
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

5-1-2012

Privacy-preserving techniques for computer and
network forensics
Bilal Shebaro

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Shebaro, Bilal. "Privacy-preserving techniques for computer and network forensics." (2012). https://digitalrepository.unm.edu/
cs_etds/19

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/19?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/19?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

BILAL SHEBARO

Computer Science

Jedidiah R. Crandall

Dorian C. Arnold

Fernando Perez-Gonzalez

Pedro Comesaña-Alfaro

Privacy-Preserving Techniques
for Computer and Network Forensics

by

Bilal Shebaro

B.S., Computer Science, Beirut Arab University, 2003

M.S., Computer Science, Lebanese American University, 2006

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2012

©2012, Bilal Shebaro

iii

Dedication

To my parents where none of this would have been possible without their love & patience.

To my brothers and sisters for their prayers and support.

To my lovely nephews and niece whom I hope this work will inspire them to believe that

you can accomplish anything you set your mind to.

To my friends and beloved ones who supported me during my graduate studies.

iv

Acknowledgments

Though only my name appears on the cover of this dissertation, this work was only

possible due to the contributions of several people whom I am grateful for.

I would like to express my deepest appreciation to my advisor, Dr. Jedidiah Crandall,

for his support, wise advice, and patient encouragement throughout my graduate studies.

I would also like to thank Dr. Fernando Perez-Gonzalez for his continuous advice and for

the long simulating discussions that were greatly needed and deeply appreciated. I would

also like to thank Dr. Dorian Arnold and Dr. Pedro Comesana Alfaro for their guidance

during the course of my graduate studies and for being on my defense committee in spite

of their busy schedules.

I am also thankful to the Computer Science faculty and staff at the University of New

Mexico who made my graduate experience one that I will cherish forever.

I would also like to deeply thank my sister, Dr. Lina Shebaro Germann, and my

brother-in-law, Dr. Timothy Germann, for all their help and support that eased my move

to the United States of America and helped me adjust to a new country.

A final word of gratitude is expressed to Mohammad Al-Sharif whose support and

encouragement has brought greater meaning to this entire work.

v

Privacy-Preserving Techniques
for Computer and Network Forensics

by

Bilal Shebaro

B.S., Computer Science, Beirut Arab University, 2003

M.S., Computer Science, Lebanese American University, 2006

Ph.D., Computer Science, University of New Mexico, 2012

Abstract

Clients, administrators, and law enforcement personnel have many privacy concerns when

it comes to network forensics. Clients would like to use network services in a freedom

friendly environment that protects their privacy and personal data. Administrators would

like to monitor their network, and audit its behavior and functionality for debugging

and statistical purposes (which could involve invading the privacy of its network users).

Finally, members of law enforcement would like to track and identify any type of digital

crimes that occur on the network, and charge the suspect with the appropriate crimes.

Members of law enforcement could use some security back doors made available by

network administrators, or other forensic tools, that could potentially invade the privacy of

network users.

In my dissertation, I will be identifying and implementing techniques that each of

these entities could use to achieve their goals while preserving the privacy of users on the

network. I will show a privacy-preserving implementation of network flow recording that

vi

can allow administrators to monitor and audit their network behavior and functionality for

debugging and statistical purposes without having this data contain any private information

about its users. This implementation is based on identity-based encryption and differential

privacy. I will also be showing how law enforcement could use timing channel techniques

to fingerprint anonymous servers that are running websites with illegal content and

services. Finally I will show the results from a thought experiment about how network

administrators can identify pattern-like software that is running on clients’ machines

remotely without any administrative privileges.

The goal of my work is to understand what privileges administrators or law

enforcement need to achieve their goals, and the privacy issues inherent in this, and to

develop technologies that help administrators and law enforcement achieve their goals

while preserving the privacy of network users.

vii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

2 Privacy-Preserving Network Flow Recording 5

2.1 Abstract . 5

2.2 Introduction . 6

2.3 Threat Model . 8

2.4 Background . 11

2.4.1 Traffic flow recording and data collection 11

2.4.2 Identity Based Encryption and AES 11

2.4.3 Statistical database modeling and inference controls 13

2.5 Implementation . 13

2.5.1 Data collection . 13

viii

Contents

2.5.2 Phase 1: Encryption vs. decryption 14

2.5.3 Phase 2: Generating statistical reports 15

2.6 Experimental Methodology . 19

2.6.1 Live experiments . 20

2.6.2 Offline experiments . 21

2.7 Results . 22

2.7.1 Live experiments . 22

2.7.2 Offline experiments . 28

2.8 Discussion and future work . 29

2.9 Related Work . 30

2.10 Conclusion . 32

3 Network Flow Recording with Differential Privacy 33

3.1 Abstract . 33

3.2 Introduction . 33

3.3 Threat Model . 35

3.4 Background . 36

3.5 Implementation . 39

3.6 Experimental Methodology . 41

3.7 Results . 42

3.8 Discussion and future work . 43

ix

Contents

3.9 Related Work . 44

3.10 Conclusion . 44

4 Leaving Timing Channel Fingerprints in Hidden Service Log Files 45

4.1 Abstract . 45

4.2 Introduction . 46

4.3 Measurement methodology . 49

4.3.1 Tor network delays . 50

4.3.2 Existing HTTP GET requests 51

4.4 Measurement results . 52

4.4.1 Tor delays . 53

4.4.2 Existing HTTP GET requests 54

4.5 Implementation . 55

4.5.1 Example . 58

4.6 Discussion and future work . 59

4.7 Related work . 61

4.8 Conclusion . 62

5 Exploiting Geometrical Structure for Forensic Applications 63

5.1 Abstract . 63

5.2 Introduction . 64

x

Contents

5.3 Threat Model . 67

5.4 Background . 68

5.4.1 MPEGs . 69

5.4.2 Video Compression Picture Types 70

5.5 Implementation . 72

5.6 Experimental Methodology . 74

5.7 Results . 79

5.8 Discussion and future work . 86

5.9 Related Work . 87

5.10 Conclusion . 88

6 Conclusion 89

References 91

xi

List of Figures

2.1 Data collection steps, and examples of plaintext and encrypted

network flow records. 14

2.2 Timings for /24 Subnets. 25

2.3 Tradeoff between time to encrypt and time to import statistical data

for /24 subnets. 25

2.4 Timings for /22 subnets. 26

2.5 Tradeoff between time to encrypt and time to import statistical data

for /22 subnets. 26

2.6 Timings for /20 subnets. 27

2.7 Tradeoff between time to encrypt and time to import statistical data

for /20 subnets. 27

2.8 Timing comparison between /20, /22, /24 subnets according to

recording time. 28

4.1 Web server traffic for a 24-hour period. 46

4.2 Histogram for Tor delays in seconds. 49

4.3 Histogram for existing HTTP GET requests per minute. 50

xii

List of Figures

4.4 Histogram of existing HTTP GET requests per minute before (thin

line) and after adding additional requests for fingerprinting purposes

(bold line). 52

4.5 How a 60-bit codeword appears in the log file. 53

4.6 Details on a bit error from the example. 54

4.7 The fingerprinting algorithm cycle. 56

4.8 Histograms with and without fingerprinting. 57

5.1 MPEG Compression Overview, reproduced from page 3 of The

MPEG Handbook [1]. 69

5.2 Examples of different MPEG streams. 71

5.3 Binning of movies based on distances of movie vectors from the

surface of the sphere. Positive counts are outside the sphere, and

negative counts are inside the sphere, binned by distance. 82

5.4 Projection of vectors on the constant vector. 84

xiii

List of Tables

2.1 Rates that my implementation can achieve for different subnet sizes. 28

3.1 A table demonstrating the effect of applying the differentially private

mechanisms related to link utilization values. 43

5.1 Euclidean distances of running the same movie as a sample. 80

5.2 Euclidean distances of running different movies. 80

5.3 Sample mean vector coordinates over different machines. 83

xiv

Chapter 1

Introduction

The focus of my dissertation work is on forensic techniques that preserve the privacy of

individuals’ data that exists in the same computer or network where a crime happened.

My work will focus on techniques that administrators and law enforcement personnel

could use to help identify digital crimes without invading the privacy of the clients. For

this reason, I will be showing what privileges administrators or law enforcement need

to achieve their goals, and will develop technologies and techniques to preserve clients’

privacy.

Computer forensics personnel are settled with the current tools to do technical

investigations on stand alone computers, while network forensics is still challenging.

Most of these tools will do a brute force scan to recover everything that happened on the

computer or network, thus invading the privacy of all participating users in that network

for the sake of catching the crime and identifying the suspect.

There are many challenges that must be addressed to achieve my goal. One main

challenge is the existence of anonymous networks that hide the identity and location of

its users. Suspects behind these networks cause problems for law enforcement to go after

them, and sometimes such networks can hide the crime itself which makes the network

auditing job much harder. Such networks make tracing back suspects a big challenge. An

1

Chapter 1. Introduction

example of an anonymous network is Tor, which I will be considering in my work.

Another challenge is that of preserving the privacy of individuals that reside on the

same network as the suspect, that is, their records, traffic, connections, and services. This

is challenging because investigating a crime in such networks might require the network

operator to reveal all of the traffic and records on it, that is, those records of innocents as

well as suspects. In fact, some existing techniques involve replaying all the recorded data

that happened during the time of the crime, where privacy is invaded from both actions,

recording and replaying.

Besides the privacy concerns for innocent users, in this work I also offer time savings

related to investigations. The law enforcement has now to deal with a smaller data set

of records related to the suspected criminal rather than a large amounts of records of

participating users in the network. Thus, in many critical cases where quick investigations

are required, this approach will save time for such investigations due to making it easier to

get a warrant.

Complying with law enforcement requirements forced on networks residing in

organizations such as ISPs, academic institutions, and companies could be another

challenge. Some of these requirements involve recording their users’ traffic for a certain

period of time, and investigation of these records in case of a crime would reveal much

of the private data of innocent people. These requirements would also leave less trust for

users working on these networks, with the belief that everything is traceable and can be

recovered.

Possessing child pornography media, an example of a digital crime, is a key research

issue in the forensics domain. A lot of research has been done to trace all such users, from

those who are downloading/uploading to those who are watching/streaming. Uploading

and downloading related torrents behind anonymous networks causes challenges for

law enforcement to trace these people, especially with the distributed client to client

2

Chapter 1. Introduction

architecture that bit-torrents work with.

Some clients are not aware of what administrators can do on their machines once they

are connected to their network. They are also not aware of how much their privacy

is invaded and to what extent these administrators can reveal information out of their

computers. This also applies to law enforcement or any other user that is connected to

the same network, each has its own techniques and limits as to what information is visible

to them.

The work in this dissertation will consider these challenges, and will focus on such

privileges that are applied on users of the same network. It will also focus on privacy

preserving techniques that will help investigators trace back and identify suspected

criminals, even those who are residing behind anonymous networks, with the privacy of

individuals preserved. I will show how these techniques comply with the law enforcement

requirements as well as provide a privacy-preserving recording technique that will only

replay the suspect’s crime traffic.

The intention of privacy protection considered in this dissertation may not cover every

aspects of privacy invasion that people might consider. In fact, the definition of privacy

widely varies according to what is considered private and what is not. This work is

more focused on allowing the clients to use the network services in a freedom friendly

environment where no traceback of their network traffic can be identified, unless these

clients are involved in a digital crime. For the purposes of this dissertation, I consider an

invasion of privacy to be any time network administrators or law enforcement learn more

information about any individual than is necessary to do their respective jobs.

In Chapter 2 I present a network flow recording technology that considers users’

privacy by using Identity Based Encryption in combination with privacy-preserving

semantics for on-the-fly statistics. I argue that my implementation supports a wide range of

policies that cover many current applications of network flow recording. I also characterize

3

Chapter 1. Introduction

the performance and scalability of my implementation and find that the encryption and

statistics scale well and can easily keep up with the rate at which commodity systems can

capture traffic.

While the statistical approach in Chapter 2 preserves the privacy of the network users

and administrators can achieve their goals from the generated statistical reports, Chapter 3

discusses a different implementation of the statistical part based on differential privacy that

is capable of revealing useful information from the statistical database while the adversary

fails in predicting individual records, even if given the database.

The second-generation onion routing, Tor, is a very popular anonymous network that

allows users to use internet services anonymously. Tor also has a hidden service feature.

In Chapter 4 I will show how law enforcement can leave an identifiable fingerprint in

the log file of Tor hidden services using timing channels that can be recovered from the

timestamps found on the machine hosting the service. Upon confiscating the machine, this

is recovered as a proof that a particular machine was hosting the service.

Finally, Chapter 5 discusses a thought experiment about how much information can

an unprivileged process learn by just running on a system and observing its own timings,

which is an approach to understanding the system’s behavior and detecting pattern-like

software. I will be using timing inference channels to develop a geometrical interpretation

in a high dimensional space of timing signatures for movies as an example of pattern-like

software.

The work in this dissertation aims to understand the possibility of building forensic

tools that could achieve the exact same goals intended with more efforts to protect the

privacy of the people connected to the internet. The existence of such privacy-preserving

tools would attract and encourage more people to securely use the internet, which makes

the world more connected than ever.

4

Chapter 2

Privacy-Preserving Network Flow Recording

2.1 Abstract

Network flow recording is an important tool with applications that range from legal

compliance and security auditing to network forensics, troubleshooting, and marketing.

Unfortunately, current network flow recording technologies do not allow network

operators to enforce a privacy policy on the data that is recorded, in particular how this

data is stored and used within the organization. Challenges to building such a technology

include the public key infrastructure, scalability, and gathering statistics about the data

while still preserving privacy.

In this chapter I present a network flow recording technology that addresses these

challenges by using Identity Based Encryption in combination with privacy-preserving

semantics for on-the-fly statistics. I argue that my implementation supports a wide range of

policies that cover many current applications of network flow recording. I also characterize

the performance and scalability of my implementation and find that the encryption and

statistics scale well and can easily keep up with the rate at which commodity systems can

capture traffic, with a couple of interesting caveats about the size of the subnet that data is

being recorded for and how statistics generation is affected by the implementation details.

5

Chapter 2. Privacy-Preserving Network Flow Recording

I conclude that privacy-preserving network flow recording is possible at 10 gigabit rates

for subnets as large as a /20 (4096 hosts).

Because network flow recording is one of the most serious threats to web privacy today,

I believe that developing technology to enforce a privacy policy on the recorded data is an

important first step before policy makers can make decisions about how network operators

can and should store and use network flow data. The goal in this chapter is to explore the

tradeoffs of performance and scalability vs. privacy, and the usefulness of the recorded

data in forensics vs. privacy.

2.2 Introduction

Network flow recording, such as Cisco’s NetFlow [2], is a tool that network administrators

use to record information about network traffic sessions. This data can be used for

network forensics and traffic accounting, usage-based network billing, network planning,

security, denial-of-service monitoring, and network monitoring. Network flows also

provide valuable information about network users and applications, peak usage times, and

traffic routing. Along with the related practice of clickstream recording, network flow

recording is one of the most serious threats to Internet and web privacy today. Network

flow data reveals what websites a network user visited, along with timing information,

what services they used, and how much data was transferred. An especially important

issue is how this data is stored, since a compromise of this data reveals so much about so

many users. Another important issue is how the data can be accessed for the purposes it

was collected for without enabling accesses that violate the privacy policy. In nowadays

forensics, a digital crime occuring in a network will cause the whole network traffic to be

analyzed and investigated on, thus time consuming for invesigators as well as invading the

privacy of users that are on the network and not involved in the crime.

Most ISPs use or implement network analyzer tools that read network flow data and do

their own traffic analysis, such as Orion NetFlow Traffic Analyzer (NTA) which enables

6

Chapter 2. Privacy-Preserving Network Flow Recording

network administrators to capture data from continuous streams of network traffic and

convert those raw numbers into easy-to-interpret charts and tables that quantify exactly

how the corporate network is being used, by whom, and for what purpose [3]. Another

tool is NetFlow Analyzer, that uses Cisco NetFlow to monitor bandwidth and to gather

information on the top network users, applications, and many other features [4]. These

tools produce reports on in-depth traffic analysis and network bandwidth monitoring.

Network flow data can also be requested by law enforcement agencies to aid in

investigations. Because network flow data is used for so many critical functions, it is

important to provide a way for network operators to record and use this data while also

enforcing a privacy policy on the data.

While ISPs care about the privacy of their customers as well as providing the most

secure and convenient service, in the U.S. there have been many calls from the FBI and

multiple members of congress requesting that ISPs perform mandatory data retention, that

is, keeping records of their users’ activities for later review by law enforcement [5]. This

can aid in the investigations of serious crimes such as hosting child pornography. At the

same time, the potential for data breaches and abuses by employees of the network operator

means that network operators should enforce privacy policies on the data collected, and

such enforcement may become mandatory in the future. This chapter is about how to

develop technologies that aid in enforcing such privacy policies.

The network flow recording system that I have developed, and described in this chapter,

can provide ISPs with common traffic analysis and statistics as well as the ability to

retain more detailed information about each session, while encrypting the session data

and enforcing privacy-preserving semantics on queries for the statistics. I consider two

different threats: threats against the stored session data, and abuses of the statistics. To

address the first, I propose to use Identity Based Encryption (IBE) because it limits the

public key infrastructure necessary such that the network users do not need to be aware of

their public keys nor modify their computers or network traffic in any way. To address

7

Chapter 2. Privacy-Preserving Network Flow Recording

the second threat, I define a privacy-preserving semantics for network flow data that

provides access to statistical reports about groups of individuals, while restricting access

to information about any particular individual unless enough data is aggregated to mitigate

any privacy threats.

This chapter is organized as follows. First, I describe my threat model in Section 2.3.

This is followed by Section 2.4 where I introduce some basic concepts and background.

Section 2.5 shows the implementation of my system. In Section 2.6 I explain the evaluation

methodology, and then the results in Section 2.7. A discussion of performance issues and

future work in Section 2.8 is then followed by related works and the conclusion.

2.3 Threat Model

First, I must distinguish between forward security and backward security as it applies to

network flow recording privacy. Forward security means protecting information that will

be recorded in the future, while backward security means that after a compromise the data

that was recorded in the past is still secure. Forward security is not possible in the context

of network flow recording. At the moment that a gateway router is compromised or an

employee of the network operator with the necessary access decides to violate the policy,

they can simply record network flow data as plaintext. It is impossible for web users to

hide their source and destination IP addresses and timing information from those that they

trust to route their packets.

Backward security, on the other hand, is very important for network flow data, and

is the focus of this chapter. Network operators reported that they retain network flows

and clickstreams for anywhere from 2 weeks to 6 months and even, in some cases,

indefinitely [6]. It is this stored data that must be protected, so that exposure of private

information is limited to the time that a breach of policy or a router compromise persists

undetected, and no longer. So, the first of two threats to be addressed in this chapter is how

to encrypt this data in a way that enforces the privacy policy but requires no complicated

8

Chapter 2. Privacy-Preserving Network Flow Recording

public key infrastructure or modifications to protocols or implementations outside of the

network flow recording system. Using Identity Based Encryption gives three important

properties in this regard. First, the public key (or encryption key) for each individual

IP address can be the IP address itself, possibly combined with a timestamp. Thus the

network users do not need to encode their public keys into the network traffic, nor even

be aware that any public key cryptography is involved. The network hosts and network

itself operate as they normally would. Second, the network flow recorder can encrypt the

session data for an IP address in a given time period using the IP address and timestamp

for that period as the encryption key, and does not need to make any queries to a public key

infrastructure to know the required public key. Third, the secret that decrypts the traffic

does not need to be stored where the network flow data is recorded and encrypted, and this

secret can be divided into pieces so that separation of duty requires multiple parties to be

involved to decrypt the data.

The second threat that I address in this chapter has to do with the fact that not all of

the information can be encrypted in most applications of network flow recording, since

statistics about how much and when network links are used are also very important just

for day-to-day network operations. The threat is that information about the amount of

network traffic an individual used must be stored for statistical purposes for the queries

to be accurate (for example, for billing purposes), but this information is often enough to

infer certain facts about an individual user’s web activities if it is not aggregated properly

with other data before being presented. I assume that the stored statistical data is presented

to the rest of the organization (the billing department, traffic engineers, quality-of-service

experts, etc.) through a database interface, and present a privacy-preserving semantics for

that database interface that enables a wide range of queries but preserves the privacy of

individuals.

As one example of an organization that might want to enforce a privacy policy on

network flow data, consider a university. In the U.S., universities collect network flow

9

Chapter 2. Privacy-Preserving Network Flow Recording

data for network management reasons but are often also required to retain network flow

data for periods of weeks due to state laws about employing state employees or federal

laws designed to curb the pirating of copyrighted music and videos. This period of weeks

or months is a very long exposure window in which any breach of that data or possible

violation of the privacy policy by a university employee is a major vulnerability in terms

of the web privacy of the network’s users. This proposed system would allow for the

network flow recording to support both the legal obligations and network operations of the

university, while virtually eliminating this window of exposure. The secret necessary to

decrypt traffic for law enforcement or public freedom of information purposes could be

divided, for example, among the regents, faculty senate, and university counsel so that the

enforcement of the university’s privacy policy for this data has the property of separation

of duty.

Also consider an Internet Service Provider (ISP). In this case the secret used for

decryption could be divided between the customer service department and another

department that is tasked with enforcing and auditing the privacy policy of the

organization. If a customer service agent needed to look at detailed network flow data

for a particular customer to debug a network connection problem, they could obtain the

customer’s consent and then request the keys to decrypt that customer’s network traffic 24

hours into the past and several hours into the future. The department that enforces and

audits the privacy policy could confirm customer consent and then use their part of the

decryption secret to provide keys for only the requested time period, and these keys could

not be used to decrypt traffic for other customers or in other periods of time. More routine

queries of data (how much bandwidth is a particular neighborhood using during peak

hours, what are the most common applications being used by a large group of customers,

how much did a particular customer go over their allowed traffic quota in a billing period,

and so on) can be handled by the privacy-preserving statistical database.

I wish to reiterate that I am not attempting to protect web privacy against untrusted

10

Chapter 2. Privacy-Preserving Network Flow Recording

network controllers. My goal is to give network controllers the technological tools they

need to enforce privacy policies so that network users can place their trust in the network

controllers as an organization.

2.4 Background

My system uses the concepts of traffic flow recording, data collection, Identity Based

Encryption, and AES as well as statistical database modeling and inference controls. These

concepts are key to my implementation so here I describe some background about them.

2.4.1 Traffic flow recording and data collection

The most common form of network flow recording is Cisco’s NetFlow, which is a

format and tool designed for network administrators that provides a set of services for

IP applications [2]. It can capture all traffic that passes through a tapped network interface

or router or sample that traffic at some specified rate, and there are tools for combining

network flow data from multiples routes. In my implementation, a tool called fprobe is

used to record network traffic, which is a libpcap-based tool that records network traffic

data in real-time and emits it as session information that can then be turned into network

flow records with a tool such as nfcapd. Each network flow record contains the source

and destination IP addresses of the recorded session, with the total number of bytes that

were transfered, as well as the protocol type, mainly TCP or UDP, with a timestamp and

duration for the whole session. Each of these records is collected after the session is closed

and these fields will be known and ready to be printed as a whole record line.

2.4.2 Identity Based Encryption and AES

An Identity Base Encryption (IBE) scheme is a public-key cryptosystem where the public

key can be any string. Such a scheme was first proposed by Shamir in 1984 [7] but it

was not until 2001 that Boneh and Franklin [8] gave a practical way to do identity-based

11

Chapter 2. Privacy-Preserving Network Flow Recording

encryption based on the Weil pairing. In IBE the strings for public keys can be email

addresses, phone numbers, IP addresses, or any identifier, and can be merged with dates or

represented hierarchically so that notions of time and hierarchical trust relationships can

be included in the public key. The cryptosystem I used has chosen-ciphertext security

in the random oracle model, assuming an elliptic curve variant of the computational

Diffie-Hellman problem.

IBE has a lot of interesting features. One is that it allows encryption without the need

to look up the public key or a certificate for the identity associated with the encryption

key. Also, individual private keys within the scheme need not be generated or stored

anywhere until decryption is necessary. If an encryption key is a public key that is a string

merged with a timestamp, any attacker who discovers the private key associated with that

timestamp will only be able to decrypt the messages for that particular time. Ideally IBE is

used in systems where encryption is applied more often than decryption. One last property

of IBE that I use in this chapter is that the secret needed to generate private keys associated

with identities can be broken up among more than one party for separation of duty. This

prevents abuse and can ensure that only trusted authorities combined can generate the

private key that decrypts the suspect’s records. For example, law enforcement agencies are

only given data for the user and time period a warrant specifies, requiring the cooperation

of multiple parties within an organization to obtain the necessary keys.

Advanced Encryption Standard (AES) is a symmetric-key encryption standard that

comprises several sizes of block ciphers: AES-128, AES-192, and AES-256 [9]. The

AES ciphers have been analyzed extensively and are now used worldwide. I use AES to

encrypt network flow records for its speed, and then apply IBE to the stored AES key for

each individual IP address and time period.

12

Chapter 2. Privacy-Preserving Network Flow Recording

2.4.3 Statistical database modeling and inference controls

Statistics are computed for subgroups of records having common attributes [10]. A

characteristic formula is any logical formula over the values of attributes where the set of

records that matches these values is called a query set. A statistic is considered sensitive

if it discloses too much confidential information about some individual, and with the use

of some criteria for each query I prevent this type of query from returning an answer.

Inference control mechanisms are those which protect all sensitive statistics. The

problem is that it can be extremely difficult to determine whether releasing a statistic

will lead to disclosure of sensitive statistics information or not, but through the concept

of query set overlap control I was able to keep the statistical reports from leading to the

inference of any individual’s sensitive data.

2.5 Implementation

Figure 2.1 shows the steps flow records go through in my implementation. The system is

implemented in two main phases. Phase one addresses threats against stored, complete

network flow records by encrypting them. Phase two is focused on data collection

for producing statistical reports that are privacy-preserving based on specific criteria on

statistical queries. This second phase addresses threats where these statistics, possibly

combined, can reveal information about individual network users.

2.5.1 Data collection

Starting with data collection, fprobe 1.1 is used to record the network traffic that passes

though a tapped network interface as sessions. Then nfcapd is used to collect the recorded

data in a series of rotated files in Cisco’s NetFlow format, each file containing 5 minutes

of recorded data. After the completion of each of these files, the file is read separately and

required data for statistics is imported from it and then stored into the statistical database.

13

Chapter 2. Privacy-Preserving Network Flow Recording

Fprobe session flows

Nfcapd

Session data

Statistics DB

NetFlow records

(every 5 mins)

NetFlow
records

Encrypted
flow records

Import

statistical data

Encrypt using

IBE & AES

Figure 2.1: Data collection steps, and examples of plaintext and encrypted network

flow records.

This database stores statistical network data that is needed for queries for statistical reports.

Immediately after this, I encrypt the file. Thus, complete network flow data records will

not be stored in plaintext for more than five minutes. Each encrypted file contains only the

network flow records for a single IP address in a single 5-minute period.

2.5.2 Phase 1: Encryption vs. decryption

The encryption is done using a combination of identity based encryption (IBE) and AES

encryption. My IBE implementation is custom written, using the pairing based crypto

library [11] as a reference. Since my system privacy guarantee is per-user, I identify in each

record the IP address that belongs to the domain (whether it is the source or destination)

and merge it with the timestamp associated with this file that includes records for that IP

address in that 5-minute period. All flow records for a particular IP address in a 5-minute

period are merged into one file and encrypted with AES using a random 128-bit key that is

14

Chapter 2. Privacy-Preserving Network Flow Recording

different for each IP-timestamp tuple. After this, each of these AES keys is encrypted with

IBE using the IP-timestamp tuple as the public key for this encryption. All plaintext files

are immediately deleted, and the end result is a log file where each five minute period has

a list of IP addresses with records for that time period. Each record contains the IP address

and an AES decryption key that is encrypted with IBE. This information or the information

in the statistical database could violate the criteria of my queries for generating statistical

reports, but this is a separate threat and I have two separate threat models for the two

separate threats. See Section 2.8 for more discussion about this.

When law enforcement requests the decrypted records for a particular IP address

within a particular time period, the parties that have pieces of the secret needed for

decryption must each aid in generating the decrypting IBE keys. If they all agree and

cooperate, they can provide law enforcement with a set of keys that only decrypts the set

of 5-minute periods specified and only for the IP address given. This set of decryption

keys can be used to obtain the stored AES key for each of the relevant records.

2.5.3 Phase 2: Generating statistical reports

Statistical reports are generated after instantiating certain queries that comply with specific

criteria designed to protect the privacy of individual network users. These criteria ensure

that the queries not only prevent the direct revelation of information about individual

users, but also prevent inferences of such information using any combination of possible

queries. At the stage where the timestamped file of plaintext records is complete, before

it is encrypted and the plaintext version deleted, some values needed for statistical reports

are taken from this file and stored in a database that will be used to generate the statistical

reports. This database does contain some individual information but cannot be accessed

except through an interface with my predefined queries that are designed in order not to

reveal any private information of a particular user, not even through inference. Generating

statistical reports allows ISPs to monitor their network performance and the bandwidth of

15

Chapter 2. Privacy-Preserving Network Flow Recording

users, generate bills, and many other critical functions, so the major tradeoff is accuracy

of aggregated statistics vs. privacy of individual statistics.

Before I discuss the queries and how privacy-preserving reports are generated, I need

to explain the format of the database that such queries can be executed on. As explained

before, every five minutes a new file of network flow records is completed. The statistical

values needed are taken from this file for statistics, then encrypt each record in the file as

explained before, and then the original plaintext file is deleted. The statistical values are

stored in a database as one record per IP address per time period (TP). Note the difference

between the recording time interval and the time period TP; a recording time interval is

the five minute period in which network flow records are recorded in plaintext and then

encrypted in a rotating fashion, a time period TP is a 12-hour period chosen such that the

statistical reports generated will consists of at least 12-hours of statistical data records.

Another problem that might lead to the inference of an individual user’s private

information (such as what websites they visit) is if, for example, they only visited one

website in one TP. The number of bytes transferred in this 12-hour time period can be

used as a signature to make inferences about what website was visited. For this reason,

one of the criteria is that there should be enough bytes transfered by an IP address in a

given query so that very little can be inferred about specific websites visited. In this case,

however, it is not enough to define some queries as legal and others as not legal. Two legal

queries can form two datasets whose intersection leads to some confidential data about an

individual. To solve this, I check the query criteria on the records for every TP and decide

which IPs do not match the criteria within that TP. For IP records, I merge them with the

corresponding IP record in either the pre- or post TP according to where that record was

originally found. After merging these records, they are given a timestamp of 24 hours

instead of 12 hours if they were merged with one TP, or 36 hours if merged with two TPs,

and so on.

The statistical database is populated immediately after the network flow file is

16

Chapter 2. Privacy-Preserving Network Flow Recording

completed, new values in this database are entered or merged every five minutes in the

following form:

• IP: IP Address

• TP: Time Period (time-stamped)

• TTI: Total TCP bytes In

• TTO: Total TCP bytes Out

• TUI: Total UDP bytes In

• TUO: Total UDP bytes Out

• LPI: List of Ports In

• LPO: List of Ports Out

• BI: Bytes In

• BO: Bytes Out

• PI: Packets In

• PO: Packets Out

The values of these attributes for a single record are updated every five minutes for

every TP, per IP address, then a new record for the same IP address is created for the next

TP and so on.

Generating the privacy-preserving statistical reports requires to design a set of queries

with corresponding criteria for each to generate the required report that ISPs need, as well

as not revealing any confidential data about individual users. Below is a list of some of

the queries with their corresponding criteria:

Q1 : Sum[BI, (TP ≥ α) • IP] & result ≥ β

17

Chapter 2. Privacy-Preserving Network Flow Recording

Q2 : Sum[BO, (TP ≥ α) • IP] & result ≥ β

Q3 : Sum[BI +BO, (TP ≥ α) • IP] & result ≥ β

Q1, Q2, and Q3 are queries used to calculate the link utilization of a particular IP in

a specified time interval for bytes-in, bytes-out, and total bytes respectively. The criteria

and conditions for such queries is that TP ≥ α and result ≥ β are satisfied. The values

of α and β should be defined by the ISP depending on how large and busy the network

is. Basically, the conditions for these queries state that if the number of TPs required is

greater than α, a predefined number of 12-hour period statistical reports, the answer for

such a query should also be above a certain threshold β. Otherwise confidential data of

that particular IP could be inferred. In other words, if that particular IP was not active

enough during these TPs, then the results output from this query could make it possible to

deduce something about the websites or Internet services being used by a specific user. For

example, Hintz discusses the concept of website fingerprinting [12] where it is possible to

infer that a website has been visited through a signature based on the number of bytes

transferred. So the value of β in the above queries should be chosen to be large enough

such that no such patterns exist. One key feature about these conditions in the above three

queries is that they must have the same conditional values (i.e., the α values of the three

queries must be equal, as must the β values), so that their combination cannot dissatisfy

the conditions of any other statistical query.

Q4 : 8×

n∑

i

[BI+BO,(TP≥α)•IPi

TPsec
∀IPi ∈ subnet, count(IPis) > δ & result ≥ β

Q4 is another example of a privacy-preserving statistical query that calculates the total

bytes per time per subnet. Such queries require all the records of the IP addresses that fall

in the given subnet in the given number of time periods such that TP ≥ α and satisfying

18

Chapter 2. Privacy-Preserving Network Flow Recording

the same conditions that were specified in Q1, Q2, and Q3. This is important for the

same reason of avoiding any combination of queries to infer individual queries that would

violate their conditions.

Q5 : list[LPI, (TP ≥ α) • IPi] + list[LPO, (TP ≥ α) • IPi]

∀IPi ∈ subnet, count(IPis) > δ

One very useful query for ISPs is the list of applications used over a time period for

particular subnetworks. For simplicity, applications are defined in terms of ports for my

queries. Q5 is designed so that queries can return aggregate statistical data about ports

used for large-enough groups of network users, but cannot query information pertaining to

any single user. This query requires that enough data be included in the aggregation, both

in terms of the size of the subnet and the amount of data available for that subnet.

The considered set of queries was designed to demonstrate that useful statistical data

can be extracted from network flow records while still preserving privacy. I have focused

on basic network administration and billing tasks. Additional queries could be defined for

other purposes, the major challenge being the tradeoff between privacy and accuracy of

the report.

2.6 Experimental Methodology

Here I explain the experimental setup and methodology. The purpose of my experiments

was to characterize the way that the traffic recording, identity-based encryption, and

statistics generation scaled with respect to each other. In particular, I am interested

in which of these might present problems as either the rate of traffic that is recorded

goes up or the size of the subnet that recording is being performed for goes up.

19

Chapter 2. Privacy-Preserving Network Flow Recording

Because each IP address is an identity, performance scaling depends not only on the rate

of flow records generated but also on the number of local IP addresses involved since the

identity based encryption workload is per IP address.

2.6.1 Live experiments

One specific question I wanted to answer is: for a reasonably sized subnet, are my

encryption and statistics-generating implementations fast enough to keep up with the rate

at which network flow records can be generated on a typical commodity machine. I wanted

to test this on a live system that was performing all of the packet capture and processing

that a real system with the privacy-preserving capabilities would perform, so that system

effects would also be accounted for. To answer this question, I ran live capture experiments

for 6 hours each, on subnets of size /24 (256 hosts), /22 (1024 hosts), and /20 (4096

hosts). The machine I ran these experiments on was a Core i7 X980 running at 3.33 GHz,

with 24 gigabytes of RAM and a RAID 0 array with three 6 GB/s hard drives dedicated

to the partition that I used. However, the motherboard RAID controller, though it uses

PCI Express, limits the hard drive bandwidth to 3 gigabits per second so that this is the

fastest rate I was able to test for long periods of time, due to the need for a large file so that

tcpreplay does not loop too often over the same traffic. The Core i7 X980 has six cores,

each with two hardware threads, and supports Advanced Encryption Standard Instructions

(AES-NI) on all six cores. For both encryption and statistics generation I used six parallel

threads (twelve threads would not have had a significant speedup over six since then pairs

of threads would be sharing the AES hardware and memory hierarchies). The test machine

was running Linux kernel version 2.6.32. Live experiments were performed at 3 gigabits

per second due to the hard drive bandwidth limitation, but the offline experiments confirm

that for the subnet sizes I considered more than 10 gigbaits per second is achieved by my

implementation.

I generated a file representing enough realistic traffic to saturate a 3 gigabit link for

20

Chapter 2. Privacy-Preserving Network Flow Recording

1 hour, to be looped six times for a six-hour live test. I then created a tuntap interface,

which is a virtual network interface that works in a similar way to a loopback interface,

but can be dedicated to just traffic for a particular experiment. Using tcpreplay, I filled

this tuntap interface with realistic traffic that was generated based on a statistical profile

of real network traffic, in terms of the sizes of flows, the timing, rate, protocols, and other

factors. For this purpose, I use AnetTest [13] and modified it to support the subnet sizes I

was interested in. I used other tools as references [14] in order to generate more realistic

traffic rather than just depending on one traffic generator’s statistical model. My goal was

to consider the worst-case scenario in terms of the amount of sessions that could result

from real traffic at a given rate.

By looping this 1-hour, 2 terabyte file six times I was able to do live testing of my

privacy-preserving network flow recording implementation for six hours for each of three

subnet sizes: /24, /22, and /20. The purpose of these tests was to demonstrate that my

implementation could sustain a rate of 3 gigabits per second for network flow recording

for a long period of time. The purpose of rerunning or looping this 1-hour files six times

is for the purpose of eliminating any interference caused by the system and being more

accurate in the results. I also wanted to see how well the different parts (encryption and

statistics generation) scaled in terms of the amount of data collected in a 5-minute time

period.

2.6.2 Offline experiments

I also sought to answer the question of how fast my implementation could perform for

different subnet sizes, without hardware limitations or the inherent limitations of the Linux

kernel in capturing network traffic. The reason this is important is that improvements in

network traffic recording could lead to network flow recording at 10 gigabit rates, so the

encryption and statistics generation for a privacy-preserving network flow implementation

would have to keep up with this rate. To answer this question I generated libpcap files of

21

Chapter 2. Privacy-Preserving Network Flow Recording

traffic as before and then created the network flow records offline. Then the time that

encryption and statistics generation took is measured when computation was the only

limiting factor (since network flow records are small and not a significant factor in file

system bandwidth). From this I inferred rates that this implementation could perform

privacy-preserving network flow recording at for the same three subnet sizes: /24, /22,

and /20.

2.7 Results

Recall that for live experiments my main purpose was to demonstrate that

privacy-preserving network flow recording could be performed at the 3 gigabit per second

rate on a commodity Linux machine. I answered this in the affirmative, but there are a

couple of interesting caveats about the scalability of the system that I describe below.

Also recall that I ran off-line experiments to see if my implementation could achieve a

10 gigabit per second rate, assuming that future improvements to the Linux packet capture

infrastructure make it possible to record traffic at this rate. I also answered this in the

affirmative.

2.7.1 Live experiments

Figure 2.2 shows how encryption and statistics scale compared to the time to record on a

/24 subnet. The straight line that ends at 300 seconds is the amount of time that it takes

to record the traffic, with 500,000 flow records being recorded in 300 seconds (5 minutes).

This time is the same with or without performing any privacy-preserving operations such

as encryption or statistics generation. Note that my implementation of these operations

can be done in parallel to the recording of network flow records, so the times will not be

added on but just need to be less than the time to record. The x-axis is the number of

flow records recorded up to that point in time. For a fixed bandwidth and subnet size, the

worst-case scenario for a network flow recording implementation (that is not sampling)

22

Chapter 2. Privacy-Preserving Network Flow Recording

is a large amount of very short sessions. 500,000 network flow records in a five minute

period is what I considered to be a worst-case scenario for my experiments. Recall that this

is a mix of large and small connections but is more biased towards small connections than

I would expect normal traffic to be, to ensure that these tests cover all realistic scenarios

by considering the worst case. The y-axis is either the time that has passed for recording

the traffic, or the amount of time (out of that total time passed) that has been spent so far

on encryption, statistics generation, or both.

The dashed line is the amount of time spent on encryption, including both

identity-based encryption and AES. The thick black line is the amount of time spent

generating statistics, and the thinner black line is the total time spent on privacy-preserving

operations (i.e., the sum of the times for encryption and statistics). Note that this time

is cumulative, so linear growth means that the performance of that component is the

same throughout. In this graph, it is clear that the privacy-preserving operations can

be performed in the amount of time required, meaning that adding privacy-preserving

operations to a network flow implementation will not change the rate at which it can

perform. For a /24 subnet at 3 gigabits per second, the encryption and statistics only

took a fraction of the time allowed for them.

Figure 2.3 is the same as Figure 2.2, except that the scale on the y-axis is different

to show more details about how encryption and statistics generation scale with respect to

each other. I expected that encryption would scale non-linearly with subnet size because

of identity-based encryption being required on a per-IP address basis. I was surprised to

see that statistics generation grows nonlinearly with the number of network flow records,

however. The reason for this is that merging statistics records for IP addresses that

have already been seen in that five-minute period can be an expensive operation if not

implemented carefully. In earlier versions of my implementation, where the dynamically

allocated memory for operations such as appending port numbers to a list was not managed

explicitly because the implementation had been in the Python language, the statistics

23

Chapter 2. Privacy-Preserving Network Flow Recording

actually broke the implementation at relatively low rates of traffic, meaning that statistics

generation was taking more than five minutes and not keeping up with the network flow

recording. I thought that this was due to the size of the hash table for hashing IP addresses

that have been seen before in this time period, which does have some effect, but it turned

out to be more related to the relatively simple addition and append operations that are

performed to merge records for IP addresses that have been seen already in that time

period. I found this result, that generating statistics could be more of a performance

bottleneck than encryption, to be rather surprising.

Figures 2.4 and 2.5, respectively, show the same for /22 subnets as what Figures 2.2

and 2.3 show for /24 subnets. Similarly, Figures 2.6 and 2.7 show the same for /20

subnets. As expected, encryption becomes slightly more dominant in larger subnets since

there are more unique IP addresses, as can be seen more clearly in Figure 2.8. However,

I also see that statistics is still the main performance limitation in terms of non-linear

behavior with respect to the number of flow records recorded. Since the hash table is

reset every five minutes and the time it takes to merge a five-minute statistics record into

a 12-hour TP is negligible, I do not need to consider how the statistics scales beyond five

minutes.

My conclusion from the live experiments was that encryption and statistics are scalable

and not performance problems compared to how long it takes to record traffic using

pcap-based tools. This means that privacy-preserving network flow recording can be done

for any realistic rate, traffic mix, and subnet size that regular network flow recording

can be done at. However, special attention needs to be paid to the statistics generation,

particularly the memory management for this part, to make sure that it scales well over

time within a five-minute recording period.

24

Chapter 2. Privacy-Preserving Network Flow Recording

Figure 2.2: Timings for /24 Subnets.

Figure 2.3: Tradeoff between time to encrypt and time to import statistical data for

/24 subnets.

25

Chapter 2. Privacy-Preserving Network Flow Recording

Figure 2.4: Timings for /22 subnets.

Figure 2.5: Tradeoff between time to encrypt and time to import statistical data for

/22 subnets.

26

Chapter 2. Privacy-Preserving Network Flow Recording

Figure 2.6: Timings for /20 subnets.

Figure 2.7: Tradeoff between time to encrypt and time to import statistical data for

/20 subnets.

27

Chapter 2. Privacy-Preserving Network Flow Recording

0

50

100

150

200

250

300

350

100000 200000 300000 400000 500000

of flow records

se
co

nd
s /20

/22
/24
Time to Record

Figure 2.8: Timing comparison between /20, /22, /24 subnets according to

recording time.

Subnet size Maximum rate (Gbps)

/24 23

/22 18

/20 12

Table 2.1: Rates that my implementation can achieve for different subnet sizes.

2.7.2 Offline experiments

Table 2.1 shows the rates, in gigabits per second, that I was able to achieve in the offline

experiments for the three subnet sizes. Clearly, my encryption and statistics generation

implementation can be used for 10 gigabit connections at any of these subnet sizes,

assuming that the network flow recording itself is able to achieve such a rate.

28

Chapter 2. Privacy-Preserving Network Flow Recording

2.8 Discussion and future work

I have shown that privacy-preserving network flow recording can be performed at any

reasonable rate and subnet size that regular network flow recording can be performed at.

However, there are still some open issues for future work. One is to consider other types

of queries that network operators may require statistics for. The existing queries used

are basic operations, and are all linear. The current set of queries used cover the most

common uses of network flow data, however. Another issue that might be considered in

future work would be to consider clickstreams and other data that should be kept in a

privacy-preserving manner. Since clickstream data is used in different ways compared to

network flow data, it may have different requirements for both encryption and statistics.

Two threats were considered in this chapter: threats against stored network flow data

that is stored unencrypted, and threats against statistical data from the network flow

recording that is exported to the rest of the organization. I considered these threats

separately, and for the second threat I assumed that the statistics were exported only

through a database interface. An attacker that can view the encrypted network flow records

on the gateway where they are stored cannot violate the protections for the first threat since

they are encrypted, but for the second threat many inferences can be made that could not

be made through the database interface. The recorded, encrypted network flow data shows

every local IP address that communicated in a 5-minute period (IP addresses outside the

local network will be encrypted, however). Also, the length of the encrypted records gives

some indication of the number of flows during that five-minute period. Since I considered

the two threats separately and assumed that for the second threat the attacker would be

required to use the database interface, I did not do any padding or attempt to prevent

inferences from the encrypted network flow records. This raises an interesting question,

however, which is: is it possible to store the encrypted network flow records in a way that

prevents the same kinds of statistical inferences if an attacker gains access to the stored

network flow records? I plan to explore this in future work.

29

Chapter 2. Privacy-Preserving Network Flow Recording

2.9 Related Work

Different approaches have been taken in order to protect the confidentiality of web users

that are applicable to recorded network flow data, even if network flow recording is not

their focus. One main approach that users themselves can employ is to anonymize their

traffic through anonymity networks. Tor, the second generation onion router [15], allows

you to browse the Internet anonymously. Tor is resistant to many threats against privacy,

including many of the threats posed by network flow recording. Tor trades off performance

of the network connection for anonymity properties, for the users that choose to use it. In

the problem domain I focus on in this chapter, I am interested in the threats against the

vast majority of users that do not use Tor but whose daily web activities are recorded in

the form of network flow records and clickstreams and then stored for weeks, months, or

longer.

A research problem that is related to privacy-preserving recording and storage of

network flows is the problem of anonymizing network flow data so that it can be shared

with others. Foukarakis et al. [16] implemented anontool that allows administrators

to anonymize network flow data in a highly customizable way. This is more directly

related to the statistics generation than to the encryption phase of my implementation.

For a discussion of issues concerning external factors in data sanitization, see Bishop

et al. [17]. Privacy-preserving data aggregation and anonymization have a long history,

see, for example, Denning [10]. Related to network flows, there are network trace

anonymization attacks that correlate external information with anonymized data and

successfully de-anonymize objects with distinctive signatures [18]. Moreover, some

work has been done to improve Crypto-Pan by designing and integrating it with

an efficient passphrase-based key generation algorithm in order to avoid the risk of

exposing sensitive information to potential attackers while sharing network logs among

security engineers and network operators for the purpose of security research and

network measurements [19]. Koukis et al. designed and implemented a generic and

30

Chapter 2. Privacy-Preserving Network Flow Recording

flexible anonymization framework, due to the current anonymized tools that offer limited

flexibility, thus their tool provides extended functionality, covering multiple aspects of

anonymization needs and allowing fine-tuning of privacy protection level [20].

I have also seen research related to privacy-preserving forensic attribution architecture

primitive where the authors propose a prototype implementation , called Clue, that

attributes individual network packets of the sender’s machine to protect the privacy of

individual senders from serendipitous use, with the ability of revealing the identity of the

criminal actors by a trusted authority [21].

Securing log files by cryptographic means was another considered approach towards

hiding sensitive information that is stored in certain log files. Schneier and Kelsey [22]

had described a computationally cheap method that makes it impossible for the attacker

to read, modify, or destroy log file entries by generating log entries prior to the logging

compromised machine.

Much previous work has focused on privacy-preserving data publishing. Denning [10]

provides a good overview of early work in this area. More recently the notion of

differential privacy was introduced by Dwork [23]. The focus is on privacy-preserving

analysis of data, where the concept of differential privacy is used to capture the increased

risk to one’s privacy incurred by participating in a database. Differential privacy is

a useful property for many types of proofs and reasoning about privacy. My work

could be more formally analyzed within the framework of differential privacy, but for

the current effort I have defined the queries in a way that more closely resembles the

inference controls of Denning [10]. Zhou et al. [24] target the problem of continuous

privacy-preserving publishing of data streams, as opposed to static data. They propose

a group of randomized methods and anonymization quality measures used to verify the

effectiveness and efficiency of their methods. The statistical reports could be cast as

a streaming privacy-preserving data problem. Horizontally partitioned databases also

fall into the category of privacy-preserving data publishing, as studied by Jurczyk and

31

Chapter 2. Privacy-Preserving Network Flow Recording

Xiong [25]. They developed a set of decentralized protocols that enable data sharing for

horizontally partitioned databases.

To the best of my knowledge, this is the first work to focus on one of the largest threats

to web privacy today: the recording and storage of network flows and the related practice

of clickstreams.

2.10 Conclusion

In this chapter, I proposed a privacy-preserving method for recording and storing

network flow records, that network operators can use to enforce a privacy policy. A

performance analysis of my implementation demonstrates that privacy-preserving network

flow recording can be performed at any realistic rate, traffic mix, and subnet size

that regular network flow recording can be performed at. I also showed that this

implementation can achieve more than 10 gigabits a second on reasonably-sized subnets,

as large as /20. The main tradeoffs and performance considerations that I identified were:

• The tradeoff between accuracy and privacy for defining privacy-preserving database

semantics that allow network operators to view statistics about their network.

• The fact that identity-based encryption in my implementation scales with subnet size

and not just the amount of traffic.

• The fact that the memory management of statistics generation scales non-linearly as

the number of IP addresses and records grows.

32

Chapter 3

Network Flow Recording with Differential

Privacy

3.1 Abstract

In chapter 2 I presented a privacy preserving way of revealing and recording netflow

statistical reports using queries. While these queries were sufficient to preserve privacy, an

adversary who had access to the database records without such queries could still reveal

accurate individual records. In this chapter, I apply the concept of differential privacy

applied to the statistical database generated from my netflow records, and I will show that

I am still able to reveal useful information from the database as well as the adversary’s

failure of predicting individual records, given the database.

3.2 Introduction

Network flow recording, such as Cisco’s NetFlow [2], is an important tool with

applications that range from legal compliance and security auditing to network forensics,

troubleshooting, and marketing. Storing such records for statistical purposes could

reveal a great deal of private information related to the participating individuals and the

33

Chapter 3. Network Flow Recording with Differential Privacy

network records itself. In chapter 2 I showed a privacy preserving approach of protecting

individuals’ personal information while still being able to retrieve the required data. This

approach failed to address two important issues though. First, any direct access to the

database without the built queries designed in Chapter 2 could leak a large amount of

private information. Second, a lot of work needs to be done to work out a query every time

network administrators require a new report. Thus, I felt the need to change my approach

by applying the concept of differential privacy to the statistical database and reports.

Dwork [23] suggests a new measure of the privacy of individuals’ data that resides

in a database, differential privacy, that determines the risk of revealing such private

data to the public. The motivation of her work was based on how to reveal useful

information about population’s data residing in a database while preserving the privacy

of its individuals. According to Dwork, differential privacy attempts to guarantee the

outcome of a calculation to be insensitive according to the dataset it resides in.

In general, differential privacy applied to statistical databases creates a possible

trade-off between the usability of the database and the secrecy of individual records.

Dwork in her survey paper [26] formalized and quantified the notions of private queries

and developed analogues for different types of queries that meet the needs of database

administrators. The risk is measured by how sensitive each query is, and is illustrated by

the adversary’s success in predicting an individual record’s existence in a database.

This chapter is organized as follows. First, I describe the threat model in Section 3.3.

This is followed by Section 3.4 where I introduce some basic concepts and their

background. Section 3.5 shows the implementation of my system. In Section 3.6 I

explain the evaluation methodology, and my results are presented in Section 3.7. I discuss

performance issues and future work in Section 3.8, which is then followed by related works

and the conclusion.

34

Chapter 3. Network Flow Recording with Differential Privacy

3.3 Threat Model

The fact that the statistical database contains some imported data from netflow records in

plaintext is of great concern even though the reports generated from this database preserve

privacy through my pre-designed queries. The main concern is that if an adversary was

able to access the statistical database by bypassing my query interface, the records stored

in the database are accurate and reflect a great amount of private information that would

defeat the whole purpose of my approach. There were also concerns based on the concepts

of forward and backward security as it applies to network flow recording privacy. Forward

security means protecting information that will be recorded in the future, while backward

security means that after a database has been compromised the data that was recorded in

the past is still secure.

Statistics about how frequently network links are used are also very important just

for day-to-day network operations. The threat is that information about the amount of

network traffic an individual used must be stored for statistical purposes for the queries to

be accurate (e.g., for billing purposes). Unfortunately this information is often enough to

infer certain facts about an individual user’s web activities if it is not aggregated properly

with other data before being presented. I assume that the stored statistical data is presented

to the rest of the organization (the billing department, traffic engineers, quality-of-service

experts, etc.) through a database interface, while those attacks that bypass such an interface

is my main security threat.

I wish to reiterate that I am not attempting to protect web privacy against untrusted

network controllers. My goal is to give network controllers the technological tools they

need to enforce privacy policies so that network users can place their trust in the network

controllers as an organization. Storing statistical data in a privacy preserving manner will

protect users from any inappropriate access and will develop user experience trust.

35

Chapter 3. Network Flow Recording with Differential Privacy

3.4 Background

My approach is based on securely recording network flow data for forensic reasons,

and importing some of the useful data from the netflow records into a statistical

database, mainly for generating statistical reports. Recording netflow data is done

with a sophisticated encryption algorithm composed of both AES and IBE (Identity

Based Encryption). Statistics are computed for subgroups of records having common

attributes [10]. Inference control mechanisms can protect all sensitive statistics. The

problem is that it can be extremely difficult to determine whether releasing a statistic

will lead to disclosure of sensitive statistic information, fortunately through the concept

of query set overlap control I am able to keep the statistical reports from leading to the

inference of any individual’s sensitive data.

I had created a set of privacy-preserving queries, each formed with a set of criterias

and constraints, and applied the concept of query set overlap control to check if the results

of the queries could overlap and defeat the preservation of an individual’s data records.

However, the above approach does not protect individual’s privacy in the case that the

adversary was able to bypass the pre-designed queries and thus was able to access the

database records directly that contain accurate statistical data.

Moreover, my previous approach with the considered design of queries makes it hard

for database administrators to create additional queries, as significant care must be taken

so that new queries do not overlap another query’s datasets.

My choice of applying differential privacy concepts in the statistical database is based

on the premise that such methods provide formal privacy guarantees that are independent

of the adversary’s background knowledge of the values in the database. Using these

methods also makes it easier to create new queries for generating new reports that could

be applied on past or future data releases.

36

Chapter 3. Network Flow Recording with Differential Privacy

Dwork [23] has stated several definitions and privacy mechanisms that could be applied

in different cases of data retrieval. Mironov et al. [27] has also presented a differentially

private protocol for cases where privacy is needed to hold against efficient computationally

bounded adversaries.

By definition, consider two data sets D1 and D2 that differ on a single element, a

randomized algorithm A gives ε− differential privacy if for all S subset of Range(A),

where Range(A) is the output of the randomized algorithm A.

Pr[A(D1) ∈ S] ≤ exp(ε)× Pr[A(D2) ∈ S]

The purpose is to define a differentially private algorithm A such that it will behave the

same on both datasets D1 and D2. The measure of how private the algorithm A is defined

by its sensitivity ∆f of a function f such that:

∆f = max
D1,D2

||f(D1)− f(D2)||

Laplace noise is a controlled noise that is added to the outcome of queries that

will make them differentially private especially to those functions with low sensitivity.

Specifically, the noise is sampled from the Laplace distribution has a probability density

function (p.d.f.) of:

Y = Pr[x] = 1
(2δ)

e
−|x−µ|

δ

where µ is the mean of the distribution, and δ is a parameter that controls the degree

of privacy protection. Thus the scale of Laplace noise and the sensitivity of the query

applied are the factors that measures the privacy of the query results. In principle, the

sensitivity measures the maximum change in query results due to changing a single tuple

in the database.

Given a standard deviation λ, the output value of a given query A′ will be the original

output of A plus Laplace distribution noise such as:

37

Chapter 3. Network Flow Recording with Differential Privacy

A′(x) = A(x) + Y where Y = Lap(λ)

Since Y is a probability density function, that makes A′(x) a continuous random

variable where

pdf(A′(x)D1
=t)

pdf(A′(x)D2
=t)

= noise(t−f(D1))
noise(t−f(D2))

which is at most

e
|f(D1)−f(D2)|

λ ≤ e
∆f

λ

The privacy factor ε is now considered to be ∆f

λ
.

Differential privacy is achieved by adding noise to the outcome of regular queries. The

sensitivity of each query should be defined to decide how much noise should be added

to the output of the query generating the statistical report. Factors such as minimum TP

range, link utilization, and subnet sizes could all affect the amount of noise need to be

added to the data saved in the database.

In case of an arbitrary domain D, given a function f : D → Rd, the sensitivity of f is

S(f) = max ‖ f(A)− f(B) ‖

With S(f) being the sensitivity function of f , the computation

M(X) = f(X) + (Laplace(S(f)/ε))d

provides ε differential privacy.

Moreover, let q : (Dn × R) → R be an equality function with database d ∈ Dn and a

score r ∈ R, and let S(q) = max
r,A∆B=1

‖ q(A, r)− q(B, r) ‖

Then a differentially private mechanism M with ε differential privacy is defined by

M(d, q) = [return r with probability α exp((ε q(d, r))/(2 S(q)))]

38

Chapter 3. Network Flow Recording with Differential Privacy

3.5 Implementation

Before proceeding to describe my privacy preserving solution, I will describe the format

of the statistical database. Each record in the database contains the following fields:

• IP: IP Address

• TP: Time Period

• TTI: Total TCP bytes In

• TTO: Total TCP bytes Out

• TUI: Total UDP bytes In

• TUO: Total UDP bytes Out

• LPI: List of Ports In

• LPO: List of Ports Out

• BI: Bytes In

• BO: Bytes Out

• PI: Packets In

• PO: Packets Out

Every time-period corresponds to 12 hours of recorded data summed up into each

corresponding data field. This time-period is considered in order to avoid retrieving data

for any record for less than 12 hours old.

39

Chapter 3. Network Flow Recording with Differential Privacy

In my implementation, I considered three types of major queries needed by network

administrators:

1- Link utilization of a particular IP address:

Sum[BI • IP] for bytes-in

Sum[BO • IP] for bytes-out

Sum[BI +BO • IP] for total bytes

2- Total bytes transferred within a subnet, represented in bits per second per subnet:

8×

n∑

i

[BI+BO•IPi

TPsec
∀IPi ∈ subnet

3- Lists of all applications used over a time period for particular subnetworks. For

simplicity, I define applications in terms of ports for the queries:

list[LPI + LPO • IPi]∀IPi ∈ subnet

Next, I implemented my differentially private mechanisms denoted by Si that is

related to query qi defined above, where each mechanism Si has a corresponding privacy

parameter εi. Each mechanism Si works by calibrating noise to the sensitivity of each

query qi. The value of the privacy parameter εi is calculated for every mechanism Si

according to the level of accuracy that needs to be considered as well as the sensitivity of

the sum query qi, which is my case for the link utilization queries. In order to know the

sensitivity of each query, each network user behaves differently and thus administrators

need to bound the change in each query that may result in a change of a single entry for

that particular query. My chosen queries belong to the non-unique class of query, those

that do not have their sensitivity equal to 1, but are still easy to give some bound that is

very unlikely to be crossed, (e.g. the link utilization queries). The bound is chosen per

time-period, denoted as γi. Let γ1 , γ2, be the global sensitivity and ε1, ε2 be the privacy

parameters for the corresponding first two queries (bytes-in and bytes-out) respectively.

40

Chapter 3. Network Flow Recording with Differential Privacy

Then the noise added to each database entry of bytes-in and bytes-out is Laplace noise

Y1 = γ1/ε1 and Y2 = γ2/ε2 respectively. Thus, the value that is recorded into the database

fields is the actual value added to the Laplace noise expressed by the differentially private

mechanism Si(x) = qi(x)+Y , where x corresponds for the particular IP address and qi(x)

corresponds to the actual number of bytes for that IP address. In this similar manner, the

data entries in the database have been modified by adding Laplace noise since the queries

applied on the database are of the summation form (as defined by Dwork [23]).

My set of queries was designed to demonstrate that useful statistical data can be

extracted from network flow records stored in the database. I have focused on basic

network administration and billing tasks. Additional queries could be defined for other

purposes, with the major challenge being the trade-off between privacy and accuracy of

the report.

3.6 Experimental Methodology

My main approach will be, instead of modifying the regular queries applied on the

statistical database by adding conditions and constraints, I will rather keep the queries

unmodified, and improve the way the statistical records are stored such that the data

retrieved from those queries preserves privacy. Typically, differential privacy is achieved

by adding noise to the results of a query or to the dataset itself.

Indeed network statistical databases hold sensitive information such as IP addresses

and ports used. I consider applying the concepts of differential privacy by adding Laplace

noise to database records such that none of the statistical reports can reveal any private

information about individuals.

The Netflow recording experiment was repeated, and imported from those records the

required statistical values that needed to be stored in to the statistical database. However,

these entries are not stored with the same accurate values that were used in chapter 2,

41

Chapter 3. Network Flow Recording with Differential Privacy

rather I use the differentially private mechanisms in order to safeguard private data in the

database. In this case, I have added Laplace noise as the differential privacy methods for

my type of queries.

Since the database will contain some noise in its values, such values will take care

of the privacy preserving concerns of the data, and regular queries generate the needed

statistical reports. For this particular purpose, the queries have to be set first before the

decision of how much noise should be added to the data as well as the sensitivity of such

queries. Factors such as minimum time periods (TP) range, link utilization, subnet sizes,

and the sensitivity of the query could all affect the amount of noise that needs to be added

to the data saved in the database.

3.7 Results

While I still have the actual values of recorded statistical values in the database from

chapter 2, I have repeated the experiments with the new differentially private mechanisms.

Table 3.1 shows a sample of the records taken from the database that reflects the change in

the value of bytes-in and bytes-out for different IP addresses. Such differences, computed

as Laplace noise, reflect the required values in reports that are generated by normal queries

while preserving the privacy needed to secure an individual’s private data.

Noisy statistical values protect from attacks such as website fingerprinting. Hintz

discusses the concept of website fingerprinting [12], where it is possible to infer that a

website has been visited through a signature based on the number of bytes transferred.

Consider, for example, the link utilization query for a specific IP address, say user X,

where the total bytes transferred during a Skype voice call is 6,750 kilobytes. The type

of service used in this example is Skype voice call, which has been discovered through

the port used, even though this is another private information that violates the privacy

policy, but I am violating it just for the sake of demonstrating this example. It is also

known through service fingerprinting that Skype voice calls takes between 7 to 18 kbps of

42

Chapter 3. Network Flow Recording with Differential Privacy

� �

�������� 	A
BCD��E

��������
������F�� 	�

BCD��E
������F��

������

������

�	����

�	���	

��A���

������

B�A

��

	�

BC��

C��

��

������

�����	

�	�	AC

�	���C

��A���

�����	

���	�

����	

	����

��	��

����	

���	�

B�A

��

B��

C�

B�A

B��

�����

�����

	��CC

��	��

���C	

��	�A

Table 3.1: A table demonstrating the effect of applying the differentially private

mechanisms related to link utilization values.

bandwidth, depending on the network. The network behavior shows that Skype is using

15 kbps of bandwidth average. So if an adversary was able to see the accurate value of

the Skype voice call session for user X to be 6,750 kilobytes, then the adversary could

determine how long this voice call took (the length of the voice call tested was one hour).

This might be a privacy concern, given that the adversary is familiar with Skype voice

call speeds on the monitored network. My improvement in the database records is that it

now has noisy values, the adversary will not be able to know the exact length of the user’s

voice call (in this example, the adversary discovered that the length of the voice call is

1.06 hours), as well as it will get more confusing when user X’s total bytes is composed of

many sessions of different services used. Thus differential privacy has relevant protection

against attacks such as the website fingerprinting attack.

3.8 Discussion and future work

I have shown how crucial it is not to store accurate values in statistical databases since

doing so could raise great privacy concerns and cause an individual’s private data to be

revealed. I applied differential privacy mechanisms on those records so they can preserve

43

Chapter 3. Network Flow Recording with Differential Privacy

the privacy of individuals. However, there are still some open issues to address in future

work. One is to consider other types of queries that network operators may require

statistics for. Such queries might need other types of differentially private mechanisms

rather than the Laplace noise case since not all queries are of a summation form. My

existing queries are basic operations, and are all linear. However this current set of queries

only cover the most common uses of network flow data. Another issue that might be to

consider clickstreams and other data that should be kept in a privacy-preserving manner.

Since clickstream data is used in different ways compared to network flow data, it may

have different requirements for both encryption and statistics.

3.9 Related Work

There is considerable amount of work where differential privacy has been applied. Lindell

and Omri [28] have applied differential privacy concepts on online advertising systems

such as Facebook. Friedman and Schuster [29] considered the problem of data mining

with privacy guarantees for a given data access interface based on differential privacy.

Chaudhuri et al. [30] discussed how the infrastructure of database systems can hold

sensitive data and can assist with privacy needs. It is my belief that differential privacy

concepts will be applied more in the near future, with many possible applications in data

storage and other fields.

3.10 Conclusion

In this chapter, I applied differential privacy concepts for the purpose of improving my

privacy-preserving implementation of network flow recording. I have defined the type

of queries needed to generate the reports and have moderated the values stored in the

statistical database that corresponds to such reports, making great improvement to the

netflow recording approach in the privacy-preserving world.

44

Chapter 4

Leaving Timing Channel Fingerprints in Hidden

Service Log Files

4.1 Abstract

Hidden services are anonymously hosted services that can be accessed over an anonymity

network, such as Tor. While most hidden services are legitimate, some host illegal content.

There has been a fair amount of research on locating hidden services, but an open problem

is to develop a general method to prove that a physical machine, once confiscated, was in

fact the machine that had been hosting the illegal content. In this chapter I assume that

the hidden service logs requests with some timestamp, and give experimental results for

leaving an identifiable fingerprint in this log file as a timing channel that can be recovered

from the timestamps. In 60 minutes, I am able to leave a 36-bit fingerprint that can be

reliably recovered.

The main challenges are the packet delays caused by the anonymity network that

requests are sent over and the existing traffic in the log from the actual clients accessing the

service. I give data to characterize these noise sources and then describe an implementation

of timing-channel fingerprinting for an Apache web-server based hidden service on the

45

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

Tor network, where the fingerprint is an additive channel that is superencoded with a

Reed-Solomon code for reliable recovery. Finally, I discuss the inherent tradeoffs and

possible approaches to making the fingerprint more stealthy.

4.2 Introduction

0

50

100

150

200

250

300

350

400

1

6
0

1
1

9

1
7

8

2
3

7

2
9

6

3
5

5

4
1

4

4
7

3

5
3

2

5
9

1

6
5

0

7
0

9

7
6

8

8
2

7

8
8

6

9
4

5

1
0

0
4

1
0

6
3

1
1

2
2

1
1

8
1

1
2

4
0

1
2

9
9

1
3

5
8

1
4

1
7

Minute

P
a

g
e

 v
ie

w
s

Figure 4.1: Web server traffic for a 24-hour period.

In this chapter, I consider the problem of leaving fingerprints in the log files of hidden

services so that if the machine hosting the service is recovered by law enforcement the

fingerprint can be recovered as proof that that particular machine was hosting the service.

My threat model is the following. Illegal content is being hosted on a hidden service of

an anonymity network such as Tor [15]. Hidden services allow clients on the anonymity

network to access the service while preserving the anonymity of both the client and server.

The server’s IP address is not revealed to clients, instead clients request the service using a

pseudodomain, e.g., http://gaddbiwdftapglkq.onion/. There are many ways

that the hidden service can be identified, both technical (e.g., the methods [31, 32, 33,

34, 35] that I describe in Section 4.7 where I discuss related works) and non-technical

(e.g., the crime is reported). In this chapter I consider the following problem: given a

hidden service that is believed to be hosted by a machine that will be confiscated by law

46

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

enforcement, how can I leave a fingerprint on the machine through the hidden service that

can be recovered and identified on the physical machine at a later time1?

The threat model I assume in this chapter is a passive observer that does not suspect this

form of fingerprinting but does observe bursts in the log file. A stronger threat model where

the hidden service host suspects that fingerprinting will be employed is left for future work.

The approach I take in this chapter is to assume that the underlying service that is being

offered as a hidden service has a log file of client requests that contains a timestamp.

Logging can be disabled for hidden services, but the client information and information

about traffic can be valuable to those offering the service for many reasons. Furthermore,

the fact that suspects can erase their fingerprints in the physical world does not change the

fact that dusting for fingerprints is a standard practice for non-digital crimes.

For my implementation, I use an Apache web server. By making requests to the service

from a client on the anonymity network that will be logged, I can create an additive timing

channel to leave the fingerprint in the log. The main challenge for this type of channel is the

tradeoff between stealth and the amount of time it takes to leave the fingerprint. Because

IP addresses are hidden by anonymity technologies, I assume that during the process of

recovering the fingerprint no distinction can be made between the added requests and

requests from real clients. The two main sources of noise that must be accounted for

through redundancy in the fingerprint, then, are the delays of requests that are added by

the anonymity network and bursts in the actual traffic from real clients for that particular

service. I present results that characterize both of these sources of noise, and describe an

implementation that can leave an easily recoverable 36-bit fingerprint in an Apache log

file over the Tor network in 60 minutes.

There are three main reasons why, among the many information channels various log

files afford, I focus on only timing channels using the timestamps:

1In practice, more than one fingerprint will typically be left to ensure sufficient evidence for

conviction.

47

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

• For legal reasons, standardized methods are preferable to ad-hoc methods, because

precedents can be established for well-analyzed algorithms for recovering a

footprint. This requires that a single method be used for many services, and, while

various services log different data that is application-specific, most contain some

sort of timestamp.

• Anonymization technologies sometimes hide IP addresses, URLs, and other objects

in the log file. For example, when Apache is set up as a Tor hidden service using

privoxy [36], the IP address for all logged GET requests is 127.0.0.1 due to local

proxying. Timing information, on the other hand, is typically preserved.

• By using exclusively timing and timestamps for leaving the fingerprint, the other

channels of information (e.g., the URL of the document being requested) can be

reserved for other information that the fingerprinter may want to preserve in the log

(e.g., proof of the existence of a file on the server at a given time).

An important property that a forensic technique should have is generality. For Tor

hidden services, a unique private key on the confiscated machine will easily identify that

machine as the host of the hidden service. Other anonymity networks or future versions

of Tor may not have this, however. A technique that can be established and used for

a wide variety of cases is preferable to application-specific forensic techniques applied

on a case-by-case basis. The suspect might uninstall Tor or disable the hidden service,

which will make it harder to recover the unique private key they used to offer the hidden

service. Suppose the log files are disabled on the hidden server or the attacker uses an

encrypted file system. Depending on the noise model, a timing channel may appear in

statistical packet capture logs of the suspect’s local network or Internet Service Provider

(e.g., Cisco’s Netflow [2]). Thus, for this chapter I acknowledge that there are many ways

to prove that a confiscated machine was hosting a hidden service but my focus is on timing

channels.

48

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

The rest of this chapter is structured as follows. First, I describe the measurement

methodology for characterizing the two main sources of noise in Section 4.3, followed by

the results from these measurements in Section 4.4. Then, I describe my implementation

of hidden service fingerprinting in Section 4.5. A discussion of stealth techniques and

possibilities for future work is in Section 4.6. Related works are discussed in Section 4.7,

followed by the conclusion.

4.3 Measurement methodology

0

0.02

0.04

0.06

0.08

0.1

0.12

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Delay in seconds

N
o

rm
a

li
z
e

d
 f

re
q

u
e

n
c

y

Figure 4.2: Histogram for Tor delays in seconds.

In this section I describe my methodology for two sets of measurements: delays of

HTTP GET requests in the Tor network, and the traffic characteristics of existing GET

requests for a web service. Because my fingerprinting method uses an additive code where

GET requests are added to existing traffic in the log file, Tor network delays and existing

GET requests are the two main sources of noise that must be accounted for to reliably

recover the fingerprint.

49

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

Requests per minute

N
o

rm
a

li
z
e

d
 f

re
q

u
e

n
c

y

Figure 4.3: Histogram for existing HTTP GET requests per minute.

4.3.1 Tor network delays

To measure the delays of (and potentially also dropping of) GET requests that the

fingerprinter as a client will send to the hidden web service, I set up two Linux machines.

One hosts the Apache web server version 2.2.12 as a Tor hidden service and is configured

using privoxy [36], which acts as a local web proxy interface to the Tor network. Thus, all

GET requests appear to come from the IP address 127.0.0.1, which is the loopback

interface. The Apache log file logs GET requests when they are received, with a

granularity of 1 second. For these experiments, the other machine acts as a web client, also

configured with privoxy, with wget as the web client which makes requests for the hidden

service. The server and client were located in the same place geographically, but the Tor

onion routing default configuration is to set up a new circuit between the server and client

every ten minutes2 where the client chooses different entry, exit, and intermediate relays

which are geographically distributed across the globe. For measurement purposes only,

each GET request was tagged with a unique integer identifier so that I could easily detect

dropping and reordering of packets. For my fingerprinting implementation in Section 4.5,

2The countdown of these ten minutes starts after the first use of each circuit, and will not cut

off an existing session even if it exceeds this time limit.

50

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

I assume that no such identifier can be put in the GET request and use only the timing

channel.

I sent a GET request from the client to the server every 5 seconds for 55 hours, to

ascertain the distribution of delays introduced by onion routing and the connection loss

rate. Because different circuits being built on a global scale every 10 minutes (after their

first use) accounts for most of the variance in Tor delays, diurnal patterns were not evident

in this data so I consider it as a single distribution independent of the time of day.

4.3.2 Existing HTTP GET requests

The other major source of noise in the fingerprint timing channel is existing traffic in the

log file. For my implementation, I assume that the fingerprinter, when recovering the

fingerprint, cannot distinguish their requests from existing requests (from real clients that

are accessing the service). The additive channel is thus prone to errors due to bursts of

traffic in the web server, so I sought to characterize existing traffic for a real web server.

I obtained the log file for a university department that runs Apache 2.2.3 and receives

approximately 35K to 40K requests per day. The log file I obtained covers a 36-hour time

period.

I calculated the distribution of GET requests per minute for a normal web service

using this log file. I assert that this distribution shape is representative of typical web

services, but the mean of the distribution depends on how popular the web service is. My

fingerprinting technique assumes that the fingerprinter has some estimate of this mean for

a given web service that they want to fingerprint3. It is an open research question to know

the mean of a given web service but one possible solution is for law enforcement to obtain

this information from the ISP of the suspect.

Figure 4.1 shows the number of requests over time for this department web log file.

3This estimate can be a conservative estimate, at the cost of fingerprinting taking a longer time

if the mean is overestimated, due to the redundant bits necessary for the error correction code.

51

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

There is a spike in traffic at about midnight MDT (Mountain Daylight Time), which

corresponds to late afternoon local time. I designed this fingerprinting algorithm to be

robust for any hour of the day, but since the fingerprinter can choose when to leave the

fingerprint they can also choose a time of day when the traffic for the web service is

known to be lower.

4.4 Measurement results

Figure 4.4: Histogram of existing HTTP GET requests per minute before (thin line)

and after adding additional requests for fingerprinting purposes (bold line).

The purpose of these measurements was to characterize the two main sources of

noise for my fingerprinting technique: delays or connection drops by the Tor network

and existing traffic in the web service log file. The main tradeoff considered in this

chapter is the amount of time it takes to leave the fingerprint vs. the number of requests

I need to make per minute. The faster fingerprinting is performed, the more requests per

minute will be necessary to reliably recover the fingerprint. The main consideration in

this chapter is this tradeoff, I do not make any claims regarding the stealthiness of my

current implemention. Other stealth techniques besides reducing the rate of requests are

discussed in Section 4.6.

52

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

Cut-off

Bit flip

Figure 4.5: How a 60-bit codeword appears in the log file.

The main questions regarding the speed vs. request rate tradeoff that I sought to answer

are:

1. When the fingerprinter sends a request, what is the loss rate and distribution of

delays for when the server actually sees and logs the request? This is one of the two

major sources of noise in my timing channel fingerprinting. Note that anonymity

networks such as Tor deliberately route packets in unpredictable ways, meaning that

the delays will also be much more unpredictable than normal Internet traffic.

2. What is the distribution of existing traffic in a web service log file? In particular,

the relationship between the number of requests I add per minute and bit error rate

when recovering the fingerprint is determined by this distribution.

4.4.1 Tor delays

Figure 4.2 shows the histogram for the delays added to requests by the Tor network from

my measurements. The mean delay is 21.1. Not pictured are the 2975 requests that were

53

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

14181

::::

::::

025250

168331

166281

03871

025250

0970

183501

Output

Codeword

Page View / Min

after

Fingerprinting

Page View / MinInput Codeword

Figure 4.6: Details on a bit error from the example.

dropped. Based on the measured probability density, 83.6% of sent requests will be logged

by the server within a minute of being sent, 8.9% will arrive after more than a minute, and

7.5% will be dropped. Based on these results, for the additive timing channel I chose to

send all requests for a 60-second period in a burst at the beginning of the 60-second period.

They will arrive with roughly the same distribution shown in Figure 4.2. Because of these

delays, the server will not see the packets in a burst as the client had sent them. This is

important so that conspicuous bursts of traffic do not appear in the log file.

4.4.2 Existing HTTP GET requests

Figure 4.3 shows the distribution of requests per minute for the university department log

file. This distribution helps in predicting the rate of errors due to existing requests that

can be expected for different numbers of requests per minute added. This is illustrated in

Figure 4.4, which shows this error rate for the parameters I chose for the implementation

as the shaded area under the intersection between the two curves (the bold line is the

same distribution with 35 added to each value). For this chosen parameter of adding

35 requests in a minute for the additive channel, the error rate for errors that are due to

existing requests is approximately 11.5% and the optimal cutoff to determine whether

54

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

requests were added to a given minute is 40. Lowering the parameter of 35 to make the

fingerprint less conspicuous will move the bold curve to the left and increase the error

rate, meaning that longer error correction codewords are needed and therefore more time

is required to leave a fingerprint that can be reliably recovered. Increasing this parameter

moves the bold curve to the right which decreases the error rate and makes fingerprinting

quicker, but creates a more conspicuous burstiness in the log file.

Figure 4.3 shows the same shape for the histogram as previous work on measuring

Tor network delays [37], but the mean of my histogram is different. One possible reason

for this is that the Tor network has grown considerably in the past several years. Another

possible reason is that in that work changes were made to the Tor client to choose the

first introduction point from the hidden service descriptor, whereas my measurements are

end-to-end application-layer measurements from when the request was made by the client

to when the server logged the incoming GET request. In general, I found the Tor network

delays to have a large amount of variance between different circuits. In the additive

channel, I can account for this variance, but in future work to improve the stealthiness of

fingerprinting a more detailed and up-to-date model of Tor network delays will be needed.

4.5 Implementation

Based on the results in Section 4.4, I developed a prototype implementation of timing

channel log file fingerprinting that is based on an additive channel that is superencoded

with a Reed-Solomon code [38]. In this section I describe the implementation and present

results to demonstrate that it is robust to Tor delays and existing requests in terms of the

ability to reliably recover the fingerprint.

My implementation starts with a random 36-bit bitstring that will serve as the

fingerprint. In this way, the probability of recovering a matching fingerprint by chance

is approximately 1
236

≈ 1.46× 10−11. Before being sent over the Tor network to appear in

the server log file, this fingerprint is superencoded as a Reed-Solomon code word, which

55

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

60 min

process
Analyze log fileFingerprint log file

Encode by RS Decode by RS

Choose a new

36 bit word

60 bit codeword 60 bit codeword

Recover original

36 bit word

Start

Figure 4.7: The fingerprinting algorithm cycle.

is 60 bits in length. Reed-Solomon coding is an error correction code that uses redundancy

of the original word in a codeword that is based on an oversampled polynomial to recover

from errors automatically (in contrast to an error detection code, in which errors could be

detected, but not corrected).

I then transmit this 60-bit codeword, at a rate of 1 bit per minute, to the server’s

log file as follows. To transmit a 0 in a given minute, I do nothing. To transmit a 1

I make 35 requests for the hidden service over the Tor network at the beginning of the

minute. These requests will arrive at the server and be logged with the distribution shown

in Figure 4.2. The overall shape of the distribution of requests that will be seen in the log

is not conspicuous, as is shown in Figure 4.8 where light bars show the histogram before

fingerprinting and dark bars show the histogram after fingerprinting. Note that Figure 4.8

is normalized, the difference in magnitude between the distributions can be noticeable to

the attacker but my threat model assumes a passive attacker who is not suspicious that

fingerprinting is taking place (stronger threat models are left as future work).

56

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

Requests per minute

N
o

rm
a

li
z
e

d
 f

re
q

u
e

n
c

y

Figure 4.8: Histograms with and without fingerprinting.

To recover the fingerprint once the log file is obtained, I scan the log file near the time

when the fingerprint was transmitted and attempt to recover the code word as follows.

Within a minute, I read a 0 if less than 40 requests appear in the log file within that minute,

and a 1 for 40 or more requests. The cut-off value of 40 was chosen because this is the

approximate intersection point for the two graphs in Figure 4.4, which minimizes errors. I

then apply Reed-Solomon error correction and compare the word that is recovered from the

measured codeword to the fingerprint. When a match is found, then I am highly confident

that the log file provided is the log file for the hidden webservice that was fingerprinted.

Bit errors can occur in two different ways, which are discussed in Section 4.5.1.

I tested this fingerprinting implementation for different hours of the day for the

department log file as follows. First, I do the fingerprinting for a Tor hidden service and

record the requests as they are received by the hidden service. Then I superimpose this

onto an hour of the log file. This is equivalent to doing the fingerprint live, since I am

using an additive channel, but allows for repeatability of the results and does not require

access to a hidden service that receives a lot of traffic. I tested the fingerprinting 24 times

(once for each hour of the day) and were able to recover the fingerprint 22 times. This

includes three tests that were performed for the three highest-traffic hours of Figure 4.1.

57

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

This was done to test the robustness of the fingerprinting implementation in the limit. The

fingerprints recovered in the two cases that failed had a low Hamming distance with the

original fingerprint, but my results suggest that leaving multiple fingerprints at different

times of day is important in practice.

Note that Reed-Solomon codes perform well for correlated bit errors, which is why

they are used in scenarios such as compact disc encoding where bit errors can be due to

scratches. Thus, the small correlations between bit errors in my scheme (such as delayed

requests showing up in the next minute) are easily handled by the superencoding.

4.5.1 Example

Here I give an example of one iteration of fingerprinting. The process is shown in

Figure 4.7. The process can be repeated to leave multiple fingerprints at different

hours of the day for added robustness, but here I describe only one iteration,

which takes 60 minutes. The first step is to choose a random 36-bit word as the

fingerprint. In this example I choose “1101 1000 1111 0011 1100 0101 1010

0010 1101”. The second step is to apply Reed-Solomon encoding to produce

a 60-bit codeword: “1001 1101 0110 0101 1001 1010 1101 1000 1111

0011 1100 0101 1010 0010 1101”. For each minute in the 60-minute process,

if the corresponding sequential bit in the codeword is a 0, I do nothing, if it is a 1 I make

35 requests from a Tor client to the hidden service at the beginning of the minute.

After the fingerprinting process is complete, I assume that the machine that hosted

the hidden service has been physically recovered (e.g., by law enforcement) and then the

second half of the process is to recover the 36-bit fingerprint. To account for inaccuracies

in the hidden server’s system time, the process of attempting to recover the fingerprint can

be repeated for some number of seconds into the past or future. For a given start time

alignment, the 60-bit codeword that is received in the log file is generated as follows. For

each sequential minute, I record a 0 if less than 40 total requests appear in the log during

58

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

that minute, and a 1 if 40 or more appear. If there are 12 bit errors or less in the recovered

60-bit codeword then applying Reed-Solomon decoding to this codeword will produce the

original 36-bit fingerprint.

There are two types of bit flips. One is that the number of requests from actual clients

during that minute is very low and thus the number of requests I add to the log file for a

1 (which can be less than 35 if Tor drops some connections or delays them for more than

60 seconds) is not sufficient to put the total above the threshold of 40. This will flip a

bit in the codeword from 1 to 0. The more common type of bit flip is from 0 to 1. This

happens when either the number of existing requests from actual clients already exceeds

the threshold, or it is near the threshold and a few delayed requests from a previous bit in

the codeword show up during that minute instead of the earlier minute they were intended

for.

Figure 4.5 shows how the codeword “1001 1101 0110 0101 1001 1010

1101 1000 1111 0011 1100 0101 1010 0010 1101” is added to a log file.

The lighter bars are the existing requests from actual clients and the darker bars

are the requests added by fingerprinting. This figure has 8 bit flips, one of which

is highlighted and shown in more detail in Figure 4.6. Note that there are 7 bit

flips from 0 to 1 and only 1 from 1 to 0. The received codeword in the log

file will be: “1001 1111 0110 0001 1001 1010 1111 1101 1111 1011

1100 0101 1110 0010 1111”. By applying Reed-Solomon decoding, I then

recover the original fingerprint of “1101 1000 1111 0011 1100 0101 1010

0010 1101”.

4.6 Discussion and future work

In this chapter I have explored the tradeoff in terms of how long it takes to leave a

fingerprint in a hidden service log file vs. how much traffic must be added per minute.

The threat model I assumed was a passive observer that does not suspect this form of

59

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

fingerprinting but does observe bursts in the log file. For future work, I plan to explore

the tradeoffs in a stronger threat model where the hidden web service host suspects that

fingerprinting will be employed so that an extra degree of stealth in leaving the fingerprint

is required.

In this work under progress I am modelling the probability distribution of the network

delays, which is required for a closed-form expression of the uncoded bit error probability.

This expression will in turn constitute the basis for predicting the probability of correct

detection when superencoding is used. Furthermore, a time domain analysis of the

gathered data will provide useful elements for the design of channel coding mechanisms,

as they will depend among other factors on the coherence time. For instance, preliminary

results show that the autocorrelation of the observed data can be reasonably modelled by

an autoregressive process. The fact that the delays corresponding to consecutive requests

are strongly correlated suggests that a differential encoding scheme would be beneficial.

A good model for both the distribution and the second order statistics of the request

delay is also crucial for an information-theoretic approach to the problem, which will

reveal what the fundamental limits of this delay-based communication scheme are. In

addition, this approach will give insights for the design of better channel codes.

An underlying assumption of my current fingerprinting technique is that the

fingerprinter has a good estimate of the mean of traffic requests per minute for the

hidden service. This estimate can be an overestimate, which will cause the fingerprinter

to use more redundant bits than necessary for superencoding and take longer than

necessary to do the fingerprint. Overestimation also makes the fingerprinting more

conspicuous. For future work, I plan to explore methods for estimating the traffic rate

of a hidden service indirectly and accurately. For example, infrequent observations

of the last access/modification time have been shown to be useful in estimating the

access/modification rate [39]. A more general way to estimate the traffic load of a hidden

service is still an open problem, however. What is needed is a way to exhaust a resource on

60

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

the hidden server without first exhausting some resource within the anonymity network,

and then a way to infer traffic load from the scarcity of that resource in a non-conspicuous

way.

4.7 Related work

The work most related to mine is efforts to locate hidden servers. Overlier and

Syverson [32] describe several different methods for locating hidden services in Tor

and provide recommendations to prevent them, which were adopted by the Tor project.

Murdoch and Danezis [34] consider the problem of traffic analysis, and Murdoch [35]

considers Internet Exchange-level adversaries. Bauer et al. [33] describe attacks on

Tor anonymity based on nodes misrepresenting the amount of resources they have.

Murdoch [31] demonstrates that it is possible to determine whether a given IP address

is hosting a particular hidden service or not based on clock skew. The basic idea is to

send some amount of traffic to the hidden service, and query for TCP timestamps from

the IP address suspected of hosting the service. As the server becomes busier, it will heat

up causing a timing skew in the quartz crystal that maintains the system time, which will

be seen in the timestamps. Murdoch also shows some results suggesting that geolocation

is possible based on diurnal patterns associated with heat. In contrast to these works, my

work assumes that the hidden server has been located and describes a way to prove that a

physical machine (once confiscated) was the one that had been hosting the service.

My work falls in the general domain of covert timing channels [40, 41, 42, 43, 44].

There has been a considerable amount of work on creating and detecting covert timing

channels based on TCP/IP [45, 46, 47]. To the best of my knowledge, this is the first work

to consider timing channels as a method for leaving fingerprints in hidden service log files.

The relationship of my measurement results for Tor delays to the results of Loesing

et al. [37] was described in Section 4.4. Other works have considered the timing

characteristics of Tor and other anonymity networks in the context of timing attacks on

61

Chapter 4. Leaving Timing Channel Fingerprints in Hidden Service Log Files

anonymity [48, 49, 50, 51].

4.8 Conclusion

I demonstrated a technique for leaving timing channel fingerprints in hidden service log

files. The technique presented in this chapter is robust, even for the random delays

introduced by the Tor network and realistic, bursty traffic from existing clients for the web

service. I was able to reliably recover a 36-bit fingerprint with a 60-minute fingerprinting

process.

62

Chapter 5

Exploiting Geometrical Structure for Forensic

Applications

5.1 Abstract

Timing inference channels are a well-studied area of computer security and privacy

research, but they have not been widely applied in digital forensic applications. This is

due to the fact that the timing signatures (for example, of movies) are not robust against

variations in the machine, the encoder, the environment, and other factors that affect

timing, and unfortunately such issues have limited many researchers from using timing

inference channels for revealing hidden data, detecting machine behavior, or even forensic

analysis.

In this chapter, I develop a geometrical interpretation in a high dimensional space of

timing signatures for movies as an example of pattern-like software. My results suggest

that timing signatures can be made robust against different machines, different encoders,

and other environmental conditions by exploiting geometrical structure in this space. This

geometrical structure will help identify the behavior of running pattern-like software that

could be useful for identifying digital crimes, privacy invasion matters, as well as network

63

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

behaviors.

This chapter is centered around a thought experiment: how much information can

an unprivileged process learn by just running on a system and observing its own

timing? Although installing administrative software is the most frequent approach for

understanding system behavior and detecting running software, my results show that it is

feasible that such goals could be still achieved without any administrative privileges.

5.2 Introduction

This chapter is centered around a thought experiment: how much information can an

unprivileged process learn by just running on a system and observing its own timing?

There are many tradeoffs to be made between the power of forensics recording techniques

and privacy, but the question of what privileges are needed is central to all of these

tradeoffs. Timing inference channels hold a lot of promise for forensics applications and

typically do not require special privileges on the system. In this chapter I focus on timing

inference channels for identifying a movie that is playing on the system, and show that

a geometrical structure in the space of vectors of timing measurements makes it feasible

that these timing inference channels could be made robust to different machines and even

potentially different encoders.

The geometrical structure I propose to describe movie timing channels is a sphere.

Consider a vector of timing measurements related to a movie over time for some

fixed-length snapshot. Imagine that movies put some average load on the CPU, which

would be represented by a point on the constant vector. The encoder of the movie must

maintain this average load, but must adapt to do more work when there are scene changes

and less work when the video has less information to process. Thus all movies would

form a sphere around the average CPU load point on the constant vector, with the fact that

movies have scene changes in different places pushing the movies away from the center of

the sphere in orthogonal directions. The distance that each movie’s vector is pushed away

64

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

from the center is an artifact of the tradeoffs the encoder is trying to make for storage vs.

picture quality over time, so that this distance is relatively uniform across different movies.

A movie with many scene changes, such as an action movie, may be further from the origin

than a movie with few scene changes, but both would lie on the surface of this hypothetical

sphere. In this chapter I test hypotheses about this geometrical structure and conclude that

my geometrical interpretation of movie timing inference channels is supported by my data.

Privacy invasion has become a critical problem for Internet users. This invasion has the

potential to cause users to begin avoiding some services due to the risk they may impose.

The exact definition of privacy varies widely according to context and environment [52].

Some consider their privacy to be invaded when personal information is collected and used

as data. Others consider genetic and drug testing to be an invasion of their privacy. Mail,

telephones, emails, and social networks all play a part in communication privacy, and this

has been a big concern.

The increased abundance of technology in society has caused an influx of electronic

crimes [53]. Thus more rules and regulations are being created to deal with these crimes.

Unfortunately evidence exists to suggest that such policies do not provide a higher degree

of security. It has been noticed that in many cases the policies for using network services

are more related to monitoring the traffic of its clients rather than providing security for

their online transactions.

Downloading, possessing, watching, and distributing child pornography are among the

fastest growing crimes over the Internet. There are now federal laws for e-crimes requiring

corporations to report known incidents of child pornography [54], and digital signature

technology has proved to guarantee authenticity, integrity and non-repudiation of critical,

digitally stored, evidence of such crimes.

Timing inference channels would also be useful in some forensic cases investigating

such e-crimes. Unlike inference channels where the sender transmits information by

65

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

accident, timing channels are based on passing information by the use of system resources

such as CPU time, packet send and receive times, or any other time-related interaction

in the system [55]. Timing channels modulate the response time of a system and can

create a covert message based on the resulted timings [56]. More interesting are timing

inference channels where the modulation of the information being inferred is a property

of the system and not necessarily intentional. In my case movie decoders modulate their

CPU usage because of tradeoffs the encoder made and the specific structure of the encoded

movie.

In principle, each movie would need to finish a certain amount of work (like decoding

or constructing frames) in a certain amount of time based on the movie length. Thus

the use of timing inference channels that I have developed, and described in this chapter,

is targeted to detect the use of certain pattern-like media such as movies. Through these

timing channels, I will be constructing a geometrical structure that represents those movies

in a vector space as signatures, each with its own relative location to this structure. This

approach is robust against the variation of machine hardware that technically should

change those timings; still being capable of recognizing the movie signatures. My

approach could be used in many forensic cases, such as detecting a child pornography

movie that has been played on a particular machine on the network. It is only required that

the user execute an unprivileged Java applet while connected to the network.

This chapter is organized as follows: First, I describe the threat model in Section 5.3.

This is followed by Section 5.4 where I introduce some basic concepts and background.

Section 5.5 shows the implementation of my system. In Section 5.6 I enumerate

hypotheses and explain my experimental methodology for testing each, and then the

corresponding results in Section 5.7. A discussion of my results and future work in

Section 5.8 is then followed by related works and the conclusion.

66

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

5.3 Threat Model

In many cases, there is distrust between network administrators and their corresponding

clients. On one side, the clients would like to use services that do not monitor their traffic

or log their transactions. On the other hand, network administrators would like to keep

track of the clients and the clients’ corresponding transactions over their network to avoid

abuse of their service, as well as to keep monitoring their network for other purposes

such as consistency and continuous service. Moreover, network administrators and web

developers have been asked by law enforcement to leave a security backdoor for their

network and web applications to use in the case of suspected e-crimes [57]. For these

purposes, network administrators will implement different types of auditing software that

could help them identify and track any misuse of their network services such as e-crimes,

or other acts that violate their terms and conditions.

It is also well known that such auditing software could be used to monitor the clients’

behavior outside the domain of network misuse and digital crimes. The type of data that

such software collects could contain private information of which clients should be aware.

Such collected data could be abused to identify personal records and clients’ network

transactions. Some of this software will grant administrative rights on a client’s machine

where much more can be done. For example, SafeConnect, Symantec and McAfee

network access controls are used by network administrators in many corporations and

some educational institutions, where their users are required to install on their machines

software for the purposes of network access control and applying network policies.

These software programs are closed source and have administrative privileges on clients’

machines that could create some privacy concerns for some users.

The very existence of criminal activity on the Internet could cast doubt on the true

intentions of clients who unintentionally violate the policies of a network. A story was

related to me that the law enforcement in Europe suspected that an Internet user had

67

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

downloaded a movie of child pornography. The suspect’s side of the story was that he had

downloaded a legal movie whose content was replaced by scenes of child pornography. In

such a case, knowing how much of the video the suspect actually watched could help in

determining the suspects culpability.

Another incident happened in Germany where the largest European hacker club

Chaos Computer Club (CCC) claimed in October 2011 on its blog [58] that the

German government had developed software to gather information from target computers.

They reverse-engineered and analyzed a lawful interception malware program called

Bundestrojaner, or “government trojan,” that can capture screenshots, record keystrokes,

and record audio from sources like Skype calls. It is a backdoor that allows the installation

and execution of additional software on infected computers.

My goal is to show that movies, as an example of pattern-like software, could form a

geometrical structure through timing channels and allow network administrators to detect

whether certain movies have been played on their clients’ machines via a Java applet,

eliminating the need for any client-side software with administrative privileges.

5.4 Background

My experiments were applied on movies that were encoded in MPEG format. It is essential

to understand how MPEG movies are encoded and decoded, as well as the standards used

for audio and video compression, because this is the CPU load that I am trying to infer

through timing analysis. Different algorithms are used in the field of video compression

and are used to encode to what is referred to as picture types or frame types. I, P and

B frames are three major video frame types that are most commonly used by encoding

algorithms for video compression. These concepts are key to my implementation so I

shall describe some background about them here.

68

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

5.4.1 MPEGs

The MPEG standard was formed by the Moving Picture Experts Group, who were setting

standards for audio and video compression and transmission [1]. The MPEG compression

methodology is considered to be asymmetric, as the encoder is more complex than the

decoder. The encoder needs to be algorithmic or adaptive whereas the decoder carries

out fixed actions. The MPEG encoder is not standardized and implementers can supply

encoders using proprietary algorithms, giving very little information regarding structure

and operation of encoders. This leads to competitions to design better encoders. As a result

users have the freedom of choosing encoders of different levels of cost and complexity.

Decoders on the other hand are more standardized, and operate with all encoders. This is

ideal for broadcasting applications, for example, where the number of expensive complex

encoders is small but the number of simple inexpensive decoders is large. In MPEG, it is

also possible to combine audio data with video data to produce a movie that includes the

metadata used by decoders to demultiplex the movie correctly.

Figure 5.1: MPEG Compression Overview, reproduced from page 3 of The MPEG

Handbook [1].

69

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

The MPEG standards include profiles and levels that make up certain aspects of the

whole specification [59]. The profile defines the bitstream scalability and the colorspace

resolution, while the level defines the image resolution and the maximum bit-rate per

profile. MPEG-1 was released in 1993 and was used for encoding moving pictures and

associated audio for digital storage. MPEG-2, released in 1995, improved upon MPEG-1

and was also used for generic coding of moving pictures and associated audio information.

Advanced standards such as MPEG-4 Part 10 or SMPTE VC-1 have been used for high

definition movies like those on Bluray. The difference between MPEG-2 over MPEG-4

is that the latter is used as an encoding method for devices with limited resources since

MPEG-4 files are much smaller than those in MPEG-2, and are useful when streaming

over the internet. So my preference of using MPEG-2 is because it is more popular and is

used in DVDs.

5.4.2 Video Compression Picture Types

Video frames are compressed using different algorithms such as picture types or frame

types that are directly related to data compression, each with different advantages and

disadvantages, with I, P and B frames being the major picture types:

• I-frames are the least compressible but do not require other video frames to decode.

• P-frames use data from previous frames to decompress and are more compressible

than I-frames.

• B-frames use both previous and next frames for data reference to get the highest

amount of data compression.

Frames are segmented into macroblocks, and individual prediction types can be

selected on a macroblock basis rather than being the same for the entire picture. For

example, I-frames can contain only intra macroblocks, while P-frames can contain either

70

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

intra macroblocks or predicted macroblocks. Finally B-frames can contain intra, predicted,

or bidirectionally predicted macroblocks.

Figure 5.2: Examples of different MPEG streams.

In some cases, MPEG compression is considered to be an attempt to overcome some

shortcomings of H.261. In H.261 for example, the absence of B-frames will cause many

macroblocks to need information that is not in the reference frame. The MPEG solution is

to add a third frame type which is a bidirectional frame, or B-frame. The main advantage of

the usage of B frames is coding efficiency. In most cases, B frames will result in fewer bits

being coded overall. One disadvantage is that the frame reconstruction memory buffers

within the encoder and decoder must be doubled in size to accommodate the 2 anchor

frames. While both B-Frames and P-Frames are predicted from their reference frames,

only B-Frames also reference to a future frame in display order as shown in Figure 5.2.

No matter whether a frame was coded as P-Frame or as B-Frame, there will be a difference

between the predicted frame and the original frame. That difference is called the residual

and will be stored in the file. As B-Frames can predict the frame better, the residual will

contain less information and thus take less space. As Figure 5.2 shows, the top version

has no P or B-Frames, and is the least efficient format. The second stream records I and

P-Frames only, and the bottom stream records I, B, and P-Frames, which is the method

commonly used in movies. My experiments will be based on this third type of encoding.

71

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

Specifically, I-frames will appear whenever there are scene changes in a movie, and P-

and B-frames will cause a CPU load proportional to the action in the scene, leading to a

distinctive, movie-specific pattern of CPU usage over time.

5.5 Implementation

In my implementation, I focus on an approach that does not require users to install any

software or require any elevated privileges. ActiveX controls, for example, would require

permission from users to use them whether they were signed or not. Once installed

they can be harmful and can do anything the user can do [60]; since most users avoid

running such objects on their machines due to the high risk they pose, it is definitely not a

good choice. I was also interested in a script that is multi-threaded and could run within

webpages, due to my interest to run multiple threads on all CPU cores of a given machine.

JavaScript is also not an option since it is not multi-threaded.

Java applets, however, are multi-threaded and are used by many websites, especially

those that require secure connection from clients such as banks, hotels or car rentals.

While Java applets and ActiveX controls are both mini-applications developed to perform

a specific task, there is great significant difference in their security. ActiveX controls are

all or nothing: the user has made the decision to trust the control to do anything. On the

other hand, Java applets have security built into their design [61]. The user can often define

what the applet can and cannot do. Moreover, once ActiveX controls are loaded, there is

no boundary to what the control can do. Once downloaded they remain on the computer

until removed by the user [62, 63]. By comparison, Java applets are downloaded into the

users’ RAM and once the RAM is flushed the applet is no longer present [64].

In my case, I have coded a Java applet that maximizes the CPU load on all cores

available in a given machine. Using the CPU this aggressively is not necessary in practice,

see Section 5.8 for discussion about how this can be ameliorated. The applet contains

simple threads, each with infinite loops that can simply do a job. I have also created a

72

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

simple pop-up webpage that contains my Java applet, which is loaded once the machine

is connected to the network. My approach assumes that once the user is connected to the

Internet, she will receive this pop-up window and it must stay loaded as long as she wishes

to be connected to the network. This pop-up window is considered a session window, and

her connection to the network will stop if it is closed. The Java applet that is loaded by this

pop-up window, however, will load all its threads into all CPU cores and count the number

of loops executed in a given time frame. Those values are also sent gradually to the server

and saved for further analysis.

In my experiments I played 80 movies, each of length 10 minutes, and recorded the

number of loops executed every 50 msec. Thus 12,000 values were recorded for each

movie in each run. The movies were encoded using ffmpeg with the same MPEG-2

encoder, and were played on 7 different machines with 3 different types of hardware

specifications using Windows Media Player. The runs were repeated 10 times for each

movie on every machine to characterize the variance. It was my intent to use the same

encoder and media player, assuming that this configuration would be the worst case

scenario compared with playing two different movies processed by different encoders.

The 7 different machines with 3 types of hardware had the following specifications: three

machines ran Windows Vista on a 2.40 GHz Intel Core 2 Duo with 4 GB RAM. Two

machines ran Windows 7 with on 2.13 GHz Intel Atom processors and 2 GB RAM. Finally

two machines ran Windows XP with 2.66 GHz Intel Core 2 Duos and 8 GB RAM.

I measured the number of loops executed by the Java applet that fully loads the CPU

cores while the machine was idle, that is, without any other software interference. I also

measured the CPU load per second when I just played each of these movies, while the

machine is idle. Finally, I ran the Java applet together with each movie and recorded

the number of loops executed by the Java applet script for every 50 milliseconds. This

number of loops varied due to the applet and movies’ competition for the CPU cores and

other hardware resources.

73

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

5.6 Experimental Methodology

I performed several experiments for the purpose of understanding how movies affect the

execution of the Java applet code as a result of their competition for hardware resources

(mainly the CPU). Below I list a set of hypotheses that I tested for, each with its

corresponding purpose and conditions to whether each of these hypotheses is shown to

be supported by my data or not supported by my data, where testing is performed in

Section 5.7.

Hypothesis 1 On a given machine, playing each movie will produce a different pattern

denoted by the CPU load.

• Purpose:

The purpose is to test whether different movies of the same encoder and length will

produce the same pattern on the CPU load or not.

• Testing:

This hypothesis will be shown to be supported by my data if the Euclidean distances

of the CPU load values per second while running the same movie multiple times are

at least 3 standard deviations away from the closest point of any other movie. I will

calculate the mean and standard deviation of each movie, and compute the distances

between the closest points of different movies, then compare and check if the closest

distance between different movies is at least 3 standard deviations away.

Hypothesis 2 On a given machine, playing each movie will reflect a different pattern

denoted by the number of loops executed in the Java applet code.

• Purpose:

This is the same purpose as that of hypothesis 1, but the testing is now measured

indirectly by number of loops executed rather than the CPU load.

74

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

• Testing:

This hypothesis will be shown to be supported by my data if the Euclidean distances

of the number of loops executed per 50msec between multiple runs of the same

movie was again much smaller than the distances of two different movies. I will

calculate the mean and standard deviation of each movie, and compute the distances

between the closest points of different movies, then compare and check if the closest

distance between different movies is at least 3 standard deviations away from the

movie itself.

Hypothesis 3 Each movie represents a vector in space for the number of loops executed

every 50msec, with a mean for all movies close to the constant vector.

• Purpose:

To locate the mean of all movies in space which determines the average CPU load.

• Testing:

This hypothesis will be shown to be supported by my data if the cosine similarity

between the mean vector of all movies and the constant vector is ≈ 1. In fact, if it

is close to 1, then the mean vector is pointing in the same direction as the constant

vector.

Hypothesis 4 Movies of the same encoder and length played on the same player will

form a regular simplex with vertices being the movie vectors, and I can construct an

approximate spherical structure with the center being the mean value (calculated in the

previous hypothesis) of all these movies.

• Purpose:

To understand the geometrical structure formed by all the movie vectors tested.

75

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

• Testing:

I will experiment if the majority of the movies lie at a close distance from the surface

of the sphere, whether inside or outside the sphere, where the mean distance between

the mean point (described in the previous hypothesis) and each movie vector (among

the tested movies that resulted in this mean) will be considered as the radius of the

spherical like-structure in the space of 12, 000 dimensions. Then this hypothesis will

be shown to be supported by my data if the movies are separated from the surface of

the sphere by less than 0.5% of the radius size computed.

Hypothesis 5 Running different movies on different machines moves the center of the

spherical structure closer or farther from the origin along the constant vector.

• Purpose:

To understand the behavior of the geometrical structure upon testing on different

machines.

• Testing:

I will consider this hypothesis to be supported by my data if the mean vector is still

moving along the constant vector, that is, the cosine similarity between the mean

vector and the constant vector is ≈ 1.

Hypothesis 6 The movie vectors that result from playing the same movie on similar

machines (CPU, RAM, OS) will have some correlation and thus movies can be identified.

• Purpose:

To check if it is possible to identify movies running on different machines of similar

specifications.

• Testing:

I will only consider this hypothesis to be supported by my data if I can find some

76

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

correlation of the playing of the same movie on physically distinct machines with

similar specifications (CPU, RAM, OS). Measuring the cosine similarity of each

movie vector from the center of the sphere with the same vector on a different

machine will demonstrate this correlation.

Hypothesis 7 The projection of any movie vector onto the constant vector is the center

of the sphere for that particular machine inscribed by all other movies of the same length

and encoding.

• Purpose:

I want to make sure that the movie vectors are not lying in the plane that is

orthogonal to the constant vector. Another purpose is to see if it is possible to

approximate the location of the center of the sphere from the values of a single

movie.

• Testing:

This hypothesis will be shown to be supported by my data only if the majority of

movies projected on the constant vector meet in nearly one point, where the distance

between the furthest points will be less than 1% of the radius length.

Hypothesis 8 The standard deviation between the mean of different movies is very small

compared to the standard deviation of the number of loops within the same movie.

• Purpose:

To understand the behavior of the execution of the Java applet code while playing

different movies.

• Testing:

This hypothesis will be shown to be supported by my data only if the standard

77

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

deviation of the mean of all movies on a given machine, denoted by the number

of loops executed in the Java applet, is one tenth of the standard deviation within the

values of each movie vector.

Hypothesis 9 Based on hypotheses 4 and 5, the center and the radius of the spherical

like-structure represented by movies with the same encoding can be determined using CPU

benchmarking and a greedy algorithm that tests the CPU speed and Java applet code

execution.

• Purpose:

To determine the center and radius of the sphere of movies with the same encoding

on different machines.

• Testing:

To test this hypothesis, I will compare the new sphere with the original one where

all movies are played by measuring the cosine similarity between the corresponding

vector from the center to each movie using the calculated center as well as the

original. This hypothesis will be shown to be supported by my data for a particular

movie if the cosine similarity value is greater than 0.85. As for the radius, I will

measure the ratio of the calculated radius over the original radius and accept if it is

within 5% of the original radius whether longer or shorter.

Hypothesis 10 Based on hypotheses 5 and 9, playing the same movies on machines that

vary from each other (different CPU speed and RAM) can have correlated signatures that

can be detected through the spherical like-structure determined in hypothesis 4.

• Purpose:

To test if movies can be detected over machines that are slightly different.

78

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

• Testing:

This hypothesis will be shown to be supported by my data if I was able to identify the

movies based on normalizing, projecting, and measuring the ratio of the projection

of the movie vector over the radius of the sphere. Specifically, for a given movie

there should be a non-negligible correlation.

In the next section, I test each of these hypotheses and show whether each hypothesis

is shown to be supported by my data or not supported by my data.

5.7 Results

Recall that the purpose of these experiments is to understand how the pattern of execution

of the Java applet code changes according to the movie that is being played simultaneously.

Below I describe each of the tests that determines whether the hypotheses I enumerated in

Section 5.6 are shown to be supported by my data or not supported by my data.

For Hypothesis 1, I examined 50 movies, each of which had the same length of 10

minutes and were encoded using the same MPEG-2 encoder. I ran each movie 10 times

and calculated the Euclidean distances of their CPU loads as shown in table 5.1. Then

I calculated the Euclidean distances of the CPU load of the different movies as shown

in Table 5.2. I also computed the mean and standard deviation for each movie, and

calculated all possible distances from each movie to the closest point of every other movie.

Comparing the values in these tables, the Euclidean distance values in table 5.1, which fall

between 1976.37 and 6042.31, and the values in table 5.2, which fall between 6363.46

and 27497.94. With the exception of 4 movies, those distances were 3 standard deviations

away from the closest point of the other movies, thus I claim that Hypothesis 1 is shown

to be supported by my data, specifically that the distances between different movies are

much higher than the distances produced by playing the same movie repeatedly.

For Hypothesis 2, I have examined 80 movies, each 10 minutes in length and encoded

79

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

Table 5.1: Euclidean distances of running the same movie as a sample.

Table 5.2: Euclidean distances of running different movies.

using the same MPEG-2 encoder. I ran the same experiments as for Hypothesis 1, but

the number of loops executed were recorded for every 50msec, giving 12, 000 records.

I calculated the Euclidean distances for repetitions of the movies, as well as those for

different movies. I also calculated the mean and standard deviation of each, and I measured

the Euclidean distance of the closest point of each movie to the other. The mean of the

Euclidean distances for the same movie is 52, 517.82 with a standard deviation of 5851.80,

while the mean distance between all different movies is 227, 941.36 with a standard

deviation of 78, 182.41 on a particular machine. With the exception of 8 movies, those

distances were 3 standard deviations away from the closest point of the other movies,

thus Hypothesis 2 is shown to be supported by my data, specifically that the distances

between different movies are much higher than the distances produced by playing the same

movie repeatedly.

80

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

I also calculated the mean vector for all movie records (both for the 80 movies, and for

the 12, 000 records resulting from the numbers of loops executed in the Java applet code)

and I measured the cosine similarity with the formula:

Cosine Similarity(
−→
A,

−→
B) =

−→
A .

−→
B

‖A‖‖B‖
= ΣAi×Bi√

ΣA2
i
×
√

ΣB2
i

Cosine Similarity is a good measure for the correlation between two vectors. In a high

dimensional space, it is very useful for measuring the proximity of vectors [65]. These

movies resulted in a cosine similarity value of 0.996 ≈ 1. Thus I claim that Hypothesis 3

is shown to be supported by my data, as the cosine similarity value is close to 1. For

confirmation, I performed the same experiment over all machines, which further supported

Hypothesis 3.

For Hypothesis 4, and to minimize the noise in the movie records, I ran each movie

10 times. Doing so meant that each movie now represents a vector of 12, 000 dimension

space. I calculated the mean vector of all 80 movies, and I calculated the mean vector of

the individual movies. I then measured the distance from the total vector to each movie

vector. The distances vary from one machine to another with a different CPU speed, so I

focused on testing this hypothesis per machine.

Hall et al. [66] has shown that a low sample size data in a high dimensional space

would lie deterministically at the vertices of a regular simplex. In my case, I have a high

dimensional space of 12, 000 dimensions, and I represented the 80 movies as vectors,

which would form a simplex as Hall et al. defined. I then calculated the mean value of all

these movies which would lay in the middle of all vectors of the movies, that represents

a center of a spherical-like structure in this high dimensional space. I also calculated the

mean distance between the center of the sphere and all other movies and I considered this

as the radius of the sphere. Finally, I measured the distance from each movie vector to the

81

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

Figure 5.3: Binning of movies based on distances of movie vectors from the surface of

the sphere. Positive counts are outside the sphere, and negative counts are inside the

sphere, binned by distance.

surface of the considered sphere. Figure 5.3 shows how far the movie vectors are away

from the center of the sphere with radius ≈ 862, 600, with positive values representing the

number of movie vectors outside the sphere, and negative values representing the number

of movie vectors inside the sphere. By comparison, my data had 64 of the 80 movies

separated from the surface by less than 0.5% of the radius considered, while the rest of the

movies were either further from or closer to the surface.

From this hypothesis, I considered the mean point in space to be the center of the sphere

whose radius is the average distance between the mean vector and the movie vectors that

complied with this hypothesis. Hypothesis 4 is shown to be supported by my data.

Testing Hypothesis 5 was done by applying all of the above experiments over different

machines with different CPU speeds. As shown in table 5.3. The faster the CPU is, the

faster the Java applet code is executed, thus the number of loops executed increases while

82

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

the movie is being played, and vice-versa. Indeed, there is still a competition for CPU

resources, but faster CPUs can manage these tasks more quickly. Table 5.3 shows a section

of the mean vector coordinates (which are, in fact, 12, 000) over different machines. In

fact, I can imagine that each movie needs to finish a certain amount of work (like decoding

or constructing frames) in a certain amount of time based on its length. It then seems that

this amount of work is the same across all machines, and the difference is when, and how

fast, it is done. Hypothesis 5 is shown to be supported by my data.

Table 5.3: Sample mean vector coordinates over different machines.

For Hypothesis 6, and in my initial setup, I had three sets of similar machines that

have the same CPU, RAM, and operating system, and I tested this hypothesis on these

sets separately. I constructed the vector from the center of the sphere (the mean of all

movies) to the movie vector in each machine for each movie. I then measured the cosine

similarity of the two vectors of each movie resulting from machines of the same set, as

well as between different movies.

In all cases, the cosine similarity of two different movies in two different machines

was almost zero, that is, they are orthogonal and there is no correlation. When it comes to

the same movie, the cosine similarity of 63 movies out of 80 showed better values with a

minimum value of 0.327. I assert that this supports Hypothesis 6 that the resulting

vectors are correlated. This hypothesis will be very useful for detecting if there is a

83

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

possibility for two movies, running on similar machines, to be the same.

As for Hypothesis 7, this hypothesis is not supported by my data. For 20 movies,

I calculated the mean vector of the sphere from all movies, and the distance between the

center of the sphere and the projection point of each movie on the constant vector. On

a particular machine one movie projection was as far as 150, 000 unit distance. Even

though I am in a 12, 000 dimensional space, Figure 5.4 illustrates the intuition of why this

hypothesis would not be true in two dimensions. Still, I tested this hypothesis because of

the possibility that movies exhibit an interesting behavior in 12, 000 dimensions of being

equidistant from the origin. My data did not have this property, indicating that the total

amount of work over time to play a movie is not a constant.

Figure 5.4: Projection of vectors on the constant vector.

After calculating the standard deviation of the mean of all movies on a given machine,

its value tends to be around 50 while the standard deviation within the movie coordinates

is about 700, which is greater than ten times more than those within each movie, thus

Hypothesis 8 is shown to be supported by my data.

I then focused on determining the center and radius of the sphere of any machine

84

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

before playing all the movies I was testing. Based on my assumption that all of the movies

were processed with the same encoder, I wrote a CPU benchmark algorithm that runs

for 5 minutes. During this time the machine needs to be mostly idle, but can have some

background noise in terms of CPU usage. In using this algorithm, I continue to count the

number of loops executed by the Java applet code while simultaneously running another

process that loads the CPU at 0% for the first minute, 10% for the next 30 seconds, and

for every 30 seconds thereafter increases the load to 20, 30, 40, 50, 60, 75 and 100. This

algorithm could be repeated to get more accurate results and better chances of catching

the machine in an almost idle state.

The trade-off here is accuracy over time. The more I repeat this 5-minute algorithm,

the more accurate my results are, but the longer it takes. While running this algorithm,

I handle the noise and false positives caused by other system processes that might be

running using a Reed Solomon error correcting code. This is robust to erasures due to the

unexpected drop of the Java applet’s loop execution at a certain loop counter.

Based on the values of this algorithm, I was able to estimate the ability of the CPU

of the tested machine to execute the Java applet on different CPU loads caused by other

simultaneous processes. The same algorithm was executed on a machine where the sphere

specifications (center location and radius length) were known by running all the movies,

and on other machines where such parameters were unknown. I then used a greedy

algorithm that compares the values calculated by this technique between these machines,

and were able to estimate the location of the center of the sphere with the corresponding

radius for each machine. I then compared the sphere computed by running all movies,

to the sphere computed by the CPU benchmark and greedy algorithm. The location of

the center comparison was performed by measuring the cosine similarity between the

computed center and the original center, which resulted in a minimum value of 0.847 for

58 movies out of 80. As for the radius comparison, I measured the ratio of the calculated

radius over the original one, which resulted in values ranging from 0.957 to 1.03, which is

85

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

less than 5% of the original radius, thus I assert that Hypothesis 9 is supported by my

data.

Since I was able to estimate the center and radius of the spherical-like structure on

different machines, I then tried to determine if I was able to detect the same movie that

played on those machines. I considered each movie separately and played it on different

machines. I normalized the vector of each movie on each machine and projected its space

vector onto the constant vector, and I calculated the ratio between the vector from the

center of the sphere to the projection with the radius. I then compared this ratio with

the one from each machine and I was able to identify 52 movies out of 80, thus I assert

that Hypothesis 10 is supported by my data. In fact, I can imagine that each movie

would need to finish a certain amount of work (like decoding or constructing frames) in

a certain amount of time based on the movie length. It seems that this amount of work

is the same on all machines, and the difference arises in when, and how fast, the work is

done. This also explains that, based on Hypothesis 10, playing the same movie on different

machines would cause rotation and expansion of the movie vector in a high dimensional

space, 12, 000 dimensions in my case.

5.8 Discussion and future work

I have shown that it is possible to model movies in a geometrical structure that could help

identify them in different machines. Without administrative privileges on one’s machine,

CPU computations could reveal some information to network administrators which could

be analyzed to reveal the execution of pattern-like software such as movies. My model’s

application could vary from forensic uses to studies for privacy preservation and protection

of clients from such information extraction, and can increase the understanding of what

CPU computation values could reveal without any administrative rights on the machine.

In this work, however, I have a few caveats and implementation issues that are left for

future work. My focus in this chapter was on the geometrical characterization part rather

86

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

than on engineering an actual timing inference framework. I am planning to work on a

better approach for recording movie signatures in such a way that does not saturate the

CPU at 100% load as I did in the Java applet. Information-theoretically speaking, there

is no need for the CPU to be heavily loaded for information to flow through the timing

inference channel, so long as there is at least some interference. Furthermore, it has been

shown to be possible to hide a processes true CPU load from the operating system kernel’s

accounting mechanisms is Tsafrir et al. [67].

Moreover, the alignment of movie records with one another after they have been

retrieved from a particular machine is another element on which I will be working. When

it comes to understanding the CPU execution speed of different machines, more efficient

algorithms than my CPU benchmarking and greedy algorithm are possible. An example

of performance prediction was done by Oskin et al. [68] by using a new simulation

technology, HLS, that combines statistical profiles with symbolic execution which can

define the relationship between different machines with varied parameters.

5.9 Related Work

A great deal of previous work has focused on approaches for multimedia behavioral

analysis and movie event detection. Enev et al. [69] defined electromagnetic interference

(EMI) signatures of the power supplies that modern TVs produce based on the video

content that is being displayed. Chua et al. [70] introduced MovieBase, a large-scale

movie corpus that covers full length movies as well video clips downloaded from YouTube.

For the purpose of gaining more control for movie decoders, Chen et al. [71] proposed an

action movie segmentation and summarization framework based on movie tempo, which

represents as the delivery speed of important segments of a movie. A new high-level video

segmentation has been proposed by Chasanis et al. [72] that detects most scene and chapter

boundaries by using temporal smoothing of visual word histograms of video shots. Finally,

the classification of movies, mainly animated movies, was done by Ionescu et al. [73] by

87

Chapter 5. Exploiting Geometrical Structure for Forensic Applications

using temporal and color based categories of content descriptors.

Moreover, many approaches over the past years have been targeting the issue of privacy

invasion when it comes to analyzing the data recorded by network administrators over

their network. The most common technique used to protect the privacy of clients was

to apply different privacy preserving approaches against the auditing software. Many

privacy preserving techniques have been implemented, like those done by Agrawal and

Srikant [74], that develop accurate models for aggregated data without access to precise

information in individual data records. Further work by Evfimievski et al. [75] aimed for

the same goal by using data randomization techniques, and in a later publication in 2007

using suppression, randomization, cryptography and summarization [76].

To the best of my knowledge, my approach is the first work using timing inference

channels to classify pattern-like software in the context of forensics applications, in a way

that is robust to different machines.

5.10 Conclusion

In this chapter, I proposed a geometrical model of how a movie’s encoding interferes with

the CPU usage of other running processes, and defined a structure that helps in identifying

movies. CPU-related analysis allowed me to understand the behavior of such geometrical

structures over different machines, and how a movie’s location in space could be predicted

when shifted from one machine to another. I have also shown that my approach does not

require administrative privileges and thus could be very useful in detecting any software

that has a pattern-like structure, and this can subsequently have many applications in the

fields of forensics, privacy preservation, and fingerprinting.

88

Chapter 6

Conclusion

In many cases in the world of forensics one technique or piece of evidence is not enough to

prove that someone is guilty or innocent. In fact, the combination of different techniques

can reveal more evidence and clears up the picture of who is responsible for a certain

crime. While using different techniques is relevant, the main concern still stands of how

to protect the privacy of the people involved in the case and those who are related to it.

The techniques that are described in this dissertation are not in particular certain

to prove the innocence and guilt of individuals, but more to help the investigation of

identifying digital crimes as well as the responsible individuals.

I proposed a privacy-preserving method for recording and storing network flow

records, that network operators can use to enforce a privacy policy. It is very useful

to traceback the traffic of the suspect without any privacy invasion to the users on the

same network. I used Identity Based Encryption (IBE) together with AES to encrypt the

NetFlow records, and applied the differential privacy techniques on the statistical data for

the privacy preservation.

I also demonstrated a technique for leaving timing channel fingerprints in Tor hidden

service log files. The technique presented has shown to be robust, even with the random

89

delays introduced by the Tor network and realistic, bursty traffic from existing clients for

the web service. This technique helps in forensic cases where evidence is needed to prove

if a machine was hosting illegal content through Tor hidden services.

Finally, I proposed a geometrical model that could help in identifying pattern-like

software such as movies using inference timing channels which could be inferred without

giving administrative privileges to the machine involved. CPU-related analysis allowed

me to understand the behavior of such geometrical structures across different machines,

and how a movie’s location in space could be predicted when shifted from one machine to

another.

These developed techniques and their proven results can subsequently have many

applications in the fields of forensics, privacy preservation, and fingerprinting that could

aid in many investigations where similar digital crimes occur.

In this dissertation, I showed how forensic tools could be implemented and used at in

different levels of privilege that could affect the privacy of users involved in the forensic

investigation. In most cases, the administrative privileges given to forensics personnel is

not needed to achieve their goals, and thus if given, it could cause the users a privacy

invasion risk. For this reason, this work showed how these investigations can be held

without administrative privileges and how much information could an unprivileged task

reveal from the users’ machines.

References

[1] J. Watkinson, The MPEG Handbook. Focal Press, Woburn (MA), USA, 2001.

[2] “Cisco IOS Netflow,” http://www.cisco.com/en/US/products/ps6601/products ios

protocol group home.html.

[3] Solarwinds, “Orion NetFlow Traffic Analyzer,” http://www.solarwinds.com/

products/orion/nta/.

[4] Manage Engine, “NetFlow Analyzer,” http://www.manageengine.com/products/

netflow/cisco-netflow.html.

[5] CNET News, “Data Retention,” http://news.cnet.com/8301-13578 3-9926803-38.

html#ixzz0zTejcqJw.

[6] J. Angwin and T. McGinty, “Sites Feed Personal Details To New Tracking Industry,”

Wall Stree Journal, available at http://online.wsj.com/.

[7] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Proceedings

of CRYPTO 84 on Advances in cryptology. New York, NY, USA: Springer-Verlag

New York, Inc., 1985, pp. 47–53.

[8] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil pairing,” in

CRYPTO ’01: Proceedings of the 21st Annual International Cryptology Conference

on Advances in Cryptology. London, UK: Springer-Verlag, 2001, pp. 213–229.

[9] Vincent Rijmen, Joan Daemen, “Advanced Encryption Standard,” http://en.

wikipedia.org/wiki/Advanced Encryption Standard.

[10] D. E. Robling Denning, Cryptography and data security. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1982.

[11] Standford Crypto Group, “IBE Secure Email,” http://crypto.stanford.edu/ibe/.

91

References

[12] A. Hintz, “Fingerprinting websites using traffic analysis,” in Workshop on Privacy

Enhancing Technologies, 2002.

[13] Anton Titov, SourceForge, “AnetTest,” http://anettest.sourceforge.net/.

[14] pstavirs, Google Project Hosting, “ostinato,” http://code.google.com/p/ostinato/.

[15] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion

router,” in In Proceedings of the 13th USENIX Security Symposium, 2004, pp.

303–320.

[16] M. Foukarakis, D. Antoniades, S. Antonatos, and E. P. Markatos, “Flexible and

high-performance anonymization of netflow records using anontool.”

[17] M. Bishop, J. Cummins, S. Peisert, A. Singh, D. Agarwal, D. Frincke, and

M. Hogarth, “Relationships in Data Sanitization: A Study in Scarlet,” in Proceedings

of the 2010 New Security Paradigms Workshop, Concord, MA, September 21–23

2010.

[18] M. Burkhart, D. Schatzmann, B. Trammell, E. Boschi, and B. Plattner, “The role of

network trace anonymization under attack,” 2010.

[19] C.-P. T. Cisco, “Network log anonymization: Application of.”

[20] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos, and P. Trimintzios,

“A generic anonymization framework for network traffic,” in IEEE International

Conference on Communications.

[21] M. Afanasyev, T. Kohno, J. Ma, N. Murphy, S. Savage, A. C. Snoeren, and G. M.

Voelker, “Network support for privacy-preserving forensic attribution,” University

of California - San Diego and University of Washington, Tech. Rep. CS2009-0940,

March 2009.

[22] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on untrusted

machines,” in Proceedings of the 7th conference on USENIX Security Symposium -

Volume 7. Berkeley, CA, USA: USENIX Association, 1998, pp. 4–4. [Online].

Available: http://portal.acm.org/citation.cfm?id=1267549.1267553

[23] C. Dwork, “Differential privacy,” in in ICALP. Springer, 2006, pp. 1–12.

[24] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia, “Continuous privacy preserving

publishing of data streams,” in EDBT ’09: Proceedings of the 12th International

Conference on Extending Database Technology. New York, NY, USA: ACM, 2009,

pp. 648–659.

92

References

[25] P. Jurczyk and L. Xiong, “Privacy-preserving data publishing for horizontally

partitioned databases,” in CIKM ’08: Proceeding of the 17th ACM conference on

Information and knowledge management. New York, NY, USA: ACM, 2008, pp.

1321–1322.

[26] C. Dwork, “Differential privacy: a survey of results,” in Proceedings of the 5th

international conference on Theory and applications of models of computation,

ser. TAMC’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 1–19. [Online].

Available: http://dl.acm.org/citation.cfm?id=1791834.1791836

[27] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan, “Computational differential

privacy,” in Proceedings of the 29th Annual International Cryptology Conference on

Advances in Cryptology. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 126–142.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1615970.1615981

[28] Y. Lindell and E. Omri, “A practical application of differential privacy

to personalized online advertising,” eprintiacrorg, 2011. [Online]. Available:

http://eprint.iacr.org/2011/152

[29] A. Friedman and A. Schuster, “Data mining with differential privacy,” in

Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, ser. KDD ’10. New York, NY, USA: ACM, 2010, pp.

493–502. [Online]. Available: http://doi.acm.org/10.1145/1835804.1835868

[30] S. Chaudhuri, R. Kaushik, and R. Ramamurthy, “Database access control and

privacy: Is there a common ground?” in CIDR, 2011, pp. 96–103.

[31] S. J. Murdoch, “Hot or not: revealing hidden services by their clock skew,” in CCS

’06: Proceedings of the 13th ACM conference on Computer and communications

security. New York, NY, USA: ACM, 2006, pp. 27–36.

[32] L. Overlier and P. Syverson, “Locating hidden servers,” in SP ’06: Proceedings of

the 2006 IEEE Symposium on Security and Privacy. Washington, DC, USA: IEEE

Computer Society, 2006, pp. 100–114.

[33] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-resource routing

attacks against tor,” in WPES ’07: Proceedings of the 2007 ACM workshop on

Privacy in electronic society. New York, NY, USA: ACM, 2007, pp. 11–20.

[34] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in SP ’05:

Proceedings of the 2005 IEEE Symposium on Security and Privacy. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 183–195.

93

References

[35] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by Internet-exchange-level

adversaries,” in Proceedings of the Seventh Workshop on Privacy Enhancing

Technologies (PET 2007), N. Borosov and P. Golle, Eds. Ottawa, Canada: Springer,

June 2007.

[36] “privoxy,” http://www.privoxy.org/.

[37] K. Loesing, W. Sandmann, C. Wilms, and G. Wirtz, “Performance measurements

and statistics of tor hidden services,” in SAINT ’08: Proceedings of the 2008

International Symposium on Applications and the Internet. Washington, DC, USA:

IEEE Computer Society, 2008, pp. 1–7.

[38] S. B. Wicker, Reed-Solomon Codes and Their Applications. Piscataway, NJ, USA:

IEEE Press, 1994.

[39] N. Matloff, “Estimation of internet file-access/modification rates from indirect data,”

ACM Trans. Model. Comput. Simul., vol. 15, no. 3, pp. 233–253, 2005.

[40] J. C. Wray, “An analysis of covert timing channels.” in IEEE Symposium on Security

and Privacy, 1991, pp. 2–7.

[41] B. W. Lampson, “A note on the confinement problem,” Communications

of the ACM, vol. 16, no. 10, pp. 613–615, 1973. [Online]. Available:

citeseer.ist.psu.edu/lampson73note.html

[42] S. B. Lipner, “A comment on the confinement problem,” in SOSP ’75: Proceedings

of the fifth ACM Symposium on Operating Systems Principles. New York, NY, USA:

ACM Press, 1975, pp. 192–196.

[43] M. H. Kang and I. S. Moskowitz, “A pump for rapid, reliable, secure

communication,” in CCS ’93: Proceedings of the 1st ACM conference on Computer

and Communications Security. New York, NY, USA: ACM Press, 1993, pp.

119–129.

[44] S. Gianvecchio and H. Wang, “Detecting covert timing channels: an entropy-based

approach,” in CCS ’07: Proceedings of the 14th ACM conference on Computer and

communications security. New York, NY, USA: ACM, 2007, pp. 307–316.

[45] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels: design and

detection,” in CCS ’04: Proceedings of the 11th ACM conference on Computer and

communications security. New York, NY, USA: ACM, 2004, pp. 178–187.

[46] J. G. N, R. Greenstadt, P. Litwack, and R. Tibbetts, “Covert messaging through

TCP timestamps,” in in Workshop on Privacy Enhancing Technologies, 2002, pp.

194–208.

94

References

[47] S. J. Murdoch and S. Lewis, “Embedding covert channels into TCP/IP,” in

Information Hiding: 7th International Workshop, volume 3727 of LNCS. Springer,

2005, pp. 247–261.

[48] G. Danezis, “The traffic analysis of continuous-time mixes,” in Proceedings of

Privacy Enhancing Technologies workshop (PET 2004), ser. LNCS, vol. 3424, May

2004, pp. 35–50.

[49] C. Diaz, L. Sassaman, and E. Dewitte, “Comparison between two practical mix

designs,” in Proceedings of ESORICS 2004, ser. LNCS, France, September 2004.

[50] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix networks:

Attacks and defenses,” in Proceedings of ESORICS 2006, September 2006.

[51] S. J. Murdoch and R. N. M. Watson, “Metrics for security and performance

in low-latency anonymity networks,” in Proceedings of the Eighth International

Symposium on Privacy Enhancing Technologies (PETS 2008), N. Borisov and

I. Goldberg, Eds. Leuven, Belgium: Springer, July 2008, pp. 115–132.

[52] C. Laurant, “Privacy International: Privacy and Human Rights 2003: an International

Survey of Privacy Laws and Developments, Electronic Privacy Information Center

(EPIC),” https://www.privacyinternational.org/survey/phr2003/index.htm, 2003.

[53] P. Wright and W. Fone, “Designing and managing networks to aid the capture and

preservation of evidence to support the fight against e-crime.”

[54] R. P. Prabhu and R. P. Prabhu, “Child pornography on the internet, federal laws . . .”

2003.

[55] P. Kanellis, E. Kiountouzis, N. Kolokotronis, and D. Martakos, Digital

Crime and Forensic Science in Cyberspace. Idea Group Publishing, 2006.

[Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=

intitle:Digital+Crime+And+Forensic+Science+in+Cyberspace+(N/A)#0

[56] A. Patel, M. Shah, R. Chandramouli, and K. P. Subbalakshmi, “Covert channel

forensics on the internet: Issues, approaches, and experiences,” I. J. Network

Security, vol. 5, no. 1, pp. 41–50, 2007.

[57] D. McCullagh, “Police want backdoor to web users’ private data,” 2010. [Online].

Available: http://news.cnet.com/8301-13578 3-10446503-38.html

[58] Chaos Computer Club, “Chaos Computer Club analyzes government malware,”

2011. [Online]. Available: http://www.ccc.de/en/updates/2011/staatstrojaner

95

References

[59] K. Diepold and S. Moeritz, Understanding MPEG 4. Focal Press, Woburn (MA),

USA, 2004.

[60] R. Anand, N. Islam, T. Jaeger, and J. R. Rao, “A flexible security model for using

internet content,” in Proceedings of the 16th Symposium on Reliable Distributed

Systems, ser. SRDS ’97. Washington, DC, USA: IEEE Computer Society, 1997,

pp. 89–. [Online]. Available: http://dl.acm.org/citation.cfm?id=829522.830930

[61] Guide to Sun Microsystems Java Plug-in Security, Network Applications Team of

the Systems and Network Attack Center, 12 2003.

[62] J. Hurst, “Comparison of java applets and activex controls.” [Online]. Available:

http://www.giac.org/cissp-papers/252.pdf

[63] J. M. MARE, “Risks of Java Applets and Microsoft ActiveX Controls,” Sans, Tech.

Rep., 03 2002.

[64] S. Oaks, Java Security. O’Reilly, Sebastopol (CA), USA, 1998.

[65] S. Zhua, J. Wua, H. Xiongb, and G. Xiaa, “Scaling up top-k cosine similarity search,”

Data and Knowledge Engineering, vol. 70, pp. 60–83, 2011.

[66] J. S. M. Peter Hall and A. Neeman, “Geometric representation of high dimension,

low sample size data,” Journal Of The Royal Statistical Society Series B, vol. 67, pp.

427–444, 2005.

[67] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Secretly monopolizing the cpu without

superuser privileges,” in Proceedings of 16th USENIX Security Symposium on

USENIX Security Symposium. Berkeley, CA, USA: USENIX Association, 2007,

pp. 17:1–17:18. [Online]. Available: http://dl.acm.org/citation.cfm?id=1362903.

1362920

[68] M. Oskin, F. T. Chong, and M. Farrens, “Hls: combining statistical and

symbolic simulation to guide microprocessor designs,” in Proceedings of the

27th annual international symposium on Computer architecture, ser. ISCA

’00. New York, NY, USA: ACM, 2000, pp. 71–82. [Online]. Available:

http://doi.acm.org/10.1145/339647.339656

[69] M. Enev, S. Gupta, T. Kohno, and S. N. Patel, “Televisions, video privacy,

and powerline electromagnetic interference,” in Proceedings of the 18th ACM

conference on Computer and communications security, ser. CCS ’11. New

York, NY, USA: ACM, 2011, pp. 537–550. [Online]. Available: http:

//doi.acm.org/10.1145/2046707.2046770

96

[70] T.-S. Chua, S. Tang, R. Trichet, H. K. Tan, and Y. Song, “Moviebase: a

movie database for event detection and behavioral analysis,” in Proceedings

of the 1st workshop on Web-scale multimedia corpus, ser. WSMC ’09.

New York, NY, USA: ACM, 2009, pp. 41–48. [Online]. Available: http:

//doi.acm.org/10.1145/1631135.1631143

[71] H.-W. Chen, J.-H. Kuo, W.-T. Chu, and J.-L. Wu, “Action movies segmentation

and summarization based on tempo analysis,” in Proceedings of the 6th ACM

SIGMM International Workshop on Multimedia information retrieval, ser. MIR

’04. New York, NY, USA: ACM, 2004, pp. 251–258. [Online]. Available:

http://doi.acm.org/10.1145/1026711.1026752

[72] V. Chasanis, A. Kalogeratos, and A. Likas, “Movie segmentation into scenes

and chapters using locally weighted bag of visual words,” in Proceedings of

the ACM International Conference on Image and Video Retrieval, ser. CIVR

’09. New York, NY, USA: ACM, 2009, pp. 35:1–35:7. [Online]. Available:

http://doi.acm.org/10.1145/1646396.1646439

[73] B. Ionescu, C. Vertan, P. Lambert, and A. Benoit, “A color-action perceptual

approach to the classification of animated movies,” in Proceedings of the

1st ACM International Conference on Multimedia Retrieval, ser. ICMR ’11.

New York, NY, USA: ACM, 2011, pp. 10:1–10:8. [Online]. Available:

http://doi.acm.org/10.1145/1991996.1992006

[74] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in Proceedings

of the 2000 ACM SIGMOD international conference on Management of data,

ser. SIGMOD ’00. New York, NY, USA: ACM, 2000, pp. 439–450. [Online].

Available: http://doi.acm.org/10.1145/342009.335438

[75] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Privacy preserving mining

of association rules,” 2002, pp. 217–228.

[76] A. Evfimievski and T. Grandison, “Privacy perserving data mining,” in Encyclopedia

of Database Technologies and Applications, V. E. Ferraggine, J. H. Doorn, and L. C.

Rivero, Eds., 2007.

97

	University of New Mexico
	UNM Digital Repository
	5-1-2012

	Privacy-preserving techniques for computer and network forensics
	Bilal Shebaro
	Recommended Citation

	CMR12

