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Abstract 

A large body of evidence links fine particulate matter (PM2.5) exposure with a wide range 

of negative health outcomes. Research finds that about 30% of individuals’ exposure to 

particulate matter in urban areas come from mobiles sources. Evaluating regional 

transportation plans and estimating how they impact air quality and exposure to PM2.5 in 

the future is thus of major concern.  

There are two major concerns about the current practice of evaluating regional 

transportation plans also known as long-range transportation plans (LRTPs). First, how 

LRTPs affect future air quality are at best evaluated by estimating the change in regional 

vehicle emission inventories. These aggregate emission inventories provides no 

information about localized air quality impacts and provide no way to estimate exposure 

levels. The lack of spatial detail also limits the consideration of differences in exposure 

among minority and low-income households – two groups known to suffer from higher 

exposures in many urban areas. Second, LRTPs are evaluated in terms of how they 

improve traffic, air quality and other performance metrics between the current time 

period and the end of the planning period, which is typically 30 years into the future. This 
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evaluation method does not consider the performance of the plan during the planning 

period, a 30 year period or almost half a person’s lifetime.  

The ultimate goal of this study is to create a clearer picture of how LRTPs affect 

exposure to PM2.5 from vehicle traffic and health outcomes, and develop a modeling 

approach that evaluates the cumulative effects of LTRPs over the entire planning period. 

Together, the new information that the techniques developed in this dissertation can 

provide may help MPOs develop more effective and health protective LRTPs.  

I develop a dispersion modeling framework to evaluate the current exposure to PM2.5 in 

the Atlanta Metropolitan area and how the region’s LRTP will affect this. I show how a 

more detailed exposure assessment framework provides a more tangible measure of how 

the LRTP affects health. I also develop an integrated land use, travel demand, emission, 

and dispersion modeling framework that models the annual outcomes of a LRTP 

developed by the MPO in Albuquerque, New Mexico and calculate cumulative 

performance metrics to compare with more typical end of planning period metrics. I then 

use the annual modeling method to evaluate strategies for improving air quality, reducing 

exposure, and improving travel conditions in the region. I also perform a willingness to 

pay study to estimate the welfare change associated with improving bicycling facilities in 

the region which could be a low cost and practical method to reduce vehicle emissions 

and congestion.   
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Chapter 1. Introduction 

The overall goal of this research is to evaluate how long-range transportation plans 

change exposure to traffic related fine particulate matter (PM2.5) and investigate the 

potential in the planning process for reducing exposure. A long-range transportation plan 

(LRTP) is a document prepared by a Metropolitan Planning Organization (MPO), which 

is a federally mandated and funded organization in urban areas with a population of more 

than 50,000. The plan is a document that lays out a regional vision and goals for 

transportation in the region and serves as a framework for regional decision making and 

investment. 

I focus on evaluating LRTPs in terms of exposure to PM2.5 for two reasons. First, 

epidemiology literature has linked exposure to PM2.5 with many negative health 

outcomes, most importantly chronic obstructive pulmonary disease (COPD) mortality, 

ischemic heart disease mortality, and lung cancer mortality. Second, the dispersion of 

primary PM2.5 emissions from vehicle traffic peaks along highways and declines sharply 

with distance from the road (see Rowangould 2015, Tayarani et al. 2016). This dispersion 

pattern means that a high level of spatial detail is required to evaluate the air quality 

impacts of primary PM2.5 emissions from vehicle traffic and understand their health 

effects in a region. 

To accomplish the main goal of creating a clearer picture of how transportation plans 

affect exposure and can be improved to minimize exposure, I divide my research into 

three parts. Each part tries to answer a separate research question. Answering each of 

these questions contributes to the overall goal of the research. 



2 

 

In the first part, chapter 2 of this manuscript, I use a spatially detailed dispersion 

modeling method to estimate exposure to PM2.5 in Atlanta, Georgia. Exposure estimates 

for the years 2010, 2020, and 2040 are then used to estimate the change in health risks 

due to exposure to PM2.5 across the region.  I then discuss the results to demonstrate how 

this modeling approach can be used to improve the regional transportation planning 

process by identifying you long range plans affect health risks, and how risk is distributed 

across the region and different socioeconomic groups.  

In the second part, Chapter 3, I evaluate how assessment of a long range transportation 

plan may be affected by the modeling approach. Typically, transportation plans are 

evaluated by how well they perform in the final year of the planning period – ignoring up 

to 30 or more interim years. This practice neglects the impacts of the plan during the 

entire planning period. Note that a plan that leads to a satisfactory condition at some point 

in the future does not guarantee that the path to the future is also satisfactory. Accounting 

for interim years is particularly important when evaluating health effects and greenhouse 

gas (GHG) emissions as these impacts are largely irreversible. In my analysis I evaluate a 

long range transportation plan in the Albuquerque, New Mexico metropolitan area using 

the usual approach of just considering the first and final year of the planning period and a 

new approach that models how the transportation system and travel behavior evolves 

throughout the planning period – accounting for impacts that occur each year.  

In the third part, Chapter 4, I use the annual modeling method developed in Chapter 3 to 

evaluate two long range planning scenarios that I develop with the aim of reducing 

exposure to PM2.5 while also reducing GHG emissions and improving other performance 

measures such as congestion. Iknow that some strategies that are used in the planning 
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process to reduce GHG emissions and improve travel demand measures, such as land use 

strategies that encourage infill development or greater density, can increase exposure 

vehicle emissions by encouraging development close to highways and concentrating 

traffic, and emissions, where we are also encouraging people to live. The annual 

modeling approach developed in this dissertation can help understand how land-use, 

travel behavior, and ultimately exposure to vehicle emissions change overtime which can 

help identify not only cumulative impacts, which are important when considering health 

impacts and GHG emissions, but also new strategies to mitigate undesirable outcomes in 

certain years of the planning period. 

The final part of this dissertation, Chapter 5, evaluates the demand for improved bicycle 

facilities. Increasing bicycling can be a cost effective method to reduce vehicle emissions 

and congestion.  Willingness to pay is a measure of economic value and can be used in 

gauge support for improving bicycling facilities. I use a contingent valuation method to 

understand the willingness to pay for several improvements to on street bicycle facilities 

in Albuquerque, New Mexico.  

The remainder of this manuscript explains the background, methods and results of each 

part of the dissertation in greater detail along with a more detailed discussion of the 

results. 
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Chapter 2. Evaluating health outcomes from vehicle emissions exposure 

in the long-range regional transportation planning process 

Introduction 

A large body of evidence links fine particulate matter (PM2.5) exposure with a wide range 

of negative health outcomes including cardiopulmonary mortality (Boldo et al. 2006; 

Krewski et al. 2009; Pope et al. 1995), ischemic heart disease mortality (Krewski et al. 

2009; Laden et al. 2000; Pope and Dockery, 2006), lung cancer mortality (Krewski et al. 

2009; Pope et al. 2002; Pope et al. 2011), and infant mortality (Woodruff et al. 1997). 

Prior research also finds that the concentrations of many vehicle emissions, including 

PM2.5, are elevated along roadways (Karner et al. 2010; Zhou and Levy, 2007) and that 

up to 30% of an individual's exposure to particulate matter in urban areas may come from 

mobile sources (Boudet et al. 2000). Furthermore, exposure to PM2.5 from vehicle 

exhaust has been linked to a broad range of negative health outcomes (Allen et al. 2009; 

Brugge et al. 2007; Gan et al. 2010; Garshick et al. 2004; Gauderman et al. 2007; Health 

Effects Institute, 2010; McConnell et al. 2006; Peters et al. 2004; Suglia et al. 2008; 

Wilhelm and Ritz, 2003). Reducing exposure to PM2.5 from vehicle exhaust emissions is 

therefore an important public health goal. 

Identifying populations at risk from exposure to vehicle exhaust and developing effective 

plans and policies to abate emissions and mitigate exposure, however, is challenging 

because vehicle exhaust emissions are unevenly distributed across urban areas. 

Furthermore, the uneven distribution of vehicle exhaust emissions often raises 

environmental justice concerns. Minority and low income populations are more likely to 

live near high volume roads where the concentration of vehicle exhaust emissions are 
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elevated (Apelberg et al. 2005; Buzzelli and Jerrett, 2007; Chakraborty et al. 1999; 

Jephcote and Chen, 2012; Kingham et al. 2007; Rowangould, 2013, Rowangould, 2015). 

Over the past several decades, broad measures have been implemented to reduce health 

impacts linked to vehicle emissions exposure. The United States Department of 

Transportation requires Metropolitan Planning Organizations (MPOs) to create long-

range regional transportation plans for urban areas with 50,000 or more residents. 

However, requirements for evaluating how these long-range plans may affect air quality, 

exposure and public health are very limited. The Clean Air Act requires the US 

Environmental Protection Agency (US EPA) to set National Ambient Air Quality 

Standards (NAAQS) for six criteria air pollutants, including PM2.5, at levels that will 

protect public health. US EPA regulations only require those MPOs located in areas 

violating the NAAQS (i.e., nonattainment areas) to perform an air quality assessment of 

their transportation plans. Even then, transportation conformity regulations only require 

that MPOs simply estimate regional emission inventories and ensure that they fall below 

emission budgets prescribed in an approved State Implementation Plan. There is no 

spatial detail, no assessment of how exposure to emissions changes, no assessment of the 

change in health risk and no consideration of environmental justice concerns. 

While MPOs, regardless of their NAAQS attainment status, tend to voluntarily 

incorporate improved air quality and health as specific objectives in their planning 

processes (Handy, 2008), the measurement of these objectives is typically limited to a 

qualitative review of the plan. For example, a study by Lyons et al. (2012) evaluated the 

activities of four MPOs that were considered leaders in integrating health and 

transportation in to their planning processes (Nashville Area MPO; Puget Sound Region 
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Council; Sacramento Area Council of Governments; and San Diego Association of 

Governments). The study indicates none of these MPOs estimated changes in exposure to 

vehicle emissions and their potential health impacts in the development of their long-

range transportation plans. We followed up and reviewed the most recent long-range 

transportation plans developed by the same four MPOs and find that this is still the case 

today. 

While quantitative exposure and health risk assessments are not being implemented at the 

regional transportation planning level, they do occur at the individual project level. For 

example, the change in PM2.5 exposure and associated health impacts were evaluated for 

the proposed development of the MacArthur BART Transit Village Project in Oakland 

CA (UC Berkeley Health Impact Group, 2007). A line source dispersion model 

(CAL3QHCR Version 2.0) was used to model how exposure to PM2.5 emissions from 

vehicle traffic would change once the project was developed. The authors found that 

project related traffic would increase average PM2.5 concentrations by 0.30 μg/m3. The 

study then translated this into 2.7 additional deaths in a population of 100,000. Similar, 

project level, assessments are not uncommon and are often carried out as part of US EPA 

required hotspot analysis in non-attainment areas or when an Environmental Assessment 

or Environmental Impact Statement is required under the National Environmental Policy 

Act (NEPA). 

Project level exposure assessments may also be required by policy. For example, in 2008, 

the City and County of San Francisco adopted an ordinance on roadway proximity health 

effects that requires modeling the concentration of PM2.5 (as a measure of traffic 

pollutants) when projects are built near busy roadways. If modeled levels of traffic 
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related PM2.5 exceeds 0.2 μg/m3, then the developers are required to incorporate 

ventilation systems that remove at least 80 percent of PM2.5 from outdoor air. (San 

Francisco Health Code, Article 38 - Air Quality Assessment and Ventilation Requirement 

for Urban Infill Residential Development, Ord. 281-08, File No. 080934, December 5, 

2008). 

Project level exposure and health risk assessments may identify potential health risks, but 

at this late stage in a project's development if significant risks are identified mitigation 

measure are relatively limited. For example, San Francisco's air quality ordinance 

requires filtration of a building's air to remove high pollutant concentrations but does not 

consider or require abatement of emissions. Evaluating vehicle emissions exposure and 

health risks during the long-range regional transportation planning process could provide 

information for creating potentially more effective and efficient emission abatement and 

exposure mitigation strategies. For example, strategies such as a greater investment in 

regional transit systems or revising land use policies to incorporate smart growth 

principles that encourage less vehicle use could be evaluated and their effect on exposure 

hotspots and disadvantaged communities could be identified. These types of regional 

strategies, however effective and efficient they may be, are generally not considered 

within the scope of a project subject to project level environmental analysis, such as that 

required by the National Environmental Policy Act. 

Prior studies demonstrate a variety of methods for integrating regional travel demand, 

vehicle emission and atmospheric dispersion or chemical transport models to estimate the 

concentration of vehicle emissions across urban areas and exposure to them. For 

example, several studies have advanced methods for integrating models to develop more 
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spatially detailed regional vehicle emission concentration and exposure estimates (Beckx 

et al. 2009b; Cook et al. 2008; Lefebvre et al. 2011; Rowangould, 2015). Several similar 

studies evaluate how the movement of a region's population throughout a day affects 

exposure estimates from these integrated models (Beckx et al. 2009a; Dhondt et al. 2012; 

Hatzopoulou and Miller, 2010; Shekarrizfard et al. 2016) including time spent in different 

micro environments (Vallamsundar et al. 2016). Furthermore, Dhondt et al. (2012) use an 

integrated modeling approach to estimate vehicle emission exposure for each 

municipality in Flanders, Belgium and then apply health impact functions to estimate 

health risk from their exposure estimates. The primary aim of the study by Dhondt et al. 

(2012) is evaluating how risk estimates differ when the movement of the population is 

accounted for. 

While the above cited studies demonstrate the technical capacity to evaluate how regional 

transportation systems affect local air quality and health risks, these methods have not 

been applied to the analysis of regional transportation plans. Prior studies have focused 

on the development, demonstration and evaluation of methods, typically using current or 

a previous year's travel data. In this study, using an integrated travel demand-vehicle 

emission-air quality-health risk modeling approach similar to previous studies, we 

evaluate the long-range transportation plan for Atlanta, Georgia. Our analysis quantifies 

how vehicle emission exposure and health risks vary across the region at a spatial scale 

much finer than most prior studies and then how exposure and health risks change over 

time based on the region's long-range transportation plans. This approach provides a 

unique look at how regional transportation plans can affect neighborhood level exposure 

and health risks, and how these health risks can vary across space and over time. Our 
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analysis also evaluates disparities in exposure and health risks and how these change over 

time, demonstrating how a spatially refined approach can be used to identify exposure 

hotspots and environmental justice concerns and then evaluate how a transportation plan 

may affect these over time. 

The ultimate objective of the research described in this study is to provide new methods 

and information for transportation planning agencies that can help them create more 

health protective and equitable regional transportation plans, and to accomplish these 

tasks more efficiently. We argue that identifying exposure and health risk hotspots during 

the regional planning process provides more opportunity for identifying effective 

strategies, avoiding unanticipated health risks, and improves efficiency by avoiding 

delays and expense that may occur when project level analysis identifies unexpected 

exposure and health risk concerns. Our framework also relies on data that most MPOs 

routinely generate in the course of the regional transportation planning process and makes 

use of software that is widely used or freely available and in the public domain. 

Therefore, most, if not all, MPOs should be able to implement our framework. While we 

demonstrate our approach by considering PM2.5, which is a pollutant of concern in 

Atlanta, our approach could be used to evaluate other, non-reactive, vehicle emissions 

such as nitrogen dioxide, carbon monoxide, and a wide range of toxic vehicle emissions. 

Methods 

Our approach to estimate health effects associated with changes in air pollutant emissions 

from vehicle traffic, follows three steps: (1) dispersion modeling, (2) exposure analysis, 

and (3) health impact analysis. The following sections explain how these steps are carried 

out in this study and describe our study area. 
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Study area 

We demonstrate our proposed method with three regional transportation planning 

scenarios provided by the Atlanta Regional Commission (ARC's), developed during its 

2040 long-range transportation planning process. The scenarios include a 2010 base year, 

2020 intermediate year, and 2040 planning horizon year. 

Atlanta's diverse population and land use patterns provide an ideal case study location. 

With a total area of 8376 square miles (21,694 km2) and a 2014 population estimate of 

5,614,323, the Atlanta metropolitan area is the most populous metro in the state of 

Georgia and the ninth most populous in the United States, according to the U.S. Census 

Bureau. Of 5,614,323 people residing in the region, 3,332,844 (59.4%) are white and 

1,729,477 (30.8%) are black. Other races in total, account for about 10 percent of the 

population (US Census Bureau, 2015). The most recent estimates of income and poverty, 

published by the US Census Bureau, reports a median household income of $55,733 for 

the Metro Area in 2013 which is a decrease from 2010 when median household income 

was $56,850. During the same four-year period, the percent of the population below the 

poverty level increased from 14.8% to 15.9% (US Census Bureau, 2014). 

Dispersion modeling 

We use dispersion modeling to estimate the concentration of PM2.5 from on-road vehicle 

exhaust emissions. Dispersion models consider how atmospheric, weather and sometimes 

terrain influence the dispersion of emissions from their source (e.g., roadways) to 

receptors (e.g., a person's home). Photochemical models such as CAMx and CMAQ 

perform similar functions; however, they can also model chemical reactions that occur in 

the air column to account for the depletion and formation of various air pollutants over 
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time and space while dispersion models typically do not. The main drawback of using a 

photochemical model for accessing near roadway emissions is that they operate over a 

relatively course grid, usually greater than 3 km x 3 km (US EPA, 2007). Photochemical 

models also require information on all sources of air pollutants to accurately model 

chemical reactions which depend on the concentration of other air pollutants and 

therefore require more data inputs. Air dispersion models on the other hand offer a 

simplified approach that generally only consider the dispersion (transport and dilution) of 

air pollutants. Dispersion models are also advantageous for studying near roadway air 

quality because they can achieve much higher spatial resolution with relatively less 

computational burden. 

Two air dispersion models are widely used for modeling mobile source air pollutant 

emissions, CALINE4 and AERMOD. A relatively new model, RLINE, has also been 

developed by the US EPA, providing a more streamlined method for modeling roadway 

emissions. RLINE has not been approved for regulatory use by US EPA. These models 

predict hourly concentrations at user-specified receptor locations and have demonstrated 

abilities to model the concentration of vehicle emissions along roads. Each model was 

evaluated in a recent validation study conducted by US EPA by comparing measured 

concentrations of a tracer gas with modeled concentrations along a roadway (Heist et al. 

2013). The tracer gas experiments find that AERMOD and RLINE are similar and 

somewhat more precise than CALINE. In this study, we use AERMOD primarily because 

it is US EPA's preferred model for near roadway hotspot analysis and also because it 

considers topography which is important when considering the dispersion of emissions 

across large urban areas. 
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We use a rastering method for applying AERMOD to large transportation networks 

developed by Rowangould (2015). This method generally follows US EPA's PM2.5 

hotspot modeling guidance for modeling roadways area sources (US EPA, 2015) but 

breaks up the modeling domain into a large number of small grid cells that can be 

modeled individually (Figure 1) and then later combined to produce a region wide 

concentration raster with a spatially interpolated 20 m resolution. Additionally, since we 

are only interested in an annual average concentration rather than demonstrating 

compliance with the National Ambient Air Quality Standards (i.e., the 24 hour PM2.5 

standard requires estimating the 98th percentile daily concentration), we use a subset of 

the full meteorological record (the 1st and 15th day of each month for 5 years). These 

methods and simplifications make it possible to model Atlanta's large transportation 

system in a relatively short amount of time (days rather than months or years). 

 

Figure 1. Defining 1km grid and intersecting it with Atlanta Metropolitan Area (a), 

zoomed-in view showing the roadway network in downtown Atlanta (b). 
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Data required for setting up the model are obtained from several sources. For each 

scenario, ARC provided the output of its 4-step travel demand model and hourly, link 

level, gram per mile vehicle emission rates estimated with the U.S. Environmental 

Protection Agency's Motor Vehicle Simulator Model (MOVES). Digital Elevation Model 

(DEM) data defining the terrain are obtained from the U.S. Geological Survey (USGS). 

Meteorological data are obtained from Georgia Department of Natural Resources, 

Environmental Protection Division. The meteorological data consists of 7 stations, each 

reporting hourly surface and upper air data from January 1st, 2007 to December 31st, 

2011. 

Exposure analysis 

We estimate PM2.5 exposure by overlaying US Census block level population estimates 

with the PM2.5 concentration rasters we created using AERMOD. We estimate the mean 

PM2.5 concentration for each census block as the average value of raster cells falling 

within each census block boundary using the zonal statistics tool in ESRI's ArcGIS 

software. For the year 2010 scenario, we use block level population estimates from the 

2010 decennial census. For the year 2020 and 2040 scenarios, we use ARC's population 

projections available from their open data website (http://www.arcopendata.com). ARC's 

population projections are available at the census track level and do not include race or 

ethnicity. Each 2020 and 2040 census block is assigned a population from its 

corresponding track level population estimate in proportion to its 2010 population. The 

racial profile of each block is also maintained in proportion to the 2010 population data. 

We also add median household income estimates from the 2010 American Community 

Survey to each census block in all three scenarios. Median household income estimates 
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are only available at the larger census block group level and there are no income forecasts 

for the future year scenarios. Each block, in each scenario, is assigned the 2010 median 

household income estimate from its corresponding block group. 

Our exposure analysis approach has three obvious limitations. First, we assume that the 

spatial distribution of race and income remain constant over time. Second, we do not 

account for the daily activity patterns of each individual. We assume exposure occurs at 

each individual's home. Third, these home based exposure estimates assume exposure to 

the estimated outside PM2.5 concentrations which likely differs from the concentration 

indoors. These are simplifying assumptions that could be resolved with additional data 

and research (e.g., the measurement of outdoor air pollutant penetration rates into 

buildings and homes of various types in the region and the MPO's use of an activity 

based travel model that can track the location of individuals throughout their daily 

routine); however, we believe they provide a reasonable estimate of exposure since many 

people spend a large amount of time at or near their homes. 

Health impact analysis 

Epidemiology studies use either a cohort or a case-control study design to evaluate the 

effect of air pollution exposure on the likelihood that a person develops a negative health 

outcome. Results from cohort and case control studies can then be used to create 

concentration-response functions that describe the relationship between concentration 

(exposure) and response (negative health outcome). The majority of epidemiology studies 

focusing on air pollution exposure have developed log-linear concentration-response 

functions (Post et al. 2012) as shown in Eq. (1). A review by the US EPA for its PM 
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regulatory impact assessment also suggests that a log-linear model provides the best 

estimate of long-term mortality associated with exposure to PM (US EPA, 2012).  

ln y = 𝛼 +  β 𝑋                                      (1) 

Where, 

𝛼= constant  

𝑦 = risk of response (health outcome) in a given year 

𝛽 = effect estimate (change in risk per unit change in concentration of pollutant) 

X = concentration of pollutant 

𝛽 can be estimated using a linear regression model or a cox proportional hazards model 

(see for example Pope et al. 2012). An expansion of equation (1) yields the risk of a 

particular negative health outcome after a change in the concentration of a pollutant 

(equation 2). 

𝑦 = 𝑦0𝑒𝛽𝛥𝑋                                            (2) 

Where, 

𝑦0 = base risk of negative health outcome   

𝛥𝑋 = change in the concentration of the pollutant 

The change in the risk of a negative health outcome associated with a change in the 

concentration of an air pollutant (equation 3) is then used along with population data to 

estimate the change in the annual incidence of health outcomes (equation 4). 

𝛥𝑦 = 𝑦 − 𝑦0 = 𝑦0(𝑒𝛽𝛥𝑋 − 1)                      (3) 

𝛥𝐼 = 𝛥𝑦 𝑃 = 𝑦0 (𝑒𝛽𝛥𝑋 − 1)  𝑃                         (4) 

Where, 

𝛥𝑦 = change in the risk of health outcome  



16 

 

𝛥𝐼 = change in the annual incidence of health outcome 

𝑃 = mid-year population 

The effect estimate of PM2.5 on different negative health outcomes (𝛽) is commonly 

reported in the epidemiology literature. We obtain 𝛽 for three types of health outcomes 

from the peer reviewed literature, including chronic obstructive pulmonary disease 

(COPD) mortality, ischemic heart disease (coronary artery disease) mortality, and lung 

cancer mortality (table 1). While there are many studies estimating the association 

between the health outcomes and change in PM2.5, we select estimates from (Krewski et 

al. 2009) due to their robustness. Their estimates were derived after adjusting for 44 

individual specific covariates and based on 18 years of data from approximately 1.2 

million adults (aged > 33 years old) in about 172 US metropolitan areas, making this, one 

of the most notable studies linking PM2.5 and mortality. Estimates by Krewski et al. 

(2009) are also used in EPA’s Environmental Benefits Mapping and Analysis Program 

(BENMAP). Furthermore, prior work of Krewski et al. (2000) was described by Health 

Effects Subcommittee of the Advisory Council on Clean Air Compliance Analysis (US 

EPA 2010) as the most careful work on defining a dose-response function. 

There are other health outcomes, such as bronchitis, wheezing, and asthma (see 

McCubbin 2011 for a comprehensive list of PM2.5 dose-response functions for different 

health outcomes in different studies); but the effect of PM2.5 on the risk of such outcomes 

is either too small to be considered significant or is highly variable among different 

studies. In this study, we only considered the health outcomes for which the effect of 

PM2.5 on their risk is relatively strong and consistent across studies.  
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Table 1. Effect estimate for health outcomes assessed in this study (derived from 

Krewaki et al. 2009) 

Health outcome β (95% CI) 

COPD Mortality 0.012 (0.010 – 0.015) 

Ischemic Heart Disease Mortality 0.022 (0.017 – 0.025) 

Lung Cancer Mortality 0.013 (0.006 – 0.021) 

 

To perform the health impact analysis, we obtain age adjusted, baseline, mortality risks 

(risks that are standardized to account for variations in age profiles in different areas) for 

each health outcome in Table 1 at the county level for the 2010 base year (𝑦0) from CDC 

WONDER. CDC WONDER is an online database that provides access to publicly 

available Centers for Disease Control and Prevention (CDC) data. The county level is the 

smallest geographic unit that these data are publicly available. While baseline mortality 

risks in each county are expected to vary not only by age, but also across socioeconomic 

groups, CDC Wonder does provide data broken out socioeconomic attributes of the 

population at the county level. We use the 2010 county average baseline mortality risks 

to estimate the 2010 block level mortality risks based on the difference in each block’s 

estimated PM2.5 concentration from the estimated average county PM2.5 concentration 

following equation 5, where 𝑋𝑐 is the county mean concentration, 𝑋𝑏 is the mean block 

concentration, and 𝑦𝑐 is county baseline mortality risk.  

𝑦𝑏 =  𝑦𝐶𝑒𝛽(𝑋𝑏−𝑋𝐶)                      (5) 

We also estimate the change in future mortality risk (𝛥𝑦) and incidence (𝛥𝐼) based on the 

change in block level PM2.5 concentration (𝛥𝑋) from the 2010 base year, to the year 2020 

and year 2040. The change in mortality risks and incidence are estimated by applying 

equations (3) and (4) to the estimated change in block level PM2.5 concentrations. 
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An alternative to the direct use of health impact functions is to use US EPA's BENMAP 

software to assess health impacts. BENMAP, takes as inputs, concentration estimates for 

different scenarios and automates estimation of the change in the risk of health outcomes. 

BENMAP then uses default baseline incidence risks for different health outcomes and 

estimates changes in the number of outcomes and the economic benefits/loses associated 

with those changes in each county. One advantage of our approach is that it allows us to 

calculate health outcomes using more detailed block level concentration estimates. This 

level of spatial detail allows us to more precisely estimate the health impacts for those 

living near roadways where concentrations are elevated but rapidly decay with distance. 

Our spatially detailed analysis also allows us to investigate the potential relationships 

between block level socioeconomic attributes (e.g., race and income) and health 

outcomes. While BENMAP can be altered to also provide block level output, it requires 

an extensive and complicated manipulation of input data. 

Results 

The modeling results indicate that concentrations of directly emitted PM2.5 emissions 

from on-road vehicle exhaust, brake and tire wear are highest along major highways 

throughout the metropolitan area and the urban core (figure 2). The highest 

concentrations occur along interstate 75 running north-south and interstate 285 circling 

the city of Atlanta. Concentrations near highways can approach 30 μg/m3 and decline 

rapidly from the roadway edge; however, in some areas in the urban core and near major 

interchanges there are extended areas of relatively high PM2.5 concentrations. The maps 

also show large reductions in PM2.5 concentrations between 2010 and 2020 almost 

everywhere. However, the maps in figure 2 shows that by 2040 concentrations of PM2.5 
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from vehicle traffic begin to increase, especially in more outlying areas. The large 

reductions noted in most areas are largely due to reductions in per mile vehicle emission 

rates, rather than less driving. While VMT per capita declines 3% by 2020 and 4% by 

2040, total vehicle miles traveled (VMT) increases by 19% by the year 2020 and by 52% 

by the year 2040, over the base year scenario. The large increase in driving is the result of 

an expected 52% increase in the region's population by 2040. 
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Figure 2. Spatial distribution of PM2.5 concentration from vehicle traffic across the 

Atlanta 

The maps in figure 3 compare the scenarios in more detail by computing the absolute and 

percentage changes between each scenario. From these maps it is clear that most of the 

reduction in the concentration of PM2.5 from vehicle traffic occurs in the first 10 years, 
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and then begins to gradually increase. The initial reduction is mostly attributed to the 

penetration of new vehicles meeting recent, more stringent, vehicle emission standards. 

Overtime, the results suggest that growth in vehicle use eventually overcomes the initial 

benefits of stronger emission standards. The eventual growth in emission concentrations 

is largest in outlying areas where in some places the increase is relatively large, ranging 

from 0.1 μg/m3 to about 20 μg/m3 in the vicinity of highways. While some areas will 

experience an increasing trend in future years, almost all areas of the Atlanta 

metropolitan area will still experience much lower concentrations of PM2.5 from vehicle 

traffic in 2040 than they do now. 
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Figure 3. Absolute and percent change in estimated PM2.5 concentration 

We also calculated aggregate changes in population exposure to PM2.5 emissions from 

vehicle traffic by estimating the change in population weighted PM2.5 concentrations. 

These are shown in Table 2. The population weighted average daily PM2.5 concentration 

declines from 0.58 μg/m3 in 2010 to 0.16 μg/m3 in 2040, a decline of almost 75 percent 

over the 30-year planning horizon. As noted above, the reductions occur in the first 10 

years, after which concentrations and exposure begin to rise. The aggregate results also 

indicate that the non-white population is on average exposed to higher concentrations 

than the white population. For example, in 2010, blacks were exposed on average to a 
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daily population weighted PM2.5 concentration of 0.66 μg/m3, and other non-whites to 

0.77 μg/m3 of PM2.5, exposures that are 29 and 51 percent higher than that of whites, 

respectively. Lower income populations are also exposed on average to much higher 

concentrations. In 2010, low income populations, defined as households with an income 

less than $33,860 which is 200% of the federal poverty level based on the region's 

average household size of 2.6, were exposed on average to a daily population weighted 

PM2.5 concentration of 0.94 μg/m3, which is 80 percent higher than that exposure of 

higher income households (0.52 μg/m3). These patterns of exposure inequality extend 

into the two future planning scenarios. 

Table 2. Estimated daily PM2.5 emissions and PM2.5 emissions concentrations from 

vehicle traffic in the Atlanta Metropolitan Area 

Year 

Emission 

Inventorya 

(kg) 

Mean 

Concentrationb 

(μg/m3) 

Population Weighted Mean Concentration (μg/m3) 

Total 

Population White Black 

Other non-

white Low Income 

High 

Income 

2010  7,606 0.19 0.58 0.51 0.66 0.77 0.94 0.52 

2020  3,686 0.05 0.15 0.12 0.17 0.20 0.26 0.13 

2040  5,545 0.07 0.16 0.14 0.18 0.21 0.29 0.14 

a Total daily quantity of PM2.5 emissions across the study area. 
b Mean daily PM2.5 concentration across the study area (e.g., includes concentrations in 

unpopulated areas). 

 

We evaluate exposure inequity by race and income group in more detail with cumulative 

population exposure plots (figures 4 and 5). The cumulative exposure plots indicate that 

low income and non-white populations are more likely to live in areas with higher 

concentrations of PM2.5 from vehicle traffic. This inequality exists both in 2010 and 

future scenarios. The plots also provide additional information that is not apparent in the 

aggregate calculations in Table 2. They show that the population within each race and 

income group are exposed to a wide range of emission concentrations. 
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Figure 4. Cumulative exposure distribution by income level 

 

Figure 5. Cumulative exposure distribution by race group 
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The large reduction in PM2.5 concentrations also results in large reductions in health risks. 

Figure 6 shows the pattern of mortality risk reduction from 2010 to 2040 as a result of the 

estimated change in PM2.5 emissions from vehicle traffic and the associated change in 

PM2.5 concentrations. The largest risk reductions follow the largest reductions in PM2.5 

concentrations which occurs in downtown Atlanta and along the region's highways. 

While not entirely visible on each of the maps in figure 6, a few urban peripheral areas 

experience a small increase in mortality risk. 

We also evaluate the change in risk by race and income. Census blocks were grouped into 

deciles by income and their proportion outcomes we evaluated for populations in each 

decile. These results are shown in figures 7 and 8. These results indicate that places with 

the lowest and highest income populations and those with the largest share of minorities 

experience the largest risk reductions. By 2020 and 2040, there is relatively little 

difference in risk across race or income deciles. These risk reduction patterns reflect the 

demographics of the region. Areas that currently have the highest concentrations of 

vehicle emissions are located close to the center of Atlanta or along major roadways 

extending outward from the city center to the suburbs. These are also areas with some of 

the lowest and highest income communities along with a large minority population. 

Suburban areas with more modest levels of air pollution also have more modest income 

levels and a relatively smaller minority population. 
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Figure 6. Change in mortality risk from 2010 to 2040 due to change in PM2.5 

concentration 
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Figure 7. Mortality risk by income decile from 2010 through 2040 

 

Figure 8. Mortality risk by race decile from 2010 through 2040 

Our analysis finds a mean of 125 deaths avoided in 2020 and 142 in 2040 in the Atlanta 

Metropolitan Area for three major health outcomes related to PM2.5 exposure (figure 9). 
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These include: 17 avoided COPD deaths in 2020 (1.3% reduction from 2010) and 19 in 

2040 (1.5% reduction from 2010); 85 avoided ischemic heart disease deaths in 2020 (3% 

reduction from 2010) and 96 in 2040 (3.4% reduction from 2010); 23 avoided lung 

cancer deaths in 2020 (1.2% reduction from 2010) and 27 in 2040 (1.4% reduction from 

2010). There is little improvement in lives saved between 2020 and 2040 since the bulk 

of emissions reductions occur during the first 10-year period. The results also find that 

non-whites have a higher mortality reduction even though they make up a smaller share 

of the region's population. Similarly, while low and higher income populations have 

similar mortality, the low income population is only 16 percent of the total population. 
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Figure 9. Annual number of lives saved from 2010 to (a) 2020, and (b) 2040. The 

bars represent the 95% confidence interval with the mean in the center. 

Discussion 

In this study, we integrated outputs from a travel demand model with vehicle emission, 

air quality and health impact models to evaluate the health outcomes associated with 
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change in exposure to vehicle emissions. Our study is novel in that it estimates the 

change in vehicle emission concentrations, exposure and associated health risks expected 

from a metropolitan planning organization's long-range transportation plan. Prior studies 

and analysis completed by metropolitan planning organizations that have evaluated 

changes in air quality for various long-range, regional, transportation planning scenarios 

are limited to estimating the change in regional emission inventories. While there have 

been academic studies that model exposure to vehicle emissions and estimate their health 

impacts, they have not investigated changes expected under various planning scenarios, 

they have focused on current conditions. 

Our analysis of the Atlanta Metropolitan Area's long-range transportation plan, finds that 

PM2.5 concentration and population weighted average exposure declines by almost 75 

percent over the 30-year planning horizon. Most of reduction occurs in the first 10 years 

and concentration begins to gradually increase after the year 2020. The initial reduction is 

mostly due to improvements in vehicle and fuel technology expected from stricter federal 

vehicle emission standards. Growth in travel demand over time eventually begins to 

overcome the benefits of stronger emission standards. The eventual growth in 

concentrations is largest in suburban areas in the vicinity of highways where the increase 

from year 2010 to 2040 can reach up to 20 μg/m3. The large initial decrease in vehicle 

emissions exposure results in large reductions in mortality risk and incidence. The 

decrease in risk and incidence remains about constant after the rapid decline observed in 

the first 10 years. These results demonstrate the benefit of federal vehicle emissions 

standards. However, the results also suggest that vehicle emission standards will either 

need to be tightened in the future or more aggressive measures to reduce travel demand 
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will need to be adopted to prevent the erosion of initial air quality and public health 

gains. 

Our findings also suggest that large inequalities and environmental justice concerns exist 

in Atlanta, where low income and minority communities experience the highest vehicle 

emission concentrations and therefore the largest health risks. These findings are similar 

to what has been found in other regions in prior studies (e.g., Apelberg, 2005; 

Chakraborty, 2009; Gunier, 2003; Houston, 2004; Rowangould, 2013). The relative size 

of exposure inequalities were also found to remain about the same overtime. While low 

income and minority communities experience the greatest health risks, they also 

experience the greatest reduction in risk over time, which substantially reduces the gap in 

absolute health risks between low and high income groups as well as white and non-white 

groups. 

While many prior studies find that low income and minority communities are more likely 

to be exposed to higher concentrations of vehicle emissions, as we found in this study, 

exposure patterns vary from place to place and are often complex. For example, we also 

find that high income deciles also face increased PM2.5 exposure and associated health 

risks. A study by Havard et al. (2009) finds that in Strasbourg, France, households falling 

within the mid-point of a social deprivation index that provides a general measure of 

socioeconomic status had the highest exposure to traffic emissions. Similarly, Cesaroni et 

al. (2013) find that in general communities in Rome with medium and high 

socioeconomic status had the greatest potential traffic emissions exposure based on their 

proximity to high volume roadways; however, when they evaluated disparities within 

smaller areas of the city this was not always the case. As our study and these prior studies 
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demonstrate, vehicle emissions exposure patterns are complex and vary across 

communities and regions, underscoring the value of conducting spatially detailed 

exposure and health risk analyses. 

The approach we have developed and the quantitative exposure and health impact 

information it can provide should be useful for identifying more health protective 

regional transportation plans that limit exposure by decreasing travel demand in pollution 

hotspots or by limiting development in these areas. Such a proactive approach is also 

likely to increase efficiency as projects that may pose serious health risk concerns can be 

identified early on in the regional planning process where there are many more degrees of 

freedom to explore alternatives than there are during a project level analysis. This 

information can also be used to evaluate the long term effectiveness of federal vehicle 

emission standards in major population centers. Furthermore, the capability to estimate 

spatially resolved health risks and the change in risk under various planning and policy 

scenarios could be valuable in communication with the public. Changes in emission 

inventories are largely disconnected from changes in a community's health risks. And, 

even spatially resolved vehicle emission concentration estimates provide little contextual 

information to the average person. It is unlikely that most people understand, for 

example, what a 1 μg/m3 change in PM2.5 might mean for their health. Communicating 

changes in risk may therefore result in more effective public participation and provide 

greater contextual information for evaluating tradeoffs with other regional transportation 

planning goals such as congestion mitigation, traffic safety, and economic growth. 

Our spatially detailed approach to regional air quality analysis also allows for a more 

robust evaluation of environmental justice concerns. MPO's that do consider 
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environmental justice concerns related to air quality in their regional plans often rely on 

some type of spatial buffer analysis. A common approach based on our experience is to 

draw spatial buffers around high volume roadways (where high concentrations of air 

pollutants can be expected) and compare the socioeconomic characteristics of populations 

within these buffers to the regional population. However, this approach requires defining 

critical distance and traffic volume thresholds. This can be problematic for several 

reasons. Choosing different thresholds may result in different conclusions depending on 

the spatial distribution of minority and low income communities with respect to major 

roadways. For example, a slightly larger buffer or lower traffic volume threshold may 

include a large minority community that would not be captured in a more narrowly 

defined analysis. Whether there is an environmental justice concern then becomes subject 

to the choice of these thresholds which could be difficult to defend. Furthermore, vehicle 

emissions rates and concentrations vary across regions due not only to traffic volume but 

also congestion levels, the density of roadways, the type of vehicles using roadways (e.g., 

amount of diesel truck traffic), topography, and varying climate and weather patterns. 

Most buffer approaches also fail to consider how vehicle emission rates change over time 

though the planning horizon. As time goes on and vehicle emission rates decline the 

correlation between traffic volume and near roadway emission concentrations will change 

significantly, making it difficult to estimate how environmental justice concerns change 

over time. 

Our analysis of exposure addresses many limitations in current practice and the latest 

academic advances but several important limitations persist. First, we did not account for 

the movement of individuals. We estimate exposure, as most prior studies have done, 
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based on pollution concentrations at the population's residential location. Clearly, the 

population's exposure is accumulated throughout the day as people travel to conduct their 

daily business. While this is a limitation, we also argue that it still provides a significant 

improvement over current methods used in practice and provides a reasonable estimate of 

exposure since most people spend the majority of their time in and around their home. 

Our prior research also finds concentrations are highest in the early mornings and 

evenings when most people are at home (Rowangould, 2015). Second, exposure is based 

on the estimated outdoor ambient air pollution concentration and not the concentration 

within buildings. Prior studies find that concentrations inside and outside of buildings 

may vary significantly (Baek et al. 1997; Kim et al. 2001; Marshall et al. 2003). 

Accounting for how much outdoor concentrations affect indoor and in-vehicle 

concentrations in a modeling study would generally require the use of indoor/outdoor 

concentration ratios along with data on individual's movement in the region. Currently, 

there is insufficient regional data on indoor/outdoor concentration ratios to carry out this 

refinement. We assume that higher outdoor concentrations are associated with relatively 

higher indoor concentrations. Third, in analyzing equity concerns, we assumed that block 

level household incomes and the proportion of each race remained constant over time. 

The population of blocks could grow or decline, but their socioeconomic profile 

remained constant. We are unaware of any methods for forecasting these changes at a 

refined spatial scale. There are also limitations specific to the health impact functions 

used in our study. First, dose-response functions are obtained from studies that 

considered exposure to PM2.5 from many different sources. Therefore, we cannot be 
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certain if the change in PM2.5 from traffic sources would result in similar, higher or fewer 

health impacts. 

Finally, while the models we use have each been evaluated and validated to some extent 

by the agencies that created them, the amount of uncertainly in each model's estimates for 

a particular set of modeled conditions are largely unknown. For example, travel demand 

models are calibrated and validated against current travel data at a few roadway locations 

and with aggregate regional statistics. How well these models actually predict future 

travel conditions or travel conditions on particular links is largely unknown (Zhao and 

Kockelman, 2002). Dispersion models have occasionally been evaluated with field tests 

using tracer gases or a set of near roadway monitors (Heist et al. 2013; Wang et al. 2016; 

Yura et al. 2007) but the very limited conditions of each test; each using different models, 

experimental designs, and traffic and land use conditions does not provide enough 

information to estimate uncertainties for particular modeling applications. These 

dispersion model validation studies each reached very different conclusions. Each travel 

demand, emission factor, and dispersion model that we use only provide point estimates. 

This is a well-known limitation in the transportation forecasting and vehicle emission 

modeling field and one where little progress has been made. By passing point model 

estimates from one model to another in our modeling chain, we are likely compounding 

these unknown uncertainties to an unknown extent. 

There are several possibilities for expanding upon the framework discussed in this paper. 

We have estimated the concentration of fine particulate matter to demonstrate our 

approach; however, the same approach could also be used to evaluate exposure to other 

directly emitted criteria air pollutants such as carbon monoxide and nitrogen dioxide as 
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well as wide variety of mobile source air toxics such as benzene and formaldehyde (US 

EPA, 2006). Health impact functions also exist for many mobile source air pollutants 

(e.g., see US EPA's BENMAP program), and they could be used with exposure estimates 

estimated using our framework to estimate changes in health risk. In regions that use 

activity based travel demand models, it would be possible to account for the daily 

movements of the population and estimate a more refined exposure estimate (Dhondt et 

al. 2012). The relative importance of accounting for differences in indoor and outdoor 

concentrations also warrants further investigation. Finally, research aimed at 

understanding the uncertainties of individual modeling steps and their propagation though 

commonly used modeling chains is sorely needed and requires a significant, new, 

research effort by the transportation and air quality research field and the agencies who 

develop and use many of these models. 
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Chapter 3. Evaluating the cumulative impacts of a long-range regional 

transportation plan: particulate matter exposure, greenhouse gas 

emissions, and transportation system performance 

Introduction 

In the United States, Metropolitan Planning Organizations (MPOs) are responsible for 

developing coordinated, long-range, regional transportation plans (LRTPs) for urban 

areas with 50,000 or more people. The plans define long term transportation goals and 

objectives for each region, a series of performance measures to track progress towards 

achieving those goals, and provide fiscally constrained lists of transportation projects to 

be completed during the planning period. These plans are typically evaluated using 

regional travel demand models that forecast how a plan will affect traffic and travel 

behavior such as traffic volume, mode share, travel speed, and congestion. Travel 

demand modeling output may also be used with vehicle emission models such as the 

United States Environmental Protection Agency’s (US EPA) Motor Vehicle Emission 

Simulator (MOVES) program or the California Air Resources Board’s EMFAC model to 

estimate how much plans will contribute to regional greenhouse gas and criteria air 

pollutant emission inventories. While not common in practice, it is also possible to 

evaluate how a long-range plan affects population exposure to vehicle emissions using an 

air dispersion model such as US EPA’s AERMOD model (Poorfakhraei et al. 2017; 

Tayarani et al. 2016).  

The typical approach for evaluating an LRTP is to measure the plan’s performance 

against a baseline year and a business-as-usual or trend scenario. The plan is therefore 

evaluated at two points in time, the baseline year (i.e., the current year) and a planning 
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horizon year that is at least 20 years into the future. This approach evaluates the two 

endpoints of the planning period, which presents an important limitation for evaluating an 

LRTP’s performance, and particularly its air quality impacts. Under the typical 

“endpoint” approach, it is implicitly implied that changes in performance measures 

between the beginning and end of the planning period are linear. That is, the plan that 

achieves the greatest improvement in a performance measure by the end of the planning 

period is the one that maximizes total welfare gains related to that performance measure.  

However, changes in performance measures are likely to be non-linear over the planning 

period given the complexity of the transportation system. This is especially true when 

considering vehicle emissions and exposure. Not only do factors that affect emission 

rates and exposure such as traffic volume, speed, mode share, and the location of the 

population change overtime, but so does vehicle technology and emission standards that 

also affect vehicle emission rates (Poorfakhraei et al. 2017; Tayarani et al. 2016). It is 

therefore possible that a plan that performs relatively poorly at the end of the planning 

period may have performed relatively well during the interim years and vice versa. If 

maximizing welfare is the main goal of regional transportation planning, then evaluating 

performance measure throughout the planning period of an LRTP should provide a more 

robust and accurate evaluation metric.  

Measuring air pollutant emissions and changes in air quality over the term of an LRTP is 

also important because their impacts on the environment and public health are often long 

lasting and irreversible. First, consider greenhouse gas (GHG) emissions. Most GHGs 

persist in the atmosphere for a relatively long period of time (e.g., carbon dioxide 

released today can remain in the atmosphere for thousands of years (Solomon et al. 
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2009)). Thus, the ability of a plan to reduce the accumulation of GHGs is much more 

important for mitigating climate change risks than achieving a particular emission rate at 

a particular point in time. An irreversible and damaging accumulation of GHGs could be 

released by the time low emission rates are achieved at the end of a planning period. 

GHG emission rates may also rise in the future beyond the planning period. Toxic vehicle 

emissions also present an, at least partially, irreversible impact. For example, exposure to 

particulate matter from vehicle emissions has been associated with a wide range of 

negative health outcomes (e.g., see reviews by the Health Effects Institute (2010) and 

Brugge et al. (2007)). The impacts of these negative health outcomes on people’s lives is, 

for the most part, not undone if air quality is improved in the future. On the other hand, 

other common transportation planning goals, such as reducing traffic congestion and 

providing greater mobility, do not necessarily impose long term damage and are 

relatively reversible.  

Annual average and cumulative performance measures may be a more robust way to 

evaluate the overall performance of LRTPs and they can be calculated using models and 

analytical methods currently available to most transportation planning agencies. A travel 

demand and land use model for the region of interest are required. Vehicle emission and 

air quality models are also required, and they are freely available from the U.S. 

Environmental Protection Agency. In this paper we demonstrate how these models can be 

used to evaluate the annual and cumulative impacts of an LRTP and discuss how this 

information can be used to perform a more robust analysis of LRTPs.  

An important component of our modeling approach is the use of an integrated travel 

demand and land use model. This model integration is critical for understanding how 
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changes to travel demand and land use co-evolve over time as population grows and new 

transportation infrastructure investments are made (Iacono et al. 2008). For example, 

while it is well established that highway and transit capacity expansion and congestion 

relief projects can spur induced demand by lowering travel costs (Cervero, 2003; 

Duranton and Turner, 2011; Noland, 2001), traditional travel demand models only 

capture induced demand from traffic re-routing and mode shifts (Kitamura, 2010). An 

integrated transportation and land use model can capture how a highway capacity project 

that reduces congestion will increase the likelihood that land along the highway is 

developed, leading to induced demand and increasing congestion in the future, all else 

equal. Modeling the evolution of travel demand and land use also allows us to track year-

by-year changes in transportation system performance measures. Furthermore, combining 

the integrated travel demand and land use modeling results with vehicle emission and an 

air dispersion modeling allows us to track the changing concentrations of air pollutants 

across the planning area and the location of the population exposed to these emissions. 

While prior studies have used integrated travel demand and land use models to evaluate a 

range of transportation planning and policy questions (Abraham and Hunt, 1999; 

Kakaraparthi Siva Karthik and Kockelman Kara M., 2011; Kitchen et al. 2011; Waddell 

et al. 2007), these analysis, like current LRTP practice, have used an “endpoint” 

perspective. While it is common to model some intermediate years en route to the final 

year in the planning period, the purpose in most studies is primarily for updating the land 

use model with revised accessibility data. In most modeling systems, the land use model 

requires travel costs (i.e., logsums) from an external travel demand model (Iacono et al. 

2008). This requires the land use and travel demand models to be iterated periodically, 
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where the travel demand model is updated with revised population and employment data 

from the land use model and then run to provide the land use model with revised travel 

cost data. While interim year iterations create output that could be used to evaluate 

changes in the transportation system overtime, this is usually not done. For example, 

Kitchen et al. (2011) use an integrated land use and travel demand modeling system to 

evaluate several regional transportation planning scenarios in the Seattle, WA 

metropolitan area over the period 2010 to 2040. They iterate the region’s travel demand 

model with the UrbanSim land use model every 5 to 10 years. Each planning scenario is 

then evaluated based on year 2040 performance metrics; interim year outputs are not 

discussed.  

Many recent studies also demonstrate the value of integrating vehicle emission, air 

dispersion and travel demand modeling for better understanding the air quality and public 

health impacts of vehicle traffic and transportation planning strategies and policies 

(Beckx et al. 2009; Dhondt et al. 2012; Dons et al. 2011; Hatzopoulou et al. 2011; 

Lefebvre et al. 2011, 2013; Poorfakhraei et al. 2017; G. Rowangould, 2015; 

Shekarrizfard et al. 2017; Tayarani et al. 2016; Woodcock et al. 2009). However, very 

few of these evaluate how plans or policies affect air quality over time (Hatzopoulou et 

al. 2011; Poorfakhraei et al. 2017; Tayarani et al. 2016), and those that do have not 

considered annual changes or cumulative impacts. Most studies have focused on 

developing and validating integrated transportation and air quality modeling systems. 

The remainder of our paper discusses our methodology for combining land use, travel 

demand, vehicle emission, and air dispersion modeling to evaluate annual and cumulative 

changes in common transportation system performance measures, GHG emissions, and 
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fine particulate matter exposure for the Albuquerque, New Mexico metropolitan area. An 

LRTP scenario developed by the regional planning agency with a 2012 base year and 

year 2040 planning horizon is evaluated. We evaluate exposure to PM2.5 from vehicle 

emissions because exposure to PM2.5 from vehicle traffic is associated with many 

negative health outcomes (Brugge et al. 2007; Health Effects Institute, 2010) and because 

the research discussed in this paper is part of a larger and ongoing US EPA sponsored 

project focused on understanding the challenges of reducing exposure to both PM2.5 and 

GHG emissions from transportation. Other vehicle emissions can be considered using a 

similar framework. We also compare year 2040 performance measures, GHG emissions, 

and PM2.5 exposure estimated by iterating the land use and travel demand models 

annually to when they are estimated using a typical endpoint approach (i.e., no interim 

year land use and travel demand model iterations). Our study is the first that we are aware 

of that evaluates how travel behavior, land use, and the air quality impacts of vehicle 

traffic evolve overtime in a metropolitan area. We argue that evaluating year-by-year 

changes and cumulative impacts can aid in the selection of higher performing LRTPs by 

considering impacts that occur between the beginning and end of long planning periods. 

This approach to modeling also allows planners and researchers the opportunity to better 

understand land use and travel behavior dynamics, providing new opportunities for 

reducing traffic congestion, improving accessibility and mitigating air quality and climate 

change impacts by considering the timing of infrastructure, land use, and policy 

implementation. 
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Methods 

We use the “trend” scenario from the Mid Region Council of Government’s (MRCOG) 

LRTP “Futures 2040 Metropolitan Transportation Plan” as a case study for evaluating the 

annual change in common LRTP performance measures and cumulative air quality 

impacts. MRCOG is the Albuquerque, New Mexico area MPO. With a 2012 population 

of 890,593 and a total land area of 24,080 km2, it is the largest and most populous urban 

area in New Mexico.   

Integrated modeling framework 

We use an integrated land use, travel demand, vehicle emission, and exposure modeling 

framework to calculate transportation system and air quality performance measures 

(figure 10). This integrated modeling framework can evaluate a wide range of planning 

and policy scenarios. The land use model can consider different regional population 

growth and employment forecasts as well as changes to land use zoning such as 

allowable densities, building heights, and land uses. The travel demand model can 

forecast how travel behavior responds to changes in the transportation network and its 

capacity, new transit routes, and changes in the costs of travel, for example, from travel 

demand management policies. The vehicle emission model can evaluate changes in the 

composition of the vehicle fleet (age and vehicle type), fuel properties, and vehicle 

emission standards. 
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Figure 10. Integrated modeling framework 

Travel demand and land use modeling 

Congested network travel times estimated by a travel demand model are used as input by 

the land use model to forecast changes in real estate prices and building locations and the 

corresponding changes in population, household income, and employment across the 

region (Table 3). Population, household income and employment forecasts from the land 

use model are then used as input into future year travel demand modeling where they are 
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inputs to functions used for estimating trip generation rates, origin-destination matrices, 

and mode choice.  

Table 3. Accessibility variables used in MRCOG’s parcel based UrbanSim land use 

model 

Variable/Model 

Residential 

Price  

Residential 

Building 

Location Choice  

Non-

residential 

Price  

Non-residential 

Building 

Location Choice  

Employment 

Location 

Choice  

Activity centers within 

1/2 and 1 mile 
E  E E E 

Open space attractions 

within 1 mile 
 E    

Bus within 1/8 and 1/2 

mile and  
E  E E E 

Interchange within 1/4 

and 1 mile 
E E E E  

Major arterials within 

1/2 mile 
    E 

Park within 1/2 and 1/4 

mile 
  E E E 

Number of jobs within 

10, 15, 30 and 35 

minutes 

 T  T T 

Number of households 

within 10 minutes 
 T    

Occupancy rate within 

10 minutes 
T     

Population within 20 

and 30 minutes 
T   T T 

Travel time to CBD     T 

E: variables that are not updated by the travel demand model (exogenous) 

T: variables that are updated by the travel demand model 

 

In our study we use MRCOG’s 4-step, trip based, travel demand model for the 

Albuquerque metropolitan region. The model is a typical trip based model. The model 

includes the region’s major highway and street networks (highways, arterials and 

collectors) and transit networks (bus, bus rapid transit, and regional commuter rail 

routes). The model estimates trip generation rates and origin-destination matrixes for 914 

travel analysis zones (TAZs) that generally represent U.S. census tracks and includes a 

mode choice model that estimates single occupancy, carpool, transit, and non-motorized 

mode shares. Traffic is assigned to individual network links using a static user 

equilibrium method for the morning and afternoon peak commuting periods and the 
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remaining off-peak times. The model is implemented in Citilab’s CUBE modeling 

software and was calibrated and validated by MRCOG. The model’s calibration and 

validation report available from MRCOG provides additional details about the model’s 

structure and calibration (Systra Mobility, 2010). In addition to supplying travel time data 

to the land use model, traffic data from the travel demand model are also used to estimate 

common transportation system performance measures including, vehicle miles traveled 

(VMT), peak hour average speed, and transit, non-motorized, and vehicle mode shares.  

MRCOG also developed and calibrated a parcel based version of the UrbanSim land use 

model (Waddell et al. 2010). MRCOG’s implementation of UrbanSim includes current 

zoning regulations and land uses for each parcel in the Albuquerque metropolitan area. 

The model is connected to the travel demand model through its use of congested network 

travel times in many of its regression and choice functions (Table 3) and by supplying 

population, household income, and employment forecasts for each TAZ to the travel 

demand model. Longer travel times depress real estate prices and reduce the utility of 

developing real estate in a particular zone and less development results in less travel 

demand to and from a zone, all else being equal. This integration captures some of the 

ways in which land use and transportation system changes affect each other.  

Air quality modeling 

Traffic volume and average speed outputs from the travel demand model for each 

roadway segment are used with the U.S. EPA’s MOVES model to estimate the total 

quantity of GHG and PM2.5 emissions from vehicles traveling along each roadway in the 

region during each time period. The PM2.5 emissions include primary PM2.5 from vehicle 

exhaust, tire wear, and brake wear but does not include secondary PM2.5 formed in the 
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atmosphere from other components of vehicle exhaust. The MOVES model includes 

regional inputs describing the Albuquerque metropolitan area’s vehicle fleet and vehicle 

inspection and maintenance program. We construct a vehicle emission rate lookup table 

by roadway type and average travel speed using MOVES, allowing us to more quickly 

calculate emission rates for each roadway segment. The emissions for each roadway 

segment are aggregated over all roadways in the Albuquerque metropolitan area, for all 

time periods, to estimate regional GHG and PM2.5 emission inventories.  

PM2.5 emission rates for each roadway segment are also used as input to an air pollutant 

dispersion model to estimate the annual average ambient concentration of PM2.5 

attributable to vehicle traffic across the region. We use U.S. EPA’s AERMOD dispersion 

model, which is a static gaussian plume model that can represent emissions from vehicle 

traffic as a series of area or volume sources. In our study we use the area source method, 

representing each roadway segment as a rectangular source with its width and length 

equal to that of the roadway segment. We place receptors every 100m over a regular grid. 

In our analysis, there are 9,093 roadway sources and 172,700 receptors, which adds up to 

over 1.5 billion source-receptor pairs. Since AERMOD models each source-receptor pair 

individually, the large number of source-receptor pairs would ordinarily take an 

exceptionally long time to model (several months for each analysis year, over several 

years for the entire planning horizon). To overcome this limitation, we use a novel 

rastering approach that significantly reduces modeling times while closely following US 

EPA regulatory modeling guidance (G. M. Rowangould, 2015). Point concentration 

estimates are interpolated from the 100m grid to a 20m resolution raster using empirical 
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Bayesian kriging in ArcGIS. The interpolated raster aids in visualizing the results and for 

calculating the average PM2.5 concentrations for each parcel in the region. 

Exposure analysis  

The final step in the modeling framework is determining PM2.5 exposure. This involves 

co-determining the location of people and the concentration of PM2.5. The population for 

each parcel is obtained from the output of the UrbanSim model. We use ArcGIS to 

estimate the average PM2.5 concentration within each parcel by intersecting parcel 

boundaries with the interpolated PM2.5 concentration raster. We also calculate the 

population weighted regional average exposure by summing the product of each parcel’s 

estimated population and its average PM2.5 concentration and dividing this sum by the 

region’s total population.  

Comparing endpoint and annual modeling approaches 

We model a single LRTP scenario for the Albuquerque metropolitan planning area that 

represents a business-as-usual strategy for the region, one that focuses largely on 

expanding highway capacity, includes a new bus rapid transit route, and leaves land use 

zoning and other policies as they exist today. The scenario was developed by MRCOG as 

part of its 2040 Metropolitan Transportation Plan (Mid-Region Metropolitan Planning 

Organization, 2015). We model this planning scenario using two different approaches: a 

typical “endpoint” approach and what we refer to as an “annual” approach. The purpose 

is twofold. First, we evaluate how each approach affects transportation and air quality 

performance measures calculated in the final year of the planning period. Additionally, 

we investigate the robustness of measuring a plan’s performance during the final year of 

the planning period. The annual modeling approach allows us to evaluate the 
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performance of a plan throughout the planning period by modeling annual changes in 

performance measures, making it possible to estimate annual average and cumulative 

performance measures. We compare how the performance of a plan in its final year 

compares to its overall performance throughout the planning period.   

For the endpoint modeling approach, we use the integrated modeling framework 

discussed above; however, we only perform one iteration between the travel demand 

model and the land use model. The modeling begins with the development of a base year 

travel demand modeling run for the year 2012. This model run includes the region’s 

existing transportation network, policies, household characteristics, and population and 

employment distribution. Travel time outputs from the 2012 travel demand modeling run 

are then input into UrbanSim which simulates residential and commercial building 

location choice and prices, and associated changes in population and employment at the 

parcel level on an annual basis from 2013 to 2040. The 2040 parcel level output from 

UrbanSim are aggregated to TAZs and used as input to a 2040 run of the travel demand 

model. The 2040 travel demand model run also includes an updated transportation 

network that reflects any new projects built between 2012 and 2040 and any new 

transportation policies.  

The annual modeling approach described above is representative of typical transportation 

planning practice in many regions, including those that do not use land use models to 

generate future year socioeconomic inputs for their travel demand models. Like the 

process used in many regions, the travel demand model is only run twice for a given 

scenario – it is run for the base year and the final year of the planning period. All projects 

and policy changes are modeled together in the final year of the plan, even though they 
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are implemented incrementally overtime, thus ignoring interim year outcomes and the 

dynamic relationship between land use and transportation. Some regions do model 

interim years; however, the main purpose is usually for updating a land use model rather 

than evaluating interim year performance. In these cases, its common to iterate travel 

demand and land use models every five years, with the range in the studies we evaluated 

being between three to ten years (Abraham and Hunt, 1999; Kakaraparthi Siva Karthik 

and Kockelman Kara M., 2011; Kitchen et al. 2011; Troy et al. 2012; Waddell et al. 

2010, 2007; Zondag and de Jong, 2011).  

The annual approach uses the same integrated modeling approach as the endpoint 

approach, however, the travel demand and land use models are iterated annually from 

2012 until 2040. In each iteration, the travel demand model is updated with population 

and employment data from a new run of the land use model and the transportation 

network is updated with projects expected to be built during that year. The travel demand 

modeling outputs for each year are then used to estimate performance measures for that 

year and provide travel cost data for the next run of the land use model. This modeling 

approach is shown along with the endpoint approach in Fig 11. 

In addition to generating data for calculating performance metrics on an annual basis, the 

greater level of land use model integration in the annual approach provides a more 

realistic treatment of the interaction between land use and travel demand. One outcome of 

the greater level of integration is that we expect that performance measures calculated for 

the last year of the planning period to differ between the annual and endpoint approaches. 

For example, if congestion grows significantly overtime in the annual approach, the 

parcels in the land use model that are further away from travel destinations will be 
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relatively less attractive and therefore a greater level of development and population 

growth should occur closer to major travel destinations such as large employment 

centers. As a result, the region should grow more compactly which may also result in less 

travel demand and greater transit and non-motorized mode share.  

 

Figure 11. Overview of endpoint and annual modeling approaches 

Scheduling transportation projects  

The annual modeling approach requires scheduling projects to be built in each year. 

MRCOG’s 2040 Metropolitan Transportation Plan contains a fiscally constrained list of 

projects to be completed by the 2040 planning horizon year but not an annual schedule. 
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The plan does organize projects into one of three time periods: “funded” projects that are 

scheduled to be completed between 2012-2021; “near term” projects that are expected to 

be completed between 2015-2025; and “late term” projects that are expected to be 

completed between 2025-2040. Projects are also categorized by one of eight types: 

highway and bridge preservation, capacity, bicycle and pedestrian, transit, intelligent 

transportation system, travel demand management, safety, and other projects.  

We develop more refined, annual, project schedules for each of the three broad 

implementation time periods in MRCOG’s plan.  MRCOG’s plan provides share of total 

funding for each of 8 project types (Table 4) as well as the total funding available each 

year. To create our annualized schedule, we assume that the share of funding by project 

type remains constant each year. For each of the three implementation periods, we then 

randomly assign projects to each year in the period until the budget for each project type 

is met. Next, we review the project schedules and adjust for multipart projects that 

require a specific implementation order. 

Table 4. Budget allocation for transportation projects in MRCOG’s LRTP 

Project Type Proportion of Total Budget 

Bike/Ped  5.2% 

Highway Capacity  20.4% 

Highway and Bridge Preservation 32.0% 

Intelligent Transportation System 

(ITS) 

3.0% 

Safety 1.6% 

Travel Demand Management 0.7% 

Transit 35.6% 

Miscellaneous 1.5% 

Total estimated cost for all projects $5,087,266,371 

 

Using our annual project schedule, we define travel demand modeling runs for each year. 

For each travel demand modeling run, we include infrastructure projects that make 
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physical changes to the region’s transportation system such as highway and bridge 

projects that add new capacity, changes that affect intersection operations, changes to 

speed limits, or transit projects. Other projects such as highway maintenance (e.g., 

paving) and safety projects (e.g., adding street lighting and public education campaigns) 

are assumed to have minimal, if any impact on travel demand or behavior and therefore 

are not modeled. However, these projects are still included in our annual project 

implementation schedule for the purpose of constraining the annual budget.  

Overall, we model the addition of 175 lane-miles of new roadways and 108 lanes-miles 

of capacity expansion to the 4,441 lanes-mile of existing roadways in the region. There 

are also numerous intersection and highway interchange projects. Also included are 140 

miles of new transit routes added to the 600 miles of existing transit routes as well as new 

park and ride facilities. Transit lines also receive a10-50 percent improvement in the 

existing 10-60 minute headways. Intelligent transportation system (ITS) projects such as 

installing traffic signals are also modeled by updating individual intersection delay 

functions in the travel demand model. 

One limitation we faced in modeling specific infrastructure projects is that MRCOG’s 

travel demand model does not include non-motorized infrastructure (e.g., bicycle lanes 

and sidewalks) and it is therefore not able to forecast the effects of these investments. It is 

possible to complete an off-model analysis to estimate the broad effect of these types of 

investments; however, we have not done that here since we are interested in evaluating 

the effect of the scheduling of individual projects and policies. There were also several 

travel demand management and ITS projects that faced similar modeling limitations. For 

example, the construction of a regional traffic management center. 
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Results 

The modeling results indicate that changes in vehicle emissions, PM2.5 exposure, and 

common mobility performance metrics exhibit non-linear, and sometimes complex 

changes, over the course of the planning period.  

Figure 12 indicates that in the earlier years of the planning period GHG emissions rise 

before falling and then eventually rise again. In this case, the rising and falling emission 

rates in the annual approach tend to balance each other out over time, and the result is 

that the cumulative GHG emissions over the 28 year planning period are only 1.7 percent 

less than those based on a linear extrapolation of the endpoint analysis. The cumulative 

GHG emissions would have been significantly different had a different planning horizon 

year been chosen; for example, the year 2030. The annual approach also ends up 

estimating a slightly lower GHG emission rate by 2040, though the difference is only 

about 1 percent.  
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Figure 12. Daily GHG emissions inventory 

Figure 13 shows that PM2.5 emissions also deviate from a linear trend between 2012 to 

2040, displaying exponential decay though about the year 2030. After 2030, emissions 

begin to slowly increase. In this case, calculating the cumulative PM2.5 emissions over the 

28 year planning periods based on a linear extrapolation of the endpoint approach would 

overestimate PM2.5 emissions by 1,451 tons or 38 percent. Similar to the GHG emission 

results, year 2040 PM2.5 emissions are about the same under both analysis methods. This 

result is attributed to the 80 percent reduction in gram per mile PM2.5 emission rates that 

occur over the planning period which overwhelms the more subtle differences in travel 

demand and congestion produced by the two modeling approaches which also affect 

PM2.5 emissions.  
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Figure 13. Daily PM2.5 inventory 

Table 5 provides a summary of cumulative emissions, exposure and vehicle mileage 

traveled performance metrics produced by the two modeling approaches in the year 2040. 

The major difference between two approaches happens where the endpoint approach 

overestimates PM2.5 emission and exposure by 37.1% and 31.6%, respectively. The rises 

and falls of GHG emission during the planning years balances each other out so the 

cumulative value estimated by the endpoint approach is only 1.4% higher than the annual 

approach. No major difference observed for VMT since it follows a linear trend in under 

both modeling approaches.  

We also analyze how PM2.5 exposure changes over time (figure 14). The trend over time 

are generally the same as those for PM2.5 emissions shown in figure 13. Large exposure 

reductions occur in the first half of the planning period, and then exposure begins to rise 

in the final years. A linear extrapolation of the endpoint approach would result in a 47 
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percent over estimation of population exposure. There are some differences, however, 

from the PM2.5 emissions results. One difference is that the annual approach results in 5.3 

percent lower exposure by 2040 than the endpoint approach while the annual approach 

only produced 1.3 percent fewer PM2.5 emissions. This indicates that the annual approach 

causes changes in either traffic or land use patterns, or both, that decrease exposure in 

addition to decreasing the quantity of PM2.5 emitted.   

 

Figure 14. Daily population weighed PM2.5 mean concentration 
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Table 5. Cumulative VMT and emission indicators under endpoint and annual 

modeling scenarios by year 2040 

Indicators 

Cumulative 2040 

Endpoint 

Cumulative 2040 

Annual 

Percentage 

Change 

VMT (miles) 699,417,491 705,464,476 -0.9% 

Daily PM2.5 (kg/day) 19,899 14,514 37.1% 

Daily GHG (tone /day) 304,848 300,743 1.4% 

Population weighted 

concentration (ug/m3) 5.13 3.90 31.6% 

 

Figure 15 compares how travel demand modeling outcomes change throughout the 

planning horizon and vary between the annual and endpoint approaches. Each point 

corresponds to a performance measure and shows the percentage change from the 2012 

base year value. The results indicate that the change in VMT, vehicle mode share, and 

average travel speed generally follow a linear pattern which end up being very close to 

the endpoint approach values by year 2040, which are shown as circles on the right side 

of the plot. For non-motorized and transit mode share, the annual changes do not follow 

linear trends and they deviate more significantly from the endpoint values by 2040. 

Transit mode share generally increases overtime, but there are periods of relatively rapid 

increases and also periods of slow decline. The complex transit mode share trend is 

caused by the relatively few, major, transit projects included in the LRTP as compared to 

the many highway projects. Increases in transit mode share generally follow major transit 

investments, but then stagnate or decline as investments in highway capacity continue 

each year. Non-motorized mode share increase by a few percent in the first years of the 

planning period and then stagnates. This trend may be the result of increasing population 

density in the initial years of the planning horizon that along with no new transit 

investments results in non-motorized travel being relatively attractive. Overtime, as 

population density continues to increase and new transit investments are made, growth in 
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non-motorized mode share may be substituted for growth in transit mode share. 

Furthermore, the annual approach results in significantly higher transit and non-

motorized mode share than the endpoint approach: 7% and 15%, respectively. These 

differences may be caused by the different treatment of land use and transportation 

system evolution that results in the annual approach producing more compact growth, 

which is more favorable for transit and non-motorized travel. 

  

Figure 15. Percent change in travel semand indicators under annual and endpoint 

approaches 

Table 6 provides a summary of the regional mobility, emission, and exposure 

performance metrics produced by the two modeling approaches in the year 2040 as well 

as annual average performance metrics. The annual average metrics are a simple way to 

summarize how the plan performs on average throughout the planning period. 

Differences between the annual average and end of planning period performance metrics 

indicate instances where the usual endpoint may not be robust. While for some measures 
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the annual average values are close to the year 2040 values, there are relatively large 

differences for others. For example, annual average PM2.5 exposure is 46% higher, 

average speeds are 32% higher, VMT is 15% lower, and average GHG emissions are 4% 

lower than year 2040 estimates. The endpoint metrics seem to overstate the 

improvements in PM2.5 exposure, increases in GHG emissions and VMT, and 

deterioration of travel speeds.  

Table 6. Travel demand and emission indicators under endpoint and annual 

modeling scenarios by year 2040 

Indicators 2040 Endpoint 2040 Annual Annual Average 

VMT 
28,769,197 28,528,129 24,326,361 
 (-0.84%)a (-14.7%)b 

Vehicle Mode Share 
93.21% 92.67% 92.79% 
 (-0.58%) (0.13%) 

Non-Motorized Mode Share 
5.62% 5.99% 5.97% 
 (6.6%) (-0.33%) 

Transit Mode Share 
1.17% 1.34% 1.24% 
 (14.5%) (-7.5%) 

% of Population Living Within 0.5 Mile 

of Highways 

11.90% 12.73% 12.42% 
 (7.0%) (-2.4%) 

Peak Hour Speed (MPH) 
22.78 23.22 30.67 
 (1.9%) (32.1%) 

Population Weighted Concentration 

(µg/m3) 

0.086 0.082 0.12 
 (-5.3%) (46.3%) 

Daily PM2.5 (kg/day) 
348.00 343.00 498.72 
 (-1.4%) (45.4%) 

Daily GHG (t/day) 
11,025 10,883 10,422 
 (-1.3%) (-4.2%) 

a percentage change from endpoint approach 
b percentage change from 2040 Annual 

 

While annual average and the previously discussed cumulative outcomes provide 

potentially more robust methods for evaluating the performance of an LRTP, and 

particularly its emission and air quality impacts, they also face limitations. The endpoint 

and average metrics both fail to provide important trend information that is available 

from plotting the performance measure overtime. For example, even though PM2.5 

exposure is much lower than it was in 2012 by 2040 and on average throughout the 
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planning period, it is trending up in the final years of the planning period. In the case of 

GHG emissions, endpoint and annual average metrics seem to indicate slowly increasing 

annual emission rates while the time series in figure 12 shows rates rapidly increasing 

during the final years of the planning period (a 7.5% increase in the final eight years).    

We also evaluate the change in the spatial distribution of PM2.5 concentration and 

population density across the region. Figure 16 shows the difference in year 2040 PM2.5 

concentrations between the annual and endpoint modeling approaches. The annual 

approach results in higher PM2.5 concentrations in Albuquerque’s downtown and along 

major highway corridors where many of the regions employment and other activity 

centers are located such as Journal Center. Much lower emissions are seen in more 

outlying areas. This result provides evidence that the annual modeling approach responds 

to congestion by growing the region more compactly and closer to major activity centers 

as we expected. This can also be seen in figure 17 which displays the change in 

population density between the two modeling approaches. Although the aggregation to 

TAZs makes it somewhat difficult to see the patterns, population density is generally 

greater in the urban core and along major highway corridors near the region’s activity 

centers.  
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Figure 16. Change in average daily PM2.5 concentration by year 2040 between the 

annual and endpoint modeling approaches 
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Figure 17. Percentage change in 2040 TAZ population density from the endpoint to 

the annual approach 

The annual modeling approach also allowed us to view the change in PM2.5 concentration 

over time and space. The results show, unsurprisingly, that concentrations are highest 

along the region’s highest volume roadways and lower elsewhere. Over the first 10 years 
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of the planning period, emissions decline rapidly everywhere. After that, concentrations 

remain about the same with small increases and decreases along individual roadways. 

Discussion 

We evaluate an LRTP using a standard endpoint approach and an annual approach. While 

for most of the performance measures we evaluated the two methods produce similar 

results by the final year of the planning period, there are important differences. First, the 

two modeling approaches imply different pathways through the planning period. The 

endpoint approach implies a linear trend from the baseline year to the final year of the 

planning period. Our results demonstrate that trends over time can be highly non-linear 

and quite complex, particularly for changes in vehicle emissions, exposure, and transit 

and non-motorized mode shares. The nonlinear change over time means that the value of 

a performance measure during the planning horizon year may not be a robust or accurate 

measure of a plan’s performance throughout the entire planning horizon. That is, the 

typical endpoint approach may fail to identify the best plans when multiple plans are 

being considered – those that result in the greatest annual average or cumulative 

performance or greatest overall welfare gain. The endpoint approach can also result in 

over or underestimating the value of common performance measures in the planning 

horizon year because it also has a less robust treatment of how travel demand and land 

use co-evolve over time. In our case, increasing traffic congestion and a limited amount 

of highway capacity investment results in the annual approach forecasting a more 

compact region by 2040 than the endpoint approach. 

The differences in the two modeling approaches may have important planning and policy 

implications. The typical endpoint approach is not as well suited for evaluating how 



65 

 

LRTPs affect GHG emissions since the accumulation of emissions overtime is not 

considered. Yet, it is the accumulation of GHG in the atmosphere overtime that results in 

climate change. Similarly, the endpoint approach fails to consider exposure to toxic 

vehicle emissions that impacts the population’s health throughout the planning horizon. 

Cleaner air in 2040 does not eliminate negative health outcomes that occurred previously 

just as fewer GHG emissions in the future will not eliminate GHG emissions already in 

the atmosphere. The best plans should therefore minimize emissions and exposure 

throughout the planning period. Identifying the best plan then requires evaluating 

performance throughout the planning period. Considering the significant difference 

between two modeling approach in estimating cumulative impacts of LRTPs, justify the 

cost of using annual modeling approach. The fact that direction of bias and its 

significance differ for each performance metrics, require further analysis to define the 

best planning horizon step to evaluate effects of LRTPs. Annual average and cumulative 

performance measures offer a simple way to summarize performance throughout the 

planning period; however, evaluating time series plots can provide information about 

problematic interim years and hint at trends that may continue beyond the current 

planning period.  

Besides providing more robust performance measures, the annual modeling approach 

provides a more realistic treatment of how land use and travel demand evolve overtime. 

In our specific case, this difference results in relatively small changes in the value of 

performance measures from the typical endpoint approach. The differences could be 

larger under different circumstances; for example, in a region expected to grow more 

quickly, with much greater traffic congestion, or where more significant infrastructure or 
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policy changes are being implemented. The annual modeling approach did result in a 

very different distribution of PM2.5 concentration and land use across the region. The 

annual modeling approach forecasted a more compact region, with greater population 

density in the urban core and along major roadways where activity centers are located 

and lower average PM2.5 exposure. The annual approach may therefore provide more 

accurate emission and exposure forecasts. The change in spatial concentration patterns 

and land use may also affect the outcome of regional environmental justice and other 

equity analysis.  

The annual modeling approach can also provide new information to help planners fine 

tune their plans. For example, planers can better understand the potential for a highway 

capacity project to induce demand or produce unwanted sprawl and test options to 

mitigate these outcomes. The ability to see spikes in vehicle emissions, exposure or other 

undesirable outcomes during the interim years also provides an opportunity for planners 

to test alternative plans or strategies that avoid them or smooth them over. For example, 

policies to promote infill development may inadvertently increase exposure to toxic air 

pollutants if adopted too quickly or in the wrong locations (Tayarani et al. 2016). Since 

vehicle emission rates are expected to decline quickly in the next few years, it may be 

possible to avoid increasing exposure by delaying certain projects or implementation of 

infill policies, or by implementing additional projects to further reduce travel demand or 

relieve congestion in areas targeted for infill development.  

The annual modeling approach can also be used to better evaluate and monitor the 

performance of regional travel demand, land use, and air quality models. Rather than 

waiting 20 to 30 years to determine how accurate model forecasts were, model 
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performance can be evaluated each year. Model forecasts that are observed to be trending 

significantly away from observations each year could signal potentially significant 

problems with one or more models.  

There are also some limitations to our study. We use a traditional four-step trip based 

travel demand model, which unlike an activity based model, does not provide information 

about individual travel patterns. Hence, we assume all PM2.5 exposure occurs where each 

person lives. A recent study in Montreal, Canada suggests that on average this 

assumption may produce relatively small errors, although they may be larger for specific 

populations (Shekarrizfard et al. 2016). Regions or studies that use activity-based models 

can avoid this limitation (Dhondt et al. 2012; Shekarrizfard et al. 2016). We also assume 

that PM2.5 concentrations are the same indoors as they are outdoors. We know this is not 

true (Baek et al. 1997; Kim et al. 2001; Marshall et al. 2003); however, without more 

information about air exchanges rates for building in the region, this is a limitation that is 

difficult to address. In Albuquerque, this particular limitation may be less important since 

many homes are cooled with evaporative coolers that draw in fresh air during the summer 

and the winters are relatively mild, minimizing the duration of time when homes are 

completely sealed. We have also generated a project implementation schedule that may 

differ from when projects are actually built. We assume an MPO implementing the 

annual modeling approach would have more complete information about the likely 

schedule of project implementation.   
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Chapter 4. Evaluating the impacts of transportation and land use 

strategies on air quality and travel measures 

Introduction 

Transportation and land use strategies intended to decrease travel demand and GHG 

emissions consist of a wide range of policies including fuel taxes, transit improvements, 

and increasing the density and land-use mix of urban development. These strategies are 

expected to reduce vehicle miles traveled (VMT) by increasing the use of transit and non-

motorized modes of transportation and reducing the length of vehicle trips (Ewing et al. 

2007; Ewing and Cervero, 2010; Stone et al. 2007; TRB, 2009). Based on the assessment 

by the Intergovernmental Panel on Climate Change (IPCC), GHG emissions must be cut 

40–70% by 2050 from 2010 levels to keep the increase in the global mean temperature 

below 2 °Celsius and potentially prevent the most severe climate change impacts from 

happening (IPCC, 2014). The transportation sector is responsible for 27% of GHG 

emissions in the United States, a share that is increasing (US EPA, 2017) and if cut, can 

play important role in achieving high levels of GHG reduction. 

A review of the literature finds that even aggressive combinations of land use and 

transportation pricing strategies that incentivize people to use lower emitting modes of 

transportation can lead to significant GHG reduction (Greene and Plotkin, 2011; Kay et 

al. 2014; Mashayekh et al. 2012; McCollum and Yang, 2009; Melaina and Webster, 

2011; Yang et al. 2009) but not nearly enough to achieve the IPCC recommendations 

(Cambridge Systematics, 2009; Ewing et al. 2007; Greene and Plotkin, 2011; TRB, 

2009). Several studies suggest that improving vehicle energy efficiency and increasing 

the adoption of low carbon fuels are the only strategies that can result in GHG reductions 
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in the transportation sector that can achieve the reductions that the IPCC suggests are 

necessary (Greene and Plotkin, 2011; Kay et al. 2014; Leighty et al. 2012; Lutsey and 

Sperling, 2009; McCollum and Yang, 2009; Melaina and Webster, 2011; Olabisi et al. 

2009; Williams et al. 2012; Yang et al. 2009; Yuksel et al. 2016). Bartholomew (2006) 

studied the long-range transportation plans developed by over 50 MPOs and found that 

the they are not expected to result in significant reductions in VMT. The failure to reduce 

VMT means that the plans are also unlikely to result in significant, if any, GHG 

reductions (other than what is expected to occur from improved vehicle fuel efficiency). 

In a former study, we showed that in the Albuquerque Metropolitan area, only a 

combination of very compact development, large transit improvements, significant gas 

tax increases, and increasing bicycling mode share, can achieve GHG reductions beyond 

40% in 2040 without any new vehicle technology or low carbon fuels. We also found that 

no single strategy is likely to achieve a 40% GHG reduction (Tayarani et al. 2018).  

In addition to GHG emissions reductions, transportation and land use strategies can also 

help reduce exposure to toxic vehicle emissions such as PM2.5. However, strategies that 

reduce GHG emissions may not be the best for reducing vehicle emissions exposure. In a 

former study, we found that the Albuquerque Metropolitan Area’s long-range 

transportation plan would reduce GHG emissions more than other long range planning 

scenarios that were considered by the MPO but that average exposure to PM2.5 emissions 

would be higher (Tayarani et al. 2016). The increase in exposure occurs since the land 

use strategies in the adopted plan increase population density in areas with relatively high 

levels of traffic and therefore concentration of PM2.5. As another example, De Ridder et 

al. (2008) used travel demand, emission, and air quality modeling to evaluate the effect of 
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development patterns on exposure to PM10. In a hypothetical land use scenario, they 

moved 12% of the Ruhr region of Germany’s population to the suburbs. The modeling of 

the scenario showed that PM10 exposure for those who had moved to the suburbs 

decreased by 13% while the exposure for those who were not moved, increased by 1.2%. 

The overall aim of this chapter is to investigate if practical transportation and land use 

strategies can be combined to develop planning scenarios that significantly reduce GHG 

emissions and at the same time, do not increase exposure to other pollutants. We design 

two scenarios made up of a series of transportation and land use strategies that are 

generally available to local and state governments. The strategies include increasing the 

amount of compact and mixed-use development along transit and highway corridors, 

improving transit performance and reducing the fare, and implementing a per-mile tax 

(VMT tax) on driving. In designing our strategies, we do not consider political 

constraints that may limit the plans developed by MPOs in practice (Brömmelstroet and 

Bertolini, 2010; Flyvbjerg et al. 2005; Handy, 1992; Hatzopoulou and Miller, 2009; 

Wachs, 1989, 1990); however, the strategies are designed to be technically and 

financially reasonable. We do not consider strategies that focus on vehicle and fuel 

technology, including low-carbon fuels, electric vehicles, and government programs to 

promote greater vehicle fuel efficiency. These strategies may be highly effective in 

reducing emissions but most requires implementation at the federal level. 

An important part of our study is the use of an integrated land use, travel demand, vehicle 

emission, and air dispersion framework that helps us understand how travel demand and 

land use interact with each other over time up to the planning horizon.  
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Methods 

Study area 

The geographical context of our study is the Albuquerque metropolitan area in the State 

of New Mexico which is portrayed in figure 18. With a 2017 population of 909,906 and a 

total land area of 24,080 km2, our study area is the most populous and the largest 

metropolitan area in the state. 

 

 

Figure 18. The study area highlighted in orange 
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Development of scenarios 

The Mid Region Council of Governments (MRCOG), the federally designated MPO for 

the Albuquerque Metropolitan Area developed a several transportation and land-use 

planning scenarios for the future of the region as part of its long-range transportation 

planning process. A “Trend scenario” was the was developed and as a reference to 

compare other scenarios with. The trend scenario –which represents business as usual in 

the region– assumes that the land use zoning in the region stays unchanged between the 

2012 base year and the 2040 planning horizon. The scenario also assumes that the 

highway projects are limited to those included in the region’s prior long range plan, and 

that there is no change in public transit except for the addition of a planned bus rapid 

transit line. The MPO projected that the population and employment in the region 

increases by 52% and 46% respectively, from 2012 to 2040. 

In this study I use the “trend scenario” as a baseline for evaluating two additional 

scenarios that I devise with the aim of further reducing GHG emissions and PM2.5 

exposure. Table 7 shows how these two strategies differ from the trend scenario. 
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Table 7. Strategies represented in each of the devised scenarios 

 Scenario 1 Scenario 2 

Analysis 

year 

VMT 

tax (per 

mile) 

Land use VMT tax 

(per mile) 

Land use Transit 

fare 

Transit 

frequency 

Transit 

lines 

2012 0 Relaxing 
development 

restrictions 

within 200 
meters of 

principal arterial 

and freeways, 
and in Uptown 

and Journal 

Center areas 

$0.05 Relaxing 
development 

restrictions within 

200 meters of 
principal arterial, 

freeways, 

Railrunner, and in 
Uptown and 

Journal Center 

areas 

Reduce all 
transit fares 

by 25% 

 

Increase all 
transit 

frequency by 

15% 

No change 

2013 $0.01 Similar to 2012 $0.05 Similar to 2012 No change No change No change 

2014 $0.01 Similar to 2012 $0.10 Similar to 2012 No change No change No change 

2015 $0.01 Similar to 2012 $0.10 Similar to 2012 No change No change No change 

2016 $0.02 Similar to 2012 $0.12 Similar to 2012 

Additionally, 

relaxing 
development 

restrictions west of 

cottonwood mall 

No change No change Add Coors 

Blvd. rapid 

line 

2017 $0.02 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2018 $0.02 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2019 $0.02 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2020 $0.02 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2021 $0.03 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2022 $0.03 Similar to 2012 $0.12 Similar to 2016 No change Increase 

transit 

frequency and 
speed on 

Central Ave. 

and Coors 
Blvd. by 20% 

No change 

2023 $0.03 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2024 $0.03 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2025 $0.03 Similar to 2012 $0.12 Similar to 2016 No change No change Add Paseo 

Blvd. and 

University 
Blvd. rapid 

lines 

2026 $0.04 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2027 $0.04 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2028 $0.04 Similar to 2012 $0.12 Similar to 2016 No change Increase 

frequency and 
speed of 

transit on 

Paseo Blvd. 
and University 

Blvd. by 20% 

No change 

2029 $0.04 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2030 $0.04 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2031 $0.06 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2032 $0.06 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2033 $0.06 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2034 $0.06 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2035 $0.06 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2036 $0.08 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2037 $0.08 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2038 $0.08 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
2039 $0.08 Similar to 2012 $0.12 Similar to 2016 No change No change No change 

2040 $0.08 Similar to 2012 $0.12 Similar to 2016 No change No change No change 
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Evaluation of scenarios 

An integrated land use, travel demand, emission, dispersion, and exposure framework is 

used to estimate the travel and air quality outcomes of each scenario. The integrated 

framework is represented symbolically in figure 19. 

 

Figure 19. Integrated modeling framework 

The first part of the framework is the land use model. We use an agent-based land use 

model named Urbansim. Urbansim takes as inputs variables such as the estimates of land 

and housing values, land availability, travel time between the zones, expected total 

population and employment, and models the future population, employment, and land use 
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mix in the region. Urbansim can be used to see how changes in zoning such as allowable 

densities and building heights affect the distribution of the population and employment. 

The second part of the framework is the travel demand model. We use a traditional 4-step 

model developed in Citilabs’ Cube platform. The model takes as inputs, the 

transportation network, transportation policies and land use, and outputs forecasts of 

traffic volume and travel speed on each roadway link, zone to zone travel times, as well 

as modal share in the region.  

U.S. EPA’s MOVES model is used as the vehicle emissions modeling part of the 

integrated framework. MOVES uses regional information about the vehicle fleet, vehicle 

inspection and maintenance program, emission standards, and fuel properties to estimate 

the emission rates for a variety of pollutants. These emission rates are used along with the 

estimated traffic volume and average speed on each link to calculate GHG and PM2.5 

emissions on each link and in the region. PM2.5 emission rates on each link is then fed 

into the US EPA’s AERMOD model –the dispersion part of the framework. AERMOD 

estimates the annual average ambient concentration of PM2.5 emitted from the traffic 

across the region. At the final step in the modeling framework, we use ArcGIS to overlay 

the distribution of the population in the parcels with rasters of PM2.5 concentration. In this 

way, the average daily concentration of PM2.5 in each parcel is estimated and is 

considered the human exposure in the parcel. The population-weighted average exposure 

to PM2.5 is also calculated by summing the product of each parcel’s population and its 

average PM2.5 concentration and dividing the sum by the region’s population. The 

framework is explained in more detail in Tayarani et al. (2016) and Tayarani et al. 

(2018). 
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The first two parts of the framework are run in an iterative way. In the first iteration, the 

travel demand model uses the base year (year 2012) land use in the region to estimate the 

zone to zone travel times in the year 2012. Urbansim then takes zone to zone travel time 

estimates along with other inputs to estimate the land use in 2013. 2013 estimates are 

then used to model the travel demand model and estimate zone to zone travel times in 

2013. The iteration continues on an annual basis up to the planning horizon which is the 

year 2040. See Tayarani et al. (2018) for more details on how this novel iterative 

framework was developed. 

Each of the scenarios devised in this study are composed of the strategies represented in 

table 7. The following sub-sections explain these strategies and how they are evaluated in 

the modeling framework.  

VMT tax strategies 

The generalized cost function in the travel demand model can be adjusted to model the 

effect of VMT taxation. A parameter of the generalized cost function is the out-of-pocket 

cost of driving which is currently $0.164 per mile in the trend scenario. We will increase 

the out-of-pocket cost to reflect the VMT taxation.  

In scenario 1, we add a VMT tax of 1 cent per mile to the out-of-pocket cost in 2012 that 

will be gradually increased to 8 cents per mile in 2040. Scenario 2 assumes a more 

aggressive VMT taxation: 5 cents per mile in 2012 gradually increasing to 12 cents in 

2040. Assuming an average fuel economy of 20.6 miles per gallon in the region (an 

assumption used in the MRCOG travel demand model) a 1-cent per mile VMT tax is 

equivalent to a $0.206 increase in the price of one gallon of gas; which is a very 



77 

 

significant amount. The VMT tax is in addition to the existing state and federal gasoline 

taxes which are currently $0.1888 and $0.1840 per gallon, respectively. 

Land use strategies 

Land use strategies in the framework are modeled by changing the zoning codes in the 

Urbansim land use model. Each geographic parcel in the land use model has a zoning 

code that defines (restricts) variables such as floor to area ratio, maximum building 

height, maximum dwelling units per acre, and allowable uses in the parcel.  

In scenario 1, we relax the zoning codes by almost eliminating all development 

restrictions within 200 meters of the major arterials in the city of Albuquerque, within 

Journal Center area, and within Uptown. In scenario 2, the zoning code is additionally 

relaxed along the Rail Runner intercity rail line, and on the west side of Cottonwood 

Mall. Figure 20 represents these areas on a map of the region. For selected areas, zoning 

relaxation includes allowing single family, multi family, commercial retail, commercial 

services, office, and community development; allowing maximum floor to area ratio of 

10; allowing maximum building height of 120 feet; and allowing a maximum of 125 

dwelling units per acre.  
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Figure 20. Highlighted areas represent where the zoning restrictions are relaxed 

Transit improvements strategies 

Transit improvement strategies are implemented in the framework by changing the transit 

inputs to the travel demand model. These inputs include the geographical representation 

of the transit lines and text files that contain the schedule, frequency of service, and fares 

for all the lines. 

Figure 21 represents the new transit rapid lines that will be added to the network in the 

devised scenarios. Note that the University Blvd. rapid line is a planned transit 

improvement and is included in trend and both additional scenarios. University Blvd., 

Coors Blvd., and Paseo Blvd., rapid lines are additional lines that will be considered only 
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in Scenario 2. Reduction in transit fares and frequency increases in scenario 2 are 

implemented by changing the text file inputs of the travel demand model.  

 

Figure 21. New rapid lines added to the current transit network 

Results 

Figure 22 represents the air quality measures in the region for each of the analyzed 

scenarios. More aggressive strategies in scenario 2 lead to lower emissions and vehicle 

exposure in the region. One thing to notice is that while scenario 1 leads to lower PM2.5 

emission inventory and exposure in 2040 compared to the trend scenario, both emission 

inventory and exposure in the near future are higher in this scenario. 



80 

 

 

Figure 22. Air quality measures from 2012 to 2040 

Figure 23 represents the maps of PM2.5 concentration (exposure) in the urban core of the 

study area. All scenarios lead to similar patterns of PM2.5 concentration in 2040 (figure 

23a through 23c). The concentration is highly elevated along the major roadways and 

declines sharply with distance from the road. The comparison of the trend and the new 

scenarios (figures 23d and 23e) shows that scenarios 1 and 2 reduce average 2040 PM2.5 

exposure compared to the trend scenario, and that these reductions occur in all locations.  



81 

 

 

Figure 23. 2040 PM2.5 concentration (exposure) in each scenario (a through c), and 

the decrease in the 2040 PM2.5 concentration in scenario 1 and 2 compared to the 

trend scenario (d and e) 

In figure 24, we plot the cumulative distribution of PM2.5 exposure in year 2040. A point 

on each curve in this figure represents the percentage of people whose PM2.5 exposure is 

less (or more) than a certain amount. This figure shows that scenario 1 and scenario 2 

reduce PM2.5 exposure compared to the trend scenario. 
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Figure 24. Cumulative distribution of PM2.5 exposure in year 2040 

Figure 25 represents the change in travel performance measures. VMT is decreased 

significantly in both devised scenarios in 2040, compared to the trend scenario. Similarly, 

both the devised scenarios represent higher average speed, lower volume to capacity 

ratio, and higher non-motorized shares of trips. Scenario 1 and trend scenario represent 

similar transit mode shares in 2040 which is due to the fact that Scenario 1 assumes the 

same transit network and service as the trend scenario. Notice that VMT is increasing in 

all the scenarios in the 2040 relative to 2012 which is due to the increase in population 

and employment, subsequently, average speed and volume to capacity ratios also degrade 

over time.    
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Figure 25. Travel measures from 2012 to 2040 

Table 8 represents the change in air quality and travel measures in each scenario. While 

the trend scenario leads to a 6.85% increase in GHG emissions in 2040 compared to the 

2012 level, both scenario 1 and scenario 2 show significant reductions in GHG emissions. 

Additionally, PM2.5 emissions, and average PM2.5 exposure in scenario 1 and scenario 2 

are significantly lower than that of the trend scenario in 2040. 

While VMT has increased in all the scenarios, the percent increase in VMT is lower in 

devised scenarios. The increase in VMT in scenario 1, is less than half the increase in 
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VMT in the trend scenario. Other travel measures, including the average speed and the 

average volume to capacity ratio also improve in the devised scenarios. Average speeds 

are more than 20% higher, and the average volume to capacity ratios are more than 40 

percent lower in the devised scenarios compared to the trend. 

Table 8. Changes in air quality and travel measures from 2012 to 2040 in each 

scenario 

Scenario Measure Base year 

(2012) value 

Planning 

horizon 

(2040) value 

Percent 

change from 

2012 to 2040 

2040 percent 

change compared 

to the trend 

scenario 

Trend • GHG emissions (tonnes per day) 10,185 10,883 6.85% - 

 • PM2.5 emissions (kg per day) 1,011 343 -66.07% - 

 • Average PM2.5 exposure 

(micrograms per cubic meters) 

0.239 0.082 -65.69% - 

 • Daily VMT 19,466,492 28,528,129 46.55%  

 • Average speed  38.07 23.22 -39.01% - 

 • Average volume to capacity ratio 2.1 8.7 314.29% - 

 • Transit mode share 0.0105 0.0134 27.62% - 

 • Non-motorized mode share 0.0570 0.0599 5.09% - 

Scenario 1 • GHG emissions (tonnes per day) 10,185 9,080 -10.85% -16.57% 

 • PM2.5 emissions (kg per day) 1,011 272 -73.10% -20.70% 

 • Average PM2.5 exposure 

(micrograms per cubic meters) 

0.239 0.073 -69.46% -10.98% 

 • Daily VMT 19,466,492 24,606,387 26.40% -13.75% 

 • Average speed  38.46 28.62 -25.59% 23.26% 

 • Average volume to capacity ratio 2.0 5.2 160.00% -40.23% 

 • Transit mode share 0.0105 0.0135 28.57% 0.75% 

 • Non-motorized mode share 0.0572 0.0658 15.04% 9.85% 

Scenario 2 • GHG emissions (tonnes per day) 9,394 8,049 -14.32% -26.04% 

 • PM2.5 emissions (kg per day) 947 246 -74.02% -28.28% 

 • Average PM2.5 exposure 

(micrograms per cubic meters) 

0.234 0.066 -71.79% -19.51% 

 • Daily VMT 18,149,729 22,030,149 21.38% -22.78% 

 • Average speed  37.36 28.24 -24.41% 21.62% 

 • Average volume to capacity ratio 2.0 4.6 130.00% -47.13% 

 • Transit mode share 0.0118 0.0149 26.27% 11.19% 

 • Non-motorized mode share 0.0557 0.071 27.47% 18.53% 

 

Interval analysis 

In the annual modeling approach, we run the integrated framework with annual iterations 

between the travel demand and land-use models. Individual model runs for each year are 

time consuming, and modeling each year in 20 to 30 year long planning period can lead 

to very long modeling times (weeks to months). A different approach would be to 

increase the length of the modeling interval; for example, by iterating the land use and 



85 

 

travel demand model every two years, five years, or more. This alternative approach 

could significantly reduces the computational burden; however, how reducing the number 

of iterations affects the results in unknown and has not been studied previously.  

We evaluate scenario 1, with a 2-year, 5-year, 10-year, and 15-year iteration interval. The 

goal is to investigate if the length of the modeling interval could be increased without 

significantly changing modeling outcomes.  

Figures 26 through 28 represent the estimates of GHG inventories, PM2.5 emisisons 

inventories, and VMT from our modeling system using different iteration frequencies. 

With the exception of a 15-year interval, the value of each performance measures in the 

planning horizon is not that sensitive to the choice of interval length. However, the 

pattern of change in the measures from the base year to the planning horizon is not linear 

and by choosing a larger interval, the information about the performance of the long 

range plan in the intermediate years is lost. 
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Figure 26. Daily GHG inventory estimates with different analysis approaches  

 

 

Figure 27. Daily PM2.5 inventory estimates with different analysis approaches 
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Figure 28. Daily VMT estimates with different analysis approaches 

We also estimate the zonal population and employment in 2040 using the annual and 

multi-year-interval approach and plot them in figures 29 through 33. Each dot on these 

figures represent one zone. These figures depict very erratic and unexpected differences 

in 2040 population and employment estimates. We expected the smaller intervals to 

result in estimates that are closer to the annual approach but we notice that the endpoint 

approach (which has a large interval of 28 years) is producing estimates that are closer to 

the annual approach than the 5-year, 10-year, and 15-year interval estimates.  

Our interval analysis shows that the estimates of GHG inventory, PM2.5 inventory, and 

VMT with a 2-year integration interval is not very far from the annual integration 

approach. A two-year interval reduces the computation by half, from about one month to 

two weeks. However, the two year interval fails to observe the increase in PM2.5 

emissions in the near future and estimates significantly different population and 
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employment patterns in 2040. For intervals larger than two years, the behavior of the 

integrated land use and travel demand model becomes very complex and is difficult to 

interpret. Our results indicate the iteration frequency is important but more research is 

needed to understand how different levels of temporal resolution affect estimates. 

 

 

Figure 29. Difference in population (left) and employment (right) estimates in 2040: 

annual vs 2-year interval approach 
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Figure 30. Difference in population (left) and employment (right) estimates in 2040: 

annual vs 5-year interval approach 

 

Figure 31. Difference in population (left) and employment (right) estimates in 2040: 

annual vs 10-year interval approach 
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Figure 32. Difference in population (left) and employment (right) estimates in 2040: 

annual vs 15-year interval approach 

 

Figure 33. Difference in population (left) and employment (right) estimates in 2040: 

annual vs endpoint approach 
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Discussion 

The transportation sector is responsible for more than a quarter of GHG emissions in the 

United States. Many metropolitan areas use land use strategies in an effort to improve air 

quality and reduce GHG emissions. Land use strategies however, might increase 

population exposure to vehicle emissions by increasing residential development close to 

major roads and increasing travel activity and congestion close to where people live.  

The goal of this study is to see if using realistic strategies, we can come up with scenarios 

that reduce GHG emissions compared to a business as usual scenario while not increasing 

exposure to PM2.5. We devised two long-range transportation planning scenarios for the 

Albuquerque Metropolitan Area. The scenarios are made up of land use and 

transportation strategies that are believed to reduce GHG emissions and are available in a 

local and regional decision making setting. Strategies such as improving vehicle 

technology that are beyond the control of regional planning agencies or are unrealistic 

such as very high fuel taxes are not considered.  

While a business as usual scenario leads to about a 7 percent increase in GHG emissions, 

both scenario 1 and scenario 2 reduce GHG emissions in 2040 compared to the 2012 

level by 10 to 15 percent. Neither of the two scenarios however seemed to be promising 

reductions even close to the IPCC suggested level of 40–70% in 2050. What is more 

concerning is that figure 22 shows GHG emissions start to increase in all the scenarios in 

near future; this is due to the fact that reductions caused by improved vehicle fuel 

efficiency is offset by the increase in VMT. This means that not only will the region not 

be able to meet the IPCC suggested GHG reductions in 2050, but that emissions might 

begin rising in 2050. These findings confirm a former study of ours that showed in order 
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to get close to the IPCC reduction targets, the Albuquerque Metropolitan area needs to 

adopt very aggressive transportation strategies. 

The non-linear temporal change in performance measures, amplify the importance of 

evaluating transportation plans for each year in the planning period, instead of only the 

endpoint. The non-linear change in the air quality and travel demand measures means that 

the value of the measures in the end year do not provide much information about the 

overall performance of the scenario in the planning period. For example, low PM2.5 

exposure in scenario 1 in 2040 fails to describe that this scenario imposes the highest 

exposure among the scenarios earlier in the planning period. Note that the performance of 

a scenario in terms of the exposure to the pollutants is more important in the near-future 

than the far-future. As the vehicle fleet becomes increasingly less polluting, the negative 

health outcomes from exposure to pollutants will likely fade; the most severe health 

impacts from the exposure to air pollutants will happen in the near-future. 

Our study focuses on the Albuquerque metropolitan area, but the same modeling 

framework can be used to devise and evaluate long-range transportation plans in other 

metropolitan areas in the U.S. The scenarios that we devised for the study area are 

probably not the most efficient; however, they demonstrate that even the strategies that 

can be implemented in a local and regional level have the potential to improve the air 

quality and travel measures.  

Finally, there are some limitations to note about our study. We use a traditional 4-step 

travel demand model which has several drawbacks. The model calculates the total trips 

based on the characteristics of the households that are held constant in trend and devised 

scenarios. More importantly, the model was built and calibrated based on the travel 
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behavior from the most recent travel survey for the region. The future economy might 

change the travel behavior and trip generation rates in households. Another limitation of 

the 4-step travel demand model is that it does not provide detailed information about the 

movement of individuals. Thus, we are not able to estimate an accurate measure of 

individuals’ exposure as they move around the network during the day and assume their 

exposure to be equal to the concentration of the pollutant where they live. However, we 

believe that our assumption still provides a reasonable estimate of exposure as individuals 

spend a large amount of their time where they reside.  

In our study, we only estimated exposure to primary PM2.5. Total exposure to PM2.5 from 

the transportation network would be higher if we account for the exposure to secondary 

PM2.5 formed from chemical reactions between vehicle exhaust and other pollutants in the 

atmosphere.  

Our study can be expanded by devising methods to find the most effective combinations 

of land use and transportation strategies in developing the scenarios. Use of an activity 

based rather than 4-step travel demand model can also increase the accuracy of the 

exposure estimates as such models provide detailed information about the movement of 

the individuals during the day. Additionally, our framework can be used to account for 

other air pollutants such as carbon monoxide, nitrogen dioxide, and vehicle emissions of 

air toxics. 
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Chapter 5. Estimating welfare change associated with improvements in 

urban bicycling facilities 

Introduction 

Prior research reveals the health, air quality, and congestion relief benefits of cycling (De 

Hartog et al. 2010; Frank et al. 2006; Sælensminde 2004) which has led government 

agencies to increasingly promote cycling as part of a comprehensive regional 

transportation plan. Investing in new or improved bicycle facilities such as bike lanes and 

cycle tracks is a common strategy to increase the level of cycling with the aim of 

realizing these benefits (Buehler and Pucher 2012; Handy et al. 2010). However, 

commonly estimated bicycle facility benefits such as increased safety, less air pollution 

and congestion relief, represent only a partial list of potential benefits (Elvik 2000). 

Amenities such as cycling facilities are considered public goods and have economic value 

because they contribute positively to peoples’ wellbeing by providing them with a safer 

and more enjoyable cycling experience. For example, in addition to the benefits of fewer 

accidents, bicyclists also value the feeling of a more protected trip (Ruiz and Bernabé 

2014). This value is generally not considered in a traditional analysis since it involves a 

difficult to estimate non-market value. The economic value of cycling facilities is 

challenging to determine since, like other public goods, there is no market where money 

is exchanged for them. On the other hand, it is important to estimate these values because 

they are required to complete robust cost-benefit assessments of these facilities. The 

estimates of economic value are also important for considering how much to invest in 

bicycle facilities given a limited amount of transportation funding and many competing 

transportation projects.  
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Calculating a person’s willingness to pay (WTP) for the provision of a public good is a 

common method to estimate the economic value or welfare change expected from their 

provision (Freeman 2003). Welfare change is represented in money terms, is tangible, 

and once estimated, can be used in the decision making process along with other costs 

and benefits. Several methods that use stated preference (SP) and revealed preference 

(RP) techniques are available to value public goods and services (Bishop and Woodward 

1995). These methods indirectly estimate the value people place on public goods using 

their stated behavior in a hypothetical situation (SP methods) or their observed behavior 

in a real situation (RP methods). 

Prior studies in the field of transportation have used SP and RP methods to estimate the 

monetary value that people place on transportation improvements including: congestion 

relief (Brownstone et al. 2003); travel time reliability (Li et al. 2010); travel time 

(Devarasetty et al. 2012; Jong et al. 2014; Uchida 2014); accident risk (Muller and 

Reutzel 1984; Rizzi and Ortúzar 2003; Iragüen and Ortúzar 2004; Hensher et al. 2009; 

Jou et al. 2013); transit improvements (Drevs et al. 2014); and traffic related air pollution 

(Wardman and Bristow 2014). 

Several studies have also valued bicycle infrastructure. In an attitudinal survey of 

households in the city of San Diego, the majority of respondents expressed their 

willingness to pay for cycling facility improvements by supporting a $10 annual fee for 

bicycle registration (Jackson and Ruehr 1998). Krizec (2006) used a SP approach to 

evaluate preferences for different types of cycling facilities. University of Minnesota staff 

participated in the survey and were asked how much additional time they were willing to 

travel if their trip could be made using an improved bicycle facility. The study finds that 
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bicyclists are willing to spend 16.3 additional minutes to make a trip using a bike lane, 

8.9 minutes when parallel parking is prohibited along the road, and 5.2 minutes when a 

trail is provided. The additional travel time is multiplied by an estimate of the average 

value of travel time, which is assumed to be $12 per hour based on guidance from the 

Minnesota Department of Transportation, to estimate WTP for the improved cycling 

facilities. Other studies have estimated changes in travel time but not WTP. Using the 

same data set as Krizec (2006),  Tilahun et al. (2007) find that University of Minnesota 

staff who are bicyclists are willing to spend 16.4, 9.3, and 5.1 additional minutes, 

respectively to make their trips using a bike lane, a facility with prohibited parallel 

parking, and a trail, respectively. Stinson and Bhat (2003) use a SP approach to determine 

bicyclists’ preferences for a wide range of attributes related to the cycling environment 

and find that bicyclists are willing to spend 16.9, 14.5 and 12.3 additional minutes, 

respectively to make their trips using a bike lane, a cycle track and on smooth pavement. 

While Krizec’s study provides the only example of a bicycle facility WTP estimate in the 

peer reviewed literature, the assumption of a single value of time for all individuals, is a 

potentially important limitation. Most travel time valuation methods assume that the 

value of travel time is some proportion of an individual’s wage (Cesario 1976). Since 

cyclists may have a different distribution of wages than the general population, using a 

population average value of travel time may also bias results upwards or downwards. 

Additionally, McConnell and Strand (1981) show that the proportion of the wage used to 

estimate the value of travel time may also vary across population groups.  

Our study uses a SP method and estimates WTP for bike lanes, cycle tracks and street 

lighting; providing an estimate of the change in welfare associated with each. The study 
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is designed to observe the tradeoffs that bicyclists make between travel time and using an 

improved cycling facility to estimate WTP. The study also considers several methods for 

valuing travel time, which is then used in estimating WTP. Each individual’s value of 

time is estimated as a function of their reported wage and as the pay they would accept to 

work an additional hour. The study also investigates how using the sample average wage 

rate and the region’s average wage rate in estimating value of time lead to differences in 

WTP estimates. Additionally, the study investigates how cycling experience and cyclist’s 

age affect WTP estimates.  

Methods 

Survey design 

We create a SP survey and use a random utility model to estimate WTP for three facility 

improvements. While RP data is often preferable, observing the actual choices made by 

bicyclists is very difficult in most cases; it’s impossible in our case, where few alternative 

facilities exist in the study area. SP surveys overcome this limitation by presenting study 

participants with any number of alternatives: existing or planned. 

The validity of SP methods requires that study participants understand the choices that 

they are presented with, that the choices are realistic, and that participants have the 

required information to make an informed decision. Surveys such as ours can threaten the 

study’s validity because respondents are asked to choose between cycling facilities that 

currently do not exist in the region and that they may have no prior experience using. To 

minimize this threat, respondents are shown illustrative videos of different types of 

cycling facilities. Video clips, obtained from YouTube, show the experience of biking on 
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a road, without a bike lane, with a bike lane and with a cycle track in the city of Montreal, 

Canada from the view of a camera mounted on a bicyclist’s helmet. 

The SP questionnaire is designed to obtain information on bicyclists’ preferences about 

hypothetical bicycling facilities. The questionnaire presents three bicycle facility 

improvements: bike lanes, cycle tracks and street lighting (figure 27). 

 

 

Figure 34. Cycling facilities included in SP questionnaire: shared roadway (a), bike 

lane (b), and cycle track (c) 
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Bike lanes and cycle tracks are included because they are thought to have the greatest 

impact on the level of cycling (Buehler and Pucher 2012). Additionally, evidence in the 

literature suggests that roadway lighting may also have a significant effect on the level of 

non-motorized activity that occurs after dark (Cervero and Kockelman 1997). We also 

consider street lighting because the study area has a general lack of street lighting and 

prior studies have not evaluated how much bicyclists value street lighting. We do not 

evaluate improvements including bicycle paths or trails, prohibited parallel parking and 

pavement smoothness as has been done in prior studies. These improvements are not as 

applicable to the study area and we aimed to keep the choice experiment as relevant and 

short as possible to minimize respondent fatigue. The study area is a moderately dense 

urban area and there is very little right of way where bicycle paths or trails could be 

placed. Cycle tracks, which are essentially roadside paths, are considered and could be 

built in existing roadway right of ways. Most of the study area’s main streets (arterials 

and collectors) where bicycle facilities would likely be placed already prohibit on street 

parking. The study area’s streets are also generally in good condition owing to 

Albuquerque’s dry and mild climate. 

After watching illustrative videos of each facility type, respondents are given six choice 

sets (figure 28). In each choice set, the respondents are asked to imagine traveling to 

school or work by bike and are then asked to choose their preferred facility: the inferior 

facility with lower travel time, and the improved facility with higher travel time. The 

preference of the respondents over two facility is recorded in six question. In each 

question, travel time on the inferior facility (for example no bike lane) remains at 20 

minutes while travel time on the improved facility (for example the bike lane) increases 
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consequently from 20 to 50 minutes (20, 25, 30, 35, 40 and 50 minutes). In this way, we 

can capture an estimate of the maximum additional travel time that the respondent is 

willing to spend to ride on the improved facility. Respondents are also asked about their 

cycling experience, socioeconomic characteristics including sex, age, income, marital 

status, and whether they are a parent or not. 

 

Figure 35. Survey structure 

Estimating welfare changes 

We use utility theory to estimate the welfare change associated with each bicycle facility 

improvement. Individuals gain a certain amount of utility by consuming a good or service 
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–this good might be a public good such as a bike lane. The utility individuals gain from 

consuming a good is a function of several observable and unobservable factors. It is 

assumed that the utility individuals gain by riding on each cycling facility is a function of 

travel time, the type of facility and their socioeconomic characteristics. Mathematically, 

the utility of alternative facility i for individual n can be written as the following: 

𝑈ᵢⁿ = 𝛼′𝐒ⁿ +  𝛃ᵢ′𝐈ᵢ + 𝜆𝐶ᵢ                                                                                     (6) 

Where, 

𝑈ᵢⁿ = The utility of alternative i for individual n 

𝐒ⁿ = The vector of socioeconomic attributes for individual n 

𝐈ᵢ = Vector of dichotomous variables representing whether each improvement is 

provided in alternative i or not 

𝐶ᵢ = Travel cost (time) of riding bike in alternative i 

𝛼 = Vector representing estimated coefficients on socioeconomic characteristics 

𝛃ᵢ = Vector representing estimated coefficients of bike lane, cycle track, and 

lighting 

𝜆 = Estimated coefficient of travel cost 

Willingness to pay is then calculated following the definition of the marginal rate of 

substitution. The marginal rate of substitution between a pair of goods is the rate at which 

an individual trades off one good in exchange for another one while maintaining a 

constant level of utility (Varian 1992). This can be written as follows: 

𝑀𝑅𝑆𝑥𝑦 =
𝑀𝑈𝑥

𝑀𝑈𝑦
                                              (7) 

Where, 

𝑀𝑅𝑆𝑥𝑦 = Marginal rate of substitution between good x and good y 
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𝑀𝑈𝑥 = Marginal utility of good x  

𝑀𝑈𝑦 = Marginal utility of good y 

Marginal utility is the gain or loss in the utility due to consuming or giving up some 

quantity of goods and services. Based on the linear formulation of our utility function 

(equation 6), the marginal utility of a good (facility improvements and travel time) is its 

estimated coefficient in the model. In equation 7, consider good x as a facility 

improvement and good y as the monetized value of travel time. The willingness to pay 

for a facility improvement is the money that a bicyclist is willing to trade off to use the 

improvement while maintaining a constant level of utility (equation 8). 

𝑊𝑇𝑃𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  𝑀𝑅𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡,𝑚𝑜𝑛𝑒𝑦 =
𝑀𝑈𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝑀𝑈𝑚𝑜𝑛𝑒𝑦
=

 𝛽ᵢ

𝜆
             (8) 

Monetized value of travel time 

An accurate estimate of the monetary value of travel time is of great importance in our 

study since it is the basis for estimating WTP. Prior studies have valued travel time as a 

function of the hourly wage rate; ranging between 20 to 80 percent of the wage rate 

(Cesario 1976; U.S. Department of Transportation 2011). The value of time is generally 

thought to be less than the wage rate because work is generally less enjoyable than travel 

and that many individuals have little flexibility in the number of hours they can work. 

McConnell and Strand (1981) argue that the proportion of the wage rate used to estimate 

the value of travel time should vary based on the socioeconomic characteristics of the 

population being studied. For example, some people may like their job more than others 

or dislike travel. Current guidance from the U.S. Department of Transportation, based on 

a comprehensive survey of existing valuation studies, suggests using 50 percent of total 
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income or the wage rate as the value of travel time for the average person in the United 

States (U.S. Department of Transportation 2011).  

Our study uses two methods to estimate the monetary value of travel time. The first 

method uses each respondent’s response to the question, “how much money do you 

request to work one additional hour”. This provides a simple method for estimating the 

marginal value of time for each respondent in our study that does not require choosing a 

single wage rate proportion, responding to the concerns raised by McConnell and Strand 

(1981). The second method estimates the value of time at 50 percent of each individual’s 

hourly wage rate based on U.S. Department of Transportation guidance.  

We create four logit models to estimate WTP as shown in figure 29. Models one and two 

convert travel time to travel cost (where cost is the monetized value of time) using each 

of the two methods described above. Comparing the results from models one and two 

allows us to investigate how a commonly used fixed wage rate proportion may bias WTP 

estimates. Models three and four are estimated using travel time. Travel times are then 

converted to travel cost using 50 percent of the average wage rate from our sample 

population and the region, respectively. Model 3 allows us to investigate how using a 

fixed wage rate proportion along with a single average wage rate may bias WTP 

estimates. Model 4 represents a worst case study design where a single proportion of 

regional wage rate is used that may not correspond to the wage rage of bicyclists. 
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Figure 36. The procedure of estimating WTP in each of the four developed models 

  

Data 

The SP survey was administrated during the spring of 2014 to students taking economics 

courses at the University of New Mexico’s main campus in Albuquerque, New Mexico. 

Of the eight main streets leading to the campus, two have bike lanes with lighting and 

one without lighting. The four other main streets that define the border of the campus do 

not have any bicycle facilities. Other routes to campus are on local residential streets that 

generally lack street lighting. 

Questionnaires were completed in classrooms at the end of the class period. The surveys 

took an average of about 15 minutes to be completed. Most students in each class 

participated in the surveys. During four weeks, a total of 178 students in 8 classes were 

surveyed. Data associated with 17 students were removed from the dataset due to 

incomplete information in the questionnaire, leaving 161 observations. Table 9 provides a 

summary of the respondent’s socioeconomic information. Most students were not 
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frequent cyclists, 16 students biked to campus or work at least once a week with 10 

biking regularly.  

Table 9. Summary of socioeconomic data collected from respondents 

Description  Value 

Mean  

(Standard 

Deviation) 

Gender 

 

Female (1) 

Male (0) 

0.337 (0.373) 

Age In years 24.13 (6.12) 

Marital status 

 

Married (1) 

single (0) 

0.11 (0.31) 

Parental status 

 

Parent (1) 

Non-parent(0) 

0.04 (0.11) 

At least one bicycle trip per week Yes (1) 

No (0) 

0.10 (0.29) 

Regularly travels by bicycle  Yes(1) 

No(0) 

0.06 (0.01) 

Monthly income In dollars 1,205 (577.87) 

Hours worked per week In hours 19.4 (6.34) 

Hourly wage rate In dollars 14.79 (3.70) 

Money required to work an additional hour In dollars 10.15 (4.14) 

Results 

The model results are shown in table 10. The statistical significance of the parameters 

were estimated using robust standard errors. In a stated preference survey, each 

individual responds to several choice situations, thus, several data points in the data 

belong to one person. Individual’s unobservable characteristics affect these choices and 

lead to a systematic correlation between them. Robust standard errors address this 

possible systematic correlation among data points (Kezdi 2004). 

The model results generally meet our prior expectations. The positive sign on the 

coefficient estimates for provision of bicycle lanes, cycle tracks, and street lighting 

indicates that respondents are willing to accept a longer travel time to use these improved 

facilities. Longer travel times indicate that respondents value these facilities over a 

roadway with no bike facilities. Cycle tracks were the most valued improvement 
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followed closely by street lighting and then bicycle lanes. The importance of street 

lighting highlights a potentially overlooked strategy to increase the amount of bicycling. 

Street lighting was valued much more than bicycle lanes which are perhaps one of the 

most commonly added bicycle facilities. The travel cost and time parameters are negative 

as expected, indicating that increasing costs or travel time lowers the desirability of a 

particular facility option all else being equal. 

Table 10. Logit model results 

Variable 

Model 1 Model 2 Models 3 and 

4 

Presence of cycle track 0.559*** 

(0.129)a 

0.617*** 

(0.133) 

0.737*** 

(0.238) 

Presence of bike lane 0.248*** 

(0.080) 

0.340*** 

(0.096) 

0.418*** 

(0.172) 

Presence of lighting in dark time trips 0.440*** 

(0.146) 

0.501*** 

(0.182) 

0.567*** 

(0.212) 

Travel cost (model 1) -

0.288*** 

(0.008) 

- - 

Travel cost (model 2) - -0.350*** 

(0.010) 

- 

Travel time (model 3 and 4) - - -0.051*** 

(0.003) 

Age 0.008*** 

(0.002) 

0.006*** 

(0.003) 

- 

At least one bicycle trip per week -0.116* 

(0.063) 

-0.095* 

(0.052) 

- 

Regularly travels by bicycle -

0.180*** 

(0.063) 

-0.133*** 

(0.052) 

 

Constant 1.018*** 

(0.100) 

0. 659*** 

(0.113) 

1.661*** 

(0.337) 

Number of respondents 161 161 161 

Number of choice situations 4830 4830 4830 

Pseudo R squared  0.110 0.139 0.089 

Chi square  64954 40713 73355 
 a Standard errors are presented in parenthesis 

*** Coefficient estimate is significant at 0.01 level 

**   Coefficient estimate is significant at 0.05 level 

*     Coefficient estimate is significant at 0.10 level 

 

 

The results also indicate that age and cycling experience affect facility preferences. The 

coefficient on the respondent’s age is positive and statistically significant in the first and 
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second models. The positive sign indicates that the preference for bicycle facilities over 

an unimproved roadway increases with age. This may be a result of a decline in risk-

taking behavior that has been observed in travelers as age increases (Turner and McClure 

2003, Lott and Tardiff 1978). Cycling experience had a negative and statistically 

significant coefficient estimate. The negative sign on the two parameters measuring 

cycling experience indicates that greater experience reduces the preference for cycling 

facility improvements. These results seem to make sense, as more experience likely 

reduces fear or discomfort in sharing roadways with vehicles and therefore reduces the 

value of facility improvements (Antonakos 1994).   

The coefficient estimates in table 10 are used to calculate the average WTP for bicycle 

facilities (table 11). For models 1 and 2, WTP by bicycling experience was also 

calculated. The results indicate that WTP for cycle tracks is greatest, followed closely by 

street lighting, regardless of how we measured the value of travel time. WTP for bicycle 

lanes is much less, about 45 to 50 percent less than cycle tracks and 30 to 40 percent less 

than street lighting. The results also indicate that experienced bicyclists have a lower 

WTP for any facility improvement compared with the sample average. The elasticity of 

WTP to bicyclists’ age is also calculated and shown in table 12. Elasticity estimates 

provide the percentage change in WTP due to a percentage change in age. The results 

generally indicate that WTP for improved bicycle facilities increases with age, though the 

limited range of age in our sample constrains this portion of our analysis. 
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Table 11. Willingness to pay per trip for different facility improvements 

Model 

Sample 

Population 

Improvement 

Cycle track Bike lane Lighting 

 

Model 1 

Sample average $1.94 $0.86 $1.53 

Bike users $1.54 $0.46 $1.12 

Bike commuters $1.32 $0.24 $0.90 

 

Model 2 

Sample average $1.76 $0.97 $1.43 

Bike users $1.49 $0.63 $1.16 

Bike commuters $1.38 $0.52 $1.05 

Model 3 Sample average $1.78 $1.01 $1.37 

Model 4 Sample average $2.47 $1.40 $1.90 

 

Table 12. Elasticity estimates of WTP to bicyclists’ age in models 1 and 2 

 Improvement 

Model Cycle track Bike lane Lighting 

1 1.43 3.23 1.82 

2 0.97 1.76 1.20 

 

The two methods for valuing travel time (models 1 and 2) produce approximately the 

same WTP estimates even though the average marginal wage rate required to work an 

additional hour in model 1 is 37 percent higher than 50 percent of the average wage rate 

which is used in model 2. In this regard, the US DOT guidance suggesting that travel 

time should be estimated as 50 percent of the average wage seems reasonable, at least for 

our small sample. The largest difference in WTP estimates occurs when replacing the 

sample average wage rate with the much higher (39 percent) regional average wage. 

There was also little difference in the estimated WTP when each respondent’s individual 

wage was used directly (model 2) or the sample average wage was applied to regression 

results estimated with travel time (model 3). 
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Discussion 

We estimate WTP for improved bicycle facilities at $1.76 to $2.47 for adding cycle 

tracks, $1.37 to $1.90 for adding street lights, and $0.86 to $1.40 for adding bicycle lanes 

to a roadway without these improvements. Two different methods of valuing 

respondents’ time, using their marginal value of time or 50% of wage rate, lead to similar 

WTP estimates. While we maintain that estimating the marginal value of a person’s time 

is theoretically more consistent, simply assuming 50% of the wage rate may be sufficient 

and is information that is widely available. Information about wages rates or annual 

income is routinely collected in many travel surveys and also available from other data 

sources.  We urge caution in using the fourth method, the regional wage rate or average 

income, since the regional population may value their time differently than the population 

of current and potential bicyclists (those willing to bicycle if better infrastructure were 

provided), biasing estimates up or down.  

We also find that WTP is higher for respondents who do not currently bike and lower for 

bicyclists with more experience. The significance of this finding is that the WTP for 

improved bicycle facilities will be underestimated if only current bicyclists are surveyed. 

Additionally, this result indicates the value of improved bicycle facilities for attracting 

new bicyclists and those with less experience. 

While WTP for cycle tracks is higher than other improvements, considered alone, this is 

not evidence that cycle tracks should be provided over other types of bicycle facility 

improvements. The average cost of building cycle tracks is $133,170 per mile, which is 

much more than the $25,070 cost of adding bike lanes but less than the $244,000 cost of 

adding street lighting (Bushell 2013). The cost of facility improvements must be 
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compared with the total private and social costs and benefits that these facilities provide 

in order to make an economically efficient decision. This requires first estimating how 

each bicycle facility affects bicycle and vehicle mode share. The change in mode share 

can then be used to estimate the change in the value of external costs and benefits from 

each mode including, changes in congestion, air quality, greenhouse gas emissions, 

traffic safety, and health benefits associated from active transportation. These external 

costs and benefits can then be added to the private WTP estimates to comprehensively 

evaluate the net benefits of each facility.  

It is also important to note that this study is based on a relatively small convenience 

sample of university students. The WTP estimates are unlikely to represent those 

obtained from a more representative sample of Albuquerque’s population or the 

population in any other region.  Despite this limitation, the results generally agree with 

those from prior studies, cycle tracks are preferred to bicycle lanes. The results also 

suggest that street lighting is something that future bicycle facility valuation and 

preference research should consider.   
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Chapter 6. Conclusions 

Federal surface transportation regulations require that state and metropolitan planning 

organizations adapt to a performance and outcome based planning process that provides 

for a greater level of transparency, improved decision-making, and more efficient 

investment of Federal transportation funds. However, there are no federal guidelines for 

evaluating the future outcomes of long range transportation plans in terms of exposure, 

and the only requirements that incorporate air quality in the planning process do not 

necessarily lead to adaptation of health-protective plans. This dissertation provides 

planning organizations with a clear methodology to include exposure assessment as part 

of their outcome based planning process. 

I developed a clearer picture of how long-range transportation plans affect exposure to 

traffic related PM2.5. I showed that PM2.5 emission from traffic is distributed unevenly in 

a region and is highest close to the major roads and interchanges, and concluded that 

future planning scenarios, specifically those that focus on land use change can have 

strong impacts on the exposure of the population living in a region. I developed and 

suggested an integrated modeling framework that can be used in planning process to 

evaluate the plan’s performance in terms of air quality and travel measures. This 

framework improves transportation planning process in many ways. Unlike the current 

practice that focuses on evaluating the plans in terms of only aggregate measures of air 

quality such as emission inventory, my suggested framework takes into the account the 

exposure to the emission as an important measure determining the health-protectiveness 

of a plan. Additionally, my suggested framework evaluates the plans annually, from the 

base year up to the planning horizon; the current practice focuses on evaluating the plans 
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only in one or two future years and neglects the mid-term performance. The annual 

evaluation allows planning agencies to obtain information about how the timing of land 

use and transportation system changes affects air quality and travel demand measures and 

helps them devise more efficient plans. 

State and metropolitan planning organizations can implement a similar modeling 

framework to obtain clear pictures of their plans’ impact on population exposure as well 

as on GHG emissions and travel demand measures. The models that I used to create the 

framework are available to planning agencies. Most of these agencies have access to 

travel demand models and a type of land use model or can dedicate budget to purchase 

them. The other models used in the framework including MOVES emission model, 

AERMOD model, and GIS (QGIS) are freely available. Automating the framework and 

creating a user friendly GUI -which is a suggested area for future research and 

development- can simplify the process of setting up and running the modeling 

framework.  
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