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ABSTRACT 

Factors affecting concrete can be categorized as structured factors or unstructured factors. 

The first group of factors consists of those related to the production process of concrete 

including water-cement ratio, properties of raw materials and mix proportions. 

Unstructured factors or construction site factors are related to labor skills and local 

conditions during the construction process of a project. Concrete compressive strength as 

a quality metric, costs and production rates may be affected significantly by such factors 

while performing concrete operations at the jobsite. Several prior studies have investigated 

the effect of structured factors on concrete. However literature is limited regarding the 

effects of unstructured factors during the construction phase of a facility. 

 

This study proposes a systematic methodology to identify and quantify the effects of 

construction site factors including crew experience, compaction method, mixing time, 

curing humidity and curing temperature on concrete quality, costs and production rates 

using fuzzy inference systems. First, the perceived importance of construction-related 
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factors is identified and evaluated through literature review and a survey deployed to 

construction experts. Then, the theory of design of experiments (DOE) is used to conduct 

a full 25 factorial experiment consisting of 32 runs and 192 compressive strength tests to 

identify statistically significant unstructured factors. Fuzzy inference systems (FISs) are 

proposed for predicting concrete compressive strength, costs and production rate effects 

through the use of adapted network-based fuzzy inference system (ANFIS). Finally, an 

optimization model is formulated and tested for managing concrete during the construction 

process of a facility.  

 

Literature review and survey results showed that curing humidity, crew experience, and 

compaction method are the top three factors perceived by construction experts to affect 

concrete compressive strength, whereas crew experience, mixing time and compaction 

method are the top three factors affecting concrete costs and production rates. Additionally, 

crew experience, compaction and mixing time were found to dominate global ranking of 

perceived affecting factors through the application of the relative importance index (RII). 

When conducting designed experiments and analysis of variance (ANOVA), compaction 

method, mixing time, curing humidity and curing temperature were identified to be 

statistically significant construction site factors for concrete compressive strength whereas 

crew experience, compaction method and mixing time were statistically significant factors 

for cost and production rates. A Sugeno type fuzzy inference system (FIS) for quantifying 

compressive strength, cost and production rate effects was created by using ANFIS, having 

correlation coefficients (R-squared values) greater than 93%, indicating that resulting 

models predict new observations well. Curing temperature (i.e., on-site curing temperature) 
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was identified to be the most affecting condition for concrete compressive strength while 

mixing time had the biggest impact on concrete cost and production rates. The developed 

FISs can be used as a decision–support tool that allows for determining desired operating 

conditions, that ensures specified compressive strength, saves resources and maximizes 

profits when fabricating, placing and curing concrete. 
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CHAPTER 1: INTRODUCTION 

 

There are several affecting conditions that could impact concrete compressive strength, 

costs, and production rates when fabricating concrete at the jobsite. The impact is 

manifested by reducing strength, by reducing productivity, and by increasing costs. These 

potential impacts are usually unknown or ignored by construction laborers, foremen and 

project managers. Knowing such impacts in advance could prevent managers from wasting 

resources as well as help save time and money. The novel approach presented in this study 

assists in reducing uncertainty in order to manage concrete quality during the construction 

phase of a project through the use of novel fuzzy set theory.  

 

One of the most popular construction materials is concrete (Neville and Brooks 2010), and 

it is the second most utilized product after water (Okasha and Aichouni 2015). Concrete as 

a construction material is actually present in almost every facility.  This material is made 

of Portland cement, aggregates, admixtures and water and the characteristics and 

proportions of its components play an important role on its quality metrics. Compressive 

strength is the most common quality metric since concrete behaves very well under 

compression forces and it is commonly used to measure concrete quality (Kosmatka et al. 

2002). Also, it is an important parameter for designers and concrete quality control (Mehta 

and Monteiro 2006). Therefore, concrete quality should be guaranteed not only during the 

production process of concrete but also during the construction phase of a project. 
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Ready-mixed concrete undergoes stringent quality controls during its fabrication and 

transportation processes. However, there are several uncertain factors or conditions that are 

not considered after concrete trucks arrive to a construction site, which can change final 

concrete product characteristics (Neville and Brooks 2010). In addition, when concrete 

should be fabricated in-situ, additional factors such as human or local aspects may affect 

not only concrete quality but also associated production costs and production, causing 

possible significant changes on its mechanical properties, project budget and duration. 

Thus, the quantification of the impact of the aforementioned constructions site factors 

could cause significant changes on concrete product metrics.  

 

1.1 Problem Statement 

Most of the quality control for concrete is done during its production process rather than 

during the construction phase of a project. Yuan et al. (2014) pointed out that the factors 

that affect concrete compressive strength may be classified into two categories: structured 

and unstructured factors. The first category is related to the factors affecting concrete 

during its production process such as the properties of raw materials, water– cement ratio, 

or mix proportions while the second category refers to the factors affecting concrete quality 

during the construction phase of a project such as manpower, weather and other local 

conditions. The influence of structured factors on concrete metrics are well understood; 

however, there is limited understanding of the effect of unstructured factors or construction 

site factors on concrete. The present research addresses the aforementioned limitations by 

developing a systematic procedure for quantifying the effect of such unstructured factors 
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on concrete compressive strength as a quality metric, costs and productions rates by 

integrating survey results, design of experiments, and fuzzy inference systems.  

 

1.2 Research background 

Several prior studies have investigated the impact that structured factors have on concrete 

compressive strength as a quality metric such as  the influence of  water – cement ratio, 

entrained air, aggregate size, and age on compressive strength (Kosmatka et al. 2002; 

Mehta and Monteiro 2006; Neville and Brooks 2010) and the effects of admixtures on 

concrete compressive strength (Demirboğa et al. 2001; Jongpradist et al.2010). However, 

the literature is limited regarding construction site factors present when fabricating, placing 

or curing concrete and their impact on compressive strength, costs and production rates.  

 

With respect to costs and production of concrete operations, studies of affecting factors are 

also scarce. O’Connor (2006) pointed out that factors affecting crew production rates are 

difficult to measure and quantify due to intrinsic construction processes’ characteristics. 

Also, the author emphasizes that the lack of data for specific activities containing particular 

details prevents researchers from investigating accurate construction time estimation. 

Jarkas (2010; 2012) investigated the influence of buildability on labor productivity by 

employing experienced crews and argued other factors such as the level of crew skills and 

experience may influence concrete productivity and costs. Heravi and Eslamdoost (2015) 

studied labor productivity factors in the construction industry in order to lower costs and 

project duration.    
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Understanding the effect of construction site factors on concrete product is of special 

importance for project managers and concrete workers since project characteristics require  

the compliance of construction documents specifications, budget and time of execution. 

The present study intends to increase our understanding of the aforementioned factors on 

concrete product through experimentation and the use of fuzzy set theory. 

 

1.3 Research Objectives 

The main objective of this study is to develop a methodology that provides construction 

stakeholders, project managers, concrete technicians and workers with valuable 

information regarding the effect of construction site factors on concrete compressive 

strength, costs and production rates during the construction phase of a facility. The 

following are the research questions addressed in this dissertation: 

 

1. What construction site factors (i.e., unstructured factors) may affect concrete 

quality (i.e., compressive strength), costs and production rates? 

 

2. What experimentation strategy is effective for considering several disturbing 

conditions, and allowing the identification of construction site factors that affect 

concrete metrics significantly? 

 

3. What method and criteria based on experimental data should be taken into 

consideration to develop membership functions and if–then rules in order to 
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develop a fuzzy inference system that predicts the effect of construction site factors 

on concrete? 

 

4. How can project managers and contractors ensure concrete quality at the jobsite 

without increasing costs or decreasing productivity while considering identified 

construction site factors? 

 

1.4 Methodology Overview 

The proposed study is divided into four parts. The first part consists of identifying 

construction site factors (i.e., unstructured factors) by reviewing revelant literature and 

conducting an online suvey of construction experts. The relative importance of each factor 

is obtained through the calculation of relative importance indexes (RIIs), and the 

perceptions of construction experts on affecting conditions are discussed. Identified 

construction site factors are then utilized to be replicated in the laboratory for concrete 

sample fabrication. The second part of this dissertation focuses on applying the theory of 

Design of Experiments (DOE) by conducting a full factorial design. Five construction site 

factors are selected including crew experience, compaction method, mixing time, curing 

humidity and curing temperature, and a complete factorial analysis is conducted in order 

to identify statistically significant factors affecting concrete compressive strength, cost and 

production rates. The experimental design considers factors acting at two levels: low and 

high. Concrete samples are fabricated under affecting conditions replicated and controlled 

at a laboratory and tested for axial loading at the age of 28 days. Third, the resulting 

experimental input – output (I/O) data are collected and utilized to create a Sugeno type 
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FIS for predicting concrete compressive strength, cost and production rate effect by using 

subtractive clustering and ANFIS. Finally, optimal or desired compromised conditions that 

allow construction managers, concrete workers and technitians to find operating conditions 

tending to preserve concrete quality without increasing costs at high production rates are 

explored. The research methodology enables the development prediction fuzzy models for 

quantifying the effect of construction site factors on concrete metrics through the use of 

experimentation and fuzzy set theory, providing a decision–support tool for stakeholders. 

 

1.5 Organization 

This dissertation comprises six chapters. Chapter 1 introduces the problem statement and 

the research questions to be addressed. Chapter 2 identifies and evaluates the perceived 

importance of construction site factors that affect concrete in terms of compressive strength 

as a quality metric, costs and production rates, and measures how construction experts’ 

characteristics influence significantly their perceptions on these factors. Chapter 3 

describes the experimental program for conducting a full 25 factorial design and analyzes 

the results for identifying statistically significant construction site factors. In Chapter 4, 

fuzzy set theory is applied to develop fuzzy inference systems for quantifying concrete 

strength, cost and production effects using experimental input – output data. Also, the 

capabilities of each prediction model are discussed. Chapter 5 presents the formulation of 

a multi-objective optimization problem to find optimal operating conditions that meet or 

exceed the specified concrete compressive strength while minimizing costs and 

maximizing production rates. Lastly, Chapter 6 presents general inferences, contributions 

and limitations of this research as well as some suggestions for future reseach. 
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CHAPTER 2: PERCEPTIONS ON CONSTRUCTION-RELATED FACTORS 

THAT AFFECT CONCRETE QUALITY, COSTS AND PRODUCTION RATES 

 

2.1 Introduction 

Concrete is a construction material made of water, Portland cement, aggregates and 

admixtures, which are mixed together in specific proportions to meet construction 

specifications for such qualities as compressive, tensile or flexural strength. In addition to 

steel, concrete is one of the two most popular construction materials currently used in the 

construction industry (Neville and Brooks 2010), and it is the second most utilized product 

in the world after water (Okasha and Aichouni 2015). Moreover, concrete demand 

increases every day, due to increases in population around the world. In fact, in the United 

States, around 260 million cubic yards of concrete are used each year by the construction 

industry (PCA 2015). 

 

Concrete compressive strength is commonly used to measure concrete quality (Kosmatka 

et al. 2002), and it is an important parameter for designers and for concrete quality control 

(Mehta and Monteiro 2006). Compressive strength is used for measuring concrete quality 

because concrete is mainly employed to withstand compression forces. Therefore, 

compressive strength is the quality metric used for judging concrete quality in this chapter. 

 

Concrete quality should be ensured from its production to its final placement into the forms, 

finishing and curing on any construction site. Ready-mixed concrete undergoes stringent 

quality controls during its production and transportation. However, there are several 
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uncertain factors or conditions that are not considered after concrete trucks arrive at a 

construction site that can change the characteristics of the final concrete product (Neville 

and Brooks, 2010). In addition, when concrete is fabricated in situ, additional factors may 

affect concrete quality and can cause possible significant changes in its mechanical 

properties. 

 

Several prior studies have investigated the impact that factors related to the production of 

concrete – including raw material properties or mixture designs – have on concrete quality, 

such as  the influence of  water-cement ratio, entrained air, aggregate size and age on 

compressive strength (Kosmatka et al. 2002; Mehta and Monteiro 2006; Neville and 

Brooks 2010) and the effects of admixtures on concrete compressive strength (Demirboğa 

et al. 2001; Jongpradist et al. 2010). With respect to costs and production rates, studies of 

affecting factors are scarce. O’Connor (2006) pointed out that factors affecting crew 

production rates are difficult to measure and quantify due to intrinsic variables. Also, the 

author emphasized that the lack of existing actual data for specific activities containing 

particular details prevents researchers from accurately investigating construction time 

effects. Jarkas (2010; 2012) investigated the influence of buildability on labor productivity 

by employing experienced crews and argued other factors such as the level of crew skills 

and experience may influence concrete productivity and costs. Heravi and Eslamdoost 

(2015) studied labor productivity factors in the construction industry in order to lower costs 

and project duration. However, the literature is limited regarding factors present when 

fabricating concrete and their impact on compressive strength as a quality metric, as well 

as on costs and production rates.This chapter focuses on identifying and evaluating the 
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perceived importance of factors that are inherent to concrete operations on a construction 

site during the construction phase of a facility, considering human conditions, machinery 

utilized, and environmental and/or curing conditions. Additionally, construction experts’ 

characteristics, such as profession, that influence their perceptions on the impact of such 

factors on concrete are investigated by applying chi-square tests for equality of odds. 

 

2.1.1 Factors Affecting Concrete Strength 

Yuan et al. (2014) classified factors affecting concrete strength into two categories: 

structured and unstructured. Structured factors are factors related to the production of 

concrete (Yuan et al. 2014), such as raw materials quantities and quality and mix designs. 

As previously mentioned, these factors have already been studied deeply and, in fact, 

several correlations have already been proposed including the influence of water-cement 

ratio on compressive strength for non-air-entrained concretes (Kosmatka et al. 2002). 

Unstructured factors are those associated with the construction process of a facility such as 

workforce skills and local conditions on the construction site, and there is no clear 

understanding of their consequences on concrete strength (Yuan et al. 2014). Fig. 1 

summarizes the factors that affect the concrete production and construction processes.  
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Fig. 1. Factors that affect concrete during its production and construction processes. 

 

2.1.2 Impact of construction expert characteristics on perceptions 

Understanding the impact of construction specialists’ attributes on their perceptions about 

factors affecting concrete performance is crucial so that appropriate actions can be taken 

to improve construction processes and management. Even though perception studies are 

not common in engineering (Rodríguez-Garzón et al. 2016), several studies have analyzed 

how subjects’ characteristics influence their perceptions on engineering and construction 

issues. Dai et al.(2009) studied the perceptions of construction workers regarding factors 

affecting their productivity by deploying a survey containing Likert-type questions. Lu and 

Yan (2013) pointed out that knowledge of construction groups or individuals is limited 

regarding risk perception. Zhang et al (2015) suggested that understanding the risk 

perceptions of different groups such as architects and engineers allows adequate 

construction management, implying that the attributes of different groups of professionals 

influence their perceptions. Rodríguez-Garzón et al. (2016), also using a questionnaire, 
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studied the risk perception of construction workers in the context of uncertainty and 

occupational risk in the construction industry. Tymvios and Gambatese (2016) claimed that 

comparing the responses of different groups allows one to identify the group that is more 

likely to support a perception. All studies imply that perceptions depend on the 

characteristics of an individual or a group of people sharing the same background, meaning 

that different groups (e.g., architects and engineers) have different perceptions due to 

intrinsic characteristics of each group. Thus, it is important to evaluate the impact of 

construction experts’ characteristics on their perceptions about construction-related factors 

to facilitate project management and preserve concrete properties. 

 

2.2 Goals and Objectives 

The main goal of this chapter is to increase our understanding about how unstructured 

factors affect concrete quality, costs and production rates. The objectives are: (1) identify 

and evaluate the perceived importance of construction-related factors that affect concrete 

compressive strength as a quality metric, as well as costs and production rates, and (2) 

measure how construction experts’ characteristics influence their perceptions of these 

factors. These objectives will be accomplished by performing a comprehensive literature 

review, deploying a survey to construction experts and using RII and odds ratios to estimate 

their perceived importance. The results will inform project managers, superintendents and 

technicians, to prevent concrete quality from being influenced by affecting factors on the 

jobsite. In addition, current practices and mitigation actions are discussed for future 

research. 

 



12 
 

2.3 Methodology 

The proposed methodology investigates unstructured factors affecting concrete quality 

during the construction process, since these factors can cause important concrete quality 

variability and should be taken into consideration on the job site ( Yuan et al. 2014).  To 

identify such unstructured factors, the research methodology shown in Fig. 2 was used. 

 

 

Fig. 2. Research methodology 

 

The first step consisted of performing a review of relevant literature, to identify 

unstructured factors that affect concrete quality. Next, a survey was designed and deployed 

to construction experts (i.e., individuals with experience in the construction industry, such 

as contractors, architects, engineers and academics). This survey included questions about 

unstructured factors identified in the literature and asked for others that had been identified 

or recognized by the survey respondents throughout their careers. RII was then utilized to 

identify and evaluate the perceived importance of factors that highly affect concrete 

quality, costs and production rates. The quality metric for concrete was also determined 

from the literature and survey responses. Next, construction experts’ characteristics, such 

as profession or experience, were analyzed through the use of Likert aggregation and 2x2 
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contingency tables (i.e., chi-square tests for equality of odds), to determine their influence 

on experts’ responses. The techniques chosen for analysis responded to the study objectives 

and the properties of the survey data (Heeringa et al. 2010). 

 

2.3.1 Identification of Unstructured Factors  

Laungrungrong et al. (2010) argued that the increasing use of concrete creates the necessity 

of having methods or techniques to control its quality and that failing to identify strength 

problems may cause project delays and cost overruns. The variability in concrete 

compressive strength may be caused not only by mixing incorrect quantities of its 

components or utilizing poor quality materials but also by concrete transportation, 

placement and compaction (Wight et al. 2012), implying that compressive strength not only 

depends on its production process but also on uncertain conditions on the construction site.  

 

Neville and Brooks (2010) pointed out that water-cement ratio, degree of compaction, age 

and ambient temperature (i.e., hot- and cold-weather concreting) should be taken into 

consideration in practice, in order to avoid compression strength reduction, implying that 

those factors should be monitored constantly. However, the study stated that there are other 

factors such as mixing time, curing temperature and humidity that should also be 

considered when making concrete. In addition, Li (2011) mentioned water-cement ratio, 

cement content, aggregates, admixtures, mixing procedures and curing conditions as 

factors that influence concrete properties, recognizing influencing factors inherent to 

construction processes.  
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Kosmatka et al. (2002) argued that special attention should be paid to mixing time, 

placement, consolidation (i.e., by hand or mechanically), rain protection (to avoid adding 

extra water to the concrete), finishing operations (e.g., flattening surfaces), curing and 

protection from extreme temperature changes (i.e., curing temperature and humidity) and 

hot and cold weather concreting (i.e., ambient temperature) in order to maintain concrete 

quality. Mehta and Monteiro (2006) argued that factors modifying concrete compressive 

strength include the proportions and materials of the concrete mixture and degree of 

consolidation and conditions of curing. The authors emphasized that concrete curing 

involves temperature, time and humidity conditions. Hassoun and Al-Manaseer (2012) 

highlighted that methods of mixing, compaction and curing affect the compressive 

strength. Proper mixing time, the use of appropriate concrete mixers and the right use of 

vibrators have a positive effect on concrete by increasing its compressive resistance, which 

is the consequence of having a uniform mixture and reducing voids. Curing moisture and 

temperature also play an important role in the strength of concrete, since the hydration of 

cement depends on them. 

 

In recent studies about concrete strength variability, Unanwa and Mahan (2014) stated that 

strength variation is due to concrete placement, consolidation and curing methods (i.e., 

curing temperature and humidity), and Chen et al. (2014) suggested that special attention 

should be paid to temperature and humidity when producing, placing and curing concrete, 

implying that concrete strength may be affected after mixing its component materials until 

it is finally placed. Table 1 summarizes the preliminary construction site factors 

(unstructured factors) that affect concrete, as identified through the literature. However, 
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relevant literature did not reveal the significance or effects of these unstructured factors on 

the concrete final product in terms of compressive strength, cost and production.  

 

Table 1.Unstructured factors identified in the literature 

Source Factors  

Kosmatka et al.(2002)  

1. Mixing time 2. Segregation 3. Compaction 4. 

Adding extra water 5. Flattening surfaces 

(Finishing) 6. Curing temperature 7. Curing 

humidity 8. Ambient temperature 

Mehta and Monteiro 

(2006)  

1. Compaction 2. Curing temperature 3. Curing 

humidity  

Neville and Brooks 

(2010)  

1. Compaction 2. Ambient temperature 3. Mixing 

time 4. Curing temperature 5. Curing humidity 

Li (2011)  
1. Mixing time 2. Curing temperature 3. Curing 

humidity 

Wight et al. (2012)  1. Segregation 2. Compaction 

Hassoun and Al-

Manaseer (2012)  

1. Mixing time 2. Compaction 3. Curing humidity 

4. Curing temperature 

Unanwa and Mahan 

(2014)  

1. Segregation 2. Compaction 3. Curing 

temperature 4. Curing humidity 

Chen et al. (2014)  
1. Segregation 2. Curing temperature 3. Curing 

humidity 

 

 

Table 1 shows that researchers agreed on several factors that affect concrete compressive 

strength. These studies assumed that concrete was made by laborers with experience or 

expertise fabricating concrete; construction workers with appropriate skills must be hired 

in order to ensure the success of a project (Sears et al. 2015). Therefore, crew experience 

could be another unstructured factor that affects concrete quality variability. Table 2 shows 

a compiled list of preliminary unstrutured factors considered in this study. The factors are 

listed in no particular order. 
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Table 2. Preliminary unstructured factors 

Number Identified Factor 

1 Mixing time 

2 Compaction 

3 Ambient Temperature 

4 Curing Temperature 

5 Curing Humidity 

6 Adding extra water when mixing  

7 Crew Experience 

 

 

Regarding the number of factors that may affect concrete, Day (1999) appealed to Pareto’s 

principle to say that 70% to 80% of the total variability in concrete strength is caused by 

two or three factors. The author suggested that strength variability is caused by less than 

ten factors, which is in agreement with what has been found elsewhere in the literature. 

  

Finally, literature regarding factors that affect concrete compressive strength during its 

production until its final placement is limited. Most of the literature focuses on well known 

structured factors regarding concrete component properties and material proportions (e.g., 

water-cement ratio), and while the literature identifies unstructured factors, their impact on 

quality, cost and production has not been quantified.  

 

2.3.2 Survey 

Surveys are well-recognized tools that allow us to infer valuable knowledge about a 

population through the collection of quantitative and qualitative data, as long as the sample 

size chosen is representative of the actual population. The main purpose of any survey is 

to build quantitative descriptors (statistics) to summarize the observations (Groves et al. 
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2004); however, survey variables will always contain bias due to nonresponses or 

measurements errors (Chambers and Skinner, 2003). 

 

Groves et al. (2004) stated that a survey should meet the following criteria to minimize 

errors: (1) respondents must describe their characteristics accurately, and; (2) respondents 

must be representative of the larger population. Meeting these criteria does not imply that 

survey statistics are error-free; errors of observation and non-observation will still be 

present in the results (Groves et al. 2004).  

 

Thus, a survey was designed considering such criteria, and it was deployed online to a large 

group of construction experts in Ecuador who had at least one year of experience with 

concrete in the construction industry or academia. Survey respondents included members 

from professional associations of civil engineers and architects and from educational 

organizations such the School of Civil Engineering and Architecture of the Central 

University of Ecuador. This ensured that the respondents met the “expert” criteria. The 

study was granted an exemption through the pertinent Institutional Review Board (IRB) 

prior to conducting the investigation. The survey included a set of questions for identifying 

and ranking unstructured construction site factors that could affect concrete quality, costs 

and production rates during the construction process, as well as questions regarding 

concrete quality metrics and respondents’ characteristics such as profession and 

construction experience. 
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The survey was deployed online using the Qualtrics platform, and it was distributed to a 

group of approximately 5,000 active construction experts through their own organizational 

mailing list manager. The sample size of 297 valid responses ensured a confidence level of 

95%. In addition, validation questions were included in the survey, to prevent respondents 

from answering survey questions randomly. 

 

The questionnaire, IRB exemption letter, and detailed data analysis using Relative 

Importance Indexes are presented in Appendix A. 

 

2.3.2.1 Sample Description 

A total of 333 responses were collected during June and July of 2016 after deploying the 

online survey to construction experts. Out of the 333 total responses, 297 were valid. The 

sample exceeded the required sample size by 200 since only 97 valid responses were 

required to obtain a confidence level of 95% and a confidence interval of 10%, implying 

that the actual confidence interval was as low as 6%. Most of the respondents (more than 

75%) were between 26 and 55 years old, and almost all of them (95.4%) had completed 

their college education. Since the survey was deployed to “construction experts” from 

professional organizations and academia, laborers were not included. Superintendents and 

foremen were included because it is necessary to have a college degree (in architecture or 

engineering) to work as a superintendent or foreman in Ecuador. The great majority of the 

respondents (80.1%) had a degree in engineering, while architects and contractors 

accounted for 17.5% of the respondents. Around 81% of the respondents had more than 5 

years of experience in the construction industry and 69.8% of all the construction experts 
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had their main field of expertise focused on construction. Also, 65.4% of all respondents 

worked on constructing buildings and houses. As can be inferred from the descriptors of 

the sample, the respondents had important expertise regarding the use of concrete as a 

construction material in building and housing projects, and transportation and hydraulic 

facilities.  

 

For each of the factors in Table 2, respondents provided their perception of the impacts of 

unstructured factors on compressive strength, cost and production rates, using the 

following Likert scale: (1) no impact, (2) very low impact, (3) low impact, (4) medium 

impact, (5) high impact and (6) very high impact. 

 

2.3.3 Data Analysis  

RII was used to identify and evaluate the importance of the unstructured factors. Tests for 

equality of odds were performed by using Likert response aggregation to understand the 

influence of the respondents’ characteristics on their perceptions of the impact of 

unstructured factors on concrete. The data collected will provide additional information 

about current practices and mitigation actions for future studies. 

 

2.3.3.1 Relative Importance Index (RII) 

RII can be applied for ranking construction-related affecting factors when using a Likert-

type scale (Kometa et al. 1994; Odusami 2002; Davies and Harty 2013; Gündüz et al. 2013; 

El-Gohary and Aziz 2014; Gunduz et al. 2015; Jin et al., 2017; Sambasivan and Soon 

2007). A six-point scale ranging from 1 (None) to 6 (Very High) was adopted to determine 
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the impact of unstructured factors on compressive strength, costs and production rates. RII 

ranges from 0 to 1 and is calculated as in Eq. 1, where 𝑊 is the weighting given to each 

factor by the respondents (1 to 6), 𝐴 is the highest weight (i.e., 6) and 𝑁 is the total number 

of respondents. The higher the RII, the higher the ranking and the perceived importance of 

the affecting factor. 

 

𝑅𝐼𝐼 =
𝛴𝑊

𝐴.𝑁
       (1) 

 

2.3.3.2 Likert response aggregation 

Siegel and Castellan (1988) suggested a procedure for aggregating Likert-type responses 

into only two values, allowing us to build up data for comparing the responses of two 

groups of participants with different characteristics (Tymvios and Gambatese 2016). In this 

way, construction experts’ agreement to a particular state (e.g., high and very high impact) 

could be separated from others. The Likert aggregation process is illustrated in Fig. 3. It 

consists of adding together the responses with very high (VH) and high (H) impacts as well 

as the responses with None (N), Very Low (VL), Low (L) and Medium (M) impacts in 

order to compile each Likert response into only two values: (VH+H) and (N+L+VL+M). 

This approach was used because the intent was only to study factors perceived to affect 

concrete highly (VH+H).  
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Likert type response 

Group None 

(N) 

Very Low 

(VL) 

Low 

(L) 

Medium 

(M) 

High 

(H) 

Very High 

(VH) 

1 1N 1VL 1L 1M 1H 1VH 

2 2N 2VL 2L 2M 2H 2VH 

 

Likert aggregation (2 x 2 Tables) 

Group Very High / High 

(VH/H) 

Other 

1 1H+1VH 1N+1VL+1L+1M 

2 2H+2VH 2N+2VL+2L+2M 

 

Fig. 3. Likert response aggregation process 

 

2.3.3.3 Tests for equality of odds 

Contingency tables (2x2 tables) containing the responses of two categorical variables are 

appropriate instruments to explore the relationship between two categorical variables with 

natural ordering (Lavrakas 2008) and are used for performing chi-square tests of 

association between variables (two way tables). This test for equality of odds allows us to 

compare two different groups and determine if a response differs regarding the same 

question.  

 

The odds ratio is then used to compare the effect of each level of a categorical variable on 

the estimated probability. Ramsey and Schafer (2013) described shortcut methods for 

estimating the odds ratio in such a table and the corresponding confidence interval. The 

odds ratio is computed as the ratio of the products of the main diagonals of the 2x2 table 

as shown in Eq. 2, and the confidence interval (CI) is calculated  by using a shortcut method 

for the standard error (SE) of the log odds ratio. SE is the square root of the summation of 
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the four reciprocals of a 2x2 table (Eq. 3) and the 95% CI is obtained from the antilogarithm 

of the end points of the 95% CI for the log odds ratio (Eq. 4).   

 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =
(1𝐻+1𝑉𝐻)(2𝑁+2𝑉𝐿+2𝐿+2𝑀)

(2𝐻+2𝑉𝐻)(1𝑁+1𝑉𝐿+1𝐿+1𝑀)
         (2) 

SE = √
1

𝑥12
+

1

𝑥12
+

1

𝑥21
+

1

𝑥22
     (3) 

95% 𝐶𝐼 𝑓𝑜𝑟 𝑡ℎ𝑒 log  𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 = ln(𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜) ± 1.96(𝑆𝐸)  (4) 

 

2.4 Results 

2.4.1 Concrete Quality Metric 

The results indicated that concrete compressive strength is the metric used by most of the 

respondents (89.6%) for measuring concrete quality (Fig. 4) regardless of the type of 

facility or application, which is an expected result, confirming findings from the literature 

search. Thus, compressive strength is an appropriate quality metric to use in this study. 

 

 

Fig. 4. Concrete quality metric 

 

89.6%

2.1%
7.3%

1.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Compressive

Strength

Tensile Strength Flexural

Strength

Other



23 
 

2.4.2 Perceived Importance of Unstructured Factors 

As previously mentioned, survey respondents were asked to assess the importance of   

unstructured factors identified in Table 2 considering their perceived degree of impact on 

concrete compressive strength, costs and production rates through a Likert type scale. 

Importance indexes for each affecting factor, computed by using Eq. 1, were employed to 

evaluate the perceived importance of the unstructured factors and to establish the ranking 

of the unstructured factors.  

 

Table 3 comprises RII values for each identified affecting factor, allowing us to establish 

lists of affecting factors in descending order. The numbers in parentheses represent the 

corresponding importance, with 1 being the most important. Thus, the higher the RII, the 

higher the importance.   

 

Table 3. Impact of unstructured factors on concrete compressive strength, costs and 

production 

Number Identified Factor 

RII 

Compressive 

strength as a 

quality metric 

Costs Production 

1 Mixing time 0.722 (6) 0.649 (3) 0.682 (2) 

2 Compaction 0.753 (3) 0.654 (2) 0.649 (3) 

3 Ambient temperature 0.686 (7) 0.534 (6) 0.616 (5) 

4 Curing temperature 0.746 (4) 0.634 (5) 0.559 (7) 

5 Curing humidity 0.792 (1) 0.635 (4) 0.612 (6) 

6 Adding extra water  0.743 (5) 0.514 (7) 0.637 (4) 

7 Crew experience 0.781 (2) 0.765 (1) 0.763 (1) 
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Curing humidity, crew experience and compaction are the top three factors affecting 

concrete compressive strength according to the respondents (Table 3). Regarding concrete 

costs and production rates, crew experience, mixing time and compaction lead the ranking 

list of the unstructured factors affecting concrete. Notice that crew experience and 

compaction are common perceived factors that greatly influence concrete, revealing that 

construction experts are aware that the use of qualified workers and appropriate equipment 

are crucial to concrete fabrication. Also, almost all respondents indicated that unstructured 

factors do affect concrete costs somehow. Only a very small percentage (1.9%) stated that 

unstructured factors do not have any effect on concrete cost. In addition, experts pointed 

out that curing conditions, mixing time and compaction should be paid special attention to 

ensure concrete quality and meet budget specifications (i.e., costs and production). 

 

A global ranking of importance for the identified unstructured factors was calculated by 

compiling all responses (Table 4), giving the same weight for compressive strength, costs 

and production rates. Crew experience, compaction and mixing time are found to be the 

top three affecting factors perceived to influence concrete during the construction process. 

On the other hand, adding extra water (via rain) and ambient temperature are perceived to 

be the least affecting conditions when performing concrete operations. 
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Table 4. Overall ranking importance of identified unstructured factors for concrete 

compressive strength, costs and production 

Rank Identified Factors RII 

1 Crew experience 0.7695 

2 Compaction 0.6854 

3 Mixing time 0.6846 

4 Curing humidity 0.6798 

5 Curing temperature 0.6465 

6 Adding extra water 0.6315 

7 Ambient temperature 0.6120 

 

2.4.3 Comparison of Responses by Group  

Architects and engineers accounted for 94.6% of the respondents. Chi-square tests of 

association between variables using 2x2 tables (Fig. 3) and Ramsey and Schafer (2013) 

shortcut methods for estimating odds ratios and confidence intervals were utilized to 

analyze the data. A summary of the odd ratios, confidence intervals and p values for the 

perceptions of architects (Group 1) and engineers (Group 2) regarding the impact of 

identified unstructured factors on concrete strength, cost and production rates is presented 

in Table 5.  
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Table 5. Comparison of responses by architects and engineers regarding the impact of 

unstructured factors on concrete strength, costs and production 

Impact 
Odds 

Ratio 
95% CI p value 

Mixing Time 

Strength 2.59 1.25 5.37 0.009 

Cost 2.93 1.50 5.74 0.001 

Production 3.60 1.78 7.25 0.000 

Crew Experience 

Strength 2.60 1.19 5.66 0.014 

Cost 3.14 1.44 6.83 0.003 

Production 4.09 1.82 9.19 0.000 

Compaction 

Strength 3.25 1.49 7.07 0.002 

Cost 3.66 1.84 7.30 0.000 

Production 4.83 2.38 9.77 0.000 

Curing Temperature 

Strength 2.50 1.20 5.19 0.012 

Cost 3.97 2.02 7.82 0.000 

Production 0.80 0.36 1.77 0.587 

Curing Humidity 

Strength 2.55 1.17 5.57 0.015 

Cost 4.25 2.13 8.50 0.000 

Production 0.59 0.27 1.29 0.179 

Adding Extra Water  

Strength 2.98 1.41 6.33 0.003 

Cost 0.72 0.33 1.58 0.412 

Production 5.43 2.68 11.01 0.000 

Ambient Temperature 

Strength 1.85 0.96 3.58 0.064 

Cost 0.60 0.25 1.43 0.247 

Production 2.60 1.34 5.03 0.004 

 

 

As shown in Table 5 , with respect to mixing time, architects were 2.59, 2.93 and 3.60 

times more likely than engineers to perceive a very high or high impact of mixing time on 

concrete strength, cost and production rates. In all cases the p values (0.009, 0.001 and 

0.000) are less than 0.05. For ambient temperature, for example, p values for the impact on 
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concrete strength and costs are greater than 0.05, indicating that there is not enough 

evidence that the odds ratio differs from 1, and thus no conclusion can be inferred from 

such comparisons in this case. Therefore, for all odds ratios that are greater than 1 and p 

values less than 0.05, it can be inferred that architects are more likely to perceive high or 

very high impacts of such unstructured factors on concrete than engineers do. 

 

2.4.4 Identification of Additional Unstructured Factors   

In addition to the unstructured factors identified in the literature and shown in Table 2, 

construction experts were asked to identify additional unstructured factors recognized 

throughout their careers. Only 23% of the respondents provided additional factors. They 

are listed in Table 6 and categorized into workforce, machinery and equipment, jobsite 

environment and concrete fabrication process. 

Table 6. Additional unstructured factors identified by the respondents 

Workforce 
Machinery and 

Equipment 

Jobsite 

Environment 

Concrete 

Fabrication 

Process 

 Deficient 

formwork  

 Mixing wrong 

material 

quantities  

 Excess of 

admixtures 

 Height of 

concrete pouring 

(segregation) 

 Concrete volume 

to be made 

 Type of concrete 

element to be 

fabricated 

 The use of 

proper tools 

when dealing 

with concrete 

 Means of 

concrete 

transportation 

 

 Contaminated 

concrete 

materials (water 

and aggregates) 

 Wind (fast dry 

of concrete) 

 Vibrations after 

concrete setting 

 Nighttime 

construction 

 Aggressive 

environment 

(soil - 

foundations) 

 Time of 

concrete 

fabrication 

 Time of 

concrete 

placement 
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2.4.5 Current Practices and Mitigation Actions 

Research results show that a significant percentage of construction experts (57.6%) are 

aware of the presence of unstructured factors during concrete operations, and some 

preventive actions are carried out to minimize their effects on concrete. When comparing 

the responses of the two major groups – architects and engineers – regarding the awareness 

of the existence of unstructured factors by using 2x2 tables, it can be concluded that there 

is not enough evidence that the odds ratio differs from 1 regarding previous knowledge of 

such factors. Also, construction experts who are aware of unstructured factors tend to take 

some mitigation actions during concrete operations.  

 

For example, to prevent the addition of extra water to fresh concrete, the concrete is 

protected from rain by either avoiding concrete fabrication on rainy days or by using plastic 

protection. In addition, the use of experienced crews is preferred for concrete production. 

Survey results suggest that the use of experienced crews when fabricating concrete is 

preferred to reach concrete compressive strength. A very high percentage of construction 

experts (91.3%) have utilized experienced crews when dealing with concrete. Regarding 

curing conditions, 80.9% of respondents did not consider temperature when curing 

concrete. The only concern was keeping concrete wet (i.e., preserving humidity) due to the 

difficulty of providing such a controlled environment on the jobsite, and the costs 

associated with this activity. 

 

Moreover, 28 days is thought to be the period of time necessary for concrete to reach its 

design capacity by the majority of construction experts (79.1%), which is in agreement 
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with standard acceptance tests; namely, ASTM standards C31 (ASTM International, 

2015e) and C39 (ASTM International, 2016a) and the requirements established by The 

American Concrete Institute (ACI Committee 318, 2014).  

 

Even though concrete should not be fabricated in situ due to quality control aspects (Neville 

and Brooks 2010), the results indicate that significant amounts of concrete are actually 

made on the jobsite. Seventy-six percent of the respondents believed that more than 10% 

of concrete required for a facility is fabricated in situ; they recommended the use of 

concrete mixers to ensure all ingredients are mixed uniformly. The high percentage of 

concrete made on the jobsite could be explained due to the perception that ready-mixed 

concrete is more expensive than concrete fabricated in situ, even though the difference is 

not that large. 

 

Although construction experts accepted that significant amounts of concrete are made on 

the jobsite, they were aware that concrete quality may be compromised. Most respondents 

(89.0%) believed that concrete fabricated in a plant (i.e., ready-mixed) and on the jobsite 

(either mixed by hand or using a concrete mixer) do not have the same quality.  

  

2.5 Conclusions 

In this chapter, unstructured factors affecting quality (as measured by compressive 

strength), costs and production rates have been identified in the literature and through the 

perceptions of construction experts, using a survey instrument. With respect to concrete 

compressive strength, curing humidity (RII=0.792), crew experience (RII=0.781) and 
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compaction (RII=0.753) are the top three affecting construction site factors, followed by 

curing temperature (RII=0.746), adding extra water (e.g., rain) (RII=0.743), mixing time 

(RII=0.722) and ambient temperature (RII=0.686). Even though the majority of 

construction experts were aware of the existence of such factors, most of them did not 

report taking preventive actions to minimize the effects of the factors on concrete. For 

instance, 80.9% of respondents did not consider curing temperature when curing concrete. 

However, concreting when raining (which could add extra water to fresh concrete 

mixtures) was considered during concrete operations by protecting fresh concrete from 

rain. 

 

In terms of costs, the respondents believed that crew experience (RII=0.765), compaction 

(RII=0.654) and mixing time (RII=0.649) are the most important factors that affect 

concrete. Also, construction experts recognized that curing conditions have an important 

impact on costs, suggesting that taking no mitigation actions against such factors could be 

due to the significant increase in concrete costs. With respect to production rates, 

construction experts believed that crew experience (RII=0. 0.763), mixing time 

(RII=0.682) and compaction (RII=0.649) control concrete productivity, agreeing with the 

saying “time is money”. The more resources, the more expensive. 

 

When considering an overall ranking of affecting factors for concrete compressive strength, 

costs and production, crew experience (RII=0.7695) comes first, followed by compaction 

(RII=0.6854) and mixing time (RII=0.6846). The least perceived affecting factors are 

adding extra water (RII=0.6315) and ambient temperature (RII=0.6120). These global 
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rankings were computed by giving the same weight or importance to compressive strength, 

costs and production.  

 

In addition to the previous unstructured factors, a small group of construction experts 

identified other important unstructured factors recognized throughout their careers that 

may also affect concrete compressive strength, costs and production rates. Such factors 

were classified according to their source and included deficient formwork, nighttime 

construction and the use of improper tools when dealing with concrete. These factors 

should be investigated in future research.  

 

Moreover, the use of 2x2 contingency tables and tests for equality of odds allowed us to 

understand how profession (being an architect or engineer) can influence respondents’ 

perceptions about the impact of unstructured factors on particular concrete characteristics. 

When comparing the two main groups of respondents – architects and engineers – 

regarding their perceptions of the effect of unstructured factors on concrete compressive 

strength, costs and production rates, the results indicate that architects are more likely to 

perceive high or very high impacts than engineers do when judging the effect of an 

unstructured factor. 

 

Unstructured factors should be considered and monitored during the construction phase of 

a facility. This will help ensure that concrete complies with design specifications 

established in the construction documents. However, additional research is needed to 

quantify the impact of these factors on concrete. 
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CHAPTER 3: QUANTIFYING THE EFFECT OF CONSTRUCTION SITE 

FACTORS ON CONCRETE COMPRESSIVE STRENGTH USING DESIGNED 

EXPERIMENTS 

 

3.1 Introduction 

Factors affecting concrete strength can be classified into structured and unstructured factors 

(Yuan et al. 2014). Structured factors, such as raw materials quantities and quality and 

mixture designs, are related to the production process of concrete. Several correlations have 

been developed in the literature for quantifying the effect of such factors including, for 

example, Abrams’ law, which looks at the relationship between water–cement ratio and 

compressive strength. Unstructured factors (i.e., construction site factors) are the factors 

associated with the construction process, including weather conditions on the construction 

site or worker expertise; there is limited understanding of their consequences on concrete 

quality.  

 

Several studies have used design of experiments (DOE) techniques to find and identify 

factors affecting concrete strength. DOE involves not only planning and experimental 

testing, but also estimating models that predict new observations for new inputs (Allen 

2005). Yeh (2006) studied the effect of fly ash replacements and different water-cement 

ratios on early concrete compressive strength and low and high compressive strength. Long 

et al. (2012) observed the impact of material properties and mixture parameters on self-

consolidating concrete. Rahim et al. (2013) attempted to quantify the effect of fire-type 

temperatures on concrete compressive strength. Hassan and Abouhussien (2014) utilized 
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DOE for concrete mixture optimizations for high-strength self-consolidating concrete by 

changing binder, water and admixture content. In a recent study, Khan et al. (2017) 

investigated the effect of water-cement ratio, cement content, aggregate percentage and 

admixtures on high-strength self-compacting concrete. DOE has also been utilized in 

asphalt pavement design. Anting et al. (2015) studied the effect of using wasted tile 

aggregates for reducing pavement surface temperature. All the aforementioned research 

argues that DOE leads to the development of prediction models that provide reliable 

information on the effect of considered factors on concrete compressive strength. 

 

In this chapter, five construction site factors (i.e., unstructured factors), including mixing 

time, compaction method, crew experience, curing humidity and curing temperature, were 

selected from the literature (Kosmatka et al. 2002; Mehta and Monteiro 2006; Neville and 

Brooks 2010; Li 2011; Hassoun and Al-Manaseer 2012; Wight et al. 2012; Chen et al. 

2014; Unanwa and Mahan 2014) to evaluate their effect on concrete compressive strength 

as a quality metric. DOE was utilized to conduct the experimental runs, for both evaluating 

the significance and quantifying the effect of these factors on concrete strength. DOE has 

several advantages over other methods of experimentation. DOE allows estimating 

interactions between two variables (Montgomery and Runger 2003; Piratelli-Filho and 

Shimabukuro 2008). It provides protection against bias or nuisance factors through 

randomization (Cox and Reid 2000; Gunst and Mason 2009; Montgomery 2013), meaning 

that the order of the runs matters when undertaking the experiment. Orthogonal coding (± 

1 coding) is applied to represent extreme low and high levels of unstructured factors, to 

observe and quantify the relative size of factor effects as well as for easy interpretation of 
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results (Allen 2005, Montgomery 2013). The use of uncoded units (e.g., engineering units) 

in a factorial design is not recommended because it may lead to erroneous conclusions due 

to different factor units (Montgomery 2013). The use of two-level factorial design within 

DOE is suitable when the study involves several factors or conditions acting at low and 

high levels of intensity (Montgomery 2013).  A full factorial design is expressed as 2k 

factorial design, where “k” is the number of factors and “2” is the number of levels (e.g., 

low and high) of each factor. The statistical tool employed to identify significant variables 

as well as their effects on the system is the analysis of variance (ANOVA). 

 

3.2 Goal and Objectives 

The main purpose of this chapter is to quantify the effect of construction site factors, 

including mixing time, compaction method, crew experience, curing humidity and curing 

temperature, on concrete compressive strength as a quality metric, by performing a full 

factorial design. The research objectives are to: (1) identify statistically significant 

unstructured factors affecting concrete strength, (2) develop a regression model for 

predicting the magnitude of their impact on concrete compressive strength, and (3) find 

operating conditions that preserve or improve concrete compressive strength during the 

construction process. 

 

3.3 Methodology 

The systematic procedures shown in Fig. 5 were followed to accomplish the research 

objectives.  
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Fig. 5. Research methodology 

 

3.3.1 Factorial Design and Laboratory Setup 

Crew experience, compaction method, mixing time, curing humidity and curing 

temperature were the variables studied to quantify their effect on concrete compressive 

strength. These factors were used as independent variables to measure the concrete 

compressive strength response. 

1. Crew experience: This was considered as a categorical variable having two levels: -1 

for “not experienced” crews and 1 for experienced crews. Construction laborers with 

at least five years of experience in fabricating concrete by hand were recruited as 

experienced crews for fabricating the concrete samples while workers with no 

experience at all in concrete fabrication, including students, were categorized as “not 

experienced” crews. 

2. Compaction method: Typical methods for on-site concrete compaction include hand 

rodding by a tamping rod and mechanical methods, such as internal and external 

vibration (Kosmatka et al. 2002; Neville and Brooks 2010; Li 2011). This study used a 

tamping rod (-1) and internal vibration (1) as the compaction method choices.  

3. Mixing time: This refers to the time spent in mixing all concrete constituents by hand 

and comprises the time from adding mixing water to material constituents until fresh 

concrete is ready to be poured into forms. A survey instrument was utilized to estimate 

Step 1. 

Factorial 
design & 
laboratory 
setup

Step 2. 

Concrete 
sample 
fabrication

Step 3. 

Concrete 
compressive 
testing

Step 4.

Factorial 
design 
analysis



36 
 

low and high mixing-time levels for 0.15 m3 of concrete. The survey sample size 

consisted of 173 civil engineers and architects (drawn from professional Ecuadorian 

organizations and academia) with at least one year of experience with concrete, to 

ensure a confidence level of 95% and a confidence interval of as low as 8%. Responses 

were collected between June and July of 2016. Fig.6 illustrates the boxplot and mixing 

time statistics for concrete fabricated by hand, where asterisks (*) represent outliers. In 

this study, mean mixing time values of 11.3 and 20.4 minutes were considered as low 

and high factor levels respectively.  
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Fig.6. Boxplot of mixing time by hand 

 

4. Curing humidity: This refers to the relative humidity (i.e., air moisture content) present 

at a jobsite during concrete hardening until the concrete reaches its designed 

compressive strength. In common practice, concrete is cured in the air under non-

saturated environments (Kwon et al. 2014). Dry environments are considered to have 

a low relative humidity of less than 50% (Newman and Choo 2003) while wet 

Statistics 

Mixing 

Time 

(minutes) 

Min Max 

Minimum 1.0 2.5 

Q1 5.0 10.0 

Median 10.0 15.0 

Q3 15.0 20.0 

Maximum 60.0 240.0 

Mean 11.3 20.4 
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environments have a 100% relative humidity (ASTM International 2015a). Relative 

humidity ranges from 20% to 100% were investigated.  

5. Curing temperature: This refers to the ambient temperature at the jobsite until concrete 

reaches its designed compressive strength. The aforementioned survey instrument was 

also utilized to estimate low and high curing-temperature levels. From the survey 

results (Fig.7), mean values of 7.9 °C and 28.5 °C were selected as the low and high 

levels for curing temperature. 
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Fig.7. Boxplot of curing temperature 

 

Laboratory setup is crucial for ensuring proper site conditions and subsequent accurate 

determination of factor influences or significant factor effects. The experiment was 

conducted in the Laboratory for Testing and Construction Materials (LTCM) of the School 

of Civil Engineering in the Central University of Ecuador. LTCM is furnished with all the 

necessary equipment to perform concrete sample fabrication and compressive strength 

testing. Table 7 summarizes the experimental independent variables and their 

Statistics 

Curing 

Temperature 

(°C) 

Cold Hot 

Minimum 0 15 

Q1 5 25 

Median 8 30 

Q3 10 30 

Maximum 20 50 

Mean 7.9 28.5 
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corresponding ranges that were used to conduct a full 25 factorial design. The statistical 

software Minitab 16 was utilized for designing the experiment and the factorial analysis.  

 

Table 7. 25 Factorial Design Variables and Levels 

 

Variables 
Levels 

Low (-1) High (+1) 

(A) Crew Experience Not Experienced Experienced 

(B) Compaction Method Manual Vibrator 

(C) Mixing Time (min) 11.3 20.4 

(D) Curing Hum. (%) 20 100 

(E) Curing Temp. (°C) 7.9 28.5 

 

 

3.3.2 Sample Fabrication 

Six cylindrical concrete samples were fabricated under the selected variable conditions for 

each of the 32 runs to complete a full 25 factorial design, for a total of 192 samples. Setup 

conditions were controlled from sample fabrication to testing. In addition to the 192 

samples, six additional concrete samples were made under standard conditions following 

ASTM C192 (ASTM International 2015a), to have a baseline compressive strength for 

computing strength effects. Table 8 summarizes the physical characteristics of concrete 

constituents. The following materials proportions by weight ensured having a concrete 

compressive strength of 28 MPa (4000 psi) on day 28: water-cement ratio = 0.5; cement = 

1; fine aggregate = 1.5; coarse aggregate = 2.3. Mixture proportions and a slump of 10 cm 

(4 inches) (ASTM International 2015b) were kept constant for all experimental runs. 
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Table 8. Physical Properties of Concrete Materials 

 

Material 
Specific 

Gravity 
Absorption 

Fineness 

Modulus 

Cement Type IPa 3.00b --- --- 

Fine Aggregate 2.63c 1.3%c 2.68e 

Coarse Aggregate 2.65d 1.4%d 6.80e 
 

     a Complying with ASTM C595 (ASTM International 2016c)  
           b Determined by ASTM C188 (ASTM International 2016b)  

      c Determined in saturated-surface-dry condition by ASTM C128 (ASTM International 2015d)  
      d Determined in saturated-surface-dry condition by ASTM C127 (ASTM International 2015c)  

        e Determined by ASTM C136 (ASTM International 2014)  
 

 

3.3.3 Concrete Compressive Testing 

All concrete samples were tested on day 28, since at this age the compressive strength is 

expected to be an index of concrete strength (Mehta and Monteiro 2006). The tests 

followed ASTM C39 (ASTM International 2016a), which consists of applying an axial 

compression force to a concrete cylinder until failure. Even though the American Concrete 

Institute (ACI 2014) points out that satisfactory concrete compressive strength is calculated 

by averaging the strength of three cylindrical specimens on day 28, six samples were 

fabricated and tested for each run, to minimize errors. Concrete compressive strength was 

measured for each experimental run; however, strength effect expressed as a percentage 

was used as the response for the experiment to see positive or negative effects caused by 

the selected variable conditions with respect to the baseline strength. This percentage was 

calculated by comparing the compressive strength average of each run to the baseline 

compressive strength, which was the average of the compressive strengths of six standard 

samples and was equivalent to 28.1 MPa. Then this ratio was subtracted from 1 and 

multiplied by 100. As previously mentioned, the standard samples were fabricated 
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according to standard ASTM C192 (ASTM International 2015a). Table 9 summarizes all 

experimental runs, their corresponding strength average and strength effects. Positive 

strength effects indicate that there is an increment in concrete compressive strength when 

comparing run results against standard samples. Conversely, negative strength effects 

indicate that there is a decrease in concrete strength.  

Table 9. Factorial Design and Response 

Runa 
Crew 

Experience 
Compaction 

Mixing 

Time 

(min) 

Curing 

Hum. 

(%) 

Curing 

Temp. 

(°C) 

Strength 

Averageb 

(MPa) 

Strength 

Effect 

(%) 

1 Experienced Manual 20.4 100 28.5 36.8 31.0 

2 Experienced Manual 11.3 100 28.5 36.5 30.2 

3 Not Experienced Vibrator 11.3 20 7.9 22.9 -18.5 

4 Not Experienced Manual 11.3 20 7.9 24.6 -12.5 

5 Not Experienced Manual 11.3 100 7.9 27.4 -2.4 

6 Not Experienced Vibrator 20.4 20 7.9 23.7 -15.7 

7 Experienced Vibrator 20.4 100 28.5 35.5 26.3 

8 Not Experienced Vibrator 20.4 100 28.5 37.2 32.4 

9 Experienced Vibrator 11.3 100 7.9 25.3 -10.0 

10 Experienced Manual 11.3 20 28.5 28.3 0.8 

11 Experienced Vibrator 20.4 20 7.9 22.4 -20.2 

12 Not Experienced Manual 20.4 20 28.5 29.7 5.9 

13 Not Experienced Vibrator 11.3 100 28.5 31.6 12.6 

14 Not Experienced Vibrator 20.4 20 28.5 26.4 -5.9 

15 Experienced Vibrator 11.3 20 28.5 27.6 -1.6 

16 Experienced Vibrator 11.3 100 28.5 32.8 16.9 

17 Experienced Manual 20.4 20 7.9 21.6 -23.2 

18 Not Experienced Vibrator 11.3 20 28.5 23.2 -17.2 

19 Experienced Manual 11.3 100 7.9 25.4 -9.5 

20 Experienced Vibrator 20.4 20 28.5 29.0 3.2 

21 Not Experienced Manual 20.4 20 7.9 22.5 -19.9 

22 Not Experienced Manual 11.3 20 28.5 25.4 -9.6 

23 Not Experienced Vibrator 11.3 100 7.9 22.9 -18.5 

24 Experienced Manual 20.4 20 28.5 28.8 2.5 

25 Not Experienced Vibrator 20.4 100 7.9 25.9 -7.9 

26 Experienced Vibrator 20.4 100 7.9 25.6 -8.6 

27 Experienced Vibrator 11.3 20 7.9 22.8 -18.6 

28 Not Experienced Manual 20.4 100 7.9 27.0 -3.7 

29 Not Experienced Manual 20.4 100 28.5 33.7 20.0 

30 Experienced Manual 11.3 20 7.9 23.0 -18.2 

31 Not Experienced Manual 11.3 100 28.5 36.0 28.1 

32 Experienced Manual 20.4 100 7.9 28.2 0.4 
aEach run consists of 6 concrete samples. 
bThe average concrete strength for the 6 samples in the run. 
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For raw material properties, complete experimental data as well as laboratory setup see 

Appendix B. 

 

3.3.4 Factorial Design Analysis  

3.3.4.1 Quantifying the Effects of Unstructured Factors on Concrete Strength  

The effect of each factor is defined as the variation in the response due to the change in the 

factor levels. To compute a factor effect it is necessary to first obtain the contrast of that 

effect according to Eq. 5, where the sign is negative unless the factor is not considered. 

Factor effects can be positive or negative and they provide a general idea of the effect of 

main factors and their interactions. The values of 𝑎, 𝑏, … , 𝑒 represent the treatment 

combinations (i.e., factor combinations) where the corresponding factors are at high levels. 

In other words, 𝑎, 𝑏, … , 𝑒 are treatment combinations where the factors crew experience 

(A), compaction method (B), mixing time (C), curing humidity (D) and curing temperature 

(E) are acting at high levels and the others at low levels respectively.  

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐴𝐵…𝐸 = (𝑎 ± 1)(𝑏 ± 1)… (𝑒 ± 1)    (5) 

 

After a contrast is determined, a factor effect and its corresponding sum of squares are 

computed by using Eq. 6 and Eq. 7 respectively, where 𝑛 is the number of replicates of 

each run (𝑛 = 1 in this case, since the experiment was not replicated, i.e., there was only 

one run for each factor combination). 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝐴𝐵…𝐸 =
2

𝑛2𝑘
 (𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐴𝐵…𝐸)    (6) 
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𝑆𝑆𝐴𝐵…𝐸 =
1

𝑛2𝑘
 (𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝐴𝐵…𝐸)

2    (7) 

 

3.3.4.2 Regression Model 

A regression model is estimated by considering all main factors and their corresponding 

interactions (i.e., main factors A, B, C, D and E and their interactions: AB, AC, BC, ABC, 

AD, BD, ABD, CD, ACD, BCD, ABCD, AE, BE, ABE, CE, ACE, BCE, ABCE, DE, 

ADE, BDE, ABDE, CDE, ACDE, BCDE, ABCDE). For a 25 factorial design, the 

regression model is expressed by Eq. 8, where 𝑦 is the predicted response (i.e., concrete 

strength effect), 𝛽0 is the average of all observations, 𝛽′𝑠 are the regression coefficients 

which are equal to one half of the corresponding factor effects, and 𝑥′𝑠 are the coded 

variables (low level: -1; high level: 1) that represent each affecting factor: crew experience 

(A), compaction method (B), mixing time (C), curing humidity (D) and curing temperature 

(E). 

 

𝑦 = 𝛽0 + 𝛽𝐴𝑥𝐴 + …+ 𝛽𝐸𝑥𝐸+𝛽𝐴𝐵𝑥𝐴𝑥𝐵 +⋯+ 𝛽𝐷𝐸𝑥𝐷𝑥𝐸 + 𝛽𝐴𝐵𝐶𝑥𝐴𝑥𝐵𝑥𝐶 +⋯+𝛽𝐶𝐷𝐸𝑥𝐶𝑥𝐷𝑥𝐸 +

       +𝛽𝐴𝐵𝐶𝐷𝑥𝐴𝑥𝐵𝑥𝐶𝑥𝐷 +⋯+ 𝛽𝐵𝐶𝐷𝐸𝑥𝐵𝑥𝐶𝑥𝐷𝑥𝐸+𝛽𝐴𝐵𝐶𝐷𝐸𝑥𝐴𝑥𝐵𝑥𝐶𝑥𝐷𝑥𝐸     (8) 

 

Using the calculated strength effect (Table 9) as the response of the experiment, a complete 

full 25 factorial design analysis was performed to investigate the significant construction 

site factors (i.e., unstructured factors) that affect concrete compressive strength. Table 10 

gives a summary of all factor effect estimates and regression coefficients. The percent 

contribution column provides an indication of the percentage of participation of each model 

term and it is calculated in relation to the total sum of squares, showing the importance of 
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each term in the model. The results pointed out that four of the main affecting factors—

compaction method (B), mixing time (C), curing humidity (D), curing temperature (E)—

and the term indicating interaction between curing humidity (D) and curing temperature 

(E) have a percentage of participation greater than 1%, implying that such terms are very 

important in the estimated model since they could become significant terms.  

 

Table 10. Effect Estimate and Coefficients Summary for Concrete Strength Effect (Coded 

Units) 

 

Terms Effect Coefficient 
Sum of 

Squares 

Percent 

Contribution 

Constant (𝛽0)  -0.994   

Main Effects 

Crew Experience (A) 2.128 1.064 36.23 0.4 

Compaction (B) -4.443 -2.222 157.93 1.7 

Mixing Time (C) 4.035 2.018 130.26 1.4 

Curing Humidity (D) 19.124 9.562 2925.94 32.0 

Curing Temperature (E) 23.910 11.955 4573.56 50.0 

2-Way Interactions 

Crew Experience (A) * Compaction (B) 1.123 0.562 10.09 0.1 

Crew Experience (A) * Mixing Time (C) -1.356 -0.678 14.71 0.2 

Crew Experience (A) * Curing Humidity (D) -0.146 -0.073 0.17 0.0 

Crew Experience (A) *Curing Temperature (E) 3.245 1.623 84.26 0.9 

Compaction (B) * Mixing Time (C) 3.279 1.640 86.02 0.9 

Compaction (B) * Curing Humidity (D) -1.908 -0.954 29.13 0.3 

Compaction (B) * Curing Temperature (E) -0.833 -0.417 5.55 0.1 

Mixing Time(C) * Curing Humidity (D) 1.279 0.639 13.08 0.1 

Mixing Time (C) * Curing Temperature (E) 2.858 1.429 65.35 0.7 

Curing Humidity (D) * Curing Temperature (E) 8.311 4.155 552.53 6.0 

3-Way Interactions  

Crew Experience (A) * Compaction (B) * 

Mixing Time (C) 
-2.447 -1.223 47.89 0.5 

Crew Experience (A) * Compaction (B) * 

Curing Humidity (D) 
-1.647 -0.824 21.70 0.2 

Crew Experience (A) * Compaction (B) * 

Curing Temperature (E) 
-0.755 -0.377 4.56 0.0 

Crew Experience (A) * Mixing Time (C) * 

Curing Humidity (D) 
1.432 0.716 16.41 0.2 

Crew Experience (A) * Mixing Time(C) * 

Curing Temperature (E) 
-1.358 -0.679 14.74 0.2 

Crew Experience (A) * Curing Humidity (D) * 

Curing Temperature (E) 
-2.419 -1.210 46.83 0.5 
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Compaction (B) * Mixing Time (C) * Curing 

Humidity (D) 
1.697 0.849 23.04 0.3 

Compaction (B) * Mixing Time (C) * Curing 

Temperature (E) 
1.127 0.564 10.16 0.1 

Compaction (B) * Curing Humidity (D) * 

Curing Temperature (E) 
1.899 0.950 28.86 0.3 

Mixing Time (C) * Curing Humidity (D) * 

Curing Temperature (E) 
-2.689 -1.344 57.84 0.6 

4-Way Interactions 

Crew Experience (A) * Compaction (B) * 

Mixing Time (C) * Curing Humidity (D) 
-2.502 -1.251 50.07 0.5 

Crew Experience (A) * Compaction (B) * 

Mixing Time (C) * Curing Temperature (E) 
0.950 0.475 7.23 0.1 

Crew Experience (A) * Compaction (B) * 

Curing Humidity (D) * Curing Temperature (E) 
-2.435 -1.217 47.43 0.5 

Crew Experience (A) * Mixing Time (C) * 

Curing Humidity (D) * Curing Temperature (E) 
0.919 0.460 6.76 0.1 

Compaction (B) * Mixing Time (C) * Curing 

Humidity (D) * Curing Temperature (E) 
3.004 1.502 72.20 0.8 

5-Way Interactions 

Crew Experience (A) * Compaction (B) * 

Mixing Time (C) * Curing Humidity (D) * 

Curing Temperature (E) 

-0.793 -0.397 5.03 0.1 

 

 

3.3.4.3 Statistical Testing for the Significance of Affecting Factors 

An analysis of variance (ANOVA) is done to perform a statistical testing for the 

significance of unstructured factor effects and their interactions. ANOVA is computed for 

the factorial design to estimate the variance within and between treatments. F statistics are 

computed for each source of variation (e.g., main factors and factor combinations) by 

dividing the mean square error by the residual mean square error and are used for testing 

the following hypothesis: (1) 𝛽′𝑠 = 0 and (2) 𝛽′𝑠 ≠ 0. Only significant factors with p 

values that are less than or equal to 0.05 are utilized for refining the full regression model 

estimated. Table 11 presents the results for the ANOVA, where the main effects—

Compaction method (B), Mixing Time (C), Curing Humidity (D) and Curing Temperature 



45 
 

(E)—and the interaction between Curing Humidity (D) and Curing Temperature (E) were 

found to be significant.  

 

Table 11. ANOVA Table for Compressive Strength Effect (Coded Units) 

Source 

Degrees 

of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F 

Value 

P 

Value 

Main Effects 4 7787.7 1946.92 62.85 0.00 

Compaction (B) 1 157.9 157.93 5.10 0.03 

Mixing Time (C) 1 130.3 130.26 4.21 0.05 

Curing Humidity (D) 1 2925.9 2925.94 94.46 0.00 

Curing Temperature (E) 1 4573.6 4573.56 147.64 0.00 

2-Way Interactions 1 552.5 552.53 17.84 0.00 

Curing Humidity (D) * 

Curing Temperature (E) 
1 552.5 552.53 17.84 0.00 

Residual Error 26 805.4 30.98   

Total 31 9145.6    

 

 

3.3.4.4 Final Regression Model 

The final model contains only the significant affecting factors identified by ANOVA. 

Montgomery (2013) pointed out that when at least two factors are quantitative, it is feasible 

to analyze the results by creating a response surface or contour lines. Table 12 summarizes 

the final model coefficients including only significant terms for coded and uncoded units, 

while Eq. 9 and Eq. 10 represent the final equations in terms of coded (-1 and 1) and 

uncoded units (real units) respectively derived from Eq. 8. 
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Table 12. Final Estimated Coefficients for Strength Effect (%) 

 

Term 

Model Coefficient 

Coded 

Units 

Uncoded 

Units 

Constant -0.994 -32.4761 

Compaction (B) -2.222 -2.2216 

Mixing Time (C) 2.018 0.4434 

Curing Humidity (D) 9.562 0.0555 

Curing Temperature (E) 11.955 0.5555 

Curing Humidity (D) * Curing 

Temperature (E) 
4.155 0.0101 

 

 

𝑺𝒕𝒓𝒆𝒏𝒈𝒕𝒉 𝑬𝒇𝒇𝒆𝒄𝒕 (%) = −0.994 − 2.222 ∗ 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 + 2.018 ∗ 𝑀𝑖𝑥𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 9.562 ∗

𝐶𝑢𝑟𝑖𝑛𝑔 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 11.955 ∗ 𝐶𝑢𝑟𝑖𝑛𝑔 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 4.155 ∗ 𝐶𝑢𝑟𝑖𝑛𝑔 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 ∗

𝐶𝑢𝑟𝑖𝑛𝑔 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  (Variables must be entered in coded units)  (9) 

 

𝑺𝒕𝒓𝒆𝒏𝒈𝒕𝒉 𝑬𝒇𝒇𝒆𝒄𝒕 (%) = −32.4761 − 2.2216 ∗ 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 + 0.4434 ∗ 𝑀𝑖𝑥𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 0.0555 ∗

𝐶𝑢𝑟𝑖𝑛𝑔 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 0.5555 ∗ 𝐶𝑢𝑟𝑖𝑛𝑔 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 0.0101 ∗ 𝐶𝑢𝑟𝑖𝑛𝑔 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 ∗

𝐶𝑢𝑟𝑖𝑛𝑔 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  (Variables must be entered in real units)  (10)  

 

3.3.4.5 Analysis of Residuals 

Residuals were obtained by computing the difference between experimental and predicted 

responses and they were used for checking model adequacy. Montgomery (2013) argued 

that residuals should not follow obvious patterns (i.e., they should be structureless) when 

the model is adequate, and suggested that many assumption violations can be detected by 

plotting graphs of the residuals. The presence of obvious residual patterns would reveal 

any assumption violations. A normal probability plot for the residuals was utilized to check 

the normality assumption. Fig. 8 does not reveal a violation for the normality assumption 
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since all residuals are close to the line of the normal distribution, centered at zero. 

Montgomery (2013) claimed that ANOVA is robust to the normality assumption and 

moderate deviations from normality do not necessarily imply a serious violation of the 

assumption. A graph of residuals versus run order or time can detect if there is a violation 

of the independence assumption between runs, which is produced when there is a tendency 

to have runs of positive and negative residuals. Appropriate randomization of the 

experiment ensures independence. The plots of residuals versus observation order (Fig.9) 

and residuals versus fitted values (Fig.10) do not indicate any violation of the independence 

assumption and equality of variances since the residuals do not follow obvious patterns.  

Plots of the residuals versus the predicted yields for each significant affecting factor are 

shown to find if there is any violation of inequality of variance (Fig.11). Resulting plots 

indicate no violation of this assumption, even though some graphs show a very slight 

inequality of variance. Thus, the analysis of residuals does not indicate any problem with 

assumptions or model adequacy, validating the conclusions. 

 

1050-5-10-15

99

95

90

80

70

60

50

40

30

20

10

5

1

Residual

N
o
rm

a
l 
%

 p
ro

b
a
b
ili

ty

 
Fig. 8. Normal plot of residuals for strength effect 
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Fig.9. Residuals vs. observation order for strength effect 
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Fig.10. Residuals vs. fitted values for strength effect 
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Fig.11. Residuals vs. predicted yields for each affecting factor for strength effect 

 

 

 

3.3.4.6 Model Validation 

A plot depicting predicted versus experimental data was developed to evaluate how well 

the final model predicts concrete strength effect (Fig. 12). The result of R-squared is 91.2%, 

which indicates that the model is able to accurately predict more than 90% of the data. The 

standard error (S) represents the standard distance between the experimental and the 

predicted data. The smaller the S value, the better the model performs.  
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Fig. 12. Predicted data vs. experimental data for strength effect 

 

 

3.4 Operating Conditions to Preserve Concrete Quality 

The final regression model for estimating concrete compressive strength effect (Eq. 10) 

can be used as a decision-support tool for construction workers that enables them to find 

operating conditions to preserve concrete quality through the use of contour lines. Contour 

plots of strength effect (%) that consider curing temperature and mixing time as variables 

(Fig.13) point out that high curing temperatures are needed to preserve concrete strength 

when curing concrete in a dry environment. Keeping concrete saturated with water (100% 

relative humidity) when curing avoids losing compressive strength; in fact, it increases 

strength by around 25%. Curing temperature does not have the same impact when curing 

humidity changes, due to their corresponding interaction effect. Also, the impact of the 

method of compaction (i.e., -1 for manual or 1 for vibrated) and mixing time on strength is 

not as severe as curing temperature. The contour lines in Fig.13 have negative slopes, 
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indicating the more the mixing time, the less the curing temperature needed to maintain a 

desired strength effect.  
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Fig.13. Contour plots of strength effect (%) considering curing temperature and mixing 

time as variables 

 

Also, contour plots of strength effect (%) that consider curing humidity and mixing time 

as variables (Fig.14) illustrate that high values of curing humidity and mixing times reduce 

the impact of affecting factors at low curing temperatures, even though they cannot mitigate 

strength reduction completely. A contour line of zero strength effect does not appear in the 

contour plots. At high curing temperatures, low curing humidity (20%) could be accepted 

to preserve compressive strength (i.e., zero contour line). In contrast, significant positive 
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strength effect (20-25%) can be gained by curing concrete at high temperatures and 

humidity (100% relative humidity). In the same manner as stated before, the impact of 

curing humidity varies greatly when curing temperature changes because of two-way factor 

interaction. The impact of the method of compaction (i.e., -1 for manual or 1 for vibrated) 

and mixing time on strength is not as severe as curing temperature. Also, high mixing times 

promote concrete compressive strength. 
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Fig.14. Contour plots of strength effect (%) considering curing humidity and mixing time 

as variables 

 

Moreover, contour plots of strength effect (%) that consider curing humidity and curing 

temperature as variables (Fig.15) reveal that high values of curing humidity and curing 
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temperature cause a positive effect on concrete compressive strength, causing an increment 

of more than 20% in compressive strength regardless of crew experience and mixing time. 

To maintain compressive strength, curing temperature should increase while curing 

humidity decreases and vice versa. In addition, vibrating the concrete seems to decrease 

concrete compressive strength rather than increasing it. This could be due to possible 

concrete segregation during sample fabrication in all cases. In contrast, consolidating the 

concrete by utilizing a tamping rod (i.e., -1 for manual compaction) yields better 

compressive strengths.  
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Fig.15. Contour plots of strength effect (%) considering curing humidity and curing 

temperature as variables 
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3.5 Conclusions 

This chapter presents a comprehensive systematic framework to identify significant 

construction site factors (i.e., unstructured factors) that affect concrete compressive 

strength, including crew experience, compaction method, mixing time, curing humidity 

and curing temperature, by conducting a full 25 factorial design. The experimental design 

assisted in the concrete sample fabrication process while the factorial design analysis 

quantified main factor effects with corresponding interactions. It also exposed statistically 

significant affecting factors for developing a prediction model for new observations, with 

the final regression model consisting of a supporting tool for decision making.  

 

Compaction method, mixing time, curing humidity and curing temperature are construction 

site factors that affect concrete compressive strength significantly. These factors were 

identified by performing an ANOVA at 0.05 level of significance with a 95% confidence 

level. The percentage of participation of each model term (Table 10) indicates that curing 

temperature has the highest percent contribution on concrete compressive strength, with 

50.0% of the total effect caused by main factor effects and their corresponding interactions. 

Curing humidity accounts for 32.0% of the total effect, the second highest percent 

contribution, while mixing time and compaction method together only have a contribution 

of 3.1% to the model. Also, only one two-factor interaction—curing humidity and curing 

temperature—has important participation in the model. It accounts for 6.0% of the total 

percent contribution, implying that curing humidity does not produce the same effect when 

curing temperature changes and vice versa. One factor effect depends on the other. 
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The final regression model (Eq. 10), containing only significant affecting factors for 

predicting the impact of construction site factors (i.e., unstructured factors) on concrete 

compressive strength, became a decision-support tool that not only enables construction 

workers to find operating conditions but also to explore other factors tending to preserve 

concrete quality while building a facility. A high value of the coefficient of determination 

(R squared) of 91.2% indicates that the model can predict new observations well. Fig.13, 

Fig.14 and Fig.15, for instance, depict different contour plots to identify desirable values 

or operating conditions that allow construction workers such as supervisors or construction 

managers to be aware of possible concrete compressive strength impacts under certain 

conditions. Such impacts can be either positive or negative. Positive contour lines represent 

desired conditions since they represent operating conditions where concrete undergoes an 

increment in its compressive strength. Contour lines with a zero value indicate that concrete 

compressive strength is not being affected by existing onsite conditions and could be 

considered the desired jobsite condition. On the other hand, negative contour lines are 

meant to be warning zones, indicating the present combination of factors is reducing 

compressive strength. Knowing the effect of construction site factors on concrete 

compressive strength in advance will help workers comply with the concrete specification 

stated in the construction documents by taking corrective measures.  

 

3.6 Recommendations for Operating Conditions 

The impact of unstructured factors should be considered in concrete operations, even 

though some significant affecting factors can be controlled while others cannot. 

Compaction method and mixing time can be chosen by technicians in charge of preparing 
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concrete. Compacting concrete by using a vibrator or a tamping rod is up to a supervisor, 

while setting the curing humidity and temperature of a concrete element of a structure is 

not possible to control most of the time, due to project location or curing limitations. The 

experimental results indicate that curing concrete in an environment with high surrounding 

humidity and temperature is ideal to stimulate concrete compressive strength; however, 

such conditions are difficult to simulate and control during the construction process. Thus, 

appropriate concrete fabrication conditions in situ should be taken into consideration to 

ensure that the concrete complies with material specifications contained in any project 

construction documents.  

 

Furthermore, appropriate resources should be utilized when fabricating concrete. 

Construction workers having appropriate skills must be hired to ensure the success of a 

project (Sears et al. 2015). During the construction process, there could be concrete 

elements for which it would be difficult to perform concrete compaction well or where 

compaction is not adequate. Some structural elements can be compacted by using a 

concrete vibrator while others can only be compacted manually by using tamping rods, 

depending on concrete consistency (i.e., slump) and placing conditions such as rebar 

spacing and geometry of formwork (Kosmatka et al. 2002; Mehta and Monteiro 2006; Li 

2011). Despite the method of concrete compaction selected, the formation of internal voids 

should be avoided. Hassoun and Al-Manaseer (2012) emphasized that correct concrete 

compaction guarantees a positive effect on concrete compressive strength. Mixing time 

should be enough to obtain homogeneous concrete mixtures. Standard common practices 

for mixing times vary, but the time applied to mix concrete should guarantee a uniform 
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mixture with a reduction of voids. Thorough mixing ensures concrete quality (ACI 2000). 

Mixing time of around 15 minutes, which corresponds to the average of minimum and 

maximum mixing times, is recommended for manual concrete fabrication. Curing 

conditions cannot be controlled easily at a jobsite since they include the local relative 

humidity and temperature. Fig. 16 illustrates an overlay contour plot of compressive 

strength effect that considers curing temperature and curing humidity while utilizing 

experienced crews, concrete vibrators and 15 minutes of mixing time. The white region on 

the plot represents the feasible region where concrete compressive strength is affected 

slightly (± 5%). Other overlay plots could also be constructed by specifying different 

parameters of affecting factors. Decreasing curing temperature and curing humidity would 

decrease concrete compressive strength effect. To preserve compressive strength (i.e., 

strength effect equals 0%), concrete construction personnel should pay special attention to 

weather or ambient conditions.  
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Fig. 16.Recommended operating conditions for concrete compressive strength 
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CHAPTER 4: IMPACT OF UNSTRUCTURED FACTORS ON CONCRETE 

THROUGH FUZZY MODELS 

 

4.1 Introduction 

There are several affecting conditions that could impact concrete compressive strength, 

costs, and production rates when fabricating concrete at the jobsite. The impact is 

manifested by reducing strength, by reducing productivity, and by increasing costs. These 

potential impacts are usually unknown or ignored by construction laborers, foremen and 

project managers. Knowing such impacts in advance could prevent managers from wasting 

resources as well as help save time and money. The novel approach presented in this 

chapter assists in reducing uncertainty in order to manage concrete quality during the 

construction phase of a project through the use of novel fuzzy set theory. 

 

4.1.1 Fuzzy Set Theory Overview 

Several theories or approaches are available to deal with uncertainties including 

probability, belief and plausibility, possibility, and fuzzy set theory (Klir 2006; Ross 2017). 

Fuzzy set theory, introduced by Zadeh (1965), is a very efficient tool to understand 

complex systems where there are unknown mathematical functions (Ross 2017). Usually, 

the more complex the system is, the less knowledge about the system is available and vice 

versa. Fuzzy rule-based systems are known as fuzzy inference systems (FISs), and they are 

suitable mechanisms to manage problems where uncertainties are caused by lack of 

knowledge and vagueness (Zadeh, 1973), recalling that a FIS can provide researchers with 

information, increasing their understanding about how a system works. Also, a FIS could 

be thought of as an approximation of a mathematical function, being very useful when 



59 
 

modeling complex systems that are described by humans through the use of linguistic 

variables (Ross 2017). On the contrary, it would not be necessary to use fuzzy set theory if 

the function governing the system were known or defined. 

 

4.1.2 Fuzzy Inference Systems (FISs) 

Two main components can be distinguished for a FIS: (1) a fuzzy knowledge base and (2) 

an inference mechanism, as depicted in Fig. 17. The knowledge base component consists 

of input–output (I/O) data coming from the observed system and if–then rules. This 

information is used by the inference mechanism to predict or map outputs for any input. 

The knowledge base describes I/O relationships, while the inference mechanism uses such 

knowledge for estimating outputs (Fig. 17). The most common inference mechanism 

methods are Mamdani (Mamdani and Assilian 1975; Mamdani 1977), Sugeno, also known 

as Takagi, Sugeno and Kang (TSK) (Takagi and Sugeno 1985) and Tsukamoto models 

(Tsukamoto 1979), all based on if–then rules. Mamdani’s inference mechanism differs 

from the others in that the output is a fuzzy set while the other procedures produce crisp 

outputs for each rule by using mathematical functions. 

 

 
 

Fig. 17. FIS structure 
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The use of fuzzy inference systems is an appropriate approach for understanting and 

quantifying the impact of construction site factors (i.e., unstructured factors) affecting 

concrete compressive strength, costs, and production rates through experimental I/O data. 

Influencing factors affect such concrete characteristics nonlinearly, and fuzzy systems 

perform well when dealing with such models. FISs perform well when having I/O data, 

and the rules derived from that data provide knowledge of the system (Ross 2017). An 

experimenter or analyst uses experimental data obtained through testing in order to model 

or predict results when dealing with complex systems, and thus FISs may be applied in 

these cases (Ross 2017). Furthermore,several investigations have attempted to develop 

prediction models for concrete strength from experimental I/O data. Tesfamariam and 

Najjaran (2007) utilized adaptive neuro-fuzzy inference systems (ANFIS) for predicting 

concrete compressive strength by testing different mix proportions. They concluded that 

this technique has significant advantages in estimating concrete strength from experimental 

data; i.e., in-situ quality controls. Also, the authors emphasized that the use of past 

experience (experimental data) should be utilized to gain knowledge of a system. 

Madandoust et al. (2012) attempted to predict concrete compressive strength by developing 

ANFIS based on concrete core testing data. Tayfur et al. (2014) fabricated concrete samples 

with varying binder contents and tested them at different ages, concluding that fuzzy logic 

is a very useful technique to predict concrete compressive strength. In a recent study, 

Khademi et al. (2017) evaluated concrete compressive strength made with different mix 

designs by means of sample fabrication and testing in the laboratory. The authors 

concluded that adaptive neural networks (ANN) and ANFIS models are preferred due to 

the nonlinear relationship between variables. Fuzzy set theory is thus an effective technique 
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for mapping I/O data in concrete-related studies because of its ability to deal with 

nonlinearity and to provide information for understanding system behaviors. 

 

4.1.3 Membership Functions (MFs) and If–Then Rules 

A membership function (MF) of a fuzzy set maps each element of the universe of elements 

to a membership value or degree of membership between 0 and 1 (Jang et al. 1997), being 

1 for full degree of membership. A MF can have many shapes, such as triangular, 

trapezoidal, and Gaussian, and the precision of the shape that comprises a membership 

function is not important as long as the functions represent each input. Overlap MFs is an 

important characteristic to be considered when partitioning the universe of discourse, 

allowing each element to have different degrees of membership in different MFs. 

 

Several methods such as intuition, inference, inductive reasoning, and automated methods 

may be utilized to develop MFs, depending on data availability and the degree of 

knowledge of the system (Ross 2017). Automated methods are alternatives to creating not 

only MFs but also if–then rules. Passino & Yurkovich (1998)  mentioned several automated 

techniques that are available for fuzzy identification and estimation including a clustering 

method (CM), which creates rules based on grouping or partitioning data into similar 

groups. Jang (1993) proposed a method called Adapted-Network-based Fuzzy Inference 

System (ANFIS) for constructing a FIS by developing if–then rules and MFs based on I/O 

data tuples through a hybrid learning algorithm that combines the gradient method and least 

squares estimates. 
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4.2 Goal and Objectives 

The goal of this chapter is to provide construction workers and technicians with decision-

support prediction models for quantifying the impact of construction site factors on 

concrete compressive strength, costs, and production rates by using experimental data and 

fuzzy set theory. The research objectives are to (1) develop a fuzzy inference system for 

quantifying concrete strength, cost, and production rate effects, (2) identify affecting 

conditions that dominate the output of each fuzzy model, and (3) create a decision tool for 

identifying desired operating conditions that will meet required concrete compressive 

strength as well as costs and production rates.  

 

Even though concrete strength depends mostly on mixture constituents, proportions, and 

fabrication, it also depends on other factors affecting testing results, including boundary 

conditions (Kim et al. 2004). Yuan et al. (2014) pointed out that the factors that affect 

concrete compressive strength may be classified into structured and unstructured factors. 

The first category is related to the factors affecting concrete during its production process 

while the second category refers to construction site factors that influence concrete during 

the construction phase. The literature indicates there is limited understanding of the effect 

of such factors on concrete. The present chapter addresses this limitation by developing 

fuzzy models for quantifying their effect, assisting concrete laborers and technicians when 

performing concrete operations. 
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4.3 Methodology  

Adapted-Network-based Fuzzy Inference System (ANFIS) utilizes data tuples for 

constructing a Sugeno-type FIS by developing if–then rules and MFs based on data 

clustering when having experimental I/O data. ANFIS is a neuro-fuzzy model that utilizes 

the advantages of adaptive neural networks (ANNs) by allowing fuzzy systems to learn 

through a hybrid learning algorithm (Jang et al. 1997). An ANFIS model was used to 

investigate the effects of construction site factors on concrete compressive strength, on 

costs and on production rates in this study. Fig.18 illustrates the systematic procedure that 

will be followed to accomplish the chapter objectives. 

 

 
 

Fig.18. Research framework 

 

4.3.1 Experimental Data (I/O data) 

For this chapter, five construction site factors—crew experience, compaction method, 

mixing time, curing humidity, and curing temperature—were selected from the literature 

(Kosmatka et al. 2002; Mehta and Monteiro 2006; Neville and Brooks 2010; Li 2011; 

Hassoun and Al-Manaseer 2012; Wight et al. 2012; Chen et al. 2014; Unanwa and Mahan 

2014). These factors refer to construction site conditions (i.e., unstructured factors) that are 

present during manual concrete fabrication, placement, and curing until the concrete is 28 

days old at the jobsite. For developing a Sugeno FIS for quantifying compressive strength 
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effect, four factors—compaction method, mixing time, curing humidity, and curing 

temperature—were utilized, since they were found to be significant after performing an 

analysis of variance (ANOVA) at 0.05 level of significance with a 95% confidence level.     

 

Six cylindrical concrete samples of 150mm by 300 mm (6 by 12 inches) were fabricated 

and cured for each factor combination, simulating affecting conditions, and were tested for 

a compression axial load, as per ASTM C39 (ASTM International 2016a) at the laboratory 

for Testing and Construction Materials of the School of Civil Engineering of the Central 

University of Ecuador. A total of 192 samples were fabricated, keeping constant concrete 

mix proportions and slump, as per ASTM C143 (ASTM International 2015b). 

Additionally, six standard concrete samples, as per ASTM C192 (ASTM International 

2015a) were fabricated to ensure a compression strength of 28 MPa (4000 psi) and used as 

a baseline for computing concrete strength effects by comparing affected samples and 

standard samples subtracted from unity and expressed as a percentage. 

 

Input data comprised all four construction site factors while the output was the compressive 

strength effect. Half of the data (i.e., 96 strength responses) were used as training data and 

the other half as checking data for the ANFIS model. Training and checking datasets for 

ANFIS models were selected randomly, resulting in 32 data tuples made of the average of 

three compressive strengths of samples corresponding to the same experiment for each 

dataset. Training data were the data tuples used to generate the ANFIS model while 

checking data were used for verifying the performance of the model. Table 13 summarizes 

affecting conditions and strength effects for training and checking data. Negative values of 
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strength effect indicate a reduction in strength, suggesting that affecting conditions had an 

adverse impact on concrete strength. Positive values indicate that affecting conditions 

increased concrete strength. 

 

Table 13. Training and checking data for concrete strength effect 

 

No. 

Inputs Output 

Compaction 

Method 

Mixing 

Time  

(min) 

Curing 

Humidity 

(%) 

Curing 

Temperature 

(°C) 

Strength 

Effect 

(%) 

Training data 

1 Manual (-1) 20.4 100 28.5 31.5 

2 Manual (-1) 11.3 100 28.5 28.0 

3 Vibrator (1) 11.3 20 7.9 -20.6 

4 Manual (-1) 11.3 20 7.9 -13.5 

5 Manual (-1) 11.3 100 7.9 -1.0 

6 Vibrator (1) 20.4 20 7.9 -15.5 

7 Vibrator (1) 20.4 100 28.5 29.4 

8 Vibrator (1) 20.4 100 28.5 33.9 

9 Vibrator (1) 11.3 100 7.9 -11.1 

10 Manual (-1) 11.3 20 28.5 0.0 

11 Vibrator (1) 20.4 20 7.9 -20.6 

12 Manual (-1) 20.4 20 28.5 4.0 

13 Vibrator (1) 11.3 100 28.5 16.0 

14 Vibrator (1) 20.4 20 28.5 -4.5 

15 Vibrator (1) 11.3 20 28.5 -0.2 

16 Vibrator (1) 11.3 100 28.5 15.8 

17 Manual (-1) 20.4 20 7.9 -25.7 

18 Vibrator (1) 11.3 20 28.5 -16.4 

19 Manual (-1) 11.3 100 7.9 -11.6 

20 Vibrator (1) 20.4 20 28.5 2.9 

21 Manual (-1) 20.4 20 7.9 -21.4 

22 Manual (-1) 11.3 20 28.5 -10.5 

23 Vibrator (1) 11.3 100 7.9 -20.2 

24 Manual (-1) 20.4 20 28.5 1.9 

25 Vibrator (1) 20.4 100 7.9 -9.0 

26 Vibrator (1) 20.4 100 7.9 -8.5 

27 Vibrator (1) 11.3 20 7.9 -19.4 

28 Manual (-1) 20.4 100 7.9 -3.4 

29 Manual (-1) 20.4 100 28.5 18.8 

30 Manual (-1) 11.3 20 7.9 -18.4 

31 Manual (-1) 11.3 100 28.5 27.8 

32 Manual (-1) 20.4 100 7.9 0.0 

Checking data 
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1 Manual (-1) 20.4 100 28.5 30.5 

2 Manual (-1) 11.3 100 28.5 32.3 

3 Vibrator (1) 11.3 20 7.9 -16.5 

4 Manual (-1) 11.3 20 7.9 -11.5 

5 Manual (-1) 11.3 100 7.9 -3.8 

6 Vibrator (1) 20.4 20 7.9 -15.8 

7 Vibrator (1) 20.4 100 28.5 23.2 

8 Vibrator (1) 20.4 100 28.5 30.8 

9 Vibrator (1) 11.3 100 7.9 -9.0 

10 Manual (-1) 11.3 20 28.5 1.6 

11 Vibrator (1) 20.4 20 7.9 -19.8 

12 Manual (-1) 20.4 20 28.5 7.7 

13 Vibrator (1) 11.3 100 28.5 9.2 

14 Vibrator (1) 20.4 20 28.5 -7.4 

15 Vibrator (1) 11.3 20 28.5 -3.0 

16 Vibrator (1) 11.3 100 28.5 17.9 

17 Manual (-1) 20.4 20 7.9 -20.8 

18 Vibrator (1) 11.3 20 28.5 -18.0 

19 Manual (-1) 11.3 100 7.9 -7.5 

20 Vibrator (1) 20.4 20 28.5 3.5 

21 Manual (-1) 20.4 20 7.9 -18.5 

22 Manual (-1) 11.3 20 28.5 -8.7 

23 Vibrator (1) 11.3 100 7.9 -16.7 

24 Manual (-1) 20.4 20 28.5 3.1 

25 Vibrator (1) 20.4 100 7.9 -6.7 

26 Vibrator (1) 20.4 100 7.9 -8.8 

27 Vibrator (1) 11.3 20 7.9 -17.8 

28 Manual (-1) 20.4 100 7.9 -4.0 

29 Manual (-1) 20.4 100 28.5 21.3 

30 Manual (-1) 11.3 20 7.9 -17.9 

31 Manual (-1) 11.3 100 28.5 28.3 

32 Manual (-1) 20.4 100 7.9 0.8 
 

Regarding concrete costs, three unstructured factors; namely, crew experience, compaction 

method, and mixing time, were considered for developing a Sugeno FIS. The costs of 

curing humidity and curing temperature were not considered in this study since they 

correspond to environmental conditions existing at the jobsite. Concrete cost effects were 

computed by taking into consideration the costs of labor and equipment utilized for 

fabricating a batch of concrete for six samples under each factor combination, and were 

then compared to the costs of the standard sample fabrication. Affecting conditions (inputs) 

and the corresponding effect on concrete cost (output) are shown in Table 14. The data for 
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training and checking ANFIS consisted of 16 data tuples respectively since 32 experiments 

were conducted. Positive values indicate that concrete costs increased while negative 

values indicate a reduction in concrete costs due to the presence of construction site factors.  

 

Table 14. Training and checking data for concrete cost effect 

 

No. 

Inputs Output 

Crew Experience  
Compaction 

Method  

Mixing Time 

(min)  

Cost Effect 

(%) 

Training data 

1 Experienced (1) Manual (-1) 20.4 36.0 

2 Experienced (1) Manual (-1) 11.3 -8.0 

3 Not Experienced (-1) Manual (-1) 11.3 -1.2 

4 Experienced (1) Vibrator (1) 20.4 39.4 

5 Not Experienced (-1) Vibrator (1) 11.3 -12.3 

6 Not Experienced (-1) Vibrator (1) 20.4 34.3 

7 Experienced (1) Vibrator (1) 11.3 -15.5 

8 Not Experienced (-1) Vibrator (1) 11.3 0.2 

9 Experienced (1) Vibrator (1) 20.4 26.8 

10 Not Experienced (-1) Manual (-1) 20.4 46.2 

11 Not Experienced (-1) Vibrator (1) 20.4 37.8 

12 Experienced (1) Vibrator (1) 11.3 -11.3 

13 Not Experienced (-1) Manual (-1) 20.4 50.2 

14 Experienced (1) Manual (-1) 11.3 -16.0 

15 Not Experienced (-1) Manual (-1) 11.3 2.7 

16 Experienced (1) Manual (-1) 20.4 32.0 

Checking data 

1 Not Experienced (-1) Vibrator (1) 11.3 -3.9 

2 Not Experienced (-1) Manual (-1) 11.3 6.7 

3 Not Experienced (-1) Vibrator (1) 20.4 42.0 

4 Experienced (1) Vibrator (1) 20.4 35.2 

5 Not Experienced (-1) Vibrator (1) 20.4 29.5 

6 Experienced (1) Vibrator (1) 11.3 -18.8 

7 Experienced (1) Manual (-1) 11.3 -20.0 

8 Not Experienced (-1) Manual (-1) 20.4 54.1 

9 Experienced (1) Vibrator (1) 11.3 -7.0 

10 Experienced (1) Manual (-1) 20.4 28.0 

11 Experienced (1) Manual (-1) 11.3 -12.0 

12 Not Experienced (-1) Manual (-1) 11.3 -5.2 

13 Not Experienced (-1) Vibrator (1) 11.3 -8.1 

14 Experienced (1) Manual (-1) 20.4 40.0 

15 Experienced (1) Vibrator (1) 20.4 31.0 

16 Not Experienced (-1) Manual (-1) 20.4 42.3 
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Regarding production rate effect, the same three unstructured factors—crew experience, 

compaction, and mixing time—were selected for developing the Sugeno FIS, just as for 

concrete costs. Concrete production rate effects were computed by considering production 

rates for fabricating a batch of concrete for six samples made under affecting conditions 

and compared to a standard sample fabrication rate. Training and checking data for the 

ANFIS model are illustrated in Table 15 and consisted of 16 data tuples for each dataset. 

Construction site factors were the inputs and the corresponding effect on concrete 

production rates was the output. Positive numbers imply that production rates increased 

due to affecting conditions and vice versa for negative output. 

 

Table 15. Training and checking data for production rate effect 

 

No. 

Inputs Output 

Crew Experience  Compaction  
Mixing Time 

(min)  

Production Rate 

Effect (%) 

Training data 

1 Experienced (1) Manual (-1) 20.4 -26.5 

2 Experienced (1) Manual (-1) 11.3 8.7 

3 Not Experienced (-1) Manual (-1) 11.3 0.0 

4 Experienced (1) Vibrator (1) 20.4 -24.2 

5 Not Experienced (-1) Vibrator (1) 11.3 19.0 

6 Not Experienced (-1) Vibrator (1) 20.4 -21.9 

7 Experienced (1) Vibrator (1) 11.3 25.0 

8 Not Experienced (-1) Vibrator (1) 11.3 4.2 

9 Experienced (1) Vibrator (1) 20.4 -16.7 

10 Not Experienced (-1) Manual (-1) 20.4 -32.4 

11 Not Experienced (-1) Vibrator (1) 20.4 -24.2 

12 Experienced (1) Vibrator (1) 11.3 19.0 

13 Not Experienced (-1) Manual (-1) 20.4 -34.2 

14 Experienced (1) Manual (-1) 11.3 19.0 

15 Not Experienced (-1) Manual (-1) 11.3 -3.8 

16 Experienced (1) Manual (-1) 20.4 -24.2 

Checking data 

1 Not Experienced (-1) Vibrator (1) 11.3 8.7 

2 Not Experienced (-1) Manual (-1) 11.3 -7.4 

3 Not Experienced (-1) Vibrator (1) 20.4 -26.5 

4 Experienced (1) Vibrator (1) 20.4 -21.9 
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5 Not Experienced (-1) Vibrator (1) 20.4 -19.4 

6 Experienced (1) Vibrator (1) 11.3 31.6 

7 Experienced (1) Manual (-1) 11.3 25.0 

8 Not Experienced (-1) Manual (-1) 20.4 -35.9 

9 Experienced (1) Vibrator (1) 11.3 13.6 

10 Experienced (1) Manual (-1) 20.4 -21.9 

11 Experienced (1) Manual (-1) 11.3 13.6 

12 Not Experienced (-1) Manual (-1) 11.3 4.2 

13 Not Experienced (-1) Vibrator (1) 11.3 13.6 

14 Experienced (1) Manual (-1) 20.4 -28.6 

15 Experienced (1) Vibrator (1) 20.4 -19.4 

16 Not Experienced (-1) Manual (-1) 20.4 -30.6 
 

 

4.3.2 Fuzzy Modeling  

Yager and Filev (1994a) pointed out that there are two approaches for developing fuzzy 

models; namely, a direct approach and system identification. The first one consists of 

creating a fuzzy inference system based on expert knowledge. An expert oversees 

partitioning the data, creating if–then rules, choosing an appropriate inference mechanism, 

and evaluating the model. On the other hand, system identification is a method for 

developing a FIS based exclusively on I/O data (e.g., experimental data). This approach 

was used in this research to develop a Sugeno-type FIS. 

 

4.3.2.1 System Identification 

System identification can be divided into (1) structure identification and (2) parameter 

identification (Sugeno and Yasukawa 1993). The main goal of structure identification is to 

determine the partitions of the I/O data points, if–then rules, and the number of rules, while 

parameter identification involves adjusting the parameters of the model to minimize output 

errors. All cluster centers identified by a clustering method determine the number of if–

then rules and antecedent membership functions (i.e., the MFs for the inputs) that are 
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utilized by ANFIS during the parameter identification process. The subtractive clustering 

method (Chiu 1994) and ANFIS are used for structure and parameter identification 

respectively. 

  

4.3.2.1.1 Structure Identification 

There are several methods for clustering data (i.e., classifying data). Fuzzy c-means is a 

very popular method proposed by Bezdek (1981) and is based on iterative optimization. 

The objective function is intended to minimize Euclidean distances between a data point 

and its cluster center, and to maximize the Euclidean distance between cluster centers (Ross 

2017). The mountain method, a simple and effective clustering algorithm, is another 

procedure used for grouping data and was proposed by Yager and Filev (1994b).  This 

method is based on gridding the data space of each input and output variable. A grid point 

with many surrounding points has a high potential value and is chosen as a cluster center. 

The main drawback is that it is very computationally intensive when the number of inputs 

increases. Subtractive clustering, introduced by Chiu (1994) is a variation of the mountain 

method. In this method, any data point is considered as a potential cluster center instead of 

a grid point. The number of grid points is equal to the number of data points, reducing 

computational load significantly, even for a large number of input variables. This method 

is fast, since it does not involve iterative nonlinear optimization. Also, it is recommended 

for use when the possible number of clusters is unknown (MathWorks 2017). Thus, the 

subtractive clustering method was used in this research for the structure identification 

process to determine the number of if–then rules and membership functions.   
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4.3.2.1.1.1 Subtractive Clustering 

As mentioned before, each data point is consider as a potential cluster center and the 

potential value (𝑃𝑖) of a data point 𝑥𝑖  is defined by Eq. 11. The value α is defined by Eq. 

12, where 𝑟𝑎, a positive constant, is the radius of influence of a cluster center. This 

parameter is specified by the user and a large value of 𝑟𝑎 produces fewer clusters and vice 

versa. The radius 𝑟𝑎 is adjusted based on the results of the model accordingly, meaning that 

it can be modified according to the number of cluster centers identified. 

 

 

𝑃𝑖 = ∑ 𝑒−𝛼‖𝑥𝑖−𝑥𝑗‖²𝑛
𝑗=1      (11) 

𝛼 =
4

𝑟𝑎²
      (12) 

 

It is inferred from Eq. 11 that a data point with many neighbors has a high potential value. 

After computing the potential of each point (𝑃𝑖), the point with the highest potential value 

is assigned to be the first cluster center (𝑃1). Then the potential values of all remaining data 

points are updated with respect to the first cluster according to Eq. 13. The value 𝛽 is 

defined by Eq.14 and it is inversely proportional to 𝑟𝑏 which is a positive constant defined 

as the radius of the neighborhood having measurable reductions. 𝑥1
∗ is the first cluster 

center, and 𝑃1
∗ is its corresponding potential value. 𝑟𝑏 can be computed by using Eq. 15, 

where 𝜂 is called the squash factor. Typically a good choice for 𝑟𝑏 is when 𝜂 = 1.5 to 

ensure that cluster centers are not too close to each other; however, trial and error processes 

determine ideal subtractive clustering parameters. 

 

𝑃𝑖 ⇐ 𝑃𝑖 − 𝑃1
∗ 𝑒−𝛽‖𝑥𝑖−𝑥1

∗‖²    (13) 
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𝛽 =
4

𝑟𝑏²
     (14) 

𝑟𝑏 =  𝜂 ∗ 𝑟𝑎      (15) 

 

Once all potential values of the remaining data points are calculated using Eq. 13, the data 

point with the highest potential value becomes the second cluster center. Then the potential 

of the remaining data points are reduced with respect to the second cluster center and so 

forth as indicated in Eq. 16, where 𝑥𝑘
∗  is the kth cluster center and 𝑃𝑘

∗ is its corresponding 

potential value. 

𝑃𝑖 ⇐ 𝑃𝑖 − 𝑃𝑘
∗ 𝑒−𝛽‖𝑥𝑖−𝑥𝑘

∗‖²    (16) 

 

The procedure described using Eq. 16 is repeated until meeting the criteria according to 

Chiu (1994) as follows, using an if – then – else rule: 

if 𝑃𝑘
∗ > 휀�̅�1

∗, accept 𝑥𝑘
∗  as a cluster center and continue. 

else if 𝑃𝑘
∗ < 휀𝑃1

∗, reject 𝑥𝑘
∗  and end the clustering process. 

else  Let 𝑑𝑚𝑖𝑛 = shortest of the distances between 𝑥𝑘
∗  and all previously 

found cluster center. 

if 
𝑑𝑚𝑖𝑛

𝑟𝑎
+

𝑃𝑘
∗

𝑃1
∗ ≥ 1, accept 𝑥𝑘

∗  as a cluster center and continue. 

else Reject  𝑥𝑘
∗  and set the potential at 𝑥𝑘

∗  to 0. Then select the 

data point with the next highest potential as the new 𝑥𝑘
∗  and 

re-test. 

end if 

end if 
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In this procedure, 휀 ̅is a threshold above which a data point is accepted to be a cluster center 

and 휀 is a threshold below which a data point will be rejected as a cluster center. The values 

that are commonly used for these thresholds are 0.5 and 0.15 respectively.  

 

After clusters have been identified, they are used to create the MFs that are going to be 

utilized by the ANFIS model. First, the number of clusters identified determine both the 

number of MFs for each input and the total number of if – then rules for the FIS. The 

parameters needed for creating a Gaussian MF become each cluster center (𝑐𝑖) with its 

corresponding sigma (𝜎𝑖) as shown in Fig.19. Sigma is computed by using Eq. 17 for each 

cluster by subtracting the maximum and the minimum values of the 𝑋 data matrix (i.e., 

each input data). 

 

𝜎 =
𝑟𝑎∗(max(𝑋)−min(𝑋))

√8
    (17) 

 

 

 

 
 

Fig.19. Gaussian membership function parameters. 
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4.3.2.1.2 Parameter Identification 

When using the subtractive clustering method for parameter identification with adaptive 

ANFIS and under a MATLAB platform, the resulting FIS structure has the following 

characteristics: first or zero order Sugeno-type FIS; single output using weighted average 

defuzzification method; Gaussian MFs only, all of the same type; equal number of MFs 

and if – then rules; and unity weight for each rule. A characteristic of this model is that it 

gives crisp outputs or functions for each rule.  

 

4.3.2.1.2.1 Adaptive Neuro Fuzzy Inference Systems (ANFIS) 

ANFIS, developed by Jang (1993), is a neuro-fuzzy model that makes use of the advantages 

of artificial neural networks by allowing fuzzy systems to learn through a hybrid learning 

algorithm.19 ANFIS uses experimental I/O data available from a system to tune MFs and 

create if–then rules for a Sugeno-type FIS. Fig.20 shows an example of a Sugeno system 

with four rules, two inputs (e.g., construction site factors F1 and F2), and one output (i.e., 

concrete compressive strength effect). In addition, Fig.21 illustrates ANFIS architecture 

with its 5 layers. It can be inferred from both figures that a characteristic of this model is 

that it gives crisp outputs or functions for each rule and an aggregated total output of the 

system. The number and shapes of MFs for ANFIS are set first through the structure 

identification process. 
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Fig.20. Sugeno fuzzy inference system (Adapted from Jang et al. (1997)) 

 

 

 

 
 

Fig.21. ANFIS architecture (Adapted from Jang et al. (1997)) 
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Each layer (Fig.21) of ANFIS has a specific purpose, in order to process input data until a 

final output is obtained. Calculations performed in each layer are described as follows: 

  

Layer 1:  This layer is an input layer and it is where the degree of membership of each 

construction site factor is calculated from its corresponding Gaussian MF (i.e.,  𝐴1(𝑥), …, 

 𝐴4(𝑥)
,  𝐵1(𝑦), …,  𝐵4(𝑦)) by applying Eq. 18, where 𝑥𝑖 corresponds to each input (i.e., a 

construction site factor), and 𝑐𝑖 and 𝜎𝑖 are the subtractive clustering parameters resulting 

from the structure identification process.   

 

 (𝑥𝑖) = 𝑒
− 

1

2
(
𝑥𝑖−𝑐𝑖
𝜎𝑖

)2

     (18) 

 

Layer 2: It is a product layer represented by 𝛱 where firing strengths (𝜔𝑖) are computed by 

multiplying (i.e., fuzzy operation t-norm) all membership values that arrive to each node.  

  

𝜔1 =  𝐴1(𝑥).  𝐵1(𝑦); 𝜔2 =  𝐴2(𝑥)
.  𝐵2(𝑦); 𝜔3 =  𝐴3(𝑥)

.  𝐵3(𝑦); 𝜔4 =  𝐴4(𝑥)
.  𝐵4(𝑦) 

 

Layer 3: It is a normalization layer where each firing strength (𝜔𝑖) is normalized by 

dividing it to the summation of all firing strengths. 

 

𝜔1̅̅̅̅ =
𝜔1

𝜔1+𝜔2+𝜔3+𝜔4
; 𝜔2̅̅ ̅̅ =

𝜔2

𝜔1+𝜔2+𝜔3+𝜔4
; 𝜔3̅̅ ̅̅ =

𝜔3

𝜔1+𝜔2+𝜔3+𝜔4
; 𝜔4̅̅̅̅ =

𝜔4

𝜔1+𝜔2+𝜔3+𝜔4
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Layer 4: This is a layer where the output of each rule is calculated. The consequent 

parameters, 𝑝, 𝑞, 𝑎𝑛𝑑 𝑟, are estimated by using linear least squares estimation. 

 

𝜔1̅̅̅̅ 𝑓1 = 𝜔1̅̅̅̅ (𝑝1𝑥 + 𝑞1𝑦 + 𝑟1); 𝜔2̅̅ ̅̅ 𝑓2 = 𝜔2̅̅ ̅̅ (𝑝2𝑥 + 𝑞2𝑦 + 𝑟2) 

𝜔3̅̅ ̅̅ 𝑓3 = 𝜔3̅̅ ̅̅ (𝑝3𝑥 + 𝑞3𝑦 + 𝑟3); 𝜔4̅̅̅̅ 𝑓4 = 𝜔4̅̅̅̅ (𝑝4𝑥 + 𝑞4𝑦 + 𝑟4) 

 

Layer 5: The total output of the fuzzy inference system (𝑓) is computed in this layer by 

using weighted average defuzzification method. 

 

𝑓 = 𝜔1̅̅̅̅ 𝑓1 + 𝜔2̅̅ ̅̅ 𝑓2 + 𝜔3̅̅ ̅̅ 𝑓3 + 𝜔4̅̅̅̅ 𝑓4   𝑓 = 𝛴𝜔𝑖̅̅ ̅𝑓𝑖 

 

Lastly, ANFIS model validation is recommended and it should be carried out to test the 

performance of the resulting Sugeno FIS by comparing predicted and experimental data. 

In this study, statistics including the correlation coefficient, R-squared value, and standard 

errors were used for interpreting model performance. One aspect to be taken into 

consideration is that training data should not be used for model validation; instead, 

checking or testing data should be applied (Tesfamariam and Najjaran 2007). 

 

4.4 Results 

4.4.1 FIS for Compressive Strength Effect 

The Sugeno fuzzy inference system (FIS) for predicting the concrete compressive strength 

effect had four inputs—compaction method, mixing time, curing humidity, and curing 

temperature. The subtractive clustering parameters used to partition the input data were 
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accept ratio (휀 ̅) = 0.5, reject ratio (휀) = 0.15, range of influence (𝑟𝑎) = 0.95 and a squash 

factor (𝜂) = 4.0, ensuring MF overlap and a small number of cluster centers (i.e., number 

of MFs and if–then rules). Table 16 summarizes the Gaussian parameters—cluster centers 

(𝑐𝑖) and sigmas (𝜎𝑖) —obtained for each MF; i.e., (1) compaction method ( 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛), 

(2) mixing time ( 𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒), (3) curing humidity  𝑐𝑢𝑟𝑖𝑛𝑔 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦), and (4) curing 

temperature ( 𝑐𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒).  

 

Table 16. Membership function parameters for compressive strength effect 

 

Rules 
 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒  𝑐𝑢𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦  𝑐𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝜎 𝑐 𝜎 𝑐 𝜎 𝑐 𝜎 𝑐 

1 0.670 1.000 3.099 11.310 26.870 20.000 6.907 7.896 

2 0.683 -0.996 3.101 20.380 26.870 100.000 6.908 28.500 
 

 

In addition, two if–then rules determined by clustering were utilized: 

 

1. If (compaction is  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛1) and (mixing time is  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒1) and (curing humidity 

is  𝑐𝑢𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦1) and (curing temperature is  𝑐𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1) then (strength 

effect is 𝑓1)  

2. If (compaction is  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛2) and (mixing time is  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2) and (curing humidity 

is  𝑐𝑢𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦2) and (curing temperature is  𝑐𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2) then (strength 

effect is 𝑓2) 

 

The results for each ANFIS layer are indicated as follows: 
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Layer 1: The degrees of membership of each input were computed by using Eq. 18 and the 

parameters of Table 16: (1) compaction method (𝐼𝑛1): 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛1(𝐼𝑛1) and 

 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛2(𝐼𝑛1); (2) mixing time (𝐼𝑛2):  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒1(𝐼𝑛2),  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2(𝐼𝑛2); (3) 

curing humidity (𝐼𝑛3):  𝑐𝑢𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦1(𝐼𝑛3),  𝑐𝑢𝑟𝑖𝑛𝑔 h𝑢𝑚𝑖𝑑𝑖𝑡𝑦 2(𝐼𝑛3); and, (4) curing 

temperature (𝐼𝑛4):  𝑐𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1(𝐼𝑛4),  𝑐𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2(𝐼𝑛4). 

 

Layer 2:  Firing strengths 

𝜔1 =  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛1(𝐼𝑛1).  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒1(𝐼𝑛2).  𝑐𝑢𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦1(𝐼𝑛3).  𝑐𝑢𝑟𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1(𝐼𝑛4) 

𝜔2 =  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛2(𝐼𝑛1).  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2(𝐼𝑛2).  𝑐𝑢𝑟𝑖𝑛𝑔 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦2(𝐼𝑛3).  𝑐𝑢𝑟𝑖𝑛𝑔  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒2(𝐼𝑛4) 

 

Layer 3: Normalized firing strengths: 

𝜔1̅̅̅̅ = 𝜔1/(𝜔1 + 𝜔2); and, 𝜔2̅̅ ̅̅ = 𝜔2/(𝜔1 + 𝜔2) 

 

Layer 4:  Consequent parameters: 

 

𝜔1̅̅̅̅ 𝑓1 = 𝜔1̅̅̅̅ (−0.6458. 𝐼𝑛1 − 0.0699. 𝐼𝑛2 + 0.0330. 𝐼𝑛3 + 0.4551. 𝐼𝑛4 − 21.26) 

𝜔2̅̅ ̅̅ 𝑓2 = 𝜔2̅̅ ̅̅ (2.2840. 𝐼𝑛1 − 0.0543. 𝐼𝑛2 + 0.3170. 𝐼𝑛3 + 1.4120. 𝐼𝑛4 − 41.80) 

 

4.4.2 FIS for Cost Effect 

The Sugeno FIS for predicting the cost effect has the three inputs: crew experience, 

compaction method, and mixing time. The same previous subtractive clustering constants 

were used for developing the FIS for cost effect, producing the Gaussian parameters shown 
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in Table 17 for each construction site factor: (1) crew experience:  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒, (2) 

compaction method:  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛, and (3) mixing time:  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒.  

 

Table 17. Membership function parameters for cost effect 

 

Rules 
 𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

𝜎 𝑐 𝜎 𝑐 𝜎 𝑐 

1 0.6836 -0.9960 0.6832 0.9962 3.0570 20.4000 

2 0.6658 1.0020 0.6653 -1.0020 3.0540 11.3000 
 

 

The Sugeno FIS also has two if–then rules, since only two clusters were identified: 

 

1. If (crew experience is  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒1) and (compaction is  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛1) and 

(mixing time is  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒1) then (cost effect is 𝑓1) 

2. If (crew experience is  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒2) and (compaction is  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛2) and 

(mixing time is  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2) then (cost effect is 𝑓2)  

 

The results for each ANFIS layer are indicated as follows: 

 

Layer 1: (1) crew experience (𝐼𝑛1):  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 1(𝐼𝑛1),  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 2(𝐼𝑛1), (2) 

compaction method (𝐼𝑛2):  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 1(𝐼𝑛2),  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 2(𝐼𝑛2), (3) mixing time (𝐼𝑛3):  

 𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 1(𝐼𝑛3),  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 2(𝐼𝑛3)   

 

Layer 2: 𝜔1 =  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒1(𝐼𝑛1).  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛1(𝐼𝑛2).  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒1(𝐼𝑛3); and, 

𝜔2 =  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒2(𝐼𝑛1).  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛2(𝐼𝑛2).  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2(𝐼𝑛3) 
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Layer 3:  𝜔1̅̅̅̅ = 𝜔1/(𝜔1 + 𝜔2); and, 𝜔2̅̅ ̅̅ = 𝜔2/(𝜔1 + 𝜔2) 

 

Layer 4: 𝜔1̅̅̅̅ 𝑓1 = 𝜔1̅̅̅̅ (−1.492. 𝐼𝑛1 − 6.055. 𝐼𝑛2 + 4.633. 𝐼𝑛3 − 53.85); and, 

𝜔2̅̅ ̅̅ 𝑓2 = 𝜔2̅̅ ̅̅ (−6.342. 𝐼𝑛1 − 0.724. 𝐼𝑛2 + 5.034. 𝐼𝑛3 − 63.27) 

 

4.4.3 FIS for Production Rate Effect 

The Sugeno FIS for predicting the production rate effects has the same characteristics (i.e., 

inputs) as for the previous FIS for predicting cost effect. Table 18 summarizes the Gaussian 

parameters for each affecting factor: (1) crew experience:  𝑐𝑟𝑒𝑤 𝑐𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒, (2) compaction 

method:  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛, and (3) mixing time:  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, using the same clustering 

constants as for strength and cost effects. 

 

Table 18. Membership function parameters for production effect 

 

Rules  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 
 𝜎 𝑐 𝜎 𝑐 𝜎 𝑐 

1 0.6622 -1.0030 0.6665 -1.0020 3.0530 20.4000 

2 0.6801 0.9972 0.6843 0.9958 3.0570 11.3000 

 

 

This Sugeno FIS also has two if–then rules determined by the clustering process: 

 

1. If (crew experience is  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒1) and (compaction is  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛1) and 

(mixing time is  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒1) then (production rate effect is 𝑓1) 

2. If (crew experience is  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒2) and (compaction is  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛2) and 

(mixing time is  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2) then (production rate effect is 𝑓2) 
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The results for each ANFIS layer are indicated as follows: 

 

Layer 1: (1) crew experience (𝐼𝑛1):  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 1(𝐼𝑛1),  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 2(𝐼𝑛1); (2) 

compaction method (𝐼𝑛2):  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 1(𝐼𝑛2),  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 2(𝐼𝑛2); and, (3) mixing time 

(𝐼𝑛3):  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 1(𝐼𝑛3),  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 2(𝐼𝑛3)   

 

Layer 2: 𝜔1 =  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒1(𝐼𝑛1).  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛1(𝐼𝑛2).  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒1(𝐼𝑛3); and, 

𝜔2 =  𝑐𝑟𝑒𝑤 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒2(𝐼𝑛1).  𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛2(𝐼𝑛2).  𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒2(𝐼𝑛3) 

 

Layer 3: 𝜔1̅̅̅̅ = 𝜔1/(𝜔1 + 𝜔2); and, 𝜔2̅̅ ̅̅ = 𝜔2/(𝜔1 + 𝜔2) 

 

Layer 4: 𝜔1̅̅̅̅ 𝑓1 = 𝜔1̅̅̅̅ (4.009. 𝐼𝑛1 + 5.187. 𝐼𝑛2 − 3.440. 𝐼𝑛3 + 46.06); and, 

𝜔2̅̅ ̅̅ 𝑓2 = 𝜔2̅̅ ̅̅ (5.192. 𝐼𝑛1 + 4.041. 𝐼𝑛2 − 4.674. 𝐼𝑛3 + 65.61) 

 

All three fuzzy inference systems are valid as long as the input variables vary between the 

ranges shown in Table 19, since those were the limit values corresponding to the 

experimental data on which the ANFIS models were based. The crisp output of each FIS 

was computed by the weighted average defuzzification method as previously mentioned in 

layer 5 (Fig.21). 
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Table 19. Input data ranges for FISs  

 

Construction Site Factors 
Range 

Low High 

Crew experiencea -1 1 

Compaction methodb -1 1 

Mixing time (min) 11.3 20.4 

Curing humidity (%) 20 100 

Curing temperature (°C) 7.9 28.5 
a -1 for unexperienced crews and 1 for experienced crews 
b -1 for manual and 1 for vibrator 

 

 

 

4.4.4 Model Validation  

Statistical parameters such as the correlation coefficient, R-squared (R2), root mean 

squared errors (RMSE), and standard errors (S) allow testing of model performance 

(Rantala and Koivisto 2002; Tesfamariam and Najjaran 2007; Topçu and Sarıdemir 2008; 

Sonebi and Cevik 2009; Tayfur et al. 2014; Kostić and Vasović 2015). Predicted versus 

experimental data plots were developed for each model by using checking data 

(Tesfamariam and Najjaran 2007) in order to see how well each final Sugeno FIS would 

perform. Statistical results are summarized in Table 20, indicating that all models had R2 

values greater than 93%, which suggests that all FISs were able to fit data for new 

observations very well. Also, similar low error values for S and RMSE were obtained for 

each FIS. 

 

Table 20. Statistical values of predicted vs. experimental data 

Statistic 

Compressive 

Strength 

Effect 

Cost 

Effect 

Production 

Rate Effect 

R2 93.6% 95.5% 94.2% 

S 4.44 5.34 5.07 

RMSE 4.34 5.26 5.19 
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4.4.5 Sensitivity Analysis  

A sensitivity analysis of each model was performed to estimate the effect of construction 

site factors on concrete compressive strength, cost, and production rates. Monte Carlo 

simulation and Spearman’s rank correlation were the procedures utilized to identify which 

factors impacted the outputs the most (Tesfamariam et al. 2006). Discrete probability 

distributions were used for categorical variables (i.e., crew experience and compaction 

method) and uniform probability distributions for numerical variables (i.e., mixing time, 

curing humidity, and temperature). Table 21 summarizes Spearman’s correlation 

coefficients, where positive values indicate that the output increased as the input also 

increased, and negative coefficients point out that the output decreased as the inputs 

increased. The numbers in parentheses represent the rank of each construction site factor, 

where 1 is the rank for the factor that affected a specific output the most. The results of the 

sensitivity analyses are depicted in Table 22, where the contribution to variance indicates 

the percentage contribution of each construction site factor on compressive strength, cost, 

and production rate effects caused by switching a specific input parameter from low level 

to high level. 

 

Table 21. Spearman’s correlation coefficient 

 

Construction Site 

Factor 

Strength 

Effect 

Cost 

Effect 

Production 

Rate Effect 

Crew experience --- -0.304 (2) 0.347 (3) 

Compaction method -0.354 (3) -0.162 (3) 0.354 (2) 

Mixing time 0.143 (4) 0.922 (1) -0.857 (1) 

Curing humidity 0.511 (2) --- --- 

Curing temperature 0.712 (1) --- --- 
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Table 22. Contribution to variance (%) 

 

Construction Site 

Factor 

Strength 

Effect 

Cost 

Effect 

Production 

Rate Effect 

Crew experience --- 10.3 13.6 

Compaction method 9.7 3.3 13.2 

Mixing time 2.6 83.4 71.8 

Curing humidity 28.2 --- --- 

Curing temperature 44.2 --- --- 
 

 

For comparison fuzzy inference systems versus regression models obtained through 

designed experiments, see Appendix C. 

 

4.4.6 Operating Conditions  

Desired operating conditions refer to those construction site factors existing during 

concrete fabrication, placement, and curing that tend to preserve concrete compressive 

strength while avoiding cost increments and reduction in production rates. Such conditions 

can be identified from each FIS by, for example, plotting response surfaces. Some affecting 

conditions, including crew experience, mixing time, and compaction method, can actually 

be controlled when performing concrete operations while others are difficult to manage on 

the jobsite, since they rely on surrounding conditions such as ambient temperature and 

relative humidity. Experienced crews are always preferred for concrete fabrication (Sears 

et al. 2015), mixing time should ensure uniform and homogeneous mixtures (ACI 

Committee 304 2000), and compaction method should avoid voids in concrete after placing 

(Hassoun and Al-Manaseer 2012). Several response surfaces could be explored by keeping 

constant the previous construction site conditions. For instance, Fig. 22(a) shows the 

influence of curing temperature and humidity on compressive strength, suggesting that the 
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compressive strength effect is augmented as curing temperature and humidity increase; 

however, being aware of the consequences of existing conditions would be the real 

advantage of this supporting tool. A strength effect equaling zero indicates that concrete 

compressive strength was not affected by construction site factors, and it can be reached 

by changing controllable construction site conditions accordingly. Fig. 22(b) illustrates the 

impact of mixing time and compaction method on concrete cost. Compaction method has 

a slight impact on cost; however, mixing time greatly affects cost. Regarding concrete 

production, Fig. 22(c) points out that the compaction method does not have an important 

impact on concrete production; rather, mixing time is the factor that dominates production 

rates. As can be inferred, many other potential scenarios may be investigated to find desired 

operating conditions.  
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Fig.22. Response surface for: (a) strength effect (vibrator and 15 min of mixing time), (b) 

cost effect (experienced crews), and (c) production rate effect (experienced crews) 

 

4.5 Conclusions  

Sugeno-type fuzzy inference systems perform well when quantifying the effect of 

construction site factors on concrete compressive strength, cost, and production rates. 

Three FISs were created to accomplish this research goal based on experimental I/O data. 

A structure identification process was performed by using a subtractive clustering method, 

and a parameter identification process was completed through ANFIS, resulting in a 

Sugeno-type FIS. When using recommended values for subtractive clustering, 16, 8 and 8 

(a) (b) 

(c) 
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membership functions (MFs) were identified for each FIS respectively at first; however, 

only two MFs for each FIS were found to be necessary to map input data, since MFs 

mapping low values and MFs mapping high values were similar to each other. In other 

words, there was no improvement in the errors when considering more than two MFs. For 

this reason, only two MFs were used in each FIS by using a radius of influence (𝑟𝑎) of 0.95 

and a squash factor (𝜂) of 4. The lower the number of if–then rules, the lower the 

computational cost. Furthermore, all Sugeno-type FISs have correlation coefficients (R2) 

greater than 93%, indicating that models can predict new observations very well. Errors (S 

and RMSE) range from approximately 4.3 to 5.3 for all fuzzy models, which are relatively 

low when using checking data. 

 

To evaluate the effect of construction site factors (i.e., unstructured factors) on concrete 

compressive strength, cost, and production rates, sensitivity analyses were conducted by 

using a random sampling method (Monte Carlo simulation) combined with a rank 

correlation method (Spearman’s rank coefficients). The sensitivity analyses indicated that 

curing temperature dominates concrete compressive strength effect while curing humidity 

is the second most influential factor. Strength effect increased by 44.2%, 28.2%, and 2.6% 

as curing temperature, curing humidity, and mixing time increased respectively from low 

level to high ranges (Table 19). In terms of concrete cost, mixing time is the most influential 

condition. Cost effect increased (83.4%) as mixing time increased from low level to high 

level, suggesting that the more mixing time, the more expensive concrete becomes. In 

contrast, concrete cost was reduced by 3.3% when switching from manual compaction to 

vibrator compaction and by 10.3% when switching from not experienced crews to 
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experienced crews. Regarding concrete production rates, production rate effect decreased 

(71.8%) as mixing time increased from low to high values, which was expected, since 

production rates are reduced when production time increases. Concrete productivity 

improved by 13.6% when switching from not experienced crews to experienced crews and 

by 13.2% when selecting vibrators as a compaction method instead of manual tamping 

rods. 

 

The FISs developed as part of this study are supporting tools that provide concrete laborers 

and technicians with information to make them aware of potential impacts on concrete 

compressive strength, cost, and production rates caused by the construction site factors 

studied: crew experience, compaction method, mixing time, curing humidity, and curing 

temperature. Developed FISs allow construction workers not only to identify desired 

operating conditions but also to explore other possible onsite conditions in advance, 

facilitating decision makers to take preventive actions in time. Several response surfaces 

(see Fig. 22) could be created, depending on each case and when required for each 

prediction model, by considering two input variables and keeping the others set at constant 

levels. Maximum and minimum zones can be inferred from response surfaces, helping find 

conditions that will stimulate compressive strength or increase concrete productivity at low 

cost. Fig. 22, for instance, allows us to recognize operating conditions where concrete 

strength, cost, and production are not being affected by construction site factors (i.e., effects 

equal to zero). Therefore, being aware of potential adverse conditions for concrete 

fabrication gives a tremendous advantage that can help a project be completed on time and 

under budget.  
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CHAPTER 5: OPTIMAL CONSTRUCTION SITE CONDITIONS FOR 

CONCRETE OPERATIONS 

 

5.1 Introduction 

Concrete as a building material is used widely in the construction industry. Yuan et al. 

(2014) recognized that factors affecting concrete strength may be classified in two 

categories: structured and unstructured factors. Structured factors are related to the 

production process of concrete such as properties of raw materials and mixture proportions. 

Prior studies indicated that several correlations have been developed to quantify the effect 

of structured factors on compressive strength as a quality metric such as the influence of  

water – cement ratio, entrained air, aggregate size, age and admixtures on compressive 

strength (Demirboğa et al. 2001; Kosmatka et al. 2002; Mehta and Monteiro 2006; 

Jongpradist et al. 2010; Neville and Brooks 2010).  

 

Unstructured factors refer to on site affecting conditions or construction site factors 

associated to concrete fabrication during the construction process of a facility including 

manpower and local conditions present at a jobsite. Several of these affecting conditions 

have been identified in the literature (Kosmatka et al. 2002; Mehta and Monteiro 2006; 

Neville and Brooks 2010; Li 2011; Hassoun and Al-Manaseer 2012; Wight et al. 2012; 

Chen et al. 2014; Unanwa and Mahan 2014) including mixing time, compaction method, 

curing temperature, curing humidity, and crew experience; however, literature is limited 

with respect to the effects of such factors on concrete product when performing concrete 

operations.  
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The theory of design of experiments (DOE) was the technique chosen to conduct a full 25 

factorial design in order to evaluate the significance of each affecting condition (i.e., an 

independent variable) as well as to quantify their effect on concrete compressive strength 

as a quality metric, costs and production rates by developing prediction regression models.  

DOE has several advantages over other methods of experimentation including estimating 

interactions between two variables (Montgomery and Runger 2003; Piratelli-Filho and 

Shimabukuro 2008), and providing protection against bias through randomization (Cox 

and Reid 2000; Gunst and Mason 2009; Montgomery 2013). Also, the use ± 1 coding for 

representing low and high factor levels allows to analyze the relative size of factor effects 

and interpret results easily (Allen 2005; Montgomery 2013). 

 

Reduction in compressive strength, increment in costs of concrete fabrication and low 

productivity rates are among the consequences of adverse jobsite conditions. Almost all 

processes in industry require some sort of optimization since minimizing production costs 

and maximizing profits is the main goal in business. Generally, an optimization process 

consists of finding optimal solutions from a group of reasonable solutions complying with 

specific constraints and minimizing computational costs (Ross 2017), suggesting that there 

could be several solutions for a specific problem and compromised solutions should fulfill 

decision makers’ expectations. Optimization processes may become very intricate. 

Diwekar (2008) argued that systems become very complex when there are several 

stakeholders and a number of constrain factors involved. The author also pointed out that 

those systems cannot be solved by using human experience only. Indeed, most of the time 
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these systems require to follow intensive mathematical algorithms to find a potential 

compromised solutions satisfying each interested party.  

 

The objectives of this chapter were to: (1) identify statistically significant construction site 

factors affecting concrete compressive strength, cost and production rates through the 

analysis of variance (ANOVA); (2) develop regression models for predicting each 

response, and (3) formulate a multi-objective optimization model for assisting project 

managers in finding optimal operating conditions by using goal programming optimization 

method. 

 

5.2 Experimental Data 

As aforementioned, the variables taken into consideration to perform a full 25 factorial 

design were compaction method, mixing time, curing humidity and curing temperature, 

giving a total of 32 experiments. Each run consisted of a unique factor combination where 

each variable was acting at low or high levels (Table 7). Moderate-strength concrete was 

selected for this study since it is commonly utilized for buildings and infrastructures (Li 

2011). A concrete mixture design was prepared to have a compressive strength of 28 MPa 

(4000 psi) at the age of 28 days. Six cylindrical concrete samples of 15cm by 30cm were 

fabricated for each run giving a total of 192 samples. In addition, six extra samples were 

made-up under standard laboratory conditions in order to serve as a baseline for computing 

compressive strength, costs and production rates effects by comparing average responses 

of each run to the average baseline. Three responses were estimated: compressive strength, 

cost and production rates effects (Table 23). Positive effects indicate that the response was 
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increased by the influence of unstructured factors while negative values indicate the 

opposite. 

 

 

Table 23. 25 Factorial Design Data 

 

 Run 

No 

Independent Variables  Responses 

Crew 

Experience 

Comp. 

Method 

Mix. 

Time 

(min) 

Curing 

Hum. 

(%) 

Curing 

Temp. 

(°C) 

 Comp. 

Strength 

Effect 

(%) 

Cost 

Effect 

(%) 

Prod. 

Rates 

Effect 

(%) 

1 Experienced Manual 20.4 100 28.5  31.0 36.0 -26.5 

2 Experienced Manual 11.3 100 28.5  30.2 -8.0 8.7 

3 Not Experienced Vibrator 11.3 20 7.9  -18.5 -3.9 8.7 

4 Not Experienced Manual 11.3 20 7.9  -12.5 -1.2 0.0 

5 Not Experienced Manual 11.3 100 7.9  -2.4 6.7 -7.4 

6 Not Experienced Vibrator 20.4 20 7.9  -15.7 42.0 -26.5 

7 Experienced Vibrator 20.4 100 28.5  26.3 35.2 -21.9 

8 Not Experienced Vibrator 20.4 100 28.5  32.4 29.5 -19.4 

9 Experienced Vibrator 11.3 100 7.9  -10.0 -18.8 31.6 

10 Experienced Manual 11.3 20 28.5  0.8 -20.0 25.0 

11 Experienced Vibrator 20.4 20 7.9  -20.2 39.4 -24.2 

12 Not Experienced Manual 20.4 20 28.5  5.9 54.1 -35.9 

13 Not Experienced Vibrator 11.3 100 28.5  12.6 -12.3 19.0 

14 Not Experienced Vibrator 20.4 20 28.5  -5.9 34.3 -21.9 

15 Experienced Vibrator 11.3 20 28.5  -1.6 -7.0 13.6 

16 Experienced Vibrator 11.3 100 28.5  16.9 -15.5 25.0 

17 Experienced Manual 20.4 20 7.9  -23.2 28.0 -21.9 

18 Not Experienced Vibrator 11.3 20 28.5  -17.2 0.2 4.2 

19 Experienced Manual 11.3 100 7.9  -9.5 -12.0 13.6 

20 Experienced Vibrator 20.4 20 28.5  3.2 26.8 -16.7 

21 Not Experienced Manual 20.4 20 7.9  -19.9 46.2 -32.4 

22 Not Experienced Manual 11.3 20 28.5  -9.6 -5.2 4.2 

23 Not Experienced Vibrator 11.3 100 7.9  -18.5 -8.1 13.6 

24 Experienced Manual 20.4 20 28.5  2.5 40.0 -28.6 

25 Not Experienced Vibrator 20.4 100 7.9  -7.9 37.8 -24.2 

26 Experienced Vibrator 20.4 100 7.9  -8.6 31.0 -19.4 

27 Experienced Vibrator 11.3 20 7.9  -18.6 -11.3 19.0 

28 Not Experienced Manual 20.4 100 7.9  -3.7 42.3 -30.6 

29 Not Experienced Manual 20.4 100 28.5  20.0 50.2 -34.2 

30 Experienced Manual 11.3 20 7.9  -18.2 -16.0 19.0 

31 Not Experienced Manual 11.3 100 28.5  28.1 2.7 -3.8 

32 Experienced Manual 20.4 100 7.9  0.4 32.0 -24.2 
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5.3 Factorial Design Analysis 

5.3.1 Statistical Testing for the Significance of Affecting Factors 

Significant construction site conditions were identified by performing the analysis of 

variance (ANOVA) at 0.05 level of significance with 95% confidence level. Table 24 

summarizes the results of ANOVA statistical tests for each response: compressive strength, 

cost and production rate effect. Low p-values of 0.05 or less indicate that all factors are 

significant and they were taken into consideration for developing final regression models. 

 

Table 24. ANOVA Table for Construction Site Conditions 

Source 

Degrees 

of 

Freedom 

Sum of 

Squares 

Mean 

Square 
F value p value 

Compressive Strength Effect 

Main Effects 4 7787.7 1946.92 62.85 0.00 

Compaction (B) 1 157.9 157.93 5.10 0.03 

Mixing Time (C) 1 130.3 130.26 4.21 0.05 

Curing Humidity (D) 1 2925.9 2925.94 94.46 0.00 

Curing Temperature (E) 1 4573.6 4573.56 147.65 0.00 

2-Way Interactions 1 552.7 552.70 17.84 0.00 

Curing Humidity (D) * 

Curing Temperature (E) 
1 552.5 552.53 17.84 0.00 

Residual Error 26 805.4 30.98   

Total 31 9145.6    

Cost Effect 

Main Effects 3 17795.40 5931.80 228.50 0.00 

Crew Experience (A) 1 756.60 756.60 29.14 0.00 

Compaction (B) 1 182.40 182.40 7.02 0.01 

Mixing Time (C) 1 16856.50 16856.50 649.32 0.00 

2-Way Interactions 1 180.40 180.40 6.95 0.01 

Crew Experience (A) * 

Compaction (B) 
1 180.40 180.40 6.95 0.01 

Residual Error 27 700.90 26.00   

Total 31 18676.70    

Production Rate Effect 

Main Effects 3 12706.30 4235.40 159.15 0.00 

Crew Experience (A) 1 789.30 789.30 29.66 0.00 

Compaction (B) 1 575.40 575.40 21.62 0.00 
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Mixing Time (C) 1 11341.70 11341.70 426.18 0.00 

2-Way Interactions 1 177.90 177.90 6.68 0.02 

Crew Experience (A) * 

Mixing Time (C) 
1 177.90 177.90 6.68 0.02 

Residual Error 27 718.50 26.60   

Total 31 13602.70    

 

 

5.3.2 Regression Models 

Final regression models were estimated by considering significant terms identified through 

ANOVA depicted in Table 24. Eq. 8 represents the general regression model for a 25 

factorial design for predicting new observations, where 𝑍 is the fitted response, 𝛽0 is the 

average of all observations, 𝛽′𝑠 are the regression coefficients, and 𝑥′𝑠 are the independent 

variables representing each construction site condition; namely, crew experience, 

compaction method, mixing time, curing humidity, and curing temperature. Table 25 

compiles all final estimated regression coefficients for each regression model in 

engineering units (i.e., uncoded units).  

 

Table 25. Regression Model Coefficients 

Terms (𝒙′𝒔) 
Model Coefficients (𝜷′𝒔) 
Compressive 

Strength Effect 

Cost 

Effect 

Production 

Effect 

Constant (𝛽0) -32.4761 -65.1022 58.8866 

Crew Experience ----- -4.8624 13.1790 

Compaction Method -2.2216 -2.3872 4.2403 

Mixing Time 0.4434 5.0443 -4.1376 

Curing Humidity 0.0555 ----- ----- 

Curing Temperature 0.5555 ----- ----- 

Crew Experience * Compaction ----- 2.3740 ----- 

Crew Experience * Mixing Time  ----- ----- -0.5182 

Curing Humidity * Curing 

Temperature  
0.0101 ----- ----- 
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5.3.3 Analysis of Residuals 

Model adequacy of each model was performed through the analysis of residuals in order to 

verify if there was not any assumption violation with respect to normality, independence 

and inequality of variance. Normal probability plots for the residuals indicate that the 

normality assumption was not violated since residuals remain reasonably close to the line 

of the normal distribution centered at zero in all three models. Moderate deviations from 

normality does not necessary imply a serious violation of the assumption (Montgomery 

2013). Furthermore, the assumptions of independence and inequality of variance were 

checked by plotting residuals versus run order and residuals versus fitted values. No 

violation was found in any case because residuals did not follow obvious patterns 

(Montgomery 2013), meaning they are structureless. Even though some graphs showed a 

very slight inequality of variance, there is no strong evidence of that situation. 

 

5.3.4 Model Validation 

Model validation is always recommended to evaluate how well final prediction models 

performs when predicting new observations.  A predicted versus experimental data plot 

was developed for each response; namely, compressive strength, cost and production rates 

effects in order to obtain correlation coefficients (i.e., R-squared values (R-Sq)) and 

standard errors (S).  Table 26 summarizes R-Sq values and S for each regression model. 

All R-Sq values are greater than 91%, indicating that all models fit data for new 

observations very well. S represents the standard distance between experimental and 

predicted data. Smaller values of S are desired for model validation.  
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Table 26. Correlation Coefficients and Errors 

Statistic 

Effects 

Compressive 

Strength 
Cost Production  

R-Sq 91.20% 96.20% 94.70% 

S 4.952 4.742 4.763 

 

 

5.3.5 Sensitivity Analysis 

Sensitivity analysis was accomplished through Monte Carlo simulation and Spearman’s 

rank correlation (Tesfamariam et al. 2006) in order to identify the construction site 

conditions that affect concrete strength, cost and production rates the most. Discrete and 

uniform probability distributions were utilized for categorical and numerical variables 

respectively. Positive Spearman’s correlation coefficients shown in Table 27 indicate that 

the output increases as the input also increases while negative values indicate the opposite. 

Also, the greater the Spearman’s correlation coefficient in absolute value, the greater the 

factor effect on the response. Tornado diagrams were utilized to shows the results of the 

sensitivity analyses (Fig. 23, Fig. 24 and Fig. 25), illustrating the positive and negative 

percent contributions of each construction site condition on concrete compressive strength, 

cost and production rates effects as a consequence of increasing a specific input parameter 

from low to high level. 
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Table 27. Spearman’s Rank Coefficients 

 

Affecting factor 

Spearman’s correlation 

coefficient 

Comp. Strength  Cost  Production  

Crew experience - -0.322 0.368 

Compaction method -0.233 -0.151 0.319 

Mixing time 0.124 0.919 -0.861 

Curing humidity 0.580 - - 

Curing temperature 0.751 - - 

 

 

 

Fig. 23. Sensitivity of Compressive Strength Effect 

 

 

Fig. 24. Sensitivity of Cost Effect 
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Fig. 25. Sensitivity of Production Rate Effect 

 

5.4 Optimal Operating Conditions 

Optimal operating conditions refer to those conditions desired during concrete fabrication 

at the jobsite tending to satisfy compromised goals in terms of concrete compressive 

strength, cost of fabrication and production rates. Finding optimal operating conditions that 

allow to minimize concrete costs and maximize production rates without affecting concrete 

compressive strength as a quality metric are usually preferred or desired by project 

managers when performing concrete operations. A multi-objective optimization problem 

(MOP) based on compromised solutions was formulated to maximize both concrete 

compressive strength and production rates, and reduce concrete fabrication cost. All this 

tending to serve as a decision tool for managing concrete made by hand at the construction 

site. Goal programming optimization method, a preference based method, was selected as 

a reasonable and fast procedure to handle with this type of MOP problem (Diwekar 2008). 

 

5.5 Optimization Model 

The problem formulation involves defining goals (𝐺𝑖) for each function (𝑍𝑖) and the 

corresponding deviations (𝛿𝑖
+and 𝛿𝑖

−). 𝐺𝑖 represents each goal established by decision 
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makers (e.g., project managers and foremen) when fabricating concrete at the jobsite 

depending on their interests. The goals considered in this chapter were to: (1) preserve 

concrete compressive strength; i.e., 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑒𝑓𝑓𝑒𝑐𝑡 ≥ 0, (2) minimize 

concrete costs; i.e., 𝐶𝑜𝑠𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 ≤ 0, and (3) maximize production rates; i.e., 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 ≥ 0. Regarding the mathematical functions (𝑍𝑖) representing 

compressive strength, cost and production rates effects, they are related to each regression 

model derived from Eq. 19 by using coefficients contained in Table 25, where the 

independent variables are crew experience, compaction method, mixing time, curing 

humidity and curing temperature constrained to the ranges shown in Table 7. 

 

Positive and negative deviations (i.e., 𝛿𝑖
+and 𝛿𝑖

−) need to be included into each function 𝑍𝑖 

by subtracting 𝛿𝑖
+ and by adding 𝛿𝑖

−. They indicate the amount deviated above and below 

of each corresponding goal, being restricted to  𝛿1
+ ≥ 0; 𝛿1

− ≥ 0; 𝛿2
+ ≥ 0; 𝛿2

− ≥ 0; 𝛿3
+ ≥

0; 𝛿3
− ≥ 0. For strength effect, the deviation 𝛿1

+ can be considered null since the expected 

compressive strength effect has to be equal to or greater than zero according to goal (1), 

meaning that it is not important for the model when the compressive strength effect is 

increased by unstructured factors. On the other hand, 𝛿1
− should be equal to one since the 

reduction of compressive strength is not part of the goal. In terms of concrete costs and 

production rates and in the same manner as for concrete compressive strength effect, the 

deviations 𝛿2
+ and 𝛿3

− should be equal to one and  𝛿2
− and 𝛿3

+ should be considered null in 

order to comply with pre-established goals. To implement this into the optimization model, 

penalty weights of zeros were assigned. The summation of all deviations becomes the 
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objective function that needs to be minimized according to Eq. 19 and constrained to Eq. 

20. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑔𝑜𝑎𝑙 = ∑ 𝛿𝑖
+ +3

𝑖=1 𝛿𝑖
−    (19) 

 

𝑍𝑖 − 𝐺𝑖 − 𝛿𝑖
+ + 𝛿𝑖

− = 0    (20) 

 

Goal programming formulation could be carried out once standard and deviation variables 

were defined. Table 28 contains the optimization model for finding optimal construction 

site conditions when making concrete at the jobsite manually.  The Input Values row 

contains changing cells corresponding to standard and deviation variables. The Left Hand 

Side (LHS) column contains the results of each prediction model including their 

corresponding deviations for a specified input value whereas the Right Hand Side (RHS) 

column is the input column containing compromised goals. The objective function was 

minimized by using the generalized reduced gradient method (GRG) which is a nonlinear 

solving method for nonlinear optimization. A solution is found when both columns –LHD 

and RHS– are equal. For instance, Table 28 presents the results of the optimization model 

for the following goals entered into RHS column: (1) an increment of 10% in compressive 

strength effect, (2) 0% increase in concrete fabrication cost and (3) 10% increase in 

concrete production rates. The value of 𝛿3
+ = 1.72 indicates that there is a deviation of 

1.72% above the third goal set for production rates, meaning that the actual value of 

production rates effect is 11.72%. However, this does not mean that there are no other 

possible solutions since there could be more than one locally optimal solution.     
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Table 28. Optimization Model 
 

Goals 
Constant 

(βo) 

Standard variables (Affecting Factors) Deviation Variables 

Left 

Hand 

Side 

(LHS) 

Right 

Hand 

Side 

(RHS) 

Crew 

Exp.1 

Comp. 

Method2 

Mixing 

Time 

(min) 

Curing 

Hum. 

(%) 

Curing 

Temp. 

(°C) 

𝜹𝟏
+ 𝜹𝟏

− 𝜹𝟐
+ 𝜹𝟐

− 𝜹𝟑
+ 𝜹𝟑

−   

Compressive 

Strength Effect 
-32.4761 0.0000 -2.2216 0.4434 0.0555 0.5555 -1 1     10.0 10.0 

Cost Effect -65.1022 -4.8623 -2.3872 5.0443 0.0000 0.0000   -1 1   0.0 0.0 

Production 

Rates 
58.8866 13.1790 4.2403 -4.1376 0.0000 0.0000     -1 1 10.0 10.0 

    Changing Values     

Input Values   1 1 13.9 66.2 28.5 0.00 0.00 0.00 0.00 1.72 0.00     

Penalty 

Weights3 
            0 1 1 0 0 1     

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 0 ∗ 𝛿1
+ + 1 ∗ 𝛿1

− + 1 ∗ 𝛿2
+ + 0 ∗ 𝛿2

− + 0 ∗ 𝛿3
+ + 1 ∗ 𝛿3

− 0  Objective Function  
1 -1 for unexperienced crews and 1 for experienced crews         
2 -1 for manual compaction and 1 for vibrator 
3 Zero values correspond to null deviations 
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5.6 Conclusions  

Concrete as a construction material undergoes several affecting conditions at the jobsite 

during its fabrication by hand, placing into the forms, curing process until it finally hardens.  

DOE provided with a systematic experimental program to test the effect of such affecting 

conditions including crew experience, compaction method, mixing time, curing humidity 

and curing temperature on concrete compressive strength, cost and production rates while 

ANOVA allowed us to identify which of such conditions were statistically significant. 

Only crew experience was not found to be significant for compressive strength whereas 

crew experience, compaction method and mixing time were identified as significant for 

concrete fabrication costs and production rates. Also, ANOVA revealed several factor 

interactions (i.e., one factor effect depends on the level of the other) that are significant as 

shown in Table 24. For instance, curing humidity and curing temperature is a two-way 

factor interaction with respect to compressive strength effect.  

 

The adequacy of developed prediction regression models for each response was performed 

through the analysis of residuals. The plots of residuals indicate that there is no evidence   

of violating the assumption of normality, independence and inequality of variance, which 

validated the conclusions. Furthermore, high R-squared values (Table 26) of all regression 

models indicate that they perform well when predicting new observations. To evaluate the 

effect of each construction site factor, a sensitivity analysis was conducted for each 

regression model through Monte Carlo simulation coupled with Spearman rank 

coefficients. For concrete compressive strength effect, the sensitivity analyses (Fig. 23) 

shows that curing temperature dominates the output while mixing time does for concrete 
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cost and production rates (Fig. 24 and Fig. 25). Therefore, the results pointed out that curing 

humidity, temperature and mixing time are the independent variables driving optimal 

construction site conditions. High curing humidity and curing temperature have a positive 

effect on compressive strength while high mixing times increases concrete cost and reduces 

productivity.  

 

The developed optimization model constitutes a decision support tool for concrete workers, 

technicians and project managers since it provides them with valuable information when 

fabricating concrete at the jobsite. The model is able to assist in finding specific 

construction site conditions according to pre-established compromised goals, facilitating 

the decision making process. For instance, managers are usually required to deliver a 

project to a certain cost and schedule complying with concrete specifications and thus such 

optimal construction site conditions could be identified through this tool. Furthermore, if 

existing on-site conditions influence concrete characteristics negatively, corrective actions 

could be made before fabricating the product. On the other hand, resources including time 

and money could be saved if present conditions are found to be favorable through the 

model. In other words, the proposed optimization model could also be utilized to predict 

possible effects on concrete compressive strength, costs and production rates caused by 

local surrounding ambient conditions and explore others. For instance, keeping some of 

the controllable variables constant such as crew experience, compaction method (i.e., 

concrete consolidation) and mixing time and entering ambient conditions including curing 

humidity and curing temperature. 
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Being aware in advance of potential effects of construction site conditions on concrete in 

terms of compressive strength, cost of fabrication and production rates is indeed an 

advantage in order to take preventive actions. The more information is available, the less 

undesired consequences are expected. Therefore, the proposed optimization model 

provides not only construction managers but also concrete workers and foremen with a 

valuable tool allowing to find on-site construction conditions in order to accomplish 

proposed goals. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

Construction site factors including crew experience, compaction method, mixing time, 

curing humidity and curing temperature, which are present at the jobsite, may cause 

significant variation of concrete compressive strength, concrete cost overruns and 

reduction in concrete productivity. Some of the aforementioned factors related to 

manpower expertise, equipment and mixing can usually be controlled while performing 

concrete operations whereas other factors including local environmental surroundings and 

curing environments are difficult to manage during the construction project. This 

dissertation presented a comprehensive framework to estimate the effect of construction 

site factors on concrete considering experimentation and the use of fuzzy set theory. 

 

6.1 Summary of Research  

The main porpose of this study was to quantify the effect of construction site factors on 

concrete compressive strength as a quality metric, cost and production rates by integrating 

the use of a survey, an experimetal design and fuzzy inference systems. The methodology 

was intended to identify such factors and create prediction models for estimating the impact 

of these factors on concrete characteristics, to assist project managers, foremen, technicians 

and concrete workers when performing concrete operations. The research framework 

involved four main parts: (1) identification of construction site factors and evaluation of 

their importance, (2) experimentation and recognition of statistically significant factors 

utilizing designed experiments, (3) quantification of the effect of construction site factors 

on concrete compressive strength, cost and production rates using fuzzy inference systems 

and, (4) finding optimal operating conditions for performing concrete operations. 
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The first part consisted of identifying construction site factors by performing a 

comprehensive literature review and through the use of a questionnarie. The literature 

revealed several construction site factors, named unstructured factors, that act during 

concrete fabrication process and that affect concrete quality (i.e., compressive strength), 

cost of fabrication and productivity. A survey instrument was then utilized to search for 

additional factors and to evaluate their importance based on construction experts’ 

experience gained throughout their careers. Also, the questionnarie enabled understanding 

the influence of experts’ characteristics (e.g., architects or engineers) on their perceptions 

regarding the degree of impact of a specific affecting factor. Results comprised not only 

ranking of construction site factors by category: concrete compressive strength, costs and 

production separately but also a global order of factors influencing concrete, which were 

then utilized for experimental designs.  

 

In the second part of the research, a full 25 factorial design was conducted to investigate 

which factors are statistically significant. This type of designed experiment considers each 

factor acting at low and high levels and between specific ranges of action derived from the 

questionarie to construction experts.The top five factors identified during the previous 

stage were then taken into consireration for this component of the study. For the 

experimental program, 192 cylindrical concrete samples (i.e., 6 samples for each run) were 

fabricated  under designed factor combinations in the laboratory and tested under axial 

loads in order to evaluate their effect on compressive strength. Costs were estimated and 

production rates were measured during the fabrication of each concrete batch for each one 

of the 32 experimental runs. Once the experimental responses were obtained for each run, 
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a factorial analysis was executed and statistical testing for the significance of construction 

site factor effects and their interactions were performed using analysis of variance 

(ANOVA). Furthermore, design of experiments (DOE) allowed to generate prediction 

regression models that were used for further comparison against fuzzy inference systems. 

The significant factors identified in this part were then used as variables considered for 

developing fuzzy prediction models. 

 

The third part involved the use of fuzzy set theory for developing fuzzy inference systems. 

The approach for fuzzy modeling was system identification consisting of structure and 

parameter identification, based on input – output experimenta data. Structure identification 

was performed using subtractive clustering to determine the partitions of data points, if – 

then rules and the number of rules. Parameter identification, was achieved through adaptive 

network- based fuzzy inference system (ANFIS) and involved adjusting the parameters of 

the model in order to minimize output errors. A fuzzy inference system (FIS) for 

quantifying the effect of construction site factors on concrete compressive strength, costs, 

and production rates was developed, being construction site factors (i.e., inputs) the 

independent variables of each prediction model.  

 

The fourth part of the research consisted of developing a goal programming optimization 

model based on compromised solutions to find optimal operating conditions for performing 

concrete operations by using the regression models derived from factorial design analysis. 

The problem formulation involved defining goals for each function and its corresponding 

deviations. The goals considered in this study were to preserve concrete compressive 
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strength, minimize concrete costs, and maximize production rates. The independent 

variables included the identified construction site factors; namely, crew experience, 

compaction method, mixing time, curing humidity and curing temperature. The developed 

optimization model constitutes a decision support – tool for concrete workers, technicians 

and project managers that allows not only to find optimal conditions but also to find other 

conditions for specific outputs. 

 

6.2 Summary of Results  

The proposed framework of this dissertation allowed to answer the research questions listed 

in section 1.3. The first research question was related to identifying construction site factors 

affecting concrete quality (i.e., compressive strength), costs and production rates. Several 

affecting conditions were identified through literature review and the use of a questionnaire 

to construction experts. The results included mixing time, compaction method, ambient 

temperature, curing temperature, curing humidity, adding extra water (i.e., rain when 

fabricating concrete) and crew experience. Their importance were evaluated through the 

use of relative importance index (RII) based on the perception of construction experts. 

Crew experience (RII=0.7695), compaction method (RII=0.6854) and mixing time 

(RII=0.6846), curing humidity (RII=0.6798) and curing temperature (RII=0.6465) were the 

top five affecting factors for concrete compressive strength, costs and production rates 

when considering an overall ranking. These were the factors considered into this research. 

In addition to the aforementioned factors, others related to workforce, machinery and 

equipment, jobsite environment, and concrete fabrication process were recognized by a 
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small group of professionals throught their careers. A detailed procedure, results and 

analysis can be found in Chapter 2. 

 

The theory of design of experiments (DOE) was used as the strategy of experimentation 

for identifying significant construction site factors. Since five factors were selected for the 

study, a full 25 factorial design was conducted. Analysis of variance (ANOVA) at 0.05 

level of significance was used to identify statistical significant factors. Compaction 

method, mixing time, curing humidity and curing temperature were found to affect concrete 

compressive strength significantly. Their effect on compressive strength ranges from -

25.7% to 33.9%. Regarding concrete costs and production rates, only fabrication costs 

(e.g., manpower, and equipment) and productivity (i.e., time) were taken into consideration 

for computing the response. Their effect on concrete costs ranges from -20% to 54.1% 

while their effect on production rates ranges from -35.9% to 31.6%. Curing humidity and 

curing temperature were not selected as variables since they are local jobsite conditions 

present until concrete reaches its designed capacity. Crew experience, compaction method 

and mixing time were the selected variables for developing fuzzy prediction models. A 

detailed experimental program, results (i.e., responses) and a factorial analys can be found 

in Chapter 3. 

 

The results from the fuzzy modeling showed that all developed FISs have correlation 

coefficients (R-squared values) greater than 93%, indicating that models predict new 

observations well. Curing temperature was identified to be the most affecting condition for 

concrete compressive strength with the highest percentage of contribution to variance 
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(44.2%) while mixing time has the biggest impact on concrete cost (83.4%) and production 

rates (71.8%). A detailed fuzzy modeling process is described in Chapter 4. 

 

This methodology could help stakeholders such as project managers, foremen, concrete 

technicians and workers to manage concrete at the jobsite maintaining quality, without 

increasing production costs and enhancing productivity. Developed fuzzy inference 

systems are supporting tools allowing to quantify factor effects and to discern desired 

operating conditions through the use, for example, of response surfaces. Furthermore, 

developed prediction models enable not only to find zero – effect zones where concrete 

metrics are not affected but also to explore many other potential jobsite conditions. The use 

of response surfaces is shown in Chapter 4.  

 

As it can be inferred, prediction fuzzy models are supporting tools that provide with 

valuable information in order to be aware of potential impacts on concrete compressive 

strength, cost and production caused by construction site factors, facilitating decision 

makers to take preventive actions in advance tending to preserve project resources.  

 

6.3 Research Contributions  

The results of this doctoral dissertation have important contributions to the body of 

knowledge and practice in the field of project management, planning and project controls. 

The effects of construction site factors, known as unstructured factors, were estimated 

through the integration of different fields of study and prediction models were developed 

by utilizing a unique approach.  
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6.3.1 Contributions to the Body of Knowledge  

A major contribution to the body of knowledge constitutes the comprehensive and 

systematic framework developed for identitying and quantifying the effect of construction 

site conditions (i.e., unstructured factors). The novel and flexible proposed framework 

enables to recognize factors existing at a jobsite and to quantify their effect on concrete 

compressive strength, costs and production rates by taking advantage of several techniques. 

The proposed methodology integrated previous knowledge, a survey instrument, theory of 

design of experiments and fuzzy set theory in a single framework. Literature review  and 

the use of a questionnarie allowed to identify and evaluate the importance of each 

recognized construction site factor based on construction experts’ expertise. The 

experimental design assisted in the concrete sample fabrication process while the factorial 

design analysis exposed statistically significant affecting factors, generating input – output 

data for fuzzy modelling. This methodology could be utilized by researchers to investigate 

other concrete affecting factors. In addition, this research provides a better understanding 

of specific construction site factors including crew experience, compaction method, mixing 

time, curing humidity and curing temperature that are present during the construction phase 

of a project.  

 

6.3.2 Contribution to the Body of Practice 

One of the main contributions of this research to body of practice was the development of 

fuzzy inference systems to quantify the effect of construction site factors (i.e., unstructured 

factors) on (1) concrete compressive strength as a quality metric, (2) costs, and (3) 

production rates. Several prior studies have investigated only the impact of factors related 
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to concrete production process; namely, raw material properties, mixture proportions and 

admixtures; however, literature was limited regarding estimating the effect of construction 

site factors present when making, placing and curing concrete on the jobsite. No evidence 

including correlations or prediction models for assessing their effects on concrete metrics 

were found in this area. Resulting prediction fuzzy models are expected to be decision – 

support tools for project managers, foremen, concrete technitians and workers that could 

assist in finding operating conditions and explore other potential scenarios for decision 

making. 

 

For instance, fuzzy inference systems can be utilized to find desired conditions existing 

during concrete fabrication tending to preserve concrete or enhance compressive strength 

while avoiding cost increments and reduction in production rates. Such operating 

conditions refer to zero – effect counter lines or compromised zones that can be easily 

identified either by plotting response surfaces or by trial and error feeding prediction 

models with independent variables (i.e., construction site factors). Also, the versatility of 

developed models allows to study or simulate potential scenarios tending to stimulate 

concrete compressive strength by avoiding adverse practices and taking advantage of 

available on-site environments.  Indeed, appropriate concrete fabrication conditions should 

be taken into consideration when making concrete to ensure that it complies with material 

specifications stated in the project’s construction documents. 
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6.4 Research Limitations  

Data availability was a major limitation of this study for building fuzzy prediction models 

since fuzzy inference systems were developed based on input – output (I/O) experimental 

data. Fuzzy modelling was accomplished by using ANIFIS technique which utilizes I/O 

data for model learning process, thus the more data tuples, the more data can be considered 

for training and checking each model. Even though 192 concrete samples were fabricated 

for conducting a full 25 factorial design, only a total of 32 experiments (i.e., runs) were run 

considering each factor combination. Each response consisted of the average of six 

compressive strengths while costs and production rates responses were computed once for 

each run, implying that there was no replication of each run. Also, no center points were 

taken into consideration for quantitative variables for checking linearity between factor 

effects ; however, 2k factorial designs perform well even when linearity is approximately. 

Nonetheless, all possible factor combinations were evaluated and taken into account during 

the factorial analysis. Besides, when a factor is found not to be a significant factor, the 

factorial design becomes a replicated design. For instance, crew experience was not a 

significant factor affecting concrete compressive strength. Only four out of five factors 

were significant. Therefore, the 25 factorial design becomes a 24 factorial design with two 

replicates. 

 

The number of construction site factors considered for the study was a limitation due to the 

number of combinations when having many factors. Only the top five percieved factors 

were selected for the factorial design due to resources and experimental infrastructure 

availability. Costs implied for sample fabrication, simulating affecting conditions and 
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testing were an obstacle when selecting the number of variables to be studied. Also, 

laboratory infrastructure prevented from considering great number of factors since full 

factorial design imply 2k number of runs, with k number of factors. This may have caused 

the exclusion of a significant construction site condition. 

 

In addition, extreme temperatures for concrete fabrication including hot and cold weather 

concreting  were not considered. Low and high temperature levels for curing temperature 

were established by construction experts through a questionnarie for normal concreting 

according to their perception of the linguistic hot and cold terms. The majority of 

respondents belonged to Ecuador where ambient temperatures are not as extreme as they 

are in countries having four seasons.  

 

Two major groups formed by architects and engineers accounted for almost all the sample 

population in the deployed survey for evaluating of the importance of the impact of 

construction site factors on concrete compressive strength, costs and production rates. 

Other groups such as contractors and owner representatives should be considered in future 

research. However, most of the respondents met the criteria of being a construction expert 

by having at least one year of experience with concrete in the construction industry and 

academia. 

 

6.5 Recommendations for Future Research  

Several recommendations for future research may be established based on the research 

limitations. With respect to construction site factors, other affecting conditions should be 
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investigated by including the use of fractional factorial designs in order to reduce the 

number of experimental runs, saving time and resources. For instance, survey results 

showed that additional construction site factors such as deficient formwork and proper tool 

use could be factors affecting concrete, and they could be further explored in future 

research.  In addition, a full factorial design with two or three replicates could then be 

performed by using only significant factors in order to minimize error. Experimental 

programs assisted by the theory of design of experiments (DOE) should also incorporate 

concrete made by a concrete mixer machine, broader levels of numerical variables (i.e., 

range of action) as well as the addition of center points to the factorial design. These 

recommendations will generate enough experimental data and strengthen prediction 

models. 

 

This study utilizes only fuzzy inference systems (FISs) as prediction models for quantifying 

concrete compressive strength, costs and production effects; however, other techniques 

such as artifitial neural networks (ANN) should be not only explored but also compared 

with FISs for checking the performance of the estimated models.  
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Demirboğa, R., Örüng, I. b., and Gül, R. (2001). “Effects of expanded perlite aggregate 

and mineral admixtures on the compressive strength of low-density concretes.” Cem. 

Concr. Res., 31(11), 1627-1632. 

Diwekar, U. (2008). Introduction to applied optimization (2nd ed.). Springer, New York.  

El-Gohary, K. M., and Aziz, R. F. (2014). “Factors influencing construction labor 

productivity in egypt.” J. Manage.Eng., 10.1061/(ASCE)ME.1943-5479.0000168, 1-9.  

Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., and Tourangeau, 

R. (2004). Survey methodology, John Wiley & Sons, Inc.,  Hoboken, NJ. 
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Kostić, S., and Vasović, D. (2015). "Prediction model for compressive strength of basic 

concrete mixture using artificial neural networks." Neural Comp.  Appl., 26(5), 1005-1024. 

Kwon, S. H., Jang, K. P., Bang, J.-W., Lee, J. H., and Kim, Y. Y. (2014). “Prediction of 

concrete compressive strength considering humidity and temperature in the construction of 

nuclear power plants.” Nucl. Eng. Des., 275, 23-29. 

Laungrungrong, B., Mobasher, B., Montgomery, D., and Borror, C. M. (2010). “Hybrid 

control charts for active control and monitoring of concrete strength.” J. Mater. Civ. Eng., 

22(1), 10.1061/(ASCE)0899-1561(2010)22:1(77) ,77-87.  

Lavrakas, P. J. (Ed.). (2008). Encyclopedia of Survey Research Methods, SAGE 

Publications, Thousand Oaks, CA. 



122 
 

Li, Z. (2011). Advanced concrete technology. Wiley, Hoboken, NJ. 

Long, W.-J., Lemieux, G., Hwang, S.-D., and Khayat, K. H. (2012). "Statistical models to 

predict fresh and hardened properties of self-consolidating concrete." Mater. Struct., 45(7), 

1035-1052. 

Lu, S., and Yan, H. (2013). “A comparative study of the measurements of perceived risk 

among contractors in China..” Int. J. Proj. Manage., 31(2), 307-312.  

Madandoust, R., Bungey, J. H., and Ghavidel, R. (2012). "Prediction of the concrete 

compressive strength by means of core testing using GMDH-type neural network and 

ANFIS models." Comp. Mat. Sci., 51(1), 261-272. 

Mamdani, E. and Assilian, S. (1975). "An experiment in linguistic synthesis with a fuzzy 

logic controller." Int. J. of Hum-Comp. Stud., 51(2), 135-147. 

Mamdani, E. (1977). "Application of fuzzy logic to approximate reasoning using linguistic 

synthesis." IEEE Trans. Comput.,  26(12), 1182-1191. 

MathWorks (2017). Matlab: Fuzzy logic toolbox™: User's guide (Release 2017a), 

MathWorks, Inc., Natick, MA. 

Mehta, P. K., and Monteiro, P. J. M. (2006). Concrete: Microstructure, properties, and 

materials (3rd ed.). McGraw-Hill , New York. 

Montgomery, D. C. (2013). Design and analysis of experiments (Eighth ed.). Wiley, 

Hoboken, NJ. 

Montgomery, D. C., and Runger, G. C. (2003). Applied statistics and probability for 

engineers (3rd ed.). Wiley, New York. 

Neville, A. M., and Brooks, J. J. (2010). Concrete technology (2nd ed.). Prentice Hall, 

Harlow, England. 



123 
 

Newman, J., and Choo, B. S. (2003). Advanced concrete technology 2: Concrete 

Properties. Elsevier, Oxford, UK. 

Odusami, K. T. (2002). “Perceptions of construction professionals concerning important 

skills of effective project leaders.” J. Manage. Eng., 10.1061/(ASCE)0742-

597X(2002)18:2(61), 61-67.  

Okasha, N. M., and Aichouni, M. (2015). “Proposed structural reliability-based approach 

for the classification of concrete quality.” J. Mater. Civ. Eng., 10.1061/(ASCE)MT.1943-

5533.0001131, 04014169. 

O’Connor, J. T., and Huh, Y. (2006). “Crew production rates for contract time estimation: 

beam erection, deck, and rail of highway bridges.” J. Constr. Eng. Manag., 

10.1061/(ASCE)0733-9364(2006)132:4(408), 408-415.  

Passino, K. M., and Yurkovich, S. (1998). Fuzzy Control , Addison Wesley Longman, 

Menlo Park, CA. 

PCA (Portland Cement Association). (2015 ). “Cement and Concrete Basics: Products.” 

(http://www.cement.org/cement-concrete-basics/products)  (Feb. 17, 2015) 

Piratelli-Filho, A., and Shimabukuro, F. (2008). "Characterization of compression strength 

of granite-epoxy composites using design of experiments." Mat. Res., 11(4), 399-404. 

Rahim, A., Sharma, U. K., Murugesan, K., Sharma, A., and Arora, P. (2013). "Multi-

response optimization of post-fire residual compressive strength of high performance 

concrete." Constr. Build. Mater., 38, 265-273. 

Ramsey, F. L. and Schafer, D. W. (2013). The statistical sleuth: A course in methods of 

data analysis (3rd ed.)”, Brooks/Cole, Cengage Learning, Boston, MA. 



124 
 

Rantala, J., and Koivisto, H. (2002). “Optimised subtractive clustering for neuro-fuzzy 

models.” 3rd WSEAS Int.l Conf. on Fuzzy Sets and Fuzzy Syst., Interlaken, Switzerland. 
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Appendix A: Survey Instrument, Additional Data and Results for Chapter 2 

Appendix A.1: IRB Exemption Letter 
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Appendix A.2: Questionnaire  

 

Perceptions of construction experts on factors affecting concrete quality and costs  
Consent to Participate in Research 

040716 
  
Purpose of the study:  You are being asked to participate in a research study that is being done 
by Dr. Vanessa Valentin and PhD student Jorge Santamaria, from the Department of Civil 
Engineering at the University of New Mexico (UNM). The purpose of this study is to identify the 
factors related to construction processes rather than concrete production that affect concrete 
quality and costs based on experts in the construction industry experience (i.e., owners, 
contractors, architects and engineers). You are being asked to take part in this study because of 
your position, experience and/or research background. 
  
This form will explain what to expect when joining the research, as well as the possible risks and 
benefits of participation. If you have any questions, please ask one of the study researchers. 
  
What you will do in the study:  Your participation will involve responding to a set of questions 
about identifying and ranking factors that could affect concrete quality and costs during the 
construction process of a facility. Your involvement in the study is voluntary, and you may 
choose not to participate.  The survey includes questions such as perception about concrete 
quality (e.g., compressive or tensile strength), the factors that may affect compressive strength 
according on experience (e.g., weather), and basic information regarding construction 
experience such as the number of years that you have been involved in this field of expertise. 
You can refuse to answer any of the questions at any time.  
  
Participation in this study will take around 15 minutes to complete. 
  
Risks: This research has minimal risk to participants. However, the risk for loss of confidentiality 
is possible with any study, and it will be minimized by not collecting any identifiable data. The 
survey is anonymous. 
  Benefits: There will be no immediate benefit to you from participating in this study. However, 
indirectly the information gained from this study will help understanding the impacts of 
unstructured factors on concrete quality and costs.   
Confidentiality of your information: There are no names or identifying information associated 
with this survey. Your response will be anonymous. All questionnaires will be concealed, and no 
one other than the primary investigator and assistant researcher will have access to them. The 
data collected will be stored in the Qualtrics’ secure database until the survey is completed. 
Once all the data is collected, a CD of the data will be kept locked in Dr. Valentín’s office. Dr. 
Valentín will be the only one having access to this data. Your name will not be used in any 
published reports about this study. 
  
Payment:  You will not be paid for participating in this study.    
Right to withdraw from the study: Your participation in this study is completely voluntary. You 
have the right to choose not to participate or to withdraw your participation at any point during 
the survey without penalty. 
  



129 
 

If you have any questions, concerns, or complaints about the research study, please contact: 
   
Mr. Santamaria at jluis@unm.edu or call Dr. Valentin’s office at (505) 277-0811. 
If you would like to speak with someone other than the research team or have questions 
regarding your rights as a research participant, please contact the UNM Office of the IRB, (505) 
277-2644, irbmaincampus@unm.edu. Website: http://irb.unm.edu/ .The IRB is a group of 
people from UNM and the community who provide independent oversight of safety and ethical 
issues related to research involving people: 
 
CONSENT  
By clicking “OK” you will be agreeing to participate in the above described research study. 

 OK (1) 

 Exit the survey (2) 

 
 I Subject’s Information 
 
1 Level of Education 

 Less than High School  (1) 

 Bachelor’s  (2) 

 Graduate (3) 

 Other: (4) ____________________ 

 
2 Profession 

 Architect  (1) 

 Engineer (2) 

 Contractor (3) 

 Owner (4) 

 Other: (5) ____________________ 

 
3 Years of experience in the construction industry with concrete  

 1 to 5  (1) 

 6 to 10 (2) 

 10 to 15 (3) 

 16 to 20 (4) 

 21 to 25 (5) 

 More than 25 (6) 

 
4 Field of experience 

 Design  (1) 

 Construction (2) 

 Other: (3) ____________________ 
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5 Specialty experience in construction (select only the main one) 

 Buildings and houses (e.g. warehouses) (1) 

 Transportation facilities (e.g. roads and bridges) (2) 

 Hydraulic facilities (e.g. channels and dams) (3) 

 Other: (4) ____________________ 

 
II Perception regarding concrete quality and costs 
 
6 What metric do you consider is the most commonly used for measuring concrete quality 

regardless the type of facility? 

 Compressive Strength (1) 

 Tensile Strength (2) 

 Flexural Strength (3) 

 Other: (4) ____________________ 

 
7 Please choose "Yes" 

 No (1) 

 Maybe (2) 

 Yes (3) 

 
8 At what age do you consider concrete reaches its design capacity?  

 7 days  (1) 

 14 days (2) 

 21 days (3) 

 28 days (4) 

 Other: (5) ____________________ 

 
9 According to your experience, what percentage on average of the total volume of concrete 

used to build a facility do you consider is fabricated in situ (i.e., mixing water, cement and 

aggregates by using either a concrete machine or by hand in the construction site)? 

 Less than 10%  (1) 

 10 to 20 % (2) 

 21 to 30 % (3) 

 31 to 40 % (4) 

 41 to 50 % (5) 

 More than 50 % (6) 

 
10 Do you consider that concrete fabricated in situ (i.e., mixing water, cement and aggregates 

by using either a concrete machine or by hand in the construction site) and ready mixed 

concrete bought from a concrete supplier have the same quality (i.e., strength)? 

 Yes  (1) 

 No (2) 

 



131 
 

11 Do you consider that making concrete in situ (i.e., mixing water, cement and aggregates by 

using either a concrete machine or by hand in the construction site) is cheaper than buying 

ready mixed concrete from a concrete supplier? 

 Yes  (1) 

 No (2) 

 
III Perceptions regarding unstructured factors that affect concrete compressive strength and 
costs 
 
12 As mentioned before, there have been identified two main groups of factors that affect 

concrete quality; namely, structured factors and unstructured factors. The first ones are 

related to the process of fabrication of concrete such as water-cement ratio, materials’ 

properties and mix proportions while unstructured factors are those related to the 

construction process of a facility such as weather while concreting.  From the following 

unstructured factors identified in the literature; namely, (1) mixing time, (2) compaction, (3) 

ambient temperature, (4) curing temperature, (5) curing humidity, (6) adding extra water 

(i.e., rain) and (7) crew experience, can you mention others?Other Identified Unstructured 

Factors: 

1.-  (1) ____________________ 

2.- (2) ____________________ 

3.- (3) ____________________ 

4.- (4) ____________________ 

Note: Add more rows as needed. (5) ____________________ 
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13 For all aforementioned factors (i.e., identified factors in the literature and others identified 

by you), please rate the impact (from none to very high) on concrete compressive strength, 

costs and production rates that these factors have. Unstructured Factors: 

 
 

 Concrete Strength Cost Production Rates 

 
No

ne 

(1) 

Ver

y 

Lo

w 

(2) 

Lo

w 

(3) 

Mediu

m (4) 

Hig
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(5) 
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(6) 

No
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(1) 

Ver

y 

low 

(2) 
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w 

(3) 

Mediu

m (4) 
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(5) 

Ver

y 

hig

h 

(6) 
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ne 

(1) 
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(2) 

Lo

w 

(3) 

Mediu

m (4) 
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h 

(5) 
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y 

hig

h 

(6) 

1. 

Mixing 

time (1) 

                                    

2. 

Compact

ion (2) 

                                    

3. 

Ambient 

temperat

ure (3) 

                                    

4. Curing 

temperat

ure (4) 

                                    

5. Curing 

humidity 

(5) 

                                    

6. 

Adding 

extra 

water 

(i.e., 

rain) (6) 

                                    

7. Crew 

experien

ce (7) 

                                    

8. (8)                                     

9. (9)                                     

10. (10)                                     

11. (11)                                     

12. (12)                                     

13. (13)                                     

14. (14)                                     

15. Add 

more 

rows as 

needed 

(15) 

                                    

 

14 Have you ever considered the effect of such unstructured factors on concrete quality? 

 Yes, If yes, how (1) ____________________ 

 No (2) 
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15 Please select "Yes" 

 No (1) 

 Yes (2) 

 

16 In terms of costs, how significant do you think that unstructured factors can affect concrete? If you 

believe that such factors do not affect concrete costs at all, please mark 0%. 

 0 % (1) 

 Less than 10%  (2) 

 10 to 20 % (3) 

 21 to 30 % (4) 

 31 to 40 % (5) 

 41 to 50 % (6) 

 More than 50 % (7) 

 

17 What is the minimum and maximum mixing time in minutes for concrete that you generally apply 

when making concrete? 

 

 Manually (e.g., By hand) (1) Concrete machine (2) 

Minimum (1)   

Maximum (2)   

 

 

18 In terms of labor, do you usually use experience crews (i.e., no carpenters or plumbers) when making 

concrete in situ (i.e., mixing water, cement and aggregates by using either a concrete machine or by 

hand in the construction site)?  

 Yes  (1) 

 No, If no, how the crew is formed? (2) ____________________ 

 

19 What environment temperature (i.e., ambient temperature) do you consider cold, normal and hot in °C 

when dealing with concrete placement operations on a construction site? 

 

 Temperature in °C (1) 

Cold (1)  

Normal (2)  

Hot (3)  

 

 

20 In terms of curing concrete (i.e., keeping concrete wet), how long do you usually do it continuously?  

 

 Days (1) 

Curing time (1)  

 

 

21 In terms of curing concrete (i.e., keeping concrete wet), do you consider curing temperature? 

 Yes, If yes, explain how? (1) ____________________ 

 No (2) 
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IV Additional subject’s information 

 

22 Age (years) 

 25 or Younger  (1) 

 26 to 35 (2) 

 36 to 45 (3) 

 46 to 55 (4) 

 56 to 65 (5) 

 65 or older (6) 

 

23 Gender 

 Male (1) 

 Female (2) 

 

Thank you for your participation!!!!! 
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Appendix A3: Relative Importance Index (RII) Calculations 

 

Table 29. Impact of Construction Site Factors on Concrete Compressive Strength 

 

Factors 
None 

Very 

Low 
Low Medium High 

Very 

High 
Weighting 

(W) 
A N RII 

1 2 3 4 5 6 

Mixing 

Time 
9 12 28 83 152 13 1287 6 297 0.722 

Compaction 

Method 
5 11 30 81 120 50 1341 6 297 0.753 

Ambient 

Temperature 
5 17 59 81 127 8 1223 6 297 0.686 

Curing 

Temperature 
1 9 32 87 141 27 1330 6 297 0.746 

Curing 

Humidity 
1 7 9 94 123 63 1411 6 297 0.792 

Adding 

Extra Water 
6 18 49 55 99 70 1324 6 297 0.743 

Crew 

Experience 
2 3 13 94 142 43 1391 6 297 0.781 

 

 

Table 30. Impact of Construction Site Factors on Concrete Cost 

 

  

Factors 

None 
Very 

Low 
Low Medium High 

Very 

High 
Weighting 

(W) 
A  N  RII  

1 2 3 4 5 6 

Mixing 

Time 
23 20 46 86 120 2 1157 6 297 0.649 

Compaction 

Method 
19 15 59 85 114 5 1166 6 297 0.654 

Ambient 

Temperature 
45 47 79 56 68 2 952 6 297 0.534 

Curing 

Temperature 
16 22 71 86 99 3 1130 6 297 0.634 

Curing 

Humidity 
17 30 65 74 102 9 1132 6 297 0.635 

Adding 

Extra Water 
74 50 41 52 69 11 916 6 297 0.514 

Crew 

Experience 
1 4 19 100 141 32 1363 6 297 0.765 
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Table 31. Impact of Construction Site Factors on Concrete Production Rates 

 

Factors 
None  

Very 

Low 
Low Medium High 

Very 

High 
Weighting 

(W) 
A N RII 

1 2 3 4 5 6 

Mixing 

Time 
13 17 39 96 124 8 1216 6 297 0.682 

Compaction 

Method 
17 19 58 92 106 5 1157 6 297 0.649 

Ambient 

Temperature 
22 28 71 77 96 3 1097 6 297 0.616 

Curing 

Temperature 
29 52 76 69 67 4 996 6 297 0.559 

Curing 

Humidity 
24 26 70 89 79 9 1091 6 297 0.612 

Adding 

Extra Water 
22 23 66 79 88 19 1136 6 297 0.637 

Crew 

Experience 
3 2 24 101 125 42 1360 6 297 0.763 

 

 

Table 32. Overall Ranking Importance of Identified Construction Site Factors for 

Concrete Compressive Strength, Costs and Production Rates 

 

  

Factors 

None 
Very 

Low 
Low Medium High 

Very 

High 
Weighting 

(W) 
A N RII 

1 2 3 4 5 6 

Mixing 

Time 
45 49 113 265 396 23 3660 6 891 0.6846 

Compaction 

Method 
41 45 147 258 340 60 3664 6 891 0.6854 

Ambient 

Temperature 
72 92 209 214 291 13 3272 6 891 0.6120 

Curing 

Temperature 
46 83 179 242 307 34 3456 6 891 0.6465 

Curing 

Humidity 
42 63 144 257 304 81 3634 6 891 0.6798 

Adding 

Extra Water 
102 91 156 186 256 100 3376 6 891 0.6315 

Crew 

Experience 
6 9 56 295 408 117 4114 6 891 0.7695 
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Appendix B: Properties of Raw Materials and Laboratory Setup for for Chapter 3  

 

Appendix B.1: Specific Gravity of Cement 

 
 Method: ASTM C188 —Standard Test Method for Density of Hydraulic Cement 

           

Specific Gravity 

Mt Mass of the flask containing the liquid and the cement, g    238.67 

Ma Mass of the flask with the liquid to the first set of graduation, g 174.38 

Mc Mass of cement used, g (Mt-Ma) 64.29 

Lo Initial reading, cm3 0.4 

Lf Final reading, cm3 21.8 

V Volume of liquid displaced by the mass of cement, cm3 (Lf-Lo) 21.4 

  Specific gravity=  Mc/V 3.00 
 

 
 

Appendix B.2: Specific Gravity and Absorption of Fine Aggregate 

 
 Method: ASTM C128—Specific Gravity and Absorption of Fine Aggregate 

             

Specific Gravity 

S Mass of saturated surface-dry specimen, g           494.6 

B Mass of pycnometer filled with water, g 658.2 

C Mass of pycnometer filled with specimen and water to calibration mark, g 964.5 

  Specific gravity (SSD) =  S/(B+S-C) 2.63 

       

Absorption 

A Mass of oven-dry specimen in air, g           488.1 

S Mass of saturated surface-dry specimen, g           494.6 

  Absorption, % = [(S-A)/A] x 100 1.3 
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Appendix B.3: Sieve Analysis of Fine Aggregate 

 
 Method: ASTM C136—Sieve Analysis of Fine and Coarse Aggregates 

            

Sample Mass (g) : 408.50       

            

Sieve 

Retained % % 
Limits 

ASTM C33 Partial (g) 
Cumulative 

(g) 
retained passing 

9.5 (3/8 in) 0.00 0.00 0.0 100.0 100 

4.75 (No. 4) 3.10 3.10 0.8 99.2 95 - 100 

2.36 (No. 8) 49.60 52.70 12.9 87.1  80 - 100 

1.180 (No. 16) 51.80 104.50 25.6 74.4  50 - 85 

0.600 (No. 30) 124.60 229.10 56.1 43.9 25 - 60 

0.300 (No. 50) 90.50 319.60 78.2 21.8  10 - 30 

0.150 (No. 100) 65.20 384.80 94.2 5.8  2 - 10 

0.075 (No. 200) 17.40 402.20 98.5 1.5  0 - 5 

Tray 6.30 408.50 100.0 0.0   

            

Fineness Modulus:  2.68       
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Appendix B.4: Specific Gravity and Absorption of Coarse Aggregate 

 
 Method: ASTM C127—Specific Gravity and Absorption of Coarse 

Aggregate 

              

Specific Gravity 

B Mass of saturated-surface-dry test sample in air, g 3662 

C Apparent mass of saturated test sample in water, g 2281 

  Specific gravity (SSD) =  B/(B-C) 2.65 

              

Absorption 

A Mass of oven-dry test sample in air, g 3612 

B Mass of saturated-surface-dry test sample in air, g 3662 

  Absorption, % = [(B-A)/A] x 100 1.4 
 

 

 

Appendix B.5: Sieve Analysis of Coarse Aggregate 

 

 
 Method: ASTM C136—Sieve Analysis of Fine and Coarse Aggregates 

            

Nominal Size: 25.0 to 4.75 mm (1 in. to No. 4)   

Size Number: 57       
 

Sample mass (g): 14542       
            

Sieve 

Retained % % 
Limits 

ASTM C33 Partial (g) 
Cumulative 

(g) 
retained passing 

37.5 (1 1/2 in.) 0 0 0.0 100.0 100 

25.0 (1in) 1224 1224 8.4 91.6 95-100 

19.0 (3/4 in.) 3227 4451 30.6 69.4   

12.5 (1/2 in.) 4603 9054 62.3 37.7 25-60 

9.5 (3/8 in) 1972 11026 75.8 24.2   

4.75 (No. 4) 1886 12912 88.8 11.2 0-10 

2.36 (No. 8) 597 13509 92.9 7.1 0-5 

1.180 (No. 16) 315 13824 95.1 4.9   

Tray 718 14542 100.0 0.0   

          

Fineness Modulus: 6.83       
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Appendix B.6: Materials and Laboratory Setup 

 

 

 

Scale (±0.1 Kg), wheelbarrows, metallic trays 

 

 

Metallic tray for fabricating concrete 
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Abrams apparatus 

 

 

Scale (±0.1 Kg) 
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Metallic cylindrical molds 

 

 

 

Sulfur mortar for capping concrete samples 
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Cylinder capping equipment 

 

 

Universal testing machine (2000 KN) 



145 
 

Appendix B.7: Compression Strength Responses 

Table 33. Compression test results of each experimental run (192 samples) 

 

No Run Sample 

Construction Site Factors Response 

Crew 

Experience 

Compaction 

Method 

Mixing 

Time, s 

Curing 

Humidity 

% 

Curing 

Temp. 

°C  (°F) 

Compressive 

Strength 

MPa (psi) 

1 

1 

S-1-1 Experienced Manual 20.4 100 
28.5 

(83) 

35.6 

(5158.7) 

2 S-1-2 Experienced Manual 20.4 100 
28.5 

(83) 

36.8 

(5334.2) 

3 S-1-3 Experienced Manual 20.4 100 
28.5 

(83) 
37 (5372.6) 

4 S-1-4 Experienced Manual 20.4 100 
28.5 

(83) 
35 (5077.2) 

5 S-1-5 Experienced Manual 20.4 100 
28.5 

(83) 

38.2 

(5533.2) 

6 S-1-6 Experienced Manual 20.4 100 
28.5 

(83) 

38.1 

(5526.1) 

7 

2 

S-2-1 Experienced Manual 11.3 100 
28.5 

(83) 
36.7 (5324) 

8 S-2-2 Experienced Manual 11.3 100 
28.5 

(83) 

37.1 

(5377.5) 

9 S-2-3 Experienced Manual 11.3 100 
28.5 

(83) 

35.5 

(5146.9) 

10 S-2-4 Experienced Manual 11.3 100 
28.5 

(83) 

36.7 

(5318.9) 

11 S-2-5 Experienced Manual 11.3 100 
28.5 

(83) 

35.6 

(5169.5) 

12 S-2-6 Experienced Manual 11.3 100 
28.5 

(83) 

37.7 

(5468.3) 

13 

3 

S-3-1 
Not 

Experienced 
Vibrator 11.3 20 7.9 (46) 

21.9 

(3171.4) 

14 S-3-2 
Not 

Experienced 
Vibrator 11.3 20 7.9 (46) 

23.4 

(3391.3) 

15 S-3-3 
Not 

Experienced 
Vibrator 11.3 20 7.9 (46) 

21.3 

(3091.5) 

16 S-3-4 
Not 

Experienced 
Vibrator 11.3 20 7.9 (46) 

22.8 

(3306.6) 

17 S-3-5 
Not 

Experienced 
Vibrator 11.3 20 7.9 (46) 

23.7 

(3442.2) 

18 S-3-6 
Not 

Experienced 
Vibrator 11.3 20 7.9 (46) 

24.1 

(3498.9) 

19 

4 

S-4-1 
Not 

Experienced 
Manual 11.3 20 7.9 (46) 

24.3 

(3520.1) 

20 S-4-2 
Not 

Experienced 
Manual 11.3 20 7.9 (46) 

24.8 

(3592.7) 

21 S-4-3 
Not 

Experienced 
Manual 11.3 20 7.9 (46) 

25.1 

(3639.9) 

22 S-4-4 
Not 

Experienced 
Manual 11.3 20 7.9 (46) 

24.3 

(3526.6) 
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23 S-4-5 
Not 

Experienced 
Manual 11.3 20 7.9 (46) 

23.5 

(3408.9) 

24 S-4-6 
Not 

Experienced 
Manual 11.3 20 7.9 (46) 

25.4 

(3689.5) 

25 

5 

S-5-1 
Not 

Experienced 
Manual 11.3 100 7.9 (46) 

27.6 

(3998.5) 

26 S-5-2 
Not 

Experienced 
Manual 11.3 100 7.9 (46) 

26.2 

(3805.2) 

27 S-5-3 
Not 

Experienced 
Manual 11.3 100 7.9 (46) 

27.2 

(3950.6) 

28 S-5-4 
Not 

Experienced 
Manual 11.3 100 7.9 (46) 

27.6 

(4005.5) 

29 S-5-5 
Not 

Experienced 
Manual 11.3 100 7.9 (46) 28.6 (4146) 

30 S-5-6 
Not 

Experienced 
Manual 11.3 100 7.9 (46) 

27.1 

(3935.2) 

31 

6 

S-6-1 
Not 

Experienced 
Vibrator 20.4 20 7.9 (46) 

23.5 

(3410.3) 

32 S-6-2 
Not 

Experienced 
Vibrator 20.4 20 7.9 (46) 

23.6 

(3417.7) 

33 S-6-3 
Not 

Experienced 
Vibrator 20.4 20 7.9 (46) 

24.5 

(3553.2) 

34 S-6-4 
Not 

Experienced 
Vibrator 20.4 20 7.9 (46) 

24.3 

(3529.3) 

35 S-6-5 
Not 

Experienced 
Vibrator 20.4 20 7.9 (46) 

23.1 

(3354.1) 

36 S-6-6 
Not 

Experienced 
Vibrator 20.4 20 7.9 (46) 23 (3338.1) 

37 

7 

S-7-1 Experienced Vibrator 20.4 100 
28.5 

(83) 

33.6 

(4873.7) 

38 S-7-2 Experienced Vibrator 20.4 100 
28.5 

(83) 

33.4 

(4839.1) 

39 S-7-3 Experienced Vibrator 20.4 100 
28.5 

(83) 

39.1 

(5663.8) 

40 S-7-4 Experienced Vibrator 20.4 100 
28.5 

(83) 

35.3 

(5116.2) 

41 S-7-5 Experienced Vibrator 20.4 100 
28.5 

(83) 

36.3 

(5269.1) 

42 S-7-6 Experienced Vibrator 20.4 100 
28.5 

(83) 
35.1 (5096) 

43 

8 

S-8-1 
Not 

Experienced 
Vibrator 20.4 100 

28.5 

(83) 

39.8 

(5768.8) 

44 S-8-2 
Not 

Experienced 
Vibrator 20.4 100 

28.5 

(83) 

35.9 

(5205.5) 

45 S-8-3 
Not 

Experienced 
Vibrator 20.4 100 

28.5 

(83) 

34.8 

(5052.8) 

46 S-8-4 
Not 

Experienced 
Vibrator 20.4 100 

28.5 

(83) 

38.5 

(5583.7) 

47 S-8-5 
Not 

Experienced 
Vibrator 20.4 100 

28.5 

(83) 

38.2 

(5535.1) 

48 S-8-6 
Not 

Experienced 
Vibrator 20.4 100 

28.5 

(83) 

35.8 

(5192.3) 

49 
9 

S-9-1 Experienced Vibrator 11.3 100 7.9 (46) 
26.1 

(3783.9) 

50 S-9-2 Experienced Vibrator 11.3 100 7.9 (46) 24.8 (3593) 
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51 S-9-3 Experienced Vibrator 11.3 100 7.9 (46) 
23.7 

(3444.3) 

52 S-9-4 Experienced Vibrator 11.3 100 7.9 (46) 
25.3 

(3673.6) 

53 S-9-5 Experienced Vibrator 11.3 100 7.9 (46) 25 (3632.2) 

54 S-9-6 Experienced Vibrator 11.3 100 7.9 (46) 
26.6 

(3852.2) 

55 

10 

S-10-1 Experienced Manual 11.3 20 
28.5 

(83) 

26.7 

(3877.4) 

56 S-10-2 Experienced Manual 11.3 20 
28.5 

(83) 

30.2 

(4379.5) 

57 S-10-3 Experienced Manual 11.3 20 
28.5 

(83) 

29.1 

(4221.5) 

58 S-10-4 Experienced Manual 11.3 20 
28.5 

(83) 

26.8 

(3886.1) 

59 S-10-5 Experienced Manual 11.3 20 
28.5 

(83) 

28.3 

(4111.3) 

60 S-10-6 Experienced Manual 11.3 20 
28.5 

(83) 

28.5 

(4140.4) 

61 

11 

S-11-1 Experienced Vibrator 20.4 20 7.9 (46) 21.3 (3093) 

62 S-11-2 Experienced Vibrator 20.4 20 7.9 (46) 
23.9 

(3471.7) 

63 S-11-3 Experienced Vibrator 20.4 20 7.9 (46) 
23.4 

(3396.5) 

64 S-11-4 Experienced Vibrator 20.4 20 7.9 (46) 
23.3 

(3380.9) 

65 S-11-5 Experienced Vibrator 20.4 20 7.9 (46) 
22.2 

(3213.1) 

66 S-11-6 Experienced Vibrator 20.4 20 7.9 (46) 20.3 (2948) 

67 

12 

S-12-1 
Not 

Experienced 
Manual 20.4 20 

28.5 

(83) 

29.1 

(4221.5) 

68 S-12-2 
Not 

Experienced 
Manual 20.4 20 

28.5 

(83) 
28.8 (4182) 

69 S-12-3 
Not 

Experienced 
Manual 20.4 20 

28.5 

(83) 

28.1 

(4077.9) 

70 S-12-4 
Not 

Experienced 
Manual 20.4 20 

28.5 

(83) 

29.9 

(4330.8) 

71 S-12-5 
Not 

Experienced 
Manual 20.4 20 

28.5 

(83) 

30.4 

(4403.8) 

72 S-12-6 
Not 

Experienced 
Manual 20.4 20 

28.5 

(83) 

32.1 

(4648.5) 

73 

13 

S-13-1 
Not 

Experienced 
Vibrator 11.3 100 

28.5 

(83) 
32.1 (4657) 

74 S-13-2 
Not 

Experienced 
Vibrator 11.3 100 

28.5 

(83) 
30.6 (4443) 

75 S-13-3 
Not 

Experienced 
Vibrator 11.3 100 

28.5 

(83) 

35.2 

(5104.1) 

76 S-13-4 
Not 

Experienced 
Vibrator 11.3 100 

28.5 

(83) 

32.4 

(4696.4) 

77 S-13-5 
Not 

Experienced 
Vibrator 11.3 100 

28.5 

(83) 

30.4 

(4415.2) 

78 S-13-6 
Not 

Experienced 
Vibrator 11.3 100 

28.5 

(83) 

28.9 

(4198.6) 

79 14 S-14-1 
Not 

Experienced 
Vibrator 20.4 20 

28.5 

(83) 

27.3 

(3964.3) 



148 
 

80 S-14-2 
Not 

Experienced 
Vibrator 20.4 20 

28.5 

(83) 

26.5 

(3848.5) 

81 S-14-3 
Not 

Experienced 
Vibrator 20.4 20 

28.5 

(83) 

27.4 

(3967.2) 

82 S-14-4 
Not 

Experienced 
Vibrator 20.4 20 

28.5 

(83) 

25.4 

(3689.9) 

83 S-14-5 
Not 

Experienced 
Vibrator 20.4 20 

28.5 

(83) 

25.8 

(3737.9) 

84 S-14-6 
Not 

Experienced 
Vibrator 20.4 20 

28.5 

(83) 
26 (3771) 

85 

15 

S-15-1 Experienced Vibrator 11.3 20 
28.5 

(83) 

27.5 

(3993.4) 

86 S-15-2 Experienced Vibrator 11.3 20 
28.5 

(83) 

27.4 

(3975.6) 

87 S-15-3 Experienced Vibrator 11.3 20 
28.5 

(83) 
27.8 (4036) 

88 S-15-4 Experienced Vibrator 11.3 20 
28.5 

(83) 
28 (4065.8) 

89 S-15-5 Experienced Vibrator 11.3 20 
28.5 

(83) 

28.7 

(4165.4) 

90 S-15-6 Experienced Vibrator 11.3 20 
28.5 

(83) 

26.3 

(3812.9) 

91 

16 

S-16-1 Experienced Vibrator 11.3 100 
28.5 

(83) 

30.4 

(4411.7) 

92 S-16-2 Experienced Vibrator 11.3 100 
28.5 

(83) 
33 (4785.6) 

93 S-16-3 Experienced Vibrator 11.3 100 
28.5 

(83) 

31.7 

(4596.8) 

94 S-16-4 Experienced Vibrator 11.3 100 
28.5 

(83) 

30.9 

(4483.4) 

95 S-16-5 Experienced Vibrator 11.3 100 
28.5 

(83) 

35.4 

(5136.4) 

96 S-16-6 Experienced Vibrator 11.3 100 
28.5 

(83) 

35.4 

(5138.2) 

97 

17 

S-17-1 Experienced Manual 20.4 20 7.9 (46) 
21.1 

(3056.2) 

98 S-17-2 Experienced Manual 20.4 20 7.9 (46) 23 (3338.5) 

99 S-17-3 Experienced Manual 20.4 20 7.9 (46) 
19.9 

(2892.2) 

100 S-17-4 Experienced Manual 20.4 20 7.9 (46) 
22.3 

(3238.1) 

101 S-17-5 Experienced Manual 20.4 20 7.9 (46) 
21.6 

(3129.6) 

102 S-17-6 Experienced Manual 20.4 20 7.9 (46) 
21.4 

(3101.2) 

103 

18 

S-18-1 
Not 

Experienced 
Vibrator 11.3 20 

28.5 

(83) 

23.1 

(3345.9) 

104 S-18-2 
Not 

Experienced 
Vibrator 11.3 20 

28.5 

(83) 

21.8 

(3168.6) 

105 S-18-3 
Not 

Experienced 
Vibrator 11.3 20 

28.5 

(83) 

23.8 

(3452.4) 

106 S-18-4 
Not 

Experienced 
Vibrator 11.3 20 

28.5 

(83) 

23.1 

(3356.4) 

107 S-18-5 
Not 

Experienced 
Vibrator 11.3 20 

28.5 

(83) 

23.5 

(3414.3) 
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108 S-18-6 
Not 

Experienced 
Vibrator 11.3 20 

28.5 

(83) 
24 (3486.6) 

109 

19 

S-19-1 Experienced Manual 11.3 100 7.9 (46) 26 (3767.9) 

110 S-19-2 Experienced Manual 11.3 100 7.9 (46) 27 (3915.7) 

111 S-19-3 Experienced Manual 11.3 100 7.9 (46) 
24.1 

(3499.7) 

112 S-19-4 Experienced Manual 11.3 100 7.9 (46) 25 (3625.5) 

113 S-19-5 Experienced Manual 11.3 100 7.9 (46) 24.3 (3530) 

114 S-19-6 Experienced Manual 11.3 100 7.9 (46) 
25.9 

(3760.4) 

115 

20 

S-20-1 Experienced Vibrator 20.4 20 
28.5 

(83) 

28.8 

(4174.4) 

116 S-20-2 Experienced Vibrator 20.4 20 
28.5 

(83) 

30.1 

(4372.6) 

117 S-20-3 Experienced Vibrator 20.4 20 
28.5 

(83) 
27.6 (4003) 

118 S-20-4 Experienced Vibrator 20.4 20 
28.5 

(83) 
28 (4058.8) 

119 S-20-5 Experienced Vibrator 20.4 20 
28.5 

(83) 

30.3 

(4387.5) 

120 S-20-6 Experienced Vibrator 20.4 20 
28.5 

(83) 
29 (4211.3) 

121 

21 

S-21-1 
Not 

Experienced 
Manual 20.4 20 7.9 (46) 

21.8 

(3168.3) 

122 S-21-2 
Not 

Experienced 
Manual 20.4 20 7.9 (46) 

23.7 

(3435.3) 

123 S-21-3 
Not 

Experienced 
Manual 20.4 20 7.9 (46) 

22.6 

(3271.7) 

124 S-21-4 
Not 

Experienced 
Manual 20.4 20 7.9 (46) 23 (3342.1) 

125 S-21-5 
Not 

Experienced 
Manual 20.4 20 7.9 (46) 

21.8 

(3161.8) 

126 S-21-6 
Not 

Experienced 
Manual 20.4 20 7.9 (46) 22 (3184) 

127 

22 

S-22-1 
Not 

Experienced 
Manual 11.3 20 

28.5 

(83) 

26.6 

(3851.6) 

128 S-22-2 
Not 

Experienced 
Manual 11.3 20 

28.5 

(83) 

23.8 

(3454.5) 

129 S-22-3 
Not 

Experienced 
Manual 11.3 20 

28.5 

(83) 
24 (3475.1) 

130 S-22-4 
Not 

Experienced 
Manual 11.3 20 

28.5 

(83) 

26.8 

(3883.1) 

131 S-22-5 
Not 

Experienced 
Manual 11.3 20 

28.5 

(83) 

24.8 

(3602.6) 

132 S-22-6 
Not 

Experienced 
Manual 11.3 20 

28.5 

(83) 
26.3 (3820) 

133 

23 

S-23-1 
Not 

Experienced 
Vibrator 11.3 100 7.9 (46) 

23.5 

(3412.5) 

134 S-23-2 
Not 

Experienced 
Vibrator 11.3 100 7.9 (46) 

23.1 

(3345.3) 

135 S-23-3 
Not 

Experienced 
Vibrator 11.3 100 7.9 (46) 22 (3194.2) 

136 S-23-4 
Not 

Experienced 
Vibrator 11.3 100 7.9 (46) 

23.5 

(3407.3) 
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137 S-23-5 
Not 

Experienced 
Vibrator 11.3 100 7.9 (46) 

21.7 

(3143.8) 

138 S-23-6 
Not 

Experienced 
Vibrator 11.3 100 7.9 (46) 

23.6 

(3420.6) 

139 

24 

S-24-1 Experienced Manual 20.4 20 
28.5 

(83) 

28.8 

(4178.3) 

140 S-24-2 Experienced Manual 20.4 20 
28.5 

(83) 
28 (4067.8) 

141 S-24-3 Experienced Manual 20.4 20 
28.5 

(83) 

26.3 

(3814.6) 

142 S-24-4 Experienced Manual 20.4 20 
28.5 

(83) 

27.9 

(4052.4) 

143 S-24-5 Experienced Manual 20.4 20 
28.5 

(83) 

30.7 

(4455.1) 

144 S-24-6 Experienced Manual 20.4 20 
28.5 

(83) 

30.8 

(4471.7) 

145 

25 

S-25-1 
Not 

Experienced 
Vibrator 20.4 100 7.9 (46) 

23.9 

(3473.5) 

146 S-25-2 
Not 

Experienced 
Vibrator 20.4 100 7.9 (46) 

25.1 

(3635.7) 

147 S-25-3 
Not 

Experienced 
Vibrator 20.4 100 7.9 (46) 

26.5 

(3839.5) 

148 S-25-4 
Not 

Experienced 
Vibrator 20.4 100 7.9 (46) 

27.8 

(4030.8) 

149 S-25-5 
Not 

Experienced 
Vibrator 20.4 100 7.9 (46) 26.2 (3802) 

150 S-25-6 
Not 

Experienced 
Vibrator 20.4 100 7.9 (46) 

25.7 

(3726.9) 

151 

26 

S-26-1 Experienced Vibrator 20.4 100 7.9 (46) 
26.5 

(3842.3) 

152 S-26-2 Experienced Vibrator 20.4 100 7.9 (46) 
24.6 

(3574.8) 

153 S-26-3 Experienced Vibrator 20.4 100 7.9 (46) 
25.9 

(3752.4) 

154 S-26-4 Experienced Vibrator 20.4 100 7.9 (46) 
26.1 

(3782.8) 

155 S-26-5 Experienced Vibrator 20.4 100 7.9 (46) 
24.7 

(3584.6) 

156 S-26-6 Experienced Vibrator 20.4 100 7.9 (46) 
26.1 

(3783.8) 

157 

27 

S-27-1 Experienced Vibrator 11.3 20 7.9 (46) 
23.5 

(3404.5) 

158 S-27-2 Experienced Vibrator 11.3 20 7.9 (46) 
23.3 

(3381.2) 

159 S-27-3 Experienced Vibrator 11.3 20 7.9 (46) 
22.9 

(3318.7) 

160 S-27-4 Experienced Vibrator 11.3 20 7.9 (46) 23 (3329.3) 

161 S-27-5 Experienced Vibrator 11.3 20 7.9 (46) 
21.5 

(3117.3) 

162 S-27-6 Experienced Vibrator 11.3 20 7.9 (46) 
22.9 

(3326.3) 

163 

28 

S-28-1 
Not 

Experienced 
Manual 20.4 100 7.9 (46) 

27.6 

(4000.7) 

164 S-28-2 
Not 

Experienced 
Manual 20.4 100 7.9 (46) 

27.4 

(3976.9) 
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165 S-28-3 
Not 

Experienced 
Manual 20.4 100 7.9 (46) 

26.4 

(3836.1) 

166 S-28-4 
Not 

Experienced 
Manual 20.4 100 7.9 (46) 

25.4 

(3685.7) 

167 S-28-5 
Not 

Experienced 
Manual 20.4 100 7.9 (46) 

27.3 

(3958.7) 

168 S-28-6 
Not 

Experienced 
Manual 20.4 100 7.9 (46) 28 (4060.2) 

169 

29 

S-29-1 
Not 

Experienced 
Manual 20.4 100 

28.5 

(83) 

32.1 

(4660.2) 

170 S-29-2 
Not 

Experienced 
Manual 20.4 100 

28.5 

(83) 

33.4 

(4849.9) 

171 S-29-3 
Not 

Experienced 
Manual 20.4 100 

28.5 

(83) 

35.2 

(5107.2) 

172 S-29-4 
Not 

Experienced 
Manual 20.4 100 

28.5 

(83) 

36.6 

(5304.1) 

173 S-29-5 
Not 

Experienced 
Manual 20.4 100 

28.5 

(83) 

32.7 

(4744.1) 

174 S-29-6 
Not 

Experienced 
Manual 20.4 100 

28.5 

(83) 

32.1 

(4660.6) 

175 

30 

S-30-1 Experienced Manual 11.3 20 7.9 (46) 
22.4 

(3247.7) 

176 S-30-2 Experienced Manual 11.3 20 7.9 (46) 
21.8 

(3164.7) 

177 S-30-3 Experienced Manual 11.3 20 7.9 (46) 
23.2 

(3362.1) 

178 S-30-4 Experienced Manual 11.3 20 7.9 (46) 
23.3 

(3381.4) 

179 S-30-5 Experienced Manual 11.3 20 7.9 (46) 
23.2 

(3358.8) 

180 S-30-6 Experienced Manual 11.3 20 7.9 (46) 24 (3480.4) 

181 

31 

S-31-1 
Not 

Experienced 
Manual 11.3 100 

28.5 

(83) 

35.6 

(5167.3) 

182 S-31-2 
Not 

Experienced 
Manual 11.3 100 

28.5 

(83) 

37.1 

(5381.3) 

183 S-31-3 
Not 

Experienced 
Manual 11.3 100 

28.5 

(83) 

35.2 

(5106.7) 

184 S-31-4 
Not 

Experienced 
Manual 11.3 100 

28.5 

(83) 

33.7 

(4880.7) 

185 S-31-5 
Not 

Experienced 
Manual 11.3 100 

28.5 

(83) 

36.8 

(5342.7) 

186 S-31-6 
Not 

Experienced 
Manual 11.3 100 

28.5 

(83) 

37.3 

(5415.1) 

187 

32 

S-32-1 Experienced Manual 20.4 100 7.9 (46) 
27.2 

(3938.7) 

188 S-32-2 Experienced Manual 20.4 100 7.9 (46) 
26.5 

(3849.8) 

189 S-32-3 Experienced Manual 20.4 100 7.9 (46) 
28.8 

(4173.9) 

190 S-32-4 Experienced Manual 20.4 100 7.9 (46) 
28.8 

(4182.2) 

191 S-32-5 Experienced Manual 20.4 100 7.9 (46) 
28.3 

(4100.4) 

192 S-32-6 Experienced Manual 20.4 100 7.9 (46) 
29.5 

(4277.6) 
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Appendix B.8: Laboratory Setup 

 

 

 

 
 

Hot dry environment (Relative humidity 20% and Temperature 29 ±1 °C) 

 

 

Hot wet environment (Relative humidity 100% and Temperature 29 ±1 °C) 
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Cold room for dry and cold environments (Relative humidity 20%, Relative humidity 

100% and Temperature 7 ±1 °C 
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Appendix C: Comparison between Designed Experiments and Fuzzy Models for for 

Chapter 4  

 

Table 34. Comparison of DOE regression models versus Fuzzy Inference Systems (FIS) 

 

Statistic 
Compressive 

strength effect 
Cost Effect Production Effect 

DOE Sugeno FIS DOE Sugeno FIS DOE Sugeno FIS 
R2 91.2% 94.9% 96.2% 97.5% 94.7% 96.5% 
S 4.9 4.0 4.7 4.0 4.8 3.9 

RMSE 5.0 7.9 4.7 3.8 4.7 3.7 
 

Appendix C.1: Predicted versus Experimental Data for Strength Effect 
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Appendix C.2: Predicted versus Experimental Data for Cost Effect 
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Appendix C.3: Predicted versus Experimental Data for Production Rate Effect 
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