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ABSTRACT 

 
With severely altered rivers throughout the developed world, hydrodynamic processes 

and floodplain connectivity have changed drastically. The research presented here 

focuses on quantification of two hydrodynamic processes: flood wave attenuation and 

channel-floodplain fluxes. Objectives of the three research chapters were to (1) evaluate 

how the ecosystem service of flood wave attenuation has changed with the 

implementation of river engineering practices as well as contemporary river restoration 

efforts, (2) describe the sensitivities of flood wave attenuation to contemporary and 

altered conditions, and (3) characterize channel-floodplain connectivity through lateral 

flux metrics. All chapter objectives were met using high-resolution, two-dimensional 

hydrodynamic modeling techniques conducted on the Rio Grande, New Mexico, USA. 

Models were created for historical, pre-restoration, contemporary, and altered conditions. 

Chapter 1 results indicate that historical conditions provided more attenuation than 

contemporary conditions. Sudden storage of water creates attenuation and alters flood 

wave shape. Chapter 2 results suggest that attenuation is most sensitive to total area for 

flow and area available for water storage while also displaying differences in process 

between topographic and roughness alterations. Chapter 3 flux results show differences in 

mass and momentum flux due to anthropogenic impacts and inset floodplain feature types 

provide greater and more heterogeneous lateral connectivity. Results presented here have 
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implications for both anthropogenic flood control strategies and potential application to a 

myriad of ecological issues based in river connectivity and process-based science. 

Contributions of the dissertation include new methods for two-dimensional 

hydrodynamic modeling, improved metrics for attenuation research, and spatiotemporal 

description of channel-floodplain flux dynamics.   
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Chapter 1 

 

Introduction 

 
3.1. Motivation and Objectives 

River science is defined by contributions from interdisciplinary fields including 

hydrology, geomorphology, and ecology. Seminal work in river science has sought to 

describe the linked nature of these systems through the connectivity of systems [Junk et 

al., 1989; Ward, 1989; Tockner et al., 2000; Amoros and Bornette, 2002; Opperman et 

al., 2010; Covino, 2017], quantification of processes often for the purpose of river 

restoration [Palmer et al., 2005; Kondolf et al., 2006; Beechie et al., 2010; Wohl et al., 

2015], and the economic importance of natural processes through the understanding of 

ecosystem services [Costanza et al., 1997; Brauman et al., 2007; Costanza et al., 2014]. 

These topics in river science are inherently linked. Human needs have been at the 

forefront of river management for centuries and only relatively recently have efforts been 

made to understand ecological demands. Therefore, many river systems have been 

subjected to substantial alteration of connectivity and process leading to decreased 

ecosystem services. Quantification of river processes in the context of altered river 

hydrology, geomorphology, and ecology can provide context for historical and 

contemporary conditions and inform integrated anthropogenic- and ecologic-influenced 

river management strategies.  

 Lateral channel-floodplain connectivity drives exchange of water and associated 

hydrodynamic processes. While qualitative assessment of connectivity and associated 

processes has been described and refined for decades, quantification of these connectivity 

processes has typically been in the form of intense feature and reach field efforts [Lane 

and Richards, 1997; Babaeyan-Koopaei et al., 2002; Jones et al., 2014; Scott et al., 

2014], laboratory description of process [Shiono and Knight, 1991; Myers et al., 2001; 

Yang et al., 2007; Vermaas et al., 2011], or modeling efforts with simplified river 

morphology [Bousmar and Zech, 1999; Cao et al., 2006]. The combination of continued 

improvement in computational power, hydrodynamic models, and improved resources for 
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topographic and vegetation data acquisition improves modeling capabilities to describe 

both local feature and reach length processes. The applicability of two-dimensional 

hydrodynamics has been expressed in a number of ecological scenarios usually under 

steady flow conditions or time-series analysis [Crowder and Diplas, 2000; Lacey and 

Millar, 2004; Crowder and Diplas, 2006; Jacobson and Galat, 2006; Daraio et al., 2010; 

Carnie et al., 2016; Stone et al., 2017]. While unsteady modeling further increases 

computational demands, there is compelling relevance to contemporary ecological 

strategies such as short term environmental flows and biogeochemical flood processes. 

Unsteady flow dynamics within modeled rivers are often ignored in favor of simpler, 

steady flow conditions. However, the dynamics with which floods interact with the 

floodplain geomorphology and ecology are of critical importance. 

Incorporation of improved channel-floodplain dynamics is often the focus of 

contemporary integrated river management with the idea that floodplain storage of flood 

flows is an integral part of the attenuation process and essential to floodplain ecology 

[Hudson and Middelkoop, 2015]. Flood wave attenuation, an ecosystem service 

[Brauman et al., 2007], is a reach scale process that accrues as a flood wave travels 

downstream. Previous research indicates the strong influence of water storage on the 

process of attenuation, but research is dominated by simplified conditions and one-

dimensional modeling strategies [Wolff and Burges, 1994; Woltemade and Potter, 1994; 

Jaffe and Sanders, 2001; Acreman et al., 2003; Sanders et al., 2006; Sholtes and Doyle, 

2010; Fong et al., 2016]. New research indicates that floodplain connectivity has a 

substantial impact on flood wave shape [Fleischmann et al., 2016]. This finding from 

gage analysis in combination with the call from previous work for two-dimensional 

hydrodynamic modeling in the process of flood wave attenuation displays a scientific 

need [Wolff and Burges, 1994; Ghavasieh et al., 2006; Sholtes and Doyle, 2010]. Further, 

with high-resolution two-dimensional modeling now accessible, local feature scale 

processes which contribute to reach and basin scale attenuation can be analyzed as well. 

 Due to the applicability of attenuation and connectivity processes research in 

contemporary river management strategies, the goal within this dissertation was to 

quantify the hydrodynamics associated with short duration flood waves with a focus on 

how processes have changed through time due to both anthropogenic and climatic 



	 3 

alterations. Therefore, three specific objectives were set for each of the following three 

chapters: 

1. Evaluate how the ecosystem service of flood wave attenuation has changed with 

the implementation of river engineering practices in the name of flood protection 

and water use as well as contemporary river restoration efforts 

2. Describe the sensitivities of flood wave attenuation to contemporary and altered 

conditions representative of historical river manipulation 

3. Characterize channel-floodplain connectivity through lateral connectivity metrics 

important in the consideration of biogeochemical processes 

The following three chapters describe the research conducted to address each of the 

specific objectives. Each chapter was written as a standalone paper to be submitted to a 

scientific journal for publication. All chapter objectives were achieved using two-

dimensional hydrodynamic modeling methods. Chapter 2 describes the impact of river 

engineering and restoration strategies on flood wave attenuation with a focus on three 

representative time periods within the Middle Rio Grande: a pre-engineered historical 

system, an engineered pre-restoration system, and a contemporary system including 

recent river restoration strategies. Chapter 3 focuses on statistically describing flood wave 

attenuation sensitivities to contemporary channel-floodplain conditions and 

understanding how specific alterations to the Rio Grande have impacted hydrodynamic 

processes. Chapter 4 switches focus from attenuation to local hydrodynamic processes to 

quantify mass and momentum flux at the channel-floodplain interface, and to compare 

lateral and longitudinal flow characteristics in a contemporary setting.  

 

3.2. Broad Contribution of Research 

With motivation for this research driven by fields of river science which focus on 

channel-floodplain connectivity, process-based understanding of river hydrodynamics, 

and ecosystem services important to anthropogenic river management strategies; the 

research presented here addresses each of these topics and extends the body of 

knowledge in each respective field. The contributions of the following three chapters are 

in the form of modeling methodologies, quantifiable hydrodynamic metrics, and new 

strategies for incorporating large-scale spatial and temporal analysis of processes. 
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The methods used were chosen to both inform river science within the Middle Rio 

Grande and improve methods for further study in other rivers as well. All portions of the 

dissertation were completed using two-dimensional hydrodynamic modeling techniques. 

Methodologies were implemented to create high-resolution computational meshes to 

represent the complexities of channel-floodplain connectivity and floodplain topography. 

With continually improving computational power, these types of hydrodynamic models 

have the ability to inform process on a local scale, but can now be run over considerably 

larger distances than in the past. Linking local feature dynamics with watershed and 

regional dynamics is critical to linking scientific understanding of hydrologic processes 

[Harvey and Gooseff, 2015], so the ability to model large areas, yet retain feature 

resolution, can drive this science forward and is displayed within this research.  

While no model will ever completely replicate natural processes, the 

measurement of hydrodynamics along rivers in both time and space is extremely difficult 

at small spatiotemporal scales. Numerical simulation can complement empirical river 

science to a great degree [Covino, 2017]. Therefore, improvement and advancement of 

computational techniques must continue. Specific to this research, the implementation of 

scripting techniques to extract information at key locations of interests can help solve 

some problems arising from computational storage demands and thus inform specific 

questions of interest. In addition, this research displays the ability of high-resolution, 

two-dimensional modeling to capture hydrodynamic channel-floodplain processes that 

are not expressed in lower-resolution, two-dimensional models or one-dimensional, 

hydrodynamic models. While other modeling strategies are suitable for other topics such 

as flood mapping, quantifying hydrodynamics appropriately should use the more data-

intensive techniques displayed here. 

The research within this dissertation also presents metrics novel to flood wave 

attenuation. The attenuation metrics are complementary in that they help explain the 

processes which cause attenuation through the context of historical modeling (Chapter 2) 

and modeling of alterations to contemporary conditions (Chapter 3). Comparison of 

attenuation ratios and statistical analyses conducted within the attenuation chapters 

indicate the same processes occurring but from different quantification approaches. 

Therefore, the ratio metrics are valuable in the future application to other river systems 
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which will provide further context for flood wave management. Understanding of 

attenuation processes may be critical as integrated floodplain management and 

environmental flow implementation continue to be pursued. Unsteady flows are critically 

important to rivers, thus understanding of the processes impacting flood waves should be 

pursued for these interdisciplinary reasons. 

Finally, the research informs hydrodynamic processes key to floodplain connectivity 

science. The novel approaches for both local and integrated mass and momentum flux 

represent new approaches for quantifying lateral channel-floodplain connectivity 

(Chapter 4). These flux metrics have been expanded in one approach to analyze lateral 

and longitudinal discharge relationships, however, the metrics have applicability to 

countless hydrologic, geomorphic, and ecologic studies. For example, quantification of 

lateral sediment and nutrient fluxes are critical to floodplain ecosystems, thus the addition 

of focused channel-floodplain flux quantities could prove to be extremely helpful in other 

fields. 

 

3.2.1. Conceptual Model of Linked Nature of Dissertation 

The three chapters of research presented here quantify hydrodynamic processes occurring 

along various scales during unsteady flow events. Along reach-scales, flood wave 

attenuation is dependent on the transfer of water and the dissipation of momentum as the 

unsteady pulse moves downstream. These reach-scale hydrodynamic processes are the 

result of the integrated local and feature-scale flux of mass and momentum. Figure 1.1 

displays the topics of each chapter in relation to greater fields within river science. Flood 

wave attenuation and mass and momentum fluxes are dependent on lateral floodplain 

connectivity, which stems from hydrologic, geomorphologic, and ecological processes. In 

addition, attenuation and fluxes are influenced by the way in which rivers are managed, 

both historically and at present. In the context of broader fields of river science, flood 

wave attenuation is considered an ecosystem service in that natural mechanisms provide 

flood control for downstream locations. While mass and momentum flux accrue to create 

flood wave attenuation, upstream flood wave attenuation will also likely decrease 

downstream lateral fluxes. These hydrodynamic fluxes are important to biogeochemical 

processes occurring in the channel-floodplain system. Thus, each chapter has 
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applicability to, and improves understanding of, other fields of river science beyond the 

specific application. In addition, the techniques used for quantification of hydrodynamic 

processes within my dissertation advance computational methodologies in river science. 

 
Figure 1.1. Conceptual model of dissertation research. 

 

3.3. Modeling Environment 

 

3.3.1. Deltares’ D-Flow Flexible Mesh 

All two-dimensional hydrodynamic modeling was conducted using the Netherlands-

based Deltares’ new D-Flow Flexible Mesh (D-Flow FM) [Deltares, 2015]. While 

several fully two-dimensional models now exist, D-Flow FM was chosen for a few 

reasons. First, the model has been verified as using appropriate and highly efficient 

numerical techniques to compute water depths and velocities. At the time this research 

began, we became beta testers in agreement with Deltares and were given access to both 
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a Windows graphical user interface (GUI) and Linux source code. The Windows GUI 

was used for mesh and boundary fabrication as well as runs of smaller models while the 

Linux source code was built on a supercomputer at the University of New Mexico’s 

Center for Advanced Research Computing (CARC).  

The availability of the source code was another reason D-Flow FM was chosen. 

While no alterations were ultimately made to the code, we were interested in the 

possibility that we could manipulate the code to only give model outputs in areas of 

interest, thus saving on computational storage with the large datasets produced by 

hydrodynamic models with high spatial and temporal resolution. While the source code 

was not manipulated, the availability of the source code allowed for improved 

understanding of how the model calculates hydrodynamics and the building of the model 

on university supercomputers.  

The ability to partition a mesh and use parallel computing resources was the final 

reason that D-Flow FM was chosen over other available two-dimensional models. The 

goal of the modeling methodology was to implement modeling techniques in the fields of 

attenuation research and connectivity processes that captured large spatial and temporal 

scales. Therefore, high-resolution models were created which averaged 25 m2 in element 

area. This produced contemporary models with nearly 800,000 computational elements 

and a historical model with nearly 3,900,000 computational elements. Main channel 

elements were curvilinear in form to promote efficient calculation of longitudinal 

discharge, and floodplain elements were predominantly triangular in shape to describe the 

complex topography of the floodplain. Main channel elements were curvilinear in form to 

promote efficient calculation of longitudinal discharge, and floodplain elements were 

predominantly triangular in shape to describe the complex topography of the floodplain 

and improve complex inundation dynamics. 

The D-Flow FM solver techniques are driven by the fundamental shallow-water 

equations based upon conservation of mass and momentum. These equations are depth-

averaged as the spatial and temporal horizontal scales are much larger than vertical scales 

and hydrostatic pressure distribution is assumed within D-Flow FM [Deltares, 2015]. The 

continuity equation, or conservation of mass, is defined by Equation 1.1, while Equations 

1.2 and 1.3 represent the conservation of momentum in the x- and y-directions 
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[Chaudhry, 2007]. Within these equations h represents water depth, t is time, u is depth-

averaged velocity in the x-direction, and v is depth-averaged velocity in the y-direction, g 

is the gravitational constant, SOx and SOy are the channel bottom slope in the x- and y-

directions, respectively, and Sfx and Sfy are the friction slope in the x- and y-directions, 

respectively. 
!"
!# +

!(&")
!( + !()")
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!# +

/
0
!&1
!( +
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Within D-Flow FM, these equations are solved using finite-volume techniques 

implementing established k-e turbulence closure methodology [Deltares, 2015]. With 

latitude, longitude, elevation, and roughness defined by the user, output data at each 

element includes h, u, and v. For calculation of friction losses, Manning’s roughness 

coefficients were chosen for bed and vegetation roughness description with vegetation 

mapping and hypothetical conditions defining the spatial extents. One-meter topographic 

digital elevation models were interpolated to D-Flow FM mesh nodes using values 

nearest to mesh nodes. The mass and momentum equations were solved using a time-step 

dependent on a maximum Courant number of 0.7 (Eqn. 1.4), which allows for time-steps 

to vary based upon flow conditions.  More specific description of mesh smoothing and 

orthogonalization methods and finite-volume mathematical techniques can be found in 

the D-Flow FM User Manual [Deltares, 2015]. 

0.7	 ≥ :∆< ∆=         (1.4) 

 

3.3.2. Parallel Computing at CARC 

The benefits of D-Flow FM would not have been achievable without collaboration from 

CARC. The supercomputers at CARC allow for research across all disciplines with a 

support staff that helps facilitate computational techniques. The staff at CARC built D-

Flow FM allowing me to focus on the modeling methodologies. The D-Flow FM model 

was built on Ulam, a supercomputer at CARC which allows for tightly-coupled parallel 

computing. The parallel computing of a D-Flow model involves the partitioning of the 

entire model domain into smaller domains. These domains then simultaneously solve the 
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defining physical equations while overlapping in small areas to produce contiguous 

results.  

The D-Flow FM GUI interface allows for the partitioning of a model into any 

number of domains. At the beginning of the modeling enterprise, a benchmarking study 

was implemented to determine the number of domains at which the models ran most 

efficiently. That is, at some point, small gains in computational speed may not support 

increased computational resources in the further partitioning of the models. Additionally, 

users on Ulam are limited to the number of computational nodes. Each node on Ulam has 

8 individual processors. Substantial decreases in computational time were found by using 

up to 8 nodes (64 processors or model partitions). To most efficiently use Ulam nodes in 

addition to considerations about queue time in regard to node limitations, the majority of 

models were run on 4 nodes or 32 partitions. The exception was the historical model in 

Chapter 2 which was run on 8 nodes (64 partitions) due to the substantially greater 

number of elements in that model compared to contemporary models because of much 

greater lateral extents. 

 

1.3.3. Model Validation and Uncertainty 

To determine if the contemporary model used in Chapters 2 through 4 was appropriate 

for unsteady conditions within the reach of study, an unsteady hydrograph from 

September 13 – 18, 2013 was modeled. In addition, 1, 1.5, and 3-day segments of model 

results starting on September 13th were used to investigate the appropriateness of the 

contemporary topographic and roughness conditions on similar time-scales to those 

investigated in this research (Fig. 1.2). Topographic data was defined with 2010 and 2012 

light detection and ranging data. Vegetation and Manning’s roughness relationships from 

prior studies involving hydrodynamic modeling were utilized on the floodplain 

[Mussetter Engineering, 2002; Adair, 2016], while a channel roughness of 0.025 was 

defined. More specific contemporary model methodology is defined in Chapter 2 and 

topographic methods included in Appendix B. Using the Nash-Sutcliffe Efficiency 

(NSE), percent bias (PBIAS), and root mean square error-standard deviation ratio tests 

(RSR) [Moriasi et al., 2007], the model returned satisfactory results for stage when 

compared to data recorded 14 river kilometers downstream at USGS 08330000 
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(Albuquerque gage) under all durations (Table 1.1). These results provided confidence 

for the modeling of short duration flow events within this dissertation. While having 

more events to validate the model would have been beneficial, events such as the 

September 2013 storm are rare, thus other storms were not of the same magnitude and 

less appropriate for validation. 

 
Figure 1.2. Unsteady flow validation of contemporary model for (A) 1-day, (B) 1.5-day, 
(C) 3-day, and (D) 5-day durations. 
 

Table 1.1. Statistical results of contemporary model validation for four durations 
beginning on September 13, 2013. 

  1-day 1.5-day 3-day 5-day 
NSE 0.53 0.59 0.52 0.65 
PBIAS 11.85 9.64 8.13 6.62 
RSR 0.69 0.64 0.70 0.59 

 

The validation of this contemporary model was deemed an acceptable level of 

performance for two reasons: (1) the gage data used for the upstream discharge boundary 

and downstream for statistical evaluation are subject to the uncertainty discussed in sand-

bed river gaging strategies [Isaacson and Coonrod, 2011], and (2) the modeling 
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conducted in this research is predominantly theoretical in its application to river science, 

as opposed to a specific practical event. While any method of data collection is prone to 

error, the uncertainties associated with the computational modeling method must be 

addressed. Topographic uncertainty is likely highest within the main channel where one-

dimensional cross-section elevation data were used to interpolate two-dimensional 

elevation data. Roughness uncertainty is inherent to two-dimensional, hydrodynamic 

modeling as roughness becomes an all-encompassing momentum dissipation mechanism 

due to the direct interpolation of latitude, longitude, and elevation information [Lane and 

Richards, 1998; Morvan et al., 2008]. However, validation suggests methodology used 

within this dissertation creates topographic and roughness conditions suitable for 

addressing unsteady processes within the reach.  

Uncertainties and sources of error were minimized as best as possible by utilizing 

the most detailed data available. With the contemporary model performing appropriately, 

historical and altered model scenarios were created with the same methodology where 

possible. No validation data were available for these events, however, the similarity in 

mesh creation techniques should provide appropriate results for era and alteration 

comparisons conducted within Chapters 2 through 4. A sensitivity analysis of the 

relationship between microtopography and roughness was conducted in Appendix A to 

better understand the relationship these factors have with unsteady flow modeling. 

 

1.4. The Middle Rio Grande 

The work presented in this dissertation focuses on a 32-km stretch of the Middle Rio 

Grande (MRG) which runs through Albuquerque, NM, and is known as the Albuquerque 

Reach. The Albuquerque Reach provides an excellent setting for research dealing with 

historical and contemporary influences on hydrodynamic processes as the river has been 

subjected to substantial alterations during the past century under the name of flood 

control, water use, and river restoration. As each chapter of the dissertation was written 

as a standalone scientific paper for publication, each includes a section with relevant facts 

about the MRG to place the chapter research into context.  

While specific findings presented within this research will be most applicable to 

semi-arid, snowmelt driven river systems, the methods presented within the dissertation 
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are highly applicable to all river systems. Further, the quantification of the presented 

attenuation and flux metrics in other systems will be beneficial to the further 

understanding of how processes are both similar and different in various other types of 

systems.  
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Chapter 2 

 

Implications of anthropogenic river alterations on the ecosystem service 

of flood wave attenuation 

 
 
2.1. Introduction 
 
River systems have provided important landscapes for societal growth throughout human 

history. However, the expansion of human land use, including agriculture and 

urbanization, and the methods employed for flood protection and water use (e.g. dams, 

levees, etc.) along river corridors have been to the detriment of ecological systems 

[Baxter, 1977; Ligon et al., 1995; Birkland et al., 2003]. Functioning environmental 

systems are known to provide ecosystem services, otherwise known as the benefits and 

economic value of environmental systems functioning with little to no human disturbance 

[Costanza et al., 1997; Daily, 1997]. More specifically, economic benefits of terrestrial 

systems involving water are referred to as hydrologic services and include water supply, 

water quality, water damage mitigation, and cultural significance [Brauman et al., 2007].  

A floodplain, most often characterized as terrestrial land but often inundated during high 

river discharges, has been described as one of the most valuable terrestrial ecosystems 

[Costanza et al., 1998, 2014]. Therefore, it is vital to put value on the consequences of 

human influence on floodplain ecosystems and river-floodplain processes. 

Ultimately, the extent of hydrologic services and value associated with floodplains is 

based on periodic inundation of the floodplain. A river system with the ability to 

transport water onto the adjacent floodplain is said to have lateral floodplain connectivity 

[Ward, 1989].  This lateral connectivity is important in providing ecosystem services 

along any stretch of river. Because ecosystem services are based upon the idea that 

healthy ecosystems have a monetary value, ecological function and ecosystem services 

are inherently linked. An ecologically functioning floodplain has been characterized by 

three elements including connectivity as well as flow regime and a sufficient spatial scale 

for dynamic processes to occur and for benefits to accrue to meaningful levels 

[Opperman et al., 2010].  Examples of ecological benefits on a well-connected, large-
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scale floodplain subject to varying flows include fish recruitment [Welcomme, 1979; 

Graaf, 2003; Balcombe and Arthington, 2009], fish refugia [Beesley et al., 2012], and 

riparian plant recruitment [Corenblit et al., 2007; Morrison and Stone, 2014]. In turn, the 

same well-connected, large-scale floodplain would also produce quantifiable ecosystem 

services. Quantification of a single ecosystem service may therefore act as one indicator 

of floodplain connectivity and ecosystem health. Changes to the elements required for an 

ecologically functioning, heterogeneous floodplain (i.e. connectivity, flow regime, and 

sufficient spatial scale), will no doubt influence the ecosystem services provided as well. 

One ecosystem service associated with floodplain connectivity and important for 

economic interests and public safety is flood wave attenuation [Brauman et al., 2007]. 

Flood wave attenuation, or the process in which a flood wave is dampened and elongated 

as the wave moves downstream, has been linked to processes involving channel 

morphology, floodplain ecosystem conditions, and hydrologic regime of a system 

[Woltemade and Potter, 1994].  Physically, the process of flood wave attenuation entails 

momentum transfer through eddies at the main channel and floodplain interface, mass 

and momentum transfer from areas with different roughness characteristics, and 

floodplain water storage [Archer, D. R., 1989; Knight and Shiono, 1990; Helmiö, 2004; 

Vermaas et al., 2011]. Abrupt changes in topography, vegetation, and bed material at the 

channel-floodplain interface and complex floodplain topography indicate that lateral 

processes are crucial to flood wave attenuation processes. Geomorphic and ecological 

changes to river systems will no doubt influence both the local hydrodynamics and 

processes such as flood wave attenuation which are representative of the integration of 

these processes at longer river distances. 

Anthropogenic alteration of river systems has existed along rivers for thousands of 

years. Prior to European settlement of North America, impoundments, diversions, and 

flood protection strategies were likely minimal in scale, thus having effects on local river 

dynamics, but less influence on longer reaches of river. However, large scale 

manipulation of river systems in the twentieth century, most notably through the 

construction of levees and dams [Dynesius and Nilsson, 1994; Tobin, 1995], has led to 

significant alteration of river hydrology and hydrodynamics [Dynesius and Nilsson, 1994; 

Graf, 1999], channel-floodplain geomorphology [Syvitski et al., 2005; Graf, 2006], 
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biogeochemical exchange [Thoms, 2003], and river-floodplain ecology [Ligon et al., 

1995; Shankman, 1996; Marston et al., 2005]. In addition, although motivation for river 

engineering is often based on flood control in the longitudinal and lateral directions, 

classic engineering approaches can be detrimental to environmentally-driven flood wave 

attenuation. Upstream channelization has been shown to produce greater flood peaks at 

downstream cross-sections than previously existed [Acreman et al., 2003], while also 

causing downstream aggradation of channels, thus lowering flow capacity and increasing 

flood potential [Shankman and Samson, 1991]. Further, urbanization of river systems can 

increase flood peaks and shorten time to peak discharge [Turner-Gillespie et al., 2003]. 

More recently, river restoration and rehabilitation strategies have become common and 

widespread in developed nations with improved understanding of natural processes along 

river corridors. While hypothetical rehabilitation of headwater streams has suggested 

greater attenuation is achieved with these strategies [Liu et al., 2004], studies of 

rehabilitation along river corridors suggest that restoration and rehabilitation projects are 

not typically on a large enough scale to influence attenuation [Sholtes and Doyle, 2010]. 

With shifting strategies of river management from historical to contemporary time 

periods and attempts to alter historically degraded systems, understanding the impacts 

that river alterations have on flood wave attenuation can be a key indicator of the degree 

to which river process has changed through time. 

Quantification of flood wave attenuation under historical river conditions is a 

difficult task due to a lack of data comparable to contemporary sources. Due to 

attenuation occurring on the scale of kilometers to hundreds of kilometers, modeling 

studies have mainly focused on methodologies that use cross-sectional information. 

Empirical studies have used stage and discharge measurements from gauged sites along 

rivers to study attenuation, including how changing river conditions influence attenuation 

[Wong and Laurenson, 1983; McCartney and Naden, 1995; Jacobson et al., 2015]. While 

empirical studies benefit from real-time data and real-world measurements, this type of 

research is also inherently impacted by unquantifiable hydrologic inputs, hydrologic 

outputs, and the heterogeneity of river systems. Numerical modeling methods make 

assumptions and simplifications about highly dynamic environments, but modeling can 

also isolate surface water processes under a quantifiable framework. One-dimensional 
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(1D) modeling approaches have dominated numerical attenuation research [Garbrecht 

and Brunner, 1991; Wolff and Burges, 1994; Anderson et al., 2006; Cao et al., 2006; Di 

Baldassarre et al., 2009; Sholtes and Doyle, 2010; Fong et al., 2016]. However, 1D 

modeling simplifies channel-floodplain connectivity due to interpolation between cross-

sections. Channel-floodplain interactions captured within two-dimensional (2D) 

modeling environments may provide more insight into flood wave attenuation than those 

captured under 1D conditions and 2D model performance has been found to be superior 

to 1D performance in predicting attenuation [Ghavasieh et al., 2006].  

Two-dimensional model applications to flood wave attenuation are rarer and 

predominant applications have been in hydrologic response and theoretical engineered 

attenuation research [Jaffe and Sanders, 2001; Turner-Gillespie et al., 2003; Ghavasieh 

et al., 2006; Sanders et al., 2006]. Di Baldassarre et al. [2009] was successful in 

predicting historical inundation using a 2D model, however, this condition simulated a 

historic levee breach. It is our belief that a two-dimensional application has not been 

made in the context of how pre-engineering and contemporary anthropogenic changes to 

river morphology influence attenuation. High resolution two-dimensional, historical 

models, with computational elements on the order of meters, have been created for other 

applications to river science. For example, historical channel conditions have been 

studied to estimate changes in shallow-water habitat [Jacobson and Galat, 2006]. While 

high resolution, 2D meshes require substantial computational power, new numerical 

models and parallel computing power can provide the required resources for long lengths 

of river required for attenuation studies. With important processes occurring in both the 

longitudinal and lateral directions, it is believed a 2D modeling environment can provide 

important information for flood wave attenuation science. 

The objective of this research was to better understand the influence of human 

alterations along the Rio Grande on the ecosystem service of flood wave attenuation. 

More specifically, this study quantified the impact of both historical river engineering 

strategies and more recent river restoration approaches on the flood wave attenuation 

metrics of discharge, river stage, inundated area, celerity, and hydrograph shape. To 

achieve these goals, three different periods of time along the Rio Grande, New Mexico 

were modeled: (1) a historical condition representing pre-engineered river conditions 80 
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to 100 years before present, (2) a pre-restoration condition representing river conditions 

15 to 20 years before present, and (3) a contemporary condition. Hypothetical flood 

waves were modeled with normalized attenuation metrics that are applicable to rivers 

beyond the modeled system. A historical flood wave scenario was also modeled to better 

understand contemporary impacts to such a flood. Cutting-edge modeling methodology 

was implemented, especially in the description of topography with high mesh resolutions 

and parallel-computing techniques. Therefore, the methods and results quantified here 

can inform contemporary river science which has begun to focus on comprehensive 

strategies that include both classic river engineering approaches and natural processes 

which provide ecosystem services. 

 

2.2. Site Description 

Modeling for this study was conducted within the Albuquerque Reach of the Middle Rio 

Grande (MRG). As the name of the reach implies, this stretch of the Rio Grande passes 

through the city of Albuquerque (Fig. 2.1). Thus, the reach is the most heavily urbanized 

stretch of the river in New Mexico. The MRG has sustained concentrated Pueblo 

populations since the 1300s, however, only since the late 19th-century have anthropogenic 

alterations to the MRG and its associated watershed been of large enough scale to 

substantially alter natural river processes [Scurlock, 1998]. River engineering, here 

referred to as any human induced river alteration in the name of flood control or water 

use, in combination with a changing climate has led to significant channel narrowing, 

channel incision, and diminished accessible floodplain in the Albuquerque Reach 

[Scurlock, 1998; Richard and Julien, 2003; Swanson et al., 2011]. More recently, human 

manipulations to the MRG and its floodplain have come in the form of river restoration 

projects. In this study, river restoration is in reference to strategies to improve ecological 

habitat, predominantly in the name of the endangered Rio Grande silvery minnow 

(Hybognathus amarus) and other endangered species [Tetra Tech EM Inc., 2004]. 

Historical and contemporary changes to the MRG are therefore the focus of this paper. 

The MRG provides an optimal setting to address the continued call for quantification of 

river processes and ecosystem services as data are available dating back to nearly the 

time in which river engineering began. 
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The MRG lies in the semi-arid, southwestern United States where Rio Grande flow 

is in most years predominantly driven by snowmelt occurring in the mountainous regions 

of northern New Mexico and southern Colorado. The distinctive snowmelt pulse, 

historically occurring between April and June, produced numerous flooding occurrences 

throughout the Rio Grande valley now home to Albuquerque [Scurlock, 1998]. While the 

flood waves associated with the most severe floods are derived from snowmelt pulses 

along the river, these flood events take place over weeks and months and are unlikely to 

be attenuated within the reach of focus. More likely to be attenuated are shorter duration 

events either occurring on top of the snowmelt pulse or during the late summer months 

when monsoonal moisture creates short but intense storm events. Therefore, these shorter 

duration events were the focus of this research. 

 

2.3. Methods 

 

2.3.1. Model Overview 

Hydrodynamic modeling was conducted with the Deltares’ D-Flow Flexible Mesh (D-

Flow FM) modeling program. The two-dimensional application of D-Flow FM is based 

on flexible, or unstructured, mesh development to describe the land surface.  This allows 

for curvilinear, triangular, and polygon-shaped mesh cells to be included in the same 

mesh, which benefits the description of a river system. Selection of D-Flow FM was 

based on partitioning capabilities within D-Flow FM on Linux operated systems and 

parallel computing of developed modeling scenarios. Parallel computing was conducted 

on a super computer at University of New Mexico’s Center for Advanced Research 

Computing (CARC). The ability to run models in parallel provides for a significant 

decrease in computational time. This allowed for large historical floodplains to be 

modeled in reasonable amounts of time but retain fine resolution mesh sizes. All meshes, 

introduced subsequently, were created to be comprised of approximately 40 m2 sized 

elements (Table 2.1). 
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2.3.2. Historical Mesh Development 

Historical model development consisted of data collection, processing, and integration 

from various historical sources in the city of Albuquerque. Floodplain contours from 

1918, at a vertical distance of two feet, were collected from the U.S. Bureau of 

Reclamation (USBR) while limited 1936 and 1937 channel cross-section information was 

found from the Soil Conservation Service [Adair, 2016]. These two data sources were 

used in the creation of a digital elevation model (DEM). Although these data sources 

represent different years, the goal of the historical model development within this study 

was to create a representation of historical conditions prior to significant MRG river 

engineering rather than a specific year in history. River engineering refers to all 

anthropogenic features within the MRG, including levees, diversion dams, flood control 

dams, tributary dams, and river training devices that were constructed or installed in the 

name of flood control and water use. While the Rio Grande has been used for centuries 

for agricultural purposes and European settlement began in the 1500’s [Scurlock, 1998], 

large scale river engineering to deliberately impact river flows and floodplain 

connectivity started shortly (~1930) after the acquisition of data (~1918) used in this 

study. It also must be noted that the hydrology and geomorphology of the Rio Grande had 

already been altered by land use changes within the greater watershed, although changing 

climate also likely had significant impact on hydrology and geomorphology as well 

[Phippen and Wohl, 2003; Swanson et al., 2011; Friedman et al., 2015]. With the arrival 

of the railroad in 1880, logging and grazing greatly altered the headwater landscapes 

within the MRG and is thought to have contributed to increases in runoff and sediment 

supply to the river. Due to these hydrologic and geomorphic processes, it may be that the 

historical condition presented in this study represents a condition with more lateral 

floodplain connectivity than was typical prior to landscape changes within the watershed. 

However, we believe the study of a historical condition prior to river engineering 

practices and the comparison of present conditions can raise important findings about 

quantified flood wave attenuation. The historical elevation DEM was interpolated to a 

mesh encompassing the entire historical floodplain, here referred to as the Historical 

Contour model (HC) (Fig. 2.1). 
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2.3.3. Pre-Restoration and Post-Restoration Mesh Development 

Pre- and post-restoration mesh elevations were informed using 2010 light detection and 

ranging (LiDAR) data sourced from the Mid-Region Council of Governments. These data 

were acquired in the form of a one-meter DEM. The DEM was then manipulated in three 

ways to produce three different meshes for modeling: a pre-restoration mesh with 

floodplain topography based upon LiDAR data, a post-restoration mesh with floodplain 

topography based upon LiDAR data, and a post-restoration mesh with floodplain 

topography based upon smoothed 2010 elevations. These mesh boundaries are of more 

limited extent compared to the historical model as levees and bounding topography make 

the current accessible floodplain considerably smaller than the historical floodplain (Fig. 

2.1). All channel bathymetry was produced using the same methods as those used for the 

historical mesh. In this case, USBR channel cross-sections from 2014 were used to 

interpolate channel bathymetry elevations. Lateral bounds of all three of these models are 

defined by either natural topography that was substantially higher than the active 

floodplain, or by levees or man-made berms. This research assumes a fixed bed and 

therefore does not address whether these man-made features would fail during the 

modeled flood waves. 

The pre-restoration mesh was created using ESRI’s ArcMap 10.1. First, 

boundaries of habitat restoration sites were acquired from the database of the Middle Rio 

Grande Endangered Species Collaborative Program. The habitat restoration sites of focus 

were those areas in which excavation or earth moving practices had been implemented. 

Along the bounding line, vertices were created and elevations were interpolated from the 

DEM. These elevations exist at a pre-restoration elevation. A triangulated irregular 

network (TIN) was created linking these bounding elevations creating an estimation of 

pre-restoration elevations. The TIN was then converted to a DEM and mosaicked into the 

2010 DEM to produce a representative surface for a Pre-restoration, LiDAR condition 

(PL) which was then interpolated to the two-dimensional mesh nodes. 

Post-restoration models were developed from the combination of 2010 and 2012 

LiDAR DEMs, the latter also of one meter resolution. Because the 2010 LiDAR did not 

include several restoration sites constructed between 2010 and 2012, the DEM was 

supplemented with elevations from the 2012 DEM at those locations by extracting 2012 
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elevations within restoration bounds and creating a mosaic with the 2010 DEM. The 

resulting topography was interpolated to the same mesh as the pre-restoration mesh to 

study the influence of restoration sites on flood wave attenuation. This model is referred 

to as the Contemporary, LiDAR condition (CL). 

A fourth mesh was created for comparison to the historical mesh to understand 

how river engineering practices have impacted attenuation. Because the historical 

topography was created from a two-meter contour map, the representative DEM lacked 

microtopography that would influence the calculated depth and velocity of water on the 

floodplain. Therefore, post-restoration topography was adjusted to represent present day 

conditions in a similar way to historical floodplain topography. To remove 

microtopography from the DEM, a 30-meter focal average was calculated for floodplain 

points within the bounding topography. In this way, levees and defining topography were 

not lowered, but the accessible floodplain surface was effectively smoothed to produce a 

more gradual surface characteristic of the historical mesh. The focal-average floodplain 

surface was combined with channel bathymetry and interpolated to the mesh with present 

day channel alignment and bounds to create a model comparable to the historical model. 

This model is referred to as the Contemporary Contour condition (CC). 
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Figure 2.1. Mesh boundaries for historical (HC), pre-restoration (PL), and contemporary 
(CC, CL) models along the Albuquerque Reach of the Middle Rio Grande. 
 

2.3.4. Modeled Hydrology 

Hypothetical flood waves representative of discrete precipitation events were focus of 

this research. Three durations of flood waves, 1, 1.5, and 3 days, were modeled for two 
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initial conditions. Moderate flood conditions are defined by an initial flow of 30 m3 s-1 

and represent late summer monsoonal events on top of a wetted main channel. Major 

flood events are defined by greater initial conditions of 150 m3 s-1 and represent a storm 

event occurring when the main channel is full and portions of the floodplain area already 

connected. This scenario would likely occur during spring snowmelt. Flood magnitude 

was set at 150 m3 s-1 above initial conditions, resulting in 180 m3 s-1 and 300 m3 s-1 

upstream flood peaks for the moderate and major flood events, respectively. Flood 

magnitudes are approximately representative of 5- and 50-year recurrence interval flood 

events. 

In addition to the hypothetical flood waves, results are presented within this study 

for a historical flood event that occurred in 1942. The floods of the early 1940’s are 

considered the last major floods within the Rio Grande valley as subsequent river 

engineering prevented more substantial flooding within the reach. Daily mean discharge 

data is used to represent the upstream flood hydrograph for this event. All modeled 

upstream flood waves are plotted alongside results for downstream flood waves. 

 

2.3.5. Boundary, Initial, & Roughness Conditions 

Upstream and downstream boundary conditions and initial inundation conditions were 

needed for unsteady, hydrodynamic modeling. Upstream boundary conditions were 

defined by the six hypothetical and 1942 historical flood waves. Because no rating curve 

existed for historical or contemporary downstream boundaries, downstream boundary 

conditions were set at a water surface elevation relative to the upstream peak flow 

conditions. In reality, this condition would be a dynamic stage-discharge relationship. 

Instead, the most downstream two kilometers, measured in valley length, of model results 

were removed. Results at this distance upstream were not impacted by changes in 

downstream water surface elevation. Initial inundation conditions for the unsteady flow 

events were set by steady flow simulations. 

Roughness values for each model were spatially distributed. The two 

contemporary and pre-restoration models used roughness maps, which related to 

vegetation maps developed from both ground and aerial surveys [Hink and Ohmart, 

1984; Callahan and White, 2004]. Manning’s roughness values were then approximated 
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based upon the defining vegetation in conjunction with previous literature [Chow, 1959; 

Mussetter Engineering, 2002], and are recorded in previous literature [Adair, 2016]. 

Distributed historical roughness was defined by mapped 1918 land use and land type 

[Bloodgood, 1930; Van Cleave, 1935; Adair, 2016]. These land use, land types were then 

converted to Manning’s roughness values using the same methods as the contemporary 

model. 
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2.3.6. Hydrograph Analysis 

Hydrographs, perhaps the most common flood metric in the quantification and 

description of flood waves, were plotted at 18 km downstream for all flood waves and 

modeled scenarios. A distance of 18 km was used for all flood waves as it was the most 

downstream distance applicable for historical modeling outputs and thus provides a 

uniform means of comparison amongst all flood waves. Quantification of recorded peak 

discharge (Qp), time to peak discharge (tQp), average celerity (cAVG), and change in flood 

wave skewness (∆S) was conducted for all flood wave scenarios. While peak discharge, 

time to peak, and celerity are all common flood wave metrics, changes in flood wave 

skewness were assessed to quantify changes to flood wave shape. As skewness has been 

been introduced as a metric of floodplain and wetland influence on hydrograph form 

[Fleischmann et al., 2016], it was the goal of this metric to compare upstream and 

downstream hydrograph shape under the different river time period conditions. Methods 

for quantifying skewness are found in Fleischmann et al. [2016], and change in skewness, 

in this research, is defined by the difference between downstream (SDS) and upstream 

(SUS) skewness values (Eqn. 1). The lowest one percent of flows above initial conditions 

were removed from skewness calculations in this research. 

 

∆" = "$% − "'%      (1) 

 

2.3.7. Metrics of Attenuation 

To quantify the impact of anthropogenic changes to the Middle Rio Grande on the 

ecosystem service of flood wave attenuation, three dimensionless metrics are included in 

this research.  These metrics focus on peak discharge, peak stage, and inundated area 

associated with a flood event.  Because it is important to understand how these metrics 

change when compared to other floodplain scenarios and for multiple flood events, the 

metrics in this study are normalized to steady flow conditions of the upstream boundary 

flood peak. Previous studies have discussed relative downstream attenuation or percent 

attenuated in terms of discharge [Wolff and Burges, 1994; Sholtes and Doyle, 2010], 

however normalization with steady peak flow conditions within this research allows for 

normalized comparison of attenuated stage and inundated area, in addition to discharge. 
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The normalization of peak discharge, peak stage, and inundated area produce what will 

be referred to in this paper as attenuation ratios for each metric and can be examined for 

various flood wave events and scenarios. The discharge attenuation ratio (QAR) and 

stage attenuation ratio (SAR) are presented in Equations 2 and 3, respectively.  

 

()* = 	(,,. (,,/       (2) 

 

Here Qp,i is the measured peak discharge (m3 s-1) at a defined distance downstream from 

the upstream boundary, while Qp,u is defined as the flood peak at the upstream boundary. 

In the case of floods presented here, Qp,u was either 180 m3 s-1 or 300 m3 s-1 depending on 

the flood wave modeled. For the historical flood wave, Qp,u was 583.4 m3 s-1. 

 

")* = ℎ,,. − 	12.3,. ℎ%,. − 	12.3,.     (3) 

 

Here hp,i is the water surface elevation of the flood wave at a defined downstream cross-

section, i, hS,i  is the water surface elevation under steady peak flow conditions at a 

defined downstream cross-section, and zmin,i is the local minimum channel elevation at the 

cross-section.  

To calculate the discharge and stage attenuation ratios, cross-sections and 

observation points recorded data within D-Flow FM. Because the Rio Grande channel 

has shifted between historical and contemporary conditions, in addition to the 

disconnection of a substantial portion of the historical floodplain through levee 

construction, downstream channel cross-sections and observation points would not be 

directly comparable between historical and present systems if measured at the channel 

center. Therefore, the data presented in this research records measurements based upon 

the locations of cross-sections plotted across the historical floodplain at 250-meter 

increments, referred to here as valley cross-sections. Observation points were located 

along these valley cross-sections at the middle of the respective channel of interest (i.e. 

historical or contemporary). Cross-sections measured discharge while observation points 

measured water surface elevation at ten minute increments during model runs. Due to the 
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availability of historical data, HC and CC data are presented through 18 kilometers 

downstream while CL and PL data are presented through 25 kilometers. 

In contrast with discharge and stage metrics which are a function of distance 

downstream, inundated area is a two-dimensional property based upon distance 

downstream and lateral inundation. Therefore, calculations needed to be performed in a 

different manner. Data requirements are substantially greater in the collection of temporal 

inundation information, as a record of all mesh elements must be recorded instead of a 

select number of observation points or cross-section points. Thus, time steps of 

inundation outputs were of one hour from the point in time when the flood peak entered 

the reach to five hours after the flood wave left the reach. The purpose of the extra five 

hours was to give time for water to move across portions of floodplain further 

downstream. Total areas were then calculated based upon whether each element was 

inundated at any of the hourly time-steps. Area analysis was conducted based upon the 

locations of valley cross-sections. Inundated areas between cross-sections were assigned 

to the downstream cross-sectional distance at the same 250-meter increments. Flood 

wave inundation was then compared to inundation during steady model runs of upstream 

peak flow, 180 m3 s-1 or 300 m3 s-1, to calculate an inundation attenuation ratio (IAR). 

 

4)* = 	 4,,. 4,,/       (4) 

 

Here Ip,i is defined as the total inundated area for a specified cross-section at some 

distance downstream, while Ip,u is the area inundated associated with steady upstream 

boundary peak flow conditions within the same cross-sectional area. 

 

2.4. Results 

Flood waves under HC conditions were attenuated to the greatest extent in all flood 

scenarios in comparison with the CC conditions (Fig. 2.2). The HC flood waves were 

attenuated between 1.2 and 2.1 times more than the CC flood waves at eighteen 

kilometers downstream. In combination with lower peak discharge, flood peaks under 

HC conditions also took longer to travel 18 km than flood waves under CC conditions. 

Specific flood wave timings and discharges are recorded in Table 2.2 to quantify the 
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differences in flood wave discharge, timing, and average celerity (c).  On average, flood 

waves under HC conditions arrived 3.14 hours after CC modeled waves for all flood 

wave scenarios. Flood wave times were delayed to the greatest degree for short duration, 

moderate flood events; while increases in flood duration and magnitude led to more 

similar flood wave timing. As flood waves in the HC model were subjected to a 

substantially greater floodplain area, both the reduction in peak magnitude and the delay 

in peak discharge arrival result are intuitive with distributed floodplain flow. The CL and 

PL conditions display very similar results for both discharge and time to peak discharge 

for all flood wave scenarios, indicating that restoration features do not greatly influence 

downstream hydrographs. Average flood wave celerity over the 18 km distances was also 

calculated for all model conditions and flood wave scenarios (Table 2.2). Differences in 

HC and CC conditions were greatest for the short duration moderate event with average 

celerity 1 km hr-1 slower for HC conditions. However, for all flood waves average 

celerity was greater than 0.5 km hr-1 faster under contemporary conditions when 

compared with historical conditions. Average celerity was relatively unaffected with the 

inclusion of restoration sites throughout the reach. 

In addition to quantifiable differences in flood peak and flood timing, flood wave 

shape is the last observable characteristic at 18 km. During moderate flood events, 

historical models display a distinct point of inflection on the rising limb, with 18-

kilometer discharges rising at a slower rate earlier in the flood event than closer to peak 

discharge. This slower rising flood rate appears to be produced by the creation of a 

shoulder caused by floodplain storage. To further illustrate the alteration in historical 

shape, hydrographs are presented at various downstream distances for the 1-day, 

moderate flood event (Fig. 2.3). Shoulders have been documented in previous flood wave 

studies as a result of floodplain storage [Garbrecht and Brunner, 1991; Wolff and Burges, 

1994; Snell et al., 2004; Costabile and Macchione, 2012; Fleischmann et al., 2016]. In 

contrast to many of the studies that report shoulders in downstream hydrographs, the 

shoulders here are much less defined and the form of these shoulders and hydrographs 

continue to adjust as the flood wave moves downstream. This can be attributed to the 

heterogeneity of the floodplain and channel-floodplain connections. However, the same 

process of the exceedance of an inundation threshold and the correlated instantaneous 
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inundation likely create these small shoulders only with more dynamic channel-

floodplain interaction. The flood magnitude to which the main shoulder rises decreased 

and the time to the end of the shoulder increased with increased flood duration. The 

shoulder disappears altogether for major flood events.  

Because only the HC, moderate flood events display extreme alteration of 

hydrograph shape, floodplain impact on hydrograph shape was also assessed by 

calculating the difference in skewness between upstream and 18 km downstream flood 

waves and documented in Table 2.2. The largest changes in hydrograph shape in terms of 

skewness value were strong positive changes produced in the HC, moderate flood 

scenarios. The CC model does not display substantial changes to the skewness value, 

while PL and CL models show positive skewness changes for 1 day events but minimal 

change for 1.5 and 3 day events. These results support the idea that skewness is 

representative of floodplain influence on hydrograph shape as HC conditions contain the 

most floodplain area and short duration flood waves should be the most susceptible to 

floodplain effects.  
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Figure 2.2. Upstream and 18-km hydrographs under all modeled scenarios for (A) 1-day, 
moderate, (B) 1-day, major, (C) 1.5-day, moderate, (D) 1.5-day, major, (E) 3-day, 
moderate, and (F) 3-day, major flood events. 
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Table 2.2. Recorded peak discharge (Qp), time to peak discharge (tQp), average celerity 
(cAVG), and change in flood wave skewness (∆S) for all model conditions (HC, CC, PL, 
CL) and flood scenarios at 18 km downstream. 
 

 
Moderate Floods Major Floods 
1 day 1.5-day 3-day 1 day 1.5-day 3-day 

Historical 
Comparison 
at 18 km 

QpHC 132.0 159.9 171.5 267.2 287.3 295.7 

QpCC 157.3 168.0 173.0 279.4 293.0 297.7 

%∆Qp 16.1 4.8 0.9 4.4 1.9 0.7 

tQpHC 11.5 10.8 10.7 9.0 9.0 9.2 

tQpCC 6.8 7.0 7.5 6.7 6.5 6.8 

∆tQpH-C -4.7 -3.8 -3.2 -2.3 -2.5 -2.3 

cAVGHC 1.6 1.7 1.7 2.0 2.0 2.0 

cAVGCC 2.6 2.6 2.4 2.7 2.8 2.6 

∆SHC 0.29 0.22 0.11 0.18 0.09 0.05 

∆SCC 0.05 0.00 -0.01 0.08 0.03 0.00 

Restoration 
Comparison 
at 18 km 

QpPL 144.5 163.8 174.9 264.5 286.7 295.9 

QpCL 144.6 164.5 174.5 264.1 287.3 296.2 

%∆Qp 0.1 0.4 -0.2 -0.1 0.2 0.1 

tQpPL 6.5 7.8 7.5 6.8 7.3 7.2 

tQpCL 6.5 7.8 7.2 6.8 7.5 7.3 

∆tQpP-C 0.0 0.0 -0.3 0.0 0.2 0.2 

cAVGPL 2.8 2.3 2.4 2.6 2.5 2.5 

cAVGCL 2.8 2.3 2.5 2.6 2.4 2.5 

∆SPL 0.15 -0.03 0.00 0.10 -0.03 -0.02 

∆SCL 0.16 -0.02 0.02 0.10 -0.03 -0.02 
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Figure 2.3. Historical model hydrographs at five cross-sections for the 1-day, moderate 
flood event. Circles mark notable points of inflection and shoulders along each 
hydrograph. 
 

In comparison to temporal discharge at a fixed station downstream, QARs were 

plotted to describe changes to flood wave discharge as a function of distance downstream 

(Fig. 2.4). Discharge attenuation ratios for HC conditions at 18 km downstream ranged 

from 0.73 for the short duration, moderate flood event to 0.99 for the long duration, 

major flood event. As expected, moderate flood scenarios were more greatly attenuated 

than major flood events for all model conditions. While attenuation of discharge at 18 km 

was found to be greatest under historical conditions for all flood waves in comparison to 

CC conditions, the degree to which attenuation differs between the HC and CC scenarios 

is highly dependent on location within the reach. For example, in Figure 2.4C, the flood 

wave is attenuated to a greater extent under CC conditions than HC conditions between 6 

and 8.5 km downstream. Fundamental to QAR dependence on downstream location, are 

stretches of river with substantial increases in attenuation. These greater rates of 
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attenuation are evident in the stepped decreases in QAR. In the short duration, moderate 

flood event (Fig. 2.4A), attenuation in the HC model occurs at high rates between two 

and three kilometers downstream and again between eight and ten kilometers. This 

attenuation becomes less clear with increasing duration and magnitude; however, the 

patterns do remain observable. In addition, while total attenuation decreases between 

moderate and major flood scenarios under the CL and PL scenarios, localized high rates 

of attenuation are observed to achieve similar magnitudes in both flood magnitudes. In 

Figure 2.4B, flood peak is reduced by more than 6% within a span of two kilometers. 

These high rates of attenuation are likely due to activation of the floodplain near peak 

discharge and in conjunction high rates of floodplain storage. This process is further 

described with stage and area attenuation metrics as well as spatial analysis of inundation. 

Attenuation ratios were not impacted greatly by the implementation of habitat 

restoration scenarios. In fact, under moderate duration events, PL conditions created more 

attenuation than CL conditions, albeit by a very minimal margin. Although perhaps 

counterintuitive to initial hypotheses, this could be explained by the idea that restoration 

areas are constructed for inundation at a design discharge. If that design discharge is far 

enough below the flood peak, the feature will inundate before the flood peak arrives. 

Therefore, the feature will not provide storage during the highest flood discharges. In 

contrast, the pre-restoration surface may be raised to an extent in which it newly activates 

at or near the flood peak and therefore contributes to floodplain storage during the flood 

event. The addition of floodplain storage at or near the peak discharge appears to be most 

influential floodplain characteristic in the attenuation of flood waves along the MRG.  
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Figure 2.4. Discharge attenuation ratios (QAR) for all modeled conditions for (A) 1-day, 
moderate, (B) 1-day, major, (C) 1.5-day, moderate, (D) 1.5-day, major, (E) 3-day, 
moderate, and (F) 3-day, major flood events. The shaded downstream distances of the CL 
condition in 4B are investigated spatially in Figure 2.5. 
 

To further describe the high rates of attenuation along certain lengths of the 

modeled reach, channel and floodplain depths were plotted at consecutive hourly time 
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reach. Furthermore, much of the bankline is predicted to remain dry during all time steps. 

Thus, the water inundating the area is being sourced from an upstream connection that 

only activates at flow levels near peak flow. All of this information suggests that the 

floodplain feature is acting similarly to a diversion off of the main channel. The flood 

water then travels at a slower rate on the floodplain due to floodplain topography and 

roughness and is stored on the floodplain until it ultimately reconnects with the main 

channel via a downstream connection. Flood hydrographs confirm the spatial findings as 

the floodplain pulse of water arrives at 7 kilometers after the bulk flow peak. In short, the 

very peak of the flood wave is essentially being removed off the top and diverted onto the 

flood wave. Because kilometers six and seven are disconnected at lower flows, the 

remainder of the flood wave moves through the main channel. Similar processes have 

been recorded in studies involving levee breaching for the purpose of downstream flood 

control [Jaffe and Sanders, 2001; Sanders et al., 2006]. This study indicates that 

streambank levees may create channel-floodplain disconnection that ultimately leads to 

floodplain storage and flood wave attenuation when water surface elevations eclipse 

these surfaces at high flows. 
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Figure 2.5. Spatial inundation of the 1-day, major flood event approximately 5 to 7 valley 
kilometers downstream in combination with hydrographs recorded at the same distances 
downstream. 
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The SARs for the six hypothetical flood scenarios were plotted as a function of 

downstream distance (Fig. 2.6). Two patterns are immediately observable in the SAR 

plots. First, SAR trends differ from QAR trends in that values do not decrease 

consecutively. That is to say, water surface elevation values are also dependent on local 

channel and floodplain characteristics leading to fluctuating SAR values as the flood 

wave moves downstream. Even with this relationship to the defining topography, SARs 

display trends under moderate and major flood conditions. Moderate flood conditions 

show an observable decreasing trend in SAR, but that trend is less observable as flood 

duration increases and thus discharge attenuation decreases. In comparison, under major 

flood conditions, attenuation of stage is more dependent on local attenuation of discharge. 

For example, in Fig. 2.6B, the LiDAR models exhibit large reductions in SAR at the 

same location where discharge was also attenuated greatly (Fig. 2.4B and Fig. 2.5). 

Second, while values have a tendency for spikes and troughs, the general trends 

accumulated over the entire reach show that water surface elevations are attenuated to a 

similar degree under HC conditions than CC conditions with the exception of the 1-day, 

moderate event. The fact that water surface elevations are not impacted to the same 

degree as discharge may be logical as the historical model has a far greater lateral 

floodplain, likely leading to smaller changes in water surface elevation as discharge is 

attenuation. In addition, the substantial discharge attenuation which occurs in the LiDAR 

models drives accompanied water surface elevation attenuation. The implication is that 

contemporary water surface elevations are altered to a lesser degree in the channelized, 

confined conditions and that microtopography is again important to modeling attenuation 

processes. 
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Figure 2.6. Stage attenuation ratios (SAR) for all modeled conditions for (A) 1-day, 
moderate, (B) 1-day, major, (C) 1.5-day, moderate, (D) 1.5-day, major, (E) 3-day, 
moderate, and (F) 3-day, major flood events. 
 

The fraction of total inundated area under each flood wave to peak flow 
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contribute to attenuation to the greatest extent as the floodplain in these areas provides 

more area for active water storage at flood peak. The other possibility is that the flood 

wave has been attenuated to a degree in which the attenuated peak will no longer 

inundate the floodplain. These areas may then no longer contribute to further attenuation 

as connectivity has been removed by the attenuation process. Comparing plots in each 

respective column of Figure 2.7, increasing duration leads to less extreme decreases in 

IAR values, which arises from the increased in time to peak and thus allows for more 

area to become inundated.  

The IARs for all flood scenarios in Figure 2.7 are most notably highly dependent 

on local floodplain connectivity in addition to attenuation of the flood wave. During 

moderate flood events (Fig 2.7A, C, & E), IARs for all modeling scenarios are highly 

variable. This suggests that the floodplains are actively connecting in some portions of 

the reach while other portions of the reach remain disconnected. It is likely more 

common during moderate flood events that values near one are representative of the 

condition in which the floodplain does not inundate under flood wave nor peak flow 

conditions. It is under these moderate flood conditions when floodplains within the reach 

are just beginning to connect. In comparison, during major flood conditions the opposite 

is to be expected to be true, in that the majority of available floodplain surfaces are 

already inundated when the flood peak arrives, thus the total amount of inundated area 

does not change. The IAR values also appear to be influenced by attenuation of discharge 

and, in conjuction, water surface elevation, at least for moderate flood events. While in 

the upstream portion of the reach, IAR values for moderate flood events rebound to one, 

at the most downstream portion of the reach, values appear to trend in a decreasing 

direction. The decreasing trend is less great as flood duration increases. This supports the 

idea that IAR values are being attenuated when QAR and SAR values display the same 

characteristic. In terms of process, the attenuation of discharge leads to decreases in water 

surface elevation, thus further limiting the extent of inundation beyond local topographic 

controls. Major flood events do not display this decreasing IAR trend, likely because the 

degree of flood wave attenuation is minimal.  

Differences in IAR values between model conditions help describe differences in 

floodplain characteristics. While moderate flood conditions display the greatest changes 
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in IAR, there remain certain lengths of river that actively connect within the flood reach 

in all model conditions during major flood events. In the comparison of HC and CC 

conditions, it is apparent in decreased IAR values that the historical floodplain still has 

substantial lengths of river that do not inundate during the major flood events. These 

changes to IAR are of similar magnitudes to those recorded during moderate flood 

events. The substantially greater available floodplain area, observable in Figure 2.1, is 

also likely indicative of greater topographic heterogeneity on the floodplain. Therefore, 

even at major flood magnitudes, portions of the floodplain are still actively inundating. 

The CC models present minimal decreases in IAR for major flood events, indicating that 

much of the contemporary floodplain is inundated when a major flood event travels 

through the reach.  

When the microtopography associated with improved topographic description 

(LiDAR) is included in the PL and CL conditions, IAR values display some magnitude of 

change along short distances of the reach. The heterogeneity associated with improved 

topographic description inherently will create more complex flow paths and thus more 

dynamic inundation patterns. Approximately a kilometer of the reach (~ 8 km 

downstream) is unable to fully inundate during major flood conditions, while the majority 

of floodplain is at or near an IAR value of one for both PL and CL conditions. While the 

general trends of IAR for the PL and CL conditions are similar, IAR values do display 

more notable differences between these two conditions than do QAR and SAR values. 

This is logical as topographic adjustment of the floodplain is likely to impact inundation 

patterns and timing. There are examples of both the PL and CL conditions having lower 

IAR values. A lower IAR value under PL conditions would suggest that the higher pre-

restoration surface inundates at a higher discharge than the restoration site. Lowering 

topography as is done along the Rio Grande may also lead to connections to other 

portions of the floodplain thus allowing inundation of those areas at lower discharges as 

well. Therefore, relatively large differences in pre- and post-restoration inundation timing 

may occur. An example of this is likely evident in the major flood scenarios (Fig. 2.7B, 

D, F). In comparison, a lower IAR for CL conditions likely indicates that a restoration 

feature and connected areas activate near peak discharge, but do not fully inundate due to 

a lack of sufficient flood duration. Higher surfaces (PL conditions) would inundate to a 
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lesser extent under flood conditions, thus having values closer to one. Examples of this 

phenomena are evident in the moderate flood events at 9 km downstream (Fig. 2.7A, C, 

E). As duration increases in these plots, differences between PL and CL IAR values 

decrease, supporting this explanation of the driving process. 

 

 
Figure 2.7. Inundation attenuation ratio (IAR) for all modeled conditions for (A) 1-day, 
moderate, (B) 1-day, major, (C) 1.5-day, moderate, (D) 1.5-day, major, (E) 3-day, 
moderate, and (F) 3-day, major flood events. 
 

While hypothetical flood waves provide valuable information about flood wave 

attenuation processes, modeling of a major historical flood event and the comparison 

between systems provides valuable context for this research. Figure 2.8 displays the 

modeled results of the 1942 flood event using the same metrics presented for hypothetical 

flood waves. Flood wave attenuation was greatest for all metrics under HC conditions 

with the exception of SAR. Again, with flow distributed across a greater floodplain 

width, the lack of stage attenuation under historical conditions is expected. The 
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magnitude of attenuation for all metrics was smaller than hypothetical flood waves with 

the exception of HC model QAR and IAR values. A smaller magnitude of attenuation 

was expected as the 1942 flood magnitude was nearly twice that of the major 

hypothetical flood waves, but HC QAR and IAR ratios show greater attenuation than 

those resulting from the major, 3-day hypothetical flood wave. Calculation of QARs 

display low rates of attenuation for CC, PL, and CL conditions with approximately 1% 

decrease in peak discharge over the 18-km distance. While the HC model displays 

consistently lower QAR values, a sharp 1% decrease in QAR is also evident at 17 km 

downstream. The HC model also displays decreases in IAR in the downstream portion of 

the reach which likely contributes to the attenuation of discharge. All other model 

conditions display less than 5% decreases in IAR. These data promote the idea of a 

heterogeneous historical floodplain in that there are newly activating surfaces even at 

very large discharges which have the ability to attenuate flood waves. These results 

further suggest that under pre-restoration and contemporary conditions, storage effects on 

attenuation are inconsequential and hydraulic processes drive attenuation rather than 

geomorphic influences [Åkesson et al., 2015]. For contemporary models, kilometers 5 

through 8 were once again most influential to SAR. However, it should be noted that 

these changes are an order of magnitude smaller than those plotted for hypothetical flood 

waves in Figure 2.6. Thus, while kilometers 5 through 7 still have the most influence on 

SAR, the changes to water surface elevation were very small.  

Discharge, time to peak, average celerity, and skewness are quantified in Table 

2.3. Peak discharge under HC conditions was only slightly lower than CC conditions and 

time to peak in HC conditions was delayed to a smaller degree. Flood waves at 18 km 

downstream display similar shape to the upstream hydrograph and quantified changes in 

skewness were low. Celerity was increased in all model conditions from the hypothetical 

flood waves but remains almost a kilometer per hour slower under historical conditions 

compared with contemporary speeds. All changes in flood wave metrics are driven by the 

increased magnitude of the 1942 flood event. As this event occurred during the spring 

snowmelt pulse, even historical conditions had minimal impacts on attenuation of this 

event.  
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Figure 2.8. Downstream hydrographs and attenuation ratios for the 1942 flood event 
under all model conditions. 
  

0 1 2 3 4 5 6
Time (days)

200

400

600

D
is

ch
ar

ge
(m

3 s-1
) Upstream

HC
CC
PL
CL

0 5 10 15 20 25
Distance downstream (km)

0.97

0.98

0.99

1

Q
AR

0 5 10 15 20 25
Distance downstream (km)

0.994

0.996

0.998

1

SA
R

0 5 10 15 20 25
Distance downstream (km)

0.6

0.8

1

IA
R

A

B

C

D



45 
	

 

Table 2.3. Recorded peak discharge (Qp), time to peak discharge (tQp), and average 
celerity (cAVG) for all model conditions (HC, CC, PL, CL) under 1942 flood conditions. 
 

  1942 Flood 

Historical 
Comparison 
at 18 km 

QpHC 568.2 
QpCC 575.0 
%∆Qp 1.2 
tQpHC 6.8 
tQpCC 5.0 
∆tQpH-C -1.8 
cAVGHC 2.6 
cAVGCC 3.6 
∆SHC 0.03 
∆SCC 0.02 

Restoration 
Comparison 
at 18 km 

QpPL 576.0 
QpCL 575.7 
%∆Qp -0.1 
tQpPL 4.8 
tQpCL 4.8 
∆tQpP-C 0.0 
cAVGPL 3.7 
cAVGCL 3.7 
∆SPL 0.03 
∆SCL 0.03 

 

 

2.5. Discussion 

Within this study, flood wave attenuation was quantified using normalized attenuation 

metrics to inform the influence of anthropogenic alterations along the MRG. Floodplain 

influences on Rio Grande attenuation have decreased with the implementation of 

historical river engineering as evident in flood wave shape, discharge, and timing at 18 

km. As expected, discharge was attenuated to a greater extent under historical conditions 

than contemporary conditions. While attenuation of discharge decreased by a factor 
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between one and two under contemporary conditions, this leads to substantial decreases 

in discharge at downstream locations. Attenuation of stage was locally dependent on 

channel topography; however general trends indicate that water surface elevation was not 

attenuated to the same degree under historical conditions likely due to wide lateral 

floodplain connections and a less sensitive relationship between discharge and water 

surface elevation. The IAR results describe the heterogeneous topographic nature of the 

historical floodplain in comparison with the contemporary floodplain. While floodplain 

inundation is similar for moderate flood conditions, historical IAR results retain 

heterogeneity for major flood events, including the 1942 event, while the contemporary 

floodplain is almost uniformly inundated. As portions of the historical floodplain become 

newly connected during major flood events, those systems are likely to be of a different 

geomorphic and ecological characteristic than portions inundated at moderate flood 

levels. The attenuation metrics are presented as downstream ratios in the hope that such 

metrics can be applied to other systems. While alternative river systems will no doubt 

have different physical conditions leading to differences in process, the attenuation 

metrics may provide insights into how various reach or river characteristics influence 

attenuation. Rates of attenuation are modeled here for a heavily manipulated, sand-bed 

river flowing through a semi-arid landscape. Differences in hydrology, geomorphology, 

and ecology are likely to have significant influence on attenuation in combination with 

the scale of other rivers.  

Discharge and stage attenuation are thought to be most greatly impacted by 

available storage on the floodplain. However, available area for inundation on the 

floodplain does not always produce substantial attenuation of a flood wave. This is 

evident for major flood events in the comparison of historical IAR values, flood wave 

hydrographs, and QAR values during major flood events. The IAR values for historical 

conditions indicate that there is storage available on the floodplain during major flood 

events. However, flood wave discharge, while attenuated to a greater extent in HC 

conditions than CC conditions, does not display the same magnitude of attenuation even 

with substantial area available. This is most likely because these areas are of the greatest 

hydrologic distance from the flow paths of greatest discharge (i.e. the main channel or a 

secondary floodplain channel). Because water surface elevations are attenuated to a 
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smaller degree, results predict that these small changes are likely to influence inundation 

of large areas as flood waves were historically attenuated. While the same areas will 

inundate under longer duration flood events than those of focus in this research, the areas 

contribute very little to attenuation. While not as important to the process of attenuation, 

these areas were likely still of ecological importance during the late-spring, early-summer 

flood pulse when elevated discharge can last for weeks to months. This further displays 

the topographic heterogeneity of the historical floodplain as portions of the floodplain 

activate continuously under dynamic conditions. Results here are complementary to 

qualitative descriptions of the historical Rio Grande floodplain which describe the 

floodplain as an environment with a myriad of ecosystems including wetlands and a 

channel subject to relatively frequent avulsions [Scurlock, 1998], a system drastically 

different than the cottonwood dominated contemporary floodplain.  

Changes in historical hydrograph shape present the importance of floodplain 

heterogeneity in attenuation processes as the exceedance of inundation thresholds on 

certain floodplain surfaces provide physical storage, an important mechanism for 

attenuation. Previous research on flood wave shape has focused on compound channels 

with uniform geometry [Garbrecht and Brunner, 1991; Wolff and Burges, 1994; Cao et 

al., 2006; Ghavasieh et al., 2006; Costabile and Macchione, 2012; Fleischmann et al., 

2016]. The models presented here were constructed to retain channel-floodplain 

heterogeneity and floodplain complexity, even when microtopography data did not exist. 

This means that floodplain connectivity is highly dynamic both spatially and temporally 

depending on the defining hydrology. Results suggest that this heterogeneity is 

responsible for the multiple points of inflection and shoulders that are formed in the 

various downstream hydrographs presented in Figure 2.3. For example, at 13 km 

downstream, there appear to be two points of inflection, with one displaying shoulder 

attributes. However, as the flood wave moves further downstream, that shoulder becomes 

less evident, or washed out. Further, there is a new point of inflection at this location at a 

higher discharge. Research under uniform channel conditions suggests that shoulders are 

produced when discharge increases above bankfull discharge and flood volumes are 

stored instantaneously [Garbrecht and Brunner, 1991; Costabile and Macchione, 2012; 

Fleischmann et al., 2016]. The small shoulders produced here are examples of the 
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exceedance of an inundation threshold and immediate storage of water on the floodplain. 

In contrast, gradual inundation of the floodplain creates negatively skewed hydrographs 

[Fleischmann et al., 2016]. 

Skewness results in this research differ from those found in Fleischmann et al. 

[2016] in that the model with the greatest floodplain area has the greatest positive change 

in skewness rather than negative changes. This may be a result of the lack of floodplain 

microtopography in the HC model to create more permanent floodplain storage, or 

wetlands, during periods of flood recession. In addition, positive changes in skewness 

during 1-day events for PL and CL conditions are likely a result of minimal large-volume 

storage areas within the confined contemporary floodplain. It is also likely that flood 

wave shape would be more greatly impacted for a longer reach of river. If HC data were 

available, it may be that instead of the rising limb containing a gradual rising shoulder, 

the rising limb becomes more gradual for the entire rising duration. This would create the 

negative skewness observed in large floodplain systems. In complex, heterogeneous 

systems, there is likely a combination of instantaneous and gradual dynamics. It may be 

that if the historical model created in this research covered a longer portion of the river, 

floodplain inundation dynamics would create negatively skewed hydrographs due to both 

gradual inundation and instantaneous storage on the floodplain. Even without that 

information, these data do display that loss of heterogeneity in terms of channel-

floodplain connectivity and floodplain topography, have had a substantial impact on the 

alteration of flood waves in terms of dynamic spatial and temporal influence along the 

MRG.  

Differences in historical and contemporary flood wave attenuation in the MRG 

have implications for river management strategies and floodplain derived ecosystem 

services. While the floodplain connectivity under historical conditions modeled in this 

study was likely greater than pre-railroad settlement due to landscape changes such as 

logging and grazing in combination with climate-driven landscape processes [Scurlock, 

1998; Phippen and Wohl, 2003; Swanson et al., 2011; Friedman et al., 2015], it was 

confirmed that floodplain influences on hydrology were greater under historical 

conditions, especially in terms of the lateral extent of floodplain surfaces within the 

MRG. Contemporary changes to floodplain connectivity in the form of topographic 
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lowering do not impact flood wave shape to an observable extent. However, the 

restoration conducted within this heavily urbanized stretch of river has been conducted 

within the levee and topographic boundaries. It should also be noted that historical 

changes have occurred over a period of 100 years while the restoration activities have 

predominantly occurred in the last 15 years. If river process is to be returned to stretches 

of river such as the MRG, it may take a similar amount of time to reverse changes in 

process as new priorities and techniques are pursued. Recent river restoration strategies 

which aid in flood control of engineered systems, such as levee setback initiatives and 

levee breaching strategies, which often connect substantially larger floodplain areas are 

more likely to impact flood wave shape [Jaffe and Sanders, 2001; Sanders et al., 2006; 

Jacobson et al., 2015]. Most often, the goal of modern river restoration strategies is not 

for flood wave attenuation purposes [Bernhardt et al., 2005]. However, flood wave 

attenuation does depend on channel-floodplain connectivity and floodplain processes that 

are key to heterogeneous floodplain ecology [Woltemade and Potter, 1994; Opperman et 

al., 2010]. Therefore, because these features are not of large enough extent to produce 

attenuation, the features are also likely not of great enough area to create long-term 

ecological integrity on the floodplain or promote the ecosystem services that are 

prevalent in floodplain systems. As river science continues to grow in terms of analytical 

analysis and description of river processes and as management of rivers begins to include 

less intrusive, natural process driven methods, complementary restoration initiatives 

should be pursued.  

This study sought to model flood wave attenuation processes using high 

resolution 2D models with results displaying the benefits of 2D modeling approaches in 

river science. Returning to the analysis of Figure 2.4B and Figure 2.5, the incorporation 

of 2D calculations and microtopography are important in the description of delayed 

floodplain flow and thus a high rate of attenuation within this length of river. While there 

are 1D modeling techniques to limit floodplain flow until bankfull discharge is attained, 

the sourcing of the flow on the right floodplain in Figure 2.5 is from an upstream 

connection and channel-floodplain connections are limited for nearly a kilometer. One-

dimensional models based upon cross-sectional information are likely to miss the 

intricacies of this type of connectivity and the process in which the flood wave is 
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attenuated, wherein a certain volume of water on the floodplain is delayed compared to 

the more direct channel flow. This is an example of complex channel-floodplain 

connectivity and the impact bank levees may have on hydrodynamic processes. With 

continuing increases in computational power and parallel computing techniques, high 

resolution two-dimensional meshes can provide further information about connectivity 

processes which influence flood wave attenuation in various river systems. 

Uncertainty is always important to consider in modeling studies and likely increases 

from several sources in this study. First, while the study is limited to the availability of 

data, uncertainty within likely results from combination of data from different years for 

all the meshes created. Thus, no model therefore represents a specific point in time. Sand 

bed rivers are inherently dynamic with highly mobile beds [Leopold et al., 1964], which 

produce uncertainty even with the field measurement of discharge and stage [Isaacson 

and Coonrod, 2011]. Therefore, even with optimal data sources at one point in time, 

hydrodynamic conditions are likely to change often. Another source of uncertainty arises 

from differences in data quality between historical and contemporary models, more 

specifically the inclusion of microtopography in LiDAR models. Here, microtopography 

is described as undulations in terrain within the two-meter contours. The uncertainty due 

to microtopography was minimized by creating a smooth contemporary floodplain model 

(CC conditions) for comparison with the historical conditions. However, because 

contemporary conditions were confined to areas within bounding levees and topography 

while historical conditions included a much larger lateral floodplain, influences created 

by the lack of microtopography are likely to be larger for historical conditions. While 

uncertainties no doubt arise in the comparison of LiDAR and contour attenuation results 

[Dottori et al., 2013], the differing patterns in contemporary contour (CC) and LiDAR 

(PL, CL) model runs suggest that microtopography creates more attenuation at least 

during short duration events when the highest water surface elevations are limited. This is 

likely due to more dynamic mass and momentum exchange at the channel-floodplain 

interface and on the floodplain [Knight and Shiono, 1990; Helmiö, 2004; Vermaas et al., 

2011]. Therefore, historical rates of attenuation may be conservative in nature, although 

further research is necessary to investigate this point. With these uncertainties in mind, it 
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is believed that the methods used here produce reasonable representations of certain time 

periods and time periods worthy of comparison in the study of flood wave attenuation.  

 

2.6. Conclusions 

The impact of historical and contemporary anthropogenic river alterations on flood wave 

attenuation processes was described using advanced, high-resolution two-dimensional 

hydrodynamic modeling techniques. Results suggest the importance of heterogeneous 

floodplain topography and dynamic channel-floodplain connectivity in driving 

differences between historical and contemporary flood wave attenuation. Further, 

dynamic flow processes are illustrated through two-dimensional modeling methods that 

may not be captured in one-dimensional applications. Normalized metrics used in this 

study can be applied to other river systems to extend understanding of similarities and 

differences in attenuation rates between river systems with different hydrology, 

geomorphology, and ecology. Future management of rivers must include more 

comprehensive knowledge of how river systems function and the integrative nature of 

small to large-scale processes. While engineered infrastructure will always be necessary 

in the management in rivers, it is also likely that there exists great opportunity to improve 

complementary ecosystem services along these corridors. 
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Chapter 3 

 

Sensitivity of flood wave attenuation to contemporary and altered 

channel-floodplain characteristics 

 

3.1. Introduction 

As a flood wave passes through a river reach it can be a threat to human infrastructure 

when viewed through the lens of flood protection as well as a critically important process 

for river geomorphology and ecology. The process of flood wave attenuation due to the 

hydrodynamic processes associated with channel-floodplain interaction is classified as an 

ecosystem service along river corridors [Brauman et al., 2007]. In terms of flood control, 

flood wave attenuation is beneficial to downstream communities that can be subjected to 

reduced discharge and river stage during flood events [Shankman and Samson, 1991; 

Acreman et al., 2003]. Further, inundation of floodplains during high flow events is 

fundamental to geomorphic and ecological processes [Poff et al., 1997]. Modern river 

management strategies now include integrated floodplain management approaches that 

focus both on infrastructure and hydrodynamic processes to work in tandem to promote 

attenuation, decrease economic losses, and restore floodplain ecology [Dierauer et al., 

2012; Guida et al., 2015; Hudson and Middelkoop, 2015; Jacobson et al., 2015; Guida et 

al., 2016]. However, restoration projects within severely altered river systems are often 

small due to the constraints of societal interests [Stanford et al., 1996; Bernhardt et al., 

2005]. Therefore, it is important to understand current conditions defined by existing 

infrastructure and how changes within the bounds of infrastructure impact the attenuation 

process both for flood control and ecological interests. Integrated floodplain management 

should strive to limit flood risks at some locations while improving connectivity and 

ecological interests at others. 

Flood wave attenuation as a physical process is dependent on the hydrodynamics 

associated with mass and momentum transfer. A river floodplain surface plays a 

substantial role in the degree of attenuation within a reach [Wolff and Burges, 1994; 

Woltemade and Potter, 1994]. With classic river engineering strategies often creating 
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channelized and leveed conditions, flood wave attenuation is often reduced [Di 

Baldassarre et al., 2009; Castellarin et al., 2011]. Mass and momentum transfer to the 

floodplain are dependent on the complex topographic and roughness characteristics 

which are defined by river channel and floodplain geomorphology and ecology. Previous 

work has shown that the channel-floodplain interface, often where distinct changes in 

topography and roughness occur, is of critical importance to mass and momentum fluxes 

[Shiono and Knight, 1991; Helmiö, 2004; Vermaas et al., 2011]. The channel-floodplain 

interface is also an area that will be subjected to both channel and floodplain changes, 

whether those are the result of anthropogenic alterations or more natural dynamics. While 

the channel-floodplain interface is key to connectivity characteristics of mass and 

momentum exchange, the extent to which this specific area influences flood wave 

attenuation is not known specifically. Because river banks are often the sight of 

restoration or infrastructure activities [Tunstall et al., 2000; Pedroli et al., 2002; 

Bernhardt et al., 2005; Florsheim et al., 2008], the relative degree of influence on 

attenuation should be considered. While changes to banks are small in area compared to 

entire floodplain systems, bank changes may have disproportionate influence. 

Understanding the relative influence of floodplain and bank restoration strategies on 

flood wave attenuation can help inform river management strategies for flood protection 

and restoration. 

Measurement of flood wave attenuation along rivers is extremely difficult due to 

the complex nature of unconfined, three-dimensional hydrologic systems. Therefore, 

computational modeling is often conducted to isolate the process along a river reach. 

Previous studies have sought to explain attenuation influences in the context of 

theoretical modeling efforts [Wolff and Burges, 1994; Anderson et al., 2006], simplified 

systems without bounding levees [Woltemade and Potter, 1994; Turner-Gillespie et al., 

2003], or restoration influences on attenuation [Acreman et al., 2003; Liu et al., 2004; 

Ghavasieh et al., 2006; Sholtes and Doyle, 2010; Jacobson et al., 2015]. Although both 

one-dimensional and two-dimensional models have been used in the study of attenuation, 

previous studies suggest high-resolution, two-dimensional modeling may more 

appropriately capture important attenuation processes [Wolff and Burges, 1994; 

Ghavasieh et al., 2006]. Predominantly, attenuation within past studies has been 



54 
	

documented in the context of downstream hydrographs and comparison of hypothetical 

alterations to a baseline condition. Hypothetical modeling practices are beneficial in 

understanding changes to the system, but analysis of attenuation sensitivity to existing 

conditions has not been a focus. With the advancement of computing techniques, this 

type of analysis is now more feasible. Detailed analysis of attenuation within heavily 

altered systems should be a focus as most rivers have been altered to a great degree. 

Further, with the availability of high-resolution topographic and spatially distributed 

roughness data, correlation with channel-floodplain conditions can now be extracted from 

more detailed modeling environments. 

As river and floodplain management continues to integrate natural processes in 

heavily engineered river systems, it is important to understand how changing channel-

floodplain characteristics can alter flood wave dynamics. While previous research has 

sought to quantify attenuation in simplified channel-floodplain conditions [Wolff and 

Burges, 1994; Woltemade and Potter, 1994; Ghavasieh et al., 2006], in comparison to 

restored conditions [Acreman et al., 2003; Sholtes and Doyle, 2010; Jacobson et al., 

2015], or as a watershed process [Liu et al., 2004], statistical correlation of existing 

attenuation sensitivities to river conditions along a heavily-modified reach is a novel 

approach. Therefore, the first objective of this study was to investigate the sensitivity of 

flood wave attenuation to existing channel and floodplain characteristics. This was 

accomplished by applying a high-resolution, two-dimensional hydrodynamic model to a 

study reach and investigating which characteristics correlate with attenuation rates. The 

second objective of this study was to assess how channel and floodplain alterations affect 

flood wave attenuation. This objective was accomplished by altering the floodplain and 

channel conditions within the hydrodynamic model to isolate impacts of flood wave 

attenuation processes.  

 

3.2. Site Description 

The Middle Rio Grande (MRG) is defined here as the portion of the Rio Grande between 

Cochiti Dam and Elephant Butte Reservoir in New Mexico, USA. This study focused on 

the 27-kilometer reach that runs through the city of Albuquerque, NM (Fig. 3.1). The 

MRG has been subjected to substantial hydrological, geomorphological, and ecological 
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changes throughout the past century. Hydrologic changes to the MRG have been 

substantial in the form of flood control and water withdrawals. Water is diverted out of 

the main channel upstream of Albuquerque for deliveries, while long duration flood 

peaks on the main stem of the MRG are now largely controlled by Cochiti Dam, an 

upstream flood control dam. Although long-duration flood peaks (~weeks to months) are 

controlled, moderate and major short duration (~hours to days) flood events may still 

reach the MRG through localized storm events in unimpounded tributary basins with an 

estimated 1 percent probability event having a magnitude of approximately 350 m3s-1.  

Geomorphic alterations have been prominent in the name of flood control and 

water conveyance. Levees were constructed to confine overbank flows and protect the 

city of Albuquerque from periodic inundation [Phillips et al., 2011]. River training and 

straightening was also conducted along much of the MRG with Kellner jetty jacks, which 

strengthened and created heavily vegetated river banks [Woodson et al., 1965]. Sediment 

loads were significantly reduced immediately downstream of Cochiti Dam, an intended 

consequence of the construction of the dam [Lagasse, 1980; Richard and Julien, 2003]. 

With sediment inputs from the main stem and other tributaries reduced and channel banks 

fortified, the aggradation of the main channel in the Albuquerque Reach was reversed to 

induce channel degradation and further reduce flooding concerns [Happ, 1948; Lagasse, 

1980].  

In approximately the past twenty years, the Rio Grande has been subjected to 

river restoration strategies to promote native ecosystems primarily in the name of the 

Endangered Species Act [Tetra Tech EM Inc., 2004]. These strategies have included 

clearing and planting of vegetation on islands and floodplains, removal of jetty jacks and 

bank lowering along the main channel, and the creation of side channels, backwaters, and 

scalloped terraces on floodplains [Tetra Tech EM Inc., 2004]. These methods influence 

both the hydrodynamics of the river system as well as the channel and floodplain 

ecology. However, the influence such changes have on flood wave dynamics has not 

been quantified. As other river systems in the southwestern United States are subject to 

similar historical and contemporary alterations, analysis of the current influences and 

potential alteration of flood wave attenuation is of broad interest. 
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Figure 3.1. Location of modeled reach within the Middle Rio Grande and representation 
of zones which were altered within the study. 
 

3.3. Methodology 

 

3.3.1. Modeling Environment and Mesh Development 

Two-dimensional (2D) hydrodynamic modeling was conducted using Deltares’ D-Flow 

Flexible Mesh (D-Flow FM) [Deltares, 2015]. All modeling scenarios used the same 2D 
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mesh with the main channel predominantly composed of curvilinear elements while more 

complex floodplain topography was described with triangular elements. Mesh elements 

averaged approximately 25 m2 in area. The mesh was developed based upon the 2010 

channel alignment of the MRG with vegetated islands also described with triangular 

elements while unvegetated bars remained curvilinear. The mesh covered 32 km of the 

MRG near and through Albuquerque, NM. The upstream and downstream boundaries of 

the model coincide with United States Geological Survey (USGS) stream gages 

08329918 (Alameda Bridge) and 08330875 (Isleta Lakes), respectively. The upstream 

boundary was defined by discharge while the downstream boundary was assigned a water 

surface elevation. Because the Isleta Lakes gage only has a 15-year period of record, no 

gage data existed for high flows. Therefore, instead of a stage-discharge boundary, a 

water surface elevation boundary was applied and the bottom 5 km of the model were 

removed to avoid boundary effects, resulting in a 27-km study reach. Channel and 

floodplain width was defined by topography along the reach including anthropogenic and 

natural embankments. Modeling was conducted under the assumption that all constructed 

levees and berms would not fail under the flooding scenarios. 

All modeled scenarios were subjected to the same hydrology. All models were 

run for steady conditions at 30 and 150 m3s-1, the initial conditions for the moderate and 

major flood events, respectively. The 30 and 150 m3s-1 steady conditions are 

representative of a wet main channel and approximate bankfull discharge, respectively. 

Flood peaks for all events were 150 m3s-1 above the respective initial condition and 

duration of the flood pulse was either 1, 1.5, or 3 days. Examples of the 1 day events are 

depicted in Figure 3.7. In addition, steady flows were also run at 180 and 300 m3s-1, the 

peak flows for moderate and major flood events, respectively. The moderate and major 

flood events are representative of 5-year and 50-year flood magnitude events. Two types 

of modeling were conducted for this study: (1) modeling of a contemporary condition 

with distributed roughness values and (2) alternative scenario modeling which involved 

adjustments to channel and floodplain topography and roughness. 
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3.3.2. Contemporary Model 

The contemporary model was created to analyze how channel and floodplain 

geomorphology impacts attenuation rates and to what degree high-resolution, 2D models 

can lend insights into the underlying physical processes. For this purpose, the topographic 

and roughness data was interpolated to the mesh. Floodplain topography was defined by a 

digital elevation model (DEM) created from 2010 Light Detection and Ranging (LiDAR) 

data. Because the LiDAR data did not accurately represent channel bathymetry below the 

water surface at the time of acquisition, U.S. Bureau of Reclamation cross-section data 

were used to interpolate a channel bottom which was then combined with the floodplain 

topography [Adair, 2016]. Manning’s roughness values were assigned based upon MRG 

vegetation mapping and previously documented techniques of equating the vegetation 

type to roughness values [Hink and Ohmart, 1984; Mussetter Engineering, 2002; 

Callahan and White, 2004; Adair, 2016]. Channel roughness was lumped at 0.025 for the 

entire reach. Any further discussion of roughness relates to Manning’s roughness which 

was the chosen roughness attribute for D-Flow FM. 

 

3.3.3. Channel and Floodplain Characteristics Extraction 

Channel and floodplain characteristics were quantified using spatial analysis techniques 

within a geographic information system (GIS). ESRI’s ArcMap 10.1 was used to extract 

and summarize data pertaining to total area, floodplain area, channel area, inset 

floodplain area, island area, floodplain roughness, bank roughness, average channel depth 

in comparison to floodplain and bank elevations, channel and floodplain width, and 

channel slope. Data were then summarized for each kilometer of the reach. The main 

channel was defined by unvegetated sand bars and inundated areas at the time of the 2010 

LiDAR acquisition. Floodplain surfaces were defined as any vegetated area outside of the 

main channel as well as vegetated islands within the reach. Island surfaces were also 

analyzed separately. Finally, inset floodplain surfaces were described as surfaces below 

the historical floodplain that are often created by the process of vegetated islands 

attaching to the bank as a result of decreased streamflows [Meyer and Hepler, 2007; 

Swanson et al., 2011].  
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The areas for each of the channel and floodplain surfaces were calculated between 

cross-sections located 1 km apart and for the full lateral extent of the model. Bank areas 

were defined as 10 meter buffers on the floodplain side of the channel boundary. 

Roughness values for each 1 km segment were recorded as spatially averaged means 

based upon distributed mapping. Average channel depth was calculated by subtracting 

the mean channel elevation from the mean bank and mean floodplain elevations for each 

segment. Slope was calculated via the difference in mean elevations between the 

segment’s upstream and downstream bounding cross-sections. Finally, two flood wave 

dependent metrics were applied to investigate correlations between flood wave 

attenuation and channel and floodplain characteristics. First, the peak water surface 

elevation recorded at each cross-section was compared to both bank and floodplain 

elevations. Second, for each 1-km segment, the ratios of total area inundated at initial 

conditions to total area were calculated. In total, 15 characteristics were summarized for 

each flow event as possible predictors of attenuation (Table 3.1). 
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Table 3.1. Summary of predictor characteristics used in simple and multiple linear 
regression analyses. 
 
Characteristic 
Groups Single Characteristics Calculation Method 

Fe
at

ur
e 

D
im

en
si

on
s Total Area (TA) 

Areas defined by digitized bounding 
polygons 

Channel Area (CA) 
Floodplain Area (FA) 
Island Area (ISA) 
Inset Floodplain Area (IFA) 
Channel Width (CW) Widths measured every 50 m and 

averaged for each kilometer section Floodplain Width (FW) 

R
ou

gh
ne

ss
 

Bank Roughness (BR) Mean of all roughness cells within 
defining digitized boundary polygon 

Floodplain Roughness (FR) 

St
at

ic
 E

le
va

tio
n 

Bank - Channel Elevation 
(BCE) 

Difference between mean streambank 
elevation and mean channel elevation 
for each kilometer segment 

Floodplain - Channel 
Elevation (FCE) 

Difference between mean floodplain 
elevation and mean channel elevation 
for each kilometer segment 

Slope (S) 
Change in minimum elevation 
between upstream and downstream 
cross-sections 

Fl
ow

 D
ep

en
de

nt
 

El
ev

at
io

n 

Peak water surface elevation - 
bank elevation (WSE-BE) 

Difference between peak water 
surface elevation recorded during 
flood event and mean bank elevation 

Peak water surface elevation - 
floodplain elevation (WSE-
FE) 

Difference between peak water 
surface elevation recorded during 
flood event and mean floodplain 
elevation 

Fl
ow

 
D

ep
en

de
nt

 
A

re
a Ratio of inundated area at 

initial condition to total area 
(RIATA) 

Summation of total area inundated at 
initial flow conditions within the 
kilometer segment divided by the 
total area of the kilometer segment 
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3.3.4. Statistical Analysis of Characteristics and Attenuation 

All calculated predictors were compared to the change in discharge attenuation ratio 

(DQAR; Eqn. 1) in each kilometer segment which represents the possibly correlated 

response, or dependent variable. Discharge attenuation ratio (QAR; Eqn. 2) was 

calculated at each 1-km segment providing an upstream and downstream value of total 

attenuation.  

 

∆()* = ()*.56 − ()*.    (1) 

 

()* = 	(,,. (,,/,789:;2	<=/3>;9?   (2) 

 

Here i represents the downstream cross-section number and Qp is peak discharge 

recorded at i and at the upstream boundary. Only 1-day duration models were used for 

this portion of the statistical analysis. Linear and multiple linear regression methods were 

utilized to assess the relationships between the channel and floodplain characteristics and 

DQAR as well as transformation of both predictor and response data. All correlations are 

reported in adjusted coefficients of determination (R2). 

 

3.3.5. Altered Model Scenarios 

A series of hypothetical model alternatives were developed to investigate the impacts of 

specific channel and floodplain modifications on flood wave attenuation. The alterations 

were designed to represent, while magnifying, characteristic changes that have been 

observed and implemented within the MRG. The alterations included bank, channel, and 

floodplain modifications to both topography and bed roughness. Table 3.2 describes the 

modeled conditions as well as the real-world associated process. While the alterations to 

topography and roughness were uniformly applied to the entire reach for modeling 

purposes, real-world changes to the river environment are not likely to be as drastic. The 

alterations represented realistic changes while magnifying attenuation results due to the 

alterations being applied along the entire reach. This approach allowed us to isolate the 

influence of each altered condition. 
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Specifically, each alteration was produced by modifying the associated 

topographic or roughness value from the conditions in the baseline model. Channel 

roughness values held constant at a value of 0.025. Floodplain roughness values were 

assigned a constant value of 0.060 for the baseline model and altered from there. This is 

in contrast to the statistical portion of the study which used distributed roughness values. 

The purpose of this alteration in the baseline data was to remove complications 

associated with distributed vegetation mapping and associated roughness values. 
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3.3.6. Topographic Alteration 

Channel topography was modified to represent channel incision or aggradation. River 

engineering in the MRG was conducted with the purpose of incising the Albuquerque 

Reach to prevent flooding [Lagasse, 1980]. However, the Rio Grande and other 

southwestern rivers have been subject to continual channel aggradation and degradation 

processes throughout historical time [Scurlock, 1998; Friedman et al., 2015]. In addition, 

many tributaries to the MRG remain unimpounded, thus the river can be subjected to 

pulses of sediment at tributary confluences [Vivoni et al., 2006].  

Both bank and channel topography were altered in this study. Incision was 

represented by lowering channel elevations by 0.3 m using raster calculations and 

reinterpolated to the previously created mesh. Aggradation was represented by raising 

channel elevations by 0.3 m and again interpolated to the existing mesh. Bank elevations 

were lowered to represent bank lowering restoration techniques while elevations were 

raised to represent further sedimentation that has occurred along the heavily engineered 

and vegetated banklines in the MRG [Woodson et al., 1965; Tetra Tech EM Inc., 2004]. 

Bank alterations were made on both floodplains within a 10-meter buffer along the main 

channel. Bank elevation rasters were created with an increase or decrease of 0.3 m at the 

bank channel-interface and sloped to existing topography at 10 m from the channel.  

 

3.3.7. Roughness Alteration 

Roughness alterations were applied to bank areas or the entire floodplain. Reduced 

floodplain and bank roughness values represented the clearing of invasive riparian 

species to support restoration strategies and reduce wildfire risks [Tetra Tech EM Inc., 

2004; Najmi et al., 2005]. Increased roughness represented invasive species colonization, 

which often occurs in the form of dense monocultures, and thickening vegetation 

associated with bank stabilization [Woodson et al., 1965; Howe and Knopf, 1991; 

Shafroth et al., 2005]. Floodplain roughness was adjusted for all floodplain and vegetated 

island surfaces. Bank roughness was applied to a 10-m buffer created on both sides of the 

main channel and on the 10-m buffer of vegetated islands within the reach. Floodplain 

roughness values were then updated with these bank roughness values.  
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3.3.8. Quantification of Alteration Scenario Impacts on Flood Wave Attenuation 

Both unsteady and steady flows were used in the assessment of how hypothetical 

alterations influence flood waves. Unsteady results are presented as QARs (Eqn. 2) and 

stage attenuation ratios (SAR). Stage attenuation ratios were taken as the ratio of relative 

peak stage measured under unsteady conditions to the relative peak stage measured under 

steady peak flow conditions (Eqn. 3). Within Equation 3, hp,i is the water surface 

elevation of the flood wave at a defined downstream cross-section, i, hS,i  is the water 

surface elevation under steady peak flow conditions at a defined downstream cross-

section, and zmin,i is the local minimum channel elevation at the cross-section. 

 

!"# = ℎ&,( − 	+,(-,( ℎ.,( − 	+,(-,(   (3) 

 

Further analysis of hydrodynamics specific to channel and floodplain flow under 

the various conditions was conducted using steady flow analysis. Steady analysis was 

applied to conditions that produced the most substantial attenuation throughout the reach. 

A steady flow approach was used to describe fundamental processes of each condition in 

order to quantify uniform changes in water surface elevation and velocity to prevent these 

hydrodynamics from being impacted by attenuation lower in the reach. 

 

3.4. Results 

 

3.4.1. Influence of Channel and Floodplain Characteristics on Flood Wave 

Attenuation 

Characterization of channel and floodplain metrics was conducted for each kilometer 

segment (Fig. 3.2). The moderate flood wave was attenuated to a greater total proportion 

as represented by QAR. In contrast, ∆QAR reached a peak under the major flood wave 

conditions. Total area was predominantly composed of the in-levee floodplain, however, 

channel area, represented by the difference between TA and FA averaged 21.9% of total 

flow area. The high proportion of channel area is indicative of the leveed nature of the 

contemporary MRG. Roughness of banks compared to the entire floodplain were similar 

(FR vs BR), however, bank elevations were consistently less than those recorded for the 
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entire floodplain (BCE vs FCE). This is representative of many inset floodplain surfaces 

along the channel-floodplain interface. Water surface elevations were predominantly 

greater than bank elevations under moderate flows while the majority of mean floodplain 

surfaces were greater than peak water surface elevation under the same flow conditions 

(WSE-BE, WSE-FE). Under the major flood scenarios, both WSE-BE and WSE-FE were 

primarily greater than zero, indicating active inundation of both surfaces. Finally, the 

RIATA was greater under major flood conditions as expected, however, the ratio did not 

increase substantially in the areas of greatest ∆QAR. This indicates that at flood wave 

onset, that segment of floodplain still had substantial water storage potential. 

The statistical analysis revealed correlations between channel and floodplain 

characteristics and the process of flood wave attenuation (Fig. 3.3). Correlations were 

stronger for the major flood event, which resulted in a high degree of floodplain 

connectivity as compared to the moderate flood event. The greatest coefficients of 

determination (R2) describing the natural logarithm ∆QAR for the major flood scenarios 

were found in a positive correlation with TA, which was the summation of floodplain 

area and channel area, and a negative correlation with RIATA, or the ratio of area 

inundated at 150 m3s-1 to total area, represented by RIATA (Fig. 3.3A & 3.3B). A 

multiple linear regression analysis was then conducted by combining indicators that were 

determined to belong to different classification groups described in Table 3.1 to remove 

correlated individual characteristics. All terms were related to the natural logarithm of 

∆QAR. The correlation was highest for a model combining TA, BCE, and RIATA (Fig. 

3.3C). It was determined that TA and RIATA displayed a degree of collinearity (R2 = 

0.459). Therefore, the greatest multiple linear correlation with only one of these two 

metrics was calculated. The linear model including the BCE, WSE-BE, and RIATA was 

found to have the greatest correlation (Fig. 3.3D). 
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Figure 3.2. Attenuation ratios of 1-day moderate and major flood waves along the 
contemporary Rio Grande, kilometer-length change in QAR, and selected longitudinal 
channel-floodplain characteristics used in linear and multiple linear regression models. 
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Figure 3.3. Linear (A & B) and multiple linear (C & D) regression models between flood 
wave attenuation ratios and channel-floodplain characteristics. 
 

The moderate, short duration flood event did not show the same levels of 

correlation between channel floodplain characteristics and attenuation. The greatest 

correlation for a single characteristic was a negative relationship between the natural 

logarithm of degree of attenuation and the difference between modeled peak water 

surface elevation and mean floodplain elevation (R2 = 0.264). Again, a multiple linear 

regression of all combinations of predictors was conducted for the moderate, short 

duration flood. The greatest correlation was found in the linear model with bank 

roughness and the difference between modeled peak water surface elevation and mean 

floodplain elevation, however, the R2 value did not rise substantially with the addition of 

the bank roughness characteristic (R2 = 0.290). 
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3.4.2. Hypothetical Alteration Scenarios 

Results from hypothetical modeling of alteration scenarios indicate that bank alterations 

have a relatively small impact on flood wave attenuation within the reach compared to 

changes to the entire floodplain (Figs. 3.4 & 3.5). Percent difference from total baseline 

attenuation (i.e. lumped floodplain n = 0.060) at km-27 under bank alteration scenarios 

ranged from -6.0 to 4.0% for topographic bank alterations and –12.4 to 9.0% for 

roughness bank alterations. Complete alterations to the floodplain had much larger 

impacts on flood wave attenuation with percent differences from baseline conditions 

ranging from -129.6 to 46.4% for topographic alterations and -28.5 to 22.9% for 

roughness alterations. 

Topographic alterations had a non-uniform effect on flood wave QARs where 

abrupt changes in attenuation ratios were observed in channel segments that experienced 

extensive overbanking (Fig. 3.4). The stepped decreases are often located along the same 

length of river for floods of the same magnitude but different duration. For example, a 

high rate of attenuation occurs between km-5 and km-10 for the moderate flood, raised 

channel conditions (Figs. 3.4 A, C, & E). This indicates the same floodplain areas are 

impacting attenuation. However, the step is observably smaller in Figure 3.4E than 

Figure 3.4C. This indicates, a limited amount of storage capacity. Increasing the volume 

associated with a flood (i.e. increased duration) will also decrease the influence of 

connected floodplains. While topographic bank alterations influence connectivity in a 

similar manner to channel aggradation and degradation, the influence is not of the same 

magnitude, thus the changes in connectivity do not alter attenuation to a similar degree. 

Channel aggradation resulted in increased attenuation for the moderate flood event 

because this condition resulted in additional floodplain inundation (Fig. 3.4). In contrast, 

greater attenuation was observed under the incised channel scenario for the major flood 

event because the floodplain remains connected even under the incised conditions. 

Roughness alterations across the entire floodplain display greater attenuation 

under increasing roughness scenarios with as much as two times the degree of attenuation 

in the system with the highest floodplain roughness compared with the lowest roughness 

scenario (Fig. 3.5). While floodplain alterations lead to consistent results with increased 

roughness leading to increased attenuation, bank alteration scenarios are not consistent. 
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In the bank scenarios, the roughness alteration can impact the degree of connectivity at 

downstream locations, thus leading to changes in attenuation. For example, in the 

moderate, 1.5-day duration event (Fig. 3.5F), decreasing bank roughness to 0.040 creates 

less attenuation in the upstream portion of the reach (km-0 to km-22). However, because 

there is less attenuation, downstream locations are subject to greater discharges, higher 

water surface elevations, and greater lateral connectivity. This connectivity to the 

floodplain provides attenuation at approximately km-22, leading to a stepped decrease in 

attenuation. In this scenario, decreases in bank roughness ultimately lead to greater 

attenuation rates at downstream locations compared with increased bank roughness. 

Therefore, while bank alterations no doubt influence attenuation rates, the alteration can 

influence floodplain connectivity, mass storage, and further momentum dissipation in 

other stretches. 

 
Figure 3.4. Channel (CD and CU) and streambank (BD and BU) topographic alteration 
influences on baseline QAR values for (A) 1-day, moderate, (B) 1-day, major, (C) 1.5-
day, moderate, (D) 1.5-day, major, (E) 3-day, moderate, and (F) 3-day, major flood 
events. 
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Figure 3.5. Floodplain (F04, F08, and F10) and streambank (B04, B08, and B10) 
roughness alteration influences on baseline QAR values for (A) 1-day, moderate, (B) 1-
day, major, (C) 1.5-day, moderate, (D) 1.5-day, major, (E) 3-day, moderate, and (F) 3-
day, major flood events. 
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baseline conditions during the long duration event in conjunction with discharge 

attenuation ratios (Fig. 3.6E).  

Roughness alterations revealed more consistent results in conjunction with 

baseline stage attenuation ratios as compared to topographic adjustments (Fig. 3.7). 

Differences in stage attenuation ratios varied between -46.0% and 30.7% for complete 

floodplain alteration and -14.6% and 9.4% for bank alterations. Stage attenuation ratios 

were predominantly lowest under the floodplain conditions with the greatest roughness. 

While short duration, moderate flood wave results (Fig. 3.7A) display a moderately 

consistent downward trend, the other modeled flood scenarios displayed dependency on 

areas of localized attenuation to markedly decrease the stage attenuation ratio (Figs. 3.7C 

& E; Figs. 3.7B, D, & F). The influence of local topography presumably drives these 

stepped decreases in water surface elevation in combination with decreases in flood wave 

discharge in the most influential of downstream locations. 

 
Figure 3.6. Channel (CU and CD) and streambank (BU and BD) topographic alteration 
influences on baseline SAR values for (A) 1-day, moderate, (B) 1-day, major, (C) 1.5-
day, moderate, (D) 1.5-day, major, (E) 3-day, moderate, and (F) 3-day, major flood 
events. 
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Figure 3.7. Floodplain (F04, F08, and F10) and streambank (B04, B08, and B10) 
roughness alteration influences on baseline SAR values for (A) 1-day, moderate, (B) 1-
day, major, (C) 1.5-day, moderate, (D) 1.5-day, major, (E) 3-day, moderate, and (F) 3-
day, major flood events. 
 

Complementary analysis of both discharge and water surface elevation 

attenuation ratios exhibits the dynamics of channel-floodplain connectivity critical to the 

process of attenuation. Changes over short distances can greatly impact the rate of 

attenuation over the entire reach. This is expressed in the comparison of major flood 

events for models in which the channel topography was lowered (Figs. 3.4B, D, and F & 

3.6B, D, and F). In the 1-day duration event (Figs. 3.4A & 3.6A), discharge and stage are 

attenuated within the first five kilometers to a degree in which floodplain connectivity is 

lost for several 1-km segments (~ km-6 to km-8) which creates high rates of attenuation 

in the baseline model. While attenuation rates began to approach baseline levels by km-

27, the dynamics between attenuation and connectivity at upstream locations effectively 

increased flood peaks for most of the reach. As flood volume increases with 1.5 and 3-

day events, flood peaks in the first 5 kilometers are not reduced to the same degree as the 
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1-day event. For these events, connectivity is again restored to km-6 through km-8 and 

attenuation rates are substantially greater when compared with baseline conditions. 

A second example of the impacts of channel-floodplain connectivity exists for the 

baseline conditions under major flood conditions (Fig. 3.4) and raised channel 

topography under moderate flood conditions (Fig. 3.6A, C, & E). In this example, the 

process of attenuation is essentially translated from the baseline condition under major 

flood scenarios to the raised channel for moderate flood wave scenarios. The process 

being captured in the similar attenuation patterns is the connection of the same elevated 

surface between river km-6 and km-8. The attenuation rate is greater for the raised 

channel topography because flood peak is lower during moderate flood waves than major 

flood waves. Therefore, the floodplain can detain a larger fraction of flow. 

Attenuation of flood waves is both a physical and temporal process, therefore, 

flood hydrographs at km-27 are presented to show differences in timing under 

topographic and roughness alteration scenarios (Fig. 3.8). Downstream flood waves again 

display the different degree in attenuation between topographic alteration scenarios (Figs. 

3.8A & C) as compared to roughness alteration scenarios (Figs. 3.8B & D). In terms of 

process, the results indicate that channel-floodplain connectivity drives large changes in 

the timing of the flood wave when flows are lower (Fig. 3.8A). That is, an incised 

channel will deliver water to a downstream location more quickly as lateral connections 

are decreased. This indicates that mass transfer is a dominant temporal attenuation 

process when the potential storage volume is a greater proportion of the flood wave. 

Under major flood wave conditions, roughness drove greater differences in flood wave 

timing and topographic changes created similar flood wave timing but substantially 

different degrees of discharge attenuation (Fig. 3.8C). This indicates that individual 

connections between the river and floodplain become less important for the aggraded 

channel condition and critical to attenuation in the degraded channel condition producing 

similar timing. The greater roughness conditions drive momentum dissipation and 

decreased channel velocities, supported by the following steady flow analysis. 
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Figure 3.8. Modeled hydrographs of 1-day scenarios at river km-27 under (A) modified 
channel topography; (B) modified streambank topography; (C) modified floodplain 
roughness, and (D) modified streambank roughness. Note the differences in scales. 
 

Steady flow analysis presents the implications that changes in topography and 

roughness have on main channel water surface elevations and velocity without the 

influences of attenuation (Fig. 3.9). Intuitively, mean in-channel water surface elevations 

are the greatest for raised channel topography (CU) and the least for lowered channel 

topography (CD) (Fig 3.9A). Roughness increases of the entire floodplain (e.g. F10) also 

drive mean in-channel water surface elevations to greater levels. Alteration of only bank 

roughness (e.g. B10) has the same impact on water surface elevation, albeit to a lesser 

degree. Differences in mean water surface elevation under the more connected 300 m3s-1 

are greater than those for 180 m3s-1 (Figs. 3.9A & B). Main channel mean water surface 

elevation is as much as 0.21 m different between high (F10) and low (F04) floodplain 

roughness scenarios at 300 m3s-1. Mean water surface elevation as compared to baseline 
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conditions under the F10 condition, 0.12 m, approaches those recorded in CU, 0.15 m. 

Main channel mean velocities are most greatly impacted by floodplain roughness 

alterations albeit in an opposite relationship to mean channel water surface elevation 

(Figs. 3.9C & D). Velocities between F04 and F10 scenarios differ between 0.12 ms-1 and 

0.16 ms-1 for 180 and 300 m3s-1 flow events, respectively.  

Proportion of longitudinal floodplain flow to total flow was also analyzed under 

steady flow conditions (Figs. 3.9E & F). Of course, raising and lowering the channel 

changed the fraction of floodplain flow to the greatest degree. However, more interesting 

are the differences in proportion of floodplain flow associated with changes in floodplain 

and bank roughness. Increasing floodplain roughness is inversely related to the amount of 

discharge on the floodplain with F04 having on average 1.3% more flow than F10 at 300 

m3s-1. In contrast, increases in bank roughness also lead to increases in the fraction of 

flow on the floodplain with low roughness banks (B04) having on average 2.8% less flow 

than high roughness banks (B10) at 300 m3s-1. Furthermore, with increases in water 

surface elevation under high roughness conditions, increases in connectivity and 

floodplain flow would be expected. However, this analysis shows that the increases in 

roughness actually prevent increased floodplain flow even with greater water surface 

elevations. 
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Figure 3.9. Mean channel water surface elevation (WSE) (A & B), mean channel velocity 
(C & D), and proportion of floodplain discharge (E & F) under all topography and 
roughness alterations moderate and major peak discharge. 
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3.5. Discussion 

Because flood wave attenuation is considered an ecosystem service in terms of flood 

control and channel-floodplain dynamics during flood waves are critical to ecologically 

functioning floodplains [Junk et al., 1989; Brauman et al., 2007; Opperman et al., 2010], 

understanding of channel-floodplain processes is needed for the improvement of 

integrated floodplain management. Additionally, flood wave attenuation science has 

focused on a number of theoretical modeling strategies to investigate the fundamental 

process of attenuation and effects of river engineering and restoration [Wolff and Burges, 

1994; Woltemade and Potter, 1994; Acreman et al., 2003; Anderson et al., 2006; 

Ghavasieh et al., 2006; Sholtes and Doyle, 2010], however modeling strategies have not 

studied the questions concerning attenuation with the use of high-resolution, two-

dimensional hydrodynamic models. These models are capable of capturing local feature 

and reach length processes fundamental to flood wave attenuation. It was within this 

context that sensitivities of attenuation to contemporary river conditions were statistically 

analyzed and hypothetical alteration scenario modeling was conducted. 

The statistical results within this study have important implications for the river 

management in heavily modified systems. Correlations were found between attenuation 

and both the TA and RIATA single characteristics. The correlation between total 

channel-floodplain area complements the findings of previous research which has found 

floodplain width in unconfined systems is also important for large flood waves 

[Woltemade and Potter, 1994]. Because the modeling conducted here was done in a fairly 

uniform, leveed system, the results strengthen the case for levee setback strategies and 

the sensitivity that flood waves have to accessible floodplain area. However, this study 

also displays the importance of understanding flood magnitudes and the influence of 

storage capacity on the process of attenuation. While levee setback strategies are likely to 

increase attenuation in areas already inundated by a design flood, the correlation with 

attenuation was stronger with surfaces that have the capacity for additional inundation 

during flood events. Homogeneity of channel-floodplain connectivity is likely to 

attenuate one magnitude of flood to a great extent but impact other events to a relatively 

small degree. A system with floodplain surfaces which include various elevations in 

which water surface elevations eclipse an inundation threshold will provide more 
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dynamic attenuation patterns. River reaches which provide the greatest levels of flood 

wave attenuation are likely to be those in which heterogeneous connectivity patterns 

exist, conditions which should also be considered in levee setback situations.  

While statistical analysis for moderate flood waves did not show high levels of 

correlation, there are two points worth discussing. First, the correlation with the greatest 

R2, a value substantially higher than all other predictors, was found between peak water 

surface elevation and floodplain elevation. The potential relationship implies that areas in 

which the peak water surface elevation is at or near the floodplain elevation have a 

stronger correlation to greater rates of attenuation than do areas in which the water 

surface elevation is either well above or below floodplain elevation. This result 

complements the idea that during moderate flood events, channel-floodplain connectivity 

is critical to the attenuation of flood waves. More simply, areas in which water surface 

elevation eclipses a threshold of floodplain elevation likely provide rapid storage of water 

and in turn attenuation of the flood wave. The second point involves the fact that 

correlations under moderate flood events were very low. This likely arises from the fact 

that influences on attenuation are considerably more localized than the kilometer scale. 

Whereas major flood events inundate much of the floodplain surface and kilometer-scale 

influences can be recognized, more localized connections likely drive moderate flood 

wave attenuation. Specific study of flood waves near bankfull level can likely be of more 

significance in explaining local influences.  

Improved understanding of how flood wave dynamics have changed within the 

confined MRG can be inferred from results presented here. In complement with previous 

studies, results here suggest moderate floods are attenuated to a greater degree. However, 

the hypothetical alterations to the channel-floodplain system indicate the impacts of 

channel incision, bank stabilization, and vegetation changes to banks and floodplains. 

Channel incision will increase the discharge at which overbank flows eclipse the 

historical floodplain surface. Therefore, channel incision brought upon by the control of 

sediment inputs with the construction of Cochiti and other dams is likely to have 

disconnected the floodplain to an extent that large magnitude flood waves are more 

greatly attenuated within these reaches compared with an aggraded, connected, yet still 

levee-confined channel. Increases in only bank roughness, characteristic of dense, 
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invasive vegetation on the channel banks, appear to promote a greater fraction of water 

flowing on the floodplain. In contrast, roughness increases to the entire floodplain, 

indicative of dense, invasive floodplain monocultures, lower the fraction of discharge on 

the floodplain. These results are likely to apply to many southwestern rivers subjected to 

similar alterations and ecological change. Description of processes associated with 

changes in channel topography and floodplain roughness exhibit important implications 

both for the reach scale process of attenuation, but also for river management and river 

ecology. 

Topographic and roughness alterations revealed impacts on attenuation to 

relatively the same magnitude, however differences in the patterns of attenuation inform 

attenuation processes. Roughness alterations displayed more uniform impacts on flood 

wave attenuation when compared with topographic changes. That is, roughness 

alterations retain the form of baseline attenuation patterns. This suggests that attenuation 

due to roughness is an accruing process in which local influences are small but reach 

length influences are large. In comparison, topographic alterations modify attenuation 

rates differently, exemplified by attenuation ratios that can differ drastically from 

baseline conditions along the river. This indicates that attenuation due to topographic 

alterations also accrues but is dependent on the accumulation of attributed by local 

features. It should be noted that topographic and roughness alterations in a real-world 

setting are unlikely to occur independently of one another if the alterations occur due to 

natural processes. However, the timescales at which characteristic changes occur are 

likely to differ and the interdependency will drive feedbacks in the context of river 

morphology and ecology [Merritt and Cooper, 2000; Poff et al., 2007; Tal and Paola, 

2010]. Anthropogenic alterations may be more prone to individual topographic or 

ecological changes. For example, clearing of floodplain vegetation is a strategy used for 

invasive species control and fire risk reduction, but likely has little impact on topography 

along the Rio Grande [Najmi et al., 2005]. Because short duration flood waves along the 

Rio Grande are part of the natural flow regime due to the southwestern climate, any 

anthropogenic vegetation alteration of the entirety floodplain is likely to influence these 

types of flood pulses. In all river systems, alterations to flood wave dynamics should be 

considered when implementing channel-floodplain alterations. 
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Due to the complex nature of river management, the results of this study can be 

interpreted differently depending on perspective. Often, societal perspectives display 

rivers as a hazard or a resource [Knighton, 1998]. In terms of flood control in the MRG, it 

is evident that both engineered channel incision and increases in roughness through the 

spread of salt-cedar monocultures are likely to attenuate major flood waves to a greater 

degree. For protection of infrastructure, this is reassuring, especially in the MRG where 

short duration major flood waves still occur. However, from an ecological point of view, 

these changes to the Rio Grande and its floodplain have already proven detrimental to 

biogeochemical processes, fish populations, and floodplain heterogeneity [Howe and 

Knopf, 1991; Platania, 1991; Shafroth et al., 2005; Valett et al., 2005; Dudley and 

Platania, 2007]. Model scenarios representing restoration of floodplain systems are at 

odds with flood protection strategies in that attenuation of major flood events is 

decreased as floodplain topography and roughness are lowered. Further, as flood waves 

are a natural process within river systems, the greater attenuation of a flood wave in 

engineered or monoculture systems means that less river distance will be subjected to 

elevated flood stages and the dynamic processes associated with these events. While 

alterations associated with restoration for the entire floodplain are not in line with flood 

protection interests, smaller scale changes such as bank restoration do not greatly 

influence flood wave attenuation as similar attenuation rates have been documented here. 

Therefore, in terms of reach scale flood protection, these types of projects should be 

continued to be pursued if ecological gains can be created. If floodplain-scale ecological 

restoration works are a goal it is likely that infrastructure along many rivers will need to 

be adjusted to continue to attenuate flood waves in the same manner with heterogeneity 

of floodplain elevations crucial to attenuation of floods of various magnitude. Further 

flood wave attenuation research should focus on possible impacts of levee setbacks 

within heavily modified systems with a focus on ensuring both ecological and attenuation 

processes. The realities of river management also suggest that there may also need to be a 

focus on certain stretches of river being infrastructure based for flood protection while 

other reaches provide ecological integrity due to the realities of existing river alteration. 

 

 



	 82 

3.6. Conclusions 

This study had two main objectives: (1) to investigate the sensitivity of flood wave 

attenuation to existing channel and floodplain characteristics, and (2) to assess how 

historical and contemporary channel and floodplain alterations affect flood wave 

attenuation. Statistical results showed flood wave attenuation is impacted by total area 

accessible to flow and the potential for water storage even within a fairly uniform, 

confined system. Implications of this finding suggest that contemporary anthropogenic 

attenuation strategies, such as levee setbacks, are likely to have substantial impact on 

flood peaks, however, care must be taken to understand the heterogeneous nature of 

attenuation in terms of floodplain elevation. Results of alteration scenario modeling 

displayed the large local influence that topographic features have on attenuation while 

attenuation was an accruing process under roughness alterations. Finally, while bank 

alterations did not impact flood wave attenuation to a great degree, bank and floodplain 

roughness alterations did display differences in process under steady floodplain flow 

conditions. While every river system is different, many rivers in the southwestern United 

States have been subjected to similar alterations in the name of flood control and water 

use. The hypothetical results can therefore directly inform river management along many 

of the rivers in this region as well as other rivers with similar geomorphology and 

climate. As flood wave attenuation is important to those concerned with flood protection 

as well as ecological interests, the dual, and often contrasting, impacts to attenuation must 

be considered in floodplain management. 
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Chapter 4 

 

Unsteady hydrodynamic processes at the channel-floodplain interface as 

indicators of lateral floodplain connectivity 
 

4.1. Introduction 

Floodplain connectivity to river channels is of critical importance to spatial and temporal 

floodplain heterogeneity [Ward et al., 2001; Wohl et al., 2015]. While connectivity is no 

doubt three-dimensional in nature, lateral channel to floodplain surface connections can 

transfer large quantities of water and associated biogeochemical material and processes 

within well connected systems. Integral elements of connectivity, river hydrology and 

hydrodynamics, develop complex relationships with river form and biota. These spatial 

and temporal relationships are interdependent on one another and critical for the 

existence of natural processes in river and floodplain systems [Junk et al., 1989; Ward, 

1989; Amoros and Bornette, 2002]. The interdependence of hydrodynamics, 

geomorphology, and ecology means that understanding how one field impacts another is 

not trivial [Thoms, 2003]. In addition, reach-scale conceptualizations of river connectivity 

provide qualitative understanding of river process and form, but quantification of 

connectivity and exchange processes proves difficult. Past studies have strived to attain 

this unification between process and form [Lane and Richards, 1997; Richards et al., 

2002; Croke et al., 2013], connectivity and biota [Barko et al., 2006; Morrison and Stone, 

2014; Blettler et al., 2016], and connectivity and biogeochemical processes [Tockner et 

al., 1999; Scott et al., 2014; Jones et al., 2015]. These studies provide critical knowledge 

in the combination of hydrologic processes with river geomorphology and ecology but 

often are of small spatial scale or limited by the inherent nature of empirical study in 

highly dynamic and heterogeneous river systems. 

River systems throughout the developed world have been subjected to substantial 

modifications, typically in the name of water use, energy production, or flood protection. 

These modifications have led to altered hydrologic and geomorphic processes and drastic 

changes in floodplain connectivity. More recently, anthropogenic alterations have been in 
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the form of river restoration, including rehabilitation projects [Wohl et al., 2005]. While a 

great number of river restoration projects have been conducted in the name of water 

quality, species habitat, or riparian management, a more limited number have focused on 

restoring floodplain connectivity [Bernhardt et al., 2005]. More thorough understanding 

of river dynamics has led to a push for river restoration that restores dynamic processes 

and the need for process metrics [Palmer et al., 2005, 2014; Kondolf et al., 2006; Beechie 

et al., 2010; Harvey and Gooseff, 2015; Wohl et al., 2015; Covino, 2017]. Increased 

hydrodynamic processes allow a river to shape a more natural landscapes and create 

functional ecosystems [Stanford et al., 1996; Ward et al., 2002]. Measuring or estimating 

hydrodynamic processes over large spatial and temporal scales proves difficult but is 

needed in multiple fields of study. For example, if nutrient exchange between the channel 

and floodplain is of interest, flow volumes are likely of importance as well as residence 

times associated with floodplain flow. In comparison, if sediment transport or river 

geomorphic dynamics are the focus of investigation, the description of both the water 

volume and the forces associated with the movement of water are necessary. The 

importance of reestablishing river processes when restoring altered river systems is clear, 

but the question remains as to how to quantify hydrodynamic processes in a way that can 

be applied to our understanding of river science and river restoration strategies.  

River and floodplain hydrodynamics are important at various scales throughout a 

river system [Hughes et al., 2001]. At bedform scales (~10-1 – 101 m) turbulence, either 

stemming from the movement of water across bedforms and vegetation or from viscous 

effects within the flow of water, is important to processes such as sediment transport 

[Bennett and Best, 1995; Nelson et al., 1995; Nepf and Vivoni, 2000],  nutrient exchange 

[Schulz et al., 2003; Murphy et al., 2007], and vegetation community structuring [Nilsson 

et al., 2002]. At a planform feature scale (~101 – 103 m), turbulent eddies and differences 

in mass and momentum transfer exist due to channel-floodplain topography found in 

complex channels and changes in roughness associated with bed material or vegetation 

[Shiono and Knight, 1991; Nepf, 1999; Helmiö, 2004; Vermaas et al., 2011]. 

Accumulation of these processes at reach scales (~103 – 105 m) leads to floodplain 

landscape dynamics [Thorp et al., 2006; Winemiller et al., 2010], river planform 

[Knighton, 1998], and large-scale ecosystem services such as flood wave attenuation 
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[Woltemade and Potter, 1994; Wyzga, 1996; Brauman et al., 2007]. Within the context of 

floodplain connectivity, the transfer of water to the floodplain is of the utmost importance 

due to the known influence of associated hydrodynamic processes. Therefore, 

quantification of key physical attributes of water exchanges between the main channel 

and the floodplain can advance our understanding of these processes. The exchange of 

water occurs at the channel-floodplain interface which exists across these scales of 

geomorphic and ecological interest. 

Lateral floodplain connectivity, and more specifically floodplain geomorphology 

and ecology, ultimately depend on the transfer of a quantity of water, here presented as 

mass flux, from the main river channel to the floodplain. A mass flux of water will also 

transport dissolved and suspended biogeochemical elements. Studies have displayed the 

importance of mass flux in relationship to these biogeochemical processes [Hughes, 

1997; Jones et al., 2015]. For example, spatial and temporal dynamics of nutrient 

exchange have been shown to be important to the quality of nutrients supplied to the 

main channel [Atkinson et al., 2009]. In addition, large scale sedimentation rates are 

likely to be related to retention times of water on the floodplain [Middelkoop and Van 

Der Perk, 1998]. Due to the importance of water and elements it carries, continued 

development of new methods to quantify the flux of water in a channel-floodplain system 

needs to be pursued. 

The mass of water transferred to the floodplain is associated with a water velocity 

and consequently imparts momentum exchange to the floodplain as well. While 

momentum flux, or the time rate of change in momentum, can be a product of both 

turbulence and mass transfer, in non-prismatic channels and thus natural channels, 

momentum flux to the floodplain is most highly associated with mass transfer [Proust et 

al., 2009]. Momentum flux, presented here as a time rate of change in momentum at the 

channel-floodplain interface, can provide insights regarding ecological and geomorphic 

processes beyond those provided from the study of mass flux. Differences in momentum 

at key interfaces, such as changes in roughness, topography, and vegetation, have been 

shown to enhance turbulent mixing [Shiono and Knight, 1991; Helmiö, 2004; Vermaas et 

al., 2011], therefore quantifying and identifying areas where momentum flux is high may 

correlate with areas where turbulent mixing processes are important to floodplain ecology 
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such as phytoplankton life cycles [Sommer et al., 2004], sedimentation [Asselman and 

Middelkoop, 1995; Poulsen et al., 2014], and perirheic zones [Jones et al., 2014]. 

Expanding hydrodynamic mapping to geomorphic and ecological questions over large 

spatial and temporal scales provides a myriad of possibilities. 

While knowledge of lateral flow processes is important, these processes 

ultimately occur within some temporal context of a longitudinal flow regime [Poff et al., 

1997]. Broad understanding of the timing of connectivity during a flood wave is at the 

foundation of modern river science [Junk et al., 1989; Ward, 1989], and more recent 

temporal conceptualizations have been developed to understand the exchange of 

sediments, organic matter, and nutrients [Tockner et al., 1999; Steiger et al., 2005; 

Harvey and Gooseff, 2015; Covino, 2017]. Measurement of river discharge has focused 

on river stage and downstream flow volumes as those metrics are logical in the studies of 

basin hydrology or flood potential. However, if channel-floodplain connectivity or 

ecological floodplain science are of interest, integration of lateral and longitudinal 

discharge needs to be investigated [Covino, 2017]. Because discharge is the most 

relatable metric between systems throughout the world, understanding lateral discharge 

as a function of heavily measured downstream discharge is likely to be of interest in a 

multitude of applications. 

The objective of this research was to quantify hydrodynamic processes of lateral 

surface connectivity at the channel-floodplain interface during unsteady flow events. 

Within a heavily manipulated river system, the quantification of such lateral processes 

can identify key spatial and temporal elements of floodplain connectivity and the relative 

impact of river restoration efforts in a context of river process. Results from the study are 

presented as mass and momentum fluxes associated with the transfer of water from the 

main channel to the floodplain. Geomorphic classification of the channel-floodplain 

interface is analyzed to further the conclusions about floodplain connectivity. A 

secondary objective of this study was to assess the relationship between lateral 

connectivity and longitudinal magnitude and timing of discharge. The objectives of this 

study were achieved using two-dimensional hydrodynamic modeling and post-processing 

scripting techniques to analyze hydrodynamic model results. The goal of this research is 

to further the understanding of channel-floodplain hydrodynamic processes with a focus 
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on surface connectivity, to display new strategies of computational modeling, and 

ultimately to inform multidisciplinary river management strategies. 

 

4.2. Site Description 

This study focuses on a 27-kilometer stretch of the Rio Grande adjacent to the city of 

Albuquerque, NM known as the Albuquerque Reach of the Middle Rio Grande (MRG) 

between USGS 08329918 (Alameda Bridge Gage) and USGS 08330875 (Isleta Lakes 

Gage; Fig. 4.1). The MRG has been heavily engineered for water use in a semi-arid 

climate and flood protection for agricultural and urban use of the floodplain. The 

combination of large-scale river and floodplain engineering projects with changing land 

use and climate has had significant geomorphic impacts on the river over the past century 

[Scurlock, 1998; Richard and Julien, 2003; Meyer and Hepler, 2007; Schmidt and 

Wilcock, 2008; Swanson et al., 2011]. The result of these changes is a channelized river, 

predominantly confined between bounding levees and jetty jacks, and with diminished 

ecological integrity of native ecosystems.  

Three distinct floodplain feature types exist within the study reach: (1) inset, (2) 

historical, and (3) restored. Inset floodplains remain connected to the river under 

moderate flows and include channel-islands and bank-attached islands and bars which 

have stabilized with vegetation under extended drought conditions over the past two 

decades and flow regulation [Meyer and Hepler, 2007; Swanson et al., 2011]. The second 

feature type, or the historical floodplain, retains some connectivity as this surface is 

within the bounding levees or defining topography. However, due to channel incision and 

reinforced banks, the inundation frequency of this surface varies from relatively often to 

never [Stone et al., 2017]. Implications of this disconnected floodplain in the MRG 

include impacts to native ecology including fish populations [Pease et al., 2006], 

biogeochemical and metabolic responses [Valett et al., 2005], and changing vegetation 

patterns [Howe and Knopf, 1991; Taylor et al., 1999]. The third category of floodplain 

feature type is composed of restored floodplain features. These occur within the historical 

floodplain where vegetation and topography have been mechanically manipulated to 

improve ecological conditions prior to 2012. New connections to the river have been 

created primarily for the endangered Rio Grande silvery minnow (Hybognathus amarus), 
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which has been subject to substantial loss of habitat and habitat fragmentation in the 

MRG [Bestgen and Platania, 1991; Alò and Turner, 2005]. 

The dominant hydrology of the MRG is defined by a late spring, early summer 

snowmelt pulse and late summer, short-duration flood pulses produced by convective, 

monsoonal storm events. Historically, these flow conditions were already highly variable, 

both in terms of yearly snowmelt peak flows and the development of monsoonal moisture 

[Scurlock, 1998]. However, with upstream flood control and diversion dams, the natural 

flow regime is now greatly altered for flood protection and water use [Stone et al., 2017]. 

 

 
Figure 4.1. Location of modeled study reach near Albuquerque, NM. 
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4.3. Methodology 

 

4.3.1. Hydrodynamic Model Setup 

A two-dimensional mesh was developed using Deltares’ D-Flow Flexible Mesh (D-Flow 

FM) software [Deltares, 2015]. The mesh covered approximately 32 km of channel and 

predominantly leveed floodplain in the most heavily urbanized reach of the MRG. Mesh 

elements averaged 26 m2. Elevations of each floodplain mesh element were interpolated 

from a two-meter digital elevation model (DEM) created using 2010 Light Detection and 

Ranging (LiDAR) data and supplemented by 2012 LiDAR data at specific river 

restoration locations. In the main channel of the Rio Grande where water prevented 

LiDAR of the river bed from being acquired, United States Bureau of Reclamation cross-

section surveys from 2014 were used to interpolate channel bathymetry between cross-

sections [Adair, 2016].  

 

4.3.2. Boundary and Roughness Conditions 

Upstream conditions were defined by an unsteady discharge boundary. Because 

hydrodynamic processes will occur at different rates depending on various characteristics 

of a flood wave, six distinct flood waves were routed through the hydrodynamic model, 

all of relatively short duration (several days). While the hydrology of the MRG is defined 

by long-duration snowmelt events in the spring and early summer, these events are likely 

to be less dynamic along the channel-floodplain interface (i.e. changes in hydrodynamics 

will be more gradual). Therefore, shorter duration events were the focus of this paper. 

The downstream boundary was set to a water surface elevation based on the upstream 

flow hydrograph. Gage data at the downstream boundary did not have records of high 

flow events due to the relatively recent (2002) installation of the gage. In addition, it has 

been documented that gage information in sand-bed rivers is susceptible to considerable 

amounts of error [Isaacson and Coonrod, 2011]. To minimize uncertainty associated with 

the lower boundary condition, the most downstream 5 km of data were removed, 

resulting in the 27-km reach presented in Figure 4.1. Manning’s roughness coefficients 

were held constant for the two models and were defined by vegetation mapping 
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conducted from previous ground and aerial surveys [Hink and Ohmart, 1984; Callahan 

and White, 2004]. 

 

4.3.3. Modeled Hydrology 

Because this research focused on the theoretical implications of flood waves and flood 

processes on the dynamics of floodplain connectivity, hypothetical flood waves were 

used at the upstream model boundary as opposed to historical events. Moderate and 

major floods, 180 and 300 m3s-1 flood peaks, respectively, were modeled for three 

durations: 1, 1.5, and 3 days (Fig. 4.2). The moderate and major flood magnitudes are 

roughly equivalent to the 5-year and 50-year return periods under the present flow 

regime.  Moderate flood events are representative of flows exceeding historical bankfull 

discharge (~2-year flood discharge, 135 m3s-1) only near flood peak. Major flood events 

are representative of a flood occurring when flows are already exceeding historical 

bankfull discharge to a small degree. Therefore, initial conditions for moderate and major 

flood events were 30 and 150 m3s-1, respectively. For the Albuquerque Reach of the Rio 

Grande, these types of flood events would be most common during monsoonal storm 

events in late-summer (moderate flood) or in the form of storm events occurring during 

snowmelt (e.g. rain on snow) in late-spring and early summer (major flood).  
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Figure 4.2. Hydrographs at the upstream boundary under six different flood wave 
conditions. 
 

4.3.4. Model Pre-Processing 

To study mass and momentum fluxes across the channel-floodplain interface, those 

control surfaces needed to be defined along the entire river corridor. ESRI’s ArcMap 10.1 

[ESRI, 2012] was used to digitize the approximate interface with the use of 2010 

orthophotography. The interface was digitized at the boundary between the main channel 

and areas of established floodplain vegetation. Vegetation was used as a key indicator of 

the channel-floodplain interface because the Rio Grande is a sand-bed river and 

orthophotography was taken during a period of low flow. Sandbars within the river are 

likely to be considerably more mobile than areas with established vegetation [Mussetter 

Engineering, Inc., 2006], and thus likely to become part of the main channel during 
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depth and velocity results at 10 minute intervals for a total of 8622 and 8405 elements for 

the left and right floodplains, respectively.  

 

4.3.5. Post-Processing Analysis 

Mass and momentum fluxes were calculated using post-processing scripting techniques. 

The process of calculating fluxes is based upon the idea that the channel-floodplain 

interface is a control surface. Consequently, at any surface along the interface, the mass 

flow rate (mass flux) or time rate of change of momentum (momentum flux), is defined 

by the quantity of water flowing normal to the interface surface. Any water flowing 

parallel to the interface is moving in the downstream direction and not being transferred 

from the channel to the floodplain. The normal unit vector was computed for each 

interface surface in the channel to floodplain direction. Therefore, mass or momentum 

fluxes from the main channel to the floodplain were defined as positive.  

Mass flux was defined as the exchange of mass per unit time between the main 

channel and the floodplain. Mass flux (Mf, kg s-1) was calculated using average depth (d, 

m), normal velocity (V, m s-1), connection length (l, m), and fluid density (ρ, kg m-3) for 

every element along both left and right floodplain interfaces (Eqn. 1). 

 

/0 = 	1 ∗ 3 ∗ 4 ∗ 5    (1) 

 

Momentum flux was defined as the time rate of change of momentum across the channel-

floodplain boundary. Therefore, the momentum flux (Pf, N) is the product of mass flux 

and the absolute value of the normal velocity and was calculated for each boundary 

element (Eqn. 2). 

 

60 = /0 ∗	 5 = 	1 ∗ 3 ∗ 4 ∗ 5 ∗ 	 5   (2) 

 

With mass and momentum flux calculated at every model time step, further analysis was 

conducted to investigate flood wave process and better understand floodplain 

connectivity during the simulated floods. Spatial, temporal, and frequency analyses were 

investigated for these floodplain types to elucidate the differences in river process under 
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different geomorphic conditions. Temporal mass and momentum flux were calculated 

above initial conditions to isolate the influence of the flood wave at the two initial 

condition discharges. 

Because discharge is often an integral metric to river science, lateral and 

longitudinal discharge were quantified in terms of time and magnitude. The ratio of 

lateral to longitudinal discharge was calculated for each flood wave for each kilometer of 

the reach. Timing of maximum discharge was computed using individual elements with 

maximum or minimum discharges greater than or less than 0.01 m3s-1, respectively, to 

remove elements that fluctuated near zero. The timing of each element’s maximum or 

minimum flux was subtracted from a linearly interpolated line of longitudinal peak 

discharges produced at 250 meter cross-sections. Positive time of arrival represents peak 

lateral discharge which occurs after the longitudinal flood peak while negative time of 

arrival represents lateral peak discharge which occurs before the longitudinal flood peak. 

 

4.4. Results 

Large-scale patterns of floodplain connectivity were described by investigating the 

dynamic nature of mass transfer as a function of time. Net mass flux across the left and 

right channel-floodplain interfaces were calculated as a function of time for each of the 

six flood scenarios (Fig. 4.3). To allow for direct comparison, positive and negative total 

mass fluxes were also determined for each floodplain feature type. The period for which 

the flood peak was located within the reach of interest is also indicated by the shaded 

gray region.  

Positive and negative total mass fluxes remained on the same order of magnitude 

for the entire flood wave, pointing to consistent exchange at the interface rather than 

channel-to-floodplain or floodplain-to-channel processes dominating on the rising or 

falling limb of the flood wave. However, small changes in positive and negative total 

fluxes create the patterns of net mass flux. Net mass flux totals are approximately one to 

two orders of magnitude smaller than total mass flux. While net mass flux totals are 

therefore small in relation to total mass flux, the totals do give a good indication of 

dominating inundation or recession flood wave processes and the nature of connectivity 

in the reach. In addition, these flux relationships here are in the context of a heavily 
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manipulated and constrained river-floodplain system. This pattern may change at more 

local scales of interest or under less altered conditions. 

 

4.4.1. Flood Duration and Magnitude Influences on Mass Flux 

The net mass flux plots display the variability in the transfer of water to the floodplain as 

it relates to flood duration and initial flow volumes. The peak magnitude of net mass flux 

to the floodplain decreased as the flood duration was increased (comparison of results in 

each column of Fig. 4.3). With increased flood duration, peak mass flux is dampened by 

the rate of change of the hydrograph and, in tandem, the rate of change of total mass flux. 

Differences in the rate of change of total mass flux are evident (e.g. Fig. 4.3C, G, and K). 

In perhaps a more intuitive description, it is a slower increase in water surface elevation 

in connected portions of the floodplain during long duration events compared to flashier, 

short duration events which drives the more gradual and lower maximum net mass fluxes. 

Maximum net mass flux increased with increases in initial conditions from 30 to 150 m3s-

1 (comparison of results in a respective row), although to a lesser degree during long 

duration events. Events at greater initial flows will have greater total mass flux due to the 

increased volume of water passing through the reach. However, these results show that 

even when initial flow rates are removed from the calculated flux, as was the comparison 

in this research, the same flood wave still transfers more mass to the floodplain under 

high initial conditions (Fig. 4.3C vs D, G vs H, and K vs L). This is attributed to both an 

increased number of connections providing pathways for water to flow onto the 

floodplain and many of those connections remaining connected for the entirety of the 

flood event. 
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Figure 4.3. Net mass flux (left and right floodplain) and total mass flux (by floodplain 
class) as a function of time for (A,C) 1-day, moderate, (B,D) 1-day, major, (E,G) 1.5-day, 
moderate, (F,H) 1.5-day, major, (I,K) 3-day, moderate, and (J,L) 3-day, major flood 
events. The gray region in each plot indicates the period over which the flood peak was 
present in the simulated reach. Key timings described in Table 4.1 are labeled in for net 
mass flux of the left floodplain in Figure 4.3B and total mass flux in Figure 4.3D. 
 

4.4.2. Channel-Floodplain Connectivity Influences on Mass Flux 

Temporal net mass flux characteristics imply heterogeneity of reach-scale connectivity 

patterns within the modeled reach. Temporal changes in net mass flux across left and 

right interfaces display differences between left and right floodplain connectivity, 
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especially in moderate flood events and between moderate and major long duration 

events. For example, as flood duration increases for moderate flood events, (Fig. 4.3A, E, 

and I), the right floodplain reaches maximum net mass flux at an earlier time relative to 

the left floodplain for events of increasing duration. The left floodplain net mass flux is 

also at greater rates for longer periods of time. This indicates that the right floodplain has 

greater connectivity in the upstream portion of the reach, and in comparison, the left 

floodplain is more greatly connected in the downstream portion of the reach. An increase 

of initial flow conditions between moderate and major, 3-day flood events (Fig. 4.3I and 

J), indicates further characteristics of floodplain connectivity. The 3-day, major flood 

event shows evidence of dual maximum net mass fluxes on the left floodplain (Fig. 4.3J). 

Perhaps the most evident result of temporal net mass flux quantification is that the 

heterogeneous floodplain connectivity is highly dependent on the characteristics of the 

flood wave passing through a reach of interest.  

The net mass flux curves also display distinct characteristics of feature scale 

connectivity in terms of magnitude and duration. Moderate flood net mass fluxes tend to 

be less smooth than the flux curves associated with major flood events. This indicates 

that moderate flood flux quantities are more susceptible to influences of local 

topography, evident in the sub-peaks and more jagged form compared to the major flood 

curves. The sharp increases in flux rates and sub-peaks indicate activation of local 

connections, while the general trend of the curve shows the connectivity relative to the 

entire floodplain as the flood wave moves through the system. The smoothness of the 

major flood curves suggests that the main connections are already inundated at initial 

conditions and therefore mass transfer increases more uniformly. Elongation of the fluxes 

is no doubt due to the elongation of the flood wave; however, the real-world implication 

of this process is that peak mass flux magnitudes are reduced as inundation becomes 

more gradual at lateral connection points.  

 

4.4.3. Temporal Characteristics of Mass Flux 

The mass flux plots include several key points in time important for describing flood 

wave processes and are summarized in Table 4.1 and labeled in Figure 4.3. Time of 

maximum net mass flux (TNMF+max) tends to occur shortly after the flood peak enters the 
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reach for short duration events and arrives earlier in regard to the flood peak for longer 

duration events. In comparison with total mass flux, it is apparent that the greatest rate of 

channel-to-floodplain mass transfer does not necessarily coincide with the time of 

maximum total mass flux (TTMF+max). The TTMF+max occurs at nearly the same time as the 

maximum negative mass flux (TTMF-max) for all flood events and always while the flood 

peak is within the reach of interest. This is a logical result as water surface elevations at 

flood peak are likely highest leading to maximum total connectivity. Maximum negative 

net mass fluxes (TNMF-max) predominantly occur after the flood wave has left the reach of 

interest with the exception of the right floodplain during short duration flood events. The 

timing and magnitude of this high rate of return flow is ultimately defined by the 

combination of many return flow paths still highly connected and a large amount of mass 

remaining on the floodplain. The final temporal point of interest is that in which net mass 

flux shifts from positive to negative, or here labeled the time of mass activation-recession 

transition (TMART). This point is defined by the time in which more water is now 

returning to the main channel from the floodplain than previously when channel-to-

floodplain fluxes were dominant. The TMART is nearly always before the flood peak 

leaves the reach, apart from Figure 4.3F. This merely quantifies the fact that as flood 

peak and durations increase, the floodplain is hydrologically connected for a longer 

period. More importantly, during long duration events, mass can still accrue on the 

floodplain after the flood peak has moved beyond a reach. In summary, the quantification 

of net mass fluxes presents three distinct time periods: a time of increasing mass flux in 

which floodplain connections activate, a time of peak connectivity in which mass flux 

shifts from positive to negative, and a time of negative mass flux in which flood wave 

recession processes dominate. 
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Table 4.1. Timing (hr) of lateral processes including mass flux, momentum flux, and 
discharge. 

 
Moderate Floods Major Floods 

1-day 1.5-day 3-day 1-day 1.5-day 3-day 

Mass 

TNMF+max 
Left 10.3 16.7 27.3 9.3 13.0 16.0 
Right 10.5 13.8 18.5 9.5 15.0 24.5 

TMART 
Left 15.7 22.3 36.8 15.3 23.3 40.0 
Right 13.5 20.2 34.5 13.7 21.5 43.8 

TNMF-max 
Left 18.2 28.3 45.5 20.0 32.3 58.5 
Right 17.0 27.8 49.0 16.5 29.0 56.0 

TTMF+max 12.3 19.8 34.5 13.3 21.2 35.0 
TTMF-max 12.7 20.3 34.8 14.0 21.3 35.2 

Momentum 

TNPF+max 
Left 11.7 17.7 27.8 12.2 20.0 34.0 
Right 10.3 13.8 30.3 9.7 17.3 32.0 

TPART 
Left 16.3 26.8 50.7 19.7 34.3 72.0 
Right 14.0 22.3 39.7 17.2 31.3 63.7 

TNPF-max 
Left 18.3 30.5 56.5 22.2 39.5 78.2 
Right 17.7 28.0 49.3 21.3 37.3 72.7 

TTPF+max 11.5 19.3 34.0 12.5 20.7 34.7 
TTPF-max 11.7 19.5 34.2 12.8 20.8 34.7 

Discharge 
TQpLat - TQpLong -0.7 -1.5 -2.7 -0.8 -1.6 -3.0 
T-QpLat - TQpLong 0.7 0.7 0.7 0.6 0.9 1.4 

 

4.4.4. Momentum Flux Characteristics in Relation to Mass Flux Patterns 

Net momentum flux (N) at the left and right channel-floodplain interfaces and total 

positive and negative momentum fluxes for each floodplain type were calculated as a 

function of time and flood type (Fig. 4.4). There are two notable differences in 

quantification patterns between net mass and momentum flux. First, the relative 

magnitudes of net momentum flux across the left and right floodplain interfaces follow 

different patterns of change between moderate (Figs. 4.4A, E, and I) and major flood 

events (Figs. 4.4B, F, and J). During moderate flow events, the left floodplain has a 

greater maximum net momentum flux and contributes more total momentum to the 

floodplain than the right floodplain, represented by the area below the curves. However, 

when initial flow volume increases, the right floodplain experiences the greatest 

momentum flux and total momentum transfer. The second major difference between the 
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mass and momentum plots is evident in the negative net fluxes at the tail end of a flood 

event. In the measure of net mass flux, a large proportion of the mass transferred to the 

floodplain is returned to the main channel because the majority of mass transferred to the 

floodplain returns to the main channel while only a small proportion ponds on the 

floodplain. In contrast, the quantification of net momentum flux shows that while 

momentum is returned to the channel, the quantity returned does not approach the total 

transferred from channel to floodplain. This is because momentum is being dissipated on 

the floodplain surface. Maximum net momentum flux and total momentum transferred to 

the floodplain increase with increasing duration and initial flow discharge, while 

maximum negative net fluxes from the floodplain to the channel decrease under the same 

flood wave manipulation, meaning channel-to-floodplain momentum transfer dominates 

longer duration events. 

Temporal patterns of net momentum flux also differ from net mass flux. While 

maximum positive and negative total momentum fluxes, TTPF+max and TTPF-max, 

respectively, occurred at similar times in comparison with total mass flux, net momentum 

flux times display different patterns compared with net mass flux times. In comparison 

with maximum net mass flux which occurs prior to the flood peak entering the reach with 

increasing flood duration, the time of maximum net momentum flux (TNPF+max) occurs 

when the flood peak is within the reach boundaries for all flood waves apart from the 

right floodplain during the moderate, 1.5-day event. However, even in this exception, 

momentum flux reaches a secondary peak while the flood peak passes through the reach. 

Net momentum fluxes are therefore highly dependent on the flood peak, whereas net 

mass fluxes are both dependent on the flood regime and floodplain storage availability, 

meaning there is a lag in return of mass during the rising limb of the flood wave. Due to 

the relationship between flood peak and net momentum flux, the time of the momentum 

activation-recession transition (TPART) and the maximum negative net momentum flux 

(TTPF-max) are delayed with increasing flood duration. This is in comparison to the net 

mass flux transition timings which typically occur as the flood peak leaves the reach and 

the maximum negative net mass flux timings which are not delayed to the same extent as 

maximum negative net momentum fluxes. These results show that while mass and 
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momentum fluxes are related, net flux timing characteristics differ substantially during a 

flood event. 

 

4.4.5. Temporal Fluxes Resulting from Floodplain Feature Type 

The partitioning of positive and negative total mass and momentum fluxes into floodplain 

type, based upon geomorphic characteristics, presents several interesting results. Results 

discussed here are presented for the medium duration events (Fig 4.3G and H), however, 

patterns of total mass flux along various floodplain types are similar between flood 

durations with the exception of the previously discussed elongation in flux. Connected 

inset floodplain elements, while smaller in number than historical floodplain elements, 

1800 elements compared to 8730 elements, respectively, contribute a greater amount of 

mass during moderate flood events than do historical floodplain elements (Fig. 4.3G). 

Under major flood conditions, the historical channel-floodplain interface is more 

connected than under lower flood magnitude (12668 elements), contributing to the 

majority of total mass flux (Fig. 4.3H). However, momentum fluxes follow a different 

pattern. Inset floodplains are subject to a large percentage of the momentum transferred 

to the entire floodplain under moderate flood conditions and remain a substantial fraction 

of total momentum flux during major flood events (Fig. 4.4G and H). This suggests that 

while the historical floodplain is more greatly connected during major flood events, 

floodplain connections likely remain at low depths and velocities. Restoration sites 

activate during moderate and major flood events but at a much smaller level when 

compared to the historical and inset floodplain features, limiting the impact such features 

have on flux totals. 

 



	 101 

 
Figure 4.4. Net momentum flux (left and right floodplain) and total momentum flux (by 
floodplain class) as a function of time for (A,C) 1-day, moderate, (B,D) 1-day, major, 
(E,G) 1.5-day, moderate, (F,H) 1.5-day, major, (I,K) 3-day, moderate, and (J,L) 3-day, 
major flood events. The gray region in each plot indicates the period over which the flood 
peak was present in the simulated reach. Key timings described in Table 4.1 are labeled 
in for net momentum flux of the left floodplain in Figure 4.4B and total momentum flux 
in Figure 4.4D. 
 

4.4.6. Maximum Interface Flux 

Maximum mass and momentum fluxes at the interface, normalized for element length, 

were measured for the entire flood duration and are plotted for both the 27-km reach (Fig. 
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4.5) and at a feature scale (Fig. 4.6). Reach length mapping of flux values indicates 

portions of the reach have differing processes based upon large scale channel-floodplain 

geomorphology and local floodplain feature type. In terms of large-scale channel-

floodplain geomorphology, there are lengths of the river that have a more connected 

floodplain, evident in the greater density of interface connections, while other areas are 

less connected. Connectivity based upon floodplain type can be seen in the upper portion 

of the reach where inset floodplain features are dominant. This result is further 

complemented by the timing of mass flux at inset floodplain boundaries (Fig. 4.3G and 

H), which activate earlier than other floodplain types. Inset features not only inundate 

during the moderate flood events, but some inset features also achieve similar maximum 

fluxes independent of the initial discharge. The historical floodplain throughout the reach 

is relatively disconnected during moderate flood events. During major flood events, the 

number of elements inundated increases dramatically, thus contributing to greater mass 

and momentum flux. In the middle of the reach, these connections achieve magnitudes 

similar to the inset floodplains, compared to the upper and lower third of the reach, where 

mass flux magnitudes remain relatively low. Restoration sites are apparent during 

moderate and major floods but cover minimal lengths of the channel-floodplain interface. 

Spatial fluxes at historical, inset, and restoration feature types are displayed at a 

kilometer scale in Figure 4.6. The differences in magnitude of connections between inset 

and historical floodplains is again evident in consecutive channel meanders. Channel to 

floodplain exchange is evident at outside bend meander locations at inset elevations, but 

is lacking at elevations of the historical floodplain. Topographic manipulation at 

restoration sites does produce greater flux quantities, especially at the southern-most 

restoration site. However, while the inset floodplain experiences high flux magnitudes 

across nearly the entire upstream interface of the feature, the restoration site provides a 

more confined connection. Historical floodplain magnitudes at this location remain 

relatively small even with increases in discharge. 
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Figure 4.5. Maximum mass and momentum flux per unit length for connected channel-
floodplain interface elements for the 1.5-day, moderate flood (A and C) and major flood 
(B and D) for the full study reach (27 km). The black line at 13.5 km represents the 
location represented in greater detail in Figure 4.6. 
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Figure 4.6. Maximum mass and momentum flux per unit length for connected channel-
floodplain interface elements for the 1.5-day, moderate (A and C) and major flood (B and 
D) for a 1 km section between 13 km and 14 km.   
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While spatial assessments of maximum mass and momentum flux indicate areas of 

connectivity and differences in magnitude of flux, a numerical summary of all maximum 

values for the entire interface can provide insights into the distribution of process across 

each floodplain feature type. Figure 4.7 displays the relative frequency of modeled 

maximum mass and momentum fluxes at the channel-floodplain interface for each type 

of feature type as well as the mean maximum flux value for each type. Figures 4.7A and 

4.7B display maximum mass fluxes during the 1.5-day events. All plots display high 

probabilities near zero. This is expected as some points along the floodplain never 

inundate and others are primarily areas where flow is returning from the floodplain to the 

main channel. For the moderate flood event, Fig. 4.7A, mass flux at inset and restored 

feature types is predominantly higher for mass flux values greater than 50 kg s-1m-1. This 

result complements those found in both the temporal and spatial plots and suggests that 

inset and restored features activate during moderate flood events. During the major flood 

event, Fig. 4.7B, there is a higher likelihood of connectivity on the historical surface, but 

mass fluxes greater than 100 kg s-1m-1 along historical interfaces remain less common 

than inset and restored floodplains. These patterns are even more pronounced for 

momentum in Figures 4.7C and 4.7D. Mean mass and momentum flux were always 

greatest at inset locations and least for historical floodplain surfaces. 
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Figure 4.7. Relative frequency of maximum modeled mass and momentum fluxes for the 
1.5-day, moderate (A and C) and major flood (B and D). Dashed lines represent mean 
maximum values for each geomorphic classification. Note that portions of the 
distribution above a 0.075 fraction and above 200 kg s-1m-1 and 200 N m-1 are not plotted 
to focus on changes at lower mass and momentum fluxes. 
 

4.4.7. Lateral and Longitudinal Discharge Relationships 

Of interest in the study of river connectivity is the relationship between lateral and 

longitudinal movement of surface water. Therefore, modeled discharges at the channel-

interface boundary and longitudinal cross-sections were quantified to understand how 

lateral and longitudinal volumes relate to one another. Figure 4.8 shows ratios of lateral 

to longitudinal discharge at specified stations. As expected, during moderate flood events 

ratios remain at zero before and after the flood wave passes each reach, while under 

major flood conditions, ratios begin at and end at fractions characteristic of the 150 m3s-1 

initial condition. For example, at 11 km a positive ratio is recorded, meaning more water 

is being transferred to the floodplain during when the flood wave enters the reach, and at 

12 km a negative ratio is recorded, meaning water is being returned to the main channel. 
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For all model simulations, a maximum ratio of 0.33 was recorded (not shown), however 

this occurred at a location in which severe channel narrowing creates an almost 

perpendicular channel-floodplain interface 20 km downstream. Lateral discharge 

predominantly remained below 10% of longitudinal discharge (89%). Increases in the 

ratio occur when the floodplain in the region of interest becomes connected to the main 

channel. This can occur under moderate or major flood events. When a kilometer of the 

reach activates to a high degree during moderate flood events, ratios can increase greatly. 

The impact of connectivity during major flood events results in a more dampened 

increase or decrease in the ratio.  

 

 
Figure 4.8. Ratio of lateral to longitudinal discharge at 5 km length sections of channel-
floodplain interface for (A) 1-day, moderate, (B) 1-day, major, (C) 1.5-day, moderate, 
(D) 1.5-day, major, (E) 3-day, moderate, and (F) 3-day, major flood events. 
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occurred before peak longitudinal discharge. For increasing duration events, the early 

arrival increased approximately in proportion with the increase in duration. Maximum 

negative lateral discharges did not follow the same pattern. For moderate flood events, 

timing of maximum negative lateral discharges (i.e. time when the greatest discharge is 

returning to the channel) is relatively uniform. In comparison, for major flood events, 

time to maximum negative discharge occurs at later times, although not delayed to the 

same extent to which maximum lateral discharge arrives early. The delayed return is 

likely indicative of elevated water surface elevations in the main channel preventing a 

floodplain to channel flow gradient from developing until substantially later. During 

moderate flood events, the water surface elevation is not high enough to inundate the 

majority of interface connections, thus water can flow back to the main channel 

immediately after the flood peak has passed.  

 

4.5. Discussion 

The quantification of mass and momentum fluxes provide key insights for understanding 

river processes. While leading ideas in river science have stressed the importance of 

lateral surface connectivity for biogeochemical processes and ecological heterogeneity of 

the floodplain [Junk et al., 1989; Ward, 1989; Ward and Stanford, 1995; Hughes, 1997], 

the literature remains limited in regard to methods that quantify physical processes of 

mass and momentum flux in natural settings beyond discrete sampling points [Babaeyan-

Koopaei et al., 2002]. The methodology presented here provides the ability to quantify 

flux totals subjected to the floodplain at various spatial scales and at high temporal 

resolution. Impacts of hydrologic and geomorphic alteration on long-term mass flux have 

been documented [Stone et al., 2017]. This work expands upon the implications of 

geomorphic alteration on mass flux and includes analysis of momentum flux and lateral 

flow quantities and timing during discrete flow events. Results suggest that reach-scale 

floodplain connectivity drives net mass and momentum fluxes and lower magnitude, 

short duration events have a greater impact on feature scale connections. While it has 

been known for some time that different flow events will likely alter the geomorphology 

and ecology of different features based upon flow event characteristics, quantification of 

flux totals will lead to greater understanding of these phenomena. Applications for the 
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quantification of mass and momentum transfer abound. There has been a call for the 

description of disturbance forces in application to ecosystem dynamics [Lake, 2000; 

Formann et al., 2013]. This type of work is also optimal for the study of biogeochemical 

hotspots and hot moments at key interfaces [McClain et al., 2003]. 

Differences in the characteristics of mass and momentum flux display the 

importance of expanding hydrologic metrics beyond inundation depths and volumes. 

Within the MRG, variations in connectivity of the left and right floodplains leads to 

considerable differences in total momentum transferred to the floodplain surface and the 

amount of momentum dissipation during moderate and major flood events. Therefore, it 

is likely that processes relating to momentum flux and dissipation on these surfaces will 

be subject to the same patterns. In addition, momentum flux is by definition a force, such 

that lengths of the channel-floodplain interface with greater momentum flux will have 

more force acting on both the biological and geomorphic processes associated with that 

location, at least in terms of advective movement of water. 

Results indicate that inset floodplains within the previously trained channel are 

key locations for mass and momentum transfer and display greater heterogeneity than 

historical floodplain surfaces. Under moderate flood scenarios the inset and restored 

floodplain features have higher connectivity than the historical floodplain surfaces. It is 

likely that many of these surfaces are relatively new due to the formation of vegetated 

islands and consequently bank attached islands [Meyer and Hepler, 2007], but the 

establishment of vegetation indicates that these surfaces are stable and active floodplain 

elements due to extended drought and river engineering practices [Mussetter 

Engineering, Inc., 2006]. Therefore, these surfaces do activate as expected during 

moderate flood events which exceed the estimated bankfull flow volume [Swanson et al., 

2011]. With the existence of a large number of vegetated islands within the reach [Meyer 

and Hepler, 2007], these surfaces likely are subject to similar fluxes as inset floodplains. 

In contrast, the historical floodplain minimally inundates under moderate flood events 

and as documented above, the activation is best described by low mass and momentum 

flux.  

While geomorphic observations on the reach have described the incision of the 

channel below its former floodplain [Richard and Julien, 2003; Swanson et al., 2011], 
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this research describes the impact that channel incision has on physical processes. Even at 

major flood discharges, which are likely greater than the reach will be subject to due to 

flood control operations [Llewellyn and Vaddey, 2013], the characteristics of the 

connectivity on the historical floodplain are altered from heterogeneous to more 

homogeneous mass and momentum connections. Momentum flux remains low even 

when mass flux increases. The lack of high momentum flux locations along the historical 

floodplain is likely beneficial to the protection of levees and other engineered structures 

but detrimental for supporting heterogeneous floodplain ecosystems. Further, a lack of 

high momentum flux locations suggests that these historical floodplain features are likely 

dominated by overtopping connections and lack more concentrated, high velocity 

connections (e.g. high flow side channels or down valley flow at outside meander bends). 

Other altered systems like the MRG, which have been cut off from channel and 

floodplain adjusting flows, will also likely be subject to more homogeneous flux patterns. 

One implication is that the use of flood pulses or environmental flows may not drive 

heterogeneous hydrodynamic processes to the degree that is presumed. Instead, the 

defining geomorphology of a system may impact hydrodynamics to the extent in which 

disproportionally high flows are needed to achieve similar flux magnitudes.  

Understanding spatial heterogeneity at the river channel and floodplain interface 

is critical to improved understanding of process based restoration. Analysis of restoration 

site boundaries indicates that while the sites do provide improved mass and momentum 

transfer within the river reach, the restored connections provide limited exchange of mass 

and momentum in comparison with inset and historical surfaces. The inset floodplain 

features which have formed from the river’s adjustment to changing upstream inputs (i.e. 

climate, sediment load) and local controls (channelization and invasive vegetation) 

therefore remain as the dominant features for floodplain processes to occur. Although 

many restoration projects within the Albuquerque Reach of the Rio Grande have been 

implemented, this research quantifies the fact that mechanical restoration can only 

achieve so much in terms of restoring floodplain connectivity and river process. It is 

unlikely that the physical reconnection of floodplains through mechanical means will 

ever produce the magnitudes of river process needed to establish fully functioning native 

systems. However, it must be noted that the historical floodplain within much of the 
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MRG is relatively disconnected due to channel incision. Therefore, reconnecting 

historical floodplain in the reach involves excavation. In other systems, reconnection of 

floodplains that are still at appropriate topographic levels is likely to be more influential 

in accruing channel to floodplain processes through levee setback or environmental flow 

strategies. Further, restoration features in the MRG were not constructed to restore river 

process but predominantly for the creation of Rio Grande silvery minnow habitat. Thus, 

other restoration strategies may promote greater returns of river process.  

Although mechanical restoration of floodplain features is unlikely to produce the 

levels of river process to achieve functional native systems, this research does display the 

importance of river hydrology in the magnitude of process to which a floodplain is 

subjected. It may be that managed flood pulses, or environmental flows, can be mapped 

to specific areas of interest using the methods displayed here [Thoms and Parsons, 2003]. 

As is shown in Figures 4.5 and 4.6, key locations of connectivity activate at certain 

discharges and are substantially less engaged at other discharges. Therefore, the 

rejuvenation of certain areas within a landscape or the desire to ensure quantities of 

nutrients reach a specific area could potentially be addressed by fine-tuning 

environmental flows to spatial and temporal dynamics of floodplain connectivity. 

Further, climate change will impart changes to the flow regime [Llewellyn and Vaddey, 

2013], and the ecological integrity of various surfaces is likely to change due to 

differences in process and transport at altered flow levels. 

Lateral and longitudinal discharge relationships were analyzed and show 

relationships to changes in flood magnitude and duration. The early arrival of lateral 

flood peaks provides greater insights into the occurrence of previously described 

connectivity patterns. For example, timing of high flow volumes and velocities are also 

likely to be important in the description of geomorphic and ecological changes across the 

floodplain [Tockner et al., 1999; Lake, 2000]. In terms of lateral to longitudinal flow 

ratios, moderate flood events created sharp increases in the ratio. During major flood 

events, the ratio does not increase to the same degree. This suggests that topography 

dominates channel-floodplain exchanges when connections activate, while roughness 

characteristics likely limit exchange during high magnitude and long duration events 

through the dissipation of momentum. Ratios predominantly remained below ten percent 
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of longitudinal flow, a substantially lower number than was estimated along the highly 

connected, larger, low-gradient, and low-floodplain relief Atchafalaya River [Scott et al., 

2014]. Main factors in this lower ratio are likely the lack of floodplain area due to levee 

construction for the storage of water, channel incision limiting the time of connectivity, 

and decreased flood magnitude relative to the size of each river.  

This research no doubt suffers from limitations but also presents improved 

metrics in the quantification of river processes important to river geomorphology and 

ecology. Limitations include the assumptions built into hydrodynamic models, 

description of interpolated channel topography, and restricting hydrologic processes to 

those occurring on the surface. Of course, modeling studies alone are not optimal in the 

study of rivers due to the previously discussed uncertainties and empirical data can 

provide critical information about discrete occurrences along a river. However, new 

methods in river modeling can provide important complementary insights to previous 

field and flume studies and provide context for future data collection [Covino, 2017]. 

With the continual improvement of hydrodynamic models and computational power, 

numerical modeling is a tool to be utilized. While this research does not seek to address 

specific ecological challenges, the metrics displayed in the paper do have implications for 

ecological issues and the methods can be shifted to better understand direct impacts on an 

ecological question of interest. Linking hydrodynamics with specific ecological or 

geomorphic processes, measuring temporal connectivity over various time scales, and 

comparing quantified hydrodynamics in other types of river systems should be the next 

steps in application of such methods. This research focused on a 27-km reach of the 

MRG, but the methods are applicable for any stretch of river given the availability of 

appropriate model requirements and sufficient computational time. Ultimately, field 

collection of data presented here would be nearly impossible based upon the spatial scale 

and dynamics of flood waves, however values could be verified by future field studies. 

The spatial and temporal possibilities with numerical modeling approaches should 

continue to be pursued and expanded in conjunction with physical modeling and field 

data.  
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4.6. Conclusions 

The goal of this study was to analyze spatial and temporal lateral hydrodynamics along 

the channel-floodplain interface during unsteady flow events. More specifically, the 

objectives were to improve understanding of floodplain connectivity through the 

quantification of mass and momentum fluxes, and analyze how lateral discharge relates 

to longitudinal flow characteristics. These objectives were achieved through the two-

dimensional, hydrodynamic modeling of the Rio Grande near Albuquerque, New Mexico 

and subsequent scripting techniques to analyze model outputs. Results indicate that inset 

floodplains are subjected to greater and more heterogeneous mass and momentum 

transfer. In addition, flood magnitude and lateral connectivity drive differences in 

dynamic mass and momentum flux which ultimately yield implications for the nature of 

process along rivers. Finally, lateral and longitudinal flow ratios and timings are of 

distinctly different nature under changing flood magnitudes. With the call within river 

science for quantification of driving forces and processes, quantification of lateral fluxes 

presented here provides a measure of context for a heavily manipulated, dryland river. 

Further studies are needed to provide these relationships for other types of rivers, 

however, results presented display the ability to investigate and quantify floodplain 

connectivity using modeling techniques. Spatial and temporal investigations into mass 

and momentum flux as well as the relationship between lateral and longitudinal discharge 

are necessary for many specific ecological research topics and to unify conceptual river 

science with more thorough process-based approaches.  
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Chapter 5 

 

Conclusions 

 
An understanding of hydrodynamic flood wave processes is critical to river management, 

whether the management goals are based on flood control, water use, or river restoration 

strategies. In addition, improved description of these processes over larger spatial and 

temporal scales will continue to inform future hydrologic, geomorphic, and ecologic 

science. With river systems in the United States and developed world heavily impacted 

by anthropogenic alterations, it is also important to understand the scope to which 

processes have changed through time. 

The research presented in Chapters 2 through 4 addresses the needs for 

quantification of hydrodynamic processes both in the context of historical changes and 

altered contemporary geomorphology and ecology. The research implements novel 

approaches in high-resolution, two-dimensional hydrodynamic modeling of historical and 

contemporary systems (Chapters 2 and 3) and novel metrics with which hydrodynamics 

can be assessed both longitudinally (Chapter 2) and laterally (Chapter 4). 

   

5.1. Objective Summaries 

This dissertation addressed the following three objectives: 

1. Evaluate how the ecosystem service of flood wave attenuation has changed with 

the implementation of river engineering practices in the name of flood protection 

and water use as well as contemporary river restoration efforts 

2. Describe the sensitivities of flood wave attenuation to contemporary and altered 

conditions representative of historical river manipulation 

3. Characterize channel-floodplain connectivity through lateral connectivity metrics 

important in the consideration of biogeochemical processes 

These objectives were more specifically addressed in Chapters 2, 3, and 4, respectively, 

and summarized below. 
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5.1.1. Chapter 2 

The main objective of this chapter was to assess how humans have impacted the 

ecosystem service of flood wave attenuation within the Middle Rio Grande. The 

anthropogenic changes to the Middle Rio Grande are most notable in historical river 

engineering practices for the purpose of flood control and water use. These changes have 

drastically limited the lateral extent of connected floodplain surfaces and, in combination 

with extended drought conditions, created a narrower, deeper channel near the city of 

Albuquerque. More recently, river restoration strategies have sought to improve channel-

floodplain connections through mechanical lowering of floodplain surfaces in the name 

of habitat creation for the endangered Rio Grande silvery minnow (Hybognathus 

amarus). While these features are not designed for flood wave attenuation, the influence 

of these features on river process was of interest. The objective was achieved through the 

modeling of three representative time periods in the Albuquerque Reach of the Middle 

Rio Grande. The first time-period, 80 – 100 years before present, was representative of 

the time immediately prior to the construction of levees and implementation of 

channelization techniques within the reach. The second time-period, 15 – 20 years before 

present, was representative of the river before restoration strategies began. The last time-

period was representative of contemporary conditions. This methodology provided novel 

approaches to quantification of flood wave attenuation through modern times and the 

presentation of normalized metrics which may be used for comparison of rivers or river 

reaches. In addition, hydrograph skewness was investigated as a function of channel-

floodplain connectivity and heterogeneity of floodplain surfaces 

 Results indicate that historical conditions do lead to the greatest levels of 

attenuation in both flood magnitude and timing along the reach. Water surface elevations 

under historical conditions are attenuated to a lesser degree at historical discharge most 

likely due to less sensitivity of water surface elevation to increases in discharge. 

Moderate flood wave shape under historical conditions is of considerably different form 

than those under pre-restoration and contemporary conditions. This change in flood wave 

shape is attributed to the considerably larger floodplain area available for inundation and 

the heterogeneity of elevation on that surface to connect at various discharge levels. The 

availability of floodplain surfaces for inundation is displayed in inundated area 



	 116 

attenuation ratios, with historical floodplain surfaces continuing to display water storage 

availability even at major flood discharges. Finally, characteristics described by 

theoretical flood modeling are also observed in the simulation of a historical flood along 

the MRG. The research presented in this chapter displays the ability of two-dimensional, 

hydrodynamic modeling to capture processes associated with channel-floodplain 

connectivity important to flood wave attenuation. In addition, metrics used are applicable 

to other systems to better understand how differences in river system hydrology and 

geomorphology lead to differences in the attenuation process in terms of surface water 

processes.  

 

5.1.2. Chapter 3 

Chapter 3 investigates the sensitivity of attenuation to channel and floodplain 

characteristics. The alterations both planned and unplanned along rivers is evident, thus 

understanding how alterations impact downstream attenuation is important in the context 

of both flood control and ecological function. Channel and floodplain characteristics (e.g. 

floodplain roughness, channel depth, island area, etc.) were spatially quantified along 

1000 meter segments of the Rio Grande to determine the influence of each on the rate of 

flood wave attenuation using statistical approaches. In addition, theoretical changes in 

roughness and topography were also investigated to investigate how uniform changes to 

these important river characteristics influence attenuation as well. All modeling was 

conducted on the contemporary channel of the Albuquerque Reach of the Middle Rio 

Grande. The research can be applied to the understanding of attenuation as a process and 

more specifically to the processes occurring in dryland rivers of the southwestern United 

States which have been subjected to similar ecological and anthropogenic changes over 

the last century. 

 Simple and multiple linear regression analysis found contemporary flood wave 

attenuation within the heavily manipulated MRG to be correlated to available area for 

flow and inversely correlated to the proportion of total area inundated at flood wave 

onset. Theoretical alteration of channel and floodplain characteristics suggest reach 

length topographic and roughness alterations can have similar magnitude impacts on the 

degree of attenuation. However, attenuation is altered differently by changes in 
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topography and roughness. The processes associated with channel incision and 

aggradation are influenced to a great magnitude on a local feature, while those processes 

associated with roughness are influenced locally to a small magnitude but accrue to 

similar reach length magnitudes. Finally, in terms of physical flow conditions, changes to 

topography and roughness drive differences in water surface elevation, flow velocity, and 

proportion of downstream flow on the floodplain. While the physical conditions and 

qualitative river processes of many river systems are known, this chapter quantifies how 

changes to channel-floodplain conditions drive changes in the dynamic process of flood 

wave attenuation.  

 

5.1.3. Chapter 4 

Reach length hydrodynamic processes such as flood wave attenuation and ecological 

floodplain heterogeneity are ultimately dependent on the transfer of mass and momentum 

from the main channel to the floodplain. Chapter 4 sought to expand new techniques in 

the quantification of mass and momentum flux at local and feature scales and to quantify 

differences in lateral connectivity within the Middle Rio Grande due to defining channel-

floodplain morphology. All modeling for this chapter was conducted on the 

contemporary Albuquerque Reach of the Middle Rio Grande. The data needed to address 

these objectives was extracted from model outputs along the channel-floodplain interface 

and integrated through time. The implications of variable geomorphology and the 

influence of channelization were a focus of investigation. Three floodplain feature types 

were analyzed: inset, historical, and restored floodplains. Additionally, temporal, lateral 

discharge was compared to longitudinal flow to understand the extent of lateral transfer 

and the timing with which connectivity occurs. 

 Mass and momentum flux display similarities in temporal fluxes, however, 

differences in these fluxes indicate interesting findings about the nature of connectivity in 

the reach. Inset floodplains were found to have the greatest magnitude in flux values and 

the largest amount of heterogeneity in flux. Historical floodplain mass flux increased in 

total flux under major flood events due to the connection of a larger length of channel-

floodplain interface, but the nature of that connection is limited in that it remains less 

heterogeneous and momentum flux magnitudes remained low. Lateral and longitudinal 
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flow timings indicate that maximum lateral discharge occurs before longitudinal peak. 

Lateral-longitudinal exchange ratios are driven by instantaneous topographic connectivity 

at moderate flows and controlled by mass and momentum flux processes under major 

flows. The results indicate a number of implications for altered river systems and 

strategies for restoration, such as environmental flows, in that river process is not always 

restored to heterogeneous levels even when flows are of large magnitude. The 

quantification of fluxes is a technique that can be applied to other stretches of river for 

comparison of channel-floodplain hydrodynamics or in modeling biogeochemical 

processes.  

 

5.2. Future Research 

River science includes topics such as hydrodynamic process, three-dimensional temporal 

connectivity, and environmental flows. The research presented within this dissertation 

sought to describe process and connectivity in the context of unsteady flows and altered 

river conditions. There are a number of potential pathways for future research including 

applications of the modeling methodologies, expansion of the hydrodynamic metrics, and 

verification and implementation of the flux dynamics into approaches focusing on 

geomorphic and ecologic processes. Further research relating to flood wave attenuation 

and lateral, hydrodynamic fluxes can help inform knowledge about ecosystem services 

along rivers and associated floodplains. 

 

5.2.1. Application of Modeling Methodologies 

The modeling methodologies presented within this research displayed the inherent benefit 

to high-resolution two-dimensional modeling for studies in which channel-floodplain 

connectivity is considered important. Chapter 2 displayed the impacts of heterogeneous 

floodplain surfaces and the impact instantaneous floodplain storage can have on flood 

wave attenuation. Chapter 3 statistical results suggested that two-dimensional modeling is 

able to capture channel-floodplain characteristics important to flood wave attenuation. 

Chapter 4 displayed the ability of two-dimensional models to estimate fluxes at key 

locations along the channel-floodplain interface. With the importance of high-resolution 

data inherent to all three chapters, the methodologies presented should be used in other 
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systems. The ability to partition each model and run in reasonable computational times 

provides a host of applications for this approach. Computational modeling of 

hydrodynamic systems should continue to be pursued as a complementary tool to field-

based science in understanding process based river science [Covino, 2017]. 

 

5.2.2. Expansion of Hydrodynamic Metrics 

Results presented here focus predominantly on attenuation ratios, discharge ratios, and 

mass and momentum fluxes. Chapter 2 introduced flood wave attenuation ratios and 

characterized changes in flood wave shape. Chapter 3 expanded upon those metrics 

developed in Chapter 2. Chapter 4 introduced feature and reach flux quantification in 

addition to lateral-longitudinal flow characteristics. Possibly the most accessible future 

research is in the combination of Chapter 3 and Chapter 4 methodologies. The results of 

Chapter 3 indicated differences in process associated with floodplain alteration in 

comparison to only bank alteration. It would be of interest to better understand how mass 

and momentum fluxes are impacted by changes in floodplain and bank roughness. Using 

methods of Chapter 4, elemental flux magnitudes are likely to inform these differences to 

a great degree. Relatively recent research has helped to describe this process in a 

simplified environment [Vermaas et al., 2011], however, the application within high-

resolution, two-dimensional hydrodynamic modeling can inform larger scales and bank 

versus floodplain alteration scenarios.  

In addition to the combination of chapter methodologies, attenuation ratios, 

lateral-longitudinal discharge patterns, and mass and momentum fluxes should be 

quantified for other river systems. The work conducted here was implemented on a sand-

bed, dryland river. While results may be similar for rivers with similar geomorphologic 

and anthropogenic inputs, results in other rivers may be drastically different. Because 

many of the metrics presented are novel approaches, little can be said of other 

environments at this point. 

 

5.2.3. Implementation in Geomorphic and Ecologic Approaches  

Chapter 4 presented novel metrics in an attempt to quantify temporal and spatial channel-

floodplain connectivity. These metrics go beyond the typical hydrodynamic modeling 
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metrics reported in previous literature such as depth, velocity, and shear stress. Expansion 

of local hydrodynamic metrics should continue and be verified by field studies. Chapter 4 

quantifies connectivity in terms of mass and momentum flux and lateral and longitudinal 

discharge. These metrics can and should be implemented in studies involving 

biogeochemical processes important to floodplain geomorphology and ecology [Harvey 

and Gooseff, 2015]. Studies involving the connectivity and hydrodynamic exchange 

metrics used here can inform a plethora of geomorphic and ecologic interests with the 

improved spatial and temporal resolution the metrics provide. 
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Appendix A 

 
The following appendix describes an investigation into the uncertainty involved with 

unsteady flow modeling when channel and floodplain microtopography are not known. 

This technical note will likely be submitted for publication in a peer-reviewed scientific 

journal. 

 

Addressing uncertainty in the parameterization of hydrodynamic models for 

unsteady flow scenarios 

 

Introduction 

Development of two-dimensional hydrodynamic models includes substantial 

uncertainty most often dealing with the definition of the element specific parameters: 

elevation and roughness. Because elevation is typically a measured value from a given 

data source while roughness is often an estimate based upon user experience, roughness 

frequently becomes an effective parameter to account for momentum dissipation that is 

not captured in the process-based numerical equations and adjusted to produce optimal 

model performance [Lane and Richards, 1998; Morvan et al., 2008]. A substantial 

amount of research has presented the implications for varying topographic inputs on 

flood inundation patterns [Hardy, R.J. et al., 1999; Casas et al., 2006; Charrier and Li, 

2012; Md Ali et al., 2015; Witt III, 2015], as well as flood stage [Schumann et al., 2008]. 

Remote sensing techniques like light detection and ranging (LiDAR) are the most 

effective methods to produce satisfactory model results [Casas et al., 2006; Schumann et 

al., 2008; Witt III, 2015]. Because previous research has focused predominantly on flood 

inundation mapping, understanding of how topographic and roughness uncertainty 

influence river processes during unsteady flow events is necessary. Difficulty in 

calibration of a model for both inundation and wave celerity has been demonstrated in 

simplified raster-based modeling efforts [Horritt and Bates, 2001]. However, 

uncertainties associated with unsteady flows in fully two-dimensional flood models need 

to be addressed as these types of modeling efforts are now considerably more prevalent 

with recent increases in computational power. 
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Historical models can provide important insights into changes in river conditions 

and processes, however creation of these models produces new questions in regard to 

uncertainty. Previous historical model development has analyzed fish habitat [Jacobson 

and Galat, 2006] and floodplain inundation patterns [Hesselink et al., 2003]. These 

studies both contribute to the general understanding of the ways in which rivers have 

changed. However, it is likely that all historical models are subject to limited data sources 

and data quality. In order to make appropriate conclusions from historical models in 

comparison with present-day models, uncertainty is important to address. Topographic 

uncertainty has been shown to have a substantial impact on model results even with 

modern data sources [Legleiter et al., 2011]. Therefore, uncertainty of historical model 

results is likely to increase greatly. For example, if the channel and floodplain elevations 

lack the detail to include microtopography, defined here as topographic heterogeneity on 

the scale of 1 cm to 1 m [Moser et al., 2007], then it is likely that roughness would need 

to be increased to account for the momentum dissipation of the missing microtopography. 

This produces an interesting link between the roughness and elevation parameterization. 

While previous studies have shown that smoothed topographic data produce inferior 

inundation mapping results to modern topographic inputs such as LiDAR [Casas et al., 

2006; Witt III, 2015], quantification of hydrodynamic processes in historical scenarios 

may still be achievable through manipulation of roughness parameterization. 

The objective of this research was to analyze the uncertainty associated with 

topographic and roughness parameterization in two-dimensional modeling applications 

with a focus on historical data sources and unsteady flow events. These parameters are 

fundamental to creation of an appropriate model and are difficult to describe in historical 

models due to lack of accessible data or resolution of existing historical data. The 

objective was achieved by: (1) analyzing a historical model and defining the differences 

in historical parameterization data compared with current data; (2) investigating the 

uncertainty of these defined differences in parameterization data in a modern river reach 

using statistical analysis of the differences between various parameterization techniques. 

It is believed that this approach will be helpful in the development of historical models in 

the future. Historical models have the potential to inform river science regarding how 

systems have changed either due to natural or anthropogenic influence. 
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Methods 

 

Site Description 

Modeling for this study was conducted on a portion of the Rio Grande known as 

the Albuquerque Reach of the Middle Rio Grande (MRG) in central New Mexico. This 

stretch of river historically existed in a broad, alluvial valley and was described as a 

braided, sand-bed river. Over the past century, the river has been manipulated with 

modern river engineering for the purpose of water use and flood protection. With a 

constricted floodplain and fortified banks producing a river that is better suited for water 

deliveries than ecological processes, the Albuquerque Reach of the Rio Grande provides 

an excellent environment for a case-study on the impacts that river engineering has on 

hydrodynamic processes, specifically flood wave attenuation. It is in this context that a 

historical model was developed. 

 

Historical Model Development 

Input data were collected to represent conditions prior to significant river 

engineering practices. Channel cross-sections originated from survey information from 

1936 while 1918 elevation contours with 0.61 m (2 foot) spacing were used to interpolate 

floodplain elevations. In addition, a 1918 land use map was digitized to represent general 

roughness classifications within the Rio Grande valley. Clearly, the use of data from 

different years means the constructed model does not represent any specific condition in 

time, but instead a representative condition of the channel and floodplain from that time 

period. This historical model was developed for the purpose of studying anthropogenic 

influences on the large-scale river process of flood wave attenuation. 

 

Historical Model Uncertainty 

If the goal of historical modeling is to provide a context or comparison for 

modern river process quantification, the historical model should function with a similar 

amount of uncertainty as the contemporary model. Because the historical model for the 

Albuquerque Reach of the Rio Grande was developed with the most detailed data 
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collected during that time period and the model represents a time period before stream 

gaging in the reach, it is impossible to test the uncertainty of the model or to calibrate the 

model to flow data. Therefore, this research addresses historical model uncertainty 

through the lens of the modern river channel and floodplain. In this way, similar 

attributes of the historical model can be tested in comparison with modern data sources 

and resolutions. 

Uncertainty of topography and roughness parameterization are the main focus of 

this research as these are necessary parameters for each element of a two-dimensional 

mesh. Historical topography data sources are likely the greatest cause of increased 

uncertainty in historical modeling efforts. Existing roughness tables are often based upon 

sediment, bed form, and vegetation characteristics. With modern hydrodynamic 

floodplain topography based upon high resolution data, often light detection and ranging 

(LiDAR) sourcing, topography captured in a hydrodynamic model is complex. This is 

important to inundation dynamics. However, because historical data lacks the same 

amount of detail, flow processes are likely to be greatly impacted and inundation patterns 

have been shown to differ. It is anticipated that changes in small-scale flow processes 

associated with lack of microtopography are likely to influence the large-scale river 

process of attenuation as well. In comparison, uncertainty associated with roughness may 

not change drastically between historical and contemporary sources as roughness 

characterization is often lumped or distributed at an aerially digitized scale, that was 

possible in the creation of the historical model in this research. Roughness will, however, 

remain a catch-all for any momentum loss not captured by the other terms in the 

momentum equations [Lane and Richards, 1998; Morvan et al., 2008].  

 

Modeling Potential Historical Uncertainty 

Because historical channel bathymetry may be difficult to obtain or be limited in 

extent, two alternatives for channel bathymetry were used in this study: (1) a channel 

described using traditional cross-sections surveys, and (2) a channel described using a 

planar bottom at a mean elevation. The cross-section bathymetry was created using 

existing United States Bureau of Reclamation (USBR) cross-section data from 2010. 

These cross-sections were imported into the Hydrologic Engineering Center’s River 
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Analysis System (HEC-RAS) and 50 m cross-sections were interpolated. The cross-

sections were then exported to ESRI’s ArcMap where a triangular irregular network was 

created and converted to a digital elevation model (DEM) for the channel bottom. The 

simplified planar bathymetry was created using USBR cross-section data as well. 

Elevations from data points at each cross-section within the USBR defined active-

channel were averaged to create a single elevation at each cross-section. ArcMap was 

again used to create a plane representative of downstream average channel elevation. The 

area of the active channel was then extracted from this plane. Although this method used 

cross-section information, it is an easier method for historical models in that a similar 

channel description could be made based on estimated channel depth or width-depth 

relationships. In addition, due to the uncertainty associated with highly dynamic channel 

beds of sand-bed rivers, the researchers were interested in how this simplified method 

influences modeled flood wave processes. The two methods constitute opposite ends of 

the spectrum in the representation of channel bathymetry using cross-section data. 

One of the clear differences between historical topography and modern collection 

techniques is the lack of microtopography within historical data sources. To investigate 

the influences of this difference, two types of floodplain topographies were utilized: (1) 

floodplain topography was described with a LiDAR dataset, and (2) floodplain 

topography was described using a 30-m focal mean for each data point, thus creating a 

floodplain with minimal local microtopography. It is worth noting that the floodplain 

elevations derived from spatially-averaging LiDAR elevations may in fact be more 

precise than those elevations interpolated from historical contours. However, because 

there is no way of testing historical contours for accuracy, the historical elevations need 

to be considered representative. This method only attempts to describe the influence of 

effectively smoothed topography on flood wave dynamics. 

With two types of channel bathymetry and two types of floodplain topography, 

three distinct models were created. All models used the same two-dimensional mesh with 

an element resolution of 40 m2 and 725,310 total elements but with differing 

combinations of channel and floodplain topography to focus on one difference between 

historical and modern variations (Table A1). D-Flow Flexible Mesh (D-Flow FM), a 

finite-volume modeling program from Deltares, Inc., was chosen for mesh development 
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and modeling due to the ability to partition constructed meshes and perform parallel 

computations. Curvilinear mesh elements were created for the main sand-bed channel 

while vegetated islands and floodplains were represented with triangular elements. 

Roughness values were described in terms of Manning’s n-values. Floodplain and 

vegetated island roughness values were distributed based upon 2008 aerial vegetation 

mapping [Hink and Ohmart, 1984; Mussetter Engineering, 2002] and held constant 

throughout the model runs (Table A2). Channel roughness was a lumped parameter 

which varied during steady model simulations investigating channel bathymetry and was 

held constant during steady investigations of floodplain topography as well as unsteady 

simulations (Table A3). 

 

Table A1. Definitions of models created with differing topographic description. 
Model ID Channel Bathymetry Floodplain Topography 
1 XSL Cross-section LiDAR 
2 PL Plane LiDAR 
3 XSA Cross-section Focal Average 

 
Table A2. Floodplain Manning’s roughness characterization. 

Roughness Description Manning's n-value 
Agriculture 0.045 
Open / bare ground / scattered brush-weeds 0.045 
Scattered trees / light brush 0.060 
Medium density trees / brush 0.080 
Dense trees / brush 0.100 
Urban / industrial  0.080 

 
 
Table A3. Channel Manning’s roughness characterization 

Model Steady Flows Unsteady Flows 
1 0.025 - 0.031 0.025 
2 0.025 - 0.031 0.031 
3 0.025 0.025 

 

 

Modeled Hydrology 

In order to investigate the hydrodynamic uncertainties of the Albuquerque Reach 

of the Rio Grande, both steady and unsteady discharges were modeled. All steady 
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simulations in this research were conducted at a moderate-high discharge of 142 m3s-1 

(5000 ft3s-1). This discharge is high enough to overbank in some areas of the modern river 

channel and remain contained within the main channel in other areas. All steady flow 

events were run for 96 hours. Because the amount of mass associated with a flood wave 

is likely to be relevant to flood wave attenuation (i.e. a smaller wave will be attenuated 

more quickly), six different flood waves were modeled. All flood waves had the same 

magnitude, 150 m3s-1, relative to the initial flow conditions, but both initial conditions 

and the duration of the events varied. Figure A1 displays the three flood waves with 

discrete durations at initial conditions of 30 m3s-1. The same flood waves were repeated 

for initial conditions of 150 m3s-1. 

 
Figure A1. Small magnitude flood waves input to upstream boundary of models. 

 

Model Output Analysis 

Steady and unsteady model results were analyzed in the context of historical 

model uncertainty and implications for modeling river process. Floodplain inundation 

under steady flow scenarios was described in terms of frequency distributions and 

qualitative spatial representation. Implications of variable roughness values were 

investigated in the comparison cross-sectional and planar channel bathymetry with the 

goal of understanding how roughness must be adjusted to account for higher detail in 

0 10 20 30 40 50 60 70 80 90
Time (hrs)

0

20

40

60

80

100

120

140

160

180

200

D
is

ch
ar

ge
 (m

3 /s
)



	 143 

channel bathymetry. A one-sample t-test using the difference between cross-sectional and 

planar floodplain inundation predictions was used to determine which combination of 

roughness values assigned to the respective models produced the most similar results. 

Because of differences in water surface elevations due to contrasting channel bathymetry 

through the river reach, a mean of zero in the frequency distributions was taken to 

indicate the models are performing in a similar manner to produce comparable river 

processes. These results informed the channel roughness values for unsteady flow 

scenarios. Unsteady flood waves were analyzed for differences in percent attenuation and 

time of peak at 14 km downstream, the approximate midpoint of the modeled reach. 

Percent attenuation was calculated using the following equation: 

 

" = 	 78& − 79:&78&
∗ 100 

 

where A is percent attenuation, QUp is upstream peak discharge, and Q14p is measure peak 

discharge at 14 km downstream.  

 

Results and Discussion 

 

Steady Flow Scenarios 

The hydrodynamic models were run under steady flow conditions to investigate 

the relationship between the channel bathymetry description and bed roughness 

parameterization. Frequency distributions between XSL and PL models show that 

roughness values must be considerably different depending on how channel bathymetry 

is described (Fig. A2). None of the distributions had a statistically significant mean of 

zero. However, when compared with XSL model runs that used a Manning’s roughness 

value of 0.025, the PL model with a roughness value of 0.031 produced the mean 

statistically closest to zero (Table A4). In addition, the models had the smallest difference 

in water volume on the floodplain. Since mass transfer to the floodplain is an important 

process in flood wave attenuation, these results suggest a similar amount of mass transfer 

has occurred in the models. Therefore, 0.025 and 0.031 were used for the main channel in 
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unsteady model simulations for the cross-section and planar bathymetries, respectively. It 

should be noted that these results do not address the question regarding the correct 

roughness values for the modeled reach, but instead focus on how changes to model 

parameters can impact model results. It is clear that notably different roughness values 

must be used to produce similar results in terms of total floodplain inundation when 

different methods of channel bathymetry description are utilized. Therefore, if historical 

models are created using simplified techniques, care must be taken to select an 

appropriate roughness value for both the channel and floodplain given the chosen 

method. 

 

 
Figure A2. Frequency distributions describing floodplain inundation differences between 
cross-sectional and planar channel bathymetry model predictions. Yellow coloring 
indicates greater depth in Bathymetry model while blue coloring indicates greater depth 
in Planar model. 
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Table A4. Statistical evaluation of inundation differences between cross-sectional and 
planar model simulations. 

Cross-sectional 
n-value 

Planar 
n-value 

Mean Difference in 
Floodplain Depth (m) 
(Cross-sectional - 
Planar) 

Total 
Difference in 
Floodplain 
Volume (m3) 

0.025 0.025 0.0912 4.72E+05 
0.025 0.028 0.0446 2.31E+05 
0.025 0.029 0.0268 1.37E+05 
0.025 0.030 0.0112 5.31E+04 
0.025 0.031 -0.0029 -2.45E+04 
0.028 0.025 0.1266 7.32E+05 
0.028 0.028 0.0849 4.91E+05 
0.028 0.031 0.0410 2.35E+05 
0.031 0.025 0.1552 9.96E+05 
0.031 0.028 0.1176 7.55E+05 
0.031 0.031 0.0778 5.00E+05 

 

 

Steady analysis of the XSA model compared to the XSL model yields logical 

results when comparing inundation patterns. Similar to previous studies, total inundated 

area is greater for the smooth floodplain approach than the LiDAR-derived approach. 

However, in the analysis of the frequency distribution comparing inundation patterns, it is 

clear the differences in inundation are not Gaussian in form (Fig. A3). The spike in 

values in which XSL inundation is greater than XSA between 0 and approximately 0.2 m 

likely shows the result of the ‘filling’ of depressions in the landscape and floodplain 

channels where the XSL model predicts the most significant floodplain inundation. In 

comparison, total area of inundation is increased and total number of elements inundated 

is more uniformly impacted in areas where the XSA inundation is greater than the XSL 

inundation.  
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Figure A3. A frequency distribution describing floodplain inundation differences between 
models using LiDAR and focal average descriptions of floodplain elevation. Yellow 
coloring indicates greater depth in Focal Average model while blue coloring indicates 
greater depth in LiDAR model. 
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averaging of floodplain elevations creates a more uniform distribution of water, as well as 

a larger area inundated in the XSA model. The greater volume of water being transferred 

to the floodplain would suggest greater mass transfer processes accruing, but lack of 

microtopography likely has an influence on momentum dissipation as well. In this 

context, unsteady flows were investigated. 

 

  
Figure A4. Spatial comparison of floodplain inundation differences between a) XSL and 
PL and b) XSL and XSA models. 
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total area inundated is important and mass transfer is the dominant process important to 

attenuation. However, when baseflow was increased the trends in attenuation change. The 

XSA model always has the least amount of attenuation. At the high baseflow, a 

considerable amount of the floodplain is inundated already. Therefore, the impact of 

water spreading out over a uniform floodplain is negated and microtopography in the 

XSL and BL models begins to have a greater impact. It is most probable in this instance 

that mass transfer to portions of the previously dry XSL and BL floodplains as well as 

increased momentum dissipation due to microtopography create greater attenuation in 

these models. Increases to floodplain roughness values in models created without 

microtopography may be necessary to generate similar quantities of river process. 

However, the degree of adjustment is clearly dependent on the type of flood wave and the 

initial conditions when the flood wave occurs. 

Although to a lesser extent, results indicate that channel bathymetry also has an 

impact on attenuation. The PL model predicts equal or greater peak flow attenuation in 

all model runs when compared to the XSL model. There are two possible explanations 

for these differences. One possible explanation concerns the volume of water transferred 

to the floodplain from the main channel. In spite of the fact that the roughness value used 

for the channel in the unsteady PL model most closely matched inundation volumes of 

the XSL model during steady flow scenarios, the PL model does have slightly more water 

volume on the floodplain than the XSL. This additional mass transfer during unsteady 

simulations is likely to have an impact on flood wave attenuation, but to what degree is 

unknown at this time. The second possible explanation is the lack of thalweg present in 

the PL model. It would be expected that the thalweg in the XSL bathymetry has greater 

velocities than anywhere in the PL bathymetry due to the increased depth. The thalweg 

therefore would likely promote less attenuation than a uniform channel bottom. This 

alternative would also be supported by the lesser time to peak in the XSL model results 

for the majority of simulations. 
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Conclusions 

The objective of this research was to analyze uncertainty associated with data 

sources used for the development of historical models and assess the impacts that these 

uncertainties have on steady and unsteady flow predictions. This objective was achieved 

by the modeling of steady and unsteady flow scenarios using three models with differing 

channel bathymetry and floodplain topography. Steady results show the linked nature of 

topographic and roughness parameterization and the necessity to adjust the roughness 

value considerably depending on the amount of detail included in topographic 

parameterization. Further, interpretation of spatial inundation patterns can help inform 

modeling techniques that seek to quantify river processes. The results presented in this 

study for different parametrization techniques should help to inform future unsteady flow 

studies involving the quantification of anthropogenic influences on river systems from a 

historical perspective as well as the development of models in systems with limited data 

sources. 
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Appendix B 

 

Methodology for Creation of Topographic Surfaces 

The following text and figures describes the creation of all topographic surfaces used in 

hydrodynamic modeling within Chapters 2 through 4, with the exception of the historical 

topography modeled in Chapter 2. Methods for the creation of the historical elevation 

surface can be found in Adair [2016]. All contemporary topography data was acquired 

courtesy of the Mid-Region Council of Governments. Restoration sites and contemporary 

vegetation mapping were acquired from the Middle Rio Grande Endangered Species 

Collaborative Program. 

 Chapter 2 included four topographic surfaces: historical [Adair, 2016], pre-

restoration LiDAR (Light Detection and Ranging), contemporary contour, and 

contemporary LiDAR model. Figure B1 displays the steps employed to create each 

topographic surface. 

 Chapter 3 included five topographic surfaces: the contemporary LiDAR model 

described in Chapter 2 and Figure B1, two surfaces in which the channel bed was raised 

or lowered by 0.3048 m (1 foot), and two surfaces in which channel banks of 10-meter 

width were adjusted between 0 and 0.3048 m (1 foot). Figure B2 displays the workflow 

for creating the topographic surfaces in which channel and bank roughness were adjusted. 

 Chapter 4 used only one topographic surface which was the same as the 

contemporary, LiDAR model presented in Chapters 2 and 3. 
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Figure B1. Workflow for pre-restoration, contemporary contour, and contemporary 

LiDAR topographic surfaces in Chapter 2. 
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Figure B1. Workflow for incised channel, aggraded channel, lowered bank, and raised 

bank topographic surfaces in Chapter 3. 
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Appendix C 

 

Models, Data, and Post-Processing Scripts 

All models, data, and post-processing scripts are available electronically at the following 

link: 

http://digitalrepository.unm.edu/eng_etd_data/1/ 

 

 

 


