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Abstract 

 
 

The civil engineering and construction industries are currently using geo 

browsers such as Google Earth to access satellite and aerial imagery to create 

and update design drawings for roadway construction, which leads to 

inaccuracies in the construction phase and in effect, delays the time, and 

increases the cost of a project. Technological advancements in the civil 

engineering and construction industries have enabled the design processes to be 

more efficient and accurate. This research focuses on using the cutting-edge 

technology of airborne LiDAR and aerial imagery to extract roadway network 

information from an urban area, which can be used to enhance the durability and 

serviceability of transportation infrastructure in a complex environment. Research 

results revealed that the time, cost, and completeness of extracting roadway 

network information from LiDAR data and aerial imagery are more advantageous 

than that of digitizing from Google Earth, which involves designing roadway 

network information based on the designer’s best judgment. Research results 

also showed that there are still limitations with this approach as it relates to the 
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accuracy of detecting the edges of the drivable spaces in an urban environment, 

mainly due to the failure of the extraction process to distinguish between drivable 

spaces and adjacent sidewalks or other paved surfaces. Future improvements 

for this extraction process will need to consider better edge detection methods to 

improve accuracy in urban environments. The process used for the procedure 

will be made readily available to the civil engineering and construction industries 

to enable the users to apply it to their work. Utilizing LiDAR data and aerial 

imagery to extract drivable space information has advantages over the current 

industry-adopted method, including being better in time efficiency and cost 

effectiveness. 
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Chapter 1: Introduction 

The civil engineering industry is responsible for designing plans for 

drivable spaces, such as roadways, multiuse paths, and parking lots. Roadway 

and multiuse path centerline datasets exist to assist engineers with design of 

these drivable spaces. Existing centerline datasets, however, do not contain 

drivable space attributes, such as widths, lane markings, signage, and area 

(Landa & Prochazka, 2014), which are useful for design. Therefore, engineers 

often use satellite images to provide this additional information. 

Satellite images (such as from Google Earth or Google Maps) are 

commonly used to design drivable spaces. Satellite images are referenced into 

the AutoCAD drawings and underlay the new engineering designs. This is an 

easy way to design when you do not have accurate CAD files of the existing 

roadway or path. The drivable space is clearly represented by the satellite image 

and the engineer can create plans based off what they see, which is also known 

as digitization. The current way to design, digitizing, is convenient and cost 

effective for engineers; however, it can result in issues during the design and 

construction phases when the digitized data do not agree with the ground truth 

information.  

Digitization is common when dealing with on-call contracts. On-call 

contracts are when a project has an undefined scope, non-specific start time, and 

has a two-year limit for completion of work. Digitization and on-call projects go 

hand-in-hand and create unfortunate complications for a project.   
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Because the civil engineering industry uses satellite images as the base of 

their designs, complications often arise. During the construction phase, the use 

of design drawings based on satellite images and digitization leads to 

inaccuracies in the design, and in effect, results in time extensions and cost 

increases during the construction phase of the project. This has led to the 

assumption that a set of design drawings that utilize a satellite image will fall 

short of desired results. The motivation for this research is to identify an 

improved method for designing drivable spaces that addresses some of the 

shortcomings of using satellite images.  

Initial review of literature indicates that two potential alternatives to the use 

of satellite images for identifying drivable spaces are aerial images and Light 

Detection and Ranging (LiDAR) (Hu, Tao, & Hu, n.d.). Aerial imagery and LiDAR 

are known to be highly accurate; because of this, combining both datasets 

should be highly effective in terms of extracting accurate data on drivable spaces 

(Rahimi, Arefi, & Bahmanyar, 2015). Therefore, this research proposes to answer 

the following questions: 1) How accurate is LiDAR and aerial imagery extraction 

of a drivable space in reference to the existing field conditions? and 2) What are 

the advantages and disadvantages of using LiDAR and aerial imagery compared 

to the use of satellite images?  

To answer these questions, the following steps will be undertaken: 1) 

extracting drivable space information using aerial imagery and LiDAR data and 

converting this data from a raster file to a CAD file so it can be used for design, 

2) develop a toolset for data extraction and conversion and 3) validating the 
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accuracy of the newly developed drivable space dataset and analyzing the cost, 

time, and completeness of the extraction process versus the digitization process 

The focus of this research will be a complex urban environment as it consists of 

many attributes, such as: sidewalks, roads, buildings, and vegetation that will 

need to be separated out during analysis. 
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Chapter 2: Literature Review 

This study expands on current work of Zhang, et al. (2019). The research 

explores different areas of interest relative to the current work as presented in the 

following paragraphs. 

2.1. LiDAR Technology 

The research team obtained airborne LiDAR data for a project funded through 

the Transportation Consortium of South-Central States (Tran-SET). The aircraft 

used for gathering the LiDAR was a helicopter. A simple summary of LiDAR is 

given: “LiDAR consists of a transmitter and a receiver. Short light pulses with 

lengths of a few to several hundred nanoseconds and specific spectral properties 

are generated by the laser. At the receiver end, a telescope collects the photons 

backscattered from the atmosphere” (Wandinger, 2005). 

The UNM Earth Data Analysis Center (EDAC) acts as the hub for the LiDAR 

data, which are organized and kept as “tiles”. These tiles can range in many 

sizes and are meant to form a grander image of what the LiDAR collected. Along 

with LiDAR data, EDAC also carries aerial imagery, which is similar to an image 

from Google Earth. All of the LiDAR data and aerial images are currently 

attainable for this project. 

Because LiDAR is a popular source of data, recent studies create algorithms 

that can analyze and categorize the LiDAR data. In Li et al. (2015), the point 

clouds, another term for LiDAR data, represent a topological surface and use a 

series of algorithms to categorize what is road and what is not. This is described 
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as a candidacy process. The algorithm is literally voting on what is and is not 

road data. 

Different techniques of attaining desired attributes from LiDAR data are 

innumerable and there is an attraction for these processes to be automated. For 

a process to be automated, segmentation-based filtering must be considered 

(Narwade & Musande, 2014). Similarly, morphological filtering, meaning: 

algorithms examine layers of data for any delineations of objects, must also be 

considered. This is able to be accomplished through elevation measurements of 

the points in the point cloud (Zhao & You, 2012). 

LiDAR has many more capabilities than just creating morphological 

topologies, including interactive modeling. In the study by (Chen, 2011), it 

explored ground video with a combination of airborne LiDAR to develop a three-

dimensional model to represent highways. The concepts developed in this study 

follow a similar trend of SBF and morphological filtering. The results of the study 

provide an avenue for detecting lanes and ground from LiDAR data. Airborne 

LiDAR is able to capture a robust amount of information of large areas. A large 

area is considered to be one thousand kilometers or greater. An example of this 

would be a forested area. 

A forested area is not only a large area, but also a complex area for detecting 

road networks. Any type of detection underneath tree canopies is only made 

possible through LiDAR. It is noted that this is only a detection process, not an 

extraction process, yet similar principles apply. A digital terrain model (DTM) is 

the only piece of data considered, which is gained from LiDAR processing. 
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Object Based Image Analysis (OBIA) is used to achieve appropriate three-

dimensional geometric features. OBIA is a great process for picking out drivable 

spaces from LiDAR data (Ferraz, Mallet, & Chehata, 2016).  

2.2. Aerial Imagery and LiDAR  

Researchers use a combination of aerial imagery and LiDAR to extract 

road networks and its features (Kumar, McElhinney, Lewis, & McCarthy, 2013). 

This combination of aerial imagery and LiDAR has major benefits, such as: 

attaining road edges, lane markings, curb and gutters, and signage. As 

previously mentioned, LiDAR provides high accuracy of elevation data of a 

topology, and aerial images provide the sharpened details. Studies that combine 

aerial imagery and LiDAR fluctuate between mobile and airborne LiDAR (Wu, Xu, 

& Zheng, 2017). This does not affect the desired results of extracting drivable 

space. 

Because aerial imagery and LiDAR are highly accurate, meshing the two 

forms of data should provide a precise extraction process of drivable spaces 

(Rahimi et al., 2015). Similar methods of extracting drivable spaces from only 

LiDAR also apply when extracting drivable spaces from both aerial imagery and 

LiDAR. A Hough Transform is a popular way of detecting drivable space edging. 

With a combination of a process known as a ribbon snake, the algorithm is able 

to make road candidates and validate edging. Color from the aerial image is 

another way to detecting drivable spaces. Drivable spaces are typically 

constructed out of asphaltic materials; therefore, the color intensity is different as 

compared to a building, vegetation, or concrete sidewalks (Hu et al., n.d.).  
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Being able to delineate between different features of an aerial image and 

LiDAR is of high importance. A great use for this is road inventory. Because 

aerial imagery and LiDAR provides an excessive amount of details, it is possible 

to obtain detailed features for road inventory. Time and money are constantly a 

main concern with any industry; therefore, an extraction process for drivable 

spaces that can save both time and money, is attractive to many people (Landa 

& Prochazka, 2014). 

All studies that attempt to extract drivable spaces share common values: 

time, money, and resources. They all follow a similar step: segmentation and 

classification, which proves to be the most extraneous part of developing an 

effective algorithm. 

2.3. Segmentation and Classification 

The greatest challenge for the previously mentioned studies is to segment 

and classify aerial imagery and LiDAR data. An algorithm must be developed in 

order to “rule” whether the data are a part of the drivable space, or not. It is not 

as easy as just telling the algorithm to pick out only the road characteristics. The 

algorithm must know where the roads end and begin, its width and length. Not all 

roads are perfectly constructed, and all roads change over time due to the 

vigorous use of vehicles. 

Segmentation is the process of combining similar attributes from either an 

aerial image and/or LiDAR data into one value. Similar attributes include: ground, 

low vegetation, high vegetation, buildings, and sky (Chen, 2011). Segmentation 

is a demanding process because there are many parameters that can be used in 
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order to segment an aerial image and LiDAR data, such as: height, intensity, and 

shape.  

The segmentation process is not to be confused with classification, which 

is the process of naming the segmented values. Classifying the segmented 

values is when the names like ground, low vegetation, buildings, etc. are given to 

the segmented data. Classifying the segmented data can be determined from a 

training session, where the algorithm learns what to classify as road and not road 

through multiple test trials (Jeong & Lee, 2016).  

 Hu, et al. (n.d.) provides an in-depth study of a segmentation and 

classification process that in the future can be used to develop reliable three-

dimensional city models. The process incorporates Hough transform, which is 

generally used for extracting straight lines in geometry, but in this case, it is used 

to detect road edges from LiDAR data and an aerial image. A Hough transform 

algorithm has a vital role when detecting and validating the accuracy of the 

extracted drivable space. 

Segmentation and classification are the most important part of extracting 

drivable space information. It is important for the present and future as Jeong & 

Lee (2016) mentions in their study. The study focuses on autonomous vehicles, 

which is a present and future technology that must have accurate and precise 

data on road networks for safety, design, and construction purposes. By following 

a similar OBIA process, which is used to determine drivable space through light 

intensity, detecting drivable spaces is possible through an interface that can 

perform those type of algorithms. 
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Chapter 3: Methodology 

The purpose of this study is to produce a drivable space dataset for civil 

engineering design and construction. To achieve the desired results, a multi-step 

process must be followed, which can be seen by Figure 1. This flow chart 

describes the three-step methodology, which will be described in further detail in 

the following sections. This methodology will ensure that the drivable space 

dataset is created properly and is reproducible. 

 

 

Figure 1. Methodology 

3.1. Study Area and Dataset 

  The designated LiDAR data and aerial imagery encompass the southwest 

portion of the University of New Mexico (UNM) and its surrounding 

neighborhoods. The study area can be seen in Figure 2. The figure represents 

Central Albuquerque and the black bordered region represents the study area. 

The location was chosen due to the fact that it is familiar to the researcher and 

easy to access. It is important to have an accessible area in case any physical 
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examination is required. Not only is the physical study area easily accessible, but 

also its data is easily attainable. 

 The Earth Data Analysis Center (EDAC) has the study area on record. 

EDAC provides open source network where anyone can find and use geographic 

information system (GIS) data. The aerial image data were obtained from the 

EDAC website known as RGIS by simply searching for the area of desire in their 

search engine while the LiDAR was obtained from the USGS website, which was 

collected by the Mid-Region Council of Governments (MRCOG) and found by 

searching for the area of interest in their search engine. The aerial image data 

were collected in 2016 and the LiDAR data were collected in 2010. The data size 

for both the aerial image and LiDAR data were approximately one and a half 

gigabytes, which is appropriate for what it represents. This is important because 

intuitively, the greater the file size the longer the extraction process will take. The 

study area is half of a square mile. The aerial image and LiDAR are both 

captured at half foot resolution; therefore, the data is greatly sharpened in 

appearance when zooming in and out. This is of high value in order to examine 

the complex area. 

 The complexity of the area is represented as a dense urban city and is 

displayed by the aerial image in Figure 3. The figure shows that the area is a grid 

structure design, which is convenient for analysis purposes. Because of the high 

density, an extraction process will be a challenge to develop. The multiple 

parameters considered from the sets of data are buildings, cars, trees, shadows, 
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and concrete drivable spaces. A simple and efficient software program is 

required to work around the listed parameters. 

 

Figure 2. Study Area Map 

 

Figure 3. Aerial Image 
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 The software used for this study is ArcMap, which comes from a line of 

ArcGIS programs. ArcMap is the typical civil engineering and construction 

industry software for developing a GIS. Therefore, it is important to develop an 

extraction process for the standard design technique used amongst civil 

engineering design and construction, which is known as digitization. All tools 

from the stocked toolbox are used to create the extraction drivable space 

dataset. 

3.2. Extraction Process 

 Extracting a drivable space from aerial imagery and LiDAR is achievable 

by following an object-based image analysis (OBIA). The description of this 

process is in the name; objects are identified and extracted based on an object’s 

similarity, which incorporates area, height, and color. Aerial Imagery and LiDAR 

provide the required characteristics for OBIA to be performed. Figure 4 will be 

used to represent the extraction process used in this study. In addition, Appendix 

A contains screen captures of the entire extraction process.  

 

Figure 4. Extraction Process 
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3.2.1. Aerial Image Segmentation 

 The aerial image encompasses three major color bands: red, green, and 

blue, and because the segmentation process is crucial to creating initial 

separation between objects, the ‘Segment Mean Shift’ tool is required to segment 

the aerial image. Segmenting is important because it is a major step in identifying 

the drivable space from everything else. Segmentation is a broad process, 

similar to the top of a funnel, and the process will only focus more and more on 

the drivable space as it goes on. 

There are three parameters for the segment mean shift tool: spectral 

detail, spatial detail, and minimum segment size in pixels. The spectral detail 

focuses on the difference between species. For example, if there are multiple 

trees, spectral detail distinguishes between the different types of trees. The 

spatial detail separates objects based on height. The higher the spatial value, the 

greater chance it will segment trees from ground. The minimum segment size in 

pixel determines how many cells to encompass in a single pixel. The spectral 

detail, spatial detail, and minimum segment size in pixels used are: 14.5, 15, and 

20. These chosen parameters gave the best segmentation of the drivable space. 

It is also noted that the aerial image came with an associated coordinate system, 

which is NAD_1983_HARN_StatePlane_New_Mexico_Central_ 

FIPS_3002_Feet. This is important to know for the segmentation process for the 

LiDAR. The segmented aerial image can be seen in Figure 5. When examining 

the figure, it can be seen that the details of the original aerial image, which is on 

the left-hand side, are lost compared to the segmented aerial image, which is on 
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the right. Furthermore, the drivable spaces of the segmented image are 

represented by a similar grayish color. This correlates to a similar pixel value, 

which will be used in the classification process.  

 

Figure 5.  Left: Aerial Image, Right: Segmented Aerial Image 

3.2.2. LiDAR Segmentation  

The LiDAR data involves four tiles that make-up a large area. The raw 

LiDAR must be converted to a LAS format, where LAS stands for LiDAR Data 

Exchange File and is the standard format for storing and sharing LiDAR data. To 

do this, the ‘Create LAS Dataset’ tool is used. When creating the LAS dataset, 

the coordinate system associated with the aerial image must be imported to the 

LAS dataset for appropriate geographic referencing. The attained LiDAR data 

does not have any associated classifications, which would classify every type of 

object captured by LiDAR. The classification system used is ‘LAS 1.4’, which is 

the common system for modern GIS work. It is crucial to know what classification 
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system being used because the same number can either represent the same or 

different type of objects based on the system. In this case, the ‘Classify LAS 

Ground’ tool is used to discern ground points. Then, the ‘Classify LAS by Height’ 

tool is used to create three separate classes: Low Vegetation, Medium 

Vegetation, and High Vegetation, based on the data points elevation.  

 Though classification tools are being used for the LiDAR data, this does 

not mean the segmentation process is being bypassed. In fact, the process thus 

far is preparing the LiDAR data to be segmented. Thus, the LAS dataset must be 

converted to a raster by using the ‘LAS to Raster’ tool. Two raster images are 

required from the LAS dataset: a digital terrain model (DTM) and digital surface 

model (DSM). Before simply using the ‘LAS to Raster’ tool, the properties of the 

LAS dataset must be altered. The appropriate ‘Returns’ and ‘Classifications’ must 

be turned on or off to achieve the DTM and DSM. For example, when obtaining 

the DTM, the ‘Ground’ class should be checked, along with ‘All Returns’. When 

obtaining the DSM, ‘All Classes’ should be checked along with ‘Return 1’ 

 The DTM and DSM are then input into the ‘Clipping’ tool, along with a 

boundary feature of the aerial image; the boundary is achieved by using the 

‘Reclassify’ tool to set only one class of the aerial image and then convert the 

single classified aerial image to a polygon by using the ‘Raster to Polygon’ tool. 

The DTM and DSM are now the same size, in terms of square mileage, as the 

aerial image. Then, a DHM must be created by utilizing the ‘Raster Calculator’ 

tool. Firstly, a conditional statement is made by changing any points from the 

DSM that are less than the DTM to be represented as the DTM. Secondly, the 
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DHM is attained by subtracting the DTM from the DSM. Lastly and most 

important part, another conditional statement must be formed that picks out all 

recognizable building points, which is anything greater than 2.2-meters. The final 

raster image will be considered as the ‘DHM_Buildings’. After the 

‘DHM_Buildings’, the DTM is then analyzed further. 

 The DTM is used over the DSM because the edges of the drivable spaces 

are more evident by examining it with the naked eye. Due to the advantage of the 

DTM, the ‘Slope tool’ is used to sharpen the DTM, so the drivable spaces are 

more detectable. Finally, the ‘Iso Cluster Unsupervised Classification’ script is 

used to segment the entire DTM into two segments. The parameter includes: 

‘Number of classes’, ‘Minimum class size’, and ‘Sample interval. The chosen 

values for the parameters are: 2, 100, and 10. After the previously mentioned 

procedures, the classification process is then pursued. The produced raster 

image is known as ‘DTM’ and is shown in Figure 6. The image shows to colors 

where is seems that the black portions of the image are corresponding to the 

drivable spaces. Further processing will be performed in the classification 

portion. 
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Figure 6. Segmented LiDAR 

3.3. Classification 

There are two classification desires for the aerial image and LiDAR: 

drivable space class and non-drivable space class. A series of tools must be 

used to make the two classifications. During the classification process, the tools 

naturally clean-up the image in order to achieve an aesthetically pleasing look, 

which is important for visual representation of the data. 

3.3.1. Aerial Image Classification 

The ‘Raster Calculator’ tool is used for the process. For the aerial image, a 

conditional statement is developed that classifies the pixels with a value of one-

hundred and six as the drivable space class and everything else as non-drivable 

space class. The pixel value of one-hundred and six is chosen based off of the 
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identify selector tool. The computer cursor is placed over the segmentation that 

appears to encompass the drivable spaces. Once the conditional statement is 

developed, the raster image appears to be a larger than the drivable spaces in 

the aerial image; therefore, the ‘Shrink’ tool is used, which shrinks the raster 

image for an optimum fit. This raster image can be called, ‘Raster1’. Another 

raster image must be created to further the classification process. 

 The raster image needed for the second part of the classification process 

for the aerial image is known as the Normalized Definition Vegetation Index 

(NDVI) raster. The NDVI raster is represented in Figure 7 where the vegetation of 

the image is represented by the bright colors (a lighter grey tone). This process 

requires the use of the ‘Image Analysis’ window in ArcMap. In the ‘Image 

Analysis’ window, the ‘Function Template Editor’ icon must be selected; then, a 

‘Geometric Function’ is created by right clicking over the aerial image name in 

the ‘Function Template Editor’. The ‘Geometric Function’ method of choice 

should be ‘NDVI’ and the required band indexes are ‘4’ and ‘1’, which correspond 

to the red band and alpha band. This creates a temporary raster layer that must 

be exported in order to save the raster image and perform remaining procedures. 

The described raster image can be recognized as ‘Raster2’. 
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Figure 7. NDVI Image 

 The ‘Raster Calculator’ is used to perform another conditional statement 

that classifies the vegetation. The conditional statement reads as follows: If the 

‘Raster2 pixels’ do not equal ‘0’, then classify them as ‘0’, and if the ‘Raster2 

pixels’ do equal ‘0’, then classify them as ‘1’. After the vegetation is classified 

from the ‘Raster2’, the ‘Raster Calculator’ tool is used to further classify the 

drivable spaces from ‘Raster1’ because by examination, it is noted that 

vegetation exists among the drivable space class. Therefore, a multiplication 

statement is created to multiply ‘Raster1’ and ‘Raster2’ together, which will create 

a new raster image, ‘Raster3’, with a more accurate drivable space class and 

non-drivable space class. 
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 To improve ‘Raster3’ accuracy, or best fit for the two identified classes, 

‘Generalization’ tools are used. The generalization tools clean-up ‘Raster3’ by 

eliminating “salt and pepper”, which are random pixels that do not connect to the 

drivable space class. The order of ‘Generalization’ tools are as follows: ‘Majority 

Filter’, ‘Expand’, ‘Focal Sieve’, and ‘Expand’. The combination of these tools 

eliminated majority of the “salt and pepper” and created an optimum fit of the 

drivable space class with the aerial image as a reference. The drivable space 

class and non-drivable space class have been identified in ‘Raster3’, but the 

desire is to extract the drivable space class. 

  The ‘Pick’ tool is used to extract only the drivable space from ‘Raster3’. It 

is a simple procedure in where the function reads to pick from ‘Raster3’ any pixel 

with the value of ‘1’, which is the drivable space class. An extracted drivable 

space class is important because the drivable space extracted from the aerial 

image must be combined with the extracted drivable space from LiDAR. 

3.3.2. LiDAR Classification 

The LiDAR data thus far has been put through a segmentation process 

that leaves two segments, which is recognized as ‘DTM’. To execute the 

classification process, the ‘DTM’ is reclassified by using the ‘Reclassify’ tool. This 

allows for only one class to remain, which is the drivable space class. Only pixels 

with the value of ‘1’ remain and all other values are considered to be ‘NoData’. It 

is important to further clean up the ‘DTM’; therefore, the ‘Plus’ tool is used to add 

the ‘DHM_Buildings’ from the segmentation process and the ‘DTM’. This now 

creates a raster with two classes: the drivable space class that is represented as 
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a pixel value of ‘1’ and a building class that is represented as a pixel value of ‘2’. 

The result is called ‘DTM2’. A seamless raster must be created from the ‘DTM2’. 

The ‘Reclassify’ tool is used again, in order to sharpen the resulting image.  

 In order for the resulting image to better fit the existing drivable spaces, 

the ‘Region Group’ tool is used, which combines neighboring pixels to sharpen 

the image. After that, the new pixel value of drivable space is known by using the 

identify tool; therefore, ‘DTM2’ can be reclassified to only contain the drivable 

space. The ‘Reclassify’ tool is used once again and must state that any pixel 

values from ‘1-28’ equal ‘NoData’, pixel values of ’29-2222’ equal ‘1’, and pixel 

values from ’2223-5140 (maximum pixel value)’ equal ‘NoData’. ‘DTM2’ is then 

left with the drivable space class with a value of ‘1’. The extracted drivable 

spaces from the aerial image and LiDAR are ready to be converted into polygons 

in preparation of combining the two datasets. The extracted LiDAR is shown in 

Figure 8 where the black colored regions represent the drivable spaces.  

 

Figure 8. Classified LiDAR 
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3.4. Combine and Convert 

 Both drivable space datasets are separately converted from their raster 

form to polygons by using the ‘Raster to Polygon’ tool. After the polygon data is 

obtained, the boundaries of the two datasets are cleaned-up by using the 

‘Regularize Building Footprint’ tool. The polygon datasets are more aesthetically 

pleasing as a result. Finally, the two datasets can be combined. 

 The ‘Union’ tool is used to combine the two extracted drivable space 

datasets. This results in numerous polygons overlapping each other; therefore, 

the ‘Dissolve’ tool, which is a part of the ‘Data Management’ toolset, is used to 

form the numerous amounts of polygons into one singular polygon dataset. 

Figure 9 represents the extracted drivable space as a polygon dataset. The 

extracted drivable space dataset is then exported into a CAD file that industry 

may be able to use for engineering design and construction.  

 

Figure 9. Extracted Drivable Space 
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3.5. Toolset Development 

Of course, it is not expected that the civil engineering and construction 

community would follow this entire procedure every time a drivable space dataset 

is required. This procedure is made into a semi-automatic process (a toolset) for 

users in industry. Developing the toolset is completely done in ArcMap by using 

‘Model Builder’. This forms one toolset that will be readily available to the civil 

and construction industry. The process for creating the toolset is displayed in 

Figure 10. 

 

Figure 10. Toolset Development Flow Chart 

 Model builder is a convenient and simple way of creating a custom toolset. 

All the tools used for the extraction process are dragged and dropped from the 

arc toolbox into the model builder space. Simultaneously, as each tool is dragged 

and dropped into the model builder space and connection is made by using the 

connection tool within the model builder tool bar. Following that logic produces a 

toolset that is ready to use. 
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 However, to make the toolset available to all ArcMap users, parameters 

must set, such as providing a scratch space option, where the tool stores all 

intermediate data. Intermediate data is all the data produced before the final 

output. The other parameters involve input files: aerial image, NDVI image, and 

LiDAR data. The final parameter are the finer details, such as: the coordinate 

system and reclassification fields. Figure 11 shows the display when the toolset 

is open where all the previously described parameters are represented. 

 

Figure 11. Toolset Display Window 

3.6. Validation 

 The extracted drivable space and the developed tool must be validated in 

the areas of accuracy, efficiency, and completeness. The validation process is 

represented by Figure 12. 
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Figure 12. Validation Flow Chart 

The ground truth data portion of Figure 12 represents the validation of 

accuracy where the extracted roadway widths will be compared to manually 

obtained roadway widths of the study area. There will be a total amount of fifty 

comparison points in order to provide sufficient results. An add-on tool for excel 

will be used, known as Analyse-IT, to perform a regression analysis on the fifty 

points. The regression analysis will provide a best fit line and therefore, provide 

an empirical formula to represent the data. This means, if there are delineations 

in the data, the equation can provide correction. This process will be further 

expanded on the analysis section of the research. 

 Time and Cost efficiency is important for validation because the civil 

engineering and construction industry require efficient tools and resources that 

promote timeliness and low costs. The developed toolset will be compared to the 

current way of engineering design, digitization, by recording the time stamps of 

the two methods.  

 In order to compare cost efficiency, the price of the ArcGIS software will 

be compared to civil engineering and construction on-call contracts. On-call 
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contracts are an abstract way of doing business because no scope, start date, or 

location is provided for the project. This results in having to conduct a digitization 

method; therefore, it is suitable to compare the cost fluctuations between on-call 

contracts and the ArcGIS software. 

 The final portion of the validation process will be based on a percentage of 

completion of the extracted drivable space compared to what can be digitized. 

Because roadways are of high importance in the civil engineering and 

construction industry and require design drawings, nineteen roads, which 

encompass both major and minor roads of the neighborhoods and businesses 

surrounding the southwest portion of UNM. Figure 13 shows the same aerial 

image from the extraction process; however, the black bordered region 

represents the southwest portion of UNM and therefore, the roads enclosed in 

that area will not be included in the completeness validation. This is because a 

lot of the drivable spaces on campus are constructed out of concrete, which may 

create potential discrepancies for the developed toolset to distinguish between 

drivable spaces constructed out of asphalt. It is intended that the completeness 

of the drivable space is sufficient for valuable representation of drivable space 

and design use. 

 The next chapter will provide the final results of the developed drivable 

space extraction method which are represented by an extraction process, toolset 

development, and validation. 
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Figure 13. Southwest Portion of UNM 

3.6.1. Ground Truth Data 

To ensure the toolset provides accurate results for implementation in the 

civil engineering and construction field, the widths of drivable spaces were 

measured. Fifty random points were generated using the “Create Random 

Points” tool in ArcMap. The reason for choosing fifty points is because that 

provides enough data to determine the significance of the process. The points 

were distributed across the drivable space dataset and compared to the aerial 

image to reference what type of drivable space it refers to and where the drivable 

space resides. 

 The ground truth data for the widths of the drivable spaces were obtained 

by using a measuring wheel. The wheel was chosen due to the large widths of 

the drivable spaces. The width was measured from edge of curb to edge of curb 

because that is a standard way of measuring drivable space widths in the civil 



 28 

engineering and construction industry. All fifty measured widths were recorded to 

compare to the widths from the extracted dataset. To measure the widths of the 

extracted dataset, the measurement tool was used. It is important to reference 

the aerial image during this portion in order to verify that the same fifty points are 

being analyzed. Another means of verification will come from the use of a 

Geographic Positioning System (GPS) tracker. 

 The Garmin Etrex 20 GPS tracker was used to verify the coordinates of 

the fifty points referenced in the extracted dataset. The Etrex 20 is GPS tracker 

that was readily available for the use of this process. According the Etrex 20 

manual, its margin of error is plus or minus twelve feet. 

 Before obtaining the ground truth data and verifying their points, the 

coordinates of all fifty points must be obtained. Because the points are geo-

referenced as they are generated, it will only require a few additional steps to 

calculate the Latitudes and Longitudes.  

 The attribute table of the validation points is used to carry out the process. 

In the attribute table four fields are added: Latitude, Longitude, Lat, and Long. At 

separate instances, the Latitude and Longitude are used to calculate the 

associated coordinates in decimal feet. Then, the Lat and Long fields can be 

calculated to obtain the coordinates in a format of degrees, minutes, and 

seconds. Figures 14 display the dialogue boxes representing the Latitude 

coordinate system in decimal degrees and the Lat coordinate system in degrees, 

minutes, and seconds. The parameters are set appropriately for both fields. The 
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same parameters can be used when setting up the Longitude and Long fields 

except for of course changing it to the appropriate name. 

 Once the fields are created, the calculation of the coordinates can be 

performed. To perform a calculation such as this, the name of the field must be 

right clicked on and then choose calculate geometry. The geometry parameters 

of the Latitude and Longitude fields are represented by Figure 15, while Figure 

16 describe the geometric parameters of Lat and Long. Once “OK” is clicked, the 

fields will be populated with its appropriate coordinates. 

 

   

Figure 14. Left: Decimal Degrees, Right: Degrees, Minutes, and Seconds 
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Figure 15. Decimal Degrees Parameters; Left: Latitude, Right: Longitude 

 

   

Figure 16. Degrees, Minutes, Seconds; Left: Lat, Right: Long 

 
The software package, Analyse-it, was used to see if the data could be fit 

to a model as a way to validate the results.  

 

3.6.2. Time and Cost Efficiency 

As previously mentioned, time is money. Industry requires efficient tools 

and equipment in order to complete the job. Costs of industry lead to overhead, 

labor, designer, and equipment costs. The more time spent on a project directly 

correlates to an increase cost. Industry efforts are to be efficient and produce 

quality results. The mentioned costs are typically tracked by the hour, and this 
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leads into the differences in time cost between digitization and the extraction 

process. 

 The time it takes to digitize an aerial image depends on the scale of the 

project. The process can take anywhere from five minutes to one week. It 

requires intense focus and keeping a steady hand. For this case, the study area 

contains many roads and parking lots to be within a one and half square mile 

area using ArcMap as the interface. 

 To measure the time efficiency of the developed process and the current 

method, digitization, the roads and parking lots will be digitized in ArcMap by 

creating a feature class that allows for the manual drawings of polygons. There 

are approximately thirty total roadways and parking lots. The time will be 

recorded in how long it will take to perform the digitization process and compared 

to the developed extraction process. 

3.6.3. Completeness 

The completion of the dataset is evaluated by utilizing the digitized 

drivable spaces that was previously mentioned and the dataset obtained from the 

developed extraction process. The aerial image does include combination of 

nineteen major, minor roadways, and parking lots, which will provide a 

significance comparison of what is represented by the extraction process. The 

extracted dataset will be visually compared with the digitized dataset to account 

for any discrepancies. 
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Chapter 4: Results 

By applying the analysis method presented in Chapter 3 and following the 

detailed procedure listed in Appendix A, the data followed an analysis procedure 

for accuracy, time and cost, and completeness. The analysis procedure is also 

represented in Figure 17. The entire procedure was carried out using the results 

produced by the developed toolset as described earlier in Chapter 3 and it is 

represented by Figure 18. The colored transparent regions of the Figure 18 

represent the drivable space. By overlaying the extracted dataset over the aerial 

image, the results are easier to witness. 

 

Figure 17. Analysis Flow Chart 
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Figure 18. Extracted Drivable Space 

4.1. Ground Truth Data 

This section relates to the accuracy of the extraction process. To ensure 

the accuracy of the extraction process fifty reference points were used for 

validation. Figure 19 represents the fifty points overlaying the aerial image of the 

study area. The dots across the image represent the fifty validation points. The 

data obtained from the fifty validation points are represented by Table 1, which 

represents the fifty points’ coordinates. The OID* simply represents the point 
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number and the second column is the Latitudinal coordinate while the third 

column is the Longitudinal coordinate associated with its point. The 

measurements associated with the fifty points are represented in Table 2. The 

first column represents the point number while the second column represents the 

ground truth measurements obtained by the measuring wheel and the third 

column represents the measurements obtained from the extracted dataset. The 

data represented in Table 2 was used to create a best fit regression model as 

discussed in Chapter 3 and is also displayed in Figure 20 where the x-axis 

represents the extracted data and the y-axis represents the ground truth data. 

 
Figure 19. Validation Points 
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Table 1. Coordinates     

 

OID * Lat Long

1 35° 5' 0.275" N 106° 37' 38.873" W

2 35° 4' 59.918" N 106° 37' 34.720" W

3 35° 4' 56.312" N 106° 37' 51.725" W

4 35° 4' 50.660" N 106° 37' 50.008" W

5 35° 4' 49.338" N 106° 37' 33.138" W

6 35° 4' 55.960" N 106° 37' 36.778" W

7 35° 4' 53.725" N 106° 37' 22.706" W

8 35° 5' 8.228" N 106° 37' 26.231" W

9 35° 4' 51.252" N 106° 37' 21.966" W

10 35° 4' 51.213" N 106° 37' 23.676" W

11 35° 4' 53.733" N 106° 37' 27.091" W

12 35° 4' 58.021" N 106° 37' 44.100" W

13 35° 4' 52.298" N 106° 37' 27.255" W

14 35° 5' 13.492" N 106° 37' 28.149" W

15 35° 4' 51.570" N 106° 37' 36.733" W

16 35° 5' 1.017" N 106° 37' 46.905" W

17 35° 4' 47.739" N 106° 37' 51.153" W

18 35° 4' 50.619" N 106° 37' 36.493" W

19 35° 5' 11.874" N 106° 37' 32.288" W

20 35° 5' 2.650" N 106° 37' 39.687" W

21 35° 4' 57.913" N 106° 37' 36.185" W

22 35° 4' 57.768" N 106° 37' 33.603" W

23 35° 5' 12.991" N 106° 37' 21.255" W

24 35° 4' 51.774" N 106° 37' 28.536" W

25 35° 4' 49.026" N 106° 37' 35.218" W

26 35° 5' 13.333" N 106° 37' 30.535" W

27 35° 5' 10.150" N 106° 37' 29.104" W

28 35° 5' 5.964" N 106° 37' 32.594" W

29 35° 5' 11.765" N 106° 37' 23.189" W

30 35° 4' 54.274" N 106° 37' 36.503" W

31 35° 4' 58.640" N 106° 37' 26.127" W

32 35° 5' 6.562" N 106° 37' 32.599" W

33 35° 4' 59.047" N 106° 37' 25.103" W

34 35° 4' 51.442" N 106° 37' 31.060" W

35 35° 4' 50.743" N 106° 37' 49.957" W

36 35° 4' 48.049" N 106° 37' 28.926" W

37 35° 5' 9.245" N 106° 37' 30.532" W

38 35° 5' 0.661" N 106° 37' 23.976" W

39 35° 4' 57.197" N 106° 37' 40.170" W

40 35° 5' 0.157" N 106° 37' 51.201" W

41 35° 4' 56.074" N 106° 37' 41.962" W

42 35° 4' 55.674" N 106° 37' 41.791" W

43 35° 5' 1.475" N 106° 37' 41.559" W

44 35° 4' 52.725" N 106° 37' 45.980" W

45 35° 4' 48.203" N 106° 37' 37.054" W

46 35° 4' 48.973" N 106° 37' 24.755" W

47 35° 5' 1.502" N 106° 37' 51.684" W

48 35° 5' 1.160" N 106° 37' 31.405" W

49 35° 5' 3.146" N 106° 37' 40.348" W

50 35° 4' 57.469" N 106° 37' 40.010" W
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Table 2. Measurements of Ground Truth and Extracted Dataset 

 

Ground Truth Data Hybrid

Point No. Measuement (ft) Validation (ft)

1 32.8 59

2 32.8 52

3 32.8 28

4 32.8 100

5 85.28 97

6 32.8 200

7 32.8 88

8 42.64 67

9 85.28 88

10 85.28 93

11 29.52 20

12 39.36 15

13 104.96 106

14 19.68 25

15 85.28 104

16 32.8 45

17 42.64 85

18 85.28 106

19 85.28 112

20 104.96 120

21 85.28 96

22 42.64 31

23 85.28 90

24 32.8 77

25 85.28 120

26 26.24 35

27 32.8 34

28 88.56 144

29 88.56 91

30 88.56 107

31 88.56 94

32 88.56 112

33 88.56 97

34 32 71

35 32 71

36 32 39

37 36 44

38 36 56

39 32 42

40 32 48

41 32 47

42 32 38

43 32.8 143

44 29.52 48

45 29.52 29

46 49.2 46

47 32 31

48 32 49

49 32 46

50 32 61
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The results of the regression model introduced in Chapter 3 are displayed 

in Table 3 and Figure 20. This model was developed to see if there was a 

correlation between the modeled data and the ground truth data. A good 

relationship would confirm the accuracy and effectiveness of the extracted 

dataset.    

A polynomial six regression model was the best fit for the ground truth and 

comparison data (see Figure 20) based on the R2 value. The linear regression 

model and the preceding polynomial models, two through four, had R2 values 

that were very small. 

 
Figure 20. Best Fit Regression Model 

 The R2 value identifies whether the model best represents the data, which 

in effect determines if the extracted dataset is valuable. The closer the R2 value 

is to ‘1’, the better the data is represented by the model. Table 3 shows that the 

R2 value represented by the polynomial six regression model is 0.746. This is 



 38 

simply saying that approximately 75% of the variation of the ground truth data, y-

values, is explained by the extracted dataset, x-values. Because the R2 value is 

greater than 0.5, that means that the statistical results of the extracted dataset 

are valid. 

 Table 3 also shows the root mean square error, RMSE. The RMSE value 

describes the average error of the extracted dataset. The RMSE value is 

approximately 15-feet. This means that extracted dataset widths, x-values, are 

likely 15-feet inaccurate, which is based off of the ground truth data, y-values. It 

can also be said that the extracted dataset is inaccurate by comparing to the 

ground truth data. Although the extracted dataset is inaccurate, that does not 

mean that the extracted dataset is insignificant. 

 The p-value, which is a probability estimation, represents the significance 

of the extracted dataset. The p-value comes from a statistical probability 

represented by a bell curve where results should have a p-value less than 0.05 to 

be considered significant. The p-value shown in Table 3 is <0.0001. Therefore, 

based upon the description of a p-value, the results of the extracted dataset are 

significant and that the extracted values are not a random distribution of 

inaccuracies.  

 

Equation 1. Model Formula 

 

y = Ground Truth measurement (ft) 

y = 17.53 + 1.485x - 0.03794x
2
 - 3.97e-05x

3
 + 1.053e-05x

4
 - 9.601e-08x

5
 + 2.41e-10x

6
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x = Extracted Drivable Space measurement (ft) 

 

Table 3. Accuracy and Effectiveness Results 

R2 0.746 

p – value of model < 0.0001 

Root Mean Square Error (RMSE) 15 ft 

 
 In reviewing the results of the polynomial six regression model, it is 

realized that the model does not represent the data very well despite it providing 

the best fit. By examining Figure 20 it is noted that there are two clusters of data 

and multiple outliers. 

 It was mentioned that the equation that represents the model provides a 

way to predict the ground truth data values; however, this may only be true for 

extracted values, represented on the x-axis, within a range. Looking closely at 

Figure 20, the best fit curve drops below zero in regard to the ground truth data, 

represented on the y-axis. There cannot be a negative measurement in this 

sense. Based on that interpretation, it seems that any extracted measurement 

that exceeds approximately 150-ft would result in an inaccurate measurement of 

the ground truth measurement. 

 It can also be seen in the model that the two clusters vary along the x and 

y-axis and this is due to the different sizes of roadways. The difference between 

minor and major roadways are two to three lanes in some cases. By having the 

two clusters of data, the accuracy of the model is suited for extracted values that 

lie within a range of 20-60 feet and 80-100 feet.  
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 At this point in time, a model is unable to adequately represent the data; 

however, future efforts could focus on improving the model, potentially by 

breaking out the data by road width. 

4.2. Time and Cost Efficiency 

 The time required to digitize each roadway varies due to the difference in 

shape of the roadways. Each roadway requires three to five minutes of 

digitization; therefore, that provides a time frame of two to five hours for a typical 

project. Figure 21 shows the digitized drivable spaces. The green regions of the 

figure represent the roadways, and the beige regions represent parking lots. 

There is a total of fifty-seven drivable spaces represented by the digitized map. 

This is a long process, which has the potential to take up a quarter of an eight-

hour working day. That is extra time an engineer has to spend digitizing when 

that is not the purpose of an engineer. An engineer typically has multiple projects 

at a time; therefore, spending nearly four-hours digitizing is inefficient to the work 

schedule. 

 The process developed in this study was ran using the aerial image, NDVI 

image, and the LiDAR data. The process took a total of 6-minutes and 33-

seconds. This is forty times faster than the digitization process. An engineer can 

simply run the tool in the background of a computer and perform any other tasks 

without misdirecting time to inefficient procedures. The only information required 

for this process is the aerial image, NDVI image, and LiDAR data. It is quick and 

simple. For an on-call contracted project, this semi-automatic tool is a perfect 



 41 

replacement for the digitization process. The time efficiency of the extraction 

process is a big benefit for industry use.  

 Not only is the time efficiency improved, but also the cost efficiency of the 

process is improved using the proposed extraction process. It is common for on-

call contracted projects to fluctuate in costs ranging from thousands to millions of 

dollars. Recalling the definition of an on-call contract, the scope of work is 

undefined, which leads to cost changes. With fluctuation in cost of this particular 

type of project, digitization can develop costs due to an increased number of 

hours an engineer must spend on the ever-changing project. 

 A major problem when digitizing is when no site exploration is performed, 

which leads to misrepresentations of aerial images and digitization. The costs will 

continue to stack up as a result of digitization, but this will not occur by using the 

semi-automatic extraction process. 

 In order to compare the cost of digitizing and the developed extraction 

process, a typical civil engineering wage will be estimated. The average civil 

engineer makes approximately $33 per hour. If the engineer has to work on 

digitizing for three to five hours, which comes from the time range it would take to 

digitize the study area, and the engineer must perform this type of work twice a 

month, then, the estimated cost for utilizing the digitization technique will be 

between $2,500 and $4,000. This range of costs will be used to compare the 

extraction process. 

 The only cost required for to perform the extraction process is for an 

ArcGIS license, which range in values. The lowest priced license with ArcGIS 
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costs $800 while the highest priced license costs $6,000. This is an annual price 

paid to utilize the ArcGIS software. This initial investment in the ArcGIS software 

has the potential to mitigate tens of thousands of dollars that would occur for 

inefficient digitized drawings.  

 The ArcGIS software is the only cost required to perform the extraction 

process because the aerial image and LiDAR data are readily available to the 

public. The aerial imagery data are available on the RGIS website, which is 

owned by EDAC, while the LiDAR can be found at the USGS website, which was 

collected by MRCOG. The extraction process comes with an inexpensive price 

and secures thousands of dollars a year by fitting in the process of on-call 

projects.  

 Therefore, the price comparison of an annual investment for extraction 

process versus the accrued costs due to the inaccuracies and changes that 

come with digitizing on-call projects, the extraction process dominates. The cost 

of digitizing can range from $2,500 to $4,000 of just labor costs while the cost for 

an ArcGIS license ranges from $800 to $6,000. The extraction process has a 

higher cost efficiency due to LiDAR and aerial images being able to capture fine 

details of a project area and being readily available. 
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Figure 21. Digitized Roads 

4.3. Completeness 

The extracted drivable space dataset was also checked on completeness. 

The completeness of the extracted dataset is just as important as the accuracy of 

the dataset. The developed process is meant for industry use; therefore, the 

extracted dataset must be sufficient to be applied to real world projects and an 

incomplete dataset will not suffice to being efficient. Time is money, and if the 

process is inefficient, then the process can negatively affect the industry rather 

than positively affect it. 

To capture the completeness of the extracted dataset, the current 

technique of industry design of projects was carried way, digitization. Digitization 

is manually drawing/outlining the drivable spaces with the cursor on the 
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computer. To clarify, digitization is the current technique of designing on-call 

contracted projects.  

On-call contracts can be defined as such: the setting of a definitive 

location or timetable is undetermined, the project typically does not last for more 

than two years, and a scope is not clearly defined. Design drawings for on-call 

contracts are hard to come by due to the insufficiency of details for such a 

project; therefore, digitization is the chosen technique to design for these types of 

projects. 

By analyzing Figure 22, it is noticed that there is only one road not 

completely captured; that is represented by the red circle to the right of the figure, 

which is located on the Drivable Space Map. Though part of the roadway is 

captured by the extraction process, that roadway is considered incomplete; 

therefore, the roadway is insufficient. It is insufficient to maintain consistency that 

the industry demands an efficient process, where partial completion of a road 

does not meet the standards. This means that fifty-six of the fifty-seven drivable 

spaces were captured by the extraction process, which leads to a completeness 

of 98.2%. The completeness of the extraction process is statistically sufficient 

based upon the number of drivable spaces captured by the developed process 

compared to the number of drivable spaces digitized. 
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Figure 22. Completeness; Left: Digitized Map, Right: Drivable Space Map 

4.4. Findings 

The extraction process has proven to be beneficial to a degree, based on time 

and cost effectiveness, and completeness. Though this is true, the extraction 

process is not ready to be employed into civil engineering design industry 

because of its lack of accuracy detecting the edges of the drivable spaces. 

However, this extraction process can be used in planning and development of a 

city, geographical representation of drivable spaces, and cost estimating. A city 

planning department can utilize the extraction process when designing the future 

development of its city, whether it is drainage, housing, or businesses. 

Geographers partake in the digitization method for capturing drivable spaces 

frequently. The extraction process would simplify their work by providing generic 

dimensions of drivable spaces and they can alter the dimensions of the polylines 

to fit the portion that is to be digitized. In regard to cost estimation, an engineer 
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can utilize this extraction process to make an estimate of the construction cost of 

a portion of drivable space needing to be reconstructed. 

4.5. Limitations 

The limitations associated with this research are its complex study area, 

being a dense urban area, and the limited ability to graphically model this 

process, which is also due to the complexity of the urban environment as drivable 

space dimensions, particularly widths, are varying. Provided a rural study area, 

this extraction process should perform better due to the scarce number of objects 

within that type of environment. 

4.6. Future Work 

To improve upon the developed extraction process, a pursuit towards 

edge detection of drivable spaces should be taken. An edge detection tool would 

be able to detect the drivable space edges by utilizing the elevation data 

provided by LiDAR. The edge detection tool would be able to identify between 

elevation differences and create a straight edge to contain the drivable space. 

This is one step that can improve this extraction process. 

Another tactic to improve the extraction process would be to obtain LiDAR 

data with a higher resolution such as two to three inches. That would also assist 

in the differentiation of drivable spaces and objects that are close in elevation, 

such as: curb and gutters, which are typically six inches tall. 
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Chapter 5: Conclusion 

The purpose of this study was to address the current issue with civil 

engineering design and construction in regard to drivable spaces. There is an 

issue with the design and construction of drivable spaces because there are 

limited details to be provided for a project without defining the scope of work and 

can begin at a moment’s notice. The civil engineering and construction industry 

currently handle this issue by using a method known as digitization.  

 Digitization is manually drawing boundaries, centerlines, etc. by outlining 

its appearance as displayed in a satellite image. This method exists due to the 

lack of information provided with an on-call project, which is described in Chapter 

1 and Chapter 3; therefore, site exploration rarely occurs. Digitization is 

inefficient, time consuming, and costly in labor of approximately $2,500 to $4,000 

and that is not in including corrections that correlate to a lack of site exploration. 

These limitations related to digitization motivated the research included in this 

thesis. 

 To solve this issue, a semi-automatic process is created to extract drivable 

spaces from a complex urban environment in order to bypass a digitization 

process by using ArcMap as the interface. The process requires highly accurate 

data, which corrects the lack of site exploration, and the datasets used for the 

study are aerial imagery and LiDAR. The study answered the following 

questions: how accurate is the extraction toolset and what are its advantages 

and disadvantages?  
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 The extraction process goes through two major components: 

segmentation and classification. The aerial image and LiDAR go through the two 

components separately and are combined at the end of the process. The 

combination of the two datasets allows for an optimum chance of capturing all 

drivable spaces in the data frame. The process is created into a singular toolset 

by using Model Builder that can be opened across many versions of ArcMap. 

The final output file for the tool exports the file into a CAD file in order to perform 

roadway design. 

 The results of the study show that the extraction process has a difficult 

time in detecting the edges of drivable spaces, especially when they are adjacent 

to other paved spaces, such as sidewalks. The total time for the extraction 

process is 6-minutes and 33-seconds while the cost to perform this process can 

range from $800 to $6,000 depending on the type of ArcGIS license purchased. 

The results explain that the extraction process has limited use in civil engineering 

design, but can be useful in other disciplines like city planning and development, 

geographic processing, and cost estimating. The completeness of capturing 

drivable spaces is 98%. The extraction process is a great way to visually 

represent drivable spaces. 

The developed tool for performing the drivable space extraction process 

can be downloaded by using the following link: https://github.com/edac/Drivable-

Space-Extraction/archive/master.zip. 

 To improve the results of this process in the future, an edge detection tool 

must be created that works in ArcMap and that uses a higher resolution LiDAR 

https://github.com/edac/Drivable-Space-Extraction/archive/master.zip
https://github.com/edac/Drivable-Space-Extraction/archive/master.zip
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dataset. Edge detection would correct the inaccuracy of the extraction process by 

recognizing edges within a digital elevation model. LiDAR data with a resolution 

of two to three inches would assist in the determination of curb and gutter and 

drivable space within a digital elevation model. Combining an edge detection tool 

and high-resolution LiDAR would bring the extraction one step closer to 

becoming readily available for civil engineering and construction use. 
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Appendix A. Extraction Procedure 
 

Aerial Image Extraction Process 
 
Step 1: Add BE33_SW.tif raster to ArcMap 
 

 
 
Step 2: Color-infrared look 
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Step 3: Segment Mean Shift tool 
 

 
 
Step 4: Raster Calculator 
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Step 5: Shrink tool 
 

 
 
 
Step 6: Create Boundary for LiDAR Segmentation 
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Step 7: NDVI 
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Step 8: Raster Calculator 
 

 
 
Step 9: Raster Calculator 
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Step 10: Majority Filter 
 

 
 
Step 11: Expand 
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Step 12: Focal Sieve 
 

 
 
Step 13: Expand 
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Step 14: Raster Calculator 
 

 
 
Step 15: Raster to Polygon 
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Step 16: Regularize Building Footprint 

 
 
 

LiDAR Drivable Space Extraction Process 
 

Step 1: Create LAS dataset 

 
 

  

Densification should = 0.25 
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Step 2: Classify LAS ground 

 
 

Step 3: Classify LAS by height 
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Step 4: Create DTM 
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Step 5: Create DSM 
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Step 6: Clip 

 
 

Step 7: DSM Updated 
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Step 8: Create DHM 

 
 

Step 9: DHM with only Buildings 
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Step 10: DTM Slope 

 
 

Step 11: DTM Slope using ISO Cluster Unsupervised Classification 
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Step 12: DTM Slope ISO must be reclassified 

 
 

Step 13: Add DTM Slope ISO Reclassified and DHM Building 
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Step 14: Reclassify the DTM + DHM 

 
 

Step 15: Generalize the DTM + DHM Reclassified raster 
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Step 16: DTM + DHM Rec. Region Group must be Reclassified 

 
 
Step 17: Boundary Clean tool 
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Step 18: Raster to Polygon 

 
 

Combination of the two sets of data 
 

Step 1: Union Tool 
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Step 2: Dissolve Tool (Data Management) 
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