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INDIVIDUAL VARIATION IN EEG SPECTRAL POWER ENHANCEMENT
AND INTELLIGENCE

by

Matthew J. Euler

M.S., Psychology, University of New Mexico
Ph.D., Psychology, University of New Mexico
ABSTRACT

This study tested the relationship between short-term neuroplasticity avid uadli
differences in intelligence. Twenty-two participants completed cagniéisting and a
visual EEG experiment involving exposures to repeated and novel stimuli. Time-
frequency analyses of phase-locked (evoked) and non-phase-locked (induced) power
showed a small effect of decreasing evoked/induced theta (4-8 Hz) ratiosrowvdust
exposures, irrespective of condition. Hypotheses that intelligence would oetate t
increase in this ratio over exposures were not supported. However, the magnitude of the
ratio positively correlated with intelligence; while the amount of induced gaf8@&a0
Hz) activation pre- to post-stimulus was highly inversely related Results suggest that
transient changes in neural network phase strongly relate to intelligeplcgsiological

measurements acquired over brief intervals
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Introduction

Intelligence is one of the most useful and most widely researched comcepts i
psychology. One widely accepted view of intelligence is that it is one’t{aioi understand
complex ideas, to adapt effectively to the environment, to learn from experiencgateen
various forms of reasoning, [and] to overcome obstacles by taking thought (Netiaker
1996).” Individual differences in intelligent behavior (or latent intellectuphcay) result
from differences in the underlying neurophysiology which gives rise to thailue.
Attempts to understand this neurophysiological basis of intelligence hasuyyestc
physiological psychologists for many decades. Yet, despite considedablecas linking
variation in intellectual capacity to its underlying neurobiology, espg@aite the
widespread use of magnetic resonance imaging (MRI) technology (GFap&pson,
2004), much is still unknown about the mechanisms which enable one individual to
consistently reason, learn, and adapt more effectively to their environmeintbier.
Research on the physiological basis of intelligence not only aims to/@aefof the central
constructs of psychology, but will also enhance our understanding of the mechanisms
underlying developmental and acquired disorders of learning and adaptive behavior,
including schizophrenia, ADHD, and Alzheimer’s disease (Whalley, Starawds, Hunter,
Pattie, & Deary, 2000).

One important concept pertinent to many theories of intelligence is the nogparof
the general psychometric factor reflecting the positive covariation in oagtests (Jensen,
1998). Early on in mental ability research, it was found that whenever a suffidagty
sample of individuals was administered a sufficiently large and diverseylbattmognitive

tests, a higher-order factor comprising the positive covariation betweestoess reliably
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emerges upon factor analysis (Spearman, 1904). Common examples of such tests might
include verbal repetition of aurally presented digit strings, speeded symbol tagksgtests
of vocabulary definitions, and multiple choice tests of figural matching andniegs
(Wechsler, 1997). Not only do mental ability tests consistently exhibit positiveiaima
across diverse test batteries, but factor analysis methods consisteedlythat a single
higher order factorg, accounts for the majority of their shared variance (e.g. 50%; Carroll,
1993). Restating this, whenever a large and diverse battery of ability tadtairgstered to
enough individuals, it is consistently observed that not only do the test scores always
positively correlate, but a single factor accounts for much of their sharetoraria

This generafactor has also been consistently and strongly related to performance on
tests designed to measure overall intellectual ability. For exaghateounts for 52% of
variance in Wechsler Adult Intelligence Scale (WAIS) performan@afip 2000). This
finding is so consistent that it has been frequently argued thagvacaally measures is an
individual's overall amount of cognitive ability or thgeneral intelligence (Jensen, 1998).
This implies that when some people are said to be more or less “intelligent” thes) ot
they actually differ on is this level of overall cognitive ability. The ekte which a given
ability test correlates with is understood as itgloading. Thus, those tests with the highest
g-loadings are in turn thought to best measure an individual's overall intellebiitgl a
Whether a single, latent general intelligence variable best accoutitg femergence of the
psychometrig factor is controversial (see van Der Maas et al., 2006). Yet, the s#tistic
reality of theg factor remains, and its utility for exploring the neurobiological basis of
intelligence is attested by numerous findings relating it to biologicadigningful

characteristics.



For example, it has been consistently shown that the general intelligetace fac
demonstrates high heritability (Plomin & Spinath, 2004), and that its heritabdityases
over an individual’s lifespan while environmental variance in intellectual i@siliiminishes
(Jensen, 1998). The high heritabilitygis likely related to the numerous adaptive outcomes
associated with higher intelligence (Gottfredson, 2004). Among these arelesrability
as a mate in laboratory settings (Prokosch, Coss, Scheib, & Blozis, 2008), acadkjoir a
success (Neisser et al., 1996; Schmidt & Hunter, 1998), risk of developing a psychiatri
iliness (Batty, Mortenson, & Osler, 2005), risk of developing late onset demeritaléyvet
al., 2000), and longevity and hospital admissions (Deary, Whalley, & Starr, 2003)gSince
strongly relates to so many biologically meaningful outcome indices résepts an optimal
psychological index from which to explore the underlying neurobiology of inteligyeBy
then relating the most highfitloaded tests to various neural characteristics of interest,
researchers are able to evaluate candidate variables which may acceanafmn in
intelligence.
Candidate Neural Variables Underlying Intelligence

As research on the neural basis of intelligence has proceeded, numerous hlageries
been advanced that advocate variables which might be most fruitfully studied. Araong th
most frequently cited candidates are the size, efficiency, and phasfi@ither particular
brain regions, or the brain as a whole. One recent proposal adopts these candidates in the
forms of the “availability, reconfigurability, and customizability” of ¢coad modules to
explain variation in “cognitive plasticity” (i.e., intelligence and learnibjtg) both within
and across species (Mercado, 2008). In this framework an organism’s ability timidiste

stimulus representations (including private stimuli) is the criticalrohetant of what and
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how quickly it can learn. These three characteristics are hypothesized websang for the
creation, maintenance and switching of those stimulus representations.r|riteygeefer to
the number and diversity of cortical modules, the brain’s capacity to develop new
configurations of those modules, and the extent to which those modules can be modified or
reallocated to resolve new stimulus representations. Although speculasvieanmework
provides a basis from which to explore the empirical data on neural correlatesdliglence.
Moreover, this framework roughly corresponds to the various neuroimaging techniques
which have been used to study intelligence. For example, availabilityeczonbtrued as a
static or structural property of brains which is investigable using struenanetabolic
MRI technologies. Reconfigurability refers to the way in which existimgtional aspects
can be dynamically combined, such as in resting state data or non-task depeedecih rer
with methods which emphasize spatial relationships and the role of particutaniss.
Customizability lends itself most readily to neuroimaging studies whiempat to measure
rapidly shifting neural dynamics or neural network change in real time.
Neural Availability

Brain size and related indices of neural availability have been posited asidetg
factors for intelligent and adaptive behavior. In the framework above, aligyladfiers to
the amount and type of neural material available for resolving stimulus adapta
(Mercado, 2008). A widely replicated example of the significance of availaisilihe
finding that psychometric intelligence consistently shows modest albetitvyparrelations
with brain volume in humans, especially when body size is controlled for (Wiclegtiph,
& Lee, 2000; McDaniel, 2005). The same is true of its counterpart constructs whauredea

across species in non-human animals (Reader & Laland, 2002). Moreover micrgcaphaly



condition in which people are born with undersized heads and brains, is associated with
severe intellectual impairment and disrupted learning (Woods, Bond, & Enard, 2005). Also,
in support of availability as a necessary feature of intellectual kppadhe evidence that
non-human animals lack the necessary architecture for determining theustrelationships
necessary to develop language (Boysen, Bernsten, Hannan, & Cacioppo, 1996). By
extension, their ability to solve certain types of problems is constraindu lmpimber and
types of neural modules they possess. Thus there is good evidence to suggest theat the she
volume of and type of neural material one possesses is a limiting determinaetiettual
ability.

A recent review of the structural neuroimaging literature of inteligespeaks
directly to the importance of the size of particular cortical regions felligence.
Specifically, Jung and Haier (2007) have recently proposed that that a predonpaaetly-
frontal network which integrates input from temporal and lateral occipitaitates
primarily underlies variation in intelligence (Parieto-Frontal Irdéign Theory, P-FIT). In
support of this model, the authors cite volumetric data from several studies wigch ha
consistently demonstrated positive correlations between IQ measuresoantbBn areas
comprising P-FIT structures. For example, one report examined the corréletween the
g-loadings of Wechsler subtests and gray matter volume (Colom, Jung, & Haier, 2006).
Results demonstrated that the most highlgaded tests were associated with the greatest
number of gray matter voxels, and thagdeadings increased the significance of gray
matter/IQ correlations also increased. In support of the model, the mostdrighlyed tests

were correlated with gray matter in discrete regions correspotwiBigpdmann areas in



superior, lateral, and medial frontal areas; inferior and superior pdoietiées; inferior,
middle, and superior temporal regions; and lateral occipital sites..

Similarly, findings obtained from diffusion tensor imaging have supported the
positive relationships between occipito-parietal and frontal white mategrity and IQ in
children (Schmithorst et al., 2005), while magnetic resonance spectroscopy oastiated
an association between left parieto-occipital metabolite concentrationgidrad and
performance IQ measures (Jung et al., 1999). Hence, data from structurakainolime
studies support robust IQ effects for specific regions within the P-FIT mbuel,(& Haier,
2007).

At the same time, it seems fundamental that adequate neural materiagdtabdlim
functioning is a necessary feature underlying the development of complexilayante
behavioral repertoires. So although availability represents a necessaeyaspgnitive
plasticity and intelligence, it alone is unable to address aspects of functeumaplasticity
which are likely related to intelligence. Taking the associations betameunt and capacity
as granted, the more explicitly functional variables in this mogeteconfigurability and
customizability, suggest other interesting avenues for examiningeshifes underlying
intellectual variation.

Neural Reconfigurability

In this model reconfigurability refers to an organism’s ability to maintain antfa
cognitive representations through the flexible development of configurations of neural
modules, or through rapid temporal switching between modules or networks (Mercado,
2008). Examples of this might include the neural processes involved in momentary set

switching, or manipulation of sensory elements (stimulus representations) imgvorki
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memory. This capacity is posited to rely substantially on the action of the pretortéx in
particular to modulate or bias responses from other neural modules (e.g. sensorgnohotor
limbic regions) into new configurations, or to enable switching between coatigns to
enable stimulus representation and responding. In a sense then, reconfigusahb#it
capacity of a network to effectively combine its existing architechiceriew functional
units to solve problems. The importance of flexible utilization of cortical modioites
intelligence has been demonstrated in several ways. One particuldrstwaetd example is
the relation between working memory, reasoning, lateral frontal functiorg. and

For instance, one PET study adapted stimuli from multiple choice reasonsfptest
use in the scanner (Duncan et al., 2000). The authors rationally selected visulafatim
verbal and spatial tasks which utilized nearly equivalent content, but which vecmdiag
to difficulty. Preliminary behavioral data indicated that the low and high diffictimuli
exhibited low and higlg-loadings, respectively, when tested in large samples. They then
designed experimental conditions which compared neural responses during aecooh
multiple choice reasoning tasks which variedgdonading. Cerebral blood flow measures
obtained during PET scanning indicated that high versugloamparisons across spatial
and verbal tasks were primarily associated with lateral frontafadictn. Since content-
dissimilar verbal and spatial tasks elicited common frontal activation, the suattgored that
g-loaded tasks primarily recruit frontal regions as opposed to activatingedifaigal
regions.

Similar research has utilized fMRI to examine neural correlatesedligeince during
task performance. As described in Jung & Haier’s recent review (2007) ousrstudies

have implicated the role of frontal and parietal structures in functional neagmigresearch



on intelligence. Diverse working memory and reasoning tasks such as visuatanalyt
reasoning, n-back paradigms, relational reasoning and inference, and chessphavie
implicated parieto-frontal networks with occipital and temporal contribu{iBreohakaran,
1997; Gray, 2003; Ruff et al, 2003; Atherton et al., 2003). Additionally, the role of lateral
frontal cortex in performance of working memory and reasoning tasks has éken w
supported (Levy & Goldman-Rakic, 2000), as have the covariation between working
memory and reasoning tasks an@berauer, Schulz, Wilhelm, & 8{i2005; Jarrold, &
Towse, 2006)

Overall, the structural and functional imaging literature has made oumer
contributions to our understanding of the neural basis of intelligence. However, these
methods can be enhanced and augmented by information from electrophysiomgicas s
Although PET and especially fMRI technologies provide excellent spatiautiesol
regarding locations of increased or decreased activation related tgartedior task
performance, they are currently unable to resolve neural dynamics atlisecond scale at
which the brain operates. Thus it is necessary to utilize electroencepipilpgEEG) and
magnetoencephalography (MEG) in order to more fully understand themeah¢iural
dynamics underlying individual differences in intelligence. In particuésting EEG/MEG
data provide excellent opportunities to examine the baseline propertiegyredahe
interdependence of neural modules and the flexibility of their temporal coniongat
Overview of EEG/MEG Techniques

Briefly, human electrophysiological research has been primarily ctedlusing two
data-processing methods. Classic EEG research on intelligencelutiézeognitive event-

related potential (ERP, and its sensory correlate the evoked response-agRpx@amal
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means to quantify neural plasticity. The ERP/ER is obtained by repeatesiyniong a
stimulus to a subject and averaging the neural responses recorded in their EEf@lsve
relative to the same time-point in each trial. This procedure results in agaesaked
response. More recent work utilizing EEG/MEG technology to examine the
neurophysiological basis of intelligence has employed frequency-domasuresavhich are
becoming more widely adopted in electrophysiological research. Unlike ER$uras
which quantify the amplitude and latencies of features in ERPs, these other teghnique
convert data to the frequency domain through the use of Fourier-based or waxsfetins
(Makeig, Debener, Onton, & Delorme, 2004). This data transformation gives thé bénef
an additional dimension on which to characterize electrophysiological responses
specifically, latency, magnitude (in the form of power), and frequency itseledter, by
using these transformations to preserve a balance of time and frequsaiation,
researchers are able to also quantify significant changes and effegisabipbiase. As a
result, time-frequency analyses permit investigations of power in etgthgegtional time-
locked (evoked), as well as in non-phase-locked locked activity known as induced power.
Thus, time-frequency analyses permit quantification of the variabilityuraheesponses
across trials, through evoked and induced power analyses, and through directatiwestig
of signal phase dynamics. One useful application of EEG time-frequencuneeasthe
study of ongoing neural dynamics observed during resting periods.

In general, resting EEG studies of time-frequency data have typicallgragrated
positive relationships between EEG power, especially alpha band (8-12 Hz) aodver,
intelligence (Doppelmayr, Klimesch, Stadler, Pollhuber, & Heine, 2002; Klimd$€99).

One rather comprehensive EEG study which utilized frequency-domain measures
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investigated the intelligence relationships with resting EEG power, caeet@md phase in a
sample of over four hundred people between the ages of 5 and 52 (Thatcher, North, & Biver,
2005). Participants’ EEGs were recorded during two five-minute periods otlegesl rest,
before or after which the Wechsler Intelligence Scale for Children II3QAR) or WAIS-R
subtests were administered. The data were divided into two-second epochs and absolute
power as well as pair-wise EEG coherence and phase delay were obtaineguendies
from 1-30 Hz. First, the authors performed factor and discriminant analysesrtaidet#
EEG measures could differentiate between high and low IQ individuals. An exgirenps
design was implemented where participants were divided into high and losmu@sgand t-
tests were performed on all EEG measures. Significant variablesheersubjected to
factor analyses for discriminant analysis between groups. Discrinanahjises revealed
excellent classification, which included overall classification acguismnsitivity, and
specificity from 92% and greater for full-scale, verbal, and perform&@e€¢HSIQ, VIQ,
P1Q). Multiple regression analyses revealed that individual subjectsrdisant scores
significantly predicted IQ variables.

Parsing these relationships, subsequent correlation analyses performed wiiGthe
measures across 1Q groups revealed that EEG coherence was consmstersély related to
IQ while absolute power was consistently positively related to 1Q. As audeereeasures
signal correlation, these results indicate that mere increased #sso@asitive or negative)
between electrode sites is inversely related to intelligence. Regtlitrespect to phase
delays were split, which is consistent with the fact that cohereneeteefioth negative and
positive phase-locking. In general, decreased short distance frontal plagsarmée delta

(1-3.5 Hz) and beta bands (12.5-25 Hz) were associated with higher 1Q, while theseonve
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was found for delta and beta short distance phase delays over posterior reggoak, O
coherence and phase delay measures exhibited the strongest corretatiGh wi
Summarizing their complex findings, the authors suggested that the genenddly s
associations between EEG measures and VIQ, PIQ, and FSIQ indices indidaieestha
EEG measures were tapping a general intelligence factor as opposedfio ispeltectual
domains. They argued that as energy and intelligence are “necessakidyd, lthe
association between absolute power and intelligence was not unexpectdu. ohthg
observed phase relationships they further hypothesized that general inteliggasseciated
with more rapid processing in frontal regions and more integrated processing nmopasie
temporal areas.

Given the robust association between measures of phase coupling and IQ found in the
prior report, a later report utilized two aspects of pair-wise phaseimgsgtiase-shift
duration (i.e. time between the onset and offset of phase-shift) and phase-lock duration
(duration of synchrony), to quantify neural correlates of intelligendeeisame sample
(Thatcher, North, & Biver, 2008). Using one to two minutes of each participantisgrest
data, the authors obtained ongoing phase information and calculated pair-wisehgtease-s
and phase-locks on the time-frequency transformed data. The phase measuréd#bm a
pair-wise electrode combinations were used to predict IQ in multivaeigtession analyses.
Overall, combined values across frequency bands yielded multiple R = .75 foaR&1Q
phase-shift and R = .61 for FSIQ and phase-locking. Together phase measuregadoount
68% of the variance in 1Q in the sample. Pair-wise phase-shift duration (meaardura@
ms) was generally positively related to 1Q while phase-locking (meatidin~250 ms) was

negatively correlated with 1Q. Additionally, the highest correlations witlsg@n@asures
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were obtained in the 6 cm distance range compared to longer inter-electrooeediskr

both phase-shift and phase-locking, the authors used observed group differences to develop
models which related optimal durations of each to 1Q. Based on other theoretical and
empirical work, the authors hypothesized a model where sufficiently longghéds

durations facilitate recruitment and allocation of neural resources forggidrgeghase-

locking, while phase-locking duration must balance information processing nesulst ag
network flexibility. On the basis of this model they argued that obtained values && pha

reset measures in the high 1Q group are indicative of optimized durations atiidhte

rapid and efficient neural processing.

Overall this research program demonstrates that reconfigurabiliggnandcal
flexibility in the form of reduced resting EEG coherence and phase-pckiassociated with
higher 1Q performance. This increased spatial differentiation amongrh@lparticipants
may indicate more flexible neural networks which are more able to béyrag&brated into
continuously evolving combinations of processing units. Simultaneously, findings that
increased resting phase-locking is inversely related to 1Q imply thalmeaonfigurability
may specifically relate how well the brain is able to balance the aplyatentpeting needs
of regional integration and differentiation (Thatcher, North, & Biver, 2008). Tlngswaken
with PET and fMRI research, resting EEG data suggest specific dynanachanisms
underlying the fronto-parietal interactions necessary for intelligenavior.

Neural Efficiency

Another important idea within intelligence research is the notion that one’s

intelligence is a function of one’s neural efficiency. Specificalig, ‘heural efficiency

hypothesis” inversely relates intellectual performance to neural astivand has received
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substantial empirical support for nearly two decades. In one of the first stgies/ide
data on neural efficiency and intelligence, researchers collected PEdrdaale
participants’ cerebral glucose metabolization while they performed diheeef tasks: the
Raven’s Advanced Progressive Matrices (RAPM; Raven 2000), a vigilancertdskyaual
control task (Haier et al., 1988). The most important finding of this report was areinvers
association between brain glucose utilization and performance on the RAPM., Tihatas
intelligent participants actually required less metabolic exertion thaer IfQvparticipants to
complete a cognitively challenging task. This result led to the formulation attiral
efficiency hypothesis, wherein the underlying neural differences betes®and more
intelligent individuals is the efficiency with which their brains process médion (Haier et
al, 1998).

A particular strength of perceptual and cognitive electrophysiologiadies of
intelligence is that their temporal resolution affords precise testuiadlrefficiency. Indeed,
several studies utilizing traditional ERPs have reliably shown invers®nslaips between
neural response latency and IQ (Burns, Nettelbeck, & Cooper, 2000; Bazanan&ckiel
2002). This relationship has been demonstrated in children as well as adults. Foegaampl
early study of more than 500 randomly-sampled Canadian children enrolled in24&des
demonstrated an inverse-relationship ranging from r =-.18- -.33 between visual-evoked
potential component latencies and WISC 1Q scores (Ertl & Schafer, 1969). [ahsnship
has been replicated in cognitive studies as well. A more recent study eoniiiP-1Q
relationships in average and gifted children during performance of simple aptegom

choice reaction time tasks. Consistent with the larger literatutedghildren exhibited
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shorter ERP latencies than their average 1Q counterparts across conditiang, (Zhi, Lou,
Liu, Yang, & Shen, 2007).

A general examination of the frequency-domain EEG literature on neuratedfyc
indicates that although resting EEG alpha power is generally positivegtated with
intelligence, event-related alpha activity is more often inverselieckta intelligence
(Neubauer, Freudenthaler, & Pfurtscheller, 1995; Klimesch, 1999), though excéjatiens
been observed (e.g., Jausovec, & Jausovec, 2001a). With respect to resting data, one study
replicated the positive relationship between IQ and resting alpha powerdrenhaind
additionally observed an inverse correlation between delta (0.5-5 Hz) power digkimte
(Schmid, Tirsch, & Shirb, 2002). One large study examined the heritability of individual
peak alpha banfilequency and its association with 1Q (Posthuma, Neale, Boomsma, & de
Geus, 2001). However, results generally showed no associations with the exception of a
small positive correlation (r = .15) between alpha frequency and the WAIS+ikivg
memory index in middle-aged adults despite high heritabilities of both peak frecarahcy
Q.

Generally however, reports utilizing event-related EEG power or stagakzation
methods have found support for the neural efficiency hypothesis. In one sourcaatmral
study, a mixed-gender sample of high and low 1Q groups exhibited differentiahtor
activation patterns to correctly identified visual and auditory targets doddigall tasks
(Jausovec, & Jausovec, 2001b). Times of onset and peak amplitude for the P200 and P300
ERPs were examined for their association with 1Q. Results demonstratddgh 1Q
individuals exhibited lower reaction times across tasks relative to the IQugoup. There

were no group differences for signal to noise ratio or maximal currenggtréonversely,
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source analyses revealed significant interactions where higher Wdumals exhibited larger
spatial activation at P300 onset which decreased relative to the low 1Q grbegiate of

peak P300 amplitude in both modalities. Lower 1Q individuals exhibited an opposite pattern
of increasing spatial activation over time. With respect to current dessityages, a similar
IQ-activation interaction was observed for the auditory task only, where h{@her

individuals had increasing current densities over time from P300 onset to peaki@aplit
while the lower 1Q group exhibited no change. There were no significantseéiee200

onset or peak amplitude. These findings were interpreted as indicating maeneffi
processing of stimuli in more intelligent individuals a source analysesstadgese of fewer

and more specific neural resources in those individuals.

Another group investigated potential interactions of sex and neural efficretwo
reports and observed similar effects (Neubauer, Fink, & Schrausser, 2002; Neubauer,
Grabner, Fink, & Neuper, 2005). In the latter report the authors measured alpheeatedt-
desynchronization (ERD) while male and female participants completedl\eerd spatial
reasoning tasks. Importantly, although ERD signifies desynchronization, phegpawer
decreases during cognitive processing versus during rest, lower ERBrpgeted as
indicating lower cortical activation (Pfurtscheller & Lopes da Silva, 1989urn, event-
related synchronization (ERS) is hypothesized to reflect cortiagahtion. In the study, the
authors examined correlations between sexes separately and distinguisiesoh vetival
and nonverbal IQ performance without examining general intelligence. Behlalataa
indicated that there were no overall 1Q differences between males arldde8iamilarly
there were no sex differences with respect to verbal task performahoegalimales

exhibited greater solution rates and lower reaction times relative to wamtée spatial
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reasoning task. Overall it was observed that ERD during the verbal tashweesely related
to verbal 1Q in the female group only with males demonstrating non-signifiesalstin the
opposite direction. Conversely, males showed an inverse relationship between alpha ERD
during visuospatial task performance and nonverbal IQ while females exhibiteld tn the
opposite direction. As these results were largely consistent with their préwidings, the
authors interpreted the results as indicating that neural efficiencyaiestréor each sex on
those tasks for which the two sexes generally perform better

Another study examined the effect of task difficulty on neural effigigman attempt
to reconcile conflicting findings (Doppelmayr et al., 2005). In that report tiheesuadapted
high and low difficulty RAPM items for use in an EEG experiment. Alpha and theta
ERD/ERS were examined across average and superior IQ groups. Analysesabftcals
indicated that high 1Q subjects exhibited greater theta ERS across td#koosn potentially
reflecting greater working memory involvement in that group (Klimesch, 199&).r/dépect
to alpha ERD, and contrary to the neural efficiency hypothesis, high 1Q subbited
significantly increasing ERD as task difficulty increased. Howeverngroups were
compared across the low-difficulty condition, the high 1Q group exhibited significless
ERD relative to the average IQ group. ERD did not significantly diffexssctask conditions
in the average 1Q group. The authors suggested that their data implied aajicalifoé the
neural efficiency hypothesis wherein high IQ subjects make use of exsstatggies during
easy tasks thereby relying on less cortical activation, while unlikegespeaformers they
are able to increase cortical activation in response to more challenglsg ta

Finally, one EEG study examined the boundaries of neural efficiency byigatesj

the relationship between 1Q and EEG measures during performance of an awed-task
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(Grabner, Stern, & Neubauer, 2003). There, the authors examined potential orisracti
between intelligence and cortical activation during performance of a taskah hoth high
and low IQ participants were already experts. Participants completegeamise task where
they were asked about common taxi routes in Graz, Austria where they weoyexhgs
taxi-drivers, and an intelligence task in which they studied fictitious route amapdecided
if a subsequently presented point on the map passed through the fictitious route. Alpha ERD
was analyzed during task performance in relation to IQ. Behaviorally, peniae on the
intelligence task was correlated with RAPM scores while performance expleetise task
was not. As hypothesized, analyses of alpha ERD showed that higher IQpat$ci
demonstrated less ERD during intelligence task performance than lowetikppats
while there were no group differences on the expertise task. When the reselfarther
analyzed by electrode region, high IQ subjects exhibited a region effee thieg showed
highest ERD at parietal sites and lowest ERD in over frontal areas. Titis wesre
interpreted as generally supporting the neural efficiency hypothesis. Howessealso
suggested that when higher and lower 1Q participants are both tested on taskagrpodvi
learning, more intelligent individuals do not exhibit greater neural afftgieThe authors
suggested that their results indicate that intelligence no longer ingzdevement on well-
learned tasks or neural activation during task performance. Notably, this fsudjggsts that
some neural differences underlying intelligence may be most retapgddesses involved in
new learning and solving novel problems.

Despite some inconsistent findings, the overall trend within the neural edfycie
literature supports an inverse relationship between the latency or extentaifastivation

and differences in intelligence. At the same time, it is necessaryify effects of task
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difficulty and expertise on cortical activation in more intelligent individuglaborations of
this literature might include determinations of whether greater neurd spespecificity
between connections underlies the inverse 1Q-efficiency relationship, ancledviyrthis
relationship is observed in novel or challenging versus less demanding contegts. & li
conflicting EEG findings, more data are needed to better develop well-sepgeeifits of
neural efficiency in intelligence.
Neural Customizability

While the efficient allocation of neural resources has been supported a®f part
intelligence, it fails to account for basic research findings regardinglnaechanisms of
learning and behavioral adaptation. For example, even if potential differencesah ne
transmission underlying neural efficiency were confirmed, neuralesiftg still would not
account for data relating individual synaptic change to an organismty &bilearn and
retain information (Garlick, 2003). As adaptation to one’s environment (i.e. learmag), a
the ability to solve novel problems have typically been included in definitions digatele
(Carroll, 1993), efficient processing within existing networks seemsficienit as a lone
neural mechanism underlying intelligent behavior. Hence, the final aspics afodel
relates to the customizability or plasticity of individual cortical modiregsolving stimulus
representations. Here “representational resolution” is understood as an orgatigity’ to
detect or differentiate between stimuli, which is in turn necessary for eelapsiponding
(Mercado, 2008). This capacity to tune neural networks has been featured in isolation in
some theories of individual variation in intelligence.

For example, Garlick (2003) hypothesized that individual variation in the brain’s

ability to adapt to the environment may underlie individual variation in inteltigeHe notes
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that individuals whose neural connections rapidly change in response to stimuli would be
expected to more effectively process information relative to individuéifsmore slowly
adapting neural connections. In turn, more rapidly adapting neural connections would
facilitate more rapid and/or effective problem solving. Just as the developmeghdie
skills from infancy to adulthood is coincident with the development and elaboration af neur
connections, it is plausible that ongoing plasticity in existing connections wouldteeeéw
learning and intelligent behavior throughout the lifespan. Moreover, this account provides a
neural mechanism underlying variationgmvhere individual differences in brain-wide
neuroplasticity could account for the fact that individuals with highly developedtiv@gni
abilities in one domain are also highly developed in another (Garlick, 2003).

The notion that neural plasticity is critical to learning and adaptive behawb
course not new. Rather, these ideas trace back to iconic figures in the fieldosteewe
and neuropsychology (Ramon y Cajal, 1904; Hebb, 1949). The above framework of
customizability is even explicitly acknowledged to be an extension of Habti& i
hypothesis which related synaptic plasticity to learning (Mercado, 2008). $ielbbsic
theory of cell assembly formation provides a basis by which neurons increasdfitiency
as a functional unit. It postulated that when one neuron consistently causes anathgitgo fi
efficiency in exciting the second cell increases. Thus, the two cells omgpthe “network”
exhibit plasticity and become a more efficient unit through repeated co-extiv@tearly,
this model was an apt predecessor to contemporary models in which synaptiypiaati
long-term potentiation (LTP) is hypothesized to be a primary neural megitsaslerlying
learning (Morris, Anderson, Lynch, & Baudry, 1986). As this and other mechanigmns (e.

hippocampal neurogenesis) have been related to learning (Gould, Beylin, Tanaypad, Ree
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Shors, 1999), it follows that the neural processes underlying experience-deperstiitypla
might also underlie individual variation in intelligence.

Electrophysiological techniques possess natural advantages for studying
neuroplasticity within the constraints of most human psychology experiments. fhhsug
use of EEG or MEG, researchers can potentially measure subtle changaslinyramics
over time or stimulus exposure as they occur within the organism. Due to theiosuper
temporal resolution, it is possible to quantify electrophysiological indicesuoingasticity
in single experimental sessions, such as change in trial-to-trial resypanmebility. As such
they provide excellent tools for examining the relation between neural laatid
intelligence.

Early EEG research programs which shed light on the relationship between neural
plasticity and intelligence utilized the ERP as a proximal means to quantigl péasticity.
Although newer methods are increasingly supplementing ERP research, some adtthe m
compelling data on this topic were originally obtained using relatively simgleadology

In one notable study, Schafer (1982) studied groups of adults with mental retardat
and healthy adults with 1Qs ranging from average to very superior. Tiher algtained
participants’ average auditory evoked response to a series of fifty auditis/under three
different stimulation conditions. First, they employed a control condition in whehlicks
were delivered at regular two-second intervals in order to obtain eaatigaartis average
amplitude. In the second condition the subjects used a button press to “randomly” self-
administer a click every several seconds. This second series was demaddéen played
back for the third condition which was intended to represent a random presentation condition.

The self-administered series was hypothesized to elicit an expectéextysaice the
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subjects were themselves controlling the administration of the clicks. Thar @xeimined

the difference in evoked response amplitude across the three conditions and observed that
normal adults exhibited larger than average amplitudes to clicks duringnith@m condition

and smaller than average amplitudes during the expectancy condition. THisvafett
observed in individuals with mental retardation. The finding that healthy adbitstex

greater than average evoked responses to unexpected stimuli but smaller toge aver
responses to expected stimuli suggests that their brains marshal ggeateces to deal with
unexpected stimuli, while they conserve resources when stimuli are predictable.

Next the author calculated the ratio of the evoked response amplitudes from the
random condition over the expectancy condition to obtain a measure of “neural adgptabili
in the healthy adults. When the relationship between neural adaptability avabs|Q
investigated it revealed a correlation of r = .66 in the healthy sampksylawdich increased
to r =.82 when corrected for the attenuated IQ range in the sample. Thusy hdalth
exhibit an expectancy effect whereby the strength of their neural respimtsease in
amplitude to expected relative to unexpected stimuli. In addition, those subjbctisev
greatest evoked response amplitude discrepancies between expected anctetheiprili
obtained the highest 1Q scores.

The same author also developed a second, conceptually related measure which was
intended to quantify habituation of the ERP (Schafer, 1985). Again, he had subjects aelax
chair and listen to auditory clicks while their EEG was recorded. Likegtheahadaptability
effect, he observed an attenuation of the ERP amplitude to repeated clicks. lumlike t
previous study however, in this experiment auditory clicks were delivereddar two

second intervals. The percent difference between the average amplitude df-ip2-N\
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excursion” between the first and second blocks of 25 trials was calculatedhabitivation
index of the ERP. An examination of the relationship between the habituation index and
performance on the WAIS revealed a positive correlation of r = .59, which rose tor = .73
when corrected for attenuation due to restricted range. In addition, when the method of
correlated vectors was applied to the vector comprising-tbadings of the WAIS subtests
and the vector comprising their correlations with the habituation index, it was founketha
two vectors correlated r = .80, while the rank order correlation between tlheswsess r =
.77. In other words, the mogeloaded each subtest was, the stronger its correlation with
evoked potential habituation. This indicates that differences in neuroplastidigy fiorim of
the habituation index are strongly related to differences in measured intedligenc

Basic research examining cortical experience-dependent pjaatso supports the
view that experience modifies evoked responses. One study compared evoked sesponse
between adult rats raised in standard laboratory cages versus those tigmpoved to
naturalistic environments (Polley, Kvasnak, & Frostig, 2004). The authors obset@éd a
reduction in single-whisker somatosensory evoked response amplitude as wiiPas a
spatial contraction of cortical receptive fields in rats moved to natucadistironments,
compared to control animals. It was found that individual receptor fields no longer
functionally overlapped, and the authors argued that the reduction of the evoked response
resulted from the spatial differentiation of the whisker’s receptive. fidhese findings
suggest that electrophysiological responses exhibit plasticity in theofcamplitude
attenuation and increased spatial specificity following novel stimulus exposur

Further pursuing the link between experience and change in electrophigsiblog

measures in humans, one study investigated change in alpha ERD before arairaftgr tr
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and its association with 1Q. In that report twenty-seven adult males@ladres ranging
from low average to very superior completed parallel forms of a multiple chigical
reasoning task while their EEG was recorded over two experimental sgb&aiswuer,
Grabner, Freudenthaler, Beckmann, & Guthke, 2004). Item complexity was manipulate
during the experimental tasks. During the interval between EEG sessioitspgats were
trained on a similar figural task during which they were given feedbaclofiegat and
incorrect responses. As they mastered the task, the difficulty of subsequenvdasm
increased. The authors observed that during session one the higher 1Q groupdexbiibite
significantly greater ERD relative to their lower 1Q counterparts. QueWge during session
two more intelligent participants showed generally decreased alpha ERD was
significant over frontal regions. Tests of item solution rates indicateddhgilexity had
been manipulated successfully, while EEG results showed that item complexiscted
with region such that increasing complexity resulted in greater ERDsterior but not
frontal sites. Difference measures between sessions showed that mbogemteldividuals
exhibited greater ERD decreases from session one to session two, which pastetas
signifying that more intelligent individuals received greater benefit framing than their
lower IQ counterparts. Overall, the authors argued that their results fuppertneural
efficiency hypothesis in that after training higher IQ subjects exilvilatively less cortical
activation during task performance.

Last, work on neuroplasticity has also been done relating neurofeedback training t
change in electrophysiological responses and cognitive performance (ldgnshauseng,
Doppelmayr, Schabus, & Klimesch, 2005a). The EEG experiment involved alternating

sessions of mental rotation task performance and individualized alpha and theta band
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neurofeedback training. In the experimental sessions, participants perfomuoelifiad
version of a German intelligence scale subtest which requires mental rotatiooraparison
of target and probe dice. Neurofeedback training involved viewing an array of aigaol
squares corresponding to frontal and parietal EEG electrodes. Partisyeamisformed that
the squares colors changed according to their brain activity and were etstiautty and
modulate the squares’ colors, which variously corresponded to increases in alpha or thet
activity. Based on their ability to modulate their ongoing EEG alpha andgbefer,
participants were then classified as responders or non-responders to neur&feradbag.
The effect of neurofeedback on task performance was then analyzed for alphetand t
responders and non-responders separately

Results indicated that baseline cognitive performance and EEG power did not differ
between alpha or theta responders or non-responders. However, it was observed that only
successful alpha neurofeedback responders exhibited performance improvemeats on t
mental rotation task, and that these performance increases weratasswith increased
pre-stimulus alpha power during the mental rotation task. Ratings of successful alpha
neurofeedback training were correlated with improved task performance atiregbjects,
although significant performance improvements were not observed for the other groups.
Thus, only those individuals who were most able to modulate their ongoing neural responses
exhibited performance improvements. While this finding is confounded with differences
response to neurofeedback training, it nonetheless suggests a positive relatidns@p be
real-time EEG neuroplasticity and cognitive performance. Although aggééssment of

intellectual ability was not performed, the results suggest the hypothastbe greater
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neuroplasticity exhibited by alpha responders underlies not only their improdechpance
but also higher 1Qs in those same individuals.

Overall, the electrophysiological literature demonstrates that sdice
neuroplasticity such as expectancy-related amplitude suppression, ERP inahitteaning-
related ERD reduction, and neurofeedback-related power increases ase@dtad with
greater intelligence or improved task performance. Thus, there is corgm@alidence to
suggest a relationship between electrophysiological measures of neticibplasd
intellectual ability. In light of the behavioral adaptability included in many eptiens of
intelligence, it is appropriate to more fully examine this relationship. Adsent advances in
electrophysiology such as time-frequency analyses enable examinatmameo€omplex
phenomena such as trial-to-trial response variability and phase relatiofigteps
techniques provide more sophisticated ways examine neural dynamics, and cam point t
specific neural mechanisms which can be addressed in basic researchaftdhere, an
examination of the literature reviewed above indicates a relative deartk tffgiof
neuroplasticity research on human intelligence. While numerous studies havedescted
which examine structural brain correlates of intelligence, fMRI and B&fintques have
difficulty resolving the trial-to-trial neural dynamics which may utideapid
neuroplasticity (Romero, McFarland, Faust, Farrell, & Cacace, 2008). Thus, lygvgagds
in our current knowledge and recent technological advances, electrophysiastgiites of
neuroplasticity and intelligence represent a promising and new directioridtigence

research.
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Current Sudy

Preliminary data collected at the MIND Research Network revealed owbsy
patterns of neural plasticity in human subjects across distinct experitaskta(Weisend et
al. unpublished data). First, it was found that when individuals were repeatedlycipase
visual stimulus in an experimental session, the relative portions of the evoked and induce
activity in their MEG data appeared to change systematically. 8@adlgifin four subjects
evoked activity between the alpha and gamma frequency bands (here 8-40 Hz) was found to
increase following repeated exposures to the stimulus while the inducedyactthié same
frequency range decreased. Moreover, this effect occurred not only in a singimerfzdr
session as described above, but also occurred across days in the alpha band in eitght subje
Currently, the specific mechanisms underlying such neuroplasticity in evodledduced
activity are controversial (Conrad, Giabbicioni, Muller, & Gruber, 2007).

For example, visual repetition priming studies using meaningful and scrambled
pictures have observed respective increases and decreases of parietal-owhijged
gamma power to repeatedly presented scrambled -“unfamiliar”’ versusngedstimuli
(Gruber, & Muller, 2005). The authors argue that the reduction of induced activity to
meaningful stimuli signifies sharpening of the “conceptual” network whichegsas a
meaningful versus meaningless stimulus; whereas the increasing inducededspbas
scrambled stimuli signifies the formation of a qualitatively differetdvoek for processing
unfamiliar material. Hence they claim these findings signify the exxist of conceptual
networks for processing familiar stimuli versus other networks for psogeanfamiliar

stimuli.
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One alternative to this view is the suggestion that although unique combinations of
synapses and cells within “unfamiliar stimulus networks” may initiaates increasing
induced activity; ultimately, sufficient repetitions of the stimulus shouldtrésthe
sharpening of that network as well. Thus, rather than the unfamiliar networktiexhébi
linear increase and plateau in induced activity, that network should ultimatefytbeqgi
exhibit decreasing induced (and increasing evoked) activity to repeatedustimul
presentations.

With respect to the current study, the systematic increase in evoked auiyity
concomitant decrease in induced activity is nonetheless indicative of somé type o
experience-related change in neural networks, regardless of whethearige ahnevoked
and induced activity is mediated by one or two distinct neural networks. A changeatidhe r
of evoked to induced activity over time might still be considered a measure of netictgla
at the electrophysiological level even if the cellular mechanismgearendetermined.

Notably, the finding that the reliable phase-locked responding of the brairalijgner
increased across stimulus exposures, while the non-phase-locked response components
decreased is evocative of previous work on ERP habituation. A similar effecthvasats
observed in right-hemisphere theta band (4-8 Hz) activity during performaadeanisverse
patterning task in other preliminary data (Weisend et al., unpublished data).

The early work on ERs indicates that EEG habituation to simple stimuli is/pbsi
correlated with 1Q. Moreover, this work demonstrated that the vector of eash test’
correlation with habituation is correlated with the vector of thdoradings, implying a
robust relationship with the neural variables most directly responsibdeiheral

intelligence. The preliminary MEG data described above suggest that bottedepeaosure
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to a simple visual stimulus and performance of a transverse patterningstaltk irea

relative enhancement of evoked power or activity (EA) relative to induced fj\Wever
time. Following from these data then, it is hypothesized that individual variatibe nate of
enhancement in the EA/IA ratio over repeated stimulus exposure or task perforsnance
correlated with variation in intelligence. More specifically, it ipbthesized that differences
in individual neuroplasticity observable during the course of an EEG experiefaetto an
organism’s capacity to develop intelligent behavioral repertoires asestaufin observed
differences in IQ scores.

Also, in his account of the hypothesized relationship between neuroplasticity and
intelligence, Mercado (2008) notes that the relationship is difficult to tesbdbe lack of a
straightforward way to quantify neuroplasticity across individuals.Hoped that
guantification of change in the EA/IA ratio across trials will provide sucleasore. The
current study endeavors to extend prior work on EEG habituation and 1Q by testi@g the
relationship of the EA/IA enhancement effect, and provide clues as to the mechanisms

underlying it.
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Methods

Participants

Study participants were recruited from an existing database of individwalsad
participated in prior studies of intelligence and creativity (Jung et al., 201fgefal.,
2010b), and from an advertisement placed on an internet classified websitadyll st
procedures were reviewed and approved by the University of New Mexico Healtlt&xi
Center Human Research Protections Office. Participants were screesaghificant prior
neurological or psychiatric illnesses, and to ensure they had normal or coroectenhal
vision. Participants were compensated $15 per hour for their time. The total tiatle for
experimental procedures was between 3 and 5.5 hours, depending on whether participants
had completed cognitive testing during the prior study.
Simuli

Stimuli consisted of 411 unique centrally presented line drawings taken from the

larger set of 520 stimuli developed by the Center of Research on Languotzgeational
Picture Naming Project (Bates et al., 2003). The stimuli consist of black &nengys on a
white background. Subsets of these stimuli have been widely utilized in fMRIale¢8&ark
& Squire, 2000) and EEG research on stimulus repetition (Gruber, & Muller 2005). The
complete set has been used in several fMRI studies to date (e.g. Saccuman et al’h2006)
specific subset was selected on the basis of comparable visual complexggsaeddy
digital file size, and comparable naming reaction times (Szekeléy 20@4). Each
participant was exposed to a total of 361 stimuli from the subset of 411. A psuedo-random

number generator was utilized to select a unique stimulus set for each participant
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Experimental Session and Tasks
Each subject was seated in a sound and light attenuated room for EEG acquisition.

The black and white line-drawings comprising the stimuli were presentethayeagray
background on a 45.6 cm monitor located 150 cm in front of subjects. The gray background
was implemented to reduce eye fatigue. Stimuli comprised 3.2 by 3.0 degreesl|angdeia
top to bottom and left to right, respectively. The experimental condition consistédust a
minute period of eyes-closed rest, followed by three experimental conditioris lastied
between 11-18 minutes each, in turn followed by a four minute eyes-open rest period,
resulting in approximately 50 minutes for EEG data collection. The order of corsditias
counterbalanced across participants in an ABC and BAC design.
Visual Tasks

Condition A- Repeated Stimulus.

Condition A was a "visual oddball" task consisting of 240 trials of presentation of the
same visual stimulus ("Repeated"” stimulus), and 48 trials of visually cabiparovel
stimuli in a single experimental session. Particular experimentallston the repeated
stimulus conditions were chosen by a random number generator. All but two participants
were tested using different repeated stimuli, which occurred due to an erreiduadtrials
were separated by a variable inter-stimulus interval lasting between 1d@8@h
milliseconds.

Subjects were instructed to fixate on a central cross on the screen in order to
minimize eye movements. Stimuli were exposed for 1000 milliseconds on eachriatieA
48 novel stimuli of comparable visual complexity representing the "oddbatltilstivere

used to ensure participants visual attention to all study stimuli. Thus, repedtedva|
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stimuli were presented at an 80/20 ratio. Prior to the session, participantastereted to

press a response button as quickly as possible to each novel stimulus. At the end of each 50-
trial block participants were given an opportunity to rest their eyes priont;maing at the

time of their choosing, which they indicated with a button press.

Condition B-Once-Viewed Stimuli.

The second counterbalanced condition consisted of 240 trials of novel visual stimuli
derived from the larger stimulus set and 48 presentations of the repeated visulakstiom
Condition A. These stimuli and the novel stimuli from Condition A are henceforth termed
"Once" (e.g. once-viewed stimuli) for clarity. Prior to scanning in this camdiparticipants
were instructed to press a button as quickly as possible when they saw the Rejpealtes] st
Due to counterbalancing, all participants were briefly shown their parti@paated
stimulus prior to beginning either counterbalanced condition. Condition B contained the
same inter-stimulus intervals, stimulus exposures, response trials, aodp@gtinities as
the prior condition.

Condition C-Novel, Once-Viewed, and Repeated Stimuli.

A third condition was included to facilitate follow-up tests of behavioral repetiti
priming effects. This condition was comprised of 120 presentations of the origipeated
stimulus from Condition A, 120 trials of previously seen Once stimuli (seen only omss ac
either Conditions A and B), and an additional 120 Novel stimuli randomly intermixed.
Participants were instructed to press one of three buttons as quickly asepiosisdalting
whether they have seen each stimulus once, more than once, or never. As in prior conditions,

Condition C utilized the same inter-stimulus intervals, and rest opportunities; hipweve
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stimulus exposures were increased to 1500ms to allow participants sutiitiend
determine and make their response.
Cognitive Testing
Following EEG data collection, participants without prior testing (n = 15) were

administered the Picture Completion, Vocabulary, Digit-Symbol Coding, &itrek, Block
Design, Information, Arithmetic, Digit Span, Symbol Search, , Letter-Numéguehcing,
and Object Assembly subtests of the Wechsler Adult Intelligence Stégdthsler, 1997).
Two participants underwent cognitive testing prior to EEG data collection duleedwing
considerations. All participants were administered the Picture Amagrgesubtest from the
WAIS-III, as well as the Judgment of Line Orientation and Hooper Visuarxation
tests. One participant did not complete the Object Assembly subtest, thoughinvatelylt
excluded due to excessive blink artifacts. Scaled scores on the Comprehensiomsubtest
estimated based on the average scaled scores of the Vocabulary, S¥s)ikandi Information
subtests. Individual estimates of intellectual ability based on FSIQ wer@edfrom the
resulting scaled scores. All WAIS-III subtest scaled scores wayeatsred into a principal
components analysis (without rotation) in order to obtain the first principal companamt a
index of general intelligence (Jensen, 1998). Individual subtest-factor loadihgbiwi
component were retained for use in correlated vectors analysis.
Electrophysiological Recordings

Individual EEG data was obtained for each participant using the 128-Channel
Biosemi Active-Two amplifier System (Metting van Rijn, Peper, & Grirgea, 1990),
located at the Mind Research Network Imaging Center at the UniversigwiMexico

Health Sciences Center Campus. The nose-tip was chosen as the offlimcecfieeta were
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sampled on-line at 1024 Hz with a 0.16-100Hz bandpass filter. Vertical and horizental ey
movements, as well as EKG were monitored via 6 additional channels respecteely pl
above and below the left eye, at the external canthi of each eye, and sgpecclavicles
bilaterally.
EEG Data Reduction and Analysis

Study data were processed using a combination of EEGLAB processing routines
(Delorme and Makeig, 2004) running in MATLAB 7.8.0 (R2009a, Natick, MA), and
MATLAB routines developed by our group and for the study specifically. EE&vadate
loaded into EEGLAB referenced to the nose-tip channel and down sampled to 512 Hz to
speed further processing. Data were bandpass filtered 1-50Hz to coriewt-faequency
artifacts and 60 Hz line noise. Continuous data was divided into epochs time-locked to
stimulus presentation. Repeated and Once-viewed stimuli in their respestiag(i.e. non-
response) conditions were divided into 2 second epochs from -1000 to 1000 seconds post
stimulus presentation. Response trials (i.e. 'targets' in the oddball nomenelanare)
epoched from -1000 to 1500 milliseconds post-stimulus for trials containing correct
responses.
Artifact Regjection

Individual epochs of all trial types were normalized to an average basabdeoper

-1000 ms pre-stimulus for purposes of artifact rejection. Preliminary vissgaction of the
VEOG data indicated large numbers of ocular artifacts due to blinks, especiak period
after 500 milliseconds post-stimulus in several subjects. In order to minimireimber of
epochs lost due to contamination by blinks, trials were rejected based first tremthet

VEOG channels contained high-amplitude artifacts in the period from 1000msrpudusti
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to 500ms post-stimulus. The subsequent 500ms post-stimulus period was not utilized for
further analysis. This analysis epoch is comparable to similar studies dfpnsoiag (e.g.
Gruber and Muller, 2002). The absolute value of the baseline-corrected trialseewaaken,
and trials containing amplitudes exceeding 60 microvolts between -1000 and 500ms post-
stimulus were rejected via an automated script. Individual EEG channel dats epoe
similarly subjected to threshold-based rejection if they contained vataesding 100
microvolts in the entire epoch. Individuals channels were rejected if the absdlig®ithe
average sample contained therein exceeded three times the standard de\aditizBof
channels across each individual subject. This procedure resulted in rejection of a singl
channel in a single participant from among 10-posterior channels utilizedue de¢en-
channel average (Oz, Pz, and 8 channels corresponding to or variously approximating O1,
02, P3, and P4 in the International 10-20 system). This participant’s data wadeljtim
removed from further analyses due to excessive blink artifacts. Fofj@mempletion of the
artifact rejection stream, the identified set of artifact-free Ea@ was saved prior to
baseline-correction and subjected to time-frequency analysis.
Time-Frequency Analysis

The artifact-free epochs were baseline corrected via the freggpacific uniform
windowing (FSUW) technique developed by M. P. Weisend et al. (personal communication,
October, 2008), using a uniform window of 240 ms. Like conventional rectangular baseline-
interval correction, FSUW utilizes a uniform pre-stimulus epoch length for derawviegge
baseline activity for each frequency bin present in the data. This technicars tidim the
conventional approach in that the baseline interval is scaled via a function ofdhalf ea

frequency’s wavelet length, thereby minimizing smearing of signal intprastimulus
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period, which can occur when rectangular baseline intervals are utilizechésfrequency
analysis. This permits sufficient resolution to adequately baselinesttmvefrequencies
(e.q. 4 Hz).

Time-frequency analyses of evoked and induced activity were obtained viatwvavele
transformation (specifically, S-transform; Stockwell, 1996) implemented digékid and
colleagues at The Mind Research Network. The S-transform reprasest$ension of the
continuous wavelet transform. These methods permit extraction of the timegvaryin
magnitude of the EEG signal at each frequency present in the data, which caueautbse
be depicted as a joint time-frequency representation. This is accomplisbeadvayving the
single trial data (or ERP) with a family of wavelets whose width vasesfanction of the
convolved frequency. This process results in an approximation of the instantaneousfpower o
the signal in a given frequency bin at a given time. In this way, sings tettal activity
(TA) was calculated by serially convolving each sample within each taspéequency
bin, trial, and channel with a frequency-specific wavelet, where the valaelmsample is
expressed in microvolts squared. The average of single-trial TA was in tarnezbgiving
average TA. Average EA over trials was obtained by subjecting the ERP totbe s
procedure and removing the average power in the baseline interval from the ermtire epo
Average IA was calculated by subtracting the non-baseline correctéd®A A, and
subtracting the average IA in the baseline interval from the entire epoch.

Overall EA/IA.

EA/IA power was calculated time-locked to stimulus presentation in Conditions A
and B for all experimental blocks from all 128 EEG channels. To reduce the number of

analyses an average of 10-posterior channels was utilized for exanifanstg ef stimulus
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exposure and repetition on EEG variables. Specifically, this measure wesideym the
average of channels corresponding to Oz, Pz, and 8 channels variously identical with or in
close proximity to P3, P4, O1, and O2 in the international 10-20 system. This analysis
strategy is well-represented in studies of visual priming (Gruber an@fya002). Overall
spectral power was obtained for EA/IA in both conditions divided into the first and second
blocks of 40 artifact-free trials, and into the first four blocks of 20 artifaetfrials. The

highest EA and IA response, their latency, and frequency in Hz were sepeaxatatted

from the overall data from 2-50 Hz in 100 frequency bins of 0.5 Hz width, and from 0-500
ms post-stimulus.

Alpha EA/IA.

Visual inspection of the overall grand means indicated post-stimulus peaks at
approximately 10Hz across both Blocks and Conditions. In order to investigate potential
repetition and stimulus effects within this frequency range alpha band powexwacted
from the average 8-12Hz power in the period from 50-450ms post-stimulus for EA and IA in
both conditions.

Gamma EA/IA.

Based on prior literature showing an induced gamma band response reaching a
maximum between 260-380 ms post stimulus in response to visual stimuli (Gruber and
Muller, 2002) grand means of induced activity across conditions were examined for the 22
participants for whom 80 artifact-free trials were available. Visuglecson revealed a
maximum induced gamma peak at approximately 285ms post-stimulus in the induced
activity for both conditions (Figures 7 and 8). Based on this observation in the grand means,

evoked and induced gamma band activity was extracted by taking the peak gapimala
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200-400ms post stimulus from 30-50 Hz. The peak gamma amplitude was taken within this
window.
Satistical Analyses

Following pre-processing and spectral analysis, physiological andsbtity data
were analyzed in SPSS 15.0. Primary study hypotheses pertaining to EdgsAware
tested by means of repeated measures ANOVAs (2x2) where block had two lelels ea
containing 40 trials (Block), across the Repeated and Once stimulus conditions @ynditi
Exploratory follow-up tests were conducted using 20-trial blocks in some instarfcether
delineate effects of Block. Huynh-Feldt adjustments for violations of the sjheri
assumption were utilized in follow-up analyses containing more than two withjaess
levels (Luck, 2005). Secondary analyses were conducted to investigate effectarud BBA
alone in the alpha and gamma bands. Finally, correlation analyses were udilideakify
dependent measures which significantly related to general intellif@ngse in correlated
vectors analysis. Directed significance tests were used to obtain g-f@werrelations
which were hypothesizealpriori. For those tests, an asymmetrical ratio of the hypothesized
critical region to alpha value of 0.8 was used to obtain directed p-values (Ricaiaed,G

1994.).
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Results

Demographic Information

Thirty individuals (19 men, 11 women) aged 18 to 30 participated in the study.
Participants had between 11 and 18 years of formal education (Mean13.9, SD 2.162), and
were on average between 22 and 23 years old at the time of cognitive and
electrophysiological testing. Due to excessive artifacts in thed &#&ia, eight participants
were excluded from most analyses (4 men and 4 women). Three of the eight pasticipa
were found to have fewer than 80% artifact-free trials in one or both conditions andoivere
examined further. One of the eight participants (a female) was doublyderlatiue to a
missing Object Assembly Subtest. One other participant had a bad channel ameng thos
included in the ten-channel average. Thus, 22 participants were utilized forypainadyses,
and 25 had sufficient valid data for secondary analysis pertaining only to Block 1 Gee EE
data validity section below). Excluded participants were on average 21 ydatdlod time
of cognitive and EEG testing, and had 14.6 years of education. Excluded participants did not
significantly differ from the larger sample with respect to intelldabdity (t(27) = -1.657,
p = .109), nor with regard to educatid(2{) = 1.014p = .320). Educational information
was not available for one participant. Table 1 presents demographic informatioa $tudy

participants.
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Table 1

Participant Demographics (n = 22)

Mean SD Minimum Maximum
Age at EEG testing 23.00 3.91 18.00 30.00
Age at Cognitive

22.72 4.04 18.00 31.00
Testing
Education 13.71 2.03 11.00 18.00
Sex 1.31 .48 1.00 2.00

&(n=21)

The average WAIS-III Full-Scale 1Q (FSIQ) score for the entinepda was 113 (15.18 S.D.;

range 88-138). Tables 2 and 3 list the descriptive statistics for the WIAlsldk scores, and

subtest scaled scores. Male and female participants did not differ withtresp&tQ {(20)

=-1.305,p =.207) org (1(20) = -1.636p = .117). Figure 1 depicts the frequency distribution

of the sample FSIQ scores.
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Table 2

WAISHII Full-Scale Intelligence Quotient (FS Q) and Index Sandard Scores

(n=22)

Mean SD Minimum Maximum
FSIQ 113.23 15.19 88.00 138.00
Working Memory (WMI) 109.18 14.29 86.00 136.00
Verbal Comprehension (VCI) 116.64 17.33 88.00 140.00
Processing Speed (PSI) 105.41 9.16 91.00 120.00
Perceptual Organization (POI) 111.36 13.99 88.00 133.00
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Table 3

WAIS 1 Subtest Scaled Scores (n = 22)

Mean SD Minimum Maximum
Picture Completion (PC  11.64 3.02 7.00 18.00
Vocabulary (VO) 14.18 3.30 9.00 19.00
Digit Symbol Coding

10.50 2.30 7.00 15.00
(CD)
Similarities (SC) 12.05 3.43 5.00 17.00
Block Design (BD) 11.86 2.62 7.00 17.00
Arithmetic (AR) 11.45 2.72 6.00 17.00
Matrix Reasoning (MR) 12.14 2.68 8.00 16.00
Digit Span (DS) 11.36 2.95 7.00 19.00
Information (IN) 12.42 3.30 6.00 17.00
Picture Arrangement

10.55 2.92 6.00 15.00
(PA)
Comprehensioh(CO) 12.29 2.49 8.20 15.80
Symbol Search (SS) 11.55 2.18 8.00 15.00
Letter-Number

11.91 3.12 6.00 19.00
Sequencing (LN)
Object Assembly (OA) 10.36 2.85 6.00 18.00

& Estimated Comprehension Scaled Score

-41 -



Figure 1. Frequency Distribution of FS1Q scores (n = 22)
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Extraction of the g Factor

Principal components analysis of the 13 WAIS-III subtest scaled scores and the
estimated Comprehension subtest score yielded a first three compon@htsuvhulatively
accounted for 65% of the variance between subtests, and a first component which accounted
for 44% of the subtest variance (first component eigenvalue = 6.162, second component
eigenvalue = 1.823). Thus, this first factor was utilized as the indginahe current study.

Factor loadings of the 14 subtests are depicted in Table 4.
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Table 4

WAIS |11 Factor Loadings on the First Principal Component (n = 22)

Subtest Factor Loading Subtest Factor Loading
co? .960 LN .669
VO .848 PA 572
IN .830 DS 532
Sl .815 CD 463
MR 754 OA 374
BD 724 PC .364
AR .713 SS 152

& Estimated Comprehension Scaled Score

Experimental Task Performance

Participants achieved a high level of accuracy when responding to oddipet| tar
stimuli, indicating good attention to the task. On average, participantsdnoisgecorrectly
responded to less than one out of the 48 targets in the two stimulus conditions. Average
reaction times for the Once stimuli in the Repeated visual condition was 495.17 ms (79.56
SD), and 474.29 ms (66.66 SD) for the Repeated stimuli in the Once visual condition. Paired
samples t-tests indicated that participants were marginally tastespond to Repeated
stimuli relative to previously unseen Once stimuli in their respectivettengeitions(t(21)
=1.966,p = .063).

In the third behavioral condition participants displayed the fastest reacties ftom
Repeated stimuli (mean RT = 622.64 ms, 75.06 SD), followed by novel stimuli (mean RT =
915.03, 89.65 SD), and Once-viewed stimuli (mean RT = 949.69, 85.53 SD). The difference

between Once and Novel reaction times was not signifig@it) (= -1.608p = .123), though
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participants were significantly faster to respond to Repeated stimuli inithleondition
relative to Once stimulit(21) = -34.723p < .000) and Novel stimult(@21) = -17.089p
<.000). There was also a significant effect of Condition on participants’ respotis@cy
(repeated measures ANOVA 3-levels of Condition, Greenhouse-Geissetambrrec
F(1.456,30.573) = 55.27$4,<.000). Follow-up Paired-sample t-tests indicated that
participants were significantly more accurate for Repeated stinauigither Once or
Novels, and were also significantly more accurate for Novel stimuli than Ontlee As
behavioral results disconfirm any linear effect of repetition on reactian(tien participants
required more time to respond to and were least accurate for the Once relttazélovel
condition) electrophysiological data from the Novel condition were not analyzéeéifum
the current study.
Sample EEG Data Characteristics

Following artifact rejection and removal of the three datasets with finaar80%
artifact free trials in either or both conditions, the overall dataset wasreecito determine
the minimum number of valid trials for analysis. As shown in Table 5, the remaining 27
participants had a minimum of 47 and 53 analyzable trials in the Repeated and Once
Conditions, respectively. Thus, 40-trial blocks were selected as the lower-loowuamlysis
for a single block in either condition; and within this larger group, 22 participants btad a t
of forty valid trials in each block and condition. Hence, 40-trial blocks were chosen as the
largest number of common trials for achieving optimal reliability for BA BA analyses. In
turn, twenty-trial blocks were adopted for purposes of further delineatingigmyicant

effects of observed in the larger blocks.



Table 5

EEG Data Validity (n = 27)

Mean SD Range Minimum Maximum
Valid Rep 143.48 58.80 193.00 47.00 240
Trials
Valid Once 148.37 50.73 187.00 53.00 240
Trials

Electrophysiological Spectral Analyses

Grand mean TFRs were obtained for the 22 participants who had sufficient numbers
of artifact free-trials to compute two forty-trial blocks in each conditionndgated in
Table 6 the mean frequency of greatest EA across Block and Condition was 6303z (
SD), while the mean frequency of greatest IA was 5.93 (3.19 SD). The mean latpeck
EA was 261.63 ms and mean latency for peak IA was 383.25 ms (see Table 7). Figures 2 and
3 depict the grand-mean TFRs for the Repeated and Once Conditions across Blocks
Although ERP analyses were not conducted in the present study, grand-meaard&ERPs
presented for completeness. Figure 4 depicts the study grand-mean E&&Hh fGondition
across blocks 1 and 2, in each of the ten channels that were later averaged Hegpicts

ERPs from 10-channel grand-means for each block across conditions.
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Table 6

Freguency of Peak Power by Block and Condition (n = 22)

EA
Mean SD Minimum Maximum
Rep Frequency Peak EA 684 3.08 2.00 12.00
Rep Frequency Peak EA" 666 3.02 2.50 10.50
Once Frequency Peak
6.73 3.02 2.00 12.00
EAL
Once Frequency Peak
5.25 2.99 2.00 11.00
EA2
1A
Mean SD Minimum Maximum
Rep Frequency Peak IA1 5 36 3.44 2.00 13.00
Rep Frequency Peak IA2 693 2.98 3.00 11.50
Once Frequency Peak
6.14 3.11 2.00 12.50
1Al
Once Frequency Peak
5.30 3.22 2.00 10.50

IA2
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Table 7

Latency of Peak Power by Block and Condition (n = 22)

EA
Mean SD Minimum Maximum
Rep Latency Peak EA1 238.98 100.33 140.63 500
Rep Latency Peak EA2 232.15 117.17 0 500
Once Latency Peak EA1  264.92 118.77 113.28 500
Once Latency Peak EA2  310.45 141.56 113.86 500
IA
Mean SD Minimum Maximum
Rep Latency Peak IA1 424.71 129.06 0 500
Rep Latency Peak 1A2 370.82 178.05 0 500
Once Latency Peak IAl 321.89 167.40 0 500
Once Latency Peak IA2 41557 139.88 0 500
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Figure 2. Grand Mean TFRs Repeated Condition
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Grand Mean Ten-Channel Average (n = 22). Top row depicts EA at Blocks 1, Beardifterence
(2-1) from left to right. Corresponding IA blocks are depicted below. BesEIA and 1A was

calculated using FSUW from 240 -0 ms pre-stimulus.
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Figure 3. Grand Mean TFRs Once Condition
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calculated using FSUW from 240 -0 ms pre-stimulus
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Figure 4. 10-Channel Grand-Mean ERPs across Blocks and Conditions (n = 22)
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Each ERP depicts the grand-means for each the 10-channels overlaid ootbee &pochs were -

1000 to 1000 ms pre to post-stimulus. As excessive blink artifacts preventggkandater than 500

ms post-stimulus, -500 to 500 ms pre to post-stimulus are shown.
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Figure 5. Overall Ten-Channel Average Grand-Mean ERPs (n = 22)
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to post-stimulus, -500 to 500ms pre to post-stimulus are shown.
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Overall EA/IA 40-trial Blocks

Examination of the baseline-corrected grand mean TFRs suggested a dacrease
overall EA and IA across 40-trial blocks in both the Repeated and Once Stimulus Conditions

as depicted in Figures 2, and 3, and Table 8.

Table 8

Maximum Overall EA/IA Ratios 40-trial blocks (n = 22)

Mean SD
Overall Rep EAIA 1 .559 .387
Overall Rep EAIA 2 446 373
Overall Once EAIA 1 497 397
Overall Once EAIA 2 418 .340

Consistent with this observation, a 2x2 repeated measures ANOVA of the cateoadifr
maximum EA/IA across blocks (Block by Condition) revealed a small but ignifmain
effect of Block F(1,21) = 4.559p = .045; partial eta squared = .178), with EA/IA ratio

decreasing over trials in both conditions, as shown in Figure 6.
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Figure 6. EA/LA Ratio
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The main effect of Condition and the Block by Condition interaction were not sagmtific
nor were the interaction effects when the general intelligeacable was entered into the
model. Thus, the current study found support for an effect of stimulus exposure on the EA/IA
ratio. Results did not find support for the hypothesinetease in EA/IA over time in the
Repeated stimulus condition. Rather, EA/IA ratio significantly decreasedtwedus
exposures in both conditions, suggesting a general habituation effect. Currentaresults
hence in contrast to the increase in EA/IA ratio which was observed in sisglerspilot
data.
Pearson correlations betwegand the four EA/IA ratios were positive, though only
the correlation between Once EA/IA at block 2 was significd@2] = .431p = .045 (two-

tailed); all correlations average two-tailed p-value = .066). When testelitetied tests the
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correlation withg in the Repeated condition approached significance (Timeg(22¥ = .39,p
=.056 ), Time 2r(22) = .36,p = .078), while the EA/IA ratio of both blocks of the Once
condition were significant (Time 1(22) = .41p = .048; Time 2r(22) = .43 p = .035).
Table 9 depicts the correlations betwgeand EA/IA ratio collapsed across conditions.
Collapsing the forty-trial data across both blocks and conditions revealed &aignif
positive correlation with gr(22) = .503p = .017, two-tailed;R= .25). Correlations with
EA/IA ratio difference scores (i.e. Ratio of Block 2 minus the Ratio of Blockelg wot
significant in either condition (afis <.157; average = .449). Thus, the primary hypothesis
that change in EA/IA ratio in the Repeated condition would correlategmitdis not

supported.

Table 9
Correlations between General Intelligence and Overall EA/IA 40-

trial Blocks Collapsed across Condition (directed tests, n = 22)

General EA/IAL EA/IA2
Intelligence
General 1 411* 473
Intelligence p =.046 p =.021
EA/IA 1 1 .688**
p =.000
EA/IA2 1




Overall EA/IA 20-trial Blocks

A 4x2 repeated measures ANOVA of the overall ratio of maximum EA/IA a&0s
trial blocks (Block by Condition) revealed no significant main effects oraotems, either
with or without entering general intelligence into the model. However, extionrat the
cell means suggested a divergent effect between conditions across #nedfsstond 20-
trial blocks (see Table 10%pecifically, EA/IA ratio non-significantly increased over the first
two blocks of the Repeated condition and decreased over the same interval in the Once
condition. Although not significant, the direction of means is consistent with prior

predictions.

Table 10

Maximum Overall EA/IA Ratios 20-trial blocks (n = 22)

Mean SD
Rep EAIA 1 .606 510
Rep EAIA 2 .660 402
Rep EAIA 3 .568 .505
Rep EAIA 4 459 .386
Once EAIA 1 .587 .355
Once EAIA 2 455 .326
Once EAIA 3 547 544
Overall Once EAIA 4 463 404

Again, several correlations between ratio scores and the general intalligetor

were tested and found to be positive and either significant or marginally sign{itacks 2
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and 3-Repeated Condition, Blocks 2-4 Once Condition). Two-tailed tests revealed seve
significant positive associations which are depicted collapsed across conidifi@ide 11.
Correlations between general intelligence and difference scoresosf (Bkbck 4 minus
Block 1 and Block 2 minus Block 1) were not significant. Collapsing the twenty-tridAEA
data across both blocks and conditions (given the absence of block or condition effects)

revealed a significant positive correlation witkr (22) = .594p = .004, two-tailed).
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Table 11
Correlations between General Intelligence and Overall EA/IA 20-trial blocks, collapsed across

condition (two-tailed, n= 22)

General EA/IAL EA/IA2 EA/IA3 EA/IA4
Intelligence
General 1 279 A449* 531 468
Intelligence p =.209 p =.036 p =.011 p =.028
EA/IA 1 1 .283 394 454
p=.202 p = .069 p = .034
EA/IA2 1 448 .386
p = .037 p=.076
EA/IA3 1 .289
p=.192
EA/IA4 1

Finally, given that IA was often found to be nearly an order of magnitude thie
EA (see Figures 2 and 3), correlations were tested between geneligkintel and total
power (comprised largely of power due to IA) to determine the importance of the
contribution of EA to the present ratios. Correlation analyses examining total aonwes
40 and 20-trial blocks and conditions revealed no significant relationships wittalgener
intelligence (allps < .138; average 40-tripl= .346, average 20-trigl= .391), suggesting
that the ratio of EA/IA better captures the relationship between EEG padantalligence

than total power alone.
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Alpha EA/IA

As noted above, pilot data indicated an increase in alpha band EA/IA ratio to repeated
stimuli in experimental sessions separated by one day in eight subjects. Simateehis
effect, a 2x2 repeated measures ANOVA was conducted for Block by Condition on alpha
band EA/IA ratio in the 40-trial blocks. Preliminary results revealed an putfiese ratio
exceeded more than five times the sample standard deviation. After this indivedua
removed from the analysis, the test revealed a significant main effeetadégalpha power
in the Repeated Conditiof (1, 20) = 5.731p = .027; partial eta squared = .223). Although
examination of the cell means suggested that alpha EA/IA increases owerihlooth
conditions (see Table 12) neither this effect nor the Block by Condition interactien w
significant. An exploratory test of the Block effect in the Repeated stgradndition alone
was not significantK (1, 20) = .2114p = .161, n.s.). Correlation analyses revealed no

significant relationships between Alpha EA/IA and cognitive ability.

Table 12

Maximum Alpha EA/IA Ratios (n = 21)

Mean SD
Rep Alpha EAIA 1 491 1.962
Rep Alpha EAIA 2 .698 2.122
Once Alpha EAIA 1 -.160 1.529
Once Alpha EAIA 2 .079 1.018

A repeated measures ANOVA of EA alone which examined Block and Condition

again demonstrated a small main effect of greater alpha power in the dtleeatition
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(F(1,21) = 4.522p = .045; partial eta squared = .177) but no significant effect of Block or
interactions. The complementary test of alpha IA revealed no significastgfhor were
there any significant correlations between alpha EA or 1A and cognitifiy.ab
Gamma EA/IA

After removing two outliers with ratios more then five times the samphelste
deviation, a 2x2 repeated measures ANOVA was conducted testing the efilctskodind

Condition on gamma power ratio. Cell means are shown in Table 13.

Table 13

Maximum Gamma EA/IA Ratios (n = 20)

Mean SD
Rep Gamma EAIA 1 220 .264
Rep Gamma EAIA 2 .040 .343
Once Gamma EAIA 1 145 .204
Once Gamma EAIA 2 118 A77

The analysis revealed a strong trend effect of decreasing ratio oegFt{th 19) = 4.339%p
= .051; partial eta squared = .186), while the effects of Condition and Block by Condition
interaction were not significant. There were no significant interactions wies entered
into the model, nor when the Block beffect was tested in each condition alone. Figures 7

and 8 depict gamma EA and IA TFRs for the Repeated and Once stimulus conditions.

-59 -



Figure 7. Gamma Grand Mean TFRs Repeated Condition
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Figure 8. Gamma Grand Mean TFRs Once Condition
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Gamma | A 40-trial Blocks

Given prior findings of a reduction in induced gamma power following repeated
stimulus exposure (Gruber & Muller, 2002, 2005), effects of Block and Condition on gamma
IA alone were tested. Although cell means suggested that gamma IA actaedlysied over
time in the current study (see Table 14), neither the effect of Block ndk BjoCondition

effect was significant.

Table 14

Gamma | A by Block and Condition (n = 22)

Mean SD
Rep Gamma IA 1 460 .450
Rep Gamma IA 2 526 .661
Once Gamma IA 1 .615 .507
Once Gamma IA 2 779 .655

The main effect of Condition approached significark@ (21) = 3.466p = .077), where the
Once condition elicited greater induced gamma power. \ilveass added to the model the
main effect of Condition remained marginally significaafl(, 20) = .3508p = .067), and a
significant Block byg interaction was observe#((l, 20) = 4.931p = .035; partial eta

squared = .204). Post-hoc correlation analyses revealed significant irelateamships

between g and gamma IA the first block of both the Repeated cond{@®) € -.517p =

.014) and Once(22) = -.581p = .005) condition, indicating an inverse relationship between
gamma IA at block 1 and intellectual ability. This relationship remairmgufgiant when

collapsing across conditiong22) = -.628p = .022). There were no significant relationships
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with gamma IA and the second 40-trial block in either condition, or when averagesl acros
condition.
Gamma |A 20-trial Blocks

Finally, the effects of Block and Condition were tested in the 20-trial blgcks b
means of a 4x2 repeated measures ANOVA which inclgdedight of the previously
observed relationship. This test revealed no significant main effects of Block tiGonol
Block by Condition interaction, however the Blockdinteraction approached significance
(F(3, 60) = 2.641p = . 057; partial eta squared .117). Post-hoc paired samples t-tests
revealed no significant differences between the various levels of Block when awoceadue
to g was accounted for.
Correlated Vectors Analyses

The variables which were of theoretical interest or showed significatibrslaips
with g in the above analyses were utilized in correlated vectors analyses. ¢alpartve
examined the correlation between the column vector of the WAIS-III factoiniggong,
and the column vector of subtest correlations with the following variablesAE&tib in the
first 40-trial block, collapsing across conditions; EA/IA ratio in the secondididstock,
collapsing across conditions; gamma IA in the first 40-trial block collapsiags
conditions; and the difference between gamma IA in the repeated stimulusarohdiiveen
the first and second 40-trial blocks. Table 15 below lists the conventional Pearson
correlations betweegand the study variables. Of note, when collapsed across condition the

value of gamma IA in the first block accounts for 39% of the variange in
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Table 15

Pearson Correlations between General Intelligence and EEG Power (two tailed, n =22)

General GammalA  Gamma IA Time 1 Time 2

Intelligence Block 1 Rep Diff EA/IA EA/IA
Overall Overall Overall

General 1 -.628** -.393 411 A73*
Intelligence P =.002 p=.071 p =.058 p =.026

Table 16 lists the Pearson correlations between the respective column vestirtesi)-
loadings and study variables; and Table 17 lists the rank-order correlativesibéhe

column vectors of study variables agbadings. The Pearson correlation between the
columns vector of gamma IA at block 1 and column vector of g-loadings correspomnds to a

R? = .63.

Table 16

Correlations between General Intelligence and EEG Power Column Vectors (two tailed, n = 22)

General GammalA  Gamma IA Time 1 Time 2
Intelligence Time 1 Rep Diff EA/IA EA/IA
Overall Overall Overall
General 1 - 794** 462 211 114
Intelligence p = .007 p =.096 p=.470 p=.698

Thep-values listed in Table 17 provide the conventional significance test in the gorrelat

vectors approach (Jensen, 1998). Altogether, these tests revealed a highbasignifi
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correlation between the vector of subgkiadings, and the vector of subtest correlations
with overall time 1 gamma IA (R=.70), and a marginally significant relationship between

theg-vector and the vector of WAIS subtests and gamma difference scores.

Table 17

Rank-Order Correlations between General Intelligence and EEG Power Column Vectors (two

tailed, n = 22)
General GammalA  Gamma IA Time 1 Time 2
Intelligence Time 1 Rep Diff EA/IA EA/IA
Overall Overall Overall
General 1 837** 464 .257 .235
Intelligence p =.002 p =.095 p=.375 p=.418

These relationships were subsequently tested between overall gamnildékat and
overall EA/IA Block 1 in the larger group of 25 participants. Results revealgphificant
effect of overall gamma IA (Pearsaii25) = -.609p = .021; correlated vectorg25) = .776,
p = .001; rank-order R= .60), and no relationship between g and EA/IA (Peargas) = -
.0318,p = .914; correlated vectorg25) = -.165p = .573).

The significant inverse relationship between gamma IAgindicates that relative to
lower ability individuals, individuals with greater intellectual abilighiit less of an
increase in gamma lA (relative to baseline), when presented with a \tisuaus. From
this, it is additionally necessary to determine whether individuals who diffetalheictual
ability also differ with respect to the amount of pre-stimulus gamma |Aekieit. To test

this, both the smaller (N = 22) and larger (N = 25) data samples were dividediagtog
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scores via a median split. One-way ANOVAs were conducted to test the null hypothes

no difference between high and lgvgroups with respect to baseline gamma IA. Neither test
was significant (smaller samplie(1,22) = .121p = .731; larger sampl&i(1,25) = 1.770p =
.196), thereby supporting the notion that higher ability individuals do not simply exhgit les
baseline gamma IA than lower ability individuals, but rather exhibit lesg#ion in

response to stimuli.

- 66 -



Discussion

Effects of EEG Power and Phase-locking on Neuroplasticity and Intelligence

This study sought to investigate the relationship between individual differences
intelligence and electrophysiological spectral neuroplasticitgvihg exposure to visual
stimuli. Prior findings in the intelligence literature and pilot data utijzAEG spectral
analysis motivated several hypotheses. First, it was hypothesized #etecepxposures to
the same visual stimulus would result in an increase in phase-locked EEG symeéal
(EA), and a simultaneous reduction in non-phase-locked spectral power (IA). Second, it was
hypothesized that this pattern of increasing EA/IA over stimulus exposured beul
stimulus-specific and hence would not be observed in an analogous condition involving the
same number of exposures to novel stimuli. Third, it was hypothesized that théegredic
change in EA/IA ratio would significantly relate to individual differencestaliectual
ability. Given the substantial prior literature linking gamma-band IA inqaatr to visual
stimulus processing (Tallon-Baudry, Bertrand, Delpeuch, & Pernier, 1996 )laswe
visual repetition priming (Conrad et al., 2007) hypotheses were also evaludtedspict to
gamma IA.
Overall Maximum EA/IA

The current study found an effect of stimulus exposure on the ratio of EA/IA,
although not in the hypothesized direction. Contrary to hypotheses, it was observed that the
ratio of maximum EA/IA actuallglecreased as a function of stimulus exposure, and did not
exhibit stimulus specificity (i.e. repeated vs. novel). There were seviesbdres between
the current and pilot study which may account for the unexpected effect. Firstptrstyaly

analyzed data from four subjects, as opposed to 22 for most analyses performed iehe curr
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study. Also, the pilot data were analyzed within an 8-40 Hz range while the cturént
expanded this to include frequencies from 2-50 Hz. The decision to expand the frequency
range was motivated by examination of the current study grand-means whaztaddi
substantial EA and IA in the range below 8Hz, raising the possibility thangrerexposure-
related change might also occur in a lower frequency range. Nonetheldasather

frequency range may have resulted in increased variability in the fregei@hoximum

EAJ/IA relative to those obtained in the prior analysis. Similarly, althougharage analyses
were conducted within the alpha band (due to previous finding linking alpha power to
intellectual ability, e.g., Neubauer, Freudenthaler, & Pfurtscheller, X9@besch, 1999),

this frequency range may have been inordinately restrictive to replicgtedheffect. Last,

the current study calculated maximum EA and IA separately in each embthea derived
their ratio, as opposed to linking one value to the peak of the other, irrespective of its own
peak. While the current measure yields the proportion of each activisynraaximum across
epochs (and hence quantifies overall average max-EA/max-1A), it magdrstedesirable

to calculate ongoing IA at the time of peak EA latency (or vice versa) tootéort

differences in the relative slope of the respective activities.

For example, examination of Figure 5 suggests important differences in thesrela
amplitudes of the P1-N1 ERP complex from block one to block two in the Repeated stimulus
condition, while the P1-N1 complex appears nearly identical across blocks one and two in
the Once condition. However, examination of Figure 6 which depicts the results of the
repeated measures analyses of the maximum EA/IA ratios indicatesral géfieet of block
irrespective of condition, rather an effect of block within the Repeated mondithus, it

may be the case that failing to link the maximum EA value to its contemporadAecaisie

- 68 -



(irrespective of its own maximum) in the derivation of the EA/IA ratio accdonthe

failure to observe the hypothesized stimulus-specific effect. Given thesappz#eraction of
block by condition on the P1-N1 complex suggested by the ERPs in Figure 5, a critical f
direction is to recreate the overall EA/IA ratios by linking the peak of one\althe
ongoing value of the other.

Despite the failure to find support for the hypothesis in the predicted direction, the
finding that overall peak EA/IA decreases over stimulus exposures irnespaicstimulus
type nonetheless appears to represent a form of neuroplasticity. Howevact that the
effect was not specific to the repeated stimulus condition is inconsistenheitiotion that
the decrease in power ratio over blocks represents a “sharpening” of aistspatific
neural network. On the contrary, the general decrease in EA/IA ratio oveluea®os
irrespective of stimulus novelty may simply signify habituation and/agudatof the neural
regions which process visual stimuli. After the recommendation by Cohen (1998), the
observed value of partial eta squared = .178 indicates that the decrease in E@g$A acr
conditions represents a “small” effect of stimulus exposure.

Subsequent tests for associations betvgegmd EA/IA power ratios revealed positive
though typically marginally significant relationships between inteldcbility and EA/IA
across both stimulus exposures and types. When the ratios were averaged acrosd block a
condition, the relative proportion of phase-locked to non-phase-locked neural activity
(EA/IA) accounted for approximately 25% of the variancg stores. Similar relationships
were not observed when correlations were tested betyvaea total power, despite the fact
that IA constitutes the majority of the activity within the total s@¢gower measure. Thus,

current results suggest that the relative proportion of phase-locked to non-phaske-loc
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power and not simply the amount of overall power (or induced power alone) uniquely relates
to cognitive ability.

A potential hypothesis to account for the significant conventional correlaties ol
the contribution of phase-locked power to the evoked portion of the EA/IA ratio. The present
study employed variable inter-stimulus intervals (IS1) to minimize etgpey effects, and
utilized a visual oddball paradigm in which standard and target stimuli were rgndom
interspersed. Behavioral data confirmed that participants were highlyaée in responding
to the target stimuli, increasing likelihood that they were attentive taslke Thus, the
positive relationship betwegnand the proportion of phase-locked to non-phase-locked
neural activity was observed in the context of good attention, but uncertainty asyfmethe t
and onset of each visual stimulus. As stimuli were presented at a varialgart&ipants
would not be expected to automatically exhibit phase-locked responses to stimatus ons
Rather, the evoked portion of the EA/IA ratio may have resulted prase-resetting, or the
change from the phase of the network’s ongoing oscillation to the phase of thiestim
onset.

Theoretically, phase-resetting refers to a model of ERP generation \Wwhenerease
of power observed in the ERP/EA results from a “reset” of the phase of orggailigtions
in the neural populations to the phase of stimulus onset (Sauseng et al., 2007). This concept
is often contrasted with the classical notion of ERP generation positing that theedbse
increase in power results from a stimulus-evoked increase in activispeatve of ongoing
oscillations (Shah et al., 2004). It has been previously shown in a visual experimeannthat
target ERPs are substantially generated by stimulus-locked phatiegesiecEEG

components (Makeig et al., 2002).
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As greater intellectual ability was associated with more positivéAE&atios, and
hence a greater proportion of phase-locked activity, the current resultstsinggé¢he
observed correlation may have resulted from increased phase-resetting irghighe
participants. By extension then, the properties of a neural network that ertalidlecbme
phase-locked to a stimulus may in part drive differences in cognitive abB#ityoted above,
it has previously been demonstrated in large samples that flexibility adiyrigiresting
EEG phase dynamics are respectively linked to higher and lower 1Q scoreshérte al.,
2008). While phase-resetting was not explicitly characterized in theseaatayrent
aggregate EA/IA ratio may well capture the extent of successfubpkastting simply by
the nature of the activity types comprising the proportion. Also consisténthigt
hypothesis, prior work investigating individual differences in visual disngtion ability
indicated that participants who performed better on a visual discriminationxtabikted
significantly greater phase-locking than poor performers in the 8-14 ige (dansimayr et
al., 2005b).

Despite the positive relationship between EA/IA ratio gneésts of difference scores
derived from the EA/IA ratios were not significant. When EA/IA ratioseAmoken down
into smaller blocks, cell means suggested that (consistent with the prinpathésis)

EA/IA ratio might increase between the first and second twenty trials iRepeated

condition and decrease in the Once condition. However, this interaction was notangnifi
nor did it interact withg. Thus while the EA/IA ratio both exhibited a modest neuroplasticity
effect, and was linked with cognitive ability, the effect of neuroplasticdyndt significantly

impact the relationship between power ratio and cognition.
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Alpha EA/IA and EA

Alpha band analyses were undertaken for several reasons. First, prior data whic
motivated the study demonstrated an increase in the EA/IA ratio to repeateld atioss
exposures, which occurred within the 8-12 Hz range. Also, alpha power and phase
characteristics have been linked to performance in numerous EEG visualiparcept
experiments (e.g. Basar, Schurmann, Basar-Eroglu, & Karakas, 1997; Hansralay
2005b), as well as the EEG literature on intelligence (Grabner et al., 2003; Neulsyer e
2004).

When the above relationships were tested only in the alpha range, neither thef effect
stimulus exposure nor the link between alpha EA/IA ratio and intelligence gvaicsint.
Analyses did reveal a small but significant effect of stimulus type, waatgr alpha EA/IA
in the repeated stimulus condition. This indicates that repeated exposure toia specif
stimulus elicits a higher ratio of phase-locked to non-phase-locked aateléirye to mere
repetitive exposure of any kind. This implies either that, contrary to hypotakpbespower
is actually reliably elicited by a repeated stimulus (and does not chaagexposures), or
simply that the present methodology was unable to capture change which did becur. T
effect of greater alpha power in the repeated condition persisted whenneStedlone,
suggesting that the stimulus effect is related to the relative proportion e-lolcdsd power
in that condition.

Unlike the analyses which were undertaken in a broader frequency range,dhere w
no relationship between either greater proportional or absolute phase-lockepaijginan
the repeated condition agdThe failure to demonstrate this effect may be accounted for by

the fact that the average frequencies exhibiting maximum power weedlyaaiutthe 4-8 Hz
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(theta) range as opposed to the higher alpha range. Examination of the stddygaas
(Figures 2 and 3) suggests independence in higher versus lower frequency an@® be
Hz (especially in induced activity), which is further supported by genarihfys in the EEG
literature demonstrating that divergent processes in alpha and theta power sogpitixte
performance (Klimesch, 1999). In particular, it has been argued that supefitomaeice on
cognitive and memory tasks is related to event-related alpha suppression and theta
enhancement, respectively. Hence, it may be that while phase-locked alphagitmots
stimulus-specific visual processing, the ratio of phase-locked to non-phasd-ibeta
power indexes the more general linkage between synchronous theta activibgaitve
performance.

A second consideration which bears on the alpha-band analyses is the notion that
each study participant’s individual alpha frequency band should be determined
independently, which was not implemented in the present study. In the review of alpha and
theta oscillations cited above, Klimesch (1999) discussed prior research dathmansie-
related increases in the dominant alpha frequency early in life, followidgdreases in the
decades following age twenty. Similarly, that review notes that iredeslpha frequency is
associated with faster reaction times and superior memory performakes. With the
aforementioned findings demonstrating divergent task-related oscilf@aocgsses in the
alpha and theta band, these studies suggest that the individual determination of each
participant’s alpha band may improve precision in testing the relationshipsdretipha

EA/IA andg.
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Gamma |A

As a preliminary step before analyzing effects on gamma IA alonefféat of
exposure and stimulus type was tested in the gamma EA/IA ratio. Those analyses
demonstrated a marginally significant effect of decreasing Erdfiid over blocks, which
was not linked to variation in intellectual ability. While the gamma EA/Wosadecreased
over blocks, this effect was not significant when tested in gamma A biy e is in
contrast to consistent observations of decreasing gamma IA in a series ofepgstiibn
priming studies (Gruber & Muller, 2002; Gruber, Malinowski, & Muller, 2004; Gruber &
Muller; 2005; Conrad et al., 2007). While the present study was modeled after these
experiments in several ways, one potentially critical differencemié®e number of
exposures to repeated stimuli that participants received.

Specifically, the present study employed a total of 240 trials in both the Be@eat
Once stimulus conditions in an effort to replicate the pilot MEG study, as wellaahieve
optimally reliable EA/IA ratios. As opposed to examining differences k@twenditions
with the same repeated versus all novel stimuli, the prior repetition pritoidigs examined
differences between initial, and only the first several repeated paieantcollapsed across
many stimuli (i.e. less than 5 presentations of each single stimulus). Stateer avent, they
compared groups of stimuli as a function of tleedinal presentations, and hence decreasing
novelty, not simply comparing many novel against many repeated presentations. Thus,
decreasing gamma IA has been consistently observed when comparihgpieiady
repeated presentations of a given set of stimuli, as opposed to comparingtiyaea®€r or
40 trials of a single-stimulus to all novel stimuli. It may be that participdidtexhibit an

effect of decreasing gamma IA in the first several repeated trialdiuhis reached
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asymptote and hence was undetectable in the present study. Despite thisisimporta
methodological difference, the current study nonetheless found evidence fofiaasigni
relation between gamma IA and 1Q.

Gamma |A and Intelligence

Tests of the effects of stimulus type and exposure indicated a margigalficant
effect of greater power in the Once condition, and a significant interactvedreblock and
g where there was a negative relationship betvgegamd gamma IA in the first block.
Subsequent correlations tested in each condition at block 1 uniformly revealedieasignif
inverse relationship between gamma IA and 1Q. When collapsed across condit®ons, t
relationship accounted for just over 39% of the variangeamong participants, a large
effect size. In order to better determine whether this relationship hdldsdregamma IA
andg per setheir association was tested using the correlated vectors approach.

The method of correlated vectors refers to a test of the relationship bétveeen
column vectors, which are themselves comprised of correlation coefficratits &actor
loadings. This involves obtaining the conventional Pearson correlation between the, vector
as well as the rank-order correlation between them. The coefficient renizven by the
relative g-factor loadings (vector 1) and the size of the correlationsdretive tests used to
deriveg and the third variable (vector 2) (Jensen, 1998). Here, the relation was tested
between the vector of each WAIS-III subtegtfctor-loading and the vector of subtest
correlations with overall gamma IA at block 1. Consistent with the prior résafte tests
revealed highly significant and substantial conventional and rank-order tonelaetween
the vectors (R~ .63-70). Thus, it is appropriate to conclude that the inverse relationship

between individual gamma IA amgfactor score is in fact due to a substantial association
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with g itself, rather than to idiosyncratic effects which might bias regresstmated)-

factor scores. Since the factor loadings show a strong rank-order relggiamshgamma

IA, it is more likely that gamma IA truly indexes the general component uimprhariation

in test performance, rather than a specific cognitive ability. While theenat the

relationship dictates that mogdoaded tests will be more correlated with gamma IA, this is
due to their shared variance gaand likely not due to a specific relation between gamma IA
and those particular cognitive abilities. The large and significant relatppesrsisted when
tested in the larger sample, though was somewhat less robust (rank-ord&0R Overall,

this signifies that higher ability individuals exhibit relatively lasduced gamma power to a
visual stimulus (200-400 ms post-stimulus) in the early portion of the experiment.

Critically, when both the smaller and larger sub samples of participants wieleddi
into high and lowg groups, no differences were observed between groups in gamma IA in
the baseline pre-stimulus period. While the failure to reject the null hypotlaesistde
unequivocally taken as proof of no difference, it nonetheless undermines the ppsisdiilit
high g individuals simply exhibit less gamma IA at all times. Rather, it appleatrsigher
ability individuals exhibit less gamnagtivation in response to stimuli compared to lower
ability individuals.

The finding that higlg individuals activate less to the onset of a visual stimulus
suggests that, consistent with the neural efficiency hypothesis @iaky 1988), the brains
of higher ability individuals exert fewer resources to process stimuli aeahpa their lower
ability counterparts. This relationship also appears consistent with the petition
priming literature showing decreased induced gamma power following rdstimbellus

exposure. That is, the inverse relationship between stimulus repetition and gamma |
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suggests that less induced gamma IA signifies some kind of adaptive mechmathisrbriain.
Taken together, the inverse relation betwgand gamma IA in the first experimental block
and the independently established inverse relation between repetition and idamiglat

be reconciled in one of two ways.

First, it might be the case that while on-average all individuals exhibgasog
gamma IA to repeated stimuli, higher ability individuals exhibit a morel rdgcrease. This
would imply an adaptive property in the brains of more intelligent individuals, and would
represent a true a link between neuroplasticityqsdmilar to the originally hypothesized
relation. Conversely, it might instead be the case that by virtue of theit netwark
properties (for example better visual stimulus resolution), highetividuals simply exhibit
an optimal level of gamma IA following stimulus onset, while the responsesvef hbility
individuals exhibit a “tuning” effect to repeated stimuli. This tuning effieictht later
converge with the optimal behavior exhibited by networks of gigdividuals. Findings
supporting the latter hypothesis would be most consistent with greatef efficiency in
higher ability individuals, and a plasticity effect in lower ability individudt may be the
case that a hybrid of these two, or an alternative model, best reconciles relairsas
between induced gamma power, repetition, and intelligence. Thus, one critical fut
direction suggested by the present findings is to better replicate prior olmses it
decreasing gamma IA with repetition in both high and low intellectualyagid@ups.

Another alternative or complementary approach would be to investigate any
individual differences in gamma IA between high and fpindividuals in the baseline
period as a whole. Specifically, while the current analyses indicate a sffengof

differential activation in the post-stimulus period as a function of intelligenise
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conceivable that high and logvgroups might also differ in their patterns of pre-stimulus
activity changes, especially over the course of an experiment involving simaitgr
stimulus exposures. For example, although there were no group differences mebaseli
gamma IA (extracted 240 to 0 ms pre-stimulus and averaged over trials), ierttegt n the
present experimental context (where participants acclimate tothyesegies of visual
stimuli), higher or lower ability individuals exhibit preparatory neural chamigeing the
larger baseline window over the course of many trials. Such effects would onlydreeabs
in analyses where the pre-stimulus baseline window itself was the period e$iniéus,
while current results implicate less gamma activation from the pre- tstostius period as
importantly related to intelligence, they do not speak to any preparatory shahnigh might
occur in either group across trials in the expectant, pre-stimulus period.
Potential Mechanisms linking Gamma | A and Intelligence

Interest in induced gamma activity first arose from basic researchrghthat
synchronous > 40 Hz oscillations between adjacent cortical neurons were linked to the
specific properties of a visual stimulus (Gray & Singer, 1989), though werenked lio
stimulus onset across trials. From this, it was hypothesized that high frgaostical
oscillations importantly relate to stimulus representation and feature hiraidghat
oscillatory phase in particular might provide a code by which neurons coaldeeéverse
properties of stimuli within the visual field. Later EEG studies demondtmatiiced gamma
oscillations in humans occurring at approximately 280 ms post-stimulus, whietgveater
in tasks where subjects experience perceptually coherent feature-bindlog-8audry, et

al., 1996). As noted, subsequent work has consistently observed relationships between
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induced gamma power between 200-400 ms which is modulated by perceptual and cognitive
task characteristics (Fries, 2009).

Gamma activity has been found in many neural populations across specieshgncludi
in human cortex and some subcortical areas; and likely plays a role in sefferahti
aspects of brain functioning (Fries, 2009). For present purposes, a heuristigdraroge
local cortical gamma oscillations can provide a fruitful way of thinking about hghv hi
frequency activity might relate to cognition. Several models have been propssedba
reciprocal coordination between excitatory pyramidal cells and inhibiiteyneurons (Fries,
Nikolic, & Singer, 2007). One holds that the gamma cycle begins when stimulus input drives
excitatory pyramidal cells that in turn drive an associated and recuragtitrg interneuron
network. The excitatory cells that drive the cycle are hypothesized &rgm&élly respond
to the characteristics of the eliciting stimulus. Those excitatory wdlich do not
preferentially respond to those stimulus features are less excited andlbematalrive the
network initially. In turn, the interaction of the strongly activated pyranudhs with their
associated inhibitory interneurons sets the phase the overall network, whaléyiptorly
activated cells remain out of phase. Since continued firing by all celltaigedeuntil
inhibitory currents dissipate, those that were insufficiently activatdg-en remain only
weakly excited and out of phase, resulting in a “winner-take-all” process.

Consistent with the notion that gamma activity signifies stimulus repstgms
(Singer, 1999), mechanisms have been proposed whereby decreasing inducadchgawitsn
could facilitate superior object representations in the neural networks wbrdspra given
stimulus, as well as better object recognition. One computational studydiavisedel to

explain how reductions in gamma IA to repeated stimuli could create “shatjpetlus
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representations and better reaction times via a winner-take-all mach@oldakarimov,
Bazhenov, & Senjowski, 2010). In that simulation, spiking neurons responded to inputs
(stimuli) as parts of larger inhibitory networks. The neuron units received inputéeoéi
strengths, which represented different levels of activation. Units begamihl@tson with
randomly varying connection strengths between them, while the connections relsfwonde
input according to Hebbian learning rules. Despite an initially synchronous respatls
the simulated neural populations, repeated stimulation increased synchronytinaafy
five simulated populations, and decreased synchrony in the others.

The overall result was a decrease in the number of connections and activated units
within the local network and in the resulting simulated local-field potenti&@Bg).over the
course of repeated inputs. When the power of the LFPs was examined, they derdonstrate
reductions in the gamma power range over repeated stimulation. At the unitHey@iocess
resulted in fewer units with stronger connections responding to the same input over
repetition. The authors also tested a second, higher-level network connected 8, the fir
which operated according to winner-take-all principles. When repeated stonwdhtirpened
the lower-level network, it increased competition among populations in the dowmstrea
network (via winner-take-all competition) and in turn reduced overall networkaediche
following repetition. Therefore results were interpreted as consisténtive “representation
sharpening hypothesis” where fewer cortical neurons are able toregitesent a stimulus
following repeated exposure.

Within the repetition priming literature, the observed reductions in gamma b&in t
scalp EEG are hypothesized to reflect an analogous sharpening meclesilsimgy in

distinct cortical object representations. Moving up a level of analysis, spetiesming
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source-analysis have suggested that induced gamma responses to meaninpftimidua
result from activity in and directional phase-locking between bilateral oacqprietal, left
inferior and lateral and occipito-temporal, and right middle frontal and precegrans
(Gruber, Trujillo-Barreto, Giabbiconi, Veldes-Sosa, & Muller, 2006; Supp, Schlagji|la+
Barreto, Muller, & Gruber., 2007).

The current study utilized an average of posterior channels analyzed in Seaus®r
which is consistent with other reports using similar methodology (Gruber & iMR082).
This fact, as well as the effects of volume conduction and specific choicemet (Luck,
2005), somewhat hinder strong statements as to the specific sources undeel@figcts.
Still, several inferences may be drawn. Given the similarity of thmibtemployed to those
of studies that performed source analysis, it is plausible that many ohtkeagions
underlie the current effect. Thus, it is likely that the induced gamma respEsdted at least
in part from the synchronous oscillation and interaction of cortical networks irriposte
occipito-parietal regions, with contributions from frontal and lateral teatsources.
Notably, a very similar network has been identified as reliably showintipredaips
between intelligence and brain structure (Jung & Haier, 2007). As discussed hhbve, t
review identified regions including the inferior and superior parietal lobulésjor, middle,
and superior temporal regions; and lateral occipital sites as importantljpating to a
larger network related to intelligence. Perhaps also consistent witimtcuntedligence
findings, lesion data has linked variationgito predominantly left hemisphere gray matter
and fiber tracts that appear to overlap with areas identified in the prior smalysis studies

(Glascher et al., 2010). These sites included gray matter in the left supaetal pagion
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and right occipito-parietal junction, and left hemisphere white matter linkmgaral,
parietal and frontal structures.

The present EEG methodology do not provide sufficient spatial resolution to
determine whether the relation between induced gammg i@sdilts from brain-wide
individual differences, or from differences within the regions identified in poorce-
analysis studies. However, many of the regions implicated in intelligencarappmverlap
with those thought to be active in the task. In light of this, a plausible hypothesistigetha
effects are at minimum attributable to differences in the overlapping regiotiseir
interactions); though the relationship between gamma IAgandy still hold in other
experimental modalities involving other regions. Going forward, a promising futeeidn
would be to conduct source analyses investigating activity within those regiors whic
overlap between the repetition priming literature and the P-FIT. Not only would these
analyses shed light on those sources most responsible for the effects observederagiesl a
scalp EEG, but they could further illuminate the temporal and phase-relationshipsibetw
the activity within each region. In turn, such analyses could inform the relaipatance of
inter- and intra-regional activity for intelligence, by allowing eedi assessment of the
correlation between the power or phase of the various sources and individuahcé$are).

At present, most conceptualizations of induced gamma aétanitphasize models of local

! Recent research has highlighted “high gamma” (> 80 Hz) oscillations (conducted via
electrocorticography measurements in epilepsy patients undergoing surgery) as indexing robust relationships
between neural activity and perception and cognition (Canolty et al., 2007; Towle et al., 2008). At present, available
evidence points to distinct physiological (Oke et al., 2010; Ray, Crone, Niebur, Franaszczuk, & Hsaio, 2008), and
functional correlates of low (30-80 Hz) vs. high gamma oscillations (Edwards et al., 2009), suggesting distinct

mechanisms from those underlying the current effects.
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cortical interactions (Fries, 2009; Gonzales-Burgos & Lewis, 2008), and henge impl
differences in local activity rather than an interaction effect. Thusetagan between
gamma IA andy may be most likely related to individual differences in either theiefioy
or plasticity of local cortical networks among more intelligadividuals. Eventually
however, it will be necessary to implement source analyses in the present détezé¢
MEG or electrocorticography in other samples) to ascertain the spegitnal cortical
phenomena underlying the link between induced gamma activitg.and

Following from the representational sharpening hypothesis and the other
considerations noted above, one of two explanations for the inverse relation betweeah induce
gamma andj appears likely. People with greater intellectual ability eitheveaat each
situation with more plastic and quickly adapting networks, or with optimallyrpSmeeural
representations resulting from more efficient networks. A test of thesgetioigp ideas
would require methodology that could reliably elicit and identify (or rule-oustiplty, were
it to occur. Going forward, this might be accomplished through experiments involving
nonsense stimuli repeated over many trials, across different experimésmazdls (e.qg.
minutes, days), and requiring participants to make a binary judgment of noveltyhamigac
Single-trial analyses of overall phase-resetting/phase-locked pewnsers thelope of phase-
resetting/power over intervals could then be used to test links between intelligenc
experimental performance, and neural plasticity versus efficiency.
Limitations

The current study had several limitations, which are addressed in order of their
potential impact on the results. First, although a highly significant relationsfwpdre

intellectual ability and induced gamma IA was observed, recent rede@saaised concerns
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that the visual posterior gamma IA observed in this and other visual studies oedly doet

an artifact of ocular movements. Despite the compelling framework for gareaillations,
research using simultaneous eye-tracking and scalp EEG has demonstoatad@angly
close correlation between the presence and absence of small (less thare frdegre
fixation), non-phase-locked ocular artifacts in the form of miniature sasd¢adroadband
(20-100 Hz) induced gamma band responses (Yuval-Greenberg, Tomer, Keren, Nelken, &
Deouell, 2008). Based on several experiments these authors conclude that timéyreque
reported gamma IA recorded from the scalp EEG from 200-400 ms post-stimulus is not
actually the result of neuronal activity, but rather results from eye-movenTdmy suggest
that the observed inter-trial variability results from a post-stimulus phaseochdic
inhibition (after 100 ms) which subsequently rebounds at approximately 200-300 ms,
resulting in an “induced” artifact measured by the scalp EEG.

The same authors further argue that the predominantly posterior EEG scalp
topography of both the saccades and the induced gamma response results frometlué choic
a nose tip EEG reference, which was unknown prior to its utilization as the refere¢hee i
current study. On the contrary, several prior reports on which the current stogly \stre
modeled utilized either Cz as the reference electrode or an averagacefand still
observed a significant induced gamma band response with a posterior topograjtey, (&r
Muller, 2002; Gruber & Muller, 2005; Martinovic, Gruber, & Muller, 2007).

At the same time, Yuval-Greenberg et al. (2008) note that the observed linkrbetwee
EEG gamma IA and microsaccades cannot discount other findings of signifiesiohse
between induced gamma activity and cognition in many intracerebratiregatudies or in

MEG studies under certain conditions (see also Jerbi et al., 2009). Moreover, other authors
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note that the early EEG work on induced gamma power explicitly evaluated coatrgouti
due to muscle artifacts and concluded they were not significant (Friesri8ghe&
Oostenveld, 2008). Going forward, the observed highly significant relationship betwee
gamma IA andy will need to be further explored in conjunction with eye-channel data and
alternative referencing (Melloni, Schwiedrzik, Wibral, Rodriguez, & Sing@09), to better
address the potentially significant contribution of this third variable. Noneshélés quiet
remarkable that an artifact of eye movements (deviating less than 1 degrdixditam)

would relate to so many cognitive variables as has been indicated by asalgtrature.

In the event that microsaccades did account for the large inverse relgtibesheen
induced gamma power aggdit would nonetheless raise intriguing questions as to the
relation between visual inspection and intelligence. Apropos of the current isaerche
investigating the relation between cognitive ability and visual orientati®sh@avn that
working memory capacity is related to anti-saccade task-perfoerflnoking in the
opposite direction of a visual cue), though not pro-saccades (Conway, Kane, & Engle, 2003)

Similarly, there is a classic and considerable literature on inspectierfliicnand
intelligence (Deary & Stough, 1996). Two meta-analyses of the correlsioreen
inspection time and IQ scores revealed an average inverse relationshiposfrapfely -.30
prior to correcting for attenuated reliability, and -.51 after correcoanzler & Jensen,
1989; Grudnik & Kranzler, 2001), with the earlier meta-analysis concluding thaadT w
likely more related to perceptual organization thag. tdhe current study did not correct for
attenuation of reliability in the subtest scores. However this correction wouldikedyy
increase the strength of the relationship between gamma |4 laeybnd the observad= -

.628 implying a stronger relationship than that due to IT alone
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Another pertinent consideration in light of the micro-saccade concern is the
observation that correlations between gamma IAgawdre both significant, in the same
direction, and approximately the same size in both repeated and once stimulus conditions.
Prior work has shown decreasing gamma IA over repeated exposures of meatnmgfyl s
and increasing gamma IA over repeated exposures of meaningless stimalpanitdad under
discussion (Conrad et al., 2007). If these differences result purely from difenenthe
number or amplitude of eye muscle movements over exposures, one might expect a larger
effect in the Once stimulus condition relative to the Repeated condition, due tc&tcrea
visual inspection of the novel stimuli (Berlyne, 1966). Similarly, the argumentabeadic
suppression between 100-200 ms post-stimulus accounts the rebound of gamma IA between
200-400 ms appears ill-equipped to account for numerous studies demonstrating reduced
gamma IA in the repetition priming paradigm. As a single example, it appgalesisible
that such a reliable (and apparently general) effect of saccadic sumpeass enhancement
would be influenced in opposite directions by exposure to meaningful versus meaningles
stimuli.

Although these consideration do not exclude the possibility that the current gamma
IA is linked to micro saccades indexing a general orienting response, othetuskss sf
gamma IA have identified an earlier (~ 90 ms), evoked gamma response which g tboug
reflect orienting to the onset of a stimulus (Tallon-Baudry et al., 1996). yigaten
findings in similar visual studies implicating reciprocal interactions innglunferior
temporal, superior parietal, and middle frontal areas in object recognition (Salp®R607),
it may be that scalp-recorded EEG gamma IA is necessarily confoundaddayli€ activity

due to the activity of frontal-eye-fields and micro saccades on visual obpeetsgmg.

- 86 -



A second limitation of the current study was the failure to replicate theopeevi
findings of decreasing gamma IA over repeated stimulus exposures, entifyidobust and
stimulus-specific neuroplasticity effects in general. This might have beien be
accomplished by linking each trial in which the visual response was of integest t
behavioral response, rather than to use a target detection paradigm. In pantiaoiar
different stimuli might have been presented numerous times each, with parsiciEdang a
binary response as to whether they had seen each stimulus. In turn the dookddsAsual
responses could have been analyzed according their ordinal number of stimulus exposures
and linked to accuracy and reaction time. While a third condition was implementéatdo a
such as test, behavioral data suggested that participants’ determinationvef sglaiulus
familiarity (Repeated vs. Once vs. Novel) was not linearly relategsfmonse time or
accuracy. In light of the apparently complex relationship and/or potentialtydaim
distribution of responses to ‘Once’ stimuli in the third condition, those electrophyisiallo
effects were not further explored in the present report.

Several other limitations of the current study pertain to statisticaleanple-size
considerations. First, several analyses were likely hampered duediesuftatistical
power. For example, cell means of the 20-trials blocks in the Repeated condi&gon we
consistent with the predicted effect of increasing EA/IA. This effext potentially not
significant due to insufficient statistical power. Also, the primary prestiichat intelligence
would relate to increased EA/IA in the Repeated vs. Once stimulus condition, could not be
tested in a single model due to the large sample size which would have been reqained f
adequately powered test of a 4-way interaction. Lack of power also compelled thatapl

of directed rather than two-tailed significance tests of several hyptesglationships. In
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addition, given the novel hypotheses generated from pilot data and the generally@xplora
nature of study, many tests were performed without correcting for expemse error
rates. This raises the possibility that some significant findings aropé/sioe to chance,
increasing the need to for replication. Last, the study current study hacludeerver a
quarter of the total sample from some analyses due to excessive blinksa(bfzth a
statistical and methodological concern). While comparable rejectiorhatedeen
observed in other reports using similar methodologies (Gruber, Malinowski, & Muller, 2004;
Gruber & Muller, 2002), the loss of several participants may limit the gereddity of the
findings.
Summary and Conclusions

This experiment sought to characterize the relationship between elesicdpgigal
neuroplasticity and individual differences in intelligence. Using mapp®xres of repeated
and novel visual stimuli, relations between stimulus exposure, typg,\aeck tested in
several time-frequency measures of phase-locked and non-phase-lockeg attevit
primary hypothesis that the ratio of phase-locked to non-phase-locked activity woul
increase following exposure to a repeated stimulus was not supported, nor was the
hypothesized relationship between the posited increase in this ratio and imtellijjae
study did find evidence for a modest decrease in this ratio in low and high frequegey ra
over stimulus exposures, irrespective of stimulus type, suggesting a aiguad or
habituation effect. Higher ratios in the alpha band were observed in the repeabdasst
condition in the absence of an exposure effect.

Several significant relationships were demonstrated between eleciapgigsl

measures of phase and non-phase-locked activitg.alighositive relationship was observed
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betweerg and the proportion of maximum evoked to induced theta-band activity across
epochs and conditions. This effect was not accounted for by total power, highlighting the
significance of phase-locked activity in particular to the relationshis. Wias consistent

with prior studies demonstrating a positive relation between superior phategesed
increased intellectual ability.

Conversely, there was a highly significant inverse relationship betweephase-
locked gamma activity and intellectual ability. There was a substandaignificant rank-
order correlation between induced gamma gudfactor loading indicating a robust
relationship with general cognitive ability. While methodological litiotas likely impeded
identification of trueg-neuroplasticity effects, overall results highlight the sensitvity
electrophysiological measures of oscillatory phase to individual diffesenamgnitive
ability. Current controversies in the EEG literature complicate the intatjome of the
relationship between high frequency oscillations gridowever, tentative conclusions
suggest that more intelligent individuals either exhibit better optimized evogoinses or
more rapid plasticity than other individuals. The observation of multiple signifiterigh
independent relationships between intelligence and indices of neural-phase lockikisg spea
most strongly to the importance @ficient stimulus processing for adaptive functioning,
than to rapid neuroplasticity. Future research in this area should endeavor to better
characterize the relative importance of transient versus persistingeshameural networks

for intelligence and adaptive behavior.
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