . 224

14.4 Complex Conjectures . 230

14.5 Implementation . 235

14.6 Summary . 236

15 Conclusions and Evaluation 238

15.1 Empirical Evaluation . 240

15.1.1 Termination Analysis . 240

15.1.2 Inductive Theorem Proving 241

xii

Contents

15.2 Future Work . 243

A Proofs 245

A.1 Proofs from Chapter 2 . 245

A.2 Proofs from Chapter 3 . 248

A.3 Proofs from Chapter 4 . 251

A.4 Proofs from Chapter 5 . 251

A.5 Proofs from Chapter 6 . 254

A.6 Proofs from Chapter 7 . 261

A.7 Proofs from Chapter 8 . 266

A.8 Proofs from Chapter 9 . 273

A.9 Proofs from Chapter 10 . 274

A.10 Proofs from Chapter 11 . 281

A.11 Proofs from Chapter 12 . 291

A.12 Proofs from Chapter 13 . 309

A.13 Proofs from Chapter 14 . 316

B Evaluation 326

B.1 Termination . 326

B.2 Context-Sensitive Termination . 329

B.3 Induction . 330

xiii

Contents

References 332

xiv

List of Figures

1.1 Maude module for Example 1.3. 7

1.2 OCaml program for Example 1.3. 8

1.3 Maude module for Example 1.8. 15

3.1 Numbers as canonizable theories. 46

3.2 Commonly used canonizable collection data structures. 48

4.1 Grammar for a simple imperative programming language. 61

9.1 Transformation rules for the generation of polynomial interpretations. 137

9.2 Obtaining conditions on the parameters. 139

10.1 Derivation rules for the generation of proof trees. 150

11.1 Replacement maps allowed for context-sensitive rewriting. 161

13.1 The inference system I. 205

14.1 The inference system I ′. 225

xv

Chapter 1

Introduction

Computer programs, whether in the form of software or hardware, have become ubiq-

uitous. They are embedded in medical equipment, car and aircraft control systems,

and electrical power systems, to name just a few examples. For many of these sys-

tems, failures would cause severe loss of money, time, or even human life. Therefore,

it is mandatory that such systems operate correctly and reliably.

Due to the complexity of modern computer programs, ensuring correctness is a

challenging task. It is thus not surprising that computer programs are error-prone

and often contain subtle mistakes that are difficult to detect and repair. Several

examples of mistakes in computer programs and the losses caused by them are given

in [172].

Currently, ensuring reliability of computer programs is usually attempted using

extensive simulation and testing. While these approaches have their merits, they are

typically inadequate for complex computer programs due to the computational cost

of the task. It is prohibitively expensive to perform exhaustive testing on all or even

a substantial fraction of possible scenarios due to the large (or even infinite) number

of possible configurations of a typical computer program. Due to this limitation,

1

Chapter 1. Introduction

testing does not provide a proof of correctness.

Formal verification provides an alternative to testing. The aim of formal verifi-

cation is a (mathematical) proof that the computer program behaves correctly. For

this, computer programs are modelled using a mathematical formalism and it is for-

mally proved that this model satisfies its specification. Thus, if formal verification is

successful, then it provides a mathematical guarantee of correctness of the computer

program, up to the accuracy of the formal model. Notice that, in contrast to testing,

formal verification considers all possible scenarios.

One of the most important questions about a computer program is whether it is

terminating, i.e., whether it always produces an answer and does not diverge. One

of the oldest results in theoretical computer science (which even predates the first

general, programmable computer) states that this “halting problem” is undecidable

[166]. Termination is also of interest for reactive systems which are typically assumed

to run continuously. For such computer systems, termination means that the system

reacts to an input within a finite amount of time, i.e., that the functions performing

the actions of the reactive system are terminating.

Complementary to termination is partial correctness of a computer program.

Partial correctness denotes the property that a computer program behaves correctly

(w.r.t. its specification). Termination and partial correctness together constitute

total correctness of a computer program.

1.1 Using TRSs for Formal Verification

Term rewrite systems (TRSs) have been extensively used in order to provide a con-

venient model of computer programs that makes it possible to use formal verification

techniques. Using TRSs, the correctness of computer programs can be investigated

2

Chapter 1. Introduction

by considering questions about TRSs.

If a computer program is modeled by a TRS in a non-termination preserving way,

i.e., if termination of the TRS implies termination of the computer program, then

methods for proving termination of TRSs can be used for proving termination of

computer programs. The problem of proving termination of TRSs has been studied

extensively in the past, see [173] for a recent survey. An important advantage of

recent methods is that they can be fully automated, thus making it possible to prove

termination of computer programs without any user intervention.

In contrast to proving termination, investigating the partial correctness of com-

puter programs is more challenging and typically requires substantial user interven-

tion. First, it needs to be determined which properties the computer program should

satisfy. This requires insight and expertise, and it is unlikely that this part can be

automated. Once the requirements on the computer program have been determined,

it needs to be shown that the computer program does indeed satisfy them. Since the

requirements are often stated in (extensions of) first-order predicate logic, a complete

automation of this task is not possible, either.

Thus, attention is often restricted to certain classes of properties. For computer

programs modeled by TRSs, these are often properties that can be expressed by (im-

plicitly universally quantified) equations that express certain aspects of the functions

that are defined by the TRS. Since the functions in a TRS are often defined using

recursion, proving these equations typically requires inductive reasoning.

1.2 Shortcomings of Ordinary TRSs

Most computer programs and algorithms make use of natural numbers or integers.

Ordinary TRSs, however, only support an inelegant handling of those primitives.

3

Chapter 1. Introduction

Natural numbers can be modeled using a Peano representation with O and s (suc-

cessor), but then ordinary TRSs require a specification of commonly used operators

on natural numbers (such as + and >) in the form of rewrite rules as well. Us-

ing this approach, even basic knowledge about properties of natural numbers is not

directly available, thus making reasoning about algorithms more complicated and

cumbersome.

Example 1.1. Consider the following simple while-loop from an imperative pro-

gram operating on natural numbers:

while (x >= y) {

y++

}

Using an ordinary TRS with a Peano representation of natural numbers results in

the following rewrite rules:

eval(x, y) → if(geq(x, y), x, y)

if(true, x, y) → eval(x, s(y))

geq(x,O) → true

geq(O, s(y)) → false

geq(s(x), s(y)) → geq(x, y)

While the while-loop is clearly terminating since the difference x − y is decreasing

and bounded by 0, it is much harder to (automatically) establish termination of

the TRS. Indeed, only a single termination tool for TRSs, namely the well-known

tool AProVE [84], could establish termination of this example in the Termination

Competition 2007 [161]. To do so, AProVE relies on a complicated and specialized

technique that re-discovers the semantics of geq [89]. △

Automatically establishing termination of TRSs is even harder if integers instead

of natural numbers are considered. A representation using O, s, and p (predecessor)

4

Chapter 1. Introduction

results in non-free constructors since, e.g., the syntactically distinct term O, s(p(O)),

and p(s(O)) all denote the integer 0. This non-freeness can be modeled using the

equations p(s(x)) ≈ s(p(x)) and p(s(x)) ≈ x which identify distinct terms that

represent the same integer. Automated termination analysis of TRSs with non-

free constructors is rarely investigated and much less developed than for ordinary

TRSs. The case of AC -rewriting (i.e., if certain function symbols are assumed to be

associative and commutative) has been studied extensively, see, e.g., [108, 150, 129,

118, 130, 31]. Since the equations for integers are not AC, these methods do not

apply. The more general method of [81] cannot be applied to integers, either, since

the equation p(s(x)) ≈ x is collapsing.

Example 1.2. If the imperative program from Example 1.1 is considered on integers

instead of natural numbers, then the resulting rewrite rules are more complex:

eval(x, y) → if(geq(x, y), x, y)

if(true, x, y) → eval(x, s(y))

geq(O,O) → true

geq(p(O),O) → false

geq(x, s(y)) → geq(p(x), y)

geq(x, p(y)) → geq(s(x), y)

geq(x,O)→∗ true | geq(s(x),O) → true

geq(x,O)→∗ false | geq(p(x),O) → false

Notice that conditional rewrite rules are needed in order to define geq. These con-

ditional rules can be transformed into unconditional rules for the purpose of prov-

ing termination (see [137] and Chapter 10), but the rewrite relation modulo the

set of equations E = {p(s(x)) ≈ s(p(x)), p(s(x)) ≈ x} is non-terminating because

geq(O, s(O)) ∼E geq(O, p(s(s(O))))→2
R geq(p(s(O)), s(O)) ∼E geq(O, s(O)).1 △

1Here, ∼E denotes equivalence up to the equations in E and →R denotes application
of a rewrite rule from R, replacing an instance of a left-hand side by the corresponding

5

Chapter 1. Introduction

In addition to modelling integers, non-free constructors can also be used to

model collection data structures such as sets or multisets where, for instance, the

set {a, b} can be represented by the equivalent, but distinct, terms ins(a, ins(b, ∅))

and ins(b, ins(a, ∅)). Notice that many real-life programming languages such as Java

and OCaml support collection data structures. Furthermore, the declarative specifi-

cation and programming language Maude [43] makes it possible to use collection data

structures by specifying suitable equational attributes. Thus, support for collection

data structures is mandatory in order to accurately model programs written in these

high-level programming languages.

Example 1.3. Figure 1.1 contains a Maude module that defines the functions

length and reverse operating on lists. Here, lists are built using the constructors

nil (empty list), elem (single-element lists containing an integer), and ++ (concate-

nation of two lists). This representation of lists makes it possible to easily parallelize

computations, in contrast to the more intuitive representation using nil and cons.

Notice that concatenation of lists is associative and has nil as a unit element. Since

this unit element gives rise to the collapsing equations x ++ nil ≈ x and nil ++ y ≈ y,

termination cannot be investigated using existing methods. The same example can

also be written in OCaml using the pre-processor Moca [29], see Figure 1.2. These

examples can be modeled using the following rewrite rules (where 〈·〉 is used instead

of elem and ++ is written ++):

length(nil) → 0

length(〈n〉) → 1

length(k++ l) → length(k) + length(l)

reverse(nil) → nil

reverse(〈n〉) → 〈n〉

reverse(k++ l)) → reverse(l)++ reverse(k)

instance of a right-hand side. These concepts are formally defined in Chapter 2.

6

Chapter 1. Introduction

fmod LISTS is

protecting INT .

sorts List .

op nil : -> List [ctor] .

op elem : Int -> List [ctor] .

op _ ++ _ : List List -> List [ctor assoc id: nil] .

op length : List -> Int .

op reverse : List -> List .

var N : Int .

var K L : List .

eq length(nil) = 0 .

eq length(elem(N)) = 1 .

eq length(K ++ L) = length(K) + length(L) .

eq reverse(nil) = nil .

eq reverse(elem(N)) = elem(N) .

eq reverse(K ++ L) = reverse(L) ++ reverse(K) .

endfm

Figure 1.1: Maude module for Example 1.3.

In order to model the semantical properties of list concatenation, the set of equations

E = {x++(y++ z) ≈ (x++y)++ z, x++nil ≈ x, nil++ y ≈ y} can be used.2 △

1.3 Overview of Contributions

In order to obtain TRSs that can elegantly model natural numbers, integers, and

collection data structures, this dissertation introduces a generalized form of TRSs.

2Notice that rewriting modulo these properties is non-terminating since reverse(nil) ∼E

reverse(nil++ nil) →R reverse(nil) + reverse(nil) ∼E reverse(nil++ nil) + reverse(nil) →R
The class of rewrite systems considered in this dissertation thus uses a different rewrite
relation that uses the same idea that is also used in Maude and Moca. This rewrite relation
is formally defined in Chapter 3.

7

Chapter 1. Introduction

type ’a list = private

| Nil

| Element of ’a

| Concat of ’a list * ’a list

begin

associative

neutral (Nil)

end

let rec length x =

match x with

| Nil -> 0

| Element n -> 1

| Concat (k, l) -> length(k) + length(l)

let rec reverse x =

match x with

| Nil -> Nil

| Element n -> Element n

| Concat (k, l) -> Concat (reverse l, reverse k)

Figure 1.2: OCaml program for Example 1.3.

For these TRSs, numbers or integers are built-in, thus making basic knowledge about

them directly available. Furthermore, this class of TRSs makes it possible to use

collection data structures.

As discussed above, one of the main questions about TRSs is termination, and

most of this dissertation is concerned with methods for showing termination of TRSs

with built-in numbers and collection data structures. In addition to full rewriting,

termination under strategies is investigated as well since this is often needed to accu-

rately model the semantics of programming languages. This includes the innermost

strategy and context-sensitive strategies.

Having built-in numbers often makes reasoning about termination conceptually

easier than using a Peano representation (or a representation using non-free con-

8

Chapter 1. Introduction

structors for integers). Indeed, termination of the while-loop from Example 1.1 can

easily be established with an intuitive proof using the methods developed in this

dissertation, regardless of whether built-in natural numbers or integers are consid-

ered. Furthermore, this dissertation presents the first powerful methods for reasoning

about termination of TRSs operating on collection data structures.

In addition to termination analysis, this dissertation also contributes to the use

of inductive reasoning in the context of showing partial correctness of computer

programs that are modeled using TRSs with built-in numbers and collection data

structures. Here, an additional interest is to identify a class of equational conjectures

where inductive reasoning provides a decision procedure.

The contributions of this dissertation have been fully implemented, thus proving

their practicality. The termination techniques have been implemented as part of the

award-winning termination tool AProVE [84]. The inductive proof procedure and

methods for determining whether a given equational conjecture falls into the class

of conjectures whose inductive validity has been identified to be decidable have been

implemented in the tool Sail2.

1.4 Detailed Outline

The first contribution of this dissertation is the definition of a class of conditional

rewrite systems with built-in natural numbers or integers. Basic knowledge about

those numbers is available in the form of quantifier-free formulas from Presburger

arithmetic that are attached to the rewrite rules in the form of constraints. Appli-

cation of a rewrite rule is then only possible if the constraint becomes true in the

natural numbers or integers after being instantiated by the matching substitution.

Example 1.4. Consider the while-loop from Example 1.1. It can be translated

9

Chapter 1. Introduction

into the following rewrite rule:

eval(x, y) → eval(x, y + 1) Jx ≥ yK

Notice that the condition of the while-loop is directly translated into a constraint

from Presburger arithmetic. Termination of this system can easily been shown using

the methods developed in this dissertation by observing that x − y on the left side

of the rule is bigger than x − (y + 1) on the right side, where the constraint x ≥ y

additionally implies that x− y is bounded by 0. △

While the class of rewrite systems with built-in numbers already deserves interest

in its own right, it is furthermore extended in order to make it possible to use collec-

tion data structures such as sets or multisets, giving rise to conditional constrained

equational rewrite systems (CCERSs). This extension is quite natural and does not

introduce additional conceptual problems.

Example 1.5. This example shows a quicksort algorithm that takes a finite set and

produces a sorted list of its elements. For this, sets are built from the empty set ∅

using the constructor ins to add an element to a set.

app(nil, zs) → zs

app(cons(x, ys), zs) → cons(x, app(ys, zs))

split(x, ∅) → 〈∅, ∅〉

split(x, zs)→∗ 〈zl, zh〉 | split(x, ins(y, zs)) → 〈ins(y, zl), zh〉 Jx > yK

split(x, zs)→∗ 〈zl, zh〉 | split(x, ins(y, zs)) → 〈zl, ins(y, zh)〉 Jx 6> yK

qsort(∅) → nil

split(x, ys)→∗ 〈yl, yh〉 | qsort(ins(x, ys)) → app(qsort(yl), cons(x, qsort(yh)))

Here, split(x, ys) returns a pair of sets 〈yl, yh〉 where yl contains all y ∈ ys such

that x > y and yh contains all y ∈ ys such that x 6> y. Intuitively, the condition

10

Chapter 1. Introduction

split(x, ys) →∗ 〈yl, yh〉 of the second qsort-rule means that split(x, ys) first needs

to be rewritten recursively until it matches 〈yl, yh〉 (thus giving a binding to these

variables) before qsort(ins(x, ys)) may be reduced using that rule. △

CCERSs make it possible to model a wide class of programs in an intuitive and

natural way. The main part of this dissertation investigates the automated termi-

nation analysis of such systems. Furthermore, inductive reasoning with a restricted

class of these systems is investigated.

1.4.1 Termination and Operational Termination

Termination and operational termination of term rewriting has been extensively stud-

ied (see, e.g., [173] for a recent survey), but none of the formerly developed methods

can directly be applied to the class of conditional rewrite systems considered here

due to the built-in numbers and the use of collection data structures.

First, only unconditional CCERSs (i.e., CERSs) are considered and automated

termination analysis methods for CERSs are developed. For ordinary TRSs, one

of the most widely used methods for termination analysis is the dependency pair

method [12]. The main idea of the dependency pair method involves showing the

absence of infinite chains build from recursive calls. A variety of techniques to this

extent have been developed (see, e.g., [88, 95]), and the dependency pair framework

[86] provides a way for combining these techniques in a flexible manner.

It is shown in this dissertation that the main idea of the dependency pair method

(i.e., termination if there are no infinite chains of recursive calls) can be extended

to CERSs, giving rise to a dependency pair framework. Furthermore, it is shown

that the most important techniques employed in the dependency pair framework for

ordinary TRSs can be generalized to CERSs:

11

Chapter 1. Introduction

1. The dependency graph technique [12], which decomposes a termination prob-

lem into several independent termination problems. The newly obtained ter-

mination problems can then be handled independently of each other.

2. The subterm technique [95], which can easily handle many termination prob-

lems, in particular termination problems obtained from functions defined using

primitive recursion.

3. The reduction pair technique [117, 12], which applies well-founded relations in

order to simplify a termination problem. The main novelty of this dissertation

in this regard is a simple and intuitive way to use polynomial interpretations

[119] with negative coefficients in such a way that the constraints from Pres-

burger arithmetic that are attached to the rewrite rules are fully utilized.

In addition to the techniques based on methods initially developed for ordinary

TRSs, this dissertation also introduces several techniques that are specifically tailored

towards CERSs.

In order to show termination of CCERSs, it is shown in this dissertation that

operational termination [127, 59] of CCERSs can be reduced to termination of un-

conditional CERSs by a simple syntactic transformation. Operational termination

differs from (regular) termination by also ensuring that evaluation of the conditions

of a rewrite rule does not diverge. This property has been investigated for ordinary

conditional TRSs and is typically handled using a simulation of the evaluation of the

conditions using an unconditional rewrite system [136, 79].

Example 1.6. Continuing Example 1.5, this example illustrates the syntactic trans-

formation from CCERSs into CERSs. The conditional rewrite rule

split(x, ys)→∗ 〈yl, yh〉 | qsort(ins(x, ys))→ app(qsort(yl), cons(x, qsort(yh)))

is transformed into the following two (unconditional) rewrite rules:

12

Chapter 1. Introduction

qsort(ins(x, ys)) → U(split(x, ys), x, ys)

U(〈yl, yh〉, x, ys) → app(qsort(yl), cons(x, qsort(yh)))

Here, U is a fresh function symbol that enforces that split(x, ys) is reduced to 〈yl, yh〉

before the reduction of qsort(ins(x, ys)) produces app(qsort(yl), cons(x, qsort(yh))).

The other conditional rewrite rules are handled similarly. △

1.4.2 Termination under Strategies

In order to model the semantics of programming languages more closely using the

term rewriting framework, termination of CERSs under the following reduction

strategies is investigated.

Innermost Strategy. In the innermost strategy, a reduction is only allowed if all

proper subterms below the position where the reduction takes place are in normal

form, i.e., cannot be reduced any further. This strategy corresponds to the eager

evaluation strategy used by many functional programming languages such as OCaml

or SML. Also, virtually all imperative programming languages employ a call-by-

value semantics, which, at the level of TRSs or CERSs, can be modelled using the

innermost strategy.

For standard TRSs, termination under the innermost strategy has been consid-

ered in the dependency pair framework [12, 86, 88]. It is well-known that there exist

TRSs which are terminating using the innermost strategy, but that are not termi-

nating for full rewriting. But even for TRSs that are terminating for both innermost

rewriting and full rewriting, it is often easier to establish this for the innermost case.

In particular, this is true for automated methods such as the ones considered in this

dissertation.

13

Chapter 1. Introduction

Example 1.7. The following ordinary TRS is due to Toyama [165]:

f(a, b, z) → f(z, z, z)

g(x, y) → x

g(x, y) → y

Rewriting with this TRS is not terminating because of the following cyclic re-

duction: f(a, b, g(a, b)) →R f(g(a, b), g(a, b), g(a, b)) →R f(a, g(a, b), g(a, b)) →R

f(a, b, g(a, b)). Notice that the first step in this reduction is not allowed by the

innermost strategy since g(a, b) is not in normal form. Indeed, this TRS is termi-

nating using the innermost strategy, and termination tools based on the dependency

pair framework can determine this automatically. △

Given this motivation, it is investigated how the methods discussed in Section

1.4.1 can be adapted to show termination of rewriting with CERSs using the inner-

most strategy.

Context-Sensitive Strategies. Context-sensitive rewriting [121, 123] has been

introduced as a flexible paradigm that provides a bridge between the abstract world

of term rewriting and the more applied setting of declarative specification and pro-

gramming languages such as Maude [43] (see [122] for the close relationship between

context-sensitive rewriting and Maude’s strat-annotations). In context-sensitive

rewriting, a replacement map specifies which arguments of a function symbol may

be reduced and which arguments are “frozen”.

Example 1.8. The Maude module in Figure 1.3 defines a function from that lazily

generates the infinite list of integers bigger than its argument. Furthermore, a func-

tion take that extracts a finite prefix of a lazy list is defined. The following rewrite

rules are easily obtained from the Maude module:

14

Chapter 1. Introduction

fmod LAZY-LISTS is

protecting INT .

sorts List LazyList .

op nil : -> List [ctor] .

op cons : Int List -> List [ctor] .

op lazycons : Int LazyList -> LazyList [ctor strat (1)] .

op from : Int -> LazyList .

op take : Int LazyList -> List .

var M N : Int .

var LL : LazyList .

eq from(N) = lazycons(N, from(N + 1)) .

ceq take(N, LL) = nil if N <= 0 .

ceq take(N, lazycons(M, LL)) = cons(M, take(N - 1, LL)) if N > 0 .

endfm

Figure 1.3: Maude module for Example 1.8.

from(n) → lazycons(n, from(n+ 1))

take(n, ll) → nil Jn ≤ 0K

take(n, lazycons(m, ll)) → cons(m, take(n− 1, ll)) Jn > 0K

Notice that regular rewriting with these rules is not terminating since from(0) →R

lazycons(0, from(0 + 1))→R lazycons(0, lazycons(0 + 1, from(0 + 1 + 1)))→R

The reason for this is that the lazy behavior employed by Maude is not accurately

modeled. The strat-annotation for the constructor lazycons specifies that the

second argument of lazycons is frozen, i.e., reductions may not be applied in this

argument. This behavior can be modeled using context-sensitive rewriting with a

replacement map where µ(lazycons) = {1} since this disallows reductions in the

second argument of lazycons (see Chapter 11 for details). △

Context-sensitive rewriting is relevant for (eager) functional and imperative pro-

15

Chapter 1. Introduction

gramming languages as well. For example, context-sensitive rewriting is useful for

modeling the following:

1. The non-strict semantics of if-then-else, where the then- or the else-part

is only evaluated after it has been established whether the condition of the

if-statement evaluates to true or false. This non-strict behavior can easily be

modelled by a ternary function symbol if whose second and third arguments

are frozen:

if(true, x, y) → x

if(false, x, y) → y

2. The short-cut semantics of the Boolean connectives “and” and “or”, where

conjuncts or disjuncts are evaluated from left to right and only if they are

needed. This can easily be modelled using binary function symbols and and or

whose second argument is frozen:

and(true, y) → y

and(false, y) → false

or(true, y) → true

or(false, y) → y

Furthermore, context-sensitive rewriting makes it possible to model lazy evalua-

tion as used in functional programming languages such as Haskell (for more on the

relationship between lazy evaluation and context-sensitive rewriting, see [124]).

Dependency pair methods for proving context-sensitive termination for ordinary

rewriting have recently been developed [2, 1]. In this dissertation, the methods

discussed in Section 1.4.1 are adapted in order to show context-sensitive termination

of CERSs. Furthermore, it is shown that the transformation from CCERSs to CERSs

can be applied in combination with context-sensitive rewriting strategies.

16

Chapter 1. Introduction

1.4.3 Inductive Reasoning

Inductive reasoning has been widely used in the context of showing partial correctness

of programs, with the majority of research in the area being done in the 1980’s

and 1990’s (see [170, 39, 46] for surveys on inductive reasoning). One of the main

drawbacks of inductive reasoning as identified by that research is the need for user

interaction in the proof process, i.e., a complete automation is nearly impossible. Due

to this, inductive reasoning cannot be used in a push-button mode and is typically

only applicable by trained experts who can assist the inductive reasoning tool.

More recently, research on identifying conditions under which inductive reasoning

provides a decision procedure has been initiated [111, 81, 82, 104].3 If the conditions

identified in this work are satisfied, then an inductive reasoning tool can be used

in a push-button mode without any user interaction. This previous work, however,

imposes the following strong restrictions:

1. The function definitions in the term rewrite systems have to be of a very simple

shape. In particular, a function may only make recursive calls to itself and not

to any other auxiliary function. Furthermore, this restriction also disallows

mutually recursive function definitions.

2. The equational conjectures whose inductive validity is to be determined need to

be linear, i.e., each variable may only occur once in each side of the conjecture.

The contributions of this dissertation for inductive reasoning based on the term

rewriting framework are two-fold:

1. An inductive proof method for a restricted class of CERSs is developed. This

proof method combines inductive reasoning with a decision procedure, thus

3The dual problem of determining conditions under which a proof attempt is guaranteed
to fail has been investigated in [158, 159, 160]. Furthermore, methods to automatically fix
failed proof attempts are presented in [158, 160].

17

Chapter 1. Introduction

obtaining a powerful proof method that can be used in a push-button mode

and does not require any user intervention.

2. The class of conjectures where inductive reasoning provides a decision proce-

dure is increased significantly compared to [111, 81, 82, 104]. In particular, the

two shortcomings discussed above are removed.

Example 1.9. For two lists built using nil and cons, prefix(xs, ys) computes the

longest prefix p of xs such that all elements of p occur in ys in the same order as in

p (but not necessarily consecutively).

prefix(nil, ys) → nil

prefix(cons(x, xs), nil) → nil

prefix(cons(x, xs), cons(y, ys)) → cons(x, prefix(xs, ys)) Jx ≃ yK

prefix(cons(x, xs), cons(y, ys)) → prefix(cons(x, xs), ys) Jx 6≃ yK

Notice the use of (dis-)equality constraints in the definition of prefix, which requires

an inductive proof method that can utilize these constraints.

The inductive validity of the (false) conjecture prefix(xs, ys) ≡ xs can be seen to

be decidable by (a slight adaptation of) the conditions developed in [111, 81, 82, 104].

Using [111, 81, 82, 104], it is not known whether the inductive validity of the (true)

conjecture prefix(xs, xs) ≡ xs is decidable since this conjecture is not linear. Using

the new conditions developed in this dissertation, it can be established a priori that

the inductive validity of this conjecture is decidable. △

1.5 Structure of the Dissertation

Chapter 1. The research topic of this dissertation is introduced and motivated in

this chapter. The significance of the topic is illustrated using several example pro-

18

Chapter 1. Introduction

grams written in OCaml and Maude. Related work is discussed and the contributions

of this dissertation are summarized.

Chapter 2. Since (many-sorted) term rewrite systems are used as a convenient

model of computer programs in this dissertation, the second chapter recalls the

relevant concepts and definitions.

Chapter 3. As shown in Section 1.2, ordinary TRSs have (at least) two severe

shortcomings:

1. Knowledge about natural numbers or integers is not available, thus making

reasoning about the computer programs modeled by TRSs cumbersome and

complicated.

2. Collection data structures such as sets or multisets are not suitably supported

by ordinary TRSs since their specification using equational attributes typically

results in a non-terminating rewrite relation.

This chapter introduces constrained equational rewrite systems (CERSs), a new class

of term rewrite systems that addresses both of these shortcomings.

Chapter 4. In order to show the versatility of the class of term rewrite systems

introduced in Chapter 3, this brief chapter presents a translation from a simple

class of imperative programs into CERSs. This translation is sound for termination

proving, i.e., the methods to prove termination of CERSs that are developed in this

dissertation can then be applied in order to show termination of imperative programs.

Chapter 5. This chapter starts the investigation of methods to (automatically)

prove termination and innermost termination of CERSs. To this extent, the modular

19

Chapter 1. Introduction

dependency pair framework [12, 86] is adapted to CERSs and it is shown that the

absence of infinite chains of recursive calls is equivalent to termination. This is true

for both unrestricted rewriting and rewriting with the innermost strategy.

Chapter 6. Here, first techniques that can be applied within the dependency pair

framework for CERS are developed. These techniques include:

• An adaptation of the dependency graph technique [12], which decomposes a ter-

mination problem into several independent termination problems. The newly

obtained termination problems can then be handled independently of each

other.

• An adaptation of the subterm technique [95], which can easily handle many ter-

mination problems, in particular termination problems obtained from functions

defined using primitive recursion.

• A new technique, called dependency pair narrowing, which combines a recursive

call from f to g with a recursive call from g to h, resulting in a recursive call

from f to h.

This chapter also presents several additional techniques.

Chapter 7. Many commonly used techniques for showing termination are based

on well-founded relations. In particular, one of the most important techniques used

in the dependency pair framework is based on reduction pairs [117, 12]. This chapter

first shows that these (ordinary) reduction pairs can be applied to CERSs as well.

Then, specialized notions of reduction pairs that take advantage of the built-in nat-

ural numbers or integers are developed. These new kinds of reduction pairs are often

crucial for a successful termination proof and provide a simple and intuitive way to

use polynomial interpretations [119] with negative coefficients.

20

Chapter 1. Introduction

Chapter 8. When using the techniques based on reduction pairs from Chapter 7,

it becomes necessary to satisfy certain conditions that are derived from all rewrite

rules of the CERS whose termination is to be shown. These conditions are often

hard or impossible to satisfy, and this chapter shows that it suffices to satisfy these

conditions only for a syntactically determined subset of all rewrite rules. This makes

it easier to satisfy these conditions and may result in a successful termination proof

which is not possible without the refinement presented in this chapter.

Chapter 9. After presenting various techniques for proving termination in Chap-

ters 6–8, this chapter discusses methods to implement two of these techniques, namely

the dependency graph technique and the automatic generation of the new kind of

reduction pairs based on polynomial interpretations with negative coefficients. While

an implementation of the remaining techniques is relatively straightforward, these

two techniques require the development of dedicated methods.

Chapter 10. This chapter extends CERSs to conditional CERSs (CCERSs). In

conditional rewriting, the rewrite rules are equipped with conditions that need to

be established by recursively rewriting them before a rewrite rule may be applied.

Conditional rewriting needs a more complex notion of termination, operational ter-

mination, that also ensures that the evaluation of the conditions is terminating. It is

shown that operational termination of a CCERS can be reduced to (regular) termi-

nation of an unconditional CERS. Thus, the techniques from Chapters 5–8 become

applicable for proving operational termination of CCERSs and it is not necessary to

develop new methods in order to reason about operational termination of CCERSs.

Chapter 11. After considering unrestricted and innermost rewriting with CERSs

in Chapters 3–8, this chapter considers context-sensitive rewriting strategies for

CERSs. In context-sensitive rewriting, a reduction may only take place in certain

21

Chapter 1. Introduction

argument positions of the function symbols, resulting in a fine-grained control of

the evaluation order. This makes it very challenging to reason about termination of

context-sensitive rewriting with CERSs. In this chapter, a dependency pair frame-

work for context-sensitive CERSs is developed and it is shown that the main idea of

the dependency pair method can be extended to context-sensitive CERSs.

Chapter 12. After developing a dependency pair framework for context-sensitive

CERSs in the previous chapter, this chapter adapts the most important techniques

from Chapters 6–8 to the context-sensitive case. This includes the dependency graph

technique, the subterm technique, and the refined version of the technique based on

reduction pairs from Chapter 8.

Chapter 13. This chapter develops an inductive proof method for CERSs which

can be used to verify properties of the functions specified by a CERS. The inductive

proof method couples inductive reasoning with a decision procedure, thus resulting

in a powerful and completely automatic proof method.

Chapter 14. It is well-known that inductive theorem proving often requires sub-

stantial user interaction in order to obtain a successful proof. This is undesirable in

many cases since this kind of interaction typically requires a trained expert. It is

thus important to identify a class of conjectures where the inductive proof method

is known to succeed without any user interaction. This chapter develops several

sufficient conditions for this, substantially generalizing previous work on identifying

conjectures with this property.

Chapter 15. The methods presented in this dissertation have been fully imple-

mented as part of the termination tool AProVE and in the inductive reasoning tool

22

Chapter 1. Introduction

Sail2, respectively. Here, an empirical evaluation of these implementations is sum-

marized. The detailed empirical evaluation is available online and in Appendix B.

Additionally, some ideas for future work are presented.

Appendix A. In order to not disturb the presentation in the body of this disser-

tation, all proofs are collected in this appendix.

Appendix B. This appendix contains the detailed empirical evaluation of the

implementations in AProVE and Sail2.

1.6 Published Contributions and New Contribu-

tions

Parts of the research presented in this dissertation have already been published in

the proceedings of international conferences and workshops:

1. Term rewrite systems with collection data structures and the dependency pair

method for such systems have been presented at the 21st International Con-

ference on Automated Deduction (CADE 2007) [66].

2. At the 19th International Conference on Rewriting Techniques and Applications

(RTA 2008), this work was extended to support built-in natural numbers [67].

3. Operational termination of conditional CERSs with built-in numbers and its

reduction to termination of unconditional CERSs has been presented at the 8th

International Workshop on Reduction Strategies in Rewriting and Programming

(WRS 2008) [68].

4. Parts of the results on termination of context-sensitive rewriting with CERSs

23

Chapter 1. Introduction

have been presented at the 18th International Workshop on Functional and

(Constraint) Logic Programming (WFLP 2009) [70].

5. The translation from imperative programs into CERSs as presented in Chapter

4, together with a simplified version of the termination techniques presented in

this dissertation, has been presented at the 22nd International Conference on

Automated Deduction (CADE 2009) [69].

6. First results on relaxing the conditions imposed by [111, 81, 82, 104] for iden-

tifying equational conjectures whose inductive validity is decidable have been

presented at the 13th International Conference on Logic for Programming, Ar-

tificial Intelligence and Reasoning (LPAR 2006) [65].

Even though some results have been published before, this dissertation nonethe-

less contains several new results:

1. The results from the publications 1–3 given above have been generalized and

now support built-in natural numbers or built-in integers.

2. This dissertation presents termination techniques such as dependency pair nar-

rowing that are not yet discussed in [66, 67, 68] Furthermore, some of the

techniques from [66, 67, 68] have been improved by generalizing and/or sim-

plifying them.

3. The previous publications [66, 67, 68] do not contain empirical evaluations

since an implementation was not yet available. In contrast to this, the work

presented in this dissertation has been fully implemented, and an empirical

evaluation shows the efficiency of the methods.

4. The results on identifying equational conjectures whose inductive validity is

decidable have been generalized substantially compared to [65]. Furthermore,

this work has been reformulated using CERSs instead of ordinary TRSs. In

particular, an inductive proof method for CERSs has been developed.

24

Chapter 1. Introduction

1.7 Related Work

The integration of natural numbers, integers, or other predefined algebras into the

term rewriting framework or the algebraic specification framework has been con-

sidered before. The work of Vorobyov [168] and Ayala-Rincón [14, 15] integrates

integers, but imposes the strong restriction that no user-defined function can have

the set of integers as its resulting sort. This restriction has been relaxed in the work

of Antimirov & Degtyarev [5, 6] and Avenhaus & Becker [13], which furthermore

make it possible to integrate more general predefined algebras in an abstract setting.

This dissertation shares the possibility of having user-defined functions with the set

of integers as the resulting sort with [5, 6, 13].

While this dissertation shares some of the general ideas with [168, 14, 15, 5, 6,

13], it widely differs in its intention. All of the previous work is mostly concerned

with semantical issues of the integration of integers. With the exception of [13],

termination of such rewrite system is not considered, and [13] only provides a very

weak method for proving termination that is based on lexicographic path orders

[103]. It is well-known that lexicographic path orders are not powerful enough to

show termination of many natural and simple examples.

More recently, and after most of the work on proving termination presented in

this dissertation had been finished, the integration of integers into the term rewrit-

ing framework for the purpose of proving termination has been considered in [75].4

In general, the work presented in this dissertation and the work presented in [75]

are incomparable. On the one hand, [75] provides a more complete integration of

integers since multiplication and division are supported, whereas this dissertation

is restricted to linear arithmetic. On the other hand, [75] does not support collec-

4The main contribution of the author of this dissertation to [75] is the automatic genera-
tion of polynomial interpretations with negative coefficients. Indeed, the method presented
in [75] is partially based on the method developed in Chapter 9 of this dissertation.

25

Chapter 1. Introduction

tion data structures or context-sensitive rewriting and does not consider inductive

theorem proving with built-in integers. An empirical comparison of the termination

methods presented in this dissertation and the methods from [75] on examples where

both approaches are applicable shows that an implementation of the methods pre-

sented in this dissertation is much faster on these examples than an implementation

of the methods from [75], with both methods having nearly the same power.

The integration of linear arithmetic into generic first-order theorem proving meth-

ods has also received increased interest in recent years [116, 151, 25, 4].

In contrast to integers, the integration of collection data structures into term

rewriting has not received much attention. Rewriting modulo a set of equations

[120] and extended rewriting with a set of equations [139] make it possible to model

collection data structures, but this integration is unsatisfactory since the resulting

rewrite relation is typically non-terminating (recall Footnote 2). The recent work of

[61] was published after the work presented in this dissertation had been finished.

In [61], rewriting with collection data structures (or more general rewriting modulo

certain equations) is transformed to AC -rewriting with an enlarged rewrite system

that can often be computed automatically. Then, methods for showing termination

of AC -rewriting such as [108, 150, 129, 118, 130, 31] can be applied. Since an

implementation of [61] is not available, an empirical comparison of the methods

developed in this dissertation and the methods presented in [61] is not possible.

Further related work is also discussed throughout Chapters 2–15.

26

Chapter 2

Many-Sorted Term Rewriting

This chapter discusses basic concepts of term rewriting that are used in the remainder

of this dissertation. Since it is impossible to provide a comprehensive treatment of

these concepts, this chapter only fixes notation and terminology for future use. The

notation and terminology is mostly consistent with [17], which provides an in-depth

treatment of term rewriting.

2.1 Terms and Substitutions

On a purely syntactic level, this section introduces terms and substitutions in the

many-sorted setting. For more information on this, see [142, 17, 56].

Terms are built from function symbols and variables. The available function

symbols and their respective sort declarations are collected in a signature.

Definition 2.1 (Signatures). A signature F = (S, F) consists of:

1. A finite non-empty set S of sorts.

2. A finite non-empty set F of function symbols, where each f ∈ F is associated

27

Chapter 2. Many-Sorted Term Rewriting

with a sort declaration of the form s1 × . . . × sn → s such that n ≥ 0 and

s1, . . . , sn, s ∈ S. The resulting sort of f is s, and arity(f) = n denotes the

arity of f . If arity(f) = n, then f is said to be n-ary.

Since the set S of sorts can be derived from the sort declarations, a signature

F = (S, F) is often identified with the set F of function symbols.

Example 2.2. In order to model finite sets of natural numbers, a signature with

the sorts nat and set and the following function symbols can be used:

O : → nat

s : nat→ nat

∅ : → set

{·} : nat→ set

∪ : set× set→ set

Here, O and s are used to model natural numbers using a Peano representation and

∅, {·}, and ∪ are used to model finite sets of natural numbers, where {·} is used to

construct a singleton set. △

In the following, it is assumed that F contains at least one constant symbol cs

with sort declaration cs : → s for each s ∈ S. Using a signature and a disjoint set of

variables, terms can be built. Furthermore, each term s is associated with a sort.

Definition 2.3 (Terms). Let F = (S, F) be a signature and let V be a countably

infinite set of variables with V ∩ F = ∅ where each v ∈ V is associated with a sort

sort(v) ∈ S. The set T (F ,V) of terms over F and V and the extension of the

mapping sort to T (F ,V) are inductively defined by:

1. V ⊆ T (F ,V)

2. If f ∈ F with sort declaration s1 × . . . sn → s and t1, . . . , tn ∈ T (F ,V) with

sort(ti) = si, then f(t1, . . . , tn) ∈ T (F ,V) and sort(f(t1, . . . , tn)) = s.

28

Chapter 2. Many-Sorted Term Rewriting

Terms that do not contain variables are called ground. For a signature F , the set

of all ground terms over F is denoted by T (F).

Example 2.4. For the signature from Example 3.13, {x} ∪ ∅ is a term and {O}∪ ∅

is a ground term. △

A tuple of terms s1, . . . , sn for some n ≥ 0 is denoted by s∗, and notations for

terms are extended to tuples of terms component-wise.

In order to access the subterms of a given term t ∈ T (F ,V), it is convenient to

introduce the concept of positions in a term. This also makes it possible to define

replacements.

Definition 2.5 (Positions, Sizes, Subterms, and Replacements).

1. The set of positions Pos(t) of a term t is a set of strings over N+ that is

inductively defined by:

(a) If t ∈ V, then Pos(t) = {Λ}, where Λ denotes the empty string.

(b) If t = f(t1, . . . , tn), then Pos(t) = {Λ} ∪
⋃n

i=1{i.p | p ∈ Pos(ti)}.

The position Λ is called the root position. A position p is above a position q

if p ≤ q, where ≤ denotes the prefix order on strings. If p ≤ q, then q is also

said to be below p. If neither p ≤ q nor q ≤ p, then p and q are independent,

written p ‖ q.

2. The size |t| of a term t is defined as the cardinality of Pos(t).

3. For p ∈ Pos(t), the symbol of t at position p, denoted t(p), is defined by:

(a) If t ∈ V, then t(Λ) = t.

(b) f(t1, . . . , tn)(Λ) = f

(c) f(t1, . . . , tn)(i.q) = ti(q)

The symbol t(Λ) is called the root symbol of t. This is also written as root(t).

29

Chapter 2. Many-Sorted Term Rewriting

4. For p ∈ Pos(t), the subterm of t at position p, denoted t|p, is defined by:

(a) t|Λ = t

(b) f(t1, . . . , tn)|i.q = ti|q

If t|p = s for some position p ∈ Pos(t), then s is a subterm of t, written t� s.

If additionally p 6= Λ, then s is a strict subterm of t, written t� s.

5. For p ∈ Pos(t) and a term s with sort(s) = sort(t|p), the term obtained from t

by replacing the subterm at position p by s is denoted t[s]p and defined by:

(a) t[s]Λ = s

(b) f(t1, . . . , ti, . . . , tn)[s]i.q = f(t1, . . . , ti[s]q, . . . , tn)

The set of variables occurring in a term t is denoted by V(t). Similarly, the set of

function symbols occurring in t is denoted by F(t). This naturally extends to pairs

of terms, sets of terms, etc. A term t is linear if each v ∈ V(t) occurs only once in t.

Example 2.6. Continuing Example 2.4,

1. Pos({x} ∪ ∅) = {Λ, 1, 1.1, 2}

2. |{x} ∪ ∅| = 4

3. ({x}∪ ∅)(Λ) = ∪, ({x}∪ ∅)(1) = {·}, ({x}∪ ∅)(1.1) = x, and ({x}∪ ∅)(2) = ∅

4. ({x} ∪ ∅)|Λ = {x} ∪ ∅, ({x} ∪ ∅)|1 = {x}, ({x} ∪ ∅)1.1 = x, and ({x} ∪ ∅)2 = ∅

5. ({x} ∪ ∅)[s(O)]1.1 = {s(O)} ∪ ∅ and ({x} ∪ ∅)[y ∪ z]2 = {x} ∪ (y ∪ z)

6. V({x} ∪ ∅) = {x}

7. F({x} ∪ ∅) = {{·},∪, ∅}

The term {x} ∪ ∅ is linear. △

A context over F is a term C ∈ T (F ∪
⋃

s∈S{2s},V). Here, 2s : → s is a fresh

constant symbol of sort s, called a hole. If the sort of the holes can be derived or

30

Chapter 2. Many-Sorted Term Rewriting

is not important, then 2 will be used to stand for any of the 2s. If C is a context

with n holes and t1, . . . , tn are terms of the appropriate sorts, then C[t1, . . . , tn] is

the result of replacing the occurrences of holes by t1, . . . , tn “from left to right”.

Example 2.7. The term C = 2 ∪ (2 ∪ z) is a context. C[x, y] = x ∪ (y ∪ z). △

Variables in a term may be replaced by substitutions.

Definition 2.8 (Substitutions). A substitution is a function σ : V → T (F ,V) such

that sort(x) = sort(σ(x)) for all x ∈ V. If there are only finitely many variables x

with σ(x) 6= x, then σ is written as {x 7→ σ(x) | σ(x) 6= x}. The same notation is

used if there are only finitely many variables that are “of interest”. A substitution σ

is ground iff σ(x) ∈ T (F) for all variables x.

Application of a substitution is usually written using postfix notation. Each

substitution σ uniquely extends to a homomorphism σ : T (F ,V) → T (F ,V) by

letting f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

Example 2.9. The mapping σ = {x 7→ y, y 7→ x} is a substitution. (x∪y)σ = y∪x.

Notice that the substitution is applied simultaneously to all variables. △

Substitutions are the key ingredient to define rewrite relations in Sections 2.3 and

2.4. For this, the following concept is used.

Definition 2.10 (Matching). A term s matches a term t if there exists a substitution

σ such that sσ = t.

Example 2.11. The term x ∪ y matches the term {O} ∪ ({s(O)} ∪ {s(s(O))} since

(x ∪ y)σ = {O} ∪ ({s(O)} ∪ {s(s(O))} using the substitution σ = {x 7→ {O}, y 7→

{s(O)} ∪ {s(s(O))}. △

Notice that the substitution is only applied to one of the terms in matching. If

the substitution is applied to both terms, unification is obtained.

31

Chapter 2. Many-Sorted Term Rewriting

Definition 2.12 (Unification). Two terms s and t are unifiable iff there exists a

substitution σ such that sσ = tσ. In this case, σ is a unifier of s and t. A unifier

σ is a most general unifier of s and t iff for any unifier σ′ of s and t there exists a

substitution δ such that σ′ = σδ.1

Example 2.13. The terms x∪ ({s(O)}∪ z) and ({l}∪ z)∪ (y ∪ z) are unifiable and

σ = {x 7→ {l} ∪ z, y 7→ {s(O)}} is a unifier. △

As is well-known, a most general unifier of s and t is unique up to variable-

renamings, i.e., if σ and σ′ are two most general unifiers, then σ′ = σδ for a variable-

renaming δ, i.e., a bijective substitution δ : V → V. This property justifies the

notation mgu(s, t) for any most general unifier of s and t. A most general unifier

mgu(s, t) (if it exists) is always computable, see, e.g., [17].

2.2 Relations

In this section, some notation for relations is fixed. For arbitrary sets A,B and C

and arbitrary binary relations R ⊆ A×B and S ⊆ B×C, the composition of R and

S is defined by:

R ◦ S := {(x, z) ∈ A× C | ∃y ∈ B. (x, y) ∈ R ∧ (y, z) ∈ S}

It is of course also possible and useful to consider the composition of a relation

→ ⊆ A× A with itself, and the process of composition may be iterated.

Definition 2.14 (Closures of Relations, Well-Foundedness). Let → ⊆ A × A be a

binary relation. Then the following notation is introduced:

→0 := {(x, x) | x ∈ A} identity

→n := →n−1 ◦ → n-fold composition, n ≥ 1
1Here, the composition of two substitutions is defined by (σδ)(x) = δ(σ(x)).

32

Chapter 2. Many-Sorted Term Rewriting

→+ :=
⋃

i≥1 →
i transitive closure

→∗ := →+ ∪ →0 reflexive-transitive closure

→= := → ∪ →0 reflexive closure

→−1 := {(y, x) | x→ y} inverse

← := →−1 inverse

↔ := → ∪ ← symmetric closure

↔∗ := (→ ∪ ←)∗ reflexive-transitive-symmetric closure

→! := {(x, y) | x→∗ y ∧ ¬∃z. y → z} normalization

For any a ∈ A, the expression a↓ denotes any normal form of a, i.e., any element

with a →! a↓. Furthermore, → is well-founded (terminating) if there is no infinite

sequence a1 → a2 → a3 →

2.3 Equations and Rewrite Rules

The basic idea of rewriting is to replace a term by another term that is “equal” to

it. This idea is made formal by introducing equations.

Definition 2.15 (Equations). An equation is a pair (u, v) ∈ T (F ,V) × T (F ,V)

such that sort(u) = sort(v). Equations are usually written as u ≈ v.

Example 2.16. Continuing Example 2.2, the following equations specify properties

that are expected to hold for sets:

(1) x ∪ y ≈ y ∪ x (3) x ∪ x ≈ x

(2) x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z (4) x ∪ ∅ ≈ x

Thus, set union is specified to be associative, commutative, and idempotent. Fur-

thermore, the empty set acts as a unit element. △

33

Chapter 2. Many-Sorted Term Rewriting

A set E of equations induces a rewrite relation on terms. For this, an equation

u ≈ v may be applied to a term s if its left-hand side u matches a subterm of s.

Definition 2.17 (Rewrite Relations). Let E be a set of equations. Then s →E t iff

there exist an equation u ≈ v ∈ E , a position p ∈ Pos(s), and a substitution σ such

that

1. s|p = uσ, and

2. t = s[vσ]p.

Example 2.18. Using the equations from Example 5.2, x∪(∅∪y)→E (x∪∅)∪y →E

x∪ y →E y ∪ x. Here, the first step uses equation (2), the second step uses equation

(4), and the third step uses equation (1). △

Notice that the condition sort(u) = sort(v) that is imposed on the equation u ≈ v

guarantees that this replacement is well-defined. The main interest is usually not

in →E , but in its symmetric and reflexive-transitive-symmetric closures, which are

denoted by ⊢⊣E and ∼E , respectively. Since ∼E is a congruence relation, it defines a

partition of T (F ,V) into equivalence classes. The members of T (F ,V)/∼E
are called

E-equivalence classes.

For two terms s and t, writing s
>Λ
−→E t means that s = f(s∗) and t = f(t∗) such

that s∗ →E t
∗, i.e., the →E-step is applied below the root. This notation extends to

⊢⊣E and ∼E (and other relations introduced later) in the obvious way.

The following syntactic properties of equations are used in the remainder of this

dissertation.

Definition 2.19 (Properties of Equations). Let u ≈ v be an equation.

1. u ≈ v is collapse-free if neither u nor v is a variable.

2. u ≈ v is regular if V(u) = V(v).

34

Chapter 2. Many-Sorted Term Rewriting

3. u ≈ v has identical unique variables (is i.u.v.) if it is regular and both u and v

are linear.

4. u ≈ v is size-preserving if it is i.u.v. and |u| = |v|.

A set E of equations is said to have one of these properties if all equations u ≈

v ∈ E satisfy that property.

Example 2.20. In Example 2.16, all equations are regular but only (1) and (2) are

collapse-free. (1), (2), and (4) are i.u.v. and (1) and (2) are size-preserving. △

If E is i.u.v., the following technical results about ∼E can be obtained. Although

these results are simple, they have not appeared in the literature before. The first

result intuitively states that subterms with a root symbol that is not in F(E) are

preserved (up to
>Λ
∼E) within terms from the same E-equivalence class.

Lemma 2.21. Let E be an i.u.v. set of equations and let C[f(s∗)] ∼E t for some

context C, some term f(s∗) with f 6∈ F(E), and some term t. Then t = C ′[f(s′∗)]

for some context C ′ ∼E C and some term f(s′∗) such that f(s∗)
>Λ
∼E f(s′∗).

The second result states that the order of application of equations from E1 and E2

can be interchanged in ∼E1∪E2
. This observation is useful in order to simplify proofs

of other results.

Lemma 2.22. Let E1, E2 be i.u.v. sets of equations such that E1 and E2 are signature-

disjoint. Then ∼E1∪E2
= ∼E1

◦ ∼E2
.

Notice that the assumption that E1 and E2 are i.u.v. is essential for this result. To

see this, let E1 = {f(x, x) ≈ x} and E2 = {b ≈ a, c ≈ a}. Notice that E1 is not i.u.v.

Then f(b, c) ∼E1∪E2
a, but the only terms obtainable from f(b, c) using ∼E1

◦ ∼E2
are

f(b, c), f(a, c), f(b, a), and f(a, a).

35

Chapter 2. Many-Sorted Term Rewriting

A (rewrite) rule is an equation l ≈ r such that l is not a variable and V(r) ⊆ V(l).

Rewrite rules are usually written as l → r. In contrast to the rewrite relation of a set

E of equations, the main interest for a set R of rules is in →R, its transitive closure

→+
R, and its reflexive-transitive closure→∗

R. A set R of rules is usually called a term

rewrite system (TRS).

2.4 Equational Rewriting

Equational rewriting uses both a set E of equations and a set R of rules. Intuitively,

E is used to model “structural” properties, while R is used to model “simplifying”

properties. Here, simplifying properties are equations that result in a simpler term

if they are applied as rewrite rules. In Example 2.16, (3) and (4) are simplifying if

they are used as rewrite rules oriented from left to right. The equations (1) and (2),

on the other hand, express structural properties.

There are (at least) two ways to define a rewrite relation using E and R that are

commonly used in the literature. The first rewrite relation is defined in terms of the

E-equivalence classes.

Definition 2.23 (Rewriting Modulo E [120]). Let R be a TRS and let E be a set

of equations. Then s →R/E t if there exist terms s′, t′, a rule l → r ∈ R, a position

p ∈ Pos(s′), and a substitution σ such that

1. s ∼E s
′,

2. s′|p = lσ,

3. t′ = s′[rσ]p, and

4. t′ ∼E t.

Thus, s →R/E t iff there exist a term s′ in the E-equivalence class of s and a

36

Chapter 2. Many-Sorted Term Rewriting

term t′ in the E-equivalence class of t such that s′ →R t′, or, more concisely, iff

s ∼E ◦ →R ◦ ∼E t.

Example 2.24. Recall the following equations from Example 2.16:

x ∪ y ≈ y ∪ x x ∪ x ≈ x

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z x ∪ ∅ ≈ x

It is then possible to obtain a TRS R and a set of equations E from them as follows:

R: x ∪ x → x E : x ∪ y ≈ y ∪ x

x ∪ ∅ → x x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

Now consider the term t = {s(O)} ∪ ({O} ∪ {s(O)}). Then t ∼E {O} ∪ ({s(O)} ∪

{s(O)})→R {O} ∪ {s(O)} ∼E {s(O)} ∪ {O} and thus t→R/E {s(O)} ∪ {O}. △

Notice that deciding whether s →R/E t is true might be hard since the whole

equivalence classes of s and t need to be considered. This is in particular true if the

E-equivalence classes are infinite.

E-extended rewriting is a restriction of rewriting modulo E that provides better

decidability results in practice. First, the search space is restricted since the position

p where the reduction takes place is fixed before considering the equations in E .

Furthermore, E is only applied below that position p in s, i.e., the E-equivalence

class of s|p is considered. Finally, the E-equivalence class of t is not considered at all.

Definition 2.25 (E-Extended Rewriting [139]). Let R be a TRS and let E be a set

of equations. Then s→E\R t if there exist a rule l → r ∈ R, a position p ∈ Pos(s),

and a substitution σ such that

1. s|p ∼E lσ, and

2. t = s[rσ]p.

37

Chapter 2. Many-Sorted Term Rewriting

Example 2.26. Continuing Example 2.24, consider t′ = {s(O)} ∪ (∅ ∪ {O}). Then

t′|2 ∼E {O} ∪ ∅ and thus t′ →E\R {s(O)} ∪ {O} using the second rule from R. △

In general, rewriting modulo E and E-extended rewriting do not coincide. To see

this, again consider the term t = {s(O)}∪({O}∪{s(O)}) from Example 2.24. Recall

that t→R/E {s(O)} ∪ {O} and notice that t is irreducible by →E\R since no rewrite

rule can be applied at any position.

Another view on the definition of →E\R can be obtained by noticing that →E\R

differs from →R by replacing matching with E-matching, where a term s E-matches

a term t if there exists a substitution σ such that sσ ∼E t. Thus, if it is possible

to compute an E-matching substitution, then →E\R is much easier to compute than

→R/E . It will be shown in Lemma 3.20 that this is always possible for the sets E

of equations that are considered in this dissertation, and the remainder of this work

therefore uses E-extended rewriting.

Similarly to the concept of matching, the concept of unification can also be ex-

tended to obtain E-unification. Here, a substitution σ is an E-unifier of s and t iff

sσ ∼E tσ. Whether it is decidable if two terms are E-unifiable and whether an E-

unifier is computable depends on the set E of equations. See [100, 19, 20] for surveys

on decidability results.

Given E and R, an investigation of the normal forms of →E\R is of interest.

For modeling built-in numbers and collection data structures as proposed in this

dissertation, it is highly desirable that all terms of the same E-equivalence class have

normal forms that are again in the same E-equivalence class, i.e., that →E\R does

not make a distinction between terms that are equivalent up to ∼E . Under suitable

assumptions, this goal can indeed be achieved.

Definition 2.27 (E-Confluence, E-Convergence, Strong E-Coherence). Let R be a

TRS and let E be a set of equations.

38

Chapter 2. Many-Sorted Term Rewriting

1. →E\R is E-confluent iff ←∗
E\R ◦ →

∗
E\R ⊆ →

∗
E\R ◦ ∼E ◦ ←

∗
E\R.

2. →E\R is E-convergent iff it is terminating and E-confluent.

3. →E\R is strongly E-coherent iff ∼E commutes over →E\R, i.e., iff ∼E ◦ →E\R

⊆ →E\R ◦ ∼E .

Intuitively, E-confluence means that whenever a term can be reduced using two

reduction sequences, then the resulting terms can be further reduced to terms that are

in the same E-equivalence class. Strong E-coherence means that if two terms are in

the same E-equivalence class and one of the terms can be reduced, then the other term

can also be reduced and the resulting terms are furthermore in the same equivalence

class as well. Notice that strong E-coherence is a special case of coherence modulo

E [101]. Using E-convergence and strong E-coherence, the following characterization

of normal forms is obtained. It states that two terms from the same E-equivalence

class have normal forms that are again in the same E-equivalence class.

Lemma 2.28. Let R be a TRS and let E be a set of equations such that →E\R is

E-convergent and strongly E-coherent. If s ∼E t, s →!
E\R ŝ, and t →!

E\R t̂, then

ŝ ∼E t̂.

Example 2.29. The relation→E\R using E andR from Example 2.24 is not strongly

E-coherent (and, in fact, the statement of Lemma 2.28 does not hold). To see this,

consider the terms t = {s(O)} ∪ ({O} ∪ {O}) and t′ = {O} ∪ ({s(O)} ∪ {O}). Then

t′ ∼E t →E\R {s(O)} ∪ {O}, but t′ cannot be reduced using →E\R. If the rewrite

rule (x ∪ x) ∪ y → x ∪ y is added to R, then strong E-coherence is achieved and

t′ →E\R {O} ∪ {s(O)} ∼E {s(O)} ∪ {O}. △

The observation of Example 2.29 can be generalized, i.e., it may be possible to

achieve strong E-coherence by adding extended rules [139, 81]. This is not going to

be discussed further in this dissertation, but it will be mentioned when extended

rules need to be added.

39

Chapter 2. Many-Sorted Term Rewriting

Apart from Lemma 2.28, strong E-coherence also provides a close connection

between rewriting modulo E and E-extended rewriting [81]. This property is not

needed in the remainder of this dissertation, but it serves as a further justification

for restricting attention to E-extended rewriting.

Lemma 2.30. Let R be a TRS and let E be a set of equations such that →E\R is

strongly E-coherent. If s→R/E t, then s→E\R t′ for some t′ ∼E t.

The built-in numbers and collection data structures considered in this dissertation

will be modeled using TRSs Ri and sets Ei of equations such that →Ei\Ri
is Ei-

confluent and strongly Ei-coherent for each data structure on its own. If more than

one of these data structures is to be used at the same time, the question whether

→E\R is E-confluent and strongly E-coherent arises, where R =
⋃n

i=1Ri and E =
⋃n

i=1 Ei. Proving these properties automatically seems to be non-trivial, but it turns

out that this is not necessary since it can be shown that E-confluence and strong

E-coherence are modular properties in the following sense. Building upon results

from [101, 99], this lemma is the main technical contribution of this chapter.

Lemma 2.31. Let R1,R2 be TRSs and let E1, E2 be collapse-free i.u.v. sets of equa-

tions such that

1. R1 ∪ E1 is signature-disjoint from R2 ∪ E2,

2. →E1\R1
is E1-convergent and strongly E1-coherent, and

3. →E2\R2
is E2-convergent and strongly E2-coherent.

If →E1∪E2\R1∪R2
is terminating, then →E1∪E2\R1∪R2

is E1∪E2-convergent and strongly

E1 ∪ E2-coherent.

40

Chapter 3

Constrained Equational Rewrite

Systems

This chapter introduces the class of term rewrite systems that is used for modeling

algorithms in this dissertation. Both built-in numbers and collection data structures

are modeled using E-extended rewriting as in Definition 2.25. It is first discussed

how this is done for built-in numbers. The same approach can then be applied to

collection data structures as well.

3.1 Built-In Numbers as Canonizable Theories

In order to model the set of integers using terms and equations, recall that Z is an

Abelian group under addition with unit element 0 that is generated using the element

1. A signature for modeling integers thus consists of the following function symbols:

0 : → int

1 : → int

41

Chapter 3. Constrained Equational Rewrite Systems

− : int→ int

+ : int× int→ int

The defining properties of Abelian groups can easily be stated as equations:

x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

x+ 0 ≈ x

x+ (−x) ≈ 0

This set of equations is in general unsuitable for modeling algorithms using extended

rewriting since the last equation is not regular. To avoid this problem, the idea is to

keep only associativity and commutativity as equations and to turn the remaining

properties (idempotency and inverse elements) into rewrite rules. For this, it does not

suffice to just orient the last two equations as rules. Instead, the well-known method

of equational completion [101, 21] needs to be applied to obtain “equivalent” sets S

of rewrite rules and E of equations. Here, the goal is that two terms are in the same

equivalence class of the initial set of equations if and only if their normal forms w.r.t.

→E\S are in the same E-equivalence class. Applying equational completion to the

above properties of the integers produces the following rewrite rules and equations:

S : x+ 0 → x

−− x → x

−0 → 0

−(x+ y) → (−x) + (−y)

x+ (−x) → 0

(x+ (−x)) + y → 0 + y

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

42

Chapter 3. Constrained Equational Rewrite Systems

This idea can be generalized from the integers, and it can furthermore be made

more useful by allowing predefined predicate symbols that can then be used as con-

straints in the rewrite rules used for modeling algorithms. In order to model built-in

numbers and other built-in data structures, the concept of a theory is used.

Definition 3.1 (Theories). A theory Th = (FTh ,PTh ,MTh) consists of:

1. A finite signature FTh over a single sort base.

2. A finite set PTh of predicate symbols, each coming with an arity.

3. A structure MTh = (M, (fTh)f∈FTh
, (P Th)P∈PTh

) over a set M that interprets

the symbols in FTh and PTh , i.e., each n-ary f ∈ FTh is mapped to a function

fTh : Mn →M and each n-ary P ∈ PTh is mapped to a subset P Th ⊆ Mn.

Notice that the interpretations fTh of the function symbols define an interpreta-

tion of each ground term s ∈ T (FTh). This interpretation is denoted by sTh .

Example 3.2. For integers, ThZ = (FThZ
,PThZ

,MThZ
) with

1. FThZ
= {0, 1,−,+}

2. PThZ
= {≃,≥, >}

3. MThZ
= (Z, 0ThZ , 1ThZ,−ThZ,+ThZ ,≃ThZ ,≥ThZ , >ThZ) where

• 0ThZ = 0

• 1ThZ = 1

• −ThZ(x) = −x

• +ThZ(x, y) = x+ y

• ≃ThZ= {(x, y) | x = y}

• ≥ThZ= {(x, y) | x ≥ y}

• >ThZ= {(x, y) | x > y}

43

Chapter 3. Constrained Equational Rewrite Systems

is a theory. For this theory, (1 + (1 + (−0)))ThZ = 2. △

As already mentioned above, the rewrite rules that are used for modeling al-

gorithms will have constraints from Th that guard when a rewrite step may be

performed.

Definition 3.3 (Syntax of Th-Constraints). An atomic Th-constraint has the form

Pt1 . . . tn for a predicate symbol P ∈ PTh and terms t1, . . . , tn ∈ T (FTh ,V). The set

of Th-constraints is inductively defined as follows:

1. ⊤ is a Th-constraint.

2. Every atomic Th-constraint is a Th-constraint.

3. If ϕ is a Th-constraint, then ¬ϕ is a Th-constraint.

4. If ϕ1, ϕ2 are Th-constraints, then ϕ1 ∧ ϕ2 is a Th-constraint.

Example 3.4. For the theory of integers ThZ from Example 3.2, x+1 ≃ y∧¬(x > z)

is a ThZ-constraint. △.

The Boolean connectives ∨, ⇒, and ⇔ can be defined as usual. Also, Th-

constraints have the expected semantics. The main interest is in satisfiability (i.e.,

the constraint is true for some instantiation of its variables) and validity (i.e., the

constraint is true for all instantiations of its variables).

Definition 3.5 (Semantics of Th-Constraints). A variable-free Th-constraint ϕ is

Th-valid iff

1. ϕ has the form ⊤, or

2. ϕ is an atomic Th-constraint of the form Pt1 . . . tn and P ThtTh

1 . . . tTh

n is true,

or

3. ϕ has the form ¬ϕ′ and ϕ′ is not Th-valid, or

4. ϕ has the form ϕ1 ∧ ϕ2 and both ϕ1 and ϕ2 are Th-valid.

44

Chapter 3. Constrained Equational Rewrite Systems

A Th-constraint ϕ with variables is Th-valid iff ϕσ is Th-valid for all ground sub-

stitutions σ : V → T (FTh). A Th-constraint ϕ is Th-satisfiable iff there exists a

ground substitution σ : V → T (FTh) such that ϕσ is Th-valid. Otherwise, ϕ is

Th-unsatisfiable.

Example 3.6. The ThZ-constraint ϕ = x + 1 ≃ y ∧ ¬(x > z) from Example

3.4 is ThZ-satisfiable since its ground instantiation using the substitution {x 7→

0, y 7→ 1, z 7→ 1} is ThZ-valid. The constraint ϕ is not ThZ-valid since its ground

instantiation using the substitution {x 7→ 0, y 7→ 0, z 7→ 0} is not ThZ-valid. △

Within this dissertation it is assumed that each theory contains the equality

predicate ≃ and that ≃ can be axiomatized using a finite set ETh of equations.

Definition 3.7 (Theories with Equality). A theory with equality is a theory Th with

a predicate symbol ≃ ∈ PTh which is interpreted as the equality inMTh . Furthermore,

there exists a finite set ETh that axiomatizes ≃, i.e., for all terms s, t ∈ T (FTh ,V),

the constraint s ≃ t is Th-valid iff s ∼ETh
t.

Example 3.8. The theory ThZ from Example 3.2 is a theory with equality where

≃ is axiomatized by the set of equations EThZ
= {x + y ≈ y + x, x + (y + z) ≈

(x+ y) + z, x+ 0 ≈ x, x+ (−x) ≈ 0}. △

In the following, it is assumed that every theory is a theory with equality. Notice

that the definition of a theory with equality does not impose any restrictions on

the equations in ETh . For reasons of practicality, attention is restricted to the case

where ETh is canonizable in the following sense (recall the discussion on the defining

properties of Abelian groups from above).

Definition 3.9 (Canonizable Sets of Equations). A finite set E of equations is can-

onizable iff there exist finite sets
−→
E of rewrite rules and Ê of equations such that

1.
−→
E ∪ Ê is equivalent to E , i.e., ∼E = ∼−→

E ∪bE
,

45

Chapter 3. Constrained Equational Rewrite Systems

FTh PTh

−→
ETh and ÊTh

Natural numbers 0, 1,+ ≃,≥, > x + 0 → x

x + y ≈ y + x

x + (y + z) ≈ (x + y) + z

Integers 0, 1,+,− ≃,≥, > x + 0 → x

−− x → x

−0 → 0

−(x + y) → (−x) + (−y)
x + (−x) → 0

(x + (−x)) + y → 0 + y

x + y ≈ y + x

x + (y + z) ≈ (x + y) + z

Figure 3.1: Numbers as canonizable theories.

2. Ê is i.u.v.,

3. →bE\
−→
E

is Ê-convergent, and

4. →bE\
−→
E

is strongly Ê-coherent.

For a canonizable set E of equations, s ∼E t if and only if s→!
bE\

−→
E
◦ ∼bE ◦ ←

!
bE\

−→
E
t

[101]. The sets
−→
E and Ê can be obtained from E using equational completion [101, 21].

A theory Th is said to be canonizable if ETh is.

Example 3.10. The theory ThZ is canonizable since the set EThZ
from Example

3.8 can be completed into
−−→
EThZ

= {x + 0 → x, − − x → x, −0 → 0, −(x + y) →

(−x) + (−y), x + (−x) → 0, (x + (−x)) + y → 0 + y} and ÊThZ
= {x + y ≈

y+ x, x+ (y+ z) ≈ (x+ y) + z} which satisfy the conditions from Definition 3.9.△

Figure 3.1 lists two of the most important canonizable theories: ThN is the (linear)

theory of natural numbers, and ThZ is the (linear) theory of integers. For these

theories, the structures MTh use N and Z as universes, respectively. The function

symbols in FTh and the predicate symbols in PTh are interpreted in the natural way.

46

Chapter 3. Constrained Equational Rewrite Systems

For ThZ, the rewrite rule (x+(−x))+ y → 0+ y is an extension of x+(−x)→ 0

that is needed to make →bE\
−→
E

strongly Ê-coherent. This dissertation takes some

liberties in writing terms for ThN and ThZ. For example, x− 2 is shorthand for any

term that is equivalent to x+((−1)+(−1)). Notice that both ThN- and ThZ-validity

are decidable [146]. This is no longer true for the full theory of natural numbers or

integers which, in addition to + and −, also contains multiplication [90].

3.2 Canonizable Collection Data Structures

In order to extend Th by collection data structures and defined functions, FTh is

extended by a finite signature F over the sort base and a set of new sorts.

Collection data structures can be handled similarly to the built-in theories, i.e.,

properties of collection data structures are modeled using a finite set EC of equa-

tions. As in Section 3.1, attention is restricted to the case where EC is canonizable.

Collection data structures that satisfy this property are also called canonizable col-

lection data structures. Some commonly used canonizable collection data structures

are given in Figure 3.2. Compact lists are lists where the number of contiguous

occurrences of the same element does not matter. These kinds of lists have been

used in the constraint logic programming framework [58, 57]. Notice that there are

typically two possibilities for modeling the “same” collection data structure:

1. Using a list-like representation with an empty collection and a constructor to

add an element to a collection.

2. Using an empty collection, singleton collections (〈·〉 and {·}, respectively), and

a constructor to concatenate two collections.

For the second possibility to model sets, the rewrite rule (x ∪ x) ∪ y → x ∪ y is

an extension of x ∪ x→ x that is needed to make →bEC\
−→
EC

strongly ÊC-coherent.

47

Chapter 3. Constrained Equational Rewrite Systems

Constructors
−→
EC and ÊC

Lists nil, cons n/a
Lists nil, 〈·〉, ++ x++nil → x

nil++y → y
x++(y++ z) ≈ (x++ y)++z

Compact Lists nil, cons cons(x, cons(x, ys)) → cons(x, ys)
Compact Lists nil, 〈·〉, ++ x++nil → x

nil++y → y
〈x〉++ 〈x〉 → 〈x〉

x++(y++ z) ≈ (x++ y)++z
Multisets ∅, ins ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))
Multisets ∅, {·},∪ x ∪ ∅ → x

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z
x ∪ y ≈ y ∪ x

Sets ∅, ins ins(x, ins(x, ys)) → ins(x, ys)
ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))

Sets ∅, {·},∪ x ∪ ∅ → x
x ∪ x → x

(x ∪ x) ∪ y → x ∪ y
x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

x ∪ y ≈ y ∪ x

Figure 3.2: Commonly used canonizable collection data structures.

3.3 Constrained Equational Rewrite Systems

In the following, a combination of Th with none or more (signature-disjoint) can-

onizable collection data structures C1, . . . , Cn is considered. For this, let S =
−→
ETh ∪

⋃n
i=1

−→
ECi

and E = ÊTh ∪
⋃n

i=1 ÊCi
.

A constrained equational rewrite systems contains constrained rewrite rules. As

formalized below in Definition 3.15, the Th-constraint guards when a rewrite step

may be performed. In contrast to conditional rewriting (see, e.g., [137]), this will

not be done by recursively rewriting the constraints. Instead, a decision procedure

48

Chapter 3. Constrained Equational Rewrite Systems

for Th-validity will be employed. This distinction is further discussed in Chapter 10,

where conditional constrained rewrite rules are considered.

Definition 3.11 (Constrained Rewrite Rules). A constrained rewrite rule has the

form l → rJϕK for terms l, r ∈ T (F ∪ FTh ,V) and a Th-constraint ϕ such that

root(l) ∈ F − F(E ∪ S) and V(r) ∪ V(ϕ) ⊆ V(l). In a rule l → rJ⊤K, the constraint

⊤ will usually be omitted.

A finite set of constrained rewrite rules and the sets S and E for modeling Th and

collection data structures are combined into a constrained equational rewrite system.

Definition 3.12 (Constrained Equational Rewrite Systems (CERSs)). A constrained

equational rewrite system (CERS) has the form (R,S, E) for a finite set R of con-

strained rewrite rules, a finite set E of equations, and a finite set S of rewrite rules

such that

1. S is right-linear, i.e., each variable occurs at most once in r for all l → r ∈ S,

2. →E\S is E-convergent, and

3. →E\S is strongly E-coherent.

Notice that for the combination of a canonizable theory from Figure 3.1 with

none or more (signature-disjoint) canonizable collection data structures from Figure

3.2,→E\S is E-convergent and strongly E-coherent by Lemma 2.31 since→E\S is still

terminating. Definition 3.12 states these requirements for reference and in order to

make the techniques developed in this dissertation more general. Condition 1 in

Definition 3.12, i.e., that S needs to be right-linear, is of a technical nature. It is

currently unclear whether it can be relaxed.

Example 3.13. This example shows a quicksort algorithm that takes a set of

integers and returns a sorted list of the elements of that set. For this, integers are

modeled as in Figure 3.1 and sets are modeled using ∅, {·}, and ∪ as in Figure 3.2.

49

Chapter 3. Constrained Equational Rewrite Systems

Notice that the assumption that the input to qsort is a set is enforced by the choice

of S and E . By choosing different sets S and E , the input to qsort can be treated as

a multiset. How the choice of S and E influences the result of qsort follows from the

definition of the rewrite relation for CERSs (Definition 3.15 below).

S : x+ 0 → x

−− x → x

−0 → 0

−(x+ y) → (−x) + (−y)

x+ (−x) → 0

(x+ (−x)) + y → 0 + y

x ∪ ∅ → x

x ∪ x → x

(x ∪ x) ∪ y → x ∪ y

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

x ∪ y ≈ y ∪ x

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

The quicksort algorithm is specified by the following constrained rewrite rules:

app(nil, zs) → zs

app(cons(x, ys), zs) → cons(x, app(ys, zs))

low(x, ∅) → ∅

low(x, {y}) → {y} Jx > yK

low(x, {y}) → ∅ Jx 6> yK

low(x, y ∪ z) → low(x, y) ∪ low(x, z)

high(x, ∅) → ∅

high(x, {y}) → {y} Jx 6> yK

50

Chapter 3. Constrained Equational Rewrite Systems

high(x, {y}) → ∅ Jx > yK

high(x, y ∪ z) → high(x, y) ∪ high(x, z)

qsort(∅) → nil

qsort({x}) → cons(x, nil)

qsort({x} ∪ y) → app(qsort(low(x, y)), cons(x, qsort(high(x, y))))

Notice that this specification is quite natural. △

The rewrite relation obtained from a CERS is based on the key idea of [128].

Instead of using E ∪ S-extended rewriting as in Definition 2.25, it operates on terms

that are suitably normalized with→E\S , thus picking a unique (up to ∼E) representa-

tive of each E ∪ S-equivalence class. This normalization process closely captures the

intuition that is typically employed in the development of algorithms. For example,

it is typically assumed that sets do not contain duplicate elements. This assumption

might even be essential for termination of the algorithm.

The normalization process motivated above is given more formally as follows.

First, the subterm where a rule from R should be applied is normalized with
>Λ
−→E\S .

Then, E-matching is performed. In order to take the constraint of the rewrite rule

into account, it is additionally required that this constraint becomes Th-valid after

being instantiated by the matcher. If the matcher instantiates all variables of sort

base by terms from T (FTh ,V), then this question can be answered by a decision

procedure for Th-validity.

Definition 3.14 (Th-Based Substitutions). A substitution σ is Th-based iff σ(x) ∈

T (FTh ,V) for all variables x of sort base.

The rewrite relation is now restricted to use a Th-based substitution. This restric-

tion could be slightly relaxed by requiring σ(x) ∈ T (FTh ,V) for only those variables

of sort base that occur in the constraint of the rewrite rule.

51

Chapter 3. Constrained Equational Rewrite Systems

Definition 3.15 (Rewrite Relation of a CERS). Let (R,S, E) be a CERS. Then

s
S
→Th‖E\R t iff there exist a constrained rewrite rule l → rJϕK ∈ R, a position

p ∈ Pos(s), and a Th-based substitution σ such that

1. s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ,

2. ϕσ is Th-valid, and

3. t = s[rσ]p.

Example 3.16. Continuing Example 3.13, assume that the term t = qsort({−1} ∪

({1} ∪ {−1})) is to be reduced using
S
→Th‖E\R. By considering the substitution σ =

{x 7→ 1, y 7→ {−1}}, the third qsort-rule can be applied since t
>Λ
−→E\S−→! qsort({−1} ∪

{1})
>Λ
∼E qsort({x} ∪ y)σ. Therefore,

t
S
→Th‖E\R app(qsort(low(1, {−1})), cons(1, qsort(high(1, {−1}))))

Next, low(1, {−1})
S
→Th‖E\R {−1} by the second low-rule since the instantiated con-

straint 1 > −1 is ThZ-valid. Similarly, high(1, {−1})
S
→Th‖E\R ∅ using the third

high-rule. Continuing the reduction of t eventually yields cons(−1, cons(1, nil)). △

Notice an important consequence of Definition 3.15: s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ implies

that lσ is irreducible by →E\S since →E\S is strongly E-coherent. It is important to

keep this observation in mind when modeling algorithms, but as motivated above,

this closely corresponds to the assumptions typically employed in the development of

algorithms. As illustrated in the following example, this property makes it possible

to use pattern matching in the definition of rewrite rules in an intuitive way, thus

simplifying the task of modeling algorithms tremendously.

Example 3.17. Consider the example of a function | · | that computes the size of

a set, where sets are modeled using the constructors ∅, {·}, and ∪. Let S and E

be as in Example 3.13. The three constructors for sets naturally give rise to a case

analysis with three cases. For ∅ and {·}, computing the size of a set is simple:

52

Chapter 3. Constrained Equational Rewrite Systems

|∅| → 0

|{x}| → 1

For the constructor ∪, it is quite intuitive to assume that x∪y is not the empty set or

a singleton set, since both of these case have already been taken care of. Furthermore,

it can be assumed that both x and y are non-empty sets. Finally, computing the

size of x∪ y is very easy if the sets x and y are disjoint and much more complicated

otherwise. If it can be assumed that x and y are disjoint sets, then

|x ∪ y| → |x|+ |y|

computes the correct size of a set since the instantiations of the variables x and y

will be disjoint non-empty sets due to the normalization with →E\S . △

The function symbols occurring at the root position of left-hand sides in R are

of particular interest since they are the only ones that make it possible to apply a

rewrite rule. Thus, the following notation is introduced.

Definition 3.18 (Defined Symbols, Constructors). Let (R,S, E) be a CERS. Then

the defined symbols of (R,S, E) are given by D(R) = {f | f = root(l) for some l →

rJϕK ∈ R}. The constructors of (R,S, E) are C(R) := F \ D(R).

Notice that the function symbols from FTh are not members of C(R).

Example 3.19. In Example 3.13, D(R) = {app, low, high, qsort} and C(R) =

{nil, cons, ∅, {·},∪}. △

It is not immediately obvious whether the rewrite relation
S
→Th‖E\R is decidable.

In the important case where E is size-preserving, the following positive answer is

obtained. Notice that the canonizable theories from Figure 3.1 and the canonizable

collection data structures from Figure 3.2 satisfy this requirement on E .

53

Chapter 3. Constrained Equational Rewrite Systems

Lemma 3.20. Let (R,S, E) be a CERS such that E is size-preserving and validity

of Th-constraints is decidable.

1. If s and t are terms, then it is decidable whether s ∼E t. Furthermore, the

E-equivalence class of s can be computed effectively.

2. For any term s, it is decidable whether s is reducible by →E\S, and if so, a

term t with s→E\S t is effectively computable.

3. For any term s, it is decidable whether s is reducible by
S
→Th‖E\R, and if so, a

term t with s
S
→Th‖E\R t is effectively computable.

3.4 Innermost and Restricted Rewriting

As argued in Chapter 1, it is often important to give special attention to the in-

nermost rewriting strategy since this corresponds to the call-by-value semantics of

eager functional programming languages. The innermost rewrite relation for CERSs

is obtained by the following slight modification of Definition 3.15. The only added

condition is 3, which requires that all proper subterms of the instantiated left-hand

side of the rewrite rule are irreducible by
S
→Th‖E\R, i.e., the reduction indeed takes

place at an innermost position where a reduction is possible.

Definition 3.21 (Innermost Rewrite Relation of a CERS). Let (R,S, E) be a CERS.

Then s
S,i
−→Th‖E\R t iff there exist a constrained rewrite rule l → rJϕK ∈ R, a position

p ∈ Pos(s), and a Th-based substitution σ such that

1. s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ,

2. ϕσ is Th-valid,

3. all proper subterms of lσ are irreducible by
S
→Th‖E\R, and

4. t = s[rσ]p.

54

Chapter 3. Constrained Equational Rewrite Systems

Example 3.22. In Example 3.13, app(nil, qsort({1}))
S
→Th‖E\R qsort({1}), but this

is not allowed using Definition 3.21 since the proper subterm qsort({1}) is reducible

by
S
→Th‖E\R. Indeed, the only innermost reduction step of app(nil, qsort({1})) is

app(nil, qsort({1}))
S,i
−→Th‖E\R app(nil, cons(1, nil)). △

For termination purposes, the innermost rewrite relation might be terminating

even though the full rewrite relation is non-terminating. This is well-known from

ordinary term rewriting.1 For certain classes of ordinary TRSs, however, innermost

termination and full termination coincide [91]. Whether a similar relationship is also

true for CERSs is currently open and could be investigated in future work.

Notice that actual implementations of rewriting most likely use a slightly different

definition of innermost rewriting that checks whether s|p is irreducible by
S
→Th‖E\R,

i.e., condition 3 in Definition 3.21 would be replaced by

3 ′. All proper subterms of s|p are irreducible by
S
→Th‖E\R.

Using Lemma 3.26 stated below, this results in a more restricted rewrite relation.

However, the techniques presented in the remainder of this dissertation for the inner-

most case only make use of condition 3 and cannot take any additional advantage of

condition 3 ′. Notice that conditions 3 and 3 ′ coincide if E = S = ∅, i.e., for ordinary

rewriting.

Example 3.23. This example illustrates the distinction between conditions 3 and

3 ′. For this, S and E only model integers and R consists of the single rule f(x)→ x.

Consider the term t = f(f(0) + (−f(0))). Using condition 3, t
S,i
−→Th‖E\R 0 since

t
>Λ
−→E\S−→! f(0)

>Λ
∼E f(x)σ for σ = {x 7→ 0} and all proper subterms of f(x)σ = f(0) are

irreducible by
S
→Th‖E\R. In contrast, the only one-step reductions of t using condition

3 ′ yield f(0 + (−f(0))) and f(f(0) + (−0)) since the inner occurrences of f need to be

reduced first. △

1Recall Example 1.7.

55

Chapter 3. Constrained Equational Rewrite Systems

In order to obtain a form of rewriting that subsumes both the unrestricted rewrite

relation considered in Definition 3.15 and the innermost rewrite relation of Definition

3.21, a general restricted rewrite relation is introduced, following an idea from [86]

for ordinary rewriting.

Definition 3.24 (Q-Restricted Rewrite Relation of a CERS). Let (R,S, E) be a

CERS and let Q be a finite set of constrained rewrite rules. Then s
S,Q
−→Th‖E\R t iff

there exist a constrained rewrite rule l → rJϕK ∈ R, a position p ∈ Pos(s), and a

Th-based substitution σ such that

1. s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ,

2. ϕσ is Th-valid,

3. all proper subterms of lσ are irreducible by
S
→Th‖E\Q, and

4. t = s[rσ]p.

The unrestricted rewrite relation is obtained from this definition by lettingQ = ∅,

and the innermost rewriting is obtained if Q = R. Notice that there is in general

no assumption on the relationship between Q and R. By combining a CERS with

a set Q as considered in Definition 3.24, the following generalization of CERSs is

obtained.

Definition 3.25 (Restricted Constrained Equational Rewrite Systems (RCERSs)).

A restricted constrained equational rewrite system (RCERS) (Q,R,S, E) consists of

a finite set Q of constrained rewrite rules and a CERS (R,S, E).

The following lemma collects several properties of RCERSs that are needed in

the remainder of this dissertation. In particular, notice that these properties imply

that, as stated above, condition 3 in Definition 3.21 is a slightly looser restriction

than condition 3 ′. This can be seen by letting Q = ∅ and observing that all proper

56

Chapter 3. Constrained Equational Rewrite Systems

subterms of lσ are irreducible by
S
→Th‖E\R if all proper subterms of s|p are irreducible

by
S
→Th‖E\R and s|p

>Λ
−→E\S−→! ◦

>Λ
∼E lσ.

Lemma 3.26. Let (Q,R,S, E) be an RCERS.

1. ∼E ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R ◦ ∼E , where the

S,Q
−→Th‖E\R-steps can be performed

using the same constrained rewrite rule and Th-based substitution.

2. →E\S ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R−→+ ◦ →=

E\S

The following corollary is easily obtained from this lemma.

Corollary 3.27. Let (Q,R,S, E) be an RCERS and let s, t be terms.

1. If s ∼E t, then s starts an infinite
S,Q
−→Th‖E\R-reduction iff t starts an infinite

S,Q
−→Th‖E\R-reduction.

2. If s→E\S t and t starts an infinite
S,Q
−→Th‖E\R-reduction, then s starts an infinite

S,Q
−→Th‖E\R-reduction.

Example 3.28. This example shows that right-linearity of S is crucial for Corollary

3.27.2 and Lemma 3.26.2. Consider the following RCERS with Q = E = ∅:

S : f(x) → g(x, x)

R: h(g(a, b)) → h(g(a, b))

c → a

c → b

Consider the term t = h(f(c)). It is irreducible by
S,Q
−→Th‖E\R at the root position

since t
>Λ
−→E\S−→! h(g(c, c)) and h(g(c, c)) is not matched by the h-rule. The only one-

step reductions of t below the root yield h(f(a)) and h(f(b)), both of which are

irreducible by
S,Q
−→Th‖E\R. But t

>Λ
−→E\S h(g(c, c)), where h(g(c, c)) starts the infinite

S,Q
−→Th‖E\R-reduction h(g(c, c))

S,Q
−→Th‖E\R h(g(a, c))

S,Q
−→Th‖E\R h(g(a, b))

S,Q
−→Th‖E\R

h(g(a, b))
S,Q
−→Th‖E\R △

57

Chapter 3. Constrained Equational Rewrite Systems

3.5 Summary

This chapter has introduced the class of rewrite systems that is used for modeling

algorithms in this dissertation. The key idea for modeling built-in numbers and

collection data structures is to use equational completion [101, 21] in order to obtain

a characterization of the defining properties of these data structures using both

rewrite rules and equations. The rewrite relation of the defined symbols as specified

using a set R of constrained rewrite rules then utilizes this characterization by using

the idea of normalized rewriting [128] before applying a rule from R.

An innermost rewriting relation for R can easily be defined by requiring that all

proper subterms of the instantiated left-hand side of the rewrite rule are irreducible.

This innermost rewrite relation naturally extends to a more general restricted rewrite

relation that checks for irreducibility of the proper subterms of the instantiated left-

hand side of the rewrite rule using a separate set Q of rewrite rules. This general

restricted rewrite relation encompasses both the full and the innermost rewrite rela-

tion of R and enjoys “good” semantical properties.

58

Chapter 4

Translating Imperative Programs

Methods for automatically proving termination of imperative programs have received

increased attention in recent years. The most commonly used automatic method for

this is based on linear ranking functions which linearly combine the values of the

program variables in a given state [44, 45, 144, 145, 36]. It was shown in [164, 38] that

termination of a simple class of linear programs consisting of a single while-loop that

does not contain any if-statements is decidable. More recently, the combination of

abstraction refinement and linear ranking functions has been considered [49, 50, 42].

The tool Terminator [51], developed at Microsoft Research and based on this idea,

has reportedly been used for showing termination of device drivers.

In order to show that the CERSs as introduced in Chapter 3 are widely applicable

for a variety of different tasks, this brief chapter introduces a simple translation of

a class of imperative programs into CERSs operating on built-in integers. Then,

termination of the CERS implies termination of the imperative program.

Example 4.1. Consider the following imperative program:

59

Chapter 4. Translating Imperative Programs

while (x >= y) {

y++

}

It is translated into the constrained rewrite rule eval(x, y) → eval(x, y + 1) Jx ≥ yK

that simulates the state change occurring during a single execution of the loop body.

Notice that the constraint of the rule is obtained from the condition of the loop. △

Using this simple translation, the methods for proving termination of CERSs

that are developed in this dissertation can be applied for proving termination of

imperative programs as well. The proposed translation should only be considered as

a proof of concept. In order to be applicable to full-fledged imperative programming

languages such as C or Java, further research is needed.

The idea of (automatically) translating programs from one programming language

into another programming language for the purpose of program verification is not

new. Translations from imperative programs into functional programs in the context

of partial correctness proving have been described in [132, 78]. More closely related

to the approach presented in this chapter, translations from real-life programming

languages into term rewrite systems for the purpose of termination proving have been

applied to the declarative programming languages Prolog [153] and Haskell [85], and

[155, 138] contains initial results on translating a fragment of Java into term rewrite

systems.

4.1 A Simple Imperative Language

Consider a simple imperative programming language where programs are formed ac-

cording to the grammar in Figure 4.1. The constructs in this programming language

have the standard (operational) semantics, i.e., skip denotes a do-nothing statement

60

Chapter 4. Translating Imperative Programs

prog ::= stmt
| assume; stmt

stmt ::= skip

| assgn
| stmt; stmt
| if (cond) {stmt} else {stmt}
| while (cond) {stmt}
| break

| continue

| either {stmt} or {stmt}
assume ::= assume cond

cond ::= “ThZ-constraints”
assgn ::= (var1, . . . , vark) := (exp1, . . . , expk) for some k ≥ 1

var ::= “variable names”
exp ::= “linear arithmetic expressions with + and −”

Figure 4.1: Grammar for a simple imperative programming language.

and the either-statement denotes a non-deterministic choice. The break-statement

aborts execution of the innermost while-loop surrounding it, while the continue-

statement just aborts the current iteration of that loop and immediately starts the

next iteration. The “;” in a concatenation may be omitted if the first statement ends

with a “}”. The assume-statement is used to state preconditions of the program.

The ThZ-constraints for cond usually only use conjunction (written && in programs),

disjunction (written || in programs), and negation (written ! in programs). It is

assumed that every parallel assignment contains each variable of the program exactly

once on its left-hand side. This can always be achieved by adding dummy assign-

ments that do not change a variable. Furthermore, it is assumed that each parallel

assignment statement contains the variables of the program in the same fixed order

on its left-hand side. A parallel assignment statement of the form (x1,...,xk) :=

(e1,...,ek) where ei 6= xi for exactly one i is also written as xi := ei. Finally, x++

is an abbreviation for the assignment x := x + 1 and x-- abbreviates x := x - 1.

61

Chapter 4. Translating Imperative Programs

4.2 Translating Imperative Programs into CERSs

The translation of an imperative program into a CERS proceeds as follows. Notice

that this is particularly simple since the conditions used in if-statements and while-

loops are identical to the constraints allowed for CERSs.

Assume that the imperative program uses the variables x1, . . . , xn and contains

m control points (i.e., program entry, while-loops and if-statements1). Then the ith

control point in the program is associated with a function symbol evali : int× . . .×

int→ univ with n arguments, where univ is a sort distinct from int. For simplicity

of presentation and without loss of generality it is assumed that each straight-line

code segment between two control points is a parallel assignment, skip, or empty. A

sequence of parallel assignments can be combined into a single parallel assignment

in order to satisfy this requirement.

For all 1 ≤ i, j ≤ m such that the jth control point can be reached from the ith

control point by a straight-line code segment, each such straight-line code segment

gives rise to a constrained rewrite rule of the form

evali(. . .) → evalj(. . .) JϕK

where the constraint ϕ is determined as follows. If the ith control point is the program

entry, then ϕ is the condition of the assume-statement (if it exists) or ⊤. If the ith

control point is a while-statement, then ϕ is the condition of the while-loop or the

negated condition of the while-loop, depending on whether the loop body is entered

to reach the jth control point. If the ith control point is an if-statement, then ϕ

is the condition of the if-statement or the negated condition of the if-statement,

depending on whether the then-branch or the else-branch is taken to reach the jth

control point.2

1For termination purposes it is not necessary to consider the program exit.
2It is also possible to merge the control point of an if-statement with control points

62

Chapter 4. Translating Imperative Programs

The constrained rewrite rule that is created now depends on the straight-line

code segment.

Case 1: skip or empty. If the straight-line code segment is skip or empty, then the

rewrite rule just becomes

evali(x1, . . . , xn) → evalj(x1, . . . , xn) JϕK

with ϕ as described above.

Case 2: Parallel assignment. If the straight-line code segment is a parallel assignment

(x1,...,xk) := (e1,...,ek), then the rewrite rule becomes

evali(x1, . . . , xn) → evalj(e1, . . . , en) JϕK

with ϕ as described above.

Example 4.2. Consider the following imperative program:

while (x > 0 && y > 0) {

if (x > y) {

while (x > 0) {

(x, y) := (x - 1, y + 1);

}

} else {

while (y > 0) {

(x, y) := (x + 1, y - 1);

}

}

}

from which the if statement can be reached. In this case ϕ is the conjunction of constraints
obtained along that path.

63

Chapter 4. Translating Imperative Programs

It is translated into the following CERS:

eval1(x, y) → eval2(x, y)Jx > 0 ∧ y > 0 ∧ x > yK

eval1(x, y) → eval3(x, y) Jx > 0 ∧ y > 0 ∧ x 6> yK

eval2(x, y) → eval2(x− 1, y + 1) Jx > 0K

eval2(x, y) → eval1(x, y) Jx 6> 0K

eval3(x, y) → eval3(x+ 1, y − 1) Jy > 0K

eval3(x, y) → eval1(x, y) Jy 6> 0K

The outer while-loop is the first control point and the inner while-loops are the

second and third control point, i.e., the technique of Footnote 2 has been used. △

Correctness of the translation is based on the observation that any state transition

of the imperative program can be simulated by a rewrite sequence.

Theorem 4.3. Let P be an imperative program. Then the above translation produces

a CERS (RP ,S, E) where S and E are used to model ThZ such that P is terminating

if RP is terminating.

Notice that the converse of this statement is not true in general, i.e., (RP ,S, E)

might be non-terminating although P is terminating. This clearly illustrates the

limitations of the simple translation introduced in this chapter.

Example 4.4. Consider the following imperative program [145]:

while (x >= 0) {

y := 1;

while (x > y) {

y := 2 * y

}

x--

}

64

Chapter 4. Translating Imperative Programs

The imperative program is translated into the following CERS:

eval1(x, y)→ eval2(x, 1) Jx ≥ 0K

eval2(x, y)→ eval2(x, 2 · y) Jx > yK

eval2(x, y)→ eval1(x− 1, y) Jx 6> yK

The imperative program is terminating since the inner while-loop increases y until

it exceeds the upper bound x and the outer while-loop decreases x. The resulting

CERS, however, is not terminating since eval2(1, 0)
S
→Th‖E\R eval2(1, 2 · 0)

S
→Th‖E\R

eval2(1, 2 · 2 · 0)
S
→Th‖E\R △

The problem in Example 4.4 is that the control flow is not suitably taken into

account since it is not determined that y is set to 1 before the inner while-loop is

entered. Using static program analysis, this (and further information on the program)

can be determined automatically.

4.3 Utilizing Static Program Analysis

In some cases, a successful automatic termination proof requires simple invariants

on the program variables (such as “a variable is always non-negative”) or simple

reasoning of the kind “if variables do not change between control points, then re-

lations that are true for them at the first control point are still true at the second

control point”. This kind of information can be obtained automatically using static

program analysis tools such as Interproc3. The program analysis tool Interproc is

based on the abstract interpretation framework [52] in combination with the interval

[52], polyhedra [53], or octagon [133] domain and automatically performs the kind

of reasoning discussed above.

3Freely available from http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-

forge/interproc/

65

Chapter 4. Translating Imperative Programs

In examples within this dissertation, straight-line code segments are annotated

with the information discovered by the static program analysis. These annotations

are indicated in the program by writing a corresponding ThZ-constraint of the form

[ψ] before that straight-line code segment. The translation of Section 4.2 can utilize

this information by replacing the constraint ϕ obtained from the conditions of while-

loops and if-statements as discussed above by ϕ ∧ ψ.

Example 4.5. Using the interval domain [52], the following annotations are ob-

tained for the imperative program from Example 4.4:

while (x >= 0) {

[x >= 0]

y := 1;

while (x > y) {

[x >= 0 && y > 0]

y := 2 * y

}

[x >= 0 && y > 0]

x--

}

Using these annotations, the imperative program is translated into the following

CERS:

eval1(x, y)→ eval2(x, 1) Jx ≥ 0K

eval2(x, y)→ eval2(x, 2 · y) Jx ≥ 0 ∧ y > 0 ∧ x > yK

eval2(x, y)→ eval1(x− 1, y) Jx ≥ 0 ∧ y > 0 ∧ x 6> yK

It is shown in Example 7.29 how the annotations are used for a successful termination

proof. △

66

Chapter 4. Translating Imperative Programs

4.4 Summary

This chapter has introduced a simple translation of a class of imperative programs

into CERSs operating on built-in integers. This translation is sound for termination

purposes (i.e., the imperative program is terminating whenever the CERS obtained

from it is terminating) but not complete in general. Often, an automatically per-

formed static program analysis is helpful in cases where the translation is incomplete

for termination purposes.

The purpose of this translation is to make the methods for proving termina-

tion of CERSs developed in this dissertation applicable for proving termination of

imperative programs as well. The class of imperative programs considered in this

chapter is restricted. Further research is needed in order to broaden this class to

come closer to full-fledged imperative languages such as C or Java. Nonetheless, the

translation presented in this chapter in combination with the methods for proving

termination of CERSs presented in subsequent chapters are already sufficient for

showing termination of most examples considered in the literature on termination

analysis of imperative programs [44, 45, 145, 36, 37, 49, 50]. Notice that an empir-

ical comparison of the methods presented in this dissertation and the methods of

[44, 45, 145, 36, 37, 49, 50] is not possible since implementations of those methods

are not publicly available.

67

Chapter 5

The Dependency Pair Framework

The dependency pair method [12] is commonly considered to be the most successful

automated method for proving termination of ordinary rewriting. The crucial idea of

the dependency pairs method is to compare the left-hand sides of rules with recursive

calls to defined symbols on the right-hand sides of rules. The main theorem of the

dependency pair method then states that an ordinary TRS is terminating if and only

if it is impossible to build infinite chains using these recursive calls. This general

idea has been extended from ordinary rewriting to rewriting modulo associativity

and commutativity [129, 118], rewriting modulo i.u.v. collapse-free sets of equations

[81], and ordinary context-sensitive rewriting [2, 1].

The most recent formulation of this method is the dependency pair framework

[86], a general framework for termination proving that makes it possible to modu-

larly combine different techniques. Apart from a clear theoretical formulation, the

dependency pair framework is also suitable for a modular implementation of auto-

mated termination provers such as AProVE [84].

While originally developed for ordinary rewriting, the dependency pair frame-

work has recently been extended to rewriting modulo associativity and commutativ-

68

Chapter 5. The Dependency Pair Framework

ity [156] and to ordinary context-sensitive rewriting [1]. This chapter extends the

dependency pair framework to rewriting with RCERSs and thus, in particular, to

full or innermost rewriting with CERSs.

For the purpose of termination analysis, it suffices to only consider one further

sort in addition to the sort base of the built-in theory. Thus, it is assumed in

Chapters 5–12 that the only sorts are base and a new sort univ. Every RCERS

can easily be transformed into a new RCERS over these two sorts by identifying all

sorts that are different from base. Clearly, the original RCERS is terminating if the

RCERS with only two sorts is terminating.

5.1 Dependency Pairs

The definition of a dependency pair is essentially the well-known one [12], with the

only difference that a dependency pair inherits the constraint of the rule it is created

from. As customary, a signature F ♯ is introduced, containing the function symbol f ♯

for each function symbol f ∈ F , where f ♯ has the sort declaration s1×. . .×sn → top

if f has the sort declaration s1 × . . .× sn → s with s ∈ {base, univ}. Here, top is

a new sort that is distinct from base and univ. For the term t = f(t1, . . . , tn), the

term f ♯(t1, . . . , tn) is denoted by t♯.

Definition 5.1 (Dependency Pairs). Let (Q,R,S, E) be an RCERS. The depen-

dency pairs of R are DP(R) = {l♯ → t♯JϕK | t is a subterm of r with root(t) ∈

D(R) for some l → rJϕK ∈ R}.

Example 5.2. Example 3.13 gives rise to the following dependency pairs:

app♯(cons(x, ys), zs) → app♯(ys, zs) (5.1)

low♯(x, y ∪ z) → low♯(x, y) (5.2)

low♯(x, y ∪ z) → low♯(x, z) (5.3)

69

Chapter 5. The Dependency Pair Framework

high♯(x, y ∪ z) → high♯(x, y) (5.4)

high♯(x, y ∪ z) → high♯(x, z) (5.5)

qsort♯({x} ∪ y) → app♯(qsort(low(x, y)), cons(x, qsort(high(x, y)))) (5.6)

qsort♯({x} ∪ y) → qsort♯(low(x, y)) (5.7)

qsort♯({x} ∪ y) → low♯(x, y) (5.8)

qsort♯({x} ∪ y) → qsort♯(high(x, y)) (5.9)

qsort♯({x} ∪ y) → high♯(x, y) (5.10)

Notice that a single constrained rewrite rule may give rise to more than one depen-

dency pair. △

In order to verify termination of an RCERS, the notion of chains is used. Intu-

itively, a dependency pair corresponds to a recursive call, and a chain represents a

possible sequence of calls in a reduction w.r.t.
S,Q
−→Th‖E\R. In the following, it is al-

ways assumed that different (occurrences of) dependency pairs are variable-disjoint.

Notice that application of a substitutions does not introduce occurrences of function

symbols from F ♯ into terms from T (F ∪ FTh ,V) since the symbols from F ♯ have

resulting sort top.

Definition 5.3 ((Minimal) (P,Q,R,S, E)-Chains). Let P be a set of dependency

pairs and let (Q,R,S, E) be an RCERS. A (possibly infinite) sequence of depen-

dency pairs s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . from P is an (P,Q,R,S, E)-chain iff there

exists a Th-based substitution σ such that tiσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ, the Th-

constraint ϕiσ is Th-valid, and siσ is irreducible by
S
→Th‖E\Q and

>Λ
−→E\S for all

i ≥ 1. The above (P,Q,R,S, E)-chain is minimal iff tiσ does not start an infinite
S,Q
−→Th‖E\R-reduction for all i ≥ 1.

Here,
S
→Th‖E\R→∗ corresponds to reductions occurring strictly below the root of

tiσ (notice that root(ti) ∈ F
♯), and

>Λ
−→E\S−→! ◦

>Λ
∼E corresponds to normalization and

70

Chapter 5. The Dependency Pair Framework

matching before applying si+1 → ti+1Jϕi+1K at the root position.

Example 5.4. Using the dependency pair (5.2) from Example 5.2 twice, the follow-

ing chain is obtained:

low♯(x, y ∪ z)→ low♯(x, y), low♯(x′, y′ ∪ z′)→ low♯(x′, y′)

To see that this is indeed a chain, it suffices to consider the substitution σ = {x 7→

1, y 7→ {1} ∪ {−1}, z 7→ {2}, x′ 7→ 1, y′ 7→ {1}, z′ 7→ {−1}}. △

Using chains, an exact characterization of termination can be obtained. The

intuition for this result is as follows: If
S,Q
−→Th‖E\R is not terminating, then there

exists a minimal non-terminating term, i.e., a term that starts an infinite reduction

such that none of its strict subterms starts an infinite reduction.

Example 5.5. Consider the following ordinary TRS:

a → b

f(x, b) → g(x)

g(x) → g(d(x))

Then the term g(f(a, a)) starts the infinite reduction g(f(a, a))→R g(d(f(a, a)))→R

g(d(d(f(a, a)))) →R . . ., but g(f(a, a)) is not a minimal non-terminating term since

its strict subterm f(a, a) starts the infinite reduction f(a, a)→R f(a, b)→R g(a)→R

g(d(a)) →R g(d(d(a))). Thus, f(a, a) is a minimal non-terminating term since its

only strict subterm a does not start an infinite reduction. △

For any minimal non-terminating term, a rewrite rule has to be applied at the root

position eventually. Then the right-hand side of the rewrite rule that is used for the

reduction at the root position contains a non-variable subterm which is instantiated

to a minimal non-terminating term and DP(R) contains a corresponding dependency

pair. The same reasoning can then be applied to the instantiation of that non-variable

subterm of the right-hand side.

71

Chapter 5. The Dependency Pair Framework

Theorem 5.6. Let (Q,R,S, E) be an RCERS. Then
S,Q
−→Th‖E\R is terminating if and

only if there are no minimal infinite (DP(R),Q,R,S, E)-chains.

5.2 DP Framework

Given Theorem 5.6, termination of an RCERS can be investigated by considering

chains of dependency pairs. For ordinary rewriting, a large number of techniques

has been developed to this extent (see, e.g., [86, 88, 95]). These techniques typically

cannot show termination by themselves. Instead, they may remove some of the

dependency pairs or they may decompose a set of dependency pairs into several

independent sets of dependency pairs. Then, a successful termination proof consists

of a successive application of such techniques. In order to show soundness of these

techniques independently, and in order to freely combine them in a flexible manner

in implementations like AProVE [84], the notions of DP problems and DP processors

were introduced for ordinary rewriting in [86], giving rise to the DP framework. In

this dissertation, these notions are applied to rewriting with RCERSs.

Definition 5.7 (DP Problems). A DP problem is a tuple (P,Q,R,S, E) such that

P is a finite set of dependency pairs and (Q,R,S, E) is an RCERS.

In order to show that rewriting with (Q,R,S, E) is terminating, Theorem 5.6 im-

plies that it suffices to show that there are no infinite minimal (DP(R),Q,R,S, E)-

chains, where, (DP(R),Q,R,S, E) is the initial DP problem obtained from the

RCERS (Q,R,S, E). In order to show that a DP problem does not give rise to

infinite chains, it is transformed into a set of DP problems for which this property

has to be shown instead. This transformation is done using DP processors.

Definition 5.8 ((Sound) DP Processors). A DP processor is a function Proc that

takes a DP problem as input and returns a finite set of DP problems as output.

72

Chapter 5. The Dependency Pair Framework

Proc is sound1 iff for all DP problems (P,Q,R,S, E) with an infinite minimal

(P,Q,R,S, E)-chain there is a DP problem (P ′,Q′,R′,S ′, E ′) ∈ Proc(P,Q,R,S, E)

with an infinite minimal (P ′,Q′,R′,S ′, E ′)-chain.

Ideally, DP processors have the property that it is easier to show absence of

infinite chains for the DP problems that are obtained as output than it is to show

absence of infinite chains for the input DP problem. It is in general impossible

to characterize this property of DP processors precisely, but the removal of (one or

more) dependency pairs from a DP problem results in a DP problem for which it is at

least not harder to show absence of infinite chains. Notice that Proc(P,Q,R,S, E) =

{(P,Q,R,S, E)} (or, more generally, (P,Q,R,S, E) ∈ Proc(P,Q,R,S, E)) is a legal

behavior for a DP processor. This can be interpreted as a failure of Proc on its input

and indicates that a different DP processor should be applied.

The main motivation for introducing the DP framework is to formally model the

recursive nature of termination proving once it has been reduced to showing the

absence of infinite chains. This recursive nature gives rise to the concept of DP trees.

Definition 5.9 (DP Trees). For an RCERS (Q,R,S, E), a DP tree for (Q,R,S, E)

is a tree whose nodes are labelled with DP problems or “ yes” such that the root is

labelled with the DP problem (DP(R),Q,R,S, E), all leaves are labelled with “ yes”,

and for every inner node labelled with the DP problem (P ′,Q′,R′,S ′, E ′), there exists

a sound DP processor Proc satisfying one of the following conditions:

• Proc(P ′,Q′,R′,S ′, E ′) = ∅ and the node has just one child, labelled with “ yes”.

• Proc(P ′,Q′,R′,S ′, E ′) 6= ∅ and the children of the node are labelled with the

DP problems in Proc(P ′,Q′,R′,S ′, E ′).

1The dual of soundness, i.e., completeness [86], is only needed for proving non-
termination. Proving non-termination of RCERSs is not considered in this dissertation,
but the DP framework for RCERSs can easily be extended for this purpose.

73

Chapter 5. The Dependency Pair Framework

The following is immediate by Definition 5.8 and Theorem 5.6. Thus, the con-

struction of a DP tree suffices for proving termination of an RCERS.

Corollary 5.10. If there exists a DP tree for an RCERS (Q,R,S, E), then
S,Q
−→Th‖E\R

is terminating.

Example 5.11. This example illustrates the DP framework by giving the high-level

structure of a termination proof for the quicksort RCERS from Example 5.2. For

the sake of concreteness, let Q = R (i.e., innermost termination is investigated) and

consider the following DP processors:

1. Let Proc1 be the DP processor introduced in Section 6.3. It is shown in Ex-

ample 6.6 that Proc1(DP(R),Q,R,S, E) = {(P1,Q,R,S, E), (P2,Q,R,S, E),

(P3,Q,R,S, E), (P4,Q,R,S, E)} for some subsets Pi ⊆ P of dependency pairs.

2. Let Proc2 be the DP processor introduced in Section 6.6. Example 6.26 shows

that Proc2(P1,Q,R,S, E) = Proc2(P2,Q,R,S, E) = Proc2(P3,Q,R,S, E) = ∅.

3. Let Proc3 be the DP processor introduced in Section 8.1. As shown in Example

8.2, Proc3(P4,Q,R,S, E) = ∅.

Using these DP processors, the following DP tree can be constructed:

(DP(R),Q,R,S, E)

(P1,Q,R,S, E) (P2,Q,R,S, E) (P3,Q,R,S, E) (P4,Q,R,S, E)

“yes” “yes” “yes” “yes”

Therefore, rewriting with (Q,R,S, E) is terminating. △

74

Chapter 5. The Dependency Pair Framework

5.3 Summary

The dependency pair method [12] is commonly considered to be the most successful

automated method for proving termination of ordinary rewriting, and the contribu-

tions of this chapter make it possible to apply the method to the expressive framework

of RCERSs as well. For this, a precise characterization of termination of an RCERS

using the absence of infinite chains of dependency pairs has been given.

Motivated by a clear theoretical foundation and a practical way to implement the

dependency pair method, a general framework for termination proofs that makes it

possible to modularly combine different techniques has been introduced, following

the spirit of [86]. This framework is used as the basis for the methods presented in

the next chapters, where various techniques for the termination analysis of RCERSs

are presented in the form of DP processors.

75

Chapter 6

DP Processors Operating on

Dependency Pairs

This chapter introduces various sound DP processors that consider the dependency

pairs in P and the constrained rewrite rules in R independently of each other when

operating on the DP problem (P,Q,R,S, E). Furthermore, most of these DP proces-

sors can disregard the constrained rewrite rules in R altogether. The DP processors

of Section 6.1 and Section 6.2 use basic properties of→E\S and
S,Q
−→Th‖E\R in order to

remove dependency pairs from a DP problem. Section 6.3 introduces the dependency

graph, which makes it possible to decompose a DP problem into several independent

DP problems by determining which dependency pairs may follow each other in chains.

Using ideas developed for the dependency graph, Section 6.4 introduces a DP proces-

sor that can simplify the right-hand sides of dependency pairs. The DP processor in

Section 6.5 can be used to combine dependency pairs that occur after each other in

chains. Finally, the DP processor of Section 6.6 uses a specific well-founded relation

(the subterm relation modulo E) in order to remove dependency pairs from a DP

problem.

76

Chapter 6. DP Processors Operating on Dependency Pairs

While most of these DP processors are new contributions of this dissertation, the

DP processors of Sections 6.3 and 6.6 are based on ideas used for ordinary TRSs

[12, 87, 95]. An adaptation for RCERSs is non-trivial due to the presence of the sets

S and E which need to be taken into consideration.

6.1 Unsatisfiable Constraints

Dependency pairs and rules may be deleted from a DP problem if they have a con-

straint that is Th-unsatisfiable. This is sound since no instance of an unsatisfiable

constraint is Th-valid. The removal can also be performed at the level of RCERSs

before the dependency pairs are computed.

Theorem 6.1 (DP Processor Based on Unsatisfiable Constraints). Let Proc be a

DP processor with Proc(P,Q,R,S, E) = {(P − P ′,Q−Q′,R−R′,S, E)}, where

• P ′ = {s→ tJϕK ∈ P | ϕ is Th-unsatisfiable},

• Q′ = {l→ rJϕK ∈ Q | ϕ is Th-unsatisfiable}, and

• R′ = {l→ rJϕK ∈ R | ϕ is Th-unsatisfiable}.

Then Proc is sound.

Example 6.2. This example is used to illustrate several simple DP processors. E

and S are used to only model ThZ and sets built using ∅, {·}, and ∪. The rewrite

rules in R are as follows:

f(x, y) → f(x, y) Jx > y ∧ y > xK (6.1)

f(x+ (0 + (−x)), y) → f(x+ (0 + (−x)), y) (6.2)

g(x ∪ y) → g(∅ ∪ ∅) (6.3)

77

Chapter 6. DP Processors Operating on Dependency Pairs

In order to simplify presentation, the technique of Theorem 6.1 is applied to the

RCERS (Q,R,S, E) with Q = ∅ and not on the level of DP problems. Then the

RCERS (∅, {(6.1), (6.2), (6.3)},S, E) is transformed into (∅, {(6.2), (6.3)},S, E) be-

cause the constraint x > y ∧ y > x is unsatisfiable in the integers. △

6.2 Reducible Left-Hand Sides

If dependency pairs or rules have a left-hand side that is reducible by →E\S , then

these dependency pairs and rules may be deleted. This is sound since the instantiated

left-hand side of a dependency pair in a chain or of a rule that is used for rewriting

is irreducible by →E\S according to Definitions 3.24 and 5.3. The removal can also

be performed at the level of RCERSs before the dependency pairs are computed.

Theorem 6.3 (DP Processor Based on Reducible Left-Hand Sides). Let Proc be a

DP processor with Proc(P,Q,R,S, E) = {(P − P ′,Q−Q′,R−R′,S, E)}, where

• P ′ = {s→ tJϕK ∈ P | s is reducible by
>Λ
−→E\S},

• Q′ = {l→ rJϕK ∈ Q | l is reducible by
>Λ
−→E\S}, and

• R′ = {l→ rJϕK ∈ R | l is reducible by
>Λ
−→E\S}.

Then Proc is sound.

Example 6.4. Continuing Example 6.2, the RCERS (∅, {(6.2), (6.3)},S, E) is trans-

formed into (∅, {(6.3)},S, E) since the left-hand side f(x+ (0 + (−x)), y) of (6.2) is

reducible by
>Λ
−→E\S (for instance using the rule x+ 0→ x). △

78

Chapter 6. DP Processors Operating on Dependency Pairs

6.3 Dependency Graphs

The DP processor introduced in this section decomposes a DP problem into several

independent DP problems by determining which dependency pairs from P may follow

each other in a (P,Q,R,S, E)-chain. This gives a restricted kind of modularity in

termination proofs and may make it possible to disregard certain dependency pairs if

they cannot appear in a chain more than once. The processor relies on the notion of

dependency graphs, which are also used in the dependency pair method for ordinary

rewriting [12].

Definition 6.5 (Dependency Graphs). Let (P,Q,R,S, E) be a DP problem. The

nodes of its dependency graph DG(P,Q,R,S, E) are the dependency pairs in P and

there is an arc from s1 → t1Jϕ1K to s2 → t2Jϕ2K iff s1 → t1Jϕ1K, s2 → t2Jϕ2K is a

(P,Q,R,S, E)-chain.

Example 6.6. Continuing Example 5.2, recall the following dependency pairs:

app♯(cons(x, ys), zs) → app♯(ys, zs) (5.1)

low♯(x, y ∪ z) → low♯(x, y) (5.2)

low♯(x, y ∪ z) → low♯(x, z) (5.3)

high♯(x, y ∪ z) → high♯(x, y) (5.4)

high♯(x, y ∪ z) → high♯(x, z) (5.5)

qsort♯({x} ∪ y) → app♯(qsort(low(x, y)), cons(x, qsort(high(x, y)))) (5.6)

qsort♯({x} ∪ y) → qsort♯(low(x, y)) (5.7)

qsort♯({x} ∪ y) → low♯(x, y) (5.8)

qsort♯({x} ∪ y) → qsort♯(high(x, y)) (5.9)

qsort♯({x} ∪ y) → high♯(x, y) (5.10)

For these dependency pairs,

79

Chapter 6. DP Processors Operating on Dependency Pairs

(5.1)

(5.6)

(5.7) (5.9)(5.8) (5.10)

(5.2) (5.3) (5.4) (5.5)

is the dependency graph. △

In general, DG(P,Q,R,S, E) cannot be computed exactly since it is undecidable

whether two dependency pairs form a chain. Thus, an estimation has to be used

instead. A possible estimation is given below.

A non-empty subset P ′ ⊆ P of dependency pairs is a strongly connected subgraph1

of DG(P,Q,R,S, E) iff for all dependency pairs s1 → t1Jϕ1K and s2 → t2Jϕ2K from P ′,

there exists a path from s1 → t1Jϕ1K to s2 → t2Jϕ2K that only traverses dependency

pairs from P ′. A strongly connected subgraph is a strongly connected component

(SCC) if it is not a proper subset of any other strongly connected subgraph. Now

every infinite (P,Q,R,S, E)-chain has an infinite tail that stays within one strongly

connected subgraph of DG(P,Q,R,S, E), and it is thus sufficient to prove the absence

of infinite chains for each SCC separately.

Theorem 6.7 (DP Processor Based on Dependency Graphs). Let Proc be a DP

processor with Proc(P,Q,R,S, E) = {(P1,Q,R,S, E), . . . , (Pn,Q,R,S, E)}, where

P1, . . . ,Pn are the SCCs in DG(P,Q,R,S, E).2 Then Proc is sound.

Example 6.8. The dependency graph from Example 6.6 contains four SCCs, and

according to Theorem 6.7, the following DP problems are obtained:

({(5.1)},R,S, E) (6.4)

1Strongly connected subgraphs are often called cycles in the dependency pair literature.
The name “strongly connected subgraph” stems from graph theory, where “cycle” has a
different meaning.

2Notice, in particular, that Proc(∅,Q,R,S, E) = ∅.

80

Chapter 6. DP Processors Operating on Dependency Pairs

({(5.2), (5.3)},R,S, E) (6.5)

({(5.4), (5.5)},R,S, E) (6.6)

({(5.7), (5.9)},R,S, E) (6.7)

These DP problems can be handled independently of each other. △

As mentioned above, DG(P,Q,R,S, E) cannot be computed exactly in general

since it is undecidable whether two dependency pairs s1 → t1Jϕ1K and s2 → t2Jϕ2K

form a chain. Thus, an estimation has to be used instead. The idea for the estimation

is that subterms of t1 which might be instantiated to become reducible by
S,Q
−→Th‖E\R

in a chain are abstracted by fresh variables. Then, it is checked whether the term

obtained from t1 in this way can be instantiated to reduce to an instantiation of

s2 using
>Λ
−→E\S−→! ◦

>Λ
∼E . The function cap is used to abstract subterms that might

become reducible by
S,Q
−→Th‖E\R. Notice that a variable might be instantiated to

become reducible by
S,Q
−→Th‖E\R in a chain only if it has sort univ and Q 6⊇ R (recall

that the substitutions used for building chains are Th-based and instantiate variables

by terms that are irreducible by
S
→Th‖E\Q). For terms whose root symbol is not a

variable, cap is applied recursively to the arguments and it is checked whether a

rewrite rule might be applied at the root positions of the term that is obtained by

the recursive application of cap. For ordinary rewriting, a similar function cap

was introduced in [87]. In the following, a substitution µ is Th-based for V ′ ⊆ V iff

µ(x) ∈ T (FTh ,V) for all x ∈ V ′ of sort base.

Definition 6.9 (Estimated Dependency Graphs). Let (P,Q,R,S, E) be a DP prob-

lem. Then its estimated dependency graph EDG(P,Q,R,S, E) has the dependency

pairs in P as nodes and there is an arc from s1 → t1Jϕ1K to s2 → t2Jϕ2K iff there exists

a substitution µ that is Th-based for V(s1)∪V(s2) such that cap(t1)µ
>Λ
−→E\S−→! ◦

>Λ
∼E s2µ,

ϕ1µ and ϕ2µ are Th-valid, and s1µ and s2µ are irreducible by
S
→Th‖E\Q and

>Λ
−→E\S .

Here, cap is defined by

81

Chapter 6. DP Processors Operating on Dependency Pairs

1. for variables x of sort base, cap(x) = x,

2. for variables x of sort univ, cap(x) =




x if Q ⊇ R

y otherwise

3. cap(f(t1, . . . , tn)) = f(cap(t1), . . . ,cap(tn)) if there does not exist a rule l →

rJϕK ∈ R such that f(cap(t1), . . . ,cap(tn))µ
>Λ
−→E\S−→! ◦

>Λ
∼E lµ for a substitution

µ that is Th-based for V(f(t1, . . . , tn))∪V(l) where ϕµ is Th-valid and all proper

subterms of lµ are irreducible by
S
→Th‖E\Q, and

4. cap(f(t1, . . . , tn)) = y otherwise.

Here, y is the next variable in an infinite list y1, y2, . . . of fresh variables.

It is also possible to omit the checks for irreducibility by
>Λ
−→E\S , irreducibility

by
S,Q
−→Th‖E\R, and Th-validity, and it is possible to replace case 3 in the definition of

cap by a simple check for f 6∈ D(R). The following results remain correct for these

possibilities. Implementing EDG is still hard in general since it has to be decided

whether there exists a substitution µ such that sµ
>Λ
−→E\S−→! ◦

>Λ
∼E tµ for two terms s, t.

A discussion of possible implementations can be found in Section 9.1.

Example 6.10. In order to check whether the estimated dependency graph contains

an arc from (5.6) to (5.1) in Example 6.6, it needs to be checked whether there exists

a substitution µ that is Th-based for V(qsort♯({x} ∪ y)) ∪ V(app♯(cons(x′, ys′), zs′))

such that

cap(app♯(qsort(low(x, y)), cons(x, qsort(high(x, y)))))µ

= app♯(y1, cons(x, y2))µ

>Λ
−→E\S−→! ◦

>Λ
∼E app♯(cons(x′, ys′), zs′)µ

This can easily seen to be the case by considering, e.g., the substitution µ = {y1 7→

cons(x′, ys′), zs′ 7→ cons(x, y2)}. Therefore, the estimated dependency graph contains

an arc from (5.6) to (5.1). Repeating similar reasoning to all possible arcs, an

82

Chapter 6. DP Processors Operating on Dependency Pairs

estimated dependency graph that is identical to the (exact) dependency graph from

Example 6.6 is obtained. △

It remains to be shown that the estimated dependency graph is indeed an overap-

proximation of the dependency graph, i.e., that EDG(P,Q,R,S, E) is a supergraph

of DG(P,Q,R,S, E).

Theorem 6.11 (Correctness of EDG). For any DP problem (P,Q,R,S, E), the

estimated dependency graph EDG(P,Q,R,S, E) is a supergraph of the dependency

graph DG(P,Q,R,S, E).

6.4 Reducing Right-Hand Sides

The function cap introduced in the previous section has a further use that is not

related to estimated dependency graphs. Using cap, it is possible to apply →E\S to

the right-hand side of a dependency pair in a certain way. More precisely, cap(t|p)

for a non-root position p ∈ Pos(t) can be reduced by →E\S for a dependency pair

s→ tJϕK ∈ P.

Theorem 6.12 (DP Processor Based on Reducing Right-Hand Sides of Dependency

Pairs). Let Proc be a DP processor with Proc(P ∪ {s→ tJϕK},Q,R,S, E) =

• {(P ∪ {s → t′JϕK},Q,R,S, E)}, if there exists a non-root position p ∈ Pos(t)

such that cap(t|p) →E\S t̂ and t′ = t[t̂τ]p, where τ is the substitution with

cap(t|p)τ = t|p, and

• {(P ∪ {s→ tJϕK},Q,R,S, E)}, otherwise.

Then Proc is sound.

83

Chapter 6. DP Processors Operating on Dependency Pairs

Example 6.13. Continuing Example 6.4, the RCERS (Q, {(6.3)},S, E) with an

arbitrary set Q gives rise to the DP problem ({(6.8)},Q, {(6.3)},S, E) with the

following dependency pair:

g♯(x ∪ y) → g♯(∅ ∪ ∅) (6.8)

Applying the DP processor of Theorem 6.12 to the only dependency pair, the DP

problem ({g♯(x ∪ y) → g♯(∅)},Q, {(6.3)},S, E) is obtained. The dependency graph

of this DP problem does not contain any SCC (this is also true for the initial DP

problem ({(6.8)},Q, {(6.3)},S, E), but it is harder to determine this automatically,

cf. Section 9.1). △

6.5 Dependency Pair Narrowing

Under certain conditions it is possible to replace a dependency pair s → tJϕK by a

set of new dependency pairs that are formed by combining s → tJϕK with all other

dependency pairs that may follow it in chains.3 This way, it might be possible to

obtain more information about the possible substitutions used for a chain since, in

particular, the constraints of the dependency pairs are suitably combined.

Example 6.14. Consider the following rewrite rules R, where S and E are used to

model ThZ:

f(x) → f(−x+ 1) Jx > 0K

f(x) → f(−x− 1) Jx < 0K

3It is also possible to combine s → tJϕK with all dependency pairs that may precede

it in chains. Notice that dependency pair narrowing has some similarities to the use of
conditional constraints in [89]. Dependency pair narrowing conceptually differs from these
conditional constraints, however, since conditional constraints are solely used in combi-
nation with one particular technique (reduction pairs). Dependency pair narrowing is
independent of other techniques and transforms a DP problem. It is thus also similar to
the dependency pair transformations from [12, 88].

84

Chapter 6. DP Processors Operating on Dependency Pairs

Rewriting with these rules is terminating, since the absolute value of the argument

of f is always decreasing. However, the implementation of the methods presented in

this dissertation does not succeed in proving termination if the technique presented

in this section is not used.

R gives rise to the following dependency pairs:

f♯(x) → f♯(−x+ 1) Jx > 0K (6.9)

f♯(x) → f♯(−x− 1) Jx < 0K (6.10)

By combining (6.9) with all dependency pairs that may follow it in chains (i.e., with

(6.9) and (6.10)), the dependency pair (6.9) is replaced by

f♯(x) → f♯(−(−x + 1) + 1) Jx > 0 ∧−x+ 1 > 0K (6.11)

f♯(x) → f♯(−(−x + 1)− 1) Jx > 0 ∧ −x+ 1 < 0K (6.12)

The implementation succeeds on the DP problem ({(6.10), (6.11), (6.12),Q,R,S, E)

since the constraint of (6.11) is unsatisfiable and the DP problem ({6.12},Q, E ,S, E)

obtained from the only SCC in the dependency graph can easily be handled by

methods introduced in Chapter 7. △

This idea can be stated in the form of a DP Processor. The conditions imposed

on the left- and right-hand sides of the dependency pairs ensure that the combined

dependency pairs can be easily computed.

Theorem 6.15 (DP Processor Based on Dependency Pair Narrowing). Let Proc be

a DP processor with Proc(P ∪ {s→ tJϕK},Q,R,S, E) =

• {(P ∪ P ′,Q,R,S, E)}, if

– t= f ♯(t1, . . . , tn) with ti ∈ T (FTh ,V) and sort(ti) = base for all 1 ≤ i ≤ n,

– s′ = f ♯(x1, . . . , xn) for distinct variables x1, . . . , xn for all s′ → t′Jϕ′K ∈

P ∪ {s→ tJϕK} with root(s′) = f ♯, and

85

Chapter 6. DP Processors Operating on Dependency Pairs

– P ′ = {s → t′τJϕ ∧ ϕ′τK | f ♯(x1, . . . , xn) → t′Jϕ′K ∈ P ∪ {s → tJϕK} and

τ = {x1 7→ t1, . . . , xn 7→ tn}}.

• {(P ∪ {s→ tJϕK},Q,R,S, E)}, otherwise.

Then Proc is sound.

If the right-hand side of the dependency pair s → tJϕK considered in Theorem

6.15 does not have the form f(t1, . . . , tn) with ti ∈ T (FTh ,V) and sort(ti) = base

for all 1 ≤ i ≤ n, then it might be possible to eliminate certain arguments of f in

order to satisfy this condition. The elimination of arguments is done using a simple

version of non-collapsing argument filters [117].

Definition 6.16 (Non-Collapsing Argument Filters). A non-collapsing argument fil-

ter π maps every n-ary function symbol f ♯ ∈ F ♯ to a (possibly empty) list [i1, . . . , im]

with 1 ≤ i1 < . . . < im ≤ n. The set π(F ♯) consists of all function symbols f ♯ ∈ F ♯,

where f ♯ now has arity m if π(f) = [i1, . . . , im]. A non-collapsing argument filter π

induces a mapping on terms t♯ defined by

π(t♯) = f ♯(ti1 , . . . , tim) if t♯ = f ♯(t1, . . . , tn) and π(f ♯) = [i1, . . . , im]

Now non-collapsing argument filters can be used to remove certain arguments

in a DP problem. As motivated above, this may make it possible to apply the DP

processor of Theorem 6.15 afterwards. A further use of the removal of arguments is

presented in Section 7.3.

Theorem 6.17 (DP Processor Based on Non-Collapsing Argument Filters). Let

π be a non-collapsing argument filter and let Proc be a DP processor such that

Proc(P,Q,R,S, E) =

• {(π(P),Q,R,S, E)}, if V(π(t)) ⊆ V(π(s)) for all s→ tJϕK ∈ P. Here, π(P) =

{π(s)→ π(t)JϕK | s→ tJϕK ∈ P}.4

4Notice that V(ϕ) 6⊆ V(s) is possible. This does not cause any complications.

86

Chapter 6. DP Processors Operating on Dependency Pairs

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

Example 6.18. With S and E as in Example 6.14, consider the following set R of

rewrite rules:

f(x, y) → f(−x+ 1, g(y)) Jx > 0K (6.13)

f(x, y) → f(−x− 1, g(y)) Jx < 0K (6.14)

g(y) → y (6.15)

g(y) → y + 17 (6.16)

The dependency pairs obtained from these rewrite rules are

f♯(x, y) → f♯(−x+ 1, g(y)) Jx > 0K (6.17)

f♯(x, y) → f♯(−x− 1, g(y)) Jx < 0K (6.18)

Notice that the DP processor of Theorem 6.15 is not applicable since the second

arguments of f♯ on the right-hand sides contain recursive calls to g. By applying the

non-collapsing argument filter π(f♯) = [1], these dependency pairs are transformed

into the dependency pairs (6.9) and (6.10) from Example 6.14. △

6.6 Subterm Criterion

The subterm criterion [95] is a relatively simple and efficient technique which is

nonetheless surprisingly powerful. The technique works particularly well for func-

tions that are defined using primitive recursion. For ordinary rewriting, the subterm

criterion applies a simple projection which collapses a term f ♯(t1, . . . , tn) to one of

its direct subterms. Given a set P of dependency pairs and a subset P ′ ⊆ P, the

87

Chapter 6. DP Processors Operating on Dependency Pairs

subterm criterion consists of finding a simple projection such that the collapsed right-

hand side is a subterm of the collapsed left-hand side for all dependency pairs in P,

where this subterm relation is furthermore strict for all dependency pairs from P ′.

Then, the dependency pairs from P ′ may be removed from the DP problem since

they cannot occur infinitely often in a chain.

Definition 6.19 (Simple Projections). A simple projection is a mapping π that

assigns an argument position i with 1 ≤ i ≤ n to every f ♯ ∈ F ♯ with arity(f ♯) = n.

The mapping that assigns the argument tπ(f♯) to any term f ♯(t1, . . . , tn) its is also

denoted by π.

In the context of this dissertation, the subterm relation modulo E is used. This

generalization is quite natural and makes it possible to apply the idea of the subterm

criterion to RCERSs.

Definition 6.20 (E-Subterms). Let (Q,R,S, E) be an RCERS and let s, t be terms.

Then t is a strict E-subterm of s, written s�E t, iff s ∼E ◦� ◦ ∼E t. The term t is

an E-subterm of s, written s�E t, iff s�E t or s ∼E t.

Example 6.21. For E = {x ∪ y ≈ y ∪ x, x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z}, {0} ∪ ({1} ∪

{2}) �E {2} ∪ {0} since {0} ∪ ({1} ∪ {2}) ∼E {1} ∪ ({2} ∪ {0}) � {2} ∪ {0}. △

Notice that �E is not well-founded in general. Attention is thus restricted to the

case where E is size-preserving. In particular, this requirement is satisfied for the

canonizable theories in Figure 3.1 and the canonizable collection data structures in

Figure 3.2. The subterm criterion does not inherently depend on size-preservingness,

however. Other criteria that ensure well-foundedness of �E may be used as well, with

size-preservingness being an easily checkable criterion that is sufficient for most cases.

It will be shown in Lemma 6.23 below that the subterm relation modulo E is

stable. This property is important since all instantiations of a dependency pair can

be considered simultaneously by considering just the dependency pair itself.

88

Chapter 6. DP Processors Operating on Dependency Pairs

Definition 6.22 (Stability). A relation ⊲⊳ on terms is stable iff s ⊲⊳ t implies

sσ ⊲⊳ tσ for all terms s, t and all substitutions σ.

The following lemma collects several properties of �E and �E in the case where

E is size-preserving. Here, only 1 and 2 depend on size-preservingness.

Lemma 6.23. Let (Q,R,S, E) be an RCERS such that E is size-preserving.

1. Given terms s, t, it is decidable whether s�E t or s�E t.

2. �E is well-founded.

3. �E and �E are stable.

4. �E and �E are compatible with ∼E , i.e., ∼E ◦�E ◦ ∼E ⊆ �E and ∼E ◦�E ◦ ∼E

⊆ �E .

A DP processor based on the subterm criterion is defined as follows. This DP

processor has the advantage that it does not need to consider R and S in a DP

problem (P,Q,R,S, E). This makes it possible to handle many DP problems very

efficiently.

Theorem 6.24 (DP Processor Based on the Subterm Criterion). Let π be a simple

projection and let Proc be a DP processor with Proc(P,Q,R,S, E) =

• {(P − P ′,Q,R,S, E)}, if E is size-preserving and P ′ ⊆ P such that

– π(s) �E π(t) for all s→ tJϕK ∈ P ′, and

– π(s) �E π(t) for all s→ tJϕK ∈ P − P ′.

• (P,Q,R,S, E), otherwise.

Then Proc is sound.

89

Chapter 6. DP Processors Operating on Dependency Pairs

Recall from Lemma 6.23.1 that �E and �E are decidable if E is size-preserving.

An implementation thus reduces to finding the simple projection π.

Example 6.25. This example illustrates a mergesort algorithm that takes a set of

integers and returns a sorted list of the elements of that set. For this, integers are

modeled as in Figure 3.1 and sets are modeled using ∅, {·}, and ∪ as in Figure 3.2.

The mergesort algorithm can be given as follows:

merge(nil, y) → y

merge(x, nil) → x

merge(cons(x, xs), cons(y, ys)) → cons(y,merge(cons(x, xs), ys)) Jx > yK

merge(cons(x, xs), cons(y, ys)) → cons(x,merge(xs, cons(y, ys))) Jx 6> yK

msort(∅) → nil

msort({x}) → cons(x, nil)

msort(x ∪ y) → merge(msort(x),msort(y))

These rules give rise to the following five dependency pairs:

merge♯(cons(x, xs), cons(y, ys)) → merge♯(cons(x, xs), ys) Jx > yK (6.19)

merge♯(cons(x, xs), cons(y, ys)) → merge♯(xs, cons(y, ys)) Jx 6> yK (6.20)

msort♯(x ∪ y) → merge♯(msort(x),msort(y)) (6.21)

msort♯(x ∪ y) → msort♯(x) (6.22)

msort♯(x ∪ y) → msort♯(y) (6.23)

The (estimated) dependency graph contains two SCCs and it suffices to consider the

following DP problems independently:

({(6.19), (6.20)},Q,R,S, E) (6.24)

({(6.22), (6.23)},Q,R,S, E) (6.25)

90

Chapter 6. DP Processors Operating on Dependency Pairs

For the DP problem (6.24), first apply the DP processor based on the subterm

criterion with the simple projection π(merge♯) = 1. Then

π(merge♯(cons(x, xs), cons(y, ys))) = cons(x, xs)

�E cons(x, xs) = π(merge♯(cons(x, xs), ys))

π(merge♯(cons(x, xs), cons(y, ys))) = cons(x, xs)

�E xs = π(merge♯(xs, cons(y, ys)))

and the dependency pair (6.20) may be deleted. The newly obtained DP problem

({(6.19)},Q,R,S, E) can be handled by the subterm criterion with π(merge♯) = 2.

The DP problem (6.25) can also be handled by the subterm criterion, using the

simple projection π(msort♯) = 1. △

Example 6.26. The DP problem (6.4) from Example 6.10 can be handled by the

simple projection π(app♯) = 1. Similarly, the simple projection π(low♯) = π(high♯) =

2 removes all dependency pairs from the DP problems (6.5) and (6.6). △

6.7 Summary

This chapter has introduced various sound DP processors for the termination anal-

ysis of RCERSs. First, it was shown that rewrite rules and dependency pairs may

be removed from a DP problem if their constraint is Th-unsatisfiable or if their

left-hand side is reducible by →E\S . Next, the concept of dependency graphs was

introduced. While nearly all other DP processor introduced in this dissertation only

remove rewrite rules and/or dependency pairs, this technique makes it possible to

decompose a DP problem into several independent DP problems by determining

which dependency pairs may follow each other in chains. The dependency graph

cannot be implemented in its full generality, but it is possible to give effectively im-

plementable approximations of it. Then, DP processors that reduce right-hand sides

91

Chapter 6. DP Processors Operating on Dependency Pairs

of dependency pairs and combine dependency pairs that follow each other in chains

were introduced. Finally, it was shown how the subterm relation modulo E can be

used in order to remove dependency pairs from a DP problem. This is particularly

useful for functions that are defined using primitive recursion.

The next chapter introduces several further sound DP processors. Like the DP

processor based on the subterm criterion, these DP processors are based on well-

founded relations. In contrast to the technique based on the subterm criterion,

however, these DP processors are also useful for showing termination of functions

that are not defined using primitive recursion.

92

Chapter 7

Reduction Pairs

The dependency pair framework for ordinary term rewriting makes heavy use of

reduction pairs (&,≻) [117] in order to remove dependency pairs from a DP problem.

The idea is simple: If ≻ is well-founded and all dependency pairs from a DP problem

(P,Q,R,S, E) are decreasing w.r.t. & or ≻, then all dependency pairs that are

decreasing w.r.t. ≻ cannot occur infinitely often in infinite chains and may thus be

deleted. In order to capture the reductions that take place between the instantiated

dependency pairs, it is necessary to also require that all rules in R are decreasing

w.r.t. &. For RCERSs, similar conditions need to be imposed on S and E as well.

The following sections present three variations on the theme of reduction pairs,

starting with the ordinary reduction pairs from [117]. Then, reduction pairs tailored

towards ThN and ThZ are introduced. In all three cases, the techniques can be applied

to any RCERS, regardless of Q.

Apart from the theoretical concepts, this chapter also introduces methods to

obtain the aforementioned variations of reduction pairs using polynomial interpreta-

tions. A discussion on how to automatically create suitable polynomial interpreta-

tions is postponed until Section 9.2.

93

Chapter 7. Reduction Pairs

7.1 Ordinary Reduction Pairs

These are the well-known reduction pairs from [117]. They make strong requirements

on the monotonicity of &.

Definition 7.1 (Monotonicity). A relation ⊲⊳ on terms is monotonic iff s ⊲⊳ t implies

f(s1, . . . , si−1, s, si+1, . . . , sn) ⊲⊳ f(s1, . . . , si−1, t, si+1, . . . , sn) for all function symbols

f , all 1 ≤ i ≤ arity(f), and all terms s1, . . . , si−1, si+1, . . . , sn.

Notice that s ⊲⊳ t implies C[s] ⊲⊳ C[t] for all contexts C if ⊲⊳ is monotonic.

Definition 7.2 (Ordinary Reduction Pairs). Let & be reflexive, transitive, mono-

tonic, and stable. Let ≻ be well-founded and stable. Then (&,≻) is an ordinary

reduction pair iff ≻ is compatible with &, i.e., iff & ◦ ≻ ◦ & ⊆ ≻. The relation

& ∩ &−1 is denoted by ∼.

As a simple example of compatibility, consider the usual relations > and ≥ on

integers. Then > is compatible with ≥ since a ≥ b > c ≥ d implies a > d for all

integers a, b, c, d. More abstractly, if ≻ is compatible with &, then preceding and

succeeding occurrences of & can be “absorbed” into ≻.

There is a variety of methods to generate reduction pairs: path orders [54], Knuth-

Bendix orders [114], polynomial interpretations [119], matrix interpretations [63],

. . . . Since it is impossible to give a broad survey of these methods, only polynomial

interpretations are briefly discussed here because the reduction pairs tailored towards

ThN and ThZ as introduced in Sections 7.2 and 7.3 are in practice most easily obtained

using (more general) polynomial interpretations as well.1

1Reduction pairs tailored towards ThN and ThZ can also be obtained using matrix
interpretations by adapting the ideas presented below for polynomial interpretations. This
is not discussed further in order to keep the presentation simple. The implementation in
AProVE does contain the specialized matrix interpretations, but they are rarely (if ever)
needed in practice.

94

Chapter 7. Reduction Pairs

The idea for polynomial interpretations is to map terms to polynomials. Then,

these polynomials are compared. In order to map terms to polynomials, it suffices

to assign polynomials to all function symbols f ∈ FTh ∪ F ∪ F
♯ such that Pol(f) ∈

N[x1, . . . , xn] if arity(f) = n. Now terms are mapped to polynomials by defining

[x]Pol = x for variables x ∈ V and [f(t1, . . . , tn)]Pol = Pol(f)([t1]Pol , . . . , [tn]Pol) for

f ∈ FTh ∪F ∪F
♯, i.e., the polynomials obtained from the direct subterms t1, . . . , tn

are combined using the polynomial assigned to the root symbol. Notice that the

variables in terms are translated into polynomial variables of the same name.

Example 7.3. If Pol(f) = 2x1 + x2 and Pol(g) = x2
1 + 1 then [g(f(x, y))]Pol =

[f(x, y)]2Pol
+ 1 = (2x+ y)2 + 1 = 4x2 + 4xy + y2 + 1. △

In order to compare terms, the polynomials obtained from them are compared.

For this, notice that ground terms are mapped to natural numbers.

Definition 7.4 (≻Pol and &Pol for Polynomial Interpretations). Let Pol be a poly-

nomial interpretation. Then ≻Pol is defined by s ≻Pol t if [sσ]Pol > [tσ]Pol for all

ground substitutions σ : V → T (F ∪ FTh). Similarly, &Pol is defined by s &Pol t if

[sσ]Pol ≥ [tσ]Pol for all ground substitutions σ : V → T (F ∪ FTh). Thus, s ∼Pol t if

[sσ]Pol = [tσ]Pol for all ground substitutions σ : V → T (F ∪ FTh).

For a given polynomial interpretation, s ≻Pol t is checked as follows. Recall that

s ≻Pol t means [sσ]Pol > [tσ]Pol for all ground substitutions σ. This can be ensured

by showing that

∀x1 ≥ 0, . . . , xn ≥ 0. [s]Pol > [t]Pol

is true in the integers. Here x1, . . . , xn are the variables occurring in s and t. While

it is in general undecidable whether this formula is true in the integers due to the

undecidability of Hilbert’s 10th problem, it becomes decidable if Pol(f) is linear for

all f ∈ FTh ∪ F ∪ F
♯ since, in this case, [s]Pol and [t]Pol are linear polynomials as

95

Chapter 7. Reduction Pairs

well, thus implying that the above formula is decidable due to Presburger’s classical

result [146].

Example 7.5. If Pol(f) = 2x1+x2 and Pol(g) = 2x1+1, then g(f(x, y)) ≻Pol f(x, y).

To see this, notice that [g(f(x, y)]Pol = 4x + 2y + 1, [f(x, y)]Pol = 2x + y, and that

∀x ≥ 0, y ≥ 0. 4x+ 2y + 1 > 2x+ y is true in the integers. △

As is well-known, these relations indeed give rise to reduction pairs.

Theorem 7.6. Let Pol be a polynomial interpretation. Then (&Pol ,≻Pol) is an

ordinary reduction pair.

Since reduction pairs need to satisfy certain requirements derived from a DP

problem, the following notation is introduced. Here, the set R′ will not be used until

Section 8.2.

Definition 7.7. Let (&,≻) be an ordinary reduction pair, let (P,Q,R,S, E) be a

DP problem, let P ′ be a set of dependency pairs, and let R′ be a set of constrained

rewrite rules. Then (&,≻) |= (P ′,P,R′,R,S, E) iff

1. s ≻ t for all s→ tJϕK ∈ P ′,

2. s & t for all s→ tJϕK ∈ P − P ′,

3. l ≻ r for all l → rJϕK ∈ R′,

4. l & r for all l → rJϕK ∈ R−R′,

5. l & r for all l → r ∈ S, and

6. u ∼ v for all u ≈ v ∈ E .

Using ordinary reduction pairs, dependency pairs s → tJϕK such that s ≻ t can

be removed from a DP problem.

Theorem 7.8 (DP Processor Based on Ordinary Reduction Pairs). Let (&,≻) be an

ordinary reduction pair and let Proc be a DP processor with Proc(P,Q,R,S, E) =

96

Chapter 7. Reduction Pairs

• {(P − P ′,Q,R,S, E)}, if P ′ ⊆ P such that (&,≻) |= (P ′,P, ∅,R,S, E).

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

Example 7.9. To illustrate Theorem 7.8 and ordinary reduction pairs based on

polynomial interpretations, consider an RCERS over ThN, i.e., S and E are as follows:

S : x+ 0 → x

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

Let R consist of the rule f(x + 1) → f(x) and let Q be arbitrary. Then the initial

DP problem is ({f♯(x + 1) → f♯(x)},R,Q,S, E). This DP problem can be handled

by the DP processor of Theorem 7.8 using the following polynomial interpretation:

Pol(f♯) = x1

Pol(f) = 0

Pol(+) = x1 + x2

Pol(1) = 1

Pol(0) = 0

Indeed, (&Pol ,≻Pol) |= ({f♯(x+ 1)→ f♯(x)}, {f♯(x+ 1)→ f♯(x)}, ∅,R,S, E). △

7.2 ThN-Reduction Pairs

For ThN, the requirement that & needs to be monotonic for all possible contexts can

be relaxed since, given a set of dependency pairs, reductions with
S,Q
−→Th‖E\R may

only take place in certain argument positions of a symbol f ♯ ∈ F ♯. This follows

97

Chapter 7. Reduction Pairs

directly from the requirement that the substitution σ used for building a chain is

ThN-based. In particular, this relaxation of monotonicity makes it possible to use

polynomial interpretations with negative coefficients for the function symbols in F ♯.

This if often needed for a successful termination proof, see Example 7.19 below.

Similar reasoning applies for ThZ as well, see Section 7.3.

For function symbols f 6∈ F ♯ nothing changes, i.e., monotonicity for contexts over

F ∪ FThN
is still required for a ThN-reduction pair.2

Definition 7.10 (F -Monotonic Relations). A relation ⊲⊳ is F -monotonic iff s ⊲⊳ t

implies f(s1, . . . , si−1, s, si+1, . . . , sn) ⊲⊳ f(s1, . . . , si−1, t, si+1, . . . , sn) for all f ∈ F ∪

FThN
, all 1 ≤ i ≤ arity(f), and all s, t, s1, . . . , si−1, si+1, . . . , sn ∈ T (F ∪ FThN

,V).

As motivated above, monotonicity w.r.t. a context that has a symbol f ♯ ∈ F ♯ at

its root is only required for certain argument positions of f ♯.

Definition 7.11 (f ♯-Monotonic Relations). Let f ♯ ∈ F ♯ and 1 ≤ i ≤ arity(f ♯). A re-

lation ⊲⊳ is f ♯-monotonic at position i iff s ⊲⊳ t implies f ♯(s1, . . . , si−1, s, si+1, . . . , sn)

⊲⊳ f ♯(s1, . . . , si−1, t, si+1, . . . , sn) for all s, t, s1, . . . , si−1, si+1, . . . , sn ∈ T (F∪FThN
,V).

Notice that ⊲⊳ is monotonic in the sense of Definition 7.1 if and only if ⊲⊳ is F -

monotonic and f ♯-monotonic at position i for all f ♯ ∈ F ♯ and all 1 ≤ i ≤ arity(f ♯).

When considering the DP problem (P,Q,R,S, E), the relation & needs to be

f ♯-monotonic at position i only if P contains a dependency pair of the form s →

f ♯(t1, . . . , ti, . . . , tn)JϕK where sort(ti) = univ or ti 6∈ T (FThN
,V). The reason for

this is that & needs to be monotonic only in those argument position of F ♯ where

a
S,Q
−→Th‖E\R-reduction may potentially take place. Notice that no instantiation of

ti can be reduced using
S,Q
−→Th‖E\R in a (P,Q,R,S, E)-chain if sort(ti) = base and

2Using ideas from [89, 74], it might be possible to relax this requirement. For simplicity,
this is not considered in this dissertation and is left for future work.

98

Chapter 7. Reduction Pairs

ti ∈ T (FThN
,V) since the substitution σ used for the chain is ThN-based. A similar

observation has already been made in the case of innermost termination of ordinary

rewriting considered in [12]. In this dissertation, however, this refinement becomes

applicable in the non-innermost case as well.

Definition 7.12 (Reducible Positions). Let P be a set of dependency pairs and let

f ♯ ∈ F ♯. Then the set of reducible positions of f ♯ for P is given by RedPos(f ♯,P) =

{i | there exists s → f ♯(t1, . . . , ti, . . . , tn)JϕK ∈ P such that sort(ti) = univ or ti 6∈

T (FTh ,V)}.

Notice that an instance of a term ti with sort(ti) = base and ti ∈ T (FThN
,V)

may still be reduced using the ThN-rules from S. In order to ensure that these

reductions result in terms that are equivalent w.r.t. & ∩ &−1, first define Ss = {l →

r ∈ S | sort(l) = s}, where s ∈ {base, univ}. It is then required that & ∩ &−1

is f ♯-monotonic at position i for all i 6∈ RedPos(f ♯,P) and that l & ∩ &−1 r for

all l → r ∈ Sbase, i.e., the rules from Sbase need to be treated like the equations

from E . Then, s →E\S t for s, t ∈ T (FThN
,V) with sort(s) = sort(t) = base implies

s & ∩ &−1 t.

The notion of ThN-reduction pairs generalizes ordinary reduction pairs and de-

pends on the DP problem under consideration. It is similar to the notion of gener-

alized reduction pairs [89, 74] in the sense that full monotonicity is not required.

Definition 7.13 (ThN-Reduction Pairs). Let (P,Q,R,S, E) be a DP problem and

let & and ≻ be relations on terms such that

1. & is reflexive, transitive, and F-monotonic,

2. for all f ♯ ∈ F ♯,

• & is f ♯-monotonic at position i for all i ∈ RedPos(f ♯,P),

• & ∩ &−1 is f ♯-monotonic at position i for all i 6∈ RedPos(f ♯,P), and

99

Chapter 7. Reduction Pairs

3. ≻ is well-founded.

Then (&,≻) is a ThN-reduction pair for P iff ≻ is compatible with &, i.e., iff & ◦ ≻

◦ & ⊆ ≻. The relation & ∩ &−1 is denoted by ∼.

Notice that neither & nor ≻ are required to be stable. Indeed, stability for all

substitutions is not needed since this property is only required for certain substitu-

tions that can be used in (P,Q,R,S, E)-chains. These substitutions are indirectly

given by the constraints of the dependency pairs and rules that are to be oriented.

Definition 7.14 (ThN-Reduction Pairs on Constrained Terms). Let (&,≻) be a ThN-

reduction pair. Let s, t be terms and let ϕ be a ThN-constraint. Then sJϕK & tJϕK

iff sσ & tσ for all ThN-based substitutions σ such that ϕσ is ThN-valid. Similarly,

sJϕK ≻ tJϕK iff sσ ≻ tσ for all ThN-based substitutions σ such that ϕσ is ThN-valid.

The easiest way to generate ThN-reduction pairs is based on polynomial interpre-

tations. In contrast to Section 7.1, however, some coefficients of the polynomials may

now be negative. This increased flexibility is often needed for successful termination

proofs. The class of polynomial interpretations considered here is similar to the class

considered in [89].

A ThN-polynomial interpretation Pol fixes a constant cPol ∈ Z and maps

1. the symbols in FThN
to polynomials over N in the natural way, i.e., Pol(0) = 0,

Pol(1) = 1, and Pol(+) = x1 + x2,

2. the symbols in F to polynomials over N such that Pol(f) ∈ N[x1, . . . , xn] if

arity(f) = n, and

3. the symbols in F ♯ to polynomials over Z such that Pol(f ♯) ∈ Z[x1, . . . , xn] if

arity(f ♯) = n.

The reason for fixing the polynomials for the symbols from FThN
this way is that

a term from T (FThN
) is then mapped to the natural number it represents. As will

100

Chapter 7. Reduction Pairs

become apparent later, this makes it possible to directly use the ThN-constraint when

comparing two constrained terms.

ThN-polynomial interpretations generate relations on terms as follows. This is

similar to Definition 7.4. Here, the condition [sσ]Pol ≥ cPol in the definition of ≻Pol

in needed for well-foundedness.

Definition 7.15 (≻Pol and &Pol for ThN-Polynomial Interpretations). Let Pol be a

ThN-polynomial interpretation. Then ≻Pol is defined by s ≻Pol t iff [sσ]Pol ≥ cPol

and [sσ]Pol > [tσ]Pol for all ground substitutions σ : V → T (F ∪ FThN
). Similarly,

&Pol is defined by s &Pol t iff [sσ]Pol ≥ [tσ]Pol for all ground substitutions σ : V →

T (F ∪FThN
). Thus, s ∼Pol t iff [sσ]Pol = [tσ]Pol for all ground substitutions σ : V →

T (F ∪ FThN
).

For a given ThN-polynomial interpretation, sJϕK ≻Pol tJϕK is checked as follows.

Recall that sJϕK ≻Pol tJϕK means sσ ≻Pol tσ for all ThN-based substitutions σ that

make ϕσ ThN-valid. This, in turn, means [sσσ′]Pol ≥ cPol and [sσσ′]Pol > [tσσ′]Pol

for all ground substitutions σ′. This can be achieved by showing that the following

formulas are true in the integers:

∀x1 ≥ 0, . . . , xn ≥ 0. ϕ⇒ [s]Pol ≥ cPol

∀x1 ≥ 0, . . . , xn ≥ 0. ϕ⇒ [s]Pol > [t]Pol

Here x1, . . . , xn are the variables occurring in s and t. Notice that it suffices to

consider instantiations of x1, . . . , xn by natural numbers since all function symbols

from F ∪FTh are mapped to polynomials over N and substitutions do not introduce

function symbols from F ♯. As for ordinary polynomial interpretations, it is decidable

whether these formulas are true in the integers if Pol(f) is linear for all f ∈ FTh ∪

F ∪ F ♯. This again follows from the decidability of Presburger arithmetic [146].

Now &Pol and ≻Pol indeed give rise to ThN-reduction pairs where f ♯-monotonicity

at position i is achieved by requiring that Pol(f ♯) is weakly increasing in xi.

101

Chapter 7. Reduction Pairs

Theorem 7.16. Let (P,Q,R,S, E) be a DP problem and let Pol be a ThN-polynomial

interpretation. Then (&Pol ,≻Pol) is a ThN-reduction pair for P if Pol(f ♯) is weakly

increasing in all xi with i ∈ RedPos(f ♯,P).

Again, the following notation is introduced.

Definition 7.17. Let (P,Q,R,S, E) be a DP problem, let (&,≻) be a ThN-reduction

pair for P, let P ′ be a set of dependency pairs, and let R′ be a set of constrained

rewrite rules. Then (&,≻) |= (P ′,P,R′,R,S, E) iff ThN is built-in and

1. sJϕK ≻ tJϕK for all s→ tJϕK ∈ P ′,

2. sJϕK & tJϕK for all s→ tJϕK ∈ P − P ′,

3. lJϕK ≻ rJϕK for all l → rJϕK ∈ R′,

4. lJϕK & rJϕK for all l → rJϕK ∈ R−R′,

5. l & r for all l → r ∈ Suniv,

6. l ∼ r for all l → r ∈ Sbase, and

7. u ∼ v for all u ≈ v ∈ E .

Using ThN-reduction pairs, dependency pairs s → tJϕK such that sJϕK ≻ tJϕK

can again be removed.

Theorem 7.18 (DP Processor Based on ThN-Reduction Pairs). Let Proc be a DP

processor with Proc(P,Q,R,S, E) =

• {(P − P ′,Q,R,S, E)}, if (&,≻) is a ThN-reduction pair for P and P ′ ⊆ P

such that (&,≻) |= (P ′,P, ∅,R,S, E).

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

102

Chapter 7. Reduction Pairs

Example 7.19. In contrast to ordinary reduction pairs, ThN-reduction pairs can also

be used to show termination that is due to a bounded increase, i.e., if an argument

is counted upwards until a fixed bound is reached. To illustrate this, consider an

RCERS over ThN, i.e., S and E are as follows:

S : x+ 0 → x

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

Let R consist of the rule f(x, y) → f(x + 1, y) Jy > xK and let Q be arbitrary. The

initial DP problem ({f♯(x, y)→ f♯(x+1, y)Jy > xK},Q,R,S, E) can be handled using

the following ThN-polynomial interpretation with cPol = 0:

Pol(f♯) = x2 − x1

Pol(f) = 0

Pol(+) = x1 + x2

Pol(1) = 1

Pol(0) = 0

For this interpretation, (&Pol ,≻Pol) |= ({f♯(x, y) → f♯(x + 1, y)Jy > xK}, {f♯(x, y) →

f♯(x+ 1, y)Jy > xK)}, ∅,R,S, E) because

∀x ≥ 0, y ≥ 0. y > x⇒ y − x ≥ 0

∀x ≥ 0, y ≥ 0. y > x⇒ y − x > y − (x+ 1)

are true in the integers. △

7.3 ThZ-Reduction Pairs

For ThZ, the requirement that & needs to be monotonic for all possible contexts can

also be relaxed, albeit in a slightly different way than for ThN. In order to introduce

103

Chapter 7. Reduction Pairs

ThZ-polynomial interpretations in analogy to the ThN-polynomial interpretations in

Section 7.2, it becomes necessary to interpret the function symbol − ∈ FThZ
by

the polynomial Pol(−) = −x1. But this clearly destroys F -monotonicity. It thus

becomes necessary to impose restrictions under which these kinds of polynomial

interpretations may be applied.

If all arguments of right-hand sides of P are terms from T (FThZ
,V), then no

reductions w.r.t.
S,Q
−→Th‖E\R can take place between instantiated dependency pairs in

a chain since chains are built using ThZ-based substitutions (recall the discussion on

this in Section 7.2). Thus, if RedPos(f ♯,P) = ∅ for all f ♯ ∈ F ♯, then the reduction

pair does not need to be monotonic in the argument of − ∈ FThZ
.

If this requirement is not fulfilled, then it can be ensured that no reduction w.r.t.
S,Q
−→Th‖E\R can take place below the function symbol − if F does not contain any

function symbol with resulting sort base. In this case, it still needs to be required

that function symbols from F ∪ F ♯ are monotonic in all argument positions of sort

univ since reductions may take place in these arguments.

Definition 7.20 (univ-Monotonic Relations). A relation ⊲⊳ is univ-monotonic iff

s ⊲⊳ t implies f(s1, . . . , si−1, s, si+1, . . . , sn) ⊲⊳ f(s1, . . . , si−1, t, si+1, . . . , sn) for all

f ∈ F ∪ F ♯, all 1 ≤ i ≤ arity(f) such that the ith argument of f has sort univ, and

all s, t, s1, . . . , si−1, si+1, . . . , sn ∈ T (F ∪ FThZ
,V).

For argument positions of sort base the following, slightly different notion of

monotonicity is required. This is essentially identical to the f ♯-monotonicity of &

∩ &−1 required for ThN-reduction pairs and again ensures that reductions with Sbase

result in terms that are equivalent w.r.t. & ∩ &−1.

Definition 7.21 (base-Monotonic Relations). Let ⊲⊳ be a relation and let ⊲̂⊳ = ⊲⊳

∩ ⊲⊳−1. Then ⊲⊳ is base-monotonic iff s ⊲̂⊳ t implies f(s1, . . . , si−1, s, si+1, . . . , sn) ⊲̂⊳

f(s1, . . . , si−1, t, si+1, . . . , sn) for all f ∈ F ∪FThZ
∪F ♯, all 1 ≤ i ≤ arity(f) such that

104

Chapter 7. Reduction Pairs

the ith argument of f has sort base, and all s, t, s1, . . . , si−1, si+1, . . . , sn ∈ T (F ∪

FThZ
,V).

As for ThN-reduction pairs, the notion of ThZ-reduction pairs depends on the DP

problem under consideration.

Definition 7.22 (ThZ-Reduction Pairs). Let (P,Q,R,S, E) be a DP problem and let

& and ≻ be relations on terms such that & is reflexive, transitive, univ-monotonic,

and base-monotonic and ≻ is well-founded. Then (&,≻) is a Th-reduction pair for

P iff ≻ is compatible with &, i.e., iff & ◦ ≻ ◦ & ⊆ ≻. The relation & ∩ &−1 is

denoted by ∼.

Notice that & and ≻ are again not required to be stable. ThZ-reduction pairs

can be used for constrained terms just like this is done for ThN-reduction pairs.

The easiest way to generate ThZ-reduction pairs is again based on polynomial

interpretations. A ThZ-polynomial interpretation Pol fixes a constant cPol ∈ Z and

maps

1. the symbols in FThZ
to polynomials over Z in the natural way, i.e., Pol(0) = 0,

Pol(1) = 1, Pol(−) = −x1 and Pol(+) = x1 + x2,

2. the symbols in F to polynomials over N such that Pol(f) ∈ N[x1, . . . , xn] if

arity(f) = n, and

3. the symbols in F ♯ to polynomials over Z such that Pol(f ♯) ∈ Z[x1, . . . , xn] if

arity(f ♯) = n.

As for ThN-polynomial interpretations, the reason for fixing the polynomials for

the symbols from FThZ
this way is that a term from T (FThZ

) is then mapped to

the integer it represents. Again, this will make it possible to directly use the ThZ-

constraint when comparing two constrained terms.

The following is identical to ThN-polynomial interpretations, cf. Definition 7.15.

105

Chapter 7. Reduction Pairs

Definition 7.23 (≻Pol and &Pol for ThZ-Polynomial Interpretations). Let Pol be a

ThZ-polynomial interpretation. Then ≻Pol is defined by s ≻Pol t iff [sσ]Pol ≥ cPol

and [sσ]Pol > [tσ]Pol for all ground substitutions σ : V → T (F ∪ FThZ
). Similarly,

&Pol is defined by s &Pol t iff [sσ]Pol ≥ [tσ]Pol for all ground substitutions σ : V →

T (F ∪FThZ
). Thus, s ∼Pol t iff [sσ]Pol = [tσ]Pol for all ground substitutions σ : V →

T (F ∪ FThZ
).

Checking sJϕK ≻Pol tJϕK is done similarly to ThN-polynomial interpretations.

Recall that it suffices to show that [sσσ′]Pol ≥ cPol and [sσσ′]Pol > [tσσ′]Pol for all

ThZ-based substitutions σ such that ϕσ is ThZ-valid and for all ground substitutions

σ′. This can be achieved by showing that the following formulas are true in the

integers:

∀x1, . . . , xn. ϕ⇒ [s]Pol ≥ cPol

∀x1, . . . , xn. ϕ⇒ [s]Pol > [t]Pol

Here, x1, . . . , xn are the variables occurring in s and t. In contrast to ThN-polynomial

interpretations, the variables have to be instantiated by negative numbers as well

since Pol(−) = −x1. As for ordinary polynomial interpretations and ThN-polynomial

interpretations, it is decidable whether these formulas are true in the integers if

Pol(f) is linear for all f ∈ FTh ∪F ∪F
♯ since this again follows from the decidability

of Presburger arithmetic [146].

The above requirements might be impossible to show if one of the xi has sort univ

since then the possible values it can take are not restricted by the ThZ-constraint

ϕ. By restricting the ThZ-polynomial interpretation Pol such that for each f ∈ F

with resulting sort univ, the polynomial Pol(f) may only depend on a variable xi if

the ith argument of f has sort univ, a requirement that can often be shown easier is

obtained. Now showing sJϕK ≻Pol tJϕK can be achieved by showing that the following

106

Chapter 7. Reduction Pairs

formulas are true in the integers:

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ⇒ [s]Pol ≥ cPol

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ⇒ [s]Pol > [t]Pol

Here, x1, . . . , xk are the variables of sort base in s and t and y1, . . . , yl are the variables

of sort univ in s and t. As before, it is still decidable whether these formulas are

true in the integers if Pol(f) is linear for all f ∈ FTh ∪ F ∪ F
♯.

Example 7.24. Assume that F contains g : base × univ → univ and f : univ →

univ. Then, consider the ThZ-polynomial interpretation with cPol = 0, Pol(f) = x1,

and Pol(g) = x2 +1. Thus, [f(g(x, y))]Pol = y+1 and [f(y)] = y. Notice that for each

function symbol f ∈ F with resulting sort univ, the polynomial Pol(f) only depends

on variables corresponding to arguments of sort univ. Using the refinement discussed

above, f(g(x, y)) ≻Pol f(y) since the following formulas are true in the integers:

∀y ≥ 0. y + 1 ≥ 0

∀y ≥ 0. y + 1 > y

In particular, the first formula requires the assumption that y is non-negative. With-

out the refinement, f(g(x, y)) ≻Pol f(y) cannot be established since

∀y. y + 1 ≥ 0

is not true in the integers. △

The following lemma justifies that it suffices to instantiate the variables of sort

univ only by non-negative numbers if this refinement is used.

Lemma 7.25. Let Pol be a ThZ-polynomial interpretation such that for each f ∈ F

with resulting sort univ, the polynomial Pol(f) only depends on a variable xi if the

ith argument of f has sort univ. If s ∈ T (F ∪FThZ
) such that s has sort univ, then

[s]Pol ≥ 0.

107

Chapter 7. Reduction Pairs

As for ThN-polynomial interpretations, the relations &Pol and ≻Pol indeed give

rise to ThZ-reduction pairs. The monotonicity requirements are again achieved by

requiring Pol(f ♯) to be weakly increasing in all xi that correspond to an argument

of sort univ.

Theorem 7.26. Let (P,Q,R,S, E) be a DP problem and let Pol be a ThZ-polynomial

interpretation. Then (&Pol ,≻Pol) is a ThZ-reduction pair for P if Pol(f ♯) is weakly

increasing in all xi where the ith argument of f ♯ has sort univ.

Finally, the following notation is also introduced for ThZ-reduction pairs.

Definition 7.27. Let (P,Q,R,S, E) be a DP problem, let (&,≻) be a ThZ-reduction

pair for P, let P ′ be a set of dependency pairs, and let R′ be a set of constrained

rewrite rules. Then (&,≻) |= (P ′,P,R′,R,S, E) is defined to hold iff ThZ is built-in,

either RedPos(f ♯,P) = ∅ for all f ♯ ∈ F ♯ or F does not contain any function symbol

with resulting sort base, and

1. sJϕK ≻ tJϕK for all s→ tJϕK ∈ P ′,

2. sJϕK & tJϕK for all s→ tJϕK ∈ P − P ′,

3. lJϕK ≻ rJϕK for all l → rJϕK ∈ R′,

4. lJϕK & rJϕK for all l → rJϕK ∈ R−R′,

5. l & r for all l → r ∈ Suniv,

6. l ∼ r for all l → r ∈ Sbase, and

7. u ∼ v for all u ≈ v ∈ E .

As before, dependency pairs s → tJϕK such that sJϕK ≻ tJϕK can be removed

from a DP problem.

Theorem 7.28 (DP Processor Based on ThZ-Reduction Pairs). Let Proc be a DP

processor with Proc(P,Q,R,S, E) =

108

Chapter 7. Reduction Pairs

• {(P − P ′,Q,R,S, E)}, if (&,≻) is a ThZ-reduction pair for P and P ′ ⊆ P

such that (&,≻) |= (P ′,P, ∅,R,S, E).

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

Example 7.29. Using ThZ-polynomial interpretations, termination of the CERS

(and thus the imperative program) from Example 4.5 can be established. Recall the

following rules and equations:

S : x+ 0 → x

−− x → x

−0 → 0

−(x+ y) → (−x) + (−y)

x+ (−x) → 0

(x+ (−x)) + y → 0 + y

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

R: eval1(x, y) → eval2(x, 1) Jx ≥ 0K

eval2(x, y) → eval2(x, 2 · y) Jx ≥ 0 ∧ y > 0 ∧ x > yK

eval2(x, y) → eval1(x− 1, y) Jx ≥ 0 ∧ y > 0 ∧ x 6> yK

There are three dependency pairs:

eval♯1(x, y)→ eval♯2(x, 1) Jx ≥ 0K (7.1)

eval♯2(x, y)→ eval♯2(x, 2 · y) Jx ≥ 0 ∧ y > 0 ∧ x > yK (7.2)

eval2(x, y)
♯ → eval♯1(x− 1, y) Jx ≥ 0 ∧ y > 0 ∧ x 6> yK (7.3)

For an arbitrary Q, the DP problem ({(7.1), (7.2), (7.3)},Q,R,S, E) is transformed

into the DP problem ({(7.1), (7.2)},Q,R,S, E) using a ThZ-polynomial interpreta-

tion with Pol(eval♯1) = Pol(eval♯2) = x1, Pol(eval1) = Pol(eval2) = 0, and cPol = 0

109

Chapter 7. Reduction Pairs

because

∀x, y. x ≥ 0⇒ x ≥ x

∀x, y. x ≥ 0 ∧ y > 0 ∧ x > y ⇒ x ≥ x

∀x, y. x ≥ 0 ∧ y > 0 ∧ x 6> y ⇒ x ≥ 0

∀x, y. x ≥ 0 ∧ y > 0 ∧ x 6> y ⇒ x > x− 1

are true in the integers. The newly obtained DP problem is transformed into the DP

problem ({(7.2)},Q,R,S, E) since (7.1) is not in the SCC of the problem’s depen-

dency graph. Finally, the DP problem ({(7.2)},Q,R,S, E) can be handled using a

ThZ-polynomial interpretation with Pol(eval♯2) = x1−x2, Pol(eval1) = Pol(eval2) = 0,

and cPol = 0 since

∀x, y. x ≥ 0 ∧ y > 0 ∧ x > y ⇒ x− y ≥ 0

∀x, y. x ≥ 0 ∧ y > 0 ∧ x > y ⇒ x− y > x− 2 · y

are true in the integers. △

Notice that the applicability conditions for ThZ-reduction pairs might not al-

ways be satisfied, i.e., F may contain function symbols with resulting sort base and

RedPos(f ♯,P) 6= ∅ for some f ♯ ∈ F ♯. In this case it might be possible to eliminate

certain argument positions of f ♯ using the DP processor from Theorem 6.17 such

that RedPos(f ♯,P) becomes empty.

Example 7.30. The RCERS in this example uses non-determinism in order compute

a random number. More precisely, random(x) computes a random number in the

interval [0..x] for x ≥ 0. The sets E and S are used to model ThZ, Q = ∅, and R

consists of the following rules:

random(x) → rand(x, 0) Jx ≥ 0K

rand(x, y) → y Jx ≃ 0K

110

Chapter 7. Reduction Pairs

rand(x, y) → rand(x− 1, id inc(y)) Jx > 0K

id inc(x) → x

id inc(x) → x+ 1

Application of the dependency graph results in the DP problem ({rand♯(x, y) →

rand♯(x − 1, id inc(y))Jx > 0K},Q,R,S, E). Then ThZ-reduction pairs cannot be

applied since RedPos(rand♯,P) = {2} and id inc has resulting sort base.

Using the non-collapsing argument filtering π(rand♯) = [1], the DP problem

({rand♯(x) → rand♯(x − 1)Jx > 0K},Q,R,S, E) is obtained by the DP processor

from Theorem 6.17. By reasoning formalized below in Theorem 8.18, the rules in R

do not need to be considered when applying Theorem 7.28 and the ThZ-polynomial

interpretation with cPol = 0 and Pol(rand♯) = x1 can be used to show termination of

the RCERS. △

7.4 Summary

This chapter has presented three variations on the theme of reduction pairs which

are based on well-founded relations. After recalling the ordinary reduction pairs

from [117], reduction pairs tailored towards ThN and ThZ were introduced and it

has been shown how these new variations of reduction pairs can be obtained using

polynomial interpretations with integer coefficients. The use of negative coefficients

makes it possible to successfully prove termination in many cases where this is not

possible using ordinary polynomial interpretations with coefficients from N. This is

in particular true for examples where termination is due to a bounded increase of an

argument until it reaches a fixed upper bound. The automatic generation of such

polynomial interpretations will be discussed in Section 9.2.

While the use of reduction pairs as presented in this chapter is already sufficient

111

Chapter 7. Reduction Pairs

for showing termination of many examples, it has the drawback that all of R, S, and

E need to be considered when operating on the DP problem (P,Q,R,S, E). This

is problematic since it makes the automatic generation of reduction pairs harder or

impossible. Furthermore, it may harm performance of an implementation. Improved

methods that make use of reduction pairs are presented in Chapter 8. These methods

have the advantage that it becomes possible to consider only (syntactically deter-

mined) subsets of R, S, and E , thus circumventing the drawbacks of the methods

presented in this chapter.

112

Chapter 8

Usable Rules and Function

Dependencies

Chapters 6 and 7 have already presented several sound DP processors. However,

these DP processors are not yet sufficient for automatically proving termination of

many natural examples, including the running quicksort example. This chapter intro-

duces further, more powerful DP processors by improving the removal of dependency

pairs from a DP problem using reduction pairs as introduced in Chapter 7. As al-

ready mentioned in Section 7.4, the DP processors introduced in Chapter 7 have

the drawback that all of R, S, and E need to be considered when operating on the

DP problem (P,Q,R,S, E). This requirement makes it often hard or impossible to

automatically find suitable reduction pairs. The techniques presented in this chapter

make it possible to only consider (syntactically determined) subsets of R, S, and E .

This increases both efficiency and power of an implementation.

IfQ ⊇ R (i.e., in the innermost case), then it is possible to make use of the concept

of usable rules, which is well-known from the dependency pair method for ordinary

innermost rewriting [12]. This makes it possible to disregard certain rewrite rules

113

Chapter 8. Usable Rules and Function Dependencies

from R that cannot be used for building chains. Extending the DP processor based

on reduction pairs and usable rules to the case where Q 6⊇ R is quite challenging

since the soundness proof of the former DP processor inherently depends on the

assumption that Q ⊇ R. Nonetheless, Section 8.3 presents an extension to the case

where it is not assumed that Q ⊇ R. Somewhat surprisingly, this extension results

in a DP processor that is, in practice, slightly more powerful than the DP processor

based on usable rules.

8.1 Usable Rules

If a reduction pair (&,≻) is used in the case where Q ⊇ R, then it is not necessary to

require that all rules from R are decreasing w.r.t. & in Theorems 7.8, 7.18, and 7.28.

Instead, it suffices to require this for the usable rules. These rules are a superset of

the rules that may be used in a chain. This is similar to the situation for ordinary

innermost rewriting [12]. Recall that variables are instantiated by terms that are

irreducible by
S
→Th‖E\Q in chains. Thus, the set of usable rules that may be applied

to an instantiation of a variable is empty. For a term t = f(t1, . . . , tn), all rules

defining the function symbol f may be applicable, and furthermore any rule that

may be applied to one of the ti is usable. Then, this reasoning needs to be iterated

for the right-hand sides of the usable rules determined so far.

Definition 8.1 (Usable Rules). Let R be a set of constrained rewrite rules. For any

f ∈ F let R(f) = {l → rJϕK ∈ R | root(l) = f}. For any term define

• UR(x) = ∅ for x ∈ V, and

• UR(f(t1, . . . , tn)) = R(f)∪
⋃

l→rJϕK∈R(f) UR′(r)∪
⋃n

i=1 UR′(ti), where R′ = R−

R(f).

For a set P of dependency pairs let UR(P) =
⋃

s→tJϕK∈P UR(t).

114

Chapter 8. Usable Rules and Function Dependencies

Example 8.2. Continuing the running quicksort example, Example 6.26, the only

DP problem that still needs to be handled is ({5.7, 5.9},Q,R,S, E) with the following

dependency pairs:

qsort♯({x} ∪ y) → qsort♯(low(x, y)) (5.7)

qsort♯({x} ∪ y) → qsort♯(high(x, y)) (5.9)

The usable rules UR({5.7, 5.9}) consist of the rules for low and high. △

For innermost termination of ordinary rewriting, slightly stronger versions of

usable rules have been developed [88, 87]. These definitions could be adapted for

RCERSs, but in order to keep the presentation simple this dissertation restricts itself

to the most basic version of Definition 8.1.

The next lemma states that UR(P) indeed contains all rules that are applicable

in a (P,Q,R,S, E)-chain. A Th-based substitution σ is called normal iff σ(x) is

irreducible by
S
→Th‖E\Q for all x ∈ V. Notice that a term which is irreducible by

S
→Th‖E\Q cannot be reduced using a rule from R either if Q ⊇ R.

Lemma 8.3. Let (Q,R,S, E) be an RCERS with Q ⊇ R and let σ a normal substi-

tution. Then for all s, t:

1. If sσ
S,Q
−→Th‖E\R t then sσ

S
→Th‖E\UR(s) t. Moreover, there exist a term u and a

normal substitution µ such that t = uµ and UR(u) ⊆ UR(s).

2. If sσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E t then sσ

S
→Th‖E\UR(s)

∗ ◦
>Λ
−→E\S−→! ◦

>Λ
∼E t.

Using reduction pairs, dependency pairs that are strictly decreasing can be re-

moved from a DP problem as in Chapter 7. In contrast to the earlier DP processors,

it now suffices to consider only the usable rules.

Theorem 8.4 (DP Processor Based on usable Rules). Let Proc be a DP processor

with Proc(P,Q,R,S, E) =

115

Chapter 8. Usable Rules and Function Dependencies

• {(P − P ′,Q,R,S, E)}, if Q ⊇ R, P ′ ⊆ P, and either

– there exists an ordinary reduction pair (&,≻) such that (&,≻) |= (P ′,P,

∅,UR(P),S, E), or

– there exists a ThN-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,UR(P),S, E), or

– there exists a ThZ-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,UR(P),S, E).

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

Example 8.5. Continuing Example 8.2, the requirement (&Pol ,≻Pol) |= ({5.7, 5.9},

{5.7, 5.9}, ∅,UR({5.7, 5.9}),S, E) is satisfied for the following (ordinary) polynomial

interpretation:

Pol(qsort♯) = x1

Pol(∪) = x1 + x2 + 1

Pol(∅) = 0

Pol({·}) = 0

Pol(low) = x2

Pol(high) = x2

This concludes the termination proof of quicksort in the case where Q = R. △

8.2 Removal of Rules

The DP processors introduced in Chapter 7 and Theorem 8.4 can only be used to

remove dependency pairs from a termination problem, while the setR of rewrite rules

116

Chapter 8. Usable Rules and Function Dependencies

stays unchanged. But it might be desirable to remove rules from R as well since this

can simplify a termination proof substantially because rules that have been removed

once do not need to be considered again later on. Additionally, the set of defined

symbols might decrease if rules from R are removed, which in turn might cause the

removal of arcs in the (estimated) dependency graph. In this section, a DP processor

for the removal of rules from R is introduced. Like the DP processors in Chapter 7

and Theorem 8.4, it makes use of reduction pairs, but for soundness it needs to be

required that the reduction pair is monotonic. Then, application of a rule l → rJϕK

with lJϕK ≻ rJϕK in a reduction s
S,Q
−→Th‖E\R t implies s ≻ t.

Definition 8.6 (Monotonic Reduction Pairs). Let (P,Q,R,S, E) be a DP problem.

1. An ordinary reduction pair (&,≻) is monotonic iff ≻ is monotonic.

2. A ThN-reduction (&,≻) for P is monotonic iff ≻ is F-monotonic and f ♯-

monotonic at position i for all f ♯ ∈ F ♯ and all i ∈ RedPos(f ♯,P).

3. A ThZ-reduction (&,≻) for P is monotonic iff ≻ is univ-monotonic.

In order to obtain monotonic reduction pairs from polynomial interpretations,

the polynomials need to satisfy the following requirements.

Theorem 8.7. Let (P,Q,R,S, E) be a DP problem.

1. An ordinary reduction pair (&Pol ,≻Pol) generated using a polynomial interpre-

tation is monotonic if Pol(f) is increasing in all xi for all f ∈ F ∪ FTh ∪ F
♯.

2. A ThN-reduction pair for P generated using a ThN-polynomial interpretation is

monotonic if Pol(f) is increasing in all xi for any f ∈ F ∪ FThN
and Pol(f ♯)

is increasing in all xi with i ∈ RedPos(f ♯,P) for any f ♯ ∈ F ♯.

3. A ThZ-reduction pair for P generated using a ThZ-polynomial interpretation is

monotonic if Pol(f) is increasing in all xi where the ith argument of f has sort

univ for any f ∈ F ∪ FTh ∪ F
♯.

117

Chapter 8. Usable Rules and Function Dependencies

The following DP processor is similar to the DP processor of Theorem 8.4 but

requires a monotonic reduction pair. In contrast to the earlier DP processor, rules

from R may now be removed as well if they are decreasing w.r.t. ≻.

Theorem 8.8 (DP Processor Based on Removal of Rules). Let Proc be a DP pro-

cessor with Proc(P,Q,R,S, E) =

• {(P − P ′,R−R′,S, E)}, if Q ⊇ R, P ′ ⊆ P, R′ ⊆ UR(P), and either

– there exists a monotonic ordinary reduction pair (&,≻) such that (&,≻)

|= (P ′,P,R′, UR(P),S, E), or

– there exists a monotonic ThN-reduction pair (&,≻) for P such that (&,≻)

|= (P ′,P,R′,UR(P),S, E), or

– there exists a monotonic ThZ-reduction pair (&,≻) for P such that (&,≻)

|= (P ′,P,R′,UR(P),S, E).

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

Of course, a similar DP processor that considers all ofR instead of just the usable

rule UR(P) would also be sound.

Example 8.9. Consider the following CERS which computes the size of a set:

S : x+ 0 → x

−− x → x

−0 → 0

−(x+ y) → (−x) + (−y)

x+ (−x) → 0

(x+ (−x)) + y → 0 + y

ins(x, ins(x, ys)) → ins(x, ys)

118

Chapter 8. Usable Rules and Function Dependencies

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))

R : remove(∅) → ∅

remove(ins(x, ys)) → ys

|∅| → 0

|ins(x, ys)| → |remove(ins(x, ys))|+ 1

If Q = R, the estimated dependency graph EDG(P,Q,R,S, E) contains one SCC

and the DP problem ({|ins(x, ys)|♯ → |remove(ins(x, ys))|♯},Q,R,S, E) needs to be

handled. This cannot be done using an ordinary polynomial interpretation since the

rewrite rule remove(ins(x, ys))→ ys forces the polynomial Pol(remove) to depend on

the variable x1. But then the dependency pair |ins(x, ys)|♯ → |remove(ins(x, ys))|♯

cannot be oriented strictly and a termination proof fails. Instead, it is possible to

apply a monotonic ordinary reduction pair based on

Pol(+) = x1 + x2

Pol(−) = x1

Pol(0) = 0

Pol(| · |♯)) = x1

Pol(∅) = 0

Pol(ins) = x1 + x2 + 1

Pol(remove) = x1

Then (&Pol ,≻Pol) |= (∅,P,R′,R,S, E) is satisfied, whereR′ = {remove(ins(x, ys))→

ys}. After removing R′ from the DP problem, the resulting DP problem can easily

be handled by the (non-monotonic) ordinary reduction pair based on the following

polynomial interpretation:

Pol(+) = x1 + x2

119

Chapter 8. Usable Rules and Function Dependencies

Pol(−) = x1

Pol(0) = 0

Pol(| · |♯) = x1

Pol(∅) = 0

Pol(ins) = x2 + 1

Pol(remove) = 0

Using this polynomial interpretation, the (only) dependency pair is removed. △

8.3 Function Dependencies

Recall that the DP processors from Chapter 7 have to consider all of R, S, and E

and that it suffices to consider the usable rules in the innermost case, i.e., if Q ⊇ R.

It is well-known from the DP framework for ordinary rewriting that considering all

of R in the non-innermost case is a severe restriction that causes many termination

proofs to fail [88, 95].

This section provides a proof that it also suffices to consider the usable rules in

the general case. However, since the proof of Lemma 8.3 (and thus, Theorem 8.4)

inherently depends on the innermost case and cannot be extended to the unrestricted

case, the proof of this result is quite different. Indeed, the reductions between instan-

tiated dependency pairs may use rewrite rules that are not usable in the innermost

case since in general there are no assumptions on the substitution σ used for building

chains other than the restriction that σ is Th-based.

The idea of the result in this section is to show that each (P,Q,R,S, E)-chain

that uses a substitution σ can be transformed into a sequence that only uses subsets

R′ ⊆ R, S ′ ⊆ S, and E ′ ⊆ E by considering a different substitution I(σ). This

sequence will not necessarily be a (P,Q,R,S, E)-chain, but this property is not

120

Chapter 8. Usable Rules and Function Dependencies

needed for soundness. The set R′ turns out to coincide with the usable rules as

defined in Definition 8.1, i.e., the technique developed in this section is indeed at

least as powerful as the technique obtained with usable rules in practice. The only

drawback is that the reduction pairs need to orient four additional rewrite rules for

two fresh function symbols. This drawback is not severe in practice, however, since

these rewrite rules can be easily oriented using polynomial interpretations.

Somewhat surprisingly, the DP processor developed in this section is, in practice,

slightly more powerful than the DP processor of Section 8.1 that is based on usable

rules. Therefore, the DP processor of this section should also be used in the innermost

case since it subsumes the DP processor of Theorem 8.4. Recall that Theorem 8.4

needs to consider only the subset of usable rules from R, but all rules from S and

all equations from E . The DP processor of this section, in contrast, has to consider

the same subset of R, but additionally only subsets of S and E as well. The only

restriction of the DP processor in this section is that it is only applicable if E is size-

preserving. Recall that all examples of data structures given in Chapter 3 satisfy

this property.

The subsets R′ ⊆ R, S ′ ⊆ S, and E ′ ⊆ E that need to be considered are based

on the dependencies between function symbols. Intuitively, a function symbol f

depends on a function symbol h if h is below f in the recursion hierarchy defined

by the rules and equations. Similar definitions to the one below are also used in

[167, 88, 95, 64, 156].

Definition 8.10 (Function Dependencies). Let (P,Q,R,S, E) be a DP problem

where E is size-preserving. For two symbols f, h ∈ F let f ◮(P,Q,R,S,E) h iff f = h or

there exists a symbol g with g ◮(P,Q,R,S,E) h and either

1. a rule l → rJϕK ∈ R such that root(l) = f and g ∈ F(r), or

2. a rule l → r ∈ S such that root(l) = f and g ∈ F(r), or

121

Chapter 8. Usable Rules and Function Dependencies

3. an equation u ≈ v (or v ≈ u) in E such that root(u) = f and g ∈ F(u ≈ v).

In the following, let

∆(P,Q,R,S, E) = FTh ∪
⋃

s→tJϕK∈P

{g | f ◮(P,Q,R,S,E) g for an f ∈ F(t)− F ♯}

Notice that this definition only makes sense if E is collapse-free.

Example 8.11. Consider the following rules and equations:

f(s(x)) → g(x)

g(s(x)) → h(c(x))

c(x) ≈ s(x)

Using a simplified notation and omitting the reflexivity of the relation, f ◮ g ◮ h,

f ◮ g ◮ c, c ◮ s, and s ◮ c. △

Subsets ∆ ⊆ F ∪ FTh give rise to subsets of R, S, and E in the obvious way.

Definition 8.12 (R(∆), S(∆), and E(∆)). Let ∆ ⊆ F ∪ FTh . Then R(∆) = {l →

rJϕK ∈ R | root(l) ∈ ∆}, S(∆) = {l → r ∈ S | root(l) ∈ ∆}, and E(∆) = {u ≈ v ∈

E | root(u) ∈ ∆ or root(v) ∈ ∆}.

In the following, a mapping I from terminating terms1 to terms that possibly

contain fresh function symbols Πuniv and Πbase is defined. This mapping is similar

to mappings defined in [88, 95, 156] but differs in how terms t with root(t) 6∈ ∆ are

handled. Furthermore, two fresh function symbols are needed, one for sort univ and

one for sort base. The idea for this mapping is that every reduction of t that uses

R, S, and E can be “simulated” by a reduction of I(t) that only uses R(∆), S(∆),

and E(∆). Within this section, it is assumed that (P,Q,R,S, E) is a DP problem

such that E is size-preserving. Furthermore, let ∆ = ∆(P,Q,R,S, E).

1A term t is terminating iff there are no infinite
S,Q
−→Th‖E\R-reductions starting with t.

122

Chapter 8. Usable Rules and Function Dependencies

Definition 8.13 (I). For any terminating term t ∈ T (F ∪ FTh ,V) define I(t) by

I(x) = x if x ∈ V

I(f(t1, . . . , tn)) = f(I(t1), . . . , I(tn)) if f ∈ ∆

I(t) = Compsort(t)(RedS(t) ∪RedR(t) ∪ EqE(t)) otherwise

where the sets RedS(t), RedR(t), and EqE(t) are defined as

RedS(t) = {I(t′) | t→E\S ◦ ∼E t
′}

RedR(t) = {I(t′) | t
S,Q
−→Th‖E\R ◦ ∼E t

′}

EqE(t) = {g(I(t1), . . . , I(tn)) | t ∼E g(t1, . . . , tn)}

For s ∈ {univ, base}, let Comps({t} ⊎M) = Πs(t, Comps(M)) and Comps(∅) = ⊥s

where Πs is a fresh function symbols with sort declaration s×s→ s and ⊥s is a fresh

variable of sort s. In order to make this definition unambiguous, it is assumed that t

is the minimal element of {t}⊎M w.r.t. some total well-founded order >T on terms.

For a terminating substitution2 σ, define the substitution I(σ) by I(σ)(x) = I(σ(x)).

It is not immediately obvious that I is indeed well-defined, i.e., that I(t) is a

finite term whenever t is terminating. This can be shown to be the case, however.

Lemma 8.14. If t is terminating, then I(t) is a finite term.

In order to simulate reductions using R, S, and E by reductions that only use

R(∆), S(∆), and E(∆), the following rewrite rules for the fresh function symbols

Πuniv and Πbase are needed.

Definition 8.15 (RΠ). For the fresh function symbols Πuniv and Πbase from Defini-

tion 8.13, let RΠ = {Πs(x, y)→ x, Πs(x, y)→ y | s ∈ {univ, base}}.

2A substitution σ is terminating iff σ(x) is terminating for all x ∈ V.

123

Chapter 8. Usable Rules and Function Dependencies

The following is a well-known simple property of RΠ. It states that any element

t of M can be extracted from the term Compsort(t)(M).

Lemma 8.16. Let M be a set of terms such that all elements of M have the same

sort. If t ∈M then Compsort(t)(M)→+
RΠ

t.

Next, several properties of the mapping I are shown that relate reductions using

R, S, and E to reductions using R(∆), S(∆), and E(∆).

Lemma 8.17. Let s, t ∈ T (F ∪ FTh ,V) and let σ be a Th-based substitution such

that s, t, and sσ are terminating.

1. If s ∈ T (∆,V) then I(sσ) = sI(σ).

2. I(sσ)→∗
RΠ

sI(σ).

3. If s ∼E t then I(s) ∼E(∆) I(t).

4. If s→∗
E\S t then I(s) ∗

1 I(t),

where 1 = ∼E(∆) ◦ →
∗
RΠ
◦ →S(∆) ∪ →

+
RΠ

.

5. If s
S,Q
−→Th‖E\R−→∗ t then I(s) ∗

2 I(t),

where 2 = ∗
1 ◦ ∼E(∆) ◦ →

∗
RΠ
◦ →R(∆) ∪ →

+
RΠ

such that the →R(∆)-step

uses a Th-based substitution that makes the instantiated constraint of the used

rule Th-valid.

6. If s ∈ T (∆,V) and sσ
S,Q
−→Th‖E\R−→∗ ◦ →!

E\S ◦ ∼E tσ, then sI(σ) ∗
2 ◦

∗
1 ◦ ∼E(∆)

◦ →∗
RΠ

tI(σ).

Using Lemma 8.17.6, soundness of the following DP processor can be shown.

Notice that the rules from RΠ can be easily oriented using reduction pairs based on

polynomial interpretations by letting Pol(Πuniv) = Pol(Πbase) = x2
1 + x2

2 + 1.

Theorem 8.18 (DP Processor Based on Function Dependencies). Let Proc be a DP

processor with Proc(P,Q,R,S, E) =

124

Chapter 8. Usable Rules and Function Dependencies

• {(P − P ′,Q,R,S, E)}, if E is size-preserving, ∆ = ∆(P,Q,R,S, E), P ′ ⊆ P,

and either

– there exists an ordinary reduction pair (&,≻) such that (&,≻) |= (P ′,P,

∅,R(∆) ∪RΠ,S(∆), E(∆)), or

– there exists a ThN-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R(∆) ∪RΠ,S(∆), E(∆)), or

– there exists a ThZ-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R(∆) ∪RΠ,univ,S(∆), E(∆)).

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

Example 8.19. This example of the sieve of Eratosthenes is used to illustrate the

ideas presented in this section:

S : x+ 0 → x

−− x → x

−0 → 0

−(x+ y) → (−x) + (−y)

x+ (−x) → 0

(x+ (−x)) + y → 0 + y

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

R : primes(x) → sieve(nats(2, x))

nats(x, y) → nil Jx > yK

nats(x, y) → cons(x, nats(x+ 1, y)) Jx 6> yK

125

Chapter 8. Usable Rules and Function Dependencies

sieve(nil) → nil

sieve(cons(x, ys)) → cons(x, sieve(filter(x, ys)))

filter(x, nil) → nil

filter(x, cons(y, zs)) → if(isdiv(x, y), x, y, zs)

if(true, x, y, zs) → filter(x, zs)

if(false, x, y, zs) → cons(y, filter(x, zs))

isdiv(x, 0) → true Jx > 0K

isdiv(x, y) → false Jx > y ∧ y > 0K

isdiv(x, y) → isdiv(x, y − x) Jy ≥ x ∧ x > 0K

Then, the following dependency pairs are obtained:

primes♯(x) → sieve♯(nats(2, x)) (8.1)

primes♯(x) → nats♯(2, x) (8.2)

nats♯(x, y) → nats♯(x+ 1, y) Jx 6> yK (8.3)

sieve♯(cons(x, ys)) → sieve♯(filter(x, ys)) (8.4)

sieve♯(cons(x, ys)) → filter♯(x, ys) (8.5)

filter♯(x, cons(y, zs)) → if♯(isdiv(x, y), x, y, zs) (8.6)

filter♯(x, cons(y, zs)) → isdiv♯(x, y) (8.7)

if♯(true, x, y, zs) → filter♯(x, zs) (8.8)

if♯(false, x, y, zs) → filter♯(x, zs) (8.9)

isdiv♯(x, y) → isdiv♯(x, y − x) Jy ≥ x ∧ x > 0K (8.10)

The estimated dependency graph contains four SCCs, and according to Theorem 6.7,

the following DP problems are obtained:

({(8.3)},Q,R,S, E) (8.11)

({(8.4)},Q,R,S, E) (8.12)

({(8.6), (8.8), (8.9)},Q,R,S, E) (8.13)

126

Chapter 8. Usable Rules and Function Dependencies

({(8.10)},Q,R,S, E) (8.14)

The DP problem (8.13) can be handled by the subterm criterion of Theorem 6.24

with the simple projection π(filter♯) = 2 and π(if♯) = 4. Then, the dependency pair

(8.6) is removed and the dependency pairs (8.8) and (8.9) do not form an SCC.

Notice that ∆(8.11) = ∆(8.14) = FTh and thus R(∆) = ∅ for these DP prob-

lems. They can be handled using a ThZ-polynomial interpretation with cPol = 0,

Pol(isdiv♯) = x1 + x2, and Pol(nats♯) = x2 − x1.

For (8.12), ∆ = FTh ∪ {filter, if, isdiv, cons, nil, true, false}, and R(∆) thus con-

sists of the filter-, if-, and isdiv-rules. Apply Theorem 8.18 and the following ThZ-

polynomial interpretations with cPol = 0:

Pol(sieve♯) = x1

Pol(filter) = x2

Pol(if) = x4 + 1

Pol(isdiv) = 0

Pol(cons) = x2 + 1

Pol(nil) = 0

Pol(true) = 0

Pol(false) = 0

Then, all dependency pairs are removed from the DP problem (8.12). △

8.4 Removal of Rules Revisited

The DP processor from Section 8.2 that is based on monotonic reduction pairs and

may remove rules fromR in addition to dependency pairs extends to the unrestricted

127

Chapter 8. Usable Rules and Function Dependencies

case as well. If E is size-preserving, the sets R(∆), S(∆), and E(∆) from the previous

section can be used. Notice that RΠ now has to be oriented using ≻, i.e., the rules

in RΠ need to be strictly decreasing. This is always the case if the above-mentioned

polynomials Pol(Πuniv) = Pol(Πbase) = x2
1 + x2

2 + 1 are used.

Theorem 8.20 (DP Processor Based on Removal of Rules and Function Dependen-

cies). Let Proc be a DP processor with Proc(P,Q,R,S, E) =

• {(P − P ′,Q,R,S, E)}, if E is size-preserving, ∆ = ∆(P,Q,R,S, E), P ′ ⊆ P,

R′ ⊆ R(∆), and either

– there exists a monotonic ordinary reduction pair (&,≻) such that (&,≻)

|= (P ′,P,R′ ∪RΠ,R(∆),S(∆), E(∆)), or

– there exists a monotonic ThN-reduction pair (&,≻) for P such that (&,≻)

|= (P ′,P,R′ ∪RΠ,R(∆),S(∆), E(∆)), or

– there exists a monotonic ThZ-reduction pair (&,≻) for P such that (&,≻)

|= (P ′,P,R′ ∪RΠ,univ,R(∆),S(∆), E(∆)).

• {(P,Q,R,S, E)}, otherwise.

Then Proc is sound.

If E is not size-preserving, then a similar DP processor can be obtained that has

to consider all of R, S, and E , but can disregard RΠ.

8.5 Summary

This chapter has presented techniques that extend the techniques from Chapter

7. Similar to the techniques from Chapter 7, these new techniques are based on

reduction pairs.

128

Chapter 8. Usable Rules and Function Dependencies

First, the concept of usable rules has been introduced for the innermost case.

Here, the usable rules are a superset of the rules that may be used in a chain, and

it has been shown that it is possible to disregard the non-usable rules from R since

they cannot be used for building chains. Next, it was shown that reduction pairs can

also be used to remove usable rules from a DP problem, provided that the reduction

pair is monotonic.

Extending the idea of usable rules to the non-innermost case is quite complex

since the soundness proof of the usable rule extension inherently depends on the

assumption that Q ⊇ R. Nonetheless, this chapter has presented a technique that

is, in practice, slightly stronger than the usable rule extension. This technique is

not restricted to the innermost case and still makes it possible to consider only

syntactically determined subsets of the rules and equations.

129

Chapter 9

Implementation

The techniques presented so far have been implemented in the automated termination

checker AProVE [84] for ThZ and the general case (i.e., Q ⊇ R is not assumed). While

most of the implementation is straightforward, an implementation of the estimated

dependency graph EDG is non-trivial. The same is true for the automated generation

of ThZ-reduction pairs based on ThZ-polynomial interpretations.

9.1 Implementing EDG

It is not clear whether Definition 6.9 can be implemented in general, even if the

checks for irreducibility by
>Λ
−→E\S and Th-validity are omitted, since it needs to be

determined whether there exists a substitution µ satisfying sµ
>Λ
−→E\S−→! ◦

>Λ
∼E tµ for two

terms s and t. In the following, two approximations for checking this are presented.

First Approximation: Checking whether there exists a substitution µ satisfying

sµ
>Λ
−→E\S−→! ◦

>Λ
∼E tµ can be approximated by checking whether s and t are E ∪ S-

unifiable. This approximation can be applied if E ∪ S-unifiability is decidable and a

130

Chapter 9. Implementation

decision procedure has been implemented.

Lemma 9.1. Let (R,S, E) be a CERS and let s and t be terms. If there exists a

substitution µ such that sµ
>Λ
−→E\S−→! ◦

>Λ
∼E tµ, then s and t are E ∪ S-unifiable.

Thus, if s and t are not E ∪ S-unifiable, then there does not exist a substitution

µ such that sµ
>Λ
−→E\S−→! ◦

>Λ
∼E tµ. The first approximation is particularly useful if no

collection data structures are used and E ∪S-unifiability reduces to ThZ-unifiability.

If the terms under consideration have the form f(s1, . . . , sn) with sort(si) = base

and si ∈ T (FThZ
,V) for all 1 ≤ i ≤ n, then ThZ-unifiability is decidable since it

reduces to determining whether a system of linear equations is solvable in Z. This

can be decided using SMT-solvers1 such as Yices [62].

Example 9.2. Let s1 = f(x + y + 3, y) and t1 = f(−x − 4y − 7, x). In order to

determine whether s1 and t1 are ThZ-unifiable, it suffices to check whether the system

x+ y + 3 = −x− 4y − 7, y = x is solvable in Z (which is the case).

Now let s2 = f(x+y, x−y) and t2 = f(0, 1). Since s2 and t2 are not ThZ-unifiable

because the system x + y = 0, x − y = 1 is not solvable, there does not exist a

substitution µ such that s2µ
>Λ
−→E\S−→! ◦

>Λ
∼E t2µ. △

Furthermore, unifiability is also decidable for the list-like representation of com-

pact lists, multisets, and sets (i.e., the representation using nil and cons or ∅ and

ins, see Chapter 3) [58]. These unification algorithms are, however, not currently

implemented in AProVE. Notice that it is also necessary to implement a combination

framework for unification algorithms [152, 32, 18] if a combination of integers with

one or more collection data structures is used in a CERS.

Second Approximation: The approximation from Lemma 9.1 does not take the

directionality of S into account. The second approximation takes the directionality

1SMT stands for satisfiability modulo theories, see, e.g., [154, 23].

131

Chapter 9. Implementation

of S into account but is only applicable if E is collapse-free. The idea for this

approximation is to replace subterms of s that might become reducible by →E\S by

fresh variables and then check for E-unifiability. This is of course very similar to the

idea that is used in the definition of EDG. This second approximation can be applied

if E-unifiability is decidable which is, e.g., the case if E only specifies that certain

function symbols are associative and commutative.

Lemma 9.3. Let (R,S, E) be a CERS such that E is collapse-free and let s and t

be terms. If there exists a substitution µ such that sµ
>Λ
−→E\S−→! ◦

>Λ
∼E tµ, then capS(s)

and t are E-unifiable. Here, capS is defined by

1. capS(x) = y for variables x,

2. capS(f(t1, . . . , tn)) = f(capS(t1), . . . ,capS(tn)) if there does not exist a rule

l → r ∈ S such that f(capS(t1), . . . ,capS(tn)) and l are E-unifiable, and

3. capS(f(t1, . . . , tn)) = y otherwise.

Here, y is the next variable in an infinite list y1, y2, . . . of fresh variables.

Thus, if capS(s) and t are not E-unifiable, then there does not exist a substitution

µ such that sµ
>Λ
−→E\S−→! ◦

>Λ
∼E tµ. As in Definition 6.9, case 2 can be replaced by a check

for f 6∈ D(S, E), where D(S, E) is the smallest set with D(S, E) = {root(l) | l → r ∈

S} ∪ {root(v) | u ≈ v ∈ E or v ≈ u ∈ E , root(u) ∈ D(S, E)} (these are the “defined

symbols” of S).

Example 9.4. Let E = {x∪y ≈ y∪x, x∪(y∪z) ≈ (x∪y)∪z} and S = {x∪∅ → x}.

Let s1 = f(g(x), y ∪ z) and t1 = f(h(0), w). Then capS(s1) = f(g(z1), z2) since

capS(x∪ y) = z3 ∪ z4 is E-unifiable with the left-hand side x∪ ∅ of the rule from S.

Since f(g(z1), z2) and f(h(0), w) are not E-unifiable, there does not exist a substitution

µ such that s1µ
>Λ
−→E\S−→! ◦

>Λ
∼E t1µ.

Now let s2 = f(x, g(x ∪ y)) and t2 = f(h(y), x). Then capS(s2) = f(z1, g(z2))

132

Chapter 9. Implementation

and the terms f(z1, g(z2)) and t2 are E-unifiable even though there does not exist a

substitution µ such that s2µ
>Λ
−→E\S−→! ◦

>Λ
∼E t2µ. This demonstrates the limitations of

the approximation from Lemma 9.3. △

The second approximation is helpful even if E-unifiability is not decidable since E-

unifiability for collapse-free equations can be approximated by syntactic unifiability

using an approach similar to Lemma 9.3 [64].

9.2 Generation of ThZ-Polynomial Interpretations

The following discussion concentrates on the generation of linear ThZ-polynomial

interpretations. This is also the only case that is currently supported by the imple-

mentation in AProVE. The ideas presented in this section extend to the non-linear

case as well, however. The generation of polynomial interpretations in the presence

of conditions as considered in the related work [75] faces problems that are very

similar to the ones encountered in the generation of ThZ-polynomial interpretations.

Indeed, the method developed in [75] is partially based on the method presented in

this section. In particular, the inference rule (A) from [75] has been derived from the

inference rule Express stated below.

As for regular polynomial interpretations [48], the automated search starts with

a parametric linear ThZ-polynomial interpretation, i.e., a linear ThZ-polynomial in-

terpretation where the coefficients in the polynomials are parameters that have to

be determined. Thus, Pol(f) = f1x1 + . . .+ fnxn + cf for each function symbol f of

arity n, where the fi and cf are parameters.

Recall that the goal of finding a ThZ-polynomial interpretation is to instantiate

the parameters in such a way that sJϕK ⊲⊳ tJϕK for certain terms s, t and ThZ-

constraints ϕ, where ⊲⊳ ∈ {&Pol , ≻Pol , ∼Pol}.

133

Chapter 9. Implementation

In order to simplify presentation, it is assumed in this section that the constraints

of all constrained rewrite rules are conjunctions of atomic ThZ-constraints. This can

always be achieved by a conversion into disjunctive normal form (DNF) and the

introduction of one constraint rewrite rule for each dual clause in this DNF.2 This

clearly results in an equivalent set of rewrite rules.

For the sake of concreteness, it is assumed that the ThZ-polynomial interpretation

Pol is restricted such that for each f ∈ F , the polynomial Pol(f) may only depend

on a variable xi if the ith argument of f has sort univ (see the discussion on this in

Section 7.3 and recall that this assumption implies that it suffices to instantiate the

variables of sort univ only by non-negative numbers when comparing polynomials).3

This is achieved by fixing the coefficient fi of xi to be 0 whenever the ith argument

of f has sort base. Furthermore, it is assumed that the value cPol is fixed to be

0. Alternatively, cPol can be treated as an additional parameter that needs to be

determined.

As shown in Section 7.3, it suffices to instantiate the parameters such that

1. whenever sJϕK ≻Pol tJϕK needs to be satisfied, then the following formulas are

true in the integers:

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ⇒ [s]Pol ≥ 0

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ⇒ [s]Pol − [t]Pol > 0

2. whenever sJϕK &Pol tJϕK needs to be satisfied, then

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ⇒ [s]Pol − [t]Pol ≥ 0

is true in the integers, and

2Recall that a formula in DNF is a disjunction of conjunctions. The conjunctions are
called dual clauses. Thus, in (x ∧ y) ∨ z, the dual clauses are x ∧ y and z.

3The case where this assumption is not imposed is slightly simpler. The implementation
in AProVE supports both possibilities, and there are CERSs that can be shown terminating
with one of the possibilities but not with the other.

134

Chapter 9. Implementation

3. whenever sJϕK ∼Pol tJϕK needs to be satisfied, then

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ⇒ [s]Pol − [t]Pol = 0

is true in the integers.

Here, x1, . . . , xk are the variables of sort base in s and t and y1, . . . , yl are the variables

of sort univ in s and t.

[s]Pol and [s]Pol − [t]Pol are linear polynomials whose coefficients are polynomials

over the parameters. Polynomials of this shape are called linear parametric polyno-

mials. Notice that the polynomials over the parameters that are the coefficients of

linear parametric polynomials may be non-linear due to nested function symbols in

s and t.

Example 9.5. Consider a parametric linear ThZ-polynomial interpretation with

Pol(f) = f1x1 + f2x2 + cf and Pol(g) = g1x1 + cg. Then [f(g(x), g(y))]Pol = f1(g1x+

cg) + f2(g1y + cg) + cf = f1g1x+ f2g1y + f1cg + f2cg + cf . △

In the following, case 2 from above is discussed in detail. The cases 1 and 3 can

be handled similarly. Thus, the problem that needs to be solved is as follows: Given

a ThZ-constraint ϕ and a linear parametric polynomial p, determine values for the

parameters such that

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ⇒ p ≥ 0

is true in the integers after the parameters have been instantiated. For this, sufficient

conditions on the parameters are derived and it is checked whether these conditions

are satisfiable. Furthermore, any satisfying assignment to the conditions on the

parameters gives rise to a suitable polynomial interpretation.

The conditions on the parameters are obtained as follows:

1. ϕ is transformed into a conjunction of atomic ThZ-constraints of the form
∑n

i=1 aixi + c ≥ 0 where a1, . . . , an, c ∈ Z.

135

Chapter 9. Implementation

2. The ThZ-constraints from step 1 are used to derive upper and/or lower bounds

on the variables in p.

3. The bounds from step 2 are used to derive conditions on the parameters.

Step 1: Transformation of ϕ. This is straightforward: s ≃ t is transformed into

s− t ≥ 0 ∧ t − s ≥ 0, s ≥ t is transformed into s − t ≥ 0, and s > t is transformed

into s− t− 1 ≥ 0.

Step 2: Deriving upper and/or lower bounds. The ThZ-constraints obtained

after step 1 may already contain upper and/or lower bounds on the variables, where

a lower bound has the form x+ c ≥ 0 and an upper bound has the from −x+ c ≥ 0

for some c ∈ Z. Otherwise, it might be possible to obtain such bounds as follows.

An atomic constraint of the form ax + c ≥ 0 with a 6= 0, 1,−1 that contains

only one variable gives a bound on that variable that can be obtained by dividing

by |a| and taking the integer floor of the divided constant4. For example, the ThZ-

constraint 2x+ 3 ≥ 0 is transformed into x+ 1 ≥ 0, and −3x− 2 ≥ 0 is transformed

into −x− 1 ≥ 0.

An atomic ThZ-constraint with more than one variable can be used to express a

variable x occurring with coefficient 1 in terms of the other variables and a fresh slack

variable w with w ≥ 0. This makes it possible to eliminate x from the polynomial p

and at the same time gives the lower bound 0 on the slack variable w. For example,

x − 2y ≥ 0 can be used to eliminate the variable x by replacing it with 2y + w.

Similar reasoning applies if the variable x occurs with coefficient −1.

These ideas are formalized in the transformation rules (to be read from top to

bottom) from Figure 9.1 that operate on triples 〈ϕ1, ϕ2, q〉, where ϕ1 and ϕ2 are sets

4For any real number x, the integer floor is defined by ⌊x⌋ := max {n ∈ Z | n ≤ x}.

136

Chapter 9. Implementation

〈ϕ1, ϕ2 ⊎ {aixi + c ≥ 0}, q〉
Strengthen if ai 6= 0

〈ϕ1 ∪
{

ai

|ai|
xi + ⌊ c

|ai|
⌋ ≥ 0

}
, ϕ2, q〉

〈ϕ1, ϕ2 ⊎ {
∑n

i=1 aixi + c ≥ 0} , q〉
Express

if |aj | = 1, there exists a j′ 6= j
with aj′ 6= 0, and σ replaces
xj by −

∑
i6=j ajaixi − ajc + ajw

〈ϕ1 ∪ {w ≥ 0}, ϕ2σ, qσ〉

Figure 9.1: Transformation rules for the generation of polynomial interpretations.

of atomic ThZ-constraints and q is a linear parametric polynomial. Here, ϕ1 only

contains ThZ-constraints of the form ±xi + c ≥ 0 giving upper and/or lower bounds

on the variable xi and ϕ2 contains arbitrary atomic ThZ-constraints. The initial

triple is 〈∅, ϕ, p〉.

Step 3: Deriving conditions on the parameters. After finishing step 2, a final

triple 〈ϕ1, ϕ2, q〉 is obtained. If ϕ1 contains more than one bound on a variable xi,

then it suffices to consider the maximal lower bound and the minimal upper bound.

The bounds in ϕ1 are used in combination with reasoning similar to the absolute

positiveness test5 [96] in order to obtain conditions on the parameters that make

q =
∑k

i=1 pixi +
∑l

j=1 p
′
jyj + p0 non-negative for all instantiations of the xi satisfying

ϕ1 and all yj ≥ 0.

If ϕ1 contains a lower bound of the form xj +c ≥ 0 for the variable xj, then notice

that q =
∑k

i=1 pixi +
∑l

i=1 p
′
iyi + p0 can also be written as q =

∑
i6=j pixi + pj(xj +

c) +
∑l

i=1 p
′
iyi + p0− pjc. Since xj + c ≥ 0 is assumed, the absolute positiveness test

requires pj ≥ 0 as a condition on pj .
6 Similarly, if −xj + c ≥ 0 occurs in ϕ1, then q

5For p = p1x1 + . . .+ pnxn + c such that x1, . . . , xn may only be instantiated by natural
numbers, the absolute positiveness test concludes that p is non-negative if p1, . . . , pn, c ≥ 0.

6Alternatively, reasoning similar to the rule Express can be used, i.e., if ϕ1 contains
xj + c ≥ 0, then xj could be replaced by −c + w, where w ≥ 0. Both methods produce the
same conditions on the parameters.

137

Chapter 9. Implementation

can be written as q =
∑

i6=j pixi − pj(−xj + c) +
∑l

i=1 p
′
iyi + p0 + pjc and −pj ≥ 0 is

obtained as a condition on pj. If ϕ1 does not contain any upper or lower bound on

a variable xj , then pj = 0 is obtained by the absolute positiveness test. For any of

the variables yi it is required that p′i ≥ 0 is true since yi is know to be instantiated

by a non-negative integer.

After all variables of q have been processed in this fashion, it additionally needs

to be required that the constant term of the final polynomial is non-negative as well.

Notice that this constant term is not just p0 in general since the above transformation

modifies the constant term.

Example 9.6. If ϕ1 = {x + 1 ≥ 0, −y − 1 ≥ 0} and q = (a + b)x + by + c where

x and y range over the integers, then q can also be written as q = (a + b)(x + 1)−

b(−y − 1) + c − (a + b) − b and the absolute positiveness test requires a + b ≥ 0,

−b ≥ 0, and c− a− 2b ≥ 0 as conditions on the parameters. △

Summarizing this method, the algorithm from Figure 9.2 is used in order to obtain

conditions D on the parameters. Here, sign(ψ) = 1 if ψ is of the form xi + c ≥ 0 and

sign(ψ) = −1 if ψ is of the form −xi + c ≥ 0.

Once conditions on the parameters have been established, existing methods for

solving non-linear Diophantine constraints [48, 73] can be used. Since it is in gen-

eral undecidable whether non-linear Diophantine constrains have a solution, these

methods require a finite range [0..m] for some m ≥ 0 and determine whether the

non-linear Diophantine constraints have a solution within this range. Recall, how-

ever, that some parameters may be instantiated by negative numbers. Replacing

these parameters fi in the non-linear Diophantine constraints by fi−⌊
m
2
⌋ effectively

shifts the search space for fi to the finite range [−⌊m
2
⌋, m− ⌊m

2
⌋].

Example 9.7. This example illustrates the method discussed above on a simple

example. Assume that ϕ = x− y− z ≥ 0 and that the parameters a, b, c, d are to be

138

Chapter 9. Implementation

D := true
r := p0

for 1 ≤ i ≤ k do
take constraint ψ of the form ±xi + c ≥ 0 from ϕ1

if none such ψ exists then
D := D ∧ pi ≃ 0

else
D := D ∧ sign(ψ) · pi ≥ 0
r := r − sign(ψ) · c · pi

end if
end for
D := D ∧ r ≥ 0
for 1 ≤ i ≤ l do
D := D ∧ p′i ≥ 0

end for

Figure 9.2: Obtaining conditions on the parameters.

instantiated such that

∀x, y, z. ϕ⇒ ax+ by + cz + d ≥ 0

∀x, y, z. ϕ⇒ −b− c > 0

are true in the integers (these formulas are obtained from attempting to satisfy

f(x, y, z)Jx ≥ y + zK ≻Pol f(x, y + 1, z + 1)Jx ≥ y + zK).

Starting with the initial triple 〈∅, ϕ, ax+by+cz+d〉 for the first formula, a trans-

formation sequence that exhaustively applies the transformation rules from Figure

9.1 is as follows:

∅, {x− y − z ≥ 0}, ax+ by + cz + d
Express

{w ≥ 0}, ∅, (a+ b)y + (a+ c)z + aw + d

Here, the Express-step uses σ = {x 7→ y+z+w}. The absolute positiveness test now

returns a + b ≃ 0 ∧ a + c ≃ 0 ∧ a ≥ 0 ∧ d ≥ 0 as conditions on the parameters.

139

Chapter 9. Implementation

For the second formula, −b−c > 0 is immediately obtained as a condition on the

parameters. The final conditions on the parameters are thus

a+ b ≃ 0 ∧ a+ c ≃ 0 ∧ a ≥ 0 ∧ d ≥ 0 ∧ −b− c > 0

These conditions are satisfiable and a = 1, b = −1, c = −1, d = 0 is a possible solution

(the polynomial interpretation obtained from these parameters is Pol(f) = x1−x2−x3

and indeed satisfies f(x, y, z)Jx ≥ y + zK ≻Pol f(x, y + 1, z + 1)Jx ≥ y + zK). △

Automatically finding strictly decreasing dependency pairs or rules. For

the DP processors based on reduction pairs, it also needs to be ensured that the set P ′

of dependency pairs that are decreasing w.r.t. ≻Pol is non-empty. Furthermore, this

set should be efficiently determined automatically. Let si → tiJϕiK be the dependency

pairs of a DP problem for 1 ≤ i ≤ n. Then a non-empty set P ′ (if it exists) can

easily be found automatically by requiring the condition

n∧

i=1

Di
1 ∧

n∨

i=1

Di
2

on the parameters. Here, Di
1 are the conditions on the parameters obtained for mak-

ing siJϕiK &Pol tiJϕiK true, and Di
2 are the conditions on the parameters obtained for

making siJϕiK ≻Pol tiJϕiK true. Thus, the above requirement on the parameters can

be read as “all dependency pairs are weakly decreasing and at least one dependency

pair is strictly decreasing”. This immediately extends to the DP processors based

on the removal of rules where it is also sufficient if the set R′ of rewrite rules that

are decreasing w.r.t. ≻Pol is non-empty.

9.3 Summary

In order to demonstrate that the techniques presented in this dissertation are not

only of theoretical interest but can be applied automatically in an efficient way, the

140

Chapter 9. Implementation

methods have been implemented in the automated termination checker AProVE [84]

for ThZ and the general case. Most of the techniques presented in Chapters 6–8 can be

implemented straightforwardly, but an implementation of the estimated dependency

graph EDG is non-trivial since it depends on an extension of E-unification. To this

extent, it was shown how this problem can be approximated effectively.

While the automatic generation of ordinary polynomial interpretations is well un-

derstood [48, 73], the automatic generation of ThZ-polynomial interpretations needs

a non-trivial extension of these methods. The extension presented in this chapter has

been fully implemented in AProVE and has proved to be very efficient and successful,

cf. Chapter 15.

141

Chapter 10

Conditional Rewriting

The constraints used in CERSs make it possible to restrict the rewrite relation by

requiring that the matching substitution makes the constraint of the rule that is

to be applied Th-valid. While this makes it possible to naturally model algorithms

in many cases, it is restricted to properties expressible in the (decidable) theory

Th. More general conditions that may also use user-defined functions are possible

in the framework of conditional rewriting. Here, a rewrite step is only allowed if the

conditions of the rule that is to be applied can be established by recursively rewriting

them.

Example 10.1. This example shows a quicksort algorithm that takes a set and

returns a list. It is a modification of an example from [26] that is widely used in the

literature on conditional rewriting. S and E are used to model integers and sets as

in Chapter 3:

S : x+ 0 → x

−− x → x

−0 → 0

142

Chapter 10. Conditional Rewriting

−(x+ y) → (−x) + (−y)

x+ (−x) → 0

(x+ (−x)) + y → 0 + y

x ∪ ∅ → x

x ∪ x → x

(x ∪ x) ∪ y → x ∪ y

ins(x, ins(x, ys)) → ins(x, ys)

E : x+ y ≈ y + x

x+ (y + z) ≈ (x+ y) + z

x ∪ y ≈ y ∪ x

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))

Quicksort is specified by the following conditional constrained rewrite rules:

app(nil, zs) → zs

app(cons(x, ys), zs) → cons(x, app(ys, zs))

split(x, ∅) → 〈∅, ∅〉

split(x, zs)→∗ 〈zl, zh〉 | split(x, ins(y, zs)) → 〈ins(y, zl), zh〉 Jx > yK

split(x, zs)→∗ 〈zl, zh〉 | split(x, ins(y, zs)) → 〈zl, ins(y, zh)〉 Jx 6> yK

qsort(∅) → nil

split(x, ys)→∗ 〈yl, yh〉 | qsort(ins(x, ys)) → app(qsort(yl), cons(x, qsort(yh)))

Here, split(x, ys) returns a pair of sets 〈yl, yh〉 where yl contains all y ∈ ys such

that x > y and yh contains all y ∈ ys such that x 6> y. Intuitively, the condition

split(x, ys) →∗ 〈yl, yh〉 of the second qsort-rule means that split(x, ys) first needs

to be rewritten recursively until it matches 〈yl, yh〉 (thus giving a binding to these

variables) before qsort(ins(x, ys)) may be reduced using that rule. △

This chapter introduces conditional CERSs, which generalize the CERSs intro-

143

Chapter 10. Conditional Rewriting

duced in Chapter 3. Then, termination of conditional CERSs is discussed. For

this, well-foundedness of the rewrite relation is not sufficient since it also needs to

be ensured that evaluation of the conditions is terminating. These properties are

ensured by the notion of operational termination [127, 59]. The main result of this

chapter shows that operational termination of a conditional CERS can be reduced to

(regular) termination of an unconditional CERS by a simple syntactic transforma-

tion. This way, the methods developed in this dissertation for showing termination of

unconditional CERSs can also be applied for showing operational termination of con-

ditional CERSs. The syntactic transformation is based on a similar transformation

used for ordinary conditional rewriting [136, 79].

10.1 Conditional CERSs

Modeling built-in theories and collection data structures is done as in Chapter 3

using a set S of rewrite rules and a set E of equations. In contrast to Chapter 3,

defined functions are now specified using conditional constrained rewrite rules. As

formalized below, both the conditions and the Th-constraints guard when a rewrite

step may be performed. As discussed above, the constraints are still evaluated by a

decision procedure for Th-validity and thus use the built-in theory Th. The condi-

tions, on the other hand, are evaluated by recursively rewriting them, thus taking

their semantics not from the theory Th , but from the CERS itself. This distinction

between constraints and conditions is also made at the syntactic level.

Definition 10.2 (Conditional Constrained Rewrite Rules). Conditional constrained

rewrite rules have the form

s1 →
∗ t1, . . . , sn →

∗ tn | l → rJϕK

where

144

Chapter 10. Conditional Rewriting

1. l, r ∈ T (F ∪ FTh ,V) such that root(l) ∈ F − F(E ∪ S),

2. si, ti ∈ T (F ∪ FTh ,V),

3. ϕ is a Th-constraint with V(ϕ) ⊆ V(l),

4. V(r) ⊆ V(l) ∪
⋃n

j=1 V(tj), and

5. V(si) ⊆ V(l) ∪
⋃i−1

j=1 V(tj) for all 1 ≤ i ≤ n.1

As before, the constraint ⊤ will be omitted when stating a rule. Notice that the

rules from Example 10.1 satisfy these requirements.

As discussed above, the semantical difference between conditions and constraints

in a rule is operational. Conditions need to be evaluated by recursively rewriting

them, while the evaluation of constraints is done using a decision procedure for

Th-validity and does not involve any rewriting. This distinction is formalized in

Definition 10.4 below.

Conditional constrained equational rewrite systems generalize CERSs by using

conditional constrained rewrite rules.

Definition 10.3 (Conditional Constrained Equational Rewrite Systems (CCERS)).

A conditional constrained equational rewrite system (CCERS) has the form (R,S, E)

for a finite set R of conditional constrained rewrite rules and, a finite set E of equa-

tions, and a finite set S of rewrite rules such that

1. S is right-linear, i.e., each variable occurs at most once in r for all l → r ∈ S,

2. →E\S is E-convergent, and

3. →E\S is strongly E-coherent.

If R is unconditional (i.e., n = 0 for all conditional constrained rewrite rules

s1 →
∗ t1, . . . , sn →

∗ tn | l → rJϕK from R), the CERSs from Chapter 3 are obtained.

1Using the notation of [137], the last two conditions yield deterministic type 3 rules.

145

Chapter 10. Conditional Rewriting

The rewrite relation induced by a CCERS generalizes Definition 3.15. In addition

to the requirements of Definition 3.15, it is now furthermore required that the con-

ditions of the rewrite rule can be established before a reduction may be performed.

Definition 10.4 (Conditional Rewrite Relation). Let (R,S, E) be a CCERS. Then
S
→Th‖E\R is the least relation satisfying s

S
→Th‖E\R t iff there exist a conditional

constraint rewrite rule s1 →
∗ t1, . . . , sn →

∗ tn | l → rJϕK in R, a position p ∈ Pos(s),

and a Th-based substitution σ such that

1. s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ,

2. ϕσ is Th-valid,

3. siσ
S
→Th‖E\R→∗ ◦ ∼E tiσ for all 1 ≤ i ≤ n, and

4. t = s[rσ]p.

Example 10.5. Continuing Example 10.1, this example illustrates
S
→Th‖E\R for

CCERSs. Consider t = qsort(ins(1, ins(3, ins(1, ∅)))) and the Th-based substitu-

tion σ = {x 7→ 3, ys 7→ ins(1, ∅), yl 7→ ins(1, ∅), yh 7→ ∅}. Then it is easy to

see that t
>Λ
−→E\S−→! qsort(ins(1, ins(3, ∅)))

>Λ
∼E qsort(ins(x, ys))σ and thus t

S
→Th‖E\R

app(qsort(ins(1, ∅)), cons(3, qsort(∅))) using the third rule for qsort, provided that

split(3, ins(1, ∅))
S
→Th‖E\R→∗ ◦ ∼E 〈ins(1, ∅), ∅〉 can be established. In order to verify

this, the second split-rule is used. For this, it needs to be checked that the instan-

tiated constraint 3 > 1 is Th-valid and that split(3, ∅)
S
→Th‖E\R→∗ ◦ ∼E 〈∅, ∅〉 can be

established. This can be done using the first split-rule. △

Notice that the substitution σ has to instantiate all variables occurring in the

conditional rewrite rule and not only the variables occurring in l. From an operational

point of view, the substitution σ is constructed as follows. The variables occurring

in l are instantiated as in the unconditional case by E-matching, giving rise to a

substitution σ0. Since V(s1) ⊆ V(l), the term s1σ0 is fully instantiated and may

be reduced until a term s′1 is reached such that the variables in V(t1) − V(l) may

146

Chapter 10. Conditional Rewriting

be instantiated using a substitution σ1 such that s′1 ∼E t1σ0σ1. The substitution

σ1 can again be found using E-matching and determines the instantiations of the

fresh variables in in V(t1)−V(l). Similar reasoning is then applied to the remaining

conditions, resulting in the final substitution σ := σ0σ1 · · ·σn.

An alternative characterization of the rewrite relation of a CCERS can be ob-

tained by an inductive construction, similar to how this is done for ordinary condi-

tional rewriting [137]. For this, a series of unconditional CERSs is defined inductively,

and the rewrite relation of the CCERS is then the union of the rewrite relations of

these unconditional CERSs:

R0 = ∅

Ri+1 = {lσ → rσJϕσK | s1 →
∗ t1, . . . , sn →

∗ tn | l → rJϕK ∈ R and

sjσ
S
→Th‖E\Ri
→∗ tjσ for all 1 ≤ j ≤ n}

Then
S
→Th‖E\R =

∞⋃
i=0

S
→Th‖E\Ri

.

The important property of Lemma 3.26.1 is still true for CCERSs.

Lemma 10.6. Let (R,S, E) be a CCERS. Then ∼E ◦
S
→Th‖E\R ⊆

S
→Th‖E\R ◦ ∼E .

Furthermore, the
S
→Th‖E\R-steps can be performed using the same conditional con-

strained rewrite rule and Th-based substitution.

10.2 Termination and Operational Termination

It is well-known that it is not sufficient for a well-behaved notion of termination

of conditional rewriting that the rewrite relation is well-founded. In order to get

a decidable rewrite relation (under the assumption that E is size-preserving, see

Lemma 3.20), it additionally has to be ensured that evaluation of the conditions is

terminating.

147

Chapter 10. Conditional Rewriting

Example 10.7. Consider the following ordinary conditional TRS:

f(a)→∗ b | a → b

Then the rewrite relation of this conditional TRS is terminating. In fact, the relation

→R is empty since there is no unconditional rewrite rule. But an implementation

of rewriting will typically not terminate when trying to reduce the term a since, in

order to reduce the term a, it will try to reduce the term f(a), which again requires

to reduce the subterm a. △

As argued in [127, 59], the notion of operational termination is a natural choice

for the combination of these properties that better captures the behavior of actual

implementations of rewriting than other commonly used notions like effective ter-

mination [131]. Furthermore, operational termination turns out to be equivalent

to quasi-decreasingness [136] (also called left-right decreasingness [79]) for ordinary

conditional TRSs, see [127]. Since it is unclear whether quasi-decreasingness can be

easily extended to rewriting with equations2, this chapter considers the notion of

operational termination as a natural definition.

For operational termination, the recursive nature of conditional rewriting is re-

flected by an inference system which aims at proving s
S
→Th‖E\R t or s

S
→Th‖E\R→∗ t.

Then operational termination is characterized by the absence of infinite proof trees

for this inference system. Notice that the set of inference rules differs from [127] by

combining their inference rules Cong and Repl into one inference rule.

Definition 10.8 (Proof Trees). Let (R,S, E) be a CCERS. The set of (finite) proof

trees for (R,S, E) and the head of a proof tree are inductively defined as follows:

2The definition of quasi-decreasingness assumes that the subterm relation is well-
founded. But for rewriting with equations, the subterm relation modulo E is in general not
well-founded.

148

Chapter 10. Conditional Rewriting

1. An open goal G, where G is either s → t or s →∗ t for some terms s, t, is a

proof tree. In this case head(G) = G is the head of the proof tree.

2. A derivation tree

T =
T1 · · · Tn

G
∆

is a proof tree, where G is as in the first case, ∆ is one of the derivation rules

in Figure 10.1, and T1, . . . , Tn are proof trees such that

head(T1) · · · head(Tn)

G

is an instance of ∆. In this case, head(T) = G.

A proof tree is closed iff it does not contain any open goals.

Example 10.9. Consider the CCERS for quicksort from Examples 10.1 and 10.5

again. Then qsort(ins(1, ins(3, ins(1, ∅)))) → app(qsort(ins(1, ∅)), cons(3, qsort(∅))) is

an open goal and

split(3, ∅)→ 〈∅, ∅〉
Repl

〈∅, ∅〉 →∗ 〈∅, ∅〉
Refl

split(3, ∅)→∗ 〈∅, ∅〉
Tran

split(3, ins(1, ∅)) → 〈ins(1, ∅), ∅〉
Repl

〈ins(1, ∅), ∅〉 →∗ 〈ins(1, ∅), ∅〉
Refl

split(3, ins(1, ∅)) →∗ 〈ins(1, ∅), ∅〉
Tran

qsort(ins(1, ins(3, ins(1, ∅)))) → app(qsort(ins(1, ∅)), cons(3, qsort(∅)))
Repl

is a closed proof tree with this goal as its head. △

Now an infinite proof tree is defined to be a sequence of proof trees such that

each member of this sequence can be obtained from its immediate predecessor by

expanding one or more open goals.

149

Chapter 10. Conditional Rewriting

Refl
s→∗ t

if s ∼E t

Tran
s→ t t→∗ u

s→∗ u

Repl
s1σ →

∗ t1σ · · · snσ →
∗ tnσ

s→ t

if s1 →
∗ t1, . . . , sn →

∗ tn | l → rJϕK ∈ R,

p ∈ Pos(s),

σ is Th-based,

s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ,

ϕσ is Th-valid, and

t = s[rσ]p

Figure 10.1: Derivation rules for the generation of proof trees.

Definition 10.10 (Prefixes of Proof Trees, Infinite Proof Trees). A proof tree T is

a prefix of a proof tree T ′, written T ⊂ T ′, if there exist one or more open goals

G1, . . . , Gn in T such that T ′ is obtained from T by replacing each Gi by a derivation

tree Ti with head(Ti) = Gi. An infinite proof tree is an infinite sequence {Ti}i≥0 of

finite proof trees such that Ti ⊂ Ti+1 for all i ≥ 0.

Proof trees do not impose any restriction on the order in which leaves are ex-

panded. While Definition 10.4 does not impose an order in which the conditions are

to be evaluated, the discussion following Definition 10.4 shows that an implementa-

tion of conditional rewriting needs to evaluate the conditions from left to right. This

150

Chapter 10. Conditional Rewriting

behavior can be reflected in proof trees as well.

Definition 10.11 (Well-Formed Proof Trees). A proof tree T is well-formed if it is

either an open goal, a closed proof tree, or a derivation tree of the form

T1 · · · Tn

G
∆

where Tj is a well-formed proof tree for all 1 ≤ j ≤ n and there is an i ≤ n such that

Ti is not closed, Tj is closed for all j < i, and Tk is an open goal for all k > i. An

infinite proof tree is well-formed iff it consists of well-formed proof trees.

As mentioned above, operational termination is characterized by the absence of

infinite well-formed proof trees.

Definition 10.12 (Operational Termination). A CCERS (R,S, E) is operationally

terminating iff it does not admit infinite well-formed proof trees.

It is easy to show that the notions of termination and operational termination

coincide for CERSs.

Lemma 10.13. Let (R,S, E) be a CERS. Then (R,S, E) is operationally terminating

iff (R,S, E) is terminating.

10.3 Elimination of Conditions

In order to show operational termination of a CCERS (R,S, E), it is transformed

into a CERS (U(R),S, E) such that operational termination of (U(R),S, E) implies

operational termination of (R,S, E). By Lemma 10.13, (U(R),S, E) is operationally

terminating if it is terminating, and thus a termination proof of (U(R),S, E) consti-

tutes a proof of operational termination of (R,S, E). The transformation generalizes

151

Chapter 10. Conditional Rewriting

the well-known one for ordinary conditional rewriting [136, 79] to rewriting with equa-

tions, normalization, and constraints. An extension of the classical transformation

to context-sensitive rewriting with equations was proposed in [59]. The presentation

in this section is influenced by [59].

Definition 10.14 (Transformation U). Let ρ : s1 →
∗ t2, . . . , sn →

∗ tn | l → rJϕK be

a conditional constrained rewrite rule. Then U(ρ) is defined by:

1. if n = 0 then U(ρ) = { ρ }

2. if n > 0 then U(ρ) = { l → Uρ
1 (s1, x

∗
1)JϕK } ∪ (1)

{ Uρ
i−1(ti−1, x

∗
i−1)→ Uρ

i (si, x
∗
i)JϕK | 2 ≤ i ≤ n } ∪ (2)

{ Uρ
n(tn, x

∗
n)→ rJϕK } (3)

Here, the Uρ
i are fresh function symbols and, for 1 ≤ i ≤ n, the expression x∗i denotes

the sorted list of variables in the set V(l) ∪ V(t1) ∪ . . . ∪ V(ti−1) according to some

fixed order on the set V of all variables. For a finite set R of conditional constrained

rewrite rules, let U(R) =
⋃

ρ∈R U(ρ).

Example 10.15. Continuing the running example, the transformation produces the

following unconditional constrained rewrite rules:

app(nil, zs) → zs

app(cons(x, ys), zs) → cons(x, app(ys, zs))

split(x, ∅) → 〈∅, ∅〉

split(x, ins(y, zs)) → U1(split(x, zs), x, y, zs) Jx > yK

U1(〈zl, zh〉, x, y, zs) → 〈ins(y, zl), zh〉 Jx > yK

split(x, ins(y, zs)) → U2(split(x, zs), x, y, zs) Jx 6> yK

U2(〈zl, zh〉, x, y, zs) → 〈zl, ins(y, zh)〉 Jx 6> yK

qsort(∅) → nil

qsort(ins(x, ys)) → U3(split(x, ys), x, ys)

U3(〈yl, yh〉, x, ys) → app(qsort(yl), cons(x, qsort(yh)))

152

Chapter 10. Conditional Rewriting

In order to ease readability, the function symbols Uρ
i from Definition 10.14 are de-

noted using simplified names. Termination of this unconditional system can easily

be shown using the methods developed in this dissertation. △

The main result of this chapter relates operational termination of (R,S, E) to

operational termination of (U(R),S, E).

Lemma 10.16. For any well-formed proof tree T for (R,S, E) whose head goal is

either s → t or s →∗ t, there exists a well-formed proof tree β(T) for (U(R),S, E)

whose head goal is s→∗ t. Furthermore, if T ⊂ T ′ for some T ′, then β(T) ⊂ β(T ′).

Using this lemma, it is now easy to show that operational termination of the

transformed system implies operational termination of the original system.

Theorem 10.17. If (U(R),S, E) is operationally terminating, then (R,S, E) is op-

erationally terminating.

By combining Theorem 10.17 and Lemma 10.13, the desired result that termina-

tion of (U(R),S, E) implies operational termination of (R,S, E) is obtained.

Corollary 10.18. If (U(R),S, E) is terminating, then (R,S, E) is operationally ter-

minating.

Given that the transformation is sound for proving termination, it is of course a

valid question whether it is also complete, i.e., if operational termination of (R,S, E)

implies that (U(R),S, E) is terminating. The following example from [131] show that

this is in general not the case.

Example 10.19. Consider the following ordinary conditional TRS R [131]:

153

Chapter 10. Conditional Rewriting

a → c

a → d

b → c

b → d

c → e

c → l

k → l

k → m

d → m

A → h(f(a), f(b))

h(x, x) → g(x, x, f(k))

g(d, x, x) → A

x→∗ e | f(x) → x

Then R is operationally terminating [137], but U(R) is non-terminating since the

term h(f(a), f(b)) starts an infinite reduction w.r.t. →U(R). △

For an ordinary conditional TRS R, quasi-decreasingness (and thus operational

termination) of R implies that U(R) is innermost terminating [136]. Thus, while

the converse of Corollary 10.18 is not true in general, it could be investigated in

future work whether (U(R),S, E) is innermost terminating whenever (R,S, E) is

operationally terminating.

10.4 Summary

The CERSs as introduced in Chapter 3 make it possible to naturally model algo-

rithms in many cases. The framework of CERSs can, however, be made even more

expressive and natural by allowing more general conditions for the rewrite rules. The

154

Chapter 10. Conditional Rewriting

constraints of rewrite rules are restricted to properties expressible in the (decidable)

theory Th , while conditional rewriting makes it possible to use conditions that may

also utilize user-defined functions.

Since the conditions of a rewrite rule are evaluated by recursively rewriting them,

termination analysis of conditional systems is more complex than for unconditional

systems. This chapter has introduced the notion of operational termination [127, 59]

of such systems. Then, the main result of this chapter has shown that operational

termination of a CCERS can be reduced to (regular) termination of a CERS by a

simple syntactic transformation. Therefore, the methods developed in this disserta-

tion for showing termination of CERSs can also be applied for showing operational

termination of CCERSs. The implementation in AProVE has been successfully ap-

plied to several CERSs that have been obtained from CCERSs by the transformation

introduced in this chapter, cf. Chapter 15.

155

Chapter 11

Context-Sensitive Rewriting and

Dependency Pairs

Context-sensitive rewriting [121, 123] is an operational restriction of term rewriting

that can be used to model lazy (non-strict) evaluation as used in functional program-

ming languages such as Haskell (for more on the relationship between lazy evaluation

and context-sensitive rewriting, see [124]). Additionally, declarative specification

and programming languages such as Maude [43] directly support context-sensitive

rewriting strategies. This chapter introduces context-sensitive rewriting strategies

for CERSs as defined in Chapter 3.

In context-sensitive rewriting, the arguments where an evaluation may take place

are specified for each function symbol. Then a reduction is only allowed if it takes

place at a position that is not forbidden by a function symbol occurring somewhere

above it.

Example 11.1. Consider the CERS where S and E are used to model integers and

sets using ∅ and ins as in Chapter 3 and where R consists of the following rules:

156

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

from(x) → ins(x, from(x+ 1))

take(0, xs) → nil

take(x, ins(y, ys)) → cons(y, take(x− 1, ys))Jx > 0K

pick(ins(x, xs)) → x

drop(ins(x, xs)) → xs

Here, the function symbol from is used to generate the (infinite) subsets of in-

tegers that are greater than or equal to the argument of from. Thus, the term

take(2, from(0)) admits an infinite reduction in which the from-rule is applied over

and over again. However, there also is a finite reduction of that term which results in

the normal form cons(0, cons(1, nil)). This reduction can be enforced using context-

sensitive rewriting if evaluation of the second argument of ins is forbidden since the

recursive call to from is then blocked. △

Since context-sensitive rewriting may result in a terminating rewrite relation

for CERSs where regular rewriting is not terminating, proving the termination of

context-sensitive rewriting is challenging.

For ordinary TRSs, there are two approaches to proving termination of context-

sensitive rewriting. The first approach is to apply a syntactic transformation in

such a way that termination of context-sensitive rewriting with a TRS is implied

by (regular) termination of the TRS obtained by the transformation. For details on

this approach, see [83, 126]. While the application of these transformations makes it

possible to use any method for proving termination of the transformed TRS, it often

generates TRSs whose termination cannot be established using existing methods.

The second approach consists of the development of dedicated methods for prov-

ing termination of context-sensitive rewriting. Examples for adaptations of classi-

cal methods are context-sensitive recursive path orderings [30] and context-sensitive

polynomial interpretations [125]. The main drawback of these adaptations of classical

157

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

methods is the limited power which is inherited from the classical methods. Adapting

the more powerful dependency pair method [12] to context-sensitive TRSs has been

a challenge. A first adaptation of the dependency pair method to context-sensitive

TRSs has been presented in [2]. But this adaptation has severe disadvantages com-

pared to the ordinary dependency pair method since it requires the introduction of

collapsing dependency pairs (i.e., dependency pairs of the form f ♯(t1, . . . , tn) → x

where x is a variable). These collapsing dependency pairs make it necessary to

impose strong restrictions on how the method can be applied.

An alternative adaptation of the dependency pair method to context-sensitive

TRSs has recently been presented in [1]. This adaptation does not require collapsing

dependency pairs and makes it much easier to adapt termination techniques devel-

oped within the dependency pair method to the context-sensitive case. Empirical

evaluations show the superiority of this most recent formulation, see [1].

After introducing the basic terminology of context-sensitive rewriting with CERSs

in Section 11.1 and briefly discussing context-sensitive rewriting with CCERSs in

Section 11.2, the main technical result of this chapter is proven in Section 11.3. By a

non-trivial extension of [1], termination of context-sensitive rewriting with a CERS

is reduced to showing absence of infinite chains of dependency pairs. This makes

it possible to develop a dependency pair framework for the termination analysis of

context-sensitive rewriting with CERSs, similar to the case of non-context-sensitive

rewriting with CERSs as discussed in Chapter 5.

11.1 Context-Sensitive Rewriting

Context-sensitive rewriting strategies are obtained using replacement maps that are

used to define the context under which a reduction may take place. This is done

by specifying the argument positions of a function symbol f where a reduction is

158

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

allowed. Intuitively, if the replacement map restricts reductions in a certain argument

position, then the whole subterm below that argument position may not be reduced.

Definition 11.2 (Replacement Maps). A replacement map is a mapping µ with

µ(f) ⊆ {1, . . . , arity(f)} for every function symbol f ∈ F ∪ FTh .

Replacement maps are used to denote a subset of all positions in a term as active.

A position is active if it can be reached from the root of the term by only descending

into argument positions that are not restricted by the replacement map µ.

Definition 11.3 (Active and Inactive Positions). Let µ be a replacement map and

let t be a term. Then the set of active positions of t, written Posµ(t), is defined by

1. Posµ(x) = {Λ} for x ∈ V, and

2. Posµ(f(t1, . . . , tn)) = {Λ} ∪ {i.p | i ∈ µ(f) and p ∈ Posµ(ti)}.

The set of inactive positions of t is defined as Pos¬µ(t) = Pos(t)−Posµ(t).

Example 11.4. Consider a replacement map with µ(f) = {1}, µ(g) = {1, 2},

and µ(h) = ∅. If t = f(g(x, h(y)), h(x)), then Posµ(t) = {Λ, 1, 1.1, 1.2} and

Pos¬µ(t) = {1.2.1, 2, 2.1}. △

The concept of active positions can also be used to define active (and inactive)

subterms of a given term. This is similar to Definition 2.5.4.

Definition 11.5 (Active and Inactive Subterms). Let µ be a replacement map and

let t be a term. If t|p = s for an active position p ∈ Posµ(t), then s is an active

subterm of t, written t�µ s. If additionally p 6= Λ, then s is an active strict subterm

of t, written t �µ s. If t|p = s for an inactive position p ∈ Pos¬µ(t), then s is an

inactive strict subterm of t, written t�¬µ s.
1

1Notice that there are no inactive (non-strict) subterms since Λ is always active.

159

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

The classification of active and inactive subterms can easily be extended to other

notions as well to obtain the sets Vµ(t) of variables occurring in active positions in

t, V¬µ(t) of variables occurring in inactive positions in t, Fµ(t) of function symbols

occurring in active positions in t, F¬µ(t) of function symbols occurring in inactive

positions in t, etc.

Example 11.6. Continuing Example 11.4,

1. f(g(x, h(y)), h(x)) �µ f(g(x, h(y)), h(x))

f(g(x, h(y)), h(x)) �µ g(x, h(y))

f(g(x, h(y)), h(x)) �µ x

f(g(x, h(y)), h(x)) �µ h(y)

2. f(g(x, h(y)), h(x)) �¬µ y

f(g(x, h(y)), h(x)) �¬µ h(x)

f(g(x, h(y)), h(x)) �¬µ x

3. Vµ(f(g(x, h(y)), h(x))) = {x}

V¬µ(f(g(x, h(y)), h(x))) = {x, y}

4. Fµ(f(g(x, h(y)), h(x))) = {f, g, h}

F¬µ(f(g(x, h(y)), h(x))) = {h}

Notice that Vµ(t) and V¬µ(t) (and Fµ(t) and F¬µ(t)) are not necessarily disjoint.△

Now a context-sensitive constrained equational rewrite system combines a CERS

as in Definition 3.12 with a replacement map. Notice that the replacement map µ

needs to satisfy several conditions on the occurrences of variables in S and E . As

already noticed for the associative-commutative case in [71], this is due to the per-

mutative nature of equations in E that may otherwise bring subterms from inactive

positions into active positions, and vice versa. Figure 11.1 lists the replacement maps

that are allowed by this definition for the data structures from Chapter 3.

160

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Constructors Conditions on µ

Natural numbers 0, 1,+ µ(+) = {1, 2}
Integers 0, 1,+,− µ(+) = {1, 2}

µ(−) = {1}
Lists nil, cons —
Lists nil, 〈·〉, ++ µ(++) = {1, 2}
Compact Lists nil, cons µ(cons) = ∅ or µ(cons) = {1, 2}
Compact Lists nil, 〈·〉, ++ µ(++) = {1, 2}
Multisets ∅, ins µ(ins) = ∅ or µ(ins) = {1, 2}
Multisets ∅, {·},∪ µ(∪) = {1, 2}
Sets ∅, ins µ(ins) = ∅ or µ(ins) = {1, 2}
Sets ∅, {·},∪ µ(∪) = {1, 2}

Figure 11.1: Replacement maps allowed for context-sensitive rewriting.

Definition 11.7 (Context-Sensitive CERSs). A context-sensitive CERS (CS-CERS)

has the form (R,S, E , µ) for a CERS (R,S, E) and a replacement map µ such that

the following conditions are satisfied:

1. E is collapse-free.

2. For all u ≈ v ∈ E ,

(a) Vµ(u) = Vµ(v) and V¬µ(u) = V¬µ(v),

(b) for all inactive non-variable subterms u′ of u, u′ �µ x for a variable x

implies v′ �µ x for an inactive non-variable subterm v′ of v, and

(c) for all inactive non-variable subterms v′ of v, v′ �µ x for a variable x

implies u′ �µ x for an inactive non-variable subterm u′ of u.

3. For all l → r ∈ S,

(a) Vµ(r) ∩ V¬µ(l) = ∅, and

(b) for all inactive non-variable subterms r′ of r, r′ �µ x for a variable x

implies l′ �µ x for an inactive non-variable subterm l′ of l.

161

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

The rewrite relation of a CS-CERS is obtained by a small modification of Defini-

tion 3.15. The only difference is that for CS-CERSs, the position where the reduction

takes place has to be active. Notice that it is also easily possible to consider an inner-

most rewrite relation or even a general restricted rewrite relation for CS-CERSs, just

as this was done in Section 3.4 for standard CERSs. For simplicity of presentation,

this is not considered in this dissertation.

Definition 11.8 (Rewrite Relation of a CS-CERS). Let (R,S, E , µ) be a CS-CERS.

Then s
S
→Th‖E\R,µ t iff there exist a constrained rewrite rule l → rJϕK ∈ R, an active

position p ∈ Posµ(s), and a Th-based substitution σ such that

1. s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ,

2. ϕσ is Th-valid, and

3. t = s[rσ]p.

Example 11.9. The CERS from Example 11.1 becomes a CS-CERS by considering

the replacement map µ with µ(ins) = ∅ and µ(f) = {1, . . . , arity(f)} for all f 6= ins.

Then the reduction of the term take(2, from(0)) has the following form:

take(2, from(0))
S
→Th‖E\R,µ take(2, ins(0, from(1)))

S
→Th‖E\R,µ cons(0, take(2− 1, from(1)))

S
→Th‖E\R,µ cons(0, cons(1, take(1− 1, from(2))))

S
→Th‖E\R,µ cons(0, cons(1, nil))

Notice that an infinite reduction of this term is not possible since the recursive call

to from in the rule from(x)→ ins(x, from(x+ 1)) occurs in an inactive position. △

The following properties of rewriting with CERSs are needed in the remainder of

this dissertation. They are analogous to Lemmas 2.21 and 3.26. Here, a context C

is an active context iff 2 occurs in an active position in it.

Lemma 11.10. Let (R,S, E , µ) be a CS-CERS and let s, t be terms.

162

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

1. Let s = C[f(s∗)] for an active context C where f 6∈ F(E). If s ∼E t, then

t = C ′[f(t∗)] for an active context C ′ such that C ∼E C
′ and f(s∗)

>Λ
∼E f(t∗).

2. ∼E ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ ◦ ∼E , where the

S
→Th‖E\R,µ steps can be performed

using the same constrained rewrite rule and Th-based substitution.

3. →E\S ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ→+ ◦ →=

E\S

Just as for Corollary 3.27, the following can easily be obtained.

Corollary 11.11. Let (R,S, E , µ) be a CS-CERS and let s, t be terms.

1. If s ∼E t, then s starts an infinite
S
→Th‖E\R,µ-reduction iff t starts an infinite

S
→Th‖E\R,µ-reduction.

2. If s→E\S t and t starts an infinite
S
→Th‖E\R,µ-reduction, then s starts an infinite

S
→Th‖E\R,µ-reduction.

11.2 Context-Sensitive Conditional Rewriting

Recall the conditional CERSs from Chapter 10: In addition to Th-constraints, the

rewrite rules of CCERSs also contain conditions that need to be established before

applying a rule. In contrast to the Th-constraints, whose validity is established by

a decision procedure for Th , these conditions need to be established by recursively

rewriting them since they may contain user-defined functions.

A combination of conditional rewrite rules with context-sensitive reduction strate-

gies is easily possible in the obvious way, giving rise to context-sensitive conditional

constrained equational rewrite systems (CS-CCERSs). As for CCERSs, operational

termination is a crucial property of CS-CCERSs, and the question of how to verify

operational termination of a CS-CCERS naturally arises.

163

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Recall from Chapter 10 that operational termination of CCERSs can be reduced

to termination of (unconditional) CERSs by a simple syntactic transformation. This

transformation can be adapted to the context-sensitive case by a simple extension of

the replacement map µ: for the fresh function symbols Uρ
i introduced in Definition

10.14, let µ(Uρ
i) = {1}, i.e., only the subterms corresponding to the conditions of

the conditional rewrite rules may be reduced. This is the same approach that is

taken in [59] as well. Then, the statement of Corollary 10.18 is still true, i.e., the

CS-CCERS (R,S, E , µ) is operationally terminating if the (unconditional) CS-CERS

(U(R),S, E , µ) is terminating.

11.3 Context-Sensitive Dependency Pairs

Extending the dependency pair method from ordinary rewriting to ordinary context-

sensitive rewriting has been a challenge. Recall from Section 5.1 that dependency

pairs are built from recursive calls to defined function symbols occurring on the right-

hand side of rewrite rules since only these recursive calls may cause non-termination.

For context-sensitive rewriting, one might be tempted to restrict the generation of

dependency pairs to recursive calls occurring in active positions since these are the

only positions where reductions may take place. The following example from [2]

shows that this results in an unsound method.

Example 11.12. Consider the following ordinary TRS [2]:

a → c(f(a))

f(c(x)) → x

Let µ(c) = ∅ and µ(f) = {1}. Since the recursive calls in the first rule are in inactive

positions, no dependency pair would be generated if only recursive calls occurring

in active positions are considered. Then, context-sensitive termination of the TRS

164

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

could be concluded, even though it is not terminating: f(a) →R,µ f(c(f(a))) →R,µ

f(a)→R,µ Here, →R,µ is the standard context-sensitive rewrite relation which is

obtained from Definition 11.8 by disregarding S, E , and every mention of Th. △

The problem of the naive approach outlined above is that recursive calls in in-

active positions of right-hand sides may become active again after applying other

rules. In Example 11.12, the recursive call to f(a) that occurs in an inactive position

is migrated to an active position by an application of the second rule. This is the

reason that the method of [2] has to create collapsing dependency pairs whose right-

hand side is a migrating variable, where, for a rule l → r, a variable x is migrating if

r �µ x but l 6�µ x. In Example 11.12, the collapsing dependency pair f♯(c(x)) → x

is created.

As noticed in [1], the need for collapsing dependency pairs causes severe dis-

advantages since it becomes quite hard to extend methods for proving termination

from ordinary rewriting to ordinary context-sensitive rewriting because the collaps-

ing dependency pairs require a special treatment. While recent work provides some

progress [2, 3, 92], the resulting methods are quite weak in practice. As a simple

example of this weakness, collapsing dependency pairs have an outgoing arc to ev-

ery other dependency pair in the estimated dependency graph, thus making this

technique not very effective for decomposing the termination proof.

An alternative to the collapsing dependency pairs needed in [2] has recently been

presented in [1]. The main observation in [1] is that only certain instantiations of

the migrating variables need to be considered. A first, naive approach for this would

be to only consider instantiations by hidden terms, which are terms with a defined

root symbol occurring inactively in right-hand sides.

Definition 11.13 (Hidden Terms). Let (R,S, E , µ) be a CS-CERS. A term t is

hidden iff root(t) ∈ D(R) and there exists a rule l → rJϕK from R such that r�¬µ t.

165

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Example 11.14. For the CS-CERS from Example 11.1, the term from(x + 1) is

hidden since ins(x, from(x+ 1)) �¬µ from(x+ 1). △

Instantiating the migrating variable in Example 11.12 by the hidden term f(a) is

sufficient, since the dependency pair f♯(c(f(a)))→ f♯(a) obtained by this instantiation

gives rise to an infinite chain. In general, considering only instantiations by hidden

terms results in an unsound method, as shown by the following example.

Example 11.15. Consider the following ordinary TRS [1]:

a → f(g(b))

f(x) → h(x)

h(x) → x

b → a

Let µ(g) = {1} and µ(a) = µ(b) = µ(f) = µ(h) = ∅. The only hidden term is b

obtained from the first rule. If migrating variables are only instantiated by hidden

terms, then the following dependency pairs are obtained:

a♯ → f♯(g(b))

f♯(x) → h♯(x)

h♯(b) → b♯

b♯ → a♯

Since these dependency pairs do not give rise to an infinite chain, termination could

be concluded, even though a →R,µ f(g(b)) →R,µ h(g(b)) →R,µ g(b) →R,µ g(a) →R,µ

. . . is an infinite reduction. △

As motivated by this example, it becomes necessary to consider certain contexts

that may be built above a hidden term using the rewrite rules. In Example 11.15, this

context is g(2). Formally, this observation is captured using the notion of hiding

166

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

contexts. The definition in this dissertation extends the one given in [1] by also

considering S and E .

Definition 11.16 (Hiding Contexts). Let (R,S, E , µ) be a CS-CERS. Then f ∈

F ∪ FTh hides position i iff i ∈ µ(f) and either

1. f ∈ F(E) ∪ F(S), or

2. there exist a rule l → rJϕK from R and a term s = f(s1, . . . , si, . . . , sn) such

that r �¬µ s and si �µ x for a variable x or si �µ g(. . .) for an g ∈ D(R).

A context C with one hole is hiding iff either

1. C = 2, or

2. C = f(t1, . . . , ti−1, C
′, ti+1, . . . , tn) such that f hides position i and C ′ is a

hiding context.

Notice that every hiding context is an active context.

Example 11.17. For the CS-CERS from Example 11.1, + hides positions 1 and 2,

− hides position 1, and from hides position 1 due to the first rewrite rule. △

Notice that there are, in general, infinitely many hiding contexts. For example,

the hiding contexts in Example 11.15 are 2, g(2), g(g(2)), In order to represent

these infinitely many hiding contexts using only finitely many dependency pairs, fresh

function symbols Ubase and Uuniv are introduced that will be used to deconstruct a

hiding context in order to obtain the hidden term contained in it. This is achieved by

introducing dependency pairs of the form Us(g(x1, . . . , xi, . . . , xn)) → Us′(xi) when-

ever the function symbol g hides position i. Here, s, s′ ∈ {base, univ} are the ap-

propriate sorts. Thus, the following definition of context-sensitive dependency pairs

is obtained. Here, DPu is used instead of the collapsing dependency pairs needed in

[2]. This is similar to [1].

167

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Definition 11.18 (Context-Sensitive Dependency Pairs). Let (R,S, E , µ) be a CS-

CERS. The context-sensitive dependency pairs of R are defined as DP(R, µ) =

DPo(R, µ) ∪ DPu(R, µ) where

DPo(R, µ) = {l♯ → t♯JϕK | l → rJϕK ∈ R, r �µ t, root(t) ∈ D(R)}

DPu(R, µ) = {l♯ → Us(x)JϕK | l → rJϕK ∈ R, r �µ x, l 6�µ x} (1)

∪ {Us(g(x1, . . . , xi, . . . , xn))→ Us′(xi)J⊤K | g hides position i} (2)

∪ {Us(h)→ h♯J⊤K | h is a hidden term} (3)

Here, s and s′ are the sorts of x, g(x1, . . . , xi, . . . , xn), xi, and h, respectively, and

Us ∈ F
♯ is a fresh function symbol of arity 1 with sort declaration s → top. Fur-

thermore, µ(Us) = ∅ and µ(f ♯) = µ(f) for all f ♯ ∈ F ♯.

Example 11.19. For the CS-CERS from Example 11.1, the context-sensitive de-

pendency pairs are as follows:

take♯(x, ins(y, ys)) → take♯(x− 1, ys) Jx > 0K (11.1)

take♯(x, ins(y, ys)) → Ubase(y) Jx > 0K (11.2)

take♯(x, ins(y, ys)) → Uuniv(ys) Jx > 0K (11.3)

pick♯(ins(x, xs)) → Ubase(x) (11.4)

drop♯(ins(x, xs)) → Uuniv(ys) (11.5)

Uuniv(from(x+ 1)) → from♯(x+ 1) (11.6)

Ubase(x+ y) → Ubase(x) (11.7)

Ubase(x+ y) → Ubase(y) (11.8)

Ubase(−x) → Ubase(x) (11.9)

Uuniv(from(x)) → Ubase(x) (11.10)

For this, recall the hidden term from(x + 1) from Example 11.14 and the hiding

contexts from Example 11.17. △

168

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

Just as in Definition 5.3, context-sensitive dependency pairs can be used in order

to build chains, and the goal is to show the analogous statement to Theorem 5.6,

i.e., that
S
→Th‖E\R,µ is terminating if there are no infinite minimal chains.

Definition 11.20 ((Minimal) (P,R,S, E , µ)-Chains). Let P be a set of dependency

pairs and let (R,S, E , µ) be a CS-CERS. A (possibly infinite) sequence of dependency

pairs s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . from P is a (P,R,S, E , µ)-chain iff there exists

a Th-based substitution σ such that tiσ
S
→Th‖E\R,µ→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ, the instanti-

ated Th-constraint ϕiσ is Th-valid, and siσ is a normal form w.r.t.
>Λ
−→E\S for all

i ≥ 1. The above (P,R,S, E , µ)-chain is minimal iff tiσ does not start an infinite
S
→Th‖E\R,µ-reduction for all i ≥ 1.

While the definition of chains is virtually identical to the non-context-sensitive

case in Definition 5.3, proving the analogous statement to Theorem 5.6 for CS-CERSs

is quite complex and requires several technical definitions and lemmas. First, it is

convenient to formally introduce minimal non-terminating terms, which are terms

that start an infinite
S
→Th‖E\R,µ-reduction such that none of its proper subterms in

an active position starts an infinite reduction. This concept is implicitly used in the

proof of Theorem 5.6 as well, recall the discussion in Section 5.1.

Definition 11.21 (Minimal Non-Terminating Terms). For a CS-CERS (R,S, E , µ),

a term t is minimal non-terminating, written t ∈ M∞
(R,S,E,µ), iff t starts an infinite

S
→Th‖E\R,µ-reduction but no t′ with t�µ t

′ starts an infinite
S
→Th‖E\R,µ-reduction.

The following properties of minimal non-terminating terms are easy consequences

of Corollary 11.11.

Lemma 11.22. Let t ∈M∞
(R,S,E,µ).

1. If t ∼E t
′, then t′ ∈M∞

(R,S,E,µ).

2. If t→∗
E\S t

′ and t′ starts an infinite
S
→Th‖E\R,µ-reduction, then t′ ∈ M∞

(R,S,E,µ).

169

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

The next lemma intuitively states that the application of equations from E or

rules from S transforms a hiding context into another hiding context. This lemma

is the reason why any f ∈ F(E) ∪ F(S) is considered to hide any active argument

position in Definition 11.16.

Lemma 11.23. Let C be a hiding context and let t ∈M∞
(R,S,E,µ).

1. If C[t] ⊢⊣E s and the ⊢⊣E -step is applied at a position in C, then s = C ′[t] for

a hiding context C ′.

2. Let C[t] →S s at a position in C using a rule l → r ∈ S and a substitution σ

such that the variable x ∈ V(l) with xσ�µ t (if it exists) satisfies r�µ x. Then

s = C ′[t] for a hiding context C ′.

The proof of the main theorem, i.e., that
S
→Th‖E\R,µ is terminating if there are

no infinite minimal chains, is modularized by introducing the following abstract

property. A term has the hiding property if its minimal non-terminating subterms in

inactive positions are obtained from hidden terms and surrounded by hiding contexts.

The definition in this dissertation differs from the original definition in [1] by making

use of E and S in order to obtain the minimal non-terminating terms from instances

of hidden terms.

Definition 11.24 (Hiding Property). A term u ∈M∞
(R,S,E,µ) has the hiding property

iff whenever u �¬µ s �µ t with t ∈ M∞
(R,S,E,µ), then s = C[t] for a hiding context C

and there exists an instance t′ of a hidden term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t.

The following key lemma states that the hiding property is preserved by ∼E ,

→E\S , and
S
→Th‖E\R,µ. This is a key result needed for the proof of the main theorem.

Lemma 11.25. Let u ∈M∞
(R,S,E,µ) have the hiding property.

1. If u ⊢⊣E v �µ w with w ∈M∞
(R,S,E,µ), then w has the hiding property.

170

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

2. If u→E\S v �µ w with w ∈M∞
(R,S,E,µ), then w has the hiding property.

3. If u
S
→Th‖E\R,µ v �µ w with w ∈M∞

(R,S,E,µ), then w has the hiding property.

Now the main theorem can be proved, stating that rewriting with a CS-CERS is

terminating if there are no infinite chains. It could be investigated in future work

whether the converse of this statement is true as well, i.e., whether the absence of

infinite minimal chains provides an exact characterization of termination for rewriting

with CS-CERSs. Recall that this is the case for non-context-sensitive CERSs, cf.

Theorem 5.6.

Theorem 11.26. Let (R,S, E , µ) be a CS-CERS. Then
S
→Th‖E\R,µ is terminating if

there are no infinite minimal (DP(R, µ),R,S, E , µ)-chains.

The DP framework as introduced in Section 5.2 trivially extends to the context-

sensitive setting, resulting in the CS-DP framework, where CS-DP processors operate

on CS-DP problems of the form (P,R,S, E , µ).

11.4 Summary

This chapter has introduced the basic terminology of context-sensitive rewriting with

CERSs. For CS-CERSs, the arguments where an evaluation may take place are

specified for each function symbol and a reduction is only allowed if it takes place at

a position that is not forbidden by a function symbol occurring somewhere above it.

Next, a dependency pair method for showing termination of rewriting with such

CS-CERSs has been developed. In order to avoid the need for collapsing dependency

pairs as in [2], the recent approach from [1] for ordinary TRSs has been extended

to the setting of CS-CERSs. For this approach, the notions of hidden terms and

hiding contexts are crucial, resulting in a definition of dependency pairs that is more

171

Chapter 11. Context-Sensitive Rewriting and Dependency Pairs

complex than in the non-context-sensitive case. This added complexity will pay off in

the next chapter, however, since an adaptation of the DP processors from Chapters

6–8 becomes relatively straightforward.

172

Chapter 12

Context-Sensitive DP Processors

After introducing the dependency pair framework for context-sensitive rewriting with

CERSs in Chapter 11, the goal of this chapter is to introduce several sound CS-DP

processors.

Section 12.1 introduces context-sensitive dependency graphs, which adapt the de-

pendency graphs from Section 6.3 to the context-sensitive case. This adaptation

includes an estimation similar to the one used in Section 6.3 for the non-context-

sensitive case.

Next, Section 12.2 adapts the subterm criterion from Section 6.6 to the context-

sensitive case. As for the context-sensitive dependency graphs, this adaptation is

relatively straightforward. As shown in Section 12.3, the methods based on reduction

pairs as introduced in Chapter 7 also extend easily.

Extending the method from Section 8.3 that is based on function dependencies

and makes it possible to restrict attention to certain subsets of R, S, and E when

considering the CS-DP problem (P,R,S, E , µ) is more challenging. For ordinary

context-sensitive TRSs, the goal was achieved only very recently [92, 1]. Section 12.4

173

Chapter 12. Context-Sensitive DP Processors

presents an extension of this method to CS-CERSs, and Section 12.5 presents an

improved method for a restricted class of CS-DP problems.

12.1 Dependency Graphs

Like the DP processor from Section 6.3, the CS-DP processor introduced in this sec-

tion decomposes a CS-DP problem into several independent CS-DP problems by de-

termining which dependency pairs from P may follow each other in a (P,R,S, E , µ)-

chain. The processor again relies on the notion of dependency graphs.

Definition 12.1 (Context-Sensitive Dependency Graphs). Let (P,R,S, E , µ) be a

CS-DP problem. The (P,R,S, E , µ)-dependency graph DG(P,R,S, E , µ) has the

dependency pairs in P as nodes and there is an arc from s1 → t1Jϕ1K to s2 → t2Jϕ2K

iff s1 → t1Jϕ1K, s2 → t2Jϕ2K is a (P,R,S, E , µ)-chain.

As for the dependency graph from Section 6.3, DG(P,R,S, E , µ) cannot be com-

puted exactly in general and an estimation has to be used instead. The estimation

used in this section is similar to the estimation of Section 6.3 but has been adapted

to the context-sensitive case. This adaptation is similar to the estimated dependency

graphs for ordinary context-sensitive rewriting used in [2, 1].

Definition 12.2 (Estimated Context-Sensitive Dependency Graphs). For a CS-DP

problem (P,R,S, E , µ), the nodes in the estimated (P,R,S, E , µ)-dependency graph

EDG(P,R,S, E , µ) are the dependency pairs in P and there is an arc from s1 →

t1Jϕ1K to s2 → t2Jϕ2K iff there exists a substitution σ that is Th-based for V(s1)∪V(s2)

such that capµ(t1)σ
>Λ
−→E\S−→! ◦

>Λ
∼E s2σ, the terms s1σ and s2σ are normal forms w.r.t.

>Λ
−→E\S , and ϕ1σ and ϕ2σ are Th-valid. The function capµ is defined by

1. capµ(x) = x for variables x of sort base,

174

Chapter 12. Context-Sensitive DP Processors

2. capµ(x) = y for variables x of sort univ,

3. capµ(f(t1, . . . , tn)) = f(t′1, . . . , t
′
n) where

t′i =




ti if i 6∈ µ(f)

capµ(ti) otherwise

if there does not exist a rule l → rJϕK ∈ R such that f(t′1, . . . , t
′
n)σ

>Λ
−→E\S−→! ◦

>Λ
∼E

lσ for a substitution σ that is Th-based for V(f(t1, . . . , tn)) ∪ V(l) where ϕσ is

Th-valid, and

4. capµ(f(t1, . . . , tn)) = y otherwise.

Here, y is the next variable in an infinite list y1, y2, . . . of fresh variables.

As in Section 6.3, it is also possible to omit the checks for irreducibility by
>Λ
−→E\S

and Th-validity, and it is possible to replace case 3 in the definition of capµ by a

simple check for f 6∈ D(R).

Next, it is shown that the estimated dependency graph is indeed an overap-

proximation of the dependency graph, i.e., EDG(P,R,S, E , µ) is a supergraph of

DG(P,R,S, E , µ).

Theorem 12.3 (Correctness of EDG). For any DP problem (P,R,S, E , µ), the esti-

mated dependency graph EDG(P,R,S, E , µ) is a supergraph of the dependency graph

DG(P,R,S, E , µ).

The following CS-DP processor is completely analogous to the DP processor from

Theorem 6.11.

Theorem 12.4 (CS-DP Processor Based on Dependency Graphs). Let Proc be a

CS-DP processor with Proc(P,R,S, E , µ) = {(P1,R,S, E , µ), . . . , (Pn,R,S, E , µ)},

where P1, . . . ,Pn are the SCCs of (E)DG(P,R,S, E , µ). Then Proc is sound.

175

Chapter 12. Context-Sensitive DP Processors

Example 12.5. Recall the following dependency pairs from Example 11.19:

take♯(x, ins(y, ys)) → take♯(x− 1, ys) Jx > 0K (11.1)

take♯(x, ins(y, ys)) → Ubase(y) Jx > 0K (11.2)

take♯(x, ins(y, ys)) → Uuniv(ys) Jx > 0K (11.3)

pick♯(ins(x, xs)) → Ubase(x) (11.4)

drop♯(ins(x, xs)) → Uuniv(ys) (11.5)

Uuniv(from(x+ 1)) → from♯(x+ 1) (11.6)

Ubase(x+ y) → Ubase(x) (11.7)

Ubase(x+ y) → Ubase(y) (11.8)

Ubase(−x) → Ubase(x) (11.9)

Uuniv(from(x)) → Ubase(x) (11.10)

Then the following estimated dependency graph EDG(P,R,S, E , µ) is obtained:

(11.1) (11.6)

(11.4) (11.2) (11.3) (11.5)

(11.7), (11.8), (11.9) (11.10)

Here, the nodes for (11.7), (11.8), and (11.9) have been combined since they have

“identical” incoming and outgoing arcs. This estimated dependency graph contains

two SCCs, and according to Theorem 12.4, the following CS-DP problems are ob-

tained:

({(11.1)},Q,R,S, E , µ) (12.1)

({(11.7), (11.8), (11.9)},Q,R,S, E , µ) (12.2)

These CS-DP problem can now be handled independently of each other. △

176

Chapter 12. Context-Sensitive DP Processors

12.2 Subterm Criterion

The DP processor from Section 6.6 that is based on the subterm criterion can also

be extended to the context-sensitive case in a straightforward manner. The only

difference is that the subterm relation needs to take the replacement map into account

by only considering subterms in active positions. This is analogous to [2].

Definition 12.6 (E-µ-Subterms). Let (R,S, E , µ) be a CS-CERS and let s, t be

terms. Then t is a strict E-µ-subterm of s, written s �E,µ t, iff s ∼E ◦ �µ ◦ ∼E t.

The term t is an E-µ-subterm of s, written s�E,µ t, iff s�E,µ t or s ∼E t.

Example 12.7. If µ(f) = {1}, µ(∪) = {1, 2}, and E = {x ∪ y ≈ y ∪ x, x ∪ (y ∪ z) ≈

(x ∪ y) ∪ z}, then f(x ∪ y, g(z)) �E,µ y ∪ x but f(x ∪ y, g(z)) 6�E,µ g(z). △

If E is size-preserving, the properties of Lemma 6.23 still hold for the subterm

relation defined above.

Lemma 12.8. Let (R,S, E , µ) be a CS-CERS such that E is size-preserving.

1. Given terms s, t, it is decidable whether s�E,µ t or s�E,µ t.

2. �E,µ is well-founded.

3. �E,µ and �E,µ are stable.

4. �E,µ and �E,µ are compatible with ∼E .

Now the DP processor from Theorem 6.24 extends to the context-sensitive case

in the obvious way.

Theorem 12.9 (CS-DP Processor Based on the Subterm Criterion). Let π be a

simple projection and let Proc be a CS-DP processor with Proc(P,R,S, E , µ) =

• {(P − P ′,R,S, E)}, if E is size-preserving and P ′ ⊆ P such that

177

Chapter 12. Context-Sensitive DP Processors

– π(s) �E,µ π(t) for all s→ tJϕK ∈ P ′, and

– π(s) �E,µ π(t) for all s→ tJϕK ∈ P − P ′.

• (P,R,S, E , µ), otherwise.

Then Proc is sound.

Example 12.10. Recall the CS-DP problem (12.2) from Example 12.5, consisting

of the following dependency pairs:

Ubase(x+ y) → Ubase(x) (11.7)

Ubase(x+ y) → Ubase(y) (11.8)

Ubase(−x) → Ubase(x) (11.9)

Using the simple projection with π(Ubase) = 1, this CS-DP problem can easily be

handled. △

In general, if all dependency pairs in a CS-DP problem are of type (2) in Definition

11.18 (i.e., are of the form Us(g(x1, . . . , xi, . . . , xn))→ Us′(xi) where g hides position

i), then that CS-DP problem can always be handled using the subterm criterion with

the simple projection π(Ubase) = π(Uuniv) = 1. To see this, notice that i ∈ µ(g) if g

hides position i and thus g(x1, . . . , xi, . . . , xn) �E,µ xi.

12.3 Reduction Pairs

As in Chapter 7, three different kinds of reduction pairs can be used in the context-

sensitive case. Using these, dependency pairs that are strictly decreasing can be

removed from a CS-DP problem, just like this was done in Chapter 7 in the non-

context-sensitive case.

178

Chapter 12. Context-Sensitive DP Processors

Theorem 12.11 (CS-DP Processor Based on Reduction Pairs). Let Proc be a CS-

DP processor with Proc(P,R,S, E , µ) =

• {(P − P ′,R,S, E)}, if P ′ ⊆ P and either

– there exists an ordinary reduction pair (&,≻) such that (&,≻) |= (P ′,P,

∅,R,S, E), or

– there exists a ThN-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R,S, E), or

– there exists a ThZ-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R,S, E).

• {(P,R,S, E , µ)}, otherwise.

Then Proc is sound.

Also, the elimination of arguments as done in Theorem 6.17 can be applied to

CS-DP problems without any modification.

Example 12.12. Recall the CS-DP problem (12.1) from Example 12.5, containing

the following dependency pair:

take♯(x, ins(y, ys)) → take♯(x− 1, ys) Jx > 0K (11.1)

Using the non-collapsing argument filtering with π(take♯) = [1], this dependency pair

is transformed into the following dependency pair:

take♯(x) → take♯(x− 1) Jx > 0K (12.3)

For this dependency pair, RedPos(take♯, {(12.3)}) = ∅, i.e., ThZ-reduction pairs

become applicable. △

179

Chapter 12. Context-Sensitive DP Processors

12.4 Function Dependencies

The DP processor from Theorem 12.11 has to consider all of R. Recall from Section

8.3 that this requirement can be relaxed substantially in the non-context-sensitive

case. This section shows that this requirement can also be weakened for CS-CERSs.

In contrast to the simple adaptations of the dependency graph and the subterm

criterion, this adaptation is non-trivial. For ordinary context-sensitive rewriting,

corresponding results were obtained only very recently [92, 1].

As the following example from [92] shows, the method is unsound if the definition

of function dependencies from Section 8.3 is used.

Example 12.13. Consider the following ordinary TRS [92]:

b → c(b)

f(c(x), x) → f(x, x)

Let µ(f) = {1, 2} and µ(c) = ∅. Then the following dependency pairs are obtained:

f♯(c(x), x) → f♯(x, x) (12.4)

f♯(c(x), x) → Uuniv(x) (12.5)

Uuniv(b) → b♯ (12.6)

Ubase(x+ y) → Ubase(x) (12.7)

Ubase(x+ y) → Ubase(y) (12.8)

Ubase(−x) → Ubase(x) (12.9)

The CS-DP problem consisting of (12.7)–(12.9) can easily be handled using the

subterm criterion of Section 12.2. Using the definition of function dependencies from

Section 8.3, R would not need to be considered for the CS-DP problem consisting of

(12.4). But then termination could falsely be concluded using a reduction pair based

180

Chapter 12. Context-Sensitive DP Processors

on a polynomial interpretation with Pol(f♯) = x1 and Pol(c) = x1 + 1, although

f(c(b), b)→R,µ f(b, b)→R,µ f(c(b), b)→R,µ . . . is an infinite reduction. △

The function dependencies as defined in Definition 8.10 thus need to be adapted

as follows, similarly to [92, 1]. Notice that function symbols occurring in inactive

positions in left-hand sides of dependency pairs and rules need to be considered.

Definition 12.14 (Context-Sensitive Function Dependencies). Let (P,R,S, E , µ)

be a CS-DP problem where E is size-preserving. For two symbols f, h ∈ F let

f ◮1
(P,R,S,E,µ) h iff f = h or there exists a symbol g with g ◮1

(P,R,S,E,µ) h and a

rule l → rJϕK ∈ R such that root(l) = f and g ∈ F¬µ(l) ∪ F(r). Let

∆1(P,R,S, E , µ) = FTh ∪ F(S) ∪ F(E)

∪
⋃

s→tJϕK∈P{g | f ◮
1
(P,R,S,E,µ) g for an f ∈ F¬µ(s) ∪ F(t)}

∪
⋃

l→rJϕK∈R{g | f ◮
1
(P,R,S,E,µ) g for an f ∈ F¬µ(r)}

Within this section it is assumed that (P,R,S, E , µ) is a CS-DP problem such

that E is size-preserving. Furthermore, let ∆1 = ∆1(P,R,S, E , µ). The mapping I

used in Section 8.3 needs to be modified as well. In particular, it needs to be possible

to apply the mapping to non-terminating terms since terminating terms may contain

non-terminating subterms in inactive positions.

Definition 12.15 (I1). For any term t ∈ T (F ∪ FTh ,V) define I1(t) by

• I1(x) = x if x ∈ V

• I1(f(t1, . . . , tn)) = f(I1(t1), . . . , I
1(tn)) if f ∈ ∆1 or f(t1, . . . , tn) starts an

infinite
S
→Th‖E\R,µ-reduction

• I1(t) = Compsort(t)(Red
1
S(t) ∪ Red1

R(t) ∪ Eq1
E(t)) if t is terminating and t =

f(t1, . . . , tn) with f 6∈ ∆1.

181

Chapter 12. Context-Sensitive DP Processors

Here, the sets Red1
S(t), Red1

R(t), and Eq1
E(t) are defined as

Red1
S(t) = {I1(t′) | t→E\S ◦ ∼E t

′}

Red1
R(t) = {I1(t′) | t

S
→Th‖E\R,µ ◦ ∼E t

′}

Eq1
E(t) = {g(I1(t1), . . . , I

1(tm)) | t ∼E g(t1, . . . , tm)}

The function Comps is defined as in Definition 8.13. For any substitution σ, define

the substitution I1(σ) by I1(σ)(x) = I1(σ(x)).

Again, it is not obvious that I1 is indeed well-defined, i.e., that I1(t) is a finite

term for any term t.

Lemma 12.16. For any term t, the term I1(t) is finite.

The idea for the result in this section is now the same as in Section 8.3: reductions

using R are “simulated” by reductions that only use R(∆) and rules from RΠ as

defined in Definition 8.15. For this, several properties of the mapping I1 are needed,

in complete analogy to Lemma 8.17.

Lemma 12.17. Let s, t ∈ T (F ∪ FTh ,V) and let σ be a Th-based substitution.

1. If s ∈ T (∆,V) then I1(sσ) = sI1(σ).

2. If s�¬µ s
′ implies s′ ∈ T (∆1,V), then I1(sσ)→∗

RΠ
sI1(σ).

3. If s ∼E t then I1(s) ∼E I
1(t).

4. If s→∗
E\S t then I1(s) ∗

1 I
1(t),

where 1 = →E\S ∪ →
+
RΠ

.

5. If s is terminating and s
S
→Th‖E\R,µ→∗ t then I1(s) ∗

2 I
1(t),

where 2 = ∗
1 ◦ ∼E ◦ →

∗
RΠ
◦ →R(∆1),µ ∪ →

+
RΠ

such that the →R(∆1),µ step

uses a Th-based substitution that makes the instantiated constraint of the used

rule Th-valid.

182

Chapter 12. Context-Sensitive DP Processors

6. Let s ∈ T (∆1,V) be terminating and let t �¬µ t′ imply t′ ∈ T (∆1,V). If

sσ
S
→Th‖E\R,µ→∗ ◦ →!

E\S ◦ ∼E tσ, then sI1(σ) ∗
2 ◦

∗
1 ◦ ∼E ◦ →

∗
RΠ

tI1(σ).

Using Lemma 12.17.6, soundness of the following CS-DP processor can be shown.

This processor adapts Theorem 8.18 to the context-sensitive case.

Theorem 12.18 (CS-DP Processor Based on Function Dependencies). Let Proc be

the DP processor with Proc(P,R,S, E , µ) =

• {(P − P ′,R,S, E)}, if E is size-preserving, ∆1 = ∆1(P,R,S, E , µ), P ′ ⊆ P,

and either

– there exists an ordinary reduction pair (&,≻) such that (&,≻) |= (P ′,P,

∅,R(∆1) ∪RΠ,S, E), or

– there exists a ThN-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R(∆1) ∪RΠ,S, E), or

– there exists a ThZ-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R(∆1) ∪RΠ,univ,S, E).

• {(P,R,S, E , µ)}, otherwise.

Then Proc is sound.

Example 12.19. Using Theorem 12.18, it is no longer possible to falsely prove

termination of the TRS from Example 12.13. Recall the following rewrite rules and

dependency pairs:

b → c(b)

f(c(x), x) → f(x, x)

f♯(c(x), x) → f♯(x, x) (12.4)

183

Chapter 12. Context-Sensitive DP Processors

Then b ∈ ∆1({(12.4),R,S, E , µ), i.e., the rule b→ c(b) needs to be considered when

handling the CS-DP consisting of (12.4). But then no reduction pair satisfies the

requirements from Theorem 12.18. △

12.5 Function Dependencies for Strongly Conser-

vative Systems

The CS-DP processor based on function dependencies introduced in the previous sec-

tion differs from the corresponding DP processor for non-context-sensitive rewriting

introduced in Section 8.3 by needing to consider the left-hand sides of the depen-

dency pairs and rules. Additionally, all rules from S and all equations from E need

to be considered.

In this section, it is shown that the left-hand sides of P and R do not need to be

considered if P, R and S are strongly conservative [92].

Definition 12.20 (Strongly Conservative). Let (P,R,S, E , µ) be a DP problem and

let s, t be terms. Then the pair 〈s, t〉 is strongly conservative iff Vµ(t) ⊆ Vµ(s) and

Vµ(s) ∩ V¬µ(s) = Vµ(t) ∩ V¬µ(t) = ∅.

Example 12.21. Consider a replacement map with µ(f) = {1}, µ(g) = {1, 2},

and µ(h) = ∅. Then the pair 〈f(g(x, y), h(z)), f(x, y)〉 is strongly conservative since

Vµ(f(x, y)) = {x} ⊆ {x, y} = Vµ(f(g(x, y), h(z))) and {x, y} ∩ {z} = {x} ∩ {y} =

∅. The pair 〈f(x, h(x)), g(x, x)〉 is not strongly conservative since Vµ(f(x, h(x))) ∩

V¬µ(f(x, h(x))) = {x}. The pair 〈f(h(x), h(y)), g(x, x)〉 is not strongly conservative

since x ∈ Vµ(g(x, x)) but x 6∈ Vµ(f(h(x), h(y))). △

A set of pairs of terms (i.e., rewrite rules or equations) is strongly conservative

if all of its members are. Notice that E is always strongly conservative by Definition

184

Chapter 12. Context-Sensitive DP Processors

11.7. For strongly conservative systems, the following definition of function depen-

dencies can be used. The reason why two different relations ◮2 and ◮2 are used is

that reductions with S and E may also take place in inactive positions. Introducing

two different relations then makes it possible to only consider subsets of S and E

as well, whereas the CS-DP processor introduced in the previous section needs to

consider all of S and E .

Definition 12.22 (Context-Sensitive Function Dependencies for Strongly Conser-

vative Systems). Let (P,R,S, E , µ) be a DP problem where E is size-preserving. For

any term t, let FS,E(t) = (F(S) ∪ F(E)) ∩ F(t) and Fµ
S,E(t) = Fµ(t) ∪ FS,E(t).

1. For two symbols f, h ∈ F let f ◮2
(P,R,S,E,µ) h iff f = h or there exists a symbol

g with g ◮2
(P,R,S,E,µ) h and either

(a) a rule l → rJϕK ∈ R with root(l) = f and g ∈ F(r), or

(b) a rule l → r ∈ S with root(l) = f and g ∈ F(r), or

(c) an equation u ≈ v (or v ≈ u) in E with root(u) = f and g ∈ F(u ≈ v).

In the following, let

∆2(P,R,S, E , µ) = FTh ∪
⋃

s→tJϕK∈P

{g | f◮2
(P,R,S,E,µ)g for an f ∈ F(t)}

2. For two symbols f, h ∈ F let f ◮2
(P,R,S,E,µ) h iff f = h or there exists a symbol

g with g ◮2
(P,R,S,E,µ) h and either

(a) a rule l → rJϕK ∈ R with root(l) = f and g ∈ Fµ
S,E(r), or

(b) a rule l → r ∈ S with root(l) = f and g ∈ F(r), or

(c) an equation u ≈ v (or v ≈ u) in E with root(u) = f and g ∈ F(u ≈ v).

In the following, let

∆2(P,R,S, E , µ) = FTh ∪
⋃

s→tJϕK∈P

{g | f ◮2
(P,R,S,E,µ) g for an f ∈ Fµ

S,E(t)}

185

Chapter 12. Context-Sensitive DP Processors

Within this section it is assumed that (P,R,S, E , µ) is a DP problem such that

E is size-preserving. Also, let ∆2 = ∆2(P,R,S, E , µ) and ∆2 = ∆2(P,R,S, E , µ).

Notice that ∆2 ⊆ ∆2, which implies S(∆2) ⊆ S(∆2) and E(∆2) ⊆ E(∆2). Finally, it

is assumed that R(∆2) and S(∆2) are strongly conservative.

The mappings I and I1 from Definitions 8.13 and 12.15, respectively, need to

be modified for the strongly conservative case. Since two relations ◮2 and ◮2 are

considered, two mappings I2 and I2 are needed as well. Notice that I2 is only used

in order to simulate reductions with S and E , but not reductions with R.

Definition 12.23 (I2 and I2).

1. For any term t ∈ T (F ∪ FTh ,V) define I2(t) by

• I2(x) = x if x ∈ V

• I2(f(t1, . . . , tn)) = f(I2(t1), . . . , I
2(tn)) if f ∈ ∆2

• I2(t) = Compsort(t)(Red
2
S(t) ∪ Eq2

E(t)) if t = f(t1, . . . , tn) with f 6∈ ∆2.

Here, the sets Red2
S(t) and Eq2

E(t) are defined as

Red2
S(t) = {I2(t′) | t→E\S ◦ ∼E t

′}

Eq2
E(t) = {g(I2(t1), . . . , I

2(tm)) | t ∼E g(t1, . . . , tm)}

For any substitution σ, define the substitution I2(σ) by letting I2(σ)(x) =

I2(σ(x)).

2. For any terminating term t ∈ T (F ∪ FTh ,V) define I2(t) by

• I2(x) = x if x ∈ V

• I2(f(t1, . . . , tn)) = f(t1, . . . , tn) if f ∈ ∆2

• I2(t) = Compsort(t)(Red
2
S(t)∪Red2

R(t)∪Eq2
E(t)∪Eq

2
E(t)) if t = f(t1, . . . , tn)

with f 6∈ ∆2.

186

Chapter 12. Context-Sensitive DP Processors

Here, ti = I2(ti) if i ∈ µ(f) and ti = I2(ti) otherwise. Moreover, the sets

Red2
S(t), Red2

R(t), Eq2
E(t), and Eq2

E(t) are defined as

Red2
S(t) = {I2(t′) | t→E\S ◦ ∼E t

′}

Red2
R(t) = {I2(t′) | t

S
→Th‖E\R,µ ◦ ∼E t

′}

Eq2
E(t) = {g(t1, . . . , tm) | t ∼E g(t1, . . . , tm)}

Eq2
E(t) = {I2(s) | t ∼E s}

Again, ti = I2(ti) if i ∈ µ(g) and ti = I2(ti) otherwise. For a terminating sub-

stitution σ, let [t, σ] be the term that results from t by replacing all occurrences

of x ∈ V(t) in active positions of t by I2(σ(x)) and all occurrences of x ∈ V(t)

in inactive positions of t by I2(σ(x)).

As usual, it first needs to be shown that these mappings are well-defined.

Lemma 12.24. For any term t, the term I2(t) is finite. If t is terminating, then

I2(t) is finite.

Next, several properties of the mappings I2 and I2 are shown. This is in analogy

to Lemmas 8.17 and 12.17.

Lemma 12.25. Let s, t ∈ T (F ∪ FTh ,V) and let σ be a Th-based substitution such

that s, t, sσ are terminating.

1. If s ∈ T (∆2,V) then I2(sσ) = sI2(σ).

2. If s ∈ T (∆2,V) such that Fµ(s) ⊆ ∆2, then I2(sσ) = [s, σ].

3. I2(sσ)→∗
RΠ

sI2(σ).

4. I2(sσ)→∗
RΠ

[s, σ].

5. I2(s)→∗
RΠ
I2(s).

6. If s ∼E t then I2(s) ∼E(∆2) I
2(t).

187

Chapter 12. Context-Sensitive DP Processors

7. If s ∼E t then I2(s) ∼E(∆2) I
2(t).

8. If s→∗
E\S t then I2(s) ∗

1 I
2(t),

where 1 = ∼E(∆2) ◦ →
∗
RΠ
◦ →S(∆2) ∪ →

+
RΠ

.

9. If s→∗
E\S t then I2(s) ∗

1 I
2(t).

10. If s
S
→Th‖E\R,µ→∗ t then I2(s) ∗

2 I
2(t),

where 2 = ∗
1 ◦ ∼E(∆2) ◦ →

∗
RΠ
◦ →R(∆2),µ ∪ →

+
RΠ

such that the →R(∆2),µ

step uses a Th-based substitution that makes the instantiated constraint of the

used rule Th-valid.

11. If s
S
→Th‖E\R,µ→∗ ◦ →!

E\S ◦ ∼E tσ, then I2(s) ∗
2 ◦

∗
1 ◦ ∼E(∆2) I

2(t).

As before, Lemma 12.25.11 makes it possible to show soundness of the following

CS-DP processor. In contrast to the CS-DP processor introduced in the previous

section, it is only applicable if R(∆2), S(∆2), and P are strongly conservative.

Theorem 12.26 (CS-DP Processor Based on Function Dependencies for Strongly

Conservative Systems). Let Proc be the CS-DP processor with Proc(P,R,S, E , µ) =

• {(P − P ′,R,S, E)}, if E is size-preserving, ∆2 = ∆2(P,R,S, E , µ), ∆2 =

∆2(P,R,S, E , µ), all of R(∆2), S(∆2), and P are strongly conservative, P ′ ⊆

P, and either

– there exists an ordinary reduction pair (&,≻) such that (&,≻) |= (P ′,P,

∅,R(∆2) ∪RΠ,S(∆2), E(∆2)), or

– there exists a ThN-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R(∆2) ∪RΠ,S(∆2), E(∆2)), or

– there exists a ThZ-reduction pair (&,≻) for P such that (&,≻) |= (P ′,P,

∅,R(∆2) ∪RΠ,univ,S(∆2), E(∆2)).

• {(P,R,S, E , µ)}, otherwise.

188

Chapter 12. Context-Sensitive DP Processors

Then Proc is sound.

Example 12.27. The CS-DP processor of Theorem 12.26 makes it possible to finish

the termination proof of the running example. Recall the following dependency pair

from Example 12.12:

take♯(x) → take♯(x− 1) Jx > 0K (12.3)

Then this dependency pair is strongly conservative, and the same holds true for

R(∆2) = ∅ and S(∆2) = Sbase. It is thus possible to apply the ThZ-polynomial

interpretation with cPol = 0 and Pol(take♯) = x1. △

12.6 Implementation

The techniques presented for CS-CERSs in this chapter have been implemented in

the automated termination checker AProVE [84] for ThZ. As for the non-context-

sensitive case, most techniques can be implemented straightforwardly. The more

challenging implementations of the estimated dependency graph EDG and the auto-

mated generation of ThZ-reduction pairs based on ThZ-polynomial interpretations is

done as described in Chapter 9 for the non-context-sensitive case.

12.7 Summary

This chapter has introduced several sound CS-DP processors, all of which have been

implemented in the automated termination checker AProVE. These CS-DP processors

adapt DP processors introduced in Chapters 6–8 to the context-sensitive case.

While dependency graphs and the subterm criterion can be adapted to the

context-sensitive case quite easily, an adaptation of the method based on function

189

Chapter 12. Context-Sensitive DP Processors

dependencies is more challenging. Following the recent achievement for ordinary

context-sensitive TRSs [92, 1], an adaptation to CS-CERSs has been presented in

this chapter. While the definition of function dependencies for CS-CERSs is more

complex than the one for regular CERSs in general, the definition from Section 8.3

is essentially re-obtained for strongly conservative systems.

An implementation of the techniques presented in this chapter in the termination

prover AProVE has been evaluated on a collection of examples (including several

examples obtained from functional Maude modules containing strat-annotations).

This evaluation shows that the techniques developed in this dissertation are very

successful, cf. Chapter 15.

190

Chapter 13

Inductive Theorem Proving with

CERSs

In the previous chapters, CERSs have been used as a tool for showing termination of

algorithms that are modeled in the form of rewrite rules. Recall from Chapter 1 that

reasoning about the partial correctness of such algorithms often require reasoning

about the functions defined by a CERS.

While this kind of reasoning can be done using generic theorem proving methods,

this approach is not very satisfactory since generic theorem proving is concerned with

deriving properties that are valid in all models of a CERS (also non-standard ones).1

For the purpose of reasoning about the functions defined by a CERS (R,S, E), only

one particular model is of interest, namely the standard model consisting of the

(R,S, E)-equivalence classes of ground terms. It is important to distinguish between

validity in all models of a CERS and validity in only this specific model of a CERS

since these two notions do not coincide in general.

1A model of a CERS is a many-sorted theory in which all rewrite rules and equations of
the CERS are valid. Here, a many-sorted theory is the obvious generalization of a theory
as given in Definition 3.1, see Definition 13.35 below.

191

Chapter 13. Inductive Theorem Proving with CERSs

Example 13.1. Consider the following ordinary TRS R that defines a function to

add two natural numbers given in a Peano representation:

x+O → x

x+ s(y) → s(x+ y)

The first rule specifies O to be a right-neutral element, and it is a valid question

whether it follows that O is also left-neutral, i.e., if the conjecture O + y ≡ y

follows from the rewrite rules. Using the generic theorem proving approach this is

not true since there are models of the rewrite rules (considered as equations) that

falsify O + y ≡ y. For instance, consider the model M = (M,OM, sM,+M) with

M = {a, b} and

• OM = a

• sM(a) = a and sM(b) = b

• a+M a = a, a +M b = a, b+M a = b, and b+M b = b

Then all rewrite rules of the TRS are valid, but the conjecture O+y ≡ y is not valid

since OM +M b = a+M b = a 6= b. Notice that the modelM is non-standard in the

sense that b is not the interpretation of any constructor ground term (i.e., ground

term built using the constructors O and s). Thus, this model is not relevant in the

context of program verification, since all data values in programs are built using the

constructors.

For program verification, it needs to be established whether O+ y ≡ y is valid in

the standard model, i.e., whether O + t ≡ t follows from R for all ground terms t.

Since R is quasi-reductive (see Definition 13.14 below), each R-equivalence class of

ground terms contains a constructor ground term and it thus suffices to show that

O + t ≡ t follows from R for all constructor ground terms t. Due to the recursive

nature of the definition of +, this can be shown using inductive reasoning.

192

Chapter 13. Inductive Theorem Proving with CERSs

• In the base case, the constructor ground term O is considered. Then, O+O ≡

O easily follows from R.

• In the step case, the constructor ground term has the form s(t′) for some

constructor ground term t′ and the inductive hypothesis states that O+ t′ ≡ t′

follows from R. But then O+ s(t′) ≡ s(t′) also follows from R since O+ s(t′) ≡

s(O + t′) follows from the second rule in R and s(O + t′) ≡ s(t′) follows from

the inductive hypothesis. △

As demonstrated by this example, showing that the functions defined by a CERS

satisfy certain properties usually requires inductive reasoning since the functions are

most commonly defined using recursion.

In order to make inductive theorem proving with CERSs possible, this chapter

introduces a restricted class of CERSs and shows how this class can effectively be

used for proving properties of the functions defined by the CERS using inductive

reasoning.

There are two commonly used paradigms for inductive theorem proving: explicit

induction and implicit induction. In explicit induction (see, e.g., [35, 174, 112, 39, 40,

98, 113, 171]), a concrete induction scheme is computed for each conjecture, and the

subsequent reasoning is based on this induction scheme. Here, an induction scheme

explicitly gives the base cases and the step cases, where the step cases consists of an

obligation and one or more hypotheses. This is the kind of reasoning employed in

Example 13.1.

In implicit induction (see, e.g., [134, 97, 105, 102, 72, 107, 147, 33, 7, 157]), no

concrete induction scheme is constructed a priori. Instead, an induction scheme is

implicitly constructed during the proof attempt. Implicit induction is largely based

on the term rewriting framework and is rooted in the Knuth-Bendix completion

method [114]. While explicit induction is commonly considered to be more powerful

193

Chapter 13. Inductive Theorem Proving with CERSs

than implicit induction, implicit induction is more automatic in the sense that less

(or no) user interaction is required.

The proof method presented in this chapter is based on the implicit induction

paradigm and couples inductive reasoning with a decision procedure for the theory

LIAC, which combines the linear theory of integers with the constructors of a CERS.

The integration of a decision procedures for the linear theory of integers into in-

ductive reasoning has been previously considered in [110, 11]. The proof method

developed in this chapter is in general incomparable to these methods. On the one

hand, the methods presented in [110, 11] are more complex and powerful. On the

other hand, the use of ThZ-constraints in this dissertation gives rise to an elegant

proof method ([110, 11] are based on ordinary rewriting without constraints). Induc-

tive theorem proving for rewrite systems with certain kinds of constraints has been

investigated in [34]. That method, however, does not support ThZ-constraints and

is thus incomparable to the method presented below.

13.1 Preliminaries

The restricted class of CERSs that is used for inductive theorem proving is based on

ThZ, i.e., the linear theory of integers. Consequently, the sort base of the built-in

theory will be denoted by int. Collection data structures are currently not allowed

(with the exception of lists built using nil and cons), and it is furthermore assumed

that the signature F does not contain function symbols with resulting sort int.

Terms of sort int are thus built using {0, 1,+,−} and variables. Relaxing these

restrictions is left for future work. Nonetheless, this restricted class of CERSs is

already sufficient for presenting the new ideas for decidable induction developed in

Chapter 14.

The left- and right-hand sides of rules in the restricted class of CERSs need

194

Chapter 13. Inductive Theorem Proving with CERSs

to satisfy the following requirement. As will become apparent later, this makes it

possible to have a simple definition of the rewrite relation since it disallows patter-

matching with + and −.

Definition 13.2 (Z-Free). A term t is Z-free iff F(t) ∩ {+,−} = ∅.

Now the class of Z-CERSs is defined as follows. Notice that only free constructors

are allowed, i.e., compact lists, sets, and multisets are not supported.

Definition 13.3 (Z-CERS). A CERS (R,S, E) is a Z-CERS iff

1. S = SThZ

2. E = EThZ

3. For all l → rJϕK ∈ R, both l and r are Z-free.

A Z-CERS (R,S, E) is also identified with R.

Example 13.4. For two lists built using nil and cons, prefix(xs, ys) computes the

longest prefix p of xs such that all elements of p occur in ys in the same order as in

p (but not necessarily consecutively).

prefix(nil, ys) → nil

prefix(cons(x, xs), nil) → nil

prefix(cons(x, xs), cons(y, ys)) → cons(x, prefix(xs, ys)) Jx ≃ yK

prefix(cons(x, xs), cons(y, ys)) → prefix(cons(x, xs), ys) Jx 6≃ yK

This CERS is a Z-CERS. △

The restriction that left- and right-hand sides of the rewrite rules in a Z-CERS

are Z-free makes it possible to have a simple definition of the rewrite relation that

does not take the sets SThZ
and EThZ

into account, while still representing all of
S
→Th‖E\R. This goal is achieved by restricting attention to particular representatives

195

Chapter 13. Inductive Theorem Proving with CERSs

of terms that are equivalent up to SThZ
and EThZ

. These representatives are irreducible

by →EThZ
\SThZ

and satisfy certain conditions on nested occurrences of the function

symbol +.

Definition 13.5 (Z-Normal Terms and Substitutions). Let >T be a fixed total well-

founded order on V ∪ {0, 1}. A term t is Z-normal w.r.t. >T iff the following condi-

tions are satisfied:

1. t is irreducible by →EThZ
\SThZ

.

2. Whenever t contains a subterm of the form t1 + t2, then root(t1) 6= +.

3. Whenever t contains a subterm of the form t1 + (t2 + . . .+ (tn−1 + tn) . . .) with

t1, . . . , tn ∈ V ∪ {0, 1}, then t1 >T t2 >T . . . >T tn−1 >T tn.

A substitution σ is Z-normal iff σ(x) is Z-normal for all variables x.

Example 13.6. Let x >T y >T>T z >T 1 >T 0. Then f(x + y, y + (z + 1)) is

Z-normal. f(x+0, 0) is not Z-normal since x+0 is reducible by→EThZ
\SThZ

. f(0, 1+x)

is not Z-normal since 1 6>T x. △

Notice that for ground terms, the conditions in Definition 13.5 imply that nested

occurrences of the function symbol + have the form 1 + (1 + . . . + (1 + 1) . . .) or

−1 + (−1 + . . .+ (−1 +−1) . . .).

The actual choice of the well-founded order >T used in the definition of Z-normal

terms is not important since it will not be used explicitly. Furthermore, the definition

of Z-normal terms can be replaced by a different definition as long as the statements

of Lemma 13.7 and Lemma 13.8 below are satisfied.

The following lemma relates the notions of Z-free terms and Z-normal terms. In

particular, every Z-free term is also Z-normal.

Lemma 13.7. Let t be a Z-free term.

196

Chapter 13. Inductive Theorem Proving with CERSs

1. t is Z-normal.

2. For any substitution σ, the term tσ is Z-normal iff σ is Z-normal.

Next, it is possible to show that every term is equivalent up to SThZ
and EThZ

to

a term that is Z-normal. Therefore, the set of Z-normal terms can indeed serve as a

set of representatives for all terms.

Lemma and Definition 13.8. For any term t, a Z-normal term norm(t) can

be computed such that t ↔∗
EThZ

∪SThZ

norm(t). Furthermore, s ↔∗
EThZ

∪SThZ

t im-

plies norm(s) = norm(t) for all terms s, t. For any substitution σ, the substitution

norm(σ) is given by norm(σ)(x) = norm(σ(x)).

Example 13.9. If x >T y >T 1, then norm(f(c(x), (1 + y) + (x+ 0))) = f(c(x), x+

(y + 1)). △

The rewrite relation of a Z-CERS is now restricted to operate on Z-normal terms.

Notice that the only difference to Definition 3.15 is in condition 1, where s|p = lσ is

used instead of the more complex s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ.

Definition 13.10 (Rewrite Relation of a Z-CERS). Let R be a Z-CERS and let

s be a Z-normal term. Then s →R,Z t iff there exist a constrained rewrite rule

l → rJϕK ∈ R, a position p ∈ Pos(s), and a substitution σ such that

1. s|p = lσ,

2. ϕσ is ThZ-valid, and

3. t = s[rσ]p.

Notice that all (sort-correct) substitutions are ThZ-based since F does not contain

function symbols with resulting sort int. Also, notice that the substitution σ in

Definition 13.10 is Z-normal since s is Z-normal.

197

Chapter 13. Inductive Theorem Proving with CERSs

For the rewrite relation defined this way to be meaningful, it has to be ensured

that rewriting a Z-normal term again results in a Z-normal term. This easily follows

from the assumption that left- and right-hand sides of the rules in a Z-CERS are

Z-free. Furthermore, it becomes possible to relate →R,Z to
S
→Th‖E\R. In particular,

for any Z-CERS, →R,Z is terminating if
S
→Th‖E\R is terminating. Thus, the methods

developed for proving termination of general CERSs in this dissertation can also be

used for showing termination of Z-CERSs.

Lemma 13.11. Let (R,S, E) be a Z-CERS, let s be a Z-normal term, and let t be

a term such that s→R,Z t.

1. t is Z-normal.

2. If s is furthermore Z-free, then t is Z-free as well.

3. s
S
→Th‖E\R t. Thus, →R,Z is terminating on Z-normal terms if

S
→Th‖E\R is

terminating.

For the converse of Lemma 13.11.3, the following result can be obtained. In

particular, termination of→R,Z on Z-normal terms is thus equivalent to termination

of
S
→Th‖E\R.

Lemma 13.12. Let (R,S, E) be a Z-CERS and let s, t be terms. If s
S
→Th‖E\R t,

then norm(s) →R,Z norm(t). Thus,
S
→Th‖E\R is terminating if →R,Z is terminating

on Z-normal terms.

13.2 Quasi-Reductivity and Confluence

In order to use Z-CERSs in the context of inductive theorem proving, it becomes

necessary to impose certain (semantical) restrictions. Similar conditions need to be

imposed for inductive theorem proving with ordinary TRSs, and this section extends

198

Chapter 13. Inductive Theorem Proving with CERSs

these properties to Z-CERSs. Additionally, it is discussed how these properties can

be ensured for a class of Z-CERSs that is sufficient for most practical purposes. First,

the following definitions are needed.

Definition 13.13 (Constructor Ground Terms and Substitutions). A ground term

t is a constructor ground term if t ∈ T (C(R) ∪ FThZ
). A ground substitution σ is a

constructor ground substitution if σ(x) ∈ T (C(R) ∪ FThZ
) for all variables x.

In the following, it is assumed that each sort of a Z-CERS has at least two distinct

constructor ground terms.2

The first property of a Z-CERS R needed for inductive theorem proving is that

the defined functions in D(R) are total, i.e., result in a constructor ground term

when applied to constructor ground terms. More precisely, it suffices to consider

Z-normal constructor ground terms since →R,Z is only defined on Z-normal terms.

Definition 13.14 (Quasi-Reductivity). A Z-CERS R is quasi-reductive iff every

Z-normal ground term of the form f(t1, . . . , tn) with f ∈ D(R) and Z-normal con-

structor ground terms t1, . . . , tn is reducible by →R,Z.

Example 13.15. The Z-CERS from Example 13.4 is quasi-reductive. If the last

rule is omitted, then the resulting Z-CERS is not quasi-reductive since the Z-normal

ground term prefix(cons(0, nil), cons(1, nil)) is not reducible by →R,Z. △

For ordinary TRSs, quasi-reductivity is equivalent to sufficient completeness

[93] under suitable assumption (see [106], where quasi-reductivity is called quasi-

reducibility w.r.t. constructors).

The second property imposed on a Z-CERS is confluence, i.e., E-confluence for

E = ∅. This property will only be needed in order to disprove false conjectures. For

the sake of completeness, the definition of confluence is as follows.

2This restriction is not severe in practice and excludes conjectures such as x ≡ y for
distinct variables x and y from being true.

199

Chapter 13. Inductive Theorem Proving with CERSs

Definition 13.16 (Confluence). A Z-CERS R is confluent iff←∗
R,Z ◦ →

∗
R,Z ⊆ →

∗
R,Z

◦ ←∗
R,Z.

Confluence implies the uniqueness of normal forms, whereas quasi-reductivity

implies that each ground term can be reduced to a constructor ground term (if the

Z-CERS is terminating). Thus, if both properties are satisfied, then each ground

term has a unique constructor ground term as its normal form.

Checking whether a Z-CERS is quasi-reductive and confluent seems to be a hard

problem in general. Thus, a restricted class of Z-CERSs is considered in the following.

For this class, checking for quasi-reductivity is easily possible. Furthermore, Z-

CERSs from this class are always confluent.

First, it is required that the left-hand sides of rules are linear and constructor-

based. This is important in order to check for quasi-reductivity. In order to ensure

confluence, it is required that the rules are “disjoint” in the sense that at most one

rule is applicable to each position in any term. Notice that two rules might have

identical left-hand sides as long as the conjunction of the ThZ-constraints of these

rules is not satisfiable.

Notational Convention 13.17. For any Z-CERS R, Ĉ(R) := C(R) ∪ {0, 1}

Definition 13.18 (Normal Z-CERS). A Z-CERS R is normal iff

1. For all l → rJϕK ∈ R, the term l is linear and has the form f(l1, . . . , ln) with

l1, . . . , ln ∈ T (Ĉ(R),V).

2. For any two rules l1 → r1Jϕ1K, l2 → r2Jϕ2K, either l1 = l2
3 or l1, l2 are not

unifiable after their variables have been renamed apart.

3. For any two non-identical rules l1 → r1Jϕ1K, l2 → r2Jϕ2K with l1 = l2, the

constraint ϕ1 ∧ ϕ2 is ThZ-unsatisfiable.

3This condition could be relaxed by identifying terms that are identical up to a variable-
renaming.

200

Chapter 13. Inductive Theorem Proving with CERSs

4. Whenever l1 → r1Jϕ1K, . . . , ln → rnJϕnK are all rules with identical left-hand

sides, then the constraint ϕ1 ∨ . . . ∨ ϕn is ThZ-valid.

Example 13.19. The Z-CERS from Example 13.4 is a normal Z-CERS. △

Using conditions 1, 2, and 4 in Definition 13.18, the following decidability re-

sult can be obtained by reducing quasi-reductivity of normal Z-CERSs to quasi-

reductivity of ordinary left-linear constructor-based TRSs. Quasi-reductivity of or-

dinary TRSs satisfying these conditions is well-known to be decidable (see, e.g.,

[78, 94]).

Theorem 13.20. It is decidable whether a normal Z-CERS is quasi-reductive.

Next, it can be shown that normal Z-CERSs are always confluent, regardless of

whether they are terminating or not. This result follows from conditions 1, 2, and 3

in Definition 13.18 since these conditions imply that normal Z-CERSs are a suitable

generalization of orthogonal ordinary TRSs (which are also known to be confluent,

regardless of whether they are terminating or not [149]).

Theorem 13.21. Every normal Z-CERS is confluent.

13.3 Inductive Theorem Proving

The atomic conjectures in inductive theorem proving are equalities between terms.

In this dissertations, a generalized form of these atomic conjectures is used that also

incorporates a ThZ-constraint.

Definition 13.22 (Atomic Conjectures). An atomic conjecture has the form s ≡

tJϕK for Z-free terms s, t and a ThZ-constraint ϕ such that sort(s) = sort(t) and

sort(s) 6= int. As usual, a constraint of the form ⊤ will be omitted.

201

Chapter 13. Inductive Theorem Proving with CERSs

Example 13.23. For the Z-CERS from Example 13.4, prefix(xs, xs) ≡ xs is an

atomic conjecture. △

Notice that atomic conjectures satisfy the same requirements that are imposed on

the rewrite rules in a Z-CERS (except for the variable condition V(t)∪V(ϕ) ⊆ V(s)).

Intuitively, an atomic conjecture s ≡ tJϕK is true whenever sσ and tσ are “equal”

up to the rules of a Z-CERS for all Z-normal constructor ground substitutions σ

that make ϕ true. This is of course equivalent to showing that the implication

ϕσ ⇒ sσ ≡ tσ is true in the context of the Z-CERS for all Z-normal constructor

ground substitutions σ.

Definition 13.24 (Inductive Theorems). An atomic conjecture s ≡ tJϕK is an in-

ductive theorem of a Z-CERS R iff sσ ↔∗
R,Z tσ for all Z-normal constructor ground

substitutions σ such that ϕσ is ThZ-valid. A set of atomic conjectures in an inductive

theorem iff all of its elements are inductive theorems.

Example 13.25. It will be shown below that the atomic conjecture prefix(xs, xs) ≡

xs from Example 13.23 is an inductive theorem. △

There are other possible definitions of when an atomic conjecture is an inductive

theorem. The most general (sensible) definition of an inductive theorem would be

that sσ ↔∗
R∪EThZ

∪SThZ
,Z tσ for all ground substitutions σ such that ϕσ is ThZ-valid

(not only for all Z-normal constructor ground substitutions σ). Due to the shape of

Z-CERSs and atomic conjectures, however, this is already implied by the condition

from Definition 13.24 if the Z-CERS is quasi-reductive.

Lemma 13.26. If s ≡ tJϕK is an inductive theorem of a quasi-reductive Z-CERS R,

then sσ ↔∗
R∪EThZ

∪SThZ
,Z tσ for all ground substitutions σ such that ϕσ is ThZ-valid.

The inductive theorem proving method for Z-CERSs developed in this disserta-

tion is based on Reddy’s term rewriting induction [147]. The presentation follows

202

Chapter 13. Inductive Theorem Proving with CERSs

[7, 9]. The main idea of this method is to expand certain subterms of an atomic

conjecture using narrowing with the rewrite rules of a Z-CERS.

Definition 13.27 (Basic Terms). A Z-free term t is basic iff t = f(t1, . . . , tn) where

f ∈ D(R) and t1, . . . , tn ∈ T (Ĉ(R),V).

Example 13.28. In Example 13.4, the term prefix(xs, xs) is basic. △

Expansion of a basic subterm is now done as follows. Notice that the constraints

of the atomic conjecture and the rewrite rule are combined and instantiated and that

it is checked whether the resulting constraint is still satisfiable. Furthermore, notice

that the substitutions used for narrowing are computed using syntactic unification

and not ThZ-unification. This is in analogy to the definition of the rewrite relation

of a Z-CERS which is based on syntactic matching and not on ThZ-matching.

Definition 13.29 (Expd). For an atomic conjecture s ≡ tJϕK, a basic term u such

that s = C[u], and a Z-CERS R, the set Expdu(s, t, ϕ) is defined as

Expdu(s, t, ϕ) = {C[r]σ ≡ tσJϕσ ∧ ψσK | l → rJψK ∈ R, σ = mgu(u, l), and

ϕσ ∧ ψσ is ThZ-satisfiable }

Here, it has been assumed that the variables of l → rJψK have been renamed to be

disjoint from the variables of s ≡ tJϕK.

Example 13.30. Consider the Z-CERS from Example 13.4 and the atomic conjec-

ture prefix(xs, xs) ≡ xs from Example 13.23.

1. For the first rule, mgu(prefix(xs, xs), prefix(nil, ys′)) = {xs 7→ nil, ys′ 7→ nil}.

2. For the second rule, the terms prefix(xs, xs) and prefix(cons(x′, xs′), nil) are not

unifiable.

3. For the third rule, mgu(prefix(xs, xs), prefix(cons(x′, xs′), cons(y′, ys′))) =

{xs 7→ cons(x′, xs′), y′ 7→ x′, ys′ 7→ xs′} and the constraint x′ ≃ x′ obtained

after instantiation with the most general unifier is ThZ-satisfiable.

203

Chapter 13. Inductive Theorem Proving with CERSs

4. For the fourth rule, mgu(prefix(xs, xs), prefix(cons(x′, xs′), cons(y′, ys′))) =

{xs 7→ cons(x′, xs′), y′ 7→ x′, ys′ 7→ xs′} and the constraint x′ 6≃ x′ obtained

after instantiation with the most general unifier is not ThZ-satisfiable.

Therefore, Expdu(s, t, ϕ)prefix(xs,xs)(prefix(xs, xs), xs,⊤) consists of the two atomic

conjectures nil ≡ nil and cons(x′, prefix(xs′, xs′)) ≡ cons(x′, xs′)Jx′ ≃ x′K. △

It is easy to see that expanding an atomic conjecture using this definition produces

atomic conjectures. This is important since it makes it possible to apply further

expansions to these newly obtained atomic conjectures as well.

Lemma 13.31. Let s ≡ tJϕK be an atomic conjecture. Then Expdu(s, t, ϕ) consists

of atomic conjectures as well.

From now on it is assumed that R is a quasi-reductive and terminating Z-

CERS. In this case, the following technical result relates the atomic conjectures

in Expdu(s, t, ϕ) to the atomic conjecture s ≡ tJϕK and the rules in R. It is needed

for the soundness proof of the inductive proof method (cf. Theorem 13.40 below).

Lemma 13.32. Let s ≡ tJϕK be an atomic constraint and let u be a basic term such

that s = C[u].

1. sσ →R,Z ◦ ↔Expdu(s,t,ϕ),Z tσ for any Z-normal constructor ground substitution

σ such that ϕσ is ThZ-valid.

2. If v ↔Expdu(s,t,ϕ),Z w, then v ↔∗
R∪{s→tJϕK},Z w.

The inductive proof method for Z-CERSs is given in Figure 13.1. Here, the

notation s ≡̇ tJϕK is used to stand for one of s ≡ tJϕK and t ≡ sJϕK. The inference

rules operate on tuples 〈E,H〉, where E consists of atomic conjectures that are to

be proven and H consists of atomic conjectures that have been oriented as rewrite

rules. These rules constitute the hypotheses in a proof by induction. The goal of an

204

Chapter 13. Inductive Theorem Proving with CERSs

Expand
〈E ⊎ {s ≡̇ tJϕK}, H〉

〈E ∪ Expdu(s, t, ϕ), H ∪ {s→ tJϕK}〉

if V(t) ∪ V(ϕ) ⊆ V(s)
and R∪H ∪ {s→ tJϕK}
is terminating

Simplify
〈E ⊎ {s ≡̇ tJϕK}, H〉

〈E ∪ {s′ ≡̇ tJϕK}, H〉
if sJϕK→R∪H,Z s

′JϕK

Delete
〈E ⊎ {s ≡̇ sJϕK}, H〉

〈E, H〉

Theory1

〈E ⊎ {s ≡̇ tJϕK}, H〉

〈E, H〉

if s, t do not contain symbols from D(R)
and ϕ⇒ s ≃ t is LIAC-valid

Theory2

〈E ⊎ {s ≡̇ tJϕK}, H〉

⊥

if s, t do not contain symbols from D(R)
and ϕ⇒ s ≃ t is not LIAC-valid

Figure 13.1: The inference system I.

inductive proof attempt is to obtain a tuple of the form 〈∅, H〉 starting from the tuple

〈E, ∅〉. As shown below, this implies that all atomic conjectures in E are inductive

theorems. If none of the inference rules is applicable to 〈E,H〉 where E 6= ∅, then the

inductive proof attempt fails. Finally, an inductive proof attempt may also diverge

(i.e., not terminate) or end in ⊥. As shown in Theorem 13.42, the later constitutes

a disproof of (at least) one of the initial atomic conjectures.

The inference rule Expand uses Definition 13.29 to expand a basic subterm of an

atomic conjecture. Then, this atomic conjecture is oriented as a rewrite rule and

added to the set H of hypotheses. Notice that this addition is only allowed if the

Z-CERS consisting of R ∪ H and this newly obtained rule is terminating. This

restriction is needed in order to obtain a sound inductive proof method.4

The rule Simplify uses simplification with R and the hypotheses in H . For this,

4Using the recent approach for proving non-orientable equations in term rewriting in-
duction presented in [7, 8] it might be possible to relax this requirement.

205

Chapter 13. Inductive Theorem Proving with CERSs

the constraint of the atomic conjecture that is to be simplified is taken into account

by considering the following rewrite relation. It only differs from Definition 13.10

in condition 2, which now requires that the instantiated constraint of the rewrite

rule is valid under the assumption of the constraint that is attached to the atomic

conjecture that is getting simplified.

Definition 13.33 (Rewrite Relation of a Z-CERS on Constrained Terms). Let R be

a Z-CERS, let s be a Z-normal term, and let ψ be a ThZ-constraint. Then sJψK→R,Z

tJψK iff there exist a constrained rewrite rule l → rJϕK ∈ R, a position p ∈ Pos(s),

and a substitution σ such that

1. s|p = lσ,

2. ψ ⇒ ϕσ is ThZ-valid, and

3. t = s[rσ]p.

Example 13.34. Given the rewrite rule f(x) → g(x) Jx ≥ 0K and the constrained

term f(y) Jy > 0K, Definition 13.33 gives f(y) Jy > 0K →R,Z g(y) Jy > 0K since,

for σ = {x 7→ y}, f(y) = f(x)σ and the constraint y > 0 ⇒ (x ≥ 0)σ, i.e.,

y > 0 ⇒ y ≥ 0, is ThZ-valid. Notice that f(y) 6→R,Z g(y) since y ≥ 0 is not

ThZ-valid. △

The rule Delete removes trivial atomic conjectures, and the rules Theory1 and

Theory2 can be applied to atomic conjectures that do not contain any defined function

symbols. These rules make use of a decision procedure for the theory LIAC that

combines the linear theory of integers with the (free) constructor symbols from C(R).

For this, Definition 3.1 is slightly extended to a many-sorted theory.

Definition 13.35 (LIAC). For a Z-CERS R, the theory LIAC has the form LIAC =

(FLIAC,PLIAC,MLIAC) where

1. FLIAC = {0, 1,+,−} ∪ C(R)

206

Chapter 13. Inductive Theorem Proving with CERSs

2. PLIAC = {≃,≥, >}5

3. MLIAC = (M, (fLIAC)f∈FLIAC
, (P LIAC)P∈PLIAC

) where M = T (C(R) ∪ Z), the func-

tion symbols in {0, 1,+,−} and predicate symbols in PLIAC are interpreted in

the obvious way, and fLIAC(t1, . . . , tn) = f(t1, . . . , tn) for f ∈ C(R).

LIAC-validity and LIAC-satisfiability are decidable and decision procedures have

been implemented, for instance in the SMT-solver CVC3 [24].

Example 13.36. Continuing Example 13.4, consider the (true) atomic conjecture

prefix(xs, xs) ≡ xs. The following derivation is a proof of this conjecture using the

inference system I:

〈{prefix(xs, xs) ≡ xs}, ∅〉
Expand

〈 {nil ≡ nil, cons(x, prefix(xs, xs)) ≡ cons(x, xs)Jx ≃ xK},

{prefix(xs, xs)→ xs} 〉
Delete

〈{cons(x, prefix(xs, xs)) ≡ cons(x, xs)Jx ≃ xK}, {prefix(xs, xs)→ xs}〉
Simplify

〈{cons(x, xs) ≡ cons(x, xs)Jx ≃ xK}, {prefix(xs, xs)→ xs}〉
Delete

〈∅, {prefix(xs, xs)→ xs}〉

As shown below, this implies that prefix(xs, xs) ≡ xs is an inductive theorem. △

The notation 〈E,H〉 ⊢I 〈E
′, H ′〉 is used to denote that the tuple 〈E ′, H ′〉 has

been obtained from 〈E,H〉 by one of the inference rules in Figure 13.1. As usual, ⊢∗I

denotes the reflexive-transitive closure of ⊢I .

Next, several properties of the inference system I are shown. First, application

of any inference rule except Theory2 leaves the convertibility relation of R∪E∪H on

Z-normal ground terms unchanged. In particular, if 〈E, ∅〉 ⊢∗I 〈∅, H〉, then ↔∗
R∪E,Z

= ↔∗
R∪H,Z on Z-normal ground terms.

5Strictly speaking, there is one predicate symbol≃s for each sort s. To simplify notation,
these predicate symbols have been identified. Also, the predicate symbols ≥ and > take
two arguments of sort int.

207

Chapter 13. Inductive Theorem Proving with CERSs

Lemma 13.37. If 〈En, Hn〉 ⊢I 〈En+1, Hn+1〉 using an inference rule other than

Theory2, then ↔∗
R∪En∪Hn,Z = ↔∗

R∪En+1∪Hn+1,Z on Z-normal ground terms.

The soundness proof of the inference system I is based on the following principle

of Koike and Toyama [115] as reported in [7, 9] (where →1 = →R,Z, →2 = →H,Z,

and A is the set of Z-normal ground terms):

Let →1,→2 be binary relations on a set A and let →1∪2 = →1 ∪ →2.

Assume that

1. →1∪2 is well-founded.

2. →2 ⊆ →1 ◦ →
∗
1∪2 ◦ ←

∗
1∪2

Then ↔∗
1 = ↔∗

1∪2.

In order to show condition 2 of this principle, the next lemma first shows that

if 〈E, ∅〉 ⊢∗I 〈∅, H〉, then each application of an atomic conjecture from E can be

simulated by a “valley proof” using R and H .

Lemma 13.38. If 〈En, Hn〉 ⊢
∗
I 〈∅, H〉 using inference rules other than Theory2, then

↔En,Z ⊆ →
∗
R∪H,Z ◦ ←

∗
R∪H,Z on Z-normal ground terms.

Using this property, the following statement can be shown. It relates the final set

of hypotheses H to the rules of the Z-CERS R and establishes condition 2 of the

principle due to Koike and Toyama.

Lemma 13.39. If 〈E, ∅〉 ⊢∗I 〈∅, H〉 using inference rules other than Theory2, then

→H,Z ⊆ →R,Z ◦ →
∗
R∪H,Z ◦ ←

∗
R∪H,Z on Z-normal ground terms.

With these lemmas at hand, soundness of the inductive proof method based on

the inference system I can be shown.

208

Chapter 13. Inductive Theorem Proving with CERSs

Theorem 13.40. For a quasi-reductive and terminating Z-CERS R, if 〈E, ∅〉 ⊢∗I

〈∅, H〉, then all atomic conjectures in E are inductive theorems of R.

Example 13.41. The function minmax computes a pair consisting of the minimum

and the maximum of two integers.

minmax(x, y) → pair(y, x) Jx ≥ yK

minmax(x, y) → pair(x, y) Jy > xK

The following derivation is a proof of minmax(x, y) ≡ pair(x, y)Jy ≥ xK:

〈{minmax(x, y) ≡ pair(x, y)Jy ≥ xK}, ∅〉
Expand

〈 {pair(y, x) ≡ pair(x, y)Jy ≥ x ∧ x ≥ yK, pair(x, y) ≡ pair(x, y)Jy ≥ x ∧ y > xK},

{minmax(x, y)→ pair(x, y)Jy ≥ xK} 〉
Theory1〈{pair(x, y) ≡ pair(x, y)Jy ≥ x ∧ y > xK}, {minmax(x, y)→ pair(x, y)Jy ≥ xK}〉

Delete
〈∅ {minmax(x, y)→ pair(x, y)Jy ≥ xK}〉

For the application of Theory1, notice that y ≥ x ∧ x ≥ y ⇒ pair(y, x) ≃ pair(x, y) is

LIAC-valid. △

While Theorem 13.40 only relies on the assumption that R is quasi-reductive and

terminating, the soundness of the inference rule Theory2 that makes it possible to

disprove atomic conjectures relies on R being confluent.

Theorem 13.42. For a quasi-reductive, confluent, and terminating Z-CERS R, if

〈E, ∅〉 ⊢∗I ⊥, then at least one conjecture in E is not an inductive theorem of R.

Example 13.43. The following normal Z-CERS defines the function app that ap-

pends one list to the end of another list.

app(nil, ys) → ys

app(cons(x, xs), ys) → cons(x, app(xs, ys))

209

Chapter 13. Inductive Theorem Proving with CERSs

Then, consider the atomic conjecture app(xs, ys) ≡ ys, for which the following deriva-

tion can be obtained:

〈{app(xs, ys) ≡ ys}, ∅〉
Expand

〈{ys ≡ ys, cons(x, app(xs, ys)) ≡ ys}, {app(xs, ys)→ ys}〉
Delete

〈{cons(x, app(xs, ys)) ≡ ys}, {app(xs, ys)→ ys}〉
Simplify

〈{cons(x, ys) ≡ ys}, {app(xs, ys)→ ys}〉
Theory2⊥

Thus, the atomic conjecture app(xs, ys) ≡ ys is not an inductive theorem. △

13.4 Summary

This chapter has presented an inductive proof method for Z-CERSs. This proof

method is based on the implicit induction paradigm and couples inductive reasoning

with a decision procedure for the theory LIAC. Here, the (decidable) theory LIAC

combines the linear theory of integers with the constructors of the Z-CERS. The

inductive proof method does not only make it possible to prove inductive conjectures,

but also to disprove false conjectures. For this, the Z-CERS needs to be confluent.

Sufficient condition for ensuring confluence of Z-CERSs have been developed in this

chapter as well.

210

Chapter 14

Inductive Theorem Proving as a

Decision Procedure

While the inference system I from Chapter 13 provides a completely mechanical way

to prove or disprove inductive conjectures once a strategy for the application of the

inference rules has been fixed, it does not provide a decision procedure for inductive

validity since derivations of the system may diverge or fail. The reason for a possible

divergence is the inference rule Expand which could be applied again and again.

For methods employed in program verification, however, a decision procedure

that can be used as a “black box” is preferable since an interactive use of inductive

reasoning methods is typically only possible by trained experts. The goal of this

chapter is to derive conditions on Z-CERSs and conjectures under which the inference

system I can be used as a decision procedure, i.e., will always produce a proof or

disproof of a conjecture if a suitable strategy on the use of the inference rules is

employed. These conditions are mostly based on properties of the rewrite rules in

a Z-CERS that can be pre-computed during parsing. Thus, checking whether a

211

Chapter 14. Inductive Theorem Proving as a Decision Procedure

conjecture satisfies the conditions under which I provides a decision procedure is

easily possible and requires much less time than attempting a proof or disproof.

Work on identifying conditions under which inductive theorem proving provides

a decision procedure with ordinary TRSs was initiated in [111] and later extended in

[80, 82], also see [104]. These previous papers impose strong restrictions on both the

TRSs and the conjectures. The functions defined by the TRS have to be given in such

a way that any function f may only make recursive calls to the function f again.

Often, it is necessary to allow calls to other auxiliary functions or even mutually

recursive definitions. The first contribution of this chapter is to allow for both of

these extension. All of [111, 80, 82, 104] impose the restriction that the conjectures

contain a subterm of the form f(x1, . . . , xn) for an f ∈ D(R) and pairwise distinct

variables x1, . . . , xn. This term is then chosen as the basic subterm upon which the

proof by induction is based. In this chapter, this restriction is relaxed as well by

making it possible to have basic subterms where the arguments are not necessarily

pairwise distinct variables.

In this chapter it is assumed that R is a quasi-reductive, terminating normal Z-

CERS. Recall that R is thus confluent, which is required for disproving conjectures.

14.1 Simple Decidable Conjectures

For the purpose of decidable induction, a restricted class of function definitions is

considered. In its most simple form, functions may only make recursive calls to

themselves. Furthermore, nesting of recursive calls is not permitted. This is captured

by the following definition, adapted from [111].

Definition 14.1 (LIAC-Based Functions). A function g ∈ D(R) is LIAC-based iff all

right-hand sides of rules in R(g) have the form C[g(r∗1), . . . , g(r
∗
m)] for some context

212

Chapter 14. Inductive Theorem Proving as a Decision Procedure

C over Ĉ(R) such that r∗k ∈ T (Ĉ(R),V) for all 1 ≤ k ≤ m.

The strategy for the application of the inference rules in I that turns I into a

decision procedure on certain conjectures is quite natural: First, a basic subterm of

the conjecture is expanded. One condition on the conjecture will ensure that there

is only one basic subterm, thus eliminating the non-determinism caused by several

such subterms. After expanding this basic subterm, the newly obtained conjectures

are simplified using R and the inductive hypothesis. For this, it needs to be ensured

that the hypothesis is always applicable. Finally, further conditions on the conjecture

ensure that inductive validity of the conjectures obtained after simplification can be

decided using the decision procedure for LIAC, i.e., using the inference rules Theory1

and Theory2.

The basic subterm used for expansion is restricted to have the form g(x1, . . . , xn),

where x1, . . . , xn are not necessarily pairwise distinct variables. This is a significant

extension over [111, 80, 82, 104], where these variables need to be pairwise distinct.

The reason for this restriction in [111, 80, 82, 104] is that the inductive hypothesis

is then always applicable (under certain further assumptions discussed below).

In order to ensure that a non-linear hypothesis is applicable to all recursive calls

of a LIAC-based function after application of the Expand-rule, it needs to be ensured

that the corresponding arguments of the recursive calls are “equal”. More precisely,

this needs to be required only under the assumption that these arguments are equal

in the left-hand side of the rule since Expand does otherwise not create any new

atomic conjectures to which the hypothesis needs to be applied. Notice that this

property depends only on the rules in R(g) and is independent of the conjecture.

Definition 14.2 (ImpEq). Let g be LIAC-based. Then 〈i, j〉 ∈ ImpEq(g) iff 1 ≤ i <

j ≤ arity(g) such that the ith and jth argument of g have the same sort and

li ≃ lj ⇒
m∧

k=1

rk,i ≃ rk,j

213

Chapter 14. Inductive Theorem Proving as a Decision Procedure

is LIAC-valid for all rules g(l∗)→ C[g(r∗1), . . . , g(r
∗
m)]JϕK ∈ R(f) where li ≃ lj ∧ϕ is

LIAC-satisfiable.

Hence, if a term of the form g(l∗)σ is simplified using the rewrite rule g(l∗) →

C[g(r∗1), . . . , g(r
∗
m)]JϕK and 〈i, j〉 ∈ ImpEq(g), then rk,iσ = rk,jσ for all 1 ≤ k ≤ m

whenever liσ = ljσ. The set ImpEq(g) can easily be computed from the rules defining

g with the help of a decision procedure for LIAC.

Example 14.3. The following normal Z-CERS determines whether a list is point-

wise bigger than another list of the same length.

ptwise(nil, nil) → true

ptwise(nil, cons(y, ys)) → false

ptwise(cons(x, xs), nil) → false

ptwise(cons(x, xs), cons(y, ys)) → ptwise(xs, ys) Jx ≥ yK

ptwise(cons(x, xs), cons(y, ys)) → false Jy > xK

Then ImpEq(ptwise) = {〈1, 2〉}. So see this, notice that the implications from Def-

inition 14.2 are trivially true for the first, second, third, and fifth rules since these

rules do not contain any recursive calls. For the fourth rule, the LIAC-validity of

cons(x, xs) ≃ cons(y, ys)⇒ xs ≃ ys

is easily shown. △

The first version of decidable conjectures is now given as follows. Notice that

only a simple form of basic terms is allowed, but that non-linearity is possible.

Definition 14.4 (Simple Conjectures). A simple conjecture is an atomic conjecture

of the form g(x∗) ≡ tJϕK such that the following conditions are satisfied:

1. R∪ {g(x∗)→ tJϕK} is terminating.

214

Chapter 14. Inductive Theorem Proving as a Decision Procedure

2. ϕ = ⊤

3. The function g is LIAC-based.

4. x∗ consists of variables and t ∈ T (Ĉ(R),V).

5. Whenever xi = xj for i < j, then 〈i, j〉 ∈ ImpEq(g).

Example 14.5. For the Z-CERS from Example 14.3, the conjecture ptwise(xs, xs) ≡

true is simple. △

Theorem 14.6. Using the strategy1 Expand · Simplify! · (Theory1 + Theory2)
!, where

Simplify uses only the hypothesis from H, it is decidable whether a simple conjecture

is an inductive theorem.

The concept of LIAC-based functions is quite restrictive since a LIAC-based func-

tion may only make recursive calls to itself and not to any other function. The next

definition generalizes the concept of a LIAC-based function by considering a set of

function symbols that may make recursive calls to each other. Notice that nested

recursive calls in right-hand sides are still not allowed.

Definition 14.7 (LIAC-Based Functions–Version 2). A set G = {g1, . . . , gn} ⊆ D(R)

is LIAC-based iff all right-hand sides of rules in R(G) are of the form C[gk1
(r∗1), . . . ,

gkm(r∗m)] for some context C over Ĉ(R) such that r∗i ∈ T (Ĉ(R),V) and gki
∈ G for

all 1 ≤ i ≤ m.

Example 14.8. This example uses free constructors to model lists and natural

numbers using a Peano representation.

max(O, y) → y

max(s(x),O) → s(x)

max(s(x), s(y)) → s(max(x, y))

1In stating strategies, · denotes sequential application, + denotes alternative application,
∗ denotes iterated application, and ! denotes exhaustive iterative application.

215

Chapter 14. Inductive Theorem Proving as a Decision Procedure

maxlist(xs, nil) → nil

maxlist(nil, cons(y, ys)) → nil

maxlist(cons(x, xs), cons(y, ys)) → cons(max(x, y),maxlist(xs, ys))

Since maxlist makes a recursive call to max, the function maxlist is not LIAC-based.

The set {max,maxlist}, however, is LIAC-based. △

In order to ensure that non-linear hypotheses are still applicable, the definition

of ImpEq needs to be adapted as well. For this, the idea is to collect conditions on

all members of a LIAC-based set of functions under which recursive calls to one of

these functions g have equal arguments in positions i and j. These conditions are of

the form 〈g′, i′, j′〉, meaning that equality of the arguments in positions i′ and j′ of

the function g′ ensures that recursive calls to g have equal arguments in positions i

and j.

Definition 14.9 (ImpEq–Version 2). Let G = {g1, . . . , gn} be a LIAC-based set of

functions. Then 〈g, i, j, Γ〉 ∈ ImpEq(G) for g ∈ G iff 1 ≤ i < j ≤ arity(g), the ith and

jth argument of g have the same sort, and Γ = {〈gk1
, i1, j1〉, . . . , 〈gkm, im, jm〉} such

that for all 1 ≤ κ ≤ m, 1 ≤ iκ < jκ ≤ arity(gkκ) where the ithκ and jthκ argument of

gkκ have the same sort and

∧

〈gk,i′,j′〉∈Γ

li′ ≃ lj′ ⇒
∧

gkκ=g

rκ,i ≃ rκ,j

is LIAC-valid for all rules gk(l
∗) → C[gk1

(r∗1), . . . , gkm(r∗m)]JϕK ∈ R(G) for which
∧

〈gk,i′,j′〉∈Γ

li′ ≃ lj′ ∧ ϕ is LIAC-satisfiable.

Notice that the set ImpEq(G) is still easily computable from the rules defining G

with the help of a decision procedure for LIAC.

Definition 14.9 strictly generalizes Definition 14.2 even for a single LIAC-based

function. To see this, consider the rule f(cons(x, xs), cons(y, ys), cons(z, zs)) →

216

Chapter 14. Inductive Theorem Proving as a Decision Procedure

f(ys, zs, xs). Using Definition 14.2, ImpEq(f) = ∅ since none of

cons(x, xs) ≃ cons(y, ys) ⇒ ys ≃ zs

cons(x, xs) ≃ cons(z, zs) ⇒ ys ≃ xs

cons(y, ys) ≃ cons(z, zs) ⇒ zs ≃ xs

is LIAC-valid. Using Definition 14.9, ImpEq({f}) is non-empty, containing (amongst

others) 〈f, 1, 2, {〈f, 2, 3〉}〉. Notice, however, that ImpEq(g) from Definition 14.2 and

ImpEq({g}) from Definition 14.9 coincide if g is a LIAC-based function of arity 2.

The definition of a simple conjecture immediately generalizes to LIAC-based sets

G of functions. Now, an atomic conjecture for each member of the G is needed. Also,

notice the use of ImpEq(G) to ensure applicability of the inductive hypotheses.

Definition 14.10 (Simple Conjectures–Version 2). A simple conjecture is a set of

atomic conjectures of the form {g1(x
∗
1) ≡ t1Jϕ1K, . . . , gn(x

∗
n) ≡ tnJϕnK} such that the

following conditions are satisfied:

1. R∪ {g1(x
∗
1)→ t1Jϕ1K, . . . , gn(x

∗
n)→ tnJϕnK} is terminating.

2. ϕi = ⊤ for all 1 ≤ i ≤ n.

3. The set G = {g1, . . . , gn} is LIAC-based.

4. x∗i consists of variables and ti ∈ T (Ĉ(R),V) for all 1 ≤ i ≤ n.

5. Whenever xk,i = xk,j for i < j, then there exists an 〈gk, i, j, Γ〉 ∈ ImpEq(G)

such that xk′,i′ = xk′,j′ for all 〈gk′, i′, j′〉 ∈ Γ .

Example 14.11. In Example 14.8, the set {max(x, x) ≡ x, maxlist(xs, xs) ≡ xs}

is a simple conjecture. To see this, notice that 〈maxlist, 1, 2, {〈maxlist, 1, 2〉}〉 and

〈max, 1, 2, {〈max, 1, 2〉, 〈maxlist, 1, 2〉}〉 are in ImpEq({max,maxlist}) since the impli-

cations

s(x) ≃ s(y) ⇒ x ≃ y

217

Chapter 14. Inductive Theorem Proving as a Decision Procedure

cons(x, xs) ≃ cons(y, ys) ⇒ x ≃ y

cons(x, xs) ≃ cons(y, ys) ⇒ xs ≃ ys

are LIAC-valid. △

Theorem 14.12. Using the strategy Expand∗ · Simplify! · (Theory1 + Theory2)
!, where

Expand is applied once to each atomic conjecture of the set and Simplify uses only

the hypotheses from H, it is decidable whether a simple conjecture is an inductive

theorem.

Example 14.13. All of the following conjectures are simple (see http://www.cs.

unm.edu/~spf/sail2/ for the function definitions):

app(xs, ys) ≡ ys gtr(x, x) ≡ false

geq(x, x) ≡ true maxlist(xs, xs) ≡ xs

{maxlist(xs, xs) ≡ xs, max(x, x) ≡ x} max(x, x) ≡ x

min(x, x) ≡ x minus(x, x) ≡ O

{mix(xs, xs) ≡ xs, mix′(xs, xs) ≡ xs} plus(x, y) ≡ x

prefix(xs, xs) ≡ xs ptwise(xs, xs) ≡ true

According to Theorems 14.6 and 14.12, it can be decided whether these conjectures

are inductive theorems. △

14.2 Simple Decidable Conjectures with Nesting

The main restriction of the simple decidable conjectures from Section 14.1 is that

nesting of defined function symbols is not permitted. This restriction was imposed

in order to ensure that the inductive hypotheses are always applicable (if the ImpEq-

requirement is satisfied), resulting in an atomic conjecture whose validity can be

218

Chapter 14. Inductive Theorem Proving as a Decision Procedure

decided using the inference rules Theory1 or Theory2 that make use of a decision for

the theory LIAC.

For atomic conjectures with nested defined function symbols, this is not always

the case since Expand might introduce a context from the right-hand side of a rule

around the recursive calls. This context needs to be removed before the inductive

hypotheses can be applied. This observation leads to the concept of compatibility,

meaning that the Z-CERS can handle the contexts introduced in right-hand sides of

rules. This concept was initially defined in [111], but the presentation in this section

follows the presentation in [82] which presents similar results for ordinary TRSs.

In order to present the ideas developed in this section uniformly for both LIAC-

based functions and LIAC-based set of functions, the following definition generalizes

these concepts.

Definition 14.14 (LIAC-Good Rewrite Rules and Functions). A constrained rewrite

rule l → rJϕK is LIAC-good iff r = C[g1(r
∗
1), . . . , gn(r∗n)] where C is a context over

Ĉ(R) and r∗1, . . . , r
∗
n ∈ T (Ĉ(R),V) for g1, . . . , gn ∈ D(R). A function f ∈ D(R) is

LIAC-good if all rules in R(f) are LIAC-good.

Notice that, in particular, the rules of a LIAC-based function or a LIAC-based set

of functions are LIAC-good.

Definition 14.15 (Compatibility). Let g be LIAC-based, let 1 ≤ j ≤ arity(g), and

let Q be a set of LIAC-good rewrite rules. Then g is compatible with Q on argument

j iff for all2 f(l∗) → C[g1(r
∗
1), . . . , gn(r

∗
n)]JϕK ∈ Q such that the jth argument of g

has the same sort as f ,

g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm) →∗
R,Z

D[g(x1, . . . , xj−1, zi1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]

2In [82], compatibility with exceptions has been defined. In order to keep the presentation
simple, this is not considered in this dissertation.

219

Chapter 14. Inductive Theorem Proving as a Decision Procedure

for a context D over Ĉ(R) and i1, . . . , ik ∈ {1, . . . , n} such that zi 6∈ V(D) for all

1 ≤ i ≤ n.

If Q = R(f) for a function symbol f , then g is said to be compatible with f on

argument j, and similarly for sets of function symbols.

Example 14.16. Consider the following Z-CERS:

zip(xs, nil) → pnil

zip(nil, cons(y, ys)) → pnil

zip(cons(x, xs), cons(y, ys)) → pcons(pair(x, y), zip(xs, ys))

fst(pnil) → nil

fst(pcons(pair(x, y), xs)) → cons(x, fst(xs))

Then fst is compatible with zip on argument 1. For the first two zip-rules, C is pnil

(a context without holes), and fst(pnil) rewrites to nil, i.e., D = nil. For the third zip-

rule, C is pcons(pair(x, y),2) and fst(pcons(pair(x, y), z1)) rewrites to cons(x, fst(z1)),

i.e., D = cons(x,2). △

While Definition 14.15 considers the rules in Q independently for each context

C from a right-hand side, the property from the definition can be lifted to nested

contexts C that are obtained from several rules’ right-hand sides. These contexts

can be obtained if several rules from Q are applied after another.

Definition 14.17 (Repeated Q-Contexts). Let Q be a set of LIAC-good rewrite

rules. A context C is a Q-context iff there exists a constrained rewrite rule f(l∗)→

C[g1(r
∗
1), . . . , gn(r

∗
n)]JϕK ∈ Q. A context C is a repeated Q-context iff C is a Q-

context or there are repeated Q-contexts D,C1, . . . , Cm such that C = D[C1, . . . , Cm].

If Q = R(f), (repeated) Q-contexts are also called (repeated) f -contexts, and

similarly for sets of function symbols. Now, it can be shown that the property from

Definition 14.15 lifts from the Q-contexts considered there to repeated Q-contexts.

220

Chapter 14. Inductive Theorem Proving as a Decision Procedure

Lemma 14.18. Let g be compatible with Q on argument j. Then, for every repeated

Q-context CQ, there exists a repeated g-context Cg such that

g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm) →∗
R,Z

Cg[g(x1, . . . , xj−1, zi1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]

where i1, . . . , ik ∈ {1, . . . , n} and zi 6∈ V(Cg) for all 1 ≤ i ≤ n.

The concept of compatibility can be extended to arbitrarily deep nestings of

functions, resulting in compatibility sequences.

Definition 14.19 (Compatibility Sequences). Let f1, . . . , fd−1 be LIAC-based and

let fd be LIAC-good for some d ≥ 1. The sequence 〈f1, . . . , fd〉 is a compatibility

sequence on arguments 〈j1, . . . , jd−1〉 iff fi is compatible with fi+1 on argument ji for

all 1 ≤ i ≤ d− 1.

A term s ∈ T (F ,V) has this compatibility sequence iff

s = f1(p
∗
1, f2(p

∗
2, . . . fd−1(p

∗
d−1, fd(x

∗), q∗d−1) . . . , q
∗
2), q

∗
1)

such that the variables in x∗ do not occur elsewhere in s, the p∗i and q∗i are from

T (Ĉ(R),V), and fi(p
∗
i , fi+1(. . .), q

∗
i)|ji

= fi+1(. . .) for all 1 ≤ i ≤ d− 1.

If s is as in this definition, then s〈t〉 denotes the term obtained from s by replacing

the term fd(x
∗) by the term t. Then, it can be shown that any fd-context can be

handled in a term having a compatibility sequence.

Lemma 14.20. Let s be a term with the compatibility sequence 〈f1, . . . , fd〉 on ar-

guments 〈j1, . . . , jd−1〉. Then, for every rule fd(l
∗)→ C[g1(r

∗
1), . . . , gn(r∗n)]JϕK,

s〈C[g1(r
∗
1), . . . , gn(r

∗
n)]〉 →∗

R,Z D[s〈gi1(r
∗
i1
)〉, . . . , s〈gik(r

∗
ik

)〉]

for some context D over Ĉ(R) and i1, . . . , ik ∈ {1, . . . , n}.

221

Chapter 14. Inductive Theorem Proving as a Decision Procedure

Now simple nested conjectures generalize the simple conjectures from Section 14.1

by allowing nested defined functions on the left-hand side, provided the left-hand side

has a compatibility sequence.

Definition 14.21 (Simple Nested Conjectures). A simple nested conjecture is an

atomic conjecture of the form D[f(x∗)] ≡ tJϕK such that the following conditions are

satisfied:

1. R∪ {D[f(x∗)]→ tJϕK} is terminating.

2. ϕ = ⊤

3. The term D[f(x∗)] has a compatibility sequence and f is LIAC-based.

4. x∗ consists of variables and t ∈ T (Ĉ(R),V).

5. Whenever xi = xj for i < j, then 〈i, j〉 ∈ ImpEq(f).

Example 14.22. Continuing Example 14.16, the term fst(zip(xs, xs)) has the com-

patibility sequence 〈fst, zip〉 on arguments 〈1〉. Furthermore, 〈1, 2〉 ∈ ImpEq(zip).

Thus, fst(zip(xs, xs)) ≡ xs is a simple nested conjecture. △

Theorem 14.23. Using the strategy Expand · Simplify∗ · (Theory1 + Theory2)
!, it is

decidable whether a simple nested conjecture is an inductive theorem.

Of course, the concept of simple nested conjectures can be extended from LIAC-

based functions to LIAC-based sets of functions, similarly to how this was done for

simple conjectures in Section 14.1. First, notice that the definition of compatibility

can already be applied to LIAC-based sets of functions.

Example 14.24. Take the function fst defined in Example 14.16 and add the

following rules defining stitch.

222

Chapter 14. Inductive Theorem Proving as a Decision Procedure

stitch(x, nil) → pnil

stitch(nil, cons(y, ys)) → pnil

stitch(cons(x, xs), cons(y, ys)) → pcons(pair(x, y), stitch′(xs, ys))

stitch′(x, nil) → pnil

stitch′(nil, cons(y, ys)) → pnil

stitch′(cons(x, xs), cons(y, ys)) → pcons(pair(y, x), stitch(xs, ys))

Then G = {stitch, stitch′} is LIAC-based and fst is compatible with G on argu-

ment 1, since for the third stitch-rule, the term fst(pcons(pair(x, y), z1)) rewrites to

cons(x, fst(z1)), and similarly for the third stitch′-rule. △

Now, the definition of simple nested conjectures can be revised as follows.

Definition 14.25 (Simple Nested Conjectures–Version 2). A simple nested conjec-

ture is a set of atomic conjectures of the form {D[f1(x
∗
1)] ≡ t1Jϕ1K, . . . , D[fn(x∗n)] ≡

tnJϕnK} such that the following conditions are satisfied:

1. R∪ {D[f1(x
∗
1)]→ t1Jϕ1K, . . . , D[fn(x

∗
n)]→ tnJϕnK} is terminating.

2. ϕi = ⊤ for all 1 ≤ i ≤ n.

3. All of D[f1(x
∗
1)], . . . , D[fn(x∗n)] have a compatibility sequence and the set G =

{f1, . . . , fn} is LIAC-based.

4. x∗i consists of variables and ti ∈ T (Ĉ(R),V) for all 1 ≤ i ≤ n.

5. Whenever xk,i = xk,j for i < j, then there exists an 〈fk, i, j, Γ〉 ∈ ImpEq(G)

such that xk′,i′ = xk′,j′ for all 〈fk′, i′, j′〉 ∈ Γ .

Example 14.26. In Example 14.24, the term fst(stitch(xs, xs)) has the compat-

ibility sequence 〈fst, stitch〉 on arguments 〈1〉, and the term fst(stitch′(xs, xs)) has

the compatibility sequence 〈fst, stitch′〉 on arguments 〈1〉. Since {stitch, stitch′} is

LIAC-based, {fst(stitch(xs, xs)) ≡ xs, fst(stitch′(xs, xs)) ≡ xs} is a simple nested

223

Chapter 14. Inductive Theorem Proving as a Decision Procedure

conjecture because ImpEq({stitch, stitch′}) contains 〈stitch, 1, 2, {〈stitch′, 1, 2〉}〉 and

〈stitch′, 1, 2, {〈stitch, 1, 2〉}〉. △

Theorem 14.27. Using the strategy Expand∗ · Simplify∗ · (Theory1 + Theory2)
!, where

Expand is applied once to each atomic conjecture of the set, it is decidable whether a

simple nested conjecture is an inductive theorem.

Example 14.28. All of the following conjectures are simple nested, but not simple:

oddlist(alternate(xs, xs)) ≡ xs evenlist(alternate(xs, xs)) ≡ xs

oddlist(alternate(xs, ys)) ≡ xs evenlist(alternate(xs, ys)) ≡ ys

half(double(x)) ≡ x even(double(x)) ≡ true

not(gtr(x, x)) ≡ true not(geq(x, x)) ≡ false

fst(zip(xs, xs)) ≡ xs fst(zip(xs, ys)) ≡ xs

{fst(stitch(xs, xs)) ≡ xs, fst(stitch′(xs, xs)) ≡ xs}

{fst(stitch(xs, ys)) ≡ xs, fst(stitch′(xs, ys)) ≡ xs}

According to Theorems 14.23 and 14.27, it can be decided whether these conjectures

are inductive theorems. △

14.3 Safe Generalizations

The conditions imposed on simple (nested) conjectures in Sections 14.1 and 14.2

ensure that the inductive hypotheses are always applicable and that an atomic con-

jecture containing no defined function symbols is obtained after application of the

hypotheses. This is due to the restriction that the right-hand side of simple (nested)

conjectures do not contain any defined symbols. For conjectures that contain defined

symbols in both sides it is no longer the case that an atomic conjecture containing no

defined function symbols is obtained after application of the inductive hypotheses.

Thus, neither of the inference rules Theory1 nor Theory2 is applicable in general.

224

Chapter 14. Inductive Theorem Proving as a Decision Procedure

Theory′1
〈E ⊎ {s ≡̇ tJϕK}, H〉

〈E, H〉

if s′ ≡ t′Jϕ′K is a safe generalization of s ≡ tJϕK
such that s′, t′ do not contain symbols from
D(R) and ϕ′ ⇒ s′ ≃ t′ is LIAC-valid

Theory′2
〈E ⊎ {s ≡̇ tJϕK}, H〉

⊥

if s′ ≡ t′Jϕ′K is a safe generalization of s ≡ tJϕK
such that s′, t′ do not contain symbols from
D(R) and ϕ′ ⇒ s′ ≃ t′ is not LIAC-valid

Figure 14.1: The inference system I ′ is obtained from I by replacing Theory1 by
Theory′1 and Theory2 by Theory′2.

In order to circumvent this problem, a generalization that replaces subterms with

a defined root symbol by fresh variables may be applied to the atomic conjecture.

While this approach is clearly sound (i.e., if the generalized conjecture is an inductive

theorem, then the original conjecture is an inductive theorem), it is not complete

in general (i.e., the generalized conjecture might not be an inductive theorem, even

though the original conjecture is an inductive theorem). In order to employ inductive

reasoning as a decision procedure, these over-generalizations need to be ruled out,

i.e., only safe generalizations should be considered.

Definition 14.29 (Safe Generalizations). Let s ≡ tJϕK be an atomic conjecture. A

safe generalization of s ≡ tJϕK is an atomic conjecture s′ ≡ t′Jϕ′K such that s ≡ tJϕK

is an inductive theorem iff s′ ≡ t′Jϕ′K is an inductive theorem.

Safe generalizations can be added to the inference system I from Section 13.3

by modifying the inference rules Theory1 and Theory2. For this, a safe generalization

that eliminates all defined symbols from the conjecture is applied before the decision

procedure for LIAC is employed. The inference rules Theory′1 and Theory′2 given in

Figure 14.1 are based on this idea, giving rise to the inference system I ′.

The statements of Theorems 13.40 and 13.42 extend to the system I ′, i.e., the

system is still correct and makes it possible to disprove conjectures.

225

Chapter 14. Inductive Theorem Proving as a Decision Procedure

Theorem 14.30. For a quasi-reductive, confluent, and terminating Z-CERS R, if

〈E, ∅〉 ⊢∗I′ 〈∅, H〉, then all atomic conjectures in E are inductive theorems of R.

Theorem 14.31. For a quasi-reductive, confluent, and terminating Z-CERS R, if

〈E, ∅〉 ⊢∗I′ ⊥, then at least one atomic conjecture in E is not an inductive theorem

of R.

In the following, it is assumed that all rules in R have the constraint ⊤. Conse-

quently, l → r is written instead of l → rJϕK. Extending the ideas presented in the

following to Z-CERSs with constrained rewrite rules is left for future work.

In order to obtain safe generalizations, [82] has introduced the no-theory condi-

tion, meaning that a given term is not equivalent to any term containing no defined

function symbols.

Definition 14.32 (No-Theory Condition). A Z-free term t satisfies the no-theory

condition (w.r.t. R) iff there exists no term q ∈ T (Ĉ(R),V) such that t ≡ q is

an inductive theorem of R. The defined function f ∈ D(R) satisfies the no-theory

condition iff the term f(x∗) satisfies the no-theory condition for pairwise distinct

variables x1, . . . , xn.

As already noticed in [82], the no-theory condition is in practice satisfied for

almost all defined functions since defined functions that do not satisfy the no-theory

condition could just be replaced by the term q from Definition 14.32.

Using the no-theory condition, safe generalizations can be obtained by replacing

terms that satisfy this condition by fresh variables.

Theorem 14.33. Assume that t1, . . . , tn, s1, . . . , sm are pairwise equal or variable-

disjoint terms satisfying the no-theory condition. For all contexts C,D over Ĉ(R)

and fresh variables xti , xsj
, the atomic conjecture C[t1, . . . , tn] ≡ D[s1, . . . , sm] is an

inductive theorem if and only if C[xt1 , . . . , xtn] ≃ D[xs1
, . . . , xsm] is LIAC-valid.

226

Chapter 14. Inductive Theorem Proving as a Decision Procedure

It is in general unclear how the check whether a term satisfies the no-theory

condition.3 In the following, this problem is investigated for defined functions, i.e.,

conditions under which a defined function f satisfies the no-theory condition are

derived. For LIAC-based functions, the method based on candidate sets as defined

in [82] can be used. For this, the right-hand side of a non-recursive f -rule is used in

order to obtain a finite set of candidates for the term q from Definition 14.32.

Definition 14.34 (Candidate Sets). Let f be a LIAC-based function of arity n. The

candidate set Q(f) is defined as Qs∗(r) for a non-recursive rule f(s1, . . . , sn)→ r ∈

R(f). For the definition of Qs∗(r), let x∗ = x1, . . . , xn be pairwise distinct fresh

variables and define Qs∗(t) for any t ∈ T (Ĉ(R),V):

1. Qs∗(x) = {xi | si = x} if x ∈ V

2. Qs∗(c(t1, . . . , tk)) = {xi | si = c(t1, . . . , tk)} ∪

{c(q1, . . . , qk) | qi ∈ Qs∗(ti) for all 1 ≤ i ≤ k}

As in [82], candidate sets can be used in order to conclude that a LIAC-based

function satisfies the no-theory condition.

Theorem 14.35. Let f be LIAC-based. Then f satisfies the no-theory condition if

for every q ∈ Q(f), there exists a rule l → r ∈ R(f) such that l↓f(x∗)→q 6= r↓f(x∗)→q.

Here, ↓f(x∗)→q denotes normalization by the rewrite rule f(x∗)→ q.

Example 14.36. Consider the following function definition.

len(nil) → O

len(cons(x, xs)) → s(len(xs))

Then, it can be shown that len satisfies the no-theory condition. To see this, no-

tice that Q(len) = Qnil(O) = {O} and len(cons(x, xs)) ↓len(x1)→O = O 6= s(O) =

s(len(xs))↓len(x1)→O. △

3Some sufficient conditions for this are given in [82].

227

Chapter 14. Inductive Theorem Proving as a Decision Procedure

Deriving conditions under which a member of a LIAC-based set of functions satis-

fies the no-theory condition is harder. As a first special case, simple mutual recursive

functions can be handled by unrolling [109].

Definition 14.37 (Simple Mutual Recursion). Let {f0, f1} be a LIAC-based set of

functions. Then {f0, f1} is simple mutual recursive iff all fi-rules for i = 0, 1 have

the form fi(l
∗)→ C[f1−i(x

∗
1), . . . , f1−i(x

∗
n)] such that x∗j consists of pairwise distinct

variables for all 1 ≤ j ≤ n and the x∗1, . . . , x
∗
n are pairwise disjoint.

Simple mutual recursive definitions can automatically be transformed into def-

initions that only use direct recursion. For this, the recursive calls to f1−i on the

right-hand sides are matched to the left-hand sides of the f1−i-rules.

Definition 14.38 (Unrolling). Let {f0, f1} be simple mutual recursive. The un-

rolling of the fi-rule fi(l
∗)→ C[f1−i(x

∗
1), . . . , f1−i(x

∗
n)] is the set

{fi(l
∗)τ → Cτ [r1, . . . , rn] | f1−i(l

∗
1)→ r1, . . . , f1−i(l

∗
n)→ rn ∈ R(f1−i),

τj = {x∗j 7→ l∗j} for all 1 ≤ j ≤ n,

and τ = τ1 ∪ . . . ∪ τn}

The unrolling of fi is the union of the unrollings of all fi-rules.

Example 14.39. Consider the following simple mutual recursive definitions of even

and odd.

even(O) → true

even(s(x)) → odd(x)

odd(O) → false

odd(s(x)) → even(x)

Then the unrollings of even and odd are as follows:

228

Chapter 14. Inductive Theorem Proving as a Decision Procedure

even(O) → true

even(s(O)) → false

even(s(s(x))) → even(x)

odd(O) → false

odd(s(O)) → true

odd(s(s(x))) → odd(x)

Notice that a single even-rule gives rise to two even-rules in the unrolling, and simi-

larly for odd. △

Theorem 14.40. Let {f0, f1} be simple mutual recursive. Then fi satisfies the no-

theory condition w.r.t. R if fi satisfies the no-theory condition w.r.t. fi’s unrolling.

Example 14.41. Using this result, it can be shown that even from Example 14.39

satisfies the no-theory condition by using its unrolled definition and Theorem 14.35.

Using the first rule of the unrolling, Q(even) = {true}, but even(s(O))↓even(x1)→true =

true 6= false = false ↓even(x1)→true. Using similar reasoning, it can also be shown that

odd satisfies the no-theory condition. △

For functions that are neither LIAC-based nor members of a simple mutual recur-

sive set of functions, Theorem 14.35 can be adapted as follows. Then only difference

is that subterms with a defined root symbol are abstracted by fresh variables after

normalization with f(x∗) → q and that instead of testing for equality a test for

LIAC-satisfiability is performed.

Theorem 14.42. Let f be LIAC-good and let capD replaces subterms with defined

root symbols by fresh variables. Then f satisfies the no-theory condition if for every

q ∈ Q(f), there exists a rule l → r ∈ R(f) such that l↓f(x∗)→q ≃ capD(r↓f(x∗)→q) is

LIAC-unsatisfiable.

Example 14.43. With this result, it can be shown that maxlist from Example

14.8 satisfies the no-theory condition. Using the first rule, Q(maxlist) = {x2, nil} is

229

Chapter 14. Inductive Theorem Proving as a Decision Procedure

obtained. For the candidate x2, a contradiction is obtained with the second maxlist-

rule since maxlist(nil, cons(y, ys))↓maxlist(x1,x2)→x2
= cons(y, ys) and cons(y, ys) ≃ nil

is LIAC-unsatisfiable. For nil, the third maxlist-rule gives rise to a contradiction

since capD(cons(max(x, y),maxlist(xs, ys))↓maxlist(x1,x2)→nil) = cons(z, nil) and nil ≃

cons(z, nil) is LIAC-unsatisfiable. △

14.4 Complex Conjectures

In this section, a class of decidable conjectures that contains defined function sym-

bols on both sides is identified. In order to decide the inductive validity of these

conjectures, safe generalizations using the no-theory condition as introduced in Sec-

tion 14.3 need to be utilized. Again, only single LIAC-based functions are considered

initially and the case of LIAC-based sets of functions is considered afterwards.

In addition to the concept of compatibility as defined in Section 14.2, it becomes

necessary to investigate how the left-hand sides of the rules defining a symbol from

D(R) can be applied to the basic subterm of the conjecture using Expand. The

definition schemes as defined below collect all substitutions σ that are generated

using Expand. Recall that Expand computes the most general syntactic unifiers of

left-hand sides and a basic subterm of the conjecture.

Definition 14.44 (Definition Schemes). Let f be LIAC-good, let x∗ consist of vari-

ables, and let l → r ∈ R(f). Then the definition scheme of f(x∗) for the rule

l → r is given by Def (f(x∗), l → r) = {σ | σ = mgu(f(x∗), l)}. Furthermore, let

Def (f(x∗)) =
⋃

l→r∈R(f)Def (f(x∗), l → r) and DefR(f(x∗)) = { 〈l→ r, Def (f(x∗),

l → r)〉 | l → r ∈ R(f) and Def (f(x∗), l → r) 6= ∅}.

Notice that Def (f(x∗), l→ r) has cardinality one if f(x∗) and l are unifiable and

cardinality zero otherwise.

230

Chapter 14. Inductive Theorem Proving as a Decision Procedure

Example 14.45. Take the function len from Example 14.36 and add the rules

defining zip from Example 14.16. Then, the term len(zs) has the definition scheme

Def (len(zs)) = {σ1, σ2} with σ1 = {zs 7→ nil} and σ2 = {zs 7→ cons(x, xs)}.

Furthermore, Def (zip(zs, zs)) = {σ′
1, σ

′
2} with σ′

1 = {zs 7→ nil} and σ′
2 = {zs 7→

cons(x, xs), y 7→ x, ys 7→ xs}. △

Related to definition schemes are call schemes. A call scheme collects the instan-

tiations of f(x∗) that are generated by Expand. Definition schemes and call scheme

together contain roughly the same information as cover sets in the explicit induction

framework [174]. Notice, however, that cover sets are only defined for terms f(x∗)

such that x∗ consists of pairwise distinct variables.

Definition 14.46 (Call Schemes). Let f be LIAC-based, let x∗ consist of variables,

and let 〈l → r, {σ}〉 ∈ DefR(f(x∗)). Then the call scheme of f(x∗) for the rule

l → r and the substitution σ is given by Call(f(x∗), l → r, σ) = {τ | f(x∗)τ =

f(t∗)σ where f(t∗) is a subterm of r}.

Example 14.47. Continuing Example 14.45, Call(len(zs), len(nil) → O, {zs 7→

nil}) = ∅ and Call(len(zs), len(cons(x, xs)) → s(len(xs)), {zs 7→ cons(x, xs)}) = {τ}

with τ = {zs 7→ xs}. △

Now a conjecture that contains defined symbols on both sides needs to satisfy

various conditions. The first five conditions are nearly identical to the simple nested

conjectures from Definition 14.21, but it now needs to be required that both sides of

the conjecture have compatibility sequences. Conditions 5 and 6 are more complex.

First, it is required that the definition schemes of the innermost basic terms on both

sides of the conjecture coincide. The reason for this is that only the left-hand side of

the conjecture is used for computing instantiations using Expand, and it needs to be

ensured that the right-hand side can “handle” these substitutions, i.e., that the right-

hand side can be simplified using rewriting. Finally, it needs to be ensured that either

Theory′1 or Theory′2 can be applied after simplifying the instantiated conjecture. For

231

Chapter 14. Inductive Theorem Proving as a Decision Procedure

this, it has to be ensured that maximal subterms with a defined root symbol satisfy

the no-theory condition since Theorem 14.33 can then be applied.

Definition 14.48 (Complex Conjectures). A complex conjecture is an atomic con-

jecture of the form D[f(x∗)] ≡ E[g(y∗)]JϕK such that the following conditions are

satisfied:

1. R∪ {D[f(x∗)]→ E[g(y∗)]JϕK} is terminating.

2. ϕ = ⊤

3. The terms D[f(x∗)] and E[g(y∗)] have compatibility sequences, f is LIAC-based,

and g is LIAC-good.

4. x∗, y∗ consist of variables.

5. Whenever xi = xj for i < j, then 〈i, j〉 ∈ ImpEq(f).

6. Def (f(x∗)) and Def (g(y∗)) are identical up to variable-renamings if the substi-

tutions are restricted to y∗.

7. For any 〈l → r, {σ}〉 ∈ DefR(f(x∗)), the terms in M(l → r, σ) are pairwise

variable-disjoint and satisfy the no-theory condition. Here, the set M(l → r, σ)

consists of all maximal subterms with a defined root symbol4 of any term in

{E[gj(s
∗
j)]σ

′↓R,Z | 〈g(s∗)→ C[g1(s
∗
1), . . . , gn(s

∗
n)], {σ′}〉 ∈ DefR(g(y∗))

and 1 ≤ j ≤ n where σ′ “corresponds” to σ}

∪ {E[g(y∗)]τ↓R,Z | τ ∈ Call(f(x∗), l→ r, σ)}

Here, the substitution corresponding to σ is the substitution that is identical to

σ up to a variable-renaming if restricted to y∗, cf. condition 6.

Example 14.49. Take the function len from Example 14.36 and add the rules

defining zip from Example 14.16. Furthermore, add the following rules:

4For a term C[t1, . . . , tn] such that C is over Ĉ(R) and root(ti) ∈ Def (R) for all 1 ≤
i ≤ n, these terms are t1, . . . , tn.

232

Chapter 14. Inductive Theorem Proving as a Decision Procedure

plen(pnil) → O

plen(pcons(x, xs)) → s(plen(xs))

Then, the conjecture plen(zip(zs, zs)) ≡ len(zs) is complex. To see this, notice that

plen is compatible with zip, that 〈1, 2〉 ∈ ImpEq(zip), and that the definition schemes

Def (zip(zs, zs)) andDef (len(zs)) are identical if the substitutions are restricted to zs,

recall Example 14.45 Finally, notice that all terms in M(zip(xs, nil) → pnil, σ1) = ∅

and M(zip(cons(x, xs), cons(y, ys)) → pcons(pair(x, y), zip(xs, ys)), σ2) = {len(xs)}

are pairwise variable-disjoint and satisfy the no-theory condition. △

Theorem 14.50. Using the strategy Expand · Simplify∗ · (Theory′1 + Theory′2)
!, it is

decidable whether a complex conjecture is an inductive theorem.

In order to extend complex conjectures from a single LIAC-based function to a

LIAC-based set of functions, the notion a call schemes needs to be extended. Now,

calls from one function to another function are considered. Notice that definition

schemes do not need to be adapted since they only depend on the left-hand sides of

rules.

Definition 14.51 (Call Schemes–Version 2). Let f, g be members of LIAC-based set

of functions, let x∗, y∗ consist of variables, and let 〈l→ r, {σ}〉 ∈ DefR(f(x∗)). Then

the call scheme of f(x∗) to g(y∗) for the rule l → r is given by Call(f(x∗), g(y∗), l→

r, σ) = {τ | g(y∗)τ = g(t∗)σ where g(t∗) is a subterm of r}.

Example 14.52. Take the original definitions of even and odd from Example 14.39.

Then Def (even(z)) = {σ1, σ2}, where σ1 = {z 7→ O} and σ2 = {z 7→ s(x)}. Also,

Call(even(z), odd(z), even(s(x))→ odd(x), σ2) = {τ} with τ = {z 7→ x}. △

Example 14.53. Take the functions stitch and stitch′ from Example 14.24. For

the third stitch-rule, Call(stitch(zs, zs), stitch′(zs, zs), . . . , {zs 7→ cons(x, xs)}) = {τ}

where τ = {zs 7→ xs}. △

233

Chapter 14. Inductive Theorem Proving as a Decision Procedure

Complex conjectures for LIAC-based sets of functions are now the straightforward

extension of Definition 14.48.

Definition 14.54 (Complex Conjectures–Version 2). A complex conjecture is a set

of atomic conjectures {D[f1(x
∗
1)] ≡ E1[g1(y

∗
1)]Jϕ1K, . . . , D[fn(x∗n)] ≡ En[gn(y

∗
n)]JϕnK}

such that the following conditions are satisfied:

1. R ∪ {D[f1(x
∗
1)] → E1[g1(y

∗
1)]Jϕ1K, . . . , D[fn(x∗n)] → En[gn(y∗n)]JϕnK} is termi-

nating.

2. ϕi = ⊤ for all 1 ≤ i ≤ n.

3. The terms D[fi(x
∗
i)] and Ei[gi(y

∗
i)] have compatibility sequences for all 1 ≤ i ≤

n, the set G = {f1, . . . , fn} is LIAC-based, and g1, . . . , gn are LIAC-good.

4. x∗i , y
∗
i consist of variables for all 1 ≤ i ≤ n.

5. Whenever xk,i = xk,j for i < j, there exists an 〈fk, i, j, Γ〉 ∈ ImpEq(G) such

that xk′,i′ = xk′,j′ for all 〈fk′, i′, j′〉 ∈ Γ .

6. Def (fi(x
∗
i)) and Def (gi(y

∗
i)) are identical up to variable-renamings if the sub-

stitutions are restricted to y∗i for all 1 ≤ i ≤ n.

7. For all 1 ≤ i ≤ n and any 〈l → r, {σ}〉 ∈ DefR(fi(x
∗
i)), the terms in Mi(l →

r, σ) are pairwise variable-disjoint and satisfy the no-theory condition. Here,

the set Mi(l → r, σ) consists of all maximal subterms with a defined root symbol

of any term in

{Ei[hj(s
∗
j)]σ

′↓R,Z | 〈gi(s
∗)→ C[h1(s

∗
1), . . . , hm(s∗m)], {σ′}〉 ∈ DefR(gi(y

∗
i))

and 1 ≤ j ≤ m where σ′ “corresponds” to σ}

∪
n⋃

j=1

{Ej [gj(y
∗
j)]τ↓R,Z | τ ∈ Call(fi(x

∗
i), fj(x

∗
j), l→ r, σ)}

Example 14.55. Continuing Example 14.52, add the following rules defining not:

234

Chapter 14. Inductive Theorem Proving as a Decision Procedure

not(true) → false

not(false) → true

Then the conjecture {not(even(z)) ≡ odd(z), not(odd(z)) ≡ even(z)} is complex. For

this, notice in particular that even(z) and odd(z) satisfy the no-theory condition. △

Example 14.56. Continuing Example 14.53, add the rules for len from Example

14.36 and for plen from Example 14.49. Then, the conjecture {plen(stitch(zs, zs)) ≡

len(zs), plen(stitch′(zs, zs)) ≡ len(zs)} is complex. △

Theorem 14.57. Using the strategy Expand∗ · Simplify∗ · (Theory′1 + Theory′2)
!, where

Expand is applied once to each atomic conjecture of the set, it is decidable whether a

complex conjecture is an inductive theorem.

Example 14.58. All of the following conjectures are complex, but neither simple

nor simple nested:

{not(even(x)) ≡ odd(x), not(odd(x)) ≡ even(x)}

min(x, y) ≡ max(x, y)

{plen(stitch(xs, xs)) = len(xs), plen(stitch′(xs, xs)) = len(xs)}

plen(zip(xs, xs)) ≡ len(xs)

According to Theorems 14.50 and 14.57, it can be decided whether these conjectures

are inductive theorems. △

14.5 Implementation

The inductive proof method based on the inference systems I and I ′ has been im-

plemented in the tool Sail2, the successor of Sail [65]. The implementation of the

inference rules is straightforward. In order to check for termination of R∪H in the

235

Chapter 14. Inductive Theorem Proving as a Decision Procedure

side condition of Expand, the implementation of the methods for proving termination

of CERSs developed in this dissertation in the termination tool AProVE is used.

Furthermore, functions for checking whether a conjecture is simple, simple nested,

or complex have been implemented in Sail2. In order to perform these checks as

efficiently as possible, the following information is pre-computed while parsing the

Z-CERS:

1. The set ImpEq(G) is computed for each LIAC-based set of functions G. This re-

quires calls to the external tool CVC3 [24] in order to check for LIAC-satisfiability

and LIAC-validity.

2. Information on the compatibility between function symbols is computed. This

is done using rewriting with the Z-CERS, and in order to ensure that this

rewriting process is terminating it is first checked whether the Z-CERS is ter-

minating.

3. If all rules of the Z-CERS are unconstrained, it is determined which defined

functions satisfy the no-theory condition. This check is done using Theorem

14.35, Theorem 14.40, and Theorem 14.42 and might require further calls to

CVC3.

Notice that definition schemes and call schemes are currently not computed at parse

time. This would be possible, however, by considering all possible patterns of vari-

ables in Definition 14.44 and Definition 14.51.

14.6 Summary

This chapter has identified several classes of conjectures whose inductive validity can

be decided using (an extension of) the inference system I by the canonical strategy

Expand∗ ·Simplify∗ ·(Theory1+Theory2)
!. Decidability of inductive validity is obtained

236

Chapter 14. Inductive Theorem Proving as a Decision Procedure

by restricting the shape of the rewrite rules and requiring certain compatibility prop-

erties of the defined functions.

The classes of decidable conjectures introduced in this chapter are significant

generalizations of the decidable conjectures considered in previous work [111, 80,

82, 104]. First, the rewrite rules that are admitted are less restricted since calls to

auxiliary functions and even mutual recursive definitions are allowed. Additionally,

the decidable conjectures may contain non-linear basic subterms. Finally, the tool

Sail2 provides the first implementation of decidable induction since the methods for

checking whether a conjecture is decidable presented in [111, 80, 82, 104] have not

been implemented. The implementation in Sail2 has been successfully evaluated on a

collection of examples. This evaluation confirms that checking whether the inductive

validity of a conjecture is decidable is indeed much faster than attempting to prove

or disprove it, cf. Chapter 15.

237

Chapter 15

Conclusions and Evaluation

This dissertation has presented an integration of natural numbers or integers and col-

lection data structures such as sets or multisets into the term rewriting framework,

resulting in constrained equational rewrite systems (CERSs). In order to take full ad-

vantage of the pre-defined semantics of natural numbers or integers, the rewrite rules

of a CERS are equipped with constraints from quantifier-free Presburger arithmetic

and the rewrite relation of a CERS utilizes a decision procedure in order to check for

validity of the instantiated constraints. Collection data structures are integrated in

a way that closely corresponds to their intuitive semantics, and this approach results

in a rewrite relation that is often terminating when a naive integration results in a

non-terminating rewrite relation.

The main interest in this dissertation has been the development of methods for

automatically proving termination of CERSs. To this extent, a dependency pair

framework for CERSs has been developed in Chapter 5. Next, several termination

techniques that can be applied within the dependency pair framework have been

developed in Chapters 6–8. Implementation methods for the more complex termina-

tion techniques have been discussed in Chapter 9, and an empirical evaluation shows

238

Chapter 15. Conclusions and Evaluation

that an implementation based on these methods in the termination tool AProVE is

very efficient and powerful (cf. Section 15.1).

The class of CERSs has been extended in two orthogonal ways:

1. Conditional CERSs add the capability of having rewrite rules that are equipped

with conditions in addition to constraints. In contrast to constraints, these

conditions contain user-defined functions, which requires that the truth of the

conditions has to be established by recursively rewriting them.

The inherently recursive nature of conditional rewriting requires a different

notion of terminating, namely operational termination. It has been shown in

Chapter 10 that operational termination of conditional CERSs can be reduced

to termination of unconditional CERSs by a simple syntactic transformation.

Thus, the methods for proving termination of CERSs can also be used for

showing operational termination of conditional CERSs.

2. Using CERSs together with context-sensitive rewrite strategies provides a fine-

grained control over the rewrite relation. This is often necessary in order to

model the semantics of real-life programming languages more closely. For in-

stance, context-sensitive rewriting is directly supported by Maude and makes

it possible to model lazy evaluation as used in Haskell.

Using context-sensitive rewrite strategies makes reasoning about termination

challenging. An adaptation of the method developed for CERSs to the context-

sensitive case has been presented in Chapters 11 and 12.

These two orthogonal extensions can of course be combined as well.

In order to show the usefulness of CERSs in the context of showing partial cor-

rectness, an inductive theorem proving method for CERSs has been investigated

in Chapter 13. This method provides a high degree of automation since it tightly

couples inductive reasoning with a decision procedure.

239

Chapter 15. Conclusions and Evaluation

Inductive reasoning does not provide a decision procedure in general since proof

attempts may fail or diverge. Since guaranteed yes/no answers are needed in many

cases, Chapter 14 has investigated cases where inductive reasoning is a decision

procedure.

15.1 Empirical Evaluation

In order to asses the practical contributions of this dissertation, all methods presented

in Chapters 5–14 have been implemented and evaluated.

15.1.1 Termination Analysis

The termination analysis techniques for CERSs and CS-CERSs as presented in

Chapters 5–12 have been implemented in the termination tool AProVE [84], re-

sulting in AProVE-CERS. In order to assess the power and efficiency of the ap-

proach, the implementation has been tested on a collection of 150 examples (110

non-context-sensitive examples and 40 context-sensitive examples). The detailed

results can be found in Appendices B.1 and B.2. Furthermore, all examples, the

detailed results, and all termination proofs produced by AProVE-CERS are available

at http://www.cs.unm.edu/~spf/tdps/.

The examples were taken from various sources, including the Termination Prob-

lem Data Base [162], and have been suitably adapted to make use of built-in integers

and collection data structures. Several of the examples have been obtained from func-

tional Maude modules [43]. Of the non-context-sensitive examples, a total of 41 were

obtained from imperative programs [44, 45, 145, 36, 37, 49, 50] using the translation

presented in Chapter 4. Nine examples were obtained from conditional CERSs using

the transformation presented in Chapter 10.

240

Chapter 15. Conclusions and Evaluation

With a timeout of 60 seconds for each example, AProVE-CERS succeeds in proving

termination of 140 examples (93.3%), taking an average time of about 2 seconds for

one example. In particular, it succeeds on 36 (87.8%) of the examples obtained from

imperative programs and on all nine examples obtained from conditional CERSs.

Average Time Success Rate

2.15 sec 93.33%

An empirical comparison with AProVE-Integer based on the methods presented

in [75, 143] has been conducted on a subset of 80 examples where the methods of

[75, 143] are applicable (i.e., examples that use neither context-sensitive strategies nor

collection data structures).1 Out of these 80 examples, AProVE-CERS succeeds on 73,

while AProVE-Integer succeeds on 72. There are examples that can only be handled

by AProVE-CERS but not by AProVE-Integer, and vice versa. On examples that can

be handled by both AProVE-CERS and AProVE-Integer, the system AProVE-CERS

that is based on this dissertation is much faster than AProVE-Integer, on average by

a factor of three (in the most extreme case, AProVE-CERS succeeds in 0.1 sec while

AProVE-Integer needs 52.7 sec in order to prove termination).

AProVE-CERS AProVE-Integer

Average Time Success Rate Average Time Success Rate

3.86 sec 91.25% 10.36 sec 90.00%

15.1.2 Inductive Theorem Proving

The inductive theorem proving method based on the inference systems I and I ′

as presented in Chapters 13 and 14 has been implemented in the tool Sail2, the

1Notice, however, that AProVE-Integer is applicable to examples where AProVE-CERS is
not applicable since AProVE-Integer supports multiplication of the built-in integers, whereas
AProVE-CERS is restricted to addition and subtraction.

241

Chapter 15. Conclusions and Evaluation

successor of Sail [65]. Furthermore, functions for checking whether a conjecture is

simple, simple nested, or complex as defined in Chapter 14 have been implemented

in Sail2 as well.

The implementation has been tested on 28 examples of decidable conjectures,

and the time spend for checking whether a conjecture is indeed decidable as well as

the time needed for (dis-)proving it have been recorded. Recall that a proof attempt

requires a call to AProVE-CERS in order to determine whether the Z-CERS together

with the oriented conjectures is terminating. Also recall that a proof attempt requires

calls the external SMT-solver CVC3 in order to check for LIAC-validity and ThZ-

validity. The following table contains average times in milliseconds. The detailed

results can be found in Appendix B.3. Furthermore, all examples, the detailed

results and all proofs produced by Sail2 are available at http://www.cs.unm.edu/

~spf/sail2/.

Checking (Dis-)Proving (Dis-)Proving w/o Time in CVC3 Termination

0.092 msec 14.981 msec 0.180 msec 127.421 msec

Notice that the most time-consuming part is the termination check using AProVE-

CERS. Furthermore, checking whether a conjecture is a member of the class of de-

cidable conjectures is orders of magnitude faster than deciding whether it is an in-

ductive theorem. Notice that most of the time for the proof attempt is spent within

the external tool CVC3. While the total time for the proof attempt can probably

be shortened significantly by implementing a decision procedure for LIAC-validity

and ThZ-validity from scratch since this would eliminates the overhead of calling an

external tool, the remaining parts of the proof attempt still require nearly twice as

much time as checking whether a conjecture is a member of the class of conjectures

whose inductive validity is decidable.

242

Chapter 15. Conclusions and Evaluation

15.2 Future Work

Several ideas on how the techniques and methods presented in this dissertation might

be extended have already been mentioned in Chapters 3–14. These low-level ideas

will not be repeated here. Instead, some high-level ideas and problems requiring

future work will be outlined.

Having built-in integers and collection data structures is very useful for modeling

programs written in Maude or OCaml, recall the examples in Chapter 1. Currently,

the translation from Maude or OCaml into a CERS has to be performed by hand.

While this is relatively straightforward for Maude since Maude is based on the term

rewriting approach, it is more complicated for OCaml. With moderate implementa-

tion effort, an automatic translation should be possible. Indeed, the tool MTT [60]

provides a translation from Maude modules into ordinary TRSs for the purpose of

proving termination. CERSs seem to be a better candidate for this than ordinary

TRSs, however, since CERSs support the equational attributes used in Maude.

Translating imperative programs into CERSs is highly non-trivial. Chapter 4 has

shown how a simple class of imperative programs can be translated into CERSs. The

class of imperative programs considered there could be extended relatively easily by

allowing user-defined functions. Supporting dynamic data structures such as arrays

or pointer-based lists or trees is more challenging. Initial progress has been reported

in [155, 138], where it has been shown that a fragment of Java can be translated into

ordinary TRSs. It should be possible to modify that translation to produce CERSs

that can take advantage of the built-in integers.

The class of CERSs itself could also be extended. Notice that CERSs only sup-

port addition and subtraction of the built-in integers, but not multiplication. This

is in contrast to the recent work in [75], which supports multiplication but does not

support collection data structures and context-sensitive rewrite strategies. In prin-

243

Chapter 15. Conclusions and Evaluation

ciple, CERSs can use integers with multiplication as the built-in theory. But then

the problem of determining validity of constraints becomes undecidable in general,

thus resulting in an undecidable rewrite relation. Notice, however, that the rewrite

relation stays decidable on ground terms since validity of ground constraints can

be determined by evaluating them. This is similar to [75], where the operations on

integers are also restricted to the ground case. Some of the DP processors presented

in this dissertation rely on the assumption that validity of (non-ground) constraints

is decidable. While this is no longer true for integers with multiplication, there are

nonetheless sound but incomplete methods for this which could be used.

With the increased popularity of automatic termination tools, the issue of trust

becomes more and more important. Given a complex termination proof generated

by one of these systems, can it be ensured that the proof is indeed correct? For-

mally verifying correctness of automatic termination tools is currently not possible

due to their immense complexity. A promising approach to increase the trust in

automatic termination tools has gained a lot of attention lately: proof certification.

In proof certification, an automatically generated termination proof is checked for

correctness by an interactive proof assistant for higher-order logic such as Coq [27] or

Isabelle/HOL [135]. This approach is followed by CoLoR [28], A3PAT [47], and CeTA

[163] for ordinary TRSs. Extending one of these systems to support CERSs and the

methods developed in this dissertation is a worthwhile task.

244

Appendix A

Proofs

A.1 Proofs from Chapter 2

Proof of Lemma 2.21. Let C[f(s∗)] ∼E t, i.e., there exist terms t0, . . . , tn with

n ≥ 0 such that C[f(s∗)] = t0 ⊢⊣E t1 ⊢⊣E . . . ⊢⊣E tn = t. The claim is proved by

induction on n. If n = 0 then C[f(s∗)] = t and the claim is obvious.

If n > 0, the inductive assumption implies tn−1 = C ′′[f(s′′∗)] with C ′′ ∼E C and

s′′∗ ∼E s
∗. Since tn−1 ⊢⊣E tn, there exists an equation u ≈ v (or v ≈ u) in E such

that tn−1|p = uσ and tn = tn−1[vσ]p for some position p and some substitution σ.

Let q be the position with tn−1|q = f(s′′∗), i.e., C ′′|q = 2. Now, a case analysis on

the relationship between the positions p and q is performed.

Case 1: p ‖ q. Then, tn = tn−1[vσ]p = (C ′′[f(s′′∗)])[vσ]p = (C ′′[vσ]p)[f(s′′∗)] with

C ′′[vσ]p ∼E C
′′[uσ]p = C ′′.

Case 2: p = q.q′ for some position q′ 6= Λ. Then it is the case that tn = tn−1[vσ]p =

(C ′′[f(s′′∗)])[vσ]q.q′ = C ′′[f(s′′∗)[vσ]q′]. Since q′ 6= Λ, the position q′ can be written

as q′ = i.q′′ for some i ∈ N+ and some position q′′. Then s′j = s′′j if i 6= j and

245

Appendix A. Proofs

s′i = s′′i [vσ]q′′ ∼E s
′′
i [uσ]q′′ = s′′, i.e., s′∗ ∼E s

′′∗.

Case 3: q = p.p′ for some position p′ (possibly p′ = Λ). Since f 6∈ F(E), the position

p′ can be written as p′ = p′1.p
′
2 such that u|p′

1
is a variable x and xσ|p′

2
= f(s′′∗).

Since the equation u ≈ v (or v ≈ u) is i.u.v., there exists a unique position p′′1 in v

such that v|p′′
1

= x. This implies vσ|p′′
1
p′
2

= xσ|p′
2

= f(s′′∗). Define the substitution

σ′ by σ′(y) = σ(y) for y 6= x and σ′(x) = σ(x)[2]p′
2
. Let C ′ = (tn−1[vσ]p)[2]pp′′

1
p′
2

=

tn−1[vσ[2]p′′
1
p′
2
]p = tn−1[vσ

′]p ∼E tn−1[uσ
′]p = C ′′. Thus, tn = tn−1[vσ]p = C ′[f(s′′∗)]

and the claim follows. �

Proof of Lemma 2.22. It suffices to show that ⊢⊣E1
◦ ⊢⊣E2

⊆ ⊢⊣E2
◦ ⊢⊣E1

. Thus,

let s ⊢⊣E1
t ⊢⊣E2

u, i.e., there exist positions p1 ∈ Pos(s) and p2 ∈ Pos(t), equations

u1 ≈ v1 (or v1 ≈ u1) in E1 and u2 ≈ v2 (or v2 ≈ u2) in E2, and substitutions σ1 and

σ2 such that

1. s|p1
= u1σ1 and t = s[v1σ1]p1

, and

2. t|p2
= u2σ2 and u = t[v2σ2]p2

.

s ⊢⊣E2
◦ ⊢⊣E1

u is shown by a case analysis on the relationship between p1 and p2.

Case 1: p1 ‖ p2. In this case s ⊢⊣E2
◦ ⊢⊣E1

u is immediate.

Case 2: p2 = p1.q for some position q (possibly q = Λ). Since v1 does not contain

symbols from E2, there exists a position q1 ∈ Pos(v1) such that v1|q1
= x is a variable

and q = q1.q2 for some position q2. Define the substitution σ′
1 to behave like σ1, with

the exception that σ′
1(x) = σ1(x)[v2σ2]q2

. Then u1σ1 ⊢⊣E2
u1σ

′
1 since E1 is i.u.v. and

thus s|p1
= u1σ1 ⊢⊣E2

u1σ
′
1 ⊢⊣E1

v1σ
′
1 = t|p1

, i.e., s ⊢⊣E2
◦ ⊢⊣E1

t.

Case 3: p1 = p2.q for some position q. Analogous to the previous case. �

Proof of Lemma 2.28. First, an easy induction shows that ∼E commutes over

→∗
E\R, i.e., ∼E ◦ →

∗
E\R ⊆ →

∗
E\R ◦ ∼E . Using this, s →!

E\R ŝ implies t →∗
E\R t′ ∼E ŝ

for some t′ since t ∼E s and s→∗
E\R ŝ. If t′ is reducible by →E\R, then ŝ is reducible

246

Appendix A. Proofs

by→E\R as well since ∼E commutes over→E\R. Therefore, t′ is irreducible by→E\R

since ŝ is irreducible by →E\R. Thus t →!
E\S t

′ and t →!
E\S t̂, and the confluence of

→E\R implies t′ ∼E t̂. Therefore ŝ ∼E t̂. �

Proof of Lemma 2.30. Let s→R/E t, i.e., s ∼E ◦ →R ◦ ∼E t. Since →R ⊆ →E\R,

the strong E-coherence of →E\R implies s→E\R ◦ ∼E t. �

Proof of Lemma 2.31. The proof heavily relies on results from [101, 99]. First,

notice that strong Ei-coherence for i = 1, 2 implies that →Ei\Ri
is coherent modulo

Ei (using the terminology of [101]). Using [101, Theorem 5], →Ei\Ri
is Church-

Rosser modulo Ei.
1 By [99, Theorem 3], Church-Rosser is a modular property, i.e.,

→E1∪E2\R1∪R2
is Church-Rosser modulo E1∪E2. Again by [101, Theorem 5] and since

→E1∪E2\R1∪R2
is terminating by assumption, →E1∪E2\R1∪R2

is E1 ∪ E2-convergent and

coherent modulo E1∪E2. Thus, it remains to be shown that→E1∪E2\R1∪R2
is strongly

E1 ∪ E2-coherent.

For this, it is shown that ⊢⊣E1∪E2
◦ →E1∪E2\R1∪R2

⊆ →E1∪E2\R1∪R2
◦ ⊢⊣=

E1∪E2
. Thus,

let s ⊢⊣E1∪E2
t →E1∪E2\R1∪R2

u, i.e., there exist positions p1 ∈ Pos(s) and p2 ∈ Pos(t),

an equation u1 ≈ v1 (or v1 ≈ u1) in E1∪E2, a rule l2 → t2 ∈ R1∪R2, and substitutions

σ1 and σ2 such that

1. s|p1
= u1σ1 and t = s[v1σ1]p1

, and

2. t|p2
∼E1∪E2

l2σ2 and u = t[r2σ2]p2
.

Perform a case analysis on the relationship between p1 and p2.

Case 1: p1 ‖ p2. In this case s→E1∪E2\R1∪R2
◦ ⊢⊣E1∪E2

u is immediate.

Case 2: p1 = p2.q for some position q 6= Λ. Then s|p2
⊢⊣E1∪E2

t|p2
∼E1∪E2

l2σ2, i.e.,

s→E1∪E2\R1∪R2
u.

Case 3.1: p2 = p1.q for some position q (possibly q = Λ) and s ⊢⊣Ei
t→E1∪E2\R1−i

u.

1I.e., ↔∗
Ri∪Ei

⊆ →Ei\Ri
◦ ∼Ei

◦ ←Ei\Ri
.

247

Appendix A. Proofs

Since E1 ∪ E2 is collapse-free and v1 does not contain symbols from E2 or R2, there

exists a position q1 ∈ Pos(v1) such that v1|q1
= x is a variable and q = q1.q2 for some

position q2. Define the substitution σ′
1 to behave like σ1, with the exception that

σ′
1(x) = σ1(x)[r2σ2]q2

. Then u1σ1 →E1∪E2\R1−i
u1σ

′
1 and thus s|p1

= u1σ1 →E1∪E2\R1−i

u1σ
′
1 ⊢⊣Ei

v1σ
′
1 = t|p1, i.e., s→E1∪E2\R1−i

◦ ⊢⊣Ei
t.

Case 3.2: p2 = p1.q for some position q (possibly q = Λ) and s ⊢⊣Ei
t →E1∪E2\Ri

u.

Then s ⊢⊣Ei
◦

≥p2

∼E1∪E2
t[l2σ2]p2

→Ri
t[r2σ2]p2

= u.2 Using Lemma 2.22, s ⊢⊣Ei
◦

≥p2

∼E1−i

◦
≥p2

∼Ei
t[l2σ2]p2

→Ri
t[r2σ2]p2

, i.e., s ⊢⊣Ei
◦

≥p2

∼E1−i
◦ →Ei\Ri

u. Applying Lemma

2.22 again yields s ∼E1−i
◦ ∼Ei

◦ →Ei\Ri
u. Now the strong Ei-coherence of →Ei\Ri

implies s ∼E1−i
◦ →Ei\Ri

◦ ∼Ei
u and thus s ∼E1−i

◦ →E1∪E2\Ri
◦ ∼E1∪E2

u. Using

induction on the number of ⊢⊣E1−i
-steps in ∼E1−i

and cases 1, 2 and 3.1 then implies

s→E1∪E2\Ri
◦ ∼E1∪E2

u. �

A.2 Proofs from Chapter 3

Proof of Lemma 3.20.

1. Since E is size-preserving, the E-equivalence classes are finite. Furthermore,

the E-equivalence class of a given term s can be effectively computed using the

equations. In order to decide whether s ∼E t holds true it then suffices to check

whether t is in the E-equivalence class of s.

2. It needs to be decided whether there exist a rewrite rule l → r ∈ S, a position

p ∈ Pos(s), and a substitution σ such that s|p ∼E lσ. Since S and Pos(s)

are finite, it suffices to consider a single rule and a single position, without

loss of generality consider p = Λ. Thus, it needs to be decided whether there

2Here, the superscript ≥ p2 in
≥p2
∼E1∪E2

denotes that equations are only applied at posi-
tions below p2.

248

Appendix A. Proofs

exists a substitution σ such that s ∼E lσ. In order to check this, it suffices to

check whether there exists a term s′ in the E-equivalence class of s such that

s′ = lσ for some substitution σ. But this is just syntactic matching, which is

well-known to be decidable. Once such a substitution σ has been found it is

easily possible to compute a term t with s→E\S t.

3. It needs to decided whether there exist a constrained rewrite rule l → rJϕK ∈ R,

a position p ∈ Pos(s), and a Th-based substitution σ such that s|p
>Λ
−→E\S−→! ◦

>Λ
∼E

lσ and ϕσ is Th-valid. Since R and Pos(s) are finite, it suffices to consider

a single rule and a single position, without loss of generality consider p =

Λ. Thus, it needs to decided whether there exists a substitution σ such that

s
>Λ
−→E\S−→! ◦

>Λ
∼E lσ. First, notice that a term s′ with s

>Λ
−→E\S−→! s′ can be computed

by Lemma 3.20.2. It then suffices to check whether there exists a term s′′ in

the E-equivalence class of s′ such that s′′ = lσ and ϕσ is Th-valid for some

Th-based substitution σ. Candidate substitutions σ can be computed using

syntactic matching, and it is easy to check whether such a substitution σ is

Th-based. Th-validity of ϕσ can then be decided due to the assumption on Th .

Once such a substitution σ has been found it is easily possible to compute a

term t with s
S
→Th‖E\R t. �

Proof of Lemma 3.26.

1. Let s′ ∼E s
S,Q
−→Th‖E\R t. This means that s = C[f(u∗)] for some context C with

f(u∗)
>Λ
−→E\S−→! ◦

>Λ
∼E lσ for some constrained rewrite rule l → rJϕK ∈ R and some

Th-based substitution σ such that ϕσ is Th-valid, all proper subterms of f(u∗)

are irreducible by
S
→Th‖E\Q, and t = C[rσ]. Since s ∼E s

′ and all equations in

E are i.u.v. and do not contain symbols from D(R), an application of Lemma

2.21 implies s′ = C ′[f(u′∗)] for some context C ′ with C ′ ∼E C and u′∗ ∼E u
∗.

Therefore, f(u′∗)
>Λ
−→E\S−→! ◦

>Λ
∼E lσ by Lemma 2.28 and σ can be used to rewrite

s′ = C ′[f(u′∗)] to t′ = C ′[rσ] ∼E C[rσ] = t.

249

Appendix A. Proofs

2. Let s →E\S t
S,Q
−→Th‖E\R u, i.e., there exist positions p1 ∈ Pos(s) and p2 ∈

Pos(t), rules l1 → r1 ∈ S and l2 → r2Jϕ2K ∈ R, a substitution σ1, and a

Th-based substitution σ2 such that

(a) s|p1
∼E l1σ1 and t = s[r1σ1]p1

, and

(b) t|p2

>Λ
−→E\S−→! ◦

>Λ
∼E l2σ2, the instantiated Th-constraint ϕ2σ2 is Th-valid, all

proper subterms of lσ2 are irreducible by
S
→Th‖E\Q, and u = t[r2σ2]p2

.

Next, a case analysis on the relationship between p1 and p2 is performed.

Case 1: p1 ‖ p2. In this case s
S,Q
−→Th‖E\R ◦ →E\S u is immediate.

Case 2: p1 = p2.q for some position q 6= Λ. In this case s|p2
= f(s∗),

t|p2
= f(t∗), and s∗ →E\S t∗. Therefore, f(s∗)

>Λ
−→E\S−→! ◦

>Λ
∼E l2σ2 since →E\S

is E-convergent and f(t∗)
>Λ
−→E\S−→! ◦

>Λ
∼E l2σ2. Thus, s

S,Q
−→Th‖E\R s[r2σ2]p2

=

t[r2σ2]p2
= u.

Case 3: p2 = p1.q for some position q, possibly q = Λ. Since r1 does not contain

symbols from D(R), there exists a position q1 ∈ Pos(r1) such that r1|q1
= x is a

variable and q = q1.q2 for some position q2. Define the substitution σ′
1 to behave

like σ1, with the exception that σ′
1(x) = σ1(x)[r2σ2]q2

. Then l1σ1
S,Q
−→Th‖E\R−→+ l1σ

′
1

and thus s|p1

S,Q
−→Th‖E\R−→+ ◦ ∼E l1σ

′
1 by Lemma 3.26.1 since s|p1

∼E l1σ1. Thus,

s|p1

S,Q
−→Th‖E\R−→+ ◦ →E\S r1σ

′. Since r1 is linear, s[r1σ
′
1]p1

= t[r1σ
′
1]p1

= u and thus

s
S,Q
−→Th‖E\R−→+ ◦ →E\S u. �

Proof of Corollary 3.27.

1. Assume that s starts an infinite
S,Q
−→Th‖E\R-reduction

s
S,Q
−→Th‖E\R s1

S,Q
−→Th‖E\R s2

S,Q
−→Th‖E\R s3

S,Q
−→Th‖E\R . . .

Using Lemma 3.26.1 this implies

t
S,Q
−→Th‖E\R t1

S,Q
−→Th‖E\R t2

S,Q
−→Th‖E\R t3

S,Q
−→Th‖E\R . . .

250

Appendix A. Proofs

where si ∼E ti, i.e., t starts an infinite
S,Q
−→Th‖E\R-reduction as well. The other

direction is shown the same way.

2. Let s →E\S t and assume that t starts an infinite
S,Q
−→Th‖E\R-reduction. Us-

ing →E\S ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R−→+ ◦ →=

E\S from Lemma 3.26.2 repeatedly

produces an infinite
S,Q
−→Th‖E\R-reduction starting with s. �

A.3 Proofs from Chapter 4

Proof sketch of Theorem 4.3. That the translation produces a CERS is im-

mediate by inspection. For the second statement, consider the control flow graph

associated with P , where each control point produces a node in the control flow

graph. As in [145], the edges in the control flow graph are labeled by the parallel

assignment executed during that transition in the program and by the condition

obtained from the while-loop, if-, or assume-statement (if applicable). A typical

transition thus has the following form:

ith control point jth control point
ϕ

(x1,...,xn) := (en,...,en)

It now suffices to notice that the translation produces the rewrite rule

evali(x1, . . . , xn)→ evalj(e1, . . . , en)JϕK

corresponding to this transition. �

A.4 Proofs from Chapter 5

Proof of Theorem 5.6. Let (Q,R,S, E) be an RCERS.

251

Appendix A. Proofs

“⇒”: Assume that there exists a term t which starts an infinite
S,Q
−→Th‖E\R-reduction.

Then t contains a subterm f1(u
∗
1) where f1(u

∗
1) starts an infinite

S,Q
−→Th‖E\R-

reduction, but none of the terms in u∗1 starts an infinite
S,Q
−→Th‖E\R-reduction.

Consider an infinite
S,Q
−→Th‖E\R-reduction starting with f1(u

∗
1). First, the ar-

guments u∗1 are reduced with
S,Q
−→Th‖E\R to terms v∗1, and then a rewrite rule

is applied to f1(v
∗
1) at the root position, i.e., there exist a rule l1 → r1Jϕ1K

in R and a Th-based substitution σ1 such that f1(v
∗
1)

>Λ
−→E\S−→! f1(v̂

∗
1)

>Λ
∼E l1σ1,

the instantiated constraint ϕ1σ is Th-valid, and all proper subterms of l1σ1

are irreducible by
S
→Th‖E\Q. The reduction then yields r1σ1 and the infinite

S,Q
−→Th‖E\R-reduction continues with r1σ1, i.e., the term r1σ1 starts an infinite
S,Q
−→Th‖E\R-reduction as well. So far the reduction of f1(u

∗
1) has the following

form:

f1(u
∗
1)

S,Q
−→Th‖E\R−→∗ f1(v

∗
1)

>Λ
−→E\S−→! f1(v̂

∗
1)

>Λ
∼E l1σ1 →R r1σ1

Here, the
S,Q
−→Th‖E\R-steps in f1(u

∗
1)

S,Q
−→Th‖E\R−→∗ f1(v

∗
1) are applied strictly below

the root position. By the definition of
>Λ
∼E , l1 = f1(w

∗
1) and v̂∗1 ∼E w

∗
1σ1, where

the terms in w∗
1σ1 are irreducible by

S
→Th‖E\Q. Furthermore, the terms in w∗

1σ1

do not start infinite
S,Q
−→Th‖E\R-reductions by Corollary 3.27 since the terms in

v∗1 do not start infinite
S,Q
−→Th‖E\R-reductions.

Hence, for all variables x occurring in f1(w
∗
1), the term xσ1 does not start an

infinite
S,Q
−→Th‖E\R-reduction. Since r1σ1 starts an infinite

S,Q
−→Th‖E\R-reduction,

there is a subterm f2(u
∗
2) in r1 such that f2(u

∗
2)σ1 starts an infinite

S,Q
−→Th‖E\R-

reduction, whereas the terms in u∗2σ1 do not start infinite
S,Q
−→Th‖E\R-reductions.

The first dependency pair in the infinite (DP(R),Q,R,S, E)-chain that is

going to be constructed is f ♯
1(w

∗
1) → f ♯

2(u
∗
2)Jϕ1K, obtained from the rewrite

rule l1 → r1Jϕ1K. The remaining dependency pairs of the infinite (DP(R),Q,

R,S, E)-chain are determined the same way: let f ♯
i−1(w

∗
i−1)→ f ♯

i (u
∗
i)Jϕi−1K be

a dependency pair such that fi(u
∗
i)σi−1 starts an infinite

S,Q
−→Th‖E\R-reduction

252

Appendix A. Proofs

but the terms in u∗iσi−1 do not start infinite
S,Q
−→Th‖E\R-reductions. Again,

u∗iσi−1 is first reduce using
S,Q
−→Th‖E\R to obtain v∗i , and then a rewrite rule

fi(w
∗
i) → riJϕiK is applied to f(v∗i) at the root position where riσi starts an

infinite
S,Q
−→Th‖E\R-reduction for a Th-based substitution σi with v̂∗i ∼E w

∗
i σi.

As above, ri contains a subterm fi+1(u
∗
i+1) such that fi+1(u

∗
i+1)σi starts an

infinite
S,Q
−→Th‖E\R-reduction, whereas the terms in u∗i+1σi do not start infi-

nite
S,Q
−→Th‖E\R-reductions. This produces the ith dependency pair f ♯

i (w
∗
i) →

f ♯
i+1(u

∗
i+1)JϕiK. In this way, the infinite sequence

f ♯
1(w

∗
1)→ f ♯

2(u
∗
2)Jϕ1K, f

♯
2(w

∗
2)→ f ♯

3(u
∗
3)Jϕ2K, f

♯
3(w

∗
3)→ f ♯

4(u
∗
4)Jϕ3K, . . .

is obtained and it remains to be shown that it is a minimal (DP(R),Q,R,S, E)-

chain. For this, notice that f ♯
i+1(u

∗
i+1)σi

S,Q
−→Th‖E\R−→∗ f ♯

i+1(v
∗
i+1)

>Λ
−→E\S−→! f ♯

i+1(v̂
∗
i+1)

>Λ
∼E f

♯
i+1(w

∗
i+1)σi+1 and ϕiσi is Th-valid for all i ≥ 1. Furthermore, f ♯

i (w
∗
i)σi is

irreducible by
S
→Th‖E\Q and

>Λ
−→E\S . Since it is assumed that different (occur-

rences of) dependency pairs are variable-disjoint, it is possible to obtain a single

Th-based substitution σ = σ1∪σ2∪. . . with f ♯
i+1(u

∗
i+1)σ

S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E

f ♯
i+1(w

∗
i+1)σ such that ϕiσ is Th-valid and f ♯

i (w
∗
i)σ is irreducible by

S
→Th‖E\Q

and
>Λ
−→E\S for all i ≥ 1. The chain is minimal by construction.

“⇐”: Assume that there exists an infinite minimal (DP(R),Q,R,S, E)-chain

f ♯
1(w

∗
1)→ f ♯

2(u
∗
2)Jϕ1K, f

♯
2(w

∗
2)→ f ♯

3(u
∗
3)Jϕ2K, . . .

Hence, there is a Th-based substitution σ such that

f ♯
2(u

∗
2)σ

S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E f

♯
2(w

∗
2)σ

f ♯
3(u

∗
2)σ

S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E f

♯
3(w

∗
3)σ

...

where f ♯
i (w

∗
i)σ is irreducible by

S
→Th‖E\Q and ϕiσ is Th-valid for all i ≥ 1.

253

Appendix A. Proofs

Notice that every dependency pair f ♯
i (w

∗
i) → f ♯

i+1(ui+1)JϕiK corresponds to a

rule fi(w
∗
i) → Ci[fi+1(u

∗
i+1)]JϕiK ∈ R for some context Ci. Therefore, the

infinite
S,Q
−→Th‖E\R-reduction

f1(w
∗
1)σ

S,Q
−→Th‖E\R C1[f2(u

∗
2)]σ

S,Q
−→Th‖E\R−→∗ ◦ →∗

E\S ◦ ∼E C1[f2(w
∗
2)]σ

S,Q
−→Th‖E\R C1[C2[f3(u

∗
3)]]σ

...

is obtained and
S,Q
−→Th‖E\R is thus not terminating. �

A.5 Proofs from Chapter 6

Proof of Theorem 6.1. Let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be an infinite mini-

mal (P,Q,R,S, E)-chain. Thus, there exists a Th-based substitution σ such that

ϕ1σ, ϕ2σ, . . . are Th-valid. In particular, ϕ1, ϕ2, . . . are Th-satisfiable and the depen-

dency pairs in the chain thus cannot be from P ′.

Similarly, a reduction siσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E ti+1σ can only use rules l →

rJϕK for which ϕ is Th-satisfiable, i.e., rules from R′ cannot be applied.

Finally, a term is irreducible by
S
→Th‖E\Q iff it is irreducible by

S
→Th‖E\Q−Q′. Thus,

there also exists an infinite minimal (P − P ′,Q−Q′,R−R′,S, E)-chain. �

Proof of Theorem 6.3. Let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be an infinite minimal

(P,Q,R,S, E)-chain using the Th-based substitution σ. First, assume that the infi-

nite minimal chain contains a dependency pair s→ tJϕK from P ′. Since s is reducible

by
>Λ
−→E\S , there exists a rule l → r ∈ S such that s|p ∼E lτ for some non-root posi-

tion p ∈ Pos(s) and some substitution τ . Because sσ|p = s|pσ ∼E lτσ, the term sσ

is reducible by
>Λ
−→E\S , contradicting Definition 5.3.

254

Appendix A. Proofs

Similarly, assume that some reduction siσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E ti+1σ uses a

rule l → rJϕK from R′, i.e., let u
S,Q
−→Th‖E\R v for some terms u, v using the rule

l → rJϕK. Therefore, u|p
>Λ
−→E\S−→! ◦

>Λ
∼E lτ for some non-root position p ∈ Pos(u) and

some Th-based substitution τ . Since →E\S is strongly E-coherent by Definition 3.12,

this means that lτ is irreducible by
>Λ
−→E\S . Now, since l is reducible by

>Λ
−→E\S , there

exists a rule l′ → r′ ∈ S such that l|p′ ∼E l
′µ for some non-root position p′ ∈ Pos(l)

and some substitution µ. Since lτ |p′ = l|p′τ ∼E l′µτ , the term lτ is reducible by
>Λ
−→E\S , contradicting the fact that lτ is irreducible by

>Λ
−→E\S .

Finally, a term is irreducible by
S
→Th‖E\Q iff it is irreducible by

S
→Th‖E\Q−Q′. Thus,

there also exists an infinite minimal (P − P ′,Q−Q′,R−R′,S, E)-chain. �

Proof of Theorem 6.7. After a finite number of dependency pairs in the begin-

ning, any infinite minimal (P,Q,R,S, E)-chain only contains pairs from some SCC.

Hence, every infinite minimal (P,Q,R,S, E)-chain gives rise to an infinite minimal

(Pi,Q,R,S, E)-chain for some 1 ≤ i ≤ n. �

Proof of Theorem 6.11. It needs to be shown that there exists a substitution µ

that is Th-based for V(s1)∪V(s2) such that cap(t1)µ
>Λ
−→E\S−→! ◦

>Λ
∼E s2µ, the constraints

ϕ1µ and ϕ2µ are Th-valid, and s1µ and s2µ are irreducible by
S
→Th‖E\Q and

>Λ
−→E\S

whenever s1 → t1Jϕ1K, s2 → t2Jϕ2K is a (P,Q,R,S, E)-chain, i.e.,

(†)

t1σ
S,Q
−→Th‖E\R−→∗ u

>Λ
−→E\S−→! ◦

>Λ
∼E s2σ for a Th-based substitution σ such that

ϕ1σ and ϕ2σ are Th-valid and s1σ and s2σ are irreducible by
S
→Th‖E\Q and

>Λ
−→E\S implies cap(t1)µ

>Λ
−→E\S−→! ◦

>Λ
∼E s2µ for some substitution µ that is

Th-based for V(s1)∪V(s2) such that ϕ1µ and ϕ2µ are Th-valid and s1µ and

s2µ are irreducible by
S
→Th‖E\Q and

>Λ
−→E\S .

In order to show (†), it is first shown that for all terms t and all substitutions µ that

are Th-based for V(t) and where µ(x) is irreducible by
S
→Th‖E\Q for all x ∈ V(t),

255

Appendix A. Proofs

(‡)

cap(t)µ
S,Q
−→Th‖E\R u implies that there exists a substitution τ that is Th-

based for V(t) such that u = cap(t)τ , where µ and τ differ at most for the

fresh variables introduced by cap(t).

The property (‡) is shown by induction on t. If cap(t) ∈ V, then it is a fresh variable

y of sort univ since µ is Th-based for V(t) and µ(x) is irreducible by
S
→Th‖E\Q for all

x ∈ V(t). Then, letting τ = {y 7→ u} establishes (‡).

Otherwise, t = f(t1, . . . , tn), cap(t) = f(cap(t1), . . . ,cap(tn)), and there is no

rule l → rJϕK ∈ R such that f(cap(t1), . . . ,cap(tn))ϑ
>Λ
−→E\S−→! ◦

>Λ
∼E lϑ for a substi-

tution ϑ that is Th-based for V(f(t1, . . . , tn))∪V(l) such that ϕϑ is Th-valid and all

proper subterms of lϑ are irreducible by
S
→Th‖E\Q. First, it is shown that the reduc-

tion f(cap(t1), . . . ,cap(tn))µ
S,Q
−→Th‖E\R u cannot take place at the root position. If

the reduction takes place at the root position, then there exist a rule l → rJϕK ∈ R

and a Th-based substitution ρ such that f(cap(t1), . . . ,cap(tn))µ
>Λ
−→E\S−→! ◦

>Λ
∼E lρ,

the instantiated constraint ϕρ is Th-valid, and all proper subterms of lρ are ir-

reducible by
S
→Th‖E\Q. Since it can be assumed that l is variable-disjoint from

f(cap(t1), . . . ,cap(tn)), define the substitution ϑ = µ ∪ ρ which is Th-based for

V(f(t1, . . . , tn))∪V(l). Since the instantiated constraint ϕϑ is Th-valid and all proper

subterms of lϑ are irreducible by
S
→Th‖E\Q this is a contradiction to the assumption.

Hence, the
S,Q
−→Th‖E\R-step does not take place at the root position, i.e., there exists

an 1 ≤ i ≤ n with cap(ti)µ
S,Q
−→Th‖E\R ui and u = f(cap(t1)µ, . . . , ui, . . . ,cap(tn)µ).

By the inductive assumption, this yields a substitution δ that is Th-based for V(ti)

such that ui = cap(ti)δ. Since the fresh variables introduced by cap(ti) are disjoint

from the fresh variables introduced by cap(tj) for 1 ≤ j 6= i ≤ n and since µ and δ

differ at most for the fresh variables introduced by cap(ti), define the substitution

τ with τ(x) = δ(x) if x is a fresh variable introduced by cap(ti) and τ(x) = µ(x)

otherwise. Then τ is Th-based for V(t) and

u = f(cap(t1)µ, . . . ,cap(ti)δ, . . . ,cap(tn)µ)

256

Appendix A. Proofs

= f(cap(t1)τ, . . . ,cap(ti)τ, . . . ,cap(tn)τ)

= cap(t)τ

By (‡) and an induction on the number of
S,Q
−→Th‖E\R-steps, cap(t)µ

S,Q
−→Th‖E\R−→∗ u for a

substitution µ that is Th-based for V(t) implies u = cap(t)δ for some substitution δ

that is Th-based for V(t) such that µ and δ differ at most for the fresh variables intro-

duced by cap(t). Since t1 = cap(t1)σ
′ for some substitution σ′ that only instantiates

fresh variables introduced by cap(t), in particular t1σ = cap(t1)σ
′σ

S,Q
−→Th‖E\R−→∗ u im-

plies u = cap(t1)δ for some substitution δ that is Th-based for V(t1) such that σ′σ

and δ differ at most for the fresh variables introduced by cap(t1). Thus cap(t1)δ =

u
>Λ
−→E\S−→! ◦

>Λ
∼E s2σ since u

>Λ
−→E\S−→! ◦

>Λ
∼E s2σ. Now define µ by µ(x) = δ(x) if x is

a fresh variable introduced by cap(t1) and µ(x) = σ(x) otherwise. Notice that µ

is Th-based for V(s1) ∪ V(s2). Then cap(t1)µ = u
>Λ
−→E\S−→! ◦

>Λ
∼E s2σ = s2µ. Since

s1µ = s1σ and s2µ = s2σ, the terms s1µ and s2µ are irreducible by
S
→Th‖E\Q and

>Λ
−→E\S by Definition 5.3. Also, ϕ1µ = ϕ1σ and ϕ2µ = ϕ2σ are Th-valid. �

Proof of Theorem 6.12. In the second case soundness is obvious. Otherwise,

assume that there is an infinite minimal (P,Q,R,S, E)-chain s1 → t1Jϕ1K, s2 →

t2Jϕ2K, . . . using the Th-based substitution σ. It needs to be shown that every oc-

currence of (a variable renamed version of) s → tJϕK in this chain can be replaced

by s→ t′JϕK. Thus, let tσ
S,Q
−→Th‖E\R−→∗ u

>Λ
−→E\S−→! v

>Λ
∼E siσ for some i > 1.

First, consider the case where no
S,Q
−→Th‖E\R-step takes place above the position

p considered in Theorem 6.12. Then t|pσ = cap(t|p)τσ
S,Q
−→Th‖E\R−→∗ u|p. From (‡) in

the proof of Theorem 6.11, u|p = cap(t|p)µ for some substitution µ that is Th-based

for V(t|p), i.e., the reductions take place in τσ. Let cap(t|p) →E\S t̂, i.e., there is

a rule l → r ∈ S, a position q ∈ Pos(cap(t|p)), and a substitution ρ such that

cap(t|p)|q ∼E lρ and t̂ = t|p[rρ]q. Then u|pq = u|p|q = cap(t|p)µ|q = cap(t|p)|qµ ∼E

lρµ, i.e., u|p = cap(t|p)µ →E\S t̂µ. Thus, u[t̂µ]p
>Λ
−→E\S−→! ◦

>Λ
∼E v since →E\S is E-

257

Appendix A. Proofs

convergent. Hence, t′σ = t[t̂τ]pσ = tσ[t̂τσ]p
S,Q
−→Th‖E\R−→∗ u[t̂µ]p

>Λ
−→E\S−→! ◦

>Λ
∼E siσ and

s→ tJϕK in the above chain can be replaced by s→ t′JϕK.

If an
S,Q
−→Th‖E\R-step takes place above the position p, then the proof is similar

but the rule l → rJϕK from R that is used in the first reduction occurring above p

takes the place of the next dependency pair si → tiJϕiK. �

Proof of Theorem 6.15. In the second case soundness if obvious. Otherwise, it

needs to be shown that every occurrence of (a variable renamed version of) s →

tJϕK and the dependency pair following it in an infinite chain can be replaced by

some dependency pair from P ′. Thus, assume some infinite chain contains . . . , s→

tJϕK, s′ → t′Jϕ′K, v → wJψK,

Let the infinite chain use the substitution σ, i.e., tσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E s

′σ,

t′σ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E vσ, and ϕσ and ϕ′σ are Th-valid. Since σ is Th-based,

the condition on t implies tσ
>Λ
−→E\S−→! ◦

>Λ
∼E s′σ, where furthermore only rules from

Sbase = {l → r ∈ S | sort(l) = base} and equations from Ebase = {u ≈ v ∈

E | sort(u) = base} are used. Since s′τ = t, this implies s′τσ
>Λ
−→E\S−→! ◦

>Λ
∼E s

′σ, and

the condition on s′ implies that all reductions take place within the substitution,

i.e., xτσ →!
E\S ◦ ∼E xσ for all variables x ∈ V(s′). But then t′τσ

>Λ
−→E\S−→∗ ◦ ∼E t

′σ

as well and therefore t′τσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E vσ by Lemmas 3.26 and 2.28.

Furthermore, ϕ′τσ is still Th-valid since application of rules from Sbase and equations

from Ebase does not influence Th-validity. �

Proof of Theorem 6.17. In the second case soundness is obvious. Otherwise,

it needs to be shown that every infinite minimal (P,Q,R,S, E)-chain can be con-

verted into an infinite minimal (π(P),Q,R,S, E)-chain. Thus, assume that s1 →

t1Jϕ1K, s2 → t2Jϕ2K, . . . is an infinite minimal (P,Q,R,S, E)-chain using the ThZ-

based substitution σ, i.e, tiσ
S,Q
−→ThZ‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ and ϕiσ is ThZ-valid for

all i ≥ 1. Then π(tiσ)
S,Q
−→ThZ‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E π(si+1σ) since all reductions take

258

Appendix A. Proofs

place below the root. The minimality of the (π(P),Q,R,S, E)-chain obtained this

way immediately follows from the minimality of the initial (P,Q,R,S, E)-chain. �

Proof of Lemma 6.23. Let (Q,R,S, E) be an RCERS such that E is size-

preserving.

1. Since E is size-preserving, the E-equivalence classes are finite. Furthermore,

the E-equivalence class of a given term s can be effectively computed using

the equations. In order to decide whether s �E t it then suffices to check

whether there exist a term s′ in the E-equivalence class of s and a term t′ in

the E-equivalence class of t such that s′ � t′. For this, recall that the syntactic

subterm relation is easily decidable. s�E t is decided in the same way.

2. Well-foundedness of �E is immediate once it has been shown that s�E t implies

|s| > |t|. Thus, let s�E t, i.e., s ∼E s
′ � t′ ∼E t for some terms s′, t′.

First, it is shown that s ∼E s′ implies |s| = |s′|. For this, an induction on

n in s ⊢⊣n
E s

′ is performed. If n = 0, then the claim is obvious. Otherwise,

s ⊢⊣n−1
E s′′ ⊢⊣E s

′, and the inductive assumption implies |s| = |s′′|. Now s′′ ⊢⊣E s
′

implies that there exists an equation u ≈ v (or v ≈ u) in E such that s′′ = C[uσ]

and s′ = C[vσ] for some context C and some substitution σ and it thus suffices

to show |uσ| = |vσ|. But |uσ| = |vσ| is an immediate consequence of the

assumption that the equation u ≈ v (or v ≈ u) is size-preserving and i.u.v.

Now |s| > |t| is easily obtained since s′ � t′ implies |s′| > |t′|.

3. For �E , let s �E t, i.e., s ∼E s′ � t′ ∼E t for some terms s′, t′. Then sσ ∼E

s′σ� t′σ ∼E tσ since both ∼E and � are stable, i.e., sσ�E tσ. Now stability of

�E is obvious since both �E and ∼E are stable.

4. Let s�E t, i.e., s ∼E ◦�◦ ∼E t, and let s′ ∼E s and t′ ∼E t. Thus, s′ ∼E ◦�◦ ∼E

t′, i.e., s′ �E t
′. Since �E = �E ∪ ∼E the claim for �E is now immediate. �

Proof of Theorem 6.24. In the second case soundness is obvious. Otherwise,

259

Appendix A. Proofs

it needs to be shown that every infinite minimal (P,Q,R,S, E)-chains contains

only finitely many dependency pairs from P ′. Thus, consider an infinite minimal

(P,Q,R,S, E)-chain s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . using the Th-based substitution

σ and apply the simple projection π to it.

Consider the instantiation siσ → tiσJϕiσK of the ith dependency pair in this

chain. Clearly, π(siσ) = π(si)σ and π(tiσ) = π(ti)σ. Since π(si)�E π(ti) by assump-

tion, π(siσ) �E π(tiσ) by Lemma 6.23.3. The sequence tiσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E

si+iσ gives rise to the (possibly shorter) sequence π(tiσ)
S,Q
−→Th‖E\R−→∗ ◦ →∗

E\S ◦ ∼E

π(si+iσ) since all steps take place below the root. Thus, tiσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E

si+1σ →DP(R) ti+1σ gives rise to π(tiσ)
S,Q
−→Th‖E\R−→∗ ◦ →∗

E\S∼E π(si+1σ) �E π(ti+1σ).

Hence, the infinite minimal (P,Q,R,S, E)-chain gives rise to an infinite
S,Q
−→Th‖E\R

∪ →E\S ∪�E ∪ ∼E-sequence starting with π(t1σ). Now perform a case analysis.

Case 1: The infinite sequence contains only finitely many
S,Q
−→Th‖E\R-steps and only

finitely many →E\S-steps. Then, there exists an infinite �E ∪ ∼E-sequence. This

sequence cannot contain infinitely many �E -steps stemming from dependency pairs

in P ′ since otherwise Lemma 6.23.4 yields an infinite �E-sequence, contradicting the

well-foundedness of �E (Lemma 6.23.2).

Case 2: The infinite sequence contains only finitely many
S,Q
−→Th‖E\R-steps but in-

finitely many →E\S-steps. Recall the inclusion ∼E ◦ →E\S ⊆ →E\S ◦ ∼E that follows

from the strong E-coherence of →E\S (Definition 3.12). Using this and the easily

seen inclusion � ◦ →E\S ⊆ →E\S ◦ �, it is furthermore straightforward to show that

�E ◦ →E\S = ∼E ◦� ◦ ∼E ◦ →E\S

⊆ ∼E ◦� ◦ →E\S ◦ ∼E

⊆ ∼E ◦ →E\S ◦� ◦ ∼E

⊆ →E\S ◦ ∼E ◦� ◦ ∼E

= →E\S ◦ �E

260

Appendix A. Proofs

By making repeated use of these inclusions, an infinite →E\S-sequence is obtained,

contradicting the assumption that →E\S is terminating.

Case 3: The infinite sequence contains infinitely many
S,Q
−→Th‖E\R-steps. Recall

Lemma 3.26 and the inclusions ∼E ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R ◦ ∼E and →E\S

◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R−→+ ◦ →=

E\S . Using the first of these inclusions and the eas-

ily seen inclusion � ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R ◦ �, it is furthermore straightforward

to show that

�E ◦
S,Q
−→Th‖E\R = ∼E ◦� ◦ ∼E ◦

S,Q
−→Th‖E\R

⊆ ∼E ◦� ◦
S,Q
−→Th‖E\R ◦ ∼E

⊆ ∼E ◦
S,Q
−→Th‖E\R ◦� ◦ ∼E

⊆
S,Q
−→Th‖E\R ◦ ∼E ◦� ◦ ∼E

=
S,Q
−→Th‖E\R ◦ �E

By making repeated use of these inclusions, an infinite
S,Q
−→Th‖E\R-sequence starting

with the term π(t1σ) is obtained. But this contradicts the minimality of the infinite

(P,Q,R,S, E)-chain since this implies that t1σ also starts an infinite
S,Q
−→Th‖E\R

reduction. �

A.6 Proofs from Chapter 7

Proof of Theorem 7.6. It needs to be shown that &Pol is reflexive, transitive,

monotonic, and stable. Furthermore, it needs to be shown that ≻Pol is well-founded

and stable and that ≻Pol is compatible with &Pol .

&Pol is reflexive: [sσ]Pol ≥ [sσ]Pol is obvious for any ground substitution σ.

&Pol is transitive: Let s &Pol t &Pol u and let σ be a ground substitution. Then

[sσ]Pol ≥ [tσ]Pol ≥ [uσ]Pol by the assumption, and the transitivity of ≥ on N implies

261

Appendix A. Proofs

[sσ]Pol ≥ [uσ]Pol . Since this applies for all ground substitutions, s &Pol u.

&Pol is monotonic: Let s &Pol t and let s1, . . . , si−1, si+1, . . . , sn be terms. Then

[f(s1, . . . , si−1, s, si+1, . . . , sn)σ]Pol

= Pol(f)([s1σ]Pol , . . . , [si−1σ]Pol , [sσ]Pol , [si+1σ]Pol , . . . , [snσ]Pol)

and

[f(s1, . . . , si−1, t, si+1, . . . , sn)σ]Pol

= Pol(f)([s1σ]Pol , . . . , [si−1σ]Pol , [tσ]Pol , [si+1σ]Pol , . . . , [snσ]Pol)

[sσ]Pol ≥ [tσ]Pol follows from s &Pol t and thus [f(s1, . . . , si−1, s, si+1, . . . , sn)σ]Pol ≥

[f(s1, . . . , si−1, t, si+1, . . . , sn)σ]Pol since Pol(f) ∈ N[x1, . . . , xn] is weakly increasing in

xi. Since this applies for all ground substitutions, f(s1, . . . , si−1, s, si+1, . . . , sn) &Pol

f(s1, . . . , si−1, t, si+1, . . . , sn).

&Pol is stable: Let s &Pol t and let τ be a substitution. Then [sτσ]Pol ≥ [tτσ] for all

ground substitutions σ, i.e., sτ &Pol tτ .

≻Pol is well-founded: For a contradiction, assume that s1 ≻Pol s2 ≻Pol . . . is an

infinite descending sequence of terms. Let σ be an arbitrary ground substitution.

Then [siσ]Pol > [si+1σ]Pol for all i ≥ 1. But this is clearly impossible since [siσ]Pol ∈ N

for all i ≥ 1.

≻Pol is compatible with &Pol : Let s &Pol t ≻Pol u &Pol v, i.e., [sσ]Pol ≥ [tσ]Pol >

[uσ]Pol ≥ [vσ]Pol for all ground substitutions σ. But then [sσ]Pol > [vσ]Pol for all

ground substitutions σ as well and therefore s ≻Pol v. �

Proof of Theorem 7.8. In the second case soundness is obvious. Otherwise, it

needs to be shown that every infinite minimal (P,Q,R,S, E)-chain contains only

finitely many dependency pairs from P ′. Thus, let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be

an infinite minimal (P,Q,R,S, E)-chain using the Th-based substitution σ. This

262

Appendix A. Proofs

means that tiσ
S,Q
−→Th‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ. Then tiσ = f ♯(ti,1σ, . . . , ti,nσ) and

si+1σ = f ♯(si+1,1σ, . . . , si+1,nσ) for some f ♯, where ti,jσ
S,Q
−→Th‖E\R−→∗ ◦ →!

E\S ◦ ∼E si+1,jσ

for all 1 ≤ j ≤ n. It is shown that tiσ & si+1σ for all i ≥ 1.

For this, it is first shown that w ⊢⊣E w
′ implies w ∼ w′ for all w,w′ ∈ T (F ∪

FTh ,V). If w ⊢⊣E w
′, then there exist an equation u ≈ v (or v ≈ u) in E , a position

p ∈ Pos(w), and a substitution σ such that w|p = uσ and w′ = w[vσ]p. Notice that

uσ ∼ vσ by assumption, and monotonicity of & implies w ∼ w′. Using this result

and similar reasoning, w →E\S w
′ implies w & w′.

Next, it is shown that w
S,Q
−→Th‖E\R w′ implies w & w′ for all w,w′ ∈ T (F ∪

FTh ,V). If w
S,Q
−→Th‖E\R w′, then there exist a rule l → rJϕK in R, a position p ∈

Pos(w), and a Th-based substitution σ such that w|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ, the constraint

ϕσ is Th-valid, and w′ = w[rσ]p. Using the results from above, w|p & lσ, and

monotonicity of & implies w & w[lσ]p. Notice that lσ & rσ by assumption, and

monotonicity of & gives w[lσ]p & w[rσ]p, i.e., w & w′.

Thus, ti,jσ & si+1,jσ for all 1 ≤ j ≤ n and monotonicity of & implies tiσ & si+1σ

for all i ≥ 1. Furthermore, siσ & tiσ or siσ ≻ tiσ for all i ≥ 1 since si & ti for all

si → tiJϕiK ∈ P −P
′ and si ≻ ti for all si → tiJϕiK ∈ P

′. Hence, the infinite minimal

chain gives rise to

s1σ ⊲⊳1 t1σ & s2σ ⊲⊳2 t2σ & . . .

where ⊲⊳i ∈ {&,≻}. If the above infinite minimal chain contains infinitely many

dependency pairs from P ′, then ⊲⊳i = ≻ for infinitely many i. In this case, the

compatibility of ≻ with & produces an infinite ≻ chain, contradicting the well-

foundedness of ≻. Thus, only finitely many dependency pairs from P ′ occur in the

above infinite minimal chain. �

Proof of Theorem 7.16. Let (P,Q,R,S, E) be a DP problem and let Pol be a

ThN-polynomial interpretation such that Pol(f ♯) is weakly increasing in all xi with

263

Appendix A. Proofs

i ∈ RedPos(f ♯,P).

It needs to be shown that &Pol is F -monotonic and f ♯-monotonic at position i for

all f ♯ ∈ F ♯ and all i ∈ RedPos(f ♯,P). Furthermore, it needs to be shown that ∼Pol

is f ♯-monotonic at position i whenever i 6∈ RedPos(f ♯,P), that ≻Pol is well-founded,

and that ≻Pol is compatible with &Pol .

&Pol is reflexive, transitive, and F-monotonic: This is shown as for ordinary poly-

nomial interpretations in the proof of Theorem 7.6.

&Pol is f ♯-monotonic at position i for all i ∈ RedPos(f ♯,P): This is shown similarly

to the proof that &Pol is monotonic in the proof of Theorem 7.6. Notice that Pol(f ♯)

is assumed to be weakly increasing in xi for all i ∈ RedPos(f ♯,P).

∼Pol is f ♯-monotonic at position i for all i 6∈ RedPos(f ♯,P): Let s ∼Pol t for terms

s, t ∈ T (F ∪ FThN
,V) and let s1, . . . , si−1, si+1, sn ∈ T (F ∪ FThN

,V). Then

[f(s1, . . . , si−1, s, si+1, . . . , sn)σ]Pol

= Pol(f)([s1σ]Pol , . . . , [si−1σ]Pol , [sσ]Pol , [si+1σ]Pol , . . . , [snσ]Pol)

and

[f(s1, . . . , si−1, t, si+1, . . . , sn)σ]Pol

= Pol(f)([s1σ]Pol , . . . , [si−1σ]Pol , [tσ]Pol , [si+1σ]Pol , . . . , [snσ]Pol)

[sσ]Pol = [tσ]Pol follows from s ∼Pol t and thus [f(s1, . . . , si−1, s, si+1, . . . , sn)σ]Pol =

[f(s1, . . . , si−1, t, si+1, . . . , sn)σ]Pol . Since this reasoning applies for all ground substi-

tutions, f(s1, . . . , si−1, s, si+1, . . . , sn) ∼Pol f(s1, . . . , si−1, t, si+1, . . . , sn).

≻Pol is well-founded: For a contradiction, assume that s1 ≻Pol s2 ≻Pol . . . is an

infinite descending sequence of terms. Let σ be an arbitrary ground substitution.

Then [siσ]Pol > [si+1σ]Pol and [siσ]Pol ≥ cPol for all i ≥ 1. But this is clearly

impossible.

264

Appendix A. Proofs

≻Pol is compatible with &Pol : In order to show &Pol ◦ ≻Pol ◦ &Pol ⊆ ≻Pol , let

s &Pol t ≻Pol u &Pol v, i.e., [sσ]Pol ≥ [tσ]Pol > [uσ]Pol ≥ [vσ]Pol and [tσ]Pol ≥ cPol

for all ground substitutions σ. But then [sσ]Pol > [vσ]Pol and [sσ]Pol ≥ cPol for all

ground substitutions σ as well and therefore s ≻Pol v. �

Proof of Theorem 7.18. In the second case soundness is obvious. Otherwise, it

needs to be shown that every infinite minimal (P,Q,R,S, E)-chain contains only

finitely many dependency pairs from P ′. Thus, let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be

an infinite minimal (P,Q,R,S, E)-chain using the ThN-based substitution σ. This

means that tiσ
S,Q
−→ThN‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ and ϕiσ is ThN-valid for all i ≥ 1.

Now tiσ = f ♯(ti,1σ, . . . , ti,nσ) and si+1σ = f ♯(si+1,1σ, . . . , si+1,nσ) for some f ♯, where

ti,jσ
S,Q
−→ThN‖E\R−→∗ ◦ →!

E\S ◦ ∼E si+1,jσ for all 1 ≤ j ≤ n. Notice that this implies

ti,jσ →
∗
E\Sbase

◦ ∼E si+1σ if j 6∈ RedPos(f ♯,P). Next, it is shown that tiσ & si+1σ for

all i ≥ 1.

Similarly to the proof of Theorem 7.8, ti,jσ & si+1,jσ if j ∈ RedPos(f ♯,P) and

ti,jσ ∼ si+1,jσ if j 6∈ RedPos(f ♯,P). Since & is F -monotonic and f ♯-monotonic at

the relevant positions, and since & ∩ &−1 is f ♯-monotonic at the relevant positions,

tiσ & si+1σ is obtained and the proof continues as the proof of Theorem 7.8, where

siσ & tiσ for all si → tiJϕiK ∈ P − P
′ follows from siJϕiK & tiJϕiK and the ThN-

validity of ϕiσ, and similarly siσ ≻ tiσ for all si → tiJϕiK ∈ P
′. �

Proof of Lemma 7.25. The claim is proved by induction on s. If s is a constant c,

then [s]Pol = Pol(c) ∈ N. Otherwise, s = f(s1, . . . , sn) and the inductive assumption

implies [si]Pol ≥ 0 for all si of sort univ. Now [s]Pol = Pol(f)([s1]Pol , . . . , [sn]Pol) ≥ 0

since Pol(f) ∈ N[x1, . . . , xn] where Pol(f) only depends on a variable xi if the ith

argument of f has sort univ. �

Proof of Theorem 7.26. Similar to the proof of Theorem 7.16. �

Proof of Theorem 7.28. In the second case soundness is obvious. Otherwise, it

265

Appendix A. Proofs

needs to be shown that every infinite minimal (P,Q,R,S, E)-chain contains only

finitely many dependency pairs from P ′. Thus, let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . .

be an infinite minimal (P,Q,R,S, E)-chain using the ThZ-based substitution σ,

i.e, tiσ
S,Q
−→ThZ‖E\R−→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ and ϕiσ is ThZ-valid for all i ≥ 1. Now

tiσ = f ♯(ti,1σ, . . . , ti,nσ) and si+1σ = f ♯(si+1,1σ, . . . , si+1,nσ) for some f ♯ ∈ F ♯, where

ti,jσ
S,Q
−→ThZ‖E\R−→∗ ◦ →!

E\S ◦ ∼E si+1,jσ for all 1 ≤ j ≤ n. Notice that this implies

ti,jσ →
∗
E\Sbase

◦ ∼E si+1σ if the jth argument of f ♯ has sort base. Next, it is shown

that tiσ & si+1σ for all i ≥ 1.

Similarly to the proof of Theorem 7.8, ti,jσ & si+1,jσ if the jth argument of f ♯ has

sort univ and ti,jσ ∼ si+1,jσ if the jth argument of f ♯ has sort base. Since & is univ-

and base-monotonic, tiσ & si+1σ is obtained and the proof continues as the proof of

Theorem 7.8, where siσ & tiσ for all si → tiJϕiK ∈ P−P
′ follows from siJϕiK & tiJϕiK

and the ThZ-validity of ϕiσ, and similarly siσ ≻ tiσ for all si → tiJϕiK ∈ P
′. �

A.7 Proofs from Chapter 8

Proof of Lemma 8.3.

1. The claim is shown by induction on the position p of the
S,Q
−→Th‖E\R-step. Since

σ is normal this position is in s and s = f(s1, . . . , sn).

If p = Λ, then sσ
>Λ
−→E\S−→! ◦

>Λ
∼E lµ and t = rµ for some l → rJϕK ∈ R(f) ⊆

UR(s) and some Th-based substitution µ where ϕµ is Th-valid and all proper

subterms of lµ are irreducible by
S
→Th‖E\Q. Thus, sσ

S
→Th‖E\UR(s) t and the

substitution µ is normal. Now let u = r to obtain t = uµ and UR(u) ⊆

R(f) ∪
⋃

l′→r′Jϕ′K∈R(f) UR′(r′) ⊆ UR(s).

If p 6= Λ then sσ = f(s1σ, . . . , siσ, . . . , snσ) and t = f(s1σ, . . . , ti, . . . , snσ)

where siσ
S,Q
−→Th‖E\R ti. By the inductive assumption, siσ

S
→Th‖E\UR(si) ti and

266

Appendix A. Proofs

thus sσ
S
→Th‖E\UR(si) t. Furthermore, UR(si) ⊆ R(f) ∪

⋃
l′→r′Jϕ′K∈R(f) UR′(r′) ∪

UR′(si) ⊆ UR(s). This implies sσ
S
→Th‖E\UR(s) t. Additionally, the inductive

assumption implies that there is some term ui and some normal substitution

µi such that ti = uiµi. Let u′i result from ui by replacing variables x by

corresponding fresh variables x′. Define µ by µ(x′) = µi(x) for these fresh

variables and µ(x) = σ(x) for all other variables. Then t = uµ for u =

f(s1, . . . , u
′
i, . . . , sn). Obviously UR(u′i) = UR(ui) and the inductive assumption

implies UR(u′i) ⊆ UR(si). As shown above, UR(si) ⊆ UR(s) and thus UR(u′i) ⊆

UR(s). Thus, UR(u) ⊆ UR(s) since UR(u) differs from UR(s) only by containing

UR′(u′i) instead of UR′(si) and since UR′(u′i) ⊆ UR(ui) ⊆ UR(s).

2. The claim immediately follows from the previous part. �

Proof of Theorem 8.7. The proof is similar to the proofs of Theorems 7.6, 7.16,

and 7.26. �

Proof of Theorem 8.8. In the second case soundness is obvious. Otherwise, let

s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be an infinite minimal (P,Q,R,S, E)-chain using the

Th-based substitution σ. This means that tiσ
S
→Th‖E\R→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ and ϕiσ

is Th-valid for all i ≥ 1. It is now shown that rules from R′ are used for only finitely

many i, i.e., that tiσ
S
→Th‖E\R−R′→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ for all i ≥ n for some n ≥ 1.

For a contradiction, assume that rules from R′ are used for infinitely many i.

By extending the proofs of Theorems 7.8, 7.18, and 7.28 and by making use of the

assumption that (&,≻) is monotonic,

s1σ ⊲⊳1 t1σ (& ∪ ≻) s2σ ⊲⊳2 t2σ (& ∪ ≻) . . .

where ⊲⊳j ∈ {&,≻} and tiσ ≻ si+1σ if the reduction tiσ
S
→Th‖E\R→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ

uses a rule from R′. As before, ⊲⊳j = ≻ for only finitely many j, i.e., there is an

267

Appendix A. Proofs

infinite tail

skσ & tkσ (& ∪ ≻) sk+1σ & tk+1σ (& ∪ ≻) . . .

If this infinite tail uses rules from R′ infinitely often, then tiσ ≻ si+1σ for infinitely

many i and the compatibility of ≻ with & produces an infinite ≻ chain, contradicting

the well-foundedness of ≻. Thus, rules from R′ are used for only finitely many i and

there thus exists an infinite minimal (P − P ′,Q,R−R′,S, E)-chain. �

Before proving Lemma 8.14, some auxiliary results need to be obtained. Lemma

8.14 will be shown by well-founded induction using the following relation.

Definition A.1 (#). Let s and t be terms. Then s# t iff s→E\S ◦ ∼E ∪
S,Q
−→Th‖E\R

◦ ∼E ∪�E t.

In order to use # for inductive proofs, the following properties are needed.

Lemma A.2. Let s be a terminating term.

1. If s# t, then t is terminating.

2. # is well-founded on terminating terms.

Proof. Let s be terminating.

1. If s →E\S ◦ ∼E t or s
S,Q
−→Th‖E\R ◦ ∼E t, then t is terminating by Corollary

3.27. If s �E t then t is terminating due to the inclusion �E ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R ◦ �E from the proof of Theorem 6.24.

2. Assume that # is not well-founded on terminating terms. Then, there ex-

ists an infinite →E\S ◦ ∼E ∪
S,Q
−→Th‖E\R ◦ ∼E ∪ �E-sequence containing only

terminating terms.

If this sequence contains only finitely many
S,Q
−→Th‖E\R ◦ ∼E -steps, then there is

an infinite →E\S ◦ ∼E ∪ �E -sequence. Since �E is well-founded, this sequence

contains infinitely many →E\S ◦ ∼E -steps. Using the inclusions �E ◦ →E\S

268

Appendix A. Proofs

⊆ →E\S ◦ �E from the proof of Theorem 6.24 and ∼E ◦ →E\S ⊆ →E\S ◦ ∼E

from Definition 3.12, an infinite →E\S-sequence is obtained, contradicting the

assumption that →E\S is terminating.

Otherwise, the sequence contains infinitely many
S,Q
−→Th‖E\R ◦ ∼E -steps. Using

the inclusions ∼E ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R ◦ ∼E and →E\S ◦

S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R−→+ ◦ →=

E\S from Lemma 3.26 and �E ◦
S,Q
−→Th‖E\R ⊆

S,Q
−→Th‖E\R ◦ �E

from the proof of Theorem 6.24, an infinite
S,Q
−→Th‖E\R-sequence starting with

a terminating term is obtained, which is clearly impossible. �

The first property will be used freely in the following. Next, it is shown that

→E\S and
S,Q
−→Th‖E\R are finitely branching if E is size-preserving.

Lemma A.3. Let (Q,R,S, E) be an RCERS such that E is size-preserving. Then

→E\S and
S,Q
−→Th‖E\R are finitely branching.

Proof. First, the property is shown for →E\S . Since a term has only finitely many

positions and since S is a finite set of rules, it suffices to show that →E\S is finitely

branching if only one position p and one rule l → r ∈ S is considered. Without loss

of generality assume p = Λ, i.e., s ∼E lσ. Since E is size-preserving, the E-equivalence

classes are finite and there are thus only finitely many substitutions σ for E-matching

that differ on V(l). Therefore, →E\S is finitely branching.

The proof for
S,Q
−→Th‖E\R is similar, where it again suffices to consider only the root

position and a single rule. Thus, s
>Λ
−→E\S−→! s′

>Λ
∼E lσ, where σ is Th-based. Since→E\S

is E-convergent and since E is size-preserving there are only finitely many possible

terms s′. As above, there are only finitely many substitutions σ for each s′, which

implies that
S,Q
−→Th‖E\R is finitely branching. �

Proof of Lemma 8.14. The claim is shown by induction on #. If t ∈ V then

I(t) = t and nothing needs to be shown. If t = f(t1, . . . , tn) with f ∈ ∆ then

I(t) = f(I(t1), . . . , I(tn)) and the inductive assumption implies that I(ti) is a finite

269

Appendix A. Proofs

term for all 1 ≤ i ≤ n. But then I(t) is clearly a finite term as well. Finally, assume

root(t) 6∈ ∆. Then the sets RedS(t), RedR(t), and EqE(t) are finite since →E\S

and
S,Q
−→Th‖E\R are finitely branching by Lemma A.3 and E is size-preserving, which

implies that the E-equivalence classes are finite. By the inductive assumption, I(t′)

is a finite term for any I(t′) ∈ RedS(t) ∪RedR(t) and I(ti) is a finite term for any

g(I(t1), . . . , I(tn)) ∈ EqE(t) and all 1 ≤ i ≤ n. Thus, I(t) is a finite term as well. �

Proof of Lemma 8.16. Let t1 <T . . . <T tn where all ti have sort s. Then it

is easy to see that Comps({t1, . . . , tn}) = Πs(t1, . . .Πs(ti, . . .Πs(tn,⊥s) . . .) . . .) →
∗
RΠ

Πs(ti, . . .Πs(tn,⊥s) . . .)→RΠ
ti for any 1 ≤ i ≤ n. �

Proof of Lemma 8.17. Let s, t ∈ T (F ∪ FTh ,V) and let σ be a Th-based substi-

tution such that s, t, and σ are terminating.

1. I(sσ) = sI(σ) is proved by induction on s. If s ∈ V then this is immediate by

the definition of I(σ). Otherwise, s = f(s1, . . . , sn) with f ∈ ∆. But then

I(sσ) = I(f(s1σ, . . . , snσ))

= f(I(s1σ), . . . , I(snσ))

= f(s1I(σ), . . . , snI(σ))

= sI(σ)

by the inductive assumption.

2. I(sσ) →∗
RΠ

sI(σ) is proved by induction on s. If s ∈ V then this is im-

mediate by the definition of I(σ). Otherwise, s = f(s1, . . . , sn). If f ∈ ∆

then I(sσ) = f(I(s1σ), . . . , I(snσ)) →∗
RΠ

f(s1I(σ), . . . , snI(σ)) = sI(σ) by

the inductive assumption. If f 6∈ ∆ then I(sσ) = Compsort(sσ)(RedS(sσ) ∪

RedR(sσ)∪EqE(sσ)). Notice that f(I(s1σ), . . . , I(snσ)) ∈ EqE(sσ) and there-

fore I(sσ) →+
RΠ

f(I(s1σ), . . . , I(snσ)) →∗
RΠ

f(s1I(σ), . . . , snI(σ)) by Lemma

8.16 and the inductive assumption.

270

Appendix A. Proofs

3. It suffices to show that s ⊢⊣E t implies I(s) ⊢⊣=
E(∆) I(t) since the statement

then follows by induction on the number of ⊢⊣E-steps in s ∼E t.

Thus, let s ⊢⊣E t and perform an induction on the position p where the step

takes places. If root(s) 6∈ ∆ then root(t) 6∈ ∆ as well by the definition of ∆.

Since s ∼E t, Definition 3.12 implies that whenever s →E\S s
′, then t →E\S t

′

for some t′ ∼E s
′. Thus, RedS(s) ⊆ RedS(t). Similarly, Lemma 3.26.1 implies

RedR(s) ⊆ RedR(t). Finally, if s ∼E g(t1, . . . , tn), then t ∼E g(t1, . . . , tn),

which immediately implies EqE(s) = EqE(t). Using these properties, RedS(s)∪

RedR(s)∪EqE(s) ⊆ RedS(t)∪RedR(t)∪EqE(t). Since the same reasoning can

be applied with s and t interchanged,

Compsort(s)(RedS(s) ∪RedR(s) ∪ EqE(s))

= Compsort(t)(RedS(t) ∪RedR(t) ∪ EqE(t))

and thus I(s) = I(t).

Otherwise, root(s) ∈ ∆. If p = Λ, then there exist an equation u ≈ v (or

v ≈ u) in E and a substitution σ such that s = uσ and t = vσ. By the

definition of ∆, u, v ∈ T (∆,V). Hence, I(s) = I(uσ) = uI(σ) ⊢⊣E(∆) vI(σ) =

I(vσ) = I(t) by 1. If root(s) ∈ ∆ and p 6= Λ, then s = f(s1, . . . , si, . . . , sn)

and t = f(s1, . . . , ti, . . . , sn) where si ⊢⊣E ti. Now the definition of I gives

I(s) = f(I(s1), . . . , I(si), . . . , I(sn)) and I(t) = f(I(s1), . . . , I(ti), . . . , I(sn)).

Thus I(s) ⊢⊣=
E(∆) I(t) since I(si) ⊢⊣

=
E(∆) I(ti) by the inductive assumption.

4. It suffices to show that s→E\S t implies I(s) 1 I(t) since the statement then

follows by induction on the number of →E\S-steps in s→∗
E\S t.

Thus, let s →E\S t and perform an induction on the position p where the

reduction takes places. If root(s) 6∈ ∆, then I(t) ∈ RedS(s), which implies

I(s)→+
RΠ
I(t) by Lemma 8.16.

If root(s) ∈ ∆, first consider the case p = Λ. Then, there exist a rule l → r ∈ S

and a substitution σ such that s ∼E lσ →S rσ = t. Since root(s) ∈ ∆, the

271

Appendix A. Proofs

definition of ∆ implies that root(l) ∈ ∆, l → r ∈ S(∆), and r ∈ T (∆,V). Using

1, 2, and 3, I(s) ∼E(∆) I(lσ) →∗
RΠ

lI(σ) →S(∆) rI(σ) = I(rσ) = I(t), and

thus I(s) 1 I(t). If root(s) ∈ ∆ and p 6= Λ, then s = f(s1, . . . , si, . . . , sn)

and t = f(s1, . . . , ti, . . . , sn), where si →E\S ti. Now I(si) 1 I(ti) by the

inductive assumption and therefore I(s) = f(I(s1), . . . , I(si), . . . , I(sn)) 1

f(I(s1), . . . , I(ti), . . . , I(sn)) = I(t).

5. It suffices to show that s
S
→Th‖E\R t implies I(s) 2 I(t). Then the statement

follows by induction on the number of
S
→Th‖E\R-steps in s

S
→Th‖E\R→∗ t.

Thus, let s
S
→Th‖E\R t and perform an induction on the position p where the

reduction takes places. If root(s) 6∈ ∆, then I(t) ∈ RedR(s), which implies

I(s)→+
RΠ
I(t) by Lemma 8.16.

If root(s) ∈ ∆, first consider the case p = Λ. Then, there exist a rule l →

rJϕK ∈ R and a Th-based substitution σ with s = f(s∗)
>Λ
−→E\S−→! ◦

>Λ
∼E lσ →R

rσ = t such that ϕσ is Th-valid. Since root(l) = root(s) = f and f ∈ ∆,

the definition of ∆ implies that l → rJϕK ∈ R(∆) and r ∈ T (∆,V). Using

1, 2, 3, and 4, I(s) ∗
1 ◦ ∼E(∆) I(lσ) →∗

RΠ
lI(σ) →R(∆) rI(σ) = I(rσ) =

I(t) where ϕI(σ) = ϕσ is Th-valid, and thus I(s) 2 I(t). If root(s) ∈ ∆

and p 6= Λ, then s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn), where

si
S
→Th‖E\R ti. Now I(si) 2 I(ti) by the inductive assumption and therefore

I(s) = f(I(s1), . . . , I(si), . . . , I(sn)) 2 f(I(s1), . . . , I(ti), . . . , I(sn)) = I(t).

6. Let sσ
S
→Th‖E\R→∗ ◦ →!

E\S ◦ ∼E tσ. Using 3, 4, and 5, I(sσ) ∗
2 ◦

∗
1 ◦ ∼E(∆)

I(tσ). Using 1 and 2 this implies sI(σ) ∗
2 ◦

∗
1 ◦ ∼E(∆) ◦ →

∗
RΠ

tI(σ). �

Proof of Theorem 8.18. In the second case soundness is obvious. Otherwise,

it needs to be shown that every infinite minimal (P,Q,R,S, E)-chain contains only

finitely many dependency pairs from P ′. This is done similarly to the proofs of previ-

ous theorems based on reduction pairs. Thus, let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be an

infinite minimal (P,Q,R,S, E)-chain using the Th-based substitution σ. There-

272

Appendix A. Proofs

fore, tiσ
S
→Th‖E\R→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ and ϕiσ is Th-valid for all i ≥ 1. Thus,

tiσ = f ♯(ti,1σ, . . . , ti,nσ) and si+1σ = f ♯(si+1,1σ, . . . , si+1,nσ) for some f ♯, where

ti,jσ
S
→Th‖E\R→∗ ◦ →!

E\S ◦ ∼E si+1,jσ for all 1 ≤ j ≤ n. Since ti,j ∈ T (∆,V) by

the definition of ∆, Lemma 8.17.6 yields ti,jI(σ) ∗
2 ◦

∗
1 ◦ ∼E(∆) ◦ →

∗
RΠ

si+1,jI(σ)

for all 1 ≤ j ≤ n.

As before, tiI(σ) & si+1I(σ) for all i ≥ 1 and the proof continues unchanged. �

Proof of Theorem 8.20. Combine the proofs of Theorems 8.8 and 8.18. �

A.8 Proofs from Chapter 9

Proof of Lemma 9.1. Notice that sµ
>Λ
−→E\S ◦

>Λ
∼E tµ implies sµ ∼E∪S tµ. �

Proof of Lemma 9.3. In order to show that sµ
>Λ
−→E\S−→! u

>Λ
∼E tµ implies capS(s)ϑ

>Λ
∼E

tϑ for some substitution ϑ, it is first shown that capS(s)µ →E\S u implies u =

capS(s)τ for some substitution τ such that µ and τ differ at most for the fresh

variables introduced by capS . This is shown by induction on s. If capS(s) ∈ V,

then it is a fresh variable y and τ = {y 7→ u} establishes the claim. Otherwise,

s = f(s1, . . . , sn), capS(s) = f(capS(s1), . . . ,capS(sn)) and there is no rule l →

r ∈ S such that f(capS(s1), . . . ,capS(sn)) and l are E-unifiable. First, it is shown

that the →E\S-step in capS(s)µ →E\S u cannot take place at the root position. If

the reduction takes place at the root position, then there exist a rule l → r ∈ S

and a substitution ρ such that f(capS(s1), . . . ,capS(sn))µ ∼E lρ. Since it can

be assumed that l is variable-disjoint from f(capS(s1), . . . ,capS(sn)), define the

substitution ϑ = µ ∪ ρ. Since then f(capS(s1), . . . ,capS(sn))ϑ ∼E lϑ, this gives

a contradiction to the assumption. Thus, there exists an 1 ≤ i ≤ n such that

capS(si)µ →E\S ui and u = f(capS(s1)µ, . . . , ui, . . . ,capS(sn)µ). By the inductive

assumption, there is a substitution δ such that ui = capS(si)δ. Since the fresh

273

Appendix A. Proofs

variables introduced by capS(si) are disjoint from the fresh variables introduced

by capS(sj) for 1 ≤ j 6= i ≤ n and since µ and δ differ at most for the fresh

variables introduced by capS(si), define the substitution τ with τ(x) = δ(x) if x

is a fresh variable introduced by capS(si) and τ(x) = µ(x) otherwise. Using the

substitution defined this way, u = f(capS(s1)µ, . . . ,capS(si)δ, . . . ,capS(sn)µ) =

f(capS(s1)τ, . . . ,capS(si)τ, . . . ,capS(sn)τ) = capS(s)τ .

By induction on the number of the →E\S-steps, capS(s)µ →∗
E\S u for a substi-

tution µ implies u = capS(s)δ for some substitution δ such that µ and δ differ at

most for the fresh variables introduced by capS(s). Since s = capS(s)σ′ for some

substitution σ′ which only instantiates the fresh variables introduced by capS(s), it

is in particular true that sµ = capS(s)σ′µ →∗
E\S u implies u = capS(s)δ for some

substitution δ such that σ′µ and δ differ at most for the fresh variables introduced

by capS(s). Thus capS(s)δ = u
>Λ
∼E tµ since u

>Λ
∼E tµ. Now define the substitution

η by η(x) = δ(x) if x is a fresh variable introduced by capS(s) and η(x) = µ(x)

otherwise. Then capS(s)η = u
>Λ
∼E tµ = tη, i.e., capS(s) and t are E-unifiable. �

A.9 Proofs from Chapter 10

Proof of Lemma 10.6. Assume s′ ∼E s
S
→Th‖E\R t. It needs to be shown that

s′
S
→Th‖E\R t′ ∼E t for some t′. Now s

S
→Th‖E\R t implies s = C[f(u∗)] for some

context C and some f ∈ D(R), where f(u∗)
>Λ
−→E\S−→! ◦

>Λ
∼E lσ for some conditional

constrained rewrite rule s1 →
∗ t1, . . . , sn →

∗ tn | l → rJϕK ∈ R and some Th-based

substitution σ such that ϕσ is Th-valid, siσ
S
→Th‖E\R→∗ ◦ ∼E tiσ for all 1 ≤ i ≤ n, and

t = C[rσ]. Since s′ ∼E s and all equations in E are i.u.v. and do not contain symbols

from D(R), an application of Lemma 2.21 implies s′ = C ′[f(u′∗)] for some context

C ′ with C ′ ∼E C and u′∗ ∼E u
∗. Therefore, f(u′∗)

>Λ
−→E\S−→! ◦

>Λ
∼E lσ by Lemma 2.28.

Thus, σ can be used to rewrite s′ = C ′[f(u′∗)] to t′ = C ′[rσ] ∼E C[rσ] = t. �

274

Appendix A. Proofs

Proof of Lemma 10.13. Let (R,S, E) be a CERS.

“⇒”: Assume that (R,S, E) is not terminating and let s0
S
→Th‖E\R s1

S
→Th‖E\R

s2
S
→Th‖E\R . . . be an infinite rewrite sequence. Construct an infinite proof tree

{Ti}i≥0 as

T0 = s0 →
∗ t for some arbitrary term t (an open goal)

Ti+1 =
si → si+1

Repl

si+1 →
∗ t

Ti

Tran

Here, Ti is extended at its (only) open goal si →
∗ t. Therefore, (R,S, E) is not

operationally terminating.

“⇐”: Assume that (R,S, E) is not operationally terminating. Thus, there exists an

infinite proof tree {Ti}i≥0. Since R is unconditional, the shared head of the Ti

has the form s0 →
∗ t for some terms s0 and t. Furthermore, the rule Tran is

applied to this head. The leftmost subgoal thus generated is closed using Repl

before the rightmost subgoal can be expanded further.

s0 → s1

Repl

s1 →
∗ t

s0 →
∗ t

Tran

Thus, s0
S
→Th‖E\R s1. Applying the same argument to the subgoal s1 →

∗ t and

continuing in the same fashion afterwards, the infinite rewrite sequence

s0
S
→Th‖E\R s1

S
→Th‖E\R s2

S
→Th‖E\R . . .

is obtained and (R,S, E) is thus not terminating. �

The following properties are immediate consequences of Lemma 10.6. They are

used freely in the proof of Lemma 10.16.

275

Appendix A. Proofs

Property A.4. Given a proof tree

T1 · · · Tn

s→ t

and a term s′ ∼E s, the following is also a proof tree:

T1 · · · Tn

s′ → t′

Here, t′ ∼E t is given by Lemma 10.6. �

Property A.5. Let

T1

s0 → s1

T2

s1 → s2

Tn

sn−1 → sn sn →
∗ t

Refl

...
Tran

s1 →
∗ t

Tran

s→∗ t
Tran

be a proof tree where s0 = s and sn ∼E t. Given a term s′ ∼E s,

T1

s̃0 → s̃1

T2

s̃1 → s̃2

Tn

s̃n−1 → s̃n s̃n →
∗ t

Refl

...
Tran

s̃1 →
∗ t

Tran

s′ →∗ t
Tran

is a proof tree with s̃0 = s′. Here, for any u, the expression ũ denotes some term

with ũ ∼E u. The terms s̃i are given by Lemma 10.6. Notice that s̃n ∼E t since

s̃n ∼E sn and sn ∼E t. �

276

Appendix A. Proofs

Proof of Lemma 10.16. Properties A.4 and A.5 are used freely in this proof. The

construction of β(T) is done by induction on the structure of T . There are two cases,

depending on whether the head goal of T is of the form s→∗ t or s→ t. Notice that

the second case is not a special case of the first case since →∗ and → in proof trees

are purely syntactic constructs.

I. The head goal is s→∗ t:

First, assume that T is closed. Then, it has the shape

T1

s0 → s1

T2

s1 → s2

Tn

sn−1 → sn sn →
∗ t

Refl

...
Tran

s1 →
∗ t

Tran

s→∗ t
Tran

where s0 = s and sn ∼E t. By the induction assumption, for each subtree

Ui =
Ti

si−1 → si

there exists a transformed tree β(Ui) of the form

T 1
i

si−1 → s1
i

T 2
i

s1
i → s2

i

T ki

i

ski−1
i → ski

i ski

i →
∗ si

Refl

...
Tran

s1
i →

∗ si

Tran

si−1 →
∗ si

Tran

Now, the proof tree β(T) is built as follows:

277

Appendix A. Proofs

T 1
1

s̃0 → s̃1
1

T 2
1

s̃1
1 → s̃2

1

T k1

1

˜
sk1−1
1 → s̃k1

1

T 1
2

s̃k1

1 → s̃1
2

T 1
n

s̃kn
n−1 → s̃1

n

T 2
n

s̃1
n → s̃2

n

T kn
n

˜
skn−1
n → s̃kn

n s̃kn
n →

∗ t
Refl

˜
skn−1
n →∗ t

...

...

Tran

s̃1
n →

∗ t
Tran

s̃kn
n−1 →

∗ t

...

...

Tran

s̃k1

1 →
∗ t

Tran

˜
sk1−1
1 →∗ t

...

Tran

s̃1
1 →

∗ t
Tran

s→∗ t
Tran

If T is not closed since some leftmost T i
j is not closed, then β(T) needs to be

cut at the level of T i
j . In either case, β(T) is a well-formed proof tree if T is

well-formed and β(T) ⊂ β(T ′) if T ⊂ T ′.

II. The head goal is s→ t:

Again, it is first assumed that T is closed. Then, it has the shape

S1

s1σ →
∗ t1σ · · ·

Sn

snσ →
∗ tnσ

s→ t
Repl

for some rule ρ : s1 →
∗ t1, . . . , sn →

∗ tn | l → rJϕK from R. In order to ease

notation, it is without loss of generality assumed that the position in the Repl rule

is p = Λ, i.e., s
>Λ
−→E\S−→! ◦

>Λ
∼E lσ and t = rσ. If the constrained rewrite rule that

is used is unconditional, then this rule is also present in U(R) and the following

278

Appendix A. Proofs

proof tree for (U(R),S, E) is obtained:

s→ t
Repl

t→∗ t
Refl

s→∗ t
Tran

Otherwise, U(R) contains rules of the form (1), (2), and (3) from Definition 10.14.

Using these, proof trees for (U(R),S, E) with the following head goals are con-

structed:

Uρ
n(tn, x

∗
n)σ →∗ rσ (Gn)

Uρ
n(sn, x

∗
n)σ →∗ rσ (Hn)

Uρ
n−1(tn−1, x

∗
n−1)σ →∗ rσ (Gn−1)

Uρ
n−1(sn−1, x

∗
n−1)σ →∗ rσ (Hn−1)

...

Uρ
1 (t1, x

∗
1)σ →∗ rσ (G1)

Uρ
1 (s1, x

∗
1)σ →∗ rσ (H1)

s →∗ rσ (K)

For the following, notice that ϕσ is Th-valid by assumption.

1. Proof tree for (Gn):

Using rule (3) from Definition 10.14, the following proof tree is constructed:

Uρ
n(tn, x

∗
n)σ → rσ

Repl

rσ →∗ rσ
Refl

Uρ
n(tn, x

∗
n)σ →∗ rσ

Tran

2. Proof tree for (Hk) using a proof tree for (Gk):

Assume that a proof tree Tk for the goal (Gk) = Uρ
k (tkσ, x

∗
kσ) →∗ rσ has

already been constructed. By induction on the tree structure, it can fur-

thermore be assumed that for the subtree

Uk =
Sk

skσ →
∗ tkσ

279

Appendix A. Proofs

a transformed tree β(Uk) of the form

T 1
k

u0 → u1

T 2
k

u1 → u2

T l
k

ul−1 → ul ul →
∗ tkσ

Refl

...
Tran

u1 →
∗ tkσ

Tran

skσ →
∗ tkσ

Tran

with u0 = skσ and ul ∼E tkσ exists. Then, a proof tree for the goal

Uρ
k (skσ, x

∗
kσ)→∗ rσ can be constructed as

T ′
k
1

u′0 → u′1

T ′
k
2

u′1 → u′2

T ′
k
l

u′l−1 → u′l

Tk

Uρ
k (ul, x

∗
kσ)→∗ rσ

u′l−1 →
∗ rσ

...

Tran

u′1 →
∗ rσ

Tran

Uρ
k (skσ, x

∗
kσ)→∗ rσ

Tran

where u′i = Uρ
k (ui, x

∗
kσ) and T ′

k
i “corresponds” to T i

k.

3. Proof tree for (Gk−1) using a proof tree for (Hk):

Assume that a proof tree Tk for the goal (Hk) = Uρ
k (skσ, x

∗
kσ) →∗ rσ has

already been constructed. Then, a proof tree for Uρ
k−1(tk−1σ, x

∗
k−1σ) →∗ rσ

can be constructed as

Uρ
k−1(tk−1σ, x

∗
k−1σ)→ Uρ

k (skσ, x
∗
kσ)

Repl

Tk

Uρ
k−1(tk−1σ, x

∗
k−1σ)→∗ rσ

Tran

where the Repl-step uses rule (2) from Definition 10.14.

4. Proof tree for (K) using a proof tree for (H1):

280

Appendix A. Proofs

Assume that a proof tree T1 for the goal (H1) = Uρ
1 (s1σ, x

∗
1σ) →∗ rσ has

already been constructed. Then, a proof tree for the goal s →∗ t can be

constructed as

s→ Uρ
1 (s1σ, x

∗
1σ)

Repl

T1

s→∗ t
Tran

where the Repl-step uses rule (1) from Definition 10.14.

As in case I, if the original proof tree is not closed, then the transformed tree

is cut at some level. In either case, β(T) is well-formed if T is well-formed and

β(T) ⊂ β(T ′) if T ⊂ T ′.

Proof of Theorem 10.17. Assume that (R,S, E) is not operationally terminating.

Thus, there exists an infinite proof tree {Ti}i≥0 for (R,S, E). By Lemma 10.16, there

exists an infinite sequence {β(Ti)}i≥0 of proof trees for (U(R),S, E). Additionally,

Ti ⊂ Ti+1 implies β(Ti) ⊂ β(Ti+1) for all i ≥ 0. Therefore, {β(Ti)}i≥0 is an infinite

proof tree for (U(R),S, E), which is thus not operationally terminating. �

Proof of Corollary 10.18. By Lemma 10.13, termination of (U(R),S, E) implies

operational termination of (U(R),S, E) since U(R) is unconditional. Thus, (R,S, E)

is operationally terminating by Theorem 10.17. �

A.10 Proofs from Chapter 11

Proof of Lemma 11.10.

1. Let C[f(s∗)] ∼E t, i.e., there exist terms t0, . . . , tn with n ≥ 0 such that

C[f(s∗)] = t0 ⊢⊣E t1 ⊢⊣E . . . ⊢⊣E tn = t. The claim is proved by induction

on n. If n = 0 then C[f(s∗)] = t and the claim is obvious.

281

Appendix A. Proofs

If n > 0, the inductive assumption implies tn−1 = C ′′[f(s′′∗)] with C ′′ ∼E C

and s′′∗ ∼E s
∗, where additionally C ′′ is active. Since tn−1 ⊢⊣E tn, there exists

an equation u ≈ v (or v ≈ u) in E such that tn−1|p = uσ and tn = tn−1[vσ]p for

some position p and some substitution σ. Let q be the position with tn−1|q =

f(s′′∗), i.e., C ′′|q = 2. Now perform a case analysis on the relationship between

the positions p and q.

Case 1: p ‖ q. Then, tn = tn−1[vσ]p = (C ′′[f(s′′∗)])[vσ]p = (C ′′[vσ]p)[f(s′′∗)]

with C ′′[vσ]p ∼E C
′′[uσ]p = C ′′ and C ′′[vσ]p is active.

Case 2: p = q.q′ for some position q′ 6= Λ. In this case, tn = tn−1[vσ]p =

(C ′′[f(s′′∗)])[vσ]q.q′ = C ′[f(s′′∗)[vσ]q′]. Since q′ 6= Λ, the position q′ can be

written as q′ = i.q′′ for some 1 ≤ i ≤ arity(f) and some position q′′. Then

s′j = s′′j if i 6= j and s′i = s′′i [vσ]q′′ ∼E s
′′
i [uσ]q′′ = s′′i , i.e., s′∗ ∼E s

′′∗.

Case 3: q = p.p′ for some position p′ (possibly p′ = Λ). Since f 6∈ F(E), the

position p′ can be written as p′ = p′1.p
′
2 such that u|p′

1
is a variable x and xσ|p′

2
=

f(s′′∗). Since the equation u ≈ v (or v ≈ u) is i.u.v., there exists a unique

position p′′1 in v such that v|p′′
1

= x. This implies vσ|p′′
1
.p′

2
= xσ|p′

2
= f(s′′∗).

Define the substitution σ′ by σ′(y) = σ(y) for y 6= x and σ′(x) = xσ[2]p′
2
. Let

C ′ = (tn−1[vσ]p)[2]p.p′′
1
.p′

2
= tn−1[vσ[2]p′′

1
.p′

2
]p = tn−1[vσ

′]p ∼E tn−1[uσ
′]p = C ′′.

Since q is active in C ′′, the position p′1 is active in u and Definition 11.7.2a

implies that p′′1 is active in v. Therefore, C ′ is active as well. Thus, tn =

tn−1[vσ]p = C ′[f(s′′∗)] and the claim follows.

2. Let s′ ∼E s
S
→Th‖E\R,µ t. This means that s = C[f(u∗)] for some active context

C with f(u∗)
>Λ
−→E\S−→! ◦

>Λ
∼E lσ for some constrained rewrite rule l → rJϕK ∈ R

and some Th-based substitution σ such that ϕσ is Th-valid and t = C[rσ].

Since s ∼E s
′, Lemma 11.10.1 implies s′ = C ′[f(u′∗)] for some active context C ′

with C ′ ∼E C and u′∗ ∼E u
∗. Therefore, f(u′∗)

>Λ
−→E\S−→! ◦

>Λ
∼E lσ by Lemma 2.28

and the substitution σ can be used to rewrite s′ = C ′[f(u′∗)] to t′ = C ′[rσ] ∼E

282

Appendix A. Proofs

C[rσ] = t.

3. Let s →E\S t
S
→Th‖E\R,µ u, i.e., there exist positions p1 ∈ Pos(s) and p2 ∈

Posµ(t), rules l1 → r1 ∈ S and l2 → r2Jϕ2K ∈ R, a substitution σ1, and a

Th-based substitution σ2 such that

(a) s|p1
∼E l1σ1 and t = s[r1σ1]p1

, and

(b) t|p2

>Λ
−→E\S−→! ◦

>Λ
∼E l2σ2, the instantiated Th-constraint ϕ2σ2 is Th-valid, and

u = t[r2σ2]p2
.

Next, a case analysis on the relationship between p1 and p2 is performed.

Case 1: p1 ‖ p2. In this case s
S
→Th‖E\R,µ ◦ →E\S u is immediate.

Case 2: p1 = p2.q for some position q 6= Λ. In this case s|p2
= f(s∗),

t|p2
= f(t∗), and s∗ →E\S t∗. Therefore, f(s∗)

>Λ
−→E\S−→! ◦

>Λ
∼E l2σ2 since →E\S

is E-convergent and strongly E-coherent and f(t∗)
>Λ
−→E\S−→! ◦

>Λ
∼E l2σ2. Thus,

s
S
→Th‖E\R,µ s[r2σ2]p2

= t[r2σ2]p2
= u.

Case 3: p2 = p1.q for some position q, possibly q = Λ. Since r1 does not

contain symbols from D(R), there exists a position q1 ∈ Pos
µ(r1) such that

r1|q1
= x is a variable and q = q1.q2 for some position q2. Define the substitution

σ′
1 to behave like σ1, with the exception that σ′

1(x) = σ1(x)[r2σ2]q2
. Then

l1σ1
S
→Th‖E\R,µ→+ l1σ

′
1 using Definition 11.7.3a and thus s|p1

S
→Th‖E\R,µ→+ ◦ ∼E l1σ

′
1

by Lemma 11.10.2 since s|p1
∼E l1σ1. Thus, s|p1

S
→Th‖E\R,µ→+ ◦ →E\S r1σ

′. Since

r1 is linear, s[r1σ
′
1]p1

= t[r1σ
′
1]p1

= u and thus s
S
→Th‖E\R,µ→+ ◦ →E\S u. �

Proof of Corollary 11.11.

1. Assume thats starts an infinite
S
→Th‖E\R,µ-reduction

s
S
→Th‖E\R,µ s1

S
→Th‖E\R,µ s2

S
→Th‖E\R,µ s3

S
→Th‖E\R,µ . . .

Using Lemma 11.10.2 this implies

t
S
→Th‖E\R,µ t1

S
→Th‖E\R,µ t2

S
→Th‖E\R,µ t3

S
→Th‖E\R,µ . . .

283

Appendix A. Proofs

where si ∼E ti, i.e., t starts an infinite
S
→Th‖E\R,µ-reduction as well. The other

direction is shown the same way.

2. Let s →E\S t and assume that t starts an infinite
S
→Th‖E\R,µ-reduction. Using

the inclusion →E\S ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ→+ ◦ →=

E\S from Lemma 11.10.3

repeatedly produces an infinite
S
→Th‖E\R,µ-reduction starting with s. �

Proof of Lemma 11.22.

1. If t ∼E t′ and t ∈ M∞
(R,S,E,µ), then t′ starts an infinite

S
→Th‖E\R,µ-reduction

by Corollary 11.11.1. Notice that root(t) ∈ D(R), which implies t
>Λ
∼E t

′, i.e.,

t = f(t1, . . . , tn) and t′ = f(t′1, . . . , t
′
n) where ti ∼E t

′
i for all 1 ≤ i ≤ n. Assume

t′ �µ s such that s starts an infinite
S
→Th‖E\R,µ-reduction. Then t′i �µ s for

some 1 ≤ i ≤ n and t′i starts an infinite
S
→Th‖E\R,µ-reduction as well. But then

ti starts an infinite
S
→Th‖E\R,µ-reduction by Corollary 11.11.1, contradicting

t ∈M∞
(R,S,E,µ).

2. By the assumption, t′ starts an infinite
S
→Th‖E\R,µ-reduction. Notice that

root(t) ∈ D(R) and thus t
>Λ
−→E\S−→∗ t′, i.e., t = f(t1, . . . , tn) and t′ = f(t′1, . . . , t

′
n)

where ti →
∗
E\S t

′
i for all 1 ≤ i ≤ n. Assume t′ �µ s such that s starts an infinite

S
→Th‖E\R,µ-reduction. Then t′i �µ s for some 1 ≤ i ≤ n and t′i starts an infinite
S
→Th‖E\R,µ-reduction as well. But then ti starts an infinite

S
→Th‖E\R,µ-reduction

by Corollary 11.11.2, contradicting t ∈M∞
(R,S,E,µ). �

Proof of Lemma 11.23.

1. If C[t] ⊢⊣E s at a position p ∈ Pos(C), then there exist a substitution σ and

an equation u ≈ v (or v ≈ u) in E such that C[t]|p = uσ and s = C[t][vσ]p.

Now, the proof proceeds with an induction on p.

If p = Λ, then, since root(t) ∈ D(R), there is a variable x ∈ V(u) with u�µ x

and xσ�µ t. Now Definition 11.7.2a implies v�µx. Let q be the position of x in

v and let q′ be the position of t in xσ. Then s = vσ = C ′[t] with C ′ = vσ[2]q.q′ ,

284

Appendix A. Proofs

where C ′ is a hiding context.

If p 6= Λ, then C[t] = f(t1, . . . , ti−1, C1[t], ti+1, . . . , tn) for a hiding context

C1. If p is inside one of the tj , then s = f(t′1, . . . , t
′
i−1, C1[t], t

′
i+1, . . . , t

′
n) =

C ′[t] where C ′ is clearly a hiding context. Otherwise, C1[t] ⊢⊣E s′ and s =

f(t1, . . . , ti−1, s
′, ti+1, . . . , tn). The inductive assumption implies s′ = C ′

1[t] for

a hiding context C ′
1, which clearly implies s = C ′[t] for a hiding context C ′.

2. If C[t] →S s at a position p ∈ Pos(C), then there exists a substitution σ and

a rule l → r ∈ S such that C[t]|p = lσ and s = C[t][rσ]p. Now, the proof

proceeds with an induction on p.

If p = Λ, then, since root(t) ∈ D(R), there is a variable x ∈ V(l) with l �µ x

and xσ�µ t. By the assumption, r�µ x. Let q be the position of x in r and let

q′ be the position of t in xσ. Then s = rσ = C ′[t] with C ′ = rσ[2]q.q′, where

C ′ is a hiding context.

If p 6= Λ, then C[t] = f(t1, . . . , ti−1, C1[t], ti+1, . . . , tn) for a hiding context

C1. If p is inside one of the tj , then s = f(t′1, . . . , t
′
i−1, C1[t], t

′
i+1, . . . , t

′
n) =

C ′[t] where C ′ is clearly a hiding context. Otherwise, C1[t] →S s′ and s =

f(t1, . . . , ti−1, s
′, ti+1, . . . , tn). The inductive assumption implies s′ = C ′

1[t] for

a hiding context C ′
1, which clearly implies s = C ′[t] for a hiding context C ′. �

Proof of Lemma 11.25.1. Let w�¬µ s�µ t with t ∈M∞
(R,S,E,µ). Thus v�¬µ s�µ t

since v �µ w �¬µ s. The claim is shown by performing a case analysis on whether s

is a subterm of u.

1. u� s.

(a) If u �µ s, then u �µ s �µ t contradicts u ∈ M∞
(R,S,E,µ) since u �µ t with

t ∈M∞
(R,S,E,µ).

(b) Otherwise, u�¬µ s. Then u�¬µ s�µ t and the claim follows from the hiding

property of u.

285

Appendix A. Proofs

2. u 6� s.

Then u|p = lσ and v = u[rσ]p for a position p ∈ Pos(u), a substitution σ, and

an equation l ≈ r (or r ≈ l) in E . Now lσ 6� s since u 6� s and, in particular,

σ(x) 6� s for all x ∈ V(l). Also, u does not contain s as a subterm at a position

p̂ with p ‖ p̂.

(a) First, assume that rσ�s. Since root(t) 6∈ F(E), σ(x)�µt for some variable x ∈

V(r). Let q be the outermost position in v above s that satisfies v|q �µs.

(i) First, assume that q is above p or q = p. Since rσ �µ s �µ t, Definition

11.7.2a implies lσ �µ t, i.e., u �¬µ lσ �µ t. From the hiding property of

u, lσ = C[t] for a hiding context C and there exists an instance t′ of a

hidden term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t. Then rσ = C ′[t] where C ′ is a

hiding context by Lemma 11.23.1. Now rσ �µ s implies s = C ′′[t], where

C ′′ is a hiding context.

(ii) Otherwise, q = p.p′ for a position p′ 6= Λ such that r|p′ 6∈ V. Then

r|p′ �µx, and Definition 11.7.2b (or Definition 11.7.2c) implies l�¬µ l
′�µx

for some non-variable subterm l′ of l. Therefore, u �¬µ l
′σ �µ t and the

hiding property of u implies l′σ = C[t] for a hiding context C and there

exists an instance t′ of a hidden term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t. Then,

r|p′σ = rσ|p′ = C ′[t] for some hiding context C ′ and rσ|p′ �µ s implies

s = C ′′[t], where C ′′ is a hiding context.

(b) If rσ 6� s, then s � rσ, i.e., s|q1
= rσ for some position q1. In this case,

u�¬µ s[lσ]q1
.

(i) If t occurs above q1, then s|q2
= t and q1 = q2.q3 for some position

q3 6= Λ. Thus, u �¬µ s[lσ]q1
�µ t[lσ]q3

and the hiding property of u gives

s[lσ]q1
= C[t[lσ]q3

] for a hiding context C and there exists an instance t′

of a hidden term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t[lσ]q3

. Thus t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t

since t[lσ]q3

>Λ
∼E t[rσ]q3

= t. Furthermore, s = s[rσ]q1
= C[t].

286

Appendix A. Proofs

(ii) Otherwise, σ(x) �µ t for some variable x ∈ V(r). In this case, u �¬µ

s[lσ]q1
�µ t and the hiding property of u implies s[lσ]q1

= C[t] for a hiding

context C and there exists an instance t′ of a hidden term such that

t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t. Thus, s = s[rσ]q1

= C ′[t] for some context C ′. The

context C ′ is hiding by Lemma 11.23.1. �

Proof of Lemma 11.25.2. If u→E\S v�µ w, then u ∼E u
′ →S v�µ w. By Lemma

11.22, u′ ∈ M∞
(R,S,E,µ), and Lemma 11.25.1 implies that u′ has the hiding property.

Let w�¬µ s�µ t with t ∈M∞
(R,S,E,µ). Thus v�¬µ s�µ t since v�µ w�¬µ s. Perform

a case analysis on whether s is a subterm of u′.

1. u′ � s.

(a) If u′ �µ s, then u′ �µ s �µ t contradicts u′ ∈ M∞
(R,S,E,µ) since u′ �µ t with

t ∈M∞
(R,S,E,µ).

(b) Otherwise, u′ �¬µ s. Then u′ �¬µ s�µ t and the claim follows from the hiding

property of u′.

2. u′ 6� s.

Then u′|p = lσ and v = u′[rσ]p for a position p ∈ Pos(u′), a substitution σ, and

a rule l → r ∈ S. Now lσ 6� s since u′ 6� s and, in particular, σ(x) 6� s for all

x ∈ V(l). Also, u′ does not contain s as a subterm at a position p̂ with p ‖ p̂.

(a) First, assume that rσ�s. Since root(t) 6∈ F(E), σ(x)�µt for some variable x ∈

V(r). Let q be the outermost position in v above s that satisfies v|q �µs.

(i) First, assume that q is above p or q = p. Since rσ �µ s �µ t, Definition

11.7.3a implies lσ �µ t, i.e., u �¬µ lσ �µ t. From the hiding property of

u′, lσ = C[t] for a hiding context C and there exists an instance t′ of a

hidden term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t. Then rσ = C ′[t] where C ′ is a

hiding context by Lemma 11.23.2. Now rσ �µ s implies s = C ′′[t], where

C ′′ is a hiding context.

287

Appendix A. Proofs

(ii) Otherwise, q = p.p′ for a position p′ 6= Λ such that r|p′ 6∈ V. Then r|p′�µx,

and Definition 11.7.3b implies l�¬µ l
′ �µ x for some non-variable subterm

l′ of l. Therefore, u′ �¬µ l
′σ �µ t and the hiding property of u′ implies

l′σ = C[t] for a hiding context C and there exists an instance t′ of a

hidden term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t. Then, r|p′σ = rσ|p′ = C ′[t] for

some hiding context C ′ and rσ|p′ �µ s implies s = C ′′[t], where C ′′ is a

hiding context.

(b) If rσ 6� s, then s � rσ, i.e., s|q1
= rσ for some position q1. In this case,

u′ �¬µ s[lσ]q1
.

(i) If t occurs above q1, then s|q2
= t and q1 = q2.q3 for some position

q3 6= Λ. Thus, u′�¬µ s[lσ]q1
�µ t[lσ]q3

. Now the hiding property of u′ gives

s[lσ]q1
= C[t[lσ]q3

] for a hiding context C and there exists an instance t′ of

a hidden term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t[lσ]q3

. Thus t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t since

t[lσ]q3
→>Λ

S t[rσ]q3
= t and →E\S is strongly E-coherent by Definition

3.12. Furthermore, s = s[rσ]q1
= C[t].

(ii) Otherwise, σ(x) �µ t for some variable x ∈ V(r). In this case, u′ �¬µ

s[lσ]q1
�µ t and the hiding property of u′ implies s[lσ]q1

= C[t] for a

hiding context C and there exists an instance t′ of a hidden term such

that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t. Thus, s = s[rσ]q1

= C ′[t] for some context C ′. The

context C ′ is hiding by Lemma 11.23.2. �

Proof of Lemma 11.25.3. If u
S
→Th‖E\R,µ v �µ w, then u = C[u′] for an active

context C such that u′
>Λ
−→E\S−→! ◦

>Λ
∼E lσ →R rσ for a constrained rewrite rule l →

rJϕK ∈ R and a Th-based substitution σ. Since C[lσ] starts an infinite
S
→Th‖E\R,µ-

reduction, Lemma 11.22 implies C[lσ] ∈ M∞
(R,S,E,µ). Also, Lemmas 11.25.1 and

11.25.2 imply that C[lσ] has the hiding property. Let w�¬µs�µt with t ∈M∞
(R,S,E,µ).

Then v �¬µ s �µ t since v �µ w �¬µ s. Perform a case analysis on whether s is a

subterm of C[lσ].

288

Appendix A. Proofs

1. C[lσ] � s.

(a) If C[lσ]�µs, then C[lσ]�µs�µt contradicts C[lσ] ∈M∞
(R,S,E,µ) since C[lσ]�µt

with t ∈M∞
(R,S,E,µ).

(b) Otherwise, C[lσ] �¬µ s. Then C[lσ] �¬µ s�µ t and the claim follows from the

hiding property of C[lσ].

2. C[lσ] 6� s.

First, notice that v = C[rσ]. Thus, C 6� s and lσ 6� s since C[lσ] 6� s. Also, in

particular, σ(x) 6� s for all x ∈ V(l). Finally, the root of s in v cannot be above

2 in C since these positions are active. Hence, v �¬µ s implies rσ �¬µ s such

that s is an instance of a non-variable subterm of r occurring at a position from

Pos¬µ(r), i.e., r �¬µ r
′ with r′ 6∈ V such that r′σ = s and s|p = t for an active

position p ∈ Posµ(s).

(a) First, assume p ∈ Posµ(r′) and r′|p 6∈ V. Then r′|p is a hidden term and t =

s|p = r′σ|p = r′|pσ is an instance of a hidden term. Furthermore, C ′ = r′[2]p

is a hiding context, which implies that C ′σ is a hiding context as well. Thus,

s = r′σ = C ′[r′|p]σ = C ′σ[r′|pσ] and the claim follows.

(b) Otherwise, p = p1.p2 such that r′|p1
= x for a variable x ∈ V. In this case,

C ′ = r′[2]p1
is a hiding context. Now lσ � t since xσ �µ t. If lσ �µ t, then

C[lσ] �µ lσ �µ xσ �µ t with t ∈ M∞
(R,S,E,µ), contradicting C[lσ] ∈ M∞

(R,S,E,µ).

Thus, lσ�¬µxσ and C[lσ]�¬µxσ�µ t and the hiding property of C[lσ] implies

xσ = Ĉ[t] for a hiding context Ĉ and there exists an instance t′ of a hidden

term such that t′
>Λ
−→E\S−→∗ ◦

>Λ
∼E t. Let C ′′ = C ′σ[Ĉ]. Then the context C ′′ is

hiding and s = r′σ = r′σ[xσ[t]p2
]p1

= C ′σ[Ĉ[t]] = C ′′[t], thus establishing the

claim. �

Proof of Theorem 11.26. If
S
→Th‖E\R,µ is not terminating, then there exists a term

t which starts an infinite
S
→Th‖E\R,µ-reduction such that every proper subterm of t

(even at inactive positions) is terminating w.r.t.
S
→Th‖E\R,µ. Thus, t trivially has the

289

Appendix A. Proofs

hiding property. Furthermore, there are terms ti, si, t̂i such that

t = t̂1
S
→Th‖E\R,µ→∗ t1

S
→Th‖E\R,µ s1 �µ t̂2

S
→Th‖E\R,µ→∗ t2

S
→Th‖E\R,µ s2 �µ t̂3 . . .

where the
S
→Th‖E\R,µ-steps in t̂i

S
→Th‖E\R,µ→∗ ti are applied strictly below the root posi-

tion and the
S
→Th‖E\R,µ-step ti

S
→Th‖E\R,µ si is applied at the root position. Further-

more, t̂i, ti ∈M
∞
(R,S,E,µ) for all i.

First, it is shown that every t̂i and every ti has the hiding property. As shown

above, t̂1 = t has the hiding property by assumption. Next, if t̂i has the hiding

property, then ti has the hiding property by Lemma 11.25.3, and Lemma 11.25.3

furthermore implies that t̂i+1 has the hiding property if ti has the hiding property.

Next, it is shown that t♯i
S
→Th‖E\DP(R,µ),µ→+ t̂′i+1

>Λ
−→E\S−→∗ ◦

>Λ
∼E t̂

♯
i+1 for some t̂′i+1 and

that every term in this sequence is terminating w.r.t.
S
→Th‖E\R,µ. Since ti

S
→Th‖E\R,µ

si �µ t̂i+1 where the
S
→Th‖E\R,µ-step is applied at the root position, there exist a rule

li → riJϕiK ∈ R, a Th-based substitution σ, and a position pi ∈ Pos
µ(si) such that

ti
>Λ
−→E\S−→! ◦

>Λ
∼E liσ, ϕiσ is Th-valid, si = riσ, and si|pi

= t̂i+1. Perform a case analysis

on the position pi.

If pi ∈ Pos
µ(ri) and ri|pi

6∈ V, then there exists the dependency pair l♯ →

(ri|pi
)♯JϕiK ∈ DPo(R, µ) since root(ri|pi

) = root(t̂i+1) ∈ D(R). But this clearly

implies t♯i
>Λ
−→E\S−→! ◦

>Λ
∼E l

♯σ and thus t♯i
S
→Th‖E\DP(R,µ),µ (ri|pi

)♯σ = t̂♯i+1. Furthermore,

t♯i and t̂♯i+1 are terminating w.r.t.
S
→Th‖E\R,µ since ti, t̂i+1 ∈M

∞
(R,S,E,µ).

Otherwise, pi is at or below the position of an active variable xi in ri. The

variable xi only occurs in inactive positions in li since liσ �µ xiσ �µ t̂i+1 and t̂i+1 ∈

M∞
(R,S,E,µ) implies that liσ 6∈ M

∞
(R,S,E,µ), which, by Lemma 11.22 contradicts ti ∈

M∞
(R,S,E,µ) because ti

>Λ
−→E\S−→! ◦

>Λ
∼E liσ. Since liσ has the hiding property by Lemma

11.25 (because ti has the hiding property) and liσ �¬µ xσ �µ t̂i+1, Definition 11.24

implies xσ = C[t̂i+1] for a hiding context C and there exists an instance t̂′i+1 of a

hidden term such that t̂′i+1
>Λ
−→E\S−→∗ ◦

>Λ
∼E t̂i+1. Notice that C[t̂i+1] is irreducible by

290

Appendix A. Proofs

>Λ
−→E\S since liσ is irreducible by

>Λ
−→E\S . By letting s and s′ be the appropriate

sorts,

t♯i
S
→Th‖E\DP(R,µ),µ Us(xiσ) since l♯i → Us(xi)JϕiK ∈ DPu(R, µ)

= Us(C[t̂i+1]) where C is hiding
S
→Th‖E\DP(R,µ),µ→∗ Us′(t̂i+1) since Us(C[t̂i+1])

S
→Th‖E\DP(R,µ),µ→∗ Us′(t̂i+1)

for any hiding context C
S
→Th‖E\DP(R,µ),µ t̂′

♯

i+1 using Us′(h)→ h♯J⊤K since t̂′i+1
>Λ
∼E t̂i+1

and t̂′i+1 is an instance of a hidden term h

>Λ
−→E\S−→∗ ◦

>Λ
∼E t̂♯i+1

Notice that terms of the form Us(. . .) are terminating w.r.t.
S
→Th‖E\R,µ since µ(Us) =

∅. Also, t♯i and t̂♯i+1 are terminating w.r.t.
S
→Th‖E\R,µ since ti, t̂i+1 ∈M

∞
(R,S,E,µ).

Using t♯i
S
→Th‖E\DP(R,µ),µ→+ t̂′

♯

i+1
>Λ
−→E\S−→∗ ◦

>Λ
∼E t̂

♯
i+1, the sequence

t = t̂1
S
→Th‖E\R,µ→∗ t1

S
→Th‖E\R,µ s1 �µ t̂2

S
→Th‖E\R,µ→∗ t2

S
→Th‖E\R,µ s2 �µ t̂3 . . .

is transformed into

t♯ = t̂♯1
S
→Th‖E\R,µ→∗ t♯1

S
→Th‖E\DP(R,µ),µ→+ t̂′

♯

2
>Λ
−→E\S−→∗ ◦

>Λ
∼E t̂

♯
2

S
→Th‖E\R,µ→∗ t♯2 . . .

Using Lemma 11.10 and the strong E-coherence of→E\S , this gives rise to an infinite

minimal (DP(R, µ),R,S, E , µ)-chain. �

A.11 Proofs from Chapter 12

Proof of Theorem 12.3. It needs to be shown that there exists a substitution σ

that is Th-based for V(s1) ∪ V(s2) such that cap(t1)σ
>Λ
−→E\S−→! ◦

>Λ
∼E s2σ, the terms

s1σ and s2σ are irreducible by
>Λ
−→E\S , and ϕ1σ and ϕ2σ are Th-valid whenever

s1 → t1Jϕ1K, s2 → t2Jϕ2K is a (P,R,S, E , µ)-chain, i.e.,

291

Appendix A. Proofs

(†)

t1σ
S
→Th‖E\R,µ→∗ u

>Λ
−→E\S−→! ◦

>Λ
∼E s2σ for a Th-based substitution σ such that

ϕ1σ and ϕ2σ are Th-valid and s1σ and s2σ are normal forms w.r.t.
>Λ
−→E\S

implies capµ(t1)η
>Λ
−→E\S−→! ◦

>Λ
∼E s2η for some substitution η that is Th-based

for V(s1)∪ V(s2) such that s1η and s2η are normal forms w.r.t.
>Λ
−→E\S and

ϕ1η and ϕ2η are Th-valid.

In order to show (†), it is first shown that for all terms t and all substitutions η that

are Th-based for V(t),

(‡)

capµ(t)η
S
→Th‖E\R,µ u implies that there exists a substitution τ that is Th-

based for V(t) such that u = capµ(t)τ , where η and τ differ at most for the

fresh variables introduced by capµ(t).

The property (‡) is shown by induction on t. If capµ(t) ∈ V, then it is a fresh

variable y of sort univ since η is Th-based for V(t). Letting τ = {y 7→ u} establishes

(‡). Otherwise, t = f(t1, . . . , tn), capµ(t) = f(t′1, . . . , t
′
n) and there is no rule l →

rJϕK ∈ R such that f(t′1, . . . , t
′
n)ϑ

>Λ
−→E\S−→! ◦

>Λ
∼E lϑ for a substitution ϑ that is Th-

based for V(f(t1, . . . , tn)) ∪ V(l) where ϕϑ is Th-valid. First, it is shown that the
S
→Th‖E\R,µ-step cannot take place at the root position. If the reduction takes place at

the root position, then there exist a rule l → rJϕK ∈ R and a Th-based substitution

ρ such that f(t′1, . . . , t
′
n)η

>Λ
−→E\S−→! ◦

>Λ
∼E lρ and ϕρ is Th-valid. Since it can be assumed

that l is variable-disjoint from f(t′1, . . . , t
′
n), it is possible to define the substitution

ϑ = σ ∪ ρ where ϑ is Th-based for V(f(t′1, . . . , t
′
n)) ∪ V(l). Since ϕϑ is Th-valid this

is a contradiction to the assumption. Hence, the
S
→Th‖E\R,µ-step takes place below

he root position, i.e., there exists an 1 ≤ i ≤ n such that t′iη
S
→Th‖E\R,µ ui and

u = f(t′1η, . . . , ui, . . . , t
′
nη). Furthermore, i ∈ µ(f), which implies t′i = capµ(ti).

By the inductive assumption, this yields a substitution δ that is Th-based for V(ti)

such that ui = capµ(ti)δ = t′iδ. Since the fresh variables introduced by capµ(ti) are

disjoint from the fresh variables introduced by capµ(tj) for 1 ≤ j 6= i ≤ n and since

292

Appendix A. Proofs

η and δ differ at most for the fresh variables introduced by capµ(ti), it is possible

to define the substitution τ with τ(x) = δ(x) if x is a fresh variable introduced by

capµ(ti) and τ(x) = η(x) otherwise. Then τ is Th-based for V(t) and

u = f(t′1η, . . . , t
′
iδ, . . . , t

′
nη)

= f(t′1τ, . . . , t
′
iτ, . . . , t

′
nτ)

= capµ(t)τ

By (‡) and an induction on the number of
S
→Th‖E\R,µ-steps, capµ(t)η

S
→Th‖E\R,µ→∗ u for a

substitution η that is Th-based for V(t) implies u = capµ(t)δ for some substitution δ

that is Th-based for V(t) such that η and δ differ at most for fresh variables introduced

by capµ(t). Since t1 = capµ(t1)σ
′ for some substitution σ′ that only instantiates

fresh variables introduced by capµ(t1), in particular t1σ = capµ(t1)σ
′σ

S
→Th‖E\R,µ→∗ u

implies u = capµ(t1)δ for some substitution δ that is Th-based for V(t1) such that σ′σ

and δ differ at most for the fresh variables introduced by capµ(t1). Thus capµ(t1)δ =

u
>Λ
−→E\S−→! ◦

>Λ
∼E s2σ since u

>Λ
−→E\S−→! ◦

>Λ
∼E s2σ. Now define the substitution ξ by ξ(x) =

δ(x) if x is a fresh variable introduced by capµ(t1) and ξ(x) = σ(x) otherwise. Notice

that ξ is Th-based for V(s1) ∪ V(s2). Then capµ(t1)ξ = u
>Λ
−→E\S−→! ◦

>Λ
∼E s2σ = s2ξ.

Since s1ξ = s1σ and s2ξ = s2σ, the terms s1ξ and s2ξ are normal forms w.r.t.
>Λ
−→E\S

by Definition 11.20. Also, ϕ1ξ = ϕ1σ and ϕ2ξ = ϕ2σ are Th-valid. �

Proof of Theorem 12.4. After a finite number of dependency pairs in the begin-

ning, any infinite minimal (P,R,S, E , µ)-chain only contains pairs from some SCC.

Hence, every infinite minimal (P,R,S, E , µ)-chain gives rise to an infinite minimal

(Pi,R,S, E , µ)-chain for some 1 ≤ i ≤ n. �

Proof of Lemma 12.8. Similar to the proof of Lemma 6.23. �

Proof of Theorem 12.9. In the second case soundness is obvious. Otherwise,

it needs to be shown that every infinite minimal (P,R,S, E , µ)-chain contains only

finitely many dependency pairs from P ′. Thus, let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be

293

Appendix A. Proofs

an infinite minimal (P,R,S, E , µ)-chain using the Th-based substitution σ and apply

the simple projection π to it.

First, consider the instantiation siσ → tiσJϕiσK of the ith dependency pair.

Clearly, π(siσ) = π(si)σ and π(tiσ) = π(ti)σ. Since π(si) �E,µ π(ti) by assump-

tion, π(siσ) �E,µ π(tiσ) by Lemma 12.8.3. From tiσ
S
→Th‖E\R,µ→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+iσ,

the (possibly shorter) sequence π(tiσ)
S
→Th‖E\R,µ→∗ ◦ →∗

E\S ◦ ∼E π(si+iσ) is obtained

since all reductions take place below the root. Thus, tiσ
S
→Th‖E\R,µ→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E

si+1σ → ti+1σ implies π(tiσ)
S
→Th‖E\R,µ→∗ ◦ →∗

E\S ◦ ∼E π(si+1σ) �E,µ π(ti+1σ).

Therefore, the infinite minimal (P,R,S, E , µ)-chain is transformed into an infinite
S
→Th‖E\R,µ ∪ →E\S ∪ �E,µ ∪ ∼E sequence starting with π(t1σ). Now perform a case

analysis.

Case 1: The infinite sequence contains only finitely many
S
→Th‖E\R,µ-steps and only

finitely many →E\S-steps. Then, there exists an infinite �E,µ ∪ ∼E sequence. This

sequence cannot contain infinitely many �E,µ-steps stemming from dependency pairs

in P ′ since otherwise Lemma 12.8.4 yields an infinite �E,µ sequence, contradicting

the well-foundedness of �E,µ (Lemma 12.8.2).

Case 2: The infinite sequence contains only finitely many
S
→Th‖E\R,µ-steps but in-

finitely many→E\S-steps. Recall that∼E ◦ →E\S ⊆→E\S ◦ ∼E since→E\S is strongly

E-coherent. Using this and the easily seen inclusion �µ ◦ →E\S ⊆ →E\S ◦ �µ, it is

furthermore straightforward to show that

�E,µ ◦ →E\S = ∼E ◦�µ ◦ ∼E ◦ →E\S

⊆ ∼E ◦�µ ◦ →E\S ◦ ∼E

⊆ ∼E ◦ →E\S ◦�µ ◦ ∼E

⊆ →E\S ◦ ∼E ◦�µ ◦ ∼E

= →E\S ◦ �E,µ

294

Appendix A. Proofs

By making repeated use of these inclusions, an infinite →E\S-sequence is obtained,

contradiction the assumption that →E\S is terminating.

Case 3: The infinite sequence contains infinitely many
S
→Th‖E\R,µ-steps. Recall

Lemma 11.10 and the inclusions ∼E ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ ◦ ∼E and →E\S

◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ→+ ◦ →=

E\S . Using the first of these inclusions and the easily

seen inclusion �µ ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ ◦ �µ, it is furthermore straightforward

to show that

�E,µ ◦
S
→Th‖E\R,µ = ∼E ◦�µ ◦ ∼E ◦

S
→Th‖E\R,µ

⊆ ∼E ◦�µ ◦
S
→Th‖E\R,µ ◦ ∼E

⊆ ∼E ◦
S
→Th‖E\R,µ ◦�µ ◦ ∼E

⊆
S
→Th‖E\R,µ ◦ ∼E ◦�µ ◦ ∼E

=
S
→Th‖E\R,µ ◦ �E,µ

By making repeated use of these inclusions, an infinite
S
→Th‖E\R,µ-sequence starting

with π(t1σ) is obtained. But this contradicts the minimality of the infinite minimal

(P,R,S, E , µ)-chain since then t1σ starts an infinite
S
→Th‖E\R,µ reduction. �

Proof of Theorem 12.11. Similar to the proofs from Chapter 7. �

Before proving Lemma 12.16, several auxiliary results need to be obtained. The

first result is similar to Lemma 2.21 but considers S.

Lemma A.6. If s →∗
E\S ◦ ∼E C[f(t∗)] for a context C and an f 6∈ F(E) ∪ F(S),

then s = D[f(s∗)] for a context D such that f(s∗)
>Λ
−→E\S−→∗ ◦

>Λ
∼E f(t∗).

Proof. Due to Lemma 2.21, it suffices to consider s →S C[f(t∗)]. If s →S t =

C[f(t∗)], then there exists a rule l → r ∈ S such that s|p = lσ and t = s[rσ]p for

some position p and some substitution σ. Let q be the position with t|q = f(t∗), i.e.,

C|q = 2. Now, a case analysis on the relationship between the positions p and q is

performed.

295

Appendix A. Proofs

Case 1: p ‖ q. Then, s = t[lσ]p = (C[f(t∗)])[lσ]p = (C[lσ]p)[f(t∗)].

Case 2: p = q.q′ for some position q′ 6= Λ. Then, s = t[lσ]p = (C[f(t∗)])[lσ]q.q′ =

C[f(t∗)[lσ]q′]. Since q′ 6= Λ, the position q′ can we written as q′ = i.q′′ for some

1 ≤ i ≤ arity(f) and some position q′′. Then sj = tj if i 6= j and si = ti[lσ]q′′ →S

ti[rσ]q′′ = ti, i.e., s∗ →S t
∗.

Case 3: q = p.p′ for some position p′ (possibly p′ = Λ). Since f 6∈ F(S), the position

p′ can be written as p′ = p′1.p
′
2 such that r|p′

1
is a variable x and xσ|p′

2
= f(t∗). There

exists a position p′′1 in l such that l|p′′
1

= x. This implies lσ|p′′
1
.p′

2
= xσ|p′

2
= f(t∗).

Thus, s = t[lσ]p = D[f(t∗)] where D = C[lσ[2]p′′
1
.p′

2
] and the claim follows. �

Next, it can be shown that →E\S and
S
→Th‖E\R,µ are finitely branching if E is

size-preserving.

Lemma A.7. Let (R,S, E , µ) be a CS-CERS such that E is size-preserving. Then

→E\S and
S
→Th‖E\R,µ are finitely branching.

Proof. Similar to the proof of Lemma A.3. �

Now it can be shown that I1(t) is indeed well-defined.

Proof of Lemma 12.16. According to Definition 12.15, in order to get an in-

finite term as a result of I1(t), it is necessary to perform an infinite number of

applications of Red1
R since →E\S and �E are well-founded, →E\S and

S
→Th‖E\R,µ are

finitely branching by Lemma A.7, and the E-equivalence classes are finite. This

means that t is terminating and there exists an infinite sequence t ⊲⊳1 s1 ⊲⊳2 s2 . . .

where ⊲⊳i ∈ {�, →E\S , ∼E ,
S
→Th‖E\R,µ} and ⊲⊳i =

S
→Th‖E\R,µ for infinitely many

i. By considering two consecutive occurrences of
S
→Th‖E\R,µ in this sequence and

by using the inclusions ∼E ◦ →E\S ⊆ →E\S ◦ ∼E obtained from the strong E-

coherence of →E\S and the easily seen inclusions � ◦ →E\S ⊆ →E\S ◦ � and

� ◦ ∼E ⊆ ∼E ◦ �, a sequence t →∗
E\S ◦ ∼E u1 � t1

S
→Th‖E\R,µ ◦ →

∗
E\S ◦ ∼E

296

Appendix A. Proofs

u2 � t2
S
→Th‖E\R,µ ◦ →

∗
E\S ◦ ∼E u3 . . . where root(ti) 6∈ ∆1 and ti is terminating for

all i ≥ 1 is obtained. It can be assumed without loss of generality that it is not the

case that ti �◦ →
∗
E\S ◦ ∼E ti+1 (since otherwise the modified sequence obtained from

. . .� ti−1
S
→Th‖E\R,µ ◦ →

∗
E\S ◦ ∼E ui � ◦ →∗

E\S ◦ ∼E ti+1
S
→Th‖E\R,µ . . . by using the

inclusions ∼E ◦ →E\S ⊆ →E\S ◦ ∼E , � ◦ →E\S ⊆ →E\S ◦ �, and � ◦ ∼E ⊆ ∼E ◦ �

mentioned above can be considered instead).

For all i ≥ 1, there exist a rule li → riJϕiK ∈ R, a Th-based substitution σi, and

an active position pi in ti such that ti = Ci[l
′
i]pi

, l′i
>Λ
−→E\S−→! ◦

>Λ
∼E liσi, Ci[riσi]pi

→∗
E\S

◦ ∼E ui+1, and ui+1 � ti+1. Now ui+1 � ti+1 and root(ti+1) 6∈ F(E) ∪ F(S) (since

root(ti+1) 6∈ ∆1 and F(E) ∪ F(S) ⊆ ∆1) imply by Lemma A.6 that Ci[riσi] � t′i+1

for some t′i+1 with root(t′i+1) = root(ti+1) and t′i+1
>Λ
−→E\S−→∗ ◦

>Λ
∼E ti+1. There are three

possibilities:

1. t′i+1 is a subterm of Ci[riσi]pi
at a position above pi, i.e., t′i+1 � riσi. Then

Ci[riσi]pi
�µ t

′
i+1 since pi is an active position.

2. t′i+1 is a subterm of Ci[riσi]pi
at a position that is independent of pi. Then

ti � t′i+1 →
∗
E\S ◦ ∼E ti+1, contradicting the assumption.

3. t′i+1 is a subterm of Ci[riσi]pi
at a position strictly below pi, i.e., riσi � t′i+1.

Notice that there is no variable x ∈ V(ri) with σi(x) � t′i+1 since this would

imply liσi � t′i+1. Then l′i � t′′i+1 for some t′′i+1 such that t′′i+1 →
∗
E\S ◦ ∼E t

′
i+1

by Lemma A.6, which implies ti � t′′i+1 →
∗
E\S ◦ ∼E ti+1, contradicting the

assumption. Therefore, there exists a term r′i with r′i 6∈ V and ri � r′i such that

r′iσi = t′i+1. Now, root(r′i) = root(t′i+1) 6∈ ∆1 and F¬µ(ri) ⊆ ∆1 imply ri �µ r
′
i

and thus Ci[riσi]pi
�µ t

′
i+1.

The resulting sequence is thus t→∗
E\S ◦ ∼E u1 �µ t1

S
→Th‖E\R,µ C1[r1σ1]p1

�µ t
′
2 →

∗
E\S

◦ ∼E t2
S
→Th‖E\R,µ C2[r2σ2]p2

�µ t
′
3 →

∗
E\S ◦ ∼E t3

Using the inclusions ∼E ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ ◦ ∼E and →E\S ◦

S
→Th‖E\R,µ

297

Appendix A. Proofs

⊆
S
→Th‖E\R,µ→+ ◦ →=

E\S from Lemma 11.10 and �E,µ ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ ◦ �E,µ

from the proof of Theorem 12.9, an infinite
S
→Th‖E\R,µ sequence starting with t is

obtained, contradicting the assumption that t is terminating.

Proof of Lemma 12.17. Let s, t ∈ T (F ∪FTh ,V) and let σ be a Th-based substi-

tution.

1. I1(sσ) = sI1(σ) is proved by induction on s. If s ∈ V then this is immediate

by the definition of I1(σ). Otherwise, s = f(s1, . . . , sn) with f ∈ ∆1. But then

I1(sσ) = I1(f(s1σ, . . . , snσ))

= f(I1(s1σ), . . . , I1(snσ))

= f(s1I
1(σ), . . . , snI

1(σ))

= sI1(σ)

by the inductive assumption.

2. I1(sσ) →∗
RΠ

sI1(σ) is proved by induction on s. If s ∈ V then this is im-

mediate by the definition of I1(σ). Otherwise, s = f(s1, . . . , sn). By the

assumption, if i 6∈ µ(f), then si ∈ T (∆1,V) and hence I1(siσ) = siI
1(σ)

by 1. If i ∈ µ(f), then I1(siσ) →∗
RΠ

siI
1(σ) by the inductive assumption.

If f ∈ ∆1 or s is not terminating, then I1(sσ) = I1(f(s1σ, . . . , snσ)) =

f(I1(s1σ), . . . , I1(snσ))→∗
RΠ

f(s1I
1(σ), . . . , snI

1(σ)) = sI1(σ). If f 6∈ ∆1 and

s is terminating, then I1(sσ) = Compsort(sσ)(Red
1
S(sσ)∪Red1

R(sσ)∪Eq1
E(sσ)).

The definition of Eq1
E(sσ) implies f(I1(s1σ), . . . , I1(snσ)) ∈ Eq1

E(sσ) and thus

I1(sσ) →+
RΠ

f(I1(s1σ), . . . , I1(snσ)) →∗
RΠ

f(s1I
1(σ), . . . , snI

1(σ)) by Lemma

8.16.

3. It suffices to show that s ⊢⊣E t implies I1(s) ⊢⊣=
E I

1(t) since the statement then

follows by induction on the number of ⊢⊣E-steps in s ∼E t.

Thus, let s ⊢⊣E t and perform an induction on the position p where the step

takes places. If root(s) 6∈ ∆1 and s is terminating, then root(t) 6∈ ∆1 as

298

Appendix A. Proofs

well by the definition of ∆1 and t is terminating by Corollary 11.11.1. Since

s ∼E t, Definition 3.12 implies that whenever s →E\S s′, then t →E\S t′ for

some t′ ∼E s
′. Thus, Red1

S(s) ⊆ Red1
S(t). Similarly, Lemma 11.10.2 implies

Red1
R(s) ⊆ Red1

R(t). Finally, if s ∼E g(s1, . . . , sn), then t ∼E g(s1, . . . , sn),

which immediately implies Eq1
E(s) = Eq1

E(t).

Using these properties, Red1
S(s) ∪ Red1

R(s) ∪ Eq1
E(s) ⊆ Red

1
S(t) ∪ Red1

R(t) ∪

Eq1
E(t). Since the same reasoning can be applied with s and t interchanged,

Compsort(s)(Red
1
S(s) ∪Red1

R(s) ∪ Eq1
E(s))

= Compsort(s)(Red
1
S(t) ∪Red1

R(t) ∪ Eq1
E(t))

and thus I1(s) = I1(t).

Otherwise, root(s) ∈ ∆1 or s is not terminating. If p = Λ, then there ex-

ist an equation u ≈ v (or v ≈ u) in E and a substitution σ such that

s = uσ and t = vσ. By the definition of ∆1, u, v ∈ T (∆1,V). Hence,

I1(s) = I1(uσ) = uI1(σ) ⊢⊣E vI1(σ) = I1(vσ) = I1(t) by 1. If p 6= Λ

then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn), and si ⊢⊣E ti. Now

I(si) ⊢⊣
=
E I(ti) by the inductive assumption, which implies

I(s) = f(I1(s1), . . . , I
1(si), . . . , I

1(sn))

⊢⊣=
E f(I1(s1), . . . , I

1(s′i), . . . , I
1(sn))

= I1(t)

4. It suffices to show that s →E\S t implies I1(s) 1 I
1(t) since the statement

then follows by induction on the number of →E\S-steps in s→∗
E\S t.

Thus, let s →E\S t and perform an induction on the position p where the

reduction takes places. If root(s) 6∈ ∆1 and s is terminating, then I1(t) ∈

Red1
S(s), which implies I1(s)→+

RΠ
I1(t) by Lemma 8.16.

If root(s) ∈ ∆1 or s is not terminating, first consider the case p = Λ. Then,

there exist a rule l → r ∈ S and a substitution σ such that s ∼E lσ →S

299

Appendix A. Proofs

rσ = t. Using 1 and 3, I1(s) ∼E I
1(lσ) = lI1(σ) →S rI1(σ) = I1(rσ) =

I1(t), and thus I1(s) →E\S I
1(t). If root(s) ∈ ∆1 and p 6= Λ, then s =

f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn), where si →E\S ti. This

implies I1(si) 1 I
1(ti) by the inductive assumption and therefore I1(s) =

f(I1(s1), . . . , I
1(si), . . . , I

1(sn)) 1 f(I1(s1), . . . , I
1(ti), . . . , I

1(sn)) = I1(t).

5. It suffices to show that s
S
→Th‖E\R,µ t implies I1(s) 2 I

1(t) since the statement

then follows by induction on the number of
S
→Th‖E\R,µ-steps in s

S
→Th‖E\R,µ→∗ t.

Thus, let s
S
→Th‖E\R,µ t and perform an induction on the position p where the

reduction takes places. If root(s) 6∈ ∆1, then I1(t) ∈ Red1
R(s), which implies

I1(s)→+
RΠ
I1(t) by Lemma 8.16.

If root(s) ∈ ∆1, first consider the case p = Λ. Then, there exist a rule

l → rJϕK ∈ R and a Th-based substitution σ with s = f(s∗)
>Λ
−→E\S−→! ◦

>Λ
∼E

lσ →R rσ = t such that ϕσ is Th-valid. Since root(l) = root(s) = f and

f ∈ ∆1, the definition of ∆1 implies that l → rJϕK ∈ R(∆1), r ∈ T (∆1,V),

and l′ ∈ T (∆1,V) whenever l �¬µ l
′. Using 1, 2, 3, and 4, I1(s) ∗

1 ◦ ∼E

I1(lσ) →∗
RΠ

lI1(σ) →R(∆1),µ rI1(σ) = I1(rσ) = I1(t) where ϕI1(σ) = ϕσ

is Th-valid, and thus I1(s) 2 I
1(t). If root(s) ∈ ∆1 and p 6= Λ, then

s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn), where si
S
→Th‖E\R,µ ti

for an i ∈ µ(f). Now I1(si) 2 I
1(ti) by the inductive assumption since

si is terminating and therefore I1(s) = f(I1(s1), . . . , I
1(si), . . . , I

1(sn)) 2

f(I1(s1), . . . , I
1(ti), . . . , I

1(sn)) = I1(t).

6. Let sσ
S
→Th‖E\R,µ→∗ ◦ →!

E\S ◦ ∼E tσ. Using 3, 4, and 5, I1(sσ) ∗
2 ◦

∗
1 ◦ ∼E

I1(tσ). Using 1 and 2 this implies sI1(σ) ∗
2 ◦

∗
1 ◦ ∼E ◦ →

∗
RΠ

tI1(σ). �

Proof of Theorem 12.18. Similar to the proof of Theorem 8.18 and making use

of Lemma 12.17.6. �

Before proving Lemma 12.24, some auxiliary results need to be obtained. Lemma

300

Appendix A. Proofs

12.24 will be shown by well-founded induction using the following relations. This is

similar to Definition A.1.

Definition A.8 (#2,#2). Let s and t be terms. Then s #2t iff s→E\S ∪�E t and

s#2 t iff s→E\S ∪
S
→Th‖E\R,µ ∪�E,µ t.

In order to use #2 and #2 for inductive proofs, they need to be well-founded.

Lemma A.9.

1. If s is terminating and s#2 t, then t is terminating.

2. #2 is well-founded.

3. #2 is well-founded on terminating terms.

Proof.

1. If s →E\S t, then t is terminating by Corollary 11.11.2. If s
S
→Th‖E\R,µ t then

t is clearly terminating if s is terminating. If s �E,µ t then t is terminating

due to the inclusion �E,µ ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ ◦ �E,µ from the proof of

Theorem 12.9.

2. Assume that#2 is not well-founded. Then, there exists an infinite→E\S ∪ �E-

sequence. Since �E is well-founded by Lemma 6.23.2, this sequence contains

infinitely many→E\S-steps. Using the inclusion �E ◦ →E\S ⊆ →E\S ◦ �E from

the proof of Theorem 6.24, an infinite→E\S sequence is obtained, contradicting

the assumption that →E\S is terminating.

3. Assume that #2 is not well-founded on terminating terms. Then, there exists

an infinite
S
→Th‖E\R,µ ∪ →E\S ∪ �E,µ-sequence containing only terminating

terms.

If this sequence contains only finitely many
S
→Th‖E\R,µ-steps, then an infinite

→E\S ∪ �E,µ-sequence is obtained. Since �E,µ is well-founded by Lemma

301

Appendix A. Proofs

12.8.2, this sequence contains infinitely many →E\S-steps. Using the inclu-

sion �E,µ ◦ →E\S ⊆ →E\S ◦ �E,µ from the proof of Theorem 12.9, an infinite

→E\S-sequence is obtained, contradicting the assumption that →E\S is termi-

nating.

Otherwise, the sequence contains infinitely many
S
→Th‖E\R,µ-steps. Using the

inclusions →E\S ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ→+ ◦ →=

E\S from Lemma 11.10.3 and

�E,µ ◦
S
→Th‖E\R,µ ⊆

S
→Th‖E\R,µ ◦ �E,µ from the proof of Theorem 12.9, an

infinite
S
→Th‖E\R,µ-sequence starting with a terminating term is obtained, which

is clearly impossible. �

The first property will be used freely in the following.

Proof of Lemma 12.24. The first claim is proved by induction on #2, which, by

Lemma A.9.2, is well-founded.

If t ∈ V then I2(t) = t and nothing needs to be shown. If t = f(t1, . . . , tn) with

f ∈ ∆2 then I2(t) = f(I2(t1), . . . , I
2(tn)) and the inductive assumption implies that

I2(ti) is a finite term for all 1 ≤ i ≤ n. This implies that I2(t) is a finite term.

Finally, let root(t) 6∈ ∆2. Then the sets Red2
S(t) and Eq2

E(t) are finite since →E\S is

finitely branching by Lemma A.7 and E is size-preserving, which implies that the E-

equivalence classes are finite. By the inductive assumption, I2(t′) is a finite term for

any I2(t′) ∈ Red2
S(t) and I2(ti) is a finite term for any g(I2(t1), . . . , I

2(tm)) ∈ Eq2
E(t)

and all 1 ≤ i ≤ m. But then I2(t) is a finite term as well.

Similarly, the second claim is proved by induction on #2, which, by Lemma

A.9.3, is well-founded on terminating terms.

If t ∈ V then I2(t) = t and nothing needs to be shown. If t = f(t1, . . . , tn) with

f ∈ ∆2 then I2(t) = f(t1, . . . , tn) and the inductive assumption implies that ti =

I2(ti) is a finite term for all 1 ≤ i ≤ n with i ∈ µ(f). If 1 ≤ i ≤ n with i 6∈ µ(f), then

ti = I2(ti), which is a finite term by the first claim. Together, this implies that I2(t)

302

Appendix A. Proofs

is a finite term. Finally, let root(t) 6∈ ∆2. Then the sets Red2
S(t), Red2

R(t), Eq2
E(t),

and Eq2
E(t) are finite since→E\S and

S
→Th‖E\R,µ are finitely branching by Lemma A.7

and E is size-preserving, which implies that the E-equivalence classes are finite. By

the inductive assumption, I2(t′) is a finite term for any I2(t′) ∈ Red2
S(t) ∪Red2

R(t)

and ti is a finite term for any g(t1, . . . , tm) ∈ Eq2
E(t) and all 1 ≤ i ≤ m as above.

Furthermore, I2(s) is a finite term for all I2(s) ∈ Eq2
E(t) by the first claim. But then

I2(t) is a finite term as well.

Next, some simple notation is introduced.

Definition A.10. For any term t and any terminating substitution σ define the

substitution σt as σt(x) = I2(σ(x)) if x ∈ Vµ(t) and σt(x) = I2(σ(x)) otherwise.

Lemma A.11. If sσ is terminating and Vµ(s) ∩ V¬µ(s) = ∅, then sσs = [s, σ].

Proof. Trivial. �

Proof of Lemma 12.25. Let s, t ∈ T (F ∪FTh ,V) and let σ be a Th-based substi-

tution such that s, t, sσ are terminating.

1. I2(sσ) = sI2(σ) is proved by induction on s. If s ∈ V then this is im-

mediate by the definition of I2(σ). Otherwise, s = f(s1, . . . , sn) with f ∈

∆2. But then I2(sσ) = I2(f(s1σ, . . . , snσ)) = f(I2(s1σ), . . . , I2(snσ)) =

f(s1I
2(σ), . . . , snI

2(σ)) = sI2(σ) by the inductive assumption.

2. I2(sσ) = [s, σ] is proved by induction on s. If s ∈ V then this is immediate

by the definition of [s, σ]. Otherwise, s = f(s1, . . . , sn) with f ∈ ∆2 and thus

I2(sσ) = I2(f(s1σ, . . . , snσ)) = f(s1σ, . . . , snσ). For i ∈ µ(f), the inductive

assumption gives siσ = I2(siσ) = [si, σ]. For i 6∈ µ(f), 1 implies siσ =

I2(siσ) = siI
2(σ). Together this implies I2(sσ) = f(s1σ, . . . , snσ) = [s, σ].

3. I2(sσ) →∗
RΠ

sI2(σ) is proved by induction on s. If s ∈ V then this is im-

mediate by the definition of I2(σ). Otherwise, s = f(s1, . . . , sn). If f ∈ ∆2

303

Appendix A. Proofs

then I2(sσ) = f(I2(s1σ), . . . , I2(snσ))→∗
RΠ

f(s1I
2(σ), . . . , snI

2(σ)) = sI2(σ)

by the inductive assumption. Otherwise, I2(sσ) = Compsort(sσ)(Red
2
S(sσ) ∪

Eq2
E(sσ))). Notice that f(I2(s1σ), . . . , I2(snσ)) ∈ Eq2

E(sσ), which gives the de-

sired I2(sσ) →+
RΠ

f(I2(s1σ), . . . , I2(snσ)) →∗
RΠ

f(s1I
2(σ), . . . , snI

2(σ)) using

Lemma 8.16 and the inductive assumption.

4. I2(sσ) →∗
RΠ

[s, σ] is proved by induction on s. If s ∈ V then this is im-

mediate by the definition of [s, σ]. Otherwise, s = f(s1, . . . , sn). If f ∈

∆2, then I2(sσ) = I2(f(s1σ, . . . , snσ)) = f(s1σ, . . . , snσ). If f 6∈ ∆2, then

f(s1σ, . . . , snσ) ∈ Eq2
E(sσ) and thus I2(sσ) →+

RΠ
f(s1σ, . . . , snσ) by Lemma

8.16. For i ∈ µ(f), the inductive assumption implies siσ = I2(siσ)→∗
RΠ

[si, σ].

For i 6∈ µ(f), 3 implies siσ = I2(siσ) →∗
RΠ

siI
2(σ). Together this implies

I2(sσ)→∗
RΠ

f(s1σ, . . . , snσ)→∗
RΠ

[s, σ].

5. The statement is proved by induction on s. If s ∈ V then I2(s) = s = I2(s).

Otherwise, s = f(s1, . . . , sn). If f ∈ ∆2 ⊆ ∆2, then I2(s) = I2(f(s1, . . . , sn)) =

f(s1, . . . , sn). If i ∈ µ(f), the inductive assumption implies si = I2(si) →
∗
RΠ

I2(si). If i 6∈ µ(f), then si = I2(si) is immediate. Therefore, I2(s) →∗
RΠ

f(I2(s1), . . . , I
2(sn)) = I2(s). If f 6∈ ∆2, then I2(s) ∈ Eq2

E(s) and thus

I2(s)→+
RΠ
I2(s) by Lemma 8.16.

6. It suffices to show that s ⊢⊣E t implies I2(s) ⊢⊣=
E(∆2) I

2(t) since the statement

then follows by induction on the number of ⊢⊣E-steps in s ∼E t.

Thus, let s ⊢⊣E t and perform an induction on the position p where the step

takes places. If root(s) 6∈ ∆2, then root(t) 6∈ ∆2 as well by the definition of ∆2.

Since s ∼E t, the strong E-coherence of→E\S implies that whenever s→E\S s
′,

then t →E\S t′ for some t′ ∼E s′. Thus, Red2
S(s) ⊆ Red2

S(t). Similarly, if

s ∼E g(s1, . . . , sn), then t ∼E g(s1, . . . , sn), which immediately implies Eq2
E(s) =

Eq2
E(t). Using these properties, Red2

S(s)∪Eq2
E(s) ⊆ Red

2
S(t)∪Eq2

E(t). Since the

same reasoning can be applied with s and t interchanged, Compsort(s)(Red
2
S(s)∪

304

Appendix A. Proofs

Eq2
E(s)) = Compsort(t)(Red

2
S(t) ∪ Eq2

E(t)) and thus I2(s) = I2(t).

Otherwise, root(s) ∈ ∆2. If p = Λ, then there exist an equation u ≈ v (or

v ≈ u) in E and a substitution σ such that s = uσ and t = vσ. By the defini-

tion of ∆2, u, v ∈ T (∆2,V). Thus, I2(s) = I2(uσ) = uI2(σ) ⊢⊣E(∆2) vI
2(σ) =

I2(vσ) = I2(t) by 1. If p 6= Λ, then s = f(s1, . . . , si, . . . , sn) and t =

f(s1, . . . , ti, . . . , sn) such that si ⊢⊣E ti. Now I2(si) ⊢⊣
=
E(∆2)I

2(ti) by the in-

ductive assumption and therefore I2(s) ⊢⊣=
E(∆2) I

2(t) because the definition

of the mapping I2 implies that I2(s) = f(I2(s1), . . . , I
2(si), . . . , I

2(sn)) and

I2(t) = f(I2(s1), . . . , I
2(ti), . . . , I

2(sn)).

7. It suffices to show that s ⊢⊣E t implies I2(s) ⊢⊣=
E(∆2) I

2(t) since the statement

then follows by induction on the number of ⊢⊣E-steps in s ∼E t since ∆2 ⊆ ∆2.

Thus, let s ⊢⊣E t and perform an induction on the position p where the step

takes places. If root(s) 6∈ ∆2, then root(t) 6∈ ∆2 as well by the definition of ∆2.

Since s ∼E t, the strong E-coherence of→E\S implies that whenever s→E\S s
′,

then t →E\S t′ for some t′ ∼E s′. Thus, Red2
S(s) ⊆ Red2

S(t). Similarly,

Lemma 11.10.2 implies Red2
R(s) ⊆ Red2

R(t). Finally, if s ∼E g(s1, . . . , sn),

then t ∼E g(s1, . . . , sn), which immediately implies Eq2
E(s) = Eq2

E(t). Also,

Eq2
E(s) = Eq2

E(t) since s ∼E t. Using these properties, Red2
S(s) ∪ Red2

R(s) ∪

Eq2
E(s)∪Eq

2
E(s) ⊆ Red

2
S(t)∪Red2

R(t)∪Eq2
E(t)∪Eq

2
E(t). Since the same reasoning

can be applied with s and t interchanged, Compsort(s)(Red
2
S(s) ∪ Red2

R(s) ∪

Eq2
E(s) ∪ Eq

2
E(s)) = Compsort(t)(Red

2
S(t) ∪Red2

R(t) ∪ Eq2
E(t) ∪ Eq

2
E(t)) and thus

I2(s) = I2(t).

Otherwise, root(s) ∈ ∆2. If p = Λ, then there exist an equation u ≈ v (or

v ≈ u) in E and a substitution σ such that s = uσ and t = vσ. By the

definition of ∆2, u, v ∈ T (∆2,V). Since E is strongly conservative, uσu = [u, σ]

and vσv = [v, σ] by Lemma A.11. Moreover, for all variables x, Definition

11.7.2a implies σu(x) = σv(x), i.e., σu = σv. Hence,

305

Appendix A. Proofs

I2(s) = I2(uσ)

= [u, σ] by 2

= uσu

= uσv

⊢⊣E(∆2) vσv

= [v, σ]

= I2(vσ) by 2

= I2(t)

If p 6= Λ then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn), and si ⊢⊣E ti.

Notice that I2(s) = f(s1, . . . , si, . . . , sn) and I2(t) = f(s1, . . . , ti, . . . , sn). If

i ∈ µ(f), then si = I2(si) ⊢⊣
=
E(∆2) I

2(ti) = ti by the inductive assumption. If

i 6∈ µ(f), then si = I2(si) ⊢⊣
=
E(∆2) I

2(ti) = ti by 6 Thus, I2(s) ⊢⊣=
E(∆2) I

2(t) in

either case.

8. It suffices to show that s →E\S t implies I2(s) 1 I
2(t) since the statement

then follows by induction on the number of →E\S-steps in s→∗
E\S t.

Thus, let s →E\S t and perform an induction on the position p where the

reduction takes places. If root(s) 6∈ ∆2, then I2(t) ∈ Red2
S(s), which implies

I2(s)→+
RΠ
I2(t) by Lemma 8.16.

If root(s) ∈ ∆2, first consider the case p = Λ. Then, there exist a rule

l → r ∈ S and a substitution σ such that s ∼E lσ →S rσ = t. Since

root(s) ∈ ∆2, the definition of ∆2 implies that root(l) ∈ ∆2, l → r ∈ S(∆2),

and r ∈ T (∆2,V). Using 1, 3, and 6, I2(s) ∼E(∆2) I
2(lσ) →∗

RΠ
lI2(σ) →S(∆2)

rI2(σ) = I2(rσ) = I2(t), and thus I2(s) 1 I
2(t). If root(s) ∈ ∆2 and p 6= Λ,

then s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn), where si →E\S

ti. By the inductive assumption, I2(si) 1 I
2(ti) and therefore I2(s) =

f(I2(s1), . . . , I
2(si), . . . , I

2(sn)) 1 f(I2(s1), . . . , I
2(ti), . . . , I

2(sn)) = I2(t).

9. It suffices to show that s →E\S t implies I2(s) 1 I
2(t) since the statement

306

Appendix A. Proofs

then follows by induction on the number of →E\S-steps in s→∗
E\S t.

Thus, let s →E\S t and perform an induction on the position p where the

reduction takes places. If root(s) 6∈ ∆2, then I2(t) ∈ Red2
S(s), which implies

I2(s)→+
RΠ
I2(t) by Lemma 8.16.

If root(s) ∈ ∆2, first consider the case p = Λ. Then, there exist a rule l → r ∈ S

and a substitution σ such that s ∼E lσ →S rσ = t. By the definitions of ∆2 and

∆2, root(l) ∈ ∆2, l → r ∈ S(∆2), and r ∈ T (∆2,V). Since S(∆2) is strongly

conservative, lσl = [l, σ] and rσr = [r, σ] by Lemma A.11. Moreover, σl(x)→
∗
RΠ

σr(x) for all variables x. To see this, notice that by strong conservativeness of

S(∆2), the substitutions σl and σr differ at most on variables x ∈ Vµ(l)−Vµ(r).

For these variables σl(x) = I2(σ(x))→∗
RΠ
I2(σ(x)) = σr(x) by 5. Hence,

I2(s) ∼E(∆2) I2(lσ) by 7

→∗
RΠ

[l, σ] by 4

= lσl

→∗
RΠ

lσr

→S(∆2) rσr

= [r, σ]

= I2(rσ) by 2

= I2(t)

If p 6= Λ, then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn), and si →E\S ti.

Also, I2(s) = f(s1, . . . , si, . . . , sn) and I2(t) = f(s1, . . . , ti, . . . , sn). If i ∈ µ(f),

then si = I2(si) 1 I
2(ti) = ti by the inductive assumption. If i 6∈ µ(f), then

si = I2(si) 1 I
2(ti) = ti by 8. Thus, I2(s) 1 I

2(t) in either case.

10. It suffices to show that s
S
→Th‖E\R,µ t implies I2(s) 2 I

2(t) since the statement

then follows by induction on the number of
S
→Th‖E\R,µ-steps in s

S
→Th‖E\R,µ→∗ t.

Thus, let s
S
→Th‖E\R,µ t and perform an induction on the position p where the

reduction takes places. If root(s) 6∈ ∆2, then I2(t) ∈ Red1
R(s), which implies

307

Appendix A. Proofs

I2(s)→+
RΠ
I2(t) by Lemma 8.16.

If root(s) ∈ ∆2, first consider the case p = Λ. Then, there exist a rule l →

rJϕK ∈ R and a Th-based substitution σ with s = f(s∗)
>Λ
−→E\S−→! ◦

>Λ
∼E lσ →R

rσ = t such that ϕσ is Th-valid. Since root(l) = root(s) = f and f ∈ ∆2, the

definitions of ∆2 and ∆2 implies that l → rJϕK ∈ R(∆2), r ∈ F(∆2,V), and

Fµ(r) ⊆ ∆2. Since R(∆2) is strongly conservative, lσl = [l, σ] and rσr = [r, σ]

by Lemma A.11. Moreover, σl(x) →
∗
RΠ

σr(x) for all variables x. To see this,

notice that by strong conservativeness of R(∆2), the substitutions σl and σr

differ at most on variables x ∈ Vµ(l) − Vµ(r). For these variables, σl(x) =

I2(σ(x)) →∗
RΠ
I2(σ(x)) = σr(x) by 5. Also, notice that ϕσr is Th-valid since

σr(x) = σ(x) for variables of sort base since σ is Th-based. Hence,

I2(s) ∗
1 ◦ ∼E(∆2) I2(lσ) by 7 and 9

→∗
RΠ

[l, σ] by 4

= lσl

→∗
RΠ

lσr

→R(∆2),µ rσr

= [r, σ]

= I2(rσ) by 2

= I2(t)

If p 6= Λ, then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , sn), and there

exists i ∈ µ(f) such that si
S
→Th‖E\R,µ ti. Also, I2(s) = f(s1, . . . , si, . . . , sn)

and I2(t) = f(s1, . . . , ti, . . . , sn) where si = I2(si) 2 I
2(ti) = ti by the

inductive assumption.

11. If s
S
→Th‖E\R,µ→∗ ◦ →!

E\S ◦ ∼E t, then I2(s) ∗
2 ◦

∗
1 ◦ ∼E(∆2) I

2(t) using 7, 9,

and 10. �

Proof of Theorem 12.26. In the second case soundness is obvious. Otherwise, it

needs to be shown that every infinite minimal (P,R,S, E , µ)-chain contains only

308

Appendix A. Proofs

finitely many dependency pairs from P ′. Let s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . be

an infinite minimal (P,R,S, E , µ)-chain with the Th-based substitution σ. Thus,

tiσ
S
→Th‖E\R,µ→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E si+1σ and ϕiσ is Th-valid for all i ≥ 1. By the definition

of ∆2, root(t′i) ∈ ∆2 for all t′i 6∈ V such that ti �µ t
′
i. Similarly to the proof of

Lemma 12.25.11 and using Lemma 12.25, tiσti = [ti, σ] = I2(tiσ) ∗
2 ◦

∗
1 ◦ ∼E(∆2)

I2(si+1σ)→∗
RΠ

[si+1, σ] = si+1σsi+1
→∗

RΠ
si+1σti+1

since P is strongly conservative.

As in the previous proofs, tiσti & si+1σti+1
. Notice that siσti & tiσti or siσti ≻ tiσti

for all i ≥ 1 since ϕiσti = ϕiσ is Th-valid and siJϕiK & tiJϕiK for all si → tiJϕiK ∈

P−P ′ and siJϕiK ≻ tiJϕiK for all si → tiJϕiK ∈ P
′. Hence, the infinite minimal chain

gives rise to

s1σt1 ⊲⊳1 t1σt1 & s2σt2 ⊲⊳2 t2σt2 & . . .

where ⊲⊳i ∈ {&,≻}. If the above infinite minimal chain contains infinitely many

dependency pairs from P ′, then ⊲⊳i = ≻ for infinitely many i. In this case, the

compatibility of ≻ with & produces an infinite ≻ chain, contradicting the well-

foundedness of ≻. Thus, only finitely many dependency pairs from P ′ occur in the

above infinite minimal chain. �

A.12 Proofs from Chapter 13

Proof of Lemma 13.7. Let t be a Z-free term.

1. t is trivially Z-normal since it does not contain any occurrence of + or −, which

implies that t satisfies the conditions of Definition 13.5.

2. Obvious. �

Proof sketch of Lemma 13.8. In a first step, a term t′ with t →!
EThZ

\SThZ

t′ is

computed. Then, t′ is brought into right-associated form such that the arguments

309

Appendix A. Proofs

of nested occurrences of + are sorted w.r.t. >T . Formally, this can be achieved by

suitably applying the equations from EThZ
. �

Proof of Lemma 13.11. Let (R,S, E) be a Z-CERS and let s be a Z-normal term

such that s →R,Z t. Let p be the position used for s →R,Z t, i.e., s|p = lσ for some

l → rJϕK ∈ R.

1. Since sort(l) 6= int, also sort(s|p) 6= int and the path from Λ to p in s does not

contain any function symbol with resulting sort int since F does not contain

any function symbols with resulting sort int. Thus, since s is Z-normal, the

only subterm of t = s[rσ]p that might prevent t from being Z-normal is rσ.

Notice that σ(x) is Z-normal for all x ∈ V(r). Thus, rσ is Z-normal by Lemma

13.7 since r is Z-free.

2. Obvious since rewriting does not introduce new function symbols that do not

occur in the rewrite rules.

3. Since s is Z-normal, s|p is Z-normal and thus s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ. The remain-

ing conditions in the definitions of →R,Z and
S
→Th‖E\R are identical and thus

s
S
→Th‖E\R t. �

Proof of Lemma 13.12. If s
S
→Th‖E\R t, then s|p

>Λ
−→E\S−→! ◦

>Λ
∼E lσ, r = s[rσ]p,

and ϕσ is ThZ-valid for some position p ∈ Pos(s) and some l → rJϕK ∈ R.

Since s|p ↔
∗
EThZ

∪SThZ

lσ, norm(s|p) = norm(lσ) by Lemma 13.8. Since l is Z-free,

norm(lσ) = lnorm(σ) and thus norm(s|p) = lnorm(σ). Notice that p is also a po-

sition in norm(s) because sort(s|p) 6= int. Furthermore, norm(s)|p = norm(s|p),

which implies norm(s)|p = lnorm(σ). Since ϕnorm(σ) is ThZ-valid, norm(s) →R,Z

norm(s)[rnorm(σ)]p = norm(s[rnorm(σ)]p) = norm(s[rσ]p) = norm(t). �

Proof of Theorem 13.20. Let R be a normal Z-CERS and let R = {l → r | l →

rJϕK ∈ R} be the ordinary TRS obtained from R by dropping the constraints.

First, it is shown that R is quasi-reductive iff R is quasi-reductive. The direction

310

Appendix A. Proofs

from left to right is immediate since →R,Z ⊆ →R. For the direction from right to

left, let f(t1, . . . , tn) be a Z-normal ground term with f ∈ D(R) and t1, . . . , tn ∈

T (C(R) ∪FThZ
). Since R is quasi-reductive, there exists a rule l → r ∈ R such that

f(t1, . . . , tn) = lσ. By Definition 13.18.4, there exists a rule l → r′JϕK ∈ R such that

f(t1, . . . , tn) = lσ and ϕσ is ThZ-valid. Therefore, f(t1, . . . , tn) is reducible by →R,Z.

It thus suffices to determine whether R is quasi-reductive. But this can easily be

done, for instance using the narrowing-based method for left-linear constructor-based

ordinary TRSs in [78, 94] that furthermore computes a set of missing patterns, i.e.,

left-hand sides for rules that need to be added in order to make R quasi-reductive.�

Proof sketch of Theorem 13.21. It will be shown below that normal Z-CERSs

satisfy the following property:

Whenever s →R,Z t1 and s →R,Z t2 such that the reductions take place

at the same position, then t1 = t2.

Thus, normal Z-CERSs satisfy the crucial property needed in order to show conflu-

ence of orthogonal ordinary TRSs and the proof used for this result in [17, Corollary

6.3.11] applies for normal Z-CERSs as well since normal Z-CERSs are left-linear.

To show the above property, it can without loss of generality be assumed that the

reductions s→R,Z t1 and s→R,Z t2 take place at the root position. Thus, there exist

rules l1 → r1Jϕ1K, l2 → r2Jϕ2K and substitutions σ1, σ2 such that s = l1σ1 = l2σ2 and

ϕ1σ1, ϕ2σ2 are ThZ-valid. By Definition 13.18.2, l1 = l2 and therefore σ1 = σ2. Now,

Definition 13.18.3 implies that the rules l1 → r1Jϕ1K and l2 → r2Jϕ2K are identical,

i.e., t1 = r1σ1 = r2σ2 = t2. �

Proof of Lemma 13.26. Consider a ground substitution σ. Since R is quasi-

reductive, there exists a constructor ground substitution σ̂ such that σ(x)→∗
R,Z σ̂(x)

for all x ∈ V. Then sσ →∗
R,Z sσ̂ ↔

∗
EThZ

∪SThZ

norm(sσ̂) = snorm(σ̂)↔∗
R,Z tnorm(σ̂) =

311

Appendix A. Proofs

norm(tσ̂)↔∗
EThZ

∪SThZ

tσ̂ ←∗
R,Z tσ by Lemma 13.7, Lemma 13.8, and the assumption.

For this, notice that norm(σ̂) is a Z-normal constructor ground substitution. �

Proof of Lemma 13.31. Since both u and l are Z-free, σ(x) is Z-free for all

variables x. But then C[r]σ and tσ are Z-free as well. �

Proof of Lemma 13.32. Let R be a quasi-reductive Z-CERS, let s ≡ tJϕK be an

atomic constraint, and let u be a basic term such that s = C[u].

1. Since u is basic and σ is a Z-normal constructor ground substitution, the

term uσ has the form f(u1, . . . , un) where u1, . . . , un are Z-normal constructor

ground terms. Thus, since R is quasi-reductive, there exists a rule l → rJψK ∈

R such that uσ is an instance of l, i.e., uσ = lτ for some τ . Furthermore,

ψτ is ThZ-valid. Without loss of generality it can be assumed that s and l

are variable-disjoint, and the substitution σ can thus be extended to obtain

uσ = lσ. Furthermore, ψσ is ThZ-valid. Since σ is an unifier of u and l, there

exists a substitution θ such that σ = ιθ where ι = mgu(u, l). Thus, sσ =

C[u]σ = C[u]ιθ = Cιθ[uιθ] = Cιθ[lιθ] →R,Z Cιθ[rιθ] ↔Expdu(s,t,ϕ),Z tιθ = tσ.

For this, notice that ϕιθ = ϕσ and ψιθ = ψσ are ThZ-valid.

2. Let v ↔Expdu(s,t,ϕ),Z w. Then v = Ĉ[C[r]σσ̂] and w = Ĉ[tσσ̂] (or w = Ĉ[C[r]σσ̂]

and v = Ĉ[tσσ̂]) for some context Ĉ and some substitution σ̂, where σ =

mgu(u, l), s = C[u], l → rJψK ∈ R, and ϕσσ̂ ∧ ψσσ̂ is ThZ-valid. Then

v = Ĉ[C[r]σσ̂] ←R,Z Ĉ[C[l]σσ̂] = Ĉ[Cσ[lσ]σ̂] = Ĉ[Cσ[uσ]σ̂] = Ĉ[C[u]σσ̂] =

Ĉ[sσσ̂]→{s→tJϕK},Z Ĉ[tσσ̂] = w. �

Proof of Lemma 13.37. Perform a case analysis on the inference rule that is

applied in 〈En, Hn〉 ⊢I 〈En+1, Hn+1〉. If this inference rule is Simplify, then En =

E ⊎{s ≡̇ tJϕK}, En+1 = E ∪{s′ ≡̇ tJϕK}, and Hn+1 = Hn, where sJϕK→R∪H,Z s
′JϕK.

First, consider the inclusion “⊆”. For this, let v ↔R∪En∪Hn,Z w for Z-normal ground

terms v, w. If v ↔R∪E∪Hn,Z w, then v ↔R∪En+1∪Hn+1,Z w is immediate. Otherwise,

312

Appendix A. Proofs

v = C[sσ], w = C[tσ] (or w = C[sσ], v = C[tσ]), and ϕσ is ThZ-valid for a

ground substitution σ. Now sJϕK→R∪Hn,Z s
′JϕK implies that s = D[lτ], s′ = D[rτ],

and ϕ ⇒ ψτ is ThZ-valid for some l → rJψK ∈ R ∪ Hn = R ∪ Hn+1 and some

ground substitution τ . Since ϕ ⇒ ψτ and ϕσ are ThZ-valid, ψτσ is ThZ-valid as

well. Therefore, v = C[sσ] = C[Dσ[lτσ]] →R∪Hn+1,Z C[Dσ[rτσ]] = C[s′σ] →En+1,Z

C[tσ] = w. For the inclusion “⊇”, it again suffices to consider the case where

v = C[s′σ], w = C[tσ] (or w = C[s′σ], v = C[tσ])), and ϕσ is ThZ-valid. Similar to

above, v = C[s′σ] = C[Dσ[rτσ]]←R∪Hn,Z C[Dσ[lτσ]] = C[sσ]→En,Z C[tσ] = w.

For Delete, the inclusion “⊇” is obvious since an atomic conjecture is removed

from En. For “⊆”, it suffices to notice that v ↔{s ≡̇ sJϕK},Z w for Z-normal ground

terms v and w implies v = w.

For Theory1, the inclusion “⊇” is again obvious. For “⊆”, let v ↔{s ≡̇ tJϕK},Z w

for Z-normal ground terms v and w. Thus, there exists a ground substitution σ such

that v = C[sσ], w = C[tσ] (or w = C[sσ], v = C[tσ]), and ϕσ is ThZ-valid. Since

ϕ ⇒ s ≃ t is LIAC-valid and ϕσ is ThZ-valid, sσ ≃ tσ is LIAC-valid. Since σ is

Z-normal, this implies sσ = tσ and thus v = w.

For Expand, the inclusion “⊆” is obvious. For “⊇”, it suffices to show that

v ↔Expdu(s,t,ϕ),Z w implies v ↔∗
R∪En∪Hn,Z w for all Z-normal ground terms v, w. But

this follows from Lemma 13.32.2 since s ≡̇ tJϕK ∈ En. �

Proof of Lemma 13.38. The proof is by induction on the length k of the derivation

〈En, Hn〉 ⊢
∗
I 〈∅, H〉. If k = 0, then En = ∅ and the claim is obvious. Otherwise,

〈En, Hn〉 ⊢I 〈En+1, Hn+1〉 ⊢
∗
I 〈∅, H〉 where ↔En+1,Z ⊆ →

∗
R∪H,Z ◦ ←

∗
R∪H,Z by the

inductive assumption. Now, perform a case analysis on the inference rule that is

applied in 〈En, Hn〉 ⊢I 〈En+1, Hn+1〉.

If this inference rule is Simplify, then En = E⊎{s ≡̇ tJϕK}, En+1 = E∪{s′ ≡̇ tJϕK},

and Hn+1 = Hn, where sJϕK →R∪Hn,Z s′JϕK. Let v ↔En,Z w for Z-normal ground

313

Appendix A. Proofs

terms v, w. If v ↔E,Z w, then the claim is immediate from the inductive assumption.

Otherwise, v ↔{s ≡̇ tJϕK},Z w, i.e., v = C[sσ] and w = C[tσ] (or v = C[tσ] and

w = C[sσ]) where ϕσ is ThZ-valid. Since v′ := C[s′σ] ↔En+1,Z w, the inductive

assumption implies v′ →∗
R∪H,Z ◦ ←

∗
R∪H,Z w. It now suffices to show v →R∪H,Z v

′ since

then v →R∪H,Z v′ →∗
R∪H,Z ◦ ←

∗
R∪H,Z w. For this, recall that sJϕK →R∪Hn,Z s′JϕK

implies s = D[lτ], s′ = D[rτ], and ϕ⇒ ψτ is ThZ-valid for some l → rJψK ∈ R∪Hn

and some ground substitution τ . As in the proof of Lemma 13.37, v = C[sσ] =

C[Dσ[lτσ]]→R∪Hn,Z C[Dσ[rτσ]] = C[s′σ] = v′ and the claim follows since Hn ⊆ H .

If the inference rule Delete was applied, then En = E ⊎ {s ≡̇ sJϕK}, En+1 = E,

and Hn+1 = Hn. If v ↔E,Z w, then the claim follows from the inductive assumption.

Otherwise, v = w and the claim is immediate.

If the inference rule Theory1 was applied, then En = E ⊎ {s ≡̇ tJϕK}, En+1 = E,

and Hn+1 = Hn, where ϕ⇒ s ≃ t is LIAC-valid. Again, if v ↔E,Z w, then the claim

follows from the inductive assumption. Otherwise, v = C[sσ] and w = C[tσ] (or

v = C[tσ] and w = C[sσ]) where ϕσ is ThZ-valid. Thus, sσ ≃ tσ is LIAC-valid, which

implies sσ = tσ since σ is Z-normal. Hence v = w and thus v →∗
R∪H,Z ◦ ←

∗
R∪H,Z w.

Finally, assume that the inference rule Expand was applied. Thus, En = E ⊎

{s ≡̇ tJϕK}, En+1 = E ∪ Expdu(s, t, ϕ), and Hn+1 = Hn. As in the other cases,

v ↔E,Z w is taken care of by the inductive assumption. Otherwise, v = C[sσ]

and w = C[tσ] (or v = C[tσ] and w = C[sσ]) where ϕσ is ThZ-valid. By Lemma

13.32.1, v →R,Z ◦ ↔Expdu(s,t,ϕ),Z w and thus v →R,Z ◦ ↔En+1,Z w. Now the inductive

assumption implies v →∗
R∪H,Z ◦ ←

∗
R∪H,Z w. �

Proof of Lemma 13.39. Let s → tJϕK ∈ H and v →{s→tJϕK},Z w for Z-normal

ground terms v and w, i.e., v = C[sσ] and w = C[tσ] for a Z-normal ground substi-

tution σ such that ϕσ is ThZ-valid.

First, assume that σ(y) is reducible by →R,Z for at least one variable y ∈ V(s) ∪

314

Appendix A. Proofs

V(t). Since →R,Z is terminating, there exists a substitution σ̂ such that σ(x) →∗
R,Z

σ̂(x) and σ̂(x) is irreducible by →R,Z for all variables x ∈ V(s) ∪ V(t). Then, if

C[sσ̂] →R,Z ◦ →
∗
R∪H,Z ◦ ←

∗
R∪H,Z C[tσ̂] has been shown, v = C[sσ] →R,Z ◦ →

∗
R∪H,Z

◦ ←∗
R∪H,Z C[tσ] = w follows as well since C[sσ]→∗

R,Z C[sσ̂] and Ct[σ̂]←∗
R,Z C[tσ].

Thus, it can be assumed that σ(x) is irreducible by →R,Z for all x ∈ V(s)∪V(t).

Since R is quasi-reductive, σ is a Z-normal constructor ground substitution. There

exists an n such that 〈E, ∅〉 ⊢∗I 〈En, Hn〉 ⊢I 〈En+1, Hn+1〉 ⊢
∗
I 〈∅, H〉 where Hn+1 =

Hn ∪ {s→ tJϕK}, En = E ′
n ⊎ {s ≡ tJϕK}, and En+1 = E ′

n ∪ Expdu(s, t, ϕ) such that

→R∪H∪{s→tJϕK},Z is terminating. Then, by Lemma 13.32.1, sσ →R,Z ◦ ↔Expdu(s,t,ϕ),Z

tσ and thus v = C[sσ] →R,Z ◦ ↔En+1,Z C[tσ] = w. Therefore, v →R,Z ◦ →
∗
R∪H,Z

◦ ←∗
R∪H,Z w by Lemma 13.38. �

Proof of Theorem 13.40. By Lemma 13.37, ↔R∪E,Z = ↔R∪H,Z on Z-normal

ground terms. Thus, it suffices to show that ↔R∪H,Z = ↔R,Z on Z-normal ground

terms. For this, the following principle of Koike and Toyama [115] as reported in

[7, 9] is used (where →1 = →R,Z, →2 = →H,Z, and A is the set of Z-normal ground

terms):

Let →1,→2 be binary relations on a set A and let →1∪2 = →1 ∪ →2.

Assume that

1. →1∪2 is well-founded.

2. →2 ⊆ →1 ◦ →
∗
1∪2 ◦ ←

∗
1∪2

Then ↔∗
1 = ↔∗

1∪2.

The first condition, i.e., that →R∪H,Z is terminating, follows from the condition of

Expand. The second condition, i.e., →H,Z ⊆ →R,Z ◦ →
∗
R∪H,Z ◦ ←

∗
R∪H,Z, follows from

Lemma 13.39. �

Proof of Theorem 13.42. Let 〈E, ∅〉 ⊢∗I 〈En, Hn〉 ⊢I ⊥ where En = E ′
n⊎{s ≡̇ tJϕK}

315

Appendix A. Proofs

such that ϕ⇒ s ≃ t is not LIAC-valid. Therefore, there exists a Z-normal constructor

ground substitution σ such that ϕσ is ThZ-valid and sσ ≃ tσ is not LIAC-valid,

which implies sσ 6= tσ since σ is Z-normal. Since sσ ↔En,Z tσ, Lemma 13.37 implies

sσ ↔∗
R∪E,Z tσ. If all atomic conjectures in E are inductive theorems, then this

implies sσ ↔∗
R,Z tσ, which gives sσ →∗

R,Z ◦ ←
∗
R,Z tσ because →R,Z is confluent and

thus Church-Rosser.3 But sσ →∗
R,Z ◦ ←

∗
R,Z tσ is not possible since sσ 6= tσ and both

terms are irreducible by →R,Z since s and t do not contain defined symbols and σ is

a Z-normal constructor ground substitution. �

A.13 Proofs from Chapter 14

Proof of Theorem 14.6. Let g(x∗) ≡ t be a simple conjecture and consider a rule

g(l∗) → C[g(r∗1), . . . , g(r
∗
m)]JϕK ∈ R(g). Provided g(x∗) and g(l∗) are unifiable and

ϕσ is ThZ-satisfiable for σ = mgu(g(x∗), g(l∗)), application of Expand to g(x∗) ≡ t

produces (amongst others) Cσ[g(r∗1)σ, . . . , g(r
∗
m)σ] ≡ tσJϕσK. After application of

Expand, the set H of hypotheses consists of the rule g(x∗)→ t.

Now, if xi = xj for i < j, then 〈i, j〉 ∈ ImpEq(g). First, since ϕσ is ThZ-satisfiable,

li ≃ lj ∧ ϕ is ThZ-satisfiable. Thus, since xi = xj implies liσ = ljσ, the definition of

ImpEq yields rk,iσ = rk,jσ for all 1 ≤ k ≤ m. Hence, Simplify applies m times to the

conjecture Cσ[g(r∗1)σ, . . . , g(r
∗
m)∗σ] ≡ tσJϕσK using the hypothesis g(x∗) → t ∈ H

and Cσ[tτ1, . . . , tτm] ≡ tσJϕσK is obtained, where τi = {x∗ 7→ r∗i σ}. Since both sides

are from T (Ĉ(R),V), either Theory1 or Theory2 can be applied to this conjecture.�

Proof of Theorem 14.12. Let {g1(x
∗
1) ≡ t1, . . . , gn(x∗n) ≡ tn} be a simple set

of conjectures. Consider the atomic conjecture gk(x
∗
k) ≡ tk from this set and the

rule gk(l
∗) → C[gk1

(r∗1), . . . , gkm(r∗m)]JϕK ∈ R(G). Provided gk(x
∗
k) and gk(l

∗) are

3A relation → is Church-Rosser iff s ↔∗ t implies s →∗ ◦ ←∗ t for all s, t. It is
well-known that this property is equivalent to confluence, see, e.g., [17].

316

Appendix A. Proofs

unifiable and ϕσ is ThZ-satisfiable for σ = mgu(gk(x
∗
k), gk(l

∗)), application of Expand

to gk(x
∗
k) ≡ tk produces (amongst others) Cσ[gk1

(r∗1)σ, . . . , gkm(r∗m)σ] ≡ tkσJϕσK.

After application of Expand to each atomic conjecture in the simple set of conjectures,

the set H consists of the rules g1(x
∗
1)→ t1, . . . , gn(x∗n)→ tn.

Now, if xkκ,iκ = xkκ,jκ for any 1 ≤ κ ≤ m and iκ < jκ, then there exists an

〈gkκ, iκ, jκ, Γ〉 ∈ ImpEq(G) such that xk′,i′ = xk′,j′ for all 〈gk′, i′, j′〉 ∈ Γ . In partic-

ular, all such restrictions for gk are satisfied. As in the proof of Theorem 14.6, the

definition of ImpEq thus implies rκ,iκ = rκ,jκ since xk,i′ = xk,j′ implies li′σ = lj′σ.

Thus, Simplify applies m times to Cσ[gk1
(r∗1)σ, . . . , gkm(r∗m)∗σ] ≡ tkσJϕσK using the

hypotheses g1(x
∗
1) → t1, . . . , gn(x∗n) → tn ∈ H and Cσ[tk1

τ1, . . . , tkmτm] ≡ tσJϕσK is

obtained, where τi = {x∗ki
7→ r∗i σ}. Since both sides of are from T (Ĉ(R),V), either

Theory1 or Theory2 can be applied to this conjecture. �

Proof of Lemma 14.18. The statement is proved by induction on CQ. If CQ is a

Q-context, then

g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm) →∗
R,Z

D[g(x1, . . . , xj−1, zi1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]

by Definition 14.15 where zi 6∈ V(D) for all 1 ≤ i ≤ n. Thus, it only remains to be

shown that D is a repeated g-context. But this easily follows since g is LIAC-based

and CQ is a context over Ĉ(R).

If CQ is a repeated Q-context of the form C[C1, . . . , Ck] for repeated Q-contexts

C,C1, . . . , Ck, then the inductive assumption implies that there exists a repeated

g-context D with zi 6∈ V(D) for all 1 ≤ i ≤ n such that

g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm) =

g(x1, . . . , xj−1, C[C1, . . . , Ck][z1, . . . , zn], xj+1, . . . , xm) →∗
R,Z

D[g(x1, . . . , xj−1, u1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, ud, xj+1, . . . , xm)]

317

Appendix A. Proofs

with ul = Cel
[z1, . . . , zn] for all 1 ≤ l ≤ d. Furthermore, the inductive assumption

implies that there exist repeated g-context D1, . . . , Dd with zi 6∈ V(Dl) for all 1 ≤

i ≤ n and 1 ≤ l ≤ d such that

g(x1, . . . , xj−1, ul, xj+1, . . . , xm) →∗
R,Z

Dl[g(x1, . . . , xj−1, zl1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zlkl
, xj+1, . . . , xm)]

for all 1 ≤ l ≤ d, where l1, . . . , lkl
∈ {1, . . . , n}. Therefore,

g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm) →∗
R,Z

D[g(x1, . . . , xj−1, u1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, ud, xj+1, . . . , xm)] →∗
R,Z

D[D1, . . . ,Dd][g(x1, . . . , xj−1, z11
, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zdkd

, xj+1, . . . , xm)]

for a repeated g-context Cg := D[D1, . . . , Dd]. Furthermore, notice that V(Cg) =

V(D[D1, . . . , Dd]) = V(D) ∪ V(D1) ∪ . . . ∪ V(Dd) does not contain any of the zi. �

Proof of Lemma 14.20. Define a sequence of terms by sd = fd(xd,1, . . . , xd,md
)

and si = fi(xi,1, . . . , xi,ji−1, si+1, xi,ji+1, . . . , xi,mi
) for all 1 ≤ i ≤ d − 1. The lemma

is proved by showing the following statement for all 1 ≤ i ≤ d:

(†)

si〈C[g1(r
∗
1), . . . , gn(r

∗
n)]〉 →∗

R,Z D[si〈gj1(r
∗
j1)〉, . . . , si〈gjl

(r∗jl
)〉] for some in-

dices j1, . . . , jl ∈ {1, . . . , n} and a repeated fi-context D with V(D) ⊆

V(C) ∪ V̂.

Here, V̂ = {xk,j | 1 ≤ k ≤ d− 1 and 1 ≤ j ≤ mk}.

Since s〈C[g1(r
∗
1), . . . , gn(r

∗
n)]〉 = s1〈C[g1(r

∗
1), . . . , gn(r∗n)]〉σ for some substitution

σ that instantiates at most the xi,j for i 6= d by terms from T (Ĉ(R),V), the statement

of the lemma thus follows.

The statement (†) is proved by induction on d − i. In the base case, i = d and

sd〈C[g1(r
∗
1), . . . , gn(r

∗
n)]〉 = C[g1(r

∗
1), . . . , gn(r∗n)] already has the required form.

In the step case, i < d and the inductive assumption for i+ 1 implies

318

Appendix A. Proofs

si〈C[g1(r
∗
1), . . . , gn(r

∗
n)]〉 =

fi(y
∗
i , si+1〈C[g1(r

∗
1), . . . , gn(r

∗
n)]〉, z∗i) →∗

R,Z

fi(y
∗
i , E[si+1〈gj1(r

∗
j1)〉, . . . , si+1〈gjl

(r∗jl
)〉], z∗i)

for a repeated fi+1-context E with V(E) ⊆ V(C)∪V̂ . Here, y∗i contains xi,1, . . . , xi,ji−1

and z∗i contains xi,ji+1, . . . , xi,mi
. By Lemma 14.18, there exists a repeated fi-context

D such that

fi(y
∗
i , E[si+1〈gj1(r

∗
j1

)〉, . . . , si+1〈gjl
(r∗jl

)〉], z∗i) →∗
R,Z

D[fi(y
∗
i , si+1〈gd1

(r∗d1
)〉, zi), . . . , fi(y

∗
i , si+1〈gde(r

∗
de

)〉, z∗i)] =

D[si〈g(d1)r
∗
d1
〉, . . . , si〈gde(r

∗
de

)〉]

where furthermore V(D) ⊆ V(E) ∪ V̂ ⊆ V(C) ∪ V̂. �

Proof of Theorem 14.23. Let D[f(x∗)] ≡ t be a simple nested conjecture and

consider a rule f(l∗)→ C[f(r∗1), . . . , f(r∗m)]JϕK ∈ R(f). Provided f(x∗) and f(l∗) are

unifiable and ϕσ is ThZ-satisfiable for σ = mgu(f(x∗), f(l∗)), application of Expand to

D[f(x∗)] ≡ t produces (amongst others) D[Cσ[f(r∗1)σ, . . . , f(r∗m)σ] ≡ tσJϕσK. After

application of Expand, the set H of hypotheses consists of the rule D[f(x∗)]→ t. By

Lemma 14.20,

D[Cσ[f(r∗1)σ, . . . , f(r∗m)σ]→∗
R,Z E[D[f(r∗d1

)σ], . . . , D[f(r∗de
)σ]]

for some context E over Ĉ(R).

Now, if xi = xj for i < j, then 〈i, j〉 ∈ ImpEq(f). Since xi = xj implies liσ = ljσ,

the definition of ImpEq yields rdk,iσ = rdk,jσ for all 1 ≤ k ≤ e as in the proof of

Theorem 14.6. Hence, Simplify applies m times to the conjecture using the hypothesis

D[f(x∗)]→ t ∈ H and E[tτ1, . . . , tτe] ≡ tσJϕσK is obtained, where τk = {x∗ 7→ r∗dk
σ}.

Since both sides are from T (Ĉ(R),V), either Theory1 or Theory2 is applicable. �

Proof of Theorem 14.27. Adapt the proof of Theorem 14.23 in the same way the

proof of Theorem 14.6 was adapted to obtain the proof of Theorem 14.12. �

319

Appendix A. Proofs

Proof of Theorem 14.30. Identical to the proof of Theorem 13.40, but the proofs

of Lemma 13.37 and Lemma 13.38 have to be adapted as follows.

In Lemma 13.37, in order to show↔∗
R∪En∪Hn,Z ⊆ ↔

∗
R∪En+1∪Hn+1,Z if the inference

rule Theory′1 was applied, assume that v ↔{s ≡̇ tJϕK},Z w for Z-normal ground terms

v and w. Thus, there exists a ground substitution σ such that v = C[sσ], w = C[tσ]

(or w = C[sσ], v = C[tσ]), and ϕσ is ThZ-valid. Since ϕ′ ⇒ s′ ≃ t′ is LIAC-

valid, s′ ≡̇ t′Jϕ′K is an inductive theorem of R. Thus, the conjecture s ≡̇ tJϕK is an

inductive theorem of R as well. Since ϕσ is ThZ-valid, this implies sσ ↔∗
R,Z tσ and

thus v ↔∗
R,Z w.

For the proof of Lemma 13.38, it suffices to consider the case where the inference

rule Theory′1 was applied. Then, En = E ⊎ {s ≡̇ tJϕK}, En+1 = E, and Hn+1 = Hn,

where ϕ′ ⇒ s′ ≃ t′ is LIAC-valid for a safe generalization s′ ≡̇ t′Jϕ′K of s ≡̇ tJϕK. As

before, if v ↔E,Z w, then the claim follows from the inductive assumption. Otherwise,

v = C[sσ] and w = C[tσ] (or v = C[tσ] and w = C[sσ]) where ϕσ is ThZ-valid. As

above, the conjecture s ≡̇ tJϕK is an inductive theorem of R since s′ ≡̇ t′Jϕ′K is an

inductive theorem of R. Thus, sσ ↔∗
R,Z tσ, which implies sσ →∗

R,Z ◦ ←
∗
R,Z tσ since

→R,Z is confluent and thus Church-Rosser. Therefore, v →∗
R∪H,Z ◦ ←

∗
R∪H,Z w is

immediate. �

Proof of Theorem 14.31. Let 〈E, ∅〉 ⊢∗I′ 〈En, Hn〉 ⊢I′ ⊥ where En = E ′
n ⊎

{s ≡̇ tJϕK} such that ϕ′ ⇒ s′ ≃ t′ is not LIAC-valid for a safe generalization s′ ≡ t′Jϕ′K

of s ≡ tJϕK. Therefore, there exists a Z-normal constructor ground substitution σ′

such that ϕ′σ′ is ThZ-valid and s′σ′ ≃ t′σ′ is not LIAC-valid, which implies s′σ′ 6= t′σ′

since σ′ is Z-normal. Assume that s′ ≡ t′Jϕ′K is an inductive theorem of R. Then,

s′σ′ ↔∗
R,Z t

′σ′ which gives s′σ′ →∗
R,Z ◦ ←

∗
R,Z t

′σ′ because →R,Z is confluent and thus

Church-Rosser. But s′σ′ →∗
R,Z ◦ ←

∗
R,Z t

′σ′ is not possible since s′σ′ 6= t′σ′ and both

terms are irreducible by →R,Z since s′ and t′ do not contain defined symbols and σ′

is a constructor ground substitution.

320

Appendix A. Proofs

Thus, s′ ≡ t′Jϕ′K is not an inductive theorem of R, which implies that s ≡ tJϕK

is not an inductive theorem of R, either. Thus, there exists a Z-normal constructor

ground substitution σ such that ϕσ is ThZ-valid but sσ 6↔∗
R,Z tσ. Since sσ ↔En,Z tσ,

Lemma 13.37 implies sσ ↔∗
R∪E,Z tσ. If all atomic conjectures in E are inductive

theorems, then this would implies sσ ↔∗
R,Z tσ, contradicting sσ 6↔∗

R,Z tσ. �

Proof of Theorem 14.33. “⇐” is trivial since R is quasi-reductive and terminat-

ing. For “⇒”, assume that C[xt1 , . . . , xtn] ≃ D[xs1
, . . . , xsm] is not LIAC-valid. Then,

it needs to be shown that this contradicts that

C[t1, . . . , tn] ≡ D[s1, . . . , sm] is an inductive theorem of R (†)

For this, it is first shown that (†) implies {t1, . . . , tn} = {s1, . . . , sm}. Otherwise,

without loss of generality, let si 6∈ {t1, . . . , tn} and let σ be a Z-free constructor

ground substitution for the variables in t1, . . . , tn, s1, . . . , si−1, si+1, . . . , sm. Since R

is quasi-reductive and the tj , sk are variable-disjoint, there exist a q ∈ T (Ĉ(R),V)

with C[t1, . . . , tn]σ →∗
R,Z q and a contextD′ over Ĉ(R) such thatD[s1, . . . , sm]σ →∗

R,Z

D′[si, . . . , si]. Now, (†) implies that q ≡ D′[si, . . . , si] is an inductive theorem of R.

This implies q = D′[qi, . . . , qi] such that si ≡ qi is an inductive theorem. But this

contradicts the assumption that si satisfies the no-theory condition.

Next, perform an induction on the contexts C and D. If C = 2, then the conjec-

ture in (†) has the form t = D[t, . . . , t] where D contains at least one occurrence of 2.

If D = 2, then C[xt] ≃ D[xt] is trivially LIAC-valid, contradicting the assumption.

If D 6= 2, then (†) contradicts the fact that no term with a sort different from int

is equal to one of its proper subterms in the theory LIAC.

Similarly, D = 2 results in contradictions. Thus, the case where C 6= 2 and

D 6= 2 remains, i.e., C = c(C1, . . . , Ce) for some constructor c. Then, the conjecture

in (†) has the form c(C1, . . . , Ce)[t1, . . . , tn] ≡ D[s1, . . . , sm]. Inductive validity of

this conjecture implies that D = c(D1, . . . , De) and the conjectures Ci[t1, . . . , tn] ≡

321

Appendix A. Proofs

Di[s1, . . . , sm] are inductive theorems for all 1 ≤ i ≤ e. The desired contradiction

then follows from the inductive assumption. �

Proof of Theorem 14.35. Let s∗, t, q ∈ T (Ĉ(R),V) such that s∗ and t do not

contain any of the variables x∗ in q. Let q[s∗] denote the term obtained from q by

replacing xi by si for all i.

First, it is shown by induction on t that q[s∗] = t iff q ∈ Qs∗(t). If q[s∗] = x

for a variable x 6∈ V(q), then q = xi and si = x for some i. Hence, q ∈ Qs∗(t).

If q[s∗] = c(t1, . . . , tk), then there are two possibilities. If q is a variable xi, then

si = c(t1, . . . , tk) and thus q ∈ Qs∗(t). Otherwise, q = c(q1, . . . , qk) where qi[s
∗] = ti

for all i. By the inductive assumption, qi ∈ Qs∗(ti) and thus q ∈ Qs∗(c(t1, . . . , tk)).

Now, the statement of the lemma can be shown. For this, assume that f does not

satisfy the no-theory condition. Thus, f(x∗) ≡ q is an inductive theorem for some

q ∈ T (Ĉ(R),V). In particular, for the non-recursive rule f(s∗) → r ∈ R(f) that

was chosen in the construction of Q(f), f(s∗) ≡ q[s∗] is an inductive theorem. Thus,

q[s∗] = r since both q[s∗] and r do not contain defined symbols and R is confluent

and thus Church-Rosser. By the property shown above, q ∈ Qs∗(r). It now needs

to be shown that l̂ := l↓f(x∗)→q = r↓f(x∗)→q =: r̂ for all all l → r ∈ R(f). Since

l ≡ r is an inductive theorem of R and f(x∗) ≡ q is an inductive theorem by the

assumption, l̂ ≡ r̂ is an inductive theorem as well. Since R is Church-Rosser and

l̂, r̂ ∈ T (Ĉ(R),V), it follows that l̂ = r̂. �

Proof of Theorem 14.40. Let R′ be the unrolling of fi. It is first shown that

fi(s
∗)↓R,Z = fi(s

∗)↓R′,Z for all Z-normal constructor ground terms s∗. This is shown

by induction on the number of reduction steps in fi(s
∗)→∗

R,Z q = fi(s
∗)↓R,Z. Since R

is quasi-reductive, q ∈ T (C(R) ∪ FThZ
) and at least one reduction step is needed. If

exactly one reduction step is needed, then the used rewrite rule is non-recursive

and thus also contained in R′. Otherwise, fi(s
∗) = fi(l

∗)σ for some fi(l
∗) →

322

Appendix A. Proofs

C[f1−i(x
∗
1), . . . , f1−i(x

∗
n)] ∈ R(fi). After application of this rewrite rule, the term

Cσ[f1−i(x
∗
1)σ, . . . , f1−i(x

∗
n)σ] is obtained and applying f1−i(l

∗
1) → r1, . . . , f1−i(l

∗
n) →

rn using substitutions µj (i.e., f1−i(x
∗
j)σ = f1−i(l

∗
j)µj) gives Cσ[r1µ1, . . . , rnµn]. It

now suffices to show that fi(s
∗)→R′,Z Cσ[r1µ1, . . . , rnµn] since the claim then follows

from the inductive assumption. For each 1 ≤ j ≤ n, let τj = {x∗j 7→ l∗j} and τ =

τ1∪. . .∪τn. Next, extend τ to behave like σ on all variables not occurring in x∗1, . . . , x
∗
n.

Without loss of generality, the rules f1−i(l
∗
1) → r1, . . . , f1−i(l

∗
n) → rn are variable-

disjoint and contain only fresh variables, which implies that µ = µ1∪ . . .∪µn is well-

defined. Then, σ = τµ and fi(s
∗) = fi(l

∗)σ = fi(l
∗)τµ →R′,Z Cτµ[r1µ, . . . , rnµ] =

Cσ[r1µ1, . . . , rnµn].

Now, the statement of the theorem can be proved. For this, assume that fi does

not satisfy the no-theory condition w.r.t. R. Then, fi(x1, . . . , xn) ≡ q is an inductive

theorem of R for some q ∈ T (Ĉ(R),V). Thus, fi(x1, . . . , xn)σ ↔∗
R,Z qσ for all

Z-normal constructor ground substitutions. Since R is confluent and thus Church-

Rosser and qσ is irreducible by →R,Z, this implies fi(x1, . . . , xn)σ ↓R,Z = qσ. By

the above, fi(x1, . . . , xn)σ↓R′,Z = qσ. Since this is true for all Z-normal constructor

ground substitutions, fi(x1, . . . , xn) ≡ q is an inductive theorem of R′, i.e., fi does

not satisfy the no-theory condition w.r.t. R′. �

Proof of Theorem 14.42. Recall from the proof of Theorem 14.35 that q[s∗] = t

iff q ∈ Qs∗(t) for s∗, t, q ∈ T (Ĉ(R),V) such that s∗ and t do not contain any of the

variables x∗ in q. Assume that f does not satisfy the no-theory condition. Thus,

f(x∗) ≡ q is an inductive theorem for some q ∈ T (Ĉ(R),V). In particular, for the

non-recursive rule f(s∗) → r ∈ R(f) that was chosen in the construction of Q(f),

f(s∗) ≡ q[s∗] is an inductive theorem. Thus, q[s∗] = r since both q[s∗] and r do

not contain defined symbols and R is confluent and thus Church-Rosser. By the

property from above, q ∈ Qs∗(r).

It now needs to be shown that l↓f(x∗)→q ≃ capD(r↓f(x∗)→q) is LIAC-satisfiable for

323

Appendix A. Proofs

all l → r ∈ R(f). For this, it suffices to shown that whenever s ∈ T (Ĉ(R),V) and

s ≡ t is an inductive theorem, then s = capD(t)σ for some constructor substitution

σ that only instantiates the variables introduced by capD. The claim then follows

since l↓f(x∗)→q ∈ T (Ĉ(R),V) and l↓f(x∗)→q ≡ r↓f(x∗)→q is an inductive theorem since

both l ≡ r and f(x∗) ≡ q are inductive theorems by the assumption. The property

is shown by induction on t. If t is a variable, then s = t = capD(t) since each sort

has at least two distinct constructor ground terms. If root(t) is a defined symbol,

then capD(t) is a fresh variable z, which implies s = capD(t)σ for σ = {z 7→ s}.

If t = c(t1, . . . , tn) for some c ∈ Ĉ(R), then s = c(s1, . . . , sn) such that si ≡ ti is an

inductive theorem for all 1 ≤ i ≤ n since R is Church-Rosser and s ∈ T (Ĉ(R),V).

Now capD(t) = c(capD(t1), . . . ,capD(tn)) and the inductive assumption implies

si = capD(ti)σi for some σi that only instantiates the variables introduced by capD.

Since the variables introduced by capD(ti) and capD(tj) are disjoint whenever i 6= j,

the substitution σ := σ1 ∪ . . . ∪ σn satisfies s = capD(t)σ. �

Proof of Theorem 14.50. Let D[f(x∗)] ≡ E[g(y∗)] be a complex conjecture and

consider a rule f(l∗) → C[f(r∗1), . . . , f(r∗m)] ∈ R(f). Provided f(x∗) and f(l∗) are

unifiable with σ = mgu(f(x∗), f(l∗)), application of Expand to D[f(x∗)] ≡ E[g(y∗)]

produces (amongst others) D[Cσ[f(r∗1)σ, . . . , f(r∗m)σ] ≡ E[g(y∗)σ]. After application

of Expand, the set H of hypotheses consists of the rule D[f(x∗)] → E[g(y∗)]. By

Lemma 14.20,

D[Cσ[f(r∗1)σ, . . . , f(r∗m)σ]]→∗
R,Z D

′[D[f(r∗d1
)σ], . . . , D[f(r∗dk

)σ]]

for some context D′ over Ĉ(R). Due to the condition on the definition schemes

Def (f(x∗)) and Def (g(y∗)), there exists a rule g(s∗) → C ′[g1(t
∗
1), . . . , gm′(t∗m′)] ∈

R(g) such that g(y∗σ) = g(s∗). Applying this rule to E[g(y∗)σ] yields the term

E[C ′σ[g1(t
∗
1)σ, . . . , gm′(t∗m′)σ]] and Lemma 14.20 implies

E[C ′σ[g1(t
∗
1)σ, . . . , gm′(t∗m′)σ]]→∗

R,Z D
′′[E[ge1

(t∗e1
)σ], . . . , E[gek′

(tek′
)]σ]

for some context D′′ over Ĉ(R).

324

Appendix A. Proofs

As before, the ImpEq-condition implies that Simplify applies m times using the

hypothesis D[f(x∗)]→ E[g(y∗)] ∈ H and

D′[E[g(y∗)τ1], . . . , E[g(y∗)τk]] ≡ D′′[E[ge1
(t∗e1

)σ], . . . , E[gek′
(tek′

)]σ]

is obtained where τj = {x∗ 7→ r∗dj
σ}. Since τj ∈ Call(f(x∗), l → r, σ), the final

condition in Definition 14.48 implies that either Theory′1 or Theory′2 is applicable

after normalization w.r.t. R. �

Proof of Theorem 14.57. Adapt the proof of Theorem 14.27 in the same way the

proof of Theorem 14.23 was adapted to obtain the proof of Theorem 14.50. �

325

Appendix B

Evaluation

B.1 Termination

AProVE-CERS is the implementation of the methods developed in this dissertation,
while AProVE-Integer is based in [75, 143]. An “N/A” in the column for AProVE-
Integer denotes that the methods from [75, 143] are not applicable to that example.
The examples themselves and all proofs generated by AProVE-CERS and AProVE-
Integer are available at http://www.cs.unm.edu/~spf/tdps/.

File
AProVE-CERS AProVE-Integer

Total time (sec) Result Total time (sec) Result

01.patrs 0.19 YES 0.54 YES

02.patrs 0.04 YES 0.25 YES

03.patrs 0.04 YES 0.31 YES

04.patrs 0.01 YES 0.17 YES

08.patrs 0.04 YES 0.17 YES

09.patrs 0.04 YES 0.30 YES

13.patrs 0.07 YES 1.69 YES

15.patrs 0.12 YES 2.20 YES

16.patrs 0.11 YES 3.05 YES

17.patrs 0.17 YES 2.40 YES

18.patrs 0.19 YES 4.61 YES

19.patrs 0.19 YES 42.02 YES

20.patrs 0.08 YES 1.11 YES

326

Appendix B. Evaluation

File
AProVE-CERS AProVE-Integer

Total time (sec) Result Total time (sec) Result

21.patrs 0.11 YES 2.57 YES

22.patrs 0.11 YES 2.20 YES

23.patrs 0.11 YES 2.12 YES

24.patrs 0.17 YES 6.52 YES

5.3.patrs 0.11 YES N/A

5.4.patrs 0.18 YES N/A

5.5.patrs 0.31 YES N/A

A01.patrs 0.04 YES 0.31 YES

A02.patrs 0.03 YES 0.28 YES

A03.patrs 0.05 YES 2.69 YES

A06.patrs 0.06 YES 5.64 YES

A07.patrs 0.11 YES 1.19 YES

A08.patrs 0.08 YES 4.44 YES

A11.patrs 0.03 YES 0.38 YES

A12.patrs 0.03 YES 0.36 YES

A13.patrs 0.07 YES 0.67 YES

A14.patrs 0.16 YES 22.69 YES

a.01.patrs 0.11 YES 1.36 YES

a.03.patrs 0.94 YES 60.02 TIMEOUT

a.04.patrs 0.04 YES 0.39 YES

a.05.patrs 0.04 YES 0.32 YES

a.06.patrs 0.04 YES 0.52 YES

a.07.patrs 0.03 YES 0.40 YES

a.08.patrs 0.03 YES 0.32 YES

a.09.patrs 0.03 YES 0.39 YES

a.10.patrs 0.10 YES 52.72 YES

a.11.patrs 0.16 YES 6.75 YES

c.01.patrs 0.10 YES 1.83 YES

c.02.patrs 0.11 YES 1.46 YES

c.03.patrs 0.10 YES 2.60 YES

c.04.patrs 0.07 YES 2.51 YES

c.05.patrs 0.09 YES 7.38 YES

choice.patrs 60.00 TIMEOUT 60.04 TIMEOUT

complete2.patrs 60.00 TIMEOUT 10.22 YES

complete3.patrs 0.47 YES 1.99 YES

countdown.patrs 0.16 YES 0.26 YES

csharp1.patrs 0.09 YES 0.46 YES

csharp2.patrs 0.07 YES 0.49 YES

csharp3.patrs 0.06 YES 0.39 YES

327

Appendix B. Evaluation

File
AProVE-CERS AProVE-Integer

Total time (sec) Result Total time (sec) Result

divMinus.patrs 0.04 YES 0.34 YES

div.patrs 0.04 YES 0.35 YES

eratosthenes.patrs 0.44 YES 10.32 YES

eratosthenes small.patrs 0.2 YES 26.45 YES

gcd minmax.patrs 0.05 YES 1.45 YES

gcd.patrs 0.07 YES N/A

horner.patrs 0.07 YES N/A

increase1.patrs 0.02 YES 0.39 YES

increase2.patrs 0.05 YES 2.85 YES

increase3.patrs 0.08 YES 2.70 YES

increase4.patrs 0.03 YES 0.40 YES

indirect.patrs 0.04 YES 0.68 YES

mergesort multiset.patrs 0.14 YES N/A

mergesort set.patrs 0.14 YES N/A

minsort multiset.patrs 0.08 YES N/A

minsort set.patrs 0.08 YES N/A

multiset set.patrs 0.17 YES N/A

mult.patrs 0.06 YES 2.63 YES

nat-list-max.patrs 0.11 YES N/A

nat-mset-min.patrs 0.09 YES N/A

operations multiset.patrs 0.48 YES N/A

operations set.patrs 0.41 YES N/A

pathological.patrs 0.1 YES N/A

poly2.patrs 60.00 TIMEOUT 60.00 TIMEOUT

poly4.patrs 0.32 YES 60.03 TIMEOUT

practical1.patrs 0.13 YES 2.47 YES

practical2.patrs 60.00 TIMEOUT 60.03 TIMEOUT

practical3.patrs 60.11 TIMEOUT 60.08 TIMEOUT

quicksort ins multiset.patrs 0.20 YES N/A

quicksort ins set.patrs 0.20 YES N/A

quicksort ugly multiset.patrs 0.25 YES N/A

quicksort ugly set.patrs 0.24 YES N/A

quicksort union multiset.patrs 0.25 YES N/A

quicksort union set.patrs 0.25 YES N/A

random full no wrap.patrs 0.23 YES 42.93 YES

random full.patrs 0.09 YES 43.40 YES

randomFullUpDown.patrs 0.37 YES 60.01 TIMEOUT

random no wrap.patrs 0.11 YES 0.36 YES

random.patrs 0.04 YES 0.70 YES

328

Appendix B. Evaluation

File
AProVE-CERS AProVE-Integer

Total time (sec) Result Total time (sec) Result

removal.patrs 0.05 YES N/A

round.patrs 0.18 MAYBE 0.50 YES

sequents.patrs 0.73 MAYBE N/A

size multiset.patrs 0.07 YES N/A

size set.patrs 0.06 YES N/A

sqrt.patrs 0.05 YES 0.56 YES

sumLog.patrs 0.30 MAYBE 60.02 TIMEOUT

sum multiset.patrs 0.10 YES N/A

sumto no if.patrs 0.03 YES 0.49 YES

sumto.patrs 0.04 YES 0.50 YES

sumUp.patrs 0.03 YES 0.50 YES

terminate.patrs 0.22 YES 0.87 YES

test1.patrs 0.08 YES 2.20 YES

test2.patrs 0.09 YES N/A

test3.patrs 0.01 YES N/A

test4.patrs 0.39 YES 0.56 YES

test5.patrs 0.00 YES N/A

test6.patrs 0.00 YES N/A

unsatCond1.patrs 0.00 YES 0.26 YES

B.2 Context-Sensitive Termination

The following table contains the results of AProVE-CERS. Notice that [75, 143] does
not consider context-sensitive rewriting, i.e., AProVE-Integer is not applicable to these
examples. The examples themselves and all proofs generated by AProVE-CERS are
available at http://www.cs.unm.edu/~spf/tdps/.

File Total time (sec) Result

add x.patrs 0.27 YES

after.patrs 0.23 YES

all-op.patrs 0.32 YES

diff1.patrs 0.24 YES

diff2.patrs 0.23 YES

even-odd.patrs 0.14 YES

fib.patrs 0.28 YES

first.patrs 0.33 YES

from-nth.patrs 0.26 YES

329

Appendix B. Evaluation

File Total time (sec) Result

from.patrs 0.12 YES

head.patrs 0.29 YES

indx.patrs 0.48 YES

length.patrs 0.23 YES

misc.patrs 0.15 YES

pi.patrs 0.18 YES

prefix.patrs 0.44 YES

primes.patrs 0.19 YES

quot.patrs 0.41 YES

second.patrs 0.12 YES

sel.patrs 0.25 YES

silly01.patrs 0.47 MAYBE

silly02.patrs 0.13 YES

silly03.patrs 0.12 YES

silly04.patrs 0.13 YES

silly05.patrs 0.12 YES

silly06.patrs 0.15 YES

silly07.patrs 0.16 YES

silly08.patrs 0.12 YES

silly09.patrs 0.12 YES

silly10.patrs 0.13 YES

silly11.patrs 0.18 YES

silly12.patrs 0.14 YES

silly13.patrs 0.35 YES

silly14.patrs 0.22 YES

silly15.patrs 0.12 YES

silly16.patrs 0.40 MAYBE

silly17.patrs 0.16 YES

tail.patrs 0.12 YES

take.patrs 0.18 YES

terms.patrs 0.19 YES

B.3 Induction

The following table contains the results of Sail2. The examples themselves and
all (dis-)proofs generated by Sail2 are available at http://www.cs.unm.edu/~spf/

sail2/.

330

Appendix B. Evaluation

Conjecture
Checking (Dis-)Proving (Dis-)Proving w/o Termination

(msec) (msec) Time in CVC3 (msec) (msec)

oddlist(alternate(xs, xs)) ≡ xs 0.087 12.508 0.164 226.461

evenlist(alternate(xs, xs)) ≡ xs 0.080 12.779 0.163 254.837

oddlist(alternate(xs, ys)) ≡ xs 0.080 12.537 0.172 226.667

evenlist(alternate(xs, ys)) ≡ ys 0.078 12.552 0.182 140.106

app(xs, ys) ≡ ys 0.032 12.341 0.126 36.791

half(double(x)) ≡ x 0.080 11.760 0.139 136.888

even(double(x)) ≡ true 0.064 11.510 0.127 87.391

not(even(x)) ≡ odd(x)
0.186 13.168 0.211 188.983

not(odd(x)) ≡ even(x)

gtr(x, x) ≡ false 0.059 11.554 0.133 96.108

geq(x, x) ≡ true 0.055 11.611 0.134 95.516

not(gtr(x, x)) ≡ true 0.087 11.561 0.185 93.591

not(geq(x, x)) ≡ false 0.088 11.574 0.144 94.273

maxlist(xs, xs) ≡ xs 0.055 32.083 0.209 106.579

maxlist(xs, xs) ≡ xs
0.074 12.029 0.186 94.276

max(x, x) ≡ x

max(x, x) ≡ x 0.054 11.538 0.118 95.318

min(x, x) ≡ x 0.052 11.574 0.127 85.469

min(x, y) ≡ max(x, y) 0.199 14.365 0.219 165.281

minus(x, x) ≡ O 0.044 11.488 0.116 34.796

mix(xs, xs) ≡ xs
0.063 11.907 0.168 55.986

mix′(xs, xs) ≡ xs

plus(x, y) ≡ x 0.033 13.075 0.125 32.788

prefix(xs, xs) ≡ xs 0.058 40.278 0.259 274.004

ptwise(xs, xs) ≡ true 0.058 32.077 0.213 67.236

fst(stitch(xs, xs)) ≡ xs
0.122 12.414 0.238 124.539

fst(stitch′(xs, xs)) ≡ xs

fst(stitch(xs, ys)) ≡ xs
0.122 16.685 0.251 115.536

fst(stitch′(xs, ys)) ≡ xs

plen(stitch(xs, xs)) = len(xs)
0.295 15.916 0.322 271.960

plen(stitch′(xs, xs)) = len(xs)

fst(zip(xs, xs)) ≡ xs 0.083 12.081 0.176 84.801

fst(zip(xs, ys)) ≡ xs 0.079 12.782 0.182 157.786

plen(zip(xs, xs)) ≡ len(xs) 0.197 13.712 0.244 123.819

331

Bibliography

[1] Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl Gutiérrez,
Salvador Lucas, Peter Schneider-Kamp, and René Thiemann. Improving
context-sensitive dependency pairs. In Cervesato et al. [41], pages 636–651.

[2] Beatriz Alarcón, Raúl Gutiérrez, and Salvador Lucas. Context-sensitive de-
pendency pairs. In S. Arun-Kumar and Naveen Garg, editors, Proceedings of
the 26th International Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS ’06), volume 4337 of Lecture Notes in
Computer Science, pages 297–308. Springer-Verlag, 2006.

[3] Beatriz Alarcón, Raúl Gutiérrez, and Salvador Lucas. Improving the context-
sensitive dependency graph. Electronic Notes in Theoretical Computer Science,
188:91–103, 2007.

[4] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposition
modulo linear arithmetic: SUP(LA). In Ghilardi and Sebastiani [77], pages
84–99.

[5] Valentin M. Antimirov and Anatoli Degtyarev. Consistency and semantics
of equational definitions over predefined algebras. In Michaël Rusinowitch
and Jean-Luc Remy, editors, Proceedings of the 3rd International Workshop
on Conditional Term Rewriting Systems (CTRS ’92), volume 656 of Lecture
Notes in Computer Science, pages 67–81. Springer-Verlag, 1993.

[6] Valentin M. Antimirov and Anatoli Degtyarev. Completeness of equational def-
initions over predefined algebras. In Maurice Nivat, Charles Rattray, Teodor
Rus, and Giuseppe Scollo, editors, Proceedings of the 3rd International Confer-
ence on Algebraic Methodology and Software Technology (AMAST ’93), pages
377–384. Springer-Verlag, 1994.

[7] Takahito Aoto. Dealing with non-orientable equations in rewriting induction.
In Pfenning [140], pages 242–256.

332

Bibliography

[8] Takahito Aoto. Designing a rewriting induction prover with an increased capa-
bility of non-orientable theorems. In Bruno Buchberger, Tetsuo Ida, and Temur
Kutsia, editors, Proceedings of the Austrian-Japanese Workshop on Symbolic
Computation in Software Science (SCSS ’08), pages 1–15, 2008.

[9] Takahito Aoto. Soundness of rewriting induction based on an abstract princi-
ple. IPSJ Transactions on Programming, 49:14–27, 2008.

[10] Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors. Pro-
ceedings of the 4th International Joint Conference on Automated Reasoning
(IJCAR ’08), volume 5195 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2008.

[11] Alessandro Armando, Michaël Rusinowitch, and Sorin Stratulat. Incorporating
decision procedures in implicit induction. Journal of Symbolic Computation,
34(4):241–258, 2002.

[12] Thomas Arts and Jürgen Giesl. Termination of term rewriting using depen-
dency pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

[13] Jürgen Avenhaus and Klaus Becker. A framework for operational equational
specifications with pre-defined structures. Journal of Symbolic Computation,
27(3):271–310, 1999.

[14] Mauricio Ayala-Rincón. Expressiveness of conditional equational systems with
built-in predicates. Doktorarbeit, Fachbereich Informatik, Universität Kaiser-
slautern, Germany, 1993.

[15] Mauricio Ayala-Rincón. Embedding built-in predicates as premises of rules of
conditional rewriting systems. In Proceedings of the 2nd Workshop on Logic,
Language, Information and Computation (WoLLIC ’95), 1995.

[16] Franz Baader, editor. Proceedings of the 19th International Conference on
Automated Deduction (CADE ’03), volume 2741 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003.

[17] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[18] Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equa-
tional theories: Combining decision procedures. Journal of Symbolic Compu-
tation, 21(2):211–243, 1996.

[19] Franz Baader and Jörg H. Siekmann. Unification theory. In Gabbay et al. [76],
volume 2, pages 41–125.

333

Bibliography

[20] Franz Baader and Wayne Snyder. Unification theory. In Robinson and
Voronkov [148], volume 1, chapter 8, pages 445–533.

[21] Leo Bachmair and Nachum Dershowitz. Completion for rewriting modulo a
congruence. Theoretical Computer Science, 67(2–3):173–201, 1989.

[22] Thomas Ball and Robert B. Jones, editors. Proceedings of the 18th Interna-
tional Conference on Computer Aided Verification (CAV ’06), volume 4144 of
Lecture Notes in Computer Science. Springer-Verlag, 2006.

[23] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability modulo theories. In Armin Biere, Marijn J. H. Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, chapter 26, pages
825–885. IOS Press, 2009.

[24] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-
manns, editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV ’07), volume 4590 of Lecture Notes in Computer Sci-
ence, pages 298–302. Springer-Verlag, 2007.

[25] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. ME(LIA): Model
evolution with linear integer arithmetic constraints. In Cervesato et al. [41],
pages 258–273.

[26] Hubert Bertling and Harald Ganzinger. Completion-time optimization of
rewrite-time goal solving. In Dershowitz [55], pages 45–58.

[27] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Springer-Verlag, 2004.

[28] Frédéric Blanqui, William Delobel, Solange Coupet-Grimal, Sébastien Hin-
derer, and Adam Koprowski. CoLoR: A Coq library on rewriting and termina-
tion. In Alfons Geser and Harald Sønderdergaard, editors, Proceedings of the
8th International Workshop on Termination (WST ’06), pages 69–73, 2006.

[29] Frédéric Blanqui, Thérèse Hardin, and Pierre Weis. On the implementa-
tion of construction functions for non-free concrete data types. In Rocco De
Nicola, editor, Proceedings of the 16th European Symposium on Programming
(ESOP ’07), volume 4421 of Lecture Notes in Computer Science, pages 95–109.
Springer-Verlag, 2007.

[30] Cristina Borralleras, Salvador Lucas, and Albert Rubio. Recursive path order-
ings can be context-sensitive. In Andrei Voronkov, editor, Proceedings of the
18th International Conference on Automated Deduction (CADE ’02), volume

334

Bibliography

2392 of Lecture Notes in Artificial Intelligence, pages 314–331. Springer-Verlag,
2002.

[31] Cristina Borralleras and Albert Rubio. Monotonic AC-compatible semantic
path orderings. In Robert Nieuwenhuis, editor, Proceedings of the 14th In-
ternational Conference on Rewriting Techniques and Applications (RTA ’03),
volume 2706 of Lecture Notes in Computer Science, pages 279–295. Springer-
Verlag, 2003.

[32] Alexandre Boudet. Combining unification algorithms. Journal of Symbolic
Computation, 16(6):597–626, 1993.

[33] Adel Bouhoula. Automated theorem proving by test set induction. Journal of
Symbolic Computation, 23(1):47–77, 1997.

[34] Adel Bouhoula and Florent Jacquemard. Automated induction with con-
strained tree automata. In Armando et al. [10], pages 539–554.

[35] Robert S. Boyer and J Strother Moore. A Computational Logic. Academic
Press, 1979.

[36] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with
reachability. In Kousha Etessami and Sriram K. Rajamani, editors, Pro-
ceedings of the 17th International Conference on Computer Aided Verification
(CAV ’05), volume 3576 of Lecture Notes in Computer Science, pages 491–504.
Springer-Verlag, 2005.

[37] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. The polyranking princi-
ple. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi,
and Moti Yung, editors, Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP ’05), volume 3580 of Lecture
Notes in Computer Science, pages 1349–1361. Springer-Verlag, 2005.

[38] Mark Braverman. Termination of integer linear programs. In Ball and Jones
[22], pages 372–385.

[39] Alan Bundy. The automation of proof by mathematical induction. In Robinson
and Voronkov [148], volume 1, chapter 13, pages 845–911.

[40] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling: Meta-
Level Guidance for Mathematical Reasoning. Cambridge University Press,
2005.

335

Bibliography

[41] Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors. Proceedings of
the 15th International Conference on Logic for Programming, Artificial Intel-
ligence and Reasoning (LPAR ’08), volume 5330 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2008.

[42] Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok
Yang. Ranking abstractions. In Sophia Drossopoulou, editor, Proceedings of
the 17th European Symposium on Programming (ESOP ’08), volume 4960 of
Lecture Notes in Computer Science, pages 148–162. Springer-Verlag, 2008.

[43] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn Talcott. All About Maude: A High-
Performance Logical Framework, volume 4350 of Lecture Notes in Computer
Science. Springer-Verlag, 2007.

[44] Michael Colón and Henny B. Sipma. Synthesis of linear ranking functions. In
Tiziana Margaria and Wang Yi, editors, Proceedings of the 7th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS ’01), volume 2031 of Lecture Notes in Computer Science, pages
67–81. Springer-Verlag, 2001.

[45] Michael Colón and Henny B. Sipma. Practical methods for proving program
termination. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceed-
ings of the 14th International Conference on Computer Aided Verification
(CAV ’02), volume 2404 of Lecture Notes in Computer Science, pages 442–
454. Springer-Verlag, 2002.

[46] Hubert Comon. Inductionless induction. In Robinson and Voronkov [148],
volume 1, chapter 14, pages 913–962.

[47] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Ur-
bain. Certification of automated termination proofs. In Boris Konev and Frank
Wolter, editors, Proceedings of the 5th International Symposium on Frontiers
of Combining Systems (FroCoS ’07), volume 4720 of Lecture Notes in Artificial
Intelligence, pages 148–162. Springer-Verlag, 2007.

[48] Evelyne Contejean, Claude Marché, Ana Paula Tomás, and Xavier Urbain.
Mechanically proving termination using polynomial interpretations. Journal
of Automated Reasoning, 34(4):325–363, 2005.

[49] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refine-
ment for termination. In Chris Hankin and Igor Siveroni, editors, Proceedings
of the 12th International Symposium on Static Analysis (SAS ’05), volume

336

Bibliography

3672 of Lecture Notes in Computer Science, pages 87–101. Springer-Verlag,
2005.

[50] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs
for systems code. In Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation (PLDI ’06), pages 415–
426, 2006.

[51] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond
safety. In Ball and Jones [22], pages 415–418.

[52] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM Symposium on Principles of Pro-
gramming Languages (POPL ’77), pages 238–252. ACM Press, 1977.

[53] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM Symposium on
Principles of Programming Languages (POPL ’78), pages 84–96. ACM Press,
1978.

[54] Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computa-
tion, 3(1–2):69–116, 1987.

[55] Nachum Dershowitz, editor. Proceedings of the 3rd International Conference
on Rewriting Techniques and Applications (RTA ’89), volume 355 of Lecture
Notes in Computer Science. Springer-Verlag, 1989.

[56] Nachum Dershowitz and David A. Plaisted. Rewriting. In Robinson and
Voronkov [148], volume 1, chapter 9, pages 535–610.

[57] Agostino Dovier, Carla Piazza, and Gianfranco Rossi. A uniform approach to
constraint-solving for lists, multisets, compact lists, and sets. ACM Transac-
tions on Computational Logic, 9(3), 2008.

[58] Agostino Dovier, Alberto Policriti, and Gianfranco Rossi. A uniform axiomatic
view of lists, multisets, and sets, and the relevant unification algorithms. Fun-
damenta Informaticae, 36(2–3):201–234, 1998.

[59] Francisco Durán, Salvador Lucas, Claude Marché, José Meseguer, and Xavier
Urbain. Proving operational termination of membership equational programs.
Higher-Order and Symbolic Computation, 21(1–2):59–88, 2008.

[60] Francisco Durán, Salvador Lucas, and José Meseguer. MTT: The Maude Ter-
mination Tool. In Armando et al. [10], pages 313–319.

337

Bibliography

[61] Francisco Durán, Salvador Lucas, and José Meseguer. Termination modulo
combinations of equational theories. In Ghilardi and Sebastiani [77], pages
246–262.

[62] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Ball and Jones [22], pages 81–94.

[63] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpreta-
tions for proving termination of term rewriting. Journal of Automated Reason-
ing, 40(2–3):195–220, 2008.

[64] Stephan Falke. Automated Termination Analysis for Equational Rewrit-
ing. Diplomarbeit. Fachgruppe Informatik, Rheinisch-Westfälische Technische
Hochschule Aachen, Germany, 2004.

[65] Stephan Falke and Deepak Kapur. Inductive decidability using implicit induc-
tion. In Miki Hermann and Andrei Voronkov, editors, Proceedings of the 13th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR ’06), volume 4246 of Lecture Notes in Artificial Intelligence,
pages 45–59. Springer-Verlag, 2006.

[66] Stephan Falke and Deepak Kapur. Dependency pairs for rewriting with non-
free constructors. In Pfenning [141], pages 426–442.

[67] Stephan Falke and Deepak Kapur. Dependency pairs for rewriting with built-in
numbers and semantic data structures. In Voronkov [169], pages 94–109.

[68] Stephan Falke and Deepak Kapur. Operational termination of conditional
rewriting with built-in numbers and semantic data structures. Electronic Notes
in Theoretical Computer Science, 237:75–90, 2009.

[69] Stephan Falke and Deepak Kapur. A term rewriting approach to the auto-
mated termination analysis of imperative programs. In Renate A. Schmidt,
editor, Proceedings of the 22nd International Conference on Automated De-
duction (CADE ’09), volume 5663 of Lecture Notes in Artificial Intelligence,
pages 277–293. Springer-Verlag, 2009.

[70] Stephan Falke and Deepak Kapur. Termination of context-sensitive rewrit-
ing with built-in numbers and collection data structures. In Santiago Esco-
bar, editor, Proceedings of the 18th International Workshop on Functional and
(Constraint) Logic Programming (WFLP ’09), pages 111–125, 2009.

[71] Maria C. F. Ferreira and A. L. Ribeiro. Context-sensitive AC-rewriting. In
Paliath Narendran and Michaël Rusinowitch, editors, Proceedings of the 10th

338

Bibliography

International Conference on Rewriting Techniques and Applications (RTA ’99),
volume 1631 of Lecture Notes in Computer Science, pages 286–300. Springer-
Verlag, 1999.

[72] Laurent Fribourg. A strong restriction of the inductive completion procedure.
Journal of Symbolic Computation, 8(3):253–276, 1989.

[73] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René
Thiemann, and Harald Zankl. SAT solving for termination analysis with poly-
nomial interpretations. In João Marques-Silva and Karem A. Sakallah, editors,
Proceedings of the 10th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’05), volume 4501 of Lecture Notes in Computer
Science, pages 340–354. Springer-Verlag, 2007.

[74] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René
Thiemann, and Harald Zankl. Maximal termination. In Voronkov [169], pages
110–125.

[75] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and
Stephan Falke. Proving termination of integer term rewriting. In Ralf Treinen,
editor, Proceedings of the 20th International Conference on Rewriting Tech-
niques and Applications (RTA ’09), volume 5595 of Lecture Notes in Computer
Science, pages 32–47. Springer-Verlag, 2009.

[76] Dov M. Gabbay, Christopher J. Hogger, and J. Alan Robinson, editors. Hand-
book of Logic in Artificial Intelligence and Logic Programming. Oxford Univer-
sity Press, 1994.

[77] Silvio Ghilardi and Roberto Sebastiani, editors. Proceedings of the 7th Inter-
national Symposium on Frontiers of Combining Systems (FroCoS ’09), volume
5749 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2009.

[78] Jürgen Giesl. Mechanized Verification of Imperative and Functional Pro-
grams. Habilitationsschrift. Fachbereich Informatik, Technische Universität
Darmstadt, Germany, 1999.

[79] Jürgen Giesl and Thomas Arts. Verification of Erlang processes by depen-
dency pairs. Applicable Algebra in Engineering, Communication and Comput-
ing, 12(1–2):39–72, 2001.

[80] Jürgen Giesl and Deepak Kapur. Decidable classes of inductive theorems. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of
the 1st International Joint Conference on Automated Reasoning (IJCAR ’01),

339

Bibliography

volume 2083 of Lecture Notes in Artificial Intelligence, pages 469–484. Springer-
Verlag, 2001.

[81] Jürgen Giesl and Deepak Kapur. Dependency pairs for equational rewriting.
In Aart Middeldorp, editor, Proceedings of the 12th International Conference
on Rewriting Techniques and Applications (RTA ’01), volume 2051 of Lecture
Notes in Computer Science, pages 93–108. Springer-Verlag, 2001.

[82] Jürgen Giesl and Deepak Kapur. Deciding inductive validity of equations. In
Baader [16], pages 17–31.

[83] Jürgen Giesl and Aart Middeldorp. Transformation techniques for context-
sensitive rewrite systems. Journal of Functional Programming, 14(4):379–427,
2004.

[84] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2: Auto-
matic termination proofs in the dependency pair framework. In Ulrich Furbach
and Natarajan Shankar, editors, Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR ’06), volume 4130 of Lecture
Notes in Artificial Intelligence, pages 281–286. Springer-Verlag, 2006.

[85] Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thiemann.
Automated termination analysis for Haskell: From term rewriting to program-
ming languages. In Pfenning [140], pages 297–312.

[86] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency
pair framework: Combining techniques for automated termination proofs. In
Franz Baader and Andrei Voronkov, editors, Proceedings of the 11th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Rea-
soning (LPAR ’04), volume 3452 of Lecture Notes in Artificial Intelligence,
pages 301–331. Springer-Verlag, 2005.

[87] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and dis-
proving termination of higher-order functions. In Bernhard Gramlich, editor,
Proceedings of the 5th International Workshop on Frontiers of Combining Sys-
tems (FroCoS ’05), volume 3717 of Lecture Notes in Artificial Intelligence,
pages 216–231. Springer-Verlag, 2005.

[88] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke.
Mechanizing and improving dependency pairs. Journal of Automated Rea-
soning, 37(3):155–203, 2006.

[89] Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp.
Proving termination by bounded increase. In Pfenning [141], pages 443–459.

340

Bibliography

[90] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme. Monatshefte für Mathematik und Physik, 38:173–
198, 1931.

[91] Bernhard Gramlich. Abstract relations between restricted termination and
confluence properties of rewrite systems. Fundamenta Informaticae, 24(1–2):2–
23, 1995.

[92] Raúl Gutiérrez, Salvador Lucas, and Xavier Urbain. Usable rules for context-
sensitive rewrite systems. In Voronkov [169], pages 126–141.

[93] John V. Guttag and James J. Horning. The algebraic specification of abstract
data types. Acta Informatica, 10:27–52, 1978.

[94] Christian Haselbach. Transformation Techniques to Verify Imperative and
Functional Programs. Diplomarbeit. Fachgruppe Informatik, Rheinisch-West-
fälische Technische Hochschule Aachen, Germany, 2004.

[95] Nao Hirokawa and Aart Middeldorp. Tyrolean Termination Tool: Techniques
and features. Information and Computation, 205(4):474–511, 2007.

[96] Hoon Hong and Dalibor Jakuš. Testing positiveness of polynomials. Journal
of Automated Reasoning, 21(1):23–38, 1998.

[97] Gérard P. Huet and Jean-Marie Hullot. Proofs by induction in equational theo-
ries with constructors. Journal of Computer and Systems Sciences, 25(2):239–
266, 1982.

[98] Dieter Hutter and Claus Sengler. INKA: The next generation. In Michael A.
McRobbie and John K. Slaney, editors, Proceedings of the 13th International
Conference on Automated Deduction (CADE ’96), volume 1104 of Lecture
Notes in Computer Science, pages 288–292. Springer-Verlag, 1996.

[99] Jean-Pierre Jouannaud. Modular Church-Rosser modulo. In Pfenning [140],
pages 96–107.

[100] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract
algebras: A rule-based survey of unification. In Jean-Louis Lassez and Gordon
Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson,
chapter 8, pages 257–321. The MIT Press, 1991.

[101] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules
modulo a set of equations. SIAM Journal on Computing, 15(4):1155–1194,
1986.

341

Bibliography

[102] Jean-Pierre Jouannaud and Emmanuel Kounalis. Automatic proofs by induc-
tion in theories without constructors. Information and Computation, 82(1):1–
33, 1989.

[103] Samuel Kamin and Jean-Jaques Lévy. Attempts for generalizing the recursive
path orderings. Unpublished note, Department of Computer Science, Univer-
sity of Illinois, Urbana-Champaign, USA, 1980.

[104] Deepak Kapur, Jürgen Giesl, and Mahadevan Subramaniam. Induction and
decision procedures. Revista de la Real Academia de Ciencias, Serie A:
Matemáticas, 98(1):153–180, 2004.

[105] Deepak Kapur and David R. Musser. Proof by consistency. Artificial Intelli-
gence, 31(2):125–157, 1987.

[106] Deepak Kapur, Paliath Narendran, and Hantao Zhang. On sufficient-
completeness and related properties of term rewriting systems. Acta Infor-
matica, 24(4):395–415, 1987.

[107] Deepak Kapur, Paliath Narendran, and Hantao Zhang. Automating induction-
less induction using test sets. Journal of Symbolic Computation, 11(1–2):81–
111, 1991.

[108] Deepak Kapur and G. Sivakumar. Proving associative-commutative termina-
tion using RPO-compatible orderings. In Ricardo Caferra and Gernot Salzer,
editors, Automated Deduction in Classical and Non-Classical Logics, volume
1761 of Lecture Notes in Artificial Intelligence, pages 40–62. Springer-Verlag,
2000.

[109] Deepak Kapur and Mahadevan Subramaniam. Automating induction over
mutually recursive functions. In Martin Wirsing and Maurice Nivat, editors,
Proceedings of the 5th International Conference on Algebraic Methodology and
Software Technology (AMAST ’96), volume 1101 of Lecture Notes in Computer
Science, pages 117–131. Springer-Verlag, 1996.

[110] Deepak Kapur and Mahadevan Subramaniam. New uses of linear arithmetic
in automated theorem proving by induction. Journal of Automated Reasoning,
16(1–2):39–78, 1996.

[111] Deepak Kapur and Mahadevan Subramaniam. Extending decision procedures
with induction schemes. In David A. McAllester, editor, Proceedings of the
17th International Conference on Automated Deduction (CADE ’00), volume
1831 of Lecture Notes in Artificial Intelligence, pages 324–345. Springer-Verlag,
2000.

342

Bibliography

[112] Deepak Kapur and Hantao Zhang. An overview of Rewrite Rule Laboratory
(RRL). Computers & Mathematics with Applications, 29(2):91–114, 1995.

[113] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, 2000.

[114] Donald Knuth and Peter Bendix. Simple word problems in universal algebras.
In John Leech, editor, Computational Problems in Abstract Algebra, pages 263–
297. Pergamon Press, 1970.

[115] Hirotaka Koike and Yoshihito Toyama. Inductionless induction and rewriting
induction. JSSST Computer Software, 17(6):1–12, 2000. In Japanese.

[116] Konstantin Korovin and Andrei Voronkov. Integrating linear arithmetic into
superposition calculus. In Jacques Duparc and Thomas A. Henzinger, editors,
Proceedings of the 21st International Workshop on Computer Science Logic
(CSL ’07), volume 4646 of Lecture Notes in Computer Science, pages 223–237.
Springer-Verlag, 2007.

[117] Keiichirou Kusakari, Masaki Nakamura, and Yoshihito Toyama. Argument
filtering transformation. In Gopalan Nadathur, editor, Proceedings of the 1st
International Conference on Principles and Practice of Declarative Program-
ming (PPDP ’99), volume 1702 of Lecture Notes in Computer Science, pages
47–61. Springer-Verlag, 1999.

[118] Keiichirou Kusakari and Yoshihito Toyama. On proving AC-termination by
AC-dependency pairs. IEICE Transactions on Information and Systems, E84-
D(5):604–612, 2001.

[119] Dallas S. Lankford. On proving term rewriting systems are Noetherian. Tech-
nical Report MTP-3, Mathematics Department, Louisiana Tech University,
Ruston, 1979.

[120] Dallas S. Lankford and Mike A. Ballantyne. Decision procedures for simple
equational theories with permutative axioms: Complete sets of permutative
reductions. Technical Report ATP-39, Mathematics Department, University
of Texas, Austin, 1977.

[121] Salvador Lucas. Context-sensitive computations in functional and functional
logic programs. Journal of Functional and Logic Programming, 1998(1), 1998.

[122] Salvador Lucas. Termination of rewriting with strategy annotations. In Robert
Nieuwenhuis and Andrei Voronkov, editors, Proceedings of the 8th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning

343

Bibliography

(LPAR ’01), volume 2250 of Lecture Notes in Artificial Intelligence, pages
669–684. Springer-Verlag, 2001.

[123] Salvador Lucas. Context-sensitive rewriting strategies. Information and Com-
putation, 178(1):294–343, 2002.

[124] Salvador Lucas. Lazy rewriting and context-sensitive rewriting. Electronic
Notes in Theoretical Computer Science, 64:234–254, 2002.

[125] Salvador Lucas. Polynomials for proving termination of context-sensitive
rewriting. In Igor Walukiewicz, editor, Proceedings of the 7th International
Conference on Foundations of Software Science and Computation Structures
(FOSSACS ’04), volume 2987 of Lecture Notes in Computer Science, pages
318–332. Springer-Verlag, 2004.

[126] Salvador Lucas. Proving termination of context-sensitive rewriting by trans-
formation. Information and Computation, 204(12):1782–1846, 2006.

[127] Salvador Lucas, Claude Marché, and José Meseguer. Operational termina-
tion of conditional term rewriting systems. Information Processing Letters,
95(4):446–453, 2005.

[128] Claude Marché. Normalized rewriting: An alternative to rewriting modulo a
set of equations. Journal of Symbolic Computation, 21(3):253–288, 1996.

[129] Claude Marché and Xavier Urbain. Termination of associative-commutative
rewriting by dependency pairs. In Tobias Nipkow, editor, Proceedings of the 9th
International Conference on Rewriting Techniques and Application (RTA ’98),
volume 1379 of Lecture Notes in Computer Science, pages 241–255. Springer-
Verlag, 1998.

[130] Claude Marché and Xavier Urbain. Modular and incremental proofs of AC-
termination. Journal of Symbolic Computation, 38(1):873–897, 2004.

[131] Massimo Marchiori. Unravelings and ultra-properties. In Michael Hanus and
Mario Rodŕıguez-Artalejo, editors, Proceedings of the 5th International Confer-
ence on Algebraic and Logic Programming (ALP ’96), volume 1139 of Lecture
Notes in Computer Science, pages 107–121. Springer-Verlag, 1996.

[132] John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine. Communications of the ACM, 3(4):184–195, 1960.

[133] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

344

Bibliography

[134] David R. Musser. On proving inductive properties of abstract data types. In
Proceedings of the 7th ACM Symposium on Principles of Programming Lan-
guages (POPL ’80), pages 154–162. ACM Press, 1980.

[135] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[136] Enno Ohlebusch. Transforming conditional rewrite systems with extra variables
into unconditional systems. In Harald Ganzinger, David A. McAllester, and
Andrei Voronkov, editors, Proceedings of the 6th International Conference on
Logic Programming and Automated Reasoning (LPAR ’99), volume 1705 of
Lecture Notes in Artificial Intelligence, pages 111–130. Springer-Verlag, 1999.

[137] Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, 2002.

[138] Carsten Otto. Automated Termination Analysis for Imperative Programs with
Dynamic Data Structures. Diplomarbeit. Fachgruppe Informatik, Rheinisch-
Westfälische Technische Hochschule Aachen, Germany, 2008.

[139] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some
equational theories. Journal of the ACM, 28(2):233–264, 1981.

[140] Frank Pfenning, editor. Proceedings of the 17th International Conference on
Rewriting Techniques and Applications (RTA ’06), volume 4098 of Lecture
Notes in Computer Science. Springer-Verlag, 2006.

[141] Frank Pfenning, editor. Proceedings of the 21st International Conference on
Automated Deduction (CADE ’07), volume 4603 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2007.

[142] David A. Plaisted. Equational reasoning and term rewriting systems. In Gab-
bay et al. [76], volume 1, pages 274–367.

[143] Martin Plücker. Termination of Integer Term Rewrite Systems. Diplomar-
beit. Fachgruppe Informatik, Rheinisch-Westfälische Technische Hochschule
Aachen, Germany, 2009.

[144] Andreas Podelski and Andrey Rybalchenko. A complete method for the synthe-
sis of linear ranking functions. In Bernhard Steffen and Giorgio Levi, editors,
Proceedings of the 5th Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI ’04), volume 2937 of Lecture Notes in Computer
Science, pages 239–251. Springer-Verlag, 2004.

345

Bibliography

[145] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In Proceed-
ings of the 19th IEEE Symposium on Logic in Computer Science (LICS ’04),
pages 32–41. IEEE Computer Society, 2004.

[146] Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. In Comptes Rendus du Premier Congrès de Mathématiciens des Pays
Slaves, pages 92–101, 1929.

[147] Uday S. Reddy. Term rewriting induction. In Mark E. Stickel, editor,
Proceedings of the 10th International Conference on Automated Deduction
(CADE ’90), volume 449 of Lecture Notes in Computer Science, pages 162–177.
Springer-Verlag, 1990.

[148] J. Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Rea-
soning. Elsevier Science Publishers, 2001.

[149] Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems.
Journal of the ACM, 20(1):160–187, 1973.

[150] Albert Rubio. A fully syntactic AC-RPO. Information and Computation,
178(2):515–533, 2002.

[151] Philipp Rümmer. A constraint sequent calculus for first-order logic with linear
integer arithmetic. In Cervesato et al. [41], pages 274–289.

[152] Manfred Schmidt-Schauß. Unification in a combination of arbitrary disjoint
equational theories. Journal of Symbolic Computation, 8(1–2):51–99, 1989.

[153] Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and René Thie-
mann. Automated termination analysis for logic programs by term rewriting.
ACM Transactions on Computational Logic, 11(1), 2010. To appear.

[154] Roberto Sebastiani. Lazy satisability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation, 3(3–4):141–224, 2007.

[155] Matthias Sondermann. Automatische Terminierungsanalyse für imperative
Programme. Diplomarbeit. Fachgruppe Informatik, Rheinisch-Westfälische
Technische Hochschule Aachen, Germany, 2007. In German.

[156] Christian Stein. Das Dependency Pair Framework zur automatischen Termi-
nierungsanalyse von Termersetzung modulo Gleichungen. Diplomarbeit. Fach-
gruppe Informatik, Rheinisch-Westfälische Technische Hochschule Aachen,
Germany, 2006. In German.

346

Bibliography

[157] Sorin Stratulat. Combining rewriting with Noetherian induction to reason on
non-orientable equalities. In Voronkov [169], pages 351–365.

[158] Mahadevan Subramaniam. Failure Analyses of Inductive Theorem Provers.
Dissertation. Department of Computer Science, State University of New York
at Albany, USA, 1996.

[159] Mahadevan Subramaniam, Deepak Kapur, and Stephan Falke. Predicting Fail-
ures of Inductive Proof Attempts. In Wolfgang Ahrendt, Peter Baumgartner,
and Hans de Nivelle, editors, Proceedings of the 3rd Workshop on Disproving:
Non-Theorems, Non-Validity, Non-Provability (DISPROVING ’06), pages 70–
81, 2006.

[160] Mahadevan Subramaniam, Deepak Kapur, and Stephan Falke. Predicting fail-
ures of and repairing inductive proof attempts. In S. Ramesh and P. Sampath,
editors, Next Generation Design and Verification Methodologies for Distributed
Embedded Control Systems, pages 177–192. Springer-Verlag, 2007.

[161] See http://www.lri.fr/~marche/termination-competition/2007/.

[162] Termination problem data base 5.0.2, 2009. Available from http://dev.

aspsimon.org/projects/termcomp/downloads/.

[163] René Thiemann and Christian Sternagel. Certification of termination proofs
using CeTA. In Stephan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Proceedings of the 22nd International Conference
on Theorem Proving in Higher Order Logics (TPHOLs ’09), volume 5674 of
Lecture Notes in Computer Science, pages 452–468. Springer-Verlag, 2009.

[164] Ashish Tiwari. Termination of linear programs. In Rajeev Alur and Doron
Peled, editors, Proceedings of the 16th Conference on Computer Aided Verifi-
cation (CAV ’04), volume 3114 of Lecture Notes in Computer Science, pages
70–82. Springer-Verlag, 2004.

[165] Yoshihito Toyama. On the Church-Rosser property for the direct sum of term
rewriting systems. Journal of the ACM, 34(1):128–143, 1987.

[166] Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. In Proceedings of the London Mathematical Society, volume 42,
pages 230–265, 1937.

[167] Xavier Urbain. Modular & incremental automated termination proofs. Journal
of Automated Reasoning, 32(4):315–355, 2002.

347

Bibliography

[168] Sergei G. Vorobyov. Conditional rewrite rule systems with built-in arithmetic
and induction. In Dershowitz [55], pages 492–512.

[169] Andrei Voronkov, editor. Proceedings of the 19th International Conference
on Rewriting Techniques and Applications (RTA ’08), volume 5117 of Lecture
Notes in Computer Science. Springer-Verlag, 2008.

[170] Christoph Walther. Mathematical induction. In Gabbay et al. [76], volume 2,
pages 127–228.

[171] Christoph Walther and Stephan Schweitzer. About VeriFun. In Baader [16],
pages 322–327.

[172] Wikipedia. List of software bugs. See http://en.wikipedia.org/wiki/List_
of_software_bugs.

[173] Hans Zantema. Termination. In TeReSe, editor, Term Rewriting Systems,
chapter 6, pages 181–259. Cambridge University Press, 2003.

[174] Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mechaniz-
able induction principle for equational specifications. In Ewing L. Lusk and
Ross A. Overbeek, editors, Proceedings of the 9th International Conference on
Automated Deduction (CADE ’88), volume 310 of Lecture Notes in Computer
Science, pages 162–181. Springer-Verlag, 1988.

348

	University of New Mexico
	UNM Digital Repository
	12-1-2009

	Term rewriting with built-in numbers and collection data structures
	Stephan Falke
	Recommended Citation

	tmp.1469198166.pdf.9I33V

