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      By 
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    M.S., CIVIL ENGINEERING, UNIVERSITY OF NEW MEXICO, USA, 2019 
 

 

           ABSTRACT 

 

This thesis presents a study performed to validate the State-based Peridynamic 

Lattice Model (SPLM) using results obtained from laboratory experiments. The SPLM is 

capable of modeling cracking of solids using particle lattices. We use a plane stress, elastic-

plastic damage SPLM model for the simulations. The SPLM model is appropriate for 

computational simulations of cementitious materials as it automatically allows cracks to 

develop. In this study, the lattices are rotated through different angles and the variations of 

the cracking patterns are studied.   

In the laboratory, we performed nine Brazilian split cylinder tests, three anchor 

pullout/direct tensile tests, and eight compression tests on cylinders of standard size. We 

also tested four beams as modulus of rupture tests. The results from the laboratory tests 

and the SPLM simulations were then compared. The comparison indicates that the SPLM 

produced similar results as the laboratory experiments and the ACI code predictions. These 

results indicate that SPLM is a reasonable simulation method for these types of specimens.  

Keywords: SPLM, peridynamic, plane stress, crack, damage, plasticity. 



vi 

 

Table of Contents 

DEDICATION.................................................................................................................. iii 

ACKNOWLEDGEMENTS ............................................................................................ iv 

ABSTRACT ........................................................................................................................v 

Table of Contents ............................................................................................................. vi 

List of Figures ................................................................................................................. viii 

List of Tables .................................................................................................................... xi 

Chapter 1 Introduction......................................................................................................1 

1.1 Motivation ................................................................................................................. 1 

1.2 Scope ......................................................................................................................... 3 

1.3 Outline of Thesis ....................................................................................................... 4 

Chapter 2 Literature Review ............................................................................................5 

2.1 History of Fracture Mechanics Theory ...................................................................... 6 

2.1.1 Inglis infinite plate theory .............................................................................................................. 6 

2.1.2 Griffith’s energy criterion and Irwin’s stress intensity factor approach ......................................... 7 

2.2 Nonlinear fracture mechanics .................................................................................... 8 

2.2.1 Cohesive crack model ............................................................................................. 9 

2.2.2 Interface element approach ........................................................................................................... 10 

2.2.3 Bond-slip model ........................................................................................................................... 10 

2.3 Computational fracture mechanics .......................................................................... 10 

2.4 Theory of Elasticity ................................................................................................. 12 

2.5 Continuum Mechanics ............................................................................................. 15 

2.6 Traction Vectors and Stress Tensors ....................................................................... 15 

2.7 Cauchy’s Stress Theory ........................................................................................... 17 

2.7.1 Limitations of Cauchy’s Stress Theory ........................................................................................ 19 

Chapter 3 Peridynamics ..................................................................................................20 

3.1 Bond-based Peridynamics ....................................................................................... 21 

3.2 Bond-based Micropolar Peridynamic Theory ......................................................... 23 

3.3 State-Based Peridynamic Model ............................................................................. 23 

3.4 State-based Peridynamic Lattice Model (SPLM) .................................................... 24 

3.4.1 3D Particle Configuration ............................................................................................................. 25 

3.4.2 Elastic SPLM ................................................................................................................................ 27 

3.4.3 SPLM Stretch and Strain .............................................................................................................. 29 

3.4.4 SPLM Force and Stress ................................................................................................................ 29 



vii 

 

3.5 SPLM Damage Model ............................................................................................. 32 

3.6 SPLM Plasticity Model ........................................................................................... 34 

Chapter 4 Laboratory Experiments ...............................................................................35 

4.1 Brazilian Split Cylinder Test ................................................................................... 36 

4.1.1 Principle of Operation .................................................................................................................. 36 

4.1.2 Discussion .................................................................................................................................... 38 

4.2 Direct Tensile Test ................................................................................................... 41 

4.2.1 Principle of Operation .................................................................................................................. 41 

4.2.2 Discussion .................................................................................................................................... 42 

4.3 Modulus of Rupture (3-point bending test) ............................................................. 47 

4.3.1 Principle of Operation .................................................................................................................. 47 

4.3.2 Discussion .................................................................................................................................... 48 

4.4 Direct Compression Test ......................................................................................... 51 

4.4.1 Principle of Operation .................................................................................................................. 51 

4.4.2 Discussion .................................................................................................................................... 53 

4.5 Sieve Analysis ......................................................................................................... 56 

4.5.1 Apparatus Used ............................................................................................................................ 56 

4.5.2 Procedure ...................................................................................................................................... 57 

4.5.3 Results .......................................................................................................................................... 57 

4.7 Conclusion ............................................................................................................... 59 

Chapter 5 SPLM Validation ...........................................................................................60 

5.1 Computational Implementation ............................................................................... 60 

5.2 Brazilian Split Cylinder using SPLM ...................................................................... 61 

5.3 Direct Tension Test using SPLM ............................................................................ 67 

5.4 Modulus of Rupture using SPLM ............................................................................ 71 

5.5 Direct Compression test using SPLM ..................................................................... 74 

5.6 Summary .................................................................................................................. 76 

Chapter 6 Discussion and Conclusions ..........................................................................78 

6.1 Discussion ................................................................................................................ 79 

6.2 Future Work ............................................................................................................. 80 

References .........................................................................................................................81 

 

 

 

 



viii 

 

List of Figures 

Figure 2-1 Inglis infinite plate with elliptical hole, showing  in front of crack ............... 7 

Figure 2-2 Hillerborg’s fictitious crack model (Hillerborg et al., 1976) ............................ 9 

Figure 2-3 Updated Navier's theory of elasticity (Gerstle, 2015, pp-57) ......................... 13 

Figure 2-4 Cartesian coordinate system and unit Vector .................................................. 15 

Figure 2-5 Cylindrical body (Gerstle, 2015) ..................................................................... 17 

Figure 2-6 Components of Cauchy’s stress tensor ........................................................... 18 

Figure 3-1 Kinematics of two nearby particles (Gerstle, 2015, pp-149) .......................... 22 

Figure 3-2 Ordinary bond-based peridynamic pairwise function f (Gerstle, 2015) ......... 23 

Figure 3-3 Hexagonal close-packed (left) and face-centered cubic (right) configurations

........................................................................................................................................... 25 

Figure 3-4 Bond numbering order of first and second nearest numbers for FCC lattice 

(Gerstle, 2015) .................................................................................................................. 27 

Figure 3-5 Stress versus CODeq (Nikravesh & Gerstle, 2018) ........................................ 33 

Figure 3-6 Damage versus CODeq ................................................................................... 33 

Figure 4-1 Laboratory set up for Brazilian splitting test................................................... 37 

Figure 4-2 Time sequence of occurrence of crack for Test ‘BR09’ ................................. 39 

Figure 4-3 Load versus Displacement plot for Brazilian split cylinder test ..................... 40 

Figure 4-4 Load versus Time plot for Brazilian split cylinder test ................................... 40 

Figure 4-5 Peak loads for all Brazilian split experiments ................................................. 41 

Figure 4-6 Laboratory set up for Direct Tensile test......................................................... 45 

Figure 4-7 Observed cracking patterns for direct tensile test at the end ........................... 45 

Figure 4-8 Load versus position plot for direct tensile test                                       ........ 46 

Figure 4-9 Load versus time plot for direct tensile test .................................................... 46 

Figure 4-10 Peak loads for all direct tensile tests ............................................................. 47 

Figure 4-11 Modulus of rupture test - Experiment 1 ........................................................ 49 

Figure 4-12 Load versus displacement plot for modulus of rupture tests......................... 49 

Figure 4-13 Load versus time plot for modulus of rupture tests....................................... 50 

Figure 4-14 Peak loads for modulus of rupture experiments ............................................ 50 

Figure 4-15 Laboratory set up for Direct Compression test ............................................. 52 

Figure 4-16 Different direct compression tests performed in the laboratory.................... 54 

file:///E:/Thesis%20work/thesis%20draft/Thesis%20Draft%2003_03.docx%23_Toc2796681
file:///E:/Thesis%20work/thesis%20draft/Thesis%20Draft%2003_03.docx%23_Toc2796683
file:///E:/Thesis%20work/thesis%20draft/Thesis%20Draft%2003_03.docx%23_Toc2796684
file:///E:/Thesis%20work/thesis%20draft/Thesis%20Draft%2003_03.docx%23_Toc2796685
file:///E:/Thesis%20work/thesis%20draft/Thesis%20Draft%2003_03.docx%23_Toc2796686


ix 

 

Figure 4-17 Load versus position plot for direct compression test ................................... 55 

Figure 4-18 Load versus time plot for direct compression test ........................................ 55 

Figure 4-19 Peak load for all direct compression tests ..................................................... 56 

Figure 4-20 Sieve analysis of concrete mix ...................................................................... 58 

Figure 5-1 a) Front view of the Brazilian split cylinder           b) Close up view of a 

cylinder…………………………………………………………………………………..62 

Figure 5-2 Brazilian split cylinder under compressive loading ........................................ 63 

Figure 5-3 Stress distribution along the diameter ............................................................. 63 

Figure 5-4 Force-Displacement relation of Brazilian Split cylinder for 0-degree lattice 

rotation .............................................................................................................................. 64 

Figure 5-5 Cracking patterns obtained for Brazilian Splitting test specimen whose particle 

lattice is rotated through a)0, b)15 and c)30 degrees ........................................................ 65 

Figure 5-6 Load comparison between different SPLM lattice rotations, laboratory value 

and classical theoretical value for the Brazilian splitting test. .......................................... 66 

Figure 5-7 Plot of a) displacement vs time b) force vs time c) load vs displacement of 

particles at top loaded region of Brazilian split specimen ................................................ 67 

Figure 5-8 Cracking patterns obtained for direct tensile test specimen whose particle 

lattice is rotated through a)0, b)15 and c)30 degrees ........................................................ 68 

Figure 5-9 Cracking patterns obtained for direct tensile test with embedded bolts whose 

particle lattice is rotated through a) 0, b) 15 and c) 30 degrees ........................................ 69 

Figure 5-10 Plot of a) strain vs time b) stress vs time and c) stress vs strain of particle 

near the bolt head shown in figure 5-9.............................................................................. 69 

Figure 5-11 Load comparison between different lattice rotations, laboratory value and 

theoretical value for direct tension test ............................................................................. 70 

Figure 5-12 Cracking patterns obtained for direct tensile test with bolts at 1/4th length 

from left and whose particle lattice is rotated through a) 0, b)15 and c)30 degrees ......... 71 

Figure 5-13 Modulus of rupture experiment using SPLM................................................ 72 

Figure 5-14 Load versus displacement graph for modulus of rupture test for 0-degree 

lattice rotation ................................................................................................................... 72 

Figure 5-15 Plot of a) displacement vs time b) force vs time c) load vs displacement of 

particles at top loaded region of modulus of rupture specimen ........................................ 73 



x 

 

Figure 5-16 Load comparison between different lattice rotations, laboratory value and 

theoretical value for modulus of rupture test .................................................................... 73 

Figure 5-17 Cracking patterns obtained for direct compression test whose particle lattice 

is rotated through a)0, b)15 and c)30 degrees ................................................................... 74 

Figure 5-18 Plot of a) displacement vs time b) force vs time c) load vs displacement 

compressive strength specimen ......................................................................................... 75 

Figure 5-19 Load comparison between different lattice rotations, laboratory value and 

theoretical value for compressive strength test ................................................................. 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Tables 

Table 4-1 Summary of test results for splitting strength................................................... 37 

Table 4-2 Summary of the test results for direct tensile strength ..................................... 42 

Table 4-3 Summary of the test results for Modulus of rupture......................................... 48 

Table 4-4 Summary of the test results for direct compressive strength ............................ 52 

Table 4-5 Sieve sizes used for sieve analysis ................................................................... 57 

Table 4-6 Results obtained from sieve analysis ................................................................ 58 

Table 5-1 Material parameter used for concrete in SPLM simulation.............................. 62 

Table 5-2 Comparison table for the results from Laboratory and SPLM ......................... 76 

 



1 

 

 

Chapter 1 Introduction 

1.1 Motivation 

Computers have drastically aided in the numerical analysis of structures. Numerous 

commercial and academic computer programs are available that use the Finite Element 

Method (FEM) for computation. Despite being the most common tool used, it is difficult 

to use the FEM to simulate structures that crack.  

There have been numerous studies conducted in the past to model crack growth in 

plain and reinforced concrete. Various remeshing techniques and linear and non-linear 

models have been developed to simulate crack propagation. During World War II, when 

warships developed cracks, Linear Elastic Fracture Mechanics (LEFM) was developed and 

applied to study crack propagation (Shabazpanahi et. al, 2012). Later, LEFM was also used 

for studying cracks in concrete structures. However, LEFM was found to be unacceptable 

because concrete does not satisfy the assumptions of LEFM. The popular models for 

modeling cracks in concrete are the discrete crack model and the smeared crack model. 

Cervenka and Saouma (Cervenka & Saouma, 1995) have stated that the discrete crack 

model is not as mesh-sensitive as the smeared crack model, but requires remeshing at each 

crack increment. But often, the crack propagation is dynamic which increases the difficulty 

when using the discrete crack model. Peridynamics might be an effective solution to this 

problem as it allows the cracks to propagate under arbitrary dynamical loading conditions 

and no complicated meshing is required for the simulation.  

The deformation field is not continuous in regions of damage and cracking. 

Continuum mechanics theory, therefore, is insufficient for crack analysis. We cannot apply 

the partial differential equations of classical mechanics directly on these cracks. An 
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alternative method of analysis is sought which reduces the complexity of the problem and 

helps find a solution that can be applied in regions of damage and cracking.  

The peridynamic model was first developed by Silling (Silling, 2000) and it 

assumes Newton’s second law applies to each differential volume in the domain of analysis 

(Gerstle, 2015). Silling renamed his first theory of peridynamics as “bond-based” and later 

developed “state-based” peridynamics. In peridynamics, a pairwise force function f is 

assumed to exist between each pair of particles which are closer together than the assumed 

material horizon, . When the pairwise force function is a function of the states of all the 

nearby particles, peridynamics is called “state-based” peridynamics (Silling et. al, 2007). 

In contrast, the bond-based peridynamic model assumes that the force between the two 

particles is only dependent on the states of the two interacting particles and does not depend 

upon the states of other nearby particles. The bond-based model was soon realized to be 

insufficient. Bond-based theory cannot model Poisson’s ratio other than one-quarter for 

plane strain (or one-third for plane stress) and is incapable of modeling isochoric plastic 

deformation.  

For state-based peridynamics, the pairwise force function may depend upon the 

relative reference and deformed locations of all the particles within the peridynamic 

horizon, as well as upon other variables such as damage and plastic stretch. The number of 

particles in the defined horizon is fixed. Gerstle (Gerstle, 2015) in 2015, developed the 

State-based Peridynamic Lattice Model (SPLM) which specializes the state-based 

peridynamic model. In the SPLM, the particle families are assumed invariant, which 

reduces the cost of computation.  
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1.2 Scope  

The objective of this thesis is to compare SPLM computer simulations to laboratory 

experiments. While continuum mechanics considers the deformation field to be 

continuous, SPLM models the structure as a particle lattice. SPLM does not assume 

continuity, but the particles are also not random, as with the molecular dynamics model. 

The particles remain in the lattice and interact with the same set of particles throughout the 

simulation. This makes the model more understandable and computationally efficient.  

In this thesis, we use the SPLM for the simulation of concrete specimens. SPLM has 

the potential to be used as a tool for simulating the concrete damage, using Poisson’s ratios 

other than one-quarter (one-third) and modeling isochoric plastic deformations. We use an 

SPLM code developed in Fortran for the simulation, and the results are displayed using 

MATLAB. The code models elasticity, plasticity, and damage and we study the concrete 

behavior using SPLM. An initiative is taken to use the SPLM to model laboratory 

specimens and validate the results against laboratory experiments and ACI code 

predictions. SPLM simulations are performed for: 

1. Brazilian split cylinder test; 

2. Direct tension test; 

3. Direct tension test with the embedded bolt; 

4. Modulus of rupture test; and 

5. Direct compression test. 

We used standard laboratory models for both the laboratory experiments and the 

simulations, so the results can be easily compared. 
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1.3 Outline of Thesis 

This thesis has six chapters.  

Chapter One, Introduction, has introduced the motivation and the scope for the 

research. 

Chapter Two, Literature Review, is the discussion of the history and the previous works 

in the field of solid mechanics. This includes the continuum model, the concepts of stress 

and strain, and fracture mechanics in brief. We discuss here how these concepts are difficult 

to implement digitally for the computer simulation. 

Chapter Three explains the theory of peridynamics. Here, we discuss the peridynamic 

models and the SPLM model. An overview of the elastic, plastic and damage SPLM 

models are also discussed. 

Chapter Four presents the laboratory experiments conducted for the four different 

strength tests. Three of them are tensile strength tests and one of them is a compressive 

strength test. A sieve analysis was also performed to observe the distribution of the 

aggregate based on size.  

Chapter Five, SPLM Validation, describes the use SPLM to simulate the concrete 

models that were tested in the laboratory. The SPLM results are then compared with the 

laboratory experiments. 

Chapter Six, Summary and Conclusions, summarizes and concludes the research 

conducted and suggests future work using SPLM. 
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Chapter 2 Literature Review 

Concrete is a heterogeneous material that demonstrates quasi-brittle nature. It is a 

well-known fact that concrete is strong in compression and weak in tension. Concrete fails 

in tension at much lower loads than it fails in compression. Practical engineering seems to 

simply ignore the tensile strength of concrete and instead uses steel reinforcement to resist 

the tensile forces within the structure. Raphael (Raphael, 1984) mentions that it is not 

practical to reinforce a large structure, like a dam, with a huge quantity of steel, and hence 

the tensile strength of concrete has to be taken into account. This is one reason why the 

tensile strength of concrete is important and cannot be ignored. Concrete structures would 

reduce to a heap of rubble if there were no tensile strength to hold them together.  

There have been numerous efforts to determine the tensile strength of concrete. 

Different tests have been conducted in the laboratory with a variety of specimen 

configurations, to determine the tensile strength of concrete. The development of fracture 

mechanics and numerical simulations have aided in the process. We can now apply 

numerous cracking models using fracture mechanics concepts to determine damage and 

cracking.  

When concrete fails in tension after reaching the ultimate tensile strength, cracks 

are formed as damage coalesces. The initiation and growth of cracks are beyond the scope 

of classical mechanics. Therefore, fracture mechanics was developed to accurately predict 

the crack formation and propagation. Early fracture mechanics assumed a linear elastic 

approach which was later found to be inappropriate for concrete structures. Several models 

and theories have been developed to portray crack propagation in concrete.    



6 

 

 

2.1 History of Fracture Mechanics Theory 

Various models and theories have been developed that have contributed to the 

advancement of fracture mechanics. Fracture mechanics developed rapidly during World 

War II when warships started cracking and linear elastic fracture mechanics was developed. 

Progressively, we will discuss some of the crack models in this section. 

2.1.1 Inglis infinite plate theory 

When Inglis (Inglis, 1913) found the solution to Navier-Cauchy’s stress theory for 

an elliptical hole in the infinite plate shown in Fig. 2-1, he observed that the maximum 

tensile stress occurs in the boundary of the hole, on the major ellipse axis. The maximum 

tensile stress is perpendicular to the major axis, and is given by, 

𝜎𝑚𝑎𝑥 = 𝜎0(1 + 2√
𝑎

𝜌𝑐
)               (2.1) 

where a and b are the radii of the ellipse along x and y-axis respectively, 𝜎0 is the applied 

stress, 𝜎𝑚𝑎𝑥 is the maximum normal stress and 𝜌𝑐 = 
𝑏2

𝑎
 is the radius of curvature of the 

ellipse on the major axis. When the ellipse narrows, the crack becomes very sharp and the 

maximum stress becomes infinite. The Eq. 2.1 then becomes 

𝜎𝑚𝑎𝑥

𝜎0
=  ∞.             (2.2) 

This made the classical stress approach impossible to apply to cracks, where b goes to zero, 

as singularity in stress results. Infinite stress cannot be compared to a finite strength. 

Therefore, Griffith developed an energy-balance approach to predict crack growth, as 

described next.  
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     Figure 2-1 Inglis infinite plate with elliptical hole, showing  in front of crack             

 

2.1.2 Griffith’s energy criterion and Irwin’s stress intensity factor approach 

Griffith (Griffith, 1921) in 1921, developed an approach which introduced an 

energy balance concept in LEFM. When the stress at the crack tip becomes infinite, as 

described in the work done by Inglis, an alternative to the stress concept must be developed. 

Griffith developed the “Griffith’s energy criterion” that describes crack propagation. After 

performing various tests using glass rods and fibers, Griffith observed that the presence of 

flaws or scratches on the glass surface led to decreased strength. This led him to develop 

an energy approach, which assumes that a certain amount of energy is required to form a 

new crack surface. When the crack propagates, potential energy is released, and it is used 

to break the bonds at the crack tip. The law of conservation of energy must be satisfied. 

According to him, when the rate of change (decrease) of potential energy G exceeds a 

certain value GF, the crack acquires enough energy to propagate, if 𝐺 ≥ 𝐺𝐹 , crack will 

propagate. Griffith’s criterion is valid for truly brittle materials like glass rods. For 

concrete, which is quasi-brittle, and steel which is ductile, Griffith’s energy criterion is 

insufficient. Steel and concrete undergo plastic deformation which needs to be considered 

y 

O 

max 

a a r 

0 

x 

0 

b 
b 
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in the energy balance. Irwin, in 1957, developed the stress intensity factor approach, that 

added the energy of the plastic work to the Griffith’s existing surface energy to give the 

critical fracture energy.  

𝐺𝐹 = 𝐺𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐺𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦       (2.3) 

In the stress intensity factor approach, the normal stress in front of the crack tip is 

infinite, following the expression 𝜎 =
𝐾

√2𝜋𝑟
  where, r is the distance in front of the crack tip 

and K is the stress intensity factor (Hillerborg, Modéer, & Petersson, 1976). Cracks grow 

when K is critical, i.e. K = KC, where KC is the fracture toughness. This approach is 

applicable only for the crack propagation and does not explain the crack formation. The 

relationship between critical fracture energy and critical stress intensity factor for planar 

problems is given by, 

𝐺𝐶 = 
𝐾𝐶

2

𝐸′
              (2.4) 

where E'=E for plane stress and E'= E/(1-υ2) for plane strain, E is Young's modulus and υ 

is Poisson' s ratio. 

2.2 Nonlinear fracture mechanics 

The Fracture Process Zone (FPZ) is the zone near the crack tip where irreversible 

damage and plasticity occurs. When the fracture process zone is of significant size with 

respect to the specimen size, the fracture process zone must be modeled in some ways. If 

the FPZ is explicitly modeled, the theory is called “nonlinear fracture mechanics”.  
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2.2.1 Cohesive crack model 

 The cohesive crack model was the earliest of the nonlinear fracture mechanics 

models. The earliest cohesive crack models were developed during the 1960s by Dugdale 

(Dugdale, 1960) and Barenblatt (Barenblatt, 1962). The models developed assumed a 

preexisting crack, and only explained its growth. These models were not sufficient to 

explain the initiation of the cracks. Hillerborg (Hillerborg et al., 1976) in 1976 developed 

the model shown in Fig. 2-2, which not only explained the growth of existing cracks but 

also explained the formation of new cracks. Hillerborg et. al. used the assumption that 

cracks form when the stress reaches a critical tensile stress, ft. The model is defined for the 

opening mode I but can be extended to modes II and III. The model was initially named 

the “fictitious crack model” however, it is widely known as the cohesive crack model 

today, and it is very much like Barenblatt’s cohesive crack model.  

 

a) Crack model demonstrating crack length and maximum stress          b) Stress versus COD diagram 

Figure 2-2 Hillerborg’s fictitious crack model (Hillerborg et al., 1976)      

In the graph in Fig. 2-2 b), we can see that when the crack width w equals 0, the 

stress is ft which means the crack has just started to form. Once the crack starts to open, the 

stress decreases; however, it does not suddenly go to zero. The stress decreases with the 

increase in crack width until w equals w1 at which value the stress goes to zero. Hence, the 
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cohesive traction is a function of the crack opening displacement. The fracture energy is 

given by 

 ∫  (𝑤)𝑑𝑤 =  𝐺𝐹 
𝑤1

0
,                      (2.5)  

where GF is the fracture energy and  (𝑤) is the cohesive stress function. The model 

produces better results for concrete than LEFM but is more difficult to implement on a 

computer. 

2.2.2 Interface element approach 

The interface element approach is a way to implement the fictitious crack model 

numerically. Gerstle et. al. (Gerstle & Xie, 1992) have demonstrated how the Hillerborg’s 

fictitious crack model can be implemented by introducing interface elements along the 

crack. There have also been other implementations of the interface element model. 

2.2.3 Bond-slip model 

A bond slip model is necessary for simulating reinforced concrete. Ingraffea and 

coworkers (Ingraffea et. al, 1984) studied the secondary cracks that emerge when the 

primary crack crosses the reinforcing bar in the model. A special version of interface 

element called the “tension-softening” element is introduced at the crack crossing to 

analyze the nonlinear behavior caused by the bond slip between the bar and the concrete.  

2.3 Computational fracture mechanics 

The nonlinear fracture mechanics models were the milestones in predicting that not 

all the materials follow linear elastic fracture mechanics. However, these methods were 

difficult and required a great amount of time and effort to computationally implement. 

Computational fracture mechanics became more popular with advancements in 

technology. There are three basic computational fracture mechanics models: 
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1) discrete crack models, 

2) smeared crack models, and 

3) lattice and particle models. 

Discrete crack propagation considers the crack as a geometrical feature, rather than 

as a material property. Discrete crack modelling involves continuous remeshing of the 

crack topology as the crack front propagates. The difficulty with this model is the large 

effort required for remeshing every time the crack propagates. With new computational 

techniques, automatic mesh regeneration can be done to change the mesh topology. Gerstle 

et. al. (Gerstle & Xie, 1992) have used a simple fictitious crack model to demonstrate the 

cohesive discrete crack propagation method. The method includes the use of interface 

elements to represent the crack growth.  

Although discrete crack models seem to be a better computational approach than 

smeared crack models for many problems, there are certain limitations. It is difficult to 

model multiple cracks and intersecting cracks which in addition creates problems for mesh 

convergence studies (Gerstle, 2015). 

The smeared crack model can model diffuse (multiple) cracks following the 

concept of continuum damage mechanics. The smeared crack results from the assumption 

that the material body is a continuum. However, the material body has a complex internal 

structure and needs discretization. In smeared crack modelling, the crack is simulated as 

the material stiffness decreases as damage occurs. Increasing strain causes a decrease in 

stress in the strain-softening model. Strain-softening considers the material to be unstable 

which violates the Drucker’s stability postulates (Bažant & Jirásek, 2002). The instability 

of the material causes the strain to localize to zero volume and the fracture energy to 
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diminish to zero. To prevent the strain localization, which causes mesh sensitivity during 

the finite element analysis, non-local effects must be considered. The localization limiter 

has been implemented in the finite element analysis for non-local damage modeling. 

According to this concept, the stress at a point is not only dependent on the strain at that 

point, but also on the average strain of all the neighboring points within a finite domain. 

However, fine meshing is required in the region of damage in this neighborhood, creating 

problems in conducting convergence studies.  

The particle method and the lattice model are closely related to each other. In the 

particle method, the interactions of the particles are defined in the model. The particle 

configuration changes under the application of load. The particle motion is governed by 

Newton’s laws (Wittel, Kun, & Herrmann). 

In early lattice model simulations, truss elements were assumed to connect the 

nodes. When the truss forces reached critical values, the truss was removed from the lattice. 

The peridynamic model provides a more fundamental and accurate approach. We discuss 

peridynamics in detail in the next chapter. 

2.4 Theory of Elasticity 

The theory of elasticity is the simplest theory of the deformation of solids. The 

modern theory of elasticity and its discovery dates to the 1820s, when Navier and Cauchy 

introduced the concepts of stress and strain.  

Consider two points at reference (undeformed) locations in an elastic body as 

shown in Fig. 2-3. Point P is at location (X,Y,Z) and point 𝐏′ is at (X’,Y’ and Z’). These 

points are the position vectors relative to the origin of co-ordinate system X,Y,Z. The 

relative position vector between these two points is given by 𝐑 ≡ 𝐏′ − 𝐏. When 
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deformation occurs, these points move to p and p’ respectively. The displacement of P to 

p is given by vector U, and the displacement of P’ to p’ is given by U’. 

                   

Figure 2-3 Updated Navier's theory of elasticity (Gerstle, 2015, pp-57) 

We now refer to (Gerstle, 2015) to follow Navier’s theory and determine the bond force 

between the particles. The displacement field is demonstrated using a Taylor series 

expansion, 

𝑈′𝑖 = 𝑈𝑖 + ∑
𝜕𝑈𝑖

𝜕𝑋𝑗
𝑗=1:3  Rj + O(R2) , or         (2.6) 

𝑼′  ≅ 𝑼 +  
𝜕𝑼

𝜕𝑿
𝑹.       

The linearized relative displacement vector u is given by 

u = U’ – U = 
𝜕𝑼

𝜕𝑿
𝑹.            (2.7) 

The magnitude of u has to be small relative to R for the above equation to be valid. 

However, this linearized relative displacement u is not the change in bond length of R. The 

change in bond length is given by the projection of u in the direction of R, rather than u 

itself. The notational representation of this change in length is given as 
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∆𝑅 = 
(Ui,k Rk)Ri

√RjRj
            (2.8) 

The bond force is assumed to be proportional to the change in length ∆𝑅 between the 

particles located at the deformed positions p and p’. The bond force acts per unit volume 

and is given by 

𝐹 = 𝐺(𝑅)∆𝑅𝑑𝑉′,            (2.9) 

where dV’ is the differential volume associated with p’ and G(R) is a rapidly decaying 

function of R = ||R||. The only parameter used in the Navier’s theory is  which represents 

the integral used in the derivation of virtual work done by bonds. The internal virtual work 

done by bonds going through elongation ∆𝑅  is 

Wbond = ∆𝑅 • F = 
1

2
δ(∆R2)G(R)dV’       (2.10) 

where, 
1

2
  is included because each bond is shared by two particles. Now integrating the 

virtual work given by Eq. 2.10 over the spatial domain and then in Cartesian and spherical 

domain, we obtain 

Wbond_all = 
1

2
εδ[3U1,1

2 + (U1,2 + U2,1)
2
+ 2U1,1U2,2 + (U1,3 + U3,1)

2
+ 2U1,1U3,3 +

3U2,2
2 + (U2,3 + U3,2)

2
+ 2U2,2U3,3 + 3U3,3

2    where  is, 

  (
2𝜋

15
) ∫ 𝑅4

∞

0
𝐺(𝑅)𝑑𝑅.         (2.11) 

Navier then assumes body forces B and surface tractions T. For a body to be in 

equilibrium, the total virtual work done by all forces must be zero. However, Cauchy 

argued (correctly) that Navier’s theory is insufficient to fully define elasticity. He 

introduced the concepts of stress and strain and the partial differential equations of linear 

elasticity, valid in a continuum. Cauchy built upon the work of Navier to develop the 
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Navier-Cauchy equations of elasticity. Cauchy’s concept of stress and strain are discussed 

in the next section. 

2.5 Continuum Mechanics 

In order to appreciate SPLM, one must first fully understand continuum mechanics. 

Continuum mechanics is one model for the mechanical behavior of the solids and the fluids. 

The material is modelled in a continuum space rather than as discrete particles. Continuum 

mechanics follows the fundamental principles of conservation of mass, energy, and 

momentum (Mase & Mase, 1999). Continuum mechanics quantities are mathematically 

represented as vectors and tensors for simplicity. The physical and the geometrical 

quantities used in continuum mechanics are represented as tensors. The physical continuum 

space is represented by Cartesian coordinate axes, as shown in Fig. 2-4. 

                                 

                                                 Figure 2-4 Cartesian coordinate system and unit Vector 

2.6 Traction Vectors and Stress Tensors 

 

The traction vector t is the force F acting on a cross-sectional area A divided by 

that area of cross-section in the limit, as A goes to zero. It has the units of stress.  

    𝒕 = lim
∆𝐴→0

(
∆𝑭

∆𝐴
)      (2.12) 

X3 

X
1
 

X
2
 

e3 

e
2
 

e
1
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However, this definition is only valid if the surface, where the traction is defined, is 

continuous. If there is any kind of discontinuity present in the surface, the above definition 

will not suffice or requires more assumptions which limits its use. 

The traction acting upon the two sides of the plane and passing through a point are 

equal in magnitude but opposite in direction. Cauchy has proved this by assuming two 

planes to pass through the top and bottom of a cylinder (Koenemann, 2014). Letting the 

height of cylinder vanish, we will see that traction on two faces of the cylinder will be equal 

in magnitude and opposite in directions. This is more clearly explained in (Gerstle, 2015). 

In continuum mechanics, the equation of conservation of linear momentum is given by 

∫ 𝜌�̈�
𝐵

𝑑𝑉 = ∫ 𝜌𝒃𝑑𝑉 + 
𝐵

∫ 𝒕𝑑𝐴,
𝛿𝐵

         (2.13) 

where B is the deformed volumetric domain of the body,  is the density of differential 

volume dV, �̈� is the acceleration of the particle, b is the applied body force per unit mass, 

 is the surface of the domain B, and t is the applied traction on the deformed area dA. 

So, if we let the height of the cylinder vanish, the volume and the curved area of the 

cylinder, shown in Fig. 2-6 decreases to zero. Then from Eq. 2.13, 

∫ 𝜌�̈�
𝐵

𝑑𝑉 = ∫ 𝜌𝒃𝑑𝑉 + 
𝐵

∫ 𝒕𝑑𝐴
𝛿𝑃𝑐𝑦𝑙

+ ∫ 𝒕𝑑𝐴
𝛿𝑃+

+ ∫ 𝒕𝑑𝐴
𝛿𝑃−

,                    (2.14) 

or, 

0 = 0 + 0 + ∫ 𝒕𝑑𝐴
𝛿𝑃+

+ ∫ 𝒕𝑑𝐴
𝛿𝑃−

 

Thus, the traction on opposite sides are equal in magnitude but opposite in direction. This 

can also be derived from Newton’s third law of motion. 

          𝒕(𝑥, 𝑛) =  −𝒕(𝑥, 𝑛),                                                             (2.15) 
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Figure 2-5 Cylindrical body (Gerstle, 2015) 

2.7 Cauchy’s Stress Theory 

Simplest stress tensor is named after Cauchy and is known as Cauchy’s stress tensor and 

is a second order tensor. If we take the traction vector described in Eq. 2.12, acting at a 

point in a surface, it can be decomposed into two components avg
S  and avg

N which 

are the average stresses acting tangential and normal over the area  respectively (Khraisi 

& Shen, 2012). When the area shrinks infinitesimally, the stresses are then defined for a 

point over the limit given by, 

S = lim
∆𝐴→0

(
∆𝐹𝑆

∆𝐴
)  , N = lim

∆𝐴→0
(
∆𝐹𝑁

∆𝐴
).       

The tangential force FS further has two orthogonal components, one in-plane and 

another out-of-plane named as FS1 and FS2 respectively. This way, there are three 

stresses acting at a plane in a body. Similarly, a cubic volume is defined by six such faces 

shown in Fig. 2-6. 
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Figure 2-6 Components of Cauchy’s stress tensor 

      We thus have three stresses on each of the surfaces. It is assumed that the volume of 

the cube is infinitesimally small i.e. dx, dy, and dz tend to zero, shrinking the cube to a 

point.  The cube is placed in such a way that the normal of each face aligns with the unit 

vectors of Cartesian coordinate system shown in Fig. 2-6. It is noticed that the plane 

surfaces opposite to each other have equal and opposite stresses as shown in Eq. 2.15. This 

leaves us with 9 independent stress components. Further, for a cube dx=dy=dz and we 

assume an equilibrium condition for which our sum of moments equal zero. Hence our 

stress tensor is symmetric, 

xy = yx,  yz = zy,  xz = zx. 

Thus, we have six independent Cauchy’s stress components, which are generally 

represented as ij, where i is the direction and j is the plane along which the stresses act. 

The planes can be arbitrary or oblique and a stress transformation is done to obtain stress 

components. Mohr’s circle method is a graphical representation of stress transformation in 

two-dimensional problems. Cauchy’s stress tensor can be further decomposed into volume 
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and deviatoric components according to the requirements. A detailed derivation can be 

found in (Khraisi & Shen, 2012). Cauchy’s stress tensor is used for material bodies 

experiencing small deformations. For the larger deformations, the first and second Piola-

Kirchoff’s stress tensor may be used. The finite element method can analyze larger 

deformations using these tensors. A more detailed explanation on Piola-Kirchoff’s stress 

tensor is found in (Gerstle, 2015). However, this method is difficult to use and apply. That 

is why a need for a different approach was felt which did not involve the continuous 

concepts of stress and strain.  

2.7.1 Limitations of Cauchy’s Stress Theory 

Cauchy’s stress theory has been in use ever since it was discovered and most of the 

modern theories in solid mechanics today have been derived based on Cauchy’s stress 

tensor. There are however, certain limitations of Cauchy’s theory which have been either 

ignored or never brought to light. Cauchy’s stress theory is derived assuming a spatial 

continuum and does not have a clear explanation to what changes will there be when cracks 

develop. The boundary conditions, although mentioned, are ambiguous in Cauchy’s theory 

(Koenemann, 2014).  It is difficult to study the post-peak behavior of real materials after 

the crack occurs, as the material is no longer continuous in the cracking region. Hence, the 

need for peridynamics, presented in the next chapter. 
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Chapter 3 Peridynamics 

Peridynamics was first developed by Stewart Silling in 2000 (Silling, 2000). 

Peridynamics is derived from the Greek words Peri meaning near and dynamics meaning 

force (Silling, 2000). The smeared and the discrete crack models discussed in Chapter 2, 

literature review, are not satisfactory for modelling concrete structures. Cracks are 

naturally formed discontinuities and they should be allowed to evolve naturally during the 

simulation. Peridynamics allows damage and cracks to form naturally without the problems 

associated with continuum methods.   

The continuum theory of peridynamics is based upon the fact that Newton’s second 

law holds true for every infinitesimal particle. Assume that a small particle Pi, has a mass 

dmi, having undeformed position Xi and a displacement ui within a domain R. The internal 

force L acting upon the particle is the internal of all bond forces acting upon the particle 

and is given by (Silling, 2000), 

            𝑳(𝑋, 𝑡) = ∫ 𝒇(𝒖(𝑋′, 𝑡) − 𝒖(𝑥, 𝑡), 𝑿′ − 𝑿)𝑑𝑉𝑋′𝑅
         (3.1) 

where R is the reference space of the function. L has the unit of force per unit volume, and 

f has the units of force per unit volume squared. 

Mathematically, Newton’s second law of motion applied to this particle can be represented 

as: 

(𝑑𝑚𝑖)�̈�𝒊  =  𝑑𝑭,           (3.2)  

where, �̈�𝒊 is the acceleration of the particle and 𝑑𝑭 is the force vector acting upon the 

particle. 

Dividing Eq. 3.2 on both sides by differential volume dVi, we get the following: 

𝜌�̈�𝒊 = 𝑳 + 𝒃            (3.3) 
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This is the peridynamic equation of motion where 𝜌 is mass density, and L and b 

are the internal force and the externally-applied body force per unit volume, respectively 

(Gerstle & Sau, 2004). Substituting the value of L from Eq. 3.1 onto Eq. 3.3 gives 

𝜌�̈�𝒊 = ∫ 𝒇(𝒖(𝑿′, 𝑡) − 𝒖(𝑿, 𝑡), 𝑿′ − 𝑿)𝑑𝑉𝑋′𝑅
+ 𝒃.         (3.4)  

The function 𝒇(𝒖(𝑿′, 𝑡) − 𝒖(𝑿, 𝑡), 𝑿′ − 𝑿) is called the pairwise force function 

and has units of force per volume squared. The function f may also be a function of damage 

and plastic deformation. 

The peridynamic constitutive model is defined by the forces between particles. The 

force acting upon the particle Pi is a function of reference location Xj and the location after 

deformation xj of the nearby particle Pj with respect to the reference location Xi and 

deformed location xi of particle Pi.  This force function f between the particles is also called 

the “pairwise force function”.  

The continuum peridynamic model uses the concept of force states and deformation 

states, in contrast to continuum mechanics, which uses the concepts of stress and strain 

(Gerstle & Soto, 2004). Peridynamics theory is different than the continuum mechanics 

theory by allowing the analysis of discontinuous deformations associated with cracks.  

3.1 Bond-based Peridynamics 

Silling’s bond-based peridynamics assumes that the force between two particles is 

a function only of the reference and deformed positions of the two interacting particles and 

not dependent upon other neighboring particles. Silling later found bond-based theory to 

be insufficient to capture the observed material behavior, and so he developed the state-

based theory. Bond-based and the state-based theory both employ the spatial continuum 

approach, however, the state-based theory makes the pairwise force function depend not 
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only upon the states of the two interacting particles, but also of other neighboring particles. 

State-based computational cost is higher than the bond-based computational cost, as the 

state-based model must compute the force function of many more neighboring particles.  

 Consider two particles at reference (undeformed) locations in a body, particle P at 

location X and particle P’ at X’ as shown in Fig. 3-1. When the deformation occurs due to 

the applied load, these particles move to new locations x and x’ respectively. The vector 

from X to X’ is given by   which we call the reference bond. The displacement of P is 

given by vector u= x-X and the displacement of P’ is given by u’= x’-X’. The vector + 

in Fig. 3-1 is called the deformed bond. The pairwise force function f in Eq. 3.4 describes 

the material behavior. In bond-based peridynamics, the force acting between the two 

particles is determined by the reference and the deformed locations of the interacting 

particles.  

          

 

Figure 3-1 Kinematics of two nearby particles (Gerstle, 2015, pp-149) 

When the peridynamic forces acting between the two particles are equal, opposite, 

and collinear with the deformed location, this is called “ordinary peridynamics”. This is 

shown in Fig. 3-2. 
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Figure 3-2 Ordinary bond-based peridynamic pairwise function f (Gerstle, 2015) 

The ordinary bond-based peridynamic model is insufficiently general as it is not 

able to model materials with arbitrary Poisson’s ratios. This problem can be corrected using 

the bond-based micropolar peridynamic theory, described next. 

3.2 Bond-based Micropolar Peridynamic Theory 

The Micropolar Peridynamic Lattice model (MPLM) was introduced by Gerstle et. 

al. (Gerstle, Sau, & Silling, 2007), who have completely discarded the continuum method 

and have adopted the discrete particle lattice model. In this micropolar model, the particles 

have the rotational degrees of freedom and associated. The micropolar model has the 

advantage over bond-based theory because it allows materials with arbitrary values of 

Poison’s ratio to be simulated. More details about the micropolar peridynamic theory can 

be found in (Gerstle, Sau, & Aguilera, 2007) and (Honarvar, Gerstle, & Asadollahi, 2013). 

However, the MPLM is bond-based and is insufficient to model isochoric plasticity. 

3.3 State-Based Peridynamic Model  

When Silling found that his bond-based peridynamic theory was insufficiently 

general, he reformulated an improved theory called the state-based theory (Silling et al., 

2007). In the bond-based theory, the damage, plasticity and the deformation of only two 
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particles are considered as inputs to the pairwise force function, whereas in the state-based 

theory the pairwise force function depends upon all particle states within the material 

horizon. The state-based model is able to model isochoric plasticity, as the function f 

accounts for all of the neighboring particles. It is also able to model the non-linear elasticity 

and large geometrical motions and allows dynamic particle motion.  

Gerstle in 2015 replaced the real Euclidean material reference space with a lattice 

body and the vector  defining the reference bond with bond Bj in the lattice model. The 

domain defined by material horizon H is modified to the bond list 𝔹. The peridynamic 

models developed by Silling and his colleagues still follow the continuum theory, while 

Gerstle has presented the state-based peridynamic lattice model (SPLM) (Gerstle, 2015). 

We can directly implement the SPLM for the computer without further discretization.  

3.4 State-based Peridynamic Lattice Model (SPLM) 

To begin with, we discard the continuum model of the solid and instead employ a 

particle lattice to represent the material. The particles in the lattice interact with each other. 

The SPLM is different than Silling’s state-based continuum peridynamic model as SPLM 

uses a finite number of particles arranged in a lattice rather than an infinite number of 

particles in a continuum. 

Consider the lattice body £R, which contains the particles in a subset along with the 

null-particles. The positions of these particles are defined by the lattice vectors bi. These 

vectors correspond to the unit vectors êj in the Cartesian coordinate system defined in the 

Euclidean plane. Let [BN] be the N-dimensional lattice basis matrix which has components 

of the lattice basis vector bi: 
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 Hence, [BN] = [

𝑏11 ⋯ 𝑏𝑁𝑅1
⋮ ⋱ ⋮

𝑏1𝑁𝑅 ⋯ 𝑏𝑁𝑅𝑏𝑁𝑅

] so that, {X} = [BN]{ai}+{X0}, where {X} is 

the reference position of lattice particle {ai}, and {X0} is the position of the lattice particle. 

{ai} gives the integer lattice coordinates of each particle. The expression can also be written 

as, 

            ⌊𝐗⌋ = ⌊a𝑖⌋ ⌊B𝑖
𝑁⌋ + ⌊𝐗𝟎⌋. 

3.4.1 3D Particle Configuration 

The particle lattice can be arranged in many ways. The two main forms of 

arrangement of particles in a 3D lattice are: hexagonal closed pack (HCP) and face-

centered cubic (FCC). These can be seen in Fig. 3-3.  

                              

                       Figure 3-3 Hexagonal close-packed (left) and face-centered cubic (right) configurations 

https://sites.google.com/a/hartdistrict.org/ms-smith/home/modern-solid-materials/chapter-11 intermolecular 

-forces-and-liquids-and-solids/11-4-crystal-structure 

Fig. 3-3, the stride given by the different labels is constant in the FCC configuration, 

hence, it is a true lattice. For FCC lattice if NR = 1 then, it is one dimensional lattice and 

the lattice base matrix is given by [B1] = L [1], where L is the lattice spacing. The lattice 

is unbounded and represented by the reference position vector Xij.  
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Hence, {X} = [BN]{ai}+{X0}. For two-dimensional lattice, [B2] = L[Q] [
1 1/2

0 √3/2
] 

and for three dimensional lattice, [B3] = L[Q] [

1 1/2 1/2

0 √3/2 1/2√3

0 0 1/2√3

] where L is the lattice 

particle spacing and [Q] is the lattice rotation matrix. 

 So, ⌊𝐗𝟏,𝐗𝟐⌋= ⌊a1,a2⌋ [Q] [
1

1

2

0
√3

2

] ⌊𝐗𝟏𝟎 , 𝐗𝟐𝟎⌋. Once the particles are arranged in the lattice 

with a given rotation [Q] and lattice origin ⌊𝐗𝟎⌋, the model is ready for peridynamic 

simulation. The modeler must also choose which particles are “in” the body. Different 

lattice bodies having different dimensionality and located in different lattice configurations 

can be combined to create a structure. The tension specimen with the bolt is an example of 

a multibody structure. Different material bodies may have differing lattice spacings, lattice 

origins and lattice rotations. They are linked with each other using inter-body peridynamic 

forces. 

The arrangement of particles with their neighboring particles forms a topology in a 

lattice. Lattice topology is helpful in defining the bond symmetry as well as which particles 

are the nearest to a reference particle and which are the second nearest, etc. A 3D particle 

has eighteen neighboring particles, twelve being the first nearest with the bond length L 

and six being the second nearest with bond length √2𝐿, as shown in Fig. 3-4.        
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Figure 3-4 Bond numbering order of first and second nearest numbers for FCC lattice (Gerstle, 2015) 

A particle is connected to adjacent particles by bonds Bj. The list of all these bonds 

through which the particle interacts with its adjacent particle is called the bond list. The 

absence of a bond is indicated by setting the neighbor bond list N[Pi]<Bj> = P where P 

is the null particle. Thus, using the lattice model, the simulation can be performed more 

systematically than if the particles are simply a random configuration of particles.  

3.4.2 Elastic SPLM  

In this subsection, consider the linear elastic SPLM bond force versus stretch 

relationship. A bond stretch causes a linearly related peridynamic bond force. 

Let us assume the bond force matrix is defined as {F}. The stretch matrix is defined 

by {S}, and the relationship between the two is given by  

{F}= [K]{S}           (3.5) 
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where [K] is similar to the stiffness matrix as defined in classical elastic mechanics. We 

now follow (Gerstle, 2015) for three-dimensional derivations, and derive the two-

dimensional plane stress-strain case used in this thesis. For a 2D particle Pi, the stretch 

matrix is given by 

{S}i  

{
 
 

 
 
𝑆1
⋮
𝑆𝑗
⋮
𝑆6}
 
 

 
 

.           (3.6) 

Each component of the stretch matrix is given by 

  Sj  
|𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑜𝑛𝑑|−|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑜𝑛𝑑|

|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑜𝑛𝑑|
       or 

  Sj  
𝐿∗−𝐿0

𝐿0
, where               (3.7) 

L0  √(𝑋𝑗 − 𝑋𝑖) + (𝑌𝑗 − 𝑌𝑖) , and                       (3.8) 

L*  √(𝑥𝑗 − 𝑥𝑖) + (𝑦𝑗 − 𝑦𝑖) .                    (3.9)  

The direction cosines for the bond Bj in the reference configuration are defined by 

 {ns}  {

(𝑋𝑗−𝑋𝑖)

𝐿0
(𝑌𝑗−𝑌𝑖)

𝐿0

}.        (3.10) 

Similarly, the direction cosines for the bond Bj in deformed configuration are defined by 

   {nL}  {

(𝑥𝑗−𝑥𝑖)

𝐿∗

(𝑦𝑗−𝑦𝑖)

𝐿∗

}.        (3.11) 

Also, the components of the force state matrix {T}i are given by 
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  {T}i  
1

2

{
 
 

 
 
F1
⋮
Fj
⋮
F6}
 
 

 
 

i

.        (3.12) 

Because two particle bonds contribute to the force, one-half is contributed by each bond. 

3.4.3 SPLM Stretch and Strain 

The SPLM has to correlate to classical mechanics in some manner in order to be 

comparable. The strain in the classical model is compared to the SPLM stretch. To do so, 

the strain is assumed to be very small and the stretch and the direction cosine in reference 

configuration given by Eq. 3.10 maps the components of strain to the SPLM stretch. It can 

be represented mathematically as,                                                                                                                                                  

{
 
 

 
 
𝑆1
⋮
𝑆𝑗
⋮
𝑆6}
 
 

 
 

 = 

[
 
 
 
 
 
(𝑛𝑋1)

2 (𝑛𝑌1)
2 (𝑛𝑋1𝑛𝑌1)

⋮

(𝑛𝑋𝑗)
2

(𝑛𝑌𝑗)
2 (𝑛𝑋𝑗𝑛𝑌𝑗)

⋮
(𝑛𝑋6)

2 (𝑛𝑌6)
2 (𝑛𝑋6𝑛𝑌6)]

 
 
 
 
 

{
 
 

 
 

𝑥𝑥

𝑦𝑦


𝑥𝑦}
 
 

 
 

 or 

   {S} = [N] {}      (3.13) 

where 𝑛𝑋𝑗 is the X-direction cosine of bond j. The stretch is decomposed into two 

components to account for plastic stretch:  

  {S} = {Se}+{Sp}.      (3.14) 

3.4.4 SPLM Force and Stress 

In the previous section, we established the relationship between SPLM stretch and 

continuum strain. Similarly, we refer to the (Gerstle, 2015) three-dimension derivations, 

and derive the relationship between SPLM force {F} and stress {} of classical mechanics 

for plane stress and strain. For this the virtual work done by homogenous deformation in 

both SPLM and classical model must produce equal virtual work so that 
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  WClassical = WSPLM         (3.15) 

WClassical = ⌊σ⌋{ }V 

WSPLM = ⌊𝐹⌋ 
[𝐿𝑖]

2
{S} 

where, [𝐿𝑖] = [

𝐿1 0 ⋯ 0

0 𝐿2 ⋮

⋮ ⋱ 0
0 … 0 𝐿6

] is a (6x6) diagonal matrix of bond lengths Li where [Li] 

= L0I for two-dimensional case and I is the 6x6 identity matrix. 

Substituting values in Eq. 3.15 we get, 

   ⌊σ⌋{}V = ⌊F⌋ 
L0

2
{S}.      (3.16) 

We know that {S} = [N] {}, and {S} = [N] {}so we get, 

   ⌊σ⌋{}V = ⌊F⌋ 
L0

2
 [N] {}, and for arbitrary {}   

              ⌊σ⌋V = ⌊F⌋ 
L0

2
 [N], 

              ⌊σ⌋ = 
L0

2V 
⌊F⌋ [N],                  (3.17) 

   {𝜎} = 
L0

2V 
[N]𝑇{F}  .         (3.18) 

Eq. 3.18 gives the relationship between the SPLM force {F} and the classical stress {𝜎}. 

To simplify,    {𝜎}  = [M]{F}, and                  (3.19) 

                           [M] = 
1

2V 
[N]𝑇𝐿0. 

For planar problems, the volume V of the material is given by, 
√3𝑡𝑏𝐿

2

2
,  where 𝑡𝑏 is the 

body thickness and L is the lattice spacing. For the linear elastic model,  

{F} = [K]{Se}.       (3.20) 

We also relate stress to strain proportionally with constitutive matrix [D]. 
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      {} = [D]{ e}       (3.21) 

Multiplying both sides by [M] of Eq. 3.20 gives  

[M]{F} = [M] [K]{Se}.      (3.22)                                 

We substitute Eq. 3.13 into Eq. 3.22 and get, 

       [M]{F} = [M] [K][N] { e}      (3.23) 

From Eq. 3.19,   {} = [M] [K][N]{ e} where,     (3.24) 

    [M] [K][N] = [D] and [D] is symmetric. 

We now develop the stiffness matrix for the lattice topology in plane stress SPLM. 

So, for the six neighboring bonds in the reference configuration with length L0, the bond 

force Fj is equal to the stretch Sj times constant ‘a’ plus six times the average stretch of six 

bonds times constant ‘b’.  

   Fj = aSj + 6bSavg where,      (3.25) 

   Savg = 
1

6
∑ 𝑆𝑗
6
𝑗=1        (3.26) 

Thus, the force Fj in each of the six bond depends upon all bond stretches.  

Now the stiffness matrix is worked out for all six bonds which is given by [K] matrix with 

six rows and six columns.  

[K] = 

[
 
 
 
 
 
𝑎 + 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏
𝑏 𝑎 + 𝑏 𝑏 𝑏 𝑏 𝑏
𝑏 𝑏 𝑎 + 𝑏 𝑏 𝑏 𝑏
𝑏 𝑏 𝑏 𝑎 + 𝑏 𝑏 𝑏
𝑏 𝑏 𝑏 𝑏 𝑎 + 𝑏 𝑏
𝑏 𝑏 𝑏 𝑏 𝑏 𝑎 + 𝑏]

 
 
 
 
 

    (3.27) 

In two-dimensions, [D] is given by the matrix below in terms of E and . 

[D] = 
𝐸

(1−2)
[

1  0
 1 0

0 0
(1−)

2

], for plane stress and      (3.28) 
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[D] = 
𝐸

(1+)(1−2)
[

(1 − )  0
 (1 − ) 0

0 0
(1−2)

2

], for plane strain    (3.29) 

All these and other equations are derived for three-dimension in detail in (Gerstle, 

2015) for [M] and [N]. Then, from [D] = [M][K][N] we solve for the values of the constants 

a, and b using MATLAB: 

for plane stress,  a = 
2𝐸𝐿𝑡𝑏

√3(1+)
 ,     (3.30) 

b = 
𝐸𝐿𝑡𝑏(1−3)

6√3(1−2)
,      (3.31) 

and plane strain, 

    a = 
2𝐸𝐿𝑡𝑏

√3(1+)
 ,     (3.32) 

b = 
𝐸𝐿𝑡𝑏(1−4)

6√3(2−1)(1+)
.     (3.33) 

We can see that the SPLM linear solution matches the classical linear solution without 

solving the integral equations in continuum space. 

3.5 SPLM Damage Model  

Damage is modelled by a reduction in bond stiffness. The model that we have used 

for simulation experiences both damage and plasticity, therefore, we call it an elastic-

plastic model. When the force in Eq. 3.20 reaches a tensile strength value, damage is 

initiated, and the force is determined by {F} = (1- )Se} where,  is the average 

damage of the two particles connected by the bond. In Fig. 3-5, referenced from (Nikravesh 

& Gerstle, 2018), t is the tensile strength, t  is the tensile damage constant at the “knee”, 

CODc is the critical crack opening displacement and COD1 is the crack opening 
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displacement at the “knee”. In Fig. 3-6,  increases non-linearly with respect to CODeq 

and reaches the maximum tensile damage parameter  value of 1. When the damage value 

reaches 1, the particle is no longer associated with the material body and does not react 

with the neighboring particles, except when the distance between particles becomes less 

than the reference lattice spacing, the repulsive contact force is restored by setting  to 

zero. 

 

Figure 3-5 Stress versus CODeq (Nikravesh & Gerstle, 2018) 

             

Figure 3-6 Damage versus CODeq 
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3.6 SPLM Plasticity Model 

Using SPLM it is possible to develop an elastic-plastic model without using the 

classical stress-strain concept. This allows the discontinuous deformities to develop 

naturally and avoids the formation of stress singularities. The total stretch is assumed as 

the sum of elastic and plastic stretches: 

   {S} = {Se} +{Sp}.
     (3.33) 

The bond force state is decomposed into deviatoric and hydrostatic force states: 

   F = {FD} + {F                     () 

where {FD} is the deviatoric force state matrix and {FH} is the hydrostatic force state 

matrix. The particle yields when the norm of the deviatoric force state exceeds a critical 

value Fdevyield.  

Once the material yields, it develops plastic flow, which is a measure the stretch 

rate versus the force state, and it is given by a flow rule. This is presented in detail in 

(Gerstle, 2015). In the SPLM plasticity model, each of the six bonds related to the particle 

Pi and its neighbors is assigned a plastic stretch attribute. The attribute, called the “plastic 

bond stretch”, is divided equally among the two particles connected through the bond. With 

all the known plastic stretches, the elastic stretches can be calculated as {Se} = {S}-{Sp} 

using the particle spatial position and the force matrix {F}= [K] {Se} can be thus computed. 

In the next chapter, we present the laboratory experimental results, and then in 

Chapter 5 we present SPLM simulations of the laboratory specimens and compare the 

simulation results to the laboratory results. 
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Chapter 4 Laboratory Experiments 

This chapter describes laboratory tests to determine the compressive, tensile and 

flexure strengths of concrete. The tests are performed to study the detailed nature of 

plasticity, damage, and cracking patterns developed.  

Twenty-four specimens were tested from two batches of concrete. Among these, 

nine specimens were used for Brazilian split cylinder tests, three were used for direct tensile 

tests, four were used for modulus of rupture tests, and eight were used for direct 

compression tests. All cylinders were standard, six inches in diameter and twelve inches 

long. The beams for the flexure tests were three inches wide by three inches deep by twelve 

inches long. All these specimens were tested using a Tinius Olsen testing machine. The 

machine had a standard 400 kip loading frame with hydraulically operated platens that 

were used to apply deformations to the specimens. The main purpose of these tests is to 

study strengths and the patterns of crack initiation, crack propagation, and the failure 

mechanisms of the specimens. After casting, the specimens were treated in a wet curing 

room for just over a month. The cured cylinders were then tested, and the results obtained 

are used for comparison with SPLM analyses. The results depict the time (minutes), 

deformation (inches) and load (lbf) in graphical forms that were used to study the crack 

propagation patterns. The summarized results are presented in tabular form for each type 

of test. The last two numbers in the specification ID in the summary table represents the 

experiment number. For example, ‘BR01’ means the first Brazilian split cylinder test, 

‘DT01’ is the first direct tensile test, ‘FT01’ is the first modulus of rupture test, and ‘DC01’ 

is the first direct compression test. Respective ASTM standards were followed for each 
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type of test. A displacement-controlled load of 0.05 inch/min was applied for all the 

experiments performed.  

4.1 Brazilian Split Cylinder Test 

The Brazilian split cylinder test is one of the standard methods to determine the 

tensile strength of concrete. Concrete develops cracks when it is subjected to tensile 

stresses. To determine the load at which concrete cracks, we need to calculate the tensile 

strength. Assuming linear elastic conditions, the peak load obtained from the laboratory 

test is used to calculate the splitting tensile strength fsp, defined as, 

                                                       fsp =                   (4.1)   

where, P is the peak load carried by specimen, L is the length of the specimen, and D is the 

diameter of the specimen. 

4.1.1 Principle of Operation  

  A six inch by twelve-inch-long concrete cylinder was placed between the top and 

bottom platen of the testing machine as shown in Fig. 4-1. A packing strip (plywood) is 

used between the specimen and platen to distribute the load uniformly. The strip is one 

inch wide and 0.125 inch thick. The load was distributed along the cylinder length by the 

top steel bar. Nine cylinders were tested for the splitting tensile test. The average splitting 

strength of the concrete was found to be 489.656 PSI with a standard deviation of 49.468 

PSI and a coefficient of variation 10.103%, as shown in Table 4-1. 

2𝑃

𝜋 ∗ 𝐿 ∗ 𝐷
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Figure 4-1 Laboratory set up for Brazilian splitting test                                                                  

 

Table 4-1 Summary of test results for splitting strength 

Specification 

ID 
Batch 

Specimen 

age while 

testing 

(Days) 

Peak 

Load 

(Psp), lb 

Peak 

Load, 

KN 

Splitting 

Strength 

(fsp), PSI  

Splitting 

Strength 

(MPa)  

BR01 2 29 54368 241.841 480.719 3.314 

BR02 1 35 60041 267.076 530.879 3.660 

BR03 2 36 59490 264.625 526.007 3.627 

BR04 2 37 55479 246.783 490.542 3.382 

BR05 1 37 44058 195.980 389.558 2.686 

BR06 2 37 55488 246.823 490.622 3.383 

BR07 1 44 49734 221.228 439.745 3.032 

BR08 2 45 62140 276.412 549.438 3.788 

BR09 2 45 57611 256.266 509.393 3.512 

Average 55378.78 246.337 489.656 3.376 

Standard Deviation 5594.669 24.886 49.468 0.341 

Coefficient of variation (%) 10.10255 10.103 10.103 10.103 

 

The test cylinders are labelled BR01 through BR09. The way crack originates and 

propagates during the test was also documented. Details of crack origination and 

Bottom Platen 

 

Wooden strips 

 

 

Top Platen 

 
Steel bar 

 

 

Specimen 
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propagation with their time of occurrence (Hours: Minutes: Seconds), for a typical splitting 

test (Test09), are shown in Fig. 4-2 from (a) through (h). The time in each figure represents 

the duration taken from first appearance of the crack to the final crack pattern. Plots of load 

versus displacement and load versus time are calculated using MATLAB and are shown in 

Fig. 4-3 and Fig. 4-4, respectively, for all the experiments. Red and blue circular markings 

in the plot represents batch one (B1) and batch two (B2) specimens respectively. The 

curves are shifted horizontally in all the graphs to line up the peak loads for better visual 

comparison of the results. Fig. 4-5 shows the bar graph representation of the peak loads for 

all Brazilian split cylinder tests. 

4.1.2 Discussion 

The rupture in all the specimens occurs through two mechanisms, namely, principal 

mechanism and secondary mechanism (Claudio Rocco, 1999). The principal mechanism 

includes the main vertical crack that originates first at the middle of the specimen, whereas 

the secondary mechanism includes the vertical cracks that appear on each side of principal 

crack near edge of the wooden strips. These secondary cracks develop after the complete 

expansion of principal crack from center to the boundary (Claudio Rocco, 1999). All of 

our experiments followed the type of cracking pattern described above. Failure of 

specimens are only seen after the development of secondary crack mechanisms. 

 

 

 

 



39 

 

 

Figure 4-2 Time sequence of occurrence of crack for Test ‘BR09’ 
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 Figure 4-4 Load versus Time plot for Brazilian split cylinder test  

                                      

 

Figure 4-3 Load versus Displacement plot for Brazilian split cylinder test  
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4.2 Direct Tensile Test 

The direct tensile test was nonstandard. Due to the difficulty in uniformly transferring 

the direct tensile load over the cross section of the specimen, embedded bolts were used to 

apply tensile load to the specimen as shown in Fig. 4-6. In this method, the peak load is 

obtained from the laboratory test and the direct tensile strength of the concrete Ft , is defined 

as, 

Ft = P/A         (4.2) 

where, P is the peak load carried by the specimen, and A is the cross-section area of the 

specimen. 

4.2.1 Principle of Operation  

A six inch by twelve-inch-long concrete cylinder, with a ¾” diameter bolt 

embedded in each end of the cylinder, was attached to the top and bottom platens of the 

testing machine, as shown in the Fig. 4-6. The bolts here are used to transfer the direct 

tensile force from the platens to the specimen. Three cylinders were tested in the direct 
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Figure 4-5 Peak loads for all Brazilian split experiments 
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tensile test series. The average direct tensile strength of the concrete was found to be 

275.798 PSI with a standard deviation of 12.594 PSI and coefficient of variation 4.566 

percent, as shown in Table 4-2. Plots of load verses position and load verses time are 

calculated using MATLAB and are shown in Fig. 4-9 and Fig. 4-10, respectively for all the 

experiments. All these specimens are from batch one (B1 as represented in index). The 

final cracking pattern for different direct tensile experiments are shown in Fig. 4-7. It is 

noticed from these figures that the failure patterns are somewhat variable. 

Table 4-2 Summary of the test results for direct tensile strength 

Specification 

ID 
Batch 

Specimen 

age while 

testing 

(Days) 

Peak 

Load 

(PDT), lb 

Peak 

Load 

(KN) 

Direct 

Tensile 

Strength 

(fDT) (PSI)  

Direct 

Tensile 

Strength 

(MPa)  

DT01 1 40 8137 36.195 287.788 1.984 

DT02 1 42 7830 34.830 276.930 1.909 

DT03 1 42 7427 33.037 262.677 1.811 

Average 7798 34.687 275.798 1.902 

Standard Deviation 356.08 1.584 12.594 0.087 

Coefficient of Variation (%) 4.566 4.566 4.566 4.566 

 

4.2.2 Discussion 

The failure of all the direct tension tests was very sudden and dynamic. The average 

direct tensile strength of the concrete (7.798 5Kips) obtained from laboratory test is much 

lower than we expected (17 to 20 Kips). This may be due to the stress concentration near 

the bolt head. This specimen is considered for SPLM simulation to observe how significant 

the stress concentration is near the bolt head.  

We calculate the concrete breakout and concrete pullout strengths based on ACI 

318-14, chapter 17 (ACI Committee 318 & American Concrete Institute, 2016). It was 
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conducted to ensure that there will be no pulling of the bolt or breaking of the concrete 

chunks that would lead to different results than expected.  

Strength of anchor in Tension  

Gross area of bolt = 0.442 inch2    

Net area of bolt (Ase,N) = 0.334 inch2    

Yield Strength (Fy) = 36 Ksi (For A36 steel)  

Ultimate Strength (Fu) = 58 Ksi (For A36 steel)    

Nominal Strength of Anchor in Tension 

Nsa = Ase,N*futa = 22.8456 Kips (ACI 318-14, 17.4.1.2)  

where, Ase,N is the effective cross-sectional area of an anchor (bolt) in tension and futa is 

smaller of 1.9*Fy and 125,000 psi.     

Strength reduction factor (ф) 0.75 (ACI 318-14, R17.4.1.2) 

Reduced Strength= ф*Nsa 17.1342 Kips 

Concrete breakout strength of anchor in tension 

Ncb = (ANc/ANco)*Ψed,N*Ψc,N*Ψcp,N*Nb      (ACI 318-14, 17.4.2.1a)    

 (ANc/ANco) = 1 (For single anchor bolt) 

where, Ψed,N,Ψc,N,Ψcp,N are defined in section 17.4.2.4.-17.4.2.7 of ACI 318-14   

1.5hef = 7.5 inch, where hef = 5 in. is the distance from centerline of the anchor to the 

projected failure surface.  

Ψed,N = 1, Ψc,N = 1.25 (For cast in anchors) and Ψcp,N = 1 (For cast in anchors)  

Nb = Kc*λ*√(fc’) *hef*1.5 (ACI 318-14, 17.4.2.2a)   

Kc = 24    

λ = 1 (For normal weight concrete) 
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Nb = 18973.666 Pounds     

Ncb = 23717.082 Pounds = 23.717082 Kips 

Ф = 0.75    

Reduced breakout strength 

ф*Ncb = 17.787812 Kips   

Concrete pullout strength 

Npn= Ψc,p*Np (ACI 318-14, 17.4.3.1)  

Abrg= 0.654 inch^2   

Ψc,p = 1.4 (For no cracking at service load) 

Np = 8*Abrg*fc' = 26160 Pounds (ACI 318-14, 17.4.3.4)   

Npn = 36624 Pounds = 36.624 Kips   

Ф = 0.75 

Reduced pullout strength    

ф*Ncb = 27.468 Kips   

Here, we can observe that the concrete break out strength in tension is 17.78 kips 

which is 79089 N and the pullout strength is 27.488 kips which is about 122183 N. These 

values are more than enough to ensure that the concrete does not break, or the bolts will 

not pullout of the specimen during the application of tensile load. The maximum tensile 

load at which the specimen experienced breaking is 34687 N for laboratory test and 44860 

N for SPLM with lattice rotation of 30 degrees. Since, both the forces are less than the 

breakout or the pullout strengths, no such results were obtained. The comparison of the 

results obtained from laboratory test, theoretical analysis and the SPLM simulations are 

shown in Fig. 5-11. 
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Figure 4-6 Laboratory set up for Direct Tensile test 

Figure 4-7 Observed cracking patterns for direct tensile test at the end 
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 In fig. 4-7 a) – c), we can see that the damage takes place near the top. It is the region 

where the head of the top bolt is located, and the stress would be expected to be highest in 

this region, when considering the self-weight of the cylinder.  

 

Figure 4-8 Load versus position plot for direct tensile test                                          

 

 

 

 

 

 

 

 

 

                        Figure 4-9 Load versus time plot for direct tensile test               
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Figure 4-10 Peak loads for all direct tensile tests 

 

4.3 Modulus of Rupture (3-point bending test) 

 The modulus of rupture test shown in Fig. 4-11 measures the flexural strength of 

the sample beams. The resulting formula for the stress under the 3-point bending test for 

the bar is given by: 

    σmax = 3FL/2bd2         (4-3) 

where F is the peak load, L is the span, b is the average width of the specimen, and d is the 

depth of the specimen. 

4.3.1 Principle of Operation  

 The beam, three inches wide by three inches deep by twelve inches long, is placed 

centrally on two steel supports as shown in Fig. 4-11. The loading bar is set above the 

specimen at the center, as shown in Fig. 4-11. The beam is loaded using the hydraulic 

testing machine. At a certain maximum load, the beam breaks suddenly, snaps and the data 

are recorded using software. Four beams were tested for the modulus of rupture test. The 
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average modulus of rupture was found to be 838.267 PSI with the standard deviation of 

45.006 PSI and coefficient of variation 5.369 percent as shown in Table 4-3.  

 Plots of load versus position and load versus time are calculated using MATLAB 

and are shown in Fig. 4-12 and Fig. 4-13 respectively for all the experiments. Red circular 

markings in the plot shows that all the specimens are from batch one (B1). 

Table 4-3 Summary of the test results for Modulus of rupture 

Specification 
ID Batch 

Specimen age 
while testing 
(Days) 

Peak 
Load (lb) 

Peak 
Load (KN) 

Modulus of 
Rupture (PSI)  

Modulus of 
Rupture (MPa)  

FT01 1 47 1699 7.558 840.886 5.798 

FT02 1 47 1646 7.322 831.056 5.730 

FT03 1 48 1846 8.211 895.368 6.173 

FT04 1 48 1556 6.921 785.759 5.418 

Average 1686.75 7.503 838.267 5.780 

Standard Deviation 121.473 0.540 45.006 0.310 

Coefficient of Variation (%) 7.20157   5.369   

 

4.3.2 Discussion 

 The three-point bending test was performed to determine the modulus of rupture. 

Fig. 4-11 shows crack development of FT01 at two stages. Fig. 4-11 shows the cracking 

pattern for the laboratory experiment. Note that the crack is not centered nor vertical which 

means the results are somewhat indifferent. The specimens were subjected to the 

perpendicular load on top along the length which induced the compressive strength on the 

top surface and tensile strength at the bottom surface and the bar snapped into nearly two 

equal pieces.  
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Figure 4-11 Modulus of rupture test - Experiment 1 

 

 

 

 

 

       

 

 

 

 

 

      Figure 4-12 Load versus displacement plot for modulus of rupture tests  

Figure a: Initiation of crack; front face  Figure b: Initiation of crack; back face 

Figure c: Final crack; front face Figure d: Final crack; back face 
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           Figure 4-13 Load versus time plot for modulus of rupture tests  

 

 

Figure 4-14 Peak loads for modulus of rupture experiments 

1699 1646

1846

1556

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4

P
ea

k 
Lo

ad
(P

sp
),

 lb

Experiment Number

Peak Loads



51 

 

 

4.4 Direct Compression Test 

The direct compression test is carried out for cylindrical concrete specimens to 

determine both the strength and the post-strength behavior. The compressive strength is 

determined by dividing the peak load by the cross-sectional area.  

4.4.1 Principle of Operation 

The direct compression test was carried out in the same hydraulic machine that was 

used for the tension tests. The specimens were cylindrical and six inches in diameter by 

twelve inches long. They were cast in a plastic mold and cured for approximately 35-40 

days. The concrete specimens were supposed to carry approximately 5000 PSI load. The 

specimen was placed in the machine vertically and the compressive load was applied on 

the top as shown in Fig. 4-15. Eight cylinders were tested for the direct compression test. 

Four of the specimens were tested using steel caps on top and four with the sulphur caps 

as shown in Fig. 4-16. For one of the cylinders in fourth experiment, a concrete vibrator 

was used during the casting process, for which we observed the highest value of strength 

(5623.481 PSI). The average direct compressive strength of the concrete was found to be 

5062 PSI with the standard deviation of 421.217 PSI and coefficient of variation 8.321 

percent as shown in Table 4-4. The initial and the final crack patterns for all the 

experiments are shown in Fig. 4-16.  

The plot of load versus position and load versus time are calculated using 

MATLAB and are shown in Fig. 4-17 and Fig. 4-18 respectively, for all the experiments. 

Red and blue circular markings in the plots represent batch one (B1) and batch two (B2) 

specimens, respectively. 
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       Figure 4-15 Laboratory set up for Direct Compression test 

 

Table 4-4 Summary of the test results for direct compressive strength 

Specification 
ID Batch 

Specimen age 
while testing 
(Days) 

Peak 
Load (Pc), 
lb 

Peak Load 
(KN) 

Comp 
Strength 
(fc') (PSI)  

Comp 
Strength 
(MPa) Remarks 

DC01 2 35 127000 564.924 4491.712 30.969 
Sulphur 
Capped 

DC02 1 35 148000 658.337 5234.436 36.090  

DC03 2 36 141000 627.199 4986.861 34.383 
Sulphur 
Capped 

DC04 1 37 159000 707.267 5623.481 38.773 Vibrated 

DC05 2 37 154000 685.026 5446.642 37.553 
Neoprene 

Capped 

DC06 1 37 152000 676.130 5375.907 37.066 
Neoprene 

Capped 

DC07 2 45 130000 578.269 4597.815 31.701 
Sulphur 
Capped 

DC08 1 45 134000 596.062 4739.286 32.676 
Sulphur 
Capped 

Average 143125 636.652 5062.017 34.901  
Standard Deviation 11909.63 52.977 421.217 2.904  

Coefficient of Variation (%) 8.321139 8.3211388 8.321 8.321  
 

 

Top Platen 

Steel Caps 
Bottom Platen Specimen 
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4.4.2 Discussion 

When the peak load occurred, the cylinder failed with a loud bursting sound. Unlike 

the tension tests, where the specimen failed with a single primary large crack and other 

secondary cracks, compressive strength test specimen failed with many cracks developing 

simultaneously. Sulphur caps and the neoprene caps were used to distribute the load 

uniformly. The neoprene caps were removable, and they produced a louder sound than the 

specimens with Sulphur caps. The average of the peak loads for various compressive test 

was 143 kips for the 5000PSI concrete. 

It was observed that the sulphur-capped specimens failed at lower strength than the 

neoprene capped specimens. The reason might be because the neoprene cap was made from 

a rubber material which could store more energy. Since more energy was stored, it cracked 

with a loud bang. The analysis of the standard deviation of the strength of the sulphur 

capped and the neoprene capped specimens revealed little difference. Since both methods 

are ASTM approved, the results should not be altered due to the use of different capping 

materials.  
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                       Figure 4-16 Different direct compression tests performed in the laboratory                             

                                           

a) Experiment-1-initial pattern b) Experiment-1- final pattern 

c) Experiment-2- initial pattern                             

 

d) Experiment-2- final pattern                             
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           Figure 4-17 Load versus position plot for direct compression test 

 

 

 

 

 

 

 

 

 

 

                                           

Figure 4-18 Load versus time plot for direct compression test 
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Figure 4-19 Peak load for all direct compression tests 

 

4.5 Sieve Analysis 

Sieve analysis, or the gradation test, is a procedure to determine the aggregate size 

distribution.  The gradation of aggregate is one of the important factors that determines the 

strength of the concrete mix. The results from this test are often compared with standard 

specifications. ASTM standards (“ASTM C136 C136M 14 Standard Test Method for Sieve 

Analysis of Fine and Coarse Aggregates,” n.d.)was mostly followed to perform the test.  

4.5.1 Apparatus Used 

A digital weight balance readable up to 0.1 gram was used to weigh the sample. The sieves 

sizes used for the test are shown in Table 4-5. The sieves used ranged from 75 micron to 

4750 microns. An oven maintaining the temperature of around 110±5 degree Celsius was 

used to dry the sample for about 24 hours. Mechanical Sieve Shaker was used for sieving 

and containers and brushes were used to collect the sample. 

 

127000

148000
141000

159000 154000 152000

130000 134000

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8

P
ea

k 
Lo

ad
s(

P
sp

),
lb

Experiment Numbers

Peak Loads



57 

 

 

Table 4-5 Sieve sizes used for sieve analysis 

 

  

 

 

4.5.2 Procedure 

500 grams of concrete mix was taken from the ready-mix bag and washed 

thoroughly with water. The sample was put in the dryer for about 24 hours. Once the sample 

was completely dried, its weight was recorded accurately using a digital balance. The 

sieves of sizes shown in Table 4-5 were arranged in decreasing size from top to the bottom. 

The sample was placed on the top sieve and the mechanical sieve shaker was started for 10 

minutes. The weights retained in each sieve were collected carefully with the help of brush 

and noted. 

4.5.3 Results 

From the sieve analysis it is observed that the grains were mostly fine aggregates 

as shown in Table 4-6. The rough sample weight was 500.2 grams. The weight of the 

sample after washing and drying was 398.7 grams. The samples were retained in each sieve 

and the cumulative percentage is shown in Table 4-6. The results were compared with the 

ASTM Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, and it 

was observed that the percentage passing the sieve was mostly within the range defined by 

ASTM. 

 

 

Sieve No. 200 100 50 30 16 8 4 

Size (micron) 75 150 300 600 1180 2360 4750 
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Table 4-6 Results obtained from sieve analysis 

 

Sieve 

number 

 

Sieve size 

(micron) 

 

Weight 

retained (gram) 

Percentage of 

mass retained 

in each sieve 

Cumulative 

percentage 

retained 

Percentage 

passing 

4 4750 139.1 34.892 34.891888 65.10811218 

8 2360 50.7 12.718 47.609492 52.3905082 

16 1180 22.24 5.579 53.18818 46.8118196 

30 600 41.9 10.510 63.69839 36.30161039 

50 300 70.61 17.712 81.410224 18.58977575 

100 150 52.55 13.182 94.591883 5.408117193 

200 75 21.26 5.333 99.924748 0.075252095 

Pan 0 0.3 0.075 100 0.0 

  sum 398.66       

Rough sample = 
 

500.2 gm 
 

Weight of sample 
    

after washing and drying =  398.7 gm 
 

Difference in dry sample before and after sieving 0.01%< 0.3% OK  

 

 
 

             Figure 4-20 Sieve analysis of concrete mix 
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4.7 Conclusion 

All the tests were conducted to determine not only the peak loads, but also the post-

peak behavior of the cracks. The laboratory experiments were conducted under the normal 

conditions and the cracks obtained in the splitting, compression and tension specimens 

were analyzed using the SPLM software, presented in Chapter 5 in this thesis. The post-

peak load analysis using the peridynamic models are studied to validate the SPLM. 
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Chapter 5 SPLM Validation 

In this chapter, we validate the SPLM elasticity, plasticity and damage models for 

plain concrete. The SPLM results are compared with the laboratory results and ACI code.  

5.1 Computational Implementation 

The numerical simulation can be performed either in a single processor computer 

or a multi-processor computer. In a multi-processor computer, parallel processing can be 

done through MPI (Message Passing Interface). Using the multi-processor reduces the time 

taken to simulate the specimen. In SPLM, a single processor can simulate the specimen 

with maximum of 5000 particles. For specimen with number of particles more than 5000, 

parallel processor is required. In the parallel processor, particles will be arranged in an 

array of cells of size slightly greater than the horizon. Each particle will only be interacting 

with the particles in the own cell and direct adjacent cell. We assign eighteen particles to a 

3D cell and 27 cells to a 3D array. The number of force interactions without the 

arrangement is 
𝑁𝑝

2

2
 , where Np is the number of particles. After the arrangement it reduces 

to 
𝑁𝑝∗𝑁𝐴∗𝑁𝑄

2
 where, NQ is the number of particles per cell which is 18, NA is the number of 

adjacent cells in an array which is 27. So, if the number of particle is 1 million, 
𝑁𝑝

2

2
= 5 ∗

1011 and 
𝑁𝑝∗𝑁𝐴∗𝑁𝑄

2
= 242 ∗ 106 which is less than without the cell decomposition (Gerstle, 

2015). This significantly reduces the number of time step of calculation and also reduces 

the total time taken for the simulation. 

For this thesis, the requirement of parallel processor was fulfilled by Center for 

Advanced Research Computing (CARC). The existing Fortran code is used to run the 

simulation and the results are displayed using MATLAB. Two programs, Cmder and 
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WinSCP are used to run the program remotely at CARC. Cmder provides a prompt window 

to give commands to CARC remote computer and WinSCP is used to transfer files from 

remote computer to the local computer. The simulation produces numerous output files 

that can be opened using notepad. The SPLM files are UserInput, link files, histSet files, 

particle post processing files, output, stress and strain files. The FORTRAN files that the 

user might alter are userModel.F, userIntegrate.F and userVariables.F. And finally, there 

is a writeout file that writes the output to the SPLM files. 

5.2 Brazilian Split Cylinder using SPLM 

Brazilian split cylinder test is an indirect tensile test which is performed to measure 

the tensile strength of concrete. In 1943, Lobo Carneiro and Barcellos proposed this test at 

the Brazilian Association for Standardization Conference. The concrete cylinder is 

subjected to a diametrical compressive load which results in transverse tension at the 

middle of the specimen (Wosatko, Winnicki, & Pamin, 2011). The tension is perpendicular 

to the direction of force applied and causes splitting of cylinder. Secondary and tertiary 

cracks are also formed due to the applied force and its reaction. This result can be seen in 

Fig. 5-1 a) & b) below, obtained from laboratory testing.  
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Figure 5-1 a) Front view of the Brazilian split cylinder           b) Close up view of a cylinder         

The specimen size is the same as used in the laboratory experiment. We define a 

number of parameters and attributes before modelling the specimen as shown in Table 5-

1. 

Table 5-1 Material parameter used for concrete in SPLM simulation 

 

The diameter of the model is 6 inches and the thickness is 12 inches. We assume a 

plane stress disk of thickness equal to the length of the cylinder. The boundary conditions 

are such that we apply displacements as shown in Fig. 5-2.  

Parameter English Value SI Value 

Compressive Strength, F’c 5000 PSI 34.47379 MPa 

Young’s Modulus, E 4075.56 KSI 28.1 GPa 

Mass density,  145 PSI 2323 kg/m^3 

Poisson’s ratio,  0.2 0.2 

Tensile damage parameter  0.25 0.25 

Damping ratio, internal 0.2 0.2 

Damping ratio, external 0.2 0.2 

Tensile strength of concrete 353.55 PSI 2.4375 MPa 

Damage initiating strain 0.003 0.003 
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Figure 5-2 Brazilian split cylinder under compressive loading 

 Source: https://www.sciencedirect.com/science/article/pii/S2214509515300061 

The lattice spacing used is 0.005m. The applied force generates the stresses which 

is then distributed along the diameter of the specimen. The linear elastic stress distribution 

along the diameter is shown in Fig. 5-3. 

                              

Figure 5-3 Stress distribution along the diameter 

Source: https://www.sciencedirect.com/science/article/pii/S2214509515300061 

A time-varying displacement (𝑡) =  (
∆𝑚𝑎𝑥

2
)(1 − 𝑐𝑜𝑠(

𝜋𝑡

𝑡𝑟𝑎𝑚𝑝(𝑒𝑛𝑑)
) (Gerstle, 2015) 

is applied to the specimen at the top and bottom boundary. In the above equation, max= -

0.0001 and tramp(end)=0.8*end time and end time is calculated based on lattice spacing, 

damping factor and fundamental period of vibration. The force-displacement curve 

obtained from the SPLM simulation for the splitting tensile test is shown in Fig. 5-4.                 

 x 

 x 

https://www.sciencedirect.com/science/article/pii/S2214509515300061
https://www.sciencedirect.com/science/article/pii/S2214509515300061
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Figure 5-4 Force-Displacement relation of Brazilian Split cylinder for 0-degree lattice rotation 

 

The graph in Fig. 5-4 demonstrates the peak load at which the cylinder fails and the 

displacement during that peak load. The peak load is 1.971*10^5 N for zero-degree lattice 

rotation. In Fig. 5-5, Fig. a, b, and c are rotated through 0, 15, 30 counterclockwise with 

the number of particles 839, 841 and 843 respectively. The number of time steps which is 

6000, remains the same despite the rotation.  

In Fig. 5-5, the particles in the black are yielded particles i.e. particles undergoing 

plastic deformation and the particles in the red are completely damaged particles. The 

particles can yield even if they do not get damaged. For the SPLM simulation, the 

displacement is applied to the particles that fall within the length which represents the 

width of the loading strip used in the laboratory experiment to obtain more accurate results. 

L
o

ad
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N
) 
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The effect of the loading strip incurred is accommodated in the theoretical result by 

introducing  in the equation of peak-load given by, 

𝑃𝑛 =
(𝜋𝑙𝐷𝑓𝑐𝑡)

2(1−𝛽2)1.5
  (Nikravesh & Gerstle, 2018)             (5.1) 

where, l is length of the specimen, D is the diameter of the specimen, =loading strip 

width/diameter, fct is the splitting tensile strength and Pn is the peak load.                                                                                                                   

 

Figure 5-5 Cracking patterns obtained for Brazilian Splitting test specimen whose particle lattice is rotated 

through a)0, b)15 and c)30 degrees 

The theoretical peak load from Eq. 5.1 is 7.33 percent low than the 0 rotated lattice and 

1.22 percent low than the 15 rotated lattice and it is 2.83 percent higher than the 30 rotated 

lattice. The crack pattern differs in the physical appearance for different lattice rotation 

however, the yield stress does not vary much.     
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Figure 5-6 Load comparison between different SPLM lattice rotations, laboratory value and classical 

theoretical value for the Brazilian splitting test. 

The load versus displacement graphs are plotted in Fig. 5.6. We observe that the 

load values obtained from SPLM for 0 and 15-degree rotation lies between the theoretical 

value and the average laboratory values. It is assumed that the cylinder follows the classical 

linear elastic theory until the peak load where it cracks along the diameter. When the 

vertical crack occurs, the cylinder is no longer linear elastic and demonstrates non-linear 

behavior. The irregularities that occur after the peak load are caused by the dynamic 

behavior of the particles. The potential energy is released in the form of dynamic energy 

which ultimately dies out due to damping. Fig. 5-7 shows the relationship between 

displacement and time, load and time and load and displacement respectively for the set of 

particles defined as boundary on the top loaded region. 
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Figure 5-7 Plot of a) displacement vs time b) force vs time c) load vs displacement of particles at top loaded 

region of Brazilian split specimen 

 

5.3 Direct Tension Test using SPLM 

For the direct tensile test, we use the cylinder 0.3 m high by 0.15 m wide. The 

cylinder is then subjected to the uniaxial tension force. The force is applied as the time 

varying displacement at the upper boundary perpendicular to the diametric plane. The 

boundary condition is defined such that the load is defined along them to represent the 

pulling force applied as a displacement parameter. The lattice spacing of the particles used 

is L = 0.01m. The simulation model is as shown in Fig. 5-8.  
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Figure 5-8 Cracking patterns obtained for direct tensile test specimen whose particle lattice is rotated through 

a)0, b)15 and c)30 degrees    

 

It is normally not possible to apply tensile force to the cylinder without any prop. Hence, a 

bolt with a hexagonal bolt head have been embedded in the cylinder so that the tensile force 

can be easily applied. The boundary condition is applied such that the lower boundary is 

fixed and the tension (pulling) force is applied to the bolt in the upper boundary. We fixed 

the lower boundary assuming that it will resist the force equal to the force applied in the 

bolt causing the effect as if the cylinder was being pulled from both the ends. The damage 

and the plasticity are shown in Fig. 5-9. It is observed that the breaking of the cylinder 

takes place at the region of bolt-head location. In Fig. 5-9, we can see that the breakage is 

aligned along the lattice planes. This test, however, cannot be categorized as a pure tension 

test. The stress and the strain field around the region is complicated because there is a local 

stress concentration in the bolt head region which causes the breakage in the region where 

the steel particles of the bolt head interact with the concrete particles of the cylinder. The 

stress and the strain relationship of the particle at the center for 0-degree lattice rotation is 

shown in Fig. 5-10. The unusual graph in Fig. 5-10 c) is observed because of the stress 

concentration at the bolt head region.    



69 

 

 

   

Figure 5-9 Cracking patterns obtained for direct tensile test with embedded bolts whose particle lattice is 

rotated through a) 0, b) 15 and c) 30 degrees 

   

 

Figure 5-10 Plot of a) strain vs time b) stress vs time and c) stress vs strain of particle near the bolt 

head shown in figure 5-9 

This SPLM direct tensile simulation is compared with the direct tensile experiment 

using the anchored bolts in laboratory. The SPLM simulation is performed with the cuboid 

of the same width and depth instead of the cylinder for 2-dimensional analysis. The loads 

obtained from theoretical calculation and laboratory results are for the cylinder. Therefore, 

these results are multiplied by the ratio of cross-sectional area of cuboid to cylinder and 
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obtain the loads for cuboid. The loads obtained from both is then compared with SPLM 

simulations as shown in the Fig. 5-11. 

 

Figure 5-11 Load comparison between different lattice rotations, laboratory value and theoretical value for 

direct tension test 

The bolt is then shifted to the side by 1/4th distance. Now it is located at 1/4th 

distance from the left as shown in Fig. 5-12 and 3/4th from the right side of the specimen. 

It is observed that the shift in the bolt causes the cylinder to break at lower peak load than 

when the bolt is at the center. For the bolt at 1/4th location from the left and with lattice 

rotation 0 degree, the peak load required to break the cylinder is 20570 N. For the same 

location of bolt with lattice rotation 15 degree, the peak load is 18460 N and for 30-degree 

location is 21130 N. We observe that the cracking pattern obtained is almost like when the 

bolt was at the center. The cracking is first observed at the edge near the bolt. It may be 

because the stress is more near the bolt and it progresses first to the nearest edge and slowly 

to the opposite edge. The stress concentration is felt at the zone where the bolt head is 

located shown in Fig. 5-12. 
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Figure 5-12 Cracking patterns obtained for direct tensile test with bolts at 1/4th length from left and whose 

particle lattice is rotated through a) 0, b)15 and c)30 degrees 

 

5.4 Modulus of Rupture using SPLM 

Modulus of Rupture also known as flexural strength or bending strength is the 

measure of transverse strength of concrete. For this test, a plain concrete beam of 

dimension 3 inches wide by 3 inches thick by 12 inches long is designed similarly as other 

tension specimen. It is then subjected to the one-point bending load in the middle of the 

specimen in the direction perpendicular to the cross-section of the specimen. The results 

obtained is shown in Fig. 5-13 and Fig. 5-14. We can see that the cracking force is 8626 

N. In the load comparison figure shown in Fig. 5-16, it is noticed that the classical theory 

strength is significantly lower than the SPLM and the laboratory strengths. It is because 

the classical theory assumes that the specimen can take no more load after the initial crack 

is formed while with the simulation and laboratory tests we can see that it can take more 

load even after the initial crack is formed.   
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Figure 5-13 Modulus of rupture experiment using SPLM         

   

      

 

Figure 5-14 Load versus displacement graph for modulus of rupture test for 0-degree lattice 

rotation 



73 

 

 

The relationship of displacement with time, load with time and load with displacement is 

shown in Fig. 5-15 and the load comparison is shown in Fig. 5-16. 

 

Figure 5-15 Plot of a) displacement vs time b) force vs time c) load vs displacement of particles at top 

loaded region of modulus of rupture specimen 

 

 

 

Figure 5-16 Load comparison between different lattice rotations, laboratory value and theoretical value for 

modulus of rupture test 
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5.5 Direct Compression test using SPLM 

Let us now consider the compression specimen. The cylinder dimension is L*B*H 

(12” *6” *6”). We apply the compressive force to the top region of the specimen as the 

displacement. The bottom region is fixed. From the Fig. 5-17, we can see that in the 

compression simulation, more particles are damaged, and all the particles become plastic 

except the particles defined at the boundary. The plastic particle is shown by black color. 

We can see that the rotation of lattice does not have much effect on the load as seen in table 

8. The lattice rotation of 0, 15 and 30 degrees have 605, 595 and 569 particles with the 

same number of time step i.e. 4600.  

   
 

Figure 5-17 Cracking patterns obtained for direct compression test whose particle lattice is rotated through 

a)0, b)15 and c)30 degrees 

The relation of force with displacement and time and displacement with time is shown in 

the graph in Fig. 5-18. The theoretical and the laboratory loads are again multiplied by the 

ratio of the cross-section area to obtain the loads for same specimen and the comparison is 

shown in the Fig. 5-19. 
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Figure 5-18 Plot of a) displacement vs time b) force vs time c) load vs displacement compressive strength 

specimen 

 

 
 

Figure 5-19 Load comparison between different lattice rotations, laboratory value and theoretical value for 

compressive strength test 
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5.6 Summary 

After conducting the laboratory experiment and the SPLM simulation, the 

conclusion is drawn for the results of the peak load obtained from laboratory experiment. 

The results from SPLM simulation is summarized in Table 5-2. 

Table 5-2 Comparison table for the results from Laboratory and SPLM 

Types of SPLM 

Simulation 

Peak Load, (N) 

Brazilian 

Split Test 

Direct 

Tension 

with bolt at 

center 

Modulus of 

Rupture 

Direct 

Compression 

0° Lattice rotation 197100 37530 8626 772600 

15° Lattice rotation 199400 37870 7424 758700 

30° Lattice rotation 200400 41210 6594 775100 

Average 198967 38870 7548 768800 

Standard Deviation 1692 2034 1022 8836 

Coefficient of Variation 

(%) 0.850 5.232 13.535 1.149 

     

     

Average of SPLM 

Simulations 198967 38870 7548 768800 

Average of Laboratory 

Results (Peak Load, N) 246337 42788 7503 785343 

Difference (%) 21.276 9.596 0.598 2.129 

 

The difference percentages are calculated as the ratio of difference of the SPLM simulation 

and the laboratory results to the averages of the SPLM simulation and laboratory results. 

The average laboratory results are then used in the formulas given by different ASTM 

standards to obtain the cracking strengths. The strengths are given by, 

Splitting strength, fsp =                     =   
2∗246337

∗0.3048∗0.1524
  =  3.376 MPa 

Direct tensile test, ft =    
P

A
  =   

42788

0.0225
  = 1.9 MPa 

2P

π ∗ L ∗ D
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Modulus of rupture, fr =                         =   
3∗7503∗0.3048

2∗0.0762∗0.07622
    = 7.75 MPa 

We then performed the linear regression analysis of the results obtained above. The 

regression analysis is performed for the three tensile tests, splitting strength (fsp), direct 

tensile strength (ft) and modulus of rupture (fr) tests. We derive the relationship as 

mentioned below. For laboratory results, the relationship obtained for the cracking strength 

is 

ft/ fsp = 1.9 MPa/3.376 MPa = 0.56 

ft/ fr  =  1.9 MPa/7.75 MPa = 0.25 

fsp/fr  = 3.376 MPa/7.75 MPa = 0.43 

fr = 2.32 fsp = 4.0 ft 

Similarly, for the SPLM results, 

ft/ fsp = 1.73 MPa/2.73 MPa = 0.63 

ft/ fr = 1.73 MPa/7.8 MPa = 0.22 

fsp/fr = 2.73 MPa/7.8 MPa = 0.35 

For SPLM results, the relationship obtained for the cracking strength is 

fr = 2.86 fsp = 4.54 ft 

From the above relationship, we can see that the regression value is higher for the results 

from SPLM than the laboratory experiment.  

 

 

 

 

 

3 ∗ P ∗ L

2 ∗ b ∗ d2
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Chapter 6 Discussion and Conclusions 

In this thesis, simulations of various laboratory tests using the SPLM have been 

presented. The SPLM model is rotated at various lattice rotation angles and spacings and 

the obtained results are compared with the laboratory test results. With SPLM, it is possible 

to model the problems of elasticity, plasticity, and damage based on discrete lattice 

particles. SPLM has the potential to model any material. Although SPLM is still in the 

development phase, it is already producing results that are comparable with the laboratory 

results. With future advancement, SPLM has the potential to be a competitive method with 

the continuum mechanics approach.  

In SPLM the particles are arranged in lattice and they interact with other 

neighboring particles. The domain of the problem is not continuous. Hence, it can also be 

used to simulate the particle dynamic actions after the peak load has been attained. The 

SPLM simulation includes the time domain, which allows users to observe changes in the 

model during simulation.  

The major advantage of peridynamics is in fracture mechanics where it allows 

damage and cracks to develop naturally. Despite the simplicity of SPLM, the simulations 

can produce results that can be used to study particle dynamics, elasticity, damage, and 

plasticity and the cracking patterns.  

 

 

 



79 

 

 

6.1 Discussion 

 In this thesis, we use 2D plane stress concrete simulations for validation. The 

laboratory results and the classical theory results are used to validate the SPLM results.  

 SPLM is computationally efficient and it addresses the damage and plasticity model 

in much easier way. The results obtained seem to be satisfactory and the SPLM may be 

used as an alternative method to classical continuum mechanics. 

 The SPLM simulations were conducted for different lattice rotations and it was 

observed that the pre-peak results for the same test were similar, but the cracking patterns 

varied. 

 The variance in the results were obtained in the SPLM simulation and the laboratory 

experiments. The conditions were not perfectly same for the tests which is why the 

variances are observed.  

 We can observe in the load comparison Figs. 5-6, 5-11, 5-16 and 5-19 in Chapter 5 

that the SPLM simulation results are around or between the range of classical theory and 

the laboratory results. For Brazilian split cylinder test, the modulus of rupture test, and the 

compressive strength test we observed that the classical theory strength is lower than the 

laboratory and the SPLM simulation strengths. The classical theory strength is much lower 

for the modulus of rupture test which implies that the classical theory underpredicts the 

flexural strength. It assumes that when the initial crack occurs in the specimen, the 

specimen does not take any more load. However, we observed from the laboratory test and 

the SPLM simulation that the specimen can take load even after the initial crack forms 

(Fig. 4-11 a) & c)). The specimen undergoes strain-softening in concrete after the initial 

crack formation, however, it is still able to carry additional load. The ACI code 318-14 
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chapter 14, section 14.5.2.1 calculates the flexural strength at tension face to be  5√(𝑓′𝑐 ) 

which is the strength at which the initial crack is formed, and the specimen can take more 

load until it finally, completely breaks. 

 The post peak behavior was also recorded during the laboratory test and the SPLM 

simulations. The post peak behavior can be unpredictable both in the laboratory and in the 

simulations. As we notice in Fig. 5-17 and Fig. 5-19 for compression test, the applied force 

does not go to zero after the specimen is damaged. The specimen retains some load after 

the peak and the particles remain intact in the specimen and do not separate. This 

phenomenon can be named “particle interlocking” which allows the specimen to carry 

some retained load before it completely breaks. This can be included in the future work. 

6.2 Future Work 

The validation results obtained from the SPLM simulations indicate that SPLM has 

potential to model damage and plasticity of concrete. It is also proposed that SPLM can 

model reinforced concrete with reasonable accuracy (Gerstle, 2015). It is desirable to use 

SPLM for the simulation of other materials like steel. The current SPLM model is able to 

output damage, plasticity and elasticity; however, it can also be developed to produce more 

advanced simulation results. The current version can only accommodate limited number of 

particles and the simulation time increases if the number of particles increase. Hence, it 

can be improved to incorporate more particles to refine the simulation results. It can be 

done either by increasing the horizon radius or decreasing the lattice spacing. SPLM is an 

excellent tool to study the fracture behavior in solid mechanics. SPLM also opens the 

possibilities of studying particle dynamics behavior during the crack formation which has 

been a topic of interest to many researchers.  
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