
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

12-1-2009

Using ant colony optimization for routing in
microprocesors
Tamanna Arora

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Arora, Tamanna. "Using ant colony optimization for routing in microprocesors." (2009). https://digitalrepository.unm.edu/cs_etds/
72

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/72?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/72?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Tamanna Arora
 Candidate

 Computer Science
 Department

 This thesis is approved, and it is acceptable in quality
 and form for publication:

 Approved by the Thesis Committee:

USING ANT COLONY

OPTIMIZATION FOR ROUTING IN

MICROPROCESSORS

BY

TAMANNA ARORA

B.E, COMPUTER SCIENCE,

INDRAPRASTHA UNIVERSITY, 2007

THESIS

Submitted in Partial Fulfillment of the

 Requirement for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2009

 iii

ACKNOWLEDGMENTS

“If I have seen further it is by standing on the shoulders of giants.”
– Isaac Newton, Letter to Robert Hooke, February 5, 1675

First and foremost I offer my sincerest gratitude to, Dr. Melanie Moses, my

advisor and committee chair for recognizing my commitment and honoring me with the

research assistantship; for her guidance, support and patience, in mentoring me towards

the completion of this research. I appreciate her organized approach of teaching the

subject with practical relevance and the time she has dedicated to help me in

understanding the fundamentals. I feel that one of the most important and sometimes

difficult steps in learning how to conduct research is to decide how to formulate

problems, work independently, and to set goals for oneself. She has constantly helped me

with all these aspects. I owe her special thanks to help me write my papers and thesis and

her invaluable suggestions that helped me clarify and better articulate my ideas. Your

guidance will continue to encourage me in my future endeavors.

I would like to extend sincere thanks to Prof. Alan L. Davis and Mike A. Lodder

for answering all my questions and doubts that I had, while I explored the topic in the

thesis further. They also provided the data necessary for understanding the scope of the

problem.

I also want to thank Prof. Payman Zarkesh for his constant support, for answering

my numerous questions and all the help he has offered during the course of my thesis. He

has always offered his expert comments from his experience in the field of VLSI. He has

 iv

also constantly helped me to make sure that my understanding of this VLSI problem and

the solution is correct.

I am extremely grateful to Prof. George Luger who allowed me to simply come

and talk to him about my research. I was glad to have talked to him about my ideas. It

was during these discussions that I was able to think about the problem from various

different perspectives. He provided his valuable guidance and feedback about my

approach and insight into new possibilities. You have always been a source of moral

support, encouragement and enlightenment.

I feel it necessary to mention also the friends who have been with me in the past

few years. I am extremely thankful for all your support and encouragement that has

pushed me to succeed.

Finally, I would like to thank my brother and my parents for their constant

support over the years. The encouragement and love that they have selflessly and

tirelessly invested in me is undoubtedly the greatest source of my ambition, inspiration,

dedication and motivation. They have taught me far more than words can express.

 USING ANT COLONY

OPTIMIZATION FOR ROUTING IN
MICROPROCESSORS

 BY

 TAMANNA ARORA

 ABSTRACT OF THESIS

 Submitted in Partial Fulfillment of the
 Requirements for the Degree of

 Master of Science

Computer Science

 The University of New Mexico

Albuquerque, New Mexico

 December, 2009

 vi

USING ANT COLONY OPTIMIZATION FOR ROUTING IN

MICROPROCESSORS

by

Tamanna Arora

B.E., Computer Science, Indraprastha University, 2007

M.S., Computer Science, University of New Mexico, 2009

Abstract

Power consumption is an important constraint on VLSI systems. With the

advancement in technology, it is now possible to pack a large range of functionalities into

VLSI devices. Hence it is important to find out ways to utilize these functionalities with

optimized power consumption. This work focuses on curbing power consumption at the

design stage. This work emphasizes minimizing active power consumption by

minimizing the load capacitance of the chip. Capacitance of wires and vias can be

minimized using Ant Colony Optimization (ACO) algorithms. ACO provides a multi

agent framework for combinatorial optimization problems and hence is used to handle

multiple constraints of minimizing wire-length and vias to achieve the goal of minimizing

capacitance and hence power consumption. The ACO developed here is able to achieve

an 8% reduction of wire-length and 7% reduction in vias thereby providing a 7%

reduction in total capacitance, compared to other state of the art routers.

 vii

TABLE OF CONTENTS

LIST OF FIGURES…………………………………………………………………….x

LIST OF TABLES……………………………………………………………………xiii

CHAPTER 1 Introduction……………………………………………………………… 1

1.1 Technological Advances………………………………...………………......1

1.2 The Routing Problem…………………………………...……………….......3

1.3 Problem Formulation……………………………………...…………….......4

1.4 Routing Benchmark and Format………………………..………………......5

1.5 Ant Colony Optimization…………………………………...…………….....6

CHAPTER 2 Previous Work……………………………………………………………9

2.1 Detailed Routing…………………………………………………………….9

2.2 Routing Models………………………………………………………...…..11

2.3 Routing Algorithms…………………………………………………...…...15

2.3.1 Multi Layer Routing…………………………………………...…..16

2.3.2 Academic Routers……………………………………………...…..21

2.4 Tradition Approaches………………………………………………………23

2.5 ACO Metaheuristic…………………………………………………...……25

2.5.1 Problem Representation……………………………………………25

2.5.2 Ants Approach………………………………………………...…...26

2.5.3 Ant Colony System……………………………………………..….27

 viii

2.5.4 Steiner Trees for VLSI Routing………………………………....30

CHAPTER 3 ANT Colony System for VLSI Routing………………………………..32

3.1 ISPD98 Benchmark Suite………………………...………………………..32

3.2 ACO Algorithm for Manhattan Routing - Model Formulation……………34

3.3 ACO Algorithm for Manhattan Routing (ACO-Route)…………...……….36

3.3.1 Create Manhattan Grid…………………………………………….36

3.3.2 Sort Nets………..…………………………………………………..40

3.3.3 Route Nets…………………..……………………………………...41

3.3.4 Ordering Problem…………………………………………………..46

 3.3.5 Un-routable Nets………………………………………………...…47

 3.4 ACO Algorithm for Non-Manhattan Routing……………………………...51

3.4.1 Grid Based Approach………………………………………………52

 3.4.2 Sort Nets……………………………………………………………54

CHAPTER 4 Results and Discussions…………………………………………...……55

4.1 ACO Parameter……………………………………………………..……...55

 4.1.1 Search Parameters………………………………………...………..55

 4.1.2 Number of Ants…………………………..………………………...58

 4.2 ACO Algorithm…………………………………………………………....60

 4.2.1 Results: ACO Route………………………………………………..60

 4.2.2 Results:ACO-NMRoute……………………………………………69

4.3 Verification………………………………………………….……………..72

 ix

4.4 Discussion……………………………………………………………..……74

CHAPTER 5 Conclusion and Future Scope……………………………………..……77

APPENDIX …………………………………………………………………………..…82

REFERENCES………………………………………………………………………….91

 x

List of Figures

2.1 (a) Symmetric Grid (b) Asymmetric Grid………………………………………12

2.2 An example of cell, net and pins of cell………………………………………….12

2.3 Vertical and Horizontal Layers connected by vias………………………………12

2.4 (a) Grid Based (b) Gridless Model………………………………………………13

2.5 (a) Layered Model (b) Unreserved Layer Model………………………………..14

2.6 Routing Hierarchy………………………………………………………………..16

2.7 (a) An example of Steiner tree where blue points represents Steiner points. (b) An

example of rectilinear minimal Steiner tree……………………………...............20

3.1 A Hanan grid formed by three terminal nodes of a net (green nodes). Blue nodes

are formed by the intersection of Hanan grid lines………………………………36

3.2 The figure shows the pin locations chosen on the grid. If more than one pin is

used, the left and right grid locations are used. For every additional pin location;

first the upper left and right locations are used followed by lower left and right.

……………………………………………………………………………………37

3.3 The graph shows the number of pins used by different components in benchmark

chips…………………………………………………………………………...…38

3.4 (a) Shows three nodes to be routed to form a net. (b) Shows formation of a Hanan

grid. (c) Shows the layered model of the Hanan grid with two horizontal (blue)

and two vertical (red) layers……………………………………………………..39

3.5 Perimeter of the given net is 2(A+B) where A and B is the manhattan distance

between minimum and maximum x and y coordinates of components

respectively………………………………………………………………………41

 xi

3.6 (a), (b) and (c) shows a step by step procedure of routing using the

heuristic makes ants meet soon. A net consisting three nodes 1, 2 and 3 is shown.

Ants start from these nodes and choose the next node using the…………….….43

3.7 At every step Manhattan architecture allows four possible directions in which an

ant could move……………………………………………………………….….44

3.8 A routed net connecting terminal 1 and 2. (b) Route found using ACO-Route to

connect terminal 3 and 4. (c) As the two routes overlap the route connecting

terminal 1 and 2 is shifted to another horizontal route on the first layer to make

space for the route connecting terminal 3 and 4………………………………....48

3.9 Eight possible neighbors of node A……………………………………………...51

3.10 Effect of diagonal routing on wire-length……………………………………….51

3.11 An example of diagonal routing showing four layers: horizontal, vertical, 45°

diagonal and 135° diagonal layer………………………………………………...52

3.12 The distance between two diagonals defines the pitch in the non-manhattan

routing……………………………………………………………………………54

4.1 Graphs showing change in distance between tours with the iterations of the

algorithm with different sets of parameter values. (The distance between tours is

measured as the number of arcs contained in one tour but not in another.)……..57

4.2 Comparison of average Wire-Length Computed by algorithm with increase in

average number of ants per node………………………………………………...59

4.3 Comparison of wire-length computed by Fast Route2.0, Labyrinth Router, NTHU

and ACO-Route………………………………………………………………….64

 xii

4.4 Comparison of (a) wire-length (b) vias and (c) capacitance computed by ACO-

Route and WROUTE…………………………………………………………….68

4.5 Comparison of (a) wire-length, (b) vias and (c) capacitance computed by ACO-

Route and ACO-NMRoute…………………………………………………..…..71

A.1 Representation of various possible orientations of a component on a chip……...87

 xiii

List of Tables

4.1 Different Sets of Parameter Values used in graphs below……………………….56

4.2 Value of ACO Parameters used in ACO Algorithm……………………………..60

4.3 Number of Nets Routed using Alternate Strategy……………………………….61

4.4 Wire -Length and Vias After All Nets Are Routed……………………………...62

4.5 Comparison of ACO-Route with Labyrinth and Fast Router……………………63

4.6 Percentage improvement obtained by ACO-Route over Labyrinth Router, Fast

Route2.0 and NTHU Router……………………………………………….…….65

4.7 Comparison of Number of Vias, Wire-Length and Capacitance Computed By

ACO-Route and WROUTE…...………………………………………………....66

4.8 Percentage improvement obtained by ACO-Route over WROUTE…………….68

4.9 Wire-Length and Vias Computed By ACO-NMRoute………………………….69

4.10 Comparison of ACO-Route Wire-Length with Half-Perimeter Wire-Length…...73

4.11 Reduction in number of nets routed using alternate routing strategy when the

number of routing layers is increased from four to six…………………………..74

4.12 Scaling Coefficients……………………………………………………………...76

A.1 IBM ISPD98 Benchmark Suite Details……………………………………….…90

 1

CHAPTER 1

Introduction

1.1 Technological Advances

 Rapid advances in VLSI technology have increased the number of transistors that can

be placed on a single chip to about two billion [1]. Such advances in technology

simultaneously decrease chip cost [2, 3] and increase information processing power of

chip. The processing power of the chip is the result of switching transistors i.e. the

process of charging and discharging. Every time a transistor switches, power is consumed

by the chip. With each process generation, the transistors have shrink in size and can be

switched quickly. This increased switching capacity combined with an increase in

number of transistors leads to increased power consumption by the chip [4]. Thus, power

efficient designs are key goals in current VLSI design.

Power dissipation in a VLSI circuit consists of the two major components: static

power and dynamic power [5]. Static power component is due to the leakage current

drawn continuously from the power supply. A small amount of current leaks through the

transistor even when it is switched off. This is known as leakage current. The major

component of power is dynamic power. The dynamic power component is dependent on

the supply voltage, the load capacitances and the frequency of the operation. One of the

components of load capacitance is the wire capacitance. Wires are used to connect

various components on a chip and hence define all the operations to be performed on the

 2

chip. The large resistance of wires causes a voltage drop between the source and drain

leading to sub threshold leakage which causes a power drain.

Moreover as device dimensions have scaled down, wires are spaced closer together

which has increased wire capacitance relative to gate capacitance [6].

 A study conducted at Berkley [7] shows that 60-70% of the total chip power is

consumed by transistors and the remaining 30-40% power is dissipated in the form of

heat and capacitance through wires and vias. As device dimensions scale down further,

wires will be an increasingly important contributor to dynamic power.

Modern VLSI circuits route wires on multiple metal layers and vias provide an

electrical connection between two adjacent routing layers. Thus in complex circuit design

which contains about 2 million nets to be routed, wires and vias play a fundamental role.

This necessitates the importance of minimizing the capacitance by minimizing the wire-

length and vias used to route these nets.

The active power P consumed by a chip can be written [8] as:

P =a C V2 f (1.1)

where a is the activity factor,

 C denotes the total load capacitance,

 V represent the voltage supplied and

 f is the clock cycle.

Today, most of the VLSI design methodologies are based on library cell approach.

The routing is used repetitively during placement phase to find the optimal placement for

any cell. Most wire-routing problems are computationally hard [9]. Moreover,

determining that whether an instance of a routing problem is solvable is NP-complete

 3

[10], hence there is no deterministic algorithm to find the optimal routing in polynomial

time.

1.2 The Routing Problem

The routing problem is defined as locating a set of paths to route wires that connect all

the nets in the net-list. A net is a set of cells (also called terminal nodes) that need to be

connected to each other in a predefined manner. The number of nets on a chip ranges

from 50,000-3,000,000 [11]. And each one of these nets has large number of possible

routes. This gives us an insight that routing problem is computationally very difficult

(NP-complete) [9, 10].

The routing problem is one the most widely investigated problems in VLSI design

automation, and there are various performance and design constraints associated with it.

One of the important constraints that affect the efficiency and the usability of the chip is

the power consumed by the chip. From Eq. 1.1 it follows that the power consumed by the

chip is a function of capacitance induced. Moreover the two main capacitance inducing

components on a chip are the routed wires and vias. This implies that minimizing the

number of wires and vias could effectively reduce the power consumption of the chip.

However, there is a tradeoff between the number of vias and wire length used in

routing. Vias help in reducing wire-lengths by allowing wires to route through shorter

routes available in different routing layers. Thus minimizing vias could increase the total

routed wire-length whereas minimizing wire-length could require more vias. Thus the

goal of this thesis is to minimize the power consumption of the chip by finding routing

solutions that minimize the total capacitance induced by the wires and vias together.

 4

The routing of the large number of nets on a chip takes about 30% of total design time

and 90% of chip area [12]. Traditionally, the routing problem is divided into two phases.

The first phase is called as global routing, which generates an approximate routing for

each net. It assigns a routing region for each net, without specifying actual geometric

layout of wires. Detailed routing is the process of implementing the actual geometries of

the interconnections among the pins specified by a net list. It completes the point to point

wiring by specifying geometric information such as location and width of wires and their

layer assignment.

1.3 Problem Formulation

 The global routing problem is typically studied as a graph problem. The routing

regions, their relationships and capacities are modeled as graphs. However, the design

style and objective functions strongly affect which graph models are used, and as a result

there are several graph models used by different routing algorithms. The order in which

nets are routed is important. In a sequential approach nets are routed one at a time. The

ordering problem is defined as finding a particular permutation of routing nets such that

the nets that are routed later do not suffer from blockages or unavailability of routing

paths.

This work considers the problem of routing multi terminal nets in a three dimensional

routing geometry. Given a set of nets to be connected, the algorithm tries to find the

routing that uses optimal length of wire-length and vias to route the nets. The algorithm

casts the routing problem as a multi-objective graph problem and solves for wire-length

and vias.

 5

The routing of nets with more than two terminals can be formulated as a tree problem

which can be stated as:

Given a set of nets in a netlist N= {N1, N2, N3 … Nn} and the placement of various

components P= {P1, P2, P3 ….…Pn}, find a tree for each net Ni, which routes the net, such

that the objective function is satisfied. The objective function is to:

i) Minimize the total wire length used by all the nets together.

ii) Minimize the number of vias used by the nets.

iii) Minimize the capacitance introduced by the vias and wires.

1.4 Routing Benchmark and Format

There has been extensive research in the field of placement and routing algorithms for

VLSI circuits. For example, there are several new academic placers and routers that use

different approaches like simulated annealing [13], artificial intelligence [14] and neural

networks[15]. These approaches are compared using publicly available standard circuit

benchmarks and suites. The Design Automation (DA) community has heavily relied on

these benchmark suites to compare and validate their algorithms. These benchmark suites

are maintained by the Collaborative Benchmarking Laboratory [16]. Benchmarks are

available for placement, routing and both placement and routing simultaneously. We use

routing benchmarks from the ISPD benchmark suite [11].

Any complete EDA (Electronic Design Automation) system is a disparate set of

heterogeneous tools stitched together [17]. During the design flow these different tools

interact with each other using data-file generation and translation. These files are

generated in a particular format by one tool and translated by another tool to its internal

 6

data structure. Thus ‘format’ is defined as a file or set of files that contain data in a given

syntax that is understood by different interacting tools [18]. One of the most recent and

versatile format is the Bookshelf format. Bookshelf is an object oriented format that

contains information in the form of library. Being object-oriented allows reuse of the

same specifications for more complex circuits and across different platforms. This

research uses IBM ISPD98 benchmarks in bookshelf format and is described below in

detail.

1.5 Ant Colony Optimization

 ‘Ant Colony Optimization’ provides a multi-agent framework for combinatorial

optimization problems. This nature inspired metaheuristic originates from the capability

of ants to find shortest paths from their nest to food source. Natural ants achieve this goal

through constant co-ordination and indirect communication using a chemical substance

called pheromone [19].

This collective problem solving ability results from a reinforcement process in which

ants deposit a pheromone trail as they return from food source to their nest [20]. Since

ants following the shortest path can complete their trips in less time, they will make more

trips between their nests and the food source, and deposit more pheromone on shorter

paths compared to longer paths. The strength of pheromone on each path guides

remaining ants to the food source [19].

ACO algorithms have been widely and successfully used in combinatorial

optimization problem solving. Every ant in the ant colony practices an independent

sequential decision process aimed at constructing a feasible solution for the optimization

 7

problem at hand by using only information local to the current decision step. The

outcomes of the search process are used to locate the most promising search areas, and

the parameters used by the approach are updated to focus the search in the promising

areas. Due to this independent decision making, this ACO algorithm is highly

parallelizable. Ants use pheromone information to guide the search process and to

transfer knowledge from an iteration of the optimization algorithm to the next. In ACO

all decisions that lead an ant to a good solution are considered equally important and

receive the same amount of pheromone. The collective behavior of ants independently

searching for best solution results in the establishment of the shortest route.

There are many algorithms derived from ant colony metaheuristic which are used to

formulate solutions for many different problems. Two of the main categories are static

and dynamic combinatorial optimization problems. Static problems are those whose

topology and parameters do not change while the problem is being solved. An example of

static optimization problems is the Traveling Salesman problem (TSP). The TSP can be

stated as: Given a number of cities and the cost of traveling from city to any other city,

what is the least-cost round-trip route that visits each city exactly once and then returns to

the starting city [21].

Dynamic optimization problems are those in which the topology and parameters

change while the problem is being solved. An example of dynamic optimization problem

is routing in communication networks. The traffic patterns and network parameters in

communication networks change continuously with time. The ACO metaheuristic

captures these differences and is general enough to comprise the ideas common to both

application types.

 8

The ACO algorithm differs from other heuristic approaches. The heuristic experience

gained during the execution of an ACO algorithm (pheromone trails) is updated in real

time. This allows the algorithm to perform a cumulative search over the whole search

space. This thesis adapts an ACO based algorithm for static routing to find optimal routes

for routing of components on VLSI chips. Optimal routes are defined for a group of

components placed on a chip, while minimizing route length, number of vias, capacitance

and time taken to calculate routes. Combining these constraints defines a set of objectives

that can be utilized by these ants to find solution to the routing problem.

 9

CHAPTER 2

Previous Work

2.1 Detailed Routing

In the two phase routing approach, a detailed routing phase follows a global routing

phase. During the global routing phase, wire paths are constructed through a subset of

routing regions, connecting the terminals of each net. The detailed router places the

actual wire segments within the region indicated by the global router, thus completing the

required connections between the terminals [22]. Global routing controls the success of

detailed routing. In new designs the placement and routing occurs simultaneously and

global routing is responsible for guiding placement engines and hence impacts

lithography, chemical polishing and manufacturing of the chip. The detailed routing

problem is usually solved incrementally, routing either a particular region or a particular

net at a time.

Important nets could be routed first, depending on how importance is defined. Below

are the definitions for various terms related to routing.

Grid : Manhattan geometry where only horizontal and vertical lines are allowed. The

routing region if formed either of symmetrical or asymmetrical grid lines. Symmetric grid

has equal distance between any two horizontal or vertical lines. Asymmetric grid does not

have equidistant separation (Figure 2.1). Horizontal lines are called rows and vertical

lines are called columns [14, 23].

 10

Routing Region: The area between different cells on a chip, set aside for routing nets

is called the routing region.

Switchbox and Channel: Channel and Switchbox are two routing methods in which

the routing region is divided into rectangular blocks. The perimeters of these blocks

contain pins which need to be connected. A rectangular block with terminals assigned to

fixed positions on three or four sides is called a switchbox. If terminals are assigned to

fixed positions only two opposite sides of a rectangular region is called a channel [24] .

Interconnect: Interconnects (also called wires) are used to connect devices on a chip.

Via: Same net spanning different layers are connected using vias. Vias are represented

as the intersection of two lines on two different metal layers.

Cell: The design of VLSI circuits involving many thousands of transistors becomes

manageable when the system is partitioned into smaller logic blocks called cells [15]. A

cell is a simple logic unit stored in cell library. A single cell contains about 100-1000

transistors.

Terminal Nodes: A cell has input/output pins to connect to other cells. The pins

which a cell uses for input/output purpose are called terminal nodes.

 11

Net: A net is a set of cells that need to be connected to each other in a predefined

manner (Figure 2.2).

Subnet: A simple connection between two points is called a subnet. Every net

consists of one or more subnets and each subnet consists of two terminals.

Net list: A set of all the nets to be routed on a single chip.

Pitch: The center to center distance between two interconnects.

Parasitic capacitance: Parasitic capacitance is the unavoidable and usually unwanted

capacitance that exists between the parts of metal interconnects or other parts of circuit

simply because of their proximity to each other.

Layer: Modern VLSI circuits route wires on multiple metal layers. Multiple layers

provide tiers of horizontal and vertical routing area, stacked over each other and

connected by vias (Figure 2.3).

2.2 Routing Models

Characteristics of a routing problem largely depend on the topology of the routing

region and the constraints the problem takes into consideration. These characteristics also

define that how the problem would be approached or what algorithms or model would be

used to solve it. Various routing models are discussed below:

 12

(a)

(b)

Figure 2.1: (a) Symmetric Grid (b) Asymmetric Grid

Figure 2.2: An example of cell, net and pins of cell.

Figure 2.3: Vertical and Horizontal Layers connected by vias.

 13

Grid and Gridless Models: The grid-based approach requires that the terminals, wires

and vias should conform to a grid. The presence of grid makes computation easy, but it

requires large amount of memory to maintain the grid, and the wire width is restricted. In

the gridless approach an imaginary grid is constructed by extrapolation of placed

components’ coordinates. The gridless approach is considered more practical primarily

because all the wires in a design do not have same widths (Figure 2.4). Gridless

approaches allow arbitrary location of terminals, nets and vias and arbitrary wire width

[22, 25, 26].

(a)

 (b)

Figure 2.4: (a) Grid Based (b) Gridless Model

Layered Approach: Modern VLSI circuits route wires on multiple metal layers.

Multiple layers provide tiers of horizontal and vertical routing area, stacked over each

other and connected by vias. Wires on same layer cannot cross each other, unless they

form a connection, whereas wires on different layers that cross each other do not connect

unless an explicit connection through a via is established. Multiple layers allow a higher

density of components, which shrinks the distances between cells, thus reducing wire-

 14

lengths. Moreover, layered model utilizes wires with varying thickness in different metal

layers. In order to minimize resistance, thick metal wires are used in upper metal layers

and used to lay long routes between distant cells. . Thus the layered approach provides an

effective method to reduce wire resistance [27, 28]. However thick wires also increase

the coupling capacitance of the wires[29].

If any net segment is allowed to be placed in any layer, it is called an unreserved

layered model. When certain type of segments are restricted to particular layers, than it is

a reserved layer model. Most of the routing algorithms use reserved layer models where

horizontal assignments are reserved to one particular layer and vertical assignments in

another layer. Such models can be easily extended from two layers to three layers (Figure

2.5). Modern design typically use six to eight routing layers.

(a)

 (b)

Figure 2.5: (a) Layered Model (b) Unreserved Layer Model

 Vias

 15

2.3 Routing Algorithms

Routing is a complex task. Decomposition of routing problem makes the automatic

routing of today’s VLSI circuits possible. The following hierarchy [30] shows the

decomposition of the routing problem. At the first level of hierarchy are the global,

detailed, and specialized routers. The global router distributes the nets over the entire

chip. Once the terminals of each channel are determined the detailed router will find the

exact location of wire segments of each net. The specialized router is designed to solve a

specific problem like routing of power wires, ground wires and wires that has some

particular constraints. Power and ground wires require special attention for two reasons

(1) they are usually routed in one layer in order to reduce the parasitic capacitance of

contacts, and (2) they are usually wider than other wires (signal and data) since they

carry more current.

Detailed routers further divide into general purpose and restricted routers. The general

purpose routers impose very few constraints on the routing problem and operate on single

connection at a time. General purpose routers work on the entire design in a serial

fashion, while restricted routers require some constraint on the routing problem, like

limits on maximum routing area used, maximum delay that can be tolerated etc. Because

of their limited scope they are able to perform better in terms of tackling any particular

type of routing problem. Routers typically use a rectangular grid in which horizontal and

vertical wires are placed in different layers, called Manhattan routing. Some routers use a

rectangular grid that also allows diagonal connections known as

 16

Figure 2.6: Routing Hierarchy [30]

Non-Manhattan routing. At the lowest level of hierarchy different techniques are

presented, but in general these techniques can be grouped into 3 broad categories i.e. (1)

algorithms (2) expert systems, and (3) neural networks. The routing algorithm developed

in this thesis uses a layered approach in which different layers are assigned for different

routing directions. Also the algorithm is used to route both manhattan and non-manhattan

architectures. The Ant Colony algorithm based router uses a heuristic based approach to

route the chip.

2.3.1 Multi Layer Routing

Multi-layer routing allows tiers of horizontal and vertical routing area, stacked over

each other and connected by vias. Vias provide an electrical connection between any two

points on different routing layers. Multiple layers allow a higher density of components,

 17

which shrinks the distances between cells, thus reducing wire-lengths [31]. One of the

widely used routing method uses an alternate horizontal and vertical routing layer called

as HV routing. This pattern can be repeated depending on the number of layers, e.g. if

four routing layers are allowed we get an HVHV routing, and so on.

 Some of the important routing algorithms are discussed below:

i) Maze Routers:

Maze Router is one of the earliest automatic routing algorithms. Maze routers are

general-purpose routers which find the shortest rectilinear path between source point and

destination point on a gridded model. In the first Maze router [32] Lee proposed an

algorithm to find a short path between two points that crosses a minimum number of

existing paths. It considers the routing surface as a rectangular array of cells. The

algorithm starts by marking the source cells as visited. In successive steps, it visits all the

unvisited neighbors of visited cells. This continues until the destination cell is visited.

Due to the breadth-first nature of the search, maze router is guaranteed to find the shortest

path between source and destination.

There are four phases in simple maze router (1) setup phase, (2) expansion phase, (3)

backtrack phase and (4) cleanup phase [33]. The setup phase determines the two points to

be connected as source and destination. In the expansion phase, all the unvisited

neighbors are visited in a least cost fashion. The cost of visiting each neighbor is depicted

as a numeral in the grid below. Once the destination point is reached the router heads for

backtracking phase.

 18

Some of the drawbacks of Lee’s algorithm are that it routes one net at a time, so there

is possibility of having some nets un-routed at the end of the routing process. Also, as it

follows breadth first search, it requires a large amount of storage space and its

performance degrades rapidly when the size of grid increases. The time and space

complexity of Lee’s algorithm is O(h x w) for a grid of dimension h x w. To improve the

memory requirements and speed of basic maze router, different techniques have been

proposed [34-38]. Due to its simplicity it can be used for both custom, semi-custom ICs

as well as large PC boards. Most FPGAs use some variation of the maze router.

ii) Greedy Router:

The greedy router routes the channel in a left-to-right, column-by-column manner,

wiring each column completely before starting the next. Within each column the router

tries to maximize the utility of the wiring, using simple, "greedy" heuristics. The router

does not use horizontal and vertical constraints. All decisions are made locally at a

column. Greedy router is always able to complete the routing. But this complete routing

is at the expense of some additional columns added at the end of the channel [39]. It may

place a net on more than one track for a few columns, and "collapse" the net to a single

track later on [40]. To route any complete net-list greedy router requires three non-

negative integers: initial channel width, minimum jog-length, and steady-net constant. A

jog is a vertical wire that brings a pin closer to another pin on the channel side. Thus

minimum jog-length signifies a constraint that tells that a router can not use a jog shorter

than length j the minimum jog-length. Generally j constraint exists and defined due to

fixed channel width. A high value of j implies longer running straight wires and hence

 19

reduces number of vias. Whereas a small value of j implies shorter wires which spans

fewer tracks and thus reduces the number of routing tracks.

As it routes column by column, it allows horizontal wires to change tracks which leads

to use of large number of vias. Moreover as it is based on a greedy approach, its searches

often terminate at solutions having local optimums, thus giving sub-optimal solutions.

iii) Steiner Tree Based Algorithms

Global routing algorithms presented above were not suitable for global routing on multi-

terminal nets. The algorithms can only route two terminal nets. To route any multi-

terminal net, the net is first broken into multiple two terminal nets. The quality of routing

in such approaches was highly dependent on how the multi-terminal nets are broken into

two terminal nets. To achieve optimal results, the way of decomposing a net should be

based upon how a router approaches the routing problem i.e. whether it routes on column

basis or row basis or a combination of both.

One of the key methods for routing multi-terminal nets is the Steiner Tree

approach. A Steiner tree is minimum weight tree connecting a designated set of vertices,

called terminals, in an undirected graph or points in a space. The weight or cost of a

Steiner tree is expressed as the sum of lengths of all the edges of the tree. The Steiner tree

algorithm is used to solve various similar sub problems like in inverter tree and clock tree

algorithms as well as in global and detailed routing. A rectilinear Steiner tree has only

rectilinear edges. The problem of finding rectilinear Steiner tree of minimum cost is NP

hard [41, 42]. In view of the NP hardness, several heuristic algorithms have been

developed. Most of the heuristic algorithms depend on minimum cost spanning tree. A

 20

minimum spanning tree is a spanning tree with minimum weight or cost. A spanning tree

of a graph is a sub graph which is a tree and connects all the vertices together. A graph

may have several minimum spanning trees. Hwang [43, 44] shows that the ratio of the

cost of a minimum spanning tree to that of an optimal rectilinear Steiner tree is no greater

than 3/2. This is due to the relationship between Steiner tree and minimum cost spanning

tree - the Steiner trees are generated by first finding the minimum cost spanning tree.

The Steiner tree algorithm first define an underlying grid G(S) of S as the grid

obtained by drawing horizontal and vertical lines through each point of S. The next step

involves finding the minimum cost spanning tree of the graph. An approximation of

optimal rectilinear Steiner tree can be obtained by rectilinearizing each edge of a

minimum spanning tree [22]. The difference between the Steiner tree problem and the

minimum spanning tree problem is that in the Steiner tree problem, extra intermediate

vertices and edges may be added to the graph in order to reduce the length of the

(a)

 (b)

Figure: 2.7: (a) An example of Steiner tree where blue points represents Steiner points.

 (b) An example of rectilinear minimal Steiner tree.

 21

spanning tree. These new vertices introduced to decrease the total length of connection

are known as Steiner points or Steiner vertices. A Steiner point is a non-terminal vertex

of degree three or four, while a corner point is a non-terminal vertex of degree two where

the two edges meeting at a corner point are perpendicular. Non-terminal vertices of

degree two with two collinear incident edges are removed by merging both edges. There

are various different versions of Steiner trees algorithms. Accurate estimation of

rectilinear Steiner minimal trees could be obtained using either optimal algorithms [45,

46] or near optimal heuristics [47, 48]. But these algorithms are computationally very

expensive to use in practice [49]. Moreover the time complexity increases exponentially

with increase in number of terminals of the net. Thus there are heuristic based Steiner tree

algorithms that are suggested for VLSI routing [50-52]. Each different version uses a

different heuristic to obtain a good estimation of optimal Steiner tree formed by VLSI

nets. One of the algorithm cktsteiner [53] uses numerical model simulation to determine

Steiner points. The algorithm models the routing grid as a circuit with grid nodes acting

as output ports. The simulation helps to determine the voltage at various nodes which

hence decides if a node could be a Steiner point or not. Some of the approaches use Ant

Colony Optimization technique to solve Steiner tree problem in VLSI nets [54]. The Ant

Colony Optimization technique is discussed below.

2.3.2 Academic Routers

Based on the approaches described above there are many academic routers that have

been developed. Many of these routers are used as benchmarks for comparison by various

 22

other academic routers and have been stated as state-of-the-art academic routers [55-57].

Some of these academic routers are Labyrinth Router [58], FastRoute [59], FastRoute2.0

[60] and NTHU Router [61].

Labyrinth Router uses maze routing to provide accurate routing of all nets and wire

length estimation, at the expense of longer running time. FastRoute uses a congestion

driven Steiner tree construction to determine good Steiner nodes and Steiner tree

topologies. For routing purposes the routing area is divided into rectangular regions

called global bins. Each bin has a fixed routing capacity. Congestion occurs when the

number of routing tracks routed through a particular bin exceeds its capacity. During

placement of cells different placements are evaluated by approximating the route length.

This is known as approximation. FastRoute is used to evaluate different cell placements

to determine which placements result in minimum wire-length and congestion levels.

FastRoute2.0 is an improvement in terms of congestion and wire-length compared to

FastRoute, but it requires longer run time. The advantage of FastRoute2.0 is that it is fast

enough to use for approximation and accurate enough to route most (but not all) nets.

This makes the approximation much more useful because approximation is much more

accurate if the same algorithm is used for approximation and actual routing.

These algorithms approach the Steiner tree problem by concentrating on one

major objective: to minimize the total length of the tree. These algorithms do not take

into account any other criterion that could affect the total power consumption of the chip

which requires minimizing the total capacitance of the chip. Moreover Steiner tree

algorithm has the planar property i.e. it could be embedded in a plane such that its edges

intersect only at their end points. Due to this property a Steiner tree could be efficiently

 23

implemented in a single layer. But for multi-layer routing the Steiner tree need to be

extended over different layers. Because a single layer Steiner tree is not built with the

constraint of vias, this extension over multiple layers is not efficient and leads to reduced

reliability due to large number of vias.

The more recent NTHU Router [20] decomposes all multi-pin nets into a set of two

pin nets and draws a congestion map, followed by adaptive maze routing, and it is very

fast.

2.4 Traditional Approaches

Many important problems lie in the category of combinatorial optimization problems

and are hard to solve. The notion of problem hardness is captured by the fact that the time

needed to solve an instance in the worst case grows exponentially with instance size.

Often, approximate algorithms are the only feasible solution at low computational cost.

Most approximate algorithms are either construction algorithms or local search

algorithms. Construction algorithms build solutions to a problem under consideration in

an incremental way starting with an empty initial solution and iteratively adding

opportunely defined solution components without backtracking until a complete solution

is obtained. In the simplest case, solution components are added in random order. Often

better results are obtained if a heuristic estimate of adding a solution component is taken

into account. An example of such a heuristic is greedy heuristic. A disadvantage of a

greedy heuristic is that only a very limited number of solutions can be generated. Also,

greedy decisions in early stages of the construction process strongly constrain the

 24

available possibilities at later stages leading to very poor moves in the final phase of

solution construction.

Local Search algorithms start from a complete initial solution computed by one of the

approximate methods and try to find a better solution in an appropriately defined

neighborhood of the current solution. Moving from one solution to a neighbor solution

requires defining a neighborhood relation on the search space. As an example, the

neighborhood of routed path in a graph is another path differing by only one graph edge.

Every candidate solution has more than one neighbor solution, the choice of which one to

move to is taken using only information about the solutions in the neighborhood of

current one, hence the name local search. The choice of an appropriate neighbor relation

is crucial for the performance of local search algorithms. Local search algorithms are

known as incomplete algorithms, because the search process may stop even if the best

solution found is not optimal.

The routers described above fall into either of the categories of local search or

constructional algorithm. For example, maze router is a local search algorithm which

iteratively expands in its neighborhood until it reaches the destination point. On the other

hand, greedy routers make a decision based on local information and move in the

direction which looks most promising in the local scenario. A Steiner tree based

algorithm is constructional algorithm as it uses the minimum spanning tree algorithm as

its starting point and iteratively adds edges to the spanning tree to form a Steiner tree.

Among the academic routers used above, most of them use variations of maze routing

combined with constraint specification.

 25

2.5 ACO Metaheuristic

Ant Colony Optimization metaheuristic is a probabilistic technique of stochastic

solution construction. A solution is built iteratively by adding solution components to

partial solutions constructed by ants. The pheromone information is updated by the ants

at run-time to reflect the information acquired during search. [20]. The stochastic

component in ACO allows the ants to build a wide variety of different solutions and

hence explore a much larger number of solutions than greedy heuristics. At the same

time, the use of heuristic information, can guide the ants towards the most promising

solutions. Moreover the ant’s search experience implements a form of reinforcement

learning that is used for solution construction in future iterations of the algorithm.

Additionally, the use of a colony of ants can give the algorithm-increased robustness, and

in many ACO applications the collective interaction of a population of agents is needed

to efficiently solve a problem. The domain of application of ACO algorithms is vast.

ACO algorithms are being extensively used for NP hard combinatorial problems. This

includes both single objective and multi-objective problems like routing, data mining and

voice recognition [62-64].

2.5.1 Problem Representation

According to Dorigo and Stutzle [20] a combinatorial optimization problem can be

represented as (S, f, Ω), where S is the set of candidate solutions, f is the objective

function which assigns an objective function (cost) value f (s, t) to each candidate

solution s Є S, and Ω (t) is a set of constraints. The parameter t indicates that the

 26

objective function and the constraints can be time dependent. The goal is to find a

globally optimal solution sopt that is, a minimum cost solution that satisfies the constraints

Ω.

The problem representation of a combinatorial optimization problem (s, f, Ω), which is

exploited by the ants, can be characterized with a finite set C= (c1, c2… … … cn) of given

components, the states of the problem defined in terms of sequences x = (ci, cj….ck) over

the elements of C, finite set of constraints Ω that defines the set of feasible states, set S*

of feasible solutions such that S*⊆ S and a cost function f(s, t) associated to each

candidate solution. Given this representation, artificial ants build solutions by moving on

the construction graph Gc=(C, L), where the vertices are the components C and the set L

fully connects the components. The graph Gc is called construction graph and L are

called connections.

2.5.2 Ants’ Approach

The solution construction is carried out by artificial ants by moving on the

construction graph Gc. Ants do not move arbitrarily on G, but rather follow a

construction policy, which is a function of the problem constraints Ω. It exploits the

graph Gc to search for feasible solutions s of minimum cost. It has a memory M that is

used to store information about the path it followed. Memory is used by an ant for

various different purposes: to build feasible solutions using the constraint Ω, to evaluate

the already found solutions, and to deposit pheromone on the path traversed. Pheromone

trail encoding acts as ant memory and is updated regularly by the ants during the search

process. Ants could be assigned a start state and a termination condition. The heuristic

 27

value used by the ant represents a priori information about the problem instance. An ant

selects the move by applying a probabilistic decision rule. Its probabilistic decision is a

function of locally available pheromone trail and heuristic value, ant’s memory storing its

search history and the problem constraints. Once a complete solution is built the amount

of pheromone on each connection in the solution is updated. The construction procedure

of an ant stops when at least one of the termination conditions is satisfied.

It is an important characteristic of ACO, that ants move independently and each ant

find its own solution to the problem under consideration. Good quality solutions emerge

as the result of the collective interaction among the ants via indirect communication

mediated by the information that ants read and write into the variables storing pheromone

trails. Thus it is a distributed learning, in which individual ants do not adapt their

behavior, but they modify the way the problem is represented and perceived by other

ants.

2.5.3 Ant Colony System

There are various different versions of ant colony optimization algorithms used today,

and most are advanced versions of a very simple ACO model called ‘ant system’. Some

of the advanced versions are rank-based ant systems, max-min ant system, elite ant

system and ant colony system. ACO algorithms have been successfully implemented for

solving Traveling Salesman Problem (TSP). This work employs ‘Ant Colony System’ for

VLSI routing. Here we explain how ACS has been used to solve the TSP. In the next

section we modify this algorithm for VLSI design.

 28

To solve TSP, Ant colony system [20, 65, 66] is implemented as a colony of m ants

which are initially placed on n cities either randomly or using some initialization scheme.

This city is known as the start city of the ant and is stored in ants’ memory M. An ant also

maintains a list of visited cities to keep track of the cities it has already visited. The start

city is added to the list of visited cities. An ant iteratively moves from one city to another.

An ant k located at city i chooses to go to an unvisited city j with a probability given by:

 (2.1)

Where pi, j = Probability that an ant at node i will move to node j.

 τi, j = Amount of pheromone on path i, j.

 ηi, j = Desirability of any path i, j is a priori heuristic information. In the case of

TSP, ηi, j = 1/ di,j where d is the distance between two cities i and j.

 α = Parameter to control the influence of τi, j.

 β = Parameter to control the influence of ηi, j

 Ni = is the feasible neighborhood of ant k that is, the set of cities which the ant

has not yet visited.

When α is set to 0, the selection probability is proportional to η i, j and the closest cities

are more likely to be selected. The algorithm acts like a greedy algorithm. When β is set

to 0, only pheromone amplification is at work and hence no heuristic information is used.

This leads to poor results due to occurrence of stagnation, i.e. as all ants follow the same

path and construct the same tour, no new paths are explored and the algorithm terminates

with a sub optimal solution. After an ant k travels from a city i to city j using the above

 29

probability pk
i, j the pheromone trail of the ant is updated. This is known as ‘local

pheromone trail update’.

 The goal of local pheromone trail update is to make the path taken by ant k less

desirable for the following ants and hence stimulate exploration of paths that have not

been visited by ants. Thus to reduce the desirability of the path taken by an ant, the

amount of pheromone on the path is reduced by a constant factor ξ.

 (2.2)

After each ant has completed its tour, pheromone trails are updated. This is known as

‘global pheromone trail update’. Global pheromone updation could either be applied to

each ant of the colony or only to the best ant of the iteration. For TSP, the best ant is the

one with minimum tour length in the current iteration.

Pheromone update is a two step procedure. First all the pheromone trails are lowered

by a constant factor ρ. This is known as evaporation. Evaporation is necessary as it allows

unlimited accumulation of pheromone trails and enables the algorithm to forget bad

decisions taken during the previous iterations. The pheromone evaporation is represented

by the following equation.

 (2.3)

After pheromone evaporation the second step is pheromone deposition. In Ant Colony

System, only the best ant is allowed to add pheromone after each iteration. This is an

important feature of Ant Colony System as it reduces the complexity of pheromone

update from O(n2) required in case when pheromone update is applied to each ant of the

 30

colony to O(n) when update is applied only from the best ant. To make sure that the

amount of pheromone deposited is an indication of the quality of the path, this amount is

a function of the tour length traversed by the best ant. Thus the amount of pheromone

deposited is given by:

 (2.4)

Where ∆τbs
 i,,j is the amount of pheromone deposited on the path taken by the best ant

of the iteration and Cbs is the tour length traversed by the best ant.. Therefore, the

pheromone update could be represented as:

 (2.5)

Thus we see that the ants are guided, in building their tours, by both heuristic

information and pheromone information and an edge with a high amount of pheromone is

a very desirable choice.

2.5.4 Steiner Trees for VLSI Routing

This section discusses the Steiner tree based techniques that are used to solve VLSI

routing. As discussed earlier, due to high complexity of finding accurate Steiner trees,

heuristic based algorithms are used to find estimates of optimal or near optimal Steiner

trees. One such heuristic based algorithm suggested by Yu Hu [54] uses the ACO

approach to construct rectilinear Steiner trees using the heuristic that requires ants to start

at each cell to be connected and meet as quickly as possible. The algorithm uses an ACO

 31

approach in which when an ant A meets another ant B, ant A dies and the visited list (list

of nodes visited by ants) is merged to the visited list of ant B. A very similar approach is

taken by Das [67], that instead of using the make ants meet soon heuristic, uses a bias

value for the paths already taken. This bias value attracts the ant to the path already taken

by another ant. To simplify the problem another algorithm suggested by Luyet [68] uses a

distributed approach in Ant Colony Optimization to solve the Steiner tree problem. The

method uses a preprocessing step that reduces the search space by identifying edges or

non terminal vertices which do not belong to at least one minimal Steiner tree and edges

or non terminal vertices which belong to all minimal Steiner trees. The probability of

choosing an edge is a function of greedy force Gf(m) and trail intensity Tr(m) where m is

a move based on these two parameters.

 32

Chapter 3

Ant Colony Algorithm for VLSI Routing

This chapter discusses the Ant Colony Optimization algorithm for the NP-hard

problem of routing VLSI chips. Placement of components on a chip can affect the

routability, wire-length and timing constraints of routes laid at later stages. Thus to

achieve a more optimized placement that has minimum congestion and route blockage,

routing and placement are completed simultaneously, iterating between the two, instead

of completing placement before considering routing. The information exchange between

placers and routers occurs through a set of files. Different routers may require that this

information be supplied in a particular format. Due to this reason there exist several

different formats to specify the input information to the router (Appendix A gives a brief

overview of some of these formats). This work uses ISPD98 benchmark suite in

bookshelf format.

3.1 ISPD98 Benchmarks Suite

 ISPD (International Symposium on Physical Design) benchmarks are derived from

IBM internal design format and include circuits comprising wide variety of library

components like memory, logic, processor etc. Every circuit in this benchmark is a

translation from VIM (Very-Large-Scale Integrated Model- IBM’s internal data format)

into net format, which is a simple hyper-graph representation originally proposed by Wei

and Cheng [11, 69]. The ISPD benchmark includes 18 circuits named IBM01 to IBM 18

and each one having different complexity and size. The benchmarks exclude any

 33

information related to functionality, timing and technology. The benchmark includes

information related to cell placement, size and orientation, connectivity information and

circuit row information in the bookshelf format. For each benchmark circuit this

information is contained in a set of 6 files. The four important files used for routing are

described below. (A detailed description of these files is available in Appendix A.)

(i) IBMxx.aux: This file is known as Auxiliary File and has an extension .aux. The

auxiliary files contain the set of input files and the placement method.

(ii) IBMxx.nodes: This file is known as nodes file and contains information about

specific objects. It specifies

� Total number of objects.

� Total number of terminal objects.

� For each object it specifies object name, width, height and whether it is a

terminal or non-terminal object. To signify a non-terminal object the keyword

‘terminal’ is omitted.

(iii) IBMxx.nets: A nets file specifies the set of nets. It includes

� Total number of nets

� Total number of pins

For each net it includes net-degree, pins forming the part of net and whether a

particular pin is acting as an input or output in the net. An input is represented

using ‘I’ and an output using ‘O’ in front of the component name.

 34

(iv) IBMxx.pl: A placement file specifies the location and orientation of objects. The

orientation of a component could either be N, FN, E, FE, S, FS, W, and FW [70].

The default orientation is “vertically and face up” and is represented as N (North).

Other orientations are obtained by flipping N, E, W and S orientations by right

angle about X or Y axis and are represented as FN, FS, FW and FE.

3.2 ACO Algorithm for Manhattan Routing - Model

Formulation

This section describes the assumptions and the approach taken to formulate a model in

which an Ant Colony Optimization algorithm could be implemented to route VLSI chips

in a power efficient manner.

The key assumption made for this model is that each cell component and wires are

assumed to have zero width and height. As mentioned earlier, wide wires are used in

upper metal layers and narrow wires in lower metal layers to minimize resistance and

capacitance effects. However, in this model the layers are implemented in memory, and

no parameters are used to depict upper and lower metal layers differently. The description

of ACO algorithm in Chapter 2 specifies that the application of ACO to a combinatorial

optimization problem requires that the problem must be represented as a construction

graph Gc=(C, L) which could be exploited by ants and the nodes of the graph are

characterized as a finite set of components C which are joined by the connections L. Thus

to model the connections between different cells on a chip, these cells are assumed as

mere points forming the nodes of a graph Gc.

 35

Manhattan architecture allows only horizontal and vertical routes. To represent such

architecture, a grid-less approach is adopted for routing, i.e. the router does not depend on

a grid to locate wires on a surface but instead it places wires in a space according to the

placement of the components which are to be routed. Thus in a grid-less approach a

Hanan grid is created from the coordinates of the cell location [54]. A Hanan grid is

formed by the intersection of horizontal and vertical lines drawn at each node of the net

(Figure 3.2). Hanan [71] showed that there is always a minimal rectilinear Steiner tree for

the nodes of a net placed on the Hanan grid [72, 73]. Due to this reason a grid-less router

guarantees a solution if one exists. Another advantage of grid-less router is that it allows

variable wire and via widths and variable wire spacing which is required for complex

circuit design [25, 26]. This Hanan grid is implemented as layered model with two

horizontal and two vertical layers (four routing layers total).

 The following steps provide an overview of the ACO approach to VLSI routing.

1. A Hanan grid is created from the component coordinates.

2. All possible pairs of x and y coordinates are stored in memory.

3. The nets from the net-list file are sorted according to their size.

4. The ACO algorithm routes one net at a time.

5. The route solution returned by ACO is fitted into the best possible route and

layer.

 36

Figure 3.1: A Hanan grid formed by three terminal nodes of a net (green nodes). Blue

nodes are formed by the intersection of Hanan grid lines.

3.3 ACO Algorithm for Manhattan Routing (ACO-Route)

This section discusses each step of the algorithm in detail.

3.3.1 Create Manhattan Grid

The first step for the routing procedure involves creating a Hanan grid from the

coordinates of all the components placed on chip. The coordinates are read from the

placement file and stored in memory. These components have multiple pins which act as

an input or an output in a net. Each time a component is listed as an input or an output,

one of its pin participates in the net. To accommodate multiple pins belonging to a single

component, the grid coordinates around the component’s location are used. The

following methodology is used while choosing the coordinates of the pins.

1. If a component is used in a net only once, the component coordinate location

defines its position on the grid.

2. If a component is used twice, left and right coordinate locations are used.

 37

3. If a component is used more than twice the upper left and right followed by

lower left and right grid locations are used for every additional pin location.

(a) (b)

Figure 3.2: The figure shows the pin locations chosen on the grid. If more than one pin is

used, the left and right grid locations are used. For every additional pin location; first the

upper left and right locations are used followed by lower left and right.

The locations are chosen in a manner such that they are symmetrical about the x and y

axis. Moreover in the case of more than one pin, the actual component location is not

used as a pin location. The actual component location is used as a center point to choose

the offset for other pin locations. The alternate locations chosen as pin coordinates were

also checked to make sure that they do not coincide with any other similarly chosen pin

or component location. In real scenario the cell components placed on the chip has a

particular length and width. The pins which form a part of a particular net lie on either of

the grid points. The ACO model assumes these components as points (with 0 length and

width). This allows ample space between two placed components for the pin locations

chosen in the above manner.

 38

(a)

 (b)

(c)

(d)

Figure 3.3: The graph shows the number of pins used by different components in

benchmark chips.

Figure 3.3 shows the number of pins used per component on the x axis and the

frequency of the use on the y axis. Each time a component is used in a net, a different

component pin is used by the net. The error bars represent the standard deviation. The

median for the number of pins over all the benchmarks is 22.5.

 39

The coordinates of components are stored in memory. A Hanan grid is created by the

intersection of horizontal and vertical lines passing through these coordinate locations.

The coordinates of the nodes created by the intersection of Hanan grid lines are also

calculated and stored in memory. A node belonging to a net must be distinguished from

the nodes formed by the intersection of the Hanan grid lines while they are stored in

memory.

(a)

(b)

(c)

Figure 3.4: (a) Shows three nodes to be routed to form a net. (b) Shows formation of a

Hanan grid. (c) Shows the layered model of the Hanan grid with two horizontal (blue)

and two vertical (red) layers.

 40

 To implement a layered model, every route on this grid is assigned a count equal to n

where n is the number of horizontal or vertical layers allowed. Whenever a particular

route on the grid is used, its count is reduced by one. The horizontal and vertical routes

are identified by the coordinate positions of the route. Any route could be used for VLSI

routing until its count drops to zero. Thus count helps to make sure that a routing should

be performed efficiently by using all the available layers.

3.3.2 Sort Nets

The nets from the net-list file are read and sorted according to their size, where the

size of a net is a function of its degree, i.e. number of nodes in the net, and the perimeter

it engulfs. The reason for sorting the nets before routing is because the algorithm ACO-

Route routes one net at a time. If the nets are routed one at a time, it is crucial to decide

which nets are routed first, as the nets which are routed later would be unable to use the

routing space used by the already routed nets. Short nets are routed first. Short nets have

less routing flexibility thus routing them first guarantees a higher routing completion rate.

Moreover the capacitance is lower on upper layers and hence the smaller routes are

routed in lower layers whereas upper layers are used for long routes. Moreover this

minimizes the blockage that might be caused if long routes are routed first. The nets are

arranged in an ascending order by size.

A net perimeter is calculated as the manhattan distance between the maximum and

minimum x and y coordinates of a net’s components (Figure 3.4). Nets are routed first by

degree and then by net perimeter. It should be noted that, given z nets, there exists z!

 41

ways to order the nets but there does not exist a polynomial time algorithm that could

find which of these z! permutations could be the most feasible or efficient ordering to

route the nets. Thus in spite of ordering the nets to route in a particular sequence, the

algorithm later uses a rip and reroute.

Figure 3.5: Perimeter of the given net is 2(A+B) where A and B is the manhattan distance

between minimum and maximum x and y coordinates of components respectively.

3.3.3 Route Nets

Before routing the first net, the grid is initialized with small amount of pheromone on

each of its paths. To route the nets, the first net from the ordered set of nets is picked and

the ant colony algorithm is applied on this single net. The ants are randomly distributed

on the nodes of the net. The number of ants and other ACO parameters like α (pheromone

parameter), β (desirability parameter), and ρ are varied to find the best fit as discussed in

experiment and results section. The current node on which the ant is placed is marked as

visited in the ant’s memory. The movement of the ant from one node to another is

controlled using the heuristic suggested by Yu-Hu [54] which requires the ant to meet

another ant of the same net as quickly as possible. The capacitance of a wire is directly

 42

proportional to its length and hence this heuristic makes the ant take the shortest possible

path to meet another ant quickly, which reduces the wire-length used for routing.

The probability of choosing any of the nodes is a function of the desirability of the

path connecting to the node and the amount of pheromone on that path (Section 2.4.5).

Thus the make ants meet soon heuristic is used to calculate the desirability of the path.

Following the heuristic, the desirability of an unvisited node j when the ant is located at

node i, is defined as the node that minimizes the distance between the node j and all other

ants belonging to the same net. Hence desirability (η) could be written as:

 (3.1)

Where α ' is the terminal node from where the current ant started.

 i is the current node of the ant that started at α '

 dir is the next node decided by this function, which is not yet already

 visited.

 α 'Di, j is the total distance between ant’s next node j and all other ants when the

previous given node is i and can be defined as:

 (3.2)

Where M i, a is the Manhattan distance between point ‘i’ and ‘a’ .

 a is the current position for other ants of the net.

Thus the probability of choosing an arc (i, j) could be defined as following:

 43

 (3.3)

Where Pi, j = Probability that an ant at node i will move to node j.

 τ i, j = Amount of pheromone on path i, j.

 η i, j = Desirability of any path i, j.

 α = Parameter to control the influence of τ i, j.

 β = Parameter to control the influence of η i, j.

Also when an ant A meets another ant B, all the intermediate points covered by ant A

are added to the route list of ant B, and all the intermediate points covered by ant B are

added to the route list of ant A. The path for ants A and B is marked as completed, which

helps reduce the redundant steps taken by ant A to reach the starting point of ant B and

vice versa. This is unlike the algorithm used in [54] where when two ants meet, one of

the ants dies and the other ant is responsible for completing the search process.

 (a) (b) (c) (d)

Figure 3.6: (a), (b) and (c) shows a step by step procedure of routing using the

heuristic makes ants meet soon. A net consisting three nodes 1, 2 and 3 is shown. Ants

start from these nodes and choose the next node using the heuristic. (d) Shows a routing

while this heuristic is not used (where v1, v2 and v3 indicates vias).

 44

Moreover this heuristic avoids taking inefficient redundant routes as shown in Figure

3.6 (d). The routes (A, B) and (C, D) is an example of inefficient routing that increases

the wire-length and requires comparatively more vias.

Every ant keeps a continuous record of the following:

a) Steps taken to complete the tour.

b) Tour length, measured as Manhattan length of the route.

c) Number of vias: In manhattan architecture, every ant has four neighbors in four

directions i.e. left, right, up and down. While choosing the next node to move to,

every ant chooses out of these four unvisited neighbors. Figure 3.6 shows an ant

that started from node 1 and moves in the right direction for two steps. The ant

changes its direction and moves down at third step. This change in direction

implies a change to vertical routing layer and hence requires a via. Thus every

such change in direction by the ant adds on to number of vias required to route.

Figure 3.7: At every step Manhattan architecture allows four possible directions in which

an ant could move.

After an ant moves from one node to another, a local pheromone update is applied using

Eq. 2.2 which lowers the pheromone on the arc taken by ant by a small amount ξ. Once

 45

all the ants complete their tour a global pheromone trail update is applied which includes

evaporation of pheromone on all the paths by a small amount ρ using Eq. 2.3 followed by

pheromone deposition on the best solution found.

The goal of this routing algorithm is to minimize the power consumption by

minimizing the capacitance induced by the wires and vias (eq 1.1). Thus the decision of

best solution is made by measuring the capacitance induced by each of the solutions

found by ants. On an average the capacitance of a routing wire is approximately 0.2

fF/µm [74] and average capacitance of via is about 0.23 pF [75, 76]. These capacitances

are approximations; in reality they will vary according to process size for any particular

chip. The model can be easily altered to include the capacitance value by changing Eq.

3.4. Moreover the capacitances on a chip vary from layer to layer, thus if the precise

value of via and wire capacitance is known for each layer we can use different equation

while evaluating capacitance in every layer. The following equation is used to evaluate

the routing solutions found by ants and chooses the best among them.

 Capacitance (C) = 2 x 10 -16 (Wire-Length) + 2.3 x 10 -13 (No. of Vias) (3.4)

The route with minimum capacitance is chosen as the best route and the pheromone on

this route is increased in an inverse proportion to length of the best path found by ants.

The algorithm uses the ant colony network to find routes with minimum length. Out of

theses routes it reinforces the routes with minimum capacitance. This helps the algorithm

to meet two different but related goals of minimizing capacitance and wire-length

collectively. Thus to retrieve routes with minimum wire-length it is essential to feedback

 46

correct information to the ant colony network. This feedback information about any

particular route is provided through the pheromone deposited on that route during the

pheromone update. Thus in an ant colony network it is essential to provide the exact

information about the suitability of a path which is expressed in terms of the route length.

The amount deposited can be written as:

 (3.5)

Where ∆τ i,j is the amount of pheromone deposited and W is the length of shortest path

found using Eq. 3.4.

3.3.4 Ordering Problem

While ACO is used for routing, ants are not informed about which paths are used by

other routes and which are available for routing. This allows ants to come up with the

best possible routing solution for any net. There are cases when ants find a solution that

uses a path which is already being used for routing of some other net. The algorithm

takes care of such cases in the following manner.

First the algorithm calculates the length of the already routed net which overlaps with

yet to be routed net. If the only common point is a non-terminal node, the algorithm

compares the length for which both the ‘net routes’ run without changing direction. This

is an important aspect for deciding which net is shifted, as change in direction indicate

use of vias. Thus to minimize the use of vias, the route which changes direction are

shifted to alternate routes or layers. Shifting the net route that runs without changing

direction might lead to unnecessary addition of vias and hence is discouraged by the

algorithm.

 47

In the second case, two nets share not just a point but a common path. Again the

number of direction changes is measured. It might be the case that shifting a net route to

another layer, leads to increase in wire-length if an obstacle is faced in this new layer.

Thus, it is necessary to check that saving vias is not leading to wire-length increase.

Hence a final decision of which net is shifted is made after calculating the TCI parameter

for both the nets in different layers.

The following figure (Figure 3.8) shows a simple case in which ACO-Route finds a

solution to connect terminal 1 and 2 through a and b. As the route does not overlap with

any other already routed net, it is routed on the grid. Later the route found to connect

terminal 3 and 4 overlaps with the already routed net connecting 1 and 2. The route

connecting terminal 3 and 4 is allowed to route through a, b and the other route is routed

using another horizontal route on the first layer.

The rip-up and reroute strategy discussed above provides an easy solution to the

problem of route blockage caused in routing and finding shortest paths to overcome the

blockage. The rip-up of previous connections in order to route blocked connections takes

up to 20% of the total routing run time.

3.3.5 Un-routable Nets

In some cases the best route found using ACO-Route is un-routable either due to

obstacles posed by placed components. Due to unavailability of a routing path, the

 48

(a)

(b) (c)

Figure 3.8: (a) A routed net connecting terminal 1 and 2. (b) Route found using ACO-

Route to connect terminal 3 and 4. (c) As the two routes overlap the route connecting

terminal 1 and 2 is shifted to another horizontal route on the first layer to make space for

the route connecting terminal 3 and 4.

 49

algorithm can not re-route the already routed nets and to find an alternate route to route

the current net. In such cases the ACO-Route algorithm tries to route the current net using

the second best routing solution found by the ants. If the second best solution is unable to

route the net, the algorithm tries up-to third, fourth and fifth best routing solution. If none

of these solutions are routable, it re-routes the whole circuit using a random strategy. The

random strategy employs a random permutation of nets irrespective of the net size and

degree. The random strategy is successful in breaking out of the deadlock of un-routable

nets. On an average the number of nets routed using the alternate strategy was very small:

0.017%. The following algorithm provides an outline of the ACO-Route algorithm.

 ALGORITHM 2: ACO-ROUTE

1. Create Hanan Grid

2. { Order the x and y coordinates of the components from placement file.

3. Take every possible pair of x and y coordinates and store it in memory.

4. }

5. Assign neighbors to each coordinate position.

6. Order nets according to degree and then size.

7. Initialize pheromone on the grid.

8. While (termination condition is not met)

9. { Route

10. { For (each ant)

11. { Empty ant’s memory.

 50

12. Place the ants at some terminal node.

13. Construct a complete tour for ants

14. { Using the above mentioned decision

rule choose the next node for the ant.

15. Move the ant to the next node and

decrease the pheromone of the path

taken by a small amount ξ.

16. If an ant meets another ant, append

the route list traveled by one ant to

the route-list of other ant and vice

versa.

17. }

18. Find the best ant of the iteration using the Capacitance

parameter.

19. Update the global pheromone value of the best ant.

20. }

21. Find the best ant routed solution, and check if any part of this

solution overlaps or has any common points with some already

routed solution.

22. }

23. Decide to shift either of these routes to other layer, based on Capacitance

parameter.

24. }

 51

3.4 ACO Algorithm for Non-Manhattan Routing (ACO-

NMRoute)

The trend of constantly increasing circuit complexity and decreasing chip sizes requires

new routing approaches. A new routing paradigm allowing wires to route at 45° and 135°

in addition to 0° and 90° called non-manhattan routing has been proposed [77, 78]

(Figure 3.9).

Figure 3.9: Eight possible neighbors of node A.

An example in Figure 3.10 shows that diagonal routing can achieve up-to 30% reduction

in length. Such architecture allows the router to exploit all possible eight directions for

routing wires thereby providing increased routing capacities.

Figure 3.10: Effect of diagonal routing on wire-length.

 52

With slight variation the ACO algorithm discussed in Section 3.3 can be easily extended

to the non-manhattan architecture. Below are the two variations required to implement

ACO algorithm on the non-manhattan routing architecture.

3.4.1 Grid Based Approach

Unlike manhattan routing, which uses a gridless approach i.e. the pitch of the grid is

defined by the location of cells on the chip, non-manhattan architecture uses a symmetric

grid. A symmetric grid is defined by a uniform pitch throughout the chip. The choice of

the pitch depends upon various factors including the type of chip technology, the library

cells used on the chip etc.

Figure 3.11: An example of diagonal routing showing four layers: horizontal, vertical,

45° diagonal and 135° diagonal layer.

The number of rows (in case of row based placement) or number of columns (in case

of column based placement) is obtained from standard cell layout file (.scl file). The

 53

number of rows or columns allows defining the horizontal and vertical routing grids.

Suppose

Die size = w x h (3.6)

where w is the width of the die and h is the height of the die. In case of row based

placement the distance between any two rows can be defined as:

 (3.7)

where Nr is the number of rows. Similarly in case of columns based placement the

distance between any two columns is defined as:

 (3.8)

where Nc is the number of columns. The distance between horizontal rows and vertical

columns is defined using Dx where Dx=Dr or Dx=Dc depending on row based or column

based placement respectively. The pitch p of the gird i.e. the minimum distance between

any two wires is defined as:

 (3.9)

In this routing strategy the wires are allowed to be placed in every row. Thus while the

diagonal routes are laid the minimum distance between any two possible routes is Dx/√2

(Figure 3.11).

 54

Figure 3.12: The distance between two diagonals defines the pitch in the non-

manhattan routing.

3.4.2 Sort Nets

The ability of non-manhattan architecture to enhance performance and reduce power

consumption is a direct consequence of reduction in routed wire-length and number of

vias. This reduction in wire-length is obtained by utilizing the diagonal routes available in

this architecture. A simple diagonal route connecting two points can achieve 30%

minimization in length over a manhattan route. Thus to maximize the utilization of these

diagonal routes, the nets are sorted in an order such that the routes that span more either

on x or y axis are routed first. Thus the axis span is measured as:

 (3.10)

In manhattan routing the nets are sorted first by degree and than by size, whereas in

diagonal routing the emphasis is to maximize the use of diagonal routes. Thus the nets are

first sorted by degree and than by axis span.

 55

Chapter 4

Results and Discussion

This section describes various experiments that were conducted to test the efficiency

of Ant Colony Optimization algorithm in routing VLSI nets.

4.1 ACO Parameters

Various parameters discussed above that are used in Ant Colony System can affect the

performance of ACO algorithm. Thus these parameters are chosen after measuring the

performance of the algorithm with various parameters settings.

4.1.1 Search Parameters

The three main parameters that affect any ACO algorithm is the choice of alpha (α),

beta (β) and rho (ρ). The performance of an algorithm can be measured by measuring the

distance between tours[79]. This distance is measured by counting the number of arcs

contained in one tour but not in another. A decrease in average distance between ant’s

tours indicates that preferred paths are appearing. Moreover the search behavior of the

algorithm can clearly indicate towards good and bad parameter settings. A good

parameter setting maintains a balance between the focus of the search and exploration of

new paths during the search. Whereas a bad parameter setting will make the search either

too narrow and focused leading to stagnation behavior or could cause excessive

exploration of search paths leading to a never converging search process.

 56

Ant Colony system is an aggressive search procedure that focuses around the best-so-

far solution. After each ant complete its tour, the best ant of the iteration is found and the

pheromone of that ant is reinforced. Due to this reinforcement the new paths found by

ants in successive iterations differ from the previous solution. Moreover as the ant

traverses a path, the pheromone on that path is lowered to make it less desirable by

successive ants. Lowering the pheromone lowers the probability of the path to be chosen

by other ants. This helps in exploration of un-visited paths by the ants. Due to its

probabilistic nature the Ant Colony algorithms does not converge quickly. The

convergence of these algorithms depends on how much they explore or exploit the search

space. The focus of the search and its exploitative nature can be controlled through ACO

parameter i.e. α, β and ρ. Thus to find a suitable value of parameters that maintains the

balance between the focus and explorative nature of the search the difference between

tour lengths was measured for various nets with many different sets of parameter values.

The set of parameter values that provided a good improvement in performance with the

iterations of the algorithm was chosen.

Table 4.1 Different Sets of Parameter Values used in graphs below.

(Good)

(Bad)

(Bad)

ACO
Parameters

G1 B1 B2
Alpha (α) 0.6 0.75 0.9
Beta (β) 0.3 0.5 0.5
Rho (ρ) 0.2 0.1 0.1

 57

(a)

 Benchmark : IBM01
 Mean Net Degree : 42

(b)
 Benchmark : IBM08
 Mean Net Degree : 75

(c)

 Benchmark : IBM09
 Mean Net Degree : 39

(d)
 Benchmark : IBM06
 Mean Net Degree : 46

Figure 4.1: Graphs showing change in distance between tours with the iterations of

the algorithm with different sets of parameter values. (The distance between tours is

measured as the number of arcs contained in one tour but not in another.)

 58

The graphs in Figure 4.1 give an example of the type of comparison made to

differentiate between good and bad sets of parameter values. As seen in graph (a), (b) and

(d) the average distance between tours (for set of parameters B2) acquires a high value

and remains nearly same with the iterations of the algorithm. This behavior is due to the

excessive exploration, as the algorithm is unable to focus on the promising parts of search

space. Whereas for another set of bad parameters B1 in graph (a) and (d) the average

distance between tours fall rapidly, which suggests that the exploration of new paths is

very low and the search is too focused. In contrast, the good set of parameters represented

by G1 is able to find a balance between the two observed behaviors and is neither too

focused nor too explorative. Based on the analysis of various different sets of values the

G1 parameter set was chosen for ACO algorithm. In order to maintain the consistency

these values are kept constant for all the runs of the algorithm.

4.1.2 Number of Ants

The number of ants used in an ACO algorithm depends on the number of nodes of the

search graph and has a direct influence on the computation time of the algorithm. More

ants per node are able to perform a more exhaustive search compared to fewer ants, but

also require more time for computation. Thus, there exists a trade-off between the

computation time and performance of the ACO-route algorithm. This trade-off exists

only until the number of ants used in the algorithm is below saturation value beyond

which performance does not improve. If the average number of ants per node is increased

beyond this saturation value, the increased number of ants tends to reinforce the locally

 59

optimum solution. Beyond this value, the only affect of the increase in number of ants is

to increase the computational time of the algorithm.

This work emphasizes minimizing power consumption which can be achieved by

minimizing the wire-length and vias over the computation time required by the algorithm.

Thus the choice of average number of ants per node was made as the number at the

saturation value.

Figure 4.2: Comparison of average Wire-Length Computed by algorithm with increase in

average number of ants per node.

The above graph shows that the performance of the algorithm increased by 8% when

the average number of ants was increased from one to five. A saturation point appears

when the average number of ants is nearly five per node. Beyond this point the

performance of the algorithm slightly decreases and becomes constant. Thus if the

algorithm solves a net of degree x, the number of ants was chosen as five times x. The

following table summarizes the value of various parameters used in the two ACO

algorithms and defaulted for all the runs of the algorithm.

 60

Table 4.2 Value of ACO Parameters used in ACO Algorithm

Alpha

(α)

(Parameter to

control the

influence of

pheromone on

an arc.)

Beta

(β)

(Parameter to

control the

influence of

desirability of ant

path based on its

length)

Rho

(ρ)

(Global

Pheromone

Update-

Evaporation

Constant.)

Epsilon

(ξ)

(Local

Pheromone

Update-

Evaporation

Constant.)

Number of

Ants

0.6 0.3 0.2 0.1 Net

degree * 5

4.2 ACO Algorithm

Both the ACO algorithms, i.e ACO-Route, the ACO algorithm for routing in

manhattan architecture and ACO-NMRoute, the ACO algorithm for routing in non-

manhattan architecture has been coded in C++ and the experiments were executed on a

2.6 GHz AMD Athlon Turion 64.

4.2.1 Results: ACO-Route

The ACO-Route algorithm uses 4 routing layers following the HVHV model i.e.

alternative horizontal and vertical layers. Both the algorithms were tested using IBM

ISPD 98 benchmarks. (The details of benchmarks are available in Appendix A). These

benchmark circuits contain chips with number of nets ranging from fourteen thousands to

two hundred thousand.

 61

As mentioned above (Section 3.3.5) there might be cases in which the best route found

using ACO-Route is un-routable either due to obstacles posed by placed components or

unavailability of routable path in the vicinity of the routing solution. The algorithm was

first executed without using the strategy to tackle un-routable nets. Table 4.3 shows that

fewer than half benchmark chips required the alternate routing, and of those 0.017% of

nets were left un-routed when no alternate routing strategy was employed. Later the

algorithm was executed along with the alternate strategy and was able to route all the

nets.

Table 4.3 Number of Nets Routed using Alternate Strategy

Benchmark

Name

Number of

Nets

Number of Nets

Routed Using

Alternate Strategy

% of Nets

Routed Using

Alternate

Strategy

Ibm03 27401 3 0.010

Ibm04 31970 9 0.028

Ibm05 28446 16 0.056

Ibm09 60902 13 0.021

Ibm13 99666 8 0.008

Ibm15 190048 11 0.005

Ibm16 190048 7 0.003

Ibm17 189581 14 0.007

Ibm18 201920 23 0.011

Average 113331.3 11.55 0.016

The following table gives the wire-lengths and the number of vias computed by ACO-

Route.

 62

Table 4.4 Wire-Length and Vias After All Nets Are Routed.

ACO-Route Benchmark
Name

Wire-Length Vias

Ibm01 65488 130481

Ibm02 176994 289548

Ibm03 142099 348872

Ibm04 165382 359128

Ibm05 409744 458745

Ibm06 278493 519934

Ibm07 370481 569293

Ibm08 410486 659240

Ibm09 413972 572098

Ibm10 539672 714277

Ibm11 500829 772074

Ibm12 901855 1095894

Ibm13 852669 1047892

Ibm14 988858 1182291

Ibm15 1160517 1391744

Ibm16 1650562 1846991

Ibm17 1897493 2174810

Ibm18 1971423 2139592

To measure the effectiveness of ACO-Route the algorithm results for wire-length was

compared with two state-of-the-art academic routers: Labyrinth Router [58]and Fast

Route2.0 [60] (Table 4.2). The results were also compared with a recently published

router NTHU Router [61]

 63

Table 4.5 Comparison of ACO-Route with Labyrinth and Fast Router

Fast Route 2.0
(FR)

Labyrinth
Router
(LR)

NTHU Router
(NR)

ACO-Route

Bench
Mark
Name

W-Len Time

(sec)

W-Len Time

(sec)

W-Len Time

(sec)

W-Len Time

Ibm01 68489 0.72 76228 72 63321 4.17 65488 94

Ibm02 178868 0.93 202235 123 170531 7.44 176994 186

Ibm03 150393 0.6 191500 148 146551 5.86 142099 254

Ibm04 175037 1.88 198181 278 168262 13.61 165382 551

Ibm05 409932 2.03 689671 233 278617 12.22 409744 408

Ibm06 284935 1.36 339379 171 366288 12.75 278493 252

Ibm07 375185 1.6 450855 381 405169 15.89 370481 301

Ibm08 411703 2.36 466556 364 415464 13.17 410486 662

Ibm09 424949 1.92 481841 553 580793 11.59 413972 803

Ibm10 595622 2.79 680113 692 580793 33.72 539672 952

Average 307511 1.61 377656 301.5 317579 13.04 297281 446.3

 64

Figure 4.3: Comparison of wire-length computed by Fast Route2.0, Labyrinth Router,

NTHU and ACO-Route.

Table 4.6 shows that ACO-Route is able to achieve an improvement of 3% compared

to FastRoute2.0 and 2% compared to NTHU router. The Labyrinth router and ACO-

Route is able to route all the nets, but ACO-Route achieves a 19% improvement over

Labyrinth in terms of wire-length.

 65

Table 4.6 Percentage improvement obtained by ACO-Route over Labyrinth Router,

Fast Route2.0 and NTHU Router

(%) Improvement
ACO-Route

Bench
mark-
name

FR2.0 LR NR

Ibm01 -4.38 -14.08 3.42

Ibm02 -1.04 -12.48 4.96

Ibm03 -5.51 -25.79 -3.03

Ibm04 -5.51 -16.55 -1.71

Ibm05 -0.04 -40.58 41.94

Ibm06 -2.26 -17.94 -23.9

Ibm07 -1.25 -17.82 -8.56

Ibm08 -0.29 -12.01 -1.19

Ibm09 -2.58 -14.08 -28.7

Ibm10 -9.39 -20.64 -7.08

Average -3.2 -21.01 -2.39

The results for vias and wire-length computed by ACO-Route were also compared to

WROUTE [80] (Table 4.7). As the goal is to minimize capacitance my minimizing wire-

length and vias, the reduction in capacitance was also measured (Table 4.7). Table 4.8

shows that ACO-Route is able to achieve an improvement of 9% in terms of wire-length,

7% in terms of vias. The capacitance comparison was made between ACO-Route and

WROUTE by substituting the wire-length and number of vias in the capacitance equation

 66

[Eq. 3.4]. ACO-Route was able to achieve a 7% reduction in capacitance compared to

WROUTE.

Table 4.7 Comparison of Number of Vias, Wire-Length and Capacitance Computed

By ACO-Route and WROUTE

W-Route ACO-Route Benchmark-
Name

Vias Wire-

Length

Capacitance

(x10 -8)

Vias Wire-

Length

Capacitance

(x10 -8)

Ibm01 145780 76500 3.36 130481 65488 3.01

Ibm02 321523 188000 7.39 289548 176994 6.66

Ibm07 624005 426000 14.36 569293 370481 13.1

Ibm08 721215 454000 16.59 659240 410486 15.17

Ibm09 603149 418000 13.88 572098 413972 13.16

Ibm10 758598 678000 17.46 714277 539672 16.43

Ibm11 795088 510000 18.29 772074 500829 17.76

Ibm12 1162650 1043000 26.76 1095894 901855 25.22

Average 641501 560250 13.12 600363.1 422472.1 12.28

 67

(a)

(b)

 68

Figure 4.4: Comparison of (a) wire-length (b) vias and (c) capacitance computed by

ACO-Route and WROUTE.

Table 4.8 Percentage improvement obtained by ACO-Route over WROUTE

% Improvement

ACO-Route w.r.t W-Route

Benchmark
Name

Wire-

Length

Vias Capacitance

Ibm01 -14.39 -10.49 -10.86

Ibm02 -5.85 -9.944 -9.94

Ibm07 -13.03 -8.76 -8.77

Ibm08 -9.58 -8.59 -8.59

Ibm09 -0.96 -5.14 -5.14

Ibm10 -20.40 -5.84 -5.85

Ibm11 -1.79 -2.89 -2.89

Ibm12 -13.53 -5.74 -5.74

Average -9.94 -7.17 -7.22

 69

4.2.2 Results: ACO-NMRoute

ACO-NMRoute uses four layers for routing in the order horizontal, 45° diagonal, 135°

diagonal and vertical layer. The routing results obtained for ACO-NMRoute are as below.

The goal of diagonal routing is to overcome the limitations of manhattan routing by using

diagonal routing paths and further minimize the wire-length. Thus ACO-NMRoute

results were compared to ACO-Route to measure the reduction it is able to achieve over

manhattan routing. Table 4.9 shows the results of wire-length and vias for ACO-

NMRoute and the reduction it is able to achieve over ACO-Route. ACO-NMRoute is

able to achieve an improvement of 8% in terms of wire-length and 5% in terms of vias.

Table 4.9 Wire-Length and Vias Computed By ACO-NMRoute

ACO-NMRoute % Reduction

over ACO-

Route

Benchmark

Name

Wire-

Length

Vias Capacitance Wire-

Length

Vias

Ibm01 61377 129275 2.97 -6.27 -0.92

Ibm02 166406 284573 6.542 -5.98 -1.71

Ibm03 128274 338128 7.77 -9.72 -3.074

Ibm04 150018 335629 7.72 -9.29 -6.54

Ibm05 405902 429845 9.89 -0.93 -6.29

Ibm06 271982 499823 11.50 -2.33 -3.86

Ibm07 349261 564970 13.01 -5.72 -0.75

Ibm08 389365 654873 15.06 -5.14 -0.663

Ibm09 412081 560148 12.89 -0.45 -2.08

Ibm10 532788 702341 16.16 -1.27 -1.671

Ibm11 474961 651069 14.98 -5.165 -15.6

Ibm12 878823 979420 22.54 -2.55 -10.62

 70

Ibm13 702280 973716 22.40 -17.63 -7.07

Ibm14 899782 998021 22.97 -9.01 -15.58

Ibm15 1002703 1289283 29.67 -13.59 -7.36

Ibm16 1338478 1676627 38.58 -18.90 -9.23

Ibm17 1488590 1994263 45.89 -21.54 -8.31

Ibm18 709239 2005957 46.17 -13.29 -6.2

Average 631239.4 837108.9 -5.98 -8.27 -5.98

As mentioned earlier the power consumption of a chip is directly proportional to the

total load capacitance. The capacitance for ACO-NMRoute is calculated using Eq. 3.4.

Diagonal routing achieves a 6%reduction in capacitance compared to manhattan routing.

(a)

 71

(b)

(c)

Figure 4.5: Comparison of (a) wire-length, (b) vias and (c) capacitance computed by

ACO-Route and ACO-NMRoute

 72

4.3 Verification

The results computed for ACO-Route and ACO-NMRoute were verified using three

different procedures.

(i) By checking usage of each edge on the grid.

ACO-Route uses alternate horizontal and vertical layers. To implement two different

horizontal and vertical layers in memory, the grid edge used for routing is allowed to be

used twice. Thus to make sure that each vertical or horizontal route uses either of the two

allowed layers, the edge is checked to make sure no edge is used more than twice.

(ii) By checking Commonality among different routes.

Different routes found by the algorithm are checked for common segments on the same

layer.

(iii) Comparison with half perimeter wire-length

The wire-length computed by ACO-Route was compared to half-perimeter wire-lengths

of the IBM benchmark suite. Half perimeter wire length gives an estimation of wire-

length that would be required to route a particular net in an ideal case. The estimate is

based on the fact that the area of a quadrilateral can be written as a factor of its in radius

and semi-perimeter. Thus in ideal cases when no obstacle is present on the chip, half

perimeter wire-length is required to route a net on the chip. But during actual routing the

presence of other cells and adherence to routing constraints and rules leads to a much

longer wire-length. A comparison between HPWL and ACO-Route wire-length is made

in Table 4.10

 73

Table 4.10 Comparison of ACO-Route Wire-Length with Half-Perimeter Wire-Length

ACO-Route Difference Benchmark

Name Wire-Length

Half Perimeter

Wire-Length (%)

Ibm01 65488 16297 34.16

Ibm02 176994 34719 23.18

Ibm03 142099 45094 17.20

Ibm04 165382 56496 21.29

Ibm05 409744 94986 22.62

Ibm06 278493 47919 21.65

Ibm07 370481 78893 31.45

Ibm08 410486 92871 37.91

Ibm09 413972 89660 32.32

Ibm10 539672 169767 28.73

Ibm11 500829 189896 32.16

Ibm12 901855 291488 25.18

Ibm13 852669 245008 21.20

Ibm14 988858 318026 28.29

Ibm15 1160517 292239 24.62

Ibm16 1650562 350027 34.16

Ibm17 1897493 536891 23.18

Ibm18 1971423 214585 17.2

Average 655390 175825.7 26.57

 74

Table 4.11 Reduction in number of nets routed using alternate routing strategy when the

number of routing layers is increased from four to six.

Benchmark

Name

Number of

Nets

Number of

Nets routed

using alternate

strategy

% of Nets

routed using

alternate

strategy

Ibm03 27401 2 0.0073

Ibm04 31970 0 0

Ibm05 28446 0 0

Ibm09 60902 2 0.0033

Ibm13 99666 6 0.006

Ibm15 190048 0 0

Ibm16 190048 4 0.0021

Ibm17 189581 0 0

Ibm18 201920 11 0.0055

Average 113331.3 5 0.0048

4.4 Discussion

Power has been termed as a primary architectural design constraint not only for

portable devices and computers but also for high end systems[8]. The main emphasis of

this work is to lower the major component of total power, i.e dynamic power. Eq.1 shows

that dynamic power is a function of voltage, capacitive load and frequency of the system.

Thus these three metrics can be traded to lower the dynamic power consumption.

Although the quadratic dependence of power on voltage means that by lowering voltage,

the savings can be significant. But the linear dependence of frequency (clock cycles-

defines speed of chip) on voltage, bring these savings only at the cost of reduced

performance.

 75

P α V2 (4.1)

f α V (4.2)

This work emphasizes reducing power by reducing the total capacitive load of the chip.

Two of capacitive components the wires (interconnects) and the vias that provide

electrical connectivity between different layers. Vias and total wire-length share an

inherent trade-off such that increasing one of the metric leads to a decrease in the other.

Thus the challenge is finding the number of wires and vias that best meet the goal of

minimizing the capacitive load of the chip.

The ACO employed to meet this goal uses the make ants meet soon heuristic to find the

routes with minimum length. Out of these, the algorithm chooses the best ant as the one

that provides with a least capacitive route. The results show that the routes found using

ACO are able to achieve an average of 7% reduction in capacitance compared to

WROUTE. Although the run time of ACO is comparatively longer than these algorithms,

it is able to achieve complete routing which is only achieved by Labyrinth router. More

important than the actual running time is the scaling of run time with the number of nets.

Scaling exponents are significant in terms of predicting the behavior of these algorithms

for complex chips with higher net count. Table 4.12 shows that the exponents for ACO-

Route and ACO-NMRoute are similar to Labyrinth. FastRoute2.0 is able to achieve sub

linear scaling as it route nets simultaneously, but it is an approximation that cannot route

all nets on the benchmark chips. The ACO routes every net. Moreover, ACO is an agent

based algorithm in which every agent practices an independent sequential decision

process aimed at constructing a feasible solution using only information local to the

current decision step. Thus, ACO algorithm can be easily parallelized [20, 81]which can

 76

substantially reduce run-time without compromising the performance. None of the other

routers use independent agents that can be easily parallelized.

Table 4.12 Scaling Coefficients

Y= c X P

Where c is the coefficient of x and p is

the power

Wire-Length

Scaling

Time Scaling

ROUTER

c p c p

FastRoute 2.0 2.07 1.12 0.0002 0.832

NTHU 0.4315 1.27 0.0004 0.981

Labyrinth 3.331 1.10 0.0002 1.319

ACO 2.28 1.11 0.0005 1.28

ACO-NM 1.54 1.14 0.0002 1.36

The ACO-Route is 50% slower compared to Labyrinth router. Using the exponents in

Table 4.12 Labyrinth router would be able to route these nets in approximately half the

time compared to ACO router. The run time of ACO Route can be decreased by using

multiple processors.

 77

Chapter 5

Conclusion and Future Scope

The challenge for device manufacturers lies in developing devices that offer an array

of services while maintaining power efficiency. The combination of greater functionality

leading to complex circuits and smaller process geometries has contributed to significant

increase in power density of VLSI chips. The methodologies which are used to lower the

power consumption in VLSI systems range from device level to algorithm level. At the

device level, the active power consumed by the chip is a factor of load capacitance,

voltage and clock cycles. The load capacitance is directly dependent on the wire-length

and vias used to route VLSI chips. This work primarily concentrates on the device level

design measures which can be applied to reduce the power dissipation in VLSI circuits.

More specifically, the goal of this work is to minimize capacitance by minimizing the

length of wires and number of vias used in routing. Routing of VLSI chips is an NP

complete optimization problem. Moreover the combined goal of minimizing the two

interdependent metrics of wire-length and vias is a combinatorial problem with multiple

constraints. An algorithm using an Ant Colony Optimization technique was developed for

solving the coupled constraint of optimizing wire-length and vias and thereby the load

capacitance. Ants were placed on the grid and followed a set of heuristics to guide their

search process. The heuristic to make ants meet soon helped the ACO algorithm to find

routes with minimum length. On the other hand the choice of best ant reinforced the route

of ant that provided the solution with minimum capacitance. The effectiveness of the

 78

technique enabled the algorithm to find the optimal number of vias and wire-length and a

routing solution that minimizes capacitance and hence the active power of the chip.

Some of the past academic approaches [58-61] to route efficiently concentrated on

minimizing the total wire-length along with minimizing congestion levels. However these

approaches suffer from the trade-off that exists between complete routing and congestion

levels which hence affects the routing quality. The ACO based routing algorithm is able

to achieve complete routing.

However there is significant room to enhance the algorithm and widen the domain in

which it applies. These are described below:

1. In comparison to other routers the ACO based router is able to achieve complete

routing, but requires a longer running time. The ACO algorithm is an agent based

algorithm in which every agent makes an independent decision while searching the

solution space. These agents share their search experience through the pheromone

trail. This independent nature of the algorithm can be used to implement different

colonies of agents on different processors working independently on the solution

construction. This would require a central process that can be used by all the

groups thereby minimizing the overhead for information sharing. Different

colonies running on different processors working either on same or different parts

of the problem will communicate their results to the central processor. The central

processor will be responsible for broadcasting these results and other information

to the rest of the processors.

2. In addition to being agent based, the ACO algorithm uses a set of parameters

that affect the search behavior. These parameters are chosen such that the search is

 79

neither too explorative nor too focused. However to maintain this search behavior

the ACO parameter that fit a particular set of constraints might not be the best

choice for slightly different problem with different set of constraints. The parallel

approach can also help in exploring the efficiency of ACO algorithm with different

set of parameters. Different colonies running on individual processors can be

executed with different set of parameters. This can help in testing a large set of

parameters in a small time and choose the one which give the best results.

 Another promising approach to test different set of parameters is using an

ACO embedded in a genetic algorithm. Genetic algorithms employ the concepts of

natural evolution to direct the search towards areas of high expected performance.

They simulate the evolution process by generating an initial population of

individuals and then evolving the population by a mutation and reproduction

process. This can be achieved by using different values of ACO parameters like α,

β and ρ among different populations. The GA will be responsible for the evolution

of these populations. The ACO would be used to exploit information stored in

pheromone trails during genetic operations like crossover and mutation to obtain

offspring having good characteristics of parents i.e. those parents whose parameter

settings were most favorable for any particular problem.

Another approach suggests that GA can be used to handle a particular set of

constraints and return a solution based on these constraints. The solution returned

in step 1 can be used to lay the initial pheromone for ACO algorithm. The ACO

algorithm can further use the remaining set of constraints and execute ACO using

the pheromone levels initialized using the genetic algorithm.

 80

3. The ACO based router implemented in this work takes into consideration a

minimal set of constraints for minimizing the capacitance which could hence

reduce the power consumption of the chip. While routing in layers different

materials for conductors are used on different routing layers. Hence the

capacitance of wires and vias vary from layer to layer. The wires in upper routing

layers are comparatively less wide than the wires in the lower routing layers and

thus have lower capacitance. Due to the lower capacitance of wires, longer wires

are routed in upper layers. Wires running parallel to each other can lead to

crosstalk due to capacitive coupling between wires. Capacitive coupling can cause

logic failure and timing degradation in VLSI circuits (Eq 4.1).

 (5.1)

Where Є =dielectric of the wire insulation

 l = length of wire

 t = thickness of wire

and s = distance between wires.

Thus while routing; coupling capacitance of wires running parallel to each other

can be included as a heuristic in the ACO algorithm. This would allow the

algorithm to find routes that minimize the coupling capacitance between wires.

Similar to coupling capacitance there are other constraints which can be included

like timing and resistance of different routing paths.

4. The ACO algorithm uses a rip-up and reroute strategy to find the best possible

routes. Although rip-up and reroute is an effective methodology, it takes up

considerable time in finding a routing solution. Moreover with the increasing

 81

complexity of circuits the number of nets to be routed is now in the order of

millions. With such a large number it is impossible to find the best permutation of

these nets that could define the order in which they must be routed. The order in

which nets are routed affects the overall routability of chip. With the growing

trend of simultaneous placement and routing the decision of which net should be

routed next should be based on the information about the constraints governing the

routing and the placement of a particular component already placed and routed by

the tool.

5. The ACO technique has been and continues to be a successful paradigm for

designing effective combinatorial optimization algorithms. The strength of ACO

algorithm lies in its ability to combine a priori information about the structure of a

promising solution with posterior information about the structure of previously

obtained good solutions. The particular way of defining components and

associated probabilities can be designed in a problem specific manner there by a

allowing a trade off between the quality of solutions and number of iterations

which needs to be executed for the emergence of good solutions.

Moreover ACO can handle both static and dynamic sets of constraints.

As chip designs become more complex and more portable, low power consumption

chips with high throughput are increasingly important. The design of such complex chips

necessitates continuous research to develop algorithms that produce near optimal physical

designs. Ant Colony Optimization is a promising algorithm that can be effectively used to

improve these designs.

 82

Appendix

1. Routing Benchmark and Format

There has been extensive research in the field of placement and routing algorithms for

VLSI circuits. For example there are several new academic placers and routers that use

different approaches like simulated annealing [13], artificial intelligence [14] and neural

networks[15]. Such advances wouldn’t have been possible without publicly available

standard circuit benchmarks and suites. Design Automation (DA) community has heavily

relied on these benchmark suites to compare and validate their algorithms. These

benchmark suites are maintained by the Collaborative Benchmarking Laboratory [16]. A

benchmark contains variety of information depending on whether it is a placement and

routing benchmark or in particular placement only or routing only benchmark. One of the

major benchmark suite used by the design community is ISPD benchmark suite. Some

other benchmarks include MCNC [82] and EDA [83]. MCNC benchmark suite was

developed by Microelectronics Center at North Carolina and included some of the

benchmarks like ISCAS85, ISCAS89, LayoutSynthesis92, Partitioning93 [11]. EDA or

Electronic Design Automation benchmark is a collection of large chip-design datasets.

MCNC and EDA did not release any new version of benchmarks and these circuits are

now obsolete as they do not adequately represent the complexity of modern design. There

also exist benchmarks which are based on chip type: like FPGA, ASIC or DSP. An

example of one such benchmark is ITC99 [84, 85] which is an ASIC benchmark and

contains gate level information.

 83

Any complete EDA (Electronic Design Automation) system is a disparate set of

heterogeneous tools stitched together [17]. During the design flow these different tools

interact with each other using data-file generation and translation. These files are

generated in a particular format by one tool and translated by another tool to its internal

data structure. Thus ‘format’ is defined as a file or set of files that contain data in a given

syntax that is understood by different interacting tools [18]. Some of the important

formats used by routing tools are EDIF[86], LEF/DEF [87], Steiner [88], and Bookshelf

[89]. The EDIF or Electronic Design Interchange Format provides connectivity and

layout information along with design hierarchy. LEF/DEF or Library Exchange Format/

Design Exchange Format were defined by Cadence Design Systems to exchange data

across synthesis and design tools. LEF contains design rules, cell description, dimension

and layout for routing whereas DEF contains actual connectivity information in the form

of net-lists. Steiner format net-list includes a decomposition of multi-pin nets into two pin

edges, using a Steiner tree heuristic. It also provides layer assignment information such

that the area demand on each layer is equalized. One of the most recent and versatile

format is the Bookshelf format. Bookshelf is an object oriented format that contains

information in the form of library. Being object-oriented allows reuse of the same

specifications for more complex circuits and across different platforms.

This research uses IBM ISPD98 benchmarks in bookshelf format and is described

below in detail.

 84

2. IBM ISPD Benchmark Suite

ISPD (International Symposium on Physical Design) benchmarks are derived from IBM

internal design format and include circuits comprising wide variety of library components

like memory, logic, processor etc. Every circuit in this benchmark is a translation from

VIM (Very-Large-Scale Integrated Model- IBM’s internal data format) into net format,

which is a simple hyper-graph representation originally proposed by Wei and Cheng,

ISPD benchmark includes 18 circuits ranging from IBM01 to IBM 18 and each one

having different complexity and size. The benchmarks exclude any information related to

functionality, timing and technology. The benchmark includes information, related to cell

placement, size and orientation, connectivity information and circuit row information in

the bookshelf format. For each benchmark circuit this information is contained in a set of

6 files.

Each IBM ISPD benchmark circuit contains a set of 6 files. The information available in

each file is described below:

(iii) IBMxx.aux: This file is known as Auxiliary File and has an extension .aux. The

auxiliary files contain the set of input files and the placement method. An

auxiliary file looks like:

RowBasedPlacement: IBMxx.nodes IBMxx.nets IBMxx.wts
IBMxx.pl IBMxx.scl

(iv) IBMxx.nodes: This file is known as nodes file and contains information about

specific objects. It specifies

� Total number of objects.

 85

� Total number of terminal objects.

� For each object it specifies object name, width, height and whether it is a

terminal or non-terminal object. To signify a non-terminal object the keyword

‘terminal’ is omitted.

A nodes file looks like:

NumNodes : 27507

NumTerminals : 287

 a0 6 16

 a1 20 16

 . . .

 . . .

 a27219 6 16

 p1 1 1 terminal

 . . .

 . . .

 p286 1 1 terminal

 p287 1 1 terminal

(iiii) IBMxx.nets: A nets file specifies the set of nets. It includes

� Total number of nets

� Total number of pins

� For each net it includes net-degree, net-components and whether that

component is acting as an input or output in the net. An input is represented

using ‘I’ and an output using ‘O’ in front of the component name.

 86

A net file looks like:

NumNets : 31970

NumPins : 105859

NetDegree : 2

a16004 O

a4246 I

NetDegree : 3

a17172 O

a16823 I

a10725 I

(iv) IBMxx.pl: A placement file specifies the location and orientation of objects. A

placement file looks like:

a0 24750 17696 : N

a1 20856 31192 : N

a2 264 26656 : N

a3 19206 23632 : N

a4 27786 17696 : N

The orientation of a component could either be N, FN, E, FE, S, FS, W, and FW

[70]. The default orientation is “vertically and face up” and is represented as N

(North). Other orientations are obtained by flipping N, E, W and S orientations

by right angle about X or Y axis and are represented as FN, FS, FW and FE.

 87

N FN E FE

S FS W FW

Figure A.1 Representation of various possible orientations of a component on a chip.

(vi) IBMxx.scl: The scl or Standard Cell layout file provides cell-placement

information as a set of constraints on row configuration. A cell based layout is

mostly concerned with placement of cells and interconnections between them.

The placement of a cell has various constraints associated with it which are

specified in the scl file in the following manner:

���� Core Row Horizontal/Vertical

���� Coordinate

���� Height

���� Sitewidth

 88

���� Sitespacing

���� Sireorient

���� Sitesymmetry

���� Subroworigin

Core is defined as the area to place rows or columns of library cells. The first

parameter “Core Row Horizontal/Vertical” specifies that whether cells are

placed in horizontal rows or vertical columns. If the placement of cells is in

horizontal rows, the second parameter “Coordinate” specifies the Y coordinate

of the row. Whereas if the placement of cells is in vertical columns “Coordinate”

specifies the X coordinate of the column. The height of a row is same as the

height of any cell in the row, since all the cells are predesigned to have the same

height [90]. Thus the third parameter represents the height of a row. Width of a

row is the sum of widths of all the cells and is constrained by the parameter

“Sitewidth” i.e. the maximum row width possible. “Sitespacing” determines the

distance between two rows or columns of cells. “Siteorient” can take any of the

orientation values like N, E, W and S. This parameter specifies the possible

orientations that a cell can take in a row or a column. The “Sitesymmetry”

parameter specifies the symmetry of a row along either of the axis and could be

used to generate other possible orientations of a cell in a row like, FN, FE, FW

and FS. There could be many subrows inside a row. The position of subrows is

specified by a coordinate point “Subroworigin”. A scl file looks like:

 89

Numrows : 2

 CoreRow Horizontal
 Coordinate : 73200
 Height : 2880
 Sitewidth : 240
 Sitespacing : 240
 Siteorient : N
 Sitesymmetry : Y
 SubrowOrigin : 222960
 SubrowOrigin : 0
End

(vi) IBMxx.wts: The weights file specifies the weight for objects and nets. The

weight of net is a function of the timing behavior of a net and hence is crucial in

performing performance driven partitioning [91, 92]. A weights file looks like:

 a0 224

 a1 64

 a2 224

 a3 128

 a4 96

The following table gives the details of the benchmark circuits used in ISPD benchmark

suite.

 90

Table A.1 IBM ISPD98 Benchmark Suite Details

Benchmark

Name

Number of

Nets

Number of Cells

Ibm01 14111 12506

Ibm02 19584 19342

Ibm03 27401 22853

Ibm04 31970 27220

Ibm05 28446 28146

Ibm06 34826 32332

Ibm07 48117 45639

Ibm08 50513 51023

Ibm09 60902 53110

Ibm10 75196 68685

Ibm11 81454 70152

Ibm12 77240 70439

Ibm13 99666 83709

Ibm14 152772 147088

Ibm15 186608 161187

Ibm16 190048 182980

Ibm17 189581 184752

Ibm18 201920 210341

 91

References:

1 Webb C, 45nm Design for Manufacturing. Intel Technology e-Journal Volume,

2008, pp: 121-130.

2. Seki T, Itoh E, Furukawa C, Maeno I, Ozawa T, Sano H, and Suzuki N, A 6-ns 1-

Mb CMOS SRAM With Latched Sense Amplifier. IEEE Journal of Solid-State

Circuits, 1993, vol. 28(4), pp. 478-483.

3. The International Technology Roadmap for Semiconductors (ITRS). 2004.

4. Morris K, Power Primer- Is That My FPGA Burning. FPGA and Structured ASIC

Journal, 2009.

5. Oklobdzija V G, Digital Design and Fabrication. CRC Press, 2007.

6. Scheffer L, Martin G, Electronic Design Automation for Integrated Circuits

Handbook. CRC Press, 2006.

7. Donis G F, Hans L, Van D, Jan B, Igor B, and Bernd G, Understanding

Systematic and Random Cd Variations Using Predictive Modeling Techniques.

SPIE, 1999, pp. 162-175.

8. Mudge T, Power: A First-Class Architectural Design Constraint. Computer, 2001,

vol. 34(4), pp. 52-58.

9. Richards D, Complexity of Single-Layer Routing. IEEE Computer Society, 1984,

pp. 286-288.

10. Sherwani N A, Bhingarde S, and Panyam A, From VLSI Chips to MCMs Routing

in the Third Dimension, pp 24-27,31-34

11 Charles J A, The ISPD98 Circuit Benchmark Suite. Proceedings of the 1998

International Symposium on Physical Design. ACM, 1998, pp. 80-85.

 92

12. Wanhammar L, DSP Integrated Circuits. Academic Press, 1999.

13. Sechen C, VLSI Placement and Global Routing Using Simulated Annealing.

 Kluwer Academic Publishers, 1988.

14. Rostam J, Artificial Intelligence Approach to VLSI Routing. Kluwer Academic

Publishers, 1986.

15. Green A, Noakes P D, A novel approach to VLSI Routing Using Neural

Networks. European Conference on Circuit Theory and Design, 1989.

16. Brglez F, Collaborative Benchmarking and Experimental Algorithmic Lab.

[Available from: http://www.cbl.ncsu.edu/].

17. Wai K C, The VLSI handbook. CRC Press, 2000.

18. Luca P C, Languages and Tools for Hybrid Systems Design. Now Publishers Inc.,

2006, pp. 78.26.

19. Bonabeau E, Dorig M, Theraluaz G, From Natural to Artificial Swarm

Intelligence, 1999, pp. 25-98.

20. Stutzle T, Marco D, Ant Colony Optimization. MIT Press, 2004.

21. Wikipedia. Traveling Salesman Problem. [Available from:

http://en.wikipedia.org/wiki/Traveling_salesman_problem.]

22. Naveed A S, Algorithms for VLSI Physical Design Automation. Kluwer

Academic Publishers, 1995.

23. Breuer M A, Theory and Techniques- Design Automation of Digital Systems,

1972, vol. 1.

24. Pal R K, Multi-layer Channel Routing: Complexity and Algorithms. Alpha

Science Int'l Ltd., 2000.

 93

25. Chen H H, Trigger: A Three Layer Gridless Channel Router. IEEE International

Conference on Computer Aided Design, 1986, pp. 196-199.

26. Chen H H, Kuh E S, Glitter: A Gridless Variable-Width Channel Router. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

1986, vol. 5(4), pp. 459-465.

27. Kaustav B, Shurki J S, Pawan K, Krishna C S, 3-D ICs: A Novel Chip Design for

Improving Deep-Submicrometer Interconnect Performance and Systems,

Proceedings of the IEEE Chip Integration, 2001, pp. 602--633.

28. Yun K C, Mei L L, Three-Layer Channel Routing. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 1984, vol. 3(2), pp.

156-163.

29. The international technology roadmap for semiconductors (ITRS) 2006.

30. George W Z, Routing, Placement, and Partitioning. Ablex Publishing Corp.,

1994.

31. Cristinel A, Yan F, Brent G, Hushrav M, Tianpei Z, Kia B, Sachin S, Placement

and Routing in 3D Integrated Circuits. IEEE Computer Society Press, 2005, pp.

520-531.

32. Lee C Y, An Algorithm for Path Connections and its Applications. IRE

Transactions on Electronic Computers, 1961, EC-10, pp. 346-365.

33. Dorothy E S, Rob A R, Automatic Programming Applied to VLSI CAD

Software- A Case Study. Springer, 1990.

34. Soukup J, Fast Maze Router. 15th Conference on Design Automation, 1978.

 94

35. Akers S B, A Modification of Lee's Path Connection Algorithm. IEEE

Transactions on Electronic Computers, 1967, EC-16(1), pp. 97-98.

36. Arnold M H, Scott W S, An Interactive Maze Router With Hints. Proceedings of

25th ACM/IEEE Design Automation Conference, 1988.

37. Hightower D W, The Lee Router Revisited. International Conference on

Computer Aided Design, 1983, pp. 136-139.

38. Xiong J G, A Gridless Maze Router: DBM (Diffraction Boundary Method). IEEE

International Conference on Computer-Aided Design, 1986, pp. 192-195.

39. Sadiq M S, Habib Y, VLSI Physical Design Automation: Theory and Practice.

World Scientific, 1999.

40. Ronald L R, Charles M F, A Greedy Channel Router. Proceedings of 19th IEEE

Conference on Design Automation, 1982.

41. Johnson D S, Gary M R, The Rectilinear Steiner Tree Problem is NP-Complete.

SIAM J. Applied Math, 1977, vol. 32(4), pp. 826-834.

42. Kramer M R, Leeuwen J, The complexity of wirerouting and finding minimum

area layouts for arbitrary vlsi circuits. Adv. Computer Res. 2, 1984, pp. 129-146.

43. Hwang F K, On Steiner Minimal Trees with Rectilinear Distance. J. SIAM

Applied Mathematics, 1976, vol 30, pp. 104- 114.

44. Hwang, F K, On Steiner Minimal Trees with Rectilinear Distance. J. SIAM

Applied Mathematics, 1979, vol 26, pp. 75-77.

45. Hwang, F K, Richards D, Winter P, The Steiner Tree Problem. North-Holland

Publishing Company, 1992.

 95

46. David M, Warme P W, Martin Z, Exact Algorithms for Plane Steiner Tree

Problems: A Computational Study Advances in Steiner Trees. 2000.

47. Zhou H, Efficient Steiner Tree Construction Based on Spanning Graphs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

2004, vol 23(5), pp. 704-710.

48. Jeff G, Gabriel R, Closing the Gap: Near-Optimal Steiner Trees in Polynomial

Time. IEEL Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 1994, vol 12(11), pp. 1351-1365.

49. Chu C, FLUTE: Fast Lookup Table Based Wirelength Estimation Technique. In

Proceedings of the IEEE/ACM International Conference on Computer-aided

Design, 2004.

50. Koch T, Martin A, Solving Steiner Tree Problems in Graphs to Optimality.

Networks, 1998, vol 33, pp. 207–232.

51. Lin C W, Chen S Y, Li C F, Chang Y W, Yang C L, Efficient Obstacle Avoiding

Rectilinear Steiner Tree Construction. In Proceedings of International Symposium

on Physical Design, 2007, pp. 127–134.

52. Lin L, Liu Y, Hwang T, Construction of Minimal Delay Steiner Tree Using Two-

pole Delay Model. In Proceedings of the Asia and South Pacific Design

Automation Conference, 2001, pp. 126–132.

53. Yiyu S, M Paul, Y Hao, H Lei, Circuit Simulation Based Obstacle-Aware Steiner

Routing. Proceedings of the 43rd annual conference on Design Automation, 2006.

54. Hu Y, Jing T, Hong X, Feng Z, Hu X, Yan G, An Efficient Rectilinear Steiner

Minimum Tree Algorithm Based on Ant Colony Optimization. Proceedings of

 96

IEEE International Conference on Communications, Circuits and Systems, 2004,

vol. 2, pp. 1276-1280.

55. Moffitt M D, MaizeRouter: Engineering An Effective Global Router. Design

Automation Conference, 2008.

56. Minsik C, David Z, BoxRouter: A New Global Router Based on Box Expansion

and Progressive ILP. Design Automation Conference, 2006, pp. 24-28.

57. Roy J A, Igor M, High-performance Routing at the Nanometer Scale. IEEE/ACM

International Conference on Computer-Aided Design, 2007.

58. Ryan K, Elaheh B, Majid S, Predictable routing. Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, 2000.

59. Min P, Chu C, FastRoute: A Step to Integrate Global Routing into Placement.

IEEE/ACM International Conference on Computer-Aided Design, 2006.

60. Min P, Chu C, FastRoute 2.0: A High-quality and Efficient Global Router. Asia

and South Pacific Design Automation Conference, 2007.

61. Gao J, Pei C W, Wang T, A New Global Router for Modern Designs. Proceedings

of the Conference on Asia and South Pacific Design Automation, 2008, pp. 232-

237.

62. Kwang M S, Weng S H, Ant Colony Optimization for Routing and Load-

Balancing: Survey and New Directions. Systems, Man and Cybernetics. IEEE

Transactions on Systems and Humans, 2003 vol. 33(5), pp. 560-572.

63. Parpinelli R S, Lopes H S, Freitas A A, Data Mining With An Ant Colony

Optimization Algorithm. IEEE Transactions on Evolutionary Computation, 2002,

vol 6(4), pp. 321-332.

 97

64. Saritchai P, Prasit J, Chom K, Chai W, A Method for THAI Isolated Word

Recognition Using Ant Colony Algorithm. Proceedings of the 5th WSEAS

International Conference on Computational Intelligence, Man-Machine Systems

and Cybernetics, 2006.

65. Dorigo M, Gambardella L, Ant Colony System: A Cooperative Learning

Approach To the Traveling Salesman Problem. IEEE Transactions on

Evolutionary Computation, 1997, vol. 1(1), pp. 53-66.

66. Dorigo M, Gambardella L M, Ant Colonies for the Traveling Salesman Problem.

BioSystems, 1997, vol. 43, pp. 73-81.

67. Sanjoy D, Shekhar V G, William H H , Shilpa A V, An Ant Colony Approach for

the Steiner Tree Problem. Proceedings of the Genetic and Evolutionary

Computation Conference, 2002.

68. Luc L, Luc L, Sacha V, Nicolas Z, An Ant Algorithm for the Steiner Tree

Problem in Graphs. Applications of Evolutinary Computing, 2007, Springer, pp.

42-51.

69. Yen C W, Chung K, Towards Efficient Hierarchical Designs By Ratio Cut

Partitioning. IEEE International Conference on Computer-Aided Design, 1989.

70. Netlist/Generic Bookshelf Format. [Available from:

http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Fundamental/HGraph/]

71. Hanan M, On Steiner's Problem with Rectilinear Distance. VLSI Circuit

Layout:Theory and Design, 1985, pp. 133-138.

72. Bing L, Dingzhu D, Sachin S, Layout Optimization in VLSI Design. Springer, pp.

94-96.

 98

73. Areibi S, Xie M, Vannelli A, An efficient rectilinear Steiner tree algorithm for

VLSI Global Routing. Canadian Conference on Electrical and Computer

Engineering, 2001.

74. Harris D, Bushnell M, Concepts in VLSI Design. Lecture 10, Wires, 2004

[Available from:

http://www.caip.rutgers.edu/\~bushnell/vlsidesign/digvlsideslec10.ppt .]

75. Garey M R, Johnson D S, The Rectilinear Steiner Tree Problem is NP-Complete.

SIAM J. Applied Mathematics, 1977, vol. 32(4), pp. 826-834.

76. Lameres B J, Characterization of a Printed Circuit Board Via. Montana State

University Technical Report, 1998.

77. Zhen C, Tong J, Yu H, Yiyu S, Xianlong H, Guiying Y, DraXRouter: Global

Routing In X-Architecture With Dynamic Resource Assignment. IEEE

Proceedings of the 2006 conference on Asia South Pacific Design Automation,

2006.

78. Steven L T, The X architecture: not your father's diagonal wiring. ACM

Proceedings of the 2002 International Workshop on System-Level Interconnect

Prediction, 2002.

79. Dorigo M, Di C, Gianni D, The Ant Colony Optimization Meta-Heuristic. New

Ideas in Optimization, 1999, McGraw-Hill, pp. 11-32.

80. Chen L, Min X, Cheng K, Cong J, Madden P H, Routability-Driven Placement

and White Space Allocation. IEEE Proceedings of the 2004 International

Conference on Computer-Aided Design, 2004.

 99

81. Bullnheimer B, Kotsis G, Straub C, Parallelization Strategies for the Ant System.

Proceedings of PPSN-V, Fifth International Conference on Parallel Problem

Solving from Nature, 1998, pp. 722--731.

82. Yang S, Logic Synthesis and Optimization Benchmark Use Guide Version 3.0.

1988.

83. STEED - EDA Benchmarks -Integrated Circuits and Systems Research. 2001

[Available from: http://mint.cs.man.ac.uk/Projects/STEED.]

84. Fulvio C, Matteo S R, Giovanni S, RT-level ITC’99 Benchmarks and First ATPG

Results. IEEE Design & Test of Computers, 2000. vol. 17, p. 44-53.

85. ITC'99 Benchmarks. [Available from: http://www.cerc.utexas.edu/itc99-

benchmarks/bendoc1.html]

86. Kahn H J, Goldman R F, The Electronic Design Interchange Format EDIF:

Present and Future. In Proceedings of the 29th ACM/IEEE Conference on Design

Atomation, 1992.

87. Standard Cell Library/Library Exchange Format (LEF). [Available from:

http://www.csee.umbc.edu/~cpatel2/links/641/slides/lect04_LEF.pdf.]

88. Borah M, Owens R M, Irwin M J, An Edge-Based Heuristic for Steiner Routing.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 1994, vol. 13(12), pp. 1563-1568.

89. VLSI CAD Bookshelf 2. 2000 [cited; Available from:

http://vlsicad.eecs.umich.edu/BK/]

90. Lee P, Introduction to Place and Route Design in VLSIs. Lulu.com, 2007, pp. 85-

88.

 100

91. Shantanu D, Wenyong D, VLSI Circuit Partitioning By Cluster-Removal Using

Iterative Improvement Techniques, Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design. 1996.

92. Jackson M A B, Srinivasan A, Kuh E S, A Fast Algorithm for Performance

Driven Placement. IEEE International Conference on Computer-Aided Design,

1990.

	University of New Mexico
	UNM Digital Repository
	12-1-2009

	Using ant colony optimization for routing in microprocesors
	Tamanna Arora
	Recommended Citation

	

