University of New Mexico

UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2009

Pro%rammer feedback and dynamic analysis to
enable optimization in Java applications: the

DUPO. framework

David Mohr

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

Recommended Citation

Mohr, David. "Programmer feedback and dynamic analysis to enable optimization in Java applications: the D.U.P.O. framework."
(2009). https://digitalrepositoryunm.edu/cs_etds/74

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in

Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.


https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/74?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

David Mohr

Candidate

Computer Science

Department

This thesis is approved, and it is acceptable in quality
and form for publication:

Approved by the Thesis Committee:

7248 Darko Stefanovic, Chairperson

i) el Amer Diwan

Kg /4/‘,_-—————/ Patrick G. Bridges
f /




Programmer Feedback and Dynamic Analysis to
Enable Optimization in Java Applications: The
D.U.P.O. Framework

by

David Mohr

BSCS, The University of Texas-Pan American, 2006

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 2010




(©2010, David Mohr

111



Dedication

To my grandparents: Oma und Opa, ohne euch wdire ich nie so weit gekommen. Ich
bedanke mich sehr fiir eure Unterstiitzung iiber diese langen Jahre hinweg, und fiir alles

was ithr mir schon vorher mit auf den Weg gegeben habt.

“Es ist nicht genug zu wissen - man muss auch anwenden. Es ist nicht genug zu wollen -

man muss auch tun.” — Johann Wolfgang von Goethe

v



Acknowledgments

I would like to thank my advisor Darko Stefanovic for being patient and for supporting
me throughout my journey. Without the close collaboration with Amer Diwan this work
would have never been completed. Thanks go also to Patrick G. Bridges for being a very
responsive committee member when time was short. I’'m very grateful that my colleague
Devin Coughlin helped by taking the transformation work out of my hands.

Many thanks go out to my parents, who have always been there for me. And a big
thank you to Nina for being patient most of the time.

I also really appreciate the help of the reviewers, Peter Kolloch, ThanhVu Nguyen,
and Nina. And finally, thanks to Mark Marron, who helped to get the stone rolling at the
beginning of this work.

This material is based upon work supported by the National Science Foundation under
Grant No. 0540600.



Programmer Feedback and Dynamic Analysis to
Enable Optimization in Java Applications: The
D.U.P.O. Framework

by

David Mohr

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 2010




Programmer Feedback and Dynamic Analysis to
Enable Optimization in Java Applications: The
D.U.P.O. Framework

by

David Mohr

BSCS, The University of Texas-Pan American, 2006

M.S., Computer Science, University of New Mexico, 2010

Abstract

It is inherently difficult for static analyses to make precise decisions about dynamic fea-
tures of modern object-oriented languages. This makes it more difficult to apply optimiza-
tions aggressively. This thesis introduces the D.U.P.O. framework to facilitate the use of
dynamic analyses to enable performance optimizations. Since dynamic analyses cannot
guarantee complete code coverage, a two part strategy is employed: unit tests are used as
a de facto specification, and the programmer provides final verification. The interaction
can be kept at a minimum by using the rich information provided by a dynamic analysis.

Object inlining is discussed as an example instance of the framework.
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Chapter 1

Introduction

Traditionally program optimizations use static safety analysis, and are implemented in the
compiler. In recent years, modern programming languages have gained features which
are inherently difficult to analyze with static analysis. Taking Java as an example, these
features are reflection, dynamic class loading, and native methods. While analyzing pro-
grams which make use of these features using static analysis is still possible, it results in
either imprecise or unsound results. This prohibits the aggressive optimizations which are

needed today.

The alternative to static analysis is dynamic analysis. It fares much better with the
majority of these features, but in turn has its own inherent problem: how to ensure good
coverage. We propose a solution for this prominent question: to use unit tests as a de facto
specification of the program. Good unit tests exercise all code, and hence provide a reliable
way to obtain good coverage for dynamic analysis. As even this does not guarantee com-
plete coverage, we chose to ask the programmer for confirmation. This interaction gives us
the final assurance that the particular optimization is safe to perform, conveniently solving
the remaining problems that dynamic analysis has with the language features mentioned

above.



Chapter 1. Introduction

We introduce a framework to facilitate using this novel approach: D.U.P.O., or
Dynamic Analysis, Unit Tests, Programmer Interaction for Optimizations. It is indepen-
dent of particular optimizations and very general. It provides best practices, guidelines,
and an implementation of common functionality for all steps involved: data collection,
data storage and management, analysis, programmer interaction and performing the trans-

formation.

As an example instance of the D.U.P.O. framework we present an implementation of
object inlining. Object inlining is essentially an optimization which replaces references
with the referenced object’s members. The version implemented for this thesis is not
pushing the state of the art in object inlining research itself, allowing a close examination
of the way it works. This allows the reader to focus on the details of object inlining, that it

1s in fact safe, and how it fits into the framework.



Chapter 2

Motivation

2.1 Need for Speed

Since its formulation in 1965, “Moore’s Law” has characterized the development of inte-
grated circuits as doubling their transistor counts every two years [22, 23]. For many years
this has resulted in an enormous improvement in computing power with every generation

of chips.

This was accompanied by a steady increase in both primary [22] and secondary [32]
storage sizes enabling users to handle extremely large input sizes. This trend is not likely
to stop in the near future. As an extreme example, the Large Hadron Collider will produce

about 15 petabytes per year [8].

While “Moore’s Law” (which is more accurately described as a prediction) currently
still holds true [33], the increase in transistor counts are no longer proportional to im-
proved computing speed [27]. Limiting factors, such as the maximum propagation speed

of signals, lead to a leveling-off of computing speed increases [27].

For easily parallelizable algorithms this does not pose a challenge, since it is possible
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to scale the number of processing units with the input size. Yet, there will always be in-
stances where this is not the case, and the algorithm does not scale well when parallelized.
Since it is infeasible for the processing time to scale proportionally to the input when the
input is continuously getting larger, there is an increased need for aggressive optimization

strategies.

2.2 Analysis Difficulties

Aggressive optimization strategies require accurate program analysis. This is not a simple
undertaking: Modern object-oriented programming languages are making increased use
of features such as reflection, dynamic class loading, and native methods. While, for
instance, reflection was considered too slow for general programming in the recent past, it
has become feasible with today’s processing power. All these language features are often
used in modern programs [16]. Some examples are: the class loaders defined by Maven
project [1] that allows the retrieval of dependencies over the network, plugins in most
projects are loaded through reflection, e.g. in the Eclipse IDE [13], and middleware like

the persistence solution Hibernate [17].

It is these very dynamic features that make it very difficult for static analysis to remain

accurate:

1. “Reflection” allows the inspection and manipulation of objects at run-time.
Essentially reflection is a form of meta-programming. While it would be possible to
analyze it using a static approach, the analysis complexity increases greatly [16].

2. “Dynamic class loading” allows the addition of executable code at run-time.

Once executable code can be added at run-time, a static analysis can never inspect

the whole program at once. It is possible of course to re-analyze after a class is
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loaded, but this requires a complicated change management. If a re-analysis deter-
mined that a previously applied optimization no longer applied, the running code

and/or data needs to be migrated as the optimization is reverted.

3. “Native methods” allow code to be executed outside of the Java run-time environ-

ment.

This different run-time environment means that the same analysis methods deployed
on the Java parts of the program cannot be applied. Usually native methods allow

execution of arbitrary code, so in general analysis is not possible!.

Optimizations in compilers have to preserve the semantics of the program because
otherwise correct execution cannot be guaranteed. Colloquially a program transformation,
e.g., an “optimization”, is termed ‘“‘safe” if it does not change the program semantics.
Traditional compilers have to ensure that the optimization is safe in all possible executions
since the compiler has no knowledge of how the program is going to be used. As it is
not feasible to analyze all possible executions, abstract interpretation [11] was invented,

which is used by most, if not all, static analyses.

Abstract interpretation maps from the actual program states to a lattice of abstract
states. It uses rules for each program operation to transition in the abstract lattice. This
makes it possible for an analysis to be completed in a reasonable amount of time. However,
this mapping comes at the expense of analytic accuracy. Some program states compress
well and mapping into the abstract lattice preserves most properties. Regardless this is not
true of most operations; often information is lost when mapping into and transitioning in
the abstract lattice. Abstract interpretation has worked well in the past, but it is inherently
difficult to handle features like reflection. Essentially reflection uses the value of variables

to decide further actions, but the abstracted states do not provide exact variable values.

In the end, the level of accuracy reached through static analysis is not acceptable. Some

'In principal machine code could be analyzed, but this is not a practical solution.
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research ignores these language features, resulting in either an unsafe analysis on pro-
grams using them, or greatly reducing the applicability of the transformation [16]. Since
it is likely that usage of these language features will only increase over time as program-
ming becomes higher-level, it is unlikely that static analysis will be able to give sufficient
accuracy for deciding when to apply program transformations. A consequence of these
limitations is that we need an alternative to static analysis that enables a more accurate

analysis, allowing us to apply optimizations more aggressively.

Some compilers use profiling data to decide when to apply transformations. Most
notably just-in-time (JIT) compilers rely heavily on sampling data to decide when to apply
transformations. This dynamically collected information is only used in conjunction with
a static analysis result: the latter is used to show that the optimization is safe to apply, and

the former is only used for profitability analysis.

2.3 A Dynamic Approach and Unit Tests

The alternative to static analysis is dynamic analysis, which collects its data from concrete
runs. In contrast to its static cousin, it is not limited by the number of possible program
states, but only by the number of encountered states. Dynamic analysis has access to all
details of the program’s behavior and can produce very detailed reports limited only by its
overhead cost. The flip side of observing concrete runs is that there is no guarantee that all
states which the program can be in are actually observed. This encourages dynamic analy-
sis to be primarily used for gathering performance data. We believe that this limitation can

be mitigated and dynamic analysis can be used successfully for safety decisions as well.

If somehow the dynamic analysis was able to observe all possible usage patterns of
the program, then the collected data would allow a complete, and thus safe, analysis. It

would yield a superset of the information we can gather from a static analysis and be more
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accurate. Unfortunately, there is no method to ensure that a number of program runs cover
all possible program states. In fact, such a proof would require static analysis, which we

are trying to avoid for the reasons mentioned above.

After thorough examination of the different approaches, we are still left with the ques-
tion: what other ways are there to ensure a program transformation is correct? If there was
a formal specification of the program, then the transformed program could be tested against
the specification to ensure that it is still valid. Most modern object-oriented programming
languages are not easily verified by formal methods since, again, these methods are essen-
tially a form of static analysis. In practice verification tools, e.g., ESC/Java2 [10] used in
conjunction with JML [26], perform static verification, but only consider one method at a
time, and not the correctness of the entire program. This restriction allows a static analysis
to be used without having to analyze the complicated control flow made possible by the

aforementioned dynamic language features.

What comes closest, though not a formal method, is the use of unit tests to verify
correct program behavior. The term “Unit test” itself is not formally defined. Commonly
it is used to refer to a set of tests which verify correct behavior of the program’s units. The
term “unit” is also not formally defined, but in the context of object-oriented programming
languages a class can generally be considered a unit. The idea of unit testing came from
methodologies like “Test-Driven Development” [14, 34] or “Extreme Programming” [2,
18]. The goal is always to provide a set of tests which exercises the complete program.
Part of unit testing, in difference to other testing strategies, is to test every unit in isolation,
e.g., through the use of mock objects. Note that due to the lack of exact definition a number

of programmers do not at all, or do not always, adhere to this principle of isolation.

Assuming that unit tests are complete, they can be used as a de facto specification of the
program’s behavior since the tests cover all the functionality of the program. Therefore,
the execution of the unit tests can be used by the dynamic analysis to capture the complete

behavior of the program. We propose this as a solution to finding the representative run
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for dynamic analyses.

Other tests aside from unit tests can also be incorporated, as can any other runs which
are deemed representative. These additional inputs to the analysis become important when
the unit tests are known to be incomplete. When unit test incompleteness is known, these

other inputs must be representative — otherwise incorrect conclusions will be drawn.

Even with complete coverage, one modern object-oriented features remains problem-
atic: dynamic class loading. As it is not possible to determine in advance if, when, and how
classes are loaded [16], it is difficult for analyses to take dynamic class loading into ac-
count. Essentially it cannot be guaranteed that the whole program is available for analysis,

but whole program analysis is essential for a number of more aggressive optimizations.

One solution is to perform the dynamic analysis at run-time and execute the optimiza-
tion on-line. In practice, this is only possible in rare cases. Dynamic analysis has a high
overhead cost when compared to the regular run-time of programs, prohibiting on-line
operation as the slowdown is not acceptable in production. The better solution is to use

off-line analysis and find a way to provide the missing information.

2.4 Programmer Involvement

Part of the reason for the missing information is in the limitations of programming lan-
guage semantics. Let us consider reference and value semantics of variables as an exam-
ple’. The C++ language has a construct which allows the programmer to select between
reference and value allocation, but Java does not have this feature. Instead, Java uniformly
uses reference semantics with objects®. Therefore, it would be an optimization to use

value semantics when it is beneficial. Any analysis for this optimization has to handle

’This is the basis for our example instance of the framework presented in Chapter 5.
3Note that Java uses reference semantics for object allocation, while always passing parameters
by value.
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these problematic language features we have discussed. For this case it would be easy to
add a use-value-semantics annotation to the source code, rendering the analysis obsolete,

since that is all the transformation needs to know to be applied.

Using annotations does have a number of drawbacks. A value annotation changes the
semantics of using the object, e.g., an assignment now copies the values of the object
instead of creating another reference. Note that this is not apparent by reading the assign-
ment statement, instead one has to be aware of the declaration of the object to know what
effect the statement has. One could speculate that this is the reason that value semantics
are not a language feature of Java. An alternative, using different syntax for accessing
a reference object and a value one, is used by the C language. While it is immediately
apparent what semantics the operations have*, changing between the two different modes
now becomes cumbersome: not only the declaration, but most operators on the variable in

question must be changed?.

We must pose the question: is it really desirable to keep this information at the source
level? Changing between value and reference semantics can make drastic performance
differences depending on the usage patterns. Thus there are advantages to not specifying
it explicitly but instead having it be automatically determined by the optimizer. We must
also keep in mind that the question of reference vs. value semantics is just an example.
It would be too demanding of the programmer to specify extra information in the source

code for a number of optimizations.

The use of annotations does show that the information required often is available: just
not in the source code, but instead in the programmer’s head. We want to make use of
this additional information source while retaining as much automation as possible. In this

thesis we aim to make use of profiling information to minimize the interaction with the

4C does not have different operators for assignment, just for accesses.
>We do realize that automated refactorings could make changing from reference to value se-
mantics easy, however, value semantics still are not available in Java.
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programmer. This allows the programmer to focus his attention on the specific places

where an optimization is likely to be safe and profitable.

10



Chapter 3

The D.U.P.O. Framework

The methodology to use off-line dynamic analysis, unit tests as the input for the analysis,
and getting final verification from the programmer is a new one. This is why we created our
framework. The name, D.U.P.O., is a simply acronym for its main components: Dynamic
Analysis, Unit Tests, and Programmer Interaction for Optimizations. Its purpose is to
guide the programmer implementing a specific optimization using this methodology with
recommended practices, and also code for common functionality. Hence D.U.P.O. does

not handle anything specific to particular optimizations.

What we have outlined in Chapter 2 is a direct template for our framework. D.U.P.O.
is very general, and the specific needs for each step will vary depending on the particular
optimization; nonetheless there is some general structure which will always be the same.

That structure is discussed in this chapter.

11
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Configuration
(e.g., class list)

< Instrumentation —> Data collection / Opportunities
A

Programmer
verification

Transformation

v

Target program SEE (e Analysis Optimized program

Figure 3.1: Brief D.U.P.O. framework overview.

3.1 Introduction

First we give an overview of the whole system, and introduce some of the terminology.
The normal workflow for applying an optimization with the D.U.P.O. framework to some

program is shown in Figure 3.1.

The dynamic analysis consists of two parts: data collection and analysis. First we
collect the data by observing a program run. The run is observed by strategically in-
strumenting the program beforehand. During execution the instrumentation monitors the
behavior of the program. Once it decides that the program performed a noteworthy action,
we say that an event was generated. Throughout the program execution many events will
be generated. For flexibility the D.U.P.O. has the notion of a logger, which decides what
to do with each event. After all the data have been collected, they are analyzed. When
favorable opportunities are found, they are presented to the programmer. Together with
the opportunity, additional information should be displayed which help the programmer
in making a decision about its applicability (this is called the support information). If the

programmer confirms that the opportunity is safe, then it is automatically applied.

More precisely we define:

Definition 1 (run). A “program run”, or just run, refers to the execution of the instru-

mented program.

Definition 2 (event). An event refers to the data generated by the instrumentation during

12
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a run for some particular program action.

Definition 3 (logger). A logger refers to an object to which the instrumentation passes the

events. It decides how the event should be handled.

Definition 4 (log). An event log, or just log, contains the data produced by a logger; it is

a stream of events.

The ideas presented in this chapter are implemented together with the example instance
of Chapter 5. They are not separated into a separate project, but are logically divided into
packages. While not completely prepared for use with other optimizations, it is designed

with reuse in mind.

3.2 Data Collection

In difference to static analysis, dynamic analysis requires run-time support. The instru-
mentation code will usually be added through off-line or load-time bytecode rewriting.
Both work essentially the same way, and there is very little difference between the meth-
ods for the needs presented here!. Source code modification was not chosen for the same
reasons people usually avoid it: it is much more complex. Ultimately this choice is up
to the individual optimization, but we believe that in the vast majority of cases there is
no need for information that is available at the source code level, but not at the bytecode
level. This is particularly true since an inspection of the instrumented program should not

be necessary.

We believe that JVM modifications to collect the data are not the best option for imple-

mentations of D.U.P.O. Working within the JVM provides performance benefits, but also

The difference between off-line and load-time binary rewriting is more an implementation
question: Load-time instrumentation works better when dynamic code loading is involved, al-
though it is possible to simply rewrite the code before it is dynamically loaded as well.

13
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is significantly more difficult to implement. Java optimizations are often implemented
directly in the JVM, because they are on-line optimizations, and can be seamlessly inte-
grated into the compilation process?. Note that in our framework applying the optimization
is necessarily an off-line process: The programmer involvement, explained in Section 2.4,
dictates it. Therefore bytecode rewriting off-line or at load time is the best choice. The

implementation in this thesis uses off-line bytecode rewriting.

What data must be collected by the instrumentation is entirely dependent on the in-
dividual optimization. We do believe that sometimes the collected data can be used for
more than one optimization (See Section 6). While it is certainly possible to record all
operations, and then simply extract those necessary to enable a specific optimization on
demand, the data collection time would be prohibitive. It follows that generally only the
necessary data should be collected, unless it is known that some superset would in fact

enable it to be utilized for more than one optimization.

Even though different optimizations use different data, each stage in the software de-
velopment life-cycle has similar requirements on how to handle the data. While testing
the instrumentation, for example, it can be useful to simply ignore any data which would
normally be collected. When debugging what data are actually collected, it can be use-
ful to work with small examples, and directly display the collected data on the console.
Essentially a mechanism is needed to switch between storage back-ends. The back-end

classes, in contrast to their implementation, being independent of the optimization.

This back-end class must be initialized, so some management code is required to be
executed before the actual program is started. The programmer has to specify this main
method so that the instrumentation can insert the call to the framework initialization as
the first statement in the main method. Similarly there might be a need to perform some

cleanup actions before exiting the application, e.g., closing a database connection. Java

ZHere compilation refers to the translation from bytecode into native code by the optimizer
within the JVM.
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gives us a nice mechanism for this: shutdown hooks®. The hook is inserted by the ini-
tialization code, and instrumentation is only required in one place. This is preferable to
adding instrumentation directly to call the cleanup code, since there are several ways to
terminate an application*. Note that several shutdown hooks can be registered, and are
executed in parallel when the JVM shuts down. This is undesirable, since the framework
could be shutting down in parallel to application shutdown procedures which still generate
events. This is easy to work around, application shutdown hooks could be redirected to

the D.U.P.O., and called from its shutdown hook. This establishes the correct ordering>.

Bytecode rewriting has the advantage that for several runs the instrumentation only has
to be added once. But not every run has the same data collection requirements, e.g., once
the instrumentation has been tested with no output, one may want to see the output on
the console. So a mechanism is needed to switch between these different output methods
at run-time. Usually parameters are passed to programs on the command line. But this
method might already be used by the application itself; we want to pass parameters to the
framework only. It would be possible to use arguments for both, and have D.U.P.O. clean
up the arguments before the application sees them. But this method has the downside
of conflicting parameter names between the application and the framework. We chose to
use environment variables instead®. While not being immune to conflicts, they are not
traditionally used by Java programs, which makes a conflict unlikely. It also provides a
clear separation between the parameters passed to the application and the ones passed to

the framework. This mechanism is used to select the logger at run-time.

At instrumentation time a default logger is selected. This can be overwritten at program
start. Then it is up to the optimization to install the appropriate type of logger through a

Factory method. The framework provides a mechanism to handle some common data

3See the Java shutdown hook documentation.

4One way to exit an application is to call System.exit (), which could be called anywhere in
the whole program.

>The redirection of application shutdown hooks has not yet been implemented by us.

6Java properties would be equally suited for this purpose.
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which is independent of the optimization, e.g., Java types. We will elaborate on this in the

next section.

3.2.1 Working with Types

We believe that types are often going to be of interest for the analysis. Types in Java
are represented internally in a “.class” file as part of the constant pool, but everywhere
else as strings. This makes them easily human readable, but slow to process. Since the
instrumentation code in hot places will be executed extremely often, we optimized the
look up by using integers to represent types. When an event includes type information, we

now only have to log an integer, and not a string.

This translation is most efficient at instrumentation time, so that an integer is directly
used in the added code. The instrumentation uses a database as a back-end for the transla-
tion from a type string. This allows us to switch to a dynamic look-up, where the database
call is inserted instead of the integer constant when necessary. The additional advantage
of using a central database for the type information is that it is consistent between runs.
Therefore there is no need to normalize the integer type when processing more than one

run at once.

3.3 Data Storage

Regular runs need to store the event data. The kind of data is of course dependent on
each optimization. Yet it is the nature of most dynamic analyses to produce many events,
with a small number of event categories, and little data for each individual event. The
combined stream of events often yields a large amount of data, even several gigabytes (as
is the case for the example instance of object inlining). Initially we thought that it would

be a good idea to store the data in a database. But it turns out that regular databases are
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not well adapted to handling the kind of data streams which the instrumentation produces

(see Section C.1).

While there might be exceptions, we believe that most analyses will aggregate while
passing over the stream of events. So when random access is not required, a flat file layout
will yield a significant performance improvement, while still being simple to implement.
It is possible to use Java serialization to write the data, but this would again introduce
some overhead. We believe the most efficient way is to use a custom format. Since events
usually carry little data, they are easy to write out by hand, and also easy to parse. For
details see Section B.3. Note that if random access is in fact required, it is likely to require

a different storage format.

3.4 Data Management

The off-line nature of our framework makes data management important. Depending on
what information an optimization needs to collect, every run potentially generates a large
amount of data. The time required to collect the data is usually proportional to the number
of events. This makes it important to retain the results, as collecting them again would be
expensive. With the easy availability of large storage capacities, we do not think there are

any reasons to quickly discard the collected data.

Thus throughout the development time of every optimization, a large number of runs
will be stored as it is executed in varying stages and on different programs’. This makes
keeping an inventory of the run metadata essential, as otherwise the details of a run will
too easily get lost or mistaken. The framework stores the parameters of every run in a
database, and there is a front-end available to manage the metadata, independent of the

individual optimization (See Section A.2).

"We worked on 1050 runs, and still has 374 stored on disk at the time of writing.
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3.4.1 Run Metadata

There are a number of interesting general parameters to record for each run. They are of
organizational nature, and are independent of what is recorded for each optimization. The
goal of the common metadata collection is to associate the environment of each run with
the analysis results. Not only does this improve reproducibility, but also helps tremen-

dously while the optimization is still in development.

For each run we record the following metadata:

e Application.
A string describing the application, and a string describing the version. The values
are initially set during instrumentation. The application name can be overwritten
at program startup. This is useful mainly for application bundles, e.g., the DaCapo
benchmark suite [3], where the whole bundle was instrumented at the same time,
but runs of each application need to be recorded individually. There is no need
to overwrite the version number in this case, since the applications version can be

derived from the bundle’s version.

e Start and finish time.
The start and end time of the run. This is used to order runs. In particular in the
development phase it is useful to know how long a run took, and with which version
of the instrumentation it was compiled. While version of the instrumentation is not
explicitly recorded, with good programming practice, i.e. always checking code into

a version control system (VCS) before its use, it can be exactly determined.

e Main class.
This is used for disambiguation in case there are several entry points for an applica-

tion. An example is different front-ends, or unit tests.

e Current working directory.
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The directory in which the run was started in. This is important to allow easy loca-

tion of data files which the run’s logger might have saved.

e User.
The username of the user who started the run. It allows to distinguish between
similar data collections by different people. If there are several users working on the

same project, they can share the same main database for consistency.

e (Classpath.
The classpath used for the run. This is recorded because for Java programs this is an

essential part of the run-time environment.

e Console output.
We recommend to save the console output for reference. Since this is done easily
using external scripts, the framework only provides a method to save the location

where the output was redirected to.

e Data log.
If a logger was used which saves data to a file, then the location of the file can be

saved.

e Note.
It can often be important to make a note about a run, for instance, “This run aborted

with an exception”.

e Group.
At times runs belong together; they form a group. Grouping becomes essential
when unit tests are observed in isolation, and hundreds of runs are created by one
execution of the complete unit test suite. Currently a run can only belong to one

group®.

8The one group limitation could easily be removed with some implementation effort.
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We believe that this set of metadata captures the most important common attributes of

a run.

3.5 Analysis

The analysis part of the framework does not come with many notes or guidelines. The
framework implementation makes it easy to allow the analysis to run either in-process
with the data collection, or as a separate pass after all the data have been collected. It is
recommended to run the analysis separately, mainly for reduced interference, and to allow
re-analyzing the results. An example of interference is the changed memory behavior,

which could result in too little stack or heap space being available.

As was already mentioned in Section 3.3, we expect most analyses to require linear

scans of the log, but there are likely to be exceptions to this.

It is of note that since the analysis has to determine whether it is safe to perform an
optimization, it cannot rely on sampling data. Sampling data is only suitable for perfor-
mance predictions, and not to determine exact behavior as is required for most aggressive
optimizations. Optimizations which do not require exact behavior are not the target for

this framework. They are likely better implemented within the JVM.

Let us introduce some common terminology:

Definition 5 (opportunity). An opportunity is one particular place where an optimization

can be applied.

The analysis needs to keep in mind that the programmer has to verify the opportunities
it finds. Since usually it is not known in advance how many opportunities will be found,
the analysis should also gather some heuristic to sort the opportunities. A heuristic might

need additional data to be collected, which should be considered from the beginning on.
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3.6 Programmer Interaction

Once a number of opportunities have been found by the analysis, they need to be verified
by the user. Confirming a large number of opportunities is not an option since it would
require too much time. Therefore the opportunities need to be sorted by expected pay-off

value, and the programmer can then confirm only the most valuable ones’.

Aside from limiting the number of opportunities, it is also required to keep the inter-
action with the programmer on each one at a minimum. Ideally the programmer is only
asked a simple yes/no question, although slightly more complex interactions are suitable

as well if they do not require too much specialized knowledge.

Aside from asking only simple questions, we can cache the decisions of the program-
mer, and reuse them if possible. The system knows what information was presented to the
programmer when the decision was made. It can monitor if the conditions change, and
once they do, the programmer has to reconfirm his choices. It is up to each individual
optimization, however, whether to really cache the programmer’s input or not: If it is de-
termined that the assumptions for the optimizations are very volatile, then no cache should
be used. We argue that one should strive to design optimizations in this framework so that
they are not particularly volatile, and a cache can be used effectively to ease the burden on

the programmer.

3.7 Transformation

If the programmer confirms any opportunities, the optimization can be applied by trans-
forming the program in the places the opportunities specify. The options of how the op-

timization is applied are the same ones as for the data collection, which was discussed in

The exact threshold of opportunities to display can be user configurable.
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Section 3.2. The choice between the options, however, is a slightly different one. Imple-
menting the optimization in the JVM is not beneficial for the same reasons as for the data
collection; since this framework is an off-line process. This time there is an advantage to
transforming the source code over transforming bytecode: the source code can readily be
presented to the programmer, while bytecode can only be inspected by experts'”. We do
not expect that manual inspection of the transformation result will be a required feature
for many optimizations. In fact, this aspect should not be used as part of the regular work-
flow, although it could conveniently be offered as an optional setting, e.g., for debugging
purposes. Rather we believe that knowledge about the exact state of, and changes to the
source code allows the system to present clearer questions to the programmer in the ver-
ification step described in the previous section. If a source rewriting is chosen, the result

must of course still be compiled. Then the optimized program is ready.

Implementing the transformation outside of the JVM offers another advantage: it au-
tomatically becomes portable across JVMs. This creates exciting new opportunities for
cross-validation, i.e. checking that any speed-up is not just an artifact of interaction be-
tween existing JIT optimizations. It should be noted that while the framework does not
need to be adjusted to do this, the details, and the infrastructure requirements are out of

scope of this thesis.

Through the experiences we have gained from implementing the example optimization,
we can now recommend to nonetheless use bytecode rewriting over source code rewriting.
The complexities of the latter outweigh the advantages for interacting with the user: it
is more complicated to cover the whole Java language when dealing with source code

compared to dealing with bytecode.

10We claim that anyone knowing Java bytecode well enough to understand what it does can be
considered an expert.
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3.8 Conclusion

Certainly not all optimizations fit the framework presented here. In particular when the
analysis is inexpensive so that it can be performed online, then an implementation inside
the JIT compiler might be more appropriate. But we believe D.U.P.O. offers good support
for a class of optimizations which are not easily integrated into the JVM’s adaptive compi-
lation system. Additionally some optimizations which could be implemented online might
benefit from better analysis and more comprehensive profiling to allow more aggressive

application than before.

In the range from completely automated to manual optimization, this framework stands
somewhere in the middle: while requiring some manual input, it is mostly automated. We

believe this is a novel balance, which has not been explored before in this form.
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Comparison with other Approaches

If program transformations are lined up on a scale from fully automated to completely
manual, this framework can be placed somewhere in the middle. Ideally its implementa-
tions are situated more on the automated side, but it cannot be guaranteed. As far as we

are aware, this level of automation is not well explored.

The contrast with manual work is obvious; the transformations used here are not per-
manent, and can at any time be omitted again. But the integration of data collection and
analysis provides a contrast to code refactoring tools, which usually solely rely on the
programmer’s decision. The difference to fully automated optimizations is obvious: this
framework uses programmer interaction. This introduces another difference: being an
off-line optimization. The off-line nature has the advantage that the implementation of
the optimization does not have to include any undo code, or monitoring. This key differ-
ence makes it difficult to compare optimizations implemented in this framework to, for

example, those implemented within the JVM.

The most similar existing work is probably Daniel von Dincklage’s work on specifying
intended semantics to enable optimization [31]. He focuses on bridging the gap between

the actual Java semantics and the programmer intended semantics using an iterative ap-
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proach of specifying intentions, and finding reasons for failing to apply an optimization.
His approach is more interactive than what is proposed in this thesis: his tool asks the
programmer repeatedly to specify the intended semantics at places his analysis has iden-
tified to block optimizations. Another difference is the granularity of the questions; in
von Dincklage’s work the programmer input is given for individual semantics, e.g., “No
exceptions will occur at this point”. Our framework asks higher level questions specifi-
cally designed for an optimization opportunity, such as “Does field £ of class C have value

semantics?”’
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Object Inlining

As an example of the D.U.P.O. framework we implemented the object inlining optimiza-
tion. We define object inlining as replacing an object reference with the referenced ob-
ject’s members (fields and methods). It is primarily a storage transformation; what was
a reference field before is transformed into one or more value fields. Accesses to the
transformed fields must also be transformed to refer to the new location(s), as well as

redirecting method calls where the inlined field is the receiver.

5.1 Motivation

Most people consider it good software engineering to modularize and separate concerns
into components. In object-oriented programming languages, like Java, this practice re-

sults in programs using many, often small, classes.

Allocation of memory, garbage collection, and dereferences can make the use of many
small objects very costly at run-time. In the Java programming language there is no lan-

guage support for avoiding these costs while still maintaining a good programming style:
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Java only has heap based allocation and no native support exists for allocating objects
on the stack. Object inlining is an optimization which allows the programmer to use
fine-grained modularization while minimizing the aforementioned run-time costs. Object
inlining combines objects so that they are allocated and initialized together, and in most

cases saves some dereferences to access the inlined object.

There were a number of reasons why we chose object inlining as the example instance

of our framework:

e It is easy to follow what effect the transformation has on the source code.

e [t is easy to understand how the transformation affects interaction of existing with

dynamically loaded code.

e While being a well explored optimization, it benefits from the features this frame-

work offers.

The inlining algorithm which is described here is not very sophisticated. The focus is

on highlighting how the concept works and fits into the framework.

5.2 Introduction

The idea behind object inlining is easy to understand, but grasping the details necessary
to understand the safety analysis initially can be difficult. Therefore we will illustrate the
concept with an example, and incrementally introduce more concepts and terminology. We
hope that this progressive build-up help the reader to become easily acquainted our imple-

mentation. The terms introduced here will be more thoroughly defined in Section 5.3.

The usual workflow is instrumentation!, analysis, and transformation. In this chapter

we describe the process in reverse order. Taking this approach makes it easier to follow,

!Instrumentation is followed by data collection, which is simply running the instrumented code
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class Point { i | class Circle {
int x; > int radius ;
int y; 3 Point center ;
} s |}
(a) (b)

Figure 5.1: The classes used in the introductory example.

class Circle {
int radius;
int center x; /x inlined from Point */
int center.y; /x inlined from Point x/

Figure 5.2: The result of inlining Point into Circle.center.

since the requirements for each stage are derived from the one following it. After all, the

goal of the whole process is to enable the transformation.

5.2.1 Data Structure Changes

Consider the class definitions shown in Figure 5.1. In (a), class Point defines a simple
point in 2D space. This Point is used in (b), where class Circle defines a circle in 2D

space. The field center of the circle, is a Point.

In this example it is possible to replace the field center of class Circle with the
members of Point, fields x and y. We say that class Point was inlined into the field
center of class Circle. This results in the layout shown in Figure 5.2. Note that the

reference center itself was eliminated.

with the appropriate inputs. Since the run-time support is provided by the framework, there is no
additional description necessary.
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Container:

class{""'; Circle.center
int radius ; ,*
Point|center|’; [Target:
-------------- Sy
} Point

Figure 5.3: Illustration of the two central terms to object inlining.

class Point { i | class Circle {
int x; 2 int radius ;
int y; 3 Point center ;
4
Point(int x, int y) { 5 Circle (int r) {
this .x = x; 6 this . radius =r;
this.y = y; 7 }
} s}
} 9

(a) (b)

Figure 5.4: The extended base classes for the introductory example.

The class Point is called the target, and we say we inline Point. The field
center of class Circle, or Circle.center is the container. We say we inlined into
Circle.center. Putting these two terms together, we say we inlined the target into the

container. The terms target and container are also illustrated in Figure 5.3.

5.2.2 Code Changes

Now let us consider behavior; how the data structures that Point and Circle provide are
used. For this we extend the definitions in Figure 5.1 with a constructor so that it can be

conveniently initialized, as shown in Figure 5.4.

With the extended base classes in mind, look at the simple program presented in Fig-
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Circle cl,c2;

cl = new Circle(1);
cl.center = new Point(1,1) ;

c2 = new Circle(2);
c2.center = new Point(2,2) ;

29 9

System.out. println (”Cl:.” + cl.center.x + ”,” + cl.center.y);

2% 9

System.out. println (”C2:.” + c2.center.x + ”,” + c2.center.y);

Figure 5.5: Short program which uses the extended base classes.

ure 5.5. It creates two circles, each having a distinct Point instance in its center field. It

then prints out the coordinates of the center of each circle.

Now consider the same inlining as before, Point getting inlined into Circle.center,
shown in Figure 5.6. For the simple program to remain valid, it has to get adjusted accord-
ingly, as shown in Figure 5.7. Note that the call to new Point(...) that initialized the
center field was eliminated, as this field is now part of the class Circle. It is replaced by
a call on the circle instance, new_center(...) which takes over the initialization func-
tionality of the constructor. The other change is the access to the coordinates x and y.
Before the inlining a reference to a Point instance was obtained through the field center,
and then the field x or y was accessed, Now, the x or y coordinate is accessed directly

through Circle’s field center_x or center_y respectively.

The main difference is that the reference center does not exist any more. As such, it
cannot, and need not, be dereferenced?. The reference played a role in both the construc-

tor call (where it is implicit, as new Point(...) both initializes the memory, and calls

The term dereference is not usually used in the Java language. But since Java references are
technically just pointers, we felt that the term is established well enough to use it in the Java context
without additional explanation.
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class Circle {
int radius ;
int center x; /« inlined from Point */
int center.y; /x inlined from Point x/

/x the Circle constructor was unaffected by the inlining */
Circle (int r) {

this . radius =r;
}

/* the transformed Point constructor */
void new_center(int x, int y) {

this . center x = x;

this . center.y =y;

Figure 5.6: The result of inlining the extended Point into the extended Circle. center.

the constructor on the new memory chunk), and in the access of the x and y coordinates.

Therefore a dereference was removed when both the constructor call, and the coordinate

Circle cl,c2;

cl = new Circle(1);
cl.new_center (1,1) ;

c2 = new Circle(2);
c2.new_center (2,2) ;

29 9

System.out. println (”C1:.” + cl.centerx + ”,” 4+ cl.center_y );

29 9

System.out. println (”C2:.” + c2.center x + ”,” + c2.center.y );

Figure 5.7: Short program which uses the inlined extended base classes.
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- Heap

Circle i3/7 Point i4
- center: Point x: int
Stack radius: int y: int
c2: Circle |

cl: Circle
. \ Circle il/ Point i2
) center: Point Xx: int

radius: int y: int

Figure 5.8: Heap snapshot at the end of running example 1.

accesses inside the print statement, were transformed. It should be noted that the trans-
formed constructor itself did not eliminate any dereferences since the transformation result

dereferences this in the same way as the original constructor.

5.2.3 Analysis Principles

After the transformation has been introduced, we can consider the analysis that determines
if it is safe to apply in the first place. The objective is to check if the transformation
preserves the behavior of the original program. As mentioned earlier, object inlining is a

storage transformation, enabling its effects to be studied by looking at heap snapshots.

In order to discuss the object instances shown in the heap snapshot, we must identify
and name them. An id is assigned to each instance, the instance id. It is displayed as iX in
the snapshot, where X is a running number, next to the instance’s class name (cursive, and

in light blue, if color is available).

First, consider the original program in Figure 5.5. The state of the heap at the end of
the program execution is shown in Figure 5.8. Here, every instance of Circle points to
a unique instance of Point (il — i2, i3 — i4). Additionally, there exist no other object

references to those instances of Point. As a result, what was an independent storage
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Heap

Circle i2

, center_x: int
Stack center_y: int
radius: int

c2: Circle |

cl: Circle
: T Circle i1 \

center_x: int
center_y: int
radius: int

Figure 5.9: Heap snapshot after inlining at the end of example 1.

location before the inlining remains an independent storage location after, and the inlining

is safe to perform.

The inlined program in Figure 5.7 has a different heap snapshot at the end of its exe-
cution, as shown in Figure 5.9. Since the Point object instances are no longer allocated,

the size of the heap has been reduced leaving no object reference center anymore.

In contrast consider the code in Figure 5.10. It is very similar to the previous one
shown in Figure 5.5, but only creates one Point, and assigns it to the center field of both

Circle instances.

In this second example is not safe to inline. The reason is easily observable in the
heap snapshot at the end of program execution, as shown in Figure 5.11. Notice how
both instances of Circle hold a reference to the same instance of Point (i2 — il, and
i3 — il). If Point was inlined into Circle.center, then this single storage location in
the original program would become two storage locations (the heap snapshot at the end of
program execution would still look like the one shown in Figure 5.9). Hence the update of
cl.center.x on line 11 would not be reflected in c2. center. x, and behavior would not
be preserved. The general case is that any target instance that has more than one alias will

change program behavior if it is inlined.
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Circle cl,c2;
Point p;

p = new Point(1,1) ; /« Only one Point for both circles */

cl = new Circle(1);
cl.center = p;
c2 = new Circle(2);
c2.center = p;

cl.center .x = 3;

29 9

System.out. println (”C1:.” + cl.center.x + ”,” 4+ cl.center.y);

29 9

System.out. println (”C2:.” + c2.center.x + ”,” + c2.center.y);

Figure 5.10: Example 2. A variant of the code shown in example 1 that is not safe to

inline.

Heap snapshots are an excellent visualization tool and well suited to introduce the
concept. For the simple programs presented here, it sufficed to inspect a single heap
snapshot since each reference was only assigned to once. In more complex programs
references are frequently assigned to, and a heap snapshot would have to be examined

after every change. Considering that heap snapshots are relatively expensive to collect, in

Circle i3
- center: Point
Stack radius: int
c2: Circle { Point 11

cl: Circle \ - X: int

. \ Circle i2 y: int |
) center: Point
radius: int

Heap

Figure 5.11: Heap snapshot at the end of running example 2.
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practise we collect information to come to the same conclusion in a different manner.

5.2.4 Actual Analysis

In the previous section the heap snapshots were examined to essentially construct points-to
relations. The actual analysis is implemented so that it implicitly keeps track of the state of
the heap. It does so by recording an event whenever an object instance is dereferenced (or
otherwise used, which will be introduced later). The event needs to include information on
what instance was dereferenced, and where the dereferenced object instance was obtained

from. This allows the analysis to reconstruct points-to relationships.

The dereferences of the target Point that can be observed in Figure 5.5 are on the last
two lines, where the coordinates are printed out, namely the subexpressions c1.center.x,
cl.center.y, c2.center.x, and c2.center.y. We obtained these subexpressions from

looking at the source code’, but at run-time things look slightly different.

Take for example only the expression cl.center.x. At run-time when the data is
collected, the instance of Point referenced in the expression is i2, as we see in the heap
snapshot in Figure 5.8. This reference was retrieved from the container “field center
of Circle instance il1”. Notice that the particular field that was accessed here, x, is not
important, we only care that something of this Point instance was accessed. In the expres-
sion cl.center.x there actually is another dereference, the one of c1. This is a different

and distinct event, which we will discuss later.

The fact that instance il is of type Circle, and i2 is of type Point must also be

recorded. This is done in a creation event, which logs the instance id together the instance’s

type.

3The uses of the coordinates x and y in the constructor are left out w.l.o.g. to simplify the
analysis demonstration. They are in fact irrelevant, as we will point out later.
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The analysis then considers all events which involve targets of type Point: the four

dereferences mentioned earlier. We refer to the source statements which generate these

events, but also remind the reader that this is only meaningful because no reference is

reassigned or statements executed more than once in the example program. The stream of

events the analysis processes is:

Creation event, instance il has type Circle (for easier understanding this informa-

tion is repeated in the other events, instead of just mentioning the instance id.

Creation event, instance i2 has type Point.

Creation event, instance i3 has type Circle.

Creation event, instance i4 has type Point.

For cl.center.x, the target is the Point instance i2, the container is Circle in-

stance i1’s field center.

For cl.center.y an event with the exact same data is generated. As mentioned
before, this is caused by the event not recording which field of the Point instance

was accessed, as we are only interested in reconstructing the points-to relationships.

For c2.center.x, the target is the Point instance i4, the container is Circle in-

stance i3’s field center.

For c2.center.y the same applies; it is exactly the same event as c2.center.x.

At this point we can come to the same conclusion as in the previous section. Each

Point instance was accessed only from the same container, and each of these containers

only had that Point instance as a target. Thus, we arrive at the same conclusion, that the

inlining of Point into Circle.center is safe.
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Collecting events from every use might appear strange at first, since we could also
just monitor any assignment which changes a reference. The reasoning is twofold: the
approach described here is safe in regards to native methods. Native methods can modify
essentially arbitrary instances on the heap. Any reference which is reassigned in a native
method would not be detected by an instrumentation which only monitors assignments.
Since we monitor actual uses, the effects of the reassignment are visible to our instru-
mentation. The second reason is that this information provides valuable information for

performance impact estimates, which we will describe and use later in Section 5.7.2.

5.2.5 Beyond the Example

The terms target and container are central to the safety analysis. The term container was
previously used in different situations, and it is crucial to differentiate between them: First,
we said that Circle.center is a container and then later that “field center of instance
i1” is a container. This is both true as they are simply different kinds of containers. Notice
how they are related: instance il is of type Circle. There is another container, “instance
i3’s field center”, which is related to Circle. center in the same way, since i3 is also of
type Circle. This relationship led us to chose the name abstract container for containers
in the form Circle.center. In contrast, the other containers mentioned above contain

information from the dynamic data collection and hence are called dynamic containers.

Another distinction is necessary. Imagine the instructions “Point p = cl.center;
System.out.println (p.x);” were added to the end of the example in Figure 5.5. In
this case the Point instance i2 now has two references, one from c1 . center and one from
p- As mentioned earlier an event is created for every dereference, and the subexpression
p . x of the print statement is a dereference. We know that at run-time p references instance
i2, since p is an alias of c1.center. So i2 is the target part of the event. The reference

€e_”

originated from the expression “p”, which is not a field, but something different: a local
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variable. Hence different kinds of containers are required: a field container and a local

container.

Now we can go back to the source expression c1.center.x that was discussed earlier.
At that time we focused only on the dereference of the Point instances. In the expression
the Circle instance il was dereferenced as well, and in this case the reference was ob-
tained from the local variable c1. Hence the event has the target instance i1, and the local
container “c1”. But this is imprecise, as we do not know where the local variable “c1” is
located at. The example only has one scope, but there could be many local variables by the
name of “c1”. When you consider loops, then even the same local variable in the source

code can refer to a different storage locations at run-time.

We see that in reality being exact requires the use of both container attributes: its kind,
and whether it is a dynamic or an abstract one. This makes Circle.center an abstract
field container, and “instance il’s field center” a dynamic field container. These two
terms are used frequently, and will be abbreviated later as af-container,and df-container
respectively. Similarly c1 could be the abstract local container®. At run-time each local
variable is in a particular stack frame so the dynamic local container additionally makes a

note of the stack frame id. There are more container kinds which will be introduced later.

Now that we have seen that there are multiple containers in even simple programs, we
give a name to the abstract container into which we want to inline a target. If we perform

an inlining, then that container is called the inlining destination, or just destination.

So far target was used ambiguously, similar to the ambiguous use of container. Once
target referred to a class, and then later to an instance of a class. Thus to be precise target
instance is used when referring to an object instance. The abstraction works similar to the
way an abstract container is derived from a dynamic container: the target can be derived

from the target instance by retrieving the object instance’s class.

“We don’t actually use abstract local containers and as such they are not completely defined
in this thesis.
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Until now dereferences were introduced to create events, but there are additional op-
erations the analysis needs to know about. The inlining process removes the reference to
the inlined object, so any Java operation which works on a reference needs to be moni-
tored. One of these operations is the equality operator, “==". In the example we saw that
our instance of object inlining only works on 1-to-1 relationships between containers and
targets. Since the reference to the target disappears, comparing references is no longer
directly possible. It would be possible to compare targets by their containers, but a com-
parison could also involve a non-inlined target. Then, however, the comparison would
involve a target instance and a container instance, which is not allowed by the type sys-
tem. Although it would be possible to handle this, we chose to simply forbid comparisons

of references for simplicity’s sake.

It follows that for each comparison of an object instance an event has to get generated.
The convenient encoding for such an event is to use the same layout that the dereference
introduced: the target and container combination. For a comparison we simply use a
special container: the “pseudo” container. Whenever the analysis sees such a container, it

knows that something unsafe happens and can eliminate the target from getting inlined.

Now that an event is no longer generated just for dereferences, we adopt the more
general term “use”. Thus an event is generated for every use of an object reference. There
are other reasons that a container and target combination can be disqualified from being

used in an inlining. The complete list of reasons is as follows:

An af-container has more than one target,

a target instance has several df-containers,

a target instance is used in a reference comparison, and

a target instance escapes the analyzed code.
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It is important to understand that for object inlining in principle all unsafe situations
can be made safe by using appropriate compensation code. However, using compensation
code is often not desirable, because in general inlining in too many places can cause mem-
ory bloat’, and the compensation code can slow the program down. A prominent example
of compensation code is “shadow updating”. This occurs when one instance is mutated,
and the changes are propagated to other instances. For this thesis we focus on situations

where compensation code is not required.

5.3 Definitions

There are a number of terms which were introduced by example. Here follow more thor-

ough definitions:

Definition 6 (abstract container). An abstract container is a Java source expression which
returns a value. Although we are only interested in expressions which return an object ref-

erence, in principle a container could return any value. It is fully defined in Section 5.4.1.

Definition 7 (af-container). An af-container is a combination of a class, C, and one of its
fields, f: “C.f”. It is an abbreviation for abstract field container, which is one possible

kind of abstract containers.

Definition 8 (df-container). A df-container is the abbreviation for dynamic field container.
It consists of an object instance, i, and one of its fields, f. Let i be of type C. Then where

i.f is the df-container, C.f is the corresponding af-container.

Definition 9 (target). A target is a class which could be inlined into an abstract container.
Its type usually is the same as the container’s field’s type, but at a minimum has to be

compatible with its subtype.

>For the implementation presented here memory bloat is not an issue, since only 1-to-1 map-
pings are considered.
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Definition 10 (target instance). A target instance is an object instance, i, of type T, where

T is a target.

Definition 11 (destination). A destination is an abstract container into which a target will
get inlined. Each abstract container is a possible inlining destination; those which are

selected are subsequently called destinations.

Definition 12 (instance id). Every class gets a new instance id field, which is initialized by
the constructor to be an integer which is unique per run. It is used to define object instance
identity. It is used since the official Java API does not include a method to extract object

identity®.

Definition 13 (stack frame id). A stack frame id is added to every stack frame as a local
variable. This id is initialized by the first instruction with a unique integer for every stack

frame. This enables the stack frame to be distinguishable.

Definition 14 (use). An object instance is used when a reference to it is read from memory.
Arbitrary access to reference is not allowed in Java, so the only cases are: 1) It is derefer-
enced, 2) it is used in a comparison, or 3) it is passed as a parameter. All three cases are

fully defined in Section 5.5.

“»

Definition 15 (dereference). In Java, a dereference is denoted by the (infix) dot (“.”) op-
erator at the source level. In bytecode it is an implicit action in a number of operations,
e.g. invokevirtual and getfield, and requires an object reference to be on the stack. It is

fully defined in Section 5.5.

Definition 16 (event data). For object inlining the data each event produces are what
was used, the target instance, and where was the reference obtained from, the dynamic

container.

The hash code provided by the HotSpot JVM Object implementation returns the object iden-
tity. But this is not guaranteed, especially not across JVMs.
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The definitions of containers and dereferences are more complex, and have their own
sections dedicated to them. The reason for the complexity is that their definition needs to
encompass a whole range of Java behavior. The recommended way to add data collection
instrumentation is bytecode rewriting, as discussed in Section 3.2. But the large number

of bytecode instructions makes a compact definition impossible.

Instead of basing our definitions on the bytecode, or the source code’, we chose an
intermediate representation provided by the toolkit we chose for the bytecode rewriting,
Soot [28]. The representation we will use for a thorough definition is Jimple, a mini-
malistic intermediate representation used by Soot, which covers all of Java’s bytecode
instructions. Understanding Sections 5.4 and 5.5 requires some knowledge of Jimple. We
provide an overview of Jimple, sufficient for the present purposes, in Appendix D.1.1. For

more detail the reader is referred to [28].

5.4 Containers

A container is a general term for different kinds of locations where object instances can
be loaded from. There are dynamic and abstract containers. The former are present at
run-time only, and are logged by the instrumentation. Abstract containers are what is used
by the transformation. There exists a complete many-to-one relationship from dynamic

containers to abstract containers.

5.4.1 Definition

In Jimple, any dereference will target a local, so the dynamic container is the location

where the local received its value from.

"The structure of Java source code makes it similarly complex as the bytecode instructions.
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Definition 17 (dynamic container). A dynamic container is defined by its

1. Kind; which can be one of local, static, Instance, argument, return, and foreign.
2. Name; the name used to refer to the container.
3. 1d; a unique identifier for this kind of container with the given name.

4. Attribute; the default is no attribute, or it can take on array or this.

A abstract container exists for every kind of dynamic container. In this thesis, only
af-containers are used, which were already defined in Definition 6. Further abstract con-
tainers could be defined similarly, as the static version of their corresponding dynamic

container.

5.4.2 Container Details

A brief description of each dynamic container kind, and how it affects the other properties,

follows.

The dynamic local container is a local variable; its name is the name given to the
local variable at the source level. Since the variable name is only valid in the current stack

frame, the id is the stack frame id (see Definition 13).

There are two subtypes of the dynamic local container: An dynamic argument con-
tainer is a parameter to the current method. The implicit Ot/ parameter, the receiver object,
is represented by this container as well. An argument is exactly like a local variable, ex-
cept that it has a predefined value: the value passed by the function call. The name and id

are collected identically. For the receiver argument, the attribute this is set.

A dynamic return container is a return value from a function call. It also behaves like

a local variable, but it does not have a name. Since every return value is a unique dynamic
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container , a unique name is assigned to it®. Its id is again the stack frame id.

A dynamic static container is a static (class) field. Its name is the name given at the

source level . Its id is the class it is defined in.

A dynamic field container is a field of an object instance’. Its name is the name given

at the source level®. Its id is the instance id of the instance which contains the field.

A dynamic foreign container is a “pseudo” container which marks arbitrary accesses
that can occur in unmonitored code. See Section 5.5.3 for more details. Its name is set
to the field the target was assigned to, or the method which was called. Its id is set to the

class the field or method is a part of.

The attribute is universal to all dynamic container kinds. Currently it only marks a

container as being an array, or as being the special this reference.

For the remainder of this document, entries in the log will be written as tuples of the

form (target id, container kind, container id, container name, container attribute) .

5.4.3 Completeness

Since a dynamic container can be the source of any object instance on the stack, we need to
make sure that our definition of dynamic container covers all possible sources of references
on the stack. Defining completeness in terms of the source language is tedious because
there are many types of expression to consider. At the bytecode level the situation is
similar; there are a large number of bytecode instructions which load values onto the stack
and which therefore would need to be examined to determine the completeness of the

definition in Section 5.4.1. An alternative is offered by the Jimple IR introduced by the

8Soot generates names already, so we reuse them.
9The implementation calls a field container still an instance container. We have renamed it in
this text for added clarity, but not yet updated the source code.
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Soot framework.

Referring to the Jimple grammar in Section D.1.2, a dynamic container has to be a

local (see invokeExpr). To know what kind of dynamic container a local is, we track

what value was assigned to the local. Looking at the grammar, a value is assigned to a

local either through an identityStmt, or through the assignStmt — local = rvalue

production.

identityStmt: Both @this and @parametern are considered dynamic argument
containers. We do not care about @exception parameters, because these are not

inlining candidates anyway. For @this statements, the this attribute is set.

10

rvalue — concreteRef — field: A static dynamic container'” is used.

rvalue — concreteRef — local.field: An instance dynamic container is

used.

rvalue — concreteRef — local.field: A copy of local is created, add the

array attribute set.
imm — local: Dependent on the name of local:

1. If local just a named stack location (Soot uses $ to mark these names), then

[copy of local].

2. Else local is an actual local variable, and local dynamic container is used.
expr — invokeExpr — ...: A return dynamic container is used.
expr — new : A return dynamic container is used.

expr — (type) imm — (type) local: A copy of local is created'!.

10The reference field is typed; and thus refers to both the class and a specific field of the class.
"'The production imm — constant is of no interest, because a constant cannot be an object
instance
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Note that for expr all derivations which are not listed here cannot yield an object type,
and are ignored. All ways to assign an object instance to a local are described above. This

way we can be assured that all possible dynamic containers are covered.

5.5 Event Generation

Now that a container is assigned to every Jimple local variable, the containers are used
to generate the logging code'?. This code is inserted before every use. The reason for
adding the logging statement before the use is simple: since method calls themselves might
generate log entries, logging before the call is a simple way to keep a natural ordering of

log entries.

The most common use is a dereference. At the level of Jimple, as well as the byte-
code level, a dereference is not an explicit operator (in contrast to the “.” at the source
code level), but rather a dereference is performed at the same time the referenced object
instance is used for a field reference, or a method invocation, etc. The Jimple IR is again
used to specify when logging is required. Not only does this provide us with a compact

description, but it is also used verbatim as a specification for the implementation.

5.5.1 Method Calls

In the grammar in Section D.1.2, method calls are grouped under a second-level
invokeStmt label. The kind of method call is determined by the invokeExpr, which
can either be a specialinvoke (constructor call), interfaceinvoke, virtualinvoke
(both “regular” method calls), or a staticinvoke (static method call). A static method

call is not connected to an object instance, while the remaining ones are, so Soot internally

2They are not used to generate log entries directly; every log entry is generated dynamically
during the program’s run.
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groups specialinvoke, interfaceinvoke, and virtualinvoke as an instance invoke

expression (see the InstanceInvokeExpr interface in Soot’s API documentation).

Constructor calls are very restricted by the Java Language Specification. They have to
be executed right after allocating the object, or as the first call if it is a super constructor
call. So in case of a super constructor call, it is not possible to create logging code before
the call'3. Since constructor calls would only create a dereference of the receiver object,
they are irrelevant for the safety analysis (the irrelevance is explicit in the algorithm in

Section 5.6). We therefore choose not to create logging code for constructor calls.

5.5.2 Field Accesses

Field accesses are either a write access, deriving assignStmt — local.field
= imm; or a read access, deriving assignStmt — local = rvalue; rvalue —
concreteRef; concreteRef — local.field. Both will generate logging code. Note
that because of the semantics of Jimple, it is not possible to have a direct field copy in the

form

local.field = local’.field

Such an operation would in practice be represented in Jimple by two statements:

tmp = local’.field
local.field = tmp

1t is possible to generate code before the constructor call, but it would not pass the JVM
verifier.
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5.5.3 Foreign Method Calls

Since dereferences are only seen in instrumented code, the possibility exists that an object
instance, which the instrumentation monitors, is passed on to some external library. We
have no way of knowing how the instance is accessed in that case, so it should not be
inlined. Therefore when we see a method invocation where the base class is not under our
control, we scan all the parameters, and for any object instances that are under our control,
we generate logging code. The container in this case is foreign, which marks that arbitrary
accesses to the object in question could have happened. As mentioned before, the object

instance will not be inlined if it was a target instance of a foreign use.

5.5.4 Pointer Comparisons

Java does not use the term pointer. Instead within the source language it is called a refer-
ence. Java does not allow pointer arithmetic, but references can still get compared. To our
knowledge, this is the only operation available on references aside from passing them to

functions, and dereferencing them.

Since object inlining removes the reference, such a comparison is not easily possible
any more. As mentioned before, if two inlined target instances are compared, then their
container can be used for the comparison instead. But comparisons between inlined and
non-inlined instances are not possible this way. The analysis could take this into account,
but since there would still be comparisons which are not possible, we chose to not allow
them completely. Therefore we have to log any comparison operation, so that the anal-
ysis can disqualify any instances which were involved in the comparison operation. The

container used for comparisons is also foreign.
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5.5.5 Examples

The introduction to this section already had some basic examples showing when log entries
are generated, but some more basic examples will be provided here. We discuss them using
the proper terminology introduced above. Longer examples, on actual Java programs, as

well as on Jimple code, can be found in Appendix B.1.

Let x be some object instance and id(x) be the function that maps object references x
to their unique id. For a local variable it retrieves the stack frame id and for an instance

the instance id.

In the tuples container is abbreviated as ¢ to make the records more readable.

1. Local Variables.

For a local variable a, the statement
a.b

creates

(target: 1d(a), c-kind: local, c-id: id(stack frame), c-name: “a”, c-attrib: none)

The target here is a, because it is on the left of the dot dereference operator. The call
id(a) retrieves the instance id of the instance which a references. The call id(stack

frame) refers to the id which is added to each stack frame (see Section 5.4.2).

Now we are able to uniquely identify the container “local variable a”: We know

what stack frame it is located in, its name, and what instance it references.

2. Static Fields.

For a static field bar, the statement
Foo.bar

creates no event because it is not a dereference in Java. Rather, it is a special

instruction which retrieves the static field.
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On the other hand, the statement
Foo.bar.baz

creates
(target: id(bar), c-kind: static, c-id: Foo, c-name: “bar”, c-attrib: none)
The call to id for the target is always the same. Since there can only be one class

named Foo, and classes have unique field names, the container is uniquely identi-

fied!4.

3. Instance Variables.
Instance variables are more complicated, because one source statement often con-
tains several dereferences. Additionally, implicit dereferences take place since there
is no requirement to use the special variable this to access fields of the current object

instance. Let f be a field of an object instance.

This implicit dereferencing at the source level is explicit in the byte code. In these
examples we will show the dereference explicitly, so at the source level the following

translation is done:
f = this . f

This statement creates

(target: id(this), c-kind: arg, c-id: id(stack frame), c-name: “this”, c-attrib: this)
Since this 1s the implicit Oth parameter to the method, it is of argument kind and
not the dereference of an instance variable. As previously mentioned, arguments are

treated exactly like local variables otherwise.

Now consider compound statements:

this . f.x (same as: f.x on the source level)

4The presence of multiple class loaders does allow two distinct classes to be in memory at the
same time. This is not currently supported, but would be possibly to add by remembering the class’
loader.
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This statement creates two events:

(target: id(this), c-kind: arg, c-id: id(stack frame), c-name: “this”, c-attrib: this)
(target: 1d(f), c-kind: instance, c-id: id(this), c-name: “f”, c-attrib: none)

The second event is the dereference of an instance variable. id(f) is retrieved as
mentioned before. The container of f is the current receiver object, this, and its
identifier is recorded. The name of the instance field is f and appears verbatim
in the record. This record uniquely identifies a field container: we know which

instance, and what field name contained the reference to the target.

Another compound statement:

this .f.g.y (same as: f.g.y)

Creates three events:

(target: id(this), c-kind: arg, c-id: id(stack frame), c-name: “this”, c-attrib: this)
(target: 1d(f), c-kind: instance, c-id: id(this), c-name: “f”, c-attrib: none)

(target: 1d(g), c-kind: instance, c-id: id(f), c-name: “g”, c-attrib: none)

The way the dereference events are recorded is exactly as described above, but a
pattern becomes apparent: in a chain of dereferences, the current container is the
target of the previous dereference. This chain has to start with a local variable,

argument variable, or static field, while the remaining dereferences have to be of

instance kind.

Note that the special reference this can be reconstructed from the log as any dynamic

argument container with attribute this.
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5.6 Analysis

The analysis works mainly with field containers. In Java, most objects are allocated on
the heap, making field containers the case where the optimization is most likely to be
profitable. Additionally the transformation code needs to be written for every container
type, so a restriction on just one container kind was necessary due to time constraints.
The abstract container was defined earlier, which is important for the analysis. Take for

example the following df-container:
container(kind: instance, id: 5, name: “f”, attrib: none)

Assume that type(5)=Foo. Then the df-container is abstracted as Foo.f. The abstract
container consists of static and not dynamic data (the specific container instance). Similar
abstract containers can be defined for other dynamic containers, which is a topic of more

research.

The analysis algorithm’s goal is to check all types (targets) and abstract container
combinations simultaneously for inlining safety. It is easy to decide if one instance can be
inlined into a specific target: it has to have only one container. It follows that an instance
is unsafe to inline when it has more than one container. Safe instances of type T contribute
their abstract containers as candidates to the type 7. These abstract containers are possi-
ble inlining targets for 7. Unsafe instances eliminate abstract containers as targets for a

T.

Take Figure 5.12 as an example: instance id 4 is dereferenced exactly once, with the
log entry being displayed on line 10. It therefore is safe to inline it into its container. Its
container, instance 1, is of type A. Instance id 5, however, is accessed twice: The record
on line 16 has a container with id 2, and the record on line 20 has a container with id
3. Instance id 5 is unsafe to inline. Aggregating the data for type B, we see that it has

an instance, id 4, with an abstract container A.b. The unsafe instance, id 5, also has the
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class A{Bb; }
class B {}

A al = new A(); // instance id 1
A a2 = new A(); // instance id 2
A a3 = new A(); // instance id 4

al.b = new B(); // instance id 4
al.b.foo();
// (target =4, kind=instance, containerid =1, name=>b)

Bb =new B(); / instance id 5

a2.b =b;
a2.b.foo();
// (target =5, kind=instance, containerid =2, name=b)

a3.b = b;
a3.b.foo();
// (target =5, kind=instance, containerid =3, name=b)

Figure 5.12: Example of the dynamic container of an unsafe instance eliminating the

abstract container gathered from a safe instance.

abstract container A.b, which eliminates the candidate introduced by instance id 4. We

conclude that it is not safe to inline B.

Containers themselves have to be checked as well'>, so we maintain a list of safe types
per container. If a container has a list of more than one type which is safe, then it is not

considered an inlining target.

What state does the analysis need to keep for every instance? When only one container

has been encountered, then the instance is safe to inline, but can later become unsafe if

SMainly because of sub-typing. We do not want to inline a type into a container if the container
houses different subtypes.
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another container is encountered. Thus for safe containers, we need to save information
on exactly one container. Unsafe instances on the other hand have multiple containers
associated with them. As described above, the containers of unsafe instances are only

used in abstracted format, which is a little more compact to represent.

Formally, let A; be the analysis result of the target instance i. It can be in one of three

states:

1. None: no container has been seen yet. This is the initial state.

2. One: one container has been encountered, its details are saved. The instance is safe

to inline into the given container.

3. Many: the instance has been accessed from more than one container. The instance

has become unsafe. The abstracted containers are added to the type of i.

Let L be the log containing records in the format (¢,k,c,n,a), where ¢ is the target, k
is the container kind, ¢ is the container id, 7 is the container variable name, and a is the

container attribute. The tuple (k,c,n,a) refers just to the container.

The main algorithm is Algorithm 5.1. The first pass is over the entire log, and calls
mergelnstance (Algorithm 5.2), which uses a little helper function, invalidateContainer
(Algorithm 5.3). The second pass loops through all instances discovered, and calls val-
idateContainer (Algorithm 5.4), on each instance. The final result can be found in M,

which maps from types to a set of inlining targets.

Let n be the number of log records generated at run time. The first pass looks at all of
them, which makes it O(n). Let m be the number of object instances created during the
run. The second pass looks at all instances, which makes it O(m). The total run-time then
is O(n+m), and since the number of instances is bound by the number of log records, we

can simplify this to O(n) over all.
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Note that since n can be rather large, the analysis can in practice still seem slow. Par-

tially this is because it is I/O bound.

Algorithm 5.1 Find the set of target containers for every type.
Require: A, initialized to Empty for every instance

Ensure: M, a map from type to a set of abstract containers; C a map from abstract

container to types
{Check safety for every instance}
for (t,k,c,n,a) in L do

type <— lookupType (t)

A; < mergelnstance(A,, type, (k,c,n,a))
end for
{Abstract from instances to types}
for A; in A do

type < lookupType (t)

k < validateContainer (type, A;) {Might return return nothing if not safe}

M(type) <— M(type) Uk

C(k) < C(k)U type
end for
{Check that every container only has one inlining candidate }
for kin C do

T + C(k)

if |7| > 1 then

forrin T do
M(type) < M(type) —k
end for
end if

end for
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Algorithm 5.2 Function mergeInstance
Require: state, the current instance analysis state; type, the type of the instance, C =

(k,c,n,a) the container to merge with
Ensure: the new state for the instance
if k = Argument and a = this then
return state {We ignore accesses through zhis}
else if state is None then
return One(c)
else if state is One(C') then
(k,c,n,a) < C
(K',cn'd)+C
if k = Kandc = ¢’andn = n’anda = &’ then
return One(c) {The same container remains. }
else
invalidateContainer (type, C)
invalidateContainer (type, C")
return Many {The container C’ did not match the container C}
end if
else
invalidateContainer (type, C)
return state {state is Many already.}

end if

Algorithm 5.3 Function invalidateContainer

Require: type, a type; C = (k,c,n,a) a container
Ensure: Iy, a map from type to a set of invalid abstract containers.
ctype < lookupType (c)
liype = Iiype U (ctype,n) {Add the abstract container to the set for the given type}
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Algorithm 5.4 Function validateContainer
Require: type, a type; a, the instance analysis result

Ensure: Zero or one abstract containers which are safe for the given type
if a is None then
return One(c)
else if a is One(C) then
(k,c,n,a) < C
ctype < lookupType(c)
if (ctype,n) € Iype then
return None
else
return (ctype, n) {A valid container was found}
end if
else
return None {a was Many, which results in no action at this stage. }

end if

5.7 Framework Instantiation

Now that we have introduced object inlining and in detail what data needs to be collected,
we will highlight how the optimization was implemented in the framework. If the previous
sections seemed slightly disconnected, then this section is supposed to bring it all together.
Note that not all areas of the framework need to be described in relation to object inlining

since some are simply used as the framework provides them.

Data management, as described in Section 3.4, is an example of an area which is
almost completely managed by the framework. The user only has to clean up the data files

by hand. This feature could be provided by the framework, but was not implemented as
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a fail-safe mechanism: Run data usually takes a long time to collect, and we do not want
to accidentally delete it. Since the available and valid run information is managed by the

framework, forgotten data files are not cluttering the list of runs.

5.7.1 Data Collection & Storage

Soot, which is often known as a static analysis toolkit, can also be used as a bytecode
rewriter. It is used to add the necessary instrumentation, because some static analysis is
useful to add the correct dynamic data collection code. The prime example is the iden-
tification of local variables. Soot disambiguates local variables from stack locations, and
allows easy access to locals through its Jimple IR. Another advantage of Soot is that it
allows modularization of instrumentation components (see Appendix B.2 for some more

details).

We settled on using the flat file approach described in Section 3.3, which was easy to

implement because only two types of events exist:

1. A dereference, where the target and the dynamic container are stored. The container
fields were described in Section 5.4.1. Note that the meanings of the container fields

are dependent on the container kind, while the field types are uniform.

2. An object creation, which is needed to look up types of instances based on their

instance id. It stores (instance id, “type in string form”) tuples.

Those data are required for the safety analysis, and can also be used for a ranking

heuristic of the opportunities.

The workflow for the data collection is:

e Apply the instrumentation by binary rewriting using Soot.

Some setup is required to ensure that all the dependencies are available. Since Soot
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analyzes all classes, it has to have access to all dependencies. Essentially dead code,
or advanced usage scenarios, result in these additional dependencies over the default

run-time ones.

e Run the instrumented program on the unit tests to generate the log.
Expect this step to take a while. We have observed run-times varying from a couple

of seconds to several hours.

5.7.2 Analysis & Programmer Interaction

For the analysis, the log file is parsed and the stream of events is analyzed by the code de-
scribed in Section 5.6. Afterwards we have a list of opportunities that analysis determined

to be safe.

At this point the ranking heuristic comes into play. As already discussed in Section 2.4,
only a limited number of them should be presented to the programmer. The goal of the
heuristic is to rank the opportunities in such a way that the programmer can consider the

most profitable ones.

There are two aspects of object inlining to consider for the heuristic: speed-up and
memory usage improvements. Due to the 1-to-1 constraint of the inlining algorithm, the
memory usage aspect is the less interesting, and easy to determine. Remember that an
inlining removes a object reference, and an object header. The exact size of these depends
on the JVM and system in use, but let us just assume that references are 64 bits, and object
headers 128 bits, for a sum of 172 bits. So for every target that is inlined into a container,
we save 172 bits per container instance. Therefore one factor in the heuristic is how many

instances of the container were created.

The potential to speed up program execution is much more difficult to gauge. First

let us consider allocation costs. Since the inlined target is now allocated together with
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the container, this action is saved. Similarly a collection action is also saved. These two
factors also depend on the number of container instances, but are difficult to quantify. In
particular on modern JVMs, e.g., Sun’s HotSpot JVM, concurrent garbage collection is
performed, and the impact of this change alone is not easily measured. As a conservative
measure we can assume that the impact on the GC run-time is negligible unless the number
of instances was extremely large. The exact threshold for this can again be configurable by
the user, but as a default setting we propose 25% of all allocated objects during the program
run. When this threshold is exceeded, the opportunity will be shown to the programmer.
The benefit of using a percentage threshold is that we automatically limit the number of

opportunities that enter the final list through this criterion.

The number of eliminated dereferences plays an important role. Since modern com-
puters are often limited by the memory wall [36], removing memory access has a high
potential to speed up execution. Consider the uses introduced earlier. By far dereferences
during method calls, and field access, are the most common cases. This dereference is
eliminated, saving the program a memory access. The exact impact of this is also difficult
to measure, since caching effects are highly unpredictable: if the reference that the inlin-
ing eliminated happened to be in cache before, then the improvement in run-time will be
small. If the reference happened to be in a register, then the improvement will be virtually

non-existent.

A heuristic could try to be more context sensitive, and for example consider how often
this reference was used in a block. The added precision of such an analysis is questionable
though, since it is not possible to factor in any JIT optimizations. Overall it seems like the

simple heuristic, to simply count the uses of the target provides the best cost/benefit ratio.

The exact weight between the scores of memory usage reduction, allocator and GC

run-time improvements, and eliminated dereferences is still an open question.

Before the programmer gets involved, the support information needs to be gathered.
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For object inlining a number of facts are interesting:

e What other classes have fields with the target type?

o What methods accept a target as parameter?

e How often do locals of the target type appear in the sources?

This information helps the programmer to get a quick overview of how the target is used

in the program.

Once the ranking is determined, and the support information gathered, the question for
the programmer is very simple: “Should the target be inlined into abstract container?”
Since inlining is essentially a conversion from reference to value semantics, we believe

most programmers will be able to understand and quickly answer the question.

Caching these answers is simple: the optimization just asks the programmer if the
previous answers still hold, and possibly presents the list of inlining opportunities which
the programmer has approved. Presenting the list becomes a hindrance if it grows too
long. But it would remind the programmer about his previous choices and we think that
a change in assumptions would be noticed quickly once the list of existing inlinings is

visible.

Note that not all of the ideas presented in this section are implemented. We envision
a simple GUI, which displays the ranked opportunities. The programmer then can request
further information by clicking on an opportunity, after which he is presented with an
overview of the available support information. A further click on these should display the
corresponding details. The support information should be gathered beforehand, and not on
demand, as otherwise interactive delays might discourage the programmer from selecting

an opportunity simply because of the wait involved.
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5.7.3 Transformation

We chose to use source code rewriting for applying the transformation for the reasons
outlined in Section 3.7. There are not many libraries available for transforming Java source
code, possibly because it is a relatively complicated process. Yet refactoring, a feature
which has been more automated in IDEs in recent years, requires automatic transformation
of source code. Code refactoring is implemented in most major Java IDEs, for instance,
Eclipse’s refactoring code is available, but it is not well suited for use outside Eclipse.
The main problem is that documentation is almost non-existent. We found a library called
Recoder!® [15]. It offers an API that is intuitive to use, some documentation!’, and is
well maintained at the time of writing. Some more details on Recoder, as well as general

Recoder comments, can be found in Appendix D.2.

The Java programming language is, as are most higher level programming languages,
very feature rich!®. This means that any undertaking in source code rewriting is not an
easy task. So while the author wrote the initial Recoder code, it was later handed off to his
colleague Devin Coughlin, who then extended it to handle many of the intricacies which

occur in real world source code.

The main idea for the transformation is to take all members of the target, and replace
the field of the destination with them (Some basic examples of this can be found in Sec-
tion 5.2). Name conflicts are avoided by combining the destination field name with the
target member’s name. While conflicts are still possible, they are unlikely and could be
resolved by using additional counters. This scheme is chosen to make the output of the
transformation easy to understand; in principle, any name can be chosen as long as the

references are fixed up accordingly.

16While the library seems to be officially called “RECODER”, its website also refers to it as
Recoder.

17Some documentation is in contrast to virtually none that we found for other libraries.

18Java is a complex language despite simplifying several aspects like stack/heap allocation, and
pointers compared to other languages in its league.
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After the members are migrated, all references through what was the destination before
now have to be rewritten to use inlined members instead. Special care has to be taken with
constructors, as they need to be converted to a regular function. Whenever the constructor
was called before, this regular function has to be called instead. It takes over initialization,

since the allocation step does not exist anymore.

5.8 Related Work

Object inlining has been the subject of research for some time. Here we present some
related work. A direct comparison is not really possible, as discussed in Chapter 4, but
this list is provided for reference. Also note that we believe object inlining as presented in

this thesis could be pushed much further, as outlined in Chapter 6.

Dolby and Chien’s work [12] has a similar safety condition. They only allow “one-
to-one” fields to be inlined. Their definition of object inlining seems to be expressed in
terms of dynamic analysis, while the implementation in their Concert compiler, to our

knowledge, relies on a (static) adaptive iterative data flow analysis.

Laud’s object inlining [20] improves upon Dolby’s work by additional analysis which
avoids some dynamic dispatching that would previously have been necessary. The cases

which can be inlined are similar to Dolby’s.

The object combining work of Veldema et al. [30] is more general as it allows the com-
bination of functionally unrelated objects. Their focus is more on combined (de)allocation
than on removing dereferences, which they nonetheless perform in a separate pass of their

optimization.

Lhotdk and Hendren’s evaluation [21] is quite similar to our implementation. They
used dynamic analysis to produce a trace, which is then analyzed to identify inlining op-

portunities. However, their solution does not seem as automated as our approach.
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Budimli¢ et al. identified object inlining as one way to improve the compilation of
scientific applications [6]. They are using “copy folding” [5] to eliminate aliases to be
able to inline more objects with only one alias. The remaining safety conditions, reference
comparisons, and passing to unmonitored methods [7], are similar to the ones we currently

employ.

Wimmer and Mossenbock’s automatic object inlining [35] uses dynamic analysis and
online transformations. It is implemented within the JVM, and they use profiling infor-
mation to get inlining candidates, which then have to fulfill two safety preconditions: The
container and the target must be allocated together, and the target must not get over-
written. Run-time monitoring is used to detect safety violations, which reverts the trans-
formation. The price of their fully automated approach is the overhead of the run-time

monitoring, and of the on-line transformations.

5.9 Results

We applied our object inlining to most of the programs of the DaCapo suite, version 2006-
10-MR2 [3]. As Table 5.1 shows, the object inlining analysis was always able to find
some opportunities, although for some programs none seemed profitable enough to pursue.
Table 5.2 lists the results of applying a selection of the opportunities we discovered!®. Tt
shows that sometimes when the heuristic said that the opportunity should be worthwhile,
we did not observe a noticeable improvement in run-time. None of these results show any

significant speed-up.

9The complexities of source code rewriting prevented us from applying more of the opportuni-
ties we found.
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| Program | # of Ops. | Best Op. % | Sum of %s | Sum of top 5 %s

antlr! 61 33% 77% 71%
bloat! 22 0% 0% 0%
chart! 15 2% 12% 8%
fop! 62 0% 1% 1%
pmd 14 7% 11% 11%
luindex! 20 12% 19% 16%
lusearch! 22 3% 10% 9%
jython! 35 14% 35% 35%

Table 5.1: List of inlining opportunities found.

Column (1) lists the program name; column (2) lists the number of oppor-
tunities, (3) lists the percentage of dereferences of the best opportunity, (4)
lists the percentage of dereferences of all opportunities combined, and (5)
lists the percentage of dereferences of the ten best opportunities. All per-
centages are based on the total number of monitored dereferences performed
in the program.

! The data for the analysis was obtained from regular representative runs,

not unit tests.

5.10 Discussion

The results are consistent with the lack of sophistication of the inlining analysis. The
important fact to take away from these results is that there never was a case when an

opportunity, which the analysis found to be safe, was in practice unsafe.

Object inlining is an optimization whose effectiveness on any given program will

’ Program \ # of Ops. used \ Combined % \ Error \ Speed-up ‘
lantlr | 2 | 55%| N | 27%|
| luindex | 1] 2% | N | 14%|

Table 5.2: List of achieved inlining speed-ups.
Column (1) lists the program name; column (2) lists the number of op-
portunities which were applied, (3) lists the percentage of dereferences
of all applied opportunities, (4) if an error occurred while running the
transformed program, (5) lists the speed-up of the transformed pro-
gram. See Appendix B.4 for the details.
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strongly depend on the way that program is written. It is common knowledge that Java
does not handle many small objects particularly well. This makes it likely that most of
the programs we benchmarked were written in such a way to avoid such situations. In
this case object inlining never has the chance to recover overhead cost because by design
not too many small objects were created. It would be interesting how Java best practices

would change if the object inlining optimization was more widely employed.

What is surprising is the inaccuracy of the selected performance heuristic, the number
of dereferences of the container. The results for e.g. the antlr program show that there was
no significant speed-up despite very promising heuristics. One possible explanation for
this is the interaction of the transformation with other optimizations performed within the
JVM. A more detailed investigation would have been difficult to realize without detailed
knowledge of the JIT system and its internals, something which we do not posses and can

be difficult to acquire”.

It has also been shown that even small variations in an environment, particularly the
memory layout, can have unexpected effects on performance[24]. We did observe rather
large variations in benchmark performance, despite DaCapo being a standard benchmark

suite. Further work is needed to determine the exact cause.

20Since Sun’s HotSpot JVM was closed source for a long time, its internals were not known in
detail. This might have recently changed with the OpenJVM effort, however.
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Future Work

Object inlining is only one example instance of this framework. There are a number of

other optimizations and ideas which fit well into the outline presented in Chapter 3.

Improved Object Inlining. As mentioned before, the safety analysis and the transfor-
mation which were implemented for this thesis do not push the state of the art in object
inlining itself. We believe that the approach presented in Chapter 5 has the potential to be
an improvement over the state of the art. The next step which we propose is to make the
analysis sensitive to time. The idea is to allow several containers for a target, but to avoid
the need for write-propagation. This can be achieved by restricting multiple containers to

only be allowed when the target is read from, but not modified any more.

An outline of the new safety condition would be: For every write event, ensure that
the target only has one container. For every read event, if there exists a write event to the
target at a later point in time, ensure that it only has one container. If no further write
events exist, then multiple containers are allowed. Note that this analysis does require
some compensation code: when multiple containers appear, there needs to be code inserted

which copies the content from one to the other on assignment.
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Additionally, as mentioned in Section 5.10, we were not fully able to explain our re-
sults. Further work explaining the performance variations, or the failure of the heuristic

would be interesting to answer. This is likely to be a time consuming endeavor, however.

Include Libraries in Whole Program Optimizations. Our implementation of object
inlining is limited to work on the application classes. This restriction is largely imposed
by the reliance on source code rewriting. While it is possible to also find the sources of the
libraries, and transform these in unison, the time required for such a setup is prohibitive.
Java programs traditionally bundle libraries instead of using system wide copies as is com-
mon in languages like C. If binary rewriting is used, then a transformation involving not
only application classes, but also library classes, could be easily implemented. The way

the application is distributed would remain the same.

Standard library classes are more difficult to handle, since the JVM relies on some of
them for internal use. With an appropriate black list, standard library classes could be

included as well, which would lead to a tightly optimized software stack.

Note that including library classes might not always be an option because programmer
verification is required. The programmer does not know the internals of the libraries, so
making qualified statements is not possible. Further research would need to be done if
the optimizations could only be applied to the boundary of application code and library

classes, or also to the library internals.

Dead Code. Finding “dead code” is a small optimization which reduces memory us-
age, and can provide a speed-up through better cache utilization. It is an example how the
event logs can be reused. Consider again the events logged by the object inlining opti-
mization (see Section 5.7.1): Since dereferences and other uses are logged, some checks
are available through a very simply analysis: Does some class get instantiated, but its
instances are never used? Similar checks could be done for every field of every class.

Unused fields, classes or object instances could be removed from the program. With some
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enhanced instrumentation it would also be possibly to check if all basic blocks in the code

are reached.

Just like object inlining, this transformation is also best performed off-line, since on-
line it is difficult to ensure that said piece of code will in the future never be reached.
Similarly, programmer confirmation is important, since for example dynamically loaded
code could cause the conditions to change. And again there are benefits for dead code
removal to be an optimization and not a refactoring, since the dead code is often in place

because it might, or will, be used again, and should not be permanently removed.

Unit Test Evaluation. A venue which our research group is currently exploring is to
compare the semantics of the code executed by unit tests to the code executed by real runs.
The idea is that when different behavior is detected, to warn the programmer that the unit

tests are not adequate.

Although possible, there does not seem to be much benefit from running such a com-
parison on-line, since code changes only need to verified once, and not every time the
program is run. And the programmer should be able to easily confirm if a miss-match
is really a shortcoming of the unit test, or simply behavior which is not tested for some

reason.
The kinds of semantics which should be compared are subject of ongoing research.

Memoization. Memoization is the automatic caching of function return values based
on their parameters, so that previous computations are reused, instead of rerun. We ex-
plored this optimization in the past, see Section C.2, and were at the time not successful at
exploiting it. The question of side effects is something which is always difficult to define

in non-functional programming languages.

In this framework, however, we can use the programmer’s knowledge to provide this
fact, which would otherwise be very difficult to determine automatically. The data collec-

tion can be used to profile the program, and use some heuristics to find functional looking
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functions, which then the programmer can confirm. Again it is useful to keep the imple-
mentation of memoization separate from the program logic, since the function’s behavior
can easily change in a way that makes it be unsuitable for memoization. If this happens,
then the heuristic is also useful if the programmer forgets to invalidate his previous selec-

tion.

Trace harvesting. Another idea would be to look at event logs, and try to use machine
learning to gather facts about its behavior. These facts could then be used to compare the
unit tests with the real runs. This is in some way the more general version from what the
unit test evaluation idea presented before. Whether this is possible, or even useful, is an

open question.
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Conclusion

Using dynamic analysis for off-line optimizations is a novel approach. The framework
presented here is a set of code and guidelines on how to implement such optimizations.
The idea to use unit tests as a de facto specification of behavior is also a new idea, which
mitigates one of the main questions which always gets asked when dynamic programming
is involved: how a representative run is chosen. Since even unit tests do not guarantee that
the dynamic analysis is able to observe all program states, and dynamic analysis does not
resolve all analysis difficulties introduced by dynamic features of modern programming
languages, additional information needs to be provided by the programmer. Human in-
volvement in this framework is kept at a minimum to ensure an effortless workflow. This
is achieved by heuristics to sort opportunities, and by designing the interaction in a way

that its input can be often reused.

As an example instance of the framework object inlining was implemented. The inlin-
ing algorithm itself is not particularly advanced, but its workings are described in detail
so that the reader can understand that it is correct, and how it fits into the framework. As
such, the optimization as implemented does not provide much of a speed-up, but is very

illustrative of the process.
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Only time will tell if this framework is accepted. We believe it offers exciting new pos-
sibilities for implementing optimizations which were either not possible before, or were
difficult to implement because they had to work around information which was essentially

unavailable.
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Framework Implementation Notes

This chapter documents the details of how the framework is used in practice.

A.1 Instrumentation and Data Collection

The first step for the instrumentation is to identify all classes that are considered part of
the application. Often this can be done simply by looking at all the class files which are
built by the application, since dependency libraries are usually present as jar files. Among
this list of classes the main class has to be identified. The main class is the one passed to
Java when the program is started, or the one entered in the jar MANIFEST. Soot simply
interprets the first class handed to it as the main class, so the list of classes just must be

reordered.

The next step is to compile the list of dependencies. Usually Java programs include
dependencies in a directory as jar files. These will be required for Soot to be able to
resolve all references. Additionally the program might have optional dependencies, which

also need to be resolved for Soot to work correctly. The list of all dependencies, combined
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with the location of the application classes, makes up the classpath that is needed for

running the instrumentation.

The remainder of the settings for the instrumentation are set as environment variables.
The framework needs to know what kind of instrumentation it should add, the so-called
COLLECTION. The kind of logger which is used by default is set using the EVENTLOG vari-
able. The rest of the metadata are the application name (APP_NAME) and the application ver-
sion (APP_VERSION). Now the instrumentation can be run, using the soot-eventlog script,

passing the list of classes as arguments.

The output of the instrumentation is a number of rewritten class files. These should
be substituted in the program’s environment (support files, etc) and then run to collect
the data. Runtime requirements are mainly additional packages on the class path; those
required by the instrumentation code itself. In practice the framework provides a wrapper
script for the java command, called javasimplelog. The wrapper is useful because it allows
changing the run-time requirements of the framework without having to adjust the already
prepared project. E.g., activating the instrumentation through a “javaagent” is something

which we experimented with, but did not end up using in practice.

Once the program run is finished, the metadata is stored by the framework’s initializa-

tion code and the data is stored depending on the logger which was involved.

For unit tests an additional step is required after the program’s classes have been in-
strumented. The unit tests themselves have to be instrumented so that the framework
initialization can be run. This is done with the exact same procedure as with the regular

classes, just that the list of unit test classes is used, and the soot-unittests' script is used.

The soot-unittests script currently assumes the use of JUnit. Other unit test frameworks would
be easy to adopt.
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A.2 The “AnalysisUtility’’ Program

The utility program AnalysisUtility was written to ease the metadata management of runs.

The following commands are implemented:

list. By default lists the last 10 runs. It accepts an optional argument num, which lists
the last num runs. The num 0 is a special case, which lists all stored runs. Note that groups

are abbreviated: The group id will be displayed prefixed by “g”, and the most recent run

info is shown.

info. One or more id(s) as arguments are required. Info will list the available metadata

for the specified run id(s).

delete. One or more id(s) as arguments are required. Delete will remove the specified
run(s) from the database. This command will first list a part of the metadata, and then
waits 3 seconds before proceeding with the request. This hopefully minimizes accidental

deletions. See also the next command.

force-delete. One or more id(s) as arguments are required. The behavior is just as for

the delete command, but the safety pause is omitted.

note. A run id, and a note as arguments is required. The note is attached to the run id,
and will be displayed by the info command. Note that with the command line interface the

note has to be quoted, as it usually contains spaces.

stdout. A run id, and a file name as arguments is required. The file name will be
stored in the database, and displayed by info to contain the log of the standard output of

the command.

addgroup. A description as an argument is required. It will add the group, set the

description, and then display the group id.

Isgroup. By default will list all groups. It accepts a group id as an optional argument,
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which will display all runs of the group instead (with the same output format as /is?).

setgroup. A group id or the string “none” as parameter is required. It sets the group
id for subsequently created runs. This persistent storage of the current group id ensures
that all runs from unit tests are added to the same group. The parameter “none” returns to

regular behavior, where new runs are not added to any group.

cleangroup. A group id as parameter is required. It will delete all runs in the group,
with one 3 second safety pause for all runs together. This is useful to clean up after failed

unit test runs.

updgroup. A run id and a group id as parameters is required. It will change the group

of the run.

A brief overview is displayed when the utility is called without a parameter. The
overview will list some outdated commands as well, which are put into context in Sec-

tion C.1.
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Object Inlining Notes

Note: The implementation calls a field container still an instance container. We changed
these terms since using instance in abstract instance container is overloaded and slightly
confusing. At the time of writing the source code has not yet been updated to reflect this

change.

B.1 Event Log Examples
The following programs are annotated with the events that their statements create. These
event annotations need to be read in the order the program would execute them, not nec-

essarily from top to bottom. In the discussion following the code, the events are extracted

in program execution order to allow easier analysis.

B.1.1 Simple Safe Java Program

A simple example where a safe inlining opportunity is found.
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class Number {
int i;

public Number (int x) {
// assign stack frame id 3,4
// assign object id 2 to x ; id 3 toy
this.i = x;
// (target =2,3, kind=arg, containerid =3,4, name=this)
}
}

class Line {
Number x,y;

Line (int a, int b) {
// assign stack frame id 2
// assign object id 1

this .x = new Number(a);
// (target =1, kind=arg, containerid =2, name=this)

this .y = new Number(b);
// (target =1, kind=arg, containerid =2, name=this)
}
}

class Length {
public Length (Line 1) {
// assign stack frame id 5
// assign object id 4

System.out. println ("Length.of.” + 1 + 7= + (l.y.i—1.x.1));
// (target =1, kind=arg, containerid =5, name=r)
// (target =3, kind=instance, containerid=1, name=y)
// (target =1, kind=arg, containerid =5, name=r)
// (target =2, kind=instance, containerid=1, name=x)
¥
}

class Square {
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public Square (Line 1) {
// assign stack frame id 6
// assign object id 5
System.out. println (”A_square_with._sides.”
4x(l.y.1 —1.x.1));
// (target =1, kind=arg, containerid =5, name=r)
// (target =3, kind=instance, containerid=1, name=y)
// (target =1, kind=arg, containerid =5, name=r)
/! (target =2, kind=instance, containerid=1, name=x)
}
¥

public class Main
{
public static void main( String [] args ) {
// assign stack frame id 1
Line 1 = new Line(1,4);
new Length(l);
new Square(l);
}
¥

The log then contains the following events:

// (target =2, kind=arg, containerid =3, name=this)
// (target =1, kind=arg, containerid =2, name=this)
/! (target =3, kind=arg, containerid =4, name=this)
/! (target =1, kind=arg, containerid =2, name=this)
// (target =1, kind=arg, containerid =5, name=r)

// (target =3, kind=instance, containerid=1, name=y)
// (target =1, kind=arg, containerid =5, name=r)

// (target =2, kind=instance, containerid=1, name=x)
// (target =1, kind=arg, containerid =5, name=r)

// (target =3, kind=instance, containerid=1, name=y)
// (target =1, kind=arg, containerid =5, name=r)

/! (target =2, kind=instance, containerid =1, name=x)

Here it is safe to inline x and y into / (instance id 1), because:
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e x (instance id 2) is only dereferenced through container 1 with the name x (lines
8,12), or it is dereferenced through the special case with argument kind and the

name this (line 1), which is always safe.

e y (instance id 3) is only dereferenced through container 1 with the name 6 (lines
6,10), or it is dereferenced through the special case with argument kind and the

name this (line 3), which is always safe.

B.1.2 Simple Unsafe Java Program

This example shows a program where it is not safe to inline.

20

21

22

23

24

25

26

class Cell {
public String _value;
public Cell () {
// assign object id 2
¥

}

class Target {
Cell _inlineSource ;

public Targcet () {
// assign object id 1
¥

public void setCell (Cell cell) {
// assign stack frame id 3
this . _inlineSource = cell ;

// (target =1, kind=arg, containerid =3, name=this)

}

public void setCellValue ( String value) {

// assign stack frame id 2

Cell newCell = new Cell() ;

this . setCell (newCell);
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}

// (target =1, kind=arg, containerid =2, name=this)

// Note here that the kind of the container is argument, which
// is like a local variable. The containerid then refers to the
// frame id

this . _inlineSource . _value = "foo”;

// (target =1, kind=arg, containerid =2, name=this)

// (target =2, kind=field, containerid =1, name=_inlineSource)
newCell. _value = value;

// (target =2, kind=local, containerid =2, name=newCell)

public static void main( String [] args ) {

// assign stack frame id 1

Target t = new Target() ;

t. setCellValue ("bar”);

// (target =1, kind=local, containerid =1, name=t)

// A record here is not created for the method call, but rather
// for the dereference of t

The log then contains:

// (target =1, kind=local, containerid=1, name=t)

// (target =1, kind=arg, containerid =2, name=this)

// (target =1, kind=arg, containerid =3, name=this)

// (target =1, kind=arg, containerid =2, name=this)

// ( target =2, kind=instance, containerid =1, name=_inlineSource)
// (target =2, kind=local, containerid =2, name=newCell)

In this example the inlining is determined to be not safe because the Cell (instance

id 2) is not only accessed through Target. _inlineSource (line 5) but also through the local
newCell (line 6).
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B.1.3 Simple Unsafe Jimple Program

Since the implementation is going to work with the Jimple version of the program, here is
an example of how the data would be gathered in practice. Each stack location receives a
name in Jimple, so when a dereference occurs, the container is always a “local” variable.
Containers are tracked by tagging every local variable with the container information,

which then is translated into a log entry when a dereference takes place.

When a local gets assigned a value, the relevant container information is saved. In
the example below, the container information is everything but the target from the tuples

explained in Section 5.4.2:

(container kind, container id, container variable name, container at-
tribute)

Since the tuple only contains information about the container, and to easily differentiate

the tuples from the five-tuples of the log entries, they are presented as:
container(kind, id, variable name, attribute)

Each tuple is again shown below the statement which generates it. The container tuples
are only kept in memory at instrumentation time, and used to create the appropriate log

entry code when the dereference is found in the code.

Soot names all stack locations explicitly in Jimple. This has the side effect that lo-
cal variables at the bytecode level look very similar. They can be differentiated on their
names, since stack locations names are prefixed with “temp$”. This creates situations
where targets are accessed through containers with different names, one name being the

true container, the other a temporary name for a stack location. Consider

A a = new A();
a.foo();

which generates the following Jimple statements
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A a, temp$0;

temp$0 = new A;

specialinvoke temp$0.<A: void <init>()>();
a = temp$0;

virtualinvoke a.<A: void foo () >();

Assuming “new A()” is assigned instance id 1, and the current stack frame id is 5, the

log record is:

(1P

(target: 1, c-kind: local, c-id: 5, c-name: “a”, c-attrib: none)

Note that the call to the constructor does not generate a log entry, as described above

in Section 5.5.1.

This is the same example as the one in Section B.1.2.

class Cell extends java.lang.Object
{
public java.lang. String _value;
void <init>()
{
Cell this;

// stack frame id =4
// object id =2

this := @this: Cell;
// this := container(kind=arg, id=4, name=this)

specialinvoke this.<java.lang.Object: void <init>()>();

return;

}

class Target extends java.lang.Object
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Cell _inlineSource ;

void <init>()

{

Target this ;

// stack frame id =2
// object id =1

this := @this: Target;
// this := container(kind=arg, id=2, name=this)

specialinvoke this.<java.lang.Object: void <init>()>();

return;

}

public void setCell (Cell)
{

Target this ;
Cell cell;

this := @this: Target;
cell := @parameter(: Cell;

/% this . _inlineSource = cell; x/
this.<Target: Cell _inlineSource > = cell ;

return;

}

public void setCellValue (java.lang. String )

{

Target this;

java.lang. String value, temp$2;
Cell newCell, temp$0, temp$1;
// stack frame id =3

this := @this: Target;
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value := @parameterQ: java.lang. String ;

/% Cell newCell = new Cell(); */

temp$0 = new Cell;

// temp$0 := container (kind=local, id=3, name=temp$0)
specialinvoke temp$0.<Cell: void <init>()>();

newCell = temp$0;

// newCell := container (kind=temp, id=3, name=newCell)

/% this . setCell (newCell); x/
virtualinvoke this.<Target: void setCell (Cell)>(newCell);
// (target =2, container=arg, id=3, name=this)

/* _inlineSource . _value = "foo”; */

temp$1 = this.<Target: Cell _inlineSource >;

// temp$l := container (kind=field, id=1, name=_inlineSource)

// Note here that the id refers to the object id when it is an field
container

temp$2 = "foo”;

// Note that temp$2 is not marked as a container, because its value is
not a class under our control

temp$1.<Cell: java.lang. String _value> = temp$2;

// (target =2, container=field, id=1, name=_inlineSource)

/* newCell. -value = value; */
newCell.<Cell: java.lang. String _value> = value;

// ( target =2, container=local, id=3, name=newCell)

return;

}

public static void main(java.lang. String [])

{

java.lang. String [] args;
Target t, temp$0;

// stack frame id =1
args := @parameter(: java.lang. String [];

/* Target t = new Target(); */

85




104

106

107

108

109

110

111

112

113

114

115

116

117

Appendix B. Object Inlining Notes

temp$0 = new Target;
// temp$0 := container (kind=local, id=1, name=temp$0)
specialinvoke temp$0.<Target: void <init>()>();

t = temp$0;
// t := container(kind=local, id=1, name=t)
/% t. setCellValue ("bar”); */

virtualinvoke t.<Target: void setCellValue (java.lang. String )>("bar”);
// (target =1, container=local, id=1, name=t)

return;

The only difference in the log entries generated are that we previously ignored stack

frame ids when the method body had no explicit statements.

B.2 Instrumenting with Soot

Since our object inlining implementation is based on a source code transformation, the
framework needed to include a capability to only monitor those classes for which the
source code is present. The framework marks those classes which can be transformed,
which also solves the issue that some Java library classes could not be optimized either
since they are used internally by the JVM. We chose Java interfaces as a simple, non-

invasive marker which will also be present in the output files.

So the framework ensures that all monitored classes implement the edu.unm.cs.oal.
eventlog . core . Instrumented interface. These markers have to be added before the rest
of the instrumentation is applied. As discussed in Section D.1, an execution of Soot will
process a number of packs, each with different phases. Any of the whole-Jimple packs
automatically enable whole-program analysis, which triggers a number of static analyses
to be executed. Since these analyses are not required for the framework, we edited the
Soot sources, and added a new pack: the jctp, or Jimple complete transformation pack.

It allows accessing all Jimple bodies through the Scene class, without having any side
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effects.

The framework adds the ClassTransformer phase to the jctp pack. The
ClassTransformer adds the marker interface to all application classes, as well as the in-
stance id field and accessor function. Now that these are in place, the remainder of the
instrumentation can easily determine what needs instrumentation and what does not by
doing a type check. The rest of the instrumentation can then be added to the jtp pack,
since every function body is transformed at a time.

The first phase in the jtp pack is to mark the first actual statement of each body using the
MarkerTransformer class. This is necessary for a number of reasons: In Jimple, some
identity statements are introduced. These are essentially meta-information which Soot
encodes in pseudo-instructions. These identity statements have to appear as the first state-
ments, we cannot add instrumentation before them. Another reason are so called traps,
essentially ranges where exceptions are caught. Since the instrumentation has to be added
before the statement which triggers it, the code is naturally added with the insertBefore
function. This has the side effect that these traps become misaligned. So while searching
for the first real statement, the existence of traps is also recorded so that they can later be

moved back to the right place.

Next is the GetterTransformer phase. It identifies pure getter functions: those who
do nothing but return a member. This is important because access through a getter causes
a different event pattern than direct field access. And if there are no side effects!, then
the getter function could be replaced by a direct field access (possibly after changing the
field’s visibility).

The instance id is initialized in the next phase by the InstanceidTransformer.
While the field was already added in by the ClassTransformer, it was not yet initialized.
This phase adds the initialization code to all constructors. The initialization is done by
retrieving the next value from the edu.unm.cs.oal.eventlog.core.Counters class,
either through direct access, or by calling an function, depending on flags passed to the

instrumentation code”. Lastly a call to the logger is inserted to record any creation of in-

"While side effects in general are difficult to determine, a check for one exact statement ex-
cludes any possible side effects.
Direct access is faster, but adds slightly more code to the class. Retrieving the value through a
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stances of this class. The initialization is only performed if the instance does not yet have
a valid id. This guarding is necessary so that constructors can call each other in arbitrary

ways.

The stack frame id gets added in the StackframeidTransformer phase as a local
variable. This variable is immediately initialized from the Counters class, with the same
options as mentioned for the instance id initialization. Note that at the Jimple level nested

blocks are collapsed into one body.

The MainTransformer phase adds the framework initialization code to the main
method>. It adds one call to the Eventlog class to add a logger to the system. Note
that because of static initializer, other code can actually run before the main method is
executed. The capture of all events is ensured by using a static initializer in the EventLog,
which adds a BufferLogger. This logger simply buffers events in memory, and when the

real logger is set, passes them on.

This concludes the instrumentation of the initialization functionality. Now the second

MarkerTransformer phase is run, which moves the traps as mentioned earlier.

Now the instrumentation of the main body takes places in the
InstrumentationTransformer phase. Here the instrumentation is added which

creates the log entries as specified in Section 5.5.

B.2.1 Instrumenting Unit Tests

Unit tests are essentially mini-programs; every junit.framework.TestCase is the
equivalent of a main function. Therefore we cannot use the MainTransformer phase,
since it only looks for main functions, and Soot only sees one class as the main class,
while with unit tests we have several. The TestCaseTransformer allows adding the ini-
tialization to several classes. It shares most code with the MainTransformer, but works

on JUnit test cases instead of the main function.

Similarly, the rest of the usual instrumentation should not be applied, since the behavior

function call can be easily synchronized, if this is required by the target program.
3The class contains the main method is user specified, it cannot be automatically determined.
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of the unit tests itself does not have to be observed. The goal is to observer the behavior
of the actual program which the unit tests only set up. So the rest of the program has
to be instrumented using the method described in the previous section, and the unit tests

themselves only need the instrumentation described here.

One exception is created by the usage of mock objects. Mock objects can i.e. imple-
ment an interface of the program. In this case the interface is instrumented, and the rest
of the program expects any implementation of it to have properties like the instance id.
A simple solution is to add the instance id to all classes which are part of the unit test-
ing code, since its presence does not cause any side effects when not used. Therefore the

InstanceidTransformer is used when instrumenting unit tests as well.

B.3 Flat File Storage

The flat file storage used for object inlining follows a very simple format. This simplicity
ensures that writing introduces as little overhead as possible. The reason to remove all
possible overhead is that the large number of events generated result in a lot of time being
spent on writing them out to disk. Note that buffering does not seem necessary, as the

underlying OS will do this automatically.

The header is needs to be written and read using Java’s
DataOutputStreamwriteChars and DatalnputStream.readChars functions, re-

spectively. It is a string in the format
runid=${runid}; ${type}t:\${version}\n
where

e runid is the id of the run,
e fype is the type of the data in the log, and

e version is the version the reader needs to support to be able to read it.
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After the header follows an arbitrary number of events. An event is encoded in a mixed
format, where strings are properly encoded, but numbers are just written out in a binary
format to save the encoding time. The record starts with two characters: “\”, followed by
a single upper case character. Object inlining uses “C” for a creation event, and “E” for a

dereference.

A creation event consists of the instance id, a Long, followed by the type id, an Int. A
dereference event consists of the target id (Long), the container kind (Int), the container
name (UTF), the container id (Long), and the attribute (Int).

Note that the number of records is not stored, and a linear scan of the file is required
to determine it. This information is not directly stored because knowing the exact number
of records is not important, unless the analysis is run anyway. The file size serves as a
heuristic for the number of records. Note that the file size is not an exact predictor due to

the records being of variable length since they contain strings.

B.4 Object Inlining Result Details

Here we name the opportunities which were used for the results in Tabel 5.2.

1. antlr
antlr.CharScanner.inputState (its declared type) antlr.CharBuffer.queue
(its declared type)

2. luindex
org.apache.lucene.analysis.standard.\

StandardTokenizerTokenManager.input_strean (its declared type).
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Previous Topics of Study

There are a number of topics the author studied previously, which did not result in a publi-
cation. These topics were abandoned for some reason, and here we strive to explain some

of the causes. In some way this is a list of negative results.

C.1 Notes on Databases as Large Storage Repositories

Initially we used the database to store the event log. The requirement was to store a lot
of data, which seemed like an ideal job for a database. The schema for the two types of
object inlining events was easy to set up. The class name could be easily looked up using
a simple join. As an optimization we omitted to tell the database the foreign keys, so that
it would not spend the time at every insert to verify integrity of the entry. Nonetheless,
initial performance was very slow. We consulted some guides for optimizing the database
configuration, since none of us was an expert in this area. However, it seemed that since
all involved queries are rather simple, this tuning did not yield much of a performance

improvement.

After doing some research, we found out that today’s databases automatically start
transactions if the user does not start them himself. Automatic transactions mean that

after every statement the database does its best to ensure the data is written out to disk
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before it returns control to the client!. This is very harmful for performance, because every
statement during data collection was a write. On top of this it circumvented the OS caching
mechanism. The solution was relatively simple: we manually control transactions, and
commit a number of insertions together. A simple counter in the logger controlled when a
transaction would be committed, and a new one started up. As a result performance was

improved, but the system worked still slower than what we expected.

For example, the schema did not store the number of events a given run had, since
this is derived information. Yet a simple COUNT () query on all event entries for some run
id took a very long time to complete, despite an index being available for this column. It
turns out that somehow the database is not able to use the index well for COUNT() queries,
and the database did a linear scan to figure out the number of rows. While there might be
ways to speed this operation up without caching the result, we did not discover them. As a
workaround we changed the “AnalysisUtility” to display the rest of the metadata without
counting the number of entries’. Since the number of rows was roughly proportional to

the run time of the data collection, the exact count was not usually necessary.

In the beginning a different safety algorithm was used. Its simplicity allowed us to
express it in SQL. We felt that this was a very nice feature, as the algorithm was easy to
understand. Little computation was necessary in the client, it was mainly the SQL query
that computed the instances that were safe. One of the queries joined the event log table
onto itself, including a GROUP BY. Overall it was not a very simple query, but not a
complex one either since it only worked with one table. Yet the database was extremely
slow executing the query. Some research revealed that a certain kind of index would likely
speed things up significantly, since it would be used by the database to perform the join
— previously the join required a whole table traversal, which actually turned it into a n?
algorithm. Adding the index did speed the analysis up significantly, from several hours to
minutes, but adding the index itself took more than a day. Additionally it made the size of
the database explode: together with the other indices, like the primary key index, and the
run id index, the database had several times the size of its payload.

With the indices taking up so much space, we soon realized that our machine was not

"We used synchronous database access.
2The now obsolete sinfo command shows the run information without counting the rows.
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set up properly: the database simply did not have enough disk space allocated. Since
we were still in an experimental stage, we started to delete runs whose data had become
obsolete. This turned out to be far from easy: A DELETE query would run for days. When
it was finished, the OS reported no freed space at all. Some research found the reason:
The database, PostgreSQL, only marked rows as deleted, but does not release the storage
it had acquired so far. At the time we were trying to do a modification to the database,
and PostgreSQL was not able to use the deleted rows for the operation. This resulted in
PostgreSQL aborting the modification. A full release of the space is difficult, probably
because the data has to be compacted, or defragmented, so that the space can be released.
In PostgreSQL this is done through a so-called vacuum. The vacuum is usually performed
automatically. It turned out that after the delete operation it had sprung into action — it was
just nowhere from being done. We let the so called autovacuum run for a couple of days.

Since there was no easy way to gage its progress, we cancelled it.

Additional research revealed that this slow behavior might have been caused by the
lack of disk space that we were trying to solve in the first place. At this point we reconfig-
ured the server and allocated more disk space for the database. Afterwards we manually
restarted the vacuum. The vacuum remained extremely slow. After a couple of days it was
done, and it had freed up disk space. The database was still bigger than we had expected,
but that was most likely due our limited understanding of the space requirements of the

indices.

Out of concern that these extremely slow operations would soon be required another
time, we switched databases to MySQL. The reasoning was that MySQL has the reputation
of being fast, possibly at the cost of sub-par separation of conflicting queries. Since our
data collection seemed to exhaust the database with just one client, this potential pitfall
did not concern us>. After the switch, performance did increase compared to PostgreSQL.
There was no direct comparison possible because during the switch the database schema

was updated.

However, the indices were managed by MySQL similarly to PostgreSQL.: they take up

a lot of space. Soon thereafter it became necessary to clean up the database as well. Again

3MySQL has come a long way, and it is likely these restrictions did not apply to its current
version any more.
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the delete operation was extremely slow, and did not complete after running for more than
a day. At this point it became clear that databases were simply not well suited for our
purpose. It is possible that there are tricks that could be used to obtain good performance
out of a database for our usage pattern. But we had exhausted our knowledge, and still did

not reached an acceptable level while operating the database.

Since the data is essentially a stream of information, a flat file storage system turned
out to serve us well. This has the advantage of almost instantaneous deletion operations,
since all the events of one run are always grouped together in one file. It turns out this
primitive approach works well when only linear scans of the log are required, as is the

case with object inlining.

C.2 Memoization

Memoization is a technique to avoid executing functions several times for the same inputs.
A memoized function’s return value is stored, and can be looked up based on the func-
tion’s parameters. This allows returning the cached value when the same parameters are

encountered again.

As can be deduced from this description, memoization is only valid for functions with-
out side effects. What constitutes a side effect in a non-functional language like Java
is not easy to determine. For example, information can be stored temporarily in fields,
instead of passing it along as parameters for a chain of function calls on some receiver
object. Technically this is a side effect, while in practice such behavior would not prevent

memoization.

Caching the return value is also difficult because Java objects are not generally im-
mutable. If a reference to the return value is stored, how can we ensure that the object is
not mutated through the returned reference? How could an analysis determine if this is
happening? Object equality is not easily determined, since the equals method is not gen-
erally required to be implemented. So any analysis of mutation would run into the same

pitfalls as already mentioned for the side effect analysis.

An alternative to storing a reference to the return value is storing a copy of the return
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value. But how can we copy a return value? Again it is not required for objects to im-
plement the clone method. If it is not implemented, is a deep or a shallow copy more

appropriate? This is not generally decidable.

Although we did implement a prototype for adding memoization to functions, these
open questions lead us to abandon this topic. It seemed like either memoization would
only be applicable in very restricted scenarios, or would have the potential to generate
incorrect results. Note that memoization could again be considered for implementation in

the framework presented in this thesis, as we outline in Section 6.

C.2.1 Implementation

We implemented memoization in Aspect] [19]. It does not include analysis for when mem-
oization is valid, but some limited profitability heuristic is included. A pointcut defines to

which functions the memoization is applied. The implementation works as follows:

o Aspect] presents the function arguments as an Object [] array to the aspect. This is

wrapped in an ArgsKey class to attain better control over the hashing.

e The cache is essentially a hash table. The ArgsKey instance is used to look up if the

result has been previously computed.

e [f the arguments had not been encountered before, the return value is computed,

stored, and the statistics are updated with a miss.

o [f the look-up is successful, the memoized value is returned, and a hit is recorded in

the statistics.

Notice how this implementation uses the hash value for the equality check. This is not

a good idea in general, since the hash value can collide, but does often work in practice.

The statistics can be used to determine if there is a high enough hit-miss ratio that
memoization is a good idea. It does not take memory usage into account. Despite these
limitations, the aspect is a useful implementation of memoization, and does work in prac-

tice. It is just not automated, but needs to be controlled manually. Notice how the actual
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implementation of memoization is exactly one of these cross-class concerns which Aspect]J

was created for.

C.3 Automatic Data Structure Selection

Another area we explored was how the standard Java collection library is used in practice.
The goal was to find a way to automatically select or switch the implementation of an
interface based on usage patterns. The documentation states clearly that some operations
on some collection classes are relatively expensive, but the assumption was that this is
not always considered by the programmer. E.g., ArrayList.remove () takes O(n) time,
while a naive user might expect it to only take O(l) time. We monitored the usage of
collection classes in real world programs to understand how these classes are used so that

we could implement an effective automatic selection or transformation.

C.3.1 Usage Analysis

We analyzed the usage patterns by adding logging code to the collection classes. Once the
instrumented classes are on the boot class path, any usage is logged, which is much easier
than looking for every use of these classes. We used Javassist [9], an easy to use bytecode

rewriting toolkit, to add the instrumentation.

The logging code outputs a time stamp as well as which class and method was called.
We then graphed time vs. number of method calls to see how often, and in what situa-
tions the expensive methods were used. We collected data from most of the DaCapo 2006
benchmark suite, and some of SPEC jvm98. Take the jess benchmark as an example. Fig-
ure C.1 shows the behavior of an instance of the Vector class. Here we can see index0f
being executed relatively frequently, which is not efficient to execute for the Vector class.
In contrast, Figure C.2 shows an instance where almost exclusively the most commonly
used, and efficient, functions were called. Comparing the total number of calls shows that

Figure C.2 was used around 100 times more often than Figure C.1.

The graphs for the rest of the benchmarks were similar. The more complex usage
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jess java.util.Vector instance 1860404380.144 (8518 total calls) (84.93 secs)
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Figure C.1: Graph of the frequency of method calls over time for the jess benchmark. A
variety of functions is used, including index0f, which is not very efficient.

patters would mainly appear for the relatively little used instance, while the instances
that were used the most had simple access patterns, using almost exclusively the efficient

functions.

C.3.2 Conclusion

Contrary to our assumption, the analysis showed that the benchmarks programs we consid-
ered did use the collection classes in reasonable ways. There certainly were places where

an optimization was possible, but these places were in timing insensitive areas.

An explanation could easily be the selection of the benchmarks. Only selected pro-
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jess java.util.Vector instance 629594964.12 (1097976 total calls) (84.93 secs)
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Figure C.2: Graph of the frequency of method calls over time for the jess benchmark. This
instance is used extensively, with most calls going to the elementAt function, which is
efficient in the Vector class.

grams are added to benchmark suites, and generally the code quality is relatively high®.
It seems that data structure selection is usually handled well, as long as the standard col-
lection library is used. We suspect that in performance critical places, or when unusual
usage patterns appear in practice, custom containers are used. We believe that there is a
large number of programs in use in the real world, where the basic data structure selection
is not handled as well as in these benchmark suites. These programs, however, are often
proprietary, and are not easily available to researchers. Also for publications it is expected
that an optimization is evaluated on the standard set of benchmarks, and not just some

proprietary program. These expectations would make any result difficult to publish, even

“While benchmark suites strive to only include high quality programs, it is well known that
individual benchmarks often contain some deficiency. Unless very old benchmarks are considered,
these are often rather subtle, and not of principal nature.
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if it was beneficial to certain classes of programs.
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Introduction to the Essential Libraries

D.1 Soot Overview

Soot is a Java optimization framework under development at McGill University since
1999. Its main feature are three different intermediate representations: Baf, “a streamlined
representation of bytecode which is simple to manipulate”; Jimple, “a typed 3-address in-
termediate representation suitable for optimization”; and Grimp, “an aggregated version

of Jimple suitable for decompilation” [28].

Soot was designed to take Java bytecode as input, but has since gained the feature to
read in Java source code as well. The bytecode is first translated to Baf, possibly opti-
mized in this format, translated to Jimple and again possibly optimized. From Jimple it is
translated to Grimp, and for a last time possibly optimized. Lastly it is translated back to
Baf and from there back into bytecode. Soot is able to also output any of its intermediate

formats in a human readable format, as well as output as Java source code [25].

Baf is a stack based representation, like Java bytecode. The difference is that the
constant pool is abstracted away and all instructions become fully typed'. It also makes
local variables explicit, which are marked through identity statements. Jimple eliminates

the stack to make all operands explicit. This allows all operands to be typed, so that in

"Most, but not all, Java bytecode instructions are typed. Exceptions are i.e. dup and swap.
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turn operations can become untyped. It also eliminates the “essentially interprocedural”
jsr instruction. Grimp looks similar to Java source code. It allows expression trees in
contrast to the essential flat representation of Jimple. It is easier to read, and to construct

stack code from.

The three different intermediate representation allow a transformation implemented in
Soot to work at the abstraction level that is most appropriate, since transformations are

implemented between all IRs.

Soot’s operations are grouped in packs, each of which contains one or more phases [4].
Each pack, and phase, can be enabled or disabled. First Soot creates Jimple code for all
method bodies (the jb pack). Then a series of whole program packs are applied, the call
graph pack (cg), the whole-Jimple transformation pack (wjtp), the whole-Jimple optimiza-
tion pack (wjop), and then the whole-Jimple annotation pack (wjap). All these packs can
be changed by the user and operate on what Soot calls the Scene; the set of all classes
which Soot was able to load. The “whole” packs are not enabled by default, since they
require the analysis of all code. In regular mode only application classes are analyzed and

library classes are only considered for typing information.

Afterwards the following packs are executed: The Jimple transformation pack (jtp),
which is enabled but empty. This is where most user intra-procedural analysis will be
added to. The Jimple optimization pack (jop) is disabled and contains optimizations
shipped with Soot. It is followed by the Jimple annotation pack (jap), which contains
phases that add annotations. These are also disabled by default”.

The bb pack converts each body to Baf. It is followed by the tag pack which optimizes
the tags which were added in the jap pack. Also available is the Dava [25] body pack (db),

which is used when decompiling bytecode with Soot.

Over the years, the Soot framework has evolved more and more capabilities. It is used
as an optimization framework, and a number of static analysis are implemented in it. As
mentioned before it can also decompile Java class files. It can be used as a compiler, e.g.,
to create Java classes from scratch. This flexibility allowed us to use Soot as a bytecode

rewriting tool: first the existing classes are decompiled into the Jimple IR, then they are

~More accurately, the jap pack is enabled, but all its phases are disabled.
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modified using the compiler capabilities of Soot.

D.1.1 Jimple

Jimple is one of the intermediate representations of Soot. It was designed to be compact,
and easy to work with. A three-address format is used, so the general layout of a Jimple
instruction is x = y o z, where o is some operator. Instead of operating on a stack, Jimple
uses explicit names for the stack locations used in the bytecode. Its operators are untyped,

but all variables are typed. An example of Jimple code is shown in Section B.1.3.

Jimple is very compact and only has 19 different operations. This low number makes

it much easier to reason about than either Java source or Java bytecode.

D.1.2 Jimple Grammar

Raja Vallée-Rai explains in his Master’s thesis [29] the Jimple grammar. The production

rules are reproduced in Figures D.1 and D.2.

The productions start with the szmt rule. Note that Jimple describes only the body of
Java methods. The remainder, class and member definitions, are identical to those in Java

source code.

D.2 Recoder Overview

The Recoder? library [15] was created at the University of Karlsruhe. It is a framework
for “source code meta-programming”’; it allows to read in Java source code, transform it,

and output the results again as Java source code.

The transformation is enabled by the meta model which Recoder constructs of the

source code. This model is not unlike the abstract syntax tree, but was extended to an

3The library is at times spelled RECODER and at other times Recoder. We adopted the latter
for easier readability.
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attributed syntax graph. Still each element has links to its parents and children. Interfaces
are used to describe the properties each element can have, e.g., a MethodDeclarationis a
MemeberDeclaration, as well as a StatementContainer, and a ParameterContainer,

etc. Additional information, such as types and cross-references are also added by Recoder.

A program transformations manipulates this “syntax tree”. All changes are reported
to a ChangeHistory service, which allows to reverse changes and also tries to minimize
updates by not updating the complete model unless it is necessary. Recoder does some

model error checking, but unfortunately it does not catch all errors.

Recoder ships with an APl documentation, which is as usual produced by Javadoc.
However, it is only very sparsely annotated with additional information. It certainly is a
sign of a well design program that it is still possible to use Recoder with relative ease.
Nonetheless sometimes trial and error has to be used to understand how their internal

model represents Java source code.

Another requirement imposed by Recoder makes writing transformations more chal-
lenging: it is not possible to detach an element of the model, and attach it somewhere
else. Instead, the element has to be cloned. If references to the element or its children are
kept, they become invalid after its parent has been detached. The nesting relationship of
elements which were discovered in separate passes is not easily determined, which often
leads to bugs that are difficult to find. If this restriction is kept in mind, then it is possible,

and at times cumbersome, to avoid these issues.
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stmt — assignStmt | identityStmt |
gotoStmt | ifStmt | invokeStmt |
switchStmt | monitorStmt |
returnStmt | throwStmt |
breakpointStmt | nopStmt;

assignStmt — local = rvalue; |
field = imm;
local.field = imm;
local [imm] = imm;

identityStmt — local := @this: type;
local := @parametern: type; |
local := @exception;

gotoStmt — goto label;

ifStmt — if conditionExpr goto label;
invokeStmt — invoke invokeExpr;
switchStmt — lookupswitch imm

{ case value;: goto label;;

case value;: goto label;;
default: goto defaultLabel; }; |
tableswitch imm

{ case low: goto lowLabel,;

case high: goto highLabel;
default: goto defaultLabel; }

monitorStmt — entermonitor imm; |
exitmonitor imm;

returnStmt — return imm |
return;

throwStmt — throw imm,

breakpointStmt — breakpoint;

nopStmt — nop;

Figure D.1: Jimple grammar (statements).
This is an exact reproduction of the table in [29] on page 24.
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imm —

local | constant

conditionExpr —
condop —

immy condop imm;
>|<|=[#[<]2

rvalue —

concreteRef | imm | expr

concreteRef —

field |
local.field |
local[imm]

invokeExpr —

specialinvoke local.m(immy, ..., immy;) |
interfaceinvoke local.m(immy, ..., immy;) |
virtualinvoke local.m(immy, ..., immy;) |
staticinvoke local.m(immy, ..., imm,;)

expr —

imm) binop imm; |

(type) imm |

imm instanceof type |

invokeExpr |

new refType |

newarray (type) [imm] |

newmultiarray (type) immy, ..., imm, [|x |
length imm |

neg imm

binop —

H=I>I<I=1#I<[=]*]/]
<< | >> ] <<<|%| rem & | |
cmp | cmpg | cmpl

Figure D.2: Jimple grammar (support productions).
This is an exact reproduction of the table in [29] on page 25.
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Object Inlining In Practice

This chapter provides instructions on how the object inlining implementation is used in

practice. It is written as a brief tutorial to help anyone attempting to use our software.

E.1 Installation

The first step is to check out the subversion repository at https://digamma.cs.unm.
edu/svn/alg-opt/trunk/david/sharing/object-inlining/!'. Let us assume that
the check out is stored at ${0I}. The instrumentation and analysis code is managed in an
Eclipse project. We recommend checking out the soot-eventlog sub-folder of the URL
above from within Eclipse to get the easiest setup, and the ability to push changes to SVN
from Eclipse. Although all major components are written in Java, a number of shell scripts
provide a more easily usable interface. It is recommended to add ${0I}/bin to $PATH so
that these scripts can be easily invoked. We assume this has been done for the remainder

of this chapter.

The file ${0I}/settings contains a number of settings that the scripts in bin/ are
using. If any setting needs to be adjusted for the local system or user, it should be placed

in ${0I}/setings.local, which takes precedence over the global settings. For ex-

IThe repository does not allow public access. Please contact the author to receive a copy of the
source code.

106


https://digamma.cs.unm.edu/svn/alg-opt/trunk/david/sharing/object-inlining/
https://digamma.cs.unm.edu/svn/alg-opt/trunk/david/sharing/object-inlining/

Appendix E. Object Inlining In Practice

ample SOOT_EVENTLOG controls the classpath entry where both the instrumentation and
the analysis code will be loaded from. Instead of constantly updating the jar file at
${0I}/1ib/sootsimple. jar, the variable should be set to the folder where the Eclipse

project stores its class files.

E.2 Instrumentation

With the initial setup out of the way we show how to use the analysis on the pmd program,
version 3.7. After extracting the zip file we create the sootsimple subdirectory to group

all the files which we add for the instrumentation.

For the configuration step we need to identify all the class that pmd uses. Since
the class files are usually bundled in a jar file, we build pmd using “cd bin &&
ant”. Then all class files end up in the build directory. Since later we want to
run the instrumented classes, we immediately move this directory out of the way:
“mv build simplelog/”. The list of classes can now be easily formatted us-
ing the “findclasses” script. From within the sootsimple directory we run
“findclasses build > classes” tocollect the class list. This file can be edited
to exclude classes from the instrumentation. Inspecting the list reveals that the unit test
classes are also included. As the lest of test classes should be stored separately, we instead
run the following command: “findclasses build | egrep ’“test.’ -v
> sootsimple/classes && findclasses build | egrep ’“test.’

> sootsimple/unittests”.

Sometimes the build directory contains more than just the classes, for example input
data could also be present. The instrumentation will only transform the class files, so we
populate the instrumentation output directory simplelog/sootOutput with the contents
of the build directory: “cp -a build sootOutput”. The instrumentation will

later overwrite all class files, so copying them over as well does no harm.

Before the classes can get instrumented, we need to collect all the dependencies of
pmd. Depending on the program these are already included in a 1ib subdirectory, but

sometimes they need to be downloaded manually. So that the dependencies can be easily

107



Appendix E. Object Inlining In Practice

discovered, they should be placed in the sootsimple/support directory (a symlink is
sufficient). Then the little script template shown in Figure E.1 can be run, which places

the instrumented class files in sootsimple/sootOutput.

The environment variables set on lines 19-23 configure the behavior of the instrumen-
tation. COLLECTION selects what instrumentation should be added (it selects the package
inside of edu.unm.cs.oal.eventlog.collection) and EVENTLOG selects which class
inside that package should be used as the logger. The following variables are self ex-
planatory: the application name, version, and its class path. Note that on line 24 the

“soot-eventlog” script is run, which is another one of the helpers in ${0I}/bin.

After instrumenting the regular classes the unit tests need to receive a special instru-
mentation, as mentioned before in Section A.1. We use another script template for this
purpose, Figure E.2. It is very similar to the previous template. It differs by operating
on the unit test list, instead of the class list and that the unit test classes are cleaned up
beforehand.

E.3 Data Collection

After everything is instrumented the program needs to be run so that the data collection
can start. When running the program the regular way, as opposed to the unit tests, a simple
substitution of “javasimplelog” for the “java” command should be sufficient. A
proper classpath setup is still required, only the instrumented classes, and not the original

ones, should be available on the class path.

The more complicated example is collecting data from running unit tests. Since pmd
provides an ant setup to run the unit tests, we chose to modify ant’s build.xml to our
needs. It is modified similar to the way that the “javasimplelog” script operates:
we have to add the dependency classes on the classpath. Initially we have to create a
symlink so that this script can find the instrumented classes: “1n -s sootsimple/
sootOutput build”. Then we edit the build.zxml file, and add to the “<path id
="dependencies.path">” section some pathelement entries with the framework

and its dependencies. An example of this is shown in Figure E.3.
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Some slight modifications to the way tests are run are necessary as well. To make it
easier to separate the collected data, we instruct JUnit to run every test in its own JVM
instance by changing “forkmode="perTest"”. The original build script used a sep-
arate directory for the unit test classes, but since for us they are co-located with the regular
classes, we have to change ${dir.regress} to ${dir.build} within the “todir” at-
tribute. For us it was also necessary to add a formatter, as shown on line 3 in Figure E.4.
For pmd, some tests failed to run with the instrumentation, so we set the “haltonerror
="yes"” attribute for the “batchtest” command, and incrementally added exclusion

patterns for the failing tests, as shown on line 11.

After making all these modifications, we can collect the data from the unit tests. Auto-
matic grouping needs to be enabled first by running “AnalysisUtility addgroup
"pmd 3.7 unit  tests"”. The output will show the newly created group id. Let

3 be the group id displayed. Now we need to set this as the default group id to associate
new runs with by running “AnalysisUtility setgroup 3”. Now we canexecute

“ant tests” from the bin directory to start the data collection.

E.4 Analysis

The collected data is stored in the current directory, which is bin/. The scripts au-
tomatically determine where the data is, so the location does not need to be speci-
fied. Running “AnalysisUtility 1list” will show us the last couple of runs.
The most recent one should be the group of unit tests. It can get analyzed by running
“AnalyzeSimple ganalyze 37, where 3 is the group id. The analysis output will
appear on the terminal, so it is advisable to redirect it to a permanent storage location,
for example by running “AnalyzeSimple ganalyze 3 2>&1 | tee group3
.analysis”. This command saves both regular output as well as errors, while display-

ing the output in the terminal as well as saving it in the file group3.analysis.

The analysis output is human readable, and very verbose. The most important infor-

mation is listed first, e.g. the list of safe opportunities.
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#!/bin/sh

BASE=‘dirname $0°
BASE=‘readlink -f $BASE®

mkdir -p "$BASE/log"

LOG="$BASE/log/instrument"
CLASSES="$BASE/classes"

echo "Logging,toy$LOG..."

for f in $BASE/support/*xjar; do
SUPPORT=$SUPPORT: $f
done

cd build

COLLECTION=simplelog \

EVENTLOG=hybrid \

APP_NAME=pmd \

APP_VERSION=3.7 \

CLASSPATH=$CLASSPATH: $SUPPORT \

time soot-eventlog -d ../sootOutput ‘cat $CLASSES
$LOG

R=$7

exit $R

[4

>&

Figure E.1: Script template to instrument a program.
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#1/bin/sh

BASE=‘dirname $0°
BASE=‘readlink -f $BASE¢

LOG="$BASE/log/unittests-instrument"
CLASSES="$BASE/unittests"

echo "Logging,to,$L0OG..."
for f in $BASE/support/*xjar; do

SUPPORT=$SUPPORT : $f
done

# Clean up previous test files, they’ll conflict on the

classpath otherwise
cd $BASE/sootOutput
rm -f ‘cat $CLASSES | class2path

cd $BASE/build

COLLECTION=simplelog \

EVENTLOG=hybrid \

APP_NAME=pmd \

APP_VERSION=3.7 \
CLASSPATH=$BASE/sootOutput: $CLASSPATH: $SUPPORT \

time soot-unittests -d $BASE/sootOutput ‘cat $CLASSES

$L.0G
R=$7
if [ "$R" 1= "0" ]; then
tail -n 50 $L0OG
fi
exit $R

[4

>&

Figure E.2: Script template to instrument unit tests.
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<path id="dependencies.path">
<pathelement location="${dir.build}" />
<fileset dir="${dir.lib}">
<include name="jaxen-1.1-beta-7.jar" />
<include name="jakarta-oro-2.0.8.jar" />
<include name="xercesImpl-2.6.2.jar" />
<include name="xmlParserAPIs-2.6.2.jar" />
</fileset>
<pathelement location="/nfs/home/homel/
dmohr/chi/eclipse/sootinstrument/bin" /
>
<pathelement location="/nfs/home/homel/
dmohr/chi/eclipse/sootinstrument/boot -
bin" />
<pathelement location="/nfs/home/homel/
dmohr/java/sharing/object-inlining/lib/
jdbc-postgresql. jar" />
<pathelement location="/nfs/home/homel/
dmohr/java/sharing/object-inlining/1lib/
jdbc-mysql. jar" />
</path>

Figure E.3: Example of classpath changes to the pmd build script.
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<target name="test" depends="requires-junit,compile, copy

" description="Runs_ theunit tests">

<junit printsummary="yes" haltonfailure="no" forkmode=

"perTest">
<formatter type="xml"/>
<classpath>
<path refid="dependencies.path" />
</classpath>
<batchtest fork="yes" todir="${dir.build}"
haltonerror="yes">
<fileset dir="${dir.build}">
<include name="test/*x*x/*Test.class" />
<l -- ezxzclude tests which make the
instrumentation fail -->
<exclude name="test/net/sourceforge/pmd/ast/
ASTAnnotationTest.class" />
</fileset>
</batchtest>
</junit>

</target>

Figure E.4: Example of changes to the unit test run in the pmd build script.
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