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Abstract 

Roadway pavement surface distress information is essential for effective pavement asset 

management, and subsequently, transportation agencies at all levels dedicate a large 

amount of time and money to routinely collect data on pavement surface distress 

conditions as the core of their asset management programs. These data are used by these 

agencies to make maintenance and repair decisions. Current methods for pavement 

surface distress evaluation are time-consuming and expensive. Geospatial technologies 

provide new methods for evaluating pavement surface distress condition that can 

supplement or substitute for currently-adopted evaluation methods. However, few 

previous studies have explored the utility of geospatial technologies for pavement surface 

distress evaluation. The primary scope of this research is to evaluate the potential of three 

geospatial techniques to improve the efficiency of pavement surface distress evaluation, 
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including empirical analysis of high-spatial resolution natural color digital aerial 

photography (HiSR-DAP), empirical analysis of hyper-spatial resolution natural color 

digital aerial photography (HySR-DAP), and inferential geospatial modeling based on 

traffic volume, environmental conditions, and topographic factors. Pavement surface 

distress rates estimated from the aforementioned geospatial technologies are validated 

against distress data manually collected using standard protocols. Research results reveal 

that straightforward analysis of the spectral response extracted from HiSR-DAP can 

permit assessment of overall pavement surface conditions. In addition, HySR-DAP 

acquired from S-UAS can provide accurate and reliable information to characterize 

detailed pavement surface distress conditions. Research results also show that overall 

pavement surface distress condition can be effectively estimated based on the extent of 

geospatial data and inferential modeling techniques. In the near term, these proposed 

methods could be used to rapidly and cost-effectively evaluate pavement surface distress 

condition for roadway sections where field inspectors or survey vehicles cannot gain 

access. In the long term, these proposed methods are capable of being automated to 

routinely evaluate pavement surface distress condition and, ultimately, to provide a cost-

effective, rapid, and safer alternative to currently-adopted evaluation methods with 

substantially reduced sampling density. 
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Chapter 1 Introduction 

As one of the most critical types of transportation infrastructure, roadways provide a 

foundation to the performance of all national economies, delivering a wide range of 

economic and social benefits to citizens (Rodrigue et al. 2013). In most countries, 

roadways are the primary transport mode for both freight and passengers (Kveiborg and 

Fosgerau 2007; Mannering and Washburn 2012; Olamigoke and Emmanuel 2013; and 

Rodrigue et al. 2013).  

Similar to other types of transportation infrastructure, roadways deteriorate over 

time due to various factors such as age, traffic load, and weather conditions (Hartgen et 

al. 2014). The serviceability of roads (i.e., the ability of a road to serve traffic) primarily 

depends on pavement surface conditions, and subsequently, road management agencies at 

all levels (i.e., federal, state, and local) dedicate large amounts of time and money to 

routinely evaluate pavement surface distress conditions as the core of their asset 

management programs. These pavement surface distress data are used by these agencies 

to make maintenance and repair decisions and ensure roadways meet functional standards 

and safety standards (Haas et al. 1994).  

Currently, two types of pavement surface distress evaluation methods have been 

operationally adopted by state and local transportation agencies, including manual 

evaluation (human observation and human analysis) and automated evaluation (machine 

observation and machine analysis). Only a few state and local transportation agencies are 

still using manual methods to survey the surface distress of roadways (Bandini et al. 

2012). Using this method, data are collected by inspectors on the ground through visual 

observation. Collected data are presented in the form of handwritten notes with pictures 
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attached. Analyzing these notes and pictures based on standard scoring protocols enables 

inspectors to determine the pavement surface distress on-site. 

With automated evaluation methods, pavement surface condition data are still 

collected on the ground. The automated methods typically include the use of vehicle-

mounted electronic sensors at a fine enough spatial resolution to detect individual distress 

measures (e.g., cracks) in the pavement surface. Both manual evaluation and automated 

evaluation methods are classified as ground-based evaluation methods because the 

evaluation action occurs from the ground. 

All state transportation agencies use one of the two aforementioned types of 

pavement surface distress evaluation methods. Each of these methods has strengths and 

weaknesses (discussed in Section 2.1.3), but they have two weaknesses in common – 

time-consuming and expensive. For example, an annual manual evaluation of the 

highways across the State of New Mexico performed by New Mexico Department of 

Transportation (NMDOT) costs approximately one million dollars and three months 

(Montoya and Mann 2016). Another example is that the Vermont Agency of 

Transportation reported costs of up to $170 per mile in urban areas for total combined 

costs for their adopted automated evaluation (McGhee 2004). For a state like New 

Mexico with over 15,000 lane miles, the total cost could reach three-million dollars. 

The slow performance and high cost of manual and automated methods is caused 

by multiple reasons. For manual evaluation, the slow performance is caused by “boots on 

the ground” data collection, while the high cost is caused by the employment of 

experienced inspectors and enormous travel cost (inspectors are required to drive to the 

evaluation destination). For automated evaluation, the slow performance is also caused 
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by on the ground data collection, while the high cost is caused by deployment of special 

sensors, employment of specialized staff, and enormous travel cost (specialized operators 

are required to drive survey vehicles to perform evaluation statewide). 

Another method to evaluate pavement surface condition, although it has not been 

used for any operational programs yet, is through airborne observation. The application 

of an analog aerial photography-based evaluation method to pavement surface distress 

was first implemented in the 1950s. However, extremely high cost, coarse spatial 

resolution, and limited compatibility with modern image processing techniques ultimately 

prevented the further exploration of their application for pavement surface evaluation at 

the time (McMaster and Legault 1952; Stoecker 1968; and Stoecker 1970). The transition 

from analog aerial photography to digital aerial photography occurred two decades ago 

since the first digital camera was placed on the market (Neumann 2008). Aerial 

photography has steadily stepped into a digital era characterized by low-cost, high-spatial 

resolution, and being compatible with numerous image processing techniques (Ahmad 

2006), which warrants further exploration of the application of airborne observation for 

pavement surface distress evaluation.  

Commonly known as geomatics, geospatial technology (GT) refers to a suite of 

technologies and practices used to acquire, store, analyze, and visualize spatially 

referenced data. An example of GT products is digital aerial photography. GT is the ideal 

tool to effectively collect and analyze pavement surface distress data since roadway 

infrastructure is fundamentally spatial (roadways are spatially and extensively 

distributed). With advances in computer hardware and software, the computation ability 

of GT has been empowered to process geospatial data rapidly. 
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One technique from GT, high-spatial resolution aerial imaging, has been used to 

routinely collect myriad high-spatial resolution (i.e., from 1-inch to 1-meter) digital aerial 

photography which contains pavement surface distress condition information. These data 

are processed, archived, and provided to the public for free. This publicly available high-

spatial resolution digital aerial photography (HiSR-DAP) holds the potential to rapidly 

detect and assess overall pavement surface conditions with substantially reduced costs 

when comparing with ground-based evaluation methods.  

Small-unmanned aircraft system (S-UAS) based hyper-spatial resolution imaging 

and automated aerial triangulation techniques from GT can be used to collect hyper-

spatial resolution (millimeter scale) aerial images that have synoptic coverage of the 

ground features. These collected hyper-spatial resolution aerial images hold the potential 

to enable transportation agencies to rapidly detect and assess detailed pavement surface 

conditions at a lower cost.  

Another technique from GT, geospatial modeling, is widely used to model natural 

phenomena that are influenced by various geospatial factors. Coupled with routinely 

collected and publicly available geospatial data, geospatial modeling techniques hold the 

potential to model overall pavement surface conditions with substantially reduced amount 

of survey sites, and ultimately, reducing the cost for pavement surface evaluation.  

This dissertation explored the utility of GT approaches to rapidly detect and 

evaluate flexible pavement (i.e., asphalt concrete pavement) surface distress conditions. 

Asphalt concrete (AC) pavement is selected for this research since it is the most widely 

used roadway pavement material across the United States. Specifically, the research 

examined three novel GT-based pavement surface distress evaluation approaches through 
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the use of routinely acquired high-spatial resolution natural color digital aerial 

photography (HiSR-DAP), S-UAS acquired hyper-spatial resolution natural digital aerial 

photography (HySR-DAP), and geospatial modeling based on traffic volume, 

environmental conditions, and topographic factors to answer four research questions: 

(1) How well can routinely collected and publicly accessible HiSR-DAP evaluate 

overall pavement surface distress conditions? 

(2) How well can S-UAS collected HySR-DAP characterize detailed pavement 

surface distress conditions? 

(3) How well can overall pavement surface distress conditions be modeled using 

traffic volume, environmental conditions, and topographic factors? 

(4) What is the effect of sampling density on overall pavement surface distress 

condition estimation for unsampled road segments? 

To answer question one, pixel-based spectral response extracted from routinely 

acquired 6-inch HiSR-DAP was modeled with overall pavement surface distress rates to 

determine their relationship assuming an L-resolution scene model (Strahler et al. 1986). 

To address question two, detailed pavement surface distress rates measured from S-UAS 

collected HySR-DAP were compared with distress rates manually measured on the 

ground to examine if S-UAS collected HySR-DAP can provide detailed and reliable 

primary observation suitable for characterizing detailed pavement surface distress 

conditions. To answer question three, variables extracted from traffic volume, 

environmental conditions, and topographic factors were modeled with overall pavement 

surface distress rates to determine their relationship through inferential geospatial 

modeling. Continued with the research of addressing question three, the amount of input 
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survey sites for the established model was reduced at a 10% decrement rate to identify a 

threshold of loss in estimation accuracy to answer question four. 

Three distinctive abilities of GT, including synoptic coverage ability (i.e., data 

collected above the ground), computing ability (i.e., rapid data processing by modern 

computers), and data sharing ability (data can be used for other fields, e.g., vegetation 

monitoring), were fully used in the proposed three novel approaches for pavement 

surface distress condition evaluation. The expected general impact of this dissertation is 

to provide more cost and time efficient GT-based approaches to evaluate pavement 

surface distress conditions, and subsequently allow transportation agencies to more 

efficiently allocate limited resources (e.g., money and personnel) for roadway 

management. Specifically, the proposed HiSR-DAP based method could be potentially 

applied to rapidly and cost-effectively evaluate overall pavement surface distress 

condition for rapid, high-level information checks. The proposed HySR-based method 

could eventually lead to automation of S-UAS based evaluation of detailed pavement 

surface distress at a low cost which holds the potential to completely replace current 

ground-based evaluation methods. The proposed geospatial modeling based evaluation 

method would allow using existing geospatial data to estimate overall pavement surface 

distress conditions, while keeping limited survey sites for calibration/validation purposes. 

In the near term, these proposed methods could be used to rapidly and cost-effectively 

evaluate pavement surface distress conditions for roadway sections where field inspectors 

or survey vehicles cannot gain access. In the long term, these proposed methods are 

capable of being automated to provide a cost-effective, rapid, and safer alternative to 

currently-adopted evaluation methods with substantially reduced sampling density. 
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Chapter 2 Literature Review 

This review of literature section covers two topics: roadway pavement surface evaluation 

and geospatial technology (GT). The reviewed literature includes books, journal papers, 

research reports, conference proceedings, and thesis or dissertations. 

2.1 Roadway Pavement Surface Evaluation 

This section first discusses the importance of roadway networks in a country’s economy. 

Next the need for evaluation of roadway pavement surface is discussed. Lastly, the 

current methods for pavement surface distress evaluation are discussed.  

2.1.1 Roadway Networks 

Because of its intensive use, transportation infrastructure is a critical component of a 

country’s economy as well as economic development at all levels (national, state, and 

local). In the United States, the importance of transportation infrastructure to the nation’s 

economic strength and efficiency is widely accepted (Smith 1994). Without an effective 

transportation system, a nation or region cannot achieve the maximum use of its natural 

resources or the maximum productivity of its people (Garber and Hoel 2014). In general, 

transportation systems include roadway networks, rail networks, air networks, shipping 

networks, and pipeline networks (Mannering et al. 2009). 

As one of the most important types of transportation infrastructure, roadway 

networks have played a significant role in the development and sustainability of human 

civilization from ancient times to the present, and continued to play an important role in 

regional and national economy (Mannering et al. 2009). In most countries, roadways are 

the primary transportation mode for both freight and passengers (Kveiborg and Fosgerau 
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2007; Mannering and Washburn 2012; Olamigoke and Emmanuel 2013; and Rodrigue et 

al. 2013). According to a survey conducted by the Federal Highway Administration 

(FHWA), over 90% of personal travel is accomplished by highways, and 25% of freight 

is moved via highways in the United States (fhwa.org). 

2.1.2 Pavement Surface Distress Evaluation 

Similar to other types of transportation infrastructure, roads deteriorate over time due to 

various factors such as traffic load, age, and weather conditions (Hartgen et al. 2014), 

which could lead to pose a risk to public safety and drivers’ comfort (Aoki et al. 2012; 

Wang 2000). Therefore, maintenance of roadway pavement is essential to ensure good 

riding quality and avoid the happening of congestion, air pollution, and especially traffic 

accident (Chan et al. 2009). 

Different levels of pavement management activities and decisions are supported 

by pavement conditions in varying degrees of detail (Haas et al. 1994). To characterize 

the conditions of existing pavements, surveys are conducted to assess one or more of the 

four criteria: surface distress, roughness, structural capacity, and surface friction 

(Gramling 1994; Alkire 2013). The aforementioned criteria vary in the degree of 

importance in terms of pavement performance and maintenance and rehabilitation needs.  

Surface distress is damage or defects (e.g., cracks or rutting) observed on the 

pavement surface. Pavement surface distress surveys are performed to determine the 

type, severity, extent, and quantity of surface distresses. This information is often used to 

determine the overall distress conditions (e.g., Pavement Condition Index or PCI) which 

helps compute a rate of deterioration, and is often used to project future condition 



9 
 

(Shahin and Kohn 1979). Surface distress is typically the most important type of 

condition survey (Gramling 1994). 

Roughness, also known as ride quality, indicates the ability of the pavement to 

provide a comfortable ride to the users. Roughness survey is performed to determine the 

pavement surface distortion along a linear plane. Roughness measurement is often 

converted into an index such as the pavement Present Serviceability Index (PSI) or the 

International Roughness Index (IRI). Roughness is considered very important by 

pavement management agencies (Gramling 1994). 

Pavement surface distress and roughness are the basic elements typically included 

in quantification of the overall pavement condition, although structural capacity and 

friction may also be incorporated (Gramling, 1994; Prakash et al. 1994). Structural 

capacity is the maximum load and number of repetitions a pavement can carry before 

reaching some pre-defined condition. Structural analysis is normally conducted at the 

project-level to determine the pavement load-carrying capacity and the capacity needed 

to accommodate projected traffic volume. Structural capacity survey is important in the 

selection of treatments at the project-level (Gramling 1994). 

Surface friction, also known as skid resistance, indicates the ability of the 

pavement to provide sufficient friction to avoid skid related safety problems. Surface 

friction survey is important and it is generally considered as a separate measure of the 

pavement condition and often can be used to determine the need for remedial 

maintenance by itself (Gramling 1994). Many transportation agencies employ traffic 

accident maps to locate high accident areas, and then an evaluation is performed to 

examine whether the accidents are related to friction problems (Gramling 1994). 
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In the transportation industry, serviceability is an effective indicator to represent 

the level of service that a pavement can offer to the users. The serviceability of roads 

(i.e., the ability of a road to serve traffic) primarily relies on pavement surface conditions, 

and subsequently, transportation management agencies at all levels (i.e., federal, state, 

and local) dedicate large amounts of time and money to routinely evaluate pavement 

surface distress conditions as the core of their asset management programs. The collected 

pavement surface condition data are used by these agencies to determine the 

serviceability of individual roads to make maintenance and repair decisions. Effective 

pavement surface distress evaluation is also necessary to measure the effectiveness of 

various maintenance techniques and repair methods (Hudson and Uddin 1987). 

Therefore, pavement surface distress evaluation is essential for any roadway pavement 

management programs. 

This research focuses on pavement surface distress evaluation. Different 

transportation management agencies use different protocols for evaluating pavement 

surface distress condition. Typically surface distress data are collected in accordance with 

the criteria adopted by each state transportation agency. However, in general data for the 

following surface distresses are rated on a severity/extent scale of N/A, low, medium, and 

high for flexible pavements (i.e., asphalt concrete or AC pavement). Figure 1 shows the 

surface distresses for flexible pavements (Appendix A and B). 

Likewise, in general data for the following surface distresses are rated on a 

severity/extent scale of N/A, low, medium, and high for rigid pavement (i.e., reinforced 

concrete pavement). Figure 2 shows the surface distresses for rigid pavements (Appendix 

C and D). 
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Figure 1. Illustration of flexible pavement surface distress; (a) raveling and weathering; 

(b) bleeding; (c) rutting and shoving; (d) longitudinal cracking; (e) transverse cracking; 

(f) alligator cracking; (g) edge cracking; (h) patching. 
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Figure 2. Illustration of rigid pavement surface distress; (a) corner break; (b) faulting of 

transverse joints and cracks; (c) joint seal damage; (d) lane/shoulder drop off; (e) 

longitudinal cracking; (f) patch deterioration; (g) spalling of joints and cracks; (h) 

transverse and diagonal cracks. 
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2.1.3 Pavement Surface Distress Evaluation Methods 

Currently, two types of pavement surface distress evaluation methods have been 

operationally adopted by state and local transportation agencies, including manual 

evaluation (human observation and human analysis) and automated evaluation (machine 

observation and machine analysis). Transportation management agencies across the 

United States use one of these two aforementioned types of pavement surface distress 

evaluation methods. Each method has both advantages and disadvantages, which are 

discussed in details in the following section.  

Both manual evaluation and automated evaluation methods are classified as 

ground-based evaluation method because the evaluation action occurs from the ground. 

Another method to evaluate pavement surface condition is through airborne observation, 

although it has not been used for any operational programs yet. In this research, this 

method is classified as aircraft-based evaluation method. 

2.1.3.1 Manual Evaluation  

Only a few state and local transportation agencies are still using manual methods to 

survey the surface distress of roadway pavement (Bandini et al. 2012). Using this 

method, surface distress data are collected by inspectors walking or driving along a 

section of pavement and rating the level of distress (Bogus et al., 2010). As shown in 

Figure 3, inspectors are walking along the shoulder while performing evaluation.  

Using this method, surface distress data are primarily handwritten data and attached to 

archived images acquired by inspectors on the ground (boots on the ground). Manual 

evaluation methods can collect detailed information for various types of distresses, and it 
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is the reason that this method is still used. However, this method is expensive, extremely 

labor intensive, time-consuming, and data collected by different inspectors can exhibit a 

high degree of variability (Bogus et al. 2010). Manual evaluation is, therefore, sometimes 

unable to provide meaningful quantitative information, and eventually leads to 

inconsistencies in distress conditions over space and across evaluation (Cheng et al. 

1999; Hudson and Uddin 1987; Wang and Li 1999; Wang 2000).  

 

Figure 3. Illustration of manual evaluation walking along the shoulder. 

In addition, manual evaluation relies on the subjective evaluation of distress type 

extent, and severity by a trained inspector based on visual observation (Hudson and 

Uddin 1987), which means the evaluation results are prone to subjective bias. Another 

problem with manual evaluation is that it is potentially dangerous to inspectors. Survey 

crews must walk along the side of the road to perform their evaluation and, despite safety 

precautions (e.g., safety training and high-visibility garments), are exposed to substantial 

risk of personal injury, especially in high traffic volume sections. 
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2.1.3.2 Automated Evaluation 

In an attempt to address the shortcomings of manual evaluation, many transportation 

agencies have adopted automated technology to conduct surface distress surveys (Bandini 

et al. 2012). The automated methods typically include the use of vehicle-mounted devices 

(i.e., video cameras and electronic sensors) at a fine enough spatial resolution to detect 

individual distress measures (e.g., cracks) on the pavement surfaces. Figure 4 

(roadex.org) shows a typical automated evaluation system adopted by state agencies. 

 

Figure 4. Automatic pavement surface distress evaluation system. 

The application of video camera based automated evaluation became common in 

the 1980s (Hudson and Uddin 1987). The development of automated pattern recognition 

techniques for quantifying surface distress from video film or image frame has led to 

much wider application of video and image processing technology in pavement surface 

distress evaluation (Hudson and Uddin 1987; Curphey et al. 1985; Haas et al. 1985). 

Video cameras, which are mounted to mobile platforms such as survey vans, are used to 

record video films or image frames of the pavement surface, while pattern recognition 

techniques are used to analyze the collected videos or images and extract pavement 

surface distress information. 
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For automated surveys based on video camera, most of the past and current 

research focuses on detecting and quantifying individual distresses in the pavement 

surfaces. For example, Mahler et al. (1991) demonstrated the feasibility of applying 

image processing techniques to the analysis of pavement surface cracking. Georgopoulos 

et al. (1995) developed a method which uses digital image processing techniques to 

provide suitable digital imagery as input for specialized software in order to determine 

objectively and automatically the type, the extent, and the severity of surface cracking for 

flexible pavements. Pynn et al. (1999) developed several image processing algorithms to 

automatically identify the cracking on pavement surfaces based on the video images 

collected with a survey van mounted video camera system. Lee and Kim (2005) 

developed a crack type index (CIT) that can be used in automated survey systems to 

determine the crack type objectively as longitudinal, transverse, and alligator cracking. 

Huang and Xu (2006) presented an image processing algorithm customized for high-

speed, real-time inspection of pavement surface cracking.  

Many researchers are still focusing on applying various image processing 

techniques to identify pavement surface cracks from images collected automated 

evaluation systems. Mustaffara et al. (2008) proposed a photogrammetric approach to 

automatically classify and quantify the pavement cracks. Ma (2008) proposed a method 

to detect pavement surface cracks based on a non-subsampled contourlet transform 

algorithm. Oliveira and Correia (2008) employed entropy and image dynamic 

thresholding techniques to automatically segment pavement surface cracks. Nguyen et al. 

(2009) proposed a method to automatically detect and classify defects on road pavement 

surface using anisotropy measure. Coudray et al. (2010) developed a multi-resolution 
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segmentation approach for the detection of pavement surface cracks. Chambon et al. 

(2010) proposed a method to extract pavement surface cracks with adapted filtering and 

markov model-based segmentation. Gavilan et al. (2011) presented a support vector 

machine (SVM) based classifier to distinguish different types of pavement surface cracks. 

Koch and Brilakis (2011) presented a method to detect pavement surface potholes based 

morphological thinning and elliptic regression. Adarkwa and Attoh-Okine (2013) 

proposed a tensor factorization method to detect classify pavement surface cracks. 

The application of automated surveys based on electronic sensors also began to 

appear in the 1980s (Hudson and Uddin 1987).  These various types of sensors are 

designed to assess either a specific type of distress such as transverse cracks or a specific 

type of pavement such as rigid pavement (Schnebele et al. 2015).  Electronic sensors can 

perform seismic and dynamic testing, radar testing, sonic/ultrasonic testing, and laser 

testing. Seismic and dynamic sensors are applied for onsite pavement material 

characterization and structural evaluation (Uddin et al. 1987). Radar sensors, mostly used 

in the form of ground penetration radar (GPR), are suitable for measuring pavement layer 

thickness and identifying voids (Uddin et al. 1987; Maser 1996; Saarenketo and Scullion 

2000). Forest and Utsi (2004) found GPR can also be used to identify cracks in flexible 

pavement and measure crack depths ranging from 50 mm to 160 mm. Sonic/ultrasonic 

sensors are applied to measure longitudinal roughness and rut depth (Uddin et al. 1987; 

Hudson el al. 1987). Laser sensors, mostly used in the format terrestrial laser scanning 

(TLS), are suitable for measuring longitudinal roughness, skid resistance, faulting of 

transverse joints, potholes, rutting and shoving, and transverse cracks and macro-texture 
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(Hudson et al. 1987; Chang et al. 2005; Yu et al. 2007; Li et al. 2010; Peng and Zhou 

2011; Tsai et al. 2012).  

Although automated evaluation methods can collect detailed information quickly 

and safely, and technological advances in computer hardware and imaging recognition 

have improved the performance of the automated evaluation methods, serious problems 

still remain in the areas of implementation costs, processing speed, and accuracy (Wang 

2000). Automated methods require significant time to process data to extract useful 

information, since it requires very complicated analytical models and algorithms (Wang 

2000). These methods require substantial technical expertise and are expensive to deploy, 

requiring specially trained operators on a regular basis.  

It should be noted that most automated evaluation methods were developed first 

as semi-automatic systems to reach later automated ones (Gavilan et al. 2011). Semi-

automated evaluation uses the aforementioned sensors to collect pavement surface 

images and perform the distress identification to an off-line process running in 

workstations with a substantial level of human intervention (Gavilan et al. 2011). The 

identification of various types of distress and their associated severity and extent from 

images requires well-trained inspectors on a regular basis. Therefore, a limited number of 

transportation management agencies are using semi-automated survey systems that are 

post-processing based which requires substantial human intervention; and its processing 

speed is about fraction of normal driving speed (Wang and Gong 2002).  

In addition, data are collected on the ground as a single task and cannot be shared 

with other partner agencies to reduce the cost because a single image can only cover a 

small area which is usually less than five square meters (McGhee 2004). For example, the 
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Vermont Agency of Transportation (VAT) reported costs of up to $170 USD per mile in 

urban areas for automated evaluation methods (McGhee 2004). 

2.1.3.3 Aircraft-based Evaluation 

Aircraft-based evaluation is characterized by deploying cameras on aircraft to evaluate 

pavement surface distress through airborne observation. Evaluating pavement surface 

distress through aircraft is not a new idea, but is also not used for operational evaluation 

of pavement surface distress yet. The application of an aerial photography-based 

evaluation method to pavement surface distress was first explored in the 1950s.  

Several researchers (McMaster and Legault, 1952; Stoeckeler, 1968; Stoeckeler 

1970) focused on visually comparing analog panchromatic aerial photographs to 

determine pavement surface distress. They concluded that untreated cracks and other 

high-contrast pavement defects (e.g., patching and bleeding) can be identified through the 

visual analysis. Although they concluded that visual analysis of panchromatic analog 

aerial photography is a practical means of conducting pavement conditions surveys, it is 

not used for operational pavement surface distress evaluation. This is because cracks are 

distinguishable only in large scale (e.g., 1:100) analog panchromatic aerial photographs 

and the associated cost is extremely high. 

Along with the advances of geospatial technologies, high-spatial resolution digital 

aerial images can be routinely collected and provided to the public for free through 

governmental data repository such as United States Geological Survey (USGS) 

EarthExplorer. Recent advances in geospatial technologies, such as small-unmanned 

aircraft system (S-UAS) based hyper-spatial resolution imaging and automated aerial 

triangulation techniques, have enabled the collection of hyper-spatial resolution aerial 
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images at a low cost (Colomina and Molina 2014). These high-spatial and hyper-spatial 

resolution aerial images hold the potential to rapidly detect and assess pavement surface 

distress at a low cost because of its synoptic coverage (Jensen and Cowen 1999). 

However, previous studies regarding the application of high-spatial or hyper-

spatial resolution digital aerial images for pavement surface distress evaluation are very 

limited. To the author’s knowledge, the only published research on this topic was 

performed by Chen et al. (2010). This research demonstrates the potential of using high-

spatial resolution digital aerial images for assessing bridge deck pavement surface 

conditions, but not roadway pavement surface conditions. The lack of studies on this 

topic warrants further exploration and it is the motivation of this study. 

2.2 Geospatial Technology (GT) 

GT is commonly known as geomatics in the engineering field. GT refers to a system that 

is used to acquire, store, analyze, and visualize spatially referenced data (data that have a 

geographical or geospatial aspect) in two or three dimensions (Reed and Ritz 2004). It is 

a rapidly developing engineering discipline that focuses on using spatial information to 

support problem-solving (Gomarasca 2011).  

GT interacts with a broad range of disciplines, including technical and 

manufacturing, surveying and mapping, computer science, information science, and other 

specialized areas of application. In 2004, GT was identified as a rapidly expanding 

industry that crosscuts nearly every discipline, every aspect of life, and every sector of 

the U.S. economy (Gewin 2004). Bednarz et al. (2006) contended that the ability to use 

GT intelligently and critically is becoming a requirement for citizens to effectively 

participate in today’s modern society. Although GT’s use is well-known and widespread 
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in the military and in homeland security, its influence is pervasive everywhere, even in 

areas with a lower public profile, such as land resources management, flood plain 

mapping, and environmental protection (Cimons 2011). 

With the advances in hardware and software in the two decades, an increasingly 

wide range of geospatial tools, geospatial data and geospatial services have become 

available to a widening body of users (Van Manen et al. 2009; Nugent et al. 2010). 

Typically GT involves systems such as global navigation satellite systems (GNSS), 

geographic information systems (GIS), and remote sensing (RS).  

GT has been successfully applied in many fields, including emergency 

management, wildlife management, crop monitoring, forest management, hydrology, 

landscape and landcover monitoring, public health management, disaster susceptibility 

assessment, and earth observation (Kushwaha and Roy 2003; Delgado et al. 2004; 

Williams et al. 2006; Li et al. 2009; Dar et al. 2011; Lebourgeois et al. 2010; Safaei et al. 

2010; Imam 2011; Vu 2013). 

2.2.1 Global Navigation Satellite Systems 

The global navigation satellite systems (GNSS) are satellite-based technologies that 

provide precise location and time information in most weather condition, day or night, in 

most terrain condition where there is an unobstructed line of sight to four or more 

navigation satellites (Bolstad 2012). GNSS provides critical location information to 

military, civil, and commercial users around the world. 

The first non-military applications of GNSS have been made for geodetic 

purposes with baseline measurements using differential methods (Breuer et al. 2002). 
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Since then, GNSS have become the most common method for coordinate data collection. 

As of 2016 there are two functioning GNSS, and two more are under development. The 

Navigation System with Time and Ranging Global Positioning System (NAVSTAR 

GPS) was the first deployed GNSS and is the most widely used system. NAVSTAR has 

been under development in the U.S. since 1973 and is operated by the U.S. Department 

of Defense (Bolstad 2012). There is also an operational Russian system named 

GLONAS. China and European Union are in the process of expanding their respective 

system Compass and Galileo into global system by 2020 (Bolstad 2012). 

As the most widely used GNSS, GPS can represent all four systems in terms of 

application. GPS technology has been applied in many fields. The literature review of 

this section will focus on application of GPS in infrastructure management since the 

research topic of this study is roadway pavement surface distress evaluation which is a 

subtopic of infrastructure management.  

GPS has been used for high-rise building (and other long-period civil structures) 

structural health monitoring and displacement monitoring (Celebi 2000; Breuer et al. 

2002; Brownjohn 2007). Peyret et al. (2000) and Xu (2007) applied GPS in real-time 

construction equipment positioning to facilitate infrastructure construction process. 

Faghri and Hamad (2002) presented the application of GPS in collecting travel time, 

speed, and delay information of 64 major roads in the State of Delaware. Mintsis et al. 

(2004) presented a review of applying GPS in railroad planning, vehicle fleet 

management and monitoring, and transportation network mapping. Lu et al. (2008) 

applied GPS technology to build a mine-subsidence observation station to establish a 

reliable datum for displacement and deformation analysis. Janssen et al. (2011) applied 
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GPS in cadastral infrastructure management. Chen et al. (2012) used GPS in geospatial 

analysis of pavement evaluation and optimization of maintenance planning.   

2.2.2 Geographic Information Systems  

Geographic information systems (GIS) are computer-based systems to aid in the 

collection, maintenance, storage, analysis, output, and distribution of spatial data and 

information (Bolstad 2012). GIS have been developed since the early 1980s and were one 

of the fastest growing computer-based technologies of the 1990’s (Bolstad 2005; Thakur 

2012). In the last decade, uses of GIS have seen unprecedentedly growth, and have been 

used in a myriad of industries (e.g., construction and transportation) as analytical, 

managerial, and visualization tools (Migliaccio et al. 2015).  

The most important feature of GIS is that it can create a database to store spatially 

referenced features. This means that in GIS, a data layer can contain not only the location 

of a feature, but also specific attributes (e.g., population) which are related to the 

location. This enables users to not quantitatively analyze the attributes of a location.  

GIS has been widely and successfully used in almost every discipline since it is a 

ubiquitous tool (Bolstad 2012). Therefore, it is not possible to review all the literature. 

The literature review of this section (Section 2.2.2) is focused on the application of GIS 

in infrastructure management since the research topic of this study is roadway pavement 

surface distress evaluation which is a subtopic of infrastructure management.  

In the 1990s, researchers have started considering the potential of using GIS in 

transportation planning and infrastructure asset management (Petzold and Freund 1990; 

Lemer 1998). Leipmik et al. (1993) used GIS for water resources planning and 
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management. Zhang et al. (1994) applied GIS in designing a common location reference 

system to efficiently management pavement and infrastructure in urban areas. Ashur and 

Crockett (1997) applied GIS to analyze cost data and improve cost estimate for 

infrastructure construction and management through the use of geographic management. 

Halfawy et al. (2002) and developed an integrated component-based framework that can 

enable the implementation of knowledge-intensive GIS-based infrastructure management 

system. They also discussed its application in sustainable infrastructure asset 

management (Halfawy et al. 2004). She et al. (1999) used GIS to develop a bridge 

management system to model bridge management agencies’ business objectives, 

functions, and processes. Kulkarni and Miller (2003) discussed the key role of GIS in 

future pavement management systems. Li et al. (2013) used GIS in assessing 

environmental impact of construction project site. Zhang et al. (2014) used GIS to 

develop geographically based surface interpolation methods for adjusting construction 

cost estimates by project location. 

2.2.3 Remote Sensing 

Remote sensing (RS) is the acquisition of information about an object or phenomenon 

without making physical contact with the object (Schowengerdt 2006). In modern usage, 

RS generally refers to the use of remote sensors to detect, measure, and classify objects 

on Earth (i.e., surface, oceans, and atmosphere) thorough detecting and analyzing 

propagated signals (Zhang et al. 2015). These remote sensors can be on satellite or 

mounted to aircraft or even vehicles. 

There are two main types of remote sensing: passive remote sensing and active 

remote sensing (Liu and Mason 2009). Passive sensors can detect natural radiation that is 
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emitted or reflected by the object or surrounding areas (Schott 2007). Reflected sunlight 

is the most common source of radiation measured by passive sensors. Examples of 

passive sensors include analog cameras, digital cameras, and spectrometers. Active 

sensors, on the contrary, emit energy to scan objects and areas whereupon a sensor then 

detects and measures the radiation that is reflected or backscattered from the target. Radio 

detection and ranging (RADAR) and light detection and ranging (LiDAR) are examples 

of active sensors where the time delay between emission and return is measured, 

establishing the location, speed and direction of an object (Liu and Mason 2009). 

Two common data formats for passive sensors are aerial photography and satellite 

imagery. Aerial photography is the collecting of ground photographs from an elevated 

position (Jensen 2007). An elevated position indicates the photographs are collected 

above the ground (in the air) but not from a ground-based structure (e.g., power pole). 

Cameras may be hand held or mounted, and photographs may be taken by a 

photographer, triggered remotely or triggered automatically (Graham and Roger 1987). 

Platforms for collecting aerial photography include manned aircraft (both fixed-wing and 

helicopters), unmanned aircraft systems (UAS), balloons or kites, blimps and dirigibles, 

rockets, parachutes, stand-alone telescoping, and vehicle mounted poles (Jensen 2007). 

Satellite imagery consists of imagery of Earth or other planets made by means of artificial 

satellites. Aerial photography and satellite images have many applications in 

meteorology, agriculture, geology, forestry, landscape, biodiversity conservation, 

regional planning, education, intelligence and warfare. Images can be in visible colors 

and in multispectral or hyperspectral (Li et al. 2009). 



26 
 

Remote sensing has been successfully applied in many fields. The literature 

review of this section (Section 2.2.3) is focused on application of remote sensing in 

infrastructure management since the research topic of this study is roadway pavement 

surface distress evaluation which is a subtopic of infrastructure management.  

Some researchers discussed the potential of using imaging spectrometers and 

hyperspectral imaging to map pavement age and condition (Usher and Truax 2001; 

Gomez 2002; Herold et al. 2004).  Some researcher explored the utility of SAR imagery 

(either airborne or spaceborne) for detecting damaged building due to earthquakes 

(Matsuoka and Yamazaki 2004; Chini et al. 2009; Balz and Liao 2010). Turker and 

Cetinkaya (2005) proposed a method to automatically detect the earthquake-damaged 

buildings through the use of digital elevation models (DEMs) created from pre- and post-

earthquake stereo panchromatic aerial photographs. Herold and Roberts (2005) applied 

remote sensing techniques to study the spectral characteristics of asphalt road aging and 

deterioration based on aerial photographs. Yamazaki et al. (2005) proposed a method of 

detecting earthquake-induced collapsed buildings by visually observing the satellite 

images from QuickBird. Rehor and Bahr (2007) developed a method to detect building 

damages caused by earthquakes through the use of LiDAR data. Samadzadegan and 

Rastiveisi (2008) established an approach to automatically detect and classify the 

damaged buildings caused by earthquakes by using high resolution satellite imagery and 

vector data. Rezaeian and Gruen (2011) presented an innovative approach based on 

Bayesian networks to automatically extract the 3D buildings using aerial and space 

images. With this proposed method, the height change of the buildings can be detected 

which can be used for macro-seismic damage assessment in urban areas. 
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2.3 Gaps in Knowledge 

As mentioned in the previous section, GT is the ideal tool to effectively collect and 

analyze pavement surface distress data since roadway infrastructure is fundamentally 

spatial (roadways are spatially and extensively distributed). Literature review revealed 

that three prevalent GT, including HiSR-DAP acquired by high-spatial resolution aerial 

imaging technique, HySR-DAP acquired by S-UAS based hyper-spatial resolution 

imaging technique, and geospatial modeling technique, hold the potential to evaluate 

pavement surface distress conditions. 

However, based on the review of literature, the use of these three GT for 

pavement surface distress condition assessment is lacking and presents a significance gap 

in the research. Specifically, previous studies regarding the application of HiSR-DAP for 

pavement surface distress evaluation are very limited. To the author’s knowledge, the 

only published research on this topic was performed by Chen et al. (2010); they 

investigated the potential of using HiSR-DAP for assessing bridge deck (not roadway) 

pavement surface conditions by visually analyzing the digitized distresses, which is 

labor-intensive and time-consuming. Previous studies on the application of HySR-DAP 

and geospatial modeling technique for pavement surface distress evaluation are 

completely lacking. To the author’s knowledge, there is no published research on this 

topic. The lack of studies on this topic warrants further in-depth exploration. 

The primary scope of this research is to evaluate the potential of the three 

aforementioned GT to improve the efficiency of pavement surface distress evaluation, 

including empirical analysis HiSR-DAP and HySR-DAP, and inferential geospatial 

modeling based on traffic volume, environmental conditions, and topographic factors. 
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Chapter 3 Extracting Pavement Surface Distress Conditions Based on 

High-Spatial Resolution Natural Color Digital Aerial Photography 

(HiSR-DAP) 

3.1 Introduction  

Pavement surface distress information is essential to pavement management. Pavement 

management activities and decisions at all levels (i.e., federal, state, and local) are 

supported by pavement surface condition information of varying detail (Haas et al., 

1994). Pavement surface distress evaluation can lead to not only effective allocation of 

limited resources for timely maintenance and repair (Haas et al. 1994; Hudson and Uddin 

1987), but also measurement of the effectiveness of various maintenance techniques and 

repair methods (Hudson et al. 1987; Hudson and Uddin 1987).  

Currently, most transportation agencies use either manual evaluation or automated 

evaluation to collect data solely for the purpose of pavement surface distress evaluation at 

significant expense (McGhee 2004). This study therefore explores the utility of routinely-

acquired and publically-available high-spatial resolution visible range digital aerial 

photography (HiSR-DAP) to supplement or replace dedicated surveys of pavement 

surface condition. Many counties and municipalities routinely acquire HiSR-DAP and 

most make these images freely available to the public. These photos cover all ground 

features including roadways, meaning they contain information that may permit 

discrimination of pavement surface distress. Modern aerial photographs are in digital 

format, which means they can be readily shared with partner agencies and analyzed to 

produce standardized results through image processing techniques. The availability of 
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these images offers the potential of using routinely-collected and publically-available 

data for standardized evaluation of pavement surface distress, reducing the evaluation 

cost and time while improving the comparability of results.  

There are many programs to routinely collect HiSR-DAP. For example, with the 

support of the National Agricultural Imagery Program (NAIP), the U.S. Geological 

Survey (USGS) and the U.S. Department of Agriculture (USDA) regularly acquire digital 

color-infrared, ortho-corrected aerial photography which covers all states at 1 m spatial 

resolution, and they provide the data to the public for free. Many counties and cities now 

routinely acquire natural color 6-inch (0.1524 m) and even 3-inch (0.0762 m) spatial 

resolution, ortho-corrected aerial photos. In addition, some states have initiated the 

program to regularly acquire statewide aerial photos. For example, the State of Missouri 

images the entire state regularly with 2 ft (0.6096 m) spatial resolution multispectral 

digital aerial photographs (Wright 2014). It would not be hard to imagine more states to 

moving to do so because the uses for these data continue to expand. 

Past and current research for pavement surface distress evaluation has focused on 

the detection of individual distresses (e.g., an individual crack). This information is 

commonly aggregated to determine the overall level of pavement surface distress, which 

is then used by transportation agencies for planning and maintenance purposes. As to 

aircraft-based pavement surface distress evaluation, cracks are only distinguishable in 

large-scale (e.g. 1: 100) aerial photographs (Stoeckeler 1970). A key limitation of the 

routinely collected and publicly available HiSR-DAP is that its spatial resolution is too 

coarse to enable the detection and quantification of individual distresses. As a result, this 

research does not focus on assessing individual distresses, but rather, on estimating the 
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overall condition by analyzing the brightness and variation of resolution cells. 

Specifically, the research presented here is focused on analyzing HiSR-DAP to determine 

overall pavement surface distress rates through pixel-based spectral response assuming an 

L-resolution scene model (Strahler et al. 1986).  

This research explores the utility of routinely-acquired and publically-available 

HiSR-DAP for the evaluation of overall pavement surface distress. Specifically, the 

intent of this study is to examine how well overall pavement surface distress can be 

estimated from HiSR-DAP. Principal components analysis (PCA) and linear least squares 

regression models were used to evaluate the potential of using HiSR-DAP to infer 

pavement surface distress. 

3.2 Methodology 

PCA and multiple linear least square regression models were used to model the 

relationship between the dependent variable of overall distress rate (ODR) and 

explanatory variables extracted from the spectral response of the HSR multispectral 

digital aerial photography. The ultimate goal is to be able to predict the ODR for roadway 

segments for which ODR ground reference values are unavailable.  

3.2.1 Data Acquisition and Preparation 

The study area for this research encompasses six counties in northern New Mexico, 

including Bernalillo, Cibola, Sandoval, Santa Fe, Torrance, and Valencia. These counties 

are located around the City of Albuquerque and are covered by all of the existing high-

spatial resolution (HiSR) multispectral digital aerial photographs with various spatial 

resolutions obtained from 2004 to 2012. Within the study area, 50 data collections sites 
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were identified for use in this study. Each data collection site covers the rightmost lane 

with a length of one tenth of a mile. These sites were selected because they belong to a 

set of pavement sections regularly evaluated as part of the New Mexico Department of 

Transportation (NMDOT) pavement evaluation program. 

The road segments of these 50 study sites were visually evaluated in reference to 

the available HiSR natural color digital aerial photographs to ensure they were covered 

by aerial photographs and there are no large obstacles (e.g. bridges and overpasses) above 

them. A geographic information system (GIS) database provides the roadway number, 

milepost number, and direction for each study site.  

Reference pavement surface condition data for the study sites were acquired from 

records of manual pavement evaluations conducted for NMDOT during the summer of 

2009 (Cordova et al. 2009). All of the study sites were constrained to flexible, asphalt 

concrete (AC) pavements. For flexible pavements, when not including rutting and 

showing distresses, the NMDOT evaluates severity and extent of the following seven 

distresses on a scale of 0 – 3 (0=Not Present, 1=Low, 2=Medium, and 3=High): 1) 

Raveling & Weathering; 2) Bleeding; 3) Longitudinal Cracking; 4) Transverse Cracking; 

5) Alligator Cracking; 6) Edge Cracking; and 7) Patching. It should be noted that the 

listed distresses are all horizontal distress, and they do not reflect distresses in elevation 

such as rutting and shoving. This makes the use of HiSR natural digital aerial 

photographs to detect pavement surface overall distress rate (ODR) possible since 

elevation information cannot be found in a typical aerial photograph (the exception being 

stereoscopic aerial photographs). 

Each study site’s ODR can be calculated based on the following equation: 
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            𝑂𝐷𝑅 =  ∑ (𝛼𝑖  ×  𝛽𝑖  ×  𝛾𝑖)
7
𝑖=1   (1) 

Where i represents each of the seven distresses,  𝛼 denotes the severity rating, 𝛽 

denotes the extent rating, and 𝛾 denotes the weighting factor. The weighting factors for 

the distresses have been provided by NMDOT and are 3, 2, 12, 12, 25, 3, and 2, 

respectively, for each of the seven distresses. The calculated ODR for each of the 50 

study sites ranges from 0 to 477. The lower the ODR value, the better the pavement 

surface condition. The maximum possible value is 504, while the minimum possible 

value is 0. ODR can be easily converted to Present Serviceability Index (PSI), which is 

broadly used by various transportation agencies (Bandini et al. 2012). Different agencies 

can develop and establish their own models to infer the overall pavement surface 

conditions, no matter what particular metric they are using. 

One set of archived and readily available ortho-corrected HiSR natural color 

digital aerial photographs with a spatial resolution of 6-inch (0.1524 m) were obtained 

from the Earth Data Analysis Center (EDAC) at the University of New Mexico. The 

aerial photographs are natural color digital aerial photography that records energy in the 

region from 0.4 µm to 0.7 µm and they have three spectral bands which include visible 

blue (0.4 to 0.5 µm), visible green (0.5 to 0.6 µm) and visible red (0.6 to 0.7 µm) (Jensen 

2007). These images are in 8-bit data format and are the actual digital numbers recorded. 

In addition, these aerial photographs are routinely (every the other year) collected with 

the Zeiss/Intergraph Digital Mapping Camera (DMC) System by the Mid-Region Council 

of Governments (MRCOG) contracted to Bohannan-Huston, Inc.  

The aerial photographs were taken in March-April 2010 and were matched with 

the manually-collected pavement condition data collected in May-August 2009. This was 
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the closest time match between the aerial photographs and the pavement condition data 

available. According to the Federal Highway Administration (FHWA), it is 

approximately a 15-year process for pavement surface condition to drop 50% in quality 

(Lenz 2011). Because the time elapsed between the pavement condition data collection 

and aerial photographs collection was less than a year (approximately 6 months), the 

assumption is that no significant change occurred at the study site.  

3.2.2 Image Processing 

3.2.2.1 Image Aggregation 

Data on actual pavement surface distress conditions were collected on short sections (0.1-

mile [161-m]) of pavement located at specific mileposts. In order to identify the 

evaluation zone of each study site on the aerial photographs, a buffer of 0.1-mile was 

created around each individual study site’s milepost in the aerial photographs. After 

creating the buffers, the evaluation zone of several study sites could not be completely 

covered by a single 6-inch image, because the aerial photographs were divided into tiles 

to reduce the storage size. In this case, two or more photographs were needed. When 

multiple photographs were used for a single milepost, it was necessary to create a mosaic 

of the aerial photographs. These images were mosaicked based on standard overlay-based 

algorithm and average blending mode. 

3.2.2.2 Evaluation Polygon Creation 

Pavement surface distress conditions are only evaluated within a portion of the roadway. 

According to the protocol for manual evaluation employed by NMDOT (Cordova et al., 

2009), pavement surface distress data were collected only in the rightmost driving lane 
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and never in passing lanes, turning lanes, or on the shoulder. For two-lane roadways (one 

driving lane in each direction), data were collected only in the positive direction (north 

and/or east) from a given milepost to a distance of 0.1-mile. For multi-lane roadways 

(two or more driving lanes in each direction), data were collected in both the positive and 

negative directions (north-south and/or east-west) at a given milepost. In the positive 

direction the pavement evaluation was conducted from a given milepost to a distance of 

0.1-mile, while in the negative direction the evaluation was conducted from 0.1-mile 

prior to the given milepost. This ensured that the pavement sections evaluated at the 

given milepost were parallel and aligned to each other (Appendix E).  

To ensure alignment between the data collection zones, polygons were created to 

represent the highway zones used in manual evaluation, and from here on referred to as 

“evaluation polygons”. These evaluation polygons were created by heads up digitizing 

over the 6-inch aerial photographs following the protocol mentioned above. It should be 

noted that these manually created polygons only cover the pavement surface and the 

polygon creation process does not involve any removal of the non-road surface elements 

(e.g., vegetation). Therefore, there is no classification involved in the analysis. In 

addition, there are thousands of pixel cells in each evaluation polygon and therefore, 

results are not likely sensitive to omission or commission errors of one or several pixels 

during the digitizing of evaluation polygons. 

When creating the evaluation polygons, six types of features on the ground were 

excluded since they are considered to be noise. These features are center lines, solid 

white shoulder stripes, other pavement markings, overpasses, power pole shadows, and 

vehicles. Figure 5 illustrates the excluded features mentioned above.  
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3.2.2.3 Image Degradation 

Most counties and municipalities routinely collect HSR multispectral digital aerial 

photography. The spatial resolution of most of these images is between 6-inch and 1 m 

(40 in). In order to examine how well overall pavement surface distress can be estimated 

from routinely collected HSR multispectral digital aerial photography, the set of 6-inch 

aerial photography was degraded to 12-inch (0.3048 m) and 24-inch (0.6096 m) aerial 

photography. This set of 6-inch aerial photography was not degraded to 1 m because 

previous research completed by Zhang and Bogus (2014) showed that 1 m natural color 

digital aerial photography lacks the spatial resolution to detect overall pavement distress 

conditions effectively. 

 

Figure 5. Exclusion of unwanted features on the images. 
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3.2.2.4 Spectral Response Extraction 

Only the data within the evaluation polygons are comparable to known ODR rates. Once 

evaluation polygons were digitized to correspond to the collected reference or actual 

ODR data, statistics (e.g. mean, median, standard deviation, variety, majority, minority, 

maximum, minimum, range, and sum) summarizing the pixel values contained within 

those evaluation polygons were extracted for each resolution.  

3.2.3 Multiple Linear Least Squares Regression Analysis 

3.2.3.1 Variables 

The dependent variable, or response variable, used in this study is the ODR described in 

the previous section. ODR was calculated for the field pavement surface distress data 

collected through manual inspection.  

Selecting the most appropriate independent variables from the statistics 

mentioned in the previous section is necessary for building the regression model. 

According to Herold (2007), the mean value of the spectral response of the visible 

wavelengths has a significant negative relationship with ODR. The higher the mean 

brightness is (higher mean brightness value), the better the pavement surface condition is 

(lower ODR value). Pavement surface distresses (e.g., cracks) expose deeper layers of the 

pavement with higher contents of the original asphalt mix, which is then manifested in 

increased hydrocarbon absorptions features (Herold 2007). Therefore, degraded 

pavement surfaces cause less reflectance with increasing hydrocarbon features, while less 

degraded pavement surfaces get brighter with decreasing hydrocarbon features. Also, 

shadows induced by cracks decrease brightness.  
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In this research context, image texture, which is a first order derivative measure of 

variation in brightness values, may also be a significant variable. Theoretically, the worse 

the pavement surface condition is, the more heterogeneity of brightness values should be 

exhibited, due to the introduction of shadows associated with cracks and deformations 

and exposure of pavement aggregate (i.e., gravels). For example, a very good condition 

pavement section may have a standard deviation value of 4, while a poor one may have 

standard deviation value of 100. Pearson’s correlation analyses were performed on a 

variety of texture measures and it revealed that other texture measures including range 

and variety have a strong correlation with standard deviation and therefore, only standard 

deviation was selected as the texture measure. Table 1 shows the Pearson’s correlation 

results. 

For each image dataset, (6-inch, 12-inch, and 24-inch digital aerial photographs), 

mean and standard deviation values of each band (visible blue, visible green, and visible 

red) were selected as independent variables, resulting in a total of six variables. Pearson’s 

correlation analyses were performed to examine if there is correlation among these six 

variables. The results in Table 2 show that in each dataset these six variables have 

significant correlation with ODR. However, there is also significant correlation among 

these six variables, which violates the assumption of variable independence by linear 

least squares regression.  

PCA was used on mean and standard deviation values of each band of the three 

datasets to eliminate the correlation among the six variables (Pearson 1901). These 

principal components were used as independent variables for the various linear regression 
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models described below. Table 3 shows the resultant loadings for each principal 

component obtained from the PCA.   

Table 1. Pearson Correlation Results of Texture Measurement of the 6-Inch, 12-Inch, and 

24-Inch Natural Color Digital Aerial Photography 

Dataset Variables R1 STD1 V1 R2 STD2 V2 R3 STD3 V3 

 6-inch 

R1 1.0000         

STD1 0.8738 1.0000        

V1 0.9790 0.9222 1.0000       

R2 0.9952 0.8809 0.9816 1.0000      

STD2 0.8746 0.9977 0.9234 0.8823 1.0000     

V2 0.9729 0.9267 0.9969 0.9805 0.9300 1.0000    

R3 0.9869 0.8491 0.9720 0.9876 0.8536 0.9691 1.0000   

STD3 0.8877 0.9888 0.9362 0.8954 0.9926 0.9417 0.8784 1.0000  

V3 0.9669 0.8938 0.9884 0.9711 0.8999 0.9891 0.9795 0.9247 1.0000 

 12-inch 

R1 1.0000         

STD1 0.7680 1.0000        

V1 0.9001 0.9403 1.0000       

R2 0.9949 0.7697 0.9007 1.0000      

STD2 0.7676 0.9972 0.9411 0.7733 1.0000     

V2 0.8995 0.9342 0.9961 0.9061 0.9395 1.0000    

R3 0.9814 0.7474 0.8900 0.9898 0.7541 0.8971 1.0000   

STD3 0.7709 0.9874 0.9466 0.7783 0.9919 0.9450 0.7720 1.0000  

V3 0.8831 0.9117 0.9861 0.8924 0.9197 0.9901 0.8998 0.9400 1.0000 

 24-inch 

R1 1.0000         

STD1 0.8041 1.0000        

V1 0.8915 0.9559 1.0000       

R2 0.9956 0.7996 0.8826 1.0000      

STD2 0.8034 0.9962 0.9514 0.8043 1.0000     

V2 0.8857 0.9518 0.9930 0.8837 0.9535 1.0000    

R3 0.9742 0.7631 0.8535 0.9845 0.7744 0.8585 1.0000   

STD3 0.7977 0.9830 0.9451 0.8017 0.9906 0.9495 0.7900 1.0000  

V3 0.8695 0.9302 0.9780 0.8722 0.9368 0.9843 0.8731 0.9518 1.0000 

Note: 1 indicates the visible red band; 2 indicates the visible green band; 3 indicates the visible blue band; 

R indicates range, STD indicates standard deviation, and V indicates variety. 
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Table 2. Pearson Correlation Results of the Mean Value and Standard Deviation Value of 

the 6-Inch, 12-Inch, and 24-Inch Natural Color Digital Aerial Photography 

Dataset Variables ODR M1 STD1 M2 STD2 M3 STD3 

6-inch 

ODR 1.0000       

M1
 

-0.9586 1.0000      

STD1 0.9043 -0.8938 1.0000     

M2
 

-0.9512 0.9958 -0.8781 1.0000    

STD2 0.9075 -0.9016 0.9987 -0.8871 1.0000   

M3
 

-0.9333 0.9859 -0.8456 0.9922 -0.8565 1.0000  

STD3 0.9263 -0.9148 0.9926 -0.9020 0.9953 -0.8764 1.0000 

12-inch 

ODR 1.0000       

M1 -0.7337 1.0000      

STD1 0.8245 -0.6640 1.0000     

M2 -0.6993 0.9904 -0.6423 1.0000    

STD2 0.8243 -0.6766 0.9977 -0.6575 1.0000   

M3 -0.6832 0.9699 -0.6192 0.9881 -0.6390 1.0000  

STD3 0.8379 -0.6665 0.9892 -0.6518 0.9935 -0.6420 1.0000 

24-inch 

ODR 1.0000       

M1 -0.7246 1.0000      

STD1 0.5457 -0.5072 1.0000     

M2 -0.7220 0.9863 -0.4397 1.0000    

STD2 0.5718 -0.5323 0.9977 -0.4669 1.0000   

M3 -0.7030 0.9455 -0.3497 0.9833 -0.3793 1.0000  

STD3 0.6022 -0.5236 0.9868 -0.4550 0.9923 -0.3657 1.0000 

Note: 1 indicates the visible red band; 2 indicates the visible green band; 3 indicates the visible blue band; 

M indicates mean; STD indicates standard deviation; and ODR indicates overall distress rate. 

 

 

 



40 
 

Table 3. PCA Loadings of the Three Sets of Natural Color Digital Aerial Photography 

Datasets 
Input 

Features 
PC M1 STD1 M2 STD2 M3 STD3 Proportion 

 6-inch 

 

M1, STD1, 
M2, STD2, 

M3, STD3 

 

PCA1 -0.4121 0.4061 -0.4094 0.4083 -0.4022 0.4113 0.9399 
PCA2 0.3313 0.4472 0.3926 0.4162 0.4914 0.3485 0.0568 

PCA3 0.5719 -0.2041 0.2226 -0.0448 -0.6363 0.4182 0.0019 

PCA4 -0.3650 -0.4431 0.0641 -0.2602 0.3184 0.7052 0.0008 
PCA5 0.5072 -0.1174 -0.7890 0.0057 0.3005 0.1269 0.0005 

PCA6 -0.0545 -0.6191 0.0455 0.7684 0.0160 -0.1451 0.0002 

M3, STD3 
PCB1 N/A N/A N/A N/A -0.7071 0.7071 0.9382 
PCB2 N/A N/A N/A N/A 0.7071 0.7071 0.0618 

M2, STD2 
PCG1 N/A N/A -0.7071 0.7071 N/A N/A 0.9435 

PCG2 N/A N/A 0.7071 0.7071 N/A N/A 0.0565 

M1, STD1 
PCR1 -0.7071 0.7071 N/A N/A N/A N/A 0.9469 
PCR2 0.7071 0.7071 N/A N/A N/A N/A 0.0531 

M1, M2, M3 

PCS1 0.5772 N/A 0.5784 N/A 0.5319 N/A 0.9942 

PCS2 -0.6196 N/A -0.1496 N/A 0.7705 N/A 0.0048 

PCS3 0.5319 N/A -0.8019 N/A 0.2721 N/A 0.0010 

STD1, 
STD2, STD3 

PCT1 N/A 0.5774 N/A 0.5779 N/A 0.5767 0.9970 

PCT2 N/A -0.5557 N/A -0.2393 N/A 0.7962 0.0027 

PCT3 N/A 0.5981 N/A -0.7802 N/A 0.1830 0.0003 

 

12-inch 

 

M1, STD1, 
M2, STD2, 

M3, STD3 
 

PCA1 -0.4112 0.4071 -0.4081 0.4114 -0.4021 0.4096 0.8216 
PCA2 0.3849 0.4181 0.4149 0.4005 0.4278 0.4018 0.1707 

PCA3 0.6219 -0.2356 0.0703 -0.0560 -0.6608 0.3361 0.0056 
PCA4 0.4253 0.4615 -0.2630 0.2295 -0.1566 -0.6780 0.0012 

PCA5 0.3392 -0.1144 -0.7630 -0.1575 0.4333 0.2776 0.0006 

PCA6 0.0073 -0.6147 -0.0705 0.7679 0.0797 -0.1449 0.0002 

M3, STD3 
PCB1 N/A N/A N/A N/A -0.7071 0.7071 0.8287 
PCB2 N/A N/A N/A N/A 0.7071 0.7071 0.1713 

M2, STD2 
PCG1 N/A N/A -0.7071 0.7071 N/A N/A 0.8210 

PCG2 N/A N/A 0.7071 0.7071 N/A N/A 0.1790 

M1, STD1 
PCR1 -0.7071 0.7071 N/A N/A N/A N/A 0.8320 
PCR2 0.7071 0.7071 N/A N/A N/A N/A 0.1680 

M1, M2, M3 

PCS1 0.5763 N/A 0.5759 N/A 0.5799 N/A 0.9885 

PCS2 -0.6850 N/A 0.7273 N/A -0.0415 N/A 0.0101 
PCS3 0.4457 N/A 0.3733 N/A -0.8137 N/A 0.0014 

STD1, 
STD2, STD3 

PCT1 N/A 0.5573 N/A -0.5776 N/A 0.5771 0.9956 

PCT2 N/A 0.5765 N/A 0.7889 N/A 0.2128 0.0038 

PCT3 N/A 0.5782 N/A -0.2098 N/A -0.7885 0.0005 

 24-inch 

 
M1, STD1, 

M2, STD2, 

M3, STD3 
 

PCA1 -0.4248 0.4077 -0.4088 0.4159 -0.3792 0.4117 0.7181 

PCA2 0.3518 0.4129 0.4127 0.3934 0.4701 0.3995 0.2726 

PCA3 0.7108 0.0589 0.0464 0.0942 -0.6929 -0.0122 0.0065 
PCA4 0.0234 -0.5681 0.0526 -0.2084 -0.0630 0.7916 0.0023 

PCA5 0.4357 0.0142 -0.8087 -0.0758 0.3827 0.0615 0.0003 

PCA6 0.0118 -0.5804 -0.0601 0.7837 0.0687 -0.2011 0.0002 

M3, STD3 
PCB1 N/A N/A N/A N/A -0.7071 0.7071 0.7536 
PCB2 N/A N/A N/A N/A 0.7071 0.7071 0.2464 

M2, STD2 
PCG1 N/A N/A -0.7071 0.7071 N/A N/A 0.7334 

PCG2 N/A N/A 0.7071 0.7071 N/A N/A 0.2666 

M1, STD1 
PCR1 -0.7071 0.7071 N/A N/A N/A N/A 0.6829 

PCR2 0.7071 0.7071 N/A N/A N/A N/A 0.3171 

M1, M2, M3 

PCS1 0.5745 N/A 0.5825 N/A 0.5751 N/A 0.9812 

PCS2 0.7206 N/A -0.0266 N/A -0.6929 N/A 0.0182 
PCS3 0.3883 N/A -0.8124 N/A 0.4350 N/A 0.0007 

STD1, 
STD2, STD3 

PCT1 N/A 0.5763 N/A 0.5784 N/A 0.5773 0.9949 

PCT2 N/A 0.7890 N/A -0.2098 N/A -0.5774 0.0047 

PCT3 N/A 0.2129 N/A -0.7883 N/A 0.5773 0.0005 

Note: PC indicates principal components; PCA1 – PCA6 indicate the six principal components extracted from the mean and standard 

deviation values of each of the three visible bands; PCB1 – PCB2 indicate the two principal components extracted from the mean and 

standard deviation values of the visible blue band; PCG1 – PCG2 indicate the two principal components extracted from the mean and 

standard deviation values of the visible green band; PCR1 – PCR2 indicate the two principal components extracted from the mean and 

standard deviation values of the visible red band; PCS1 – PCS3 indicate the three principal components extracted from the mean values 

of each of the three visible bands; and PCT1 – PCT3 indicate the three principal components extracted from the standard deviation value 

of each of the three visible bands.  
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3.2.3.2 Linear Regression 

Various multiple linear least squares regression models were built based on reference 

pavement surface ODR data and the principal components extracted from the 6-inch, 12-

inch, and 24-inch multispectral digital aerial photographs. The ultimate goal is the 

identification of the regression model with the highest correlation to predict pavement 

surface ODR values. 

The regression model that uses six principal components obtained from all three 

visible bands, Model 1 in Table 4, can be expressed as the following (Equation 2): 

𝑂𝐷𝑅 = 𝛽0 +  𝛽1𝑃𝐶𝐴1 +  𝛽2𝑃𝐶𝐴2 +  𝛽3𝑃𝐶𝐴3 +  𝛽4𝑃𝐶𝐴4 + 𝛽5𝑃𝐶𝐴5 + 𝛽6𝑃𝐶𝐴6  (2) 

Where β0 represents the intercept parameter, PCA1 to PCA6 represent the six principal 

components derived from mean and standard deviation of each band, and β1 to β6  

represent the corresponding coefficients. 

As shown in Table 3, PCA1 and PCA2 collectively contain more than 99% of the 

information contained in the aerial imagery. In order to test the significance of the rest 

principal components (PCA3 to PCA6), the first two principal components (PCA1 and PCA2) 

were considered as a break point and PCA3 to PCA6 were removed from the linear 

regression, resulting in Model 2 (or Equation 3):  

𝑂𝐷𝑅 = 𝛽0 +  𝛽1𝑃𝐶𝐴1 +  𝛽2𝑃𝐶𝐴2  (3) 

To analyze which spectral band (visible blue, visible green, and visible red) 

contributes more or is more significant to the prediction of ODR, three linear regression 

models were created (Models 3 to 5, or Equations 4 to 6) and they are: 

𝑂𝐷𝑅 = 𝛽𝐵0 +  𝛽𝐵1𝑃𝐶𝐵1 +  𝛽𝐵2𝑃𝐶𝐵2  (4) 

𝑂𝐷𝑅 = 𝛽𝐺0 +  𝛽𝐺1𝑃𝐶𝐺1 +  𝛽𝐺2𝑃𝐶𝐺2  (5) 
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𝑂𝐷𝑅 = 𝛽𝑅0 +  𝛽𝑅1𝑃𝐶𝑅1 + 𝛽𝑅2𝑃𝐶𝑅2  (6) 

PCB1 to PCB2, PCG1 to PCG2, and PCR1 to PCR2 represent the two principal 

components extracted from the mean values and standard deviation values of the visible 

blue band, visible green band, and visible red band, respectively. βB1 to βB2, βG1 to βG2, 

and βR1 to βR2 represent the corresponding coefficients. βB0, βG0, and βR0 represent the 

corresponding intercept parameters.  

Models 6 and 7 (or Equations 7 to 8) analyze which feature combination (i.e. 

spectral features [mean values] vs. texture features [standard deviation values]) 

contributes more to the ODR prediction capability, and these two models are: 

𝑂𝐷𝑅 = 𝛽𝑆0 +  𝛽𝑆1𝑃𝐶𝑆1 +  𝛽𝑆2𝑃𝐶𝑆2 +  𝛽𝑆3𝑃𝐶𝑆3      (7) 

𝑂𝐷𝑅 = 𝛽𝑇0 +  𝛽𝑇1𝑃𝐶𝑇1 +  𝛽𝑇2𝑃𝐶𝑇2 +  𝛽𝑇3𝑃𝐶𝑇3   (8) 

PCS1 to PCS3 indicate the three principal components derived from the mean 

values of each of the three visible bands, and βS1 to βS3 represent corresponding 

coefficients. PCT1 to PCT3 indicate the three principal components extracted from the 

standard deviation value of each of the three visible bands, and βT1 to βT3 represent 

corresponding coefficients. βS0 and βT0 represent the intercept parameters. 

3.2.3.3 Validation 

In order to test the validity and robustness of the method for predicting ODR 

operationally, we held out 25 of the sites from the identified regression model with the 

highest certainty described in the previous section. Among the 50 study sites, 25 of them 

were selected using a random sample stratified by distress rate and used to develop the 

regression models while the other 25 were used to validate the predicted ODR values by 

root mean squared error (RMSE), mean absolute error, and standard error.  
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3.3 Results and Discussion 

Table 4 shows the linear regression results using all six principal components (PCA1 to 

PCA6) and by using only two principal components (PCA1 and PCA2). It revealed that 

removing PCA3 to PCA6 decreased the R-squared value and increased the RMSE for all 

three datasets. It proved that PCA3 to PCA6 are useful components despite containing less 

than 1% of the original information. This suggests that all six principal components 

should be used for operational inference of ODR. 

Table 4. Model Fit for Prediction of ODR Values 

Dataset 

(Size: 50) 

Model  

# 
Var. Coef. 

Standard 

Error 
p-value R2 

Adjusted 

R2 
RMSE Prob > F 

 6-inch 

Model 

1 

PCA1 41.08 1.45 <0.0001* 

0.9507 0.9439 24.087 <0.0001* 

PCA2 -13.32 5.89 0.029* 

PCA3 -35.14 32.42 0.284 

PCA4 167.81 48.97 0.001* 

PCA5 15.06 64.32 0.816 

PCA6 -319.63 112.31 0.007* 

Intercept 135.36 3.41 <0.0001* 

Model 

2 

PCA1 41.08 1.69 <0.0001* 

0.9266 0.9235 28.123 <0.0001* PCA2 -13.32 6.88 0.059 

Intercept 135.36 3.98 <0.0001* 

 12-inch 

Model 

1 

PCA1 38.68 2.95 <0.0001* 

0.8208 0.7958 45.843 <0.0001* 

PCA2 14.54 6.47 0.030* 

PCA3 -38.51 35.68 0.286 

PCA4 -270.99 76.67 0.001* 

PCA5 -77.86 106.69 0.469 

PCA6 -420.17 175.41 0.021* 

 Intercept 125.12 6.48 <0.0001* 

Model 

2 

PCA1 38.68 3.41 <0.0001* 

0.7378 0.7266 53.045 <0.0001* PCA2 14.54 7.49 0.058 

Intercept 125.12 7.50 <0.0001* 

 24-inch 

Model 

1 

PCA1 37.15 3.97 <0.0001* 

0.7167 0.6771 57.645 <0.0001* 

PCA2 -11.95 6.44 0.070 

PCA3 44.86 41.66 0.288 

PCA4 269.66 69.96 <0.0001* 

PCA5 31.45 186.91 0.867 

PCA6 -337.52 266.20 0.212 

 Intercept 125.12 8.15 <0.0001* 

Model 

2 

PCA1 37.15 4.51 <0.0001* 

0.6004 0.5834 65.484 <0.0001* PCA2 -11.95 7.31 0.109 

Intercept 125.12 9.26 <0.0001* 

Note: Var. indicates Variables; Coef. indicates Coefficient; PCA1 to PCA6 indicate the six principal 

components extracted from the mean and standard deviation values of each of the three visible bands; 

RMSE indicates root mean squared error; and * indicates the independent variable is significant at p = 0.05 

level. 
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Table 4 and Figure 6 show the model fit results (sample size = 50) of the 6-inch, 

12-inch, and 24-inch models when using all six principal components. The 6-inch linear 

regression model is valid at a 95% confidence interval (the joint p-value (Prob > F) is less 

than 0.001). The adjusted R-squared value is 0.9439 and the RMSE is 24.087. This error 

number is acceptable since the ODR assessed by manual evaluation can exhibit an error 

of up to 84 or up to 50% in terms of variability (Bogus et al., 2010). This implies that 

natural color aerial photographs with 6-inch spatial resolution can be used to assess and 

predict overall pavement surface distress rates. 

The 12-inch linear regression model is valid at a 95% confidence interval (joint p-

value (Prob > F) is less than 0.001). The adjusted R-squared value is 0.7958 and the 

RMSE is 45.843 which is approximately double that of the 6-inch model. This implies 

that with a higher error, natural color digital aerial photographs with 12-inch resolution 

can also be used to assess and predict overall pavement surface distress rates. However, 

12-inch models still exhibit less error than manual evaluation (45.843 < 84).  

The 24-inch linear regression model is valid at a 95% confidence interval (joint P-

value (Prob > F) is less than 0.001). The adjusted R-squared value is 0.6771 and RMSE is 

57.645. This implies that natural color aerial photographs with 24-inch resolution can still 

be used to assess and predict overall pavement surface distress rates, but with the highest 

error of the resolutions assessed. However, it is still better than the manual evaluation 

(57.645 < 84) and it has the advantage of lower cost when compared to higher spatial 

resolution datasets.  
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Figure 6. Correlation of predicted ODR versus actual ODR for (a) 6-inch, (b) 12-inch, (c) 

24-inch natural color digital aerial photography. 
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In order to investigate the principles of using HiSR-DAP to infer ODR, this 

research performed various linear regression models (Model 3 to 7) by using only one 

visible band and by using only spectral features (mean values) or texture features 

(standard deviation values). The results were summarized in Table 5. The results revealed 

that the visible red band best predicts ODR at all spatial resolutions (e.g. 6-inch dataset 

R
2 

> 93% and RMSE < 28), while visible blue band predicts ODR at the lowest certainty. 

Table 5 also revealed that when compared to texture features, spectral features predict 

ODR at a higher certainty (e.g. 6-inch dataset R
2
 > 92% and RMSE < 29).  

Results revealed that the regression model that uses all six principal components 

exhibited the best capability to predict ODR. Therefore, this model was selected for 

validation. Table 6 shows the results of the 6-inch, 12-inch, and 24-inch regression 

models when using only half of the study sites for calibration (sample size = 25). It shows 

that the R-squared value is decreased while the RMSE is increased for all three models, 

but not substantially. All three models are still valid at a 95% confidence interval (joint P-

value (Prob > F) is less than 0.001).  

The other 25 study sites were used to independently validate predicted (model-

generated) ODR values versus actual (ground reference) ODR values, the RMSE, mean 

absolute error, and standard error of which are shown in Table 7. Not surprisingly, the 

RMSE for each model is higher when validated using holdout samples and predicted 

using the smaller sample size of 25 to develop the model, but not substantially. In 

addition, the mean absolute error and standard error are increased when the resolution 

becomes coarser, but all are less than an error of 84 that manual evaluation can exhibit. 
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Table 5. Test of a Variety of Options to Infer Overall Distress Rates 

Dataset 

(Size: 50) 

Model  

# 
Var. Coef. 

Standard 

Error 
p-value R2 Adjusted 

R2 RMSE Prob > F 

 6-inch 

Model  

3 

PCB1 71.24 3.03 <0.0001* 

0.9217 0.9184 29.041 <0.0001* PCB2 -4.09 11.80 0.731 

Intercept 135.36 4.11 <0.0001* 

Model  

4 

PCG1 70.80 2.98 <0.0001* 

0.9239 0.9206 28.643 <0.0001* PCG2 -27.78 12.18 0.027* 

Intercept 135.36 4.05 <0.0001* 

Model  

5 

PCR1 70.71 2.85 <0.0001* 

0.9301 0.9271 27.442 <0.0001* PCR2 -36.70 12.03 0.004* 

Intercept 135.36 3.88 <0.0001* 

Model  

6 

PCS1 -55.95 2.39 <0.0001* 

0.9240 0.9190 28.924 <0.0001* 
PCS2 120.37 34.35 <0.001* 

PCS3 -34.09 76.27 0.657 

Intercept 135.36 4.09 <0.0001* 

Model  
7 

PCT1 53.73 2.99 <0.0001* 

0.8806 0.8728 36.252 <0.0001* 
PCT2 226.37 58.01 <0.0001* 

PCT3 241.83 165.58 0.151 

Intercept 135.36 5.13 <0.0001* 

 12-inch 

Model  

3 

PCB1 67.17 5.83 <0.0001* 

0.7231 0.7113 54.510 <0.0001* PCB2 19.39 12.97 0.142 

Intercept 125.12 7.44 <0.0001* 

Model  

4 

PCG1 66.45 5.91 <0.0001* 

0.7379 0.7268 53.030 <0.0001* PCG2 31.01 12.66 0.018* 

Intercept 125.12 7.50 <0.0001* 

Model  
5 

PCR1 65.94 6.05 <0.0001* 

0.7418 0.7308 52.638 <0.0001* PCR2 26.19 13.31 0.055 

Intercept 125.12 7.71 <0.0001* 

Model  

6 

PCS1 48.76 4.64 <0.0001* 

0.7129 0.6942 56.103 <0.0001* 
PCS2 104.05 74.77 0.171 

PCS3 262.22 199.84 0.196 

Intercept 125.12 7.93 <0.0001* 

Model  
7 

PCT1 -41.79 5.61 <0.0001* 

0.5832 0.5560 67.602 <0.0001* 
PCT2 116.54 55.58 0.042* 

PCT3 -311.73 148.31 0.041* 

Intercept 125.12 9.56 <0.0001* 

 24-inch 

Model  
3 

PCB1 68.56 7.68 <0.0001* 

0.5677 0.5494 68.105 <0.0001* PCB2 -11.40 11.28 0.066 

Intercept 125.12 8.89 <0.0001* 

Model  

4 

PCG1 63.27 7.81 <0.0001* 

0.5917 0.5743 66.190 <0.0001* PCG2 -20.21 12.95 0.125 

Intercept 125.12 9.36 <0.0001* 

Model  
5 

PCR1 68.59 7.68 <0.0001* 

0.6317 0.6160 62.865 <0.0001* PCR2 -11.40 11.28 0.317 

Intercept 125.12 8.89 <0.0001* 

Model  
6 

PCS1 -42.78 5.99 <0.0001* 

0.5285 0.4978 71.898 <0.0001* 
PCS2 27.26 43.98 0.539 

PCS3 -82.25 231.18 0.724 

Intercept 125.12 10.17 <0.0001* 

Model  

7 

PCT1 33.75 6.21 <0.0001* 

0.4856 0.4521 75.096 <0.0001* 
PCT2 290.84 90.70 0.002* 

PCT3 -540.37 284.34 0.064 

Intercept 125.12 10.62 <0.0001* 

Note: Var. indicates Variables; Coef. indicates Coefficient; PCB1 – PCB2 indicate the two principal components extracted from the 

mean and standard deviation values of the visible blue band; PCG1 – PCG2 indicate the two principal components extracted from the 

mean and standard deviation values of the visible green band; PCR1 – PCR2 indicate the two principal components extracted from the 

mean and standard deviation values of the visible red band; PCS1 – PCS3 indicate the three principal components extracted from the 

mean values of each of the three visible bands; PCT1 – PCT3 indicate the three principal components extracted from the standard 

deviation value of each of the three visible bands; and * indicates the independent variable is significant at p = 0.05 level. 
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Table 6. Model Validation for Prediction of ODR Values 

Dataset 

(Size: 25) 
Var. Coef. 

Standard 

Error 
p-value R

2 Adjusted 

R
2 RMSE Prob > F 

 6-inch 

PCA1 46.03 3.22 <0.0001* 

0.9232 0.8976 37.206 <0.0001* 

PCA2 -13.17 11.74 0.277 

PCA3 -102.89 61.00 0.109 

PCA4 264.22 129.98 0.057 

PCA5 -43.32 152.78 0.780 

PCA6 -539.59 272.10 0.063 

Intercept 137.28 7.44 <0.0001* 

 12-inch 

PCA1 45.33 5.12 <0.0001* 

0.8178 0.7571 57.309 <0.0001* 

PCA2 -4.55 13.65 0.743 

PCA3 42.88 59.73 0.482 

PCA4 -175.53 143.74 0.238 

PCA5 50.69 241.64 0.836 

PCA6 187.02 335.35 0.584 

Intercept 137.28 11.46 <0.0001*
 

 24-inch 

PCA1 33.06 7.73 <0.0001* 

0.7166 0.6222 71.476 <0.0001* 

PCA2 -42.78 9.45 <0.0001*
 

PCA3 125.42 76.79 0.120 

PCA4 -231.38 118.32 0.066 

PCA5 -88.60 300.07 0.771 

PCA6 194.58 486.38 0.694 

Intercept 137.28 14.30 <0.0001* 

Note: Var. indicates Variables; Coef. indicates Coefficient; PCA1 and PCA6 indicate the six principal 

components extracted from the mean and standard deviation values of each of the three visible bands; 

RMSE indicates root mean squared error; and * indicates the independent variable is significant at p = 0.05 

level. 

Validation results, consistent with model fits, show that the 6-inch aerial 

photography results in the lowest error when compared to manual evaluation results, 

whether measured by RMSE, mean absolute error, or standard error. Therefore, we 

conclude that ODR can be most effectively predicted by the 6-inch aerial photography. 

While none of the models can be used to detect detailed distress (e.g., cracks) or vertical 

distress (e.g., rutting), all models indicate potential for the direct estimation of ODR with 

less error than manual approaches. 

One limitation of the proposed method is that it cannot be used for high traffic 

volume sections. This is because vehicles are considered as unwanted features on the 

pavement. Too many vehicles present in the images could reduce the area of pavement 
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observed to such a degree that distress cannot be accurately evaluated. This proposed 

method also must use reference pavement surface distress rates (collected either through 

manual evaluation or automatic evaluation) to develop initial model calibrations.  

Table 7. Error Summary for Predicted ODR 

Dataset 

(Size: 25) 
RMSE Mean Absolute Error Standard Error 

 6-inch 42.8826 35.0000 5.0577 

 12-inch 63.1958 43.7600 9.3070 

 24-inch 72.5551 66.2400 12.0770 

3.4 Conclusions 

Routine evaluation of pavement surface distress condition is a challenge to all 

transportation agencies. In the real world it is impossible to get exhaustive condition data 

for all pavement surfaces. Current methods for pavement surface distress evaluation are 

time-consuming and expensive. To overcome these limitations, this research presents a 

novel approach for overall pavement surface distress condition evaluation through the 

analysis of routinely-acquired and publically-available HiSR-DAP. These images are 

already paid for through a variety of means, permitting a dramatic reduction in the cost of 

intensive survey through manual or automated samples, making it extremely practical and 

immediately implementable across all regions without tree cover. Our results have shown 

that natural color aerial photographs of 6-inch spatial resolution can be used to evaluate 

the overall pavement distress conditions with a high degree of certainty (R
2
 > 95%). At a 

lesser degree of certainty, 12-inch and 24-inch natural color aerial photographs can also 

be used to detect overall pavement conditions. When considering the associated cost, the 
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lower spatial resolution aerial photographs can be potentially applied to evaluate overall 

pavement surface distress for rapid, high-level information checks. Research results also 

have shown that visible red band or spectral features alone can be used to estimate the 

overall pavement conditions with a high degree of certainty (R
2
 > 92%). 

The proposed method of detecting pavement surface distress conditions by 

analyzing HiSR natural color digital aerial photography could be used as a predictor of 

overall distress conditions in situations where field inspectors cannot evaluate except 

with considerable labor (e.g., sections in remote areas). It is not likely that the proposed 

method will completely replace field pavement surface inspection due to its lack of 

crack-level detailed pavement surface distress information and the necessity of using 

field pavement surface distress inspection results as reference data to develop the 

regression models. However, the spectral response in HiSR natural color digital aerial 

photography presents additional information not considered in field inspection and could 

be used to predict the overall pavement surface conditions in un-sampled areas based on a 

dramatically reduced number of intensive survey sites.  Therefore, it can reduce the 

amount of work, time, and money associated with pavement surface evaluation. 

Operationally this proposed approach could be readily implemented as a service 

internally by transportation agencies such as NMDOT or implemented through consulting 

firms. Eventually this proposed method could be automated through software 

development. Such software would only require users to insert the pavement surface 

distress rates of a limited number of manual survey sites, add associated HSR 

multispectral digital aerial photography, and upload the evaluation polygon, while the 

computing-intensive processes such as eliminating unwanted features is fully automated. 
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Chapter 4 Characterizing Pavement Surface Distress Conditions with 

Hyper-spatial Resolution Natural Color Digital Aerial Photography 

(HySR-DAP) 

4.1 Introduction 

Because of constant and frequent usage, roadway maintenance is an essential task to 

ensure the correct pavement performance (Oliveira and Correia 2008). Accurate 

condition assessment of pavement surface distress provides a critical input to the decision 

making process regarding pavement management (Georgopoulos et al. 1995). 

Surveying roadway pavement surface distress conditions plays an important role in its 

function and structural evaluation analysis, influencing the adoption of adequate 

maintenance policies (Oliveira and Correia 2008). Historically, pavement evaluation was 

commonly performed with “boots on the ground” by having experts visually inspect the 

surface conditions with subjective in situ engineering judgment and interpretation (Kim 

et al. 2006; Schnebele et al. 2015). Pavement surface conditions were observed and 

recorded by inspectors in person in the field “walk and look” and the hand-written data 

was later inputted into a computer database. 

In the 1980s, vehicle-mounted electronic sensors (e.g., video cameras, digital 

cameras, and laser sensors) at a fine enough resolution emerged and were used for 

automated pavement surface evaluation (Haas et al. 1985; Curphey et al. 1986; Hudson 

and Uddin 1987; Schnebele et al. 2015). Both manual observation and automated 

observation methods are classified as ground-based evaluation methods because the 

evaluation action occurs from the ground. Ground-based evaluation methods can collect 
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detailed pavement surface condition data for various types of distresses (e.g., alligator 

cracking and transverse cracking). However, these methods are expensive (McGhee 

2004), labor-intensive (manual observation only) (Cheng and Miyojim 1998; Hudson and 

Uddin 1987; Cheng et al. 1999; Wang and Li 1999; Wang 2000; Schnebele et al. 2015), 

time-consuming (Schnebele et al. 2015), tedious (Timm and McQueen 2004), subjective 

(manual observation only) (Sokolic 2003; Hong 2009; Attoh-Okine and Adarkwa 2013), 

potentially dangerous to inspectors in the hazardous roadway environment (Schnebele et 

al. 2015), require specialized staff on a regular basis (Wolters et al. 2011), and can 

exhibit a high degree of variability (Bogus et al. 2010), thereby causing inconsistencies in 

surveyed data over space and across evaluation (Zhang et al. 2015). In addition, data 

collected on the ground serves only a single purpose (i.e., pavement surface evaluation) 

and cannot be shared with other government agencies (e.g., U.S. Geological Survey) to 

reduce the cost (Zhang et al. 2015). 

Another method to evaluate pavement surface is through airborne observation. 

Airborne methods require deploying cameras (both analog and digital) on aircraft that can 

fly over pavement sections. Airborne remote sensing techniques, also known as aircraft-

based evaluation, is getting more attention because of its synoptic coverage (Jensen and 

Cowen 1999), although it has not been used for operational evaluation programs to the 

author’s knowledge. The resulting aerial images, which typically have high-spatial 

resolutions ranging from 3-inch (0.075 m) to 1 m, can be used to evaluate the overall 

condition of pavement surfaces in a more rapid, cost-effective (data can be shared with 

other government agencies), and safer manner (Zhang et al. 2015; Zhang and Bogus 

2014). However, the spatial resolutions of these images limit the ability to detect and 
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assess fine and detailed defects such as individual cracks on a pavement surface because 

most cracks have widths less than 0.01 m (Guo 2010). Although visual interpretation of 

large scale (e.g., 1:100) panchromatic analog aerial photographs can be used to identify 

untreated cracks and other high-contrast pavement defects such as patching and bleeding, 

extremely high cost and limited compatibility with modern image processing techniques 

ultimately prevent the further exploration of their applications for pavement surface 

distress evaluation (McMaster 1952; Stoecker 1968; Stoecker 1970).  

The above literature reveals the actual obstacle for using digital aerial images for 

detailed pavement surface distress evaluation is the spatial resolution is too coarse to 

resolve detailed distresses, which often manifest at the millimeter scale. Recent advances 

in remote sensing have enabled us to effectively collect hyper-spatial resolution (sub-

centimeter or sub-inch) natural color digital aerial photography (HySR-DAP) at a low 

cost. HySR-DAP has been used to facilitate research in many fields, such as archaeology 

(Verhoeven, 2009), ecology (Scoffin, 1982; Aber et al. 1999; Guichard et al. 2000), 

zoology (Fraser et al. 1999), emergency management (Sklaver et al. 2006), vegetation 

and soil monitoring (Aber et al. 2001), and topographic mapping (Wundram and Loffler 

2008; Marzolff and Poesen 2009; Smith et al. 2009). However, previous studies 

regarding the application of HySR-DAP for detailed pavement surface distress condition 

assessment are limited. The only published research on this topic was performed by Chen 

et al. (Chen et al. 2011). This research shows the potential to use HySR-DAP to evaluate 

crack-level pavement surface distress conditions, but the assessment capability is limited 

to 2 cm wide cracks on bridge pavements because the spatial resolution of the used 

HySR-DAP is 1-inch (0.025 m).  
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Based on our review of literature, the use of HySR-DAP for evaluating detailed 

pavement surface distress condition is lacking and presents a significant gap in the 

research. The intellectual significance of this research lies in exploring the utility of 

millimeter scale HySR-DAP acquired from a low-altitude and low-cost small-unmanned 

aircraft system (S-UAS), in this case a tethered helium weather balloon, to permit 

characterization of detailed pavement surface distress conditions. Unlike the ground-

based or aircraft-based evaluation methods, this research collected detailed pavement 

surface distress information through a middle-ground approach – using a low-altitude S-

UAS. 

To collect millimeter scale HySR-DAP and appropriately process them for 

characterizing detailed pavement surface distress conditions, two emerging remote 

sensing techniques, including S-UAS based hyper-spatial resolution imaging and aerial 

triangulation (AT) are leveraged for image collection and image processing. An S-UAS, 

which can fly lower to the ground than traditional manned aircraft, and thus permit ready 

collection of hyper-spatial resolution (HySR, i.e., ground sampling distance (GSD) < 1 

cm) aerial images using compact low-cost sensors, is used for HySR-DAP collection. 

AT, also known as structure-from-motion (SfM) in the computer vision field, is used to 

process the collected HySR-DAP to generate millimeter GSD mosaicked orthophotos and 

digital surface models (DSMs) for standardized evaluation of detailed horizontal and 

vertical pavement surface conditions, potentially reducing the cost and duration of 

evaluation while improving the comparability of surveyed results.  

In recent years, S-UAS have emerged as an important platform for collection of 

HySR aerial data (Colomina and Molina 2014; Tang and Shao 2015)—a trend that is all 
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but certain to continue (Lippitt 2015). For now, due to a wide variety of regulatory and 

safety concerns, the legal use of S-UAS is severely restricted in the United States. In 

anticipation of an established regulatory environment and availability of S-UAS for 

routine pavement surface distress evaluation, this research used a tethered helium weather 

balloon system to simulate the collection of HySR-DAP from untethered S-UAS, as 

suggested by the Public Lab (Balloon & Kite Mapping 2014). This organization is a 

popular community across the world for researchers/hobbyists using inexpensive do-it-

yourself (DIY) S-UAS to collect various remote sensing data, including HySR-DAP. 

Currently, the tethered helium weather balloon is not restricted from flying in the United 

State as long as the flight location is 5 miles (8 km) away from the airports and the flight 

altitude above ground level (AGL) is less than 400 ft (120 m) (Balloon Regulations & 

Policies 2014). 

As a basic photogrammetric method, AT is used for calculating the three-

dimensional (3D) coordinates of objects by analyzing overlapping aerial images captured 

from varied perspectives (Yuan et al. 2009). AT traditionally requires the manual 

identification of thousands of control points linking images to one another and to a 

reference dataset to enable least squares estimation of the optimal triangulation model. 

New computation approaches (e.g., SfM and graphic processing unit (GPU) based image 

processing) have enabled the automation of traditional AT and expansion of the number 

of triangulated XYZ locations to millions up to hundreds of millions, ultimately 

permitting routine estimation of 3D surface structure and subsequently orthocorrection of 

large datasets at approximately the spatial resolution of input images (Zhang et al. 2011; 

Zomrawi et al. 2011). When coupled with HSR aerial image data such as that collected 
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by low-altitude S-UAS, this technique holds the potential to permit the estimation of 

horizontal and vertical measurements at millimeter scales (Zhang et al. 2011), and 

ultimately, the detection and assessment of pavement surface distresses at finer scales 

than has traditionally been possible by airborne survey. 

HySR-DAP acquired from S-UAS has already been commercially applied in the 

context of airport runway condition assessment in Germany (Airsight 2016), which 

indicates its application in roadway pavement surface condition assessment is promising. 

Using roadway flexible pavement (i.e., asphalt concrete) sections in the State of New 

Mexico in the United States as an example, we explored the utility of AT technique and 

millimeter scale HySR-DAP acquired from a low-altitude and low-cost S-UAS to 

characterize detailed pavement surface distress condition to assess: (1) if millimeter-scale 

HySR-DAP can be used to characterize detailed pavement surface distress condition, and 

if they can; (2) how well can HySR-DAP characterize detailed pavement surface distress 

conditions when compared with ground-based manual measurement? The answers to 

these questions lay the foundation for the development of automated procedures for the 

extraction of detailed pavement surface distress metrics and operational use of HySR-

DAP to detect and assess pavement surface distress conditions. 

4.2 Materials and Methods 

Using HySR-DAP acquired from a low-altitude and low-cost S-UAS as input, AT 

was used to generate 3 mm GSD mosaicked orthophotos and co-registered DSMs for 

characterizing pavement surface distress conditions. Key metrics used to evaluate flexible 

pavement surface distresses were identified from the United States Department of 

Transportation (USDOT) Highway Performance Management System (HPMS) Field 
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Manual (HPMS 2014), and included rutting (item 50), alligator cracking (item 52), and 

transverse cracking (item 53). These metrics were measured from the orthophotos and 

DSMs and then compared with ground reference data manually collected by trained 

inspectors using standard protocols (Cordova et al. 2009). Unlike the manual evaluation 

methods operationally used by transportation management agencies, which are 

characterized by subjective visual observation, inspectors of this research used measuring 

tapes to objectively measure distresses. 

4.2.1 Data Acquisition and Preparation 

A low-altitude AGL and low-cost S-UAS was constructed to simulate the 

collection of HySR-DAP from other untethered low altitude AGL S-UAS (Figure 7) that 

are now common in the marketplace. This system includes a tethered helium weather 

balloon with custom-designed rigging based on the Picavet suspension system, as 

suggested by the Public Lab (Balloons & Kite Mapping 2014). As mentioned in the 

previous section, a tethered helium weather balloon is permitted to fly in the United 

States as long as the flight meets the rules about location and altitude. The sensor affixed 

to the platform was an off-the-shelf small-format Canon SX260 HS digital camera. This 

camera has a 12-megapixel Complimentary Metal-Oxide Semiconductor (CMOS) 

detector array collecting in the visible blue, green, and red wavelength bands through 

Bayer array sampling and a built-in GPS unit. A firmware enhancement application 

known as the Canon Hack Development Kit (CHDK), was used to permit more control 

over the operation of the Canon SX260 HS camera, including shutter speed, shutter lag, 

aperture size, and intervalometer (Figure 8).  
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Figure 7. Examples of untethered low altitude AGL S-UAS; (a) rotary-wing S-UAS; (b) 

Fixed-wing S-UAS 

HySR-DAP data were collected from 28 study sites (i.e., sections of roadway 

pavement surfaces) in Bernalillo County, New Mexico. Twenty-one sites were located on 

United States Highway 66, two sites were located on the campus of the University of 

New Mexico (UNM), and five sites were located on New Mexico Highway 333. All 

study site roadways run in a generally east-west direction. Approximately 300 

overlapping HSR aerial images were acquired for each study site at about 5 m AGL to 

permit a nominal GSD of 0.002 m. At this AGL, the size of the ground area covered by 

each frame is approximately 8 × 6 m. Image acquisition was not controlled into flight 

lines, but was instead collected as a highly redundant block in a largely randomized 

pattern. However, the long side of each frame was approximately aligned perpendicular 

to the roadway while the short side of each frame was approximately parallel to the 

roadway. Crab angles were relatively stable along the roadways because balloon 

operators were standing along the shoulder of the roadways.  
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Figure 8. The helium weather balloon small-unmanned aircraft system (S-UAS); 

(a) a filled helium weather balloon and a helium tank; (b) customized rigging 

and mounted Canon SX260 HS digital camera; the characteristics of the rigging 

are lightweight, durable, resilient, capable of protecting the sensor, capable of 

removing the string in the aerial images and capable of dynamically adjusting 

the sensor position (i.e., the lens always facing down the nadir or principal 

point); (c) balloon mapping kit, including a balloon, reels, gloves, rubber bands, 

and zip ties; (d) front facet of Canon SX 260 HS digital camera and Canon Hack 

Development Kit (CHDK) graphical user interface (GUI).  
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Ground control point (GCP) data were collected by a trained six-person surveying 

crew at each of the 28 sites. GCPs were identified using identifiable objects on the 

pavement surfaces, including sharp edges of cracking, intersections of cracking, and 

asphalt stains. GCPs were collected on the pavement surfaces using a survey grade CHC 

X900+ real-time kinematic (RTK) Global Navigation Satellite System (GNSS) in a 

base/rover configuration (Figure 9). Base stations were set up over National Geodetic 

Survey (NGS) benchmarks. Data were collected using the Carlson SurvCE software 

package and a WGS84 UTM Zone 13 North projection. When collecting the GCP 

coordinates, detailed photos of each GCP were acquired with the survey instrument in 

place. These detailed photos were used to facilitate the placement of GCPs on the 

acquired HSR aerial imagery. A total of 16 GCPs were collected for each site. The 

collected GCP coordinates were post-processed with the National Oceanic and 

Atmosphere Administration (NOAA) Online Positioning User Service (OPUS) and the 

ultimate root mean square (RMS) RTK accuracy achieved was 0.004 m + 1 ppm 

horizontally and 0.006 m + 1 ppm vertically. 

A ground reference dataset of pavement surface conditions was collected by a 

trained two-person crew at each of the study sites. The crew performed manual 

measurements based on the standard evaluation protocols adopted by the HPMS Field 

Manual. Both inspectors assessed pavement surface distresses (rutting, alligator cracking, 

and transverse cracking) independently and the results were recorded as the average value 

of the two independent measurements. In accordance with the HPMS Field Manual, 

rutting depth was measured for only the rightmost driving lane for both inner and outer 

wheel paths at three locations along the wheel path within each site and then the depth 
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was averaged for each wheel path. The HPMS Field Manual requires reporting the 

percent area of total alligator cracking to the nearest 5%. For transverse cracking, the 

HPMS Field Manual requires reporting an estimation of relative length in meters per 

kilometers (feet per mile). 

 

Figure 9. An illustration of the RTK system in a base/rover configuration. 

4.2.2 Aerial Triangulation 

After excluding blurred and oblique HSR aerial images, between 120 and 300 

overlapping aerial images were processed and assessed for each study site according to 

the protocols established by Zhang et al. (Zhang et al. 2016). As one of the most complex 

photogrammetric workflows, traditional AT is composed of many processes, which 

include image import, interior orientation, tie points determination, GCP measurements, 

bundle block adjustment, and quality control (Kersten 1999). As in traditional AT, 



62 
 

automated AT (or SfM) uses overlapping images acquired from multiple viewpoints 

(Kersten 1999). However, automated AT differs from traditional AT by determining 

internal camera geometry using an in situ automated process and by triangulating camera 

position and orientation automatically without the need for a pre-defined set of visible 

GCPs at known 3D positions [53] (Westoby et al. 2012). To do so, automated AT 

requires a high degree of overlap (ideally 75% for sidelap and 80% for forward overlap) 

to observe the full geometry of scene structure (Zhang et al. 2011). For this research, 

images were collected in a hyper redundant block pattern and the sidelap and forward 

overlap percentage meet or exceed the 75% and 80% requirements identified by Zhang et 

al. (Zhang et al. 2011).  

In recent years, many software packages have emerged to efficiently implement 

automated AT. The commercial software Agisoft Photoscan was selected as the tool of 

choice for this study as it permits minimal human intervention. Among the 16 GCPs, 10 

were used to calibrate the automated AT process while the remaining six were reserved to 

evaluate the horizontal and vertical accuracy of the AT outputs, including orthophotos 

and DSMs.  

For each of the 28 study sites, an in situ camera model was generated based on all 

of the input HySR aerial images. Therefore, the camera model is not identical across the 

sites. For each of the study sites, millions of tie points were automatically identified from 

the input of overlapping images to build a dense point cloud, and then a triangulation 

irregular network (TIN) mesh was generated based on the identified tie points. Lastly, a 

DSM was created based on the digital mesh and a mosaicked orthophoto was created 

based on input images to co-register with DSM.  
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Once these processes were completed, orthophotos and the DSMs were exported 

as rasters in TIFF format at a spatial resolution of 0.003 m. Orthophotos and DSMs are 

generated in a single processing routine and are therefore tightly co-registered. An 

example of the orthophotos and DSM are showed in Figure 10. Orthophotos were used to 

assess the horizontal accuracy while DSMs were used to assess the vertical accuracy. 

Root-mean-squared-error (RMSE) was used to assess the accuracy (Congalton and Green 

2009), and the results show that the overall horizontal accuracy is 0.004 m while the 

overall vertical accuracy is 0.007 m. The number of overlapping images used and 

accuracy for each study site is reported in Table 8. More details regarding the accuracy 

assessment can be found in the study performed by Zhang et al. (Zhang et al. 2016). 

 

Figure 10. (a) An example of hyper-spatial resolution orthophotos with 0.003 m 

resolution and (b) an example of hyper-spatial resolution digital surface model (DSM) 

with 0.003 m resolution. The black to white color scale in (b) indicates elevations. 
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Table 8. Accuracy Assessment Result (RMSE) for Each Study Site. RMSE refers to root-

mean-squared-error 

Study Site 
No. of Image 

Frames 

Horizontal Accuracy 

(m) 
Vertical Accuracy (m) 

1 122 0.003 0.006 

2 135 0.005 0.011 

3 183 0.003 0.006 

4 177 0.003 0.007 

5 181 0.003 0.007 

6 180 0.004 0.008 

7 165 0.004 0.006 

8 133 0.004 0.006 

9 126 0.003 0.006 

10 189 0.003 0.006 

11 162 0.005 0.007 

12 156 0.004 0.006 

13 292 0.005 0.007 

14 207 0.005 0.008 

15 163 0.005 0.008 

16 150 0.005 0.007 

17 225 0.004 0.007 

18 155 0.004 0.008 

19 145 0.004 0.007 

20 136 0.003 0.005 

21 168 0.004 0.006 

22 130 0.003 0.006 

23 105 0.003 0.006 

24 103 0.004 0.005 

25 109 0.004 0.006 

26 155 0.004 0.007 

27 112 0.003 0.006 

28 115 0.003 0.006 

Mean 157 0.004 0.007 

4.2.3 Rutting Depth Measurement 

Rutting is an unrecoverable longitudinal surface depression in both inner and 

outer wheel paths (Cordova et al. 2009). In ground-based manual measurement, rutting 

depth was measured with a wooden bar and a measuring tape. The wooden bar was used 
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as a reference line between the two highest points of the rut and the measuring tape was 

used to measure the distance from the lowest point on the pavement surface 

perpendicularly to the point at the bottom of the wooden bar that is perpendicular to the 

lowest point. The actual measured points in the field are the lowest points as visually 

determined by inspectors. The minimum scale of the measuring tape used for manual 

evaluation was 0.001 m. The length and width of the wooden bar is 48-inch (1.22 m) and 

0.8-inch (0.02 m).  

DSMs (reconstructed 3D pavement surface) were used to measure rutting depths 

using a digital process designed to simulate the ground-based manual measurement. 

Points and polygons were created on DSMs to simulate the locations of the actual 

measured points and wooden bars. The actual measured points in the field and the 

locations of the wooden bars are shown in Figure 11. With the actual measured point (as 

photographed in the field) as the center, two polygons (one on either side of the filed 

measured point) with a size of 0.61 m by 0.02 m were created to simulate the location of 

the wooden bar.  

Unlike ground-based manual measurement, it is not possible to directly 

identify the highest point at the bottom of the wooden bar. Therefore, the following 

method was used to identify the highest and lowest points of rutting. Using the 

polygon as the boundary, the DSM pixels within the boundary were extracted and 

reclassified to find the highest point on both sides of the actual field measured points. 

If there were multiple pixels having the same highest value, the one closer to the 

actual measured point in the field was used. 
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Figure 11. An illustration of the locations of rutting depth actual measured points and 

wooden bars. 
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Then, as shown in Figure 12, the two highest points within the two polygons are 

considered as Point A and Point B, while the two measured points as Point C and Point D. 

The distance from Point C to Point D is the rutting depth. Points A, B, and C will have the 

same height if the heights of Points A and B are equal. However, under most 

circumstances the heights of Points A and B are different. Therefore, a weighted average 

method was used to calculate the height of Point C: 

𝐻𝐶 =  
𝐻𝐴 ∗ 𝐷𝐴 + 𝐻𝐵 ∗ 𝐷𝐵

𝐷𝐴 + 𝐷𝐵
 (9) 

𝑅𝐷 = 𝐻𝐶 − 𝐻𝐷 (10) 

where H represents the height of a given point, and therefore HA represents the height of 

Point A, and HB represents the height of Point B. DA represents the horizontal distance 

from Point A to Point D, while DB represents the horizontal distance from Point B to 

Point D. RD represents the rutting depth. HA and HB were determined from the DSMs, 

while DA and DB were determined from the orthophotos. 

 

Figure 12. Rutting depth calculation process. DA indicates the horizontal distance from 

Point A to Point D, while DB is the horizontal distance from Point B to Point D. RD 

indicates the calculated rutting depth. 
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4.2.4 Alligator Cracking Measurement 

Alligator cracking is interconnected cracks resembling check wire or alligator skins 

(Cordova et al. 2009). Longitudinal cracking (cracks that are parallel to the pavement’s 

centerline) should also be included as alligator cracking (HPMS 2014). According to the 

HPMS Field Manual, alligator cracking should be reported as the percentage of the total 

evaluated area to the nearest 5% at a minimum. In manual evaluation, inspectors measure 

the cumulative length of alligator cracking and mark the location of occurrence in one or 

two wheel paths. For example, typically the width of the driving lane is 12 ft (3.66 m), 

and therefore, for a 328 ft (100 m) section, the total area is 3940 ft
2 

(366 m
2
). If alligator 

cracking exists for both wheel paths, and for each wheel path the total length of the 

measured alligator cracking is 49 ft (15 m) while the width is 1.64 ft (0.5 m), the total area 

of the measured alligator cracking is 15 m
2
 (15 × 0.5 × 2 = 15). There the total area 

percentage should be 5 percent (15/366 × 100 = 4.09%, which should be rounded up to the 

nearest 5 percent, which is 5%).  

In order to simulate the alligator cracking measurement prescribed by the HPMS 

Field Manual, orthophotos were visually analyzed to locate alligator cracks and then 

mark them with on-screen digitization in GIS software. Polygons were digitized to 

represent both the entire evaluated pavement section and the sections that alligator 

cracking occurred. The polygon defining the entire evaluated pavement section was used 

to calculate the total evaluated area, while the polygons defining alligator cracking were 

used to calculate the total area of alligator cracking. The area percentage of alligator 

cracking was then calculated by comparing the areas of the two sets of polygons. The use 

of polygons to determine area percentage of alligator cracking is shown in Figure 13. It 
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should be noted that both actual area percentage and rounded area percentage were 

calculated for each site, but only rounded area percentage was used for comparison to 

ground-based manual measurements. 

 

Figure 13. An illustration of orthophoto-based alligator cracking measurement. The 

blue polygons are the digitized alligator cracking area while the red polygon is the 

entire manual evaluation zone. Areas for these polygons can be calculated with GIS 

software and therefore, alligator cracking area percentage can be determined by 

dividing alligator cracking area by the entire evaluation zone area. 
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4.2.5 Transverse Cracking Measurement 

Transverse cracking are cracks that are perpendicular to the pavement’s centerline 

(Cordova et al. 2009). According to the HPMS Field Manual, field inspectors should 

measure the length of each transverse crack that extends at least half of the lane width (6 

ft [1.83 m] or longer cracks) to calculate the total length of transverse cracking. The total 

length of transverse cracking will be normalized by the total length of the evaluated 

pavement section, and therefore, the final results will be delivered in the format of feet 

per mile (or meter per kilometer).  

In order to simulate the transverse cracking measurement prescribed by the 

HPMS Field Manual, orthophotos were visually analyzed and any transverse cracks 

longer than 6 ft (1.83 m) were identified and digitized in GIS software as polylines to 

facilitate the calculation of total length of transverse cracking (Figure 14). The same 

polygon created for the alligator cracking measurement representing the entire evaluated 

pavement section was used to measure the total length of the evaluated pavement section.  

4.2.6 Measurement Results Comparison 

For each study site, rutting depth (for both wheel paths), alligator cracking area 

percentage, and transverse cracking length measured from the DSMs and orthophotos 

were compared with ground-based manual measurement results to examine the utility of 

using HSR-AP derived products to detect and assess detailed pavement surface distresses. 

In order to select the most appropriate statistical test, the sample size of each set of 

measurements was examined. Most statistical researchers and scientists accept that non-

parametric statistical tests should be employed if the sample size is less than 30 (Agresti 

and Min 2003; Tomkins 2006; Arnold and Emerson 2011; Hoskin 2014), even if sample 
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values are normally distributed. The examination revealed that the sample size for each 

set of measurements was 28, and therefore, non-parametric statistical tests were used to 

compare ground-based measurements with HSR-AP derived products based 

measurements. 

 

Figure 14. An illustration of orthophoto-based transverse cracking measurement. The 

blue polylines are the digitized transverse cracking while the red polygon is the 

entire evaluation zone. The lengths of these transverse cracks and the length of the 

entire evaluation zone can be calculated with GIS software and, therefore, transverse 

cracking length can be determined by dividing total transverse cracking length by the 

entire evaluation zone length. 
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Measurement comparisons were performed as a paired group and unpaired group. 

Paired group tests are more appropriate if two groups of measurements are dependent 

(i.e., repeated measurements for the same subject but at two different times). Unpaired 

group tests are more appropriate if two groups of measurements are independent (i.e., 

measurement for one sample in Group A has no bearing on the measurement for one 

sample in Group B). The relationship between ground-based manual measurements and 

HySR-DAP derived products measurements can be interpreted in both a dependent way 

and an independent way. In the dependent way, repeated measurements of a specific 

distress at a study site were performed on the ground and from HySR-DAP derived 

products at two different times, and therefore, they are dependent. In the independent 

way, the ground-based measurement of a specific distress at a study site has no bearing 

on the HySR-DAP derived product based measurement of a specific distress at the same 

study site since they are measured from two different data sources. Since the relationship 

can be interpreted in both ways, to err on the side of caution, this research used both 

paired group and unpaired group statistical tests to examine if the detailed pavement 

surface distress rates measured from HySR-DAP derived products and distress rates 

manually measured on the ground are statistically different.  

In the paired group comparisons, repeated measurements (i.e., ground-based 

measurement and HySR-DAP derived products based measurement) of a specific distress 

(e.g., alligator cracking) for a specific study site (e.g., site 20) constitute a pair, and the 

purpose of this comparison is to examine whether the median difference between the two 

sets of paired measurements is zero. Nonparametric Wilcoxon Signed Rank test 



73 
 

(Wilcoxon 1945), which does not assume normality in the data, was used in this study as 

a robust alternative to parametric Student’s t-test. 

In the unpaired group comparisons, two sets of measurements (i.e., the ground-

based measurement and the HySR-DAP derived products based measurement) of a 

specific distress constitute two independent groups, and the purpose of this comparison is 

to examine whether two independent groups of samples exhibit the same distribution 

pattern (i.e., shape and spread) or have differences in medians. Nonparametric Mann-

Whitney U test (Mann and Whitney 1947), also known as Wilcoxon Rank-Sum test, 

which also does not assume normality in the data, was used to detect differences in shape 

and spread as well as differences in medians. 

4.3 Results  

For rutting depth, the ground-based and DSM-based measurements are summarized in 

Table 9. It should be noted that the results are organized by inner and outer wheel paths 

for each study site. Table 10 summarizes the ground-based and orthophoto-based 

measurements for alligator cracking area percentage and transverse cracking length. 

The box plots, histogram plots, and radar plots displaying each set of 

measurements were visually examined and are shown in Figures 15–17. Box plots 

revealed that only DSM-based rutting measurement showed evidence of outliers (dots 

found above the whiskers). However, box plots did not show a substantial difference in 

the medians between ground-based measurements and HySR-DAP derived products 

based measurements. There also did not appear to be a substantial difference in the box 

sizes. Histogram plots provide a visual presentation of the frequency distribution of each 

distress’ measurement differences (residuals). Measurement difference was defined as the 
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difference between ground-based measurement and HySR-DAP derived products based 

measurement. The plots did not show a substantial difference in the two sets of 

measurements for each distress. Most of the residuals were distributed around the value 

of zero. Radar plots provide another visual presentation of the measured distress rates for 

each study site. The plots did not reveal a substantial difference in the shape and spread 

of distribution between the two sets of measurements for each distress. 

Table 9. Rutting Depth Measurements for Inner and Outer Wheel Path (in m) 

Site ID 
Inner Wheel Path Outer Wheel Path 

Ground Depth DSM Depth Ground Depth DSM Depth 

1 0.021 0.024 0.006 0.009 

2 0.012 0.020 0.009 0.017 

3 0.015 0.016 0.007 0.007 

4 0.017 0.017 0.008 0.013 

5 0.022 0.019 0.018 0.015 

6 0.019 0.016 0.021 0.017 

7 0.017 0.022 0.018 0.023 

8 0.022 0.018 0.018 0.017 

9 0.013 0.013 0.016 0.018 

10 0.008 0.010 0.015 0.016 

11 0.020 0.016 0.024 0.021 

12 0.023 0.019 0.014 0.014 

13 0.017 0.018 0.010 0.013 

14 0.010 0.015 0.007 0.009 

15 0.010 0.014 0.011 0.012 

16 0.017 0.014 0.018 0.012 

17 0.008 0.013 0.007 0.011 

18 0.014 0.014 0.015 0.011 

19 0.007 0.010 0.011 0.011 

20 0.016 0.013 0.007 0.009 

21 0.015 0.011 0.017 0.014 

22 0.010 0.007 0.009 0.006 

23 0.010 0.005 0.006 0.008 

24 0.003 0.006 0.010 0.005 

25 0.003 0.005 0.007 0.006 

26 0.003 0.007 0.003 0.007 

27 0.002 0.004 0.004 0.004 

28 0.024 0.031 0.025 0.033 
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Table 10. Alligator Cracking Area Percentage and Transverse Cracking Length 

Measurements 

Site ID 

Alligator Cracking  

Area Percentage (%) 

Transverse Cracking  

Length (m/km) 

Ground 

Measure 

Orthophoto 

Measure 

Ground 

Measure 

Orthophoto 

Measure 

1 10 10 638 660 

2 5 5 728 783 

3 5 5 606 589 

4 15 15 1326 1290 

5 5 10 1395 1410 

6 25 20 1032 1064 

7 20 25 774 766 

8 20 20 1113 1098 

9 15 10 1136 1148 

10 25 25 653 632 

11 20 20 814 771 

12 35 35 1141 1121 

13 30 30 1145 1212 

14 25 25 1186 1136 

15 20 25 859 905 

16 45 45 1219 1256 

17 25 25 649 682 

18 30 30 839 815 

19 25 25 1135 1102 

20 25 25 958 978 

21 15 15 665 683 

22 5 5 264 280 

23 5 5 369 359 

24 5 10 175 202 

25 10 10 248 284 

26 10 10 263 290 

27 0 0 0 0 

28 35 35 534 500 
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Figure 15. Box plot for each set of measurement. In each quadrant, the two boxes are 

ground-based measurement and HSR-AP derived products based measurement, 

respectively. (a) Inner wheel path rutting depth measurement; (b) outer wheel path rutting 

depth measurement; (c) alligator cracking area percentage measurement; (d) transverse 

cracking length measurement. The uppermost bar is the maxium measurement value, 

while the lowermost bar is the nimimum measurement value. The bar inside of the box 

indciates the median. The dots in (a) and (b) indicate measurement outerliers. 
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Figure 16. The frequency distribution of each distress’ measurement differences 

(residuals); measurement difference is defined as the difference between ground-based 

measurement and HSR-AP derived products based measurement. (a) Inner wheel path 

rutting depth measurement difference; (b) outer wheel path rutting depth measurement 

difference; (c) alligator cracking area percentage measurement difference; (d) transverse 

cracking length measurement diference. 
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Figure 17. Radar plot for each set of measurement. In each quadrant, the whole numbers 

(i.e., 1 to 28) adjacent to the outmost ring indicate each of the twenty-eight study sites. (a) 

Inner wheel path rutting depth measurement, and the decimal numbers adjacent to the 

multiple-rings indicate rutting depths in m; (b) outer wheel path rutting depth 

measurement, and the decimal numbers adjacent to the multiple-rings indicate rutting 

depths in m; (c) alligator cracking area percentage measurement, and the whole numbers 

adjacent to the multiple-rings indicate alligator cracking area percentages;  

(d) transverse cracking length measurement, and the whole numbers adjacent to the 

multiple-rings indicate transverse cracking length in m per km. 
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Continuing with visual analysis, formal statistical tests were performed. The 

Wilcoxon Signed Rank test was performed to compare the measurement results of each 

type of distress at the paired group level. For rutting depth, the test was performed for 

both the inner wheel path and outer wheel path. For each comparison test, the null 

hypothesis is that the median difference between each pair of measurements is zero. Test 

results are summarized in Table 11. For each pair of measurements, p-values are greater 

than 0.05, and therefore the null hypothesis should be accepted; thereby indicating that 

for each distress the median difference between the paired ground-based measurement 

and HySR-DAP derived products based measurement is zero at a 95% confidence 

interval. In other words, for rutting, alligator cracking, and transverse cracking, ground-

based measurements and HySR-DAP derived products based measurements are not 

statistically different at a 0.05 significance level.  

Table 11. Wilcoxon Signed Rank Test Results for Each Distress 

Test ID Distress Null Hypothesis p-Value 

1 
Inner Wheel Path 

Rutting Depth 

The median difference between the two 

paired measurements (ground-based 

measurement vs. DSM-based 

measurement) is zero 

0.424 

2 
Outer Wheel Path 

Rutting Depth 

The median difference between two paired 

measurements (ground-based measurement 

vs. DSM-based measurement) is zero 

0.541 

3 

Alligator 

Cracking Area 

Percentage 

The median difference between two paired 

measurements (ground-based measurement 

vs. orthophoto-based measurement) is zero 

0.688 

4 
Transverse 

Cracking Length 

The median difference between two paired 

measurements (ground-based measurement 

vs. orthophoto-based measurement) is zero 

0.701 
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The Mann-Whitney U test was performed to compare the measurement results of 

each distress unpaired, as a group. For rutting depth, the test was again performed for 

both the inner wheel path and outer wheel path. Although the Mann-Whitney U test does 

not require normally distributed data, it does not mean that it is assumption free. For the 

Mann-Whitney U test, data from each population must be an independent random 

sample, and the population must have equal variances. For non-normally distributed data, 

the Levene’s test and Barlett’s test are usually adopted to determine variance equability. 

For the Levene’s test and the Barlett’s test, the null hypothesis is that the 

population variances are equal. Test results are summarized in Table 12. For each 

comparison, the p-value is greater than 0.05, and therefore the null hypothesis should be 

accepted; thereby indicating that the population variances for each pair of comparisons 

are equal at a 95% confidence interval. Therefore, the Mann-Whitney U test is 

appropriate for all metrics. 

Table 12. Levene’s Test and Bartlett’s Test Results 

Distress Comparison 
Null 

Hypothesis 

Variance Test p-Value 

Levene’s 

Test 

Bartlett’s 

Test 

Inner Wheel 

Path Rutting 

Depth 

Ground-based 

Measure vs. DSM-

based Measure 

Population 

variances are 

equal 

0.481 0.832 

Outer Wheel 

Path Rutting 

Depth 

Ground-based 

Measure vs. DSM-

based Measure 

Population 

variances are 

equal 

0.546 0.866 

Alligator 

Cracking Area 

Percentage 

Ground-based 

Measure vs. DSM-

based Measure 

Population 

variances are 

equal 

0.987 0.929 

Transverse 

Cracking 

Length 

Ground-based 

Measure vs. DSM-

based Measure 

Population 

variances are 

equal 

0.946 0.962 
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For each of the Mann-Whitney U tests, the null hypothesis is that there is no 

difference in the distribution (shape and spread) of ground-based measurement and HSR-

AP derived products based measurement. For all tests, the null hypothesis was retained, 

meaning that there is no significant difference in the distribution pattern (Table 13) at a 

95% confidence interval.  

Table 13. Mann-Whitney U Test for Each Distress 

Test ID Distress Null Hypothesis p-Value 

1 

Inner Wheel 

Path Rutting 

Depth 

The distribution pattern (shape and spread) of 

measurement values for ground-based measure 

vs. DSM-based measure is the same 

0.850 

2 

Outer Wheel 

Path Rutting 

Depth 

The distribution pattern (shape and spread) of 

measurement values for ground-based measure 

vs. DSM-based measure is the same 

0.786 

3 

Alligator 

Cracking 

Area 

Percentage 

The distribution pattern (shape and spread) of 

measurement values for ground-based measure 

vs. orthophoto-based measure is the same 

0.855 

4 

Transverse 

Cracking 

Length 

The distribution pattern (shape and spread) of 

measurement values for ground-based measure 

vs. orthophoto-based measure is the same 

0.948 

4.4 Discussion 

Formal statistical test results revealed that there is no evidence showing that detailed 

pavement surface distress (i.e., rutting, alligator cracking, and transverse cracking) rates 

measured from HySR-AP derived products and distress rates manually measured on the 

ground using standard protocols are statistically different at a 0.05 significance level. 

Visual comparison of the results supports this finding. Ultimately, these results show that 

orthophotos and DSMs generated from HySR-DAP acquired from S-UAS can be 
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effectively used to characterize detailed pavement surface distress that is comparable to 

ground-based manual measurement.  

It should be noted that current manual evaluation methods operationally used by 

transportation management agencies rely on only visual observation to estimate distress 

rates (e.g., estimate the length of the cracks), which is highly subjective (Bogus et al. 

2010). However, inspectors of this research physically measured the distress rates to 

collect ground reference data, which is objective. When using the on-screen analysis and 

digitization to detect and assess distress, the inspectors did not digitize a crack unless it 

exists and the inspectors were able to identify it, which is also objective. Given the 

horizontal and vertical accuracy (RMSE = 4 mm and 7 mm, respectively) of the 

orthophotos and DSMs, the discrepancy between the ground-based manual measurement 

method and the HSR-AP method could be from either method. This is because distress 

measurements made by inspectors involves random errors which cannot be avoided 

(Reichenbacher and Einax 2011; Fridman 2011).  

Further investigation of the measurements for each type of distress revealed a 

more detailed pattern. For the inner and outer wheel path rutting depth, DSM-based 

measurements are generally higher than ground-based measurements, with 15 sites 

showing higher DSM-based rutting depth and only ten sites exhibiting higher ground-

based rutting depth. The measured vertical accuracy (RMSE = 7 mm) of the DSMs can 

be interpreted as an indication that much of the discrepancy between the two methods is 

likely a product of variability in the reconstructed DSMs. This also indicates that DSM-

based measurement has a tendency to overestimate rutting depth. Increasing the vertical 
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accuracy of DSMs may be able to reduce the variability in the reconstructed DSMs, and 

ultimately reduce the variability in rutting depth measurement.  

For alligator cracking area percentage, 22 sites have equal orthophoto-based 

measurements and ground-based measurements. For transverse cracking, the percent 

difference between orthophoto-based measurements and ground-based measurements for 

20 sites are less than 5%. The measured horizontal accuracy (RMSE = 4 mm) of the 

orthophotos can be interpreted as an indication that much of the discrepancy between the 

two methods is likely a product of variability in the field measurements. Field 

measurement is prone to disturbances originated from traffic, weather conditions, 

physical conditions, and so on. However, on-screen digitization is not affected by these 

factors. 

Formal statistical test results and visual comparison of results also reveal that 

discrepancies in the vertical (i.e., rutting) are higher than in the horizontal (i.e., alligator 

cracking and transverse cracking). However, these results may not indicate that the 

proposed method works more effectively for characterizing horizontal pavement surface 

distresses such as cracking. This is because cracking measurements were rounded (for 

alligator cracking) or normalized (for transverse cracking), which would increase 

apparent accuracy. In contrast, rutting measurement in the field or on DSMs was error 

prone, which would decrease apparent accuracy. 

Although the novel aspect of this research lies in evaluating whether HSR-AP 

acquired from S-UAS can be used to characterize detailed pavement surface distress 

conditions, the remote sensing techniques and methods (e.g., S-UAS based hyper-spatial 

resolution imaging, SfM, and digitization) associated with this research are readily 
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deployable for detailed pavement surface condition assessment once restrictions on S-

UAS operations are lifted. SfM enabled AT to leverage graphic processing units to permit 

the generation of tightly co-registered orthophotos and DSMs from large HSR aerial 

image sets. Collectively, these techniques enabled the 3D characterization of pavement 

surfaces at unprecedented millimeter scales. In a broader context, the proposed method 

can be used for myriad other infrastructure condition inspection tasks. These results can 

be replicated by researchers or practitioners from the infrastructure management and 

asset management communities to assess whether HySR-DAP acquired from S-UAS can 

be used characterize their managed infrastructure or assets such as oil and gas pipelines, 

bridges, and dams.  

Although detailed pavement surface distress conditions are detected and assessed 

through manual digitizing, it is actually less labor-intensive, less expensive, and more 

accurate when compared with operationally used ground-based manual observation. The 

physical and financial requirements for digitization are less than for ground-based manual 

observation. This is because inspectors are not required to drive to the evaluation 

destination and walk or drive along the roadways to perform inspection. When inspectors 

are conducting ground-based physical measurement, at least three people are required 

because one of them is designated as the safety spotter (inspectors do not have the 

authority to stop the traffic) and two of them perform the physical measurements. The 

time for the three-people crew to complete an evaluation for a pavement section with a 

size of 8 m by 6 m is approximately 20 minutes. However, evaluating the same pavement 

section with HySR-DAP derived products will only need one inspector for approximately  

10 minutes. 
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Undeniably, there are costs associated with acquiring HySR-DAP from S-UAS, 

but the cost of using S-UAS acquired aerial data has been substantially reduced in recent 

years (Lippitt 2015). In addition, the cost can be reduced by collaborating with various 

government agencies such as the U.S. Geological Survey (USGS), U.S. Department of 

Agriculture (USDA), and U.S. Department of Homeland Security (USDHS) because 

these agencies also need HySR aerial imagery data for their managerial activities. Long-

term archived HySR aerial imagery records also provide transportation management 

agencies with the capability to identify spatial and temporal patterns of pavement surface 

distress conditions from a primary record. It should also be noted that high costs cannot 

prevent a method from deployment if it has other advantages. For example, New Mexico 

Department of Transportation (NMDOT) had been using visual observation methods to 

annually evaluate their 12,500 miles of roadways for many years at an annual cost of 

approximately $720,000. However, recently NMDOT adopted survey vehicle-based 

automated evaluation methods and the annual cost jumped to approximately $2,100,000 

(Montoya and Mann 2015). 

More importantly, manual digitization is much more accurate than currently 

adopted manual observation methods which are based on only subjective judgement (no 

physical measurement). Formal statistical test results reveal that HySR-DAP derived 

products based measurements are comparable to ground-based measurements. For this 

research, inspectors performed physical measurements to ensure consistent and reliable 

measures of distress on which to evaluate the efficacy of HySR-DAP derived measures.  

Even if the proposed methods are readily deployable, the next logical step is 

automating the extraction of pavement surface distress metrics given the data quantities 
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involved (Lippitt 2015). Automation will reduce the cost of scaled operational 

deployment as the U.S. Federal Aviation Administration (FAA) establishes regulations 

and clears restrictions for S-UAS work in the near future. One potential approach to 

automate the extraction of alligator cracking and transverse cracking is geographic 

object-based image analysis (GEOBIA) methods (Blaschke 2010). One potential 

approach to automate the extraction of rutting depth is having digitized wheel path 

polygons stored in a GIS database and then routinely monitoring their height change by 

comparing DSMs acquired at different times (e.g., yearly). Nevertheless, significant 

algorithm development will be required for both potential approaches, especially for 

cracking detection and assessment. It might be comparatively easy to identify transverse 

cracking, but the path to computational rules defining alligator cracking is less clear. For 

example, according to the HPMS manual, longitudinal cracking should be considered 

alligator cracking if it occurs in inner or outer wheel paths. 

To summarize, S-UAS based hyper-spatial resolution imaging and AT techniques 

can be used to provide detailed and reliable primary observations suitable for 

characterizing detailed pavement surface distress conditions, which lays the foundation 

for the future application of these techniques for automated detection and assessment of 

detailed pavement surface distress conditions. Operationally HySR-DAP based pavement 

surface evaluation could be implemented as a service internally by transportation 

agencies or implemented through consulting firms. Eventually the extraction of distress 

metrics from HySR-DAP should be automated to enable cost effective scaling of S-UAS 

based asset management, requiring end users (i.e., federal, state, or local transportation 
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management agencies) only to design a flight plan and select the distresses to be 

evaluated, with all other processes being automated.  

4.5 Conclusions 

This research evaluated whether HySR-DAP acquired from S-UAS can be used to 

characterize detailed roadway pavement surface distress conditions. Research results 

indicate that using HySR-DAP acquired from S-UAS as input, AT can be used to 

generate millimeter scale orthophotos and DSMs and these products can be effectively 

used to characterize detailed pavement surface distresses comparable to ground-based 

manual measurement. This finding lays the foundation for future research into automated 

pavement surface distress detection and assessment by demonstrating that HySR-DAP 

has the capability to provide accurate and reliable information to characterize detailed 

pavement surface distress conditions; automation is the logical next step. In recent years, 

many other sensors such as thermal infrared (TIR) and LiDAR are becoming 

commercially available in miniaturized forms suitable for operation on S-UAS. Many of 

these sensors, while more expensive per sensor, have the potential to improve detailed 

pavement surface distress evaluation. In the near term, the proposed digitization method 

could be used to measure pavement surface distress conditions in situations where field 

inspectors cannot evaluate without considerable labor costs (e.g., sections in remote 

areas) or where survey vehicles cannot gain access; however, in the long term, the 

proposed method is capable of completely replacing field pavement surface distress 

evaluation due to its high accuracy, potential for full automation, and the potential to 

dramatically reduce long-term cost. 
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Chapter 5 Estimating Pavement Surface Distress Conditions with 

Geospatial Modeling 

5.1 Introduction 

Routine evaluation of pavement surface distress condition, which makes up a substantial 

portion of road maintenance budgets, represents a substantial challenge to transportation 

management agencies at all levels (i.e. federal, state, and local). Every year they need to 

evaluate myriad pavement sections distributed over vast geographic areas. For example, 

the New Mexico Department of Transportation (NMDOT) routinely evaluates pavement 

surface distress conditions for approximately 12,500 centerline miles of highways.  

Currently, two methods are operationally used for inspecting pavement surface 

distress conditions: manual evaluation and automated evaluation. Manual evaluation 

involves with trained inspectors visually inspect the surface conditions with subjective 

judgment while walking or riding (Kim et al. 2006). Automated evaluation is 

implemented by using vehicle-mounted electronic sensors (e.g. video cameras, digital 

cameras, and laser sensors) to acquire fine enough resolution images to analyze them 

automatically to produce evaluation results (Zhang et al. 2016). Both manual and 

automated evaluation methods have strengths and weaknesses (McGhee 2004; Bogus et 

al. 2010; Schnebele et al. 2015; Zhang et al. 2015). However, they have two weaknesses 

in common: time-consuming and expensive. This is because both manual and automated 

evaluation methods are conceptually rooted in the principle that “exist then survey”. That 

being said, both manual and automated evaluation methods aim at surveying (not 
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inferring) each individual pavement section to create a complete and comprehensive 

condition dataset (Haas et al. 1994). 

In the real world, it is not always possible to collect exhaustive data every desired 

point because of practical, technical, and economical constraints (Bolstad 2005). 

However, accurate, complete, and prompt evaluation of pavement surface distress is 

extremely important for effective management of the roadway network (Haas et al. 

1994). In order to reduce the amount of work, time, and money associated with pavement 

surface distress condition evaluation and at the same time achieve a high level of 

accuracy and completeness, modeling might be one the efficient options. 

Modeling pavement surface distress condition is conceptually rooted in the 

principle that the occurrences of events are limited in spatial distribution (Strickland 

2015). That being said, occurrences of events are neither uniform nor random in 

distribution – there are factors (e.g., socioeconomic factors) constrain and influence 

where events or processes will occur (Brown et al. 2004). In the context of road 

pavement, the degradation is also neither uniform nor random in distribution; various 

factors influence the occurrences of degraded pavement sections (Hartgen et al. 2014).  

When taking into account the influence of factors known to affect pavement degradation, 

it is possible to infer pavement surface distress condition which allows the amount of 

survey sites to be reduced and/or targeted. 

Many transportation management agencies have developed a variety of pavement 

performance models for use in their pavement management activities. According to 

Lytton (1987), these models can be classified into three categories, including primary 

response models, structural performance models, and functional performance models. 
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Primary response models are used to can predict primary response of pavement to a 

specific factor such as traffic loads. Structural performance models are used to predict 

pavement structural capacity. Functional performance models are used to predict 

pavement’s functionality such as pavement surface friction, wet-weather safety index, 

and so on. This research focuses on modeling overall pavement surface conditions which 

follows in this functional performance model category. 

Previous studies on modeling overall pavement surface distress condition are 

limited. Several studies (e.g. Lou et al. 2001; Terzi 2007; Owolabi et al. 2012) applied 

modeling techniques (neural network model, linear regression model, fuzzy system 

mode, artificial intelligence neural network model, and cluster-based model) to predict 

roadway pavement surface distress condition. However, most of these studies concentrate 

on predicting pavement surface distress condition without considering geospatial data. 

Some of these studies (Attoh-Okine 2001; Al-Kheteeb et al. 2011) used a list of limited 

environmental factors (e.g. temperature) as independent variables for modeling individual 

pavement surface distresses (e.g. alligator cracking). 

A comprehensive literature review reveals that the use of geospatial data for 

estimating overall pavement surface condition is lacking and presents a significant gap in 

the research. This research investigated if overall pavement surface condition could be 

modeled based on routinely collected and publicly available geospatial data 

characterizing traffic volumes, environmental conditions, and topography. The research 

investigated what factors affect overall pavement surface distress condition and how 

many survey sites are required to produce reasonable results. Linear regression analysis 

was used to model overall pavement surface conditions. Despite its simplicity, linear 
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regression is a powerful and the most common tool to define the relationship between a 

dependent variable and the multiple explanatory variables that determine it (Rawlings et 

al. 1998).  

5.2 Methodology 

A multiple linear regression model was selected to model the relationship between 

overall distress rates (ODRs) for pavement surfaces and explanatory variables 

characterizing traffic volumes, environmental conditions, and topography. The multiple 

linear regression model development followed the steps established by Hair et al. (1998). 

5.2.1 Data Acquisition and Preparation 

Within the state of New Mexico, 11,170 data collection sites were identified for 

use in this study. The actual evaluation zone for each data collection site covers the 

rightmost driving lane with a length of one tenth of a mile (528 ft or 0.16 km) from a 

given milepost. A point geographic information system (GIS) database obtained from the 

Earth Data Analysis Center (EDAC) at the University of New Mexico (UNM) provides 

the roadway number, milepost number, and roadway direction for each milepost (Figure 

18). The locations of these mileposts in Figure 18 also indicate the locations of the data 

collection sites.  

Pavement surface distress condition data were acquired from records of manual 

pavement evaluations conducted for the NMDOT during the summer of 2009 (Cordova et 

al. 2009). The reference data are all from flexible pavements (i.e. asphalt concrete or AC 

pavements), since most of the pavements in New Mexico are of this type. For flexible 

pavements, when including rutting and shoving distresses, the NMDOT inspects severity 
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and extent of the following eight distresses on a scale of 0 – 3 (0=Not Present, 1=Low, 

2=Medium, and 3=High): 1) Raveling & Weathering; 2) Bleeding; 3) Rutting and 

Shoving; 4) Longitudinal Cracking; 5) Transverse Cracking; 6) Alligator Cracking; 7); 

Edge Cracks; 8) Patching. Each data collection site’s overall distress rate (ODR) can then 

be calculated based on the following equation: 

𝑂𝐷𝑅 =  ∑ (𝛼𝑖  ×  𝛽𝑖  ×  𝛾𝑖)
8
𝑖=1  (11) 

Where i represents each of the eight distresses,  𝛼 denotes severity rating, 𝛽  indicates 

extent rating, and 𝛾 represents weighting factor for each type of distress. The weighting 

factors used by NMDOT for the each of these distresses are 3, 2, 14, 12, 12, 25, 3, and 2, 

respectively, for each of the eight distresses. The calculated ODR for each of the 11,170 

study sites ranges from 0 to 621. The lower the ODR value, the better the pavement 

condition. The maximum possible value is 657. For this research, ODR was used as the 

dependent variable. 

Explanatory or independent variables were selected thorough literature review 

(Elbheiry et al. 2011; Adlinge and Gupta 2015) and based upon best available data. These 

best available data can be classified into three categories: traffic volumes, environmental 

factors, and topographic factors. Table 14 lists the data and possible explanatory variables 

that can be extracted from them. Explanatory variables obtained from environmental and 

topographic data are in the format of digital grid (raster image, Figure 19 to Figure 23) 

and these values were extracted to each site (milepost) in the acquired GIS milepost 

database.  
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Figure 18. State of New Mexico and locations of surveyed mileposts. The yellow dots 

indicate the locations of mileposts and the number of total mileposts is 11,170. 
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Table 14. Best Available Datasets and Extracted Explanatory Variables 

Type Dataset Year Source Extracted Variables 

Traffic 

Volume 

Traffic 

Volume 
2005-2009 NMDOT 

V1: 2009 AADT; 

V2: AADT in 5 Years 

Mean (2006-2009) 

Heavy 

Vehicle 

Traffic 

Volume 

2005-2009 NMDOT 

V3: 2009 Heavy Vehicle 

AADT; 

V4: Heavy Vehicle 

AADT in 5 Years Mean 

(2006-2009) 

Environmental 

Conditions 

Precipitation 2000-2009 PRISM 

V5: 2009 Total 

Precipitation; 

V6: 5-year Average 

Annual Precipitation 

(2005-2009); 

V7: 10-year Average 

Annual Precipitation 

(2000-2009); 

Average 

Annual 

Maximum 

Temperature 

(AAMAT) 

2000-2009 PRISM 

V8: 2009 AAMAT; 

V9: 5-year AAMAT 

(2005-2009); 

V10: 10-year AAMAT 

(2000-2009) 

Average  

Annual 

Minimum 

Temperature 

(AAMIT) 

1999-2009 PRISM 

V11: 2009 AAMIT; 

V12: 5-year AAMIT 

(2005-2009); 

V13: 10-year AAMAT 

(2000-2009); 

Topographic  

Factors 

Soil Types 2009 EDAC V14: Soil Type 

Elevation 2009 EDAC V15: Elevation 

Slope 2009 EDAC V16: Slope 

Aspect 2009 EDAC V17: Aspect 
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Figure 19. Data characterizing the environmental conditions of the State of New Mexico; 

AAP indicates average annual precipitation, AAMAT indicates average annual maximum 

temperature, and AAMIT indicates average annual minimum temperature; (a) shows the 

total precipitation for the year of 2009; (b) shows the average annual precipitation (AAP) 

from 2005 to 2009; (c) shows the AAP from 2000 to 2009; (d) shows the average annual 

maximum temperature (AAMAT) for the year of 2009; (e) shows 
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Figure 20. Data characterize the soil types of the State of New Mexico. 
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Figure 21. Data show the elevation of the State of New Mexico in shaded relief. 
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Figure 22. Data show the slope of the State of New Mexico in degrees. 
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Figure 23. Data show the aspect of the State of New Mexico in degrees. 
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Traffic volume data were collected by NMDOT at pre-determined locations 

(milepost) and delivered as a standard annual average daily traffic (AADT). Heavy 

vehicle traffic volume was considered because heavy trucks typically cause more 

damages to pavement surfaces than commuting cars (Salama et al. 2006). The Heavy 

vehicle traffic volume was also collected by NMDOT at the same pre-determined survey 

sites and delivered as AADT. Traffic volume data were surveyed by NMDOT at pre-

determined (~2,500) mileposts and presented as attributes associated with each milepost. 

To match the spatial coverage of environmental factors and topographic factors, it is 

necessary to interpolate traffic volume data for unmeasured locations. 

5.2.1.1 Traffic Volume Interpolation for Unmeasured Locations 

According to Shamo et al. (2015), traffic volume data can be interpolated with spatial 

interpolation techniques because of their characteristics of spatial distribution and 

variability. Before interpolating traffic volume for New Mexico, it is necessary to 

examine if the pre-determined mileposts for the traffic volume survey are spatially 

autocorrelated. The Global Moran’s I test was used to measure the overall clustering of 

the survey sites. As shown in Table 15, test results revealed that these survey sites are 

spatially autocorrelated or clustered (p-value < 0.05 and Z score > 0), and, therefore, it is 

valid to perform interpolation for the traffic volume data within New Mexico from 2005 

to 2009. 
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Table 15. Global Moran’s Test for New Mexico Traffic Volume 

Year Moran’s I Index p-Value Z Score 

2005 0.310386 < 0.0001* 55.961373 

2006 0.457583 < 0.0001* 54.993811 

2007 0.329742 < 0.0001* 57.555267 

2008 0.377550 < 0.0001* 22.772707 

2009 0.406651 < 0.0001* 21.144202 

Note:  * indicates significance at p = 0.05 level. 

There are many spatial interpolation methods, but the three most dominant 

techniques are inverse distance weighted (IDW), kriging, and spline (Lee and Wong 

2011). IDW is one of the most frequently used deterministic models in spatial 

interpolation. It is based on the assumption that the attribute value of an unsampled point 

is the weighted average of known values within the neighborhood, and the weights are 

inversely related to the distances between prediction and the sampled locations (Bolstad 

2005). Although IDW is more conceptually intensive, it has the tendency to work better 

with small datasets and it generally leads to a smoother surface (Zhang et al. 2014). 

Therefore, IDW was selected as the interpolation method. With IDW, values for 

unsampled points are estimated by: 

𝑍𝑗  =  
∑

𝑍𝑖
𝑑𝑖𝑗

𝑛𝑖

∑
1

𝑑𝑖𝑗
𝑛𝑖

    (12) 

where 𝑍𝑗 is the estimated value for the unknown point at location j, 𝑑𝑖𝑗 is the distance 

from known point i to unknown point j, 𝑍𝑖 is the value for the known point i, and n is a 

user defined exponent to control how fast a point’s influence wanes with distance 

(Bolstad 2005). According to Zhang et al. (2014), the value 2 is commonly used for n, 
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and the search radius for neighboring points is commonly limited to 12. The interpolated 

grids of traffic value and heavy vehicle traffic volume from 2005 to 2009 are showed in 

Figure 24 and Figure 25.  

 

Figure 24. Data characterizing the traffic volume of the State of New Mexico; Inverse 

distance weighted (IDW) method was used for spatial interpolation; (a) Interpolated 

AADT for the year of 2005; (b) Interpolated AADT for the year of 2006; (c) Interpolated 

AADT for the year of 2007; (d) Interpolated AADT for the year of 2008; (e) Interpolated 

AADT for the year of 2009; (f) Interpolated AADT for 5 years from 2005 to 2009. 
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Figure 25. Data characterizing the heavy vehicle traffic volume of the State of New 

Mexico; HV indicates heavy vehicle; Inverse distance weighted (IDW) method was used 

for spatial interpolation; (a) Interpolated HV AADT for the year of 2005; (b) Interpolated 

HV AADT for the year of 2006; (c) Interpolated HV AADT for the year of 2007; (d) 

Interpolated HV AADT for the year of 2008; (e) Interpolated HV AADT for the year of 

2009; (f) Interpolated HV AADT for 5 years from 2005 to 2009. 

 

5.2.1.2 Explanatory Variable Values Extraction 

Explanatory variables obtained from traffic factors, environmental factors, and 

topographic factors are all in digital grid (raster image) format. The values of these digital 

grids were extracted to each milepost to facilitate modeling. 
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5.2.2 Model Development 

There are 17 explanatory variables and among them 16 variables are continuous data. 

One variable, soil type, is a categorical data (nominal data). Therefore, the initial model 

was developed as a general linear model (GLM) because its suitability for both 

continuous and categorical data. The model is expressed as the following: 

𝑂𝐷𝑅 =  𝛽0 +  𝛽1𝑉1 +  𝛽2𝑉2 + ⋯ +  𝛽17𝑉17 (13) 

Where 𝛽0  represents the intercept parameter, V1 to V17 represent the 17 explanatory 

variables (see Table 16) and β1 to β17 represent the corresponding coefficients.  

In accordance with Hair et al. (1998), Pearson’s correlation analysis was used to 

examine if there is significant correlation among these explanatory variables. It should be 

noted that V14 is categorical data and therefore, its correlation to other explanatory and 

dependent variables was examined via Spearman’s correlation analysis. As shown in 

Table 16, topographic factors (V14 to V17) were weakly correlated (correlation coefficient 

< |0.3|) with ODR. Therefore, they were excluded from the regression. Table 3 also 

revealed that several explanatory variables (e.g., V5, V6, V7) were strongly correlated 

(correlation coefficient > 0.7) with each other. In other words, there is collinearity among 

explanatory variables. Among the strongly correlated explanatory variables, only those 

showing the highest correlation coefficient with dependent variable ODR were used for 

developing the model. These variables are V2, V3, V6, and V11.  
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Table 16. Pearson’s and Spearman’s Correlation Analysis of Explanatory Variables 

Variables ODR V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 

ODR 1.000 
0.905 

(*) 

0.905 

(*) 

0.830 

(*) 

0.834 

(*) 

0.878 

(*) 

0.891 

(*) 

0.887 

(*) 

0.751 

(*) 

0.753 

(*) 

0.755 

(*) 

-0.896 

(*) 

-0.894 

(*) 

-0.894 

(*) 

-0.041 

(*) 

0.124 

(*) 
0.001 -0.003 

V1 
0.905 

(*) 
1.000 

0.988 

(*) 

0.686 

(*) 

0.706 

(*) 

-0.258 

(*) 

-0.281 

(*) 

-0.295 

(*) 

0.074 

(*) 

0.082 

(*) 

0.084 

(*) 

0.082 

(*) 

0.086 

(*) 

0.080 

(*) 
-0.000 

-0.064 

(*) 
0.001 

0.045 

(*) 

V2 
0.908 

(*) 
0.988 

(*) 
1.000 

0.694 
(*) 

0.720 
(*) 

-0.262 
(*) 

-0.283 
(*) 

-0.299 
(*) 

0.072 
(*) 

0.079 
(*) 

0.082 
(*) 

0.078 
(*) 

0.082 
(*) 

0.076 
(*) 

-0.001 
-0.059 

(*) 
0.002 

0.046 
(*) 

V3 
0.830 

(*) 
0.686 

(*) 
0.694 

(*) 
1.000 

0.981 
(*) 

-0.198 
(*) 

-0.196 
(*) 

-0.202 
(*) 

0.114 
(*) 

0.117 
(*) 

0.117 
(*) 

0.087 
(*) 

0.092 
(*) 

0.088 
(*) 

0.019 
-0.081 

(*) 
-0.006 

0.025 
(*) 

V4 
0.838 

(*) 
0.706 

(*) 
0.720 

(*) 
0.981 

(*) 
1.000 

-0.213 
(*) 

-0.212 
(*) 

-0.217 
 (*) 

0.121 
(*) 

0.124 
(*) 

0.124 
(*) 

0.089 
(*) 

0.093 
(*) 

0.090 
(*) 

0.018 
-0.085 

(*) 
-0.006 

0.023 
(*) 

V5 
0.878 

(*) 
-0.258 

(*) 
-0.262 

(*) 
-0.198 

(*) 
-0.213 

(*) 
1.000 

0.924 
(*) 

0.916 
(*) 

-0.351 
(*) 

-0.372 
(*) 

-0.383 
(*) 

-0.189 
(*) 

-0.188 
(*) 

-0.187 
(*) 

-0.031 
(*) 

0.239 
(*) 

0.008 
-0.028 

(*) 

V6 
0.891 

(*) 

-0.281 

(*) 

-0.283 

(*) 

-0.196 

(*) 

-0.212 

(*) 

0.924 

(*) 
1.000 

0.980 

(*) 

-0.387 

(*) 

-0.412 

(*) 

-0.425 

(*) 

-0.202 

(*) 

-0.203 

(*) 

-0.205 

(*) 

-0.033 

(*) 

0.305 

(*) 
0.005 

-0.035 

(*) 

V7 
0.887 

(*) 

-0.295 

(*) 

-0.299 

(*) 

-0.202 

(*) 

-0.217 

(*) 

0.916 

(*) 

0.980 

(*) 
1.000 

-0.323 

(*) 

-0.350 

(*) 

-0.366 

(*) 

-0.157 

(*) 

-0.157 

(*) 

-0.157 

(*) 

-0.025 

(*) 

0.232 

(*) 
0.003 

-0.039 

(*) 

V8 
0.751 

(*) 

0.074 

(*) 

0.072 

(*) 

0.114 

(*) 

0.121 

(*) 

-0.351 

(*) 

-0.387 

(*) 

-0.323 

(*) 
1.000 

0.999 

(*) 

0.997 

(*) 

0.901 

(*) 

0.903 

(*) 

0.908 

(*) 

0.160 

(*) 

-0.947 

(*) 

-0.031 

(*) 
0.006 

V9 
0.753 

(*) 

0.082 

(*) 

0.079 

(*) 

0.117 

(*) 

0.124 

(*) 

-0.372 

(*) 

-0.412 

(*) 

-0.350 

(*) 

0.999 

(*) 
1.0000 

0.999 

(*) 

0.896 

(*) 

0.899 

(*) 

0.904 

(*) 

0.157 

(*) 

-0.949 

(*) 

-0.031 

(*) 
0.008 

V10 
0.755 

(*) 

0.084 

(*) 

0.082 

(*) 

0.117 

(*) 

0.124 

(*) 

-0.383 

(*) 

-0.425 

(*) 

-0.366 

(*) 

0.997 

(*) 

0.999 

(*) 
1.000 

0.892 

(*) 

0.896 

(*) 

0.900 

(*) 

0.155 

(*) 

-0.947 

(*) 

-0.031 

(*) 
0.009 

V11 
-0.896 

(*) 

0.082 

(*) 

0.078 

(*) 

0.087 

(*) 

0.089 

(*) 

-0.189 

(*) 

-0.202 

(*) 

-0.157 

(*) 

0.901 

(*) 

0.896 

(*) 

0.892 

(*) 
1.000 

0.998 

(*) 

0.995 

(*) 

0.142 

(*) 

-0.888 

(*) 

-0.039 

(*) 
0.001 

V12 
-0.894 

(*) 

0.086 

(*) 

0.082 

(*) 

0.092 

(*) 

0.093 

(*) 

-0.188 

(*) 

-0.203 

(*) 

-0.157 

(*) 

0.903 

(*) 

0.899 

(*) 

0.896 

(*) 

0.998 

(*) 
1.000 

0.999 

(*) 

0.141 

(*) 

-0.893 

(*) 

-0.039 

(*) 
0.001 

V13 
-0.894 

(*) 

0.080 

(*) 

0.076 

(*) 

0.088 

(*) 

0.090 

(*) 

-0.187 

(*) 

-0.205 

(*) 

-0.156 

(*) 

0.908 

(*) 

0.904 

(*) 

0.900 

(*) 

0.995 

(*) 

0.999 

(*) 
1.000 

0.142 

(*) 

-0.904 

(*) 

-0.037 

(*) 
0.001 

V14 
-0.041 

(*) 
-0.000 -0.001 0.019 0.018 

-0.031 
(*) 

-0.033 
(*) 

-0.025 
(*) 

0.160 
(*) 

0.157 
(*) 

0.155 
(*) 

0.142 
(*) 

0.141 
(*) 

0.142 
(*) 

1.000 
-0.132 

(*) 
0.394 

(*) 
-0.003 

V15 
0.124 

(*) 
-0.064 

(*) 
-0.059 

(*) 
-0.081 

(*) 
-0.085 

(*) 
0.239 

(*) 
0.305 

(*) 
0.232 

(*) 
-0.947 

(*) 
-0.949 

(*) 
-0.947 

(*) 
-0.888 

(*) 
-0.893 

(*) 
-0.904 

(*) 
-0.132 

(*) 
1.000 

0.033 
(*) 

-0.011 

V16 0.001 0.001 0.002 -0.006 -0.006 0.008 0.005 0.003 
-0.031 

(*) 
-0.031 

(*) 
-0.031 

(*) 
-0.039 

(*) 
-0.039 

(*) 
-0.037 

(*) 
0.394 

(*) 
0.033 

(*) 
1.000 0.018 

V17 -0.003 
0.045 

(*) 
0.046 

(*) 
0.025 

(*) 
0.023 

(*) 
-0.028 

(*) 
-0.035 

(*) 
-0.039 

(*) 
0.006 0.008 0.009 0.001 0.001 0.001 -0.003 -0.011 0.018 1.000 

Note: * indicates significance at p = 0.05 level. 
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Because all remaining explanatory variables were continuous, multiple linear least 

squares regression was used because of its suitability for only continuous data. The model 

can then be expressed as: 

𝑂𝐷𝑅 = 𝛽0 +  𝛽2𝑉2 +  𝛽3𝑉3 +  𝛽6𝑉6 +  𝛽11𝑉11 (14) 

Where 𝛽0 represents the intercept parameter, V2, V3, V6, and V11 represent the explanatory 

variables, and β2, β3, β6, and β11 represent the corresponding coefficients.  

5.2.3 Model Validation 

Among the 11,170 study sites, 10,000 (in-sample) were selected using a random sample 

stratified by ODR and used to develop the regression model. The remaining 1,170 study 

sites (out-of-sample) were used to cross-validate the model results. These out-of-sample 

cross-validation sites are approximately 12% of the in-samples that were used to develop 

the regression model, which satisfies the population size (5%) requirement for cross-

validation (Algina et al. 2000).  

The collected ODRs for the cross-validation sites are considered to be actual 

values, while the model-generated ODRs are considered as the predicted values. Root-

mean-squared-error (RMSE) was used to examine if the errors associated with the model 

is acceptable. RMSE can be calculated as: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑂𝐷𝑅𝑝,𝑖 −  𝑂𝐷𝑅𝑎,𝑖)2𝑛

𝑖=1  (15) 

Where ODRa represents actual ODR, ODRp represents predicted ODR, and n represents 

the number of out-of-sample for cross-validation which is 1,170. 
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Model performance was evaluated using RMSE and Adjusted R
2
 (R

2
adj) which 

provides an additional penalty for increasing model complexity (Chai and Draxler 2014). 

The index of R
2 

supposes that every independent variable in the model explains the 

variation in the dependent variable and it shows how well observations fit a curve or line. 

The equation for calculating R
2
 is: 

𝑅2 = 1 − 
∑ (𝑂𝐷𝑅𝑝,𝑖−𝑂𝐷𝑅𝑎,𝑖)2𝑚

𝑖=1

∑ (𝑂𝐷𝑅𝑝,𝑖−
1

𝑚
∑ 𝑂𝐷𝑅𝑎,𝑖

𝑚
𝑖=1 )2𝑚

𝑖=1

 (5) 

Where ODRa represents actual ODR, ODRp represents predicted ODR, and m represents 

the number of in-sample for each decrement models. R
2
adj is a modified version of R

2
 and 

it not only shows how well observations fit a curve or line, but also adjusts for the 

number of observations in a model. Therefore, R
2

adj is more appropriate for the decrement 

model comparison. The equation for calculating R
2

adj is: 

𝑅𝑎𝑑𝑗
2 = 1 −  

(1− 𝑅2)(𝑡−1)

𝑡−𝑘−1
 (6) 

Where t = number of observations, and k = number of explanatory variables.  

5.2.4 Determination of the Minimum Number of Survey Sites 

The model was developed with 10,000 sample sites, which is approximately the number 

of sites a state transportation management agency like NMDOT currently collects 

annually. A 10% decrement modeling method was used to identify a threshold of loss in 

estimation accuracy. That being said, 9,000 (90% of 10,000) survey sites were used to 

rebuild the model and then the same cross-validation sites were used to assess the 

validity. The decrement ended with 1,000 survey sites. The RMSE and R
2

adj of the first 

decrement model were recorded and compared with the ones of the original model and so 
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on. This iteration was performed ten times until reaching the minimum sample size tested 

(1,000 survey sites).  

5.3 Results and Discussion 

Table 17 shows the results of the multiple linear least squares model using all 10,000 

study sites. This model is valid at a 95% confidence interval (joint p-value < 0.001). The 

adjusted R
2
 value is 0.9167, and the RMSE is 20.418. This error number is acceptable 

because the reference ODR obtained from manual evaluation can exhibit an error up to 

84 based on variability in measurement (Bogus et al. 2010). Out-of-sample cross-

validation revealed that the RMSE obtained from the validation sites was 27.095, which 

is increased from 20.418, but not substantially. This implied that overall pavement 

surface conditions can be estimated based on geospatial modeling with the selected 

traffic, environmental, and topographic factors.  

Table 17. Multiple Linear Least Squares Regression Results Using 10,000 Sites 

Variables 
Coef. 

(β) 
p-value 

Adjusted 

R
2 RMSE 

Joint 

p-value 

Validation 

RMSE 

V2 0.004 < 0.0001* 

0.9080 35.369 < 0.0001* 42.067 

V3 0.003 < 0.0001* 

V6 0.177 < 0.0001* 

V11 -7.563 < 0.0001* 

Intercept 27.283 < 0.0001* 

Note: Coef. indicates coefficient and * indicates significance at p = 0.05 level. 
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The results of decrement models are shown in Table 18 and Figure 26. The 

models for iteration 1 to 7 are valid at a 95% confidence interval (adjusted R
2
 > 0.5 and 

joint p-value < 0.0001). In addition, the RMSEs for 10,000 to 4,000 in-sample regression 

and out-of-sample cross-validation are acceptable because they are all less than 84. 

However, models calibrated based on 3,000 or less samples were not valid (adjusted R
2
 < 

0.5 and joint p-value > 0.05). In addition, the out-of-sample cross-validation results 

revealed that the RMSEs are not acceptable (> 84). This implies for the State of New 

Mexico, the minimum number of survey sites required to model ODR with error less than 

variability in manual inspection is approximately 4,000, which is 40% of the total survey 

sites. It should be noted that the minimum amount of survey sites might be location-

specific. That being said, the amount of 4000 survey sites may only apply to New 

Mexico. For example, a state that has more centerline miles of highways (compared with 

New Mexico) may need a minimum of 5,000 survey sites. This proposed method could 

be replicated by transportation agencies to investigate the minimum amount of survey 

sites for their states. 

All topographic factors (soil type, elevation, slope, and aspect) considered in this 

research were not significantly correlated with overall pavement surface condition as 

measured by ODR. This might be because engineering solutions of roadway construction 

can effectively reduce the influence of topographic factors on pavement surface distress 

conditions. Traffic volumes, especially heavy vehicle traffic volumes, average annual 

precipitation, and average minimum temperatures have the most significant influence on 

pavement surface conditions in New Mexico.  
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Table 18. Results of the Estimation Models based on Various Number of Samples 

Iteration 

In-sample Regression 
Out-of-sample 

Validation RMSE Sites Adjusted R
2 Joint  

p-value 
RMSE 

1 10,000 0.9080 < 0.0001* 35.369 42.067 

2 9,000 0.8598 < 0.0001* 36.623 43.259 

3 8,000 0.8152 < 0.0001* 50.964 60.883 

4 7,000 0.7937 < 0.0001* 51.863 68.999 

5 6,000 0.7742 < 0.0001* 53.491 70.961 

6 5,000 0.6632 < 0.0001* 60.852 72.423 

7 4,000 0.5142 < 0.0001* 70.951 79.852 

8 3,000 0.1319 0.069 95.463 105.290 

9 2,000 0.0866 0.826 107.352 127.889 

10 1,000 0.0353 0.937 117.159 129.961 

Note: * indicates significance at p = 0.05 level. 

Figure 26 reveals that residuals (the difference between predicted ODR and actual 

ODR) could occur at any study sites that have ODR values between 0 and 600. One 

explanation for this is that operationally a pavement section will be repaired or 

reconstructed rapidly if its condition has impacts traffic safety and driving comfort. 

Repaired or reconstructed pavement sections will provide much lower ODR values and 

cause substantially different ODRs than predicted by model, which does not account for 

these maintenance activities.  

Therefore, maintenance records of the pavement sections should be included in 

future iterations of such a model. Maintenance records were not used in this research due 

to data limitations (such records were not available). Given the autonomy of state DOTs 

in the United States, the availability of maintenance records will vary state-to-state.  
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Figure 26. Correlation of predicted ODR versus actual ODR for in-samples regression 

results; (a) 10,000 in-samples correlation; (b) 9,000 in-samples correlation; (c) 8,000 in-

samples correlation; (d) 7,000 in-samples correlation; (e) 6,000 in-samples correlation; (f) 

5,000 in-samples correlation; (g) 4,000 in-samples correlation; (h) 3,000 in-samples 

correlation; (i) 2,000 in-samples correlation; (j) 1,000 in-samples correlation. 
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According to the Federal Highway Administration (FHWA), it takes 

approximately 15 years for a flexible pavement surface to drop 50% in quality (Lenz, 

2011). Results reveal that factors significantly affect overall pavement surface conditions 

are all short-term ones. AADT in recent five years (2005 to 2009), heavy vehicle AADT 

in the same year (2009), average annual precipitation in recent five years (2005 to 2009), 

and annual minimum temperature in the same year (2009) have the most impact on 

overall pavement surface conditions.  

Figure 27 shows that most residuals of the 10,000 in-sample regression model 

have absolute values that are less than 35, which is the RMSE for this regression model. 

Therefore, large residuals are defined as residuals that have absolutely values greater than 

35. A Global Moran’s I test reveals that large residuals are spatially clustered (p-value 

<0.0001 and Moran’s I index is 0.4292). A further inspection identifies and selects all 

large residuals and they are shown in Figure 28. The clusters of large residuals exhibit a 

linear pattern, which is different from other natural phenomena (e.g., precipitation and 

temperature). This linear clustering pattern may be related to construction performance. 

This is because typically a certain length of roadways are constructed or maintained by 

the same contractor. Therefore, construction performance should also be considered in 

future model improvement. This factor was not considered in these models because of a 

lack of data maintained by NMDOT. Re-examining Figure 26 reveals that most large 

residuals are positive, indicating that the developed models have a tendency to 

overestimate the surface distress of pavement sections. Figure 28 also suggests that a 

large portion of the large residuals are located at the border of New Mexico and 

Colorado, where well-maintained record of data (e.g., traffic volume) may do not exist.  
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Figure 27. The distribution pattern of large residuals with a value greater than 35 or less 

than -35, which the RMSE of the 10,000 in-sample regression; residual is defined as the 

difference between predicted ODR and actual ODR; Global Moran’s I test shows the p-

value is less than 0.0001 and the Moran’s I is 0.4292, meaning the large reseals are 

spatial autocorrelated.  
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Figure 28. Anselin Local Moran’s I test results. HH indicates high values are surrounded 

by high values at a 95% confidence interval; LL means low values are surrounded by low 

values at a 95% confidence interval; HL indicates high values are surrounded by low 

values, while LH indicates low values are surrounded by high values. 
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One major limitation of Global Moran’s I test is that it tends to average local 

variations in the strength of spatial autocorrelation. Therefore, Anselin Local Moran’s I 

test, which examines the local level of spatial autocorrelation, was used to identify 

locations where values of the variable are both extreme and geographically 

homogeneous.  Figure 28 reveals that large residuals in northern New Mexico are locally 

clustered. Northern New Mexico has more mountainous terrain with large temperature 

and precipitation variations compared to central and southern New Mexico, and 

therefore, this may provide intervention to the models. This locally clustered pattern 

might also be caused by recent repair or reconstruction work. 

With the help of geospatial modeling, overall pavement surface conditions can be 

estimated based on a smaller number of survey sites. For the state of New Mexico, the 

minimum number of survey sites is approximately 40% of the number of sites currently 

being surveyed. This indicates that states like New Mexico could significantly reduce the 

number of sites surveyed in the future if they leverage the geospatial modeling approach 

evaluated here.  

5.4 Conclusions 

Routine evaluation of pavement surface distress conditions is a challenge to all 

transportation management agencies. Practicality does not current permit the collection of 

exhaustive condition data for all pavement assets, though technology is changing this 

(Zhang et al. 2016). Current assessment methods for pavement surface distress conditions 

are expensive and time-consuming. To overcome these limitations, we present a novel 

approach for overall pavement surface distress condition evaluation based on geospatial 

modeling. Our results have shown that geospatial modeling could effectively (R
2
 > 0.9) 
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estimate overall pavement surface distress conditions based on traffic and environmental 

factors. In addition, for the state of New Mexico, the minimum number of survey sites 

required to estimate ODR within the bounds of manual measurement error (Bogus et al. 

2010) is 4,000, less than 40% of what has been historically collected. These results show 

the potential for geospatial modeling techniques to estimate overall pavement surface 

distress condition with fewer survey sites, substantially reducing pavement surface 

condition assessment costs and time. This automated system would only require users to 

collect the geospatial data for the surveyed sites, upload the geospatial data to the system, 

while the computing-intensive process such as model development is fully automated. 
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Chapter 6 Summary and Conclusions 

This section provides a comprehensive and integrated conclusion based on the research 

results obtained from the three independent studies in the previous sections (Section 3, 4, 

and 5). This section also discusses the limitations of the research and their implications 

for future research. Although each of the three studies explores the utility of a specific 

GT (e.g., geospatial modeling), they are all applied in the context of pavement surface 

distress evaluation in the United States. 

6.1 Summary of Research Results 

Three geospatial technologies (GT), including high-spatial resolution natural color digital 

aerial photography (HiSR-DAP), hyper-spatial resolution digital aerial photography 

(HySR-DAP), and geospatial modeling, can permit rapid assessment of pavement surface 

distress conditions at a low cost. Specifically, the results have shown that HiSR-DAP of 

6-inch spatial resolution can be used to evaluate the overall pavement surface distress 

conditions with a high degree of certainty (R
2
 > 95%). At a lesser degree of certainty (R

2
 

> 82% and R
2
 > 72% respectively), 12-inch and 24-inch HiSR-DAP can also be used to 

assess overall pavement surface distress conditions. 

Using HySR-DAP acquired from a small-unmanned aircraft system (S-UAS) as 

input, aerial triangulation (AT) can be used to generate millimeter scale orthophotos and 

digital surface models (DSMs) and these products can be effectively used to characterize 

detailed pavement surface distresses comparable to ground-based manual measurement 

(at a 5% significant level). This finding lays the foundation for future research into S-

UAS based automated pavement surface distress evaluation. 
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Geospatial modeling can effectively (R
2
 > 90%) estimate overall pavement 

surface distress conditions based on traffic and environmental factors. In addition, for the 

state of New Mexico, the minimum amount of survey sites required to estimate overall 

pavement surface distress rates within the bounds of manual measurement error is 4,000, 

less than 40% of what has been historically collected. 

6.1.1 Appropriate Application of Each Proposed Method 

Each proposed method has a different application or focus in the context of pavement 

surface distress evaluation. The evaluation of pavement surface distress conditions using 

HiSR-DAP could be used as a rapid and cost-effective predictor of overall pavement 

surface distress conditions for routine, high-level information checks. This method could 

also be used to evaluate overall pavement surface distress conditions where field 

inspections are not possible to perform. It is not likely that this method will completely 

replace field inspection due to its lack of detailed pavement surface distress information 

and the necessity of using field inspection results as reference data for model 

development. The HySR-DAP based method could be used to rapidly and cost-

effectively measure detailed pavement surface conditions in situations where field 

inspectors cannot evaluate without considerable labor costs (e.g., sections in remote 

areas) or where survey vehicles cannot gain access. This method also holds the potential 

to completely replace currently adopted field inspection methods once restrictions on S-

UAS operations are lifted. Geospatial modeling could be used to rapidly and cost-

effectively estimate overall pavement surface distress conditions based on traffic and 

environmental factors with substantially reduced survey sites. This method is readily 

deployable and can successfully reduce approximately 60% the survey sites that have 
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been historically evaluated. For the same reasons as HiSR-DAP based method, geospatial 

modeling method is not likely to be able to completely substitute for field inspection, but 

it could be used for routine, high-level information checks.  

6.1.2 Broader Research Impact  

In a broader context, these proposed methods hold the potential to be beneficial to 

infrastructure management and asset management. Many infrastructure assets, especially 

those are spatially distributed such as oil and gas pipelines, bridges, and dams, also have 

the need to be routinely evaluated and monitored to examine their serviceability. The 

proposed methods can be modified and customized by researchers or practitioners from 

investigate the condition of other types of assets. 

Because of the capability to detect both detailed horizontal and vertical distress, 

the HySR-DAP based method can also be used to monitor or assess subsidence or 

displacement of infrastructure and assets, especially for high-rise buildings or structures. 

HiSR-DAP and HySR-DAP can also be used by infrastructure management agencies to 

support asset mapping and infrastructure development programs as well as post-disaster 

infrastructure condition assessment (Jensen and Cowen, 1999; Ezequiel et al., 2014).  

Coupled with higher temporal resolution and spatial resolution GIS and remote 

sensing data, geospatial modeling techniques hold a great potential for applications in 

predicting infrastructure conditions at a national level. For example, the U.S. Department 

of Transportation (DOT) could build a model to estimate the condition of the interstate 

highway systems. 
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In addition, major technological advances in GT have provided new tools to 

national management agencies to collect more accurate, timely and unbiased information 

about their infrastructure assets.  

6.2 Research Limitations 

For the HiSR-DAP based method, one limitation is that it has limited utility for high 

traffic volume (e.g., traffic congestion) pavement sections. This is because vehicles are 

considered to be noises that reduce the area of pavement observed in aerial images. 

Another limitation is that it is still necessary to collect reference pavement surface 

distress rates to develop initial model calibrations. 

For the HySR-DAP based method, aerial images are collected via small-

unmanned aircraft systems (S-UAS). Currently, due to a wide variety of regulatory and 

safety concerns, the legal use of S-UAS is severely restricted in the United States. 

Therefore, this proposed method is not operationally ready before the restrictions on 

beyond line-of-sight S-UAS operations are lifted. In addition, this proposed method 

detects pavement surface distress rates through manual digitization; automation is the 

logical next step. 

For the geospatial modeling based method, the limitation is that it did not include 

the pavement material, pavement age, pavement design, pavement construction, 

pavement repair, and other important pavement maintenance data in the modeling due to 

lack of availability. 

One common limitation of the three proposed methods is that they require 

researchers or practitioners in the infrastructure management communities have a certain 
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amount of geospatial knowledge and skills. The expectation is that GT will be leveraged 

for infrastructure management education in the near future to create a new generation of 

infrastructure engineers to effectively employ GT. 

6.3 Implications for Future Research 

Future research with regard to using GT for pavement surface distress evaluation is to 

follow. One possible future research topic is to explore the utility of other routinely-

acquired and publicly-accessible terrestrial remote sensing data to evaluate pavement 

surface distress conditions. These terrestrial remote sensing data include data acquired by 

commercial companies such as Google. Google Street-View may provide detailed 

information for roadway pavement surface distress evaluation. The potential of using 

these terrestrial remote sensing data for transportation asset management should also be 

explored. For example, these data could be used to inventory various roadway assets 

(e.g., pavements, bridges, signage, and guardrails).  

Another topic that warrants further research is the automation, both for filtering 

out unwanted features on the pavement such as vehicles and shadows and  extraction of 

detailed distress metrics given the data volumes involved (Lippitt 2015). The promising 

technology for automation is geographic object-based image analysis (GEOBIA: 

Blaschke 2010). Algorithms will be developed to optimize the image segmentation to 

detect each individual distress.  

The development of suitable S-UAS for operational pavement surface distress 

evaluation also warrants further research. The environment for pavement surface distress 

evaluation is characterized by constant traffic volume and extensive pavement sections. 

This unique environment requires S-UAS to be able to fly for a long duration. Short flight 



122 
 

time limits the operational use of S-UAS for pavement surface distress evaluation 

because a roadway is linearly distributed over an extensive area. More importantly, the 

safety mechanism of S-UAS should be maximized to prevent the occurrence of crashes 

which will cause traffic accidents, especially for the S-UAS operated above highways.  

New evaluation protocols and distress metrics should be developed since S-UAS 

acquired HySR-DAP holds the potential to completely replace currently adopted 

pavement surface distress evaluation methods. Current evaluation protocols and distress 

metrics are developed to satisfy ground-based evaluation methods. S-UAS based 

evaluation opens a new evaluation paradigm. 

Considering the data volume involved for statewide pavement surface distress 

evaluation, the improvement of database for condition data warrants further exploration. 

This is especially critical for HySR-DAP since the image size is large (big data). Coupled 

with internet of things (IoT), such a database will enable transportation agencies to 

inventory long-term pavement surface images which can provide these agencies with the 

capability to identify spatial and temporal patterns of pavement surface distress 

conditions from a primary record.  

In recent years, many other sensors such as thermal infrared (TIR) cameras and 

LiDAR are becoming commercially available in miniaturized forms suitable for operation 

on S-UAS. Many of these sensors, while more expensive per sensor, have the potential to 

improve detailed pavement surface distress evaluation. The payload of S-UAS has been 

steadily improved and coupled with these TIR and LIDAR sensors, and there is great 

potential for their application in pavement surface distress condition evaluation. Future 

research should be performed to explore the utility of these sensors. 
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Appendix A. Flexible Pavement Distress Evaluation Reference Chart 

DISTRESS SEVERITY EXTENT 

Raveling & Weathering:  

 

The wearing away of the pavement 
surface, due to dislodged aggregate 

particles and loss of asphalt binder. 

Normally the extent will be 
throughout the test section. 

Low:    Aggregate or binder has started to wear 

away on pavement surface.  Some dislodged 

aggregate can be found on the shoulder. (1) 
Med:    Aggregate or binder has worn away.  

Surface texture is rough and pitted. (2) 

High:   Aggregate and/or binder has worn away, and 
surface texture is severely rough and pitted. (3) 

Low: 1% to 30% of test section. 

(1)  

Med:  31% to 60% of test section.  
(2) 

High:  61% of test section, or more. 

(3) 
 

   

Bleeding: 

 
A film of bituminous material on the 

pavement surface. 

Low:    Film is evident, but aggregate can still be 

seen. Spotty. (1) 
Med:    Film is clearly seen, covers most of the 

aggregate, and is a little sticky. (2)        
High:    Film is predominant, very sticky, and 

material is thick enough to shove. (3) 

Low:    1% to 30% of test section. 

 (1) 
Med:  31% to 60% of test section. 

 (2) 
High:  61% of test section, or more. 

 (3) 

   

Rutting and Shoving:   

 

Longitudinal surface depressions in 

wheel path. (Check with a 4-foot rut 
bar.) 

Low:     ¼-inch to ½-inch in depth.  
(1) 

Med:     ½-inch to 1-inch in depth.  

(2) 
High:    More than 1-inch in depth.  

(3) 

Low:     1% to 30% of test section. 
 (1) 

Med:   31% to 60% of test section. 

 (2) 
High:   61% of test section, or more. 

 (3) 

   

Cracks: 

 

Longitudinal Cracks: 

Wheel Track 
Mid-Lane 

Center Line 

 

Transverse Cracks: 

Full Width 

Low:     Sealed or non-sealed with a mean width of 
less than ¼-inch.  May have very minor spalls. (1) 

Med:     A.  Sealed or non-sealed, and moderately 

spalled.  Any width. B.  Sealed, but sealant 
separated, allowing water to penetrate. C.  Non-

sealed cracks that are not spalled, but are over ¼-

inch wide. D.  Low severity alligator cracks exist 
near crack, or at the corners of intersecting cracks. 

E.  Causes a significant bump to a vehicle. (2) 

High:  A. Severely spalled.  (Any width.) B.  
Medium to high severity alligator cracks exists near 

the crack, or at the corners of intersecting cracks. C.  

Causes a severe bump to a vehicle. (3) 

Low:     1% to 30% of test section. 

(1) 
Med:  31% to 60% of test section. 

(2) 

High:  61% of test section, or more. 

(3) 

   

Alligator Cracks: 

 

Pattern of interconnected cracks 
resembling chicken wire or alligator 

skin. 

 

Low:    Hairline, disconnected cracks.  1/8-inch 

wide, or less. No spalls. (1)       

Med:    Fully developed cracks greater than 1/8-inch 
wide. Lightly spalled. (2)  

High:   Severely spalled.  Cells rock.  May pump.(3) 

Low:    1% to 30% of test section. 

 (1) 

Med:  31% to 60% of test section. 
 (2) 

High:  61% of test section, or more. 

 (3) 

   

Edge Cracks: 

 

Cracks which occur on the edge of 
the pavement. 

Low:     ¼-inch wide, or less.  No spalls. 

 (1) 

Med:    Greater than ¼-inch wide.  Some spalls. 
 (2) 

High:    Severely spalled. 

 (3) 

Low:    1% to 30% of test section. 

  (1) 

Med:  31% to 60% of test section. 
  (2) 

High:  61% of test section, or more. 

  (3) 

   

Patching: 

 

An area where the original pavement 
has been removed and replaced with 

similar or different material. 

 
Types of Patching: 

Hot Mix Patch. 

Skin Patch. 
Other types (Please note on “note 

section” of the evaluation card.) 

 

Low:     Patch is present, and is in good condition. 

 (1) 

 
Med:    Somewhat deteriorated.  Low to medium of 

any type of distress on patch. 

(2)  
 

High:    Patch is deteriorated to point of soon or 

immediately needing replacement. 
(3)        

Low:    1% to 30% of test section. 

 (1) 

 
Med:  31% to 60% of test section. 

 (2) 

 
High:  61% of test section, or more. 

 (3) 
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Appendix B. Flexible Pavement Distress Types and Ratings 

Pavement 

Distress 

Severity Extent 

None or Not 

Applicable 
Low Medium High 

None or Not 

Applicable 
Low Medium High 

Raveling & 

Weathering 
0 1 2 3 0 1 2 3 

Bleeding 0 1 2 3 0 1 2 3 

Rutting & 

Shoving 
0 1 2 3 0 1 2 3 

Longitudinal 

Cracking 
0 1 2 3 0 1 2 3 

Transverse 

Cracking 
0 1 2 3 0 1 2 3 

Alligator 

Cracking 
0 1 2 3 0 1 2 3 

Edge Cracks 0 1 2 3 0 1 2 3 

Patching 0 1 2 3 0 1 2 3 
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Appendix C. Rigid Pavement Distress Evaluation Reference Chart 

DISTRESS SEVERITY EXTENT 

Corner Break: Crack intersects 

joints at a distance less than 6 

feet on either side, measured 
from the corner.  Crack extends 

vertically through the entire 

slab thickness. 

Low:   Crack is tight (hairline).  Well sealed cracks considered tight. 

No faulting or break-up. (1)       

Med:   Crack is working and spalled at low or medium severity.  No 
break-up of corner.  Faulting of crack or joint less than ½- inch.  

Temporary patching may exist. (2)          

High:  Crack is spalled at high severity; or the corner has broken into 
2 or more pieces; or faulting more than ½-inch.(3)      

Low:  1 to 3 per test section. 

 (1) 

Med:  4 to 6 per test section. 
 (2) 

High:  7 or more per test section. 

 (3)       

Faulting of Transverse Joints 

and  Cracks: Elevation 
difference across a transverse 

joint or crack. 

Low:   Faulted joints or cracks which average 1/16-inch or less. (1) 

Med:   Faulted joints or cracks which average more than 1/16-inch; 
but less than 1/4-inch. (2)       

High:   Faulted joints or cracks which average 1/4-inch or more. (3) 

Low:    1% to 30% of test section. 

(1) 
Med:  31% to 60% of test section. 

(2) 

High:  61% of test section, or 
more. (3) 

Joint Seal Damage: 

Any condition which allows 
incompressible materials or 

water to infiltrate the joint from 

the surface.  Types of joint seal 
damage: (1. Joint sealant 

stripping.  2.  Joint sealant 

extrusion.  3.  Weed growth.  4.  
Hardening of filler. 5.  Loss of 

bond to slab edges. 6. Joint 

sealant absence.) 

Low:   Sealer is in generally good condition, with only minor 

damage.  Little water and no incompressible can infiltrate the joint. 
(1) 

Med:   Sealer is in generally fair condition, with one or more types) 

of damage occurring to a moderate degree.  Water and also some 
incompressible can infiltrate easily. (2) 

High:  Sealer is in generally poor condition, with one or more types 

of damage occurring to a severe degree.  Water and incompressible 
infiltrate freely. (3) 

Low:    1%  to 30% of test section. 

(1) 
 

Med:  31% to 60% of test section. 

(2) 
 

High:  61% of test section, or 

more. 
(3) 

Lane/Shoulder Drop-Off or 
Heave: 

 

The difference in elevation 
between the traffic lane and the 

shoulder. 

Low:   Elevation difference:  ¼-inch to ½-inch. (1) 
 

Med:   Elevation difference:  ½-inch to 1 inch.(2) 

 
High:  Elevation difference:  One inch or more. (3) 

Low:    1% to 30% of test section. 
(1) 

Med:  31% to 60% of test section. 

(2) 
High:  61% of test section, or 

more. (3) 

Longitudinal Cracks: 

 

Cracks which run generally 

parallel, to the pavement 
centerline. 

Low:   Hairline crack with no spalling or faulting. (1) 

Med:   Working crack with low, to moderately severe spalling and/or 

faulting less than ½-inch. (2) 

High:   Crack greater than 1-inch wide; high severity spalling; faulted 
½-inch or more. (3) 

Low:  1 to 3 per test section. (1) 

Med:  4 to 6 per test section. (2) 

High:  7 or more per test section. 

(3) 

Patch Deterioration: 

 
Area where part of the original 

pavement has been replaced or 

covered with similar or 
different material. 

Low:   Patch functioning well with little or no deterioration.  Low 

severity spalling of patch edges may exist.  Faulting across the slab-
patch joint less than ¼-inch.  Rated low, even if in excellent 

condition. (1) 

Med:   Patch has low severity cracking, and/or some spalling of 
medium severity around the edges.  Temporary patches have been 

placed because of permanent patch deterioration. (2) 

High:  Patch has deteriorated to a condition which requires 
replacement, due to spalling, rutting or cracking within the patch. (3) 

Low:  One per test section. 

 (1) 
 

Med:  Two per test section. 

 (2) 
 

High:  Three or more per test 

section. (3) 

Spalling of Transverse and 

Longitudinal Joints and Cracks: 

 
Cracking, breaking or chipping 

of slab edges within 2 feet of 

the joint.  Spall does not extend 
vertically through the slab, but 

angles through the slab to the 

joint or crack. 

Low:  Spall less than 2-feet long;  if spall is broken and fragmented, 

it must not extend more than 3-inches from joint/crack. Spalls more               

than 2-feet long with spall held tightly in place; if cracked, only 2 or 
3 pieces.  Joint/crack is lightly frayed:  fray extends less than 3 

inches from edge of joint/crack. (1) 

Med:  One of the following conditions exists: A. Spall broken into 
pieces; spall extends more than 3 inches from joint/crack. B. 

Some/all pieces loose or missing; do not present a hazard. C. 

Joint/crack moderately frayed; fray extends more than 3”. D. 
Temporary patching may exist. (2) 

High:  Joint is severely spalled, spall is broken into pieces.  Tire 

damage hazard.  Requires speed reduction. (3) 

Low:    1% to 30% of test section. 

(Normally, the extent will be 

throughout   the test section.) (1) 
Med:  31% to 60% of test section. 

(2) 

High:  61% of test section, or 
more. (3) 

Transverse and Diagonal 

Cracks: Medium or high 

severity cracks are working 
cracks, and are considered 

major structural distresses.  

(Note:  hairline cracks that are 
less than 6-feet long are not 

rated.) 

Low:  Hairline crack without spalling or faulting. Well-sealed crack 

without visible faulting or spalling. (1) 

Med:  Working crack with low to moderately severe spalling, and, or 
faulting less than ½-inch. (2) 

High: Crack greater than 1-inch wide; High severity spalling; faulted 

½-inch or more. (3) 

Low:  1 to 3 per test section. (1) 

Med:  4 to 6 per test section. (2) 

High:  7 or more per test section. 
(3) 
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Appendix D. Rigid Pavement Distress Types and Ratings 

Pavement 

Distress 

Severity Extent 

None or 

Not 

Applicable 

Low Medium High 

None or 

Not 

Applicable 

Low Medium High 

Corner Break 0 1 2 3 0 1 2 3 

Faulting of 

Transverse Joints 

and Cracks 

0 1 2 3 0 1 2 3 

Joint Seal 

Damage 
0 1 2 3 0 1 2 3 

Lane/Shoulder 

Drop-Off or 

Heave 

0 1 2 3 0 1 2 3 

Longitudinal 

Cracking 
0 1 2 3 0 1 2 3 

Patch 

Deterioration 
0 1 2 3 0 1 2 3 

Spalling of Joints 

and Cracks 
0 1 2 3 0 1 2 3 

Transverse & 

Diagonal Cracks 
0 1 2 3 0 1 2 3 
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Appendix E. Illustration of Test Sections on Two-Lane and Four-Lane 

Highways 

 

Data are collected only in the positive direction on two-lane highways (one lane each 

direction). In addition, data are collected in the far right driving lane and never in passing 

lanes, turning lanes, or on the shoulder. For multi-lane highways (four or more through 

lanes combined in each direction), data are collected in both the positive and negative 

directions at a given milepost. In the positive direction the pavement evaluation is 

conducted from a given milepost plus 530 feet, while in the negative direction the 

evaluation is conducted from a given milepost minus 530 feet. This ensures that the 

pavement sections evaluated at a given milepost are parallel to each other. Like two-lane 

highways, the evaluation is conducted in the far right driving lane, and never in a passing 

lane, turning lane or on the shoulder. 

 


