
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2010

Efficient algorithms for phylogenetic post-analysis
Nicholas Pattengale

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Pattengale, Nicholas. "Efficient algorithms for phylogenetic post-analysis." (2010). https://digitalrepository.unm.edu/cs_etds/10

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/10?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Efficient Algorithms for
Phylogenetic Post-Analysis

by

Nicholas Dylan Pattengale

B.S., New Mexico Institute of Mining and Technology, 2001

M.S., Computer Science, University of New Mexico, 2005

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2010

c©2010, Nicholas Dylan Pattengale

iii

Dedication

To Mayah and April.

You inspire me to strive to fulfill my potential – this document being a case in point.

iv

Acknowledgments

Documents like this one are made possible only by the sacrifice and support of a
list of people too long to enumerate. Foremost – I would like to thank my advisor,
Bernard Moret, who is perhaps most responsible for my becoming the researcher that
I am today. I would also like to thank my committee for providing useful feedback
along the way – most notably at my proposal defense. My academic collaborators
(for the work presented in this dissertation) certainly deserve thanks – Eric Gottlieb,
Krister Swenson, Alexandros Stamatakis, Andre Aberer, Olaf Bininda-Emonds, and
Masoud Alipour. It should go without saying that family is integral in this whole
ordeal, and mine has been incredibly supportive, especially in the final push. My
employer (for the past 8 years), Sandia National Laboratories, also deserves mention,
as they have financed my entire graduate education and have been wholly supportive
of my academic goals. Finally, I am grateful to the entire scientific community – past
and present – for gifting me with such an enjoyable discipline to call my own.

v

“EXTREMELY SERIOUS WARNING

Unless you are as smart as Johann Karl Friedrich Gauss, savvy

as a half-blind Calcutta bootblack, tough as General William Tecumseh Sherman, rich

as the Queen of England, emotionally resilient as a Red Sox fan, and as generally able

to take care of yourself as the average nuclear missile submarine commander, you should

never have been allowed near this document. Please dispose of it as you would any piece

of high-level radioactive waste and then arrange with a qualified surgeon to amputate your

arms at the elbows and gouge your eyes from their sockets. This warning is necessary

because once, a hundred years ago, a little old lady in Kentucky put a hundred dollars

into a dry goods company which went belly-up and only returned her ninety-nine dollars.

Ever since then the government has been on our asses. If you ignore this warning,

read on at your peril – you are dead certain to lose everything you’ve got and live

out your final decades beating back waves of termites in a Mississippi Delta leper colony.

Still reading? Great. Now that we’ve scared off the lightweights, let’s get down to business.”

– Neal Stephenson, Cryptonomicon

vi

Efficient Algorithms for
Phylogenetic Post-Analysis

by

Nicholas Dylan Pattengale

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2010

Efficient Algorithms for
Phylogenetic Post-Analysis

by

Nicholas Dylan Pattengale

B.S., New Mexico Institute of Mining and Technology, 2001

M.S., Computer Science, University of New Mexico, 2005

Ph.D., Computer Science, University of New Mexico, 2010

Abstract

A variety of tasks are typically performed after a phylogenetic reconstruction

proper – tasks which fall under the category phylogenetic post-analysis. In this dis-

sertation, we present novel approaches and efficient algorithms for three post-analysis

tasks: taking distances between (typically, all pairs in a set of) trees, bootstrapping,

and building consensus trees.

For instance, it is often the case that reconstruction finds multiple plausible trees.

One basic way of addressing this situation is to take distances between pairs of trees,

in order to gain an understanding of the extent to which the trees disagree. The

most frequently employed manner for computing the distance between a tree pair

is the Robinson-Foulds metric, a natural dissimilarity measure between a pair of

phylogenetic trees. We present a novel family of algorithms for efficiently computing

the Robinson-Foulds metric.

viii

Bootstrapping is a post-analysis technique for drawing support values on tree

edges, and is often used for assessing the extent to which the underlying data (e.g.,

molecular sequences) supports a reconstructed tree. The basis of the approach is to

reconstruct many trees, called replicates, based on random subsampling of the orig-

inal data. However, to date, there has been little treatment in phylogeny regarding

the question of how many bootstrap replicates to generate. We propose bootstop-

ping criteria which are designed to provide on-the-fly (i.e., runtime) guidance for

determining when enough bootstrap replicates have been reconstructed.

Another common post-analysis task is to build a consensus tree, a summary

tree that attempts to capture the information agreed upon by bootstrap replicates.

Unfortunately, the most popular consensus methods are susceptible to confusion by

rogue taxa, i.e., taxa that cannot be placed with assurance anywhere within the tree.

We present novel theory and efficient algorithms to identify rogue taxa, as well as a

novel technique for interpreting the results (in the context of bootstrapping).

ix

Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Background, Motivation, and Terminology 1

1.1.1 Efficiently Computing the Robinson-Foulds Metric 7

1.1.2 How Many Bootstrap Replicates are Necessary? 9

1.1.3 Uncovering Hidden Phylogenetic Consensus 11

2 Efficiently Computing the Robinson-Foulds Metric 14

2.1 Background and Motivation . 14

2.1.1 Day’s Algorithm . 16

2.1.2 Hashing – Functions and Tables 18

2.1.3 Other Applications of Hashing in Phylogeny 21

2.2 Theoretical Basis for the Algorithm 22

x

Contents

2.2.1 Bit-Vector Representation . 23

2.2.2 Properties of ‖ · ‖p-Norms of Bit-Vectors 24

2.2.3 Reducing Dimensionality . 25

2.2.4 The Algorithm . 25

2.3 A Framework and Implementation Tradeoffs 27

2.3.1 Direct Embedding . 28

2.3.2 Improving Day’s Algorithm 29

2.3.3 Probability of Collision . 31

2.3.4 Speeding up Consensus Methods 32

2.4 Experiments . 38

2.4.1 Validating the Approximation Bounds 39

2.4.2 Consequences of Approximation 40

2.4.3 Performance . 41

3 How Many Bootstrap Replicates are Necessary? 45

3.1 Background and Motivation . 45

3.2 Related Work on Bootstopping Criteria 48

3.2.1 The Phylogenetic Bootstrap 48

3.2.2 General Bootstopping Criteria 49

3.2.3 Bayesian Convergence Criteria and Tools 51

3.3 Bootstopping Criteria . 52

xi

Contents

3.3.1 Stopping Criteria . 52

3.4 Implementation Considerations . 57

3.4.1 Application of Bipartition Hashing 57

3.4.2 Running Time Improvement 61

3.5 Experimental Setup and Results . 62

3.5.1 Experimental Setup . 62

3.5.2 Results for FC and WC Methods 64

3.5.3 Robustness of Criteria . 67

3.5.4 Convergence of Data Sets . 69

3.5.5 Comparison to Hedges Criterion 70

4 Uncovering Hidden Phylogenetic Consensus 74

4.1 Background and Motivation . 74

4.2 Relative Information Content, Consensus

Methods, and Rogue Taxa . 77

4.2.1 The measure and the problem 77

4.2.2 How bipartitions change under leaf deletion 79

4.2.3 Finding subsets of leaves to drop 80

4.3 The Algorithm . 81

4.4 Experimental Results . 83

4.4.1 Difficult instances . 83

xii

Contents

4.4.2 The r-Cherry Trees . 86

4.4.3 The Comb/Caterpillar . 87

4.4.4 Results on biological data . 89

4.4.5 Biological interpretation . 89

4.4.6 Increasing resolution . 91

4.5 Complexity Theoretic Aspects of MISC-C 92

4.5.1 MAST, MIST, and MR-MIST? 93

4.5.2 MFRC, MFRC-Cm
2

and MMDS 97

5 Conclusions 104

5.1 Robinson-Foulds Computations . 104

5.2 Bootstopping . 105

5.3 Uncovering Hidden Consensus . 106

References 108

xiii

List of Figures

2.1 A Summary of Day’s Algorithm . 19

2.2 A sketch of randomized embedding 26

2.3 Error bound between approximate and exact RF (50%) 39

2.4 Error bound between approximate and exact RF (10%) 39

2.5 RF clustering error . 41

2.6 Hashing RF collision analysis . 42

2.7 RF Algorithm Running Times . 43

3.1 Hedges’ Closed-Form Bootstop Recommendations 50

3.2 Bootstopping parameter p evaluation 54

3.3 Efficient bipartition hashing schematic 60

3.4 Bootstopping parameter ρ evaluation 65

3.5 Inherent convergence of bootstopping datasets 71

3.6 Criteria convergence on bootstopping datasets 72

3.7 Support value assessment of bootstopping 73

xiv

List of Figures

4.1 A difficult instance for consensus, easy for rogue identifier 84

4.2 The Cherry Tree with k = 1. 86

4.3 The Caterpillar Tree with 9 Taxa. 88

4.4 An instance requiring a 3-way merge. 88

4.5 Revealing hidden consensus with rogue identifier 90

4.6 MAST as lower bound (to maximize |B′|) counterexample 94

4.7 Swofford’s MIST motivating instance 95

4.8 An instance of overlapping subsets that reduces to MMDS 101

4.9 A (multifurcating) transformed instance of MMDS 102

4.10 A (bifurcating) transformed instance of MMDS 102

xv

List of Tables

2.1 Asymptotic Performance of Many RF Algorithms 31

2.2 RF Test Data Generation Parameters 40

3.1 Efficiency improvements for bootstopping in RAxML 62

3.2 Performance analysis of bootstopping with FC versus WC 64

3.3 More performance analysis of bootstopping with FC versus WC . . . 66

3.4 Robustness of WC bootstopping to replicate reordering 67

3.5 Robustness of FC bootstopping to replicate reordering 68

xvi

Chapter 1

Introduction

Let’s set the existence-of-God issue aside for a later volume, and just stipulate that in some way, self-replicating

organisms came into existence on this planet and immediately began trying to get rid of each other, either by

spamming their environments with rough copies of themselves, or by more direct means which hardly need to be

belabored. Most of them failed, and their genetic legacy was erased from the universe forever, but a few found some

way to survive and to propagate.

– Neal Stephenson, Cryptonomicon

1.1 Background, Motivation, and Terminology

Novel sequencing techniques are continuing (as they have been since the 1990s) to

drive a rapid accumulation of molecular data that in turn poses new challenges for the

development of scalable bioinformatics tools. Such is certainly the case for phyloge-

netic tree reconstruction, a field concerned with inferring evolutionary relationships

between organisms based on their molecular data. A phylogenetic tree is an unrooted

binary tree where currently living organisms for which molecular data is available

are located at the tips; the inner (ancestral) nodes of phylogenetic trees represent

1

Chapter 1. Introduction

common ancestors.1

The central problem in phylogeny is: given a set of extant taxa, what is the

most plausible tree describing their evolutionary history?. The term taxa refers to

taxonomical units (singular is taxon), and is often synonymous with organism. This

central problem is difficult to answer for many reasons. Perhaps the most profound

reason is that the true tree is typically unknowable.2 This is contrast to many other

optimization problems in computer science, where it is verifiable whether the optimal

solution equates to the desired/valid solution or not.

Another difficulty is that the space of possible trees is extremely large and seem-

ingly unstructured. To see how large the space of tree topologies is, consider how it

inductively grows as a function of the number of leaves. We proceed by only consid-

ering binary (unrooted) trees. The base case tree contains three leaves, one internal

node, and no internal edges (edges other than those incident upon leaves). To place a

fourth leaf (or any nth leaf on a tree containing n−1 leaves) while retaining the prop-

erty that the tree remains binary involves choosing one of the edges (internal or not),

splitting it with a new internal node, and attaching the nth leaf to the newly created

internal node. So when adding a fourth leaf, there are three possible edges which

can be split, and doing so will yield a tree with five edges. In general, a tree with n

leaves can take any one of (2n−5) ·(2n−7) ·(2n−9) . . .(2n−(2n−3)) ·1 = (2n−5)!!

unrooted binary topologies, a quantity which grows super-exponentially.

Also note that while a phylogenetic tree is indeed a tree, it is not the case that

standard computer science tree algorithms always directly apply. This is because the

trees here are leaf-labeled in the sense that the only nodes having known labels are

1A subtle point here – inner nodes in the true tree represent common ancestors, whereas
internal nodes in reconstructed trees are not guaranteed (nor expected) to do so.

2A small few exceptions exist, for example when a bacteria is used in the lab setting to
seed observable evolution, or when ancient DNA exists for a sufficiently large number of
ancestral species of the taxa under consideration [53].

2

Chapter 1. Introduction

the leaves. This is in contrast to more standard tree settings where either all nodes

have labels, or none have labels. In fact, the pertinent structure in phylogenetic trees

are the bipartitions of the leaf set induced by internal edges. That is, most of our

algorithms work directly with sets of bipartitions rather than trees represented in a

more standard fashion (such as a parent array). As such, phylogenetics is a fruitful

area for trailblazing new theory as it relates to these combinatorial structures that

are closely related to, but not quite the same, as the trees computer scientists are

used to treating algorithmically.

The actual tree reconstruction problem, which is typically phrased as a maxi-

mization problem over the space of all tree topologies, under widely used criteria

such as Maximum Parsimony [31] (MP) and Maximum Likelihood [27] (ML) is NP-

hard [19, 32] and very computationally challenging in practice. Despite this, signif-

icant progress has been achieved in making MP and ML practical approaches for

large-scale reconstruction. Programs such as TNT [37] for parsimony, and RAxML,

GARLI [93], MrBayes [72] and PhyloBayes [54] for likelihood now allow for recon-

struction of phylogenies that contain more than 70,000 organisms [73, 38] (organ-

isms are also called taxa in this context) for MP and more than 10,000 taxa for

ML. So called ’meta-methods,’ such as Disk Covering Methods [88] can handle even

larger datasets than this. One of the prohibitive factors when scaling to datasets of

10,000 or more taxa is in post-analysis. Post-analysis can refer to multiple things,

three of which are considered in this dissertation: distances between (typically, all

pairs in a set of) trees, bootstrapping, and consensus methods. Note that need for

post-analysis does not arise simply because of a lack of agreement on the best recon-

struction method. Rather, even under a single reconstruction method, there may be

many tree topologies which all have optimal (or nearly optimal) score.

In other words, it is often the case that reconstruction finds multiple equally

plausible trees (in the case of ML, see [36] for statistical tests that aid in making

3

Chapter 1. Introduction

such assertions) or many (nearly) optimal trees in the case of MP. One basic way of

addressing this situation is to take distances between pairs of trees, in order to gain

an understanding of the extent to which the trees disagree. The most frequently

employed manner for computing the distance between a tree pair is the Robinson-

Foulds metric, a natural dissimilarity measure between a pair of phylogenetic trees.

In Chapter 2 we present a novel family of algorithms for efficiently computing the

Robinson-Foulds metric.

Another way to address the case of multiple equally plausible or nearly optimal

trees (as well as many other similar situations) is by building a consensus tree, a sum-

mary tree that attempts to capture the information agreed upon by the reconstructed

best trees. Unfortunately, the most popular consensus methods – the so-called strict

and majority rules consensus methods – are susceptible to confusion by rogue taxa.

That is, taxa that cannot be placed with assurance anywhere within the tree. In

Chapter 4 we present novel theory and algorithms to identify rogue taxa, as well as

a novel technique for interpreting the results (in the context of bootstrapping, which

is also the subject of the next paragraph).

Finally, bootstrapping is a technique for assigning confidence values to edges in

trees [28]. The most exercised application of bootstrapping in phylogenetics is in

assessing the extent to which the underlying data (e.g., molecular sequences) support

a reconstructed tree. The basis of the approach is to reconstruct many trees, called

replicates, based on random subsampling of the original data. However, to date,

there has been little treatment in phylogeny regarding the question of how many

bootstrap replicates to generate. In Chapter 3 we propose bootstopping criteria [62]

which are designed to provide on-the-fly (i.e., runtime) guidance for determining

when enough bootstrap replicates have been reconstructed.

Most of the novel work contained in this dissertation has been presented in con-

ference and journal venues over the past few years.

4

Chapter 1. Introduction

• The majority of the work in Chapter 2 was presented in a paper entitled ’A

Sublinear-Time Randomized Approximation Scheme for the Robinson-Foulds

Metric’ [65] at Research in Computational Molecular Biology (RECOMB) 2006,

which was held in Venice, Italy (actually on the island of Lido). This paper

was invited to the journal issue for best papers from that conference, and

appeared under the title ’Efficiently Computing the Robinson-Foulds Metric’ in

the August 12, 2007 issue of the Journal of Computational Biology [64], which

also contained excellent new material contributed by Eric Gottlieb. As this

work is a few years old now, we have been able to watch the citations steadily

grow – perhaps of note is its recent citation in an introductory textbook [87].

• The material in Chapter 3 was presented in a paper entitled ’How Many Boot-

strap Replicates are Necessary?’ [62] at RECOMB 2009, which was held in

Tucson, Arizona, USA. This paper was also invited to the journal issue for

best papers from the conference, and is expected to appear under the same ti-

tle (though with a much expanded section on relevant implementation details)

in issue 3 of volume 17 (2010) of the Journal of Computational Biology [63].

• A large proportion of the work presented in Chapter 4 has been accepted for

presentation and publication under the title ’Uncovering Hidden Phylogenetic

Consensus’ [66] at the International Symposium on Bioinformatics Research

and Applications (ISBRA) 2010 to be held in Storrs, Connecticut, USA in

May 2010.

• The section from Chapter 2 regarding implementation speedup of consensus

methods (specifically, Section 2.3.4) represents part of a paper accepted to the

International Conference on Computational Science (ICCS) 2010 under the

title ’Parallel Computation of Phylogenetic Consensus Trees’ [1] to be held in

Amsterdam, Netherlands in May/June 2010, and has also been accepted in

extended form to the Journal of Computational Science under the title ’Paral-

5

Chapter 1. Introduction

lelized Phylogenetic Post–Analysis on Multi–Core Architectures’ and is slated

to appear in its inaugural issue.

For context, we include the abstracts from the three main papers mentioned above

(RECOMB2006, RECOMB2009, ISBRA2010). Along with each abstract we include

related terminology. We begin with terminology that spans more than one of the

subject matters.

We use standard set and graph terminology and notation; in particular, ∪ refers

to union, ∩ to intersection, \ to set difference, and ∆ to symmetric difference—i.e.,

S∆T = (S ∪ T) \ (S ∩ T).

A phylogenetic tree represents the evolutionary relationships among a collection

of living organisms. Homologous molecular sequences (one for each organism) are

placed at the tips of the tree—hereafter called the leaves or taxa; the internal struc-

ture of the tree—its edges (sometimes also called branches)—represents the evolu-

tionary relationships. The removal of an edge disconnects the tree and partitions

the set of leaves into two subsets; thus each edge corresponds to a bipartition of the

set of leaves. Every tree includes the same trivial bipartitions, which separate one

leaf from all others; the other bipartitions are called nontrivial and correspond to

an internal edge of a tree, that is, an edge not incident on a leaf. We can thus view

a phylogenetic tree as a leaf-labeled tree T = (L, B), where L is the set of leaves

and B is its set of nontrivial bipartitions. To describe a bipartition, we list the two

sets of leaves, separated by a | symbol. To ensure an equivalence between nontrivial

bipartitions and internal edges, we require that every internal node in a phylogeny

have degree at least 3. The number |B| of nontrivial bipartitions in a phylogeny is at

most |L| − 3; when the two are equal, we say that the (binary) tree is fully resolved ;

otherwise, there must exist an internal node of degree at least 4 and any such node

is known as a polytomy. Sometimes a fully resolved tree is referred to as bifurcating

and polytomies are referred to as multifurcations.

6

Chapter 1. Introduction

1.1.1 Efficiently Computing the Robinson-Foulds Metric

Terminology

The Robinson-Foulds (RF) metric [71] between two trees on the same set L of taxa

is simply a normalized count of the bipartitions induced by one tree, but not by the

other. More precisely, given two phylogenetic trees, T1 = (L, B1) and T2 = (L, B2),

defined on the leaf set L, the RF metric between T1 and T2 is

RF (T1, T2) =
1

2
|B1∆B2|

=
1

2
|(B1 ∪ B2) \ (B1 ∩ B2)|

=
1

2
(|B1 \B2|+ |B2 \B1|)

where the divisor of 2 accomplishes normalization by the number of trees being

compared. That is, the largest possible RF distance is |L| − 3, which as pointed

out earlier is also the maximum number of nontrivial bipartitions that can appear

together in a single tree defined on |L|. This measure of dissimilarity is easily seen to

be a metric [71] and can be computed in linear time [24]. Sometimes the RF metric

is generalized in a way so as to respect edge weights in the two input trees. The

corresponding Weighted Robinson-Foulds Metric (WRF) is defined as

WRF (T1, T2) =
1

2

∑

b∈B1∪B2

|w1(b)− w2(b)|

where w1 and w2 are functions returning the weight of edge b in the corresponding

tree, or zero otherwise. Note that the RF metric is equivalent to the WRF metric

with the trees having unit edge weight.

Edit distances between trees are based on one or more operators that alter the

structure of a tree. Two commonly used operators are the Nearest Neighbor In-

7

Chapter 1. Introduction

terchange (NNI) and the more powerful Tree Bisection and Reconnection (TBR)—

see [3, 16] for definitions and discussions of these operators. Applying the NNI

operator to T1 can change RF (T1, T2) by at most 1, while applying the TBR op-

erator to T1 can change RF (T1, T2) almost arbitrarily. We use these operators in

generating test sets for our RF approximation routine, as discussed in Section 2.4.

There is another edit distance between trees that is often presented along with NNI

and TBR, namely the Subtree Prune and Regraft (SPR) distance. The SPR opera-

tor falls between NNI and TBR in terms of power. We do not use the SPR in our

study here, and mention it only for completeness. Again, see [3, 16] for more details.

These three measures of dissimilarity are also metrics, but unlike the RF metric are

NP-hard to calculate.

Abstract from RF Paper [64]

The Robinson-Foulds (RF) metric is the measure most widely used in comparing

phylogenetic trees; it can be computed in linear time using Day’s algorithm. When

faced with the need to compare large numbers of large trees, however, even linear

time becomes prohibitive. We present a randomized approximation scheme that

provides, in sublinear time and with high probability, a (1 + ε) approximation of the

true RF metric. Our approach is to use a sublinear-space embedding of the trees,

combined with an application of the Johnson-Lindenstrauss lemma to approximate

vector norms very rapidly. We complement our algorithm by presenting an efficient

embedding procedure, thereby resolving an open issue from the preliminary version

of this paper. We have also improved the performance of Day’s (exact) algorithm

in practice by using techniques discovered while implementing our approximation

scheme. Indeed, we give a unified framework for edge-based tree algorithms in which

implementation tradeoffs are clear. Finally, we present detailed experimental results

illustrating the precision and running-time tradeoffs as well as demonstrating the

8

Chapter 1. Introduction

speed of our approach. Our new implementation, FastRF, is available as an open-

source tool for phylogenetic analysis, and can be downloaded from http://cs.unm.

edu/~ejgottl/cmb.tar.bz2

1.1.2 How Many Bootstrap Replicates are Necessary?

Terminology

Phylogenetic bootstrapping (BS) is a straightforward application of the standard

statistical (nonparametric) bootstrap and was originally suggested by Joe Felsen-

stein [28] as a way to assign confidence values to edges in phylogenetic trees. Phy-

logenetic BS proceeds by generating perturbed alignments which are assembled by

randomly drawing alignment columns from the original input alignment with re-

placement. The number of columns in the BS alignment is identical to the number

of columns in the original alignment, but the column composition is different. Then,

for each BS alignment, a tree is reconstructed independently. The procedure returns

a collection of tree replicates. The replicates can then be used either to compute

consensus trees of various flavors or to draw confidence values onto a reference tree,

e.g., the best-scoring ML tree. Each edge/branch in such a reference tree is then

assigned a confidence value equal to the number of replicates in which it appears.

Abstract from Bootstopping Paper [63]

Phylogenetic Bootstrapping (BS) is a standard technique for inferring confidence

values on phylogenetic trees that is based on reconstructing many trees from minor

variations of the input data, trees called replicates. BS is used with all phylogenetic

reconstruction approaches, but we focus here on one of the most popular, Maxi-

mum Likelihood (ML). Because ML inference is so computationally demanding, it

9

Chapter 1. Introduction

has proved too expensive to date to assess the impact of the number of replicates

used in BS on the relative accuracy of the support values. For the same reason,

a rather small number (typically 100) of BS replicates are computed in real-world

studies. Stamatakis et al. recently introduced a BS algorithm that is 1–2 orders of

magnitude faster than previous techniques, while yielding qualitatively comparable

support values, making an experimental study possible.

In this paper, we propose stopping criteria, that is, thresholds computed at run-

time to determine when enough replicates have been generated, and report on the

first large-scale experimental study to assess the effect of the number of replicates

on the quality of support values, including the performance of our proposed criteria.

We run our tests on 17 diverse real-world DNA, single-gene as well as multi-gene,

datasets, that include between 125 and 2,554 sequences. We find that our stopping

criteria typically stop computations after 100–500 replicates (although the most con-

servative criterion may continue for several thousand replicates) while producing

support values that correlate at better than 99.5 with the reference values on the

best ML trees. Significantly, we also find that the stopping criteria can recommend

very different numbers of replicates for different datasets of comparable sizes.

Our results are thus two-fold: (i) they give the first experimental assessment of

the effect of the number of BS replicates on the quality of support values returned

through bootstrapping; and (ii) they validate our proposals for stopping criteria.

Practitioners will no longer have to enter a guess nor worry about the quality of

support values; moreover, with most counts of replicates in the 100–500 range, robust

BS under ML inference becomes computationally practical for most datasets.

The complete test suite is available at http://lcbb.epfl.ch/BS.tar.bz2 and

BS with our stopping criteria is included in the latest release of RAxML v7.2.6

available at http://wwwkramer.in.tum.de/exelixis/software.html.

10

Chapter 1. Introduction

1.1.3 Uncovering Hidden Phylogenetic Consensus

Terminology

The input to the consensus problem is a set T of m trees defined on a common set L

of n taxa (leaves, singular is taxon). Consensus methods are algorithms that address

the consensus problem, and are characteristic in that they return a single tree – the

consensus tree – in an attempt to summarize T . We focus on consensus methods

based on bipartition frequency—see the survey of Bryant [15] for a comprehensive

treatment of consensus methods. Given a threshold parameter m
2

< t < m, the t-

consensus tree is composed of all of the bipartitions that occur in more than t trees.

The majority rules consensus [58] is obtained by setting t to m
2
, while the strict

consensus is obtained by setting t to m− 1. We denote t-consensus methods by Ct.

Thus Cm−1(T) corresponds to taking the strict consensus tree of the set T , whereas

Cm
2
(T) corresponds to taking the majority rules consensus tree of the set T .

Another very popular consensus method, for which we do not use the Ct notation,

is called the extended Majority Rules (MRE), also referred to as the greedy consensus

method. This consensus method begins by including the bipartitions in Cm
2

as a

skeleton and then includes bipartitions which occur in less than or equal half the

trees, in priority order by frequency, as long as they can structurally coexist with

all bipartitions included so far. In order for two bipartitions to structurally coexist

together in a tree, they must be compatible, a property that can be defined in a

number of equivalent manners. One such statement is the following: two bipartitions

A|B and C|D are compatible if and only if at least one of the intersections A ∩ C,

A ∩D, B ∩ C, or B ∩D is empty.

The bipartition profile of a set of trees T is the pair

P = (BT , ν : BT → 2T)

11

Chapter 1. Introduction

where BT is the set of all nontrivial bipartitions found across all m trees in the set

and ν is a function mapping bipartitions to the trees in which they appear.

We denote the removal of leaves from trees through the restriction operator—

which also uses the | symbol. For example, T |L′ refers to restricting each tree in the

set T to the leaf subset L′ ⊆ L, which corresponds to removing each leaf in L \ L′

from each tree, as well as removing any nodes of degree 2 created in the process.

Individual trees, tree sets, and tree profiles can appear on the left-hand side of the

restriction operator.

An agreement subtree (of a tree set T) occurs when restricting the tree set to a

leaf subset L′ ⊆ L renders all of the trees in T |L′ equal to each other. Since the

leaf subset (L′) taken along with T unambiguously defines the agreement subtree,

the agreement subtree is often denoted simply by L′. When the leaf set L′ is of

maximum cardinality (over all 2|L| possible leaf subsets), then L′ is called a Maximum

Agreement Subtree (MAST) [5, 26]. When the number of nontrivial bipartitions in

the agreement subtree L′ has maximum cardinality, then L′ is called a Maximum

Information Subtree (MIST) [14].

The cladistic information content is a measure for assessing the amount of in-

formation conveyed by a consensus tree T . It is defined as CIC(T) = −log2
|R(T)|
|π(T)|

where R denotes the number of possible ways to resolve the polytomies of T and π

denotes the number of possible trees on |L| leaves. This measure is very well founded

in information theory [85], especially when the consensus tree was computed using

the strict consensus method [86].

Abstract from Rogue Taxa Paper [66]

Many of the steps in phylogenetic reconstruction can be confounded by “rogue” taxa,

taxa that cannot be placed with assurance anywhere within the tree—whose location

12

Chapter 1. Introduction

within the tree, in fact, varies with almost any choice of algorithm or parameters.

Phylogenetic consensus methods, in particular, are known to suffer from this problem.

In this paper we provide a novel framework in which to define and identify rogue taxa.

In this framework, we formulate a bicriterion optimization problem that models the

net increase in useful information present in the consensus tree when certain taxa

are removed from the input data. We also provide an effective greedy heuristic to

identify a subset of rogue taxa and use it in a series of experiments, using both

pathological examples described in the literature and a collection of large biological

datasets. As the presence of rogue taxa in a set of bootstrap replicates can lead to

deceivingly poor support values, we propose a procedure to recompute support values

in light of the rogue taxa identified by our algorithm; applying this procedure to our

biological datasets caused a large number of edges to change from “unsupported” to

“supported” status, indicating that many existing phylogenies should be recomputed

and reevaluated to reduce any inaccuracies introduced by rogue taxa.

13

Chapter 2

Efficiently Computing the

Robinson-Foulds Metric

A note now about the physical properties of space, as perceived by human beings imprisoned within bodies of lim-

ited physical capabilities. I have long noticed that space seems to be more compressed, more involuted, some how

psychically LARGER in some places than others. Covering a distance of three or four miles in the totally open

scrublands of central Washington State is a simple matter, and takes less than an hour on foot. and only a few

minutes if you have some kind of vehicle. Covering the same distance in Manhattan takes much longer. It’s not

just that the space in Manhattan is more physically obstructed (though it definitely is) but that there is some kind

of psychological impact that alters the way you perceive and experience distance. You cannot see as far, and what

you do see is full of people, buildings, goods, vehicles, and other stuff that it takes your brain some amount of effort

to sort through, to process. Even if you had some kind of magic carpet that would glide past all of the physical

obstructions the distance would seem much longer, and would take longer to cover, simply because your mind would

have to deal with more stuff.

– Neal Stephenson, Cryptonomicon

2.1 Background and Motivation

The need to compare phylogenetic trees is common. Many reconstruction methods

(e.g., maximum parsimony and Bayesian methods) produce a large number of pos-

14

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

sible trees. Trees are also built for the same collection of organisms from different

types of data (e.g., nucleotide or codon sequences for one or more genes, gene-order

data, protein folds, but also metabolic and morphological data). Phylogenetic trees

can be compared and the result summarized in many ways; for instance, consensus

methods [15] return a single tree that best represents the information present in the

entire collection, while supertree methods (typically used when the trees are built on

different, overlapping subsets of organisms) [12] combine the individual trees into a

single larger one. A more elementary step is to produce estimates of how much the

trees differ from each other, by computing pairwise similarity or distance measures.

Here again, many approaches have been used, such as computing pairwise edit dis-

tances based on tree rearrangement operators [21, 3]; the most common distance

measure between two trees, however, is the Robinson-Foulds (RF) metric [71]. This

measure is in widespread use because it can be computed in linear time [24], is based

directly on the edge structure of the trees and their induced bipartitions, and is a

lower bound on the computationally more expensive edit distances. Yet, as the size

of datasets used by researchers grows ever larger, even a linear-time computation of

pairwise distances becomes onerous.

In this chapter, we present the first sublinear-time algorithm to compute all

pairwise RF distances among a collection of trees. Our algorithm is a randomized

approximation scheme: it returns, with high probability, an approximation that is

guaranteed to be within (1+ ε) of the true distance, where ε > 0 can be chosen arbi-

trarily small. Our approach uses a sublinear-space embedding of the trees, combined

with an application of the lemma of [52] to approximate vector norms rapidly.

In [65] (we will refer to that algorithm as the P&M algorithm), we had yet

to design an efficient procedure for embedding trees. Thus, while our algorithm

outperformed Day’s spectacularly in certain settings, we were not able to match

the latter’s asymptotic running time for a single pairwise distance computation, nor

15

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

would our technique gracefully scale as a function of the size of the input trees. We

have since designed an efficient embedding procedure, presented here, that enables

our algorithm to dominate Day’s algorithm in all possible settings and that provides

graceful scaling in terms of all parameters.

We have reimplemented the P&M algorithm as a standalone open-source tool

FastRF. We have used FastRF to improve significantly the comprehensiveness (as

compared to [65]) of our experiments to assess the quality and speed of our approach.

Additionally, our new implementation should better facilitate the integration of our

algorithm into actual phylogenetic analyses.

In Section 2.2 we introduce the theory that underlies our approximation algo-

rithm. In Section 2.3 we cover practical issues such as our efficient procedure for

embedding, discuss our improvements to the performance of Day’s (exact) algo-

rithm [24] in practice by using techniques discovered while implementing our ap-

proximation scheme, and present a common framework for edge-based algorithms on

trees. In Section 2.4 we present experimental results that address issues such as the

observed quality of approximation, the consequences of the quality approximation

on simulated phylogenetic data, the tradeoffs between approximation quality and

running time, and the running time of our technique versus Day’s algorithm applied

to each pair of trees.

2.1.1 Day’s Algorithm

Before presenting our approach, we detail the linear time procedure that has served

as the gold standard for computing the RF metric for the past quarter century.

The linear-time algorithm of Day [24] for computing the Robinson-Foulds metric

can be difficult to follow from its original presentation. Here we attempt to present

the algorithm in a more accessible fashion, and then comment briefly how this algo-

16

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

rithm relates to our approach(es).

Before presenting the details of Day’s algorithm, we point out some high level

organizing concepts. Specifically, in order to claim linear time, it is logical to con-

clude Day’s algorithm must employ a highly efficient scheme for representing the

bipartitions of a tree. This is because the algorithm must surely examine each bi-

partition (of which there are a linear number) in each of the two input trees, and

thus comparing bipartitions should take no longer than constant time. Indeed, this

is the case with Day’s algorithm, which ingeniously represents each bipartition with

a simple pair of integers.

The algorithm works as follows, and is illustrated in Figure 2.1: Given two un-

rooted phylogenetic trees, pick an arbitrary leaf that will serve as a root. Traverse

the first tree starting at the root, in depth first fashion, assigning an integer to each

leaf equal to the number of leaves encountered thus far. For each internal node,

before traversing its subtree, make a note of the next leaf label to be used l, and

upon exiting a subtree, make a note of the label last used u. The pair (l, u) is then

used to denote this subtree. Note that the number of leaves in subtree (l, u) is equal

to u− l + 1. Next, build the interval representation for the second tree via a similar

process – but by respecting the labeling established in the first tree. For each interval

(equiv. subtree) in the second tree, there are three cases:

1. u− l + 1 is equal to the size of the subtree, and (l, u) is in the first tree

2. u− l + 1 is equal to the size of the subtree, and (l, u) is not in the first tree

3. u− l + 1 is not equal to the size of the subtree

Cases 2 and 3 contribute to the RF metric, as do the subtrees in the first tree

that are not found in the second tree (analogous to case 2 with the trees swapped).

17

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

The final aspect of the algorithm admitting linear time is an efficient scheme for

addressing/indexing intervals such that their occurrence can be confirmed or denied

in constant time. Day provides a simple, yet clever, scheme for this as well. He

recognized that for any interval/bipartition in the first tree (l, u) it holds that u is

unique over all other bipartitions in the first tree unless the next node in postorder

traversal is not a leaf, in which case l is unique. This uniqueness ensures that there

will never be contention between two bipartitions to reside in the same row of a table

having length n− 1. Further, given a valid bipartition (l, u) in the second tree, only

two rows must be examined from the table (l and u) in order to test whether (l, u)

is in the first tree.

We mention, as a foreshadow, that the function mapping bipartition intervals to

their position in the bipartition table can be viewed as a perfect hash function on the

bipartitions of the first tree. The definition of hashing, its relevance in phylogeny,

and the importance of Day’s scheme being a perfect hash function will be made clear

in subsequent two sections as well as in Section 2.3.2.

2.1.2 Hashing – Functions and Tables

The techniques surrounding hashing comprise the foundation of an enormous amount

of efficiency gain in both algorithm performance and software performance. As such,

hashing is typically found at the cornerstone of good algorithm design and software

engineering. More specifically, there are innumerable situations in which a datum has

been encountered once, and for some reason will need to be retrieved again. Hashing

provides a well-founded framework for reducing the salient details of the datum into

a space-efficient (and accordingly time-efficient to manipulate) key that can be used

to subsequently refer to or retrieve the full datum.

Typical manifestations of hashing are representative of two design decisions – that

18

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

b

e

a
c

d

f

g c
b

e
a d

f
g

(a) Original, unrooted, trees

b

g

b

b

b

b

b

e

b

b

a

b

c

b

b

d

b

f

b

g

b

b

b

b

c

b

b

b

b

e

b

a

b

b

d

b

f

(b) Root at a common leaf

b

b

b

1

b

2

b

b

3

b

4

b

b

5

b

6

b

b

b

b

4

b

b

1

b

2

b

3

b

b

5

b

6

(c) Label leaves according to depth first traversal of first tree

bipartition interval num leaves table index in tree 2
be|acdfg [1,2] 2 2 yes
acdf |beg [3,6] 4 3 no
df |abceg [5,6] 2 5 yes

bipartition interval num leaves valid interval? in tree 1
be|acdfg [1,2] 2 yes yes
bce|adfg [1,4] 3 no no
abce|dfg [1,4] 4 yes no
df |abceg [5,6] 2 yes yes

(d) Evaluate results

Figure 2.1: A Summary of Day’s Algorithm

19

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

of a suitable hash function and a complementary strategy for the accompanying hash

table. The hash function is a mathematical (strictly speaking, injective) function

that maps the datum in question to a key, which is typically a word in whatever

computing architecture is being used (e.g. an integer on a 32-bit architecture). Since

hash functions are injective (and not bijective, except for in a perfect hash function),

it is possible for two or more entities to hash to the same key. Handling these so-

called collisions is the responsibility of the hash table. A fairly typical approach to

building a hash table is to use an array of linked lists, where a collision is resolved by

simply adding an entry to the linked list at the index corresponding to the key. This

technique is referred to as chaining, and is only one of very many ways to handle

collisions.

The major benefit of a hashing approach is that insertions and lookups in the

hash table take expected constant time per operation. This is a major practical

improvement over nearly every other approach one can take, especially when there is

no natural ordering of the data (and thus sorting is not a possibility). The interested

reader can consult almost any algorithm text for an introduction to hashing.

Interestingly, the bipartitions in phylogenetic trees are amenable to a hashing

approach. This observation led to the resolution of important open issues with

our initial scheme for sublinear Robinson-Foulds metric computations, as well as

helping to provide a unifying framework within which to view all known Robinson-

Foulds metric algorithms. However, we were not the first to notice this application

of hashing. In the following section we discuss other (published both before our

RECOMB 2006 paper, and after) instances of bipartition hashing in phylogeny.

20

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

2.1.3 Other Applications of Hashing in Phylogeny

Perhaps the most näıve manner for representing a bipartition is to simply keep a bit

vector, with one index per leaf in L, such that leaves on one side of the bipartition

are represented by 0 and leaves on the other side are represented by 1. For example,

if L = {a, b, c, d, e} (and the position of a letter in the English alphabet is its index

into the bit vector), the bipartition cd|abe would be represented as 00110. Note that

the complement (11001) also represents the same bipartition, however we adopt the

convention of always denoting a single distinguished taxon, in this case a, by a 0 in

order to facilitate fast comparison. This representational strategy for bipartitions

has been the longstanding tradition until only very recently, and appears in most

well established phylogenetic tools such as PHYLIP [29].

The first explicit application of hashing for representing bipartitions arose in the

context of rapidly computing majority rules consensus trees for on–the–fly display in

an interactive visualization tool [4]. In their technique, leaves are assigned hash keys

according to a universal hash function, and internal edge (i.e., nontrivial bipartition)

hashes are assigned recursively by composing the hashes of neighbor nodes using the

addition operator. These are very similar to the techniques we used in resolving open

issues in our RECOMB 2006 paper. However, we explored further choices regarding

hash functions, and settled upon a much simpler scheme.

Subsequent to our RECOMB 2006 paper, Sul and Williams presented a program

called HashCS [82] (which, as is obvious from the name, uses hashing for biparti-

tion representation) for computing strict consensus and MR consensus trees (but

not extended MR trees) and conducted a comparative performance study with con-

sensus tree algorithms implemented in other phylogeny tools such as PAUP∗ [83]

and MrBayes. They show that, the HashCS implementation is the fastest currently

available implementation for computing strict and MR consensus trees. Note that

21

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

the algorithm of HashCS is approximate. That is, it is not guaranteed to yield the

correct result (see p. 105 in [82]) because not all collisions in the hash table are re-

solved. This is in contrast to TreeSetViz [4] and RAxML, which handle collisions via

chaining, and thus represent exact approaches. That said, HashCS could no doubt

be retrofitted with a collision resolution approach that would render their tool exact,

although there would be some performance penalty.

Most recently, while implementing our bootstopping criteria (presented in full in

Chapter 3), we deemed it worth the incremental extra effort to provide consensus

method routines in RAxML. Putting into practice the knowledge obtained in the

hash function evaluation of our extended RECOMB 2006 paper [64], we endowed

RAxML with very efficient routines for computing the Strict, Majority Rules, and

extended Majority Rules consensus trees. As of the time of writing, these stand as

the fastest exact consensus method routines available. Some details regarding these

routines are presented in Section 2.3.4, and the interested reader is referred to [66]

where we present the first parallelization of the MRE consensus method.

We now proceed with the presentation of our RECOMB 2006 algorithm, as well

as the enhancements presented in the journal version of the paper.

2.2 Theoretical Basis for the Algorithm

For the remainder of this chapter, m refers to the number of trees in a given set

and n refers to the number of taxa in each tree of the set. The key to our approach

is representation. Our approximation algorithm is a reduction to the computation

of vector norms in a suitable vector space and the sublinear running time results

from our ability to represent the necessary characteristics of phylogenetic trees in

sublinear space. More specifically, we represent phylogenetic trees as vectors in such

a way that RF distances become simply the ‖·‖1-norms of the difference vectors, then

22

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

generalize the result to arbitrary ‖ · ‖p-norms for p ≥ 1.1 We then use a technique

from high-dimensional geometry to reduce the dimensionality of tree vectors while

maintaining pairwise ‖ · ‖2-norms. Finally we combine these techniques to obtain a

fast approximation algorithm for computing RF distances.

2.2.1 Bit-Vector Representation

Recall that in Section 1.1 we introduced B as the nontrivial bipartitions for a tree

T = (L, B). We continue with that notation here.

Consider an injection f :
⋃

T=(L,B)∈Tn
B → N that assigns a unique integer in the

interval [1, b] (where b =
∣

∣

∣

⋃

T=(L,B)∈Tn
B
∣

∣

∣
) to each bipartition.

Definition 1. The bit-vector representation of a phylogenetic tree T = (L, B) is

vT ∈ R
b where we have

vT [i] =

1 f−1(i) ∈ B

0 otherwise

Intuitively, this is a bit vector with a 1 only at the indices corresponding to

bipartitions that exist in T . Obviously, this representation would be quite space-

consuming (and proportionally time-consuming) to produce; fortunately, our linear-

time embedding procedure (Section 2.3) completely obviates the need to compute

this representation explicitly.

By construction, the ‖.‖1-norm (when normalized by 2) between tree vectors is

the RF distance.

Theorem 1. ∀T1, T2 ∈ Tn, RF (T1, T2) = 1
2
‖vT1
− vT2

‖1

1The ‖ · ‖p-norm of a vector v = (v1v2 . . . vk) is ‖v‖p =
(

∑k
i=1 |vi|

p
)

1

p
.

23

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

Proof. ∀s ∈ B1 − B2 (resp., B2 − B1), we have vT1
[f(s)] = 1 (resp., vT2

[f(s)] = 1)

and vT2
[f(s)] = 0 (resp., vT2

[f(s)] = 0). Now, ∀s ∈ B1 ∩ B2, we have vT1
= vT2

= 1

and ∀s ∈
⋃

T∈Tn
BT − (B1 ∪ B2), we have vT1

= vT2
= 0. Thus we can conclude

‖vT1
− vT2

‖1 = |B1 −B2|+ |B2 − B1| = 2 · RF (T1, T2)

2.2.2 Properties of ‖ · ‖p-Norms of Bit-Vectors

The following theorem exposes an interesting property about norms of bit-vectors

and closely related vectors: it is trivial to recover the ‖.‖p-norm, p ≥ 1, from the

‖.‖q-norm, q ≥ 1, where p 6= q. This result will be useful because the Johnson-

Lindenstrauss lemma (Section 2.2.3) approximates ‖.‖2-norms whereas, in order to

compute the RF distance, we need to approximate ‖.‖1-norms.

Theorem 2. For an arbitrary vector v ∈ R
d where every element is chosen from the

set {−k, 0, k} (for arbitrary k > 0), and for p ≥ 1, we have ‖v‖1 = k1−p · (‖v‖p)p.

Proof. Assume that v has c entries of value ±k; we can write

‖v‖p =

(

b
∑

i=1

(|vi|)
p

)

1

p

= (ckp)
1

p = c
1

p k

‖v‖1 =

b
∑

i=1

|vi| = ck = c
p−1

p (c
1

p k) = c
p−1

p ‖v‖p

Raising the first result to the power (p− 1) and solving for c
p−1

p yields

c
p−1

p = k1−p · (‖v‖p)
p−1

and substituting into the second result finally yields

‖v‖1 = k1−p · (‖v‖p)
p

24

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

Corollary 1. For bit-vectors (k = 1) we have ‖v‖1 = (‖v‖p)p; in particular, we have

‖v‖1 = (‖v‖2)
2.

2.2.3 Reducing Dimensionality

We briefly outline a result of [52] for norm-preserving embeddings; for a more detailed

treatment, see [50, 49, 55].

Consider an m×b matrix V in which we want to compute the ‖·‖2-norm between

pairs of row vectors. Näıvely calculating one pairwise norm costs O(b) time. The

Johnson-Lindenstrauss lemma states that, if we first multiply V by another matrix

F of size b × 4lnm
ε2 , filled with random numbers from the normal distribution (0, 1),

we can use the pairwise norms between rows of V · F as good approximations of the

pairwise norms between corresponding rows of V .

Specifically, for given ε and F , we have, with probability at least 1−m−2,

∀u, v ∈ V, (1− ε)‖u− v‖2 ≤ ‖(u− v)F‖2 ≤ (1 + ε)‖u− v‖2

The dimensionality of (u− v)F is now 4lnm
ε2 and thus independent of b.

Other probability distributions can also be used for populating the elements of

F [2]. Figure 2.2 illustrates the basic embedding technique.

2.2.4 The Algorithm

The following theorem represents one of our main contributions. Namely, we can ap-

ply the JL lemma to tree bit-vectors in order to obtain a high-quality approximation

of the RF metric between the original trees. Additionally, we can directly use the

bounds from the JL lemma to establish the quality of our approximation.

25

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

b O(m)

=

V F V’

xm b m O(m)x x

logx

log

Figure 2.2: A sketch of randomized embedding. Each tree is a row in V ; F is a
random matrix; each row of V ′ is the embedded representation of the corresponding
row vector in V .

Theorem 3. Taking the square of the ‖.‖2-norm between embedded tree bit-vectors

constitutes calculating a (1 + ε)-approximation2 of the RF distance between the orig-

inal trees.

Proof. Using the JL lemma preserves (up to the multiplicative factor of 1±ε) the ‖.‖2-

norm between the non-embedded vectors. Corollary 1 establishes that, when dealing

with bit-vectors, we need only to square the ‖.‖2-norm to recover the ‖.‖1-norm.

Thus, since tree vectors are bit vectors, the JL embedding additionally preserves the

‖.‖1-norm. Finally, Theorem 1 states that the ‖.‖1-norm between tree bit-vectors is

the RF-metric between the two source trees, so we are done.

Because the JL lemma is constructive, Theorem 3 provides a first algorithm.

Given a set of m phylogenetic trees:

1. stack their bit-vector representations (recall that each has dimensionality b) to

form an m× b matrix;

2Actually a (1 + 2ε + ε2) approximation, since we must square the 2-norm to recover
the 1-norm

26

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

2. perform the embedding of Section 2.2.3 thereby reducing the row dimensional-

ity of the matrix while preserving pointwise ‖ · ‖2-norms between row vectors;

and

3. for any pair of row vectors vT1, vT2 (i.e., embedded trees), obtain the approxi-

mate RF distance by computing (‖vT1 − vT2‖2)2.

However, this is the theoretical form of the algorithm. In practice, we do not com-

pute the large matrix. Rather, we are able to incrementally embed the tree while

performing a tree traversal. The manner in which this is performed is covered in

Section 2.3.

Since the dimensionality of the embedded row vectors is O(log m), the time com-

plexity of computing the approximate RF distance between two trees is also O(logm),

so that our technique is asymptotically faster whenever we have log m = o(n).

2.3 A Framework and Implementation Tradeoffs

We have developed several efficient implementations of our approximation scheme.

Additionally, we have improved the performance of Day’s (exact) algorithm [24]

in practice by using techniques discovered while implementing our approximation

scheme.

We begin by presenting a general framework for which all of our algorithms (as

well as Day’s) are instantiations. Recall that each edge in a tree is identified by

the bipartition it induces on the set of taxa. Thus implementing any RF algorithm

invariably involves deciding upon a representation for taxa which can be efficiently

accumulated into sets (of taxa). Accordingly each of our algorithms start by labeling

taxa according to some scheme. The label for each taxon is used to represent the

bipartition induced by its incident edge. We then provide, for each labeling scheme,

27

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

an operator for accumulating two labels (i.e., two subtrees that meet at a common in-

ternal vertex) into a single label. To ensure the invariance of labeling across traversal

strategies, we require that the accumulation operators be associative and commuta-

tive. The specific traversal strategy employed in our family of algorithms is a depth

first traversal from a common, arbitrarily chosen, root taxon.

2.3.1 Direct Embedding

The P&M algorithm [65] used edge labels of size O(n), namely a bit vector per edge.

For each edge label there was one bit per leaf, and all leaves on one side of the

bipartition (induced by an edge) were of the same value. The accumulation operator

was bitwise-OR. Consequently, performing a tree traversal (which takes O(n) time)

while performing a bitwise-OR on two edge labels at each step (also incurs O(n))

yielded a total complexity O(n2) per tree for the embedding step.

Overcoming this problem requires eliminating the O(n) length of edge labels. Re-

call that the essential feature of the embedding step from Section 2.2.3 is to establish

a correspondence between tree edges and random vectors (of length O(logm)). Also

recall that an embedded tree is simply the sum of the random vectors that corre-

spond to the edges found in the original tree. We now describe how to generate edge

labels of length O(logm) space that are, in fact, the random vectors corresponding

to tree edges.

In Section 2.2.3 we noted that distributions other than Gaussian can be used

as elements in the random vectors. Consider one such (non-normalized) discrete

distribution where p(X = 1) = 1
6
, p(X = 0) = 2

3
, and p(X = −1) = 1

6
. Next consider

the mapping l : {0, 1, 2, 3, 4, 5} → {−1, 0, 0, 0, 0, 1} such that choosing from the

interval [0, 5] uniformly at random yields the aforementioned distribution by virtue

of the mapping. Now, assign to each taxon an edge label consisting of a O(logm)-

28

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

tuple (see Section 2.2.3 for the specific size requirement) of random numbers chosen

uniformly from the interval [0, 5]. The accumulation operator is taken to be addition

modulo 6. Thus every edge label directly maps through l into a random vector.3

Assuming unique labels for leaves (and the same leaf labels are used across the

tree set), it is clearly the case that equivalent edges will map to the same random

vector. However it is the case that two distinct edges may end up mapping to the

same random value (i.e., a collision4). The probability of this occurring is equivalent

to the event that two randomly chosen vectors are equivalent, which is the same

probability that two rows from the embedding matrix are equivalent.

2.3.2 Improving Day’s Algorithm

Because Day’s algorithm runs in linear time and must traverse both trees, it follows

that it must employ a constant-space edge labeling and a constant-time accumulation

operator. Edge labels are in fact intervals, which need only be represented by their

extrema, while the accumulation operator is simply interval union over adjacent

intervals. As outlined in [24], Day’s algorithm can be thought of as constructing a

perfect hash function, where hashes are computed in O(1) time, on the edges of one

of the two trees under comparison.

It is possible to hash edges more conventionally [4]. In our implementation we

begin by assigning to each taxon a random b-bit vector (for most practical purposes,

a 64-bit integer). We then use the XOR operator for edge label accumulation. We

then proceed, as in Day’s algorithm, to compare two trees by comparing their lists of

3from the correct distribution since the sum (modulo k) of two uniform random vectors
is, itself, a uniform random vector

4a term from hash functions, which this scheme turns out to embody, see Section 2.3.2
to see how recognizing this technique as hashing helps to improve the performance of Day’s
algorithm in practice

29

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

edge hashes. The major improvement in practice arises because in our case the hash

needs only to be computed once per edge, whereas in Day’s algorithm a (perfect)

hash must be computed O(m) times in order to perform
(

m

2

)

comparisons. The risk

in this approach (as with any conventional hash) is in collision, whose probability

is derived in Section 2.3.3. Thus our approach carries a failure probability (albeit

exponentially small).

For a fixed b, hashing in this way takes O(n) time per tree, or O(mn) time overall,

which is optimal if every edge in every tree must be examined.

Combining Hashing with Embedding

Lessons from the previous section prompted us to investigate using conventional

hashing in the approximation algorithm as well. We proceed by again using a b-bit

random vector for leaf labels, and XOR as an accumulation operator. We then map

(by using a conventional hash table) edge labels to random O(logm) length vectors

from the appropriate distribution. This scheme turns out to be quickest in practice

(of our approximation implementations) and as such is the approach employed in

experimentation (Section 2.4).

Refer to Table 2.1 for a synopsis of all the algorithms presented. The column

Performance refers to the running time of computing all pairwise RF distances among

a set of m trees, where each tree is defined on the same n taxa. The algorithm

denoted as näıve refers to the natural (trivial) quadratic RF algorithm, which is

used in experimentation (Section 2.4).

30

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

Table 2.1: Summary of Expected Algorithm Asymptotic Performance

Algorithm Result Edge Label Operator Performance

Näıve exact taxa set union O(m2n2)
P&M approximate bit vector OR O(m(n2 + m log m))

Section 2.3.1 approximate tuple addition O(m log m(n + m))
Day’s exact interval union O(m(nm))

Section 2.3.2 exact bit vector XOR O(m(nm))
Section 2.3.2 approximate bit vector XOR O(m log m(n + m))

2.3.3 Probability of Collision

The primary disadvantage of a traditional hashing scheme, compared to Day’s algo-

rithm (which constructs a perfect hash), is the possibility of a hashing collision (i.e.,

two unequal edges being assigned the same label). Given a good hashing function,

the probability of a collision decreases exponentially with the number of bits chosen

for representing edge labels. The exclusive-OR function (⊕), which we use, has this

property.

Definition 2.
∏

A = ℓ1 ⊕ ℓ2 ⊕ . . . ⊕ ℓk where taxa A = {a1, a2, . . . , ak} and ℓi is a

bit vector label for taxon ai

Theorem 4. Given a set S of taxa with unique random b-bit vector taxon labels, and

given two arbitrary subsets of taxa A ⊂ S and B ⊂ S, we have

A 6= B =⇒
∏

A

=
∏

B

with probability p ≤
1

2b

Proof. Let x be a bit vector, y a random bit vector, and z = x ⊕ y. Then z will

also be a random bit vector which is uncorrelated with x (although obviously the

triple x, y, z is correlated). By induction,
∏

A will be random relative to
∏

B if there

is a greater than one taxon difference between A and B. If there is only a single

taxon difference between them, then A and B are constrained to be different as a

consequence of the unique labels assigned to the taxa). Thus, the probability of

31

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

∏

A =
∏

B, for A 6= B, is either zero or the same as the probability of two random

bit vectors of size b being equal, namely 1/2b.

Corollary 2. Given a forest of trees with e unique edges over n taxa, and given

unique taxon labels of b bits, the probability, pf , that one or more pairs of edges will

hash to the same label is pf < 1− (1− 2−b)(
e

2
) < e2/2b+1.

Proof. Assuming that all hashing collisions in a forest of edges are uncorrelated, the

expectation value of the number of collisions which might occur in a forest of e edges

is 〈c〉 =
(

e

2

)

/2b < e2/2b+1. In general, hashing collisions need not be uncorrelated. A

lower bound on 〈c〉 will occur when collisions are negatively correlated such that no

more than one collision may occur in a forest. In this case pf = 〈c〉. We have already

seen that 2−b is an upper bound on the probability an arbitrary pair of distinct edges

will hash to the same value. As a consequence 1− (1− 2−b)(
e

2
) is an upper bound on

the probability that one or more collisions will occur in a forest of edges. Therefore,

regardless of the distribution of edges in a forest, pf ≤ 1− (1−2−b)(
e

2
) < e2/2b+1.

2.3.4 Speeding up Consensus Methods

Before proceeding to the experimental evaluation of our RF techniques, we briefly

present an unanticipated application of the material presented thus far – that of com-

puting consensus trees. This application arises because bipartition hashing turns out

to be very generally applicable, as well as effective. Namely, the methods detailed in

this section have given rise to the fastest exact consensus method routines currently

(as of the time of writing) in use. The text here refers to “improvements” which sim-

ply correspond to differences between the version of RAxML released in conjunction

with our RECOMB 2009 paper (RAxML v7.2.1) versus the optimizations detailed

in our ICCS 2010 paper (RAxML v7.2.6).

32

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

The implementation of consensus tree methods in RAxML was initially motivated

by our work on bootstrap convergence criteria [62], which used the bipartition hashing

techniques detailed earlier in this chapter. Specifically, we decided it worth the

incremental effort to enhance RAxML such that it can compute strict, majority

rules (MR), and extended majority rules (MRE) consensus trees. In this section we

mainly focus on the construction of an MRE consensus tree, which is computationally

more challenging due to compatibility checking.

The process of computing a consensus tree can be broken down into four steps,

1. Tree Parsing: Loading the collection of trees into memory and parsing them.

2. Extraction and Addition of Bipartitions: Extracting bipartitions from

each parsed tree and inserting them into a hash table.

3. Selection of Candidate Bipartitions: Selecting candidate bipartitions for

the final MRE tree and storing them in an array according to their frequency

of occurrence and compatibility with the bipartitions that have already been

added to the array.

4. Reconstruction of the MRE tree: Using the array of bipartitions to build

the MRE tree and print it to file.

The fraction of execution time spent in the different phases largely depends on the

tree size. For trees with 2,500 organisms it spends an approximately equal proportion

of time in each phase, while for larger trees with 30,000-55,000 organisms, run times

are dominated by the selection of candidate bipartitions (phase 3.) which requires

more than 95% of total run time.

Tree Parsing The tree parsing procedure for the Newick tree format (see [10]) is

straightforward, but has benefitted from some focused modifications. We replaced

33

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

the parsing routine that directly reads and parses the tree file by a function that

first loads the trees into main memory and then parses them as strings to avoid

unnecessary I/O overhead. In addition, an optimization of the taxon name lookup

procedure yielded significant speedups. In order to check for consistency in the taxon

names, i.e., if a taxon name in the tree is contained in the set of taxon names, and also

to consistently enumerate taxa, the parser needs to look up every taxon name that

is encountered in a tree. The original implementation used a linear O(n) time taxon

name lookup which was replaced by a simple constant time lookup using a hash table.

These optimizations yielded significant speedups of more than an order of magnitude,

especially for trees with more than 1,000 taxa. Note that these optimizations are

beneficial to many parts (other than MRE computation) of RAxML.

Extraction and Addition of Bipartitions Once an input tree has been parsed,

we extract the n − 3 nontrivial bipartitions and store them in a hash table using

the simple hash function described earlier in Section 2.3.2. Note that while we use

random labels as hash keys, we do not throw away the bit vector representations of

bipartitions, as they are needed for compatibility checking. As such, the bit vectors

are stored as one of the values of a hash entry (in the standard associative array

terminology where a hash key maps to a hash value). Also as described earlier in

Section 2.3, bipartitions of a tree can be extracted in O(n) time. The pertinent

RAxML structure is a hash table entry:

struct ent {

unsigned int *bitVector;

unsigned int *treeVector;

...

struct ent *next;

};

34

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

where bitVector is a representation of the bipartition such that all leaves on one

side of the bipartition (the side that contains the first taxon) have value 0 (resp. 1),

and treeVector is a (bit vector) where an index i has value 1 when this bipar-

tition occurs in tree i, and is 0 otherwise. Note that, treeVector could essen-

tially be replaced by a simple integer counter for computing MR and MRE. How-

ever, other functions that operate on bipartitions of trees in RAxML require to

also store the tree which generated a bipartition; for software engineering reasons

we decided to keep the code as simple and generic as possible. In order to obtain

the frequency of occurrence of a specific bipartition in the tree set, one needs to

count the bits that are set in treeVector. This can be done by using one of the

fast counting routines discussed at http://gurmeetsingh.wordpress.com/2008/

08/05/fast-bit-counting-routines/. Based on extensive computational exper-

iments with bit counting functions, we find that functions that use lookup tables

perform best on modern CPUs.

Selection of Candidate Bipartitions Once the bipartitions of all trees are stored

in the hash table, and the respective frequency of occurrence of every bipartition is

computed (using a fast bit count on treeVector), it is trivial to select the bipartitions

that form the MR consensus tree. One simply needs to iterate through all bipartitions

in the hash table and retain every bipartition (or rather a pointer to every bipartition)

in an array, that occurs in more than half of the input trees, i.e., whose frequency

of occurrence is > 0.5. At most n− 3 bipartitions will be stored in this array in the

case that the MR tree is a fully resolved binary tree.

Computing the MRE tree is only marginally more complicated, but significantly

more compute intensive. One starts by constructing the MR tree, i.e., by adding

those bipartitions that occur in more than 50% of the trees to the array of bipartitions

of the consensus tree. Next, all bipartitions not occurring in the MR tree are sorted

(in descending order) by their frequency of occurrence. Finally, the sorted list is

35

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

scanned, and a bipartition is added to the bipartition array if it is compatible with

all other bipartitions that already form part of the consensus tree. This operation

is of time complexity O(n2), where n is the number of taxa, and hence dominates

the run time of this step. However, we have found that the order in which the array

of bipartitions that already form part of the consensus tree is traversed for checking

compatibility has a notable effect on execution times. It turns out that, the number

of pairwise compatibility checks between bipartitions is greatly reduced if the array is

traversed from the end, i.e., starting at the most recently added entry. This reversal

of the compatibility check order yielded a run time improvement for the bipartition

selection phase of approximately 90% with respect to the original implementation

on a tree with 2,554 taxa. The speedup is obtained because bipartitions that are

located at the end of the array have a lower frequency of occurrence than bipartitions

that are located at the start of the array. As such, there is a higher probability that

the bipartition under consideration occurs together in a tree with bipartitions earlier

in the array, and thus are compatible. It follows then that the probability that the

candidate bipartition to be added is incompatible with the bipartitions located at the

end is higher and we therefore, on average, need to conduct less compatibility checks

per candidate bipartition. Thus, the biggest gains are achieved by very diverse input

tree sets that do not give rise to a fully resolved binary MRE tree. Bipartitions with

low occurrence frequencies can often be rejected after the first compatibility check

against the accepted bipartition with lowest frequency.

All of the steps just described (for computing MRE) are trivial, with perhaps the

only exception being compatibility checking. For compatibility checking, again, we

initially followed a very straightforward approach. We used the well known property

that for two bipartitions A|B, C|D to be compatible, it must be the case that at least

one of the intersections A∩C, A∩D, C ∩B, B ∩D is empty [42]. If we have stored

A and C in the canonical form described above (Section 2.1.3), the computation of

the intersection of B ∩ D can be omitted because B and D will both contain the

36

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

distinguished taxon and their intersection will therefore never be empty.

This formulation of compatibility gives rise to a straightforward implementation

using bit-vector based bipartitions. Since the function for compatibility checking

dominates the execution times of the O(n2) time pairwise compatibility check, we

optimized it by testing different implementation options for the compatibility func-

tion. The optimization of this function yielded an additional run time improvement

of approximately 50% on trees with more than 35,000 taxa and of 70% on trees with

2,554 taxa for the compatibility check.

Reconstruction of the MRE tree We have found that when large trees are

involved, a nontrivial amount of time can be spent transforming the consensus tree

in bit-vector bipartition form back into a Newick representation. Our basic approach

for this transformation is similar to the approach taken in HashCS [82]. First, we sort

the bit vector bipartitions according to number of bits set in ascending order. Then,

for each bipartition, we search the sorted list for the first occurrence of a bipartition

that has a superset of its bits set with respect to the bipartition under examination.

In this manner we build for each bipartition, a list of the bipartitions that are its

most strict subset bit vectors. It is then straightforward to traverse these lists in

depth-first order and output the tree.

The sorting and the ascertained compatibility of all of the consensus bipartitions

allow for a rapid test on whether bipartition A is a superset of bipartition B. Due to

the sorting A is either a proper superset of B or the set shares an empty intersection

with B (direct consequence of the compatibility check). Thus, for the superset test

we only need to check, if any element of B is also contained in B. This optimization

yields a run time improvement of 70% for the tree reconstruction phase on a tree set

with more than 35.000 taxa.

37

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

2.4 Experiments

We have implemented the algorithms from Section 2.3 (with the exception of the

Section 2.3.1 algorithm), in order to evaluate their performance experimentally, both

in terms of speed and in terms of accuracy. We have run a large series of experiments,

all on the CIPRES5 cluster at the San Diego Supercomputing Center, a 16-node

Western Scientific Fusion A8 running RedHat Linux, in which each node is an 8-way

Opteron 850 system with 32GB of memory.

In the following experiments we generated forests of trees according to the fol-

lowing procedure (for various values of numClusters,treesPerCluster,j,k):

1. Generate a phylogenetic tree Tseed uniformly at random from TnumTaxa

2. do numClusters times

(a) create a new tree TclusterSeed by doing a random number (0 ≤ k < maxTBR)

of TBR operations to Tseed.

(b) write TclusterSeed to file

(c) do treesPerCluster times

i. create a new tree T ′ by doing a random number (0 ≤ j < maxNNI)

of NNI operations to TclusterSeed.

ii. write T ′ to file

This procedure creates the classic “islands” of trees [56] by providing pairwise distant

trees as seeds and generating a cluster of new trees around each seed tree.

5The Cyber Infrastructure for Phylogenetic Research project, at www.phylo.org, is a
major NSF-sponsored project involving over 15 institutions and led by B.M.E. Moret.

38

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

≈
R

F
D

is
ta

n
ce

(f
as

t
al

go
ri

th
m

)

Exact RF Distance (Day’s algorithm)

m
b

=
=

1.03
−0.44

±
±

0.00
0.04

±50%
mx + b

Figure 2.3: 50% error bounds approximate versus exact RF distance

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

≈
R

F
D

is
ta

n
ce

(f
as

t
al

go
ri

th
m

)

Exact RF Distance (Day’s algorithm)

m
b

=
=

1.01
−0.10

±
±

0.00
0.01

±10%
mx + b

Figure 2.4: 10% error bounds approximate versus exact RF distance

2.4.1 Validating the Approximation Bounds

In this experiment, we focused on the difference between the exact and the ap-

proximate distances. 10 clusters of 100 trees each were constructed using 10 TBR

39

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

operations per cluster and 5 NNI operations per tree. A 1000 × 1000 matrix of

Robinson-Foulds pairwise distances was then constructed first using Day’s algorithm

and then twice using the Section 2.3.2 algorithm (once with ε = 0.5 and once with

ε = 0.1). Figures 2.3 and 2.4 are scatter plots using the results from Day’s algorithm

vs. the results from the Section 2.3.2 algorithm. The variation due to the embedding

is easily seen to obey the 1± ε constraint.

Table 2.2: Parameter Values Used to Generate Clustering Data

Parameter Values Parameter Values

TBRs 5, 8, 11, 14 clusters 2, 3, . . . , 10
NNIs 10, 20, . . . , 100 trees per cluster 50, 100
taxa 100

2.4.2 Consequences of Approximation

In this experiment, we generated 7200 forests using all permutations of various pa-

rameter values, as described in Table 2.2. Each permutation of parameters was used

to generate 10 different forests (for a total of 72000). A distance matrix was then

constructed for each forest using the Section 2.3.2 algorithm (which, if no hashing

collisions occur, is exact, like Day’s algorithm) and the Section 2.3.2 algorithm using

values of ε = 0.1, 0.2, . . . , 1.0. 64-bit edge labels were used to avoid hash collisions.

These distances were then used to cluster the trees using a hierarchical agglomerative

clustering algorithm based on cluster distances defined as the distance between the

farthest separated cluster members. As a stopping criterion, the same number of

clusters were generated as existed in the original data. The Rand index [69] (the

most commonly used measure of clustering quality) was then computed and plotted

as a function of ε. Figure 2.5 shows the result. (Note that ε = 0 implies the use of

the Section 2.3.2 algorithm.)

From these data, it appears that an approximation bound of 10% to 20% may be

40

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

〈R
〉

ε

Figure 2.5: Clustering error as a function of distance error bounds

acceptable in some cases (note the tight bounds on the curve at these values of ε),

although of course results will depend on the distribution of trees in the data and on

the analysis methods used.

2.4.3 Performance

Hash Collisions

Both of our implementations under consideration carry the risk of collision. To

evaluate the actual rate of collision, we used 16-bit labels to hash edges from over

300,000 forests and plotted as a function of the number of edges in a forest, 〈c〉

(the average number of collisions per forest), and pf (the probability of one or more

collisions occurring in a forest). The results, in Figure 2.6, support our derived upper

bounds; namely: pf < 1− (1− 2−b)(
e

2
) < e2/2b−1.

41

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 150 200 250 300

P
ro

b
ab

il
it
y

Edges

e2/2b+1

1− (1− 2−b)(
e

2
)
〈c〉

pc>0

Figure 2.6: Results of using 16 bits to hash the edges of over 300,000 forests. 〈c〉
is the expected number of resulting hashing collisions as a function of the number
of edges in a forest; pc>0 is the probability that one or more hashing collisions will
occur.

Speed

Figure 2.7 (top) displays running time as a function of tree size for generating pair-

wise distances using each algorithm presented here with the exception of that of

Section 2.3.1. In Figure 2.7 (bottom), the running time is displayed as a function of

forest size while the number of taxa is held constant. All other parameters remain

invariant.

It can be seen that, as the number of taxa grows, both Day’s algorithm and the

näıve algorithm quickly become onerous. As predicted, Section 2.3.2 performs much

better, even with an error bound of just 10%. The Section 2.3.2 algorithm, which

can be made arbitrarily probabilistically exact, outperforms all others in these tests.

For growth with respect to the number of trees, the findings are similar, although,

in this case, all curves are of course quadratic—but the coefficients of the curve for

42

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

0.005

0.05

0.5

5

50

20 200 2000

T
im

e
(s

)

Taxa

create
Day’s
Naive

Hashed
Fast 10%
Fast 20%

0.005

0.05

0.5

5

50

20 200 2000

T
im

e
(s

)

Trees

create
Day’s
Naive

Hashed
Fast 10%
Fast 20%

Figure 2.7: Performance of various algorithms as a function of number of taxa (top)
and number of trees (bottom). Variable-length bit vectors were used for the näıve
algorithm. The other algorithms used 64-bit hashed edge labels. The create curve
shows the time used to generate the random forests. The labels Day’s, Hashed (i.e.,
Section 2.3.2), and Näıve refer to exact distance computations, whereas Fast 10%
and Fast 20% (i.e., Section 2.3.2) refer to approximate distance computations.

43

Chapter 2. Efficiently Computing the Robinson-Foulds Metric

the hashed implementation of the exact method lead to a drastically slower growth

curve.

44

Chapter 3

How Many Bootstrap Replicates

are Necessary?

An idea springs out of his forehead fully formed, with no warning. This is how all the best ideas arrive. Ideas that he

patiently cultivates from tiny seeds always fail to germinate or else grow up into monstrosities. Good ideas are just

there all of a sudden, like angels in the Bible. You cannot ignore them just because they are ridiculous. Waterhouse

stifles a giggle and tries not to get overly excited. The dull, tedious, bureaucratic part of his mind is feeling testy,

and wants a few shreds of supporting evidence.

– Neal Stephenson, Cryptonomicon

3.1 Background and Motivation

As has been mentioned earlier, significant progress has been achieved in the field of

heuristic ML search algorithms with programs such as PHYML [40], GARLI [93],

LeaPhy [89], and RAxML [76]. However, there is still a major bottleneck in com-

puting bootstrap support (BS) values on these trees, which can require more than

one month of sequential execution time for a likely insufficient number of 100 repli-

cates [75] on a reasonably fast CPU. To date, it has proved infeasible to assess

45

Chapter 3. How Many Bootstrap Replicates are Necessary?

empirically the convergence properties of BS values, much less to evaluate means for

dynamically deciding when a set of replicates is sufficiently large—at least on the

size of trees where computing BS values is an issue.

Recently, Stamatakis et al. [77] introduced a fast BS algorithm that yields a run

time acceleration of one to two orders of magnitude compared to other current algo-

rithms while returning qualitatively comparable support values. This improvement

makes possible a large-scale experimental study on bootstrap stopping criteria, the

results of which are the topic of this chapter.

We propose two stopping criteria. Both split the set of replicates computed so far

into two equal sets and compute statistics on the two sets. The frequency criterion

(FC) is based on the observed frequencies of occurrences of distinct bipartitions;

the more conservative weight criterion (WC) computes the consensus tree for each

subset and scores their similarity. Both criteria can be computed efficiently and so

a stopping test can be run every so many replicates until stopping is indicated. We

test these criteria and the general convergence properties of BS values on 17 diverse

real-world DNA, single-gene, as well as multi-gene datasets, that include between 125

and 2,554 taxa. We find that our stopping criteria typically stop computations after

100–500 replicates (although the most conservative criterion may continue for several

thousand replicates) while producing support values that correlate at better than

99.5% with the reference values on the best ML trees. Unsurprisingly, differences

tend to occur mostly on branches with poor support—on branches with support

values of at least 0.75, over 98% of the values returned after early stopping agree

with the reference values to within 5%.

Our results show that the BS convergence speeds of empirical datasets are highly

dataset-dependent, which means that bootstopping criteria can and should be de-

ployed to determine convergence on a per alignment basis. The criteria help to

conduct as many BS replicates as necessary for a given accuracy level and thus help

46

Chapter 3. How Many Bootstrap Replicates are Necessary?

to reduce the computational costs for phylogenetic analyses. Practitioners will no

longer have to enter a guess nor worry about the quality of support values; moreover,

with most counts of replicates in the 100–500 range, robust BS under ML inference

becomes computationally practical for most datasets.

The remainder of this chapter is organized as follows: In Section 3.2, we re-

view the bootstrap concept and related work on stopping criteria for (mostly non-

phylogenetic) bootstrap procedures, including a brief overview of convergence criteria

for MrBayes [72]. In Section 3.3 we describe our family of stopping criteria. In Sec-

tion 3.5 we describe our experimental study, give detailed results, and discuss their

implications.

Over and above the preliminary version of the paper upon which this chapter

is based [62], we have added the following content: The criteria are now fully im-

plemented in the current release version 7.2.6 of RAxML which required a large

re-engineering effort. We have added an entirely new section (Section 3.4) which

details our major undertaking to improve the runtime performance of our technique.

Specifically, we discuss and assess the applicability of bipartition hashing [64] to

bootstopping (Section 3.4.1), and present timing data showing the speedup RAxML

has enjoyed via the application of these techniques (Section 3.4.2). These techniques

have also been integrated with all other functions in RAxML that operate on bipar-

titions, such as a fast implementation of the Robinson-Foulds distance. We present

new results on stability properties of our criteria (Section 3.5.3), namely that they

appear tolerant to reordering bootstrap replicates, as well as seemingly independent

of the bootstrap procedure (standard versus Stamatakis’ rapid bootstrap [77]). Fi-

nally, in Section 3.5.5 we have also included a comparison to Hedges equation that

demonstrates that the number of replicates required to achieve a certain accuracy

level is indeed highly dataset-dependent

47

Chapter 3. How Many Bootstrap Replicates are Necessary?

3.2 Related Work on Bootstopping Criteria

3.2.1 The Phylogenetic Bootstrap

Phylogenetic bootstrapping is a fairly straightforward application of the standard

statistical (nonparametric) bootstrap and was originally suggested by Joe Felsen-

stein [28] as a way to assign confidence values to edges/clades in phylogenetic trees.

Phylogenetic BS proceeds by generating perturbed BS alignments which are assem-

bled by randomly drawing alignment columns from the original input alignment with

replacement. The number of columns in the bootstrapped alignment is identical to

the number of columns in the original alignment, but the column composition is

different. Then, for each BS alignment, a tree is reconstructed independently. The

procedure returns a collection of tree replicates. The replicates can then be used

either to compute consensus trees of various flavors or to draw confidence values

onto a reference tree, e.g., the best-scoring ML tree. Each edge/branch in such a

reference tree is then assigned a confidence value equal to the number of replicates

in which it appears. The question we address in this chapter is: how many repli-

cates must be generated in order to yield accurate confidence values? By accurate

confidence values we mean relative accuracy of support values (the “true” support

values are unknown for empirical datasets) with respect to support values obtained

by a very large number (≥ 10,000 in our experiments) of reference replicates. The

extent to which the question about the appropriate number of BS replicates has been

answered in other applications of the (non-phylogenetic) bootstrap is the subject of

the following subsection.

48

Chapter 3. How Many Bootstrap Replicates are Necessary?

3.2.2 General Bootstopping Criteria

Most of the literature addressing (whether theoretically or empirically) the issue of

ensuring a sufficient number of replicates stems from the area of general statistics

or econometrics. However, they are difficult to apply to phylogenetic BS due to the

significantly higher computational and theoretical complexity of the estimator [47].

In addition, the problem is more complex since the number of entities (bipartitions)

to which support values are assigned grows during the BS procedure, i.e., adding more

BS replicates increases the number of unique bipartitions. This is not commonly the

case for other application areas of the general Bootstrapping procedure and general

bootstopping criteria that have recently been proposed (for instance see [41]).

Standard textbooks on Bootstrapping such as [22, 25] suggest to choose a suf-

ficiently large number B of BS replicates without addressing exact bounds for B.

This does not represent a problem in most cases where the BS procedure is applied

to simple statistical measures such as the mean or variance of univariate statistics.

Efron and Tibshirani [25] suggest that B = 500 is sufficient for the general standard

bootstrap method in most cases. [57] propose a simple approach to determine B a

priori, i.e., before conducting the BS analysis, based on a worst-case scenario by ap-

proximating the standard deviation of BS statistics. The analysis in [57] concludes

that a general setting of B = 200 provides a relatively small error margin in BS esti-

mation. This approximation can only be applied to standard BS procedures, based

on simple, univariate statistics. However, a larger number of BS replicates is re-

quired for other applications of the Bootstrap such as the computation of confidence

intervals or tests of significance. P. Hall [43] proposes a general method for stopping

the BS in a percentile-t confidence interval. In the area of econometrics, Davidson

and MacKinnon [23] propose a two-step procedure to determine B for BS P-values

based on the most powerful test. Andrews et al. [6, 7, 8] propose and evaluate a

general three-step algorithm to specify B in the bootstrap procedure. Andrews and

49

Chapter 3. How Many Bootstrap Replicates are Necessary?

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.7 0.75 0.8 0.85 0.9 0.95 1

N
u
m

b
er

 o
f

R
ep

li
ca

te
s

Bootstrap p-values

+/- 1% accuracy
+/- 2% accuracy
+/- 5% accuracy

Figure 3.1: Number of required Replicates for various confidence intervals according
to Hedges

Buchinsky [9] then further extend their algorithm to bootstrap BCA intervals.

With respect to phylogenetics Hedges [44] suggests a method to specify B a priori

for a given level of significance. In the approach of Hedges’, a bipartition is assumed

to occur in bootstrap replicates according to a binomial distribution, with binomial

parameter p equal to its true support. As such, it is possible (under the binomial

assumption) to calculate an upper bound B on the number of replicates needed to

achieve a specified accuracy. Figure 3.1 shows the estimation of B for three accuracy

thresholds.

This approach does not take into account the number of sequences and hence the

number of potential alternative tree topologies, or the number of base-pairs or dis-

tinct patterns in the alignment. However, as underlined by our experimental results,

important alignment-specific properties such as the “gappyness” (percentage of gaps)

of the alignment, the quality of the alignment, and the respective phylogenetic signal

strength greatly influence the estimator (the tree search algorithm) and hence the

stability of BS replicates. We conclude that an adaptive stopping criterion which is

50

Chapter 3. How Many Bootstrap Replicates are Necessary?

computed on the fly at regular intervals during the actual BS search is best suited to

take into account the particularities of real-world datasets and to determine a useful

trade-off between accuracy and inference time. We are convinced that such trade-offs

will become increasingly important for analysis on large phylogenomic datasets under

computational resource constraints, as a recent collaborative study [45] with biolo-

gists already required 2,000,000 CPU hours on an IBM BlueGene/L supercomputer.

Therefore, we assess our approach empirically, via a large number of computational

experiments on diverse real datasets.

3.2.3 Bayesian Convergence Criteria and Tools

There exists some work on convergence criteria and tools for Bayesian phylogenetic

analyses, most probably because the convergence of the actual search as opposed

to a sufficient number of BS replicates in ML represents a more serious method-

ological problem for MCMC in general and phylogenetic MCMC searches in partic-

ular [60, 74, 78]. Gelman, Rubin, and Brooks [13, 35] provide general frameworks

to determine convergence of iterative simulations, with a focus on MCMC meth-

ods. MrBayes implements convergence diagnostics for multiple Metropolis-coupled

MCMC chains that use the average standard deviation in partition frequency values

across independent analyses. One potential drawback is that these statistics take

into account all partition frequencies and not only the important, highly supported

ones. In addition, there exist tools for graphical exploration of convergence such as

AWTY [61] to visualize convergence rates of posterior split probabilities and branch

lengths or Tracer [68] that analyzes time-series plots of substitution model param-

eters. AWTY also offers bivariate plots of split frequencies for trees obtained via

independent chains. Note that both AWTY and Tracer require the user to visu-

ally inspect the respective output and determine whether the MCMC chains have

converged. We are not aware of any computational experiments to assess the perfor-

51

Chapter 3. How Many Bootstrap Replicates are Necessary?

mance and accuracy of the above methods.

3.3 Bootstopping Criteria

In this section, we introduce stopping criteria for bootstrapping procedures, which we

call “bootstopping” criteria. These are measures that are computed and used at run

time, during the replicate inference phase, to decide when enough replicates have been

computed. The frequency-based criterion (FC) is based upon Pearson’s correlation

coefficient, whereas the Weighted Robinson-Foulds criterion (WC) is based upon

the weighted Robinson-Foulds metric – i.e., the weighted version of the dissimilarity

metric treated so thoroughly in Chapter 2.

3.3.1 Stopping Criteria

The two criteria we present in the following are both based on the same underlying

mechanism. Initially, the set of replicates to be tested for convergence is randomly

split into two equal halves. Then we compute statistics between the bipartition

support values induced by these halves. If the difference between the splits of the

replicates are small this indicates that adding more replicates will not significantly

change the bipartition composition of the replicate set. In addition, we compute the

statistics not only for one but for 100 random splits of the replicate sets, i.e., we draw

a sample from all possible random splits of the replicates by applying a permutation

test.

52

Chapter 3. How Many Bootstrap Replicates are Necessary?

Frequency Criterion (FC)

The frequency-based criterion uses the bipartition frequencies of all replicates com-

puted up to the point at which the test is conducted, for example every 50 replicates,

i.e., at 50, 100, 150, 200, . . . replicates. One major design goal is to devise stand-

alone criteria that do not rely on a previously computed best-known ML tree for the

original alignment. This is partially due to the rapid BS algorithm (and future ex-

tensions thereof) in RAxML that uses information gathered during the BS search to

steer and accelerate the search for the best-scoring ML tree on the original alignment.

Another important goal is to avoid a heavy dependency on the spacing (e.g., every

10, 20, or 50 replicates) of two successive steps of the test, i.e., we do not want to

compute statistics that compare 20 with 30 replicates. Therefore, we have adopted

a procedure, that is in some sense similar to the aforementioned convergence tests

for MCMC chains implemented in MrBayes. There are two main differences though:

(i) we do not use the test to determine convergence of the tree search itself, and (ii)

we do not apply the test to only one single random or fixed split of the replicate tree

set.

Our FC test works as follows: Assume that the test is conducted every 50 repli-

cates, i.e., after the computation of 50, 100, 150, . . . BS replicates. This spacing of 50

has been chosen empirically, in order to achieve a reasonable computational trade-off

between the cost of the test and the cost for computing replicates (future work will

cover the development of adaptive spacing strategies). The empirical setting also

fits the typical range of bootstopped tree topologies, which range between 150 and

450 in our FC-based experiments, depending on the strength of the signal in the

respective alignment. For the sake of simplicity, assume that we conduct the test

for 50 replicates. At the top level of our procedure we perform a permutation test

by randomly splitting up those 50 tress p =100 times (p =100 permutations) into

disjoint sets s1,s2 of equal size with 25 trees each. The advantage of 100 random

53

Chapter 3. How Many Bootstrap Replicates are Necessary?

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 60 80 100 120 140 160 180 200A
v
er

ag
e

C
o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

Number of Replicates

1 perm
10 perms

100 perms

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055
 0.06

 0.065
 0.07

 0.075
 0.08

 60 80 100 120 140 160 180 200

A
v
er

ag
e

(N
o
rm

al
iz

ed
)

W
R

F

Number of Replicates

1 perm
10 perms

100 perms

Figure 3.2: FC (top) and WC (bottom) criteria for various p settings on dataset 500

splits over a single random split or a fixed split into, e.g., replicates with even and

odd numbers, is that the curve is smoothed and depends to a far lesser degree on a

by chance favorable or unfavorable single split of the data.

In Figure 3.2 we depict the impact of using p =1, 10, and 100 permutations

on the FC and WC criteria (see Section 3.3.1) for a dataset with 500 sequences.

As expected the curve becomes smoother for larger p settings; a setting of p = 10

appears to be sufficient to smooth the curve and reduce the cost of the test. Though

statistically more stable, the disadvantage of this approach is clearly the significantly

increased computational cost of the test. Nonetheless, an initial, highly optimized

at a technical level, yet algorithmically näıve implementation requires only 1 minute

54

Chapter 3. How Many Bootstrap Replicates are Necessary?

to conduct all 6 tests on 50, 100, . . ., 300 replicates on a 1,481 taxon dataset (2

minutes, 40 seconds for p = 1000 random splits), compared to roughly 27 hours for

the computation of 300 rapid BS replicates.

For each of the aforementioned 100 random splits we compute the support vectors

v1 for s1 and v2 for s2 for all bipartitions bALL found in s1 ∪ s2, i.e., all bipartitions

contained in the original 50 trees. Note that both vectors v1, v2 have length bALL.

Given those two vectors for each permutation (random split) i, where, i = 0, ..., 99

we simply compute Pearson’s correlation coefficient ρi on the vectors. Our proce-

dure stops if there are at least 99 ρi with ρi ≥ 0.99 (only one possible parameter

setting). We henceforth denote the Pearson’s threshold used as ρFC . A potential

drawback of this method is that the support frequencies on the best-scoring tree or

for all bipartitions found during the BS search might not follow a normal distribu-

tion. Nonetheless, the FC method appears to work reasonably well in practice (see

Section 3.5). Another potential drawback is that the FC criterion is based on the

bipartition frequencies of all bipartitions found. However, from a biological point

of view, one is only interested in the “important” bipartitions, i.e., the bipartitions

induced by the best-scoring ML tree or the bipartitions that form part of a strict,

majority rule, or extended majority rule consensus tree. We address the design of

a criterion that only takes into account important bipartitions in the next section.

Nonetheless, the FC test can easily be extended in the future to take into account

the important bipartitions by providing a user-defined best-scoring ML tree using

either Pearson’s correlation or, e.g., the mean square error between corresponding

bipartition support values.

Weighted Robinson-Foulds distance-based Criterion (WC)

The Weighted Robinson-Foulds (WRF) distance criterion (WC) is employed similarly

to the FC criterion (i.e., every 50 trees and uses p = 100 permutations per test).

55

Chapter 3. How Many Bootstrap Replicates are Necessary?

Rather than computing a vector correlation, we compute the majority rules consensus

trees for s1 and s2 and then assess the (dis)similarity between the two consensus trees.

We then use the respective consensus trees, which only contain support values for

“important” biologically relevant partitions, to calculate the WRF distance between

the consensus tree c(s1) of tree set s1 and the consensus tree c(s2) of tree set s2.

As a distance measure and hence convergence criterion we use the weighted

Robinson-Foulds distance (WRF). This weighted topological distance measure be-

tween consensus trees takes into account the support values and penalizes incongru-

ent subtrees with low support to a lesser extent. When RF distances are significantly

larger than their weighted counterparts (WRF), this indicates that the differences in

the consensus trees are induced by subtrees with low support. When WRF≈RF this

means that the differences in the tree topologies under comparison are due to dif-

ferently placed clades/subtrees with high support. From a biological perspective the

WRF distance represents a more reasonable measure since systematists are typically

interested in the phylogenetic position of subtrees with high support. In real-world

studies the typical empirical threshold is set to 75%, i.e., clades with a BS support

of ≥ 75% are usually considered to be monophyletic (see [75] for a summary). As

for the FC criterion, the WC stopping rule can be invoked with varying numbers of

permutations and threshold settings. One might for example stop the BS procedure,

if for p = 99 out of 100 permutations, the relative WRF between c(s1) and c(s2) is

≤ 5%. For reasons of consistency we also denote the threshold parameter for WC

as ρWC , a ρWC setting of 0.97 means that the BS search is stopped when p WRF

distances are ≤ (1.0− 0.97) = 3%.

56

Chapter 3. How Many Bootstrap Replicates are Necessary?

3.4 Implementation Considerations

In the following, we address an important issue that had been completely omitted

from the original paper upon which this chapter is based, i.e., that of efficiently im-

plementing our criteria which also entails several interesting algorithmic problems.

In the following we will focus on implementation and performance of the WC cri-

terion which we consider as being the biologically more meaningful criterion. The

algorithmic problems associated with the FC criterion are analogous.

3.4.1 Application of Bipartition Hashing

The efficient computation of our bootstrap convergence criteria (see Section 3.3.1)

is closely related to efficiently computing the Robinson-Foulds (RF) metric [71] and

handling bipartitions induced by a large collection of trees. The main computational

challenge lies in the design of efficient methods to extract, maintain, and operate on

lists that contain all nontrivial bipartitions (splits) induced by a collection of trees.

Apart from computing the RF distances such lists of bipartitions are also required for

computing consensus trees [51] or implementing convergence assessment mechanisms

for Bayesian inference programs [61]. While the theoretically optimal RF algorithm

is well-described [24], important technical details are often not considered and rarely

assessed experimentally, such as, e.g., the choice of the hash function.

A bipartition of a tree T , A|B can be represented by two presence/absence bit

vectors vA, vB of length n, where every bit denotes the presence/absence of a taxon

in the subtree to the left (Ta) and to the right (Tb) of the edge/branch that is being

cut. Clearly, vA is the bit-wise complement of vB. Because of this property it suffices

to either store vA or vB. In order to ensure consistency of this choice between vA

and vB and avoid computational overhead to check whether two bit-vectors are bit-

wise complements of each other, one may chose to always store the bit-vector that

57

Chapter 3. How Many Bootstrap Replicates are Necessary?

contains (or does not contain) a specific taxon, e.g., the first taxon in the input

alignment. This is important, to ensure consistency among bipartitions extracted

from two distinct trees, T1, T2, because a bipartition that is shared between the trees

may be stored as vA for T1 and vB for T2.

Let us now consider how to efficiently extract bipartitions from an unrooted

tree that is already stored in memory, i.e., we do not consider how to efficiently

read in trees in the standard NEWICK format (see http://evolution.genetics.

washington.edu/phylip/newicktree.html) from file. The algorithm for efficient

computation of the bipartitions at each inner branch is conceptually very similar to

Felsenstein’s pruning algorithm for computing the ML score on a tree [27]. It relies

on a rooted view of the otherwise unrooted tree by the bipartition bit vectors as well

as on a cyclic organization of inner node pointers as used for Maximum Likelihood

computations (for details about this data structure organization, see, e.g., [79]).

Initially, we will assign bit vectors of length n to all 2n − 2 nodes of the tree and

initialize the bipartition vectors at the tips accordingly, i.e., just set the bit that

corresponds to the respective taxon number.

Thereafter, we place a virtual root into the branch that leads to the first taxon

in the input alignment and recursively compute all bipartition vectors bottom-up

towards the virtual root via a depth-first traversal. Keep in mind that all inner

bipartition vectors will be oriented towards the virtual root of the tree. Every time

we compute the bipartition vector at an inner node that is connected to another

inner node, we can directly store the bipartition in a hash table. This means that we

are always storing only those bipartitions that do not contain the selected taxon and

thereby ensure consistency. The complexity of this operation is O(n2), since we need

to compute n− 3 bipartition vectors and the computation of each bipartition vector

is a for loop over n bits. However, in practice 32, 64, or even 128 (if SSE-vectorized

code is used) bit vector entries can be computed in one CPU cycle, such that a more

58

Chapter 3. How Many Bootstrap Replicates are Necessary?

accurate approximation for the actual number of instructions is, e.g., n · (n/32).

Given this efficient method for extracting bipartitions from trees, we can now

consider the appropriate data structure for storing these bipartitions. The usage of

a hash table is a straight-forward and represents an efficient choice. However, the

question arises how to select a hash function for the hash key which in our case is

simply the bipartition vector. The usage of universal hash functions [18] as advocated

in some more theoretical papers [81, 80, 4] is highly questionable: Firstly, because

the computation of a universal hash function given a bit vector of length n is slow,

and secondly universal hash functions only work well, when hash keys are equally

randomly distributed [18], which is not very likely for hash keys that are induced

by a hierarchical data structure such as a tree. Those two practical performance

considerations have not been addressed in the aforementioned papers.

In contrast to this we have experimentally assessed several highly-tuned open-

source hash functions that are nicely summarized at http://burtleburtle.net/

bob/hash/doobs.html adopting an algorithmic engineering approach [59]. In ad-

dition to this collection of hash functions, we also tested a phylogeny-specific hash

key proposed by Pattengale, Gottlieb, and Moret [64]. This method takes advan-

tage of the tree structure and uses 32 or 64-bit integer values as hash keys instead

of the entire bipartition vector. Initially, each taxon is initialized by a random un-

signed 64-bit integer number. Then, the hash numbers for the bipartitions are also

computed bottom up towards the virtual root by performing a bit-wise exclusive or

on the respective child numbers (hash-keys). This procedure can be conveniently

integrated into the depth-first traversal that is used to compute the bipartition vec-

tors. Extensive tests on large collections of trees have revealed that this method

slightly outperforms all other tested hash functions in terms of speed and generates

the same amount of collisions that are resolved by chaining in the current RAxML

implementation. The procedure is outlined in Figure 3.3.

59

Chapter 3. How Many Bootstrap Replicates are Necessary?

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�������������� ������������

Taxon 4

00001

Taxon 3

00010

Taxon 2
00100Taxon 1

01000

Taxon 0

10000

R2

R4

R3

virtual root

00011

00010 OR 00001

00111

00100 OR 00011

table at
insert into hash insert into hash

non−trivial bipartitions

R0
32− or 64−bit random
number

bipartition
vector

R1

R4 XOR R3 XOR R2

table at R4 XOR R3

:=:=

orientation
towards virtual
root

Figure 3.3: Outline of the procedure to efficiently extract bipartitions and generate
bipartition hash numbers on an unrooted binary tree.

For performing performing the splits of our permutation tests for FC and WC

(see Sections 3.3.1 and 3.3.1) we also need to keep track of the trees that contain

a bipartition that is stored in the hash table. For this we deploy an additional

presence/absence bit vector of length r, where r is the number of trees/replicates.

Hence, if we add an entry to the hash table and the respective slot is already occupied

we initially need to compare the bipartition vector (or list of bipartition vectors) in

that slot with the bipartition vector to be added. If it matches one of the stored

bipartition vectors, we simply set the respective bit for the replicate number to 1,

otherwise we resolve by chaining.

60

Chapter 3. How Many Bootstrap Replicates are Necessary?

3.4.2 Running Time Improvement

The initial implementation of our bootstopping criteria [62] did not perform bi-

partition hashing (as described in Sect 3.4.1). Instead, a list of bipartitions were

accumulated, such that determining whether a bipartition had been previously en-

countered required a (worst-case linear time) scan of the list. To this end, we have

integrated and thoroughly assessed two alternative implementations that deploy bi-

partition hashing. The first implementation, which was written from scratch in

RAxML, is based upon hashing with chaining as described above. The second im-

plementation invokes an appropriately adapted version of FastRF (from [64]) that

has been integrated into RAxML (currently unreleased). The latter implementa-

tion ignores collisions and thus is an inexact technique, but within a tolerable error.

While operations on bipartitions of trees represent an interesting algorithmic prob-

lem, one must keep in mind that the respective execution times of the bootstop test

are insignificant, compared to the actual replicate inference times under Maximum

Likelihood. Nonetheless, they may become a limiting factor for parallel scalability

on massively parallel machines because of Amdahl’s law. Within this context speed

as well as a potential future parallelization are important issues.

In Table 3.1 we report the speedup achieved by RAxML for the optimized boot-

stopping functions. The column DATA labels each data set and corresponds to its

number of taxa (see Section 3.5.1). Column CON-WC indicates how many trees

were processed for a setting of ρWC = 0.03. Finally, columns [62] impl., RAxML

7.2.6, and RAxML+FastRF correspond to running times (in seconds) of the WC

implementation for the preliminary version of the paper upon which this chapter

is based [62], the publicly available open-source version of RAxML 7.2.6, and the

integration of FastRF [64] with RAxML, respectively.

We observe that the new bipartition hashing approach has yielded a dramatic

61

Chapter 3. How Many Bootstrap Replicates are Necessary?

Table 3.1: Performance improvements for the Bootstopping function in RAxML.
Columns 3-5 are reported in seconds of CPU time.

DATA CON-WC [62] impl. RAxML 7.2.6 RAxML+FastRF

150 650 2.48 2.52 3.29
218 700 5.21 5.30 6.162

500 400 3.70 3.42 4.28
994 300 4.84 4.25 3.97
1481 450 38.71 34.56 37.58
2000 600 90.20 76.78 85.69
2554 500 64.80 52.42 52.51
4114 1001 24.45 11.32 8.65
6718 1001 122.18 26.92 17.00
7764 1001 264.43 37.09 23.09
37381 2501 dnf 1700.29 453.86

aBootstopping did not converge, and the indicated number of replicates reflects all that
were available.

bBootstopping for this sample actually converged after 550 trees (when ρWC = 0.03),
however we adjusted ρWC to 0.0297 (thereby requiring 700 replicates to stop) to enable a
meaningfully comparable run time.

speedup over the preliminary implementation, especially as the number of taxa grows.

Further, if one is willing to sacrifice exactness (FastRF has a failure probability, and

is thus inexact), the third implementation is particularly desirable for datasets with

huge number of taxa. See [64] for a discussion of the accuracy of the FastRF approach.

3.5 Experimental Setup and Results

3.5.1 Experimental Setup

To test the performance and accuracy of FC and WC we used 17 real-world DNA

alignments containing 125 up to 2,554 sequences. The number of distinct alignment

patterns ranges between 348 and 19,436. For the sake of simplicity, alignments

will henceforth be referenced by the number of taxa as provided in Table 3.2. The

62

Chapter 3. How Many Bootstrap Replicates are Necessary?

experimental data spans a broad range of mostly hand-aligned sequences including

rbcL genes (500, 2,554), mammalian sequences (125, 1,288, 2,308), bacterial and

archaeal sequences (714, 994, 1,481, 1,512, 1,604, 2,000), ITS sequences (354), fungal

sequences (628, 1,908), and grasses (404). The 10,000 reference BS replicates on

each dataset were inferred on two AMD-based Linux clusters with 128 and 144

CPUs, respectively. All result files and datasets used are available for download at

http://lcbb.epfl.ch/BS.tar.bz2 We make this data available in the hope that it

will be useful as a basis for further exploration of stopping criteria as well as general

properties of BS.

Computational experiments were conducted as follows. For each dataset we com-

puted a minimum of 10,000 BS replicates using the rapid Bootstrapping (RBS [77])

algorithm implemented in RAxML. We then applied stand-alone bootstopping tests

(either FC or WC) that take the set of 10,000 BS reference replicates as input and

only execute the tests described in Section 3.3 without performing the actual BS

search. Returned is a file containing the first k trees from the full set, where k is

determined by the stopping criterion (FC or WC, along with appropriate parameter

values). We refer to these first k trees as the ’bootstopped’ trees.

We then computed a number of (dis)similarity metrics between the reference

replicates and the bootstopped replicates, including: correlation coefficient, RF be-

tween MRE consensus trees of the two sets, and WRF between the MRE consensus

trees of the two sets. Additionally, support values from the bootstopped and full

replicate sets were drawn on the best-scoring ML tree and the resulting support

values compared.

63

Chapter 3. How Many Bootstrap Replicates are Necessary?

Table 3.2: Performance analysis of FC (p = 99, ρFC = 0.99) vs. WC (p = 99,
ρWC = 0.97) for three metrics: number of trees to converge, WRF between MRE
consensus trees and Correlation Coefficient. Column # Patterns indicates the num-
ber of distinct column patterns in each alignment. The last line depicts the respective
averages.

DATA CON-FC CON-WC WRF-FC WRF-WC P-FC P-WC # Patterns
125 150 50 0 0 0.9997 0.9994 19,436
150 250 650 0.03 0.01 0.9984 0.9994 1,130
218 300 550 0.04 0.01 0.9977 0.9988 1,846
354 450 1200 0.03 0.01 0.9979 0.9992 348
404 250 700 0.04 0.01 0.9965 0.9988 7,429
500 200 400 0.03 0.01 0.9982 0.9991 1,193
628 250 450 0.03 0.01 0.9975 0.9987 1,033
714 200 400 0.03 0.02 0.9977 0.9989 1,231
994 150 300 0.04 0.02 0.9964 0.9974 3,363

1,288 200 400 0.03 0.02 0.9967 0.9985 1,132
1,481 300 450 0.04 0.02 0.9968 0.9979 1,241
1,512 250 350 0.03 0.02 0.9977 0.9983 1,576
1,604 250 600 0.04 0.02 0.9975 0.9990 1,275
1,908 200 400 0.03 0.02 0.9975 0.9987 1,209
2,000 300 600 0.03 0.01 0.9976 0.9989 1,251
2,308 150 200 0.03 0.02 0.9980 0.9985 1,184
2,554 200 500 0.03 0.01 0.9975 0.9991 1,232
1,102 238 482 0.03 0.01 0.9976 0.9987 2,771

3.5.2 Results for FC and WC Methods

In Table 3.2 we provide basic performance data for FC and WC. Column DATA

lists the alignments, CON-FC the FC bootstop convergence number, and column

CON-WC the WC bootstop convergence number. Columns WRF-FC and WRF-

WC provide the WRF distance between the MRE consensus tree for the bootstopped

trees and the MRE consensus tree induced by the reference replicates for FC and

WC respectively. Finally, columns P-FC and P-WC provide Pearson’s correlation

coefficient between support values from the bootstopped trees and the reference trees

on the best-scoring ML tree for FC and WC respectively.

We observe that WC tends to be more conservative, i.e., stops the BS search

after more replicates, except for dataset 125. Dataset 125 is a particularly long

phylogenomic alignment of mammals and exhibits a surprisingly low variability for

the bipartitions it induces. The 10,000 reference replicates only induce a total of

64

Chapter 3. How Many Bootstrap Replicates are Necessary?

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1n
o
rm

al
iz

ed
 v

al
u
e

(o
n
e

o
f

R
F

,W
R

F
)

ρFC / ρWC

FC,RF
WC,RF

FC,WRF
WC,WRF

Figure 3.4: Plot showing convergence of WC over FC for various threshold settings
(ρFC and ρWC respectively) on dataset 1418.

195 distinct bipartitions, which is extremely low given that a single BS tree for this

dataset induces 125 − 3 = 122 nontrivial bipartitions. The WC method appears to

capture this inherent stability of the BS trees sooner than FC, while the WRF to

the MRE tree is 0 in both cases, i.e., the consensus trees for 50, 150, and 10,000

replicates are exactly identical. This also underlines our claim that our criteria

help avoid needless computation (and needless energy expenditures, as large clusters

tend to be power-hungry), in particular on such large and challenging phylogenomic

datasets. Due to the general trend for WC to stop later, both WC metrics (P/WRF)

are higher than the respective values for FC. For WC, a setting of ρWC = 0.97

always returns a bootstopped set with a WRF < 2% to the MRE consensus of

the reference replicates. The results also clearly show that there is a significant

alignment-dependent variability in the stopping numbers, as these range between

150 and 450 replicates for FC and between 50 and 1,200 for WC.

In Table 3.3 we provide additional metrics for the bootstopped trees. Columns µx

and σ2
x provide the mean error and the mean squared error between support values

induced by the x ={FC,WC}-bootstopped trees and by the reference trees on the

best-scoring ML tree. Columns SUPPLOSS-FC and SUPPLOSS-WC quantify the

65

Chapter 3. How Many Bootstrap Replicates are Necessary?

Table 3.3: Performance analysis of FC (p = 99, ρFC = 0.99) vs. WC (p = 99,
ρWC = 0.97) for three metrics: mean error, mean squared error, and loss of support.
The last line depicts the respective averages.

DATA µ-FC σ2-FC µ-WC σ2-WC SUPPLOSS-FC SUPPLOSS-WC
125 0.303279 0.637530 0.483607 1.807108 0.001066 0.004672
150 1.544218 2.941922 1.074830 1.402564 0.009252 0.003605
218 1.865116 3.205062 1.297674 1.836971 0.005070 0.004674
354 1.364672 1.912598 0.886040 0.864506 0.002009 0.002835
404 2.553616 6.626178 1.384040 2.386179 0.012357 0.007170
500 1.792757 3.532503 1.239437 1.936634 0.010020 0.006841
628 2.030400 4.531876 1.398400 2.175677 0.013400 0.008408
714 2.129395 4.973412 1.424754 2.396237 0.010858 0.008833
994 2.498486 11.178353 2.068618 9.014464 0.013895 0.010575

1,288 2.477821 8.308652 1.700389 3.752257 0.013899 0.009864
1,481 1.845061 5.082219 1.496617 3.243223 0.008562 0.007287
1,512 1.762094 3.958643 1.552684 3.176317 0.008403 0.006289
1,604 1.898813 3.891073 1.229232 1.746953 0.008120 0.005721
1,908 1.961680 4.209030 1.377528 2.298479 0.009711 0.007113
2,000 1.773160 3.323105 1.184276 1.504350 0.008488 0.005020
2,308 1.951410 6.626706 1.703254 4.919317 0.010330 0.009681
2,554 2.063897 4.639194 1.248530 1.793192 0.011319 0.006370
1,102 1.871522 4.681062 1.338230 2.720849 0.009221 0.006762

deviations of support values in the best scoring ML tree.

In Figure 3.4 we graphically depict, for one dataset (1481), the convergence of FC

versus WC. We plot the RF and WRF distances between the MRE consensus of the

bootstopped trees and reference trees over distinct settings (0.87, 0.88,. . . ,0.99) for

ρFC and ρWC . For all but two datasets we observed that WC yielded a better con-

vergence (while it required almost 50% more replicates on average) toward replicate

sets whose consensi are more congruent (i.e., have lower RF and WRF distances)

with the full replicate sets, as a function of ρ. This favorable property is due to the

fact that WC is exclusively based on the “important” bipartitions. Therefore, WC

allows to more precisely specify the desired degree of accuracy with respect to the

biologically relevant information via an appropriate setting of ρ. As can be derived

from Table 3.2 a setting of ρ = 0.97 for WC induces a WRF toward the reference

dataset consensus that is ≤ 2% in all cases for all of our datasets. Hence, the usage

of a WC threshold will also be more meaningful, because it appears to be strongly

correlated with the final WRF distance to the 10,000 reference replicates.

66

Chapter 3. How Many Bootstrap Replicates are Necessary?

Table 3.4: Data supporting the robustness of WC to reordering replicates as well
as the method for generating bootstrap replicates. The notable column is σε which
indicates strong agreement across criterion applications while shuffling replicates.

DATA µε σε µµ σµ SBSε

125 7.9 2.39 3.86 1.63
150 3.2 1.08 1.04 0.23
218 2.9 0.54 0.90 0.14 3.0
404 3.7 0.64 1.03 0.18
500 4.9 0.70 1.62 0.22 4.0
628 4.7 0.78 1.38 0.16
354 3.0 0.63 0.88 0.16 5.0
714 5.5 0.92 1.96 0.23 6.0
994 7.2 0.75 2.71 0.56
1481 4.6 0.92 1.39 0.19
2000 4.9 0.70 1.23 0.13
1288 6.1 0.70 1.94 0.20
1604 5.0 0.77 1.30 0.08
1908 6.4 0.92 1.90 0.11 7.0
2554 5.8 0.87 1.58 0.09
2308 9.0 1.61 3.12 0.33
1512 6.5 0.92 2.04 0.14

3.5.3 Robustness of Criteria

To conclude that our criteria are robust, we investigated the sensitivity of our criteria

to two factors: the ordering of bootstrap replicates and the method used to create

the bootstrap replicates. In tables 3.4 (for WC, ρWC = 0.03) and 3.5 (for FC,

ρFC = 0.99)) we report on the results. For each full set of bootstrap replicates

we generated 10 random permutations of the order of trees. We then applied our

bootstop procedures again on each of the copies (permutations).

In each table, µε refers to the mean of the worst support value error (for bipar-

titions from the best ML tree with support ≥ 75%) across 10 permutations. While

the selected threshold settings for the stopping criteria yield certain accuracy errors,

the standard deviation of the same quantity – σε, is small, which underlines the ro-

bustness of our stopping criteria under permutations of the input replicates that we

67

Chapter 3. How Many Bootstrap Replicates are Necessary?

Table 3.5: Data supporting the robustness of FC to reordering replicates as well
as the method for generating bootstrap replicates. The notable column is σε which
indicates strong agreement across criterion applications while shuffling replicates.

DATA µε σε µµ σµ SBSε

125 5.8 1.78 1.74 0.70
150 5.5 1.75 2.98 0.49
218 5.5 1.36 2.47 0.43 4.0
404 6.1 0.94 2.44 0.32
500 7.4 1.36 3.45 0.42 5.0
628 6.8 1.33 2.95 0.27
354 4.3 0.90 1.60 0.14 5.0
714 7.3 1.10 3.54 0.31 7.0
994 9.5 1.63 4.20 0.57
1481 6.1 1.22 2.21 0.21
2000 6.8 1.08 2.26 0.11
1288 8.4 1.43 3.41 0.19
1604 7.9 1.58 2.78 0.20
1908 9.2 1.33 3.32 0.17 7.0
2554 9.1 1.87 3.44 0.32
2308 10.0 1.18 3.99 0.19
1512 7.3 1.10 2.90 0.20

intended to demonstrate. We have also included (for completeness) the mean and

standard deviation of the average error in support (again, of bipartitions from the

best ML tree with support ≥ 75%) as µµ and σµ.

Regarding robustness to the method used to generate replicates, we generated

standard bootstrap replicates for five of our datasets, and subsequently ran them

through our bootstopping criteria. The results are also listed in tables 3.4 and 3.4,

under the column SBSε. Clearly, the error in bipartition support for the bootstopped

set of standard BS sets agrees nicely with the rapid BS case.

68

Chapter 3. How Many Bootstrap Replicates are Necessary?

3.5.4 Convergence of Data Sets

In addition to assessing our stopping criteria, we have also comprehensively assessed

the inherent convergence properties of our replicate sets. Doing so has enabled us

to understand a number of quantities that tend to reflect bootstrap support and

may help in the design of improved stopping criteria. We have plotted a number of

(dis)similarity measures between a subset (i.e., the first m trees) and full replicate

(≥ 10, 000 trees) set. In Figure 3.5 we plot the RF and WRF (in the two lower plots)

between the MRE consensus of each tree set restricted to the first m trees versus its

respective full set of replicates (≥ 10, 000 trees). This plot shows the differences in

convergence speeds among datasets. In addition, it underlines that WRF introduces

less noise than RF as replicates are added, so that WRF is a more reliable measure

for convergence. An extreme example for this is dataset 354, a short (348 alignment

columns) alignment of maple tree sequences from the ITS gene that is known to

be hard to analyze [39]. A comparison between the development of RF and WRF

over the number of trees for this alignment shows that there are many sequences

with low support that are placed in different parts of the tree and essentially reflect

unresolved nodes. The slight increase of distance metrics around 1,000 replicates

and consecutive decrease observed for dataset 125 might be minor artifacts of the

RAxML RBS algorithm.

Also in the upper part of Figure 3.5 we plot the development of the mean error

between support values of m replicates and all replicates on the best-scoring tree.

The three plots in Figure 3.5 clearly show that the development of WRF distances

over the number of replicates is highly congruent to the development of the mean

error on the best-scoring tree. Thus, WRF can be used as a criterion to determine

convergence without an external reference tree. Accordingly, Figure 3.6 shows the

development of WC and FC over number of replicates, which as desired tracks nicely

with Figure 3.5. Designing such a criterion has been a major goal of the phylogenetic

69

Chapter 3. How Many Bootstrap Replicates are Necessary?

community; WRF is the first good answer. Moreover, the plots can help to deter-

mine an appropriate threshold setting for ρWC , depending on the desired degree of

accuracy.

Finally, in Figure 3.7 we plot the support values of FC/WC-bootstopped trees

against the support values from the reference replicates on the best-scoring ML tree

for dataset 628. The comparison clearly shows a decrease in deviations from the

diagonal for the WC criterion.

3.5.5 Comparison to Hedges Criterion

We also experimentally assess the accuracy of the formula proposed by Hedges ([44]

that is also covered briefly in Section 3.2.2 on real datasets. As already mentioned it

can be used to compute an upper bound for the number of replicates that are required

to achieve a certain accuracy. In our experiments, we set the upper bound such that

the theoretical error for support values of 75% (or greater) lies between +/- 2%.

This upper bound is roughly 2000 replicates as can be derived from Figure 3.1. We

chose this threshold of accuracy because biologists typically employ this threshold

when deciding whether a bipartition is supported or not. This empirical setting is

also suggested by an in-depth study on real and simulated datasets [46].

Therefore, we performed experiments in order to determine how many replicates

were truly necessary (for our data) to meet the desired accuracy of +/- 2 % on our

datasets for all bipartitions supported by ≥ 75% by 10,000 replicates on the best-

scoring ML tree. The results of our experiments, i.e., the number of replicates per

datasets to achieve the desired accuracy are indicated as follows:

Dataset 125 1288 1481 150 1512 1604 1908 2000 218

Replicates 950 dnf1 1400 1600 1500 1400 1650 1650 1200

70

Chapter 3. How Many Bootstrap Replicates are Necessary?

 0

 1

 2

 3

 4

 5

 6

 100 1000 10000M
ea

n
 E

rr
o

r
in

 n
 S

u
p

p
o

rt
 o

f
B

es
t

M
L

 T
re

e

Number ofTrees (log scale)

125
150

1604
2000
2308

354
628
714

1288

1481
1512
1908

218
2554

404
500
994

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 100 1000 10000

W
ei

g
h

te
d

 R
o

b
in

so
n

-F
o

u
ld

s

Number of Trees (log scale)

125
150

1604
2000
2308

354
628
714

1288

1481
1512
1908

218
2554

404
500
994

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 100 1000 10000

R
o

b
in

so
n

-F
o

u
ld

s

Number of Trees (log scale)

125
150

1604
2000
2308

354
628
714

1288

1481
1512
1908

218
2554

404
500
994

Figure 3.5: Inherent convergence of replicate sets scored by (top) error in support of
best ML tree (middle) WRF and (bottom) RF distances between the first m trees
and the entire (10,000 tree) set.

Dataset 2308 2554 354 404 500 628 714 994

Replicates 1550 1900 1550 1550 1700 1850 1200 1550

1Dataset 1288 had not beat the threshold by 2000 replicates, but had by 2500.

71

Chapter 3. How Many Bootstrap Replicates are Necessary?

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 100 1000 10000

W
C

 c
ri

te
ri

o
n
 v

al
u
e

Number of Trees (log scale)

125
150

1604
2000
2308
354
628
714

1288

1481
1512
1908
218

2554
404
500
994

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 100 1000 10000

F
C

 c
ri

te
ri

o
n
 v

al
u
e

Number of Trees (log scale)

125
150

1604
2000
2308
354
628
714

1288

1481
1512
1908
218

2554
404
500
994

Figure 3.6: Values of FC and WC criteria for tree subsets consisting of the first m
trees.

As such, we conclude that Hedges’ estimate provides a reasonable upper bound

for the accuracy, meaning that it is not a gross overestimate. To our knowledge this

data represents the first empirical assessment of Hedges formula. Nonetheless, the

number of replicates required is highly dataset-dependent. Thus, given the above

stopping numbers, there is a potential for computing far too many replicates and

wasting 30% or more CPU hours when deploying the formula. Interestingly, dataset

1288 requires more replicates than indicated by Hedges formula to achieve the desired

accuracy level.

72

Chapter 3. How Many Bootstrap Replicates are Necessary?

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ll

 R
ep

li
ca

te
 T

re
es

 (
1
0
,0

0
0
 r

ep
li

ca
te

s)

BootStopped Trees

FC (250 replicates)
WC (450 replicates)

Figure 3.7: Support values drawn on the best ML tree for FC (blue) and WC (red)
versus full replicate set, for data set 628

73

Chapter 4

Uncovering Hidden Phylogenetic

Consensus

Then there is some talk about secrecy. A great deal of talk about it. They run through drills intended to test

their ability to throw things away properly. This goes on for a long time and the longer it continues, without an

explanation as to why, the more mysterious it becomes. The musicians, who were at first a little put out by their

chilly reception, start to speculate amongst themselves as to what kind of an operation they have gotten themselves

into now.

– Neal Stephenson, Cryptonomicon

4.1 Background and Motivation

Phylogenetic consensus methods are used for combining a set of trees defined on the

same set of leaves into a single tree that summarizes the information found in the

set. By their very nature, these methods discard information, typically structural

elements not prevalent in the set. However, the most popular consensus methods

(strict and majority rule) are susceptible to so-called rogue taxa [90]. That is, while

the tree set may agree very strongly on the structure relating a large subset of

74

Chapter 4. Uncovering Hidden Phylogenetic Consensus

the leaves, the remaining few leaves (the rogue taxa) can effectively prevent this

underlying structure from appearing in the strict or majority consensus tree. In

other words, these methods end up discarding structural elements that are, in fact,

prevalent in the set.

Much work has been done on the problem of summarizing a set of trees and on

the issue of rogue taxa in particular. The pioneering work of Wilkinson [90, 91, 92]

addresses the problem by returning sets of trees, some of which are missing leaves,

with the aim of conveying the prevalent structural elements in at least one of the

returned trees. While theoretically satisfying, this approach suffers from computa-

tional complexity problems (he provides an exponential time algorithm) and, more

importantly, from difficulties in interpretation.

A problem closely related to both consensus and rogue taxa is the Maximum

Agreement Subtree (MAST). A MAST on a set of input trees is the subtree of largest

leaf-set cardinality common to all input trees. While the general problem of finding

the MAST of three or more trees is NP-hard [5], it can be solved efficiently when

at least one of the input trees has bounded degree [26]. Another agreement sub-

tree optimization problem Maximum Information Subtree (MIST) was proposed by

Bryant[14] to overcome a key deficiency of MAST, namely that the maximization

of leaf-set cardinality can entirely obscure important internal structure revealed by

a smaller, suboptimal for MAST, leaf subset. Bryant’s algorithm for solving MIST,

whose complexity mirrors that of MAST algorithms, actually affords the practitioner

an option to weight the importance placed on leaf-set cardinality versus internal

structure in the solution. As such, the optimization function for MIST has a striking

resemblance to the MISC optimization problem we propose below. Unfortunately,

all agreement subtree approaches tend to be too conservative for our purpose; most

notably, there exist instances where the strict consensus tree (without dropping any

leaves) has more internal edges than any MAST or MIST (Section 4.5.1).

75

Chapter 4. Uncovering Hidden Phylogenetic Consensus

Cranston and Rannala recently presented a Markov Chain Monte Carlo (MCMC)

method for identifying a version of rogue taxa in the context of Bayesian phylogenetic

reconstruction [20]. Their approach identifies subsets of leaves for which the posterior

distribution strongly supports the structure of the induced subtree—leaves left out

can be viewed as rogue taxa, albeit in the narrow context of a sampling of trees in

a Bayesian search, rather than in the general context of a consensus of trees. All of

the approaches mentioned thus far fall into the category of “leaf-dropping methods,”

in the terminology of Redelings [70]. In contrast, Redelings presents, again in the

context of Bayesian phylogenetics, a method that returns a “multi-connected tree,”

which includes all leaves, but does not summarize the information through a single

tree and thus again raises issues of interpretation—an issue plaguing all approaches

producing non-trees [11, 17, 34, 48].

In this chapter we contribute another leaf-dropping method, one based on a rig-

orous definition of the tradeoff involved between dropping leaves and uncovering

additional consensus structure. Most existing measures and methods discard leaves

in order to uncover any underlying structure; in contrast, our approach sets up a

bicriterion problem, in which leaves should be discarded only if the gain in uncovered

internal edges outweighs the loss incurred by discarding the leaves. We are not the

first researchers to define some notion of relative information content for consensus

trees [86], but our definition is the first to both explicitly take into account the loss

incurred by dropping taxa, and generalize outside the setting of agreement subtrees.

We provide an effective greedy heuristic to compute a good (if not necessarily opti-

mal) set of rogue taxa and apply it to both pathological examples from the literature

and a collection of large biological datasets that we used in a prior study of boot-

strapping. As the presence of rogue taxa in a set of bootstrap replicates can lead

to deceivingly poor support values, we propose a procedure to recompute support

values in light of the rogue taxa identified by our algorithm; applying this procedure

to our biological datasets caused a large number of edges to change from “unsup-

76

Chapter 4. Uncovering Hidden Phylogenetic Consensus

ported” to “supported” status, indicating that many existing phylogenies should be

recomputed and reevaluated to reduce any inaccuracies introduced by rogue taxa.

We also present, which is new material respective to the paper upon which most of

this chapter is based, a section on theoretical aspects of our proposed optimization

problem – Maximum (Relative) Information Subtree Consensus (MISC-C). This

section shows that the strong ties between agreement subtree problems (i.e., MAST,

MIST) and MISC-Cm−1 appear to break down when generalizing to a non–strict

setting. Further, it appears that (in the non–strict setting) a simpler problem, namely

finding a maximum cardinality leaf subset L′ so that some bipartition of L′ appears

in Ct(T |L′), may be intractable even for trees with bounded degree.

The rest of the chapter is organized as follows. In Section 4.2 we define our mea-

sure of relative information content, formalize the bicriterion optimization problem

for consensus and rogue taxa (MISC-C), and present some theoretical results that

underlie our approach. In Section 4.3 we present an efficient greedy heuristic for our

bicriterion problem. In Section 4.4 we present the results of experiments performed

with our greedy heuristic. Finally, in Section 4.5 we explore complexity theoretic

aspects of MISC-Ct, especially where t < m− 1.

4.2 Relative Information Content, Consensus

Methods, and Rogue Taxa

4.2.1 The measure and the problem

The general problem we study can be phrased as follows: given a set T of trees on

a common leaf set L and given a frequency-based consensus method Ct, we want to

find a leaf subset L′ that optimizes the relative information content of the consensus

77

Chapter 4. Uncovering Hidden Phylogenetic Consensus

returned by Ct on the set of subtrees induced by L′. The crucial notion here is that

of relative information content. Formally, if Ct(T |L
′) yields T ′ = (L′, B′), then the

relative information content is

I(T ′, L, Ct) =
|L′|+ |B′|

|L|+ (|L| − 3)
(4.1)

This measure is the ratio of the total number of bipartitions (trivial and nontrivial) in

the consensus tree derived on the reduced leaf set to the total number of bipartitions

in an ideal, fully resolved tree on the original leaf set. By taking trivial bipartitions

into account, we automatically penalize a method for removing many leaves, since the

number of trivial bipartitions is simply the number of leaves. By adding the number

of nontrivial bipartitions, we reward a method for preserving more internal edges,

since the denominator is fixed to the number of such edges in an ideal tree. Note

that the use of the word ’information’ in our definition does not imply information-

theoretic foundations.

We can now formulate our main problem, which we call MISC, for Maximum

(Relative) Information Subtree Consensus.

Problem 1 (MISC). Given a set T of trees defined on a common leaf set L and a

frequency-based consensus method Ct, find a leaf subset L′ that maximizes the relative

information content I(Ct(T |L′), L, Ct).

Note that a MAST solution typically maximizes the |B′| term at the expense of

the |L′| term—it has no direct penalty for dropping leaves; in contrast, consensus

methods typically maximize |L′| (in the case of majority and strict consensus, by

forcing L′ = L) at the expense of |B′|. MISC, on the other hand, combines the two

aspects into a single formulation.

In defining MIST [14], Bryant seemed to be on a similar trail to ours. He even goes

so far as to generalize his algorithm for MIST to introduce parameters α and β which

78

Chapter 4. Uncovering Hidden Phylogenetic Consensus

can be used to weight the importance placed on trivial versus nontrivial bipartitions.

However, while MIST is a step in the right direction, it is still too restrictive relative

to our goals. This is because solutions are required to be agreement subtrees, which

we will show in Section 4.5 does not always equate to optimality in MISC-Cm−1.

4.2.2 How bipartitions change under leaf deletion

We begin by studying the effect that dropping leaves has on a bipartition profile.

For any bipartition in the original profile, there are three cases. We illustrate these

cases through a simple example, with an original leaf set of a, b, c, d, e, f and with

leaves b and e dropped.

1. merge: If two bipartitions differ solely in (a subset of) the leaves being

dropped, then those bipartitions get merged in the new profile. For example

ac|bdef and abc|def merge into ac|df and the ν set for the merged bipartition

consists of the union of the two original bipartitions.

2. disappear: If dropping the leaves creates a bipartition with an empty side

or makes the bipartition trivial, then the bipartition disappears. For example,

both acdf |be and acd|bef disappear.

3. no change: Otherwise, a bipartition remains unchanged.

An important observation is that, for all L′′ ⊆ L′ ⊆ L, every nontrivial bipartition

in P|L′′ and in Ct(T |L′′) arises as a result of a “no change” of a single bipartition or

a “merge” of two or more bipartitions in P|L′. Unfortunately this observation does

not suggest an efficient algorithm.

79

Chapter 4. Uncovering Hidden Phylogenetic Consensus

4.2.3 Finding subsets of leaves to drop

Given two bipartitions b1 and b2 of L, we can easily identify all leaf subsets L′ of

minimum cardinality such that dropping L′ from L merges b1 and b2. If we have

b1 = A|B and b2 = C|D, then the dropset L′ is the smaller of the two following sets

(or either set in case they have the same size):

(A∆C) ∪ (B∆D) or (A∆D) ∪ (B∆C) (4.2)

This concept is exploited in Algorithm 1.

Theorem 5. Algorithm 1 computes the minimum cardinality dropset for any pair of

bipartitions of L.

Proof. That the dropset causes the two partitions to merge is evident. We establish

that the dropset has minimum cardinality by contradiction. Consider that there

Algorithm 1 Find minimum cardinality leaf-dropset that renders b1 = b2

Require: two bipartitions on the same leaf set

Ensure: the dropset (or dropsets if there are two)

1: function bipartition-pair-dropset(b1 = A|B, b2 = C|D)

2: S0 ← A∆C ∪B∆D

3: S1 ← A∆D ∪B∆C

4: if |S0| < |S1| then

5: return [S0]

6: else if |S1| < |S0 then

7: return [S1]

8: else

9: return [S0,S1]

10: end if

11: end function

80

Chapter 4. Uncovering Hidden Phylogenetic Consensus

exists a smaller dropset merging the two bipartitions. Then there is at least one leaf

ℓ in the dropset returned by our algorithm that is not in the smaller dropset. This

leaf must be on the same side of the partition in both b1 and b2, since otherwise

our dropset would not merge the two. But our algorithm uses the symmetric differ-

ence of these two sides in computing the dropset, so it could not have chosen ℓ, a

contradiction.

Theorem 6. The cardinalities of the dropsets returned by Algorithm 1 define a metric

on the space of bipartitions of L.

Proof. Three properties characterize a metric: it must be positive definite and sym-

metric, and it must obey the triangle inequality. The first two properties are trivial

in this case. Suppose we have bipartitions b1, b2, and b3; we want to show that the

cardinality of the dropset of b1 and b3 cannot exceed the sum of the cardinalities of

the dropsets of b1 and b2 and of b2 and b3. Note that removing both of these dropsets

from both b1 and b3 merges the two bipartitions, thereby establishing an upper bound

on the distance between these two bipartitions in our space; but the distance is the

size of the dropset of b1 and b3, so that the triangle inequality holds.

4.3 The Algorithm

We describe the algorithm at a conceptual level, leaving a more formal specification

to inset text. First, we build the bipartition profile for the given tree set. Next,

we compute the dropset for each pair of bipartitions in the profile such that neither

bipartition in the pair appears in the consensus tree, but the pair would appear if

merged. For each unique dropset we accumulate the list of bipartition pairs yielding

that dropset. These last two parts are formalized in Algorithm 2. We then compute

the impact of each dropset as the number of bipartition pairs giving rise to that

81

Chapter 4. Uncovering Hidden Phylogenetic Consensus

dropset minus the size of the dropset itself. This score corresponds roughly to the

difference between the number of edges that will be created and the number of

leaves that will be lost should that dropset be used. The dropset of largest impact is

then used, the profile updated, the impacts updated, and the process repeated until

there does not remain any dropset with a nonnegative impact. This greedy overall

framework is formalized in Algorithm 3.

The impact measure ignores disappearing edges and dropsets that are subsets of

another—the latter because a superset with deceivingly poor score is likely to get

chosen in a subsequent round. The overall algorithm is a greedy heuristic, but does

well in practice and on hard instances, as we demonstrate in the next two sections.

There remains the issue, as with all leaf-dropping methods, of what to do with

Algorithm 2 Find potential dropsets by examining all pairs in a profile

Require: A bipartition profile P = (L, BT , ν : BT → 2T)

Require: A frequency-only consensus method Ct with threshold t

Ensure: An object mapping dropsets to lists of bipartition pairs

1: function potential-profile-dropsets(P, Ct)

2: Γ← {b | b ∈ BT and |ν(b)| ≤ t}

3: for all pairs of bipartitions b1,b2 in Γ do

4: if |ν(b1) ∪ ν(b2)| > t then

5: L← bipartition-pair-dropset(b1, b2)

6: for d ∈ L do

7: δ[d]← δ[d] ∪ {(b1, b2)}

8: end for

9: end if

10: end for

11: return δ

12: end function

82

Chapter 4. Uncovering Hidden Phylogenetic Consensus

the dropped leaves. The staying power of consensus methods argues for producing a

single tree and our method does that. For the rogue taxa, we provide an intriguing

strategy that is applicable in some settings in Section 4.4.5.

4.4 Experimental Results

We have implemented our approach as a standalone Python-based prototype. Our

current implementation is suitable for datasets of up to a thousand trees on a thou-

sand leaves. Scaling up to 10,000 trees on 10,000 leaves is simply a matter of reim-

plementing our approach as part of RAxML [76] so as to leverage the efficient bipar-

tition manipulation routines therein. In the following, we present results on artificial

datasets constructed to cause difficulties to various consensus methods, followed by

results on biological datasets that we used in previous chapter on bootstrapping

(Chapter 3). We then discuss implications of our results on the interpretation of

phylogenetic reconstruction. We conclude by a smaller study on biological datasets

using a slight modification of our algorithm to maximize the number of nontrivial

bipartitions in the result.

4.4.1 Difficult instances

Our algorithm is particularly well suited to the so-called “pathological” instances

used in the literature to critique the strict or majority consensus. In this section be

cover a number of specific instances and instance families which exhibit the inherent

limitations of frequency-based consensus methods, the effectiveness of our approach,

as well as limitations with our approach.

83

Chapter 4. Uncovering Hidden Phylogenetic Consensus

aR
bc

S
d

e

T
f

g
U hi

j k l m
n

o
p
q
r
s

t
u

vwx

(a) Tree 1

abc
d
e

f
g
h
i

R j
k

S l
m T

n o

U
p

q
r
s
t

u
vwx

(b) Tree 2

abc
d
e

f
g
h
i
j
k

l mn op q
R
r s

S
t
u

Tv
w

U
x

(c) Tree 3

Trf
R

s
g
v
i
b
m

e
q u h l d x

p
t
U
k
S
w

o
j

cna

(d) Cm−1(T)

abc
d

e
f
g
h

i
j

k l mn
o

p
q
r
s
t

u
vwx

(e) Cm−1(T |{a, . . . , x})

Figure 4.1: A simple, yet starkly contrasting, example (top) for which the strict
consensus returns a star tree, but for which our algorithm correctly identifies the
rogue taxa and produces a fully resolved tree (bottom).

A First Example

A classic example is an instance where the trees share a common subtree of n − k

leaves, but where the remaining k leaves destroy resolution in the consensus.

This example uses the strict consensus. An instance consists of just three trees,

defined on the 28-leaf set {a, b, . . . , x, R, S, T, U}. The common backbone consists

of the 24 taxa {a, b, . . . , x}, as illustrated in Figure 4.1(e)). The rogue taxa form

the set {R, S, T, U}; they vary in position on the backbone as indicated in Fig-

ures 4.1(a), 4.1(b), and 4.1(c). The strict consensus tree of the three trees is shown

84

Chapter 4. Uncovering Hidden Phylogenetic Consensus

in Figure 4.1(d): it is just a star, with no nontrivial bipartition (no internal tree

edge) and its relative information content is I(T , L, Cm−1) = 28+0
28+25

= 28
53
≈ 0.53. Our

algorithm correctly identifies the rogue set, however, so that its strict consensus tree

on the remaining set of leaves is the backbone, with an relative information content

of I(T |{a, . . . , x}, L, Cm−1) = 24+21
28+25

= 45
53
≈ 0.85.

The 1-Cherry Trees

The behavior exhibited in the previous example is not limited to small trees. In

this section we introduce a simple, but infinitely sized, family of instances exhibiting

similar behavior. We continue, as in the previous section, with the strict consensus

method. An instance in this family is fully specified by a parameter k. An instance

has m = 3 · 2k trees, and n = 3 · 2k+1 + 1 leaves. The common backbone that exists

in each tree consists of all but one of the leaves and structurally is a fully balanced

binary tree. The remaining leaf, name it R wanders and occurs together with every

second leaf X in a bipartition of the form RX|rest (which is colloquially referred to

as a cherry in phylogenetics, hence the name of the family). See Figure 4.2 for the

cherry tree with k = 1.

Our algorithm correctly identifies the rogue taxon in all cherry trees. The relative

information content of cherry tree k is

3 · 2k+1 + 1

(3 · 2k+1 + 1) + (3 · 2k+1 + 1− 3)
=

3 · 2k+1 + 1

2 · 3 · 2k+1 − 1

which in the limit k, n, m → ∞ tends toward 1
2
. After rogue identification and

elimination by our algorithm, which in this case optimally solves MISC-Cm−1, the

relative information content is

3 · 2k+1 + 3 · 2k+1 − 3

(3 · 2k+1 + 1) + (3 · 2k+1 + 1− 3)
=

2 · 3 · 2k+1 − 3

2 · 3 · 2k+1 − 1

which in the limit k, n, m→∞ tends toward 1.

85

Chapter 4. Uncovering Hidden Phylogenetic Consensus

a
R

b

c

d

e
f g

h

i

j

k
l

(a) Tree 1

ab
c

R
d

e
f g

h

i

j

kl

(b) Tree 2

a
b

c

d

e

R f g
h

i

j

k
l

(c) Tree 3

a
b

c

d

e

f

g
R

h

i

j

k
l

(d) Tree 4

ab

c

d

e
f g h

i

R

j

k
l

(e) Tree 5

ab

c

d

e

f g
h

i

j

k

Rl

(f) Tree 6

Figure 4.2: The second instance (the first is k = 0) of our family of cherry trees.
There are 3 · 2k = 6 trees on 3 · 2k+1 + 1 = 13 leaves.

4.4.2 The r-Cherry Trees

The 1-cherry tree instances are somewhat unsatisfying as pathological instances be-

cause a much simpler strategy than our algorithm is sufficient for finding the single

rogue taxon (e.g., the polynomial time procedure of dropping each leaf in turn and

applying the strict consensus method to assess relative information content of the

result). However, it is straightforward to adapt the basic principle behind 1-cherry

trees to induce an effectively arbitrary number of rogue taxa. Given k and a desired

number of rogue taxa r (where r divides n
2

evenly), we take n = 3 · 2k+1 + r and

m = 3·2k

r
. In the first tree, the rogue taxa are attached as cherries to every second

86

Chapter 4. Uncovering Hidden Phylogenetic Consensus

taxon, for a total of n
r

taxa. In the second tree, the rogue taxa are attached to the

next n
r

(while attaching as a cherry to every second) taxa. This pattern continues in

each subsequent tree. An instance of this family is actually what we used as our first

motivational example for our algorithm (Figure 4.1), which is the k = 2’th 4-cherry

tree.

4.4.3 The Comb/Caterpillar

Another instance (family) that exhibits extremal behavior with respect to relative

information content arises when subjecting the comb or caterpillar tree (so named

by their appearance when drawn) to rogue taxa. The simplest case consists of two

trees, on an arbitrary number of taxa, where the rogue taxon occurs at each end

of the backbone tree. See Figure 4.3 for the instance of this family with nine taxa.

This family of caterpillar instances is also often used to demonstrate a brittleness

of the Robinson-Foulds metric. Namely, the RF distance between the two trees is

maximum (for the given number of taxa), whereas the trees are clearly nearly iden-

tical. Our algorithm performs particularly well on caterpillar (and related) instances

because hidden edges in such instances are almost always revealed by merging pairs

of bipartitions.

Instance Requiring a 3-way Merge

As was discussed earlier, bipartitions in a restricted consensus tree can be uncovered

as the result of merging three or more bipartitions. Since our algorithm only considers

bipartition pairs as merging candidates, an instance which only admits improvement

via a 3 (or more) way merge will fail to be solved by our algorithm. Figure. 4.4

illustrates such an instance. The relative information content of the non-restricted

instance is 8
13

whereas removing leaves R and S yields a situation where the relative

87

Chapter 4. Uncovering Hidden Phylogenetic Consensus

a
R

b

c d
e

f

g
h

(a) Tree 1

a
b

c
d e

f

g

h
R

(b) Tree 2

Figure 4.3: An instance where all of the internal structure of the strict consensus
tree is destroyed by a single rogue taxon, even with only two trees in the set.

a
b

R

c d

e

f
S

(a) Tree 1

a
b

S

c d

R

e

f

(b) Tree 2

a

b

c

d S

e

f

R

(c) Tree 3

Figure 4.4: This instance will not be solved correctly by our algorithm. This is
because identifying R and S as rogue requires merging three bipartitions.

information content is 9
13

. However, our algorithm will recommend to not drop any

leaves.

A note about Cm
2

All of the instance presented in this section considered relative information content

in light of the strict consensus method (Cm−1). However, it is trivial to adapt these

88

Chapter 4. Uncovering Hidden Phylogenetic Consensus

instance families into easy/difficult cases for our algorithm when operating under the

majority rule (Cm
2
) consensus method. Namely, for any instance discussed so far with

m trees, add an additional m − 1 star trees (recall that the star tree contains zero

nontrivial bipartitions). This simple transformation yields instances that perform

identically with respect to relative information content (with Cm
2

substituted for

Cm−1).

4.4.4 Results on biological data

We applied our method to half of the datasets used in the last chapter on boot-

strapping methods (Chapter 3 and available at http://lcbb.epfl.ch/BS.tar.bz2.)

There are 10 datasets of single-gene and multi-gene DNA sequences, with anywhere

from 125 to 994 taxa. For each dataset we generated 1,000 bootstrap replicates and

applied our algorithm to the resulting trees using both Cm
2

and Cm−1. Our algorithm

found rather diverse dropset sizes across the 10 datasets. The results are depicted

in Figure 4.5, where a quartet of histogram bars are shown for each dataset with a

nonempty dropset. The first histogram bar (a negative quantity) denotes how many

leaves were dropped, while the second bar (a positive quantity) denotes how many

nontrivial bipartitions were uncovered. The third bar is the sum of the first two, sim-

ply depicting the net (non-normalized) contribution to relative information content.

The final bar is discussed in Section 4.4.5.

4.4.5 Biological interpretation

Maximum likelihood phylogenetic analyses are typically conducted in two steps. First

the reconstruction proper is performed, yielding a “best tree.” Then a number of

bootstrap replicate trees are generated, say 500 of them; for each bipartition b in

the best tree, its support value is calculated as a normalized count of the number of

89

Chapter 4. Uncovering Hidden Phylogenetic Consensus

-10

-5

 0

 5

 10

 15

 20

 25

150 218 354 404 500 628 714 994

∆
B

ip
ar

ti
ti

o
n
s

Taxa

-5

 0

 5

 10

 15

404 628 994

∆
B

ip
ar

ti
ti

o
n
s

Taxa

Trivial Loss
Nontrivial Gain

Net Info Gain
Biol. Interp

Figure 4.5: The performance of Algorithm 3 in terms of how much “hidden” consen-
sus is uncovered in biological data sets. The top plot is for majority consensus, the
bottom for strict consensus. The tree sets each consist of 1,000 bootstrap replicates
generated by the RAxML 7.2.6 Rapid Bootstrap Algorithm.

replicates in which b appears. Researchers tend to consider edges with support lower

than 75% as unreliable [30].

90

Chapter 4. Uncovering Hidden Phylogenetic Consensus

If, however, rogue taxa are at work in the replicate set, the support values for

certain bipartitions can be deceivingly depressed. To remedy this problem, we pro-

pose that Algorithm 3 be applied to the replicate set in order to identify rogue taxa.

If a dropset of nonzero size is found, this dropset is then removed from each tree in

the replicate set. Finally, the (modified) support value is calculated as a normalized

count of the replicates in which b′ appears such that, if we have b = A|B, then,

without loss of generality, we have b′ = A′ ⊆ A|B′ ⊆ B. In this way, support values

in the “best tree” are less susceptible to the deceiving influence of rogue taxa. This

approach offers one possible solution to the data display problem of leaf-dropping

methods. We still return a single tree on the original leaf set (the “best tree” as re-

constructed by an ML method), but support values for individual bipartitions more

accurately reflect the underlying replicate data.

In our datasets, recomputing support values as suggested above yields very in-

triguing and promising results. All but two of the identified dropsets succeeded in

pushing at least one previously hidden edge in the “best tree” over the 75% thresh-

old. The number of edges uncovered by this application of our technique is displayed

in the fourth histogram bar in Figures 4.5(a) and 4.5(b). In the dataset with 404

taxa, 20 edges were uncovered in this manner, pointing to a need for reevaluation of

the phylogeny.

4.4.6 Increasing resolution

Our algorithm can easily be modified to maximize nontrivial bipartitions, that is, to

remove taxa so as to increase resolution. With such a setting, our algorithm loosely

matches the goal of Cranston and Rannala [20], so we analyzed the same dataset

with our technique to compare our results to theirs. The data set consists of 85

species of Canformia Carnivora [33]. We obtained the sequence data from TreeBASE

91

Chapter 4. Uncovering Hidden Phylogenetic Consensus

(http://www.treebase.org, Study Accession # S1532) and reconstructed a tree

using RAxML-7.2.6 [76] under the GTRCAT approximation. Additionally, RAxML

was used to generate 350 bootstrap replicates (the number chosen by RAxML’s

bootstopping algorithm). Analyzing these 350 trees with our modified Algorithm 3

and using majority consensus generated fully resolved trees with 50 to 55 taxa, a

value consistent with the size of the agreement subtrees observed by Cranston and

Rannala [20].

4.5 Complexity Theoretic Aspects of MISC-C

Rather than addressing the complexity of MISC directly, our line of inquiry to this

end began with an observation that for the strict consensus method (Cm−1) it is

the case that the Maximum Agreement Subtree (MAST) yields an interesting lower

bound for MISC-Cm−1. We explore this observation more rigorously in the subse-

quent section, but intuitively MAST is an interesting lower bound because it often

maximizes the |B′| term of relative information content at the expense of the |L′|

term. This perspective yields another way to view consensus methods, namely that

they too represent lower bounds for relative information content which instead max-

imize |L′| at the expense of |B′|. Indeed, this is another part of the motivation for

our relative information content measure – precisely to address this tradeoff.

Since in this chapter we have focused on two of the most popular consensus meth-

ods, strict and majority rules, we also investigate whether the MAST lower bound

for MISC-Cm−1 has an analogue in the MISC-Cm
2

case. This subject comprises the

work presented in the latter half of the subsequent section and most of Section 4.5.2,

where we show that the problem seems considerably more difficult (in the theoretic

sense) than in the strict setting.

While the lower bounds mentioned thus far are interesting in that they often

92

Chapter 4. Uncovering Hidden Phylogenetic Consensus

maximize nontrivial bipartitions, also observe that any leaf subset yields a lower

bound on relative information content. Simply restrict the original tree set to the

leaf subset, run the consensus method, and count the bipartitions. Other lower

bounds, which really just amount to polynomial time heuristics for MISC, that are

valid and may merit consideration are: a) removing leaf subsets of size less than or

equal to some constant and b) removing leaf subsets that appear as a clade in the

original leaf set. However the greedy heuristic presented in the previous sections

likely outperforms these proposals in most cases. On the other hand, (b) may have

strong applicability in situations where a wandering clade is causing problems, as it

is highly likely that the wandering clade appears together, on its own, it at least one

of the input trees.

4.5.1 MAST, MIST, and MR-MIST?

While MAST often yields solutions that maximize the |B′| term in relative infor-

mation content, this is not always the case. In Figure 4.6 we present an instance

where dropping no leaves yields more nontrivial bipartitions (in the strict consensus

tree) than can be found in a MAST. Interestingly, this counterexample establishes

the same outcome for MIST. This is counterintuitive because MIST explicitly max-

imizes the number of nontrivial bipartitions in the agreement subtree. The problem

lies in the constraint that a solution to MIST must be an agreement subtree, which

turns out to be overly restrictive even for MISC-Cm−1. To see that the example in

Figure 4.6 represents a counterexample (to our original conjecture that MAST al-

ways maximizes nontrivial bipartitions in MISC-Cm−1) for both MAST and MIST,

observe in this particular instance that any MAST is also a MIST. This is because

all of the input trees are fully resolved, and thus all agreement subtrees will be fully

resolved. Thus, if there were a solution containing an extra trivial (resp. nontrivial)

bipartition, then such a solution would be required to have an extra nontrivial (resp.

93

Chapter 4. Uncovering Hidden Phylogenetic Consensus

d
e

b

f g c

i

a
h

(a) Tree 1

b

f

g

c i

d

e

a
h

(b) Tree 2

d

e

g

b f

a

h

c
i

(c) Tree 3

d

e

a h

c

i

(d) MAST

a

h

i

c
b

f

g

e

d
(e) Strict Consensus

Figure 4.6: MAST as a lower bound (to maximize |B′|) counterexample

trivial) bipartition.

A related example (though on rooted trees) was given by Swofford [84], which we

reproduce in Figure 4.7. This instance is cited by Bryant as the reason he investigated

the MIST problem. In this example there is a leaf subset a, b, c, d, e, f which occurs

as a star, i.e., all six leaves hang off of the same internal node, such that there exists

no nontrivial bipartition separating any of the leaves in this subset. As this pattern

is shared by both trees, it is forced into the MAST (due to its cardinality), which in

turn masks another common feature between the two trees (g, (h, (i, (j, k)))) which

has only one fewer leaf but much more informative internal structure. Since MAST

is not discriminating regarding the internal structure that it throws away, it performs

94

Chapter 4. Uncovering Hidden Phylogenetic Consensus

b

b

b

b

b

b

b

a

b

b

b

c

b

d

b

e

b

f

b

g

b

h

b

i

b

j

b

k

(a) Tree 1

b

b

b

a

b

b

b

c

b

d

b

e

b

f

b

b

b

b

b

g

b

h

b

i

b

j

b

k

(b) Tree 2

b

b

a

b

b

b

c

b

d

b

e

b

f

(c) MAST

b

b

b

b

b

g

b

h

b

i

b

j

b

k

(d) MIST

Figure 4.7: Swofford’s instance where an informationless but large feature
(a, b, c, d, e, f) that is shared between the two trees masks another slightly smaller
but more informative feature (g, (h, (i, (j, k)))) in the MAST, whereas MIST returns
the preferred feature.

poorly on instances of this variety.

To better understand the actual relationship between MAST, MIST, and MISC-

Cm−1 we offer the following lemma.

Lemma 1. All trees in T are equal to each other (i.e., agreement (sub)trees) if and

only if Cm−1(T) is equal to a tree T ∗ = (L, B) ∈ T where |B| is maximum (over T).

Proof. We prove each direction in the iff separately.

→ Since the strict consensus tree is equal to T ∗, then all of the other trees in the

set must have at least have all of the bipartitions in T ∗. Since |B| is maximum,

95

Chapter 4. Uncovering Hidden Phylogenetic Consensus

then no other trees have more nontrivial bipartitions, such that all of the trees

in the set are forced to have the same set of bipartitions.

← This direction is trivial. Specifically, since all trees are equal, it follows that

the strict consensus tree of the set is equal to each tree in the set, and that the

number of bipartitions is constant across the set (and thus T ∗ can legitimately

be any tree in the set).

Corollary 3. In instances of MISC-Cm−1 having optimal solution L∗ – if the con-

sensus tree of T |L∗ is equal to the most resolved tree in T |L∗, then the instance can

be optimally solved by taking the MIST.

This relationship between MISC-Cm−1 and MAST/MIST piqued our curiosity

to investigate whether there is a naturally phrased MAST-like problem that lower

bounds MISC-Cm
2

in a similar manner. Unfortunately, this seems not to be the case.

In fact, a MAST-like phrasing seems lost as soon as the strictness of strict con-

sensus is relaxed at all. To illustrate this we consider the relationship between trees

in T |L′ where L′ is a leaf subset maximizing the number of nontrivial bipartitions in

Cm−2 (i.e., one tree less–strict than strict). Consider the bipartitions in C(T |L′), and

the trees which support them. For the purpose of illustration, there are two extreme

cases. In the first, each bipartition is missing in a distinct tree. This case has a

seemingly desirable property (P1) that for any pair of trees in T |L, each tree has at

most one bipartition that is not in the other. In the other extreme case, all trees

but one are identical and the final tree contains no bipartitions in common with the

other m− 1 trees. This case also has a seemingly desirable property (P2) that L is

an agreement subtree when ignoring the single discordant tree.

P1 would suggest phrasing a MAST-like optimization problem where no two

96

Chapter 4. Uncovering Hidden Phylogenetic Consensus

trees have Robinson-Foulds distance greater than some threshold. P2 would suggest

phrasing a MAST-like problem where one attempts to add leaves to a skeleton tree

consisting of a MAST obtained by ignoring some subset of trees in T |L.

However consider P2 with respect to the first extreme case. Specifically, observe

that there are no two trees in T |L′ that agree on all bipartitions, and thus no notable

skeleton MAST. Also consider P1 with respect to the second extreme case. Specif-

ically, observe that the Robinson-Foulds distance between the discordant tree and

any other tree in the set is maximum. We conclude then, anecdotally at least, that

there is not an obvious MAST-like phrasing of the problem that tends to maximize

the |B′| term (of relative information content) in a setting more relaxed than strict

consensus.

4.5.2 MFRC, MFRC-Cm

2
and MMDS

The tractability of MAST (on three or more trees) arises when bounding the degree

of one of the input trees. This observation along with the conclusion reached in the

previous section prompted us to pose the following (more restrictive) problem, in

hopes of perhaps finding suitably constrained subsets of MISC-Cm
2

instances that are

amenable to a MAST/MIST-like formulation/approach.

MAXIMUM FULLY RESOLVED CONSENSUS (MFRC-C)

INSTANCE: A set of phylogenetic trees T defined on a common leaf set L, and a

consensus method C.

SOLUTION: A leaf subset L′ such that the tree C(T |L′) is fully resolved.

MEASURE: The cardinality of L′.

This problem is related to MAST, at the very least, in the manner indicated by

97

Chapter 4. Uncovering Hidden Phylogenetic Consensus

the following lemma. Also observe that as noted earlier, when there is at least one

fully resolved tree in the input, then MAST and MIST are equivalent problems. As

such, the following lemma applies to MIST as well. To our knowledge, we are the

first to view MAST as a strict consensus problem.

Lemma 2. If T contains at least one tree with maximum degree 2, then MFRC-Cm−1

is equivalent to MAST.

Proof. Denote an optimal solution to MAST as L∗
MAST and an optimal solution to

MFRC-Cm−1 as L∗
MFRC−Cm−1

. We show in turn that |L∗
MAST | ≥ |L

∗
MFRC−Cm−1

| and

|L∗
MAST | ≤ |L

∗
MFRC−Cm−1

| thereby implying |L∗
MFRC−Cm−1

| = |L∗
MAST |.

• ≥ – Since the consensus tree Cm−1(T |L
∗
MFRC−Cm−1

) is fully resolved, it must

be the case that T |L∗
MFRC−Cm−1

represents a set of agreement subtrees. Since

MAST maximizes the size of agreement subtrees, |L∗
MAST | will always meet or

exceed |L∗
MFRC−Cm−1

|

• ≤ – Since at least one of the trees in T is fully resolved, all agreement subtrees

will be fully resolved. Further, the strict consensus tree of a set of agreement

subtrees is equal to the agreement subtree itself. Thus the strict consensus of

the MAST will be fully resolved. Since MFRC maximizes the size of the fully

resolved consensus tree, |L∗
MFRC−Cm−1

| will always meet or exceed |L∗
MAST |.

When there does not exist a fully resolved tree in the input the complexity of

MFRC-Cm−1 is open, although we suspect that its complexity resembles that of

MAST, and likely tractable when limited to bounded degree trees.

However, we now move on to MFRC-Cm
2
, as generalization of some MAST-like

problem into sub–strict setting has been our goal from the beginning of this section.

98

Chapter 4. Uncovering Hidden Phylogenetic Consensus

Our most fruitful attempt in solving MFRC-Cm
2

has come in trying to adapt the

MAST algorithm of Amir and Keselman [5]. Note that their algorithm operates on

a set of rooted trees, and we follow suit by generalizing in the rooted setting. This is

not an obstacle, however, as rooted MAST algorithms apply to unrooted instances

without much complication, as the unrooted MAST is simply the maximum sized

rooted MAST, over |L| possible rootings (at a common leaf) of the rooted case.

Because we have not used rooted trees thus far in this document, a bit of ter-

minology is in order. Whereas bipartitions (internal edges) are the key structural

property of unrooted trees, internal nodes are the pertinent structure in rooted trees.

Moreover, the set of leaves descendant from an internal node is referred to as its clade

or cluster. Whereas an unrooted tree can be unambiguously represented by its bi-

partitions, a rooted tree can be unambiguously represented by its clades. We denote

the clade descendant from an internal node ℓ as L(ℓ). We also use the well–known

concept of a least (or lowest) common ancestor (LCA) of two leaves a and b, which is

the internal node ℓ satisfying two properties: P1) ℓ has both a and b as descendants

and P2) ℓ has no other descendants that satisfy P1. In a tree T , the least common

ancestor of leaves a and b will be denoted lcaT (a, b).

One of the keys to the approach of Amir and Keselman is the concept of maximal

decomposable sets (MDS). These are leaf (sub)sets A = AL ∪ AR that satisfy two

conditions. One, there is an internal node in each of the original (but restricted) trees

that have child clades AL and AR, this is the decomposable part. Two, there isn’t a

larger A′ = A′
L ∪A′

R where AL ⊆ A′
L, AR ⊆ A′

R, and A ⊆ A′, this is the maximality.

In Amir and Keselman’s paper, MMDS are defined as A = A1 ∪A2 ∪ . . .∪Ak. This

is because they define things in terms of trees having ’degree bounded by k.’ We can

collapse to k = 2 because of our fully-resolved solution constraint.

We view the first condition (decomposable) in a slightly different, though equiva-

lent, light. Specifically, when restricting the tree set to A, the strict consensus tree (of

99

Chapter 4. Uncovering Hidden Phylogenetic Consensus

the restricted set) has as sibling top-level clades AL and AR, and this view motivates

the following definition. We define Maximal Majority Decomposable Sets (MMDS)

A = AL ∪ AR such that restricting the input tree set to A yields a majority rules

consensus tree with top-level clades AL and AR, and there is not an A′ = A′
L ∪ A′

R

where AL ⊆ A′
L, AR ⊆ A′

R, and A ⊂ A′.

We observe that MMDS’ do indeed seem relevant in MFRC-Cm
2
, as is captured

by the following observation.

Observation 1. For all internal nodes ℓ of a (fully resolved) majority rules tree of

T |L′ having immediate children ℓL and ℓR – ∀x ∈ L(ℓL) and ∀y ∈ L(ℓR), there is

an MMDS A = AL ∪ AR where L(ℓL) ⊆ AL and L(ℓR) ⊆ AR which can be found by

considering only subtrees rooted at lcaT (x, y) (in each tree of the original instance).

This observation implies that solutions to MFRC-Cm
2

will be composed of (sub-

sets) of MMDS’. Unfortunately, we have discovered a reduction to MMDS that is very

suspicious in the sense that the problem that reduces to MMDS is likely NP-hard.

The reduction is from a problem on p-intersection graphs, and is rather straight-

forward. A p-intersection graph G = (V, E) associates each node with a subset of

a finite set S, and an edge exists between any pair of nodes whose intersection has

size exceeding p (for which here we consider p = |S|
2

). The p-intersection graph prob-

lem from which we reduce is the following: what is the maximum cardinality vertex

subset such that the intersection of overlaps between all pairs in the subset exceeds

a given threshold? Although any feasible solution will appear in the p-intersection

graph as a clique, not all cliques represent feasible solutions. In the reduction, each

element in S gives rise to a distinct tree. Every vertex v ∈ V gives rise to a unique

leaf. Go through each s ∈ S in turn, and accumulate the leaves corresponding to

any vertex containing s. That set of leaves becomes a top-level clade in the tree

corresponding to s. The rest of the leaves become the other top-level clade in the

100

Chapter 4. Uncovering Hidden Phylogenetic Consensus

{1 ,2 ,4} - a

{0 ,1 ,2 ,3 ,4} - e

{1 ,3 ,4} - b

{} - c

{2} - d

{} - f

Figure 4.8: The original instance

tree for s. Figures 4.8, 4.9 and 4.10 illustrate the transformation. Figure 4.8 shows

the original instance. Figure 4.9 shows one possible (multifurcating) transformed

instance, whereas figure 4.10 shows another possible (bifurcating) transformed in-

stance. The reason for the two transformed instances is to, on one hand, illustrate

the essence of the transformation (Figure 4.9, where each tree has two clades), but

also to show that resolving the two top-level clades (called for in the reduction) arbi-

trarily such that they are fully resolved doesn’t invalidate the reduction. As such, the

reduction establishes that bounding the degree of input trees would not invalidate

the reduction.

It is straightforward to verify that for any MMDS A = AL ∪ AR (with the ad-

ditional constraint that a leaf having S as its set in the original instance is in AL

and a leaf having the empty set as its set in the original instance is in AR), the sets

corresponding to the leaves of AL are a feasible solution for the original instance.

Any such MMDS with maximum cardinality AL corresponds to an optimal solution

to the original instance. In the example instance here, the MMDS {b, e} ∪ {c, d, f}

gives rise to the solution in the original instance of {1, 3, 4} ∩ {0, 1, 2, 3, 4}.

.

101

Chapter 4. Uncovering Hidden Phylogenetic Consensus

b

b

e

b

b

a

b

b

b

c

b

d

b

f

b

b

b

a

b

b

b

e

b

b

c

b

d

b

f

b

b

b

a

b

d

b

e

b

b

b

b

c

b

f

b

b

b

b

b

e

b

b

a

b

c

b

d

b

f

b

b

b

a

b

b

b

e

b

b

c

b

d

b

f

Figure 4.9: A (multifurcating) transformed instance

b

b

e

b

b

b

a

b

b

b

b

c

b

b

d

b

f

b

b

b

b

a

b

b

b

e

b

b

b

c

b

d

b

f

b

b

b

a

b

b

d

b

e

b

b

b

b

b

c

b

f

b

b

b

b

b

e

b

b

b

a

b

c

b

b

d

b

f

b

b

b

a

b

b

b

b

e

b

b

c

b

b

d

b

f

Figure 4.10: An alternative (bifurcating) transformed instance

102

Chapter 4. Uncovering Hidden Phylogenetic Consensus

Algorithm 3 Our top level iterative heuristic for finding dropsets

Require: A tree set T

Require: A frequency-only consensus method C with threshold t

Ensure: A set of leaves to drop, composed of the union of dropsets

1: function select-and-remove-dropsets(T)

2: d∗ ← dgreedy ← ∅

3: repeat

4: P ← build-bipartition-profile(T |(L− d∗))

5: δ ← potential-profile-dropsets(P, Ct)

6: maximpact = 0

7: dgreedy = ∅

8: for all d ∈ δ’s domain do

9: if |d| − |δ[d]| ≥ maximpact then

10: dgreedy = d

11: maximpact = |d| − |δ[d]|

12: end if

13: end for

14: d∗ = d∗ ∪ dgreedy

15: until dgreedy = ∅

16: return d∗

17: end function

103

Chapter 5

Conclusions

Like every other creature on the face of the earth, Godfrey was, by birthright, a stupendous badass, albeit in the

somewhat narrow technical sense that he could trace his ancestry back up a long line of slightly less highly evolved

stupendous badasses to that first self-replicating gizmo—which, given the number and variety of its descendants,

might justifiably be described as the most stupendous badass of all time. Everyone and everything that wasn’t a

stupendous badass was dead.

- Neal Stephenson, Cryptonomicon

5.1 Robinson-Foulds Computations

As computational biologists everywhere increasingly turn to phylogenetic computa-

tions to further their understanding of genomic, proteomic, and metabolomic data,

and do so on larger and larger datasets, a fast computational method to compare

large collections of trees will be required to support interactive analyses.

We used an embedding in high-dimensional space and techniques for computing

vector norms from high-dimensional geometry to design the first sublinear-time ap-

proximation scheme to compute Robinson-Foulds distances between pairs of trees.

We implemented our algorithm and provided experimental support for its computa-

104

Chapter 5. Conclusions

tional advantages. We also resolved an open issue from the preliminary version of

the paper upon which this material is based [65] by presenting an efficient procedure

for embedding trees. Thus our algorithm not only outperforms repeated applications

of Day’s algorithm for large collections of trees, it also achieves similarly spectacular

speedups for smaller collections of very large trees. In the process, we presented a

unified view of algorithms that rely on lists of vertices and bipartitions, a view that

allowed us to improve the speed of Day’s algorithm as well.

The new implementation of our algorithm, FastRF, used to run all of our exper-

iments is open-source and available for download from compbio.unm.edu

5.2 Bootstopping

We have conducted the first large-scale empirical ML-based study of the convergence

properties of bootstrapping, using biological datasets that cover a wide range of input

alignment sizes and a broad variety of organisms and genes. In addition, we have

developed and assessed two bootstopping criteria that can be computed at run time

and do not rely on externally provided reference trees to determine convergence. The

criteria have been designed so as to capture a stopping point that provides sufficient

accuracy for an unambiguous biological interpretation of the resulting consensus trees

or best-known ML trees with support values. The correlation between bootstopped

support values and support values from 10,000 reference trees exceeds 99.5% in all

cases, while the relative weighted tree distance (used with the WC criterion) is smaller

than the specified threshold value in all cases. We conclude that the WC criterion

yields better performance and higher accuracy than FC while it correlates very well

with the mean error of support values on the best-scoring tree. We advocate the use

of WC over FC because it only takes into account the BS support of “important”

bipartitions which are subject to biological interpretation. We have also shown that

105

Chapter 5. Conclusions

the number of replicates required to achieve a certain level of accuracy is highly

dataset-dependent for real data, so that, by using our criteria, an investigator need

only compute as many replicates as necessary, thus avoiding the waste of scarce

computational resources, in particular for future large-scale phylogenomic analyses.

Finally, we have fully integrated the criteria into the current release of RAxML and

provided a detailed description and study of implementation issues associated to

the stopping functions. Our production level implementation yields speedups of the

stopping function up to a factor of 7 on datasets with thousands of taxa.

Since the preliminary version of the paper upon which this material is based, we

have completed the full integration of the advanced hashing techniques into RAxML

7.2.6. We have also parallelized the hash table operations using Pthreads and vec-

torized operations on bit vectors by using SSE3 instructions [1]. Finally, we plan to

devise ways to dynamically adapt the spacing of FC/WC criteria (which is currently

fixed at 50) to the convergence speed of the BS replicates, i.e., use a more sparse

spacing for the initial phase and a denser spacing for the later phase of the BS search.

5.3 Uncovering Hidden Consensus

We have presented a novel framework to define rogue taxa so as to maximize the

relative information present in a consensus tree computed after removing these rogue

taxa. This framework defines a bicriterion problem, MISC, that is the first to balance

explicitly loss of taxa with gain in resolution in a setting other than agreement

subtrees. We have also provided an effective greedy heuristic to find a good set of

such rogue taxa. This algorithm was tested on both pathological cases from the

literature and a variety of biological data. The changes in the consensus tree can

be parlayed into more accurate bootstrap scores, which in turn can lead to the

reevaluation of phylogenetic trees, as we showed on our biological datasets.

106

Chapter 5. Conclusions

Further algorithmic work includes a characterization of the computational com-

plexity of the MISC problem, as well as improved algorithms for it, including approx-

imation algorithms with known performance guarantees. Generalizing our approach

to support consensus methods other than frequency-based methods is another algo-

rithmic problem worth investigating. Finally, there is certainly room to extend and

apply our techniques in different domains, most notably in Bayesian phylogenetics

(as suggested in Section 4.4.6) and for the subtree mergers used in the Disk-Covering

Methods (as suggested in [67]). On the bioinformatics side, our preliminary findings

indicate that existing phylogenies can be significantly refined by applying our ap-

proach to the recomputation of bootstrap support.

107

References

[1] A. J. Aberer, N. D. Pattengale, and A. Stamatakis. Parallel computation of phy-
logenetic consensus trees. In Proc. International Conference on Computational
Science (ICCS) 2010, pages Accepted, To Appear, 2010.

[2] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss
with binary coins. J. Comput. Syst. Sci., 66:671–687, 2003.

[3] B. Allen and M. Steel. Subtree transfer operations and their induced metrics
on evolutionary trees. Annals of Combinatorics, 5(1):1–15, 2001.

[4] N. Amenta, F. Clarke, and K. St. John. A linear-time majority tree algorithm.
Lecture Notes in Computer Science, pages 216–227, 2003.

[5] A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary
trees. SIAM Journal on Computing, 26:758–769, 1994.

[6] D. Andrews and M. Buchinsky. On the Number of Bootstrap Repetitions for
Bootstrap Standard Errors, Confidence Intervals, and Tests. Cowles Foundation
Paper 1141R, 1997.

[7] D. Andrews and M. Buchinsky. A Three-Step Method for Choosing the Number
of Bootstrap Repetitions. Econometrica, 68(1):23–51, 2000.

[8] D. Andrews and M. Buchinsky. Evaluation of a three-step method for choosing
the number of bootstrap repetitions. J. of Econometrics, 103(1-2):345–386,
2001.

[9] D. Andrews and M. Buchinsky. On The Number of Bootstrap Repetitions for
BCa Confidence Intervals. Econometric Theory, 18(4):962–984, 2002.

[10] J. Archie, W. H. Day, W. Maddison, C. Meacham, F. J. Rohlf,
D. Swofford, and J. Felsenstein. The newick tree format.
http://evolution.genetics.washington.edu/phylip/newicktree.html.

108

References

[11] H. Bandelt and A. Dress. Split decomposition: A new and useful approach to
phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution,
1(3):242–252, September 1992.

[12] O. Bininda-Edmonds, editor. Phylogenetic Supertrees: Combining information
to reveal the Tree of Life. Kluwer Academic Publishers, 2004.

[13] S. Brooks and A. Gelman. General Methods for Monitoring Convergence of
Iterative Simulations. J. of Computational and Graphical Statistics, 7(4):434–
455, 1998.

[14] D. Bryant. Hunting for trees, building trees and comparing trees: theory and
method in phylogenetic analysis. PhD thesis, University of Canterbury, 1997.

[15] D. Bryant. A classification of consensus methods for phylogenetics. In Biocon-
sensus, volume 61 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 163–184. American Math. Soc. Press, 2002.

[16] D. Bryant. The splits in the neighborhood of a tree. Annals of Combinatorics,
8(1):1–11, 2004.

[17] D. Bryant and V. Moulton. Neighbor-Net: An Agglomerative Method for the
Construction of Phylogenetic Networks. Mol Biol Evol, 21(2):255–265, 2004.

[18] J. Carter and M. Wegman. Universal classes of hash functions (Extended Ab-
stract). In Proceedings of the ninth annual ACM symposium on Theory of com-
puting, pages 106–112. ACM New York, NY, USA, 1977.

[19] B. Chor and T. Tuller. Maximum likelihood of evolutionary trees: hardness and
approximation. Bioinformatics, 21(1):97–106, 2005.

[20] K. A. Cranston and B. Rannala. Summarizing a Posterior Distribution of Trees
Using Agreement Subtrees. Syst Biol, 56(4):578–590, 2007.

[21] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On comput-
ing the nearest neighbor interchange distance. In Proc. DIMACS Workshop on
Discrete Problems with Medical Applications, volume 55 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 125–143. Amer-
ican Math. Soc. Press, 2000.

[22] A. Davidson and D. Hinkley. Bootstrap Methods and Their Application. Cam-
bridge University, 2003.

[23] R. Davidson and J. MacKinnon. Bootstrap tests: how many bootstraps? Econo-
metric Reviews, 19(1):55–68, 2000.

109

References

[24] W. Day. Optimal algorithms for comparing trees with labeled leaves. Journal
of Classification, 2(1):7–28, 1985.

[25] B. Efron and R. Tibshirani. An introduction to the bootstrap. Chapman & Hall
New York, 1993.

[26] M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees.
Information Processing Letters, 55(6):297–301, 1995.

[27] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol., 17:368–376, 1981.

[28] J. Felsenstein. Confidence Limits on Phylogenies: An Approach Using the Boot-
strap. Evolution, 39(4):783–791, 1985.

[29] J. Felsenstein. Phylip - phylogeny inference package (version 3.2). Cladistics,
5:164–166, 1989.

[30] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., 2004.

[31] W. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155(3760):279–284, 1967.

[32] L. Foulds and R. Graham. The Steiner problem in phylogeny is NP-complete.
Advances in Applied Mathematics, 3(43-49):299, 1982.

[33] T. L. Fulton and C. Strobeck. Molecular phylogeny of the arctoidea (carnivora):
Effect of missing data on supertree and supermatrix analyses of multiple gene
data sets. Molecular Phylogenetics and Evolution, 41(1):165–181, October 2006.

[34] O. Gauthier and F.-J. Lapointe. Seeing the Trees for the Network: Consensus,
Information Content, and Superphylogenies. Syst Biol, 56(2):345–355, 2007.

[35] A. Gelman and D. Rubin. Inference from iterative simulation using multiple
sequences. Stat. Sci., 7:457–511, 1992.

[36] N. Goldman, J. P. Anderson, and A. G. Rodrigo. Likelihood-Based Tests of
Topologies in Phylogenetics. Syst Biol, 49(4):652–670, 2000.

[37] P. Goloboff. Analyzing large data sets in reasonable times: solution for com-
posite optima. Cladistics, 15:415–428, 1999.

[38] P. A. Goloboff, S. A. Catalano, J. M. Mirande, C. A. Szumik, J. S. Arias,
M. Källersjö, and J. S. Farris. Phylogenetic analysis of 73060 taxa corroborates
major eukaryotic groups. Cladistics, 25:1–20, 2009.

110

References

[39] G. Grimm, S. Renner, A. Stamatakis, and V. Hemleben. A Nuclear Ribosomal
DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and
Motif Analyses of 606 Sequences. Evol. Bioinf. Online, 2:279–294, 2006.

[40] S. Guindon and O. Gascuel. A Simple, Fast, and Accurate Algorithm to Es-
timate Large Phylogenies by Maximum Likelihood. Syst. Biol., 52(5):696–704,
2003.

[41] W. Guo and S. Peddada. Adaptive Choice of the Number of Bootstrap Samples
in Large Scale Multiple Testing. Stat. Appls. in Genetics and Mol. Biol., 7(1),
2008.

[42] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks,
21(1):19–28, 1991.

[43] P. Hall. On the Number of Bootstrap Simulations Required to Construct a
Confidence Interval. The Annals of Statistics, 14(4):1453–1462, 1986.

[44] S. Hedges. The number of replications needed for accurate estimation of the
bootstrap P value in phylogenetic studies. Mol. Biol. Evol., 9(2):366–369, 1992.

[45] A. Hejnol, M. Obst, A. Stamatakis, M. Ott, G. W. Rouse, G. D. Edgecombe,
P. Martinez, J. Bagu, X. Bailly, U. Jondelius, M. Wiens, W. E. G. Mller,
E. Seaver, W. C. Wheeler, M. Q. Martindale, G. Giribet, and C. W. Dunn.
Assessing the root of bilaterian animals with scalable phylogenomic methods.
Proceedings of the Royal Society B: Biological Sciences, 276(1677):4261–4270,
2009.

[46] D. Hillis and J. Bull. An empirical test of bootstrapping as a method for assess-
ing confidence in phylogenetic analysis. Systematic Biology, 42(2):182, 1993.

[47] S. Holmes. Bootstrapping phylogenetic trees: Theory and methods. Statistical
Science, 18(2):241–255, 2003.

[48] D. Huson. SplitsTree: analyzing and visualizing evolutionary data. Bioinfor-
matics, 14(1):68–73, 1998.

[49] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In
Proc. 42nd IEEE Symp. Foundations of Comput. Sci. (FOCS’01), pages 10–33.
IEEE Computer Society, 2001.

[50] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. 30th ACM Symp. Theory of Comput.
(STOC’98), pages 604–613. ACM Press, 1998.

111

References

[51] L. Jermiin, G. Olsen, K. Mengerson, and S. Easteal. Majority-rule consensus of
phylogenetic trees obtained by maximum-likelihood analysis. Molecular Biology
and Evolution, 14(12):1296, 1997.

[52] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Cont. Math., 26:189–206, 1984.

[53] D. M. Lambert and C. D. Millar. Ancient genomics is born. Nature, 444:275–276,
2006.

[54] N. Lartillot, S. Blanquart, and T. Lepage. PhyloBayes. v2. 3, 2007.

[55] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15:215–245, 1995.

[56] D. Maddison. The discovery and importance of multiple islands of most-
parsimonious trees. Syst. Zool., 40(3):315–328, 1991.

[57] B. Manly. Randomization, Bootstrap and Monte Carlo Methods in Biology. CRC
Press, 1997.

[58] T. Margush and F. McMorris. Consensus n-trees. Bulletin of Mathematical
Biology, 43:239–244, 1981.

[59] B. Moret. Towards a discipline of experimental algorithmics. Data Structures,
Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implemen-
tation Challenges: Papers Related to the DIMACS Challenge on Dictionaries
and Priority Queues (1995-1996) and the DIMACS Challenge on Near Neigh-
bor Searches (1998-1999), page 197, 2002.

[60] E. Mossel and E. Vigoda. Limitations of Markov chain Monte Carlo algorithms
for Bayesian inference of phylogeny. Ann. Appl. Probab., 16(4):2215–2234, 2006.

[61] J. Nylander, J. Wilgenbusch, D. Warren, and D. Swofford. Awty (are we there
yet?): a system for graphical exploration of mcmc convergence in bayesian phy-
logenetics. Bioinformatics, 2007. advance access, published August 30.

[62] N. D. Pattengale, M. Alipour, O. R. P. Bininda-Emonds, B. M. E. Moret, and
A. Stamatakis. How many bootstrap replicates are necessary? In S. Batzoglou,
editor, Research in Computational Molecular Biology, 13th Annual International
Conference, RECOMB 2009, Tucson, AZ, USA, May 18-21, 2009. Proceedings,
volume 5541 of Lecture Notes in Computer Science, pages 184–200, 2009.

112

References

[63] N. D. Pattengale, M. Alipour, O. R. P. Bininda-Emonds, B. M. E. Moret, and
A. Stamatakis. How many bootstrap replicates are necessary? Journal of
Computational Biology, 17(3):xxx–yyyy, 2010.

[64] N. D. Pattengale, E. J. Gottlieb, and B. M. Moret. Efficiently computing the
robinson-foulds metric. Journal of Computational Biology, 14(6):724–735, 2007.
PMID: 17691890.

[65] N. D. Pattengale and B. M. E. Moret. A sublinear-time randomized approx-
imation scheme for the robinson-foulds metric. In A. Apostolico, C. Guerra,
S. Istrail, P. A. Pevzner, and M. S. Waterman, editors, RECOMB, volume 3909
of Lecture Notes in Computer Science, pages 221–230. Springer, 2006.

[66] N. D. Pattengale, K. M. Swenson, and B. M. Moret. Uncovering hidden phylo-
genetic consensus, 2010. Submitted.

[67] N. D. Pattengale, K. M. Swenson, M. M. Morin, and B. M. Moret. Higher fidelity
subtree merging for disk-covering methods. Poster, Algorithmic Biology, 2006.
http://www.calit2.net/events/algorithmicbio/files/PattengaleAlgoBio2006.pdf.

[68] A. Rambaut and A. Drummond. Tracer MCMC trace analysis tool version 1.3,
2004.

[69] W. Rand. Objective criteria for the evaluation of clustering methods. J. Amer-
ican Stat. Assoc., 66:846–850, 1971.

[70] B. Redelings. Bayesian phylogenies unplugged: Majority consensus trees with
wandering taxa. http://www4.ncsu.edu/∼bdredeli/wandering.pdf.

[71] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Math. Bio-
sciences, 53:131–147, 1981.

[72] F. Ronquist and J. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics, 19(12):1572–1574, 2003.

[73] S. Smith and M. Donoghue. Rates of Molecular Evolution Are Linked to Life
History in Flowering Plants. Science, 322(5898):86–89, 2008.

[74] D. Soltis, M. Gitzendanner, and P. Soltis. A 567-taxon data set for angiosperms:
The challenges posed by bayesian analyses of large data sets. Int. J. of Plant
Sci., 168(2):137–157, 2007.

[75] D. Soltis and P. Soltis. Applying the Bootstrap in Phylogeny Reconstruction.
Statist. Sci., 18(2):256–267, 2003.

113

References

[76] A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylogenetic anal-
yses with thousands of taxa and mixed models. Bioinformatics, 22(21):2688–
2690, 2006.

[77] A. Stamatakis, P. Hoover, and J. Rougemont. A Rapid Bootstrap Algorithm
for the RAxML Web Servers. Sys. Biol., 2008. in press.

[78] A. Stamatakis, H. Meier, and T. Ludwig. New Fast and Accurate Heuristics
for Inference of Large Phylogenetic Trees. In Proc. of IPDPS2004, HICOMB
Workshop, Proceedings on CD, Santa Fe, New Mexico, 2004.

[79] A. Stamatakis and M. Ott. Efficient computation of the phylogenetic likelihood
function on multi-gene alignments and multi-core architectures. Phil. Trans. R.
Soc. series B, Biol. Sci., 363:3977–3984, 2008.

[80] S. Sul, G. Brammer, and T. Williams. Efficiently Computing Arbitrarily-Sized
Robinson-Foulds Distance Matrices. In Proceedings of the 8th international
workshop on Algorithms in Bioinformatics, pages 123–134. Springer, 2008.

[81] S. Sul and T. Williams. A randomized algorithm for comparing sets of phylo-
genetic trees. In Proceedings of the 5th Asia-Pacific bioinformatics conference:
Hong Kong, 15-17 January 2007, page 121. Imperial College Pr, 2007.

[82] S. J. Sul and T. L. Williams. An experimental analysis of consensus tree al-
gorithms for large-scale tree collections. In Proceedings of 5th Intl. Symposium
on Bioinformatics Research and Applications (ISBRA’09), Springer LNBI 5542,
pages 100–111, 2009.

[83] D. Swofford. PAUP∗: Phylogenetic analysis using parsimony (∗ and other meth-
ods), version 4.0b10. Sinauer Associates, 2002.

[84] D. L. Swofford. When are phylogeny estimates from molecular and morpho-
logical data incongrugent? In Miyamoto M. M., Cracraft J., eds. Phylogenetic
analysis of DNA sequences, pages 295–333. Oxford Univ. Press, 1991.

[85] J. L. Thorley. Cladistic Information, Leaf Stability And Supertree Construction.
PhD thesis, University of Bristol, 2000.

[86] J. L. Thorley, M. Wilkinson, and M. Charleston. The information content of
consensus trees. In A. Rizzi, M. Vichi, and H. Bock, editors, Studies in Classifi-
cation, Data Analysis, and Knowledge Organization, Advances in Data Science
and Classification, pages 91–98. Springer, 1998.

[87] G. Valiente. Combinatorial Pattern Matching Algorithms in Computational Bi-
ology Using Perl and R. Chapman & Hall/CRC, 2009.

114

References

[88] T. Warnow. Large–scale phylogenetic reconstruction. In S. Aluru, editor, Hand-
book of Computational Biology. Chapman & Hall, CRC Computer and Informa-
tion Science Series, 2005.

[89] S. Whelan. New Approaches to Phylogenetic Tree Search and Their Application
to Large Numbers of Protein Alignments. Syst. Biol., 56(5):727–740, 2007.

[90] M. Wilkinson. Common Cladistic Information and its Consensus Representa-
tion: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles. Syst
Biol, 43(3):343–368, 1994.

[91] M. Wilkinson. More on reduced consensus methods. Syst. Biol., 44:435–439,
1995.

[92] M. Wilkinson. Majority-rule reduced consensus trees and their use in bootstrap-
ping. Mol Biol Evol, 13(3):437–444, 1996.

[93] D. Zwickl. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large
Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD
thesis, University of Texas at Austin, April 2006.

115

	University of New Mexico
	UNM Digital Repository
	5-1-2010

	Efficient algorithms for phylogenetic post-analysis
	Nicholas Pattengale
	Recommended Citation

	Untitled

