
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2010

A protocol reconfiguration and optimization
system for MPI
Manjunath Gorentla Venkata

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Gorentla Venkata, Manjunath. "A protocol reconfiguration and optimization system for MPI." (2010).
https://digitalrepository.unm.edu/cs_etds/7

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/7?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu




A Protocol Reconfiguration and
Optimization System for MPI

by

Manjunath Gorentla Venkata

M.S., Computer Science,

University of New Mexico, 2005

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2010



c©2010, Manjunath Gorentla Venkata

iii



Dedication

To my parents for many sacrifices they made for me, and for instilling the values of

hard work and learning.

iv



Acknowledgments

This research and dissertation would not have been possible without the support
and mentorship of my advisor Professor Patrick Bridges. I would like to thank
him for his invaluable support as a teacher, mentor, and research advisor. I would
like to thank Professor Barney Maccabe for his insights and mentorship during my
graduate school. I would also like to acknowledge other members of my dissertation
committee, Dr. Rolf Riesen, Professor Dorian Arnold, and Professor Nasir Ghani for
their feedback and support.

I would like to thank my parents, brother, and sister for their relentless support
for all my endeavors. I thank my wife Shruti for encouraging me to be my best
during the last years of graduate school. I would like to acknowledge many friends
for their help, encouragement, and support during my years as a graduate student.

I would like to thank all past and present members of Scalable Systems Labs at
the University of New Mexico for their support and friendship. Particularly, I would
like to thank James Horey, Kurt Ferriera, and Edgar Leon for many interesting and
lively conversations that helped me improve my research skills and ideas. I would
like to thank Patrick Widener for his advise that helped me to improve my technical
writing and presentation skills.

Finally, I would like to thank the Sandia University Research Program (SURP)
and Department of Energy for their financial support.

v



A Protocol Reconfiguration and
Optimization System for MPI

by

Manjunath Gorentla Venkata

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2010



A Protocol Reconfiguration and
Optimization System for MPI

by

Manjunath Gorentla Venkata

M.S., Computer Science,

University of New Mexico, 2005

Ph.D, Computer Science, University of New Mexico, 2010

Abstract

Modern high performance computing (HPC) applications, for example adaptive mesh

refinement and multi-physics codes, have dynamic communication characteristics

which result in poor performance on current Message Passing Interface (MPI) imple-

mentations. The degraded application performance can be attributed to a mismatch

between changing application requirements and static communication library func-

tionality. To improve the performance of these applications, MPI libraries should

change their protocol functionality in response to changing application requirements,

and tailor their functionality to take advantage of hardware capabilities.

This dissertation describes Protocol Reconfiguration and Optimization system for

MPI (PRO-MPI), a framework for constructing profile-driven reconfigurable MPI li-

braries; these libraries use past application characteristics (profiles) to dynamically

change their functionality to match the changing application requirements. The

vii



framework addresses the challenges of designing and implementing the reconfigurable

MPI libraries, which include collecting and reasoning about application character-

istics to drive the protocol reconfiguration and defining abstractions required for

implementing these reconfigurations. Two prototype reconfigurable MPI implemen-

tations based on the framework – Open PRO-MPI and Cactus PRO-MPI – are also

presented to demonstrate the utility of the framework.

To demonstrate the effectiveness of reconfigurable MPI libraries, this dissertation

presents experimental results to show the impact of using these libraries on the

application performance. The results show that PRO-MPI improves the performance

of important HPC applications and benchmarks. They also show that HyperCLaw

performance improves by approximately 22% when exact profiles are available, and

HyperCLaw performance improves by approximately 18% when only approximate

profiles are available.

viii



Contents

List of Figures xv

List of Tables xviii

1 Introduction 1

1.1 MPI Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 MPI Point-to-point Operations . . . . . . . . . . . . . . . . . 3

1.1.2 MPI Collective Operations . . . . . . . . . . . . . . . . . . . . 4

1.1.3 MPI One-sided Operations . . . . . . . . . . . . . . . . . . . . 5

1.2 HPC Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Dynamic HPC Application Communication Characteristics . . 6

1.2.2 HPC Hardware Chracteristics . . . . . . . . . . . . . . . . . . 8

1.3 Demands on Communication Libraries . . . . . . . . . . . . . . . . . 9

1.3.1 Influence of Application Communication Characteristics . . . 10

1.3.2 Influence of Hardware Architecture . . . . . . . . . . . . . . . 11

ix



Contents

1.4 Reconfigurable Communication Libraries . . . . . . . . . . . . . . . . 13

1.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Challenges of Implementing Reconfigurable Communication Li-

braries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.4 PRO-MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . 17

1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Related Work 19

2.1 Configurable Software . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 x-kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Cactus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Appia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Distrinet Protocol Stack (DiPS) . . . . . . . . . . . . . . . . . 22

2.1.5 Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Reconfiguration and Adaptation in MPI Implementations . . . . . . . 23

2.2.1 Open MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 MPICH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Adaptive MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Other MPI Implementations . . . . . . . . . . . . . . . . . . . 25

x



Contents

2.3 Profiling and Performance Monitoring . . . . . . . . . . . . . . . . . . 26

2.4 Profile-driven Code Optimization . . . . . . . . . . . . . . . . . . . . 27

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 PRO-MPI Architecture 30

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Communication Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Structure of the Communication Layer . . . . . . . . . . . . . 33

3.3 Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Types of Profiles . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Role of the Analyzer . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Online and Offline Analyzer . . . . . . . . . . . . . . . . . . . 38

3.4.3 Analysis of Inexact Profiles . . . . . . . . . . . . . . . . . . . 39

3.4.4 Overhead of a Reconfiguration . . . . . . . . . . . . . . . . . . 39

3.5 Reconfiguration Manager . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Protocols for System Operation . . . . . . . . . . . . . . . . . 40

3.5.2 Mechanism for Implementing a Reconfiguration . . . . . . . . 42

xi



Contents

3.6 Example PRO-MPI Reconfiguration to Improve HyperCLaw Perfor-

mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 MPI Reconfigurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Cactus PRO-MPI Implementation 55

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Cactus and CTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Cactus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 CTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Cactus PRO-MPI Infrastructure . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Communication Layer (MPI/CTP) . . . . . . . . . . . . . . . 60

4.3.2 Profiler and Analyzer . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Reconfiguration Manager . . . . . . . . . . . . . . . . . . . . . 63

4.4 Preposted Receives Reconfiguration . . . . . . . . . . . . . . . . . . . 63

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 Synthetic Benchmark Results . . . . . . . . . . . . . . . . . . 66

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Open PRO-MPI Implementation 70

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xii



Contents

5.2 Open MPI and Infiniband . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Open MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Infiniband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 PRO-MPI: Open MPI infrastructure . . . . . . . . . . . . . . . . . . 74

5.3.1 Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Communication Layer and Dynamic Resource Management . . 78

5.4 Example Reconfigurations . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Connection-protocol Reconfiguration . . . . . . . . . . . . . . 83

5.4.2 Registered-buffer Reconfiguration . . . . . . . . . . . . . . . . 84

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.2 Benchmark and Applications . . . . . . . . . . . . . . . . . . . 87

5.5.3 Synthetic Benchmark Results . . . . . . . . . . . . . . . . . . 88

5.5.4 Application Performance with Connection-protocol Reconfig-

uration and Exact Profiles . . . . . . . . . . . . . . . . . . . . 91

5.5.5 Application Performance with Registered-buffer Reconfigura-

tion and Exact Profiles . . . . . . . . . . . . . . . . . . . . . . 94

5.5.6 Application Performance with Inexact Profiles . . . . . . . . . 94

5.5.7 Reconfiguration Overhead . . . . . . . . . . . . . . . . . . . . 98

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii



Contents

6 Conclusions 103

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References 107

xiv



List of Figures

1.1 HyperCLaw’s communication characteristics: Grids of irregular shape

and different size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Communication characteristics of HyperCLaw showing the percent-

age of total processes participating in a communication during each

application time step. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Communication characteristics of HyperCLaw showing the message

exchange topology during varying mesh refinement. . . . . . . . . . 10

3.1 PRO-MPI architecture . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 An example PRO-MPI framework for HyperCLaw . . . . . . . . . . 43

4.1 Architecture of Cactus PRO-MPI showing the profiler, the analyzer,

and newly added microprotocols and events. The newly added mi-

croprotocols and the events are shown as grey colored components. . 60

4.2 Comparative Eager Message Bandwidth . . . . . . . . . . . . . . . . 67

4.3 Bandwidth By Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Reconfigurable versus Fixed Protocol Bandwidth . . . . . . . . . . . 69

xv



List of Figures

5.1 Open MPI point to point component architecture . . . . . . . . . . 72

5.2 Open PRO-MPI components and their use to control a protocol re-

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Example connection reconfiguration between RDMA and send/receive

connections. The nodes in the figure represent MPI processes, while

the number on the edges represent the communication priority of the

processes during an application phase. . . . . . . . . . . . . . . . . . 85

5.4 PRO-MPI performance improvement over Open MPI on a synthetic

communication benchmark . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 PRO-MPI performance improvement over Open MPI on a synthetic

communication benchmark . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 SAMRAI and HyperCLaw performance improvement using PRO-

MPI (connection-protocol reconfiguration) with exact profiles . . . . 91

5.7 FFT performance improvement using PRO-MPI (registered-buffer

reconfiguration) with exact profiles . . . . . . . . . . . . . . . . . . . 92

5.8 PRO-MPI communication chracteristics of HyperCLaw and SAM-

RAI while using PRO-MPI and Open MPI. . . . . . . . . . . . . . . 93

5.9 Performance improvement using profile collected at low mesh refine-

ment (3 for SAMRAI, 2 for HyperCLaw) to optimize communication

in application run with higher mesh refinement (4 for SAMRAI, 3 for

HyperCLaw) on 32 nodes. Numbers represent the average of 5 runs. 95

xvi



List of Figures

5.10 Performance improvement using profile collected at low problem size

(processes=16) to optimize communication in application run with

higher problem size(processes=32). Numbers represent the average

of 5 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Communication chracteristics of HyperCLaw and SAMRAI while us-

ing Exact and Inexact profiles. Profiles of lower refinement level

where used to drive a reconfiguration in higher refinement level prob-

lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.12 Communication chracteristics of HyperCLaw while using Exact and

Inexact profiles. Profiles of lower problem size (procs =16) where

used to drive a reconfiguration in higher problem size (procs =32). . 96

xvii



List of Tables

3.1 List of terms that are used to describe the optimizations . . . . . . . 47

3.2 List of MPI optimizations that could be implemented in a PRO-MPI

implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xviii



Chapter 1

Introduction

Modern HPC applications, such as adaptive mesh refinement and multi-physics

codes, have diverse and dynamic communication characteristics. Their message

characteristics (size, type, frequency) and communication characteristics (number of

processes participating, type of collective operation, communication to computation

ratio) change during runtime. As a consequence, these applications’ communication

demands constantly change.

Profile-driven reconfigurable communication libraries are one way to deal with

changing application communication characteristics. They improve HPC application

performance by changing their protocol functionality to match changing application

communication demands. They use past application characteristics to drive these

changes. For example, when the number of communicating processes changes during

application execution, these libraries improve application performance by choosing

transport protocols and other functionality based on the number of communicating

processes.

Implementing reconfigurable communication libraries poses many challenges. To

reconfigure, the libraries need to collect and reason about changing application com-

1



Chapter 1. Introduction

munication requirements and environment information (runtime state, resource avail-

ability and hardware characteristics). The reconfiguration should not disrupt ap-

plication execution or correctness of the solution. Further, reconfigurable libraries

should be designed to support function reusability and extension.

This dissertation presents Protocol Reconfiguration and Optimization system for

MPI (PRO-MPI), a framework for constructing reconfigurable libraries for MPI-

based applications. The framework collects and analyzes the application commu-

nication characteristics required for a reconfiguration. It provides mechanisms to

execute reconfigurations. It provides abstractions for implementing the communi-

cation libraries that supports reusability and extension of library functionality, and

addition of new reconfigurations. In addition to presenting the design of the frame-

work, the dissertation presents two MPI implementations based on PRO-MPI, and

evaluates the implementations.

1.1 MPI Overview

MPI is a specification for message passing libraries used for communication by par-

allel applications [1, 2, 3]. It is designed to achieve low-latency and high-bandwidth

communication on distributed memory machines including supercomputers, clusters,

and networks of workstations. It specifies an API and its mapping to different pro-

gramming languages such as C, C++, and Fortran. There are many MPI library

implementations: IBM’s MPI for Blue Gene/L, Cray’s MPI for XT4, Myricom’s

MPICH2-MX , Open MPI, MPICH, MVAPICH2, Microsoft MPI, SiCortex MPI,

HP MPI, and NEC MPI.

MPI provides various communication operations for communication among the

processes of a parallel application. In this section we describe point-to-point, col-

lective, and one-sided operations that are relevant to this research. More details on

2



Chapter 1. Introduction

these operations and other MPI operations can be found in [3] and [1].

1.1.1 MPI Point-to-point Operations

MPI point-to-point operations are a set of routines to perform one-to-one communica-

tion between any two MPI processes. One process sends data or control information

using the MPI Send operation, and the other process receives this information using

the MPI Recv operation. Both MPI Send and MPI Recv operations use source and

destination parameters to identify the source and the destination MPI processes,

and the tag parameter for demultiplexing the MPI message.

MPI specification provides variants of MPI Send and MPI Recv operations cov-

ering a wide-range of semantics which include, besides the standard send, a buffered

send, a ready mode send, and a synchronous send. The standard send operation al-

lows a sender to post a send operation irrespective of the receiver status (a matching

receive on the receiver is posted or not), and this operation is completed once the

message is safely stored. After the send operation is completed, the sender is free

to reuse the send buffer. Like the standard send, the buffered send operation also

allows the sender to post a send operation and complete the operation irrespective of

receive status. However, unlike the standard send, the buffered send is a local oper-

ation. Unlike the standard and buffered send, the ready mode send operation allows

a sender to post a send only after the corresponding receiver is ready (a matching

receive on the receiver should be posted). In synchronous send semantics, a send

operation is completed only after a matching receive is posted and the message is

received by the receiver. Besides these blocking operations, the MPI specification

includes variants of send and receive which are non-blocking. The non-blocking send

and receive operations enable the applications to overlap computation and commu-

nication.

3



Chapter 1. Introduction

MPI implementations provide various protocols for implementing the point-to-

point operations [4, 5, 6]. Particularly, they provide an eager protocol which is

optimized for small message transfer, and rendezvous and eager rendezvous protocols

which are optimized for large message transfer. While using the eager protocol, the

sender starts sending a message to the receiver whether or not a matching receive

is posted. If a matching receive is posted, the message on arrival is copied to an

application buffer, otherwise the message is buffered at receiver until a matching

receive is posted. While using the rendezvous protocol for message transfer, before

sending any message, the sender sends a Request to Send (RTS) message along with

the message header to the receiver. If a matching receive for the message is already

posted (preposted receive) 1, the receiver sends a Clear to Send message (CTS) to

the sender. If a matching receive is not posted, the receiver waits for a matching

receive to be posted before sending a CTS message. The sender, on receiving the CTS

message, sends the data of the message. While using the eager rendezvous protocol,

the sender expecting a matching receive already posted by the receiver sends both

header and data of the message. If a matching receive is not posted, the data of the

message is discarded, and only the header of the message is stored at the receiver.

After a matching receive is posted by the receiver, it sends a CTS message to the

sender, and the sender responds with resending the message data.

1.1.2 MPI Collective Operations

MPI collective operations are a set of routines to perform one-to-many, many-to-

one, and many-to-many communications among a group of MPI processes. All MPI

collective operations are executed on one or more communicators. A communicator,

in the context of collective operations, is a group of MPI processes. When a collective

1Preposted receive - a receive posted by a MPI process before the arrival of the corre-
sponding message.

4



Chapter 1. Introduction

operation is executed on the communicator, all processes in this communicator will

participate in the collective operation.

The main collective routines in the specification are MPI Barrier, MPI Broadcast,

MPI Scatter (Gather, Reduce), and MP AllGather (Reduce Scatter, Alltoall). The

MPI Barrier routine allows a group of processes to synchronize. For many-to-one and

one-to-many communications, MPI processes use MPI Broadcast (Scatter, Gather,

Reduce) routines, and for all-to-all communications, MPI processes use MPI AllGather

(Alltoall) routines.

1.1.3 MPI One-sided Operations

MPI one-sided operations are a set of routines to perform operations on a remote

memory (window). In the one-sided operations, an origin process initiates a operation

on a window, and a target process hosts the window. The origin process provides

all information (process address, memory address) required for the operation. As a

result, the target process need not be involved in the operation.

MPI one-sided specification provides MPI Get, MPI Put and MPI Accumulate

routines for data transfer between any two MPI processes. However, unlike the

point-to-point operations, these operations do not require the receiver process to be

involved during the data transfer. MPI Get is used to read data from a window (re-

mote memory), MPI Put writes data into a window, and MPI Accumulate updates

a window with the local memory buffers.

5



Chapter 1. Introduction

1.2 HPC Environment

In recent years, the use of HPC systems has become more common. Traditionally,

HPC was used to study scientific problems such as isolated black hole evolution,

supernovae simulation, protein sequencing, and weather forecasting. Recently, how-

ever, HPC is being used in the retail industry for supply chain management, in car

manufacturing to perform crash test analysis, finance for options equity trading, and

in bioinformatics for protein folding [7, 8].

With wider application of HPC and affordability of HPC hardware, HPC ma-

chines are now more varied in their architecture. For example, more HPC machines

are built from off-the-shelf components because of the rising performance and plung-

ing costs of commodity processors and I/O hardware. The variation in architecture

becomes even more evident when examining the Top 500 list [9]. The machines vary

in their capabilities, services provided, and resources required for their operation.

As a result of the wider application of HPC and variation in hardware archi-

tecture, HPC application characteristics, specifically communication characteristics,

are moving away from traditional uniform and static patterns to more diverse and

dynamic patterns. The remainder of this section elaborates on application commu-

nication characteristics and HPC hardware characteristics.

1.2.1 Dynamic HPC Application Communication Charac-

teristics

HPC applications generally use parallel processing techniques to solve a problem.

The processes communicate with each other, exchanging data and intermediate so-

lutions, to reach a solution for the problem. HPC applications typically use explicit

communication models such as MPI for this communication.

6



Chapter 1. Introduction

Many traditional HPC applications using MPI libraries to have static commu-

nication characteristics: messages size, type and frequency remain similar during

different phases of application, fixed set of processes communicated during applica-

tion phases, and computation and communication ratio is predictable, and resource

usage is predictable [10].

With wider use of HPC, however, many modern HPC applications have dynamic

communication characteristics. These dynamic characteristics are the artifacts of

physical system modeled by the application, the mathematical model used, or the

algorithms used in the applications. Adaptive Mesh Refinement (AMR) applications,

multi-physics codes, and applications using linear solvers are all known to exhibit

these characteristics [10, 11].

Figure 3: Deformation of Helium bubble as it passes through shock front in the AMR simulation.

numerical resolution. Not surprisingly, the software infras-

tructure necessary to dynamically manage the hierarchical

grid framework tends to make AMR codes far more com-

plicated than their uniform grid counterparts. Despite this

complexity, it is generally believed that future multi-scale

applications will increasingly rely on adaptive methods to

study problems at unprecedented scale and resolution.

A key component of an AMR calculation is dynamic mesh

regridding, which dynamically changes the grid hierarchy to

accurately capture the physical phenonema of interest. Cells

requiring enhanced resolution are identified and tagged us-

ing a specified error indicator, and then grouped into rectan-

gular patches that sometimes contain a few cells that were

not tagged for refinement. These rectangular patches are

then subdivided to form the grids at the next level. This

process is repeated until either the error tolerance criteria

is satisfied or a specified maximum level of refinement is

reached.

4.1 HyperCLaw Overview
Our work examines HyperCLaw, a hybrid C++/Fortran

AMR code developed and maintained by CCSE at LBNL [9,

19] where it is frequently used to solve systems of hyperbolic

conservation laws using a higher-order Godunov method.

In HyperCLaw most of the communication overhead oc-

curs in the FillPatch operation, which exihibits complicated

and irregular communication patterns. FillPatch presents a

very complex nonuniform but sparse communication pat-

tern. Once it completes, a higher-order Godunov solver

is applied to each resulting grid. This solver is compute-

intensive, requiring upwards of a full second for the problems

we ran in this study, during which time no interprocessor

communication occurs. HFAST circuit-switch reconfigura-

tion could therefore occur during this compute-only phase,

to dynamically incorporate the evolving communication re-

quirements of the AMR calculation.

4.2 Evolution of Communication Topology
The HyperCLaw problem examined in this work profiles

a hyperbolic shock-tube calculation, where we model the

interaction of a Mach 1.25 shock in air hitting a spheri-

cal bubble of helium. This case is analogous to one of the

experiments described by Haas and Sturtevant [11]. The

difference between the density of the helium and the sur-

rounding air causes the shock to accelerate into and then

dramatically deform the bubble. An example of the kind of

calculation HyperCLaw performs is seen in Figure 3, along

with an overlaid representation of the grids used.

For this paper, we examine a refinement of three levels (0,

1, 2), with 0 being the lowest (or base) level and 2 being

the highest (or finest) level, where most of the computation

time is spent. Three levels of refinement are typical for

calculations of this kind. Note that the refinement is a factor

of two in each of the three coordinate directions.

In Figure 4, we see the topology of message exchanges for

communication at levels 1 and 2. Note that these two lev-

els exhibit very different communication patterns. Because

level 1 represents a coarser problem than that of level 2,

there are far fewer grid cells (communicating processors) at

level 1 than at level 2. At level 2, the increase in the number

of 3D grid cells causes each processor to exchange messages

with many more cells. This results in a much denser com-

munication topology since each 3D grid cell communicates

with up to six others.

The structure of the AMR calculation provides an oppor-

tunity for HFAST to adapt its configuration to the evolving

topology. The entire calculation is divided into timesteps,

each containing distinct communication and computation

phases separated by a regridding operation that takes on

the order of hundreds of milliseconds. During this period,

the optical switches can be reconfigured to take advantage

of changes in the most significant communicating partners.

In order to justify the use of a lower degree interconnect

topology, and thus to benefit from the HFAST approach, the

Figure 1.1: HyperCLaw’s communication characteristics: Grids of irregular shape and
different size

HyperCLaw is an example of an AMR application that exhibits dynamic com-

munication characteristics. Like other AMR applications, HyperCLaw uses AMR

7



Chapter 1. Introduction

for modeling physical systems. Modeled physical systems are represented by partial

differential equations (PDE) on a computational grid. To reach the solution and

conserve resources, they refine only parts of the grid that are of scientific interest,

resulting in grids of irregular shape, size and resolution. Typically, each grid point

is associated with a process which is responsible for the grid point computation.

These processes communicate to exchange data during grid refinement and to ex-

change intermediate solutions. These irregular and dynamic communications result

in changing communication characteristics.

Figure 1.1 shows HyperCLaw simulating the deformation of a helium bubble

when it is hit by a shock wave. During simulation, the portion of the grid where the

bubble is represented is refined, while the rest of the grid is not refined. Figure 1.2

and 1.3 show the communication characteristics of HyperCLaw. These figures show

that that both the processes participating in the communication and process pairs

exchanging messages vary during the application execution.

1.2.2 HPC Hardware Chracteristics

HPC applications run on machines that vary from clusters built from off-the-shelf

components to supercomputers built from proprietary components. These machines

vary in architecture, hardware capabilities, services provided, and resources used.

For example Red Storm, a Cray XT4 machine at Sandia National Laboratories, is

used for weather modeling, ocean modeling, and other classified research; it provides

demultiplexing of messages to high-level protocols on the network interface, guaran-

tees memory for every allocation, and uses a low-noise operating system to provide

latency guarantees. In contrast, Encanto, a machine in the New Mexico Computing

Applications Center (NMCAC), is used for energy and environment research; it is

built from commodity components such as SGI Altix nodes and Infiniband network

8



Chapter 1. Introduction

time step

%
 o

f 
fu

ll 
m

e
s
h

1

2

3

0 10 20 30 40 50

(a)
time step

%
 o

f 
c
o
m

m
. 
p
a
rt

n
e
rs

 s
ta

y
in

g
 t
h
e
 s

a
m

e

0

20

40

60

80

100

0 10 20 30 40 50

naive

0 10 20 30 40 50

heuristic

(b)

Figure 5: HyperCLaw communication for refinement levels 1 and 2, showing (a) the percentage of commu-
nicating partners for messages greater than 4KB, and (b) the percent of these communicating partners that
stay the same between AMR timesteps. The dashed line indicates the average value.

ment to the consistency of communicating partners, and the

data strongly suggests that an algorithm that takes advan-

tage of the six-step pattern could do even better. Detailed

verification of this conjecture will be the subject of future

work. From these results we conclude that it is feasible

to accurately predict how to remap the underlying optical

switches based on a snapshot of the current communication

topology.

It is important to note that there are a wide variety of

AMR algorithms and implementations, and our observations

do not necessarily apply to all AMR simulations. However,

this analysis does show the applicability of the HFAST ap-

proach to similar AMR calculations as well as dynamic ap-

plications in general.

5. OPTIMIZATION OF THE
INTERCONNECT TOPOLOGY

Based on our analysis of communication characteristics for

both static and dynamic applications, we now describe an

optimization strategy for mapping these characteristics onto

the HFAST architecture. First, we define the algorithm for

choosing an interconnection topology (also known as “pro-

cessor allocation”) that minimizes the number of hops per

message. Next, we show that for our specific applications,

the required bandwidth is much smaller than the full band-

width available in a traditional fat-tree configuration, espe-

cially for large numbers of processors. Note that minimizing

the number of message hops reduces the number of required

internal ports; thus our motivation here is not to improve

interconnect performance, but to achieve equivalent network

rates at a lower cost.

5.1 Processor Allocation Algorithm
The effect of processor allocation has been well-observed

in the literature and has attracted renewed attention due to

increasing numbers of processors in state of the art super-

computers [4]. Processor allocation aims at relocating fre-

quently communicating processes such that they are closer

to each other in the communication topology. This has two

primary effects: smaller latency and reduced congestion (due

to messages consuming bandwidth on fewer links). Obtain-

ing a provably optimal processor allocation is very hard:

NP-Complete [17] for the general case. Here, we restrict our-

selves to a special case using constraints from the HFAST

architecture, and apply a heuristic based on graph partition-

ing.

Given a graph G = (V, E), a partitioner decomposes the

vertex set V into two or more partitions such that there is

a non-overlapping subset of the vertices among partitions.

We say an edge is cut if it connects two vertices from dif-

ferent partitions, and a vertex is a boundary vertex if it is

connected to a cut edge. In our model, each processor is

represented by a vertex in the graph, and two vertices are

connected if the associated processors communicate. The

goal of our algorithm is to minimize the number of edges

that connect vertices from different partitions, while pre-

serving the property that equal numbers of vertices are in

each partition.

We further constrain our algorithm to reflect the HFAST

networking model, that is, a set of commodity (layer-2)

packet and optical switches. The important detail here is

that most commodity packet switches have few ports (small

radix), so we examine commonly used configurations of 4-,

8-, and 16-port switches. Since we arrange these packet-

switches in a tree, for the 4-port case the root of the tree

Figure 1.2: Communication characteristics of HyperCLaw showing the percentage of to-
tal processes participating in a communication during each application time
step.

interfaces, and does not provide many of the capabilities that Red Storm provides.

1.3 Demands on Communication Libraries

Communication libraries provide communication services to satisfy applications com-

munication requirements. They abstract the services provided by the network hard-

ware, and add functionality that is required by applications but not provided by

the network hardware. As a result of its role, communication library functional-

ity is influenced by application communication demands and hardware capabilities.

This section elaborates on the influence of application characteristics and hardware

9



Chapter 1. Introduction

processor

p
ro

c
e
s
s
o
r

200

400

600

200 400 600

level 1

200 400 600

level 2

Figure 4: Topology of message exchange for HyperCLaw AMR levels 1 and 2.

proportion of communicating partners (for messages over

the bandwidth-delay product) of HyperCLaw must be sig-

nificantly less than the number of nodes, P . Recall that

the HFAST approach utilizes circuit switch technology for

only bandwidth-bound messages, while latency-bound com-

munications are routed to a secondary, low-bandwidth in-

terconnect. We thus remove all messages whose sizes are

less than 4KB from our analysis, as these message sizes are

small enough that the messages are not bandwidth-bound

on most modern interconnect technologies.

Another condition necessary to make HFAST a viable op-

tion for this dynamic calculation is the requirement that the

set of communicating partners not change unpredictably and

sharply at each time step. Otherwise, it would be impossible

to appropriately reconfigure the optical switches a priori for

a given time step.

Figure 5(a) shows the fraction of communicating part-

ners — represented as the percentage of the possible part-

ners each processor communicates with — for given AMR

timesteps of our HyperCLaw simulation (run at P = 768).

We also present Figure 5(b) which shows the percentage of

communicating partners that did not change, using both

the näıve approach based on the previous timestep and a

simple heuristic strategy based on the previous timestep at

the same AMR grid level. Observe that the heuristic ap-

proach significantly improves the percentage of communi-

cating partners that do not change across remapping phases.

This optimization will be further explored in the processor

alocation algorithm of Section 5.

Based on Figure 5(a) we observe that no timestep ex-

hibits a communication pattern that requires more than 4%

of the available pathways through a fully connected network.

While such a pattern is clearly not isomorphic to a mesh or

torus topology, it is well matched to the bisection band-

width offered by a lower-degree interconnect, provided the

interconnect topology can be adapted to the application’s

communication pattern. We thus argue that the adaptation

offered by HFAST enables a lower degree network to con-

form to the application’s complex communication topology,

whereas a lower-degree interconnect with a fixed topology,

such as a torus or mesh, would not be well suited to the com-

plex communication pattern. But this observation holds for

a snapshot of the communication topology requirements in

time. The true situation is far more complex as this topol-

ogy evolves over time in a data-dependent fashion as the

simulation progresses.

In order to understand the time-evolution of the commu-

nication topology, we focus on the incremental changes in

the set of communicating partners as the simulation pro-

gresses. To understand this analysis, it is necessary to know

that the pattern of computation for the AMR grid levels is

a level 0 timestep, within which are two level 1 timesteps,

within which are two level 2 timesteps. We exclude data

from the level 0 timesteps. As a result, our analysis of

Figure 5(b) shows a six-timestep pattern: [0], 1, 2, 2, 1, 2, 2.

Careful reading of the data shows that the changes in com-

municating partners also follows a six-step pattern, which is

most evident in the patterns of taller bars (high-percent of

the same partners). A slight variation occurs at steps 25-27

that is due to the boundary between a checkpoint/restart of

the code at that point. Overall, the heuristic of using the

same AMR level for the previous time step is an improve-

Figure 1.3: Communication characteristics of HyperCLaw showing the message exchange
topology during varying mesh refinement.

architecture on library functionality.

1.3.1 Influence of Application Communication Characteris-

tics

Historically, most HPC applications have static communication characteristics. For

these applications, communication libraries that provide fixed functionality and sup-

port for limited configuration are adequate to serve their communication demands.

Most current communication libraries are designed and built based on these demands.

Modern HPC applications, as seen in the previous section, have dynamic com-

munication characteristics; they perform better when protocols in the libraries are

changed to match these characteristics. We have seen in the previous section that

applications such as AMR and multi-physics codes exhibit these dynamic character-

istics. For example, in HyperCLaw’s bubble simulating problem, both the number

10



Chapter 1. Introduction

of communicating processes and communicating process pairs varies, as do message

characteristics like size and number [12]. For these characteristics, communication

libraries that select different protocols based on the number of communicating pro-

cesses can improve the application performance [13]. Other research [14] has demon-

strated that selecting collective algorithms and implementations based on message

characteristics can improve the performance of HPC applications.

Further, research has shown that tailoring protocol functionality to an application

improves its performance [15]. For example, applications with varying preposting

behavior require different protocols to improve their bandwidth. Specifically, appli-

cations that prepost most of their large receives can gain substantial benefits from

an eager rendezvous protocol; however, eager rendezvous protocols waste substantial

network bandwidth when most receives are not preposted. This implies that no one

protocol optimization decision is appropriate for all applications.

To better serve the needs of various HPC applications (with static, diverse and

dynamic communication needs), in contrast to current libraries which do not change

their functionality at runtime, libraries should be designed such that they can tailor

their functionality both at compile and run time.

1.3.2 Influence of Hardware Architecture

The hardware architecture of the machine, particularly network architecture, strongly

influences the functionality of a communication library. The role of the communi-

cation library is to satisfy the communication needs of an application, by taking

advantage of network hardware capabilities. For example, if an application requires

reliable message transfer, and uses Ethernet, the libraries should add reliability at

compile time. If it uses a reliable network such as Infiniband, the libraries should

remove reliability at compile time.

11



Chapter 1. Introduction

Further, research has shown that customized libraries that take advantage of

hardware capabilities improve performance characteristics [16]. For example, IBM’s

customized MPI library for BlueGene/L took advantage of deposit bits and the

configurable collective network of the machine. As a result of the customization,

the MPI library’s collectives provided 75% more bandwidth than a well-engineered

generic MPI implementation, MPICH [16]. Similarly HP-MPI [17] used topology

information to assign processes to nodes and demonstrated that it improves collective

bandwidth.

In HPC machines, as seen in the previous section, network interfaces varies both

in architecture and capabilities. Examining the Top 500 list, we observe that 95%

of machines use commodity network interfaces, and they choose from as many as

15 different commodity network interfaces. Commodity network hardware, typically,

provides only basic transport services. In contrast, proprietary network interfaces

provide more capabilites besides basic transport services. For example, Red Storm’s

Seastar network interface provides network message demultiplexing and remote direct

memory access (RDMA) capabilities which are not provided by commodity network

interfaces such as Ethernet.

In the presence of network architecture diversity and research showing the utility

of functional customization, the communication libraries should be customizable to

take advantage of hardware capabilities. Unlike current libraries which have static

functionality and limited customization support, libraries should be designed that

are easily customizable and change their functionality at runtime.

12



Chapter 1. Introduction

1.4 Reconfigurable Communication Libraries

1.4.1 Overview

The goal of reconfigurable communication libraries is to improve the application

performance by matching protocol functionality to changing communication needs.

They must support tailoring their functionality at compile time to match the hard-

ware architecture. They must support changing protocol functionality at runtime to

match changing communication demands. They should support selecting algorithms

and implementations for collectives at runtime to match network topology and net-

work congestion. They should allow the protocol implementations to choose data

structures, and switch data structures based on the runtime state information.

There are many challenges in designing, developing and implementing recon-

figurable libraries to improve the application performance. The rest of this section

describes these challenges and provides the description of a framework which handles

these challenges.

1.4.2 Challenges of Implementing Reconfigurable Commu-

nication Libraries

Building reconfigurable libraries that can improve the application performance presents

four major challenges:

1. Collecting information about changing application requirements and the run-

time state of the system;

2. Analyzing the collected information and converting it to a set of appropriate

actions;

13



Chapter 1. Introduction

3. Reconfiguring the library with little or no disruption of application execution;

4. Supporting all the above functions without increased development and imple-

mentation complexity.

Collecting the information

The reconfigurable communication libraries need an application’s resources usage

characteristics (CPU cycles, memory, network bandwidth) and the hardware capabil-

ities of the system, so they can match their functionality to application requirements

and hardware capabilities. The information will help libraries to select appropriate

reconfigurations that can improve application performance. For example, to select

appropriate algorithms for collectives, the libraries would require network topology

and network congestion information.

While collecting this information, the libraries should not disrupt application exe-

cution or affect the application performance. Communication information – message

characteristics of every point-to-point message, collectives – can grow very quickly

with increase in problem size, which can quickly consume memory space, disk space

and CPU cycles. Collecting information offline can alleviate some of these problems;

however offline information may not always be possible and sometimes information

might not be accurate.

Analyzing the information

The information collected has to be converted to a set of reconfiguration actions; the

actions are changes to library functionality at a reconfiguration point. The changes

can be simply changing control parameters or choosing a different algorithm and

implementation for a service. For example, information such as network topology,

14



Chapter 1. Introduction

congestion and message latency may be used to change algorithms for collective

operations; resource usage and message characteristics – type and size of message,

latency and bandwidth availability, and memory usage – may be used to change

message transfer protocols.

The reconfiguration actions may have to be determined from inexact application

and environment information. For instance, when information for a large problem

size is not available, it has to be inferred from a smaller problem size. When informa-

tion for certain input data sets is not available, it has to be inferred from application

runs with different input data sets. In all these cases, the careful interpretation of

approximate information becomes more important.

Ensuring smooth transition of the system after reconfiguration

During reconfiguration, the changes to the libraries in one process can affect one

or more processes in the parallel system. Since the functionality changes involve

changes to both local and global state of a process, this typically affects more than

one process. For example, the changes in local state of a process can affect in-

transit data and control messages. It can affect the completion of collectives that

are partially completed during reconfiguration.

Reconfigurable libraries should ensure that there is no disruption to the appli-

cation execution or to the correctness of the solution. They should ensure no state

information is lost during a reconfiguration. They should handle in-transit messages,

and partially completed operations. They should support co-ordination among pro-

cesses during a reconfiguration, so processes can make a smooth transition after the

reconfiguration. Also, if reconfiguration involves replacing one implementation with

another, the libraries should preserve the process state.

15



Chapter 1. Introduction

Controlling software engineering costs

Reconfigurable libraries should support re-usuability and extension of functional-

ities. They should support varying levels of function abstractions to implement

composition and reconfiguration at varying granularity. Besides extension of the

library functionality, the libraries should support adding new reconfigurations and

optimizations. These properties would amortize design and development costs of the

libraries.

1.4.3 Thesis Statement

A reconfigurable communication framework for incorporating application- and hardware-

specific optimizations at compile time and run time can improve performance char-

acteristics of HPC applications.

1.4.4 PRO-MPI

This dissertation describes PRO-MPI, a framework for constructing reconfigurable

MPI libraries that can improve performance of HPC applications. The framework

enables the libraries to support configuration and reconfiguration. It collects and

analyzes the application characteristics required for the reconfiguration. It maps the

application characteristics to a set of changes for the libraries that reduces the gap

between the application demands and library functionality. It enables the libraries

to support re-usuability and extension of their functionality, and addition of new

reconfigurations and optimizations.

The main components of the PRO-MPI architecture are the communication layer,

profiler, analyzer, and reconfiguration manager. The communication layer provides

an MPI library to HPC application which changes its functionality both at compile

16



Chapter 1. Introduction

and run time. The profiler collects application communication characteristics (pro-

files). The analyzer analyzes the profile and converts it to a set of reconfiguration

actions. The reconfiguration manager executes the reconfiguration.

1.5 Contributions of the Dissertation

The main contributions of PRO-MPI described in this dissertation are:

• Demonstration that system software flexibility improves the application per-

formance.

• Design of a framework that helps development and implementation of profile-

driven reconfigurable MPI libraries: The framework provides abstractions to

collect and understand the application communication characteristics, and pro-

poses change to the protocol functionality (of the communication libraries) to

decrease the mismatch between the application communication demands and

the library functionality. It also provides the mechanisms for reconfiguration

and a structure for the communication layer to support the reconfigurations.

• Evaluation of the framework by implementing two reconfigurable MPI libraries

– Open PRO-MPI and Cactus PRO-MPI: Cactus PRO-MPI is a prototype

implementation to understand the ability of the framework to implement a

reconfigurable MPI and understand the overhead of a reconfigurable MPI. Open

PRO-MPI is a reconfigurable MPI implementation that supports full MPI-2

semantics.

• Demonstration of the usefulness of profile-driven reconfiguration: Cactus PRO-

MPI and Open PRO-MPI demonstrate the use of past application character-

istics to drive changes in the communication libraries and match the protocol

functionality to the changing communication demands.

17



Chapter 1. Introduction

• Evaluation of the reconfigurable MPI libraries by improving the performance

of HPC applications and HPC benchmarks: Empirical results demonstrate

that Open PRO-MPI can improve performance of HyperCLaw and SAMRAI

by assigning the RDMA resources and the RDMA connections based on the

application characteristics.

• Design and evaluation of low-cost profile generation methods to drive reconfig-

uration in high-cost applications.

1.6 Dissertation Outline

This section previews the remaining chapters and describes the overall organization of

this dissertation. Chapter 2 compares other frameworks that implement configurable

system services and MPI implementations that support reconfiguration and adapta-

tion. Chapter 3 presents an overview of the PRO-MPI framework. Chapters 4 and

5 present details of two reconfigurable MPI libraries – Open PRO-MPI and Cactus

PRO-MPI, and show that reconfigurable MPIs improve application and benchmark

performance. Finally, Chapter 6 summarizes the conclusions of this dissertation and

explores opportunities for future research directions.

18



Chapter 2

Related Work

The use of profiling, reconfiguration, and adaptation to improve application perfor-

mance has been an area of active research. Much of this work has dealt with con-

structing configurable systems for distributed systems, configurable and adaptable

transport protocols for wide-area network applications, or supporting very limited re-

configuration in MPI implementations. Very few systems enable full reconfiguration

in MPI implementations or provide frameworks for implementing fully functional,

reconfigurable communication protocols for HPC applications.

This chapter discusses work related to configurable frameworks and MPI imple-

mentations. In Section 2.1, we describe a number of frameworks that provide features

for constructing configurable system software. Section 2.2 describes reconfiguration

and adaptation support in current MPI implementations. Section 2.3 describes pro-

filing and performance monitoring systems, and highlights differences between their

functionality and profiling in PRO-MPI. Section 2.4 describes profile-driven code

optimization systems. Finally, section 2.5 summarizes the approaches others have

taken in related to the challenges described in chapter 1.

19



Chapter 2. Related Work

2.1 Configurable Software

Systems that support reconfiguration and adaptation had their origins in distributed

systems. Though, PRO-MPI design and goals differ from these systems, there are

some inspirations drawn from these systems. This section discusses some of the

frameworks that were designed to build configurable system software, and describes

the functionality they lack which is useful for building reconfigurable communication

libraries for HPC applications.

2.1.1 x-kernel

The x-kernel is a multithreaded operating system kernel, which also provides ab-

stractions for hierarchically composing protocol modules [18, 19, 20]. It provides

three abstractions for functional composition: protocol modules, sessions, and mes-

sages. Protocol modules implement the operating system and other services’ func-

tionality. The sessions are instantiations of the protocols, and messages are used

for interaction between the protocol modules. The protocols use session operations,

push() and pop(), for sending and receiving messages between sessions of various

levels. The protocol modules at a higher level of hierarchy use services provided by

lower level modules using the messages and the interfaces.

2.1.2 Cactus

Cactus is a framework for building configurable services for distributed systems [21].

Like x-kernel, the Cactus supports hierarchal functional composition and provides

interfaces for the layered protocols to interact. However unlike x-kernel, the Cactus

composition model is a more flexible model for composition. It allows two-level

functional composition, and supports more fine-grained functional composition.

20



Chapter 2. Related Work

In Cactus, a service is composed of protocol layers of composite protocol. A

composite protocol is in turn composed of functional modules called microprotocols.

A microprotocol is a self-contained software module implemented using an event-

based model. They interact with each other using a message abstraction and an

event mechanism, and protocol layers interact using the message abstraction.

The Configurable Transport Protocol (CTP) and H-CTP are configurable trans-

port protocols based on the Cactus framework [22, 23]. CTP, a composite protocol,

is a transport protocol for wide-area networks. It is composed by choosing micropro-

tocols that define basic transport, fragmentation, congestion control, reliability and

flow control. In the current implementation, CTP has the option of choosing from

more than one implementation of each type of microprotocol; as a result, CTP can

be configured as a protocol that is semantically similar to TCP, UDP, or a mix of

both.

H-CTP, which is an optimized version of CTP, is a transport protocol used for

grid applications. H-CTP is optimized for performance by reducing overhead of event

handling, removing extra message copies, and optimizing the message structure for

performance [23].

2.1.3 Appia

Appia is a framework for building communication protocols. In Appia, like Cactus

and x-kernel, protocols are layered and composable. These protocols support non-

hierarchal composition like Cactus [24, 25, 26]. Their functionality is implemented

using an event driven model i.e., the communication functionality is implemented as

event handlers, and the handlers are executed when events are raised.

Though Appia provides hierarchal and non-hierarchal composition, its composi-

tion model and concurrency model are restrictive when compared to Cactus. Appia’s

21



Chapter 2. Related Work

composition model defines QoS, which in turn is defined by a series of protocol layer

instances. A QoS definition fails if a layer requests an event and none of the layers

provide the event. If QoS succeeds, all events corresponding to a QoS are combined

to form a channel. Though channels can share sessions with other channels, it cannot

support many of the interaction patterns that are supported by Cactus [25]. Besides

the composition model, its concurrency model, which supports one execution thread,

is also restrictive when compared to Cactus.

2.1.4 Distrinet Protocol Stack (DiPS)

DiPS is a component framework for constructing self-adapting system software.

Its composition model supports both hierarchical and non-hierarchical composition

[27, 28]. For implementing composition and adaptation, it provides four abstrac-

tions: Component, Message, Connector and Reflection point. A Component is a

self-contained software module which implements well-defined functionality and pro-

vides a fixed interface. Components use the Message abstraction to interact with

each other. A Connector is used to connect the components, and to implement a

concurrency model. A Reflection point, which is used to implement self-adapting

behavior, routes the messages based on the information in a Message.

2.1.5 Ensemble

Ensemble is a component framework for building customizable protocol stacks. Its

protocol stacks are composed of smaller modules called micro-protocol modules

[29, 30]. A module provides a specific functionality and interacts with other modules

using two fixed event-driven interfaces – upper and lower. They use down events to

communicate with lower modules, and up events to communicate with upper mod-

ules. Ensemble provides a fixed set of events that modules can choose to define their

22



Chapter 2. Related Work

interaction and functionality. Based on interaction and required functionality, these

interfaces can choose events from a fixed set of events provided by the framework.

Ensemble stacks, like DiPS, support coarse-grained protocol reconfiguration both

at compile and run time [31]. When an application changes its requirements, Ensem-

ble’s detector detects the changes and initiates the protocol switch protocol (PSP).

PSP co-ordinates with all the participants in the system to install new protocol stack

across all the participants that matches the applications new requirements.

2.2 Reconfiguration and Adaptation in MPI Im-

plementations

2.2.1 Open MPI

Open MPI is an MPI implementation that uses a well-defined component archi-

tecture, the MPI Component Architecture (MCA). Communication functionality in

MCA is provided by self-contained software modules that support well-defined inter-

faces. The communication architecture of Open MPI includes MPI, PML (point-to-

point management layer), BML (BTL management layer) and BTL (Byte transfer

layer) layers. The MPI layer provides the MPI interface, the PML layer provides

MPI semantics, the BML layer is responsible for multiplexing the MPI messages,

and the BTL layer is responsible for transferring data between network interfaces.

More details of Open MPI point-to-point architecture are in 5.2.1, [32], and a detailed

discussion of the Open MPI architecture are in [4, 33, 5].

In Open MPI, the support for reconfiguration is limited to a few specific in-

stances. For example, it allows setting up connections between MPI processes’ lazily

[34]. Besides that, it provides support for functional configuration at compile time.

23



Chapter 2. Related Work

For example, MCA defines interfaces for implementing different collective communi-

cation algorithms and supporting different network interfaces, algorithms and sup-

porting different network interfaces, allowing Open MPI to be customized to run

on a wide range of platforms. It does not, however, either support dynamic con-

nection management or dynamic resource management. Also, it does not support

selecting algorithms for collective routines based on the application communication

characteristics or resource availability.

2.2.2 MPICH

MPICH is a widely used MPI implementation. Its layered architecture maximizes

the sharing of hardware independent code and eases code portability across various

architectures [35, 6]. The main layer, the abstract device interface (ADI), abstracts

hardware dependent code, and decouples the code from hardware independent code.

This decoupling eases porting MPICH to a new architecture [36]. There are many im-

plementations of ADI, important among them for MPI is the Channel interface. The

Channel interface provides operations and functions for sending messages between

any two process spaces.

Like Open MPI, MPICH supports limited adaptation in a few instances. For

example, MPIVAPCH, an MPICH adaptation for Infiniband, supports automatic

connection establishment [37]. It allows the connections to be established lazily

while not allowing dynamic tear down or dynamic re-establishment. Apart from

allowing functional configuration in device interface, its ADI allows the user to select

a hardware interface from the interfaces that are available at compile time.

24



Chapter 2. Related Work

2.2.3 Adaptive MPI

Adaptive MPI is an MPI implementation developed using CHARM++, which is

an object-based model [38, 39]. It uses CHARM++’s communication, load bal-

ancing and threading model. In Adaptive MPI, MPI processes are mapped onto

virtual processors. These virtual processors communicate using CHARM++’s mes-

sage passing objects. As a consequence, MPI process communication is mapped

onto CHARM++’s object communication. Similarly, it uses CHARM++’s object

migration for MPI process migration.

Like MPICH and Open MPI, Adaptive MPI supports limited reconfiguration and

adaptation. Mainly, it supports automatic load balancing [40]. To load balance, it

uses CHARM++’s framework and abstractions, particularly its load balancer. The

load balancer framework collects processor’s workload information, and uses this

information to rebalance the unbalanced system by moving MPI process from heavily

loaded nodes to lightly loaded nodes. Thus, Adaptive MPI is limited to collecting

workload information and rebalancing the workload in the system.

2.2.4 Other MPI Implementations

STAR-MPI is an extension added to MPICH [41, 42], which supports automatic

selection of collective algorithms for MPI collective operations. It contains collective

routines and multiple routines for each of these routines. During application runtime,

when application calls a collective operation, STAR-MPI selects an algorithm and an

implementation for the operation based on application characteristics and machine

topology.

HP-MPI is an MPI implementation that supports multiple interconnects and

multi-protocol execution. Its reconfiguration support is limited to using profile data

25



Chapter 2. Related Work

to make topology aware decisions [17]. For example, during launch of an application,

it uses profile data (application data from a prior run) to choose algorithms for

collective operations, and place MPI ranks onto the processor cores.

2.3 Profiling and Performance Monitoring

Although, performance monitoring tools and profilers (in this architecture) have a

similar functionality (they both collect application data and interpret the data for

performance), they both have different goals. A profiler collects application data to

understand application behavior, and an analyzer uses this data to suggest protocol

functionality changes that could lead to application performance improvement. In

contrast, performance monitoring systems collect application data and use this data

to identify performance bottlenecks, debug the application, or visualize the profiling

results. This section discusses some of the performance monitoring systems, and

compares their functionality to PRO-MPI.

Offline performance monitoring tools collect application data during the appli-

cation execution, and analyze the data after application execution. Traced-based

performance monitoring tools such as Paradyn [43] and TAU [44], collect informa-

tion about the events in a system, and use this data to understand the performance

behavior of the system [45, 46]. The trace-based monitoring tools are expensive, as

they require analyzing huge amounts of trace data. To reduce this overhead, PHO-

TON [47] and Supermon [48] use statistical sampling to reduce the trace data before

analyzing the data.

Unlike offline monitoring tools, online monitoring tools dynamically insert profil-

ing code into executing programs and dynamically analyze the collected trace data

for performance or debugging. The biggest challenge for online monitoring tools is

to control the overhead of monitoring and aggregate performance data. The Ganglia

26



Chapter 2. Related Work

monitoring system [49], a distributed monitoring system for HPC systems, controls

overhead by using multicast-based listen/announce protocols for monitoring nodes

and using tree structures for aggregating the state. Though Ganglia’s overhead is

low, it uses extra messages for monitoring. Other online monitoring tools based

on embedded gossip, reduce the overhead further by not using any extra messages

[50, 51]. Online monitoring tools with higher overhead such as Magpie [52] find ap-

plication in e-commerce systems, where there is a higher tolerance for latencies than

in HPC systems.

Both online and offline performance monitoring tools monitor the system and

use the data for performance analysis. However, they do not use the collected in-

formation to adapt system functionality that could lead to application performance

improvement. In contrast, PRO-MPI uses the trace data to change system function-

ality and improve application performance.

2.4 Profile-driven Code Optimization

Profile-driven code optimization has been used to produce optimized code for a given

target architecture. For example, ATLAS (Automatically Tuned Linear Algebra

Software) optimizes the code by using the information obtained by a set of pre-

run experiments. When the code is first installed on a machine, ATLAS runs a

series of experiments to determine the optimal parameters for its kernels. Then it

uses these empirical results to tune the kernels so that they are optimized for the

processor architecture of the machine [53]. Like ATLAS, FFTW uses profile-driven

code optimization to improve the FFT kernel performance [54], and PHiPAC uses a

similar technique for optimizing matrix operations [55].

PLTO, a link-time code optimizer, uses profiles of past application runs to drive

code optimizations in MPI libraries; particularly it optimizes code by using compiler-

27



Chapter 2. Related Work

style optimizations such as substituting inline routines, dead-code elimination, and

constant propagation [56].

Though both profile-driven code optimizers and PRO-MPI improve application

performance by using profile information, there are a few important differences be-

tween them. Profile-driven code optimizers improve application performance by

changing code which is functionally equivalent to un-optimized code. In contrast,

PRO-MPI uses profile-driven reconfiguration to improve application performance by

selecting appropriate functionality from the available library functionality. And,

PRO-MPI can use these systems to take advantage of optimized code.

2.5 Summary

Many frameworks described in this chapter provide composition models for functional

composition. But none of these systems provide mechanisms for building profile-

driven reconfigurable systems. They lack mechanisms that can collect application

requirements, and convert this information to a set of protocol changes so that the

library functionality matches changing application requirements. Also, these systems

are not geared towards high-performance computing: abstractions do not support

message zero-copy, do not support high-performance network interfaces, does not

provide abstractions for building high-performance communication system, do not

provide abstractions required for one-sided message semantics, and the composition

model overhead degrades application performance.

Unlike MPI implementations mentioned in this chapter, PRO-MPI support for

reconfiguration is not limited to specific cases. It provides a framework for construct-

ing fully-functional reconfigurable MPI implementations. The framework provides

mechanisms such as a profiler, an analyzer and a reconfiguration manager to collect

more wide range application characteristics, and use the profile information to drive

28



Chapter 2. Related Work

a wide range of reconfigurations. It also provides the ability to add new reconfigura-

tions, providing a scope for functional extension and re-use. Further, the framework

enables reconfiguration in other MPI implementations that support functional com-

position.

29



Chapter 3

PRO-MPI Architecture

3.1 Overview

PRO-MPI is a framework for developing and implementing reconfigurable MPI li-

braries. Its architecture is designed to ease the implementation of reconfigurable

MPI libraries. The architecture does this by enabling the use of profile driven recon-

figuration in the libraries.

As discussed in Chapter 1, there are number of challenges in implementing the

reconfigurable libraries. To reconfigure and improve the application performance,

the libraries have to understand the communication behavior and performance bot-

tlenecks of an application. During and after the reconfiguration, the libraries should

not disrupt the application execution, or affect the correctness of the solution. They

should support re-usability and extension of their functionality, and support addi-

tion of new reconfigurations and optimizations, so that implementing libraries is

more viable solution than building and implementing a customized communication

library.

30



Chapter 3. PRO-MPI Architecture

PRO-MPI’s architecture, shown in Figure 3.1, is designed to address the chal-

lenges of developing and implementing reconfigurable libraries. It consists of four

main components: communication Layer, profiler, analyzer and reconfiguration man-

ager. The communication layer provides an MPI implementation, which can change

its functionality both at compile and run time. The profiler collects information re-

quired to understand the application’s communication behavior and drive the changes

(reconfiguration); it provides this information as a profile to the analyzer. The ana-

lyzer uses this information to change the protocol functionality of the communication

layer. The reconfiguration manager executes these actions, and ensures smooth tran-

sition of the system after reconfiguration.

The remainder of this chapter describes the PRO-MPI architecture in detail.

Section 3.2, 3.3, 3.4 and 3.5 describes in detail each of the PRO-MPI components.

Section 3.6 provides an example PRO-MPI implementation that improves Hyper-

CLaw performance (an example HPC application described in Chapter 1). Section

3.7 provides a list of potential MPI reconfigurations that could be implemented in

the PRO-MPI implementations.

3.2 Communication Layer

3.2.1 Overview

A communication layer provides an MPI implementation and other communication

services required by an application. The layer’s structure is driven to enable func-

tional configuration and reconfiguration. Its interface hides profiler, analyzer, and

reconfiguration mechanisms to provide a standard access to the reconfigurable com-

munication service. Though the communication layer architecture is defined in the

context of MPI libraries, it is general enough to construct other communication ser-

31



Chapter 3. PRO-MPI Architecture

Module 1

Module 2

Add 
Monitor 

Code

Analyzer

Reconfiguration
Manager

Reconfiguration 
Actions

Reconfigure

Module 3

Monitor 

code

State 

transfer

controller

Coordination

protocol

Profile

Communication Layer

Profiler

Figure 3.1: PRO-MPI architecture

vices such as OpenMP, TCP or UDP.

The communication layer is a composition of modular functional elements. These

modules are self-contained communication functionality implementations, and they

provide a fixed interface for accessing its functionality. At compile time, the layer

chooses modules to define its functionality based on application characteristics and

hardware architecture. At run time, the layer’s functionality can be changed by

replacing or changing these modules to suit the changing application requirements.

32



Chapter 3. PRO-MPI Architecture

3.2.2 Structure of the Communication Layer

As mentioned previously, the communication layer is a composition of functional

modules or other communication layers, which provides a communication service to

an application. A module may implement a property for the service, or a different

variant of the same property, or some book keeping functionality. For example, a

communication layer implementing MPI is composed of modules each implementing

a MPI semantic. It might include modules for de-mulitplexing, implementing a

small message transfer protocol, and implementing a large message protocol. This

structure provides various advantages for implementing a communication service:

• Configurability: A communication service when implemented by a commu-

nication layer which is a composition of functional modules can be tailored to

suit application requirements and hardware architecture.

• Reconfigurability: A communication service when implemented as a compo-

sition of functional modules that can be added or removed at runtime can be

changed at runtime to match changing application demands.

• Functional Optimization: As a consequence of support for composition and

modularity in the layer’s structure, it can choose functional optimizations both

at compile time and runtime. Optimization, in a service, is a functional im-

plementation that is efficient for a certain operating scenario. For example,

during an MPI application execution, different queue implementations are ef-

ficient based on the number of messages queued. If a process’ run-time state

has a large number of messages, MPI implementations using hash match tables

instead of list match tables 1 would reduce traversal latency. On contrast, if a

process’ run-time state has a small number of messages, MPI implementations

1Match table - In an MPI implementation, a match table is a data structure that
contains information required for demultiplexing the MPI messages.

33



Chapter 3. PRO-MPI Architecture

using list match tables would conserve memory while keeping the traversal la-

tency low. This structure would allow the communication layer either to choose

a hash table implementation or a link list implementation.

• Reusability: Modules implementing various protocol functionality can be

used in many services. For example, in an MPI implementation, a RTS proto-

col implemented as a module can be used by large message transfer protocols

such as Eager Rendezvous and Rendezvous protocol.

• Extensibility: In this structure, adding a new service requires the developer to

implement only missing functional modules in the library. For example, a UDP-

like transport protocol can be changed to a reliable message transfer protocol by

implementing modules that add sequence numbers, provide acknowledgement

for a message, and retransmit the lost message.

3.3 Profiler

3.3.1 Overview

A profiler collects application characteristics and operating environment information

to understand the application behavior and drive reconfiguration. For example, to

choose a collective algorithm and implementation for MPI Allreduce during runtime,

the profiler would collect the number of times the application uses MPI Allreduce,

topology of the machine, latency of the messages, and congestion information in the

network.

For a parallel application, the profiler collects application characteristics for each

process, which are then combined into a global profile. During a parallel applica-

tion execution, each process might run on a different physical node. A local profile

34



Chapter 3. PRO-MPI Architecture

represents application characteristics of a process, which is a snapshot of its com-

munication and resource usage characteristics. During runtime, local profiles are

generated, which are then combined at the end of application execution to generate

a global profile.

The key challenge for a profiler is to control the overhead (both computation and

memory) of collecting a profile. It typically collects message characteristics and op-

erating environment information of an application in all its phases. While collecting

operating environment information, the local profile size usually stays constant with

increasing problem size. However while collecting the message characteristic infor-

mation, the local profile grows exponentially as the number of messages increases

with increasing problem size. The architecture controls this overhead by filtering out

all messages that are irrelevant for a reconfiguration.

3.3.2 Types of Profiles

As mentioned above, a profile is a snapshot of an application’s communication charac-

teristics. In profile-driven reconfiguration, an application run during which a profile

is collected is called the profile run, and an application run during which the commu-

nication layer functionality is changed to match application communication demands

is called the reconfiguration run. Based on the information contained in the profile

and timing of the profile collection, we have four different classes of profiles.

• Exact and Inexact Profiles

Profiles are collected in a profile run, and are used to drive a reconfiguration

in a reconfiguration run. The operating conditions – input data sets and input

parameters for the application, problem size, system size and target hardware

– between these runs can remain the same or change. If they remain the same,

the profiles used to drive a reconfiguration are exact profiles. If operating

35



Chapter 3. PRO-MPI Architecture

conditions are different for the profile run and the reconfiguration run, since

the profiles contain only partial information to drive the reconfiguration, they

are called inexact profiles.

• Online and Offline Profiles

The profiles that are generated during an application run and saved to the

disk, which are then used to drive a reconfiguration in a different application

run are offline profiles. In contrast, online profiles are generated and used in

the same application run.

Online profiling is computationally expensive, and affects the application per-

formance adversely [57]. In this architecture, to limit the profiling overhead,

all online profiles are only local profiles i.e., an analyzer uses only local online

profiles to recommend changes to library functionality.

3.4 Analyzer

An analyzer recommends changes to the communication layer functionality based

on a profile and also schedules when changes will take effect. The goal of these

changes and their timing is to match communication layer functionality to changing

application requirements. This section elaborates more on the functionality and

different types of analyzers.

36



Chapter 3. PRO-MPI Architecture

3.4.1 Role of the Analyzer

Mapping Application Characteristics

The main functionality of an analyzer is to map profile information to communication

layer functionality changes that could improve application performance. It receives

the application profile from the profiler, which is a snapshot of an application’s

communication characteristics. The profile may have whole or partial information

to drive these changes. In this architecture, the analyzer is in agreement with the

profiler on the profile representation i.e., analyzer understand the format of a profile.

The functionality changes that the analyzer proposes can be a change in proto-

col functionality, parameter value or an algorithm or implementation for an opera-

tion. For example, the analyzer might select algorithms and implementation for the

collectives based on a profile that contains network topology, message latency and

congestion information. Sometimes the profile has only partial information; in that

case, the analyzer uses numerical analysis tools to construct the missing information.

For example, when a profile from a smaller problem size is used to drive a reconfigu-

ration in a larger problem, the analyzer interpolates the partial profile to construct

a complete profile, which is then used for the analysis.

Monitoring System State and Operating Environment

In addition to the mapping, the analyzer triggers a reconfiguration in the layer by

monitoring a layer’s internal state and external operating environment. Typically, it

monitors message characteristics (messages exchanged, collectives, message buffers

used), and system state such as queue lengths, memory used, message latency, band-

width and congestion in the network. When a certain system state is reached, the

reconfiguration manager is informed to execute the reconfiguration. The analyzer

37



Chapter 3. PRO-MPI Architecture

provides all the information needed to execute the reconfiguration.

Monitor code, in addition to triggering the reconfiguration, is also responsible

for detecting the application phases – a specific synchronization point of an appli-

cation, or phase in the application execution after which communication character-

istics change. The application phase detection depends on the hints provided by

an application (this architecture at present does not support automatic generation

of reconfiguration points). Using the hints, state information, and the schedule of

changes, the monitor code decides a change in application phase. In all reconfigura-

tions mentioned in this dissertation (chapter 4 and 5), we use an application phase

as a reconfiguration point.

3.4.2 Online and Offline Analyzer

The analyzer maps profile information to a set of protocol functionality changes.

This mapping can be done offline i.e., when the profile run and reconfiguration run

are different, or it can be done online i.e., when the profile run and reconfiguration

run are the same.

In offline analysis, the analyzer provides protocol functionality changes to a re-

configuration manager before the start of a reconfiguration run. To recommend these

changes, the analyzer needs the snapshot of applications communication characteris-

tics in a comprehensible format. In this architecture, for offline analysis, the profiler

provides a global offline profile which is obtained from a previous application run.

Before the start of execution of an application, the analyzer uses the profile to decide

the changes in protocol functionality for each application phase.

In online analysis, the analyzer provides protocol functionality changes to a re-

configuration manager only before the start of an application phase. This requires

both online profiling and online monitoring. This architecture as mentioned in the

38



Chapter 3. PRO-MPI Architecture

previous section supports generating online local profiles. The local profile provides

a snapshot of communication characteristics of an application’s previous communi-

cation phases. For online monitoring, the analyzer uses the monitor code to learn

system state, resource usage, and network conditions of previous application phase.

During start of each application phase, the analyzer uses the local profile and system

state information to decide the changes in protocol functionality for that phase.

3.4.3 Analysis of Inexact Profiles

Inexact profiles have partial application communication characteristics information

to drive a reconfiguration during a reconfiguration run. For analysis and to drive a

reconfiguration, the complete information on application characteristics is required.

To construct this missing information, the analyzer uses numerical analysis methods

such as interpolation and extrapolation [58]. While using these methods, the partial

information is used for some processes which are determined by the numerical meth-

ods, and for the remaining processes their information is derived or approximated

from the partial information.

3.4.4 Overhead of a Reconfiguration

Each reconfiguration action proposed by the analyzer requires computing, network,

and memory resources. If the change is either a change in protocol functionality or

replacement of a module, the overhead includes the cost of transferring the state and

quiescing all the process. An application experiences this overhead as an increase in

message latency, as a decrease in bandwidth, the unavailability of the CPU, or all of

these.

The analyzer proposes the change to the protocol functionality after a cost-benefit

39



Chapter 3. PRO-MPI Architecture

analysis of the reconfiguration. It considers, for cost-benefit analysis, the number of

times a change is required, resources required for each change, and performance ben-

efits of the change. For example, the analyzer proposes a change in data structure for

the prepost receive queue from a link list implementation to a hash implementation,

if the change provides a total reduction in message latency. At each reconfiguration

point, the change of implementation for the queue is allowed by the analyzer if total

sum of reduction in message traversal latency for all messages during the application

phase is greater than overhead of state transfer (message pointer and book keeping

information), and the delay in processing receives, and demultiplexing messages.

The cost of a reconfiguration is specific to the reconfiguration, we provide the

details of cost-benefit analysis done by the analyzer for each reconfiguration as we

encounter them in this dissertation.

3.5 Reconfiguration Manager

The reconfiguration manager provides mechanisms for executing a reconfiguration,

and mechanisms for ensuring smooth transition of a system after reconfiguration.

This section presents architecture details of these mechanisms.

3.5.1 Protocols for System Operation

To ensure a smooth operation of the system after reconfiguration, the reconfigura-

tion manager provides two protocols: a state transfer protocol and a co-ordination

protocol.

• State transfer protocol: The goal of this protocol is to transfer state infor-

mation from the older module to a newer module. The reconfiguration manager

40



Chapter 3. PRO-MPI Architecture

uses a simple reliable packet transfer protocol as a state transfer protocol. The

older module acts as a server, and the newer module acts as a client during

state transfer. When replacing one communication layer by newer communica-

tion, each module in a communication layer acts as a client and a designated

leader module acts as a server, which synchronizes the state data into global

state data. The global state data is then transfered to a leader in the new

communication layer, which is responsible for distributing the state to all its

modules.

Before the state transfer, the modules are required to convert the state infor-

mation into flat data packets. The newer module converts the flat data packets

into appropriate state information. The state transfer protocol does not impose

constraints on packing formats; the decision is left to individual reconfiguration

implementations.

• Coordination protocol: The goal of a coordination protocol is to synchro-

nize all processes for a reconfiguration. The need for co-ordination arises from

the fact that in a parallel application more than one independent process is in-

volved in reaching a solution, and the changes in one process affect the global

state. For example, if for a process, one message transfer protocol implementa-

tion is replaced by an alternate implementation, this reconfiguration affects all

processes receiving the message and it also affects in-transit data and control

messages. This protocol, in such a reconfiguration, would ensure all processes

interpret the received message correctly and no in-transit data or control mes-

sages are lost.

The co-ordination protocol implementation involves two parts, one that syn-

chronizes the processes, and another part that quiesces all processes. The

synchronization is implemented using a barrier. When a process hits a barrier,

it waits for all other process to reach this point. At this point, the system moves

41



Chapter 3. PRO-MPI Architecture

to a quiesce state where inter-process communication is delayed, in-transit data

and control messages are temporarily queued, and data to the application is

temporarily queued. As a result in the quiesce state, the process library is safe

to reconfigure.

3.5.2 Mechanism for Implementing a Reconfiguration

The goal of this mechanism is to implement a reconfiguration. It is a control flow

system that on receiving a trigger for changing the functionality, uses state transfer

and coordination protocol to implement the changes.

Reconfiguration manager receives a trigger from an application or monitor code

to make changes to the protocol functionality. The application might trigger the

reconfiguration indicating the change in application phase (communication charac-

teristics). The monitor code can also trigger the reconfiguration indicating the change

in resource availability or operating conditions.

After being triggered, the reconfiguration manager uses the coordination proto-

col to force the communication libraries to reach a synchronized state. Each process

executes a barrier routine (as part of coordination protocol) provided by the recon-

figurable library to reach the synchronized state. All processes in the system wait at

the barrier and switch to a quiescent state. In quiescent state, all processes access

only library functionality that is not changed by a reconfiguration.

In addition to the trigger event, the reconfiguration manager also receives the

schedule of changes to the communication library. Based on these changes, the re-

configuration manager marks the modules and the communication layers for update.

If the changes involve replacing a module, the modules engage the state transfer pro-

tocol. If the changes does not involve replacement, then modules are simply updated

with new functionality.

42



Chapter 3. PRO-MPI Architecture

3.6 Example PRO-MPI Reconfiguration to Improve

HyperCLaw Performance

Figure 3.2 shows a PRO-MPI reconfiguration for HyperCLaw. As described in Chap-

ter 1, HyperCLaw exhibits dynamic communication characteristics – both the num-

ber of communicating processes and processes pairs taking part in a communication

vary between time steps. Managing resources and using protocols based on these

characteristics can improve HyperCLaw performance.

low-overhead
protocols

low-latency 
protocols

Monitor 
code

State 
transfer
protocol

Communication Layer - 
An MPI implementation

HyperCLaw

Analyzer
Reconfiguration

Manager

Processes and protocol 
assignment

Manage
Connections

Profiler

Messages 
Characteristics

Profile Run
Reconfiguration 

Run

Figure 3.2: An example PRO-MPI framework for HyperCLaw

PRO-MPI can improve HyperCLaw performance by efficiently using low-latency

connections. As research shows, the overhead of managing low-latency connections

can degrade application performance when large numbers of processes use them [34].

So, current MPI implementations use a limited number of low-latency connections.

They assign these limited connections statically to processes that communicate dur-

43



Chapter 3. PRO-MPI Architecture

ing the initial phase. For applications such as HyperCLaw, which has dynamic

communication chracteristics, this static assignment underutilizes the connections.

To improve the utilization, PRO-MPI dynamically assigns a limited number of con-

nections to process pairs based on messages exchanged and communication topology.

Thus dynamic assignment improves the application performance by assigning low-

latency connections to process pairs that exchange large number of messages.

To carry out this reconfiguration, each component plays a role as shown in the

Figure 3.2.

• Communication layer, which is an MPI implementation, supports both con-

figuration and reconfiguration of its functionality. It would allow selecting pro-

tocol functionality at compile time based on the network hardware architecture.

It would allow assigning low-latency protocols and high-bandwidth protocols

based on application message characteristics.

• Profiler collects HyperCLaw message characteristics during the profile run.

These message characteristics include message size, number of messages sent

by each process, and source and destination of each message. It also collects

resources used by each MPI process, particularly registered buffers that are

used by low-latency connections.

To collect message characteristics, the MPI libraries are instrumented with

profiler code. Besides message characteristics, the profiler code also logs appli-

cation phase information, registered buffer usage and low-latency connections

established by each process. The log information (local profile) is saved to a

flat text file on the disk. It is then combined, at the end of the application

execution, with other local profiles into a global communication profile of the

application.

• Analyzer: During the profile run, the analyzer converts the profile – message

44



Chapter 3. PRO-MPI Architecture

log of each process – into a set of process pair priorities. It prioritizes each

process pair based on message exchange frequency. Since the message exchange

frequencies change after each application phase (for the class of applications

considered here), the priority of process pairs might also change after each

application phase.

These process priorities determine the processes that are allowed to open low-

latency connections. For example, if low-latency connections are limited to n

(n < number of application processes), the analyzer assigns low-latency con-

nections to n process with the lowest priority. The analyzer then sends this

information to the reconfiguration manager, which uses it for assigning con-

nections during a reconfiguration run.

• Reconfiguration manager:

After being triggered at the end of an application phase, during the reconfig-

uration run, the reconfiguration manager modifies the low-latency connection

allocation for all processes. At the end of an application phase, it first safely

resets all low-latency connections, and then uses the information provided by

the analyzer to make new connection assignments. Thus, the reconfiguration

manager performs dynamic connection assignment based on message exchange

frequency and message exchange topology.

3.7 MPI Reconfigurations

Table 3.2 lists MPI optimizations which could be implemented in a PRO-MPI im-

plementation. For each optimization, a table entry provides a description of the

optimization, MPI routine (operation) that is improved, message characteristic that

is relevant for the optimization, performance characteristic that is improved, operat-

ing conditions that is required, and cost of the optimization. Table 3.1 provides the

45



Chapter 3. PRO-MPI Architecture

meanings of some terms used while describing the optimizations.

To reconfigure, PRO-MPI chooses an optimization based the message character-

istics of an application and operating conditions. As seen in the table, each MPI

operation has many optimizations each for a different message characteristic or a

different operating condition. The analyzer based on the application profile would

recommend an appropriate optimization (that improves a performance characteris-

tic) for the operation.

46



Chapter 3. PRO-MPI Architecture

Table 3.1: List of terms that are used to describe the optimizations

Term
Description

Process A MPI process

Sender A MPI process that sends a MPI message.

Receiver A MPI process that receives a MPI message by posting a matching receive.

Matching receive A receive posted on a receiver that has matching bits (source, destination,
tag) which matches a particular message.

Control data MPI header information

Small message A MPI message which has data that is less than 12 KB; however in most
implementations this a configurable value.

Large message A MPI message which has data that is greater than 12 KB; however in most
implementations this a configurable value.

RDMA A user-level or hardware-level message transfer protocol which allows the
sender to write the message into the receiver’s application buffer.

Short queues For these optimizations, it is assumed that queues of less than 50 items are
short queues.

47



Chapter 3. PRO-MPI Architecture

Long queues For these optimizations, it is assumed that queues of greater than 50 items
are long queues.

MPI Send (standard) This notation is used to indicate a standard mode MPI Send. In this mode,
the MPI implementation can decide to buffer the outgoing message or not
buffer the message. If it buffers the message, the send completes once the
message is buffered, and irrespective of its matching receive status on the
receiver. If the message is not buffered, the send is completed once the

matching receive is posted on the receiver, and the message is copied to the
application buffers.

MPI Send (synchronized) This notation is used to indicate a synchronized mode MPI Send. In this
mode, the send can be started whether or not a matching was posted.

However, the send is completed after the receive is posted, and the transfer
of message has started.

MPI Send (buffered) This notation is used to indicate a buffered mode MPI Send. In this mode,
the send can be started whether or not a matching receive was posted, and

the operation can be completed before a matching receive is posted.

48



Chapter 3. PRO-MPI Architecture

Table 3.2: List of MPI optimizations that could be implemented in a PRO-MPI imple-
mentation

Description of the
Optimization Improved MPI

Operation
Message

Characteris-
tics

Improved
Performance
Characteris-

tic

Optimal
Operating
Conditions

Cost

Eager: Send matching
data and control

(matching)
information eagerly

MPI Send
(standard,

synchronized)

Small messages Reduces
message
transfer

latency for
small messages

Reduces latency
when a matching
receive is posted

When a matching
receive corresponding

to the send is not
posted, buffer space is
wasted on the receiver

process

Rendezvous: Send
control (matching)

information and RTS
to the receiver, and

send data after
receiving a CTS

MPI Send
(standard,

synchronized,
buffered)

Long messages Improves
message

bandwidth

Improves
bandwidth when a
matching receive is

not posted.

When a matching
receive corresponding
is not posted, eager
rendezvous protocol

provides better
message bandwidth

Eager Rendezvous:
Send matching

(control) information
and data to the

receiver irrespective of
posted receive status

MPI Send
(standard,

synchronized,
buffered)

Long messages Improves
effective
message

bandwidth

Improves
bandwidth when a
matching receive is

posted

When a matching
receive corresponding

to the send is not
posted, the data has

be sent twice

RDMA mechanism
with persistent buffers:

Send data from an
user application buffer

to a receiver’s
application buffer

MPI Send
(standard,

synchronized,
buffered)

Small messages Reduces
message
transfer

latency for
small messages

Reduces small
message latency,

when few processes
are communicating

Polling overhead
affects scalability and
performance, when a

large number of
processes are

communicating

49



Chapter 3. PRO-MPI Architecture

Send/Receive: Send
data to a receiver

library and copy the
data from the library

memory to the
application memory

buffers

MPI Send
(standard,

synchronized,
buffered)

Small messages Reduces
message
transfer

latency for
small messages

Reduces small
message latency as
send/receive does

not have the
polling and
registration

overhead like
RDMA mechanism

Copy overhead (from
library buffers to

application buffers)
adds to the message

latency

Preposted receive
queue, unexpected
message queue, and

send queue
implemented as hash

tables

MPI Send
MPI Recv

Large number
of unmatched

messages
and/or large
number of

posted receives

Reduces queue
traversal

latency and
thus message

latency

Reduces queue
traversal latency
for long queues
because of the
hash queue’s

constant look up
time

For short queues, the
hash function
evaluation and

memory allocation
overhead can affect
the message latency

Preposted receive
queue, unexpected
message queue, and

send queue
implemented as linked

lists

MPI Send
MPI Recv

Small number
of unmatched

messages
and/or small
number of

posted receives

Reduces queue
traversal

latency and
thus message

latency

Reduces queue
traversal latency
for short queues

Queue traversal
latency increases

linearly with queue
length and hence

increases the message
latency for long queues

Buffering: A
unmatched message on
the receiver is buffered

until a matching
receive is posted

MPI Send
MPI Recv

Large number
of preposted

receives

Improves
achieved

application
bandwidth

More effective
usage of the

network
bandwidth

If a matching receive is
posted after long delay

after the message
arrives, scalability
suffers as memory

requirement increases

Pulling: A unmatched
message is dropped on
arrival at the receiver,
if a matching receive is

not posted by the
receiver, and data has
to be sent again by the

sender

MPI Send
MPI Recv

Small number
of prepost
receives

Improves
achieved

application
bandwidth

More effective use
of memory, if only
a small percentage

of receives are
posted

If a matching receive
is posted after the

message arrives, the
message is dropped
wasting bandwidth
and CPU resources

50



Chapter 3. PRO-MPI Architecture

Application bypass for
reduction operations:
Reduction operations
are performed on a
group of processes
organised as a tree.
With application

by-pass, the parent
process need not wait

while the children
processes perform

operations on the data
and send it to the
parent process.

MPI Reduce (all
reduce operations)

Process skew Improves CPU
utilization

In presence of
process skew, the
parent process has

to wait for the
children processes.

However with
application

by-pass, this CPU
time can be

utilized for other
computations

Matching queues
implemented as

associative list on
hardware

MPI Send,
MPI Receive

Large number
of prepost
receives

Reduces queue
traversal

latency and
thus reduces

message
transfer
latency

Improves queue
traversal latency
for long queues

because of
constant look up

time

For short queues
lengths (< 70) shows

no improvement

Ready-mode Receive:
Post a receive without

searching in the
un-matched receive
queue. This type of

receive can be used in
correspondence with
ready-mode send as
ready-mode does not
start until a matching

receive is posted

MPI RSend Messages sent
using ready
mode send

Reduces queue
traversal

latency and
thus reduces

message
transfer
latency

Proves to be
advantageous

when there is a
long un-matched

queue

Not advantageous for
short un-matched

queues

MPI fence immediate
method: Use two

barriers for
synchronizing the

processes in a
communicator during

the one-sided
operations.

MPI Win Fence When most or
all processes of

a
communicator
participate in a
MPI Put (Get,
Accumulate)

Reduces syn-
chronization
overhead for

one-sided MPI
operations

Reduces
synchronization

overhead for
machines with a

hardware
implemented

barrier and a low
latency network

Cost = 2 ∗ (log p) ∗ lat;
Where p is the number

of process in a
communicator; lat -
latency of a message

51



Chapter 3. PRO-MPI Architecture

MPI fence deferred
method: Use one
reduce-scatter
operation for

synchronizing the
processes of a

communicator during
the one-sided
operations.

MPI Win Fence When most or
all processes of

a
communicator
participate in a
MPI Put (Get,
Accumulate)

Reduces syn-
chronization
overhead for

one-sided MPI
operations

Cost has one
latency term, so
this method is
preferable over

Immediate method
for a machine with

high latency
network

Cost = (log p) ∗ lat +
2(p− 1) ∗ (t); lat -

latency of a message, t
- transfer time for a

byte

Post-Start-Complete-
Wait immediate

method: Wait for
messages from all the
processes in a group
during a MPI Start,
MPI Complete and

MPI Wait

MPI Post (-Start-
Complete-Wait)

When only few
processes of a
communicator
participate in a
MPI Put (Get,
Accumulate)

operation

Reduces syn-
chronization
overhead for

one-sided MPI
operations

Cost = 2*g*lat ;
g-number of processes
in a origin and target
group; lat - latency of

a message

Post-Start-Complete-
Wait deferred method:

Waits for messages
from all the processes
in a group only for
MPI Win Complete

MPI Win Post
(-Start-Complete-

Wait)

When only few
processes of a
communicator
participate in a
MPI Put (Get,
Accumulate)

operation

Reduces syn-
chronization
overhead for

one-sided MPI
operations

Cost =g*lat ;
g-number of processes
in a origin and target
group ;lat - latency of

a message.

Lock-Unlock with
immediate

synchronization

MPI Lock
(Unlock)

When only two
processes

participate in a
MPI Put (Get,
Accumulate)

operation

Reduces syn-
chronization
overhead for

one-sided MPI
operations

Cost = 4*latency of a
message

Lock-Unlock with
immediate method

synchronization

MPI Lock
(Unlock)

When only two
processes

participate in a
MPI Put (Get,
Accumulate)

Reduces syn-
chronization
overhead for

one-sided MPI
operations

If only one remote
operation is
performed or
atleast one

MPI Get operation
is performed

Cost < 4*latency of a
message transfer

52



Chapter 3. PRO-MPI Architecture

RDMA pipeline
protocol: Overlap

RDMA operation and
memory registration
upto pipeline depth,

and free the
registrations after the

send operation

MPI Send
(standard,

synchronized,
buffered,

ready-mode)

Large
messages

Decreases
memory

requirements
over RDMA

Direct protocol

Applications with
lower buffer reuse

With higher buffer
reuse, RDMA Direct

protocol is more
advantageous

RDMA Direct
protocol: Message

transfer using
registered buffers that
are cached for future

reuse

MPI Send
(standard,

synchronized,
buffered,

ready-mode)

Large
messages

Amortizes
memory

registration
overhead and

increases
bandwidth

Applications with
higher buffer reuse

With lower buffer
reuse, RDMA Pipeline
is more advantageous

RDMA message
transfer only on static

memory

MPI Send
(standard,

synchronized,
buffered,

ready-mode)

Small messages Eliminates
memory

registration
overhead and

reduces
message
transfer
latency

When processes
use a small number
of small messages

RDMA operations are
restricted to static

memory and requires
copy-in copy-out if
more memory is

required

RDMA message
transfer using on the

fly memory
registration

MPI Send
(standard,

synchronized,
buffered,

ready-mode)

Small messages Reduces
message
transfer
latency

When processes
use a small number
of small messages

Registering message at
message transfer
increases message

latency

Scalable Fault tolerant
protocol for parallel
runtime environment
based on k-ary sibling

tree

Parallel runtimes
such as Open
MPI’s runtime

environment, mpd
of mpich, Harness

of FT-MPI

Improves
scalability and
fault tolerance
of a parallel

run time

Improves fault
tolerance as it can

tolerate upto k
process failures

(for network to be
bisected)

53



Chapter 3. PRO-MPI Architecture

3.8 Summary

This chapter described architectural details of the framework, PRO-MPI, for con-

structing reconfiguration MPI libraries. It provides architectural details of four main

components of the framework: profiler, communication layer, analyzer and reconfig-

uration manager. Also, it explains the role of each component and interactions of

these components during a reconfiguration with an example.

PRO-MPI architecture provides a set of abstractions for implementing reconfig-

urable MPI libraries. The profiler and analyzer together understand the commu-

nication behavior of an application, and propose a set of changes to the protocol

functionality that can improve the application performance. The mechanisms to im-

plement the changes are decoupled into another component of the framework: the

reconfiguration manager. And the communication functionality is decoupled from

all other components.

54



Chapter 4

Cactus PRO-MPI Implementation

4.1 Overview

The architecture described in Chapter 3 provides a framework (PRO-MPI) for con-

structing reconfiguration MPI libraries. This chapter presents a reconfigurable MPI

implementation, Cactus PRO-MPI, based on the framework. The prototype im-

plementation also includes an example reconfiguration. We demonstrate that this

reconfiguration can improve synthetic benchmark performance.

In this chapter, we present details of the Cactus PRO-MPI implementation, which

is based on Cactus and the Configurable Transport Protocol (CTP). Cactus PRO-

MPI is implemented as an enhancement to CTP. At present, it only supports point-

to-point semantics of the MPI specification. To support reconfiguration, the imple-

mentation includes the profiler, analyzer and reconfiguration manager. The profiler,

analyzer and reconfiguration manager are designed to functionally support preposted

receives reconfiguration.

The remainder of the chapter describes this implementation. Section 4.2 de-

55



Chapter 4. Cactus PRO-MPI Implementation

scribes Cactus and CTP. Section 4.3 describes the details of Cactus PRO-MPI im-

plementation. Section 4.4 describes the example reconfiguration implemented in the

prototype. In Section 4.5, we provide an evaluation of the implementation using the

reconfiguration, and measure the performance impact on the benchmarks.

4.2 Cactus and CTP

Cactus PRO-MPI is an enhancement to the CTP, which in turn is implemented in

the Cactus composite protocol framework. This section briefly describes Cactus and

CTP. A detailed description of Cactus and its execution structure can be found in

[59], of the message abstraction used by Cactus in [60], and of CTP itself in [61].

The Cactus description is mostly extracted from our paper [15].

4.2.1 Cactus

Cactus is a system for constructing highly-configurable protocols for networked and

distributed systems. It supports two-level functional composition, which provides

flexibility required for building the configurable services, particularly, network proto-

cols. Individual protocols in Cactus, generally termed composite protocols, implement

a protocol functionality such as transport protocol or RPC. They compose hierarchi-

cally to provide a configurable service. They are inturn constructed from fine-grained

software modules called microprotocols that interact using an event-driven execution

paradigm. Each microprotocol implements a different function of the protocol. Cac-

tus, in addition to functional composition, provides a message abstraction that is

optimized for configurable systems.

Two-level functional composition (composite protocol and microprotocol) is de-

signed to provide flexibility and functional granularity for building highly config-

56



Chapter 4. Cactus PRO-MPI Implementation

urable protocols. Composite protocols include protocol functions such as push, pop

and demux operations, which are responsible for moving the data in and out of the

protocol. Besides the protocol functions, the composite protocol includes micropro-

tocols each of which implements a protocol function or property, and data abstraction

that is shared by all the micro-protocols. For example, if a composite protocol imple-

ments a transport protocol, the microprotocols in the composite protocol might add

sequence numbers to messages, segment messages, or provide flow control. A micro-

protocol implementation includes initialization code, private data, and a collection

of event handlers. They interact with each other using an event driven model.

Processing of structured messages by microprotocol-defined event handlers com-

prises the basic programming model of Cactus. Events are used to signify state

changes of interest, such as “message arrival from the network”. When such an

event occurs, all event handlers bound to that event are executed. Events can be

raised explicitly by microprotocol instances or implicitly by the composite protocol

runtime system.

The Cactus runtime system provides a variety of operations for managing com-

posite protocols, microprotocols, events, and event handlers. Composite protocols

and microprotocols are created by initializing protocol objects using cInitProtocol()

and cInitMicroProtocol(). Microprotocols are added to the composite protocol using

cAddMicroProtocol(). Microprotocols can create new events, in addition to default

events, and delete events using cCreateEvent() and cDeleteEvent(). In addition to

traditional blocking events, Cactus events can also be raised with a specified delay

to implement time-driven execution, and can be raised asynchronously. Other oper-

ations are available for unbinding handlers, halting event execution, and canceling a

delayed event.

Finally, for building configurable protocols, Cactus supports a message abstrac-

tion, named message attributes, and a synchronization mechanism. In this abstrac-

57



Chapter 4. Cactus PRO-MPI Implementation

tion, data is added to the message as a named attribute. Named message attributes

enable message customization that is required for configurable systems. A micropro-

tocol adds custom information using named message attributes in a message without

affecting other microprotocol’s information. The scope of the named attributes cor-

respond to composite protocol (local), a single node (stack), or to all the nodes the

message travels (network). Cactus runtime provides SetMsgAttr(message, scope, at-

tribute, data), and GetMsgAttr(message, scope, attribute) operations to set and get

the attribute values.

Synchronization and coordination of execution activities in Cactus is accom-

plished through hold bits that may be associated with data items. The hold bits

are a set of boolean flags associated with a message. These hold bits are used mainly

to coordinate activities such as sending and deallocating a message across multiple

microprotocols. Cactus provides two types of hold bits in each message to control

these activities, send bits and deallocate bits. Each microprotocol that needs to con-

trol the message is allocated a hold bit. When all send bits in a message are set, the

message is allowed to move up/down the protocol stack. And, when all deallocate

bits are set, the message is deleted.

4.2.2 CTP

CTP is a message-oriented configurable transport protocol written in the Cactus

framework, primarily for use on local-area and wide-area network (e.g. Ethernet)

connections. CTP includes a wide range of microprotocols for operating in this envi-

ronment, including microprotocols implementing acknowledgements (PositiveAck),

retransmissions (Retransmit), forward error correction (ForwardErrorCorrection),

and a range of congestion control mechanisms and policies (WindowedFlowControl,

TCPCongestionControl, etc.). Using these and other microprotocols, researchers

58



Chapter 4. Cactus PRO-MPI Implementation

have implemented CTP configurations that support TCP-like, UDP-like, and SCTP-

like semantics.

Microprotocols in CTP handle a set of predefined events, particularly those that

indicate message availability from the network or an application. Two primary events

are used for processing outgoing messages - MessageFromUser indicates that a new

arbitrary-sized message is available for transmission, while SegmentToNet events are

generated by fragmentation/reassembly microprotocols that fragment messages into

segments for transmission over the network. Similarly, receive-side processing in-

cludes SegmentFromNet and MessageFromNet events, which again correspond to

fragmented packets and reassembled messages. Each microprotocol can bind these

handlers and set message attributes as appropriate.

CTP uses Cactus’ hold bits for coordinating the message activities. It uses send

bits for sending the message to an application or on to the network, and deallocate

bits for controlling the life span of a message. For example, the congestion control

and flow control microprotocols use send bits to control the message going to the

network, and ordering microprotocols controls the message going to the application

using send bits. Each microprotocol that processes the message is allocated a send

bit and deallocate bit. The hold bits allows the microprotocol to process the message

independent of other microprotocols.

4.3 Cactus PRO-MPI Infrastructure

To prototype PRO-MPI, we add a profiler, an analyzer, and a reconfiguration man-

ager to CTP. This section presents implementation details of these components and

interactions between them. It also describes extensions to CTP protocol functionality

to provide MPI semantics and support reconfiguration.

59



Chapter 4. Cactus PRO-MPI Implementation

Analyzer

Reconfiguration
Manager

Reconfiguration 
Actions

Reconfigure

Profiler

Profile

MPI

API: Open, Close, Push

Shared 
Data

Eager
Rendezvous

MPI Support

Eager

Rendezvous

Retransmit

Positive Ack

Transport 
Driver

Segment
FromUser

Segment
FromNet

MPI Wait

MPI/CTP

Microprotocols
Events

Figure 4.1: Architecture of Cactus PRO-MPI showing the profiler, the analyzer, and
newly added microprotocols and events. The newly added microprotocols
and the events are shown as grey colored components.

4.3.1 Communication Layer (MPI/CTP)

Our implementation of MPI/CTP includes a variety of additions, particularly new

microprotocols, new message attributes, and careful interaction with existing CTP

microprotocols. The new microprotocols implement different MPI-specific protocol

algorithms and the new message attributes are used to carry MPI-specific information

for these microprotocols. The following sections describe these extensions. A diagram

illustrating these changes is shown in figure 4.1.

MPI Support Microprotocol. Because CTP originally used TCP-like message

demultiplexing based on port numbers instead of MPI matching semantics, we first

60



Chapter 4. Cactus PRO-MPI Implementation

had to introduce protocols that customized CTP to support MPI matching semantics.

The MPISupport microprotocol is responsible for implementing basic MPI matching

semantics in CTP by receiving post requests from the applications through the CTP

control interface and making posted and unexpected queues available to other mi-

croprotocols for their use. An API to these lists is provided for other MPI/CTP

microprotocols to use as necessary. In addition, MPISupport handles miscellaneous

local requests that do not require message generation and processing, for example

calls to MPI Wait(). Note that MPISupport introduces a new MPIWait event to CTP

to signal threads blocked on synchronous MPI calls.

Message-Handling Microprotocols. MPI/CTP includes message-handling mi-

croprotocols for sending MPI messages over the network. MPI/CTP currently in-

cludes 3 microprotocols related to sending and receiving MPI-oriented messages:

Eager, Rendezvous, and EagerRendezvous; these correspond to common techniques

for sending short (Eager) and long (Rendezvous/ EagerRendezvous) MPI messages.

Like most CTP microprotocols, each microprotocol implements handlers for the

SegmentFromUser and SegmentFromNet events to enable them to process messages.

In response to messages from the application to send, these microprotocols may send

the message immediately or send a RTS to facilitate later transmission. Likewise, in

response to SegmentFromNet events, they may do nothing and rely on preexisting

CTP microprotocols to handle acknowledgements, or they may send or schedule

transmission of data to the requester if the received packet is an RTS or CTS.

The MPI/CTP microprotocols also set send and deallocate bits to coordinate

message transmission and deallocation with other CTP microprotocols, and set mes-

sage attributes to transmit control information. We have added a handful of new

message attributes for the MPI-specific microprotocols, particularly RTS/CTS, rank,

tag, and communicator fields.

61



Chapter 4. Cactus PRO-MPI Implementation

Interactions with Existing Microprotocols. By writing MPI functionality as

an extension to CTP, MPI/CTP configurations retain full access to other CTP mi-

croprotocols that provide functionality that may be desirable in some cases. For

example, the PositiveAck microprotocol can be used to acknowledge message re-

ceipt in a short-message protocol without having to reimplement and reoptimize

acknowledgement functionality. Similarly, microprotocols such as Retransmit and

WindowedFlowControl allow MPI/CTP protocol configurations to work seamless-

ley in long-haul and lossy networks. Because all such functionality in CTP is op-

tional, MPI/CTP configurations running over standard high-speed reliable fabrics

(e.g. Myrinet) need not pay the price for this functionality.

4.3.2 Profiler and Analyzer

The profiler and the analyzer are added to the CTP to collect message characteristics

and understand application communication behavior.

The profiler, in particular, collects message and resource usage characteristics.

The MPI layer (MPI layer shown in the Figure 4.1) is instrumented with the profiler

code that parses the MPI message header to record the message size, type, source and

destination of each message. To collect information about the MPI protocols used

for the message transfer, the event handlers and microprotocols are instrumented

with profiler code that records the event handlers and microprotocols executed for

each message. Also, the preposted receive queues and wait message queues are

instrumented with the profile code that records the lengths of queues at prescribed

intervals. The profiler uses the recorded information to generate a profile, which is

interpreted by an analyzer.

The analyzer maps the profile into a set of reconfiguration actions. It has an

offline component and an online component. The offline component analyzes the

62



Chapter 4. Cactus PRO-MPI Implementation

profile and generates a set of protocol changes - change control parameter values,

enable or disable event handlers, and enable or disable microprotocols. The online

component, mainly the monitor code, is implemented as part of the communication

layer. It is responsible for monitoring the state of the system (communication layer),

and triggering the reconfiguration. In Section 4.4, we demonstrate with an example

how the analyzer monitors the state of the communication layer and triggers the

reconfiguration.

4.3.3 Reconfiguration Manager

The reconfiguration manager can modify MPI/CTP functionality in three ways.

First, it controls the parameter values passed to the event handlers. Second, it

can disable and enable event handler execution, when an event is raised. Third, it

can enable and disable a microprotocol at runtime. The support for functionality

modification at multiple granularity provides enough flexibility for many reconfigu-

rations.

All these changes are implemented by the MPISupport microprotocol. To remove

a microprotocol, it unbinds all event handlers corresponding to the microprotocol

using UnbindHandler() operation. And to add a microprotocol, it binds all event

handlers corresponding to the microprotocol using cBindHandler() operation. In

next section, we demonstrate with an example the functionality of the reconfiguration

manager.

4.4 Preposted Receives Reconfiguration

To improve the bandwidth availability of MPI applications and benchmarks that

have varying message arrival rates and that prepost receives at varying rates, we

63



Chapter 4. Cactus PRO-MPI Implementation

implemented a preposted receives reconfiguration. The above mentioned dynamic

behavior of an application results in varying MPI queue lengths, particularly pre-

posted receive queues. The reconfiguration improves the application bandwidth by

enabling the sender MPI process to choose the transport protocols based on queue

length information.

In the implementation, the profiler collects queue lengths and corresponding

bandwidth information (while using both Rendezvous and EagerRendezvous). The

analyzer converts the information into a schedule which recommends the protocols

to be used for various preposted receive percentages. At runtime, the analyzer’s

monitor code monitors the queue lengths, and triggers reconfiguration based on

the previously generated schedule. On receiving the trigger, the reconfiguration

manager at the sender process makes the protocol switch between Rendezvous and

EagerRendezvous or vice versa.

The reconfiguration manager implements the reconfiguration (protocol switch)

by a combination of microprotocol reconfiguration and filtering code in message-

passing microprotocols. Only those message-passing microprotocols that are con-

figured into a given MPI/CTP configuration (and hence have bound appropriate

event handlers) can process a message, allowing different message-transmission al-

gorithms to be configured and reconfigured at a coarse scale. MPI/CTP uses this

level of protocol switch, namely reconfiguration, between microprotocols that pro-

cess similar messages, for example between the Rendezvous and EagerRendezvous

message-processing microprotocols.

More fine-grained protocol adaptation on a message-by-message basis, specifically

the message size-based protocol switch, is done by parameterization. In particular,

each message-passing protocol is designated as either a long-message or short-message

protocol, a global shared variable that designates the switch-point between long and

short messages is exported by MPISupport, and each configured microprotocol only

64



Chapter 4. Cactus PRO-MPI Implementation

handles an outgoing message if it is of the appropriate size. Note that this requires

that only one short and one long message protocol be configured into MPI/CTP at

a given time.

4.5 Evaluation

To evaluate our Cactus PRO-MPI design, we used a simple prototype implementation

of the MPI point-to-point calls using the design described in Section 4.3. This

implementation runs on Myricom GM, supports all of the various MPI point-to-

point calls, but does not support MPI collective communications.

We tested two different elements of our Cactus PRO-MPI prototype, namely basic

message-passing bandwidths and message-passing bandwidth with reconfiguration.

We compared message-passing bandwidth of Cactus PRO-MPI with Open MPI and

MPICH (both are production-quality implementations), to understand the overhead

of Cactus PRO-MPI. To understand Cactus PRO-MPI’s reconfiguration ability, we

measured message-passing bandwidth for fixed-size messages with protocol reconfig-

uration based on the percentage of messages preposted at the receiver.

4.5.1 Setup

We tested the above mentioned scenarios between two dual-processor 2.2 GHz Pen-

tium III Xeon machines with Myrinet Lanai7 adapters [62]. Each machine ran Linux

kernel version 2.4.2 and GM 2.1.1 [63, 64, 65]. We compared bandwidths of our

implementation versus those of Open MPI 1.0.2 and MPICH/GM 1.2.6.

To run the above scenarios, we used a synthetic benchmark which varied the

posted receives on the receiver MPI process while a sender MPI process sends the

65



Chapter 4. Cactus PRO-MPI Implementation

messages. Using this benchmark, we measured bandwidth between the processes

keeping the percentage of posted receives constant. We measured Cactus PRO-MPI

and the other two MPI implementations bandwidth using benchmarks from The

Ohio State University [66].

4.5.2 Synthetic Benchmark Results

Cactus PRO-MPI Overhead

Figure 4.2 shows the basic bandwidth performance of our prototype implementation.

As can be seen in Figure 4.2, our prototype achieves approximately 81% of the

point-to-point bandwidth of the OpenMPI or MPICH/GM implementations. The

performance difference is due to the costs of extra copies that the existing CTP

framework currently imposes on our prototype. Eliminating these copies should

make Cactus PRO-MPI bandwidth-competitive with OpenMPI.

Figure 4.3 shows how Cactus PRO-MPI bandwidth varies by percentage of pre-

posted receives with 32 KB messages. As can be seen, the standard rendezvous

protocol outperforms an eager rendezvous protocol when 80% or less of receives are

preposted. For carefully written applications where most receives are preposted, it

is well known that an eager large-message protocol can acheive better performance

[67]. This effect can be easily seen in MPI/CTP.

MPI/CTP Protocol Reconfiguration

To test the ability of Cactus PRO-MPI to optimize MPI behaviour through dy-

namic protocol reconfiguration, we enabled the reconfiguration manager to recon-

figure which long message protocol Cactus PRO-MPI used based on feedback from

the analyzer on the average percentage of receives preposted at the receiver. The

66



Chapter 4. Cactus PRO-MPI Implementation

 0

 200

 400

 600

 800

 1000

 1200

 0  50000  100000  150000  200000  250000  300000

B
a

n
d

w
id

th
 M

b
p

s

Message Size Bytes

Raw Bandwidth Curve - Indicating Overhead

OpenMPI
cactus-MPI

MPICH

Figure 4.2: Comparative Eager Message Bandwidth

reconfiguration manager then dynamically changed between the EagerRendezvous

and Rendezvous long message protocols by binding and unbinding handlers in each

microprotocol at runtime; cutoffs for the protocol switch were determined ahead of

time based on the information shown in Figure 4.4.

Figure 4.4 shows that reconfiguration in Cactus PRO-MPI allows it to dynami-

cally adjust its behavior based on remote application behavior, thereby optimizing

available MPI protocol bandwidth. As Cactus PRO-MPI becomes more carefully

tuned, we expect this to allow applications to acheive better MPI performance by

dynamically reconfiguring protocol behavior based on application needs.

67



Chapter 4. Cactus PRO-MPI Implementation

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 10  20  30  40  50  60  70  80  90  100

B
a

n
d

w
id

th
 M

b
p

s

Pre Posted Receives Percentage

Bandwidth of EagerRendezvous, Rendezvous Protocol 
 - Varying Presposted Receives 

EagerRendezvous
Rendezvous

Figure 4.3: Bandwidth By Protocol

4.6 Summary

In this chapter, we evaluated the design of PRO-MPI with an example imple-

mentation Cactus PRO-MPI. Cactus PRO-MPI demonstrated the feasibility of the

PRO-MPI architecture for building reconfigurable systems. Using the prototype, we

showed how reconfigurable MPI implementation can deal with dynamic application

behavior, for example changing percentages of preposted receives, and to reconfigure

at runtime based on this changing behavior. It demonstrated the usefulness of flex-

ibility at various granularity levels (microprotocols, event handlers and composite

protocol) to reconfigure functionality. The results showed the Cactus PRO-MPI’s

ability to reconfigure with very little overhead. However comparing Cactus PRO-

MPIś bandwidth with Open MPI and MPICH shows that it can achieve only 80%

68



Chapter 4. Cactus PRO-MPI Implementation

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 10  20  30  40  50  60  70  80  90  100

B
a

n
d

w
id

th
 M

b
p

s

Pre Posted Receives Percentage

Adaptation based on Percentage of PrePosted Receives

EagerRendezvous
Rendezvous

Bandwidth-Adaptive

Figure 4.4: Reconfigurable versus Fixed Protocol Bandwidth

bandwidth achieved by Open MPI or MPICH. This overhead as mentioned in Section

4.5.2 is due to the CTP and Cactus implementation.

69



Chapter 5

Open PRO-MPI Implementation

5.1 Overview

In this chapter, we present a reconfigurable MPI implementation, Open PRO-MPI,

based on PRO-MPI and Open MPI that supports reconfiguration and full MPI se-

mantics. The implementation includes two reconfiguration implementations both of

which, as we will show, improve the performance of HPC applications.

Open PRO-MPI is implemented as an extension to Open MPI by adding PRO-

MPI components – profiler, analyzer, and reconfiguration manager. Open MPI acts

as a communication layer that provides an MPI implementation to the applications.

The profiler, analyzer, and reconfiguration manager modify Open MPI’s protocol

functionality in response to changing application characteristics. Open PRO-MPI

components are geared particularly towards optimizing RDMA connections and reg-

istered buffer usage in Open MPI.

The remainder of the chapter describes this implementation and an evaluation of

its performance. Section 5.2 describes Open MPI in which reconfigurations were im-

70



Chapter 5. Open PRO-MPI Implementation

plemented. It also describes Infiniband and various protocols it supports for message

transfer. Section 5.3 describes other components of Open PRO-MPI. Section 5.4

describes the example reconfigurations implemented in Open PRO-MPI. In Section

5.5, we provide a evaluation of the implementation using these reconfigurations, and

measure the performance impact on HPC applications and benchmarks.

5.2 Open MPI and Infiniband

5.2.1 Open MPI

Open MPI is a MPI-2 implementation [1], which was designed and implemented after

drawing experiences from other MPI implementations such as LAM/MPI [68], LA-

MPI [69], and FT-MPI [70]. Besides being MPI-2 complaint, Open MPI supports

concurrent and multi-threaded applications. Its design goal is to efficiently sup-

port various hardware architectures such as supercomputers, clusters of commodity

nodes, and grids (nodes on a wide-area network). To efficiently support various archi-

tectures, Open MPI supports message transfer on various network interfaces which

includes TCP/IP, Myrinet [71, 62], Quadrics [72], and Infiniband; it utilizes available

multiple network interfaces to maximize bandwidth availability by network striping

and improve fault tolerance by dynamically handling the loss of network devices.

Open MPI uses a well-defined component architecture, the MPI Component Ar-

chitecture (MCA) [5]. The component architecture contains three functional areas:

MCA, component frameworks, and modules. MCA manages and provides services

to the component framework such as passing parameters from a higher layer to com-

ponents and modules, and configuring, installing and initializing components. Each

component framework performs a particular task in Open MPI. For example, Open

MPI includes component frameworks such as a point-to-point transport layer and

71



Chapter 5. Open PRO-MPI Implementation

MPI

Point-to-Point Management Layer

BTL Management Layer

OpenIB 
Byte Transfer Layer

Memory
Pool

Registration 
Cache

TCP 
Byte Transfer Layer

Point to point Component Frameworks

Figure 5.1: Open MPI point to point component architecture

a point-to-point management layer for managing and implementing point-to-point

operations. The component frameworks are also responsible for managing modules.

Modules are self-contained software components that implement communication

functionality. Modules, which needs to be included, are specified in the Open MPI

configuration scripts; during Open MPI compilation, scripts discover the modules

and these modules are compiled with other Open MPI code. They can be included

in component frameworks either as static libraries or shared libraries; this flexibility

provides the ability for including third-party modules that do not provide module

source code. The included modules can choose to be enabled at runtime. If enabled,

they are initialized and allocated resources.

To support point-to-point communication over specific networking hardware,

Open MPI uses mainly three component frameworks: PML (point-to-point manage-

ment layer), BML (BTL management layer), and BTL (Byte transfer layer). Figure

5.1 provides a general architecture of Open MPI’s point-to-point implementation.

72



Chapter 5. Open PRO-MPI Implementation

PML provides various MPI point-to-point semantics: Standard, Buffered, Ready

and Synchronous. It supports various MPI protocols (Eager send and Rendezvous),

and is capable of using various types of interconnects (send/recv and RDMA). Be-

sides that, the PML provides higher-level services such as message fragmentation and

reassembly and matching necessary to support the MPI interface over a given BTL

layer. BTL abstracts network interfaces, such as Ethernet, Infiniband, Myrinet, to

provide data transfer services; it implements send/recv operations and RDMA oper-

ations(GET and PUT) over the network interfaces. The BML layer is a thin man-

agement layer between PML and BTL, which is mainly responsible for multiplexing

MPI messages across BTLs. Besides PML, BML and BTL, the point-to-point com-

munication architecture uses the Mpool component for memory management and

the Rcache component for caching memory registrations.

Our work has focused primarily on optimizing the use of the OpenIB BTL, a BTL

component that transfers data over Infiniband links using OpenIB’s verbs interface.

It is managed by the OB1 and DR PML framework. OB1 and DR PML implement

MPI protocols, buffer messages and use the OpenIB BTL for message transfer on

Infiniband interfaces. Each port on the Inifiniband interface has a module initialized

for it. When using OB1 and OpenIB BTL, short messages are sent using an eager

protocol and large messages are sent using a rendezvous protocol. Since Infiniband

interfaces are RDMA capable, eager messages can use either send/recv protocol or

RDMA protocol based on resource availability. Long messages, based on the flag

settings, can use send/recv, RDMA Direct protocol or RDMA Pipeline protocol.

73



Chapter 5. Open PRO-MPI Implementation

5.2.2 Infiniband

The Infiniband specification was originally proposed as a general I/O technology

[73]. However, currently, it is mainly used for interprocess communication in many

modern HPC machines. It provides various features to support communication in

HPC machines. Particularly, it supports RDMA and OS bypass required for low-

latency and high-bandwidth message transfer [74, 75].

Open MPI’s BTL, OpenIB BTL, which uses Infiniband fabric for message trans-

fer, provides various RDMA protocols. For large message transfer, it provides RDMA

Direct and RDMA Pipeline, and for small message transfer, it provides a eager

RDMA protocol. The long message protocols are optimized for controlling the cost

of memory buffer registerations. In RDMA Direct protocol, the memory registrations

are cached for the lifetime of an application execution, amortizing the registration

cost. RDMA Direct protocols require the buffers to pre-registered, if they are not

registered on first use, however after the first use, the buffers are registered and

cached for subsequent use. In the RDMA Pipeline protocol, the buffers are regis-

tered during message transfer and de-registered after message transfer. However, the

buffer registration cost is masked by transferring the message using send/recv pro-

tocol during registration. Since the RDMA Pipeline protocol does not cache buffer

registrations for future use, the buffers are re-registered every time an application

reuses the buffers. More details of these protocols are in [34].

5.3 PRO-MPI: Open MPI infrastructure

To support profile-based protocol reconfiguration and optimization, PRO-MPI sup-

plements Open MPI with three additional elements. Figure 5.2 is a logical repre-

sentation of Open PRO-MPI, which is implemented as an extension to Open MPI.

74



Chapter 5. Open PRO-MPI Implementation

Large Msg 
transfer 

protocols

Analyzer

Reconfiguration
Manager

Reconfiguration 
Actions

ReconfigureSmall msg 
transfer 

protocols

Profile

Open MPI

Collectives

Profiler

Figure 5.2: Open PRO-MPI components and their use to control a protocol reconfigura-
tion.

In this implementation, the profiler collects information about application commu-

nication characteristics into a communication profile for later use; the analyzer uses

globally collected profiling information to generate schedules to drive reconfiguration

in later application runs; and the reconfiguration manager dynamically changes com-

munication settings based on previously generated schedules. This section discusses

details of Open PRO-MPI components, and their integration with Open MPI.

75



Chapter 5. Open PRO-MPI Implementation

5.3.1 Profiler

The profiler generates a communication profile by collecting application characteris-

tics and operating environment information. The information collected is geared to

drive a reconfiguration in a latter application run. Typically a profile has message

characteristics - size, type, frequency, resource usage information, network informa-

tion - message latency, network congestion, and hardware architecture characteristics.

In this implementation, the function of profiler is limited to collecting message char-

acteristics, and resource allocation and usage characteristics of an MPI application.

To generate an MPI application communication profile, the profiler collects and

combines MPI message characteristics, hardware dependent message characteristics,

and buffer usage characteristics. Profiler code in OB1 (PML component) logs ev-

ery MPI message to determine MPI protocol (eager or rendezvous) used for mes-

sage transfer, MPI semantics (standard, buffered, ready, synchronous) of the mes-

sage transfer, source and destination processes, size and type of the message. And,

the profiler collects hardware dependent message characteristics – transfer protocols

(send/recv or RDMA), message fragment latency – by logging every message af-

ter message fragmentation at the OpenIB BTL component. To collect buffer usage

characteristics, the profiler uses wrapper code around Mpool and Rcache components

that collects buffers used, frequency of reuse and lifetime of the buffers. At every

reconfiguration point, this profile is combined with other process profiles to generate

a global profile.

5.3.2 Analyzer

The analyzer uses an application profile to generate schedules to drive two recon-

figurations: optimizing RDMA connection usage and optimizing registered buffer

usage. To optimize RDMA connection and registered buffer usage, it provides a set

76



Chapter 5. Open PRO-MPI Implementation

of process pairs for each reconfiguration point that maximizes the use of RDMA

connections and registered buffers. Since the process pairs that exchange the most

messages are expected to maximize the use of RDMA connection and buffers, it

selects process pairs based on their priority, which is dependent on the number of

messages exchanged between them.

The analyzer scripts filters all relevant messages for a reconfiguration from the

profile. It uses messages attributes to determine the messages exchanged between

any two processes. To optimize RDMA connections based on the message exchange

frequency, the analyzer filters all MPI small messages. Algorithm 1 shows the ana-

lyzer’s code fragment that filters the small messages from an application profile. The

input to the code fragment is the application profile, and the output is a message ma-

trix that contains messages exchanged between any two processes in all application

time steps. In the code fragment, the function MESSAGES() is used for extract-

ing a message and its attributes from the profile, the functions SOURCE() and

DESTINATION() are used to extract the message attributes such as the source

and the destination of the message.

The process pairs are prioritized based on the messages exchanged between them.

Algorithm 2 shows the code fragment that assigns the priorities to the process pairs.

These priorities fill a PriorityMatrix (a 3 dimensional matrix), which is then acce-

sible to the reconfiguration manager. An element, p[i][j[k], of the PriorityMatrix is

a priority between process i and j at time step k (a reconfiguration point). In the

code fragment, the function SORT DESENDING() sorts a array in the descend-

ing order, and the function PRIORITY (x, y) provides the priority of the element x

in the array y.

The analyzer does additional processing if the operating environment of a re-

configuration run differs from the profiling run. If the problem size of a reconfig-

uration run is different from a profiled application run, the analyzer extrapolates

77



Chapter 5. Open PRO-MPI Implementation

Algorithm 1 Pseudocode to determine the number of small messages exchanged

between any two processes from an application profile.

Logfile ← profile

MaxTimeStep ← input

for timestep = 1 to MAXTimeStep do

while MESSAGES(Logfile, timestep) do

message ← MESSAGES(Logfile, timestep)

if SIZE(message) ≤ 12KB then

src ← SOURCE(message)

dst ← DESTINATION(message)

MessagesExchanged[timestep][src][dst] + 1

end if

end while

end for

the 3-dimensional matrix to match the problem size of a reconfiguration run. The

analyzer can also handle other changes in operating environment such as change in

application input parameters.

5.3.3 Communication Layer and Dynamic Resource Man-

agement

As seen in the Figure 5.2, we use Open MPI as the communication layer for Open

PRO-MPI. It provides an MPI implementation to the applications. As mentioned

in Section 5.2.1, we focused mainly on modifying OpenIB BTL to support recon-

figuration. To achieve this, we changed the implementation to add a notion of

reconfiguration points, support dynamic resource allocation and dynamic connection

78



Chapter 5. Open PRO-MPI Implementation

Algorithm 2 Pseudocode to compute the priorities of connections between any two

processes.

MessagesExchanged ← input

MaxTimeStep ← input

for timestep = 1 to MaxTimeStep do

for processi = 1 to MaxProcesses do

TempMessage ← MessagesExchange[timestep][src]

TempMessage ← SORT DESENDING(TempMessage)

for processj = 1 to MaxProcesses do

connectioni,j ← MessagesExchanged[timestep][processi][processj]

priority ← PRIORITY (connectioni,j, T empMessage)

PriorityMatrix[timestep][processi][processj]← priority

end for

end for

end for

management, and in this section we discuss these changes in detail.

Reconfiguration Points

At a reconfiguration point, the protocol functionality changes in response to chang-

ing application characteristics or operating environment; at a reconfiguration point,

all processes of the application reach a global consensus on protocol changes, and

changes takes effect without affecting the correctness of the application execution. A

reconfiguration point can be an application time step or the end of a particular ap-

plication phase (change in communication characteristics, change in resource usage

pattern, change from computation phase to communication phase or vice versa).

79



Chapter 5. Open PRO-MPI Implementation

Open PRO-MPI uses a counter in the PML layer to keep track of reconfigu-

ration points. Since the counter is implemented in PML, it is accessible to the

applications, and other components and modules of the communication layer. MPI

applications access the variable by using non-state changing MPI calls ( for ex-

ample, we use MPI Comm get name). Other modules and components in Open

PRO-MPI can modify the variable using newly-introducted internal functions such

as get reconfigpoint(), set reconfigpoint() and inc reconfigpoint(); as the names

indicate, get reconfigpoint() returns the present value, set reconfigpoint() changes

the value, and inc reconfigpoint() increments the reconfiguration counter.

Dynamic Resource Allocation

To be addressable and act as a communication endpoint in Infiniband, each process

requires many resources which includes QP (queue pair) and their corresponding

work queues (send work queue, receive queue) and completion queues. OpenIB

BTL allocates all these resources during component and module initialization. Be-

sides these resources, Infiniband also requires another important resource – registered

buffers – which are used for sending and receving the messages bypassing the OS.

Registered buffers are valuable resources, as physical pages that are used by reg-

istered buffers cannot be reclaimed for other processes. Therefore registering all

required buffers during initialization should be avoided.

Buffer registration during runtime is an expensive operation and it has to be con-

trolled in all time critical paths including message send and receive. Open MPI pro-

vides two protocols for managing registrations costs during message transfer: RDMA

Direct protocol and RDMA Pipeline protocol. More details of the protocols are in

Section 5.2.2.

Unfortunately, both these message protocols are insufficient for many applica-

80



Chapter 5. Open PRO-MPI Implementation

tions. For example, if the RDMA Direct protocol is used for applications with

spatial characteristics – where buffer reuse is very rare – caching of memory regis-

trations can cause resource exhaustion, and using the RDMA Pipeline protocol for

these applications would have adverse performance effects. Using either protocol for

applications with both temporal and spatial characteristics 1 can have adverse perfor-

mance effect and result in inefficient resource usage. This makes both optimizations

ineffective for application with dynamic characteristics and applications with spatial

characteristics.

Open PRO-MPI combines approaches of RDMA Direct and RDMA Pipeline pro-

tocol providing a effect of dynamic resource allocation. In Open PRO-MPI, before

a RDMA write or read operation, if memory is not registered, it is registered using

Open MPI’s Mpool component (Mpool component provides memory management

functions such as allocate, deallocate, register and deregister). And the memory reg-

istration is cached using Open MPI’s Rcache component; Rcache provides memory

registration caching functions such as find, insert and delete. These cache entries

are deleted and memory is de-registered after each reconfiguration point by the re-

configuration manager. As a result, all memory is available for future use by the

application or for other operating system operations. This approach also avoids the

resource exhaustion caused by the RDMA Direct protocol, and overhead of using

send/recv protocol in RDMA Pipeline protocol. Besides that, when only limited

registered buffers are available, Open PRO-MPI increases registered-memory utiliza-

tion by allowing only selected processes to use the RDMA Direct protocol. The

selection is based on probability of buffer reuse. The details of this process selection

are explained in Section 5.4

1An application with higher memory buffer reuse is said to have temporal characteristics,
and if an application reuses the memory buffers rarely then it is said to have spatial
characteristics.

81



Chapter 5. Open PRO-MPI Implementation

Dynamic Connection Management

Open MPI transfers small message either using the send/recv or the RDMA protocol.

To support RDMA operations in Infiniband, the receive buffers need to be registered

before a message is sent. A receiver process learns message completion by polling

receive buffers. To limit polling time and registered buffer usage, Open MPI uses

both the send/recv and the RDMA protocols for small message transfer. The RDMA

connections are lazily assigned to process pairs after they communicate and exchange

messages up to a certain threshold. A configuration variable controls and limits the

number of RDMA connections. After the limit, the process cannot initiate a new

RDMA connection, and any small message transfer for a process that does not have

a RDMA connection uses the send/recv protocol.

In Open PRO-MPI, RDMA connections are established and reset at every re-

configuration point. The RDMA connections that can be initiated by a process are

limited and controlled by a configurable variable. All RDMA connections between

process pairs are established at a reconfiguration point. And, at the end of the recon-

figuration point, the reconfiguration manager resets the connections, and transfers

the state information associated with the process to a new RDMA connection or it

is deleted if there is no new RDMA connection. Before the reset, the reconfigura-

tion manager sends the pending message fragments. For the next reconfiguration

point, the reconfiguration manager selects the process pairs and initiates the connec-

tions. The selection process is explained in Section 5.4). Like Open MPI, in Open

PRO-MPI, processes use the send/recv protocol to send message to other processes

without a RDMA connection.

82



Chapter 5. Open PRO-MPI Implementation

5.4 Example Reconfigurations

Using Open PRO-MPI, we have implemented two protocol reconfigurations:

connection-protocol reconfiguration and registered-buffer reconfiguration. This sec-

tion provides implementation details of these reconfigurations.

5.4.1 Connection-protocol Reconfiguration

Connection-protocol reconfiguration is designed to improve the performance of ap-

plications that dynamically change how many and with which peers they communi-

cate frequently at runtime. Specifically, we have implemented connection-protocol

adaptation between one-sided and two-sided communication protocols at the Open

MPI BTL layer based on profiles gathered from previous application runs. In this

reconfiguration, PRO-MPI profiler gathers information about how often a process

communicates with each peer during application-indicated phases. We also added

a one line call to each application to indicate to PRO-MPI when a new application

phase begins (phases could also potentially be inferred from application behavior,

for example calls to MPI barrier).

In subsequent runs on related (but not necessarily identical) inputs, the reconfigu-

ration manager controls which BTL communication protocol is used to communicate

with each peer in each application phase using a schedule generated offline by the

analyzer from the profiling information. This allows PRO-MPI to dynamically con-

trol which peers use RDMA channels, improving overall application performance as

we will describe in Section 5.5.

The profiling information and analysis needed for this reconfiguration is relatively

simple. Specifically, the profiler gathers the number of small messages (less than 12

KB) sent to each peer by each process during each indicated application phase. The

83



Chapter 5. Open PRO-MPI Implementation

analyzer uses the profile information to generate a priority matrix as well as the

maximum number of RDMA connections allowed for each process (maxRDMA).

The three-dimensional priority matrix contains the communication priority between

any two MPI processes during each application phase; specifically element p[i][j][k]

of the priority matrix contains the priority of communication from process i to j at

application phase k.

The reconfiguration manager initiates, resets, and manages RDMA connections

based on data in the priority matrix generated by the analyzer from profiling informa-

tion. At a given application time step, two MPI processes p (the initiator) and q may

be connected via RDMA, if the priority of that connection is higher than other MPI

processes, and the current number of RDMA connections p is less than maxRDMA.

Figure 5.3 shows how connections could be reconfigured between between MPI pro-

cess i and other MPI processes over an application run when maxRDMA = 2.

The reconfiguration manager also controls how the communication protocol of a

MPI process is switched between RDMA and Send/Receive. At each reconfiguration

point, all RDMA connections change state from CONNECTED to QUIESCE. In the

QUIESCE state, RDMA connections cannot be used for any new message transfers.

After all pending messages are transferred, the resources allocated to the connec-

tion are freed and the RDMA connection state is changed to DISCONNECTED.

The connection state for a process is changed back to CONNECTED only after the

process establishes a new RDMA connection to another MPI process.

5.4.2 Registered-buffer Reconfiguration

The goal of this reconfiguration is to improve application performance by choosing

an appropriate large message RDMA protocol based on message buffer reuse. Par-

ticularly, we use RDMA Direct protocols for processes with higher buffer reuse, and

84



Chapter 5. Open PRO-MPI Implementation

j

k

i

RDMA Connection

Send-Recv Connection

1

2

3

4

5

j

k

i

3

5

4

2

1

Application Phase n Application Phase n+1 

j

k

i

1

2

3

4

5

Processes with active RDMA 

connections

Processes with RDMA connections go into 

RDMA quiesce state before reset

Processes with no RDMA 

connections

Figure 5.3: Example connection reconfiguration between RDMA and send/receive con-
nections. The nodes in the figure represent MPI processes, while the number
on the edges represent the communication priority of the processes during an
application phase.

RDMA Pipeline protocol for processes with lower buffer reuse. In this reconfigura-

tion, in a profile run, the profiler gathers communication activity between processes

during each application phase.

In subsequent runs on related inputs, the reconfiguration manager controls which

RDMA large message protocol is used to communicate with each peer in each appli-

cation phase using a schedule generated from the profiling information. This allows

PRO-MPI to dynamically control which peers use RDMA Direct, improving perfor-

mance and limiting registered buffer usage.

The profiling information and analysis needed for this reconfiguration is similar

to the one used in connection-protocol reconfiguration. The profiler gathers the

85



Chapter 5. Open PRO-MPI Implementation

number of messages sent to each peer by each process during each application phase.

The analyzer uses the profile information to generate a priority matrix as well as

the maximum number of processes (maxProc) that can use RDMA Direct protocol.

The three-dimensional priority matrix contains the communication priority between

any two MPI processes during each application phase; specifically element p[i][j][k]

of the priority matrix contains the priority of communication from process i to j at

application phase k.

The reconfiguration manager controls the process to use RDMA Direct based on

the priority of process pair and available registered memory. At each reconfiguration

point, two processes p and q, may use RDMA Direct, if the priority of that connection

is less than maxProc and registered buffers used is less than maxThreshold. As a

result, the available registered memory is allocated to only processes that have higher

communication activity and higher probability of buffer reuse.

5.5 Evaluation

To demonstrate the capabilities of Open PRO-MPI we ran experiments to measure

the impact of profile-based protocol reconfigurations on both synthetic microbench-

marks and application performance. In this section, we describe the experimental

testbed used for the experiments, briefly describe the benchmarks and application,

and present experimental results and provide analysis.

5.5.1 Setup

We ran all our experiments on the Pequena cluster at University of New Mexico

Center for Advanced Research Computing. The cluster is a 22 node Altix ICE

system with an Infiniband interconnect [73]. Each compute node has two 3.0 GHz

86



Chapter 5. Open PRO-MPI Implementation

Intel Xeon processors each with four cores, 16GB of memory, and runs SUSE Linux

with kernel version 2.6.16 and OpenFabric’s OpenIB network stack. We compared

the PRO-MPI MPI implementations with Open MPI (version 1.4).

5.5.2 Benchmark and Applications

• Micro-benchmark: To understand and estimate the performance benefits of

using connection-protocol reconfiguration, we implemented a synthetic bench-

mark that imitates changing communication characteristics of an application,

and then compared its performance while using profiled PRO-MPI and Open

MPI.

The benchmark can change communication characteristics such as message size

and distribution, processes participating in a communication, and messages

exchanged between a process pair. It can also define application steps, and can

vary communication characteristics between the time steps.

• HPC Challenge: This is an application benchmark for measuring various as-

pects of machine (clusters, supercomputers) performance like FLOP/s, memory

bandwidth, memory read/write, network latency, and bandwidth [76]. It con-

sists of 7 tests : PTRANS, DGEMM, STREAM, HPL, RandomAccess, FFT,

Communication bandwidth and latency.

In our experiments, we use PTRANS and MPI FFT (a parallel version of

FFT) to measure the performance impact of buffer-registered reconfiguration.

PTRANS is a test that measures memory bandwidth of the system by trans-

ferring a large array of data from multiple processor’s memory. MPI FFT is

a test that measures floating point rate of execution by computing the fast

Fourier transform operation.

• SAMRAI is a popular C++ software framework developed to implement par-

87



Chapter 5. Open PRO-MPI Implementation

allel adaptive multi-physics applications [77]. It has been used to simulate

black holes, dispersion of airborne materials, spread of fire, and interaction of

laser and liquid plasma.

In our experiments, we ran SAMRAI’s spherical shock wave problem for 10

time steps with the coarsest domain fixed to [40, 40, 40] and varying refinement

levels. This problem has dynamic communication characteristics; in particular,

the processes that communicate change in each time step [10].

• HyperCLaw is a hybrid C++/Fortran AMR code developed and maintained

by Lawrence Berkeley National Laboratory [78]. Our experiments used an

AMR gas dynamics application data set which models the interaction of a

Mach 1.25 shock in air hitting a helium bubble for 10 time steps with base grid

of size [32, 8, 8].

5.5.3 Synthetic Benchmark Results

To understand the performance impact on applications with changing communication

characteristics when using reconfigurable libraries, we measured synthetic benchmark

performance with Open PRO-MPI and Open MPI. Figure 5.4 and 5.5 shows that

protocol reconfiguration increases in effectiveness with both increasing number of

processes and messages sent per process, with 40% performance improvements over

OpenMPI’s static choice of connections to send-receive or RDMA protocol.

Figure 5.4, in particular, shows the impact of connection-protocol reconfigura-

tion on the benchmark’s runtime as the number of processes participating in the

communication increases. Each data point in the Figure 5.4 shows the performance

improvement of PRO-MPI over Open MPI for a certain problem size. For each data

point, we ran the benchmark for 10 time steps, where the benchmark was configured

to imitate ideal communication characteristics for PRO-MPI–messages exchanged

88



Chapter 5. Open PRO-MPI Implementation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70

W
a

ll 
T

im
e

 P
e

rc
e

n
t 

Im
p

ro
v
e

m
e

n
t

Processes

Increasing number of processes where each process sends 1000 msgs of size
1KB

Figure 5.4: PRO-MPI performance improvement over Open MPI on a synthetic commu-
nication benchmark

between any two process changed during time step 1 and other time steps. For

these characteristics, Open MPI assigns RDMA connections to process pairs that

exchange messages during startup. Although PRO-MPI assignment is similar to

Open MPI for the first time step, it changes the assignment for other time steps.

It assigns RDMA connections based on the process priorities (messages exchanged).

As a result, PRO-MPI utilizes RDMA resources more efficiently.

Figure 5.5 shows the impact of reconfiguration when the number of messages sent

by each process increases. For all data points in Figure 5.5, the problem size was

89



Chapter 5. Open PRO-MPI Implementation

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  500  1000  1500  2000  2500  3000  3500  4000

W
a

ll 
T

im
e

 P
e

rc
e

n
t 

Im
p

ro
v
e

m
e

n
t

Messages per process

Increasing messages sent per process in a 32-process problem

Figure 5.5: PRO-MPI performance improvement over Open MPI on a synthetic commu-
nication benchmark

kept constant (32-process problem), and the benchmark was configured to imitate

communication characteristics similar to the experiment in Figure 5.4. However

between data points we increased the messages exchanged between a process pair.

From Figure 5.5, we observe the protocol reconfiguration increases the performance

with increasing number of messages per process.

90



Chapter 5. Open PRO-MPI Implementation

5.5.4 Application Performance with Connection-protocol Re-

configuration and Exact Profiles

16 process
32 process
64 process

  2%

  2.5%

  3%

  3.5%

  4%

  4.5%

  5%

  5.5%

HyperCLawSAMRAI

R
e
d
u
ct

io
n
 in

 p
ro

g
ra

m
 r

u
n
tim

e
 (

%
)

Figure 5.6: SAMRAI and HyperCLaw performance improvement using PRO-MPI
(connection-protocol reconfiguration) with exact profiles

To measure connection-protocol reconfiguration impact on the performance of

SAMRAI and HyperCLaw applications at different node counts, we compared the

performance of Open MPI runs and profiled PRO-MPI runs of these applications at

low refinement levels on 16, 32, and 64 nodes. Low mesh refinement levels were used

both to limit application runtime. Each test was run 5 times.

Figure 5.6 shows the performance impact of connection-protocol reconfiguration

on SAMRAI and HyperCLaw problems with exact performance profiles. SAMRAI

performance is improved by 5.5% for a 64 process problem, and the performance

improvement increases as the number of processes in the problem increases. Similarly,

HyperCLaw performance improves by 2.7% for the 64 process problem, and the

performance improvement increases slowly with increasing process counts.

91



Chapter 5. Open PRO-MPI Implementation

 0

 2

 4

 6

 8

 10

 12

 14

16 32 64

In
c
re

a
s
e
 i
n
 F

L
O

P
/s

(%
)

Processes

50% of processes use RDMA Direct

Figure 5.7: FFT performance improvement using PRO-MPI (registered-buffer reconfig-
uration) with exact profiles

Analysis

To understand the source of the observed performance improvements we profiled the

communication characteristics of the applications while they used PRO-MPI and

Open MPI for communication. As shown in Figure 5.8, on 64 nodes, while using

exact profiles, HyperCLaw sends up to 20% RDMA messages when using PRO-MPI

and up to 1% when using Open MPI with the same number of allowed RDMA con-

nections. Similarly, SAMRAI sends 13 times more RDMA messages when using

PRO-MPI instead of Open MPI with the same number of RDMA connections. This

demonstrates that PRO-MPI’s performance improvements are the result of more

efficient use of RDMA connections compared to random assignment of RDMA con-

nections to peers.

92



Chapter 5. Open PRO-MPI Implementation

 RDMA Msgs
Send Recv Msgs

  0%

  20%

  40%

  60%

  80%

  100%

O
p

en
~

M
P

I

P
R

O
−

M
P

I

O
p

en
~

M
P

I

P
R

O
−

M
P

I

T
o

ta
l 

m
es

sa
g

es

HyperCLaw Samrai

Figure 5.8: PRO-MPI communication chracteristics of HyperCLaw and SAMRAI while
using PRO-MPI and Open MPI.

Although using PRO-MPI for communication has performance benefits, it adds

overhead of creating and destroying RDMA connections at every reconfiguration

point. Also, using RDMA requires dedicated memory buffers and a certain amount

of polling overhead. Our results show that these overheads can be amortized when

sufficiently many messages are exchanged between processes during each application

phase. Also, applications can realize significant performance benefits while still using

a relatively low maxRDMA value in order to limit both memory usage and polling

overhead. For our tests, we used maxRDMA = 4; attempting to use more RDMA

connections (e.g. maxRDMA = 8) did not improve application performance in tests

we ran.

93



Chapter 5. Open PRO-MPI Implementation

5.5.5 Application Performance with Registered-buffer Re-

configuration and Exact Profiles

To measure the impact of registered-buffer reconfiguration on application perfor-

mance, we compared the performance of the HPC Challenge benchmark on Open

MPI and Open PRO-MPI. Because of its higher memory use, we used the bench-

mark’s MPI FFT kernel to measure the performance impact [79].

Figure 5.7 shows the performance impact of registered-buffer reconfiguration on

MPI FFT with exact performance profiles. For all data points, we limited caching of

memory registrations to 250 MB. Therefore until the limit, the processes could use

RDMA Direct protocol and after this limit, the processes send all messages using

RDMA Pipeline protocol. Since there was limited registered memory, processes were

prioritized for using RDMA Direct protocol. The priority was based on messages

exchanged between process pairs. For all data points in the figure 5.7 maxProc

was fixed to half the problem size (for example, 16 for a 32-process problem). This

would maximize the use of registered buffers more efficiently. In the figure, we could

observe that MPI FFT performance was improved by 14% when 50% of processes

could use RDMA Direct protocol and rest of the processes were using only RDMA

Pipeline protocols.

5.5.6 Application Performance with Inexact Profiles

In Sections 5.5.4 and 5.5.5, we showed the performance impact of protocol reconfigu-

rations using exact profiles. However, exact profiles may not be available or may be

difficult or time-consuming to produce. We show experiments studying how profiles

from one run can be used to improve the performance of an application on related

input data.

94



Chapter 5. Open PRO-MPI Implementation

Open MPI
PRO−MPI Exact
PRO−MPI Inexact

  0%

  20%

  40%

  60%

  80%

  100%

SAMRAIHyperCLaw

N
o

rm
a

liz
e

d
 R

u
n

tim
e

Figure 5.9: Performance improvement using profile collected at low mesh refinement (3
for SAMRAI, 2 for HyperCLaw) to optimize communication in application
run with higher mesh refinement (4 for SAMRAI, 3 for HyperCLaw) on 32
nodes. Numbers represent the average of 5 runs.

Figure 5.9 shows that performance profiles collected from lower-refinement runs

can be used to substantially improve the performance of more time-consuming high-

refinement runs. Specifically, profiles from refinement 2 HyperCLaw runs can be

used to improve the performance of refinement 3 HyperCLaw runs by approximately

16%. We also observed performance improvement in SAMRAI runs, though more

Open MPI
PRO−MPI Exact
PRO−MPI Inexact

  90%

  95%

  100%

  105%

  110%

  115%

  120%

HyperCLaw

P
e

rc
e

n
t 

o
f 

W
a

ll 
T

im
e

Figure 5.10: Performance improvement using profile collected at low problem size (pro-
cesses=16) to optimize communication in application run with higher prob-
lem size(processes=32). Numbers represent the average of 5 runs.

95



Chapter 5. Open PRO-MPI Implementation

 RDMA Msgs
Send Recv Msgs

  0%

  20%

  40%

  60%

  80%

  100%

O
p

en
~

M
P

I

P
R

O
−

M
P

I~
E

x
ac

t

P
R

O
−

M
P

I~
In

ex
ac

t

O
p

en
~

M
P

I

P
R

O
−

M
P

I~
E

x
ac

t

P
R

O
−

M
P

I~
In

ex
ac

t

T
o

ta
l 

m
es

sa
g

es

HyperCLaw Samrai

Figure 5.11: Communication chracteristics of HyperCLaw and SAMRAI while using Ex-
act and Inexact profiles. Profiles of lower refinement level where used to
drive a reconfiguration in higher refinement level problem.

modest ones than those observed in HyperCLaw.

 RDMA Msgs
Send Recv Msgs

  0%

  20%

  40%

  60%

  80%

  100%

O
p

en
~

M
P

I

P
R

O
−

M
P

I~
C

o
p

y

P
R

O
−

M
P

I~
E

x
ac

t

T
o

ta
l 

m
es

sa
g

es

HyperCLaw

Figure 5.12: Communication chracteristics of HyperCLaw while using Exact and Inexact
profiles. Profiles of lower problem size (procs =16) where used to drive a
reconfiguration in higher problem size (procs =32).

96



Chapter 5. Open PRO-MPI Implementation

Figure 5.10 shows the performance improvement, when profiles collected from

smaller problem size is used to drive the reconfiguration of a larger problem size.

Particularly, profiles from a 16-process HyperCLaw were used to improve the per-

formance of 32-process HyperCLaw. To generate a profile for a 32-process problem

from 16-process problem, the profiler collected profiles of a n-process HyperCLaw

problem, and then the offline analyzer converted the profile to a 32-process problem

size profile by extrapolating the missing data.

Analysis

To understand the performance improvement, as in Sections 5.5.4 and 5.5.5, we

measured the percentage of RDMA and send/recv messages for each experiment.

Figure 5.11 compares communication characteristics of HyperCLaw and SAMRAI

while using no reconfiguration, and while using protocol reconfiguration with exact

and inexact profiles. Figure 5.12 compares communication characteristics of Hyper-

CLaw for a 32-process problem while using no reconfiguration, and using protocol

reconfiguration with exact and inexact profiles

As expected, the performance improvement was the result of using RDMA con-

nections efficiently. Comparing HyperCLaw results in Figure 5.9 and its character-

istics in Figure 5.11, we can observe that performance improvement and communi-

cation characteristics are similar while using exact and inexact profiles. Both while

using exact and inexact profiles, the percentage of RDMA messages was similar, and

was proportional to the performance improvement. Similarly, the performance im-

provement for HyperCLaw while using inexact profiles derived from smaller problem

size, was proportional to percentage of RDMA messages. However, for SAMRAI the

percentage difference of RDMA messages was very low (approximately 0.2 %), and

the performance difference was rather high (4%). This we believe is a consequence

of SAMRAI being latency sensitive.

97



Chapter 5. Open PRO-MPI Implementation

5.5.7 Reconfiguration Overhead

Both connection-protocol and register-buffer reconfigurations add overhead to the

application runtime. This section discusses the overhead added by each reconfigu-

ration, and analyzes when enabling reconfigurations can lead to the improvement in

application performance.

Connection-protocol Reconfiguration Overhead

In the connection-protocol reconfiguration, the overhead is the result of establishing

and reseting the RDMA connections at each reconfiguration point. In Open PRO-

MPI, the RDMA connections are established by allocating the receive fragments

and registered buffers at an origin process, and then sending this information to

a destination process. To reset a RDMA connection, the origin process frees the

receive fragments and registered buffers. It needs to acquire a RDMA lock to free

the registered buffers and the receive fragments; the RDMA lock provides exclusive

access to the buffers and also ensures that there are no waiting receives on the

buffer. Besides the RDMA lock, it requires the endpoint lock to change the state of

the process, and the Infiniband lock to update the number of RDMA connections.

When the connection-protocol reconfiguration is enabled in Open PRO-MPI, the

reconfiguration overhead for the origin process to establish n RDMA connections at

m reconfiguration points is:

RDMAm
connect = m ∗ n ∗ Lc; Latency of a control message

And, the overhead to reset n RDMA connections is:

WLock = WRDMA + Wendpoint + WInfiniband

Where:

WRDMA, Wendpoint, WInfiniband - the wait times for acquiring the RDMA lock, the

98



Chapter 5. Open PRO-MPI Implementation

endpoint lock and the Infiniband lock.

Besides the above overhead, during reconfiguration, all messages that were to be

sent on RDMA connections are sent using send/receive protocol. As a result, this

increases the latency of the messages. Also, some of the messages are delayed as

the locks are acquired by the reconfiguration manager for reconfiguration. This also

increases the latency of the messages. However, since Open PRO-MPI implemen-

tations are configured to reconfigure at the end of an application phase (where an

application is assumed to reach a quiescent state), it is safe to assume that very few

messages are exchanges during this time.

Overhead of connection-protocol reconfiguration when n RDMA connections are

established, and reset at m reconfiguration points is:

Overheadconnection−protocol = Rmn
connection + WLock

As seen in this section, the connection-protocol reconfiguration improves the per-

formance of an application by increasing the utilization of available limited RDMA

connections. For the reconfiguration to improve the application performance, its

should send more messages using the limited RDMA connections.

RDMAmessages
connection−protocol > RDMAmessages

no−reconfiguration

and

L
′

RDMA + L
′

send/recv − LRDMA + Lsend/recv > Overheadconnection−protocol

Where:

L
′
RDMA, L

′

send/recv - the total latency of messages sent using RDMA and send/recv

protocols while using the connection-protocol reconfiguration.

LRDMA, Lsend/recv - the total latency of messages sent using RDMA and send/recv

protocols with no reconfiguration enabled.

99



Chapter 5. Open PRO-MPI Implementation

Registered-buffer Reconfiguration Overhead

In the registered-buffer reconfiguration, the reconfiguration overhead is the result of

registering and de-registering memory buffers during a message transfer. At each

reconfiguration point, all memory buffer registrations that are cached in the RCache

are removed from the cache and de-registered. If any of these memory buffers are

re-used by the application, they are re-registered during the message transfer and

cached in the RCache. In Open MPI, however, when the RDMA Direct protocol

is used these registered buffers would have not been removed from the cache or de-

registered. Thus this reconfiguration adds the overhead which is de-registering and

registering of a memory buffer.

Overheadregistered−buffer = n ∗ tde−register
s +

m∑

k=1

Lk registering
s − Lk without registering

s

This can be simplified to

Overheadregistered−buffer = n ∗ tde−register
s + m ∗ tregister

s

Where:

n - the number of buffers that are de-registered at a reconfiguration point.

m - the number of buffers that are registered between any two reconfiguration points.

tde−register
s , tregister

s - the overhead for de-registering a buffer of size s.

Lk registering
s - the latency of a message of size s along with the cost of registering its

buffer.

Lk without registering
s - the latency of a message of s without including the cost of

registering its buffer.

Given the overhead of the registered-buffer reconfiguration, we can decide whether

it is advantageous to use RDMA Direct protocol based on the buffer re-use charac-

100



Chapter 5. Open PRO-MPI Implementation

teristics.

Lregistering
s −Lwithoutregistering

s + tde−register < R ∗ (LRDMA Pipeline
s −LRDMA Direct

s )

Where:

R - the number of times a memory buffer is used between any two reconfiguration

points.

Lregistering
s - the latency of a message of size s along with the cost of registering its

buffer.

Lwithoutregistering
s - the latency of a message of size s without including the cost of

registering its buffer.

LRDMA Pipeline
s - the latency of a message of size s while using the RDMA Pipleline

protocol.

LRDMA Direct
s - the latency of a message of size s while using the RDMA Direct pro-

tocol.

5.6 Summary

This chapter presented Open PRO-MPI, a implementation of PRO-MPI that sup-

ported full MPI-2 semantics. It also described two reconfigurations – connection-

protocol reconfiguration and registered-buffer reconfiguration – that were imple-

mented in Open PRO-MPI. The goal of connection-protocol reconfiguration was to

improve application performance by increasing utilization of available limited RDMA

connections, and the goal of registered-buffer reconfiguration was to improve applica-

tion performance by taking advantage of limited registered buffers. The chapter also

presented methods to generate application profiles for resource-intensive problems

from the profiles of low-cost problems.

101



Chapter 5. Open PRO-MPI Implementation

The chapter presented results showing the performance impact of using Open

PRO-MPI and reconfigurations on HPC applications and benchmarks. The results

demonstrated that reconfigurations improved HPC application and benchmark per-

formance. It showed that exact-profile driven reconfiguration improved HyperCLaw

performance by 22% and SAMRAI performance by 5.5%. It also showed that inexact-

profile driven reconfiguration improved performance of HyperCLaw that was compa-

rable to performance improvement obtained by exact-profile driven reconfiguration.

However, inexact-profile driven reconfiguration improved SAMRAI performance only

marginally.

102



Chapter 6

Conclusions

6.1 Summary

This dissertation presented PRO-MPI, a framework for constructing reconfigurable

MPI implementations. Also, it demonstrated how reconfigurable MPI could be used

to improve the performance of HPC applications and benchmarks with dynamic

communication characteristics. To improve performance, PRO-MPI framework col-

lects the applications characteristics to understand the application behavior, and

drive a reconfiguration in MPI implementations. The goal of the reconfiguration is

to tailor the protocol functionality of an MPI implementation to match application

requirements.

In Chapter 2, we described prior work that dealt with constructing configurable

protocol stacks, and support for reconfiguration and adaptation in current MPI im-

plementations. None of these frameworks were geared towards constructing reconfig-

urable communication systems for high-performance computing. They all lacked sup-

port for high-performance network interfaces, and performance driven abstractions

required. They were designed, developed, and implemented either for distributed

103



Chapter 6. Conclusions

network systems or mobile systems. All current MPI implementations, mentioned

here, provided only a limited support for reconfiguration and adaptation; none of

them enabled full-fledged support for functional reconfiguration.

Chapter 3 described the architecture of PRO-MPI framework. It comprised of

four main components: profiler, analyzer, communication layer and reconfiguration

manager. Each of these components had a specific functionality to realize profile-

driven reconfigurable MPI implementation. The profiler collects application infor-

mation to construct application communication profile, and the analyzer uses this

profile to provide a series of changes to MPI protocol functionality. The commu-

nication layer provides an MPI implementation that is functionally modular. And,

the reconfiguration manager ensures that protocol changes were executed on the

communication layer.

Chapter 4 described Cactus PRO-MPI, which is a reconfigurable MPI implemen-

tation based on PRO-MPI framework that used CTP as a communication layer.

CTP, a configurable transport protocol, based on Cactus system, allows protocol

functionality to built from composable smaller modules. The functional composition

provides the ability to mix and match the protocol functionality of the transport

protocol, and also potentially the ability to change its functionality at runtime. The

extensions and modifications, described in Chapter 4 to CTP enabled it to provide

an reconfigurable MPI implementation. Additional extensions – profiler, analyzer

and reconfiguration manager – enabled Cactus PRO-MPI to change its function-

ality in response to changing application characteristics. Also in this chapter, we

presented results that demonstrated Cactus PRO-MPI could improve performance

characteristics of HPC applications.

In Chapter 5, we described another PRO-MPI based reconfigurable MPI im-

plementation, Open PRO-MPI. It used Open MPI as an communication layer im-

plementing MPI. Open PRO-MPI supported full MPI-2 specification unlike Cactus

104



Chapter 6. Conclusions

PRO-MPI, which only supported point-to-point MPI semantics. Addition of profiler,

analyzer, and reconfiguration manager enabled profile-driven reconfiguration in Open

PRO-MPI. Also, adding two reconfiguration implementations (connection-protocol

reconfiguration and registered-buffer reconfiguration) demonstrated that this frame-

work could be used to implement many reconfigurations. Using these reconfigura-

tions, we demonstrated that Open PRO-MPI can improve the performance of HPC

applications and benchmarks.

Finally, also in Chapter 5, we provided methods to construct the inexact appli-

cation profiles from an exact application profile of the same application. Results

in the Chapter 5 showed that these approximate profiles could be used to drive a

reconfiguration and improve application performance.

6.2 Future Work

The work in the dissertation could be extended in number of different directions.

Many new reconfigurations can be added to PRO-MPI that can improve the perfor-

mance of other HPC applications. The framework can be extended to help construct

reconfigurable communication libraries for multi-core and hybrid architectures. This

section elaborates more on these directions.

By adding new reconfigurations, the reconfigurable MPI implementations could

improve performance of many more HPC applications. Research has shown that per-

formance of the applications can be improved by selecting algorithms for collective

operations based on the machine topology and application characteristics such as

message size and type [14, 16, 41]. This framework enables adding such reconfigura-

tions to the current implementations, and studying the performance impact on the

application performance.

105



Chapter 6. Conclusions

With growing usage of multi-core processors in HPC machines, designing com-

munication libraries that take advantage of these cores for parallelism is very im-

portant. PRO-MPI and the reconfigurable MPI implementations described in this

dissertation may provide a better paradigm for constructing communication libraries

for machines with multi-cores and hybrid architecture nodes. Research has demon-

strated that event-based software design provides the concurrency and granularity

to build efficient communication libraries for multi-core architectures [80, 81]. In

Cactus PRO-MPI, which is an event-based MPI implementation, the smallest unit

of functionality is implemented as a event handler. These handlers each can be

mapped onto different POSIX-type threads. The threads that are independent can

be mapped onto different processor cores for load balancing, improving parallelism

or for the better utilization of computing power.

106



References

[1] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface, July 1997. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html.

[2] Message Passing Interface Forum. MPI: A message-passing interface standard.
The International Journal of Supercomputer Applications and High Performance
Computing, 8, 1994.

[3] The MPI Forum. MPI: A message-passing interface standard. International
Journal of Supercomputer Application, 8(3/4):165–416, 1994.

[4] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. Open MPI:
A flexible high performance MPI. In Proceedings, 6th Annual International
Conference on Parallel Processing and Applied Mathematics, Poznan, Poland,
September 2005.

[5] Jeffrey M. Squyres and Andrew Lumsdaine. The component architecture of
Open MPI: Enabling third-party collective algorithms. In Vladimir Getov and
Thilo Kielmann, editors, Proceedings, 18th ACM International Conference on
Supercomputing, Workshop on Component Models and Systems for Grid Appli-
cations, pages 167–185, St. Malo, France, July 2004. Springer.

[6] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Im-
plementation of MPI. Mathematics and Computer Science Division, Argonne
National Laboratory, 1996. ANL-96/6.

[7] Fabrizio Gagliardi. HPC Opportunities and Challenges in e-Science. In ICCS
’08: Proceedings of the 8th international conference on Computational Science,
Part I, pages 18–19, Berlin, Heidelberg, 2008. Springer-Verlag.

[8] Earl Joseph, Jei Wu, Steve Conway, and Suzy Tichenor. Council on competi-
tiveness study of innovation, competitiveness, and HPC, 2008.

107



References

[9] http://www.top500.org/.

[10] Jeffrey S. Vetter and Frank Mueller. Communication characteristics of large-
scale scientific applications for contemporary cluster architectures. J. Parallel
Distrib. Comput., 63(9):853–865, 2003.

[11] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural require-
ments of parallel scientific applications with explicit communication. In ISCA
’93: Proceedings of the 20th annual international symposium on computer ar-
chitecture, pages 2–13, New York, NY, USA, 1993. ACM.

[12] Shoaib Kamil, Ali Pinar, Daniel Gunter, Michael Lijewski, Leonid Oliker, and
John Shalf. Reconfigurable hybrid interconnection for static and dynamic sci-
entific applications. In CF ’07: Proceedings of the 4th international conference
on Computing frontiers, pages 183–194, New York, NY, USA, 2007. ACM.

[13] Manjunath Gorentla Venkata, Patrick G. Bridges, and Patrick M. Widener.
Using Application Communication Characteristics to Drive Dynamic MPI Re-
conguration. In Proceedings of the 23rd IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS),CAC Workshop, Rome, Italy, May
2009.

[14] J Pjesivac-Grbovic, G Fagg, T Angskun, G Bosilca, and J Dongarra. MPI Col-
lective Algorithm Selection and Quadtree Encoding. Lecture Notes in Computer
Science, Vol. 4192, Number 2006:pp. 40–48, 2006.

[15] Manjunath Gorentla Venkata and Patrick G. Bridges. MPI/CTP: A reconfig-
urable MPI for HPC applications. In Dieter Kranzlmüller, Peter Kacsuk, Jack
Dongarra, and Jens Volkert, editors, Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface: 13th European PVM/MPI Users’ Group
Meeting, volume 4192 of Lecture Notes in Computer Science. Springer-Verlag,
2006.

[16] George Almási, Philip Heidelberger, Charles J. Archer, Xavier Martorell,
C. Chris Erway, José E. Moreira, B. Steinmacher-Burow, and Yili Zheng. Op-
timization of MPI collective communication on BlueGene/L systems. In ICS
’05: Proceedings of the 19th annual international conference on Supercomput-
ing, pages 253–262, New York, NY, USA, 2005. ACM.

[17] David G. Solt. A profile-based approach for topology aware MPI rank placement.
In High Performance Computation Conference (HPCC), Springer Lecture Notes
in Computer Sciences, 2007.

108



References

[18] Norm Hutchinson and Larry L. Peterson. The x-kernel: An architecture for
implementing network protocols. IEEE Transactions on Software Engineering,
17(1):64–76, 1991.

[19] Norm Hutchinson, Larry L. Peterson, Sean O’Malley, and M. Abbott. RPC in
the x-kernel: Evaluating new design techniques. In Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pages 91–101, Litchfield Park, AZ,
1989.

[20] Norm Hutchinson and Larry L. Peterson. The design of the x-kernel. In Pro-
ceedings of ACM SIGCOMM ’88, pages 65–75, 1988.

[21] Matti A. Hiltunen and Richard D. Schlichting. The Cactus Approach to Building
Configurable Middleware Services. In Proceedings of the Workshop on Depend-
able System Middleware and Group Communication (DSMGC 2000), Nurnberg,
Germany, 2000.

[22] Patrick G. Bridges, Matti A. Hiltunen, Richard D. Schlichting, Gary T. Wong,
and Matthew Barrick. A configurable and extensible transport protocol.
ACM/IEEE Transactions on Networking, 15(6):1254–1265, December 2007.

[23] R. X. Wu, A. A. Chien, M. A. Hiltunen, R. D. Schlichting, and S. Sen. A high
performance configurable transport protocol for grid computing. In CCGRID
’05: Proceedings of the Fifth IEEE International Symposium on Cluster Com-
puting and the Grid (CCGrid’05) - Volume 2, pages 1117–1125, Washington,
DC, USA, 2005. IEEE Computer Society.

[24] Hugo Miranda, Alexandre Pinto, and Luis Rodrigues. Appia: A Flexible Proto-
col Kernel Supporting Multiple Coordinated Channels. Distributed Computing
Systems, International Conference on, 0:0707, 2001.

[25] Sergio Mena, Xavier Cuvellier, Christophe Grgoire, and Andr Schiper. Appia
vs. Cactus: Comparing Protocol Composition Frameworks. In Proceedings of
22th IEEE Symposium on Reliable Distributed Systems (SRDS03, 2003.

[26] Hugo Miranda and Lus Rodrigues. Communication support for multiple QoS
requirements, 1999.

[27] S. Michiels, F. Matthijs, D. Walravens, and P. Verbaeten. Position summary:
DiPS: A unifying approach for developing system software. In Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems (HotOS-VIII), 2001.

[28] Sam Michiels and Petrus Verbaeten. Component Framework Technology for
Flexible Protocol Stacks. In Proceedings of the 1st Flanders Engineering PhD
Symposium, December 2003.

109



References

[29] Kenneth P. Birman, R. Renesse, and W. Vogels. The Ensemble distributed
communication system. http://simon.cs.cornell.edu/Info/Projects/Ensemble/,
1996.

[30] Mark Hayden. The Ensemble system. Technical Report TR98-1662, Department
of Computer Science, Cornell University, 1998.

[31] Robert van Renesse, Kenneth P. Birman, Mark Hayden, Alexey Vaysburd, and
David A. Karr. Building adaptive systems using Ensemble. Technical report,
Cornell University, Ithaca,NY, 1997.

[32] Galen Mark Shipman, Tim S. Woodall, George Bosilca andRich L. Graham, and
Arthur B. Maccabe. High performance RDMA protocols in HPC. In Proceedings,
13th European PVM/MPI Users’ Group Meeting, Lecture Notes in Computer
Science, Bonn, Germany, September 2006. Springer-Verlag.

[33] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[34] Galen M. Shipman, Timothy S. Woodall, Richard L. Graham, Arthur B. Mac-
cabe, and Patrick G. Bridges. Infiniband scalability in OpenMPI. In Proceedings
of the 20th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2006.

[35] William D. Gropp and Ewing Lusk. Installation Guide for mpich, a Portable
Implementation of MPI. Mathematics and Computer Science Division, Argonne
National Laboratory, 1996. ANL-96/5.

[36] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI message passing interface
standard. Parallel Computing, 22(6):789–828, September 1996.

[37] Jiesheng Wu, Jiuxing Liu, P. Wyckoff, and D. Panda. Impact of on-demand con-
nection management in MPI over VIA. Cluster Computing, 2002. Proceedings.
2002 IEEE International Conference on, pages 152–159, 2002.

[38] L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with
Message-Driven Objects. In Gregory V. Wilson and Paul Lu, editors, Paral-
lel Programming using C++, pages 175–213. MIT Press, 1996.

110



References

[39] Chao Huang, Orion Lawlor, and L. V. Kalé. Adaptive MPI. In Proceedings of
the 16th International Workshop on LanguaDynges and Compilers for Parallel
Computing (LCPC 03), College Station, Texas, October 2003.

[40] M. Bhandarkar, L.V. Kale, E. de Sturler, and Jay Hoeflinger. Adaptive load
balancing for MPI programs. In Proceedings of International Conference on
Computational Science, pages 108–117, San Francisco, CA, 2001.

[41] Ahmad Faraj, Xin Yuan, and David Lowenthal. STAR-MPI: self tuned adaptive
routines for MPI collective operations. In ICS ’06: Proceedings of the 20th
annual international conference on Supercomputing, pages 199–208, New York,
NY, USA, 2006. ACM.

[42] Ahmad Faraj and Xin Yuan. Automatic generation and tuning of MPI collective
communication routines. In ICS ’05: Proceedings of the 19th annual interna-
tional conference on Supercomputing, pages 393–402, New York, NY, USA, 2005.
ACM.

[43] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffery K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. The Paradyn parallel performance measurement tool. IEEE
Computer, 28(11):37–46, 1995.

[44] Kevin A. Huck, Allen D. Malony, Sameer Shende, and Alan Morris. TAUg: Run-
time global performance data access using MPI. In Proceedings of EuroPVMPI,
2006.

[45] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of
black boxes. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (SOSP-19), Bolton Landing, NY, 2003.

[46] J. M. Anderson, L. M. Berc, S. Ghemawat J. Dean, M.R. Henzinger, S. A.
Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: where have all the cycles gone? ACM Transactions on
Computer systems, 15(4):357–390, 1997.

[47] Jeffrey S. Vetter. Dynamic statistical profiling of communication activity in
distributed applications. In Proceedings of SIGMETRICS 2002, 2002.

[48] Matthew J. Sottile and Ronald G. Minnich. Supermon: A high-speed cluster
monitoring system. In IEEE Conference on Cluster Computing, September 2002.

111



References

[49] Matthew L. Massie, Brent N. Chun, and David E. Culler. The Ganglia dis-
tributed monitoring system: Design, implementation, and experience. Parallel
Computing, May 2004.

[50] Wenbin Zhu, Patrick G. Bridges, and Arthur B. Maccabe. Lightweight appli-
cation monitoring and tuning with embedded gossip. IEEE Transactions of
Parallel and Distributed Systems (TPDS), 2008. Accepted for Publication.

[51] Wenbin Zhu, Patrick G. Bridges, and Arthur B. Maccabe. Light-weight appli-
cation monitoring and tuning with embedded gossip. In Proceedings of the 2007
SIGMETRICS Student Workshop, June 2007.

[52] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan.
Magpie: online modelling and performance-aware systems. In Proceedings of
the Workshop on Hot Topics in Operating Systems (HOTOS-IX), Lihei, Hawaii,
2003.

[53] Clint Whaley Antoine, Antoine Petitet, and Jack J. Dongarra. Automated
empirical optimization of software and the ATLAS project. Parallel Computing,
27:2001, 2000.

[54] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture
for the FFT. In Proceedings of the IEEE Intl. Conference on Acoustics, Speec,
and Signal Processing (ICASSP ’98), volume 3, pages 1381–1384, Seattle, WA,
1998.

[55] Jeff Bilmes, Krste Asanovic, Jim Demmel, Dominic Lam, and Chee-Whye Chin.
Optimizing matrix multiply using PHiPAC: a Portable, High-performance,
ANSI C Coding methodology. Technical report, 1996.

[56] Gregory R. Andrews, Saumya K. Debray, Benjamin W. Schwarz, and
Matthew P. Legendre. Using link-time optimization to improve the performance
of MPI Programs. Technical report, 2001.

[57] Wenbin Zhu, Patrick G. Bridges, and Arthur B. Maccabe. Online critical path
profiling for parallel applications. In Proceedings of the 2005 IEEE International
Conference on Cluster Computing (Cluster 2005), Boston, MA, September 2005.

[58] David Kincaid and Ward Cheney. Numerical Analysis: Mathematics of Scientific
Computing. 2002.

[59] Matti A. Hiltunen, Richard D. Schlichting, Xiaonan Han, Melvin Cardozo, and
Rajsekhar Das. Real-time dependable channels: Customizing QoS attributes for
distributed systems. IEEE Transactions on Parallel and Distributed Systems,
10(6):600–612, 1999.

112



References

[60] Matti A. Hiltunen, Gary T. Wong, and Richard D. Schlichting. Dynamic mes-
sages: An abstraction for complex communication protocols. Software: Practice
and Experience, 2001. Submitted for publication.

[61] Gary T. Wong, Matti A. Hiltunen, and Richard D. Schlichting. A configurable
and extensible transport protocol. In Proceedings of IEEE INFOCOM ’01, pages
319–328, Anchorage, Alaska, 2001.

[62] Myricom, Inc. LANai 7, 1999. http://www.myri.com/vlsi/LANai7.pdf.

[63] Myricom, Inc. The GM API, 1999.

[64] Myricom, Inc. PCI64 Programmer’s Documentation, 2001.
http://www.myri.com/myrinet/PCI64/programming.html.

[65] Myricom, Inc. The GM message passing system. Technical report, Myricom,
Inc., 1997.

[66] http://mvapich.cse.ohio-state.edu/benchmarks.

[67] Ron Brightwell and Keith Underwood. Evaluation of an eager protocol opti-
mization for MPI. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface: Tenth European PVM/MPI Users’ Group Meeting, / 2003.

[68] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environ-
ment for MPI. In Proceedings of Supercomputing Symposium, pages 379–386,
1994.

[69] Los Alamos National Laboratories. The Los Alamos Message Passing Interface.
http://public.lanl.gov/lampi/.

[70] Graham E. Fagg and Jack J. Dongarra. FT-MPI: Fault Tolerant MPI, support-
ing dynamic applications in a dynamic world, 2000.

[71] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-
per-second local area network. IEEE Micro, 15(1):29–36, 1995.

[72] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-
enberg. The Quadrics network: High-performance clustering technology. IEEE
Micro, 22(1):46–57, /2002.

[73] InfiniBand Trade Association. http://www.infinibandta.org, 1999.

113



References

[74] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High performance
RDMA-Based MPI implementation over Infiniband. In In 17th Annual ACM
International Conference on Supercomputing (ICS 03, 2003.

[75] Wenbin Zhu. OS bypass investigation and experimentation. Master’s thesis,
The University of New Mexico, Computer Science Department, Albuquerque,
NM 87131, 2002.

[76] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F
Lucas, Rolf Rabenseifner, and Daisuke Takahashi. The HPC Challenge (HPCC)
benchmark suite. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 213, New York, NY, USA, 2006. ACM.

[77] Andrew M. Wissink, Richard D. Hornung, Scott R. Kohn, Steve S. Smith, and
Noah Elliott. Large scale parallel structured AMR calculations using the SAM-
RAI framework. In Supercomputing ’01: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), pages 6–6, New York, NY, USA, 2001.
ACM.

[78] Charles A. Rendleman, Vincent E. Beckner, Mike Lijewski, William Crutch-
field, and John B. Bell. Parallelization of structured, hierarchical adaptive mesh
refinement algorithms, 1999.

[79] Shuaiwen Song, Rong Ge, Xizhou Feng, Cameron, and Kirk W. Energy Profiling
and Analysis of the HPC Challenge Benchmarks. Int. J. High Perform. Comput.
Appl., 23(3):265–276, 2009.

[80] Supratik Majumder and Scott Rixner. An event-driven architecture for MPI
Libraries. In In Proceedings of the 2004 Los Alamos Computer Science Institute
Symposium, 2004.

[81] François Trahay, Élisabeth Brunet, Alexandre Denis, and Raymond Namyst. A
multithreaded communication engine for multicore architectures. In CAC 2008:
Workshop on Communication Architecture for Clusters, held in conjunction with
IPDPS 2008, Miami, FL, April 2008. IEEE Computer Society Press.

114


	University of New Mexico
	UNM Digital Repository
	5-1-2010

	A protocol reconfiguration and optimization system for MPI
	Manjunath Gorentla Venkata
	Recommended Citation


	Untitled

