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Abstract 

Power consumption is an important constraint on VLSI systems. With the 

advancement in technology, it is now possible to pack a large range of functionalities into 

VLSI devices. Hence it is important to find out ways to utilize these functionalities with 

optimized power consumption. This work focuses on curbing power consumption at the 

design stage. This work emphasizes minimizing active power consumption by 

minimizing the load capacitance of the chip. Capacitance of wires and vias can be 

minimized using Ant Colony Optimization (ACO) algorithms. ACO provides a multi 

agent framework for combinatorial optimization problems and hence is used to handle 

multiple constraints of minimizing wire-length and vias to achieve the goal of minimizing 

capacitance and hence power consumption. The ACO developed here is able to achieve 

an 8% reduction of wire-length and 7% reduction in vias thereby providing a 7% 

reduction in total capacitance, compared to other state of the art routers. 
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CHAPTER 1 
 

Introduction 
 

 

1.1 Technological Advances 

  Rapid advances in VLSI technology have increased the number of transistors that can 

be placed on a single chip to about two billion [1]. Such advances in technology 

simultaneously decrease chip cost [2, 3] and increase information processing power of 

chip.  The processing power of the chip is the result of switching transistors i.e. the 

process of charging and discharging. Every time a transistor switches, power is consumed 

by the chip. With each process generation, the transistors have shrink in size and can be 

switched quickly. This increased switching capacity combined with an increase in 

number of transistors leads to increased power consumption by the chip [4]. Thus, power 

efficient designs are key goals in current VLSI design.  

Power dissipation in a VLSI circuit consists of the two major components: static 

power and dynamic power [5]. Static power component is due to the leakage current 

drawn continuously from the power supply. A small amount of current leaks through the 

transistor even when it is switched off. This is known as leakage current.  The major 

component of power is dynamic power. The dynamic power component is dependent on 

the supply voltage, the load capacitances and the frequency of the operation. One of the 

components of load capacitance is the wire capacitance. Wires are used to connect 

various components on a chip and hence define all the operations to be performed on the 
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chip. The large resistance of wires causes a voltage drop between the source and drain 

leading to sub threshold leakage which causes a power drain.  

Moreover as device dimensions have scaled down, wires are spaced closer together 

which has increased wire capacitance relative to gate capacitance [6].  

 A study conducted at Berkley [7] shows that 60-70% of the total chip power is 

consumed by transistors and the remaining 30-40% power is dissipated in the form of 

heat and capacitance through wires and vias. As device dimensions scale down further, 

wires will be an increasingly important contributor to dynamic power.  

Modern VLSI circuits route wires on multiple metal layers and vias provide an 

electrical connection between two adjacent routing layers. Thus in complex circuit design 

which contains about 2 million nets to be routed, wires and vias play a fundamental role. 

This necessitates the importance of minimizing the capacitance by minimizing the wire-

length and vias used to route these nets.  

The active power P consumed by a chip can be written [8] as:  

P =a C V2 f                                                                                                               (1.1) 

where a is the activity factor, 

          C denotes the total load capacitance, 

          V represent the voltage supplied and  

           f is the clock cycle.  

Today, most of the VLSI design methodologies are based on library cell approach. 

The routing is used repetitively during placement phase to find the optimal placement for 

any cell. Most wire-routing problems are computationally hard [9]. Moreover, 

determining that whether an instance of a routing problem is solvable is NP-complete 
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[10], hence there is no deterministic algorithm to find the optimal routing in polynomial 

time.  

1.2 The Routing Problem 

The routing problem is defined as locating a set of paths to route wires that connect all 

the nets in the net-list. A net is a set of cells (also called terminal nodes) that need to be 

connected to each other in a predefined manner. The number of nets on a chip ranges 

from 50,000-3,000,000 [11]. And each one of these nets has large number of possible 

routes. This gives us an insight that routing problem is computationally very difficult 

(NP-complete) [9, 10]. 

The routing problem is one the most widely investigated problems in VLSI design 

automation, and there are various performance and design constraints associated with it. 

One of the important constraints that affect the efficiency and the usability of the chip is 

the power consumed by the chip. From Eq. 1.1 it follows that the power consumed by the 

chip is a function of capacitance induced. Moreover the two main capacitance inducing 

components on a chip are the routed wires and vias. This implies that minimizing the 

number of wires and vias could effectively reduce the power consumption of the chip.  

However, there is a tradeoff between the number of vias and wire length used in 

routing. Vias help in reducing wire-lengths by allowing wires to route through shorter 

routes available in different routing layers. Thus minimizing vias could increase the total 

routed wire-length whereas minimizing wire-length could require more vias.  Thus the 

goal of this thesis is to minimize the power consumption of the chip by finding routing 

solutions that minimize the total capacitance induced by the wires and vias together. 



  4  

The routing of the large number of nets on a chip takes about 30% of total design time 

and 90% of chip area [12]. Traditionally, the routing problem is divided into two phases. 

The first phase is called as global routing, which generates an approximate routing for 

each net. It assigns a routing region for each net, without specifying actual geometric 

layout of wires. Detailed routing is the process of implementing the actual geometries of 

the interconnections among the pins specified by a net list. It completes the point to point 

wiring by specifying geometric information such as location and width of wires and their 

layer assignment.  

 

1.3 Problem Formulation 

 The global routing problem is typically studied as a graph problem. The routing 

regions, their relationships and capacities are modeled as graphs. However, the design 

style and objective functions strongly affect which graph models are used, and as a result 

there are several graph models used by different routing algorithms. The order in which 

nets are routed is important. In a sequential approach nets are routed one at a time. The 

ordering problem is defined as finding a particular permutation of routing nets such that 

the nets that are routed later do not suffer from blockages or unavailability of routing 

paths.  

This work considers the problem of routing multi terminal nets in a three dimensional 

routing geometry. Given a set of nets to be connected, the algorithm tries to find the 

routing that uses optimal length of wire-length and vias to route the nets. The algorithm 

casts the routing problem as a multi-objective graph problem and solves for wire-length 

and vias.  
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The routing of nets with more than two terminals can be formulated as a tree problem 

which can be stated as: 

Given a set of nets in a netlist N= {N1, N2, N3 … Nn} and the placement of various 

components P= {P1, P2, P3 ….…Pn}, find a tree for each net Ni, which routes the net, such 

that the objective function is satisfied. The objective function is to: 

i) Minimize the total wire length used by all the nets together. 

ii)  Minimize the number of vias used by the nets. 

iii)  Minimize the capacitance introduced by the vias and wires. 

 

1.4 Routing Benchmark and Format 

There has been extensive research in the field of placement and routing algorithms for 

VLSI circuits. For example, there are several new academic placers and routers that use 

different approaches like simulated annealing [13], artificial intelligence [14] and neural 

networks[15]. These approaches are compared using publicly available standard circuit 

benchmarks and suites. The Design Automation (DA) community has heavily relied on 

these benchmark suites to compare and validate their algorithms. These benchmark suites 

are maintained by the Collaborative Benchmarking Laboratory [16]. Benchmarks are 

available for placement, routing and both placement and routing simultaneously. We use 

routing benchmarks from the ISPD benchmark suite [11].   

Any complete EDA (Electronic Design Automation) system is a disparate set of 

heterogeneous tools stitched together [17]. During the design flow these different tools 

interact with each other using data-file generation and translation. These files are 

generated in a particular format by one tool and translated by another tool to its internal 
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data structure. Thus ‘format’ is defined as a file or set of files that contain data in a given 

syntax that is understood by different interacting tools [18]. One of the most recent and 

versatile format is the Bookshelf format. Bookshelf is an object oriented format that 

contains information in the form of library. Being object-oriented allows reuse of the 

same specifications for more complex circuits and across different platforms. This 

research uses IBM ISPD98 benchmarks in bookshelf format and is described below in 

detail. 

 

1.5 Ant Colony Optimization 

   ‘Ant Colony Optimization’ provides a multi-agent framework for combinatorial 

optimization problems. This nature inspired metaheuristic originates from the capability 

of ants to find shortest paths from their nest to food source. Natural ants achieve this goal 

through constant co-ordination and indirect communication using a chemical substance 

called pheromone [19]. 

This collective problem solving ability results from a reinforcement process in which 

ants deposit a pheromone trail as they return from food source to their nest [20]. Since 

ants following the shortest path can complete their trips in less time, they will make more 

trips between their nests and the food source, and deposit more pheromone on shorter 

paths compared to longer paths. The strength of pheromone on each path guides 

remaining ants to the food source [19]. 

ACO algorithms have been widely and successfully used in combinatorial 

optimization problem solving. Every ant in the ant colony practices an independent 

sequential decision process aimed at constructing a feasible solution for the optimization 
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problem at hand by using only information local to the current decision step.  The 

outcomes of the search process are used to locate the most promising search areas, and 

the parameters used by the approach are updated to focus the search in the promising 

areas. Due to this independent decision making, this ACO algorithm is highly 

parallelizable.  Ants use pheromone information to guide the search process and to 

transfer knowledge from an iteration of the optimization algorithm to the next. In ACO 

all decisions that lead an ant to a good solution are considered equally important and 

receive the same amount of pheromone. The collective behavior of ants independently 

searching for best solution results in the establishment of the shortest route. 

There are many algorithms derived from ant colony metaheuristic which are used to 

formulate solutions for many different problems. Two of the main categories are static 

and dynamic combinatorial optimization problems. Static problems are those whose 

topology and parameters do not change while the problem is being solved. An example of 

static optimization problems is the Traveling Salesman problem (TSP). The TSP can be 

stated as: Given a number of cities and the cost of traveling from city to any other city, 

what is the least-cost round-trip route that visits each city exactly once and then returns to 

the starting city [21]. 

Dynamic optimization problems are those in which the topology and parameters 

change while the problem is being solved. An example of dynamic optimization problem 

is routing in communication networks. The traffic patterns and network parameters in 

communication networks change continuously with time. The ACO metaheuristic 

captures these differences and is general enough to comprise the ideas common to both 

application types.  
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The ACO algorithm differs from other heuristic approaches. The heuristic experience 

gained during the execution of an ACO algorithm (pheromone trails) is updated in real 

time. This allows the algorithm to perform a cumulative search over the whole search 

space. This thesis adapts an ACO based algorithm for static routing to find optimal routes 

for routing of components on VLSI chips. Optimal routes are defined for a group of 

components placed on a chip, while minimizing route length, number of vias, capacitance 

and time taken to calculate routes. Combining these constraints defines a set of objectives 

that can be utilized by these ants to find solution to the routing problem.  
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CHAPTER 2 
 

Previous Work 
 

2.1 Detailed Routing 

In the two phase routing approach, a detailed routing phase follows a global routing 

phase. During the global routing phase, wire paths are constructed through a subset of 

routing regions, connecting the terminals of each net.  The detailed router places the 

actual wire segments within the region indicated by the global router, thus completing the 

required connections between the terminals [22]. Global routing controls the success of 

detailed routing. In new designs the placement and routing occurs simultaneously and 

global routing is responsible for guiding placement engines and hence impacts 

lithography, chemical polishing and manufacturing of the chip. The detailed routing 

problem is usually solved incrementally, routing either a particular region or a particular 

net at a time.  

Important nets could be routed first, depending on how importance is defined. Below 

are the definitions for various terms related to routing.  

Grid : Manhattan geometry where only horizontal and vertical lines are allowed. The 

routing region if formed either of symmetrical or asymmetrical grid lines. Symmetric grid 

has equal distance between any two horizontal or vertical lines. Asymmetric grid does not 

have equidistant separation (Figure 2.1). Horizontal lines are called rows and vertical 

lines are called columns [14, 23]. 
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Routing Region: The area between different cells on a chip, set aside for routing nets 

is called the routing region. 

 

Switchbox and Channel: Channel and Switchbox are two routing methods in which 

the routing region is divided into rectangular blocks. The perimeters of these blocks 

contain pins which need to be connected. A rectangular block with terminals assigned to 

fixed positions on three or four sides is called a switchbox. If terminals are assigned to 

fixed positions only two opposite sides of a rectangular region is called a channel [24] .  

 

Interconnect: Interconnects (also called wires) are used to connect devices on a chip.  

 

Via: Same net spanning different layers are connected using vias. Vias are represented 

as the intersection of two lines on two different metal layers. 

 

Cell: The design of VLSI circuits involving many thousands of transistors becomes 

manageable when the system is partitioned into smaller logic blocks called cells [15]. A 

cell is a simple logic unit stored in cell library. A single cell contains about 100-1000 

transistors.  

 

Terminal Nodes: A cell has input/output pins to connect to other cells. The pins 

which a cell uses for input/output purpose are called terminal nodes. 
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Net: A net is a set of cells that need to be connected to each other in a predefined 

manner (Figure 2.2). 

 

Subnet: A simple connection between two points is called a subnet. Every net 

consists of one or more subnets and each subnet consists of two terminals. 

 

Net list: A set of all the nets to be routed on a single chip. 

 

Pitch: The center to center distance between two interconnects. 

 

Parasitic capacitance: Parasitic capacitance is the unavoidable and usually unwanted 

capacitance that exists between the parts of metal interconnects or other parts of circuit 

simply because of their proximity to each other. 

 

Layer: Modern VLSI circuits route wires on multiple metal layers. Multiple layers 

provide tiers of horizontal and vertical routing area, stacked over each other and 

connected by vias (Figure 2.3). 

 

2.2 Routing Models 

Characteristics of a routing problem largely depend on the topology of the routing 

region and the constraints the problem takes into consideration. These characteristics also 

define that how the problem would be approached or what algorithms or model would be 

used to solve it. Various routing models are discussed below: 
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(a)                               

 

(b) 
 
Figure 2.1:    (a) Symmetric Grid     (b) Asymmetric Grid 

 

 

Figure 2.2:  An example of cell, net and pins of cell. 

 

 

Figure 2.3: Vertical and Horizontal Layers connected by vias. 
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Grid and Gridless Models: The grid-based approach requires that the terminals, wires 

and vias should conform to a grid. The presence of grid makes computation easy, but it 

requires large amount of memory to maintain the grid, and the wire width is restricted. In 

the gridless approach an imaginary grid is constructed by extrapolation of placed 

components’ coordinates. The gridless approach is considered more practical primarily 

because all the wires in a design do not have same widths (Figure 2.4). Gridless 

approaches allow arbitrary location of terminals, nets and vias and arbitrary wire width 

[22, 25, 26]. 

                     
 

 
 

(a) 

 

 

                        (b) 

Figure 2.4:  (a) Grid Based  (b) Gridless Model 
 

  

Layered Approach: Modern VLSI circuits route wires on multiple metal layers. 

Multiple layers provide tiers of horizontal and vertical routing area, stacked over each 

other and connected by vias. Wires on same layer cannot cross each other, unless they 

form a connection, whereas wires on different layers that cross each other do not connect 

unless an explicit connection through a via is established. Multiple layers allow a higher 

density of components, which shrinks the distances between cells, thus reducing wire-
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lengths. Moreover, layered model utilizes wires with varying thickness in different metal 

layers. In order to minimize resistance, thick metal wires are used in upper metal layers 

and used to lay long routes between distant cells. . Thus the layered approach provides an 

effective method to reduce wire resistance [27, 28]. However thick wires also increase 

the coupling capacitance of the wires[29]. 

If any net segment is allowed to be placed in any layer, it is called an unreserved 

layered model. When certain type of segments are restricted to particular layers, than it is 

a reserved layer model. Most of the routing algorithms use reserved layer models where 

horizontal assignments are reserved to one particular layer and vertical assignments in 

another layer. Such models can be easily extended from two layers to three layers (Figure 

2.5). Modern design typically use six to eight routing layers.  
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                        (b) 

Figure 2.5: (a) Layered Model  (b) Unreserved Layer Model 
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2.3 Routing Algorithms 

Routing is a complex task. Decomposition of routing problem makes the automatic 

routing of today’s VLSI circuits possible. The following hierarchy [30] shows the 

decomposition of the routing problem. At the first level of hierarchy are the global, 

detailed, and specialized routers. The global router distributes the nets over the entire 

chip. Once the terminals of each channel are determined the detailed router will find the 

exact location of wire segments of each net. The specialized router is designed to solve a 

specific problem like routing of power wires, ground wires and wires that has some 

particular constraints. Power and ground wires require special attention for two reasons 

(1) they are usually routed in one layer in order to reduce the parasitic capacitance of 

contacts, and (2) they are usually wider than other wires ( signal and data) since they 

carry more current.  

Detailed routers further divide into general purpose and restricted routers. The general 

purpose routers impose very few constraints on the routing problem and operate on single 

connection at a time. General purpose routers work on the entire design in a serial 

fashion, while restricted routers require some constraint on the routing problem, like 

limits on maximum routing area used, maximum delay that can be tolerated etc. Because 

of their limited scope they are able to perform better in terms of tackling any particular 

type of routing problem. Routers typically use a rectangular grid in which horizontal and 

vertical wires are placed in different layers, called Manhattan routing. Some routers use a 

rectangular      grid        that       also       allows       diagonal   connections     known     as  
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Figure 2.6:  Routing Hierarchy [30] 

 

Non-Manhattan routing. At the lowest level of hierarchy different techniques are 

presented, but in general these techniques can be grouped into 3 broad categories i.e. (1) 

algorithms (2) expert systems, and (3) neural networks. The routing algorithm developed 

in this thesis uses a layered approach in which different layers are assigned for different 

routing directions. Also the algorithm is used to route both manhattan and non-manhattan 

architectures. The Ant Colony algorithm based router uses a heuristic based approach to 

route the chip. 

 

2.3.1 Multi Layer Routing 

Multi-layer routing allows tiers of horizontal and vertical routing area, stacked over 

each other and connected by vias. Vias provide an electrical connection between any two 

points on different routing layers. Multiple layers allow a higher density of components, 
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which shrinks the distances between cells, thus reducing wire-lengths [31]. One of the 

widely used routing method uses an alternate horizontal and vertical routing layer called 

as HV routing. This pattern can be repeated depending on the number of layers, e.g. if 

four routing layers are allowed we get an HVHV routing, and so on. 

 Some of the important routing algorithms are discussed below: 

 

i) Maze Routers: 

Maze Router is one of the earliest automatic routing algorithms. Maze routers are 

general-purpose routers which find the shortest rectilinear path between source point and 

destination point on a gridded model. In the first Maze router [32] Lee proposed an 

algorithm to find a short path between two points that crosses a minimum number of 

existing paths. It considers the routing surface as a rectangular array of cells. The 

algorithm starts by marking the source cells as visited. In successive steps, it visits all the 

unvisited neighbors of visited cells. This continues until the destination cell is visited. 

Due to the breadth-first nature of the search, maze router is guaranteed to find the shortest 

path between source and destination.  

There are four phases in simple maze router (1) setup phase, (2) expansion phase, (3) 

backtrack phase and (4) cleanup phase [33]. The setup phase determines the two points to 

be connected as source and destination. In the expansion phase, all the unvisited 

neighbors are visited in a least cost fashion. The cost of visiting each neighbor is depicted 

as a numeral in the grid below. Once the destination point is reached the router heads for 

backtracking phase. 
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Some of the drawbacks of Lee’s algorithm are that it routes one net at a time, so there 

is possibility of having some nets un-routed at the end of the routing process. Also, as it 

follows breadth first search, it requires a large amount of storage space and its 

performance degrades rapidly when the size of grid increases. The time and space 

complexity of Lee’s algorithm is O( h x  w) for a grid of dimension h x w. To improve the 

memory requirements and speed of basic maze router, different techniques have been 

proposed [34-38]. Due to its simplicity it can be used for both custom, semi-custom ICs 

as well as large PC boards. Most FPGAs use some variation of the maze router.   

 

ii)  Greedy Router:  

The greedy router routes the channel in a left-to-right, column-by-column manner, 

wiring each column completely before starting the next.  Within each column the router 

tries to maximize the utility of the wiring, using simple, "greedy" heuristics.  The router 

does not use horizontal and vertical constraints. All decisions are made locally at a 

column. Greedy router is always able to complete the routing. But this complete routing 

is at the expense of some additional columns added at the end of the channel [39].  It may 

place a net on more than one track for a few columns, and "collapse" the net to a single 

track later on [40].  To route any complete net-list greedy router requires three non-

negative integers: initial channel width, minimum jog-length, and steady-net constant. A 

jog is a vertical wire that brings a pin closer to another pin on the channel side. Thus 

minimum jog-length signifies a constraint that tells that a router can not use a jog shorter 

than length j the minimum jog-length. Generally j constraint exists and defined due to 

fixed channel width. A high value of j implies longer running straight wires and hence 
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reduces number of vias. Whereas a small value of j implies shorter wires which spans 

fewer tracks and thus reduces the number of routing tracks. 

As it routes column by column, it allows horizontal wires to change tracks which leads 

to use of large number of vias. Moreover as it is based on a greedy approach, its searches 

often terminate at solutions having local optimums, thus giving sub-optimal solutions.  

 

iii)  Steiner Tree Based Algorithms  

Global routing algorithms presented above were not suitable for global routing on multi-

terminal nets. The algorithms can only route two terminal nets. To route any multi-

terminal net, the net is first broken into multiple two terminal nets. The quality of routing 

in such approaches was highly dependent on how the multi-terminal nets are broken into 

two terminal nets. To achieve optimal results, the way of decomposing a net should be 

based upon how a router approaches the routing problem i.e. whether it routes on column 

basis or row basis or a combination of both.   

One of the key methods for routing multi-terminal nets is the Steiner Tree 

approach. A Steiner tree is minimum weight tree connecting a designated set of vertices, 

called terminals, in an undirected graph or points in a space.  The weight or cost of a 

Steiner tree is expressed as the sum of lengths of all the edges of the tree. The Steiner tree 

algorithm is used to solve various similar sub problems like in inverter tree and clock tree 

algorithms as well as in global and detailed routing. A rectilinear Steiner tree has only 

rectilinear edges.  The problem of finding rectilinear Steiner tree of minimum cost is NP 

hard [41, 42].  In view of the NP hardness, several heuristic algorithms have been 

developed. Most of the heuristic algorithms depend on minimum cost spanning tree. A 
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minimum spanning tree is a spanning tree with minimum weight or cost. A spanning tree 

of a graph is a sub graph which is a tree and connects all the vertices together. A graph 

may have several minimum spanning trees. Hwang [43, 44] shows that the ratio of the 

cost of a minimum spanning tree to that of an optimal rectilinear Steiner tree is no greater 

than 3/2. This is due to the relationship between Steiner tree and minimum cost spanning 

tree - the Steiner trees are generated by first finding the minimum cost spanning tree. 

The Steiner tree algorithm first define an underlying grid G(S) of S as the grid 

obtained by drawing horizontal and vertical lines through each point of S. The next step 

involves finding the minimum cost spanning tree of the graph. An approximation of 

optimal rectilinear Steiner tree can be obtained by rectilinearizing each edge of a 

minimum spanning tree [22].  The difference between the Steiner tree problem and the 

minimum spanning tree problem is that in the Steiner tree problem, extra intermediate 

vertices  and  edges  may  be  added  to  the  graph  in  order  to  reduce  the  length of the 

 

 

(a)                                    
 

 

 

 

                            (b) 
                                  

Figure: 2.7: (a) An example of Steiner tree where blue points represents Steiner points. 

                    (b) An example of rectilinear minimal Steiner tree. 
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spanning tree. These new vertices introduced to decrease the total length of connection 

are known as Steiner points or Steiner vertices. A Steiner point is a non-terminal vertex 

of degree three or four, while a corner point is a non-terminal vertex of degree two where 

the two edges meeting at a corner point are perpendicular. Non-terminal vertices of 

degree two with two collinear incident edges are removed by merging both edges.  There 

are various different versions of Steiner trees algorithms. Accurate estimation of 

rectilinear Steiner minimal trees could be obtained using either optimal algorithms [45, 

46] or near optimal heuristics [47, 48]. But these algorithms are computationally very 

expensive to use in practice [49]. Moreover the time complexity increases exponentially 

with increase in number of terminals of the net. Thus there are heuristic based Steiner tree 

algorithms that are suggested for VLSI routing [50-52]. Each different version uses a 

different heuristic to obtain a good estimation of optimal Steiner tree formed by VLSI 

nets. One of the algorithm cktsteiner [53] uses numerical model simulation to determine 

Steiner points. The algorithm models the routing grid as a circuit with grid nodes acting 

as output ports. The simulation helps to determine the voltage at various nodes which 

hence decides if a node could be a Steiner point or not.   Some of the approaches use Ant 

Colony Optimization technique to solve Steiner tree problem in VLSI nets [54]. The Ant 

Colony Optimization technique is discussed below. 

 

2.3.2 Academic Routers 

Based on the approaches described above there are many academic routers that have 

been developed. Many of these routers are used as benchmarks for comparison by various 
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other academic routers and have been stated as state-of-the-art academic routers [55-57]. 

Some of these academic routers  are Labyrinth Router [58], FastRoute [59], FastRoute2.0 

[60] and NTHU Router [61].  

Labyrinth Router uses maze routing to provide accurate routing of all nets and wire 

length estimation, at the expense of longer running time. FastRoute uses a congestion 

driven Steiner tree construction to determine good Steiner nodes and Steiner tree 

topologies. For routing purposes the routing area is divided into rectangular regions 

called global bins. Each bin has a fixed routing capacity. Congestion occurs when the 

number of routing tracks routed through a particular bin exceeds its capacity. During 

placement of cells different placements are evaluated by approximating the route length. 

This is known as approximation. FastRoute is used to evaluate different cell placements 

to determine which placements result in minimum wire-length and congestion levels. 

FastRoute2.0 is an improvement in terms of congestion and wire-length compared to 

FastRoute, but it requires longer run time. The advantage of FastRoute2.0 is that it is fast 

enough to use for approximation and accurate enough to route most (but not all) nets. 

This makes the approximation much more useful because approximation is much more 

accurate if the same algorithm is used for approximation and actual routing.  

These algorithms approach the Steiner tree problem by concentrating on one 

major objective: to minimize the total length of the tree. These algorithms do not take 

into account any other criterion that could affect the total power consumption of the chip 

which requires minimizing the total capacitance of the chip.  Moreover Steiner tree 

algorithm has the planar property i.e. it could be embedded in a plane such that its edges 

intersect only at their end points. Due to this property a Steiner tree could be efficiently 
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implemented in a single layer. But for multi-layer routing the Steiner tree need to be 

extended over different layers. Because a single layer Steiner tree is not built with the 

constraint of vias, this extension over multiple layers is not efficient and leads to reduced 

reliability due to large number of vias. 

The more recent NTHU Router [20] decomposes all multi-pin nets into a set of two 

pin nets and draws a congestion map, followed by adaptive maze routing, and it is very 

fast. 

 

2.4 Traditional Approaches 

Many important problems lie in the category of combinatorial optimization problems 

and are hard to solve. The notion of problem hardness is captured by the fact that the time 

needed to solve an instance in the worst case grows exponentially with instance size. 

Often, approximate algorithms are the only feasible solution at low computational cost. 

Most approximate algorithms are either construction algorithms or local search 

algorithms. Construction algorithms build solutions to a problem under consideration in 

an incremental way starting with an empty initial solution and iteratively adding 

opportunely defined solution components without backtracking until a complete solution 

is obtained. In the simplest case, solution components are added in random order. Often 

better results are obtained if a heuristic estimate of adding a solution component is taken 

into account. An example of such a heuristic is greedy heuristic. A disadvantage of a 

greedy heuristic is that only a very limited number of solutions can be generated. Also, 

greedy decisions in early stages of the construction process strongly constrain the 
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available possibilities at later stages leading to very poor moves in the final phase of 

solution construction. 

Local Search algorithms start from a complete initial solution computed by one of the 

approximate methods and try to find a better solution in an appropriately defined 

neighborhood of the current solution. Moving from one solution to a neighbor solution 

requires defining a neighborhood relation on the search space. As an example, the 

neighborhood of routed path in a graph is another path differing by only one graph edge. 

Every candidate solution has more than one neighbor solution, the choice of which one to 

move to is taken using only information about the solutions in the neighborhood of 

current one, hence the name local search. The choice of an appropriate neighbor relation 

is crucial for the performance of local search algorithms. Local search algorithms are 

known as incomplete algorithms, because the search process may stop even if the best 

solution found is not optimal.   

The routers described above fall into either of the categories of local search or 

constructional algorithm. For example, maze router is a local search algorithm which 

iteratively expands in its neighborhood until it reaches the destination point. On the other 

hand, greedy routers make a decision based on local information and move in the 

direction which looks most promising in the local scenario. A Steiner tree based 

algorithm is constructional algorithm as it uses the minimum spanning tree algorithm as 

its starting point and iteratively adds edges to the spanning tree to form a Steiner tree. 

Among the academic routers used above, most of them use variations of maze routing 

combined with constraint specification.             
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2.5 ACO Metaheuristic   

Ant Colony Optimization metaheuristic is a probabilistic technique of stochastic 

solution construction. A solution is built iteratively by adding solution components to 

partial solutions constructed by ants. The pheromone information is updated by the ants 

at run-time to reflect the information acquired during search.  [20]. The stochastic 

component in ACO allows the ants to build a wide variety of different solutions and 

hence explore a much larger number of solutions than greedy heuristics. At the same 

time, the use of heuristic information, can guide the ants towards the most promising 

solutions. Moreover the ant’s search experience implements a form of reinforcement 

learning that is used for solution construction in future iterations of the algorithm. 

Additionally, the use of a colony of ants can give the algorithm-increased robustness, and 

in many ACO applications the collective interaction of a population of agents is needed 

to efficiently solve a problem. The domain of application of ACO algorithms is vast. 

ACO algorithms are being extensively used for NP hard combinatorial problems. This 

includes both single objective and multi-objective problems like routing, data mining and 

voice recognition [62-64].  

 

2.5.1 Problem Representation  

According to Dorigo and Stutzle [20] a combinatorial optimization problem can be 

represented as (S, f, Ω), where S is the set of candidate solutions, f is the objective 

function which assigns an objective function (cost) value f (s, t) to each candidate 

solution s Є S, and Ω (t) is a set of constraints. The parameter t indicates that the 
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objective function and the constraints can be time dependent. The goal is to find a 

globally optimal solution sopt that is, a minimum cost solution that satisfies the constraints 

Ω.  

The problem representation of a combinatorial optimization problem (s, f, Ω), which is 

exploited by the ants, can be characterized with a finite set C= (c1, c2… … … cn) of given 

components, the states of the problem defined in terms of sequences x = (ci, cj….ck) over 

the elements of C, finite set of constraints Ω  that defines the set of feasible states, set S* 

of feasible solutions such that S*⊆ S and a cost function f(s, t) associated to each 

candidate solution. Given this representation, artificial ants build solutions by moving on 

the construction graph Gc=(C, L), where the vertices are the components C and the set L 

fully connects the components. The graph Gc is called construction graph and L are 

called connections.  

 

2.5.2 Ants’ Approach 

The solution construction is carried out by artificial ants by moving on the 

construction graph Gc. Ants do not move arbitrarily on G, but rather follow a 

construction policy, which is a function of the problem constraints Ω. It exploits the 

graph Gc to search for feasible solutions s of minimum cost.  It has a memory M that is 

used to store information about the path it followed. Memory is used by an ant for 

various different purposes: to build feasible solutions using the constraint Ω, to evaluate 

the already found solutions, and to deposit pheromone on the path traversed. Pheromone 

trail encoding acts as ant memory and is updated regularly by the ants during the search 

process. Ants could be assigned a start state and a termination condition. The heuristic 
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value used by the ant represents a priori information about the problem instance. An ant 

selects the move by applying a probabilistic decision rule. Its probabilistic decision is a 

function of locally available pheromone trail and heuristic value, ant’s memory storing its 

search history and the problem constraints. Once a complete solution is built the amount 

of pheromone on each connection in the solution is updated. The construction procedure 

of an ant stops when at least one of the termination conditions is satisfied.  

It is an important characteristic of ACO, that ants move independently and each ant 

find its own solution to the problem under consideration. Good quality solutions emerge 

as the result of the collective interaction among the ants via indirect communication 

mediated by the information that ants read and write into the variables storing pheromone 

trails. Thus it is a distributed learning, in which individual ants do not adapt their 

behavior, but they modify the way the problem is represented and perceived by other 

ants. 

 

2.5.3 Ant Colony System 

There are various different versions of ant colony optimization algorithms used today, 

and most are advanced versions of a very simple ACO model called ‘ant system’.  Some 

of the advanced versions are rank-based ant systems, max-min ant system, elite ant 

system and ant colony system. ACO algorithms have been successfully implemented for 

solving Traveling Salesman Problem (TSP). This work employs ‘Ant Colony System’ for 

VLSI routing. Here we explain how ACS has been used to solve the TSP. In the next 

section we modify this algorithm for VLSI design. 
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To solve TSP, Ant colony system [20, 65, 66]  is implemented as a colony of m ants 

which are initially placed on n cities either randomly or using some initialization scheme. 

This city is known as the start city of the ant and is stored in ants’ memory M. An ant also 

maintains a list of visited cities to keep track of the cities it has already visited. The start 

city is added to the list of visited cities. An ant iteratively moves from one city to another. 

An ant k located at city i chooses to go to an unvisited city j with a probability given by: 

                                        (2.1)                                                         

Where pi, j = Probability that an ant at node i will move to node j. 

           τi, j  = Amount of pheromone on path i, j. 

           ηi, j = Desirability of any path i, j is a priori heuristic information. In the case of                                                                     

TSP, ηi, j = 1/ di,j where d is the distance between two cities i and j. 

           α     = Parameter to control the influence of τi, j. 

                 β    = Parameter to control the influence of ηi, j 

               Ni    = is the feasible neighborhood of ant k that is, the set of cities which the ant 

has not yet visited.  

When α is set to 0, the selection probability is proportional to η i, j and the closest cities 

are more likely to be selected. The algorithm acts like a greedy algorithm. When β is set 

to 0, only pheromone amplification is at work and hence no heuristic information is used. 

This leads to poor results due to occurrence of stagnation, i.e. as all ants follow the same 

path and construct the same tour, no new paths are explored and the algorithm terminates 

with a sub optimal solution.  After an ant k travels from a city i to city j using the above 
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probability pk
i, j the pheromone trail of the ant is updated. This is known as ‘local 

pheromone trail update’.  

   The goal of local pheromone trail update is to make the path taken by ant k less 

desirable for the following ants and hence stimulate exploration of paths that have not 

been visited by ants.  Thus to reduce the desirability of the path taken by an ant, the 

amount of pheromone on the path is reduced by a constant factor ξ.  

                                                                                              (2.2) 

After each ant has completed its tour, pheromone trails are updated. This is known as 

‘global pheromone trail update’. Global pheromone updation could either be applied to 

each ant of the colony or only to the best ant of the iteration. For TSP, the best ant is the 

one with minimum tour length in the current iteration.  

Pheromone update is a two step procedure. First all the pheromone trails are lowered 

by a constant factor ρ. This is known as evaporation. Evaporation is necessary as it allows 

unlimited accumulation of pheromone trails and enables the algorithm to forget bad 

decisions taken during the previous iterations. The pheromone evaporation is represented 

by the following equation. 

                                                      (2.3) 

After pheromone evaporation the second step is pheromone deposition. In Ant Colony 

System, only the best ant is allowed to add pheromone after each iteration. This is an 

important feature of Ant Colony System as it reduces the complexity of pheromone 

update from O(n2) required in case when pheromone update is applied to each ant of the 
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colony to O(n) when update is applied only from the best ant. To make sure that the 

amount of pheromone deposited is an indication of the quality of the path, this amount is 

a function of the tour length traversed by the best ant. Thus the amount of pheromone 

deposited is given by: 

                                                                                                        (2.4) 

Where ∆τbs
 i,,j is the amount of pheromone deposited on the path taken by the best ant 

of the iteration and Cbs is the tour length traversed by the best ant.. Therefore, the 

pheromone update could be represented as: 

                        (2.5) 

Thus we see that the ants are guided, in building their tours, by both heuristic 

information and pheromone information and an edge with a high amount of pheromone is 

a very desirable choice. 

 

2.5.4 Steiner Trees for VLSI Routing 

This section discusses the Steiner tree based techniques that are used to solve VLSI 

routing. As discussed earlier, due to high complexity of finding accurate Steiner trees, 

heuristic based algorithms are used to find estimates of optimal or near optimal Steiner 

trees. One such heuristic based algorithm suggested by Yu Hu [54] uses the ACO 

approach to construct rectilinear Steiner trees using the heuristic that requires ants to start 

at each cell to be connected and meet as quickly as possible. The algorithm uses an ACO 
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approach in which when an ant A meets another ant B, ant A dies and the visited list (list 

of nodes visited by ants) is merged to the visited list of ant B. A very similar approach is 

taken by Das [67], that instead of using the make ants meet soon heuristic, uses a bias 

value for the paths already taken. This bias value attracts the ant to the path already taken 

by another ant. To simplify the problem another algorithm suggested by Luyet [68] uses a 

distributed approach in Ant Colony Optimization to solve the Steiner tree problem. The 

method uses a preprocessing step that reduces the search space by identifying edges or 

non terminal vertices which do not belong to at least one minimal Steiner tree and edges 

or non terminal vertices which belong to all minimal Steiner trees. The probability of 

choosing an edge is a function of greedy force Gf(m) and trail intensity Tr(m) where m is 

a move based on these two parameters.  
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Chapter 3 
 

Ant Colony Algorithm for VLSI Routing 
 

This chapter discusses the Ant Colony Optimization algorithm for the NP-hard 

problem of routing VLSI chips.  Placement of components on a chip can affect the 

routability, wire-length and timing constraints of routes laid at later stages. Thus to 

achieve a more optimized placement that has minimum congestion and route blockage, 

routing and placement are completed simultaneously, iterating between the two, instead 

of completing placement before considering routing. The information exchange between 

placers and routers occurs through a set of files. Different routers may require that this 

information be supplied in a particular format. Due to this reason there exist several 

different formats to specify the input information to the router (Appendix A gives a brief 

overview of some of these formats). This work uses ISPD98 benchmark suite in 

bookshelf format. 

 

3.1 ISPD98 Benchmarks Suite 

 ISPD (International Symposium on Physical Design) benchmarks are derived from 

IBM internal design format and include circuits comprising wide variety of library 

components like memory, logic, processor etc. Every circuit in this benchmark is a 

translation from VIM (Very-Large-Scale Integrated Model- IBM’s internal data format) 

into net format, which is a simple hyper-graph representation originally proposed by Wei 

and Cheng [11, 69]. The ISPD benchmark includes 18 circuits named IBM01 to IBM 18 

and each one having different complexity and size. The benchmarks exclude any 
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information related to functionality, timing and technology. The benchmark includes 

information related to cell placement, size and orientation, connectivity information and 

circuit row information in the bookshelf format. For each benchmark circuit this 

information is contained in a set of 6 files. The four important files used for routing are 

described below. (A detailed description of these files is available in Appendix A.) 

 

(i) IBMxx.aux: This file is known as Auxiliary File and has an extension .aux. The 

auxiliary files contain the set of input files and the placement method.  

 

(ii)  IBMxx.nodes: This file is known as nodes file and contains information about 

specific objects. It specifies  

� Total number of objects. 

� Total number of terminal objects. 

� For each object it specifies object name, width, height and whether it is a 

terminal or non-terminal object. To signify a non-terminal object the keyword 

‘terminal’ is omitted.  

 

(iii)  IBMxx.nets: A nets file specifies the set of nets. It includes 

� Total number of nets 

� Total number of pins 

For each net it includes net-degree, pins forming the part of net and whether a 

particular pin is acting as an input or output in the net. An input is represented 

using ‘I’ and an output using ‘O’ in front of the component name. 
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(iv) IBMxx.pl: A placement file specifies the location and orientation of objects. The 

orientation of a component could either be N, FN, E, FE, S, FS, W, and FW [70]. 

The default orientation is “vertically and face up” and is represented as N (North). 

Other orientations are obtained by flipping N, E, W and S orientations by right 

angle about X or Y axis and are represented as FN, FS, FW and FE. 

 

3.2 ACO Algorithm for Manhattan Routing - Model 

Formulation 

This section describes the assumptions and the approach taken to formulate a model in 

which an Ant Colony Optimization algorithm could be implemented to route VLSI chips 

in a power efficient manner. 

The key assumption made for this model is that each cell component and wires are 

assumed to have zero width and height. As mentioned earlier, wide wires are used in 

upper metal layers and narrow wires in lower metal layers to minimize resistance and 

capacitance effects. However, in this model the layers are implemented in memory, and 

no parameters are used to depict upper and lower metal layers differently. The description 

of ACO algorithm in Chapter 2 specifies that the application of ACO to a combinatorial 

optimization problem requires that the problem must be represented as a construction 

graph Gc=(C, L) which could be exploited by ants and the nodes of the graph are 

characterized as a finite set of components C which are joined by the connections L. Thus 

to model the connections between different cells on a chip, these cells are assumed as 

mere points forming the nodes of a graph Gc. 
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Manhattan architecture allows only horizontal and vertical routes. To represent such 

architecture, a grid-less approach is adopted for routing, i.e. the router does not depend on 

a grid to locate wires on a surface but instead it places wires in a space according to the 

placement of the components which are to be routed. Thus in a grid-less approach a 

Hanan grid is created from the coordinates of the cell location [54]. A Hanan grid is 

formed by the intersection of horizontal and vertical lines drawn at each node of the net 

(Figure 3.2). Hanan [71] showed that there is always a minimal rectilinear Steiner tree for 

the nodes of a net placed on the Hanan grid [72, 73]. Due to this reason a grid-less router 

guarantees a solution if one exists. Another advantage of grid-less router is that it allows 

variable wire and via widths and variable wire spacing which is required for complex 

circuit design [25, 26]. This Hanan grid is implemented as layered model with two 

horizontal and two vertical layers (four routing layers total).  

  The following steps provide an overview of the ACO approach to VLSI routing. 

1. A Hanan grid is created from the component coordinates. 

2. All possible pairs of x and y coordinates are stored in memory. 

3. The nets from the net-list file are sorted according to their size.  

4. The ACO algorithm routes one net at a time.  

5. The route solution returned by ACO is fitted into the best possible route and 

layer.          
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Figure 3.1: A Hanan grid formed by three terminal nodes of a net (green nodes). Blue 

nodes are formed by the intersection of Hanan grid lines. 

 

3.3 ACO Algorithm for Manhattan Routing (ACO-Route) 

This section discusses each step of  the algorithm in detail.  

 

3.3.1 Create Manhattan Grid 

The first step for the routing procedure involves creating a Hanan grid from the 

coordinates of all the components placed on chip. The coordinates are read from the 

placement file and stored in memory. These components have multiple pins which act as 

an input or an output in a net. Each time a component is listed as an input or an output, 

one of its pin participates in the net. To accommodate multiple pins belonging to a single 

component, the grid coordinates around the component’s location are used. The 

following methodology is used while choosing the coordinates of the pins. 

1. If a component is used in a net only once, the component coordinate location 

defines its position on the grid. 

2. If a component is used twice, left and right coordinate locations are used.  
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3. If a component is used more than twice the upper left and right followed by 

lower left and right grid locations are used for every additional pin location.  

 

(a)                                                   (b) 

Figure 3.2: The figure shows the pin locations chosen on the grid. If more than one pin is 

used, the left and right grid locations are used. For every additional pin location; first the 

upper left and right locations are used followed by lower left and right. 

 

The locations are chosen in a manner such that they are symmetrical about the x and y 

axis. Moreover in the case of more than one pin, the actual component location is not 

used as a pin location. The actual component location is used as a center point to choose 

the offset for other pin locations. The alternate locations chosen as pin coordinates were 

also checked to make sure that they do not coincide with any other similarly chosen pin 

or component location. In real scenario the cell components placed on the chip has a 

particular length and width. The pins which form a part of a particular net lie on either of 

the grid points. The ACO model assumes these components as points (with 0 length and 

width). This allows ample space between two placed components for the pin locations 

chosen in the above manner.  
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(a)  
 

 
 (b) 

 
 

 
(c) 

 
(d) 

Figure 3.3: The graph shows the number of pins used by different components in 

benchmark chips. 

 

Figure 3.3 shows the number of pins used per component on the x axis and the 

frequency of the use on the y axis. Each time a component is used in a net, a different 

component pin is used by the net. The error bars represent the standard deviation. The 

median for the number of pins over all the benchmarks is 22.5. 
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The coordinates of components are stored in memory. A Hanan grid is created by the 

intersection of horizontal and vertical lines passing through these coordinate locations. 

The coordinates of the nodes created by the intersection of Hanan grid lines are also 

calculated and stored in memory. A node belonging to a net must be distinguished from 

the nodes formed by the intersection of the Hanan grid lines while they are stored in 

memory.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.4: (a) Shows three nodes to be routed to form a net. (b) Shows formation of a 

Hanan grid. (c) Shows the layered model of the Hanan grid with two horizontal (blue) 

and two vertical (red) layers. 
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 To implement a layered model, every route on this grid is assigned a count equal to n 

where n is the number of horizontal or vertical layers allowed. Whenever a particular 

route on the grid is used, its count is reduced by one. The horizontal and vertical routes 

are identified by the coordinate positions of the route. Any route could be used for VLSI 

routing until its count drops to zero. Thus count helps to make sure that a routing should 

be performed efficiently by using all the available layers.              

 

3.3.2 Sort Nets 

The nets from the net-list file are read and sorted according to their size, where the 

size of a net is a function of its degree, i.e. number of nodes in the net, and the perimeter 

it engulfs. The reason for sorting the nets before routing is because the algorithm ACO-

Route routes one net at a time. If the nets are routed one at a time, it is crucial to decide 

which nets are routed first, as the nets which are routed later would be unable to use the 

routing space used by the already routed nets. Short nets are routed first. Short nets have 

less routing flexibility thus routing them first guarantees a higher routing completion rate. 

Moreover the capacitance is lower on upper layers and hence the smaller routes are 

routed in lower layers whereas upper layers are used for long routes. Moreover this 

minimizes the blockage that might be caused if long routes are routed first.  The nets are 

arranged in an ascending order by size.  

A net perimeter is calculated as the manhattan distance between the maximum and 

minimum x and y coordinates of a net’s components (Figure 3.4). Nets are routed first by 

degree and then by net perimeter. It should be noted that, given z nets, there exists z! 
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ways to order the nets but there does not exist a polynomial time algorithm that could 

find which of these z! permutations could be the most feasible or efficient ordering to 

route the nets. Thus in spite of ordering the nets to route in a particular sequence, the 

algorithm later uses a rip and reroute.  

 

Figure 3.5: Perimeter of the given net is 2(A+B) where A and B is the manhattan distance 

between minimum and maximum x and y coordinates of components   respectively. 

 

3.3.3 Route Nets 

Before routing the first net, the grid is initialized with small amount of pheromone on 

each of its paths. To route the nets, the first net from the ordered set of nets is picked and 

the ant colony algorithm is applied on this single net. The ants are randomly distributed 

on the nodes of the net. The number of ants and other ACO parameters like α (pheromone 

parameter), β (desirability parameter), and ρ are varied to find the best fit as discussed in 

experiment and results section. The current node on which the ant is placed is marked as 

visited in the ant’s memory. The movement of the ant from one node to another is 

controlled using the heuristic suggested by Yu-Hu [54] which requires the ant to meet 

another ant of the same net as quickly as possible. The capacitance of a wire is directly 
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proportional to its length and hence this heuristic makes the ant take the shortest possible 

path to meet another ant quickly, which reduces the wire-length used for routing.  

The probability of choosing any of the nodes is a function of the desirability of the 

path connecting to the node and the amount of pheromone on that path (Section 2.4.5). 

Thus the make ants meet soon heuristic is used to calculate the desirability of the path. 

Following the heuristic, the desirability of an unvisited node j when the ant is located at 

node i, is defined as the node that minimizes the distance between the node j and all other 

ants belonging to the same net. Hence desirability (η) could be written as: 

                                                    (3.1) 

Where α '        is the terminal node from where the current ant started. 

            i           is the current node of the ant that started at α ' 

          dir          is the next node decided by this function, which is not yet already             

                        visited. 

      α 'Di, j           is the total distance between ant’s next node j and all other ants when the                     

previous given node is i and can be defined as: 

                                                                                (3.2) 
 
 
Where M i, a     is the Manhattan distance between point ‘i’  and ‘a’ . 

                  a    is the current position for other ants of the net. 

Thus the probability of choosing an arc (i, j) could be defined as following: 
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                                                                                                             (3.3) 
 

Where Pi, j = Probability that an ant at node i will move to node j. 

           τ i, j  = Amount of pheromone on path i, j. 

           η i, j = Desirability of any path i, j. 

           α     = Parameter to control the influence of τ i, j. 

                β     = Parameter to control the influence of η i, j. 

Also when an ant A meets another ant B, all the intermediate points covered by ant A 

are added to the route list of ant B, and all the intermediate points covered by ant B are 

added to the route list of  ant A. The path for ants A and B is marked as completed, which 

helps reduce the redundant steps taken by ant A to reach the starting point of ant B and 

vice versa. This is unlike the algorithm used in [54] where when two ants meet, one of 

the ants dies and the other ant is responsible for completing the search process. 

 

 

                 (a)                                    (b)                                   (c)                                  (d) 

Figure 3.6: (a),  (b) and  (c)  shows  a  step  by  step  procedure  of  routing  using  the       

heuristic makes ants meet soon. A net consisting three nodes 1, 2 and 3 is shown. Ants 

start from these nodes and choose the next node using the heuristic. (d)  Shows a routing 

while this heuristic is not used (where v1, v2 and v3 indicates vias).  
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Moreover this heuristic avoids taking inefficient redundant routes as shown in Figure 

3.6 (d). The routes (A, B) and (C, D) is an example of inefficient routing that increases 

the wire-length and requires comparatively more vias.  

Every ant keeps a continuous record of the following: 

a) Steps taken to complete the tour. 

b) Tour length, measured as Manhattan length of the route. 

c) Number of vias: In manhattan architecture, every ant has four neighbors in four 

directions i.e. left, right, up and down. While choosing the next node to move to, 

every ant chooses out of these four unvisited neighbors. Figure 3.6 shows an ant 

that started from node 1 and moves in the right direction for two steps. The ant 

changes its direction and moves down at third step. This change in direction 

implies a change to vertical routing layer and hence requires a via. Thus every 

such change in direction by the ant adds on to number of vias required to route. 

 

Figure 3.7: At every step Manhattan architecture allows four possible directions in which 

an ant could move. 

 

After an ant moves from one node to another, a local pheromone update is applied using 

Eq. 2.2 which lowers the pheromone on the arc taken by ant by a small amount ξ. Once 
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all the ants complete their tour a global pheromone trail update is applied which includes 

evaporation of pheromone on all the paths by a small amount ρ using Eq. 2.3 followed by 

pheromone deposition on the best solution found.  

The goal of this routing algorithm is to minimize the power consumption by 

minimizing the capacitance induced by the wires and vias (eq 1.1). Thus the decision of 

best solution is made by measuring the capacitance induced by each of the solutions 

found by ants. On an average the capacitance of a routing wire is approximately 0.2 

fF/µm [74] and average capacitance of via is about 0.23 pF [75, 76].  These capacitances 

are approximations; in reality they will vary according to process size for any particular 

chip. The model can be easily altered to include the capacitance value by changing Eq. 

3.4. Moreover the capacitances on a chip vary from layer to layer, thus if the precise 

value of via and wire capacitance is known for each layer we can use different equation 

while evaluating capacitance in every layer. The following equation is used to evaluate 

the routing solutions found by ants and chooses the best among them. 

 

 Capacitance (C) = 2 x 10 -16 (Wire-Length) + 2.3 x 10 -13 (No. of Vias)                 (3.4) 

 

The route with minimum capacitance is chosen as the best route and the pheromone on 

this route is increased in an inverse proportion to length of the best path found by ants. 

The algorithm uses the ant colony network to find routes with minimum length.  Out of 

theses routes it reinforces the routes with minimum capacitance. This helps the algorithm 

to meet two different but related goals of minimizing capacitance and wire-length 

collectively. Thus to retrieve routes with minimum wire-length it is essential to feedback 
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correct information to the ant colony network.  This feedback information about any 

particular route is provided through the pheromone deposited on that route during the 

pheromone update. Thus in an ant colony network it is essential to provide the exact 

information about the suitability of a path which is expressed in terms of the route length. 

The amount deposited can be written as:  

                                                                                                          (3.5) 

Where ∆τ i,j is the amount of pheromone deposited and W is the length of shortest path 

found using Eq. 3.4.  

 

3.3.4 Ordering Problem 

While ACO is used for routing, ants are not informed about which paths are used by 

other routes and which are available for routing. This allows ants to come up with the 

best possible routing solution for any net. There are cases when ants find a solution that 

uses a path which is already being used for routing of some other net. The algorithm 

takes care of such cases in the following manner.                                                                                                                                                                                                                                                            

First the algorithm calculates the length of the already routed net which overlaps with 

yet to be routed net. If the only common point is a non-terminal node, the algorithm 

compares the length for which both the ‘net routes’ run without changing direction.  This 

is an important aspect for deciding which net is shifted, as change in direction indicate 

use of vias. Thus to minimize the use of vias, the route which changes direction are 

shifted to alternate routes or layers. Shifting the net route that runs without changing 

direction might lead to unnecessary addition of vias and hence is discouraged by the 

algorithm.  
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In the second case, two nets share not just a point but a common path. Again the 

number of direction changes is measured.  It might be the case that shifting a net route to 

another layer, leads to increase in wire-length if an obstacle is faced in this new layer.  

Thus, it is necessary to check that saving vias is not leading to wire-length increase. 

Hence a final decision of which net is shifted is made after calculating the TCI parameter 

for both the nets in different layers.   

The following figure (Figure 3.8) shows a simple case in which ACO-Route finds a 

solution to connect terminal 1 and 2 through a and b. As the route does not overlap with 

any other already routed net, it is routed on the grid. Later the route found to connect 

terminal 3 and 4 overlaps with the already routed net connecting 1 and 2. The route 

connecting terminal 3 and 4 is allowed to route through a, b and the other route is routed 

using another horizontal route on the first layer. 

The rip-up and reroute strategy discussed above provides an easy solution to the 

problem of route blockage caused in routing and finding shortest paths to overcome the 

blockage. The rip-up of previous connections in order to route blocked connections takes 

up to 20% of the total routing run time.  

 

3.3.5 Un-routable Nets 

In some cases the best route found using ACO-Route is un-routable either due to 

obstacles posed by placed components. Due to unavailability of a routing path, the  
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(a)                                                              

                         

(b)                                                                         (c) 

Figure 3.8: (a) A routed net connecting terminal 1 and 2. (b) Route found using ACO-            

Route to connect terminal 3 and 4.  (c) As the two routes overlap the route connecting 

terminal 1 and 2 is shifted to another horizontal route on the first layer to make space for 

the route connecting terminal 3 and 4. 
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algorithm can not re-route the already routed nets and to find an alternate route to route 

the current net. In such cases the ACO-Route algorithm tries to route the current net using 

the second best routing solution found by the ants. If the second best solution is unable to 

route the net, the algorithm tries up-to third, fourth and fifth best routing solution. If none 

of these solutions are routable, it re-routes the whole circuit using a random strategy. The 

random strategy employs a random permutation of nets irrespective of the net size and 

degree.  The random strategy is successful in breaking out of the deadlock of un-routable 

nets. On an average the number of nets routed using the alternate strategy was very small: 

0.017%. The following algorithm provides an outline of the ACO-Route algorithm.   

 

 

  ALGORITHM 2:  ACO-ROUTE 

 
 

1. Create Hanan Grid 

2. {      Order the x and y coordinates of the components from placement file. 

3.         Take every possible pair of x and y coordinates and store it in memory. 

4. } 

5. Assign neighbors to each coordinate position. 

6. Order nets according to degree and then size. 

7. Initialize pheromone on the grid. 

8. While (termination condition is not met) 

9. {       Route 

10.           {                 For ( each ant) 

11.                              {        Empty ant’s memory. 
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12.                                        Place the ants at some terminal node. 

13.                                        Construct a complete tour for ants 

14.                                        {       Using the above mentioned decision 

rule choose the next node for the ant. 

15. Move the ant to the next node and 

decrease the pheromone of the path 

taken by a small amount ξ. 

16. If an ant meets another ant, append 

the route list traveled by one ant to 

the route-list of other ant and vice 

versa. 

17. }  

18. Find the best ant of the iteration using the Capacitance 

parameter. 

19. Update the global pheromone value of the best ant.         

20.  }  

21.  Find the best ant routed solution, and check if any part of this 

solution overlaps or has any common points with some already 

routed solution.                                        

22. }  

23.        Decide to shift either of these routes to other layer, based on Capacitance  

parameter. 

24. }  
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3.4 ACO Algorithm for Non-Manhattan Routing (ACO-

NMRoute) 

The trend of constantly increasing circuit complexity and decreasing chip sizes requires 

new routing approaches. A new routing paradigm allowing wires to route at 45° and 135° 

in addition to 0° and 90° called non-manhattan routing has been proposed [77, 78] 

(Figure 3.9).  

 

 

Figure 3.9:  Eight possible neighbors of node A. 

 

An example in Figure 3.10 shows that diagonal routing can achieve up-to 30% reduction 

in length. Such architecture allows the router to exploit all possible eight directions for 

routing wires thereby providing increased routing capacities.  

 

 

Figure 3.10:  Effect of diagonal routing on wire-length. 
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With slight variation the ACO algorithm discussed in Section 3.3 can be easily extended 

to the non-manhattan architecture. Below are the two variations required to implement 

ACO algorithm on the non-manhattan routing architecture. 

 

3.4.1 Grid Based Approach 

Unlike manhattan routing, which uses a gridless approach i.e. the pitch of the grid is 

defined by the location of cells on the chip, non-manhattan architecture uses a symmetric 

grid. A symmetric grid is defined by a uniform pitch throughout the chip. The choice of 

the pitch depends upon various factors including the type of chip technology, the library 

cells used on the chip etc.   

 

Figure 3.11: An example of diagonal routing showing four layers: horizontal, vertical, 

45° diagonal and 135° diagonal layer. 

 

The number of rows (in case of row based placement) or number of columns (in case 

of column based placement) is obtained from standard cell layout file (.scl file). The 
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number of rows or columns allows defining the horizontal and vertical routing grids. 

Suppose  

Die size = w x h                                                                                                       (3.6) 

where w is the width of the die and h is the height of the die. In case of row based 

placement the distance between any two rows can be defined as: 

                                                                                                                 (3.7) 

where Nr is the number of rows. Similarly in case of columns based placement the 

distance between any two columns is defined as: 

                                                                                                                 (3.8) 

where Nc is the number of columns. The distance between horizontal rows and vertical 

columns is defined using Dx where Dx=Dr or Dx=Dc depending on row based or column 

based placement respectively. The pitch p of the gird i.e. the minimum distance between 

any two wires is defined as: 

                                                                                                                  (3.9) 

In this routing strategy the wires are allowed to be placed in every row. Thus while the 

diagonal routes are laid the minimum distance between any two possible routes is Dx/√2 

(Figure 3.11). 
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Figure 3.12:  The distance between two diagonals defines the pitch in the non-

manhattan routing. 

 

3.4.2 Sort Nets 

The ability of non-manhattan architecture to enhance performance and reduce power 

consumption is a direct consequence of reduction in routed wire-length and number of 

vias. This reduction in wire-length is obtained by utilizing the diagonal routes available in 

this architecture. A simple diagonal route connecting two points can achieve 30% 

minimization in length over a manhattan route. Thus to maximize the utilization of these 

diagonal routes, the nets are sorted in an order such that the routes that span more either 

on x or y axis are routed first. Thus the axis span is measured as: 

                                                                                                   (3.10) 

In manhattan routing the nets are sorted first by degree and than by size, whereas in 

diagonal routing the emphasis is to maximize the use of diagonal routes. Thus the nets are 

first sorted by degree and than by axis span. 
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Chapter 4 
 

Results and Discussion 

 

This section describes various experiments that were conducted to test the efficiency 

of Ant Colony Optimization algorithm in routing VLSI nets. 

 

4.1 ACO Parameters 

Various parameters discussed above that are used in Ant Colony System can affect the 

performance of ACO algorithm. Thus these parameters are chosen after measuring the 

performance of the algorithm with various parameters settings.  

 
 

4.1.1 Search Parameters 

The three main parameters that affect any ACO algorithm is the choice of alpha (α), 

beta (β) and rho (ρ).  The performance of an algorithm can be measured by measuring the 

distance between tours[79]. This distance is measured by counting the number of arcs 

contained in one tour but not in another. A decrease in average distance between ant’s 

tours indicates that preferred paths are appearing. Moreover the search behavior of the 

algorithm can clearly indicate towards good and bad parameter settings. A good 

parameter setting maintains a balance between the focus of the search and exploration of 

new paths during the search. Whereas a bad parameter setting will make the search either 

too narrow and focused leading to stagnation behavior or could cause excessive 

exploration of search paths leading to a never converging search process. 
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Ant Colony system is an aggressive search procedure that focuses around the best-so-

far solution. After each ant complete its tour, the best ant of the iteration is found and the 

pheromone of that ant is reinforced. Due to this reinforcement the new paths found by 

ants in successive iterations differ from the previous solution. Moreover as the ant 

traverses a path, the pheromone on that path is lowered to make it less desirable by 

successive ants. Lowering the pheromone lowers the probability of the path to be chosen 

by other ants. This helps in exploration of un-visited paths by the ants. Due to its 

probabilistic nature the Ant Colony algorithms does not converge quickly. The 

convergence of these algorithms depends on how much they explore or exploit the search 

space. The focus of the search and its exploitative nature can be controlled through ACO 

parameter i.e. α, β and ρ. Thus to find a suitable value of parameters that maintains the 

balance between the focus and explorative nature of the search the difference between 

tour lengths was measured for various nets with many different sets of parameter values. 

The set of parameter values that provided a good improvement in performance with the 

iterations of the algorithm was chosen.  

 

Table 4.1 Different Sets of Parameter Values used in graphs below. 

 
(Good) 

 
(Bad) 

 
(Bad) 

ACO 
Parameters 

G1 B1 B2 
Alpha (α) 0.6 0.75 0.9 
Beta (β) 0.3 0.5 0.5 
Rho (ρ) 0.2 0.1 0.1 
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(a) 

                     Benchmark :   IBM01 
                     Mean Net Degree :   42 

(b) 
                     Benchmark :   IBM08 
                     Mean Net Degree :   75 

 

 

 
 

 
(c) 

                     Benchmark :   IBM09 
                     Mean Net Degree :   39 

(d) 
                     Benchmark :   IBM06 
                     Mean Net Degree :   46 

Figure 4.1: Graphs showing change in distance between tours with the iterations of 

the algorithm with different sets of parameter values. (The distance between tours is 

measured as the number of arcs contained in one tour but not in another.) 
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The graphs in Figure 4.1 give an example of the type of comparison made to 

differentiate between good and bad sets of parameter values. As seen in graph (a), (b) and 

(d) the average distance between tours (for set of parameters B2) acquires a high value 

and remains nearly same with the iterations of the algorithm. This behavior is due to the 

excessive exploration, as the algorithm is unable to focus on the promising parts of search 

space.  Whereas for another set of bad parameters B1 in graph (a) and (d) the average 

distance between tours fall rapidly, which suggests that the exploration of new paths is 

very low and the search is too focused. In contrast, the good set of parameters represented 

by G1 is able to find a balance between the two observed behaviors and is neither too 

focused nor too explorative. Based on the analysis of various different sets of values the 

G1 parameter set was chosen for ACO algorithm. In order to maintain the consistency 

these values are kept constant for all the runs of the algorithm.  

 

4.1.2 Number of Ants 

The number of ants used in an ACO algorithm depends on the number of nodes of the 

search graph and has a direct influence on the computation time of the algorithm. More 

ants per node are able to perform a more exhaustive search compared to fewer ants, but 

also require more time for computation. Thus, there exists a trade-off between the 

computation time and performance of the ACO-route algorithm. This trade-off exists 

only until the number of ants used in the algorithm is below saturation value beyond 

which performance does not improve. If the average number of ants per node is increased 

beyond this saturation value, the increased number of ants tends to reinforce the locally 
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optimum solution. Beyond this value, the only affect of the increase in number of ants is 

to increase the computational time of the algorithm.  

This work emphasizes minimizing power consumption which can be achieved by 

minimizing the wire-length and vias over the computation time required by the algorithm. 

Thus the choice of average number of ants per node was made as the number at the 

saturation value.   

 

Figure 4.2: Comparison of average Wire-Length Computed by algorithm with increase in 

average number of ants per node. 

 

The above graph shows that the performance of the algorithm increased by 8% when 

the average number of ants was increased from one to five. A saturation point appears 

when the average number of ants is nearly five per node. Beyond this point the 

performance of the algorithm slightly decreases and becomes constant. Thus if the 

algorithm solves a net of degree x, the number of ants was chosen as five times x. The 

following table summarizes the value of various parameters used in the two ACO 

algorithms and defaulted for all the runs of the algorithm. 
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Table 4.2 Value of ACO Parameters used in ACO Algorithm 

Alpha 

(α) 

(Parameter to 

control the 

influence of 

pheromone on 

an arc.) 

Beta 

(β) 

(Parameter to 

control the 

influence of 

desirability of ant 

path based on its 

length) 

Rho 

(ρ) 

(Global 

Pheromone 

Update-

Evaporation 

Constant.) 

Epsilon 

(ξ) 

(Local 

Pheromone 

Update-

Evaporation 

Constant.) 

Number of 

Ants 

 

0.6 0.3 0.2 0.1 Net  

degree * 5 

 

4.2 ACO Algorithm  

Both the ACO algorithms, i.e ACO-Route, the ACO algorithm for routing in 

manhattan architecture and ACO-NMRoute, the ACO algorithm for routing in non-

manhattan architecture has been coded in C++ and the experiments were executed on a 

2.6 GHz AMD Athlon Turion 64.  

 

4.2.1 Results: ACO-Route 

The ACO-Route algorithm uses 4 routing layers following the HVHV model i.e. 

alternative horizontal and vertical layers. Both the algorithms were tested using IBM 

ISPD 98 benchmarks. (The details of benchmarks are available in Appendix A). These 

benchmark circuits contain chips with number of nets ranging from fourteen thousands to 

two hundred thousand.  
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As mentioned above (Section 3.3.5) there might be cases in which the best route found 

using ACO-Route is un-routable either due to obstacles posed by placed components or 

unavailability of routable path in the vicinity of the routing solution. The algorithm was 

first executed without using the strategy to tackle un-routable nets. Table 4.3 shows that 

fewer than half benchmark chips required the alternate routing, and of those 0.017% of 

nets were left un-routed when no alternate routing strategy was employed. Later the 

algorithm was executed along with the alternate strategy and was able to route all the 

nets.  

Table 4.3 Number of Nets Routed using Alternate Strategy 

Benchmark 

Name 

Number of 

Nets 

Number of Nets 

Routed Using 

Alternate Strategy 

% of  Nets 

Routed Using 

Alternate 

Strategy 

Ibm03 27401 3 0.010 

Ibm04 31970 9 0.028 

Ibm05 28446 16 0.056 

Ibm09 60902 13 0.021 

Ibm13 99666 8 0.008 

Ibm15 190048 11 0.005 

Ibm16 190048 7 0.003 

Ibm17 189581 14 0.007 

Ibm18 201920 23 0.011 

Average 113331.3 11.55 0.016 

 

The following table gives the wire-lengths and the number of vias computed by ACO-

Route.  
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Table 4.4 Wire-Length and Vias After All Nets Are Routed. 

ACO-Route Benchmark 
Name 

 
Wire-Length Vias 

Ibm01 65488 130481 

Ibm02 176994 289548 

Ibm03 142099 348872 

Ibm04 165382 359128 

Ibm05 409744 458745 

Ibm06 278493 519934 

Ibm07 370481 569293 

Ibm08 410486 659240 

Ibm09 413972 572098 

Ibm10 539672 714277 

Ibm11 500829 772074 

Ibm12 901855 1095894 

Ibm13 852669 1047892 

Ibm14 988858 1182291 

Ibm15 1160517 1391744 

Ibm16 1650562 1846991 

Ibm17 1897493 2174810 

Ibm18 1971423 2139592 

 

To measure the effectiveness of ACO-Route the algorithm results for wire-length was 

compared with two state-of-the-art academic routers: Labyrinth Router [58]and Fast 

Route2.0 [60] (Table 4.2). The results were also compared with a recently published 

router NTHU Router [61]  
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Table 4.5 Comparison of ACO-Route with Labyrinth and Fast Router 

Fast Route  2.0 
(FR) 

Labyrinth 
Router 
(LR) 

NTHU Router 
(NR) 

ACO-Route 
 
 

Bench 
Mark 
Name 
 

W-Len Time 

(sec) 

W-Len Time 

(sec) 

W-Len Time 

(sec) 

W-Len Time 

Ibm01 68489 0.72 76228 72 63321 4.17 65488 94 

Ibm02 178868 0.93 202235 123 170531 7.44 176994 186 

Ibm03 150393 0.6 191500 148 146551 5.86 142099 254 

Ibm04 175037 1.88 198181 278 168262 13.61 165382 551 

Ibm05 409932 2.03 689671 233 278617 12.22 409744 408 

Ibm06 284935 1.36 339379 171 366288 12.75 278493 252 

Ibm07 375185 1.6 450855 381 405169 15.89 370481 301 

Ibm08 411703 2.36 466556 364 415464 13.17 410486 662 

Ibm09 424949 1.92 481841 553 580793 11.59 413972 803 

Ibm10 595622 2.79 680113 692 580793 33.72 539672 952 

Average 307511 1.61 377656 301.5 317579 13.04 297281 446.3 
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Figure 4.3: Comparison of wire-length computed by Fast Route2.0, Labyrinth Router, 

NTHU and ACO-Route. 

 

Table 4.6 shows that ACO-Route is able to achieve an improvement of 3% compared 

to FastRoute2.0 and 2% compared to NTHU router. The Labyrinth router and ACO-

Route is able to route all the nets, but ACO-Route achieves a 19% improvement over 

Labyrinth in terms of wire-length.  
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Table 4.6 Percentage improvement obtained by ACO-Route over Labyrinth Router, 

Fast Route2.0 and NTHU Router 

(%) Improvement  
ACO-Route 

Bench
mark-
name 

FR2.0 LR NR 

Ibm01 -4.38 -14.08 3.42 

Ibm02 -1.04 -12.48 4.96 

Ibm03 -5.51 -25.79 -3.03 

Ibm04 -5.51 -16.55 -1.71 

Ibm05 -0.04 -40.58 41.94 

Ibm06 -2.26 -17.94 -23.9 

Ibm07 -1.25 -17.82 -8.56 

Ibm08 -0.29 -12.01 -1.19 

Ibm09 -2.58 -14.08 -28.7 

Ibm10 -9.39 -20.64 -7.08 

Average -3.2 -21.01 -2.39 

 

 

The results for vias and wire-length computed by ACO-Route were also compared to 

WROUTE [80] (Table 4.7). As the goal is to minimize capacitance my minimizing wire-

length and vias, the reduction in capacitance was also measured (Table 4.7). Table 4.8 

shows that ACO-Route is able to achieve an improvement of 9% in terms of wire-length, 

7% in terms of vias. The capacitance comparison was made between ACO-Route and 

WROUTE by substituting the wire-length and number of vias in the capacitance equation 
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[Eq. 3.4]. ACO-Route was able to achieve a 7% reduction in capacitance compared to 

WROUTE. 

 

Table 4.7 Comparison of Number of Vias, Wire-Length and Capacitance Computed 

By ACO-Route and WROUTE 

W-Route ACO-Route Benchmark-
Name 

Vias Wire-

Length 

Capacitance 

(x10 -8) 

Vias Wire-

Length 

Capacitance 

(x10 -8) 

Ibm01 145780 76500 3.36 130481 65488 3.01 

Ibm02 321523 188000 7.39 289548 176994 6.66 

Ibm07 624005 426000 14.36 569293 370481 13.1 

Ibm08 721215 454000 16.59 659240 410486 15.17 

Ibm09 603149 418000 13.88 572098 413972 13.16 

Ibm10 758598 678000 17.46 714277 539672 16.43 

Ibm11 795088 510000 18.29 772074 500829 17.76 

Ibm12 1162650 1043000 26.76 1095894 901855 25.22 

Average 641501 560250 13.12 600363.1 422472.1 12.28 
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(a) 

 

 

 

 

(b) 
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Figure 4.4: Comparison of (a) wire-length (b) vias and (c) capacitance computed by 

ACO-Route and WROUTE. 

Table 4.8 Percentage improvement obtained by ACO-Route over WROUTE 

% Improvement 

ACO-Route w.r.t W-Route 

Benchmark 
Name 

Wire-

Length 

Vias Capacitance 

Ibm01 -14.39 -10.49 -10.86 

Ibm02 -5.85 -9.944 -9.94 

Ibm07 -13.03 -8.76 -8.77 

Ibm08 -9.58 -8.59 -8.59 

Ibm09 -0.96 -5.14 -5.14 

Ibm10 -20.40 -5.84 -5.85 

Ibm11 -1.79 -2.89 -2.89 

Ibm12 -13.53 -5.74 -5.74 

Average -9.94 -7.17 -7.22 
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4.2.2 Results: ACO-NMRoute 

ACO-NMRoute uses four layers for routing in the order horizontal, 45° diagonal, 135° 

diagonal and vertical layer. The routing results obtained for ACO-NMRoute are as below. 

The goal of diagonal routing is to overcome the limitations of manhattan routing by using 

diagonal routing paths and further minimize the wire-length. Thus ACO-NMRoute 

results were compared to ACO-Route to measure the reduction it is able to achieve over 

manhattan routing. Table 4.9 shows the results of wire-length and vias for ACO-

NMRoute and the reduction it is able to achieve over ACO-Route. ACO-NMRoute is 

able to achieve an improvement of 8% in terms of wire-length and 5% in terms of vias.  

 

Table 4.9 Wire-Length and Vias Computed By ACO-NMRoute 

ACO-NMRoute % Reduction 

over ACO-

Route 

Benchmark 

Name 

 

Wire-

Length 

Vias Capacitance Wire-

Length 

Vias 

Ibm01 61377 129275 2.97 -6.27 -0.92 

Ibm02 166406 284573 6.542 -5.98 -1.71 

Ibm03 128274 338128 7.77 -9.72 -3.074 

Ibm04 150018 335629 7.72 -9.29 -6.54 

Ibm05 405902 429845 9.89 -0.93 -6.29 

Ibm06 271982 499823 11.50 -2.33 -3.86 

Ibm07 349261 564970 13.01 -5.72 -0.75 

Ibm08 389365 654873 15.06 -5.14 -0.663 

Ibm09 412081 560148 12.89 -0.45 -2.08 

Ibm10 532788 702341 16.16 -1.27 -1.671 

Ibm11 474961 651069 14.98 -5.165 -15.6 

Ibm12 878823 979420 22.54 -2.55 -10.62 
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Ibm13 702280 973716 22.40 -17.63 -7.07 

Ibm14 899782 998021 22.97 -9.01 -15.58 

Ibm15 1002703 1289283 29.67 -13.59 -7.36 

Ibm16 1338478 1676627 38.58 -18.90 -9.23 

Ibm17 1488590 1994263 45.89 -21.54 -8.31 

Ibm18 709239 2005957 46.17 -13.29 -6.2 

Average 631239.4 837108.9 -5.98 -8.27 -5.98 

  

 

As mentioned earlier the power consumption of a chip is directly proportional to the 

total load capacitance. The capacitance for ACO-NMRoute is calculated using Eq. 3.4. 

Diagonal routing achieves a 6%reduction in capacitance compared to manhattan routing.  

 

 

(a) 

 



  71  

 

(b) 

 

(c) 

Figure 4.5: Comparison of (a) wire-length, (b) vias and (c) capacitance computed by 

ACO-Route and ACO-NMRoute 
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4.3 Verification 

The results computed for ACO-Route and ACO-NMRoute were verified using three 

different procedures. 

(i)  By checking usage of each edge on the grid. 

ACO-Route uses alternate horizontal and vertical layers. To implement two different 

horizontal and vertical layers in memory, the grid edge used for routing is allowed to be 

used twice. Thus to make sure that each vertical or horizontal route uses either of the two 

allowed layers, the edge is checked to make sure no edge is used more than twice. 

 

(ii) By checking Commonality among different routes. 

Different routes found by the algorithm are checked for common segments on the same 

layer.  

 

(iii) Comparison with half perimeter wire-length 

The wire-length computed by ACO-Route was compared to half-perimeter wire-lengths 

of the IBM benchmark suite. Half perimeter wire length gives an estimation of wire-

length that would be required to route a particular net in an ideal case. The estimate is 

based on the fact that the area of a quadrilateral can be written as a factor of its in radius 

and semi-perimeter. Thus in ideal cases when no obstacle is present on the chip, half 

perimeter wire-length is required to route a net on the chip. But during actual routing the 

presence of other cells and adherence to routing constraints and rules leads to a much 

longer wire-length. A comparison between HPWL and ACO-Route wire-length is made 

in Table 4.10 



  73  

 

 

 

Table 4.10 Comparison of ACO-Route Wire-Length with Half-Perimeter Wire-Length 

ACO-Route Difference Benchmark 

Name Wire-Length 

Half Perimeter 

Wire-Length (%) 

Ibm01 65488 16297 34.16 

Ibm02 176994 34719 23.18 

Ibm03 142099 45094 17.20 

Ibm04 165382 56496 21.29 

Ibm05 409744 94986 22.62 

Ibm06 278493 47919 21.65 

Ibm07 370481 78893 31.45 

Ibm08 410486 92871 37.91 

Ibm09 413972 89660 32.32 

Ibm10 539672 169767 28.73 

Ibm11 500829 189896 32.16 

Ibm12 901855 291488 25.18 

Ibm13 852669 245008 21.20 

Ibm14 988858 318026 28.29 

Ibm15 1160517 292239 24.62 

Ibm16 1650562 350027 34.16 

Ibm17 1897493 536891 23.18 

Ibm18 1971423 214585 17.2 

Average 655390 175825.7 26.57 
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Table 4.11 Reduction in number of nets routed using alternate routing strategy when the 

number of routing layers is increased from four to six. 

Benchmark 

Name 

Number of 

Nets 

Number of 

Nets routed 

using alternate 

strategy 

% of Nets 

routed using 

alternate 

strategy 

Ibm03 27401 2 0.0073 

Ibm04 31970 0 0 

Ibm05 28446 0 0 

Ibm09 60902 2 0.0033 

Ibm13 99666 6 0.006 

Ibm15 190048 0 0 

Ibm16 190048 4 0.0021 

Ibm17 189581 0 0 

Ibm18 201920 11 0.0055 

Average 113331.3 5 0.0048 

 

4.4 Discussion 

Power has been termed as a primary architectural design constraint not only for 

portable devices and computers but also for high end systems[8]. The main emphasis of 

this work is to lower the major component of total power, i.e dynamic power. Eq.1 shows 

that dynamic power is a function of voltage, capacitive load and frequency of the system. 

Thus these three metrics can be traded to lower the dynamic power consumption. 

Although the quadratic dependence of power on voltage means that by lowering voltage, 

the savings can be significant. But the linear dependence of frequency (clock cycles- 

defines speed of chip) on voltage, bring these savings only at the cost of reduced 

performance.   
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P α V2                                                                                                                              (4.1) 

f α V                                                                                                                                (4.2) 

This work emphasizes reducing power by reducing the total capacitive load of the chip.  

Two of capacitive components the wires (interconnects) and the vias that provide 

electrical connectivity between different layers. Vias and total wire-length share an 

inherent trade-off such that increasing one of the metric leads to a decrease in the other. 

Thus the challenge is finding the number of wires and vias that best meet the goal of 

minimizing the capacitive load of the chip.  

The ACO employed to meet this goal uses the make ants meet soon heuristic to find the 

routes with minimum length. Out of these, the algorithm chooses the best ant as the one 

that provides with a least capacitive route. The results show that the routes found using 

ACO are able to achieve an average of 7% reduction in capacitance compared to 

WROUTE. Although the run time of ACO is comparatively longer than these algorithms, 

it is able to achieve complete routing which is only achieved by Labyrinth router. More 

important than the actual running time is the scaling of run time with the number of nets. 

Scaling exponents are significant in terms of predicting the behavior of these algorithms 

for complex chips with higher net count. Table 4.12 shows that the exponents for ACO-

Route and ACO-NMRoute are similar to Labyrinth. FastRoute2.0 is able to achieve sub 

linear scaling as it route nets simultaneously, but it is an approximation that cannot route 

all nets on the benchmark chips. The ACO routes every net. Moreover, ACO is an agent 

based algorithm in which every agent practices an independent sequential decision 

process aimed at constructing a feasible solution using only information local to the 

current decision step. Thus, ACO algorithm can be easily parallelized [20, 81]which can 



  76  

substantially reduce run-time without compromising the performance. None of the other 

routers use independent agents that can be easily parallelized.  

Table 4.12 Scaling Coefficients 

Y= c X P 

Where c is the coefficient of x and p is 

the power 

Wire-Length 

Scaling 

Time Scaling 

 

ROUTER 

c p c p 

FastRoute 2.0 2.07 1.12 0.0002 0.832 

NTHU 0.4315 1.27 0.0004 0.981 

Labyrinth  3.331 1.10 0.0002 1.319 

ACO 2.28 1.11 0.0005 1.28 

ACO-NM 1.54 1.14 0.0002 1.36 

 

The ACO-Route is 50% slower compared to Labyrinth router. Using the exponents in 

Table 4.12 Labyrinth router would be able to route these nets in approximately half the 

time compared to ACO router. The run time of ACO Route can be decreased by using 

multiple processors. 
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Chapter 5 
 

Conclusion and Future Scope 

 

The challenge for device manufacturers lies in developing devices that offer an array 

of services while maintaining power efficiency. The combination of greater functionality 

leading to complex circuits and smaller process geometries has contributed to significant 

increase in power density of VLSI chips. The methodologies which are used to lower the 

power consumption in VLSI systems range from device level to algorithm level. At the 

device level, the active power consumed by the chip is a factor of load capacitance, 

voltage and clock cycles. The load capacitance is directly dependent on the wire-length 

and vias used to route VLSI chips. This work primarily concentrates on the device level 

design measures which can be applied to reduce the power dissipation in VLSI circuits.  

More specifically, the goal of this work is to minimize capacitance by minimizing the 

length of wires and number of vias used in routing. Routing of VLSI chips is an NP 

complete optimization problem. Moreover the combined goal of minimizing the two 

interdependent metrics of wire-length and vias is a combinatorial problem with multiple 

constraints. An algorithm using an Ant Colony Optimization technique was developed for 

solving the coupled constraint of optimizing wire-length and vias and thereby the load 

capacitance. Ants were placed on the grid and followed a set of heuristics to guide their 

search process. The heuristic to make ants meet soon helped the ACO algorithm to find 

routes with minimum length. On the other hand the choice of best ant reinforced the route 

of ant that provided the solution with minimum capacitance. The effectiveness of the 
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technique enabled the algorithm to find the optimal number of vias and wire-length and a 

routing solution that minimizes capacitance and hence the active power of the chip.  

Some of the past academic approaches [58-61] to route efficiently concentrated on 

minimizing the total wire-length along with minimizing congestion levels. However these 

approaches suffer from the trade-off that exists between complete routing and congestion 

levels which hence affects the routing quality. The ACO based routing algorithm is able 

to achieve complete routing.     

However there is significant room to enhance the algorithm and widen the domain in 

which it applies. These are described below: 

1. In comparison to other routers the ACO based router is able to achieve complete 

routing, but requires a longer running time. The ACO algorithm is an agent based 

algorithm in which every agent makes an independent decision while searching the 

solution space. These agents share their search experience through the pheromone 

trail. This independent nature of the algorithm can be used to implement different 

colonies of agents on different processors working independently on the solution 

construction. This would require a central process that can be used by all the 

groups thereby minimizing the overhead for information sharing. Different 

colonies running on different processors working either on same or different parts 

of the problem will communicate their results to the central processor. The central 

processor will be responsible for broadcasting these results and other information 

to the rest of the processors. 

2. In addition to being agent based, the ACO algorithm uses a set of parameters 

that affect the search behavior. These parameters are chosen such that the search is 
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neither too explorative nor too focused. However to maintain this search behavior 

the ACO parameter that fit a particular set of constraints might not be the best 

choice for slightly different problem with different set of constraints. The parallel 

approach can also help in exploring the efficiency of ACO algorithm with different 

set of parameters. Different colonies running on individual processors can be 

executed with different set of parameters. This can help in testing a large set of 

parameters in a small time and choose the one which give the best results.  

        Another promising approach to test different set of parameters is using an 

ACO embedded in a genetic algorithm. Genetic algorithms employ the concepts of 

natural evolution to direct the search towards areas of high expected performance. 

They simulate the evolution process by generating an initial population of 

individuals and then evolving the population by a mutation and reproduction 

process. This can be achieved by using different values of ACO parameters like α, 

β and ρ among different populations. The GA will be responsible for the evolution 

of these populations. The ACO would be used to exploit information stored in 

pheromone trails during genetic operations like crossover and mutation to obtain 

offspring having good characteristics of parents i.e. those parents whose parameter 

settings were most favorable for any particular problem. 

Another approach suggests that GA can be used to handle a particular set of 

constraints and return a solution based on these constraints. The solution returned 

in step 1 can be used to lay the initial pheromone for ACO algorithm. The ACO 

algorithm can further use the remaining set of constraints and execute ACO using 

the pheromone levels initialized using the genetic algorithm. 
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3. The ACO based router implemented in this work takes into consideration a 

minimal set of constraints for minimizing the capacitance which could hence 

reduce the power consumption of the chip. While routing in layers different 

materials for conductors are used on different routing layers. Hence the 

capacitance of wires and vias vary from layer to layer. The wires in upper routing 

layers are comparatively less wide than the wires in the lower routing layers and 

thus have lower capacitance. Due to the lower capacitance of wires, longer wires 

are routed in upper layers. Wires running parallel to each other can lead to 

crosstalk due to capacitive coupling between wires. Capacitive coupling can cause 

logic failure and timing degradation in VLSI circuits (Eq 4.1).  

                                                              (5.1) 

Where Є    =dielectric of the wire insulation 

           l      = length of wire 

          t       = thickness of wire  

and    s       = distance between wires. 

Thus while routing; coupling capacitance of wires running parallel to each other 

can be included as a heuristic in the ACO algorithm. This would allow the 

algorithm to find routes that minimize the coupling capacitance between wires. 

Similar to coupling capacitance there are other constraints which can be included 

like timing and resistance of different routing paths. 

4. The ACO algorithm uses a rip-up and reroute strategy to find the best possible 

routes. Although rip-up and reroute is an effective methodology, it takes up 

considerable time in finding a routing solution. Moreover with the increasing 
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complexity of circuits the number of nets to be routed is now in the order of 

millions. With such a large number it is impossible to find the best permutation of 

these nets that could define the order in which they must be routed. The order in 

which nets are routed affects the overall routability of chip. With the growing 

trend of simultaneous placement and routing the decision of which net should be 

routed next should be based on the information about the constraints governing the 

routing and the placement of a particular component already placed and routed by 

the tool.  

5.  The ACO technique has been and continues to be a successful paradigm for 

designing effective combinatorial optimization algorithms. The strength of ACO 

algorithm lies in its ability to combine a priori information about the structure of a 

promising solution with posterior information about the structure of previously 

obtained good solutions. The particular way of defining components and 

associated probabilities can be designed in a problem specific manner there by a 

allowing a trade off between the quality of solutions and number of iterations 

which needs to be executed for the emergence of good solutions. 

Moreover ACO can handle both static and dynamic sets of constraints.  

As chip designs become more complex and more portable, low power consumption 

chips with high throughput are increasingly important. The design of such complex chips 

necessitates continuous research to develop algorithms that produce near optimal physical 

designs. Ant Colony Optimization is a promising algorithm that can be effectively used to 

improve these designs. 
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Appendix   
 

 

1. Routing Benchmark and Format 

There has been extensive research in the field of placement and routing algorithms for 

VLSI circuits. For example there are several new academic placers and routers that use 

different approaches like simulated annealing [13], artificial intelligence [14] and neural 

networks[15]. Such advances wouldn’t have been possible without publicly available 

standard circuit benchmarks and suites. Design Automation (DA) community has heavily 

relied on these benchmark suites to compare and validate their algorithms. These 

benchmark suites are maintained by the Collaborative Benchmarking Laboratory [16]. A 

benchmark contains variety of information depending on whether it is a placement and 

routing benchmark or in particular placement only or routing only benchmark. One of the 

major benchmark suite used by the design community is ISPD benchmark suite.  Some 

other benchmarks include MCNC [82] and EDA [83]. MCNC benchmark suite was 

developed by Microelectronics Center at North Carolina and included some of the 

benchmarks like ISCAS85, ISCAS89, LayoutSynthesis92, Partitioning93 [11]. EDA or 

Electronic Design Automation benchmark is a collection of large chip-design datasets. 

MCNC and EDA did not release any new version of benchmarks and these circuits are 

now obsolete as they do not adequately represent the complexity of modern design. There 

also exist benchmarks which are based on chip type: like FPGA, ASIC or DSP. An 

example of one such benchmark is ITC99 [84, 85] which is an ASIC benchmark and 

contains gate level information.  
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Any complete EDA (Electronic Design Automation) system is a disparate set of 

heterogeneous tools stitched together [17]. During the design flow these different tools 

interact with each other using data-file generation and translation. These files are 

generated in a particular format by one tool and translated by another tool to its internal 

data structure. Thus ‘format’ is defined as a file or set of files that contain data in a given 

syntax that is understood by different interacting tools [18]. Some of the important 

formats used by routing tools are EDIF[86], LEF/DEF [87], Steiner [88], and Bookshelf 

[89]. The EDIF or Electronic Design Interchange Format provides connectivity and 

layout information along with design hierarchy. LEF/DEF or Library Exchange Format/ 

Design Exchange Format were defined by Cadence Design Systems to exchange data 

across synthesis and design tools. LEF contains design rules, cell description, dimension 

and layout for routing whereas DEF contains actual connectivity information in the form 

of net-lists. Steiner format net-list includes a decomposition of multi-pin nets into two pin 

edges, using a Steiner tree heuristic. It also provides layer assignment information such 

that the area demand on each layer is equalized. One of the most recent and versatile 

format is the Bookshelf format. Bookshelf is an object oriented format that contains 

information in the form of library. Being object-oriented allows reuse of the same 

specifications for more complex circuits and across different platforms. 

This research uses IBM ISPD98 benchmarks in bookshelf format and is described 

below in detail. 
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2. IBM ISPD Benchmark Suite 

ISPD (International Symposium on Physical Design) benchmarks are derived from IBM 

internal design format and include circuits comprising wide variety of library components 

like memory, logic, processor etc. Every circuit in this benchmark is a translation from 

VIM (Very-Large-Scale Integrated Model- IBM’s internal data format) into net format, 

which is a simple hyper-graph representation originally proposed by Wei and Cheng, 

ISPD benchmark includes 18 circuits ranging from IBM01 to IBM 18 and each one 

having different complexity and size. The benchmarks exclude any information related to 

functionality, timing and technology. The benchmark includes information, related to cell 

placement, size and orientation, connectivity information and circuit row information in 

the bookshelf format. For each benchmark circuit this information is contained in a set of 

6 files. 

Each IBM ISPD benchmark circuit contains a set of 6 files. The information available in 

each file is described below: 

 

(iii)  IBMxx.aux: This file is known as Auxiliary File and has an extension .aux. The 

auxiliary files contain the set of input files and the placement method. An 

auxiliary file looks like:  

 
RowBasedPlacement: IBMxx.nodes IBMxx.nets IBMxx.wts 
IBMxx.pl IBMxx.scl 

              

(iv) IBMxx.nodes: This file is known as nodes file and contains information about 

specific objects. It specifies  

� Total number of objects. 
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� Total number of terminal objects. 

� For each object it specifies object name, width, height and whether it is a 

terminal or non-terminal object. To signify a non-terminal object the keyword 

‘terminal’ is omitted.  

A nodes file looks like:  

 

NumNodes : 27507 

NumTerminals :   287 

  a0           6         16  

        a1          20         16 

        .            .          . 

        .            .          . 

   a27219            6         16 

       p1            1          1   terminal 

       .            .          . 

       .            .          . 

     p286            1          1   terminal 

     p287            1          1   terminal 

 

(iiii)  IBMxx.nets: A nets file specifies the set of nets. It includes 

� Total number of nets 

� Total number of pins 

� For each net it includes net-degree, net-components and whether that 

component is acting as an input or output in the net. An input is represented 

using ‘I’ and an output using ‘O’ in front of the component name. 
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A net file looks like: 

 

NumNets : 31970 

NumPins : 105859 

NetDegree : 2  

a16004 O  

a4246 I  

NetDegree : 3  

a17172 O  

a16823 I  

a10725 I 

 

(iv) IBMxx.pl: A placement file specifies the location and orientation of objects.  A 

placement file looks like: 

 

a0       24750       17696 : N 

a1       20856       31192 : N 

a2         264       26656 : N 

a3       19206       23632 : N 

a4       27786       17696 : N 

 

The orientation of a component could either be N, FN, E, FE, S, FS, W, and FW 

[70]. The default orientation is “vertically and face up” and is represented as N 

(North). Other orientations are obtained by flipping N, E, W and S orientations 

by right angle about X or Y axis and are represented as FN, FS, FW and FE. 
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N FN E FE 

    

S FS W FW 

 

Figure A.1 Representation of various possible orientations of a component on a chip. 

 

(vi) IBMxx.scl: The scl or Standard Cell layout file provides cell-placement 

information as a set of constraints on row configuration. A cell based layout is 

mostly concerned with placement of cells and interconnections between them.  

The placement of a cell has various constraints associated with it which are 

specified in the scl file in the following manner: 

 

���� Core Row Horizontal/Vertical 

���� Coordinate 

���� Height 

���� Sitewidth 
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���� Sitespacing 

���� Sireorient 

���� Sitesymmetry 

���� Subroworigin 

 

Core is defined as the area to place rows or columns of library cells. The first 

parameter “Core Row Horizontal/Vertical” specifies that whether cells are 

placed in horizontal rows or vertical columns. If the placement of cells is in 

horizontal rows, the second parameter “Coordinate” specifies the Y coordinate 

of the row. Whereas if the placement of cells is in vertical columns “Coordinate” 

specifies the X coordinate of the column. The height of a row is same as the 

height of any cell in the row, since all the cells are predesigned to have the same 

height [90]. Thus the third parameter represents the height of a row. Width of a 

row is the sum of widths of all the cells and is constrained by the parameter 

“Sitewidth” i.e. the maximum row width possible. “Sitespacing” determines the 

distance between two rows or columns of cells. “Siteorient” can take any of the 

orientation values like N, E, W and S. This parameter specifies the possible 

orientations that a cell can take in a row or a column. The “Sitesymmetry” 

parameter specifies the symmetry of a row along either of the axis and could be 

used to generate other possible orientations of a cell in a row like, FN, FE, FW 

and FS. There could be many subrows inside a row. The position of subrows is 

specified by a coordinate point “Subroworigin”. A scl file looks like: 
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Numrows : 2 
  
 CoreRow Horizontal 
  Coordinate   :      73200 
  Height       :       2880 
  Sitewidth    :        240 
  Sitespacing  :        240 
  Siteorient   :         N  
  Sitesymmetry :         Y  
  SubrowOrigin :     222960 
  SubrowOrigin :          0  
End 
 

(vi) IBMxx.wts: The weights file specifies the weight for objects and nets. The 

weight of net is a function of the timing behavior of a net and hence is crucial in 

performing performance driven partitioning [91, 92]. A weights file looks like: 

 

      a0      224 

      a1       64 

      a2      224 

      a3      128 

      a4       96 

 

The following table gives the details of the benchmark circuits used in ISPD benchmark 

suite. 
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Table A.1 IBM ISPD98 Benchmark Suite Details 

Benchmark 

Name 

Number of 

Nets 

Number of Cells 

Ibm01 14111 12506 

Ibm02 19584 19342 

Ibm03 27401 22853 

Ibm04 31970 27220 

Ibm05 28446 28146 

Ibm06 34826 32332 

Ibm07 48117 45639 

Ibm08 50513 51023 

Ibm09 60902 53110 

Ibm10 75196 68685 

Ibm11 81454 70152 

Ibm12 77240 70439 

Ibm13 99666 83709 

Ibm14 152772 147088 

Ibm15 186608 161187 

Ibm16 190048 182980 

Ibm17 189581 184752 

Ibm18 201920 210341 
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