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ABSTRACT 

Spatial heterogeneity in the distribution of food is an important 

determinant of species' optimal foraging strategies, and of the dynamics of 

populations and communities. In order to explore the interaction of food  

heterogeneity and colony size in their effects on the behavior of foraging ant 

colonies, we built agent-based models of the foraging and recruitment behavior 

of harvester ants of the genus Pogonomyrmex. We optimized the behavior of 

these models using genetic algorithms over a variety of food distributions and 

colony sizes, and validated their behavior by comparison with data collected  

on harvester ants foraging for seeds in the field. We compared two models: one in 

which ants lay a pheromone trail each time they return to the nest with food; and  

another in which ants lay pheromone trails selectively, depending on the density 

of other food available in the area where food was found. We found that the  
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density-dependent trail-laying model fit the field data better. We found that in this 

density-dependent recruitment model, colonies of all sizes evolved intense 

recruitment behavior, even when optimized for environments in which the 

majority of foods are distributed homogeneously. We discuss the implications of 

these models to the understanding of optimal foraging strategy and community 

dynamics among ants, and potential for application to ACO and other distributed 

problem-solving systems. 
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Introduction 

 Spatial heterogeneity in the distribution of food is an important ecological 

determinant of the optimal foraging strategy of a species (Charnov, 1976), and of the 

dynamics of populations and communities (Schoener, 1974; Wiens, 1976).  

Heterogeneously distributed foods present foragers with an opportunity to take advantage 

of reduced search times within patches where food is more densely concentrated than in 

the environment as a whole.  Foraging strategies that are best adapted to the scale and 

degree of heterogeneity in the environment are favored (Charnov, 1976).  Heterogeneity 

influences the distribution of consumers (Wiens, 1976) and can provide a dimension 

along which food niches are partitioned, allowing the coexistence of species (Schoener, 

1974). 

 Socially coordinated foraging behavior can be part of a species' strategy for 

exploiting heterogeneously distributed foods (Wiens, 1976).  Social organisms in patchy 

environments can take advantage of others' knowledge of the location of food patches, 

either through active sharing of information or by observing  others' foraging success 

(Ward and Zahavi, 1973).  Information sharing may be particularly important for eusocial 

insects.  Because of the high relatedness among nestmates (Trivers and Hare, 1967), and 

the fact that the reproductive success of an insect colony is mainly or entirely the result of 

the queen's reproductive output, workers are selected to maximize foraging success of the 

colony as a whole (Oster and Wilson, 1979).  Therefore, cooperative foraging may be 

selected for among eusocial insects if it increases the foraging success of the colony, even 

if it comes with some cost to individual foragers. 
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 Among many species of ants, information is communicated between foragers with 

the use of recruitment pheromones, which in some species are used to leave a trail along 

the ground as a forager makes a return trip to the nest with food (Wilson and Hölldobler 

1990).  When departing the nest, other foragers may follow these trails to sites where 

food has been found previously, and where, in environments where food is distributed 

heterogeneously, there may be more food available.  In this way, foragers communicate 

information about the location of food sources, which allows reduced search times, and 

increased rate of food collection. 

 This recruitment behavior is of particular interest to computer scientists as a 

distributed problem-solving system.  Observation of the collective action of foraging ants 

and the use of pheromones to coordinate collective activity inspired ant colony 

optimization (ACO) algorithms (Bonabeau et al., 2000).  This optimization technique 

emulates the fairly simple, distributed interactions of individual ants to arrive at optimal 

colony-level solutions to complex problems.  ACO's have been applied to approximations 

of NP-hard problems such as the traveling salesman problem (ibid.) and engineering 

applications such as the design of VLSI chips (Arora & Moses, 2009).  However Timmis 

et al. (2006) point out that biologically inspired computation has not yet reached its full 

potential, as biocomputing techniques are based on the behavior of only a small sample 

of natural behaviors, the diversity of which is still largely unexplored. 

 Harvester ants of the genus Pogonomyrmex provide an excellent model system to 

study the influence of heterogeneity in the distribution of food on the evolution of 

foraging strategies and social behavior.  They feed primarily on small seeds that foragers 

carry individually, yet their food sources exist in a mixture of homogeneous sources and 
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heterogeneous patches (Gordon 1993, Reichman 1984).  Many seeds that harvester ants 

feed on are carried by the wind and are scattered at random; however depressions and 

other soil features may create pockets where seeds tend to fall out of the wind in greater 

concentrations, and some seeds may fall from plants in patches or be harvested directly 

from plants' stems by the ants.  Mature colonies among species in this genus range in size 

over more than an order of magnitude, from hundreds of foragers to more than ten 

thousand (Johnson 2000).  The general foraging strategy of Pogonomyrmex varies from 

one species to the next, from solitary foraging to social foraging with persistent trunk 

trails (Johnson 2000), with a general trend toward more intense social foraging with 

greater colony size (Beckers et al. 1989; Johnson 2000).  Within a species, foragers may 

engage in solitary or social foraging depending on the density of available foods 

(Hölldobler 1976, Mull and MacMahon 1997). 

 In a study of the scaling of territory area with Pogonomyrmex forager number, 

Moses (2005) predicted a sub-linear scaling relationship between territory size and 

forager number, as a result of the ants' need to strike an optimal trade-off between the 

cost of increased search times on a small territory depleted of seeds, and the cost of 

increased travel times to and from the nest with increasing territory size.  However, while 

Moses (2005) found a sub-linear scaling relationship between territory area and forager 

number, and an increasing density of foragers on the territory with increasing forager 

number, she did not find a predicted increase in search time with forager number.  This 

led to the hypothesis that, given some heterogeneity in the distribution of food sources, 

larger colonies, by virtue of having larger territories, have access to more information 
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about this distribution, and can exploit this information to direct foraging effort to the 

densest, highest quality patches where foraging times are reduced. 

 In order to investigate the influence of forager number and heterogeneity in the 

distribution of food on foraging strategy, we developed agent-based models (ABMs) of 

foraging by harvester ant colonies, based on descriptions of their behavior in the 

biological literature and our own observations.  We used these models to test the 

prediction that more intense recruitment behavior will be optimal for larger colonies and 

for colonies foraging in environments with more heterogeneity in the distribution of food.   

ABMs simulate systems by iteratively executing rules that govern the behavior and 

interactions of agents within the system.  On each iteration, the state of the system is 

updated based on the actions or interactions of the agents over each discrete time step.  

ABMs are particularly useful for modeling systems with spatial or temporal 

heterogeneity (Berec 2002, Nonaka and Holme 2007) and systems in which complex 

behavior emerges as the result of interactions among individual agents with relatively 

simple behaviors (Grimm et al. 2005), just as the group behavior of an ant colony 

emerges as the result of actions and interactions among the individual ants. 

 ABM's allow us to investigate the effects of forager number and food 

heterogeneity on the evolution of recruitment behavior by allowing perfect control over 

these independent variables, while controlling for other factors that are difficult or 

impossible to control in the field.  For example, one wants to compare species that share 

enough similarity in their foraging habits and environment, and that vary only in the traits 

of interest; but it may be that traits covary among related species in the field as a result of 

phylogenetic dependence (Freckleton et al. 2002).  Heterogeneity in the distribution of 
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seeds in the field has been estimated by taking soil samples (e.g. Reichman 1984), 

however such estimates may not provide a relevant measure of the heterogeneity of foods 

for a given ant species, as ants do not collect all seeds indiscriminately.  Even sympatric 

species may vary systematically in their preference for seeds of different sizes – and thus 

seeds that may be found in different spatial distributions – based on the size and 

morphology of the workers (Hölldobler 1976).  ABM's allow us to control all 

confounding factors and experimental conditions, and thus provide a perfect experimental 

environment so that we can study only the behaviors of interest. 

 We are interested in the effects of forager number and food heterogeneity on the 

optimal foraging behavior of ant colonies, specifically colonies’ use of pheromone 

recruitment to food sources.  Therefore we optimized our ABMs using genetic algorithms 

(GAs), an optimization technique that simulates the process of evolution by natural 

selection (Forrest 1996, Mitchell 1998).  GAs optimize functions or programs by 

repeatedly evaluating the success of a population of different possible parameter 

combinations, and recombining and mutating successful parameter sets to arrive at good 

solutions to the fitness problem over the course of generations.  In the field, the behavior 

of Pogononomyrmex species is optimized by natural selection to maximize foraging 

success (among other goals and constraints) given each species' particular ecology.  

Therefore, GAs and other evolutionary algorithms are a particularly appealing method for 

selecting parameters for models of biological systems (e.g. Hamilton et al. 1990,  Solé et 

al. 2000, Buchkremer and Reinhold 2008). 

 We used GAs to determine behaviors, encoded as parameters in our ABM, that 

maximized seed intake.  The fitness function in our GA was seed intake rate.  We 
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executed GAs over a range of forager numbers, and over a range of food distributions 

from fully homogeneous to fully heterogeneous, selecting for fastest rate of food 

collection under these varying conditions.  We then used the resulting, optimized models 

to simulate experimental foraging observations, and compared the behavior of the 

resulting models to that of ants in the field. 

METHODS 

Simple Recruitment Model 

We developed an ABM of recruitment by a colony of ants, and a GA to evolve 

parameters to maximize the rate of seed collection by the colony.  Our model is similar in 

some respects to the search and recruitment behaviors in the models by Haefner and Crist 

(1994) and Crist and Haefner (1994); however we sought to simplify our model to reduce 

computational complexity and run-time, since optimizing our model for each 

combination of forager number and food heterogeneity requires running the model 

thousands of times. 

 Under this simple recruitment model, each time a searching ant picks up a piece 

of food, it lays a pheromone trail as it returns to the nest.  Ants leaving the nest to begin 

another foraging trip follow pheromone trails to return to sites where food has previously 

been found.  Ants that arrive in high-density food patches have lower search times on 

average than those in lower density patches, and reinforce the pheromone trails leading to 

these sites.  Pheromones evaporate at an exponential decay rate, and over time the 

foragers are expected to converge on the highest quality patch based on its density and its 

distance from the nest, as more and more foragers are recruited to the highest quality sites 

(Beckers et al. 1990, Detrain & Deneubourg 2008). 
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 At model initialization, all ants begin at the nest site located at the center of a grid 

of 4000 X 4000 cells.  Each ant picks a direction at random and begins walking.  At each 

time step, each ant stops walking with a constant probability determined by the parameter 

α, and begins to search.  For high values of α, ants generally will walk short distances 

from the nest; whereas for low values, ants will generally walk long distances from the 

nest before beginning to search. 

 Like Pogonomyrmex in the field (Crist and MacMahon 1991), searching ants 

move in a correlated random walk.  The degree of turning in searching ants' correlated 

random walk allows them to search more thoroughly in a local area if turning more, or to 

move in a straighter line and cover more distance if turning less.  We found that there 

may different optimum degrees of turning at different times in an ants' search.  At the end 

of a pheromone trail where there may be more food to be found, ants may randomly 

select the wrong direction to begin moving and walk away from a pile of food; however 

if they are able to turn more and therefore do a more thorough, local search when they 

begin searching (a behavior suggested by our personal observations of Pogonomyrmex 

foraging on piles of bait seeds in the field), they are more likely to find more food in a 

patch.  If searching ants decrease their turning behavior over time, this allows ants to 

move off and search more widely for new food sources if they fail to find food early on. 

 We determined searching ants' turning behavior as follows.  At each time step t, 

each searching ant selects a direction Θt to move from a normal distribution with mean 

equal to Θt-1 and a standard deviation (SD) determined by three parameters, which allow 

degree of turning to change with the number of time steps since the ant began searching, 

ts: 
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 SD = ω + γ / ts 
δ
        (1) 

 

 The parameter ω determines ants degree of turning.  For lower values of ω, the 

direction searching ants move at each time step t is more tightly correlated with the 

direction the ant moved at time step t-1, and ants tend to turn less.  For higher values, 

searching ants' movements are less correlated from one time step to the next, ants turn 

more and cover less distance.  The parameter γ allows ants an extra degree of turning 

with low values of ts, and to return to the baseline degree of turning ω as ts becomes 

large, and therefore γ / ts 
δ
 becomes small; the exponent parameter δ determines how 

quickly this term approaches zero as ts increases.  Searching ants move at ¼ the speed of 

walking ants or trail-following ants, a relative rate supported by observations of ants in 

the field (Crist and MacMahon 1991). 

 Upon finding food, ants pick up the food and begin to return to the nest.  

Pogonomyrmex in the field navigate by landmarks and the polarization of sunlight, and 

have a keen ability to navigate even if displaced significant distances (Hölldobler 1976).  

Therefore, in our model, ants returning to the nest move at each time step so that their 

distance from the nest is non-increasing.  They select an adjacent, in-bound cell to move 

to with probability proportional to the amount that a move to that cell would decrease the 

ant's distance to the nest.  While returning to the nest, ants lay pheromone trails by 

incrementing the weight of pheromone on each cell they move through by a constant 

amount.  Returning ants move at ½ the speed of walking or trail-following ants (Crist and 

MacMahon 1991). 
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 After returning from the first foraging trip, ants leaving the nest again follow trails 

if any exist, or if not (if no pheromone trails have been laid yet – see section 3.2 below), 

they begin searching at the nest entrance.  Trail-following ants move at each time step so 

that their distance from the nest is non-decreasing.  They select an adjacent, out-bound 

cell with probability proportional to each cell's pheromone weight, as a fraction of the 

total pheromone weight on all such cells.  This allows ants to bias their movement onto 

cells on which more pheromone has been laid, and gives ants a greater probability of 

arriving at sites from which more pheromone trails have recently been drawn.  At each 

time step, trail-following ants abandon the pheromone trail and begin to search with 

probability determined by the parameter ε.  When an ant arrives at a cell whose out-

bound neighbors have no pheromone, it has reached the end of the trail, and it begins to 

search. 

 At each time step t, the weight of pheromone Пx,y,t on each cell x,y is evaporated 

at a rate determined by a colony-specific evaporation rate η: 

 

 Пx,y,t = Пx,y,t-1 * (1 – η)       (2) 

 

 Over time this evaporation approximates an exponential decay rate.  When the 

weight of pheromone on a cell falls below a threshold, it is considered to have fallen 

below an ants' ability to perceive it, and the pheromone on that cell is set to zero. 

 See Table 1 for a summary of parameters used in this model. 
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Density-Dependent Recruitment Model 

During fieldwork, we observed that individual Pogonomyrmex foragers may sometimes 

travel back and forth to collect bait seeds without recruiting any other foragers to the 

effort (site fidelity, or patch fidelity; see Crist & MacMahon 1991, Buchkremer & 

Reinhold 2008, Beverly et al. 2009); and that this may go on indefinitely, or after some 

time a number of other foragers may quickly join the effort and a foraging trail develops.  

We therefore developed an alternate to the simple recruitment model above.  This 

density-dependent recruitment model is identical to the simple recruitment model, except 

that instead of leaving a pheromone trail on the return trip to the nest each and every time 

an ant picks up food, ants make a decision to leave a pheromone trail or not.  We 

introduced two new parameters to facilitate this. 

 The first parameter relevant to this decision is λ, which determines an ant's 

constant probability of leaving a pheromone trail each time it picks up a piece of food.  

Thus if λ is 1.0 or higher, the behavior of this model is identical to the simple recruitment 

model above; if λ is less than 0.0, the colony can abandon the use of pheromones entirely. 

 The second parameter μ determines ants' sensitivity to the presence of other food 

in neighboring cells in making the decision to lay a pheromone trail or not.  Upon picking 

up a piece of food, an ant takes a count C of other seeds in the eight cells immediately 

adjacent to the cell where it found food, and decides to leave a pheromone trail on the 

return trip to the nest with probability p: 

 

 p = λ + C / μ         (3) 
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 (Note that if p < 0 then ants leave a trail with probability 0; if p > 1 then ants 

leave a trail with probability 1.) 

 The ability of ants in the field to detect other food in the neighborhood may be 

based on a scent of nearby seeds detectable by a foraging ant.  Alternatively, Hölldobler 

(1976) noted that ants often handle a number of seeds before picking one up and 

returning to the nest; he speculated that ants may be sampling the availability of food in 

an area. 

Optimization By Genetic Algorithms 

As described above, the behavior of these models is subject to the selection of a variety 

of parameters.  We are interested in differences in the behavior of ant colonies of 

different sizes after their behavior has been optimized by natural selection in 

environments with different degrees of heterogeneity in the distribution of food.  Thus we 

are interested in the optimal behavior expressed by our models for simulated foraging 

environments. 

 An exhaustive exploration of the space of all combinations of parameters for the 

global optimum is not feasible.  For the density-dependent recruitment model described 

above, we have eight floating-point parameters.  If we assume a discretization of each 

parameter to two significant digits, and if all parameters were restricted to the interval 

[0,1] (some are not so restricted), the search space of all possible parameters contains 

more than (10
2
)
8
 = 10

16
 parameter combinations.  Assuming the quarter-second run-times 

we experienced for our smallest and quickest simulations of ant colonies with ten 

foragers, an exhaustive exploration of the search space would take on the order of 10
6
 

years to complete.  The search for optimal parameter sets for environments varying in 
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food heterogeneity is further complicated by the fact that the random placement of 

heterogeneous foods means that sometimes a colony might find a dense pile of food 

placed very near its nest, while at other times there may be no piles of food nearby.  In 

order for a colony to behave optimally in such a stochastic environment, it must perform 

well overall given the possibility of all such eventualities, rather than being optimized to 

perform well in only one such configuration.  Given the infeasibility of finding provable 

global optima for these models, we instead used genetic algorithms (GAs) to find 

parameters that approximate the optimal behavior possible for our models under each set 

of conditions. 

 Our GA works as follows.  Each parameter is a floating point number.  

Parameters for each colony in the initial generation of each GA run were randomly 

selected from a uniform distribution.  Each colony's genome is made up of one number 

for each parameter.  The behavior of workers in our models is determined by a single set 

of parameters for the colony as a whole.  Individual variation in the behavior of workers 

may be an interesting area of study; but given the high degree of relatedness among the 

workers in an ant colony (Trivers and Hare 1967), we expect that stochasticity in the 

behavior of ants modeled here will produce functionally similar variation for the purposes 

of this study. 

 Each GA run used a population of 100 colonies, over 100 generations.  We ran 

GAs over a range of forager numbers, from 10 to 1000 foragers, and over a range of food 

heterogeneity.  Food heterogeneity was manipulated by placing food in piles of 256 

seeds, and scattering the remaining seeds at random over the grid. The grid was always 

set up with the same number of total seeds, but the number of seed piles ranged from zero 
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(heterogeneity 0) to 100 (heterogeneity 1).  We ran the GA multiple times for each 

combination of forager number and food heterogeneity. 

 All colonies were evaluated on eight food configurations per generation, with 

piles and seeds placed at random on the grid, but each with the particular degree of 

heterogeneity for that GA run.  The eight food configurations were standard for each 

generation, such that each colony was evaluated on the eight configurations identical to 

those given to all other colonies in that generation. 

Each colony was evaluated on each food configuration for 20,000 time steps per 

configuration.  Because the energetic cost of foraging is a tiny fraction of the energetic 

value of a seed retrieved by Pogonomyrmex foragers (Fewell 1988, Weier and Feener, 

1995), time costs dominate in selection on foraging efficiency; therefore the measure of 

fitness we used was the total number of seeds collected by each colony in the eight food 

configurations in each generation.  An equal value was assigned to seeds collected from 

any of the distributions of food, whether piled or randomly scattered. 

 In each generation, tournament selection for the greatest number of seeds 

collected determined the parents for the next generation.  Tournament selection is an 

efficient selection method whose selection pressure is robust to noisy fitness evaluation 

methods (Miller & Goldberg 1996), such as the sampling of colonies' performance on 

stochastically determined food distributions used here.  Two colonies (parameter sets) 

were selected at random from the population, and their fitness (the number of seeds they 

had collected) were compared.  The one with greater fitness was selected as a parent.  

Another two colonies from the remaining 99 were then selected at random, and the one 

with the greater fitness from this pair was selected as a second parent.  These two parental 
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genomes were recombined with a crossover rate of 10%.  Inherited parameters were 

mutated with probability 0.05, by selecting from a normal distribution with mean equal to 

the current parameter value, and standard deviation equal to the current parameter value * 

0.05.  Both parental parameter sets were then returned to the pool of potential parents, 

and this was repeated 100 times to produce the next generation of parameter sets. 

Comparison to Field Data 

We attempted to validate our models by comparison with observations of Pogonomyrmex 

foraging in the field.  In a separate field study, we (Paz et al. in review) studied the 

foraging behavior of three Pogonomyrmex species that range over more than an order of 

magnitude in maximum colony size: P. desertorum, up to 500 workers; P. maricopa, up 

to 1000 workers; and P. rugosus, up to 10000 workers. We baited focal colonies with 

dyed seeds arrayed around the nest in four different distributions.  We baited with a large 

single pile of seeds; an equal number of seeds divided into four piles at one-quarter the 

density; seeds divided into 16 piles at one-sixteenth the density; and seeds scattered 

randomly.  Seed baits were placed within a minimum and maximum radius, forming a 

donut around the nest entrance.  We then observed the focal colony as it foraged, and 

recorded the retrieval of seeds from each of the four baits to the nest. 

 We simulated foraging observations using models parameterized by our GAs.  We 

initialized models with food distributions that mimic the experimental baits we used in 

the field (Paz et al. in review; see Fig. 1).  Based on the assumption that Pogonoymyrmex 

in the field have evolved to exploit a mixture of heterogeneous and homogeneous food 

sources, we selected parameter sets for our models that were optimized for 50% piled and 

50% random food distributions (heterogeneity 0.5 in Figs. 3 and 4).  We compared the 
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behavior of models of our largest colonies of 1,000 ants, with the behavior of P. rugosus, 

a species whose colonies can grow as large as 10,000 workers, but many or most of 

which have fewer workers, and only a fraction of which workers forage (as opposed to 

engaging in other tasks or remaining idle) at any time (Moses 2005). 

  Following the procedure we used with our field data (Paz et al. in review), we 

produced cumulative intake curves from these observations, and from these calculated 

mean rates of seed collection from each seed distribution.  We normalized the rates of 

collection from piled distributions by producing a ratio of the rate of collection from each 

piled distribution to the rate of collection from the random distribution in each 

observation.  This allowed us to produce a measure of the effect of heterogeneity on seed 

collection rate that is comparable to observations of ants in the field.  We analyzed these 

ratios using repeated measures ANOVA, a method that takes into account the non-

independence between the rate of collection of food from each distribution: within a 

single observation, an ant retrieving a seed from one distribution is not at the same time 

available to collect seeds from other distributions, and therefore the rate of collection of 

piled foods is not independent of the rate of collection of randomly scattered foods.  For 

ant colonies in the field, the number of active foragers may vary from colony to colony or 

from day to day, producing variation in the rates of collection of all foods.  Repeated 

measures ANOVA accounts for this dependence, and gives greater statistical power with 

these kinds of data. 
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RESULTS 

GA Results 

We found that variation in foraging success (fitness for the purposes of our GA) from one 

generation to the next was greatest in the smallest colonies of ten ants, in environments 

where all available food is in piles. This results from a small territory size and the chance 

placement of piles of food relatively close to or far from the nest.  The territories of larger 

colonies are more likely to encompass multiple piles, and therefore these colonies 

experience less variation in foraging success from one generation to the next.  The 

foraging success of colonies foraging on distributions with greater proportions of 

randomly scattered foods is less subject to the chance placement of dense piles of food. 

 Nevertheless, because we evaluated each colony on eight food configurations in 

each generation, we achieved sufficient stability in fitness from one generation to the next 

to observe optimization on the foraging task over the course of the GA runs.  Fig. 2a 

illustrates the mean and maximum fitness (total number of seeds collected over eight 

evaluations foraging for 20,000 time steps) in each generation over one GA run, with a 

ten-ant colony foraging on a fully heterogeneous food distribution.  It was with this 

combination of small forager number and high degree of heterogeneity in the food 

distribution that we saw the greatest variation about the mean in number of seeds 

collected from one generation to the next.  For contrast, Fig. 2b illustrates the mean and 

maximum fitness during one GA run for a 1000-ant colony foraging on a fully 

heterogeneous food distribution, where foraging success from one generation to the next 

is reduced.  We tested this difference in variance for the ten- and 1000-ant GA runs 

illustrated in Fig. 2, selecting generations 50 and greater, after all or most optimization 
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was complete.  After normalizing mean fitness for each colony to 1, we found that the 

variance in foraging success was significantly greater for the ten-ant colony (F-test for 

equality of two variances: ten-ant variance = 0.053, 1000-ant variance = 0.009; F = 6.136, 

df = 49,49, p < 0.001). 

 We are interested in the degree to which forager number and heterogeneity in the 

distribution of food select for the use of pheromone trails to direct the foraging activity of 

the colony.  Two parameters are indicative of the intensity of recruitment behavior: with 

decreasing rate of pheromone evaporation η, pheromone trails are less ephemeral, and it 

is possible for ants to follow trails longer distances from the nest; and with decreasing 

probability that a trail-following ant will abandon a pheromone trail at each time step, ε, 

ants are more likely to follow pheromone trails to their end.  To some extent, these 

parameters may be traded off against one another as GAs converge on an optimal degree 

of trail-following behavior.  Below, we use as a measure of the intensity of recruitment a 

derived Recruitment Factor, which is the geometric mean of trail persistence (1 - η) and 

ants’ trail fidelity (1 - ε): 

 

 Recruitment Factor =                      (4) 

 

Thus, ants of a colony with Recruitment Factor equal to 1 could theoretically 

follow pheromone trails an infinite distance, as trails would be permanent, and ants 

following trails would unfailingly follow them to their end.  Ants of a colony with 

Recruitment Factor equal to 0 would be unable to follow pheromone trails any distance, 
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because either pheromone trails would evaporate instantly, or because ants would have 

no tendency to follow pheromone trails leading from the nest. 

Simple Recruitment Model 

In the simple recruitment model, we found significant, positive, main effects of both food 

heterogeneity and forager number on recruitment factor (GLM, standardized β 

coefficients throughout.  Heterogeneity: β = 0.624, p < 0.001; Forager Number: β = 

0.373, p < 0.001. N = 133 GA runs.) and a significant, negative interaction effect of 

forager number with food heterogeneity (GLM: β = -.295, p < 0.001).  Recruitment 

behavior increased with forager number, and in environments with more heterogeneously 

distributed foods.  The relationship of recruitment behavior with forager number and food 

heterogeneity is illustrated in Fig. 3a. 

Density-Dependent Recruitment Model 

In the density-dependent recruitment model, similar to the results of the simple 

recruitment model, we found significant, positive, main effects of both food 

heterogeneity and forager number on recruitment (GLM: Heterogeneity: β = 0.507,         

p < 0.001; Forager Number: β = 0.166, p = 0.009. N = 137 GA runs.) and a significant, 

negative interaction effect of forager number with food heterogeneity (GLM: β = -.211,   

p = 0.003). 

 Relative to the simple recruitment model (Fig. 3a), the intensity of recruitment 

behavior in the density-dependent recruitment model is more robust to decreasing 

heterogeneity in the distribution of food  (Fig. 3b).  Recruitment behavior remained 

relatively high even in the smallest colonies with as little as one quarter of the food 

distributed in dense piles; whereas in the simple recruitment model, recruitment behavior 
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declined steadily with decreases in food heterogeneity below heterogeneity 1.  This is 

reflected in the relatively weak effect of forager number on recruitment behavior in the 

density-dependent recruitment model (β = 0.166, 95% CI 0.042 to 0.290; cf. β = 0.373, 

95% CI 0.229 to 0.517 in the simple recruitment model). 

 In order to understand why and when ants use pheromone trails, we investigated 

the relationship between forager number, food heterogeneity, and the tendency of ants to 

leave pheromone trails on their return trip to the nest.  The parameter λ, which describes 

ants' baseline probability of leaving a pheromone trail on the return trip with food, 

provides the clearest indicator of a colony's use of pheromone trails.  We found no effect 

of forager number on λ (GLM: p > 0.10), but a significant quadratic effect of food 

heterogeneity (GLM: heterogeneity β = -1.138, p < 0.001; heterogeneity
2
 β = 0.947, p < 

0.001. N = 137.)  These relationships are illustrated in Fig. 4. 

 Thus, colonies optimized on mixed distributions of food were most selective in 

their trail-laying behavior.  We found that colonies evolved the most liberal trail-laying 

behavior when optimized on fully homogeneous food distributions; and that colonies 

evolved significantly more selective trail-laying behavior on fully heterogeneous 

distributions (two-sample t-test: heterogeneous mean λ = -0.272, SD = 0.674; 

homogeneous mean λ = 0.448, SD = 0.464. p < 0.001. N = 53 GA runs.)  Therefore ants 

are significantly more likely to leave a pheromone trail each time they pick up food from 

a fully homogeneous food distribution than ants foraging on fully heterogeneous 

distributions.  We believe this counter-intuitive result indicates selection for patch-

switching behavior in heterogeneous environments, but is in part an artifact of our model.  

This is a subject we will return to in Discussion below. 
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Comparison to Field Data 

Fig. 5 illustrates the cumulative collection of bait seeds placed in four distributions: one 

large pile of 256 seeds, represented by the red cumulative curve; four piles of 64 seeds 

each, represented by the orange curve; 16 piles of 16 seeds each, represented by the green 

curve; and 256 randomly scattered seeds, represented by the blue curve.  Fig. 5a 

represents a typical field observation of P. rugosus foraging over an hour period.  Fig. 5b 

represents a simulated observation of foraging by the simple recruitment model.  Fig. 5c 

represents a simulated observation of foraging by the density-dependent recruitment 

model. 

 Qualitatively, the density-dependent model (Fig. 5c) provides a better match to 

the field data than the simple recruitment model.  The field observation shows slow initial 

discovery of the single-pile and four-pile distributions, but the rate of collection of seeds 

from these distributions increases over the course of the observation.  On the other hand, 

the simple recruitment model (Fig. 5b) produces a less satisfying match to the field 

observation: it is always the more homogeneous distributions that are collected more 

rapidly, and the rate of collection of each distribution falls off over time as the remaining 

seeds become fewer and harder to find.  Because we found better fit of the density-

dependent recruitment model to the field data, and because the density-dependent 

recruitment models had the capacity to evolve behavior identical to the simple 

recruitment models if that behavior were favored, we will focus the quantitative analysis 

below on the behavior of the density-dependent recruitment model. 

 We compared mean rate of collection of seeds from heterogeneous distributions 

relative to that of homogeneously distributed seeds, by ants in the field and by our 
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models.  As in Paz et al. (In review), we analyzed the results of our simulated foraging 

observations using repeated measures ANOVA.  In our field work, we (Paz et al. in 

review) found a significant effect of source seed distribution on the ratio of seeds 

collected from piled distributions relative to random seeds, but we found no effect of 

forager number.  Similarly, our analysis (Repeated measures ANOVA.  N = 27 simulated 

foraging observations) of the behavior of the density-dependent recruitment model found 

a significant within-subjects effect of seed distribution (p < 0.001), but no between-

subjects effect of colony size (p > .10), nor a within-subjects distribution X colony size 

interaction (p > .10).  These relative rates are illustrated for the field data collected by Paz 

et al. (In review) (Fig. 6a) and simulated foraging by the density-dependent recruitment 

model (Fig. 6b).  Values for these ratios are log2-transformed, so that a value of zero 

indicates that seeds were collected at the same rate as randomly distributed seeds, while a 

value of one indicates that seeds were collected twice as fast. 

 We analyzed field and simulation data together, including both species and data 

source as factors (Repeated measures ANOVA.  N = 54, 27 field and 27 simulated 

foraging observations.)  We found that ratios for the density-dependent recruitment 

model are generally lower than those for ants in the field (Between-subjects effect of data 

source: p = 0.017), perhaps indicating that ants in the field have a keener ability to exploit 

piled foods using additional behaviors to those we have modeled here (e.g. site fidelity, 

ability to smell or otherwise sense and move to nearby seeds when searching, etc).  

However the relative treatment of piles of different sizes follows much the same pattern 

in the model and in the field (Within-subjects effects of seed distribution X species and 

seed distribution X data source, both p > 0.10; Fig. 6). 
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DISCUSSION 

We found a satisfying fit between the behavior of our density-dependent recruitment 

model and the foraging behavior of Pogonomyrmex harvester ants in the field.  The 

simple recruitment model we developed based on common models of ant recruitment in 

the literature (Detrain & Deneubourg 2008) produced a less satisfying fit, as a result of its 

inability to converge foraging effort on high-quality patches in environments where seeds 

exist in a mixture of homogeneous and heterogeneous sources.  We found that when 

optimized by GA, the density-dependent recruitment model tended to evolve relatively 

selective trail-laying behavior, instead of the behavior of the simple recruitment model.  

This allowed the model to decrease the noise in the pheromone system that resulted from 

trails leading to low quality patches in the simple recruitment model, and allowed 

colonies to adaptively converge their foraging effort on high quality patches given any 

degree of heterogeneity in the distribution of food.  The density-dependent recruitment 

model allowed the evolution of intense recruiting behavior in colonies of all sizes, and in 

all environments except those completely devoid of heterogeneous food sources.  

Density-dependent recruitment behavior allows ants to exploit heterogeneity in the 

distribution of food when they encounter it, even if they encounter it only rarely. 

Contrary to the expectation of the simple recruitment model, in which ants leave 

pheromone trails each and every time they pick up food, we found that for all forager 

numbers and for all degrees of heterogeneity in the distribution of food, the density-

dependent recruitment model evolved mean values for λ less than 1; colonies always 

evolved a condition-dependent trail-laying behavior.  The lowest values of λ tended to 

evolve in environments with mixed heterogeneous and homogeneous food sources, where 
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there is greatest advantage in basing the decision to leave a pheromone trail on the 

presence of other nearby foods, in order to distinguish randomly scattered foods from 

piled foods.  We found a robust effect of increasing food heterogeneity on the evolution 

of increasing recruitment behavior in the simple recruitment model.  In the density-

dependent recruitment models, recruitment behavior remained high until essentially all 

heterogeneity was removed from the food distribution. 

 Although the results of our GA runs with the simple recruitment model revealed 

the hypothesized positive effect of forager number on recruitment behavior, this result 

was supported less strongly in our density-dependent recruitment model.  Like the simple 

recruitment model, the density-dependent recruitment model evolved increasing 

recruitment behavior with increasing forager number in fully homogeneous food 

distributions.  It is in these completely homogeneous environments, however, where we 

least expect to see the evolution of recruitment behavior.  Therefore, this result indicates 

colonies' use of the pheromone trails to direct foraging effort an optimal distance away 

from the nest, rather than toward a particular food source.  This is similar to the use of 

trunk trails by foragers to travel some distance from the nest before beginning to search.  

It is likely, however, that individual ants have the capacity to walk a distance from the 

nest entrance before beginning to search, without relying on pheromone trails to do so.  

While it may be that ants will often drop off a pheromone trail before reaching its end in 

order to explore for additional, nearby food sources, we think it unlikely that pheromone 

trails would be used solely for directing foragers away from the nest, given that, for 

Pogonomyrmex and other ant taxa that produce trail pheromone with a specialized gland 

(Hölldobler et al. 2004), producing pheromone presumably has some physiological cost. 
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In our models, we forced ants to follow pheromone trails from the nest, or else to 

begin searching immediately at the nest entrance, in order to force optimization on the 

use of the pheromone trails.  The evolution of increased recruitment behavior with 

forager number in environments with completely homogeneously distributed foods may 

be an artifact of this aspect of our model.  There may be other reasons that ants will use 

trunk trails to travel a distance from the nest before beginning to forage, e.g. avoidance of 

predators or management of conflict with neighboring nests; but we suspect it is unlikely 

that ants in nature use pheromone trails solely for the purpose of directing foraging effort 

away from the nest. 

 With the introduction of any piled foods to the environment, we found that the 

density-dependent recruitment model evolved relatively intense recruitment behavior 

even in the smallest colonies.  Given some degree of heterogeneity in the environment, 

colonies that can exploit this heterogeneity when they encounter it are at a selective 

advantage over those that do not, even in species with small colonies that encounter piled 

foods relatively rarely.  The density-dependent recruitment behavior allows colonies to 

exploit heterogeneity when and where they find it, even if they encounter piles of food 

infrequently, as for the small colonies modeled here (note the great variance in foraging 

success for the ten-ant colony in Fig. 2a). 

 We observed that the behavior of the simple recruitment model was similar to the 

behavior of the density-dependent recruitment model when evolved on fully 

heterogeneous food distributions.  This is because in these environments, all available 

food is found in dense patches.  Therefore if an ant finds a piece of food, that piece of 

food is necessarily coming from a dense patch and information about that location is of as 
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much value as for that of food found anywhere else.  In these environments both models 

tend to produce well-defined pheromone trails and converge their foraging effort on 

nearby piles, as predicted by common models of ant recruitment and collective decision-

making (Detrain & Deneubourg 2008).  In addition, we found that the density-dependent 

recruitment model evolved significantly more selective use of the pheromones on fully 

heterogeneous food distributions than in fully homogeneous distributions.  More selective 

trail-laying behavior allows ants to be sensitive to the depletion of dense piles, and allows 

the colony to more rapidly and adaptively switch to a new pile as the remaining seeds 

become fewer and harder to find.  Wilson (1961) described the way in which the number 

of Solenopsis workers at a food source may be regulated by unsuccessful foragers 

returning to the nest without laying a trail.  Similarly, Mailleux et al. (2004) found that 

Lasius workers require a threshold volume of nectar in their crops in order to lay a trail.  

This negative feedback has a lag of several minutes, however, resulting in an “overshoot” 

of the optimal number of workers arriving at a site (Wilson 1961).  On the other hand, if 

even successful foragers are able to return from a dwindling food source without laying a 

trail, as we observed here, this “overshoot” may be minimized.  Thus, even for species 

whose foods occur only in patches too large to be collected by a single forager, e.g. army 

ants specializing on raiding other social insect colonies (Franks et al. 1991, Solé et al. 

2000) it may be adaptive to make relatively selective use of pheromone trails.  Given that 

producing pheromone may bear some physiological cost – a cost we did not impose on 

the simulated colonies in our GA runs – we expect that for ants in the field, there is even 

greater advantage in using pheromone trails selectively. 
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 When the simple recruitment model was evolved on increasingly homogeneous 

food distributions, recruitment behavior steadily fell off.  We found that the addition of 

homogeneously distributed foods prevented the convergence of foraging effort on high 

quality patches.  This was a surprising outcome, given the assumption that colonies will 

converge on high quality patches because of the increased ease of finding food in those 

patches (Detrain & Deneubourg 2008).  We observed that pheromone trails being drawn 

back to the nest by ants that picked up homogeneously distributed foods created so much 

noise in the system that the colonies were unable to converge (see Fig. 1a); many ants 

that set out from the nest followed trails that led back to a site where no food was to be 

found, and therefore did not arrive in the high quality patches. 

 Instead of evolving less intense recruitment behavior with an increasing 

proportion of homogeneously distributed foods in the environment, the density-dependent 

recruitment models evolved increasingly selective use of the pheromones (see Fig. 1b).  

By becoming increasingly selective about drawing a pheromone trail on the return trip to 

the nest, the information value of the pheromone trails remained high enough that 

colonies continued to recruit heavily even when as little as one quarter of the available 

food was distributed in piles. 

 The binary decision making process surrounding the laying of a pheromone trail 

is analogous to the decision-making process by scouts of the species Temnothorax 

albipennis in nest-site selection.  Scouts of this species evaluate potential nest sites and 

selectively recruit nestmates to preferred sites by tandem running, and a variety of nest-

site properties relevant to this decision have been identified (Visscher 2007).  Presumably 

each desired property is factored into a decision-making process such that each 
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contributes to the probability that a scout will begin recruiting to the site.  Similarly, 

Pogonomyrmex foragers may incorporate a variety of additional factors into the decision 

to lay a pheromone trail, including, for example, the presence of other ants which may 

compete for a food source if it is not collected quickly.  Over time, other foragers making 

the same evaluation cause reinforcement of paths to high value patches and convergence 

on the optimal colony-level behavior, without distraction by the noise of paths leading to 

sites of little or no value.  This model of recruitment differs from that described by 

Beckers et al. (1993) for the black garden ant Lasius niger, in which workers modulate 

the weight of pheromone trails according to the concentration of sugar solutions they 

discover.  Compared to Lasius niger which forages for nectars that may vary substantially 

in their concentration and value, there may be less variation in the quality and value of 

seeds returned to the nest by Pogonomyrmex foragers.  Harvester ants select seeds within 

a range of sizes that are easy enough to handle given forager size and morphology of a 

species (Hölldobler 1976); within this range there may be less variation in nutrient value 

than that encountered by Lasius niger foraging on nectar.  Therefore for Pogonomyrmex 

foragers, the qualities of individual seeds discovered may be less important to the 

colonies' foraging success than the presence of other nearby seeds, and this may be an 

important determinant of the optimal recruitment behavior in these taxa. 

The decision-making process modeled by the density-dependent recruitment 

model may be valuable in the field of ACO's.  We found that the simple recruitment 

model worked best when all available food was found in dense piles, and that its 

performance degraded with the addition of randomly distributed foods.  This narrow set 

of favorable conditions (relative to the range of foraging ecologies of ants in the field) is 
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analogous to static ACO problem domains where it is known from the start which routes 

need to be optimized, e.g. in routing circuits, where a number of known connections must 

be routed (Arora & Moses, 2009).  A decision-making process by individual ants in the 

laying of pheromone trails may improve ACO performance in dynamic problems in 

which the solutions to be routed are not known from the start, but must be determined 

during the process of optimization. 

In many ACO’s, agents lay pheromone in amounts proportional to the global 

quality of the solution they have found (Bonabeau et al. 2000).  In contrast, ants in our 

density-dependent recruitment model make a binary decision based on local information, 

and lay pheromones in a constant amount.  Such an approach may facilitate the use of 

ACO in problems where the global quality of a particular solution cannot be known, but 

must be estimated by sampling local information.  A variety of kinds of local information 

can be incorporated into the binary decision process.  The system can then converge on 

an optimal solution by allowing recruited ants to evaluate the site and reinforce 

pheromone trails based on the same decision.  Such a decision-making process, and other 

aspects of the behavior of an ACO, can be optimized by GA for particular problems, as 

we have done here. 

 Johnson (2000) categorizes the foraging behavior of Pogonomyrmex species, 

ranging from solitary foraging to recruitment using persistent trunk trails.  Our results and 

those of Paz et al. (In review) suggest that the individual behavioral components of 

recruitment may not differ so starkly and categorically across species.  Rather, the 

tendency for harvester ant species to engage primarily in solitary foraging vs. trunk trail 
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recruitment may depend on the likelihood from one day to the next that a small vs. a large 

colony finds a high-density patch of seeds somewhere on its territory. 

 We wondered if differences in the ability to recruit to high quality food patches 

might cause the niche partitioning that allows the co-occurrence of the three sympatric 

Pogonomyrmex species examined in Paz et al. (In review).  Our results suggest such a 

differential ability to recruit is not the answer to that question.  Species with larger colony 

size may dominate high quality patches, however, by recruiting large numbers of foragers 

to these sites and overwhelming and excluding smaller colonies foraging there, while 

these smaller colonies are then forced to forage on randomly or less densely distributed 

foods.  This suggests further research into interspecific competitive interactions may be 

fruitful in understanding how heterogeneity in the distribution of food causes niche 

partitioning among these ant species.  
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Table 1: Summary of parameters that influence the behavior of the models, and which are selected by GAs 

Parameter Function 

α At model initialization, determines the probability each time step that an ant walking from the nest will stop 

walking and begin to search.  For lower values, ants tend to walk farther from nest before beginning to 

search. 

ω For searching ants moving in a correlated random walk, determines the baseline degree of deviation in the 

direction an ant will move from one time step to the next.  For low values, ants turn less, move in a 

straighter line, and cover more distance; for high values, ants movements are more random, they turn more, 

search more thoroughly in a local area, but cover less distance. 

γ For searching ants, determines the additional degree of deviation in turning early on in an ant's search, 

allows for more thorough, local searching at the end of a pheromone trail. 

δ For searching ants, this exponent term determines how quickly turning behavior approaches the baseline 

turning behavior determined by ω as time spent searching increases. 

ε For ants following a pheromone trail, determines the probability each time step that an ant will abandon the 

trail and begin searching before reaching its end.  For lower values, ants tend to follow pheromone trails 

greater distances, and or more likely to follow trails to their end, where food was previously discovered. 

η Determines the rate at which pheromones evaporate.  Higher values produce faster exponential decay of the 

pheromones from the grid. 

λ Determines the baseline probability that ants will leave a pheromone trail each time they pick up a piece of 

food.  For values greater than or equal to one, ants leave pheromone trails each time they pick up food.  

Lower values correspond to decreased probability.  For values below zero, the presence of other nearby 

food is required for ants to leave a pheromone trail.  Density-dependent recruitment model only. 

μ Determines ants' sensitivity to the presence of other food when making a decision to leave a pheromone 

trail or not.  With higher values, the presence of each additional piece of food in the neighborhood increases 

the probability of leaving a pheromone trail less.  Density-dependent recruitment model only. 
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1a: Simple Recruitment Model 

 

1b: Density-Dependent Recruitment Model 

 

Fig. 1. 1a) Simple recruitment model running a simulated foraging observation.  1b) Density-dependent recruitment 

model running a simulated foraging observation on an identical bait distribution as in 1a.  Pheromone trails radiate 

from the centrally located nest, overlaid on top of baits as they appeared at the beginning of the simulation before 

foraging began.  For the sake of clarity, ants are not displayed, and bait piles have smaller numbers of seeds than 

reported in text. 
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2a: Ten-ant colony on fully heterogeneous food 

 

2b: 1000-ant colony on fully heterogeneous food 

 

Fig. 2. Sample Fitness Curves for GA runs. a) One hundred generation GA run for a ten-ant colony foraging on a fully 

heterogeneous food distribution.  b) One hundred generation GA run for a 1000-ant colony foraging on a fully 

homogeneous food distribution.  Fitness is the total number of seeds collected over eight simulations lasting 20,000 

time steps each.  The best and mean fitness in each generation are shown. 
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3a: Simple Recruitment Model 

 

3b: Density-Dependent Recruitment Model 

 

Fig. 3. Degree of recruiting behavior evolved by GA runs for the simple recruitment (3a) and density-dependent 

recruitment (3b) models, over combinations of forager number and food heterogeneity.  Recruitment behavior increases 

with trail persistence    –     and with ants’ fidelity to the pheromone trails        . Recruitment Factor is the 

geometric mean of these terms:                  
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Fig. 4. The relationship between colony size, food heterogeneity, and λ, the baseline probability that ants will leave a 

pheromone trail on the return trip to the nest with food.  Greater values for λ indicate greater probability of leaving a 

pheromone trail each time a piece of food is picked up.  Note that this figure is rotated to allow a clearer view of the 

surface, such that the X and Y axes are reversed relative to Fig. 3. 
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5a: Field Observation

 

5b: Simple Recruitment Model

 

5c: Density-Dependent Recruitment 

 
Fig. 5. Foraging observations of ants given seed baits in four distributions.  Fig. 5a represents a field observation of a 

P. rugosus colony taken from Paz et al. [10].  5b and 5c represent a simulated foraging observation of the simple 

recruitment model and density-dependent recruitment models, each parameterized with values optimized for a 50% 

homogeneous and 50% heterogeneous food distribution.  For Fig. 5a, time is fraction of a day.  For Figs. 5b and 5c, 

time is model time steps. 
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6a: Field data 

 

6b: Density-dependent recruitment model 

 

Fig. 6. Ratio of the rate of collection of seeds from piled distributions relative to randomly placed seeds.  Fig. 6a 

illustrates the results of field observations by Paz et al. (In review) of P. desertorum, P. maricopa, and P. rugosus.  

Fig. 6b illustrates the results of simulated observations of the density-dependent recruit model, with colonies with 

comparable numbers of foragers to P. desertorum, P. maricopa, and P. rugosus colonies.  These simulated colonies 

were parameterized by GA runs for a 50% homogeneous and 50% heterogeneous food distribution.  Bars represent 

least squares means obtained by repeated-measures ANOVA.  Error bars represent standard errors. 
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