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Abstract 

Concrete members deform discontinuously in the form of cracks and fracture. Continuum 

mechanics, which has dominated the field of solid mechanics over the years, does not handle such 

discontinuities. A material, as defined by continuum mechanics is that which is continuous and 

fills the space it occupies. Although this is a reasonable assumption for metals, it is an unrealistic 

notion for concrete. 

Stewart Silling invented peridynamics, which involves nonlocal solid modelling upon a 

continuous material space. Walter Gerstle developed a practical application of the peridynamic 

model for solid mechanics called the state-based peridynamic lattice model (SPLM). This 

approach involves material modelling with a finite number of interacting lattice particles rather 

than a continuum. The advantage of SPLM lies in its ease of computational implementation. SPLM 

is used in this thesis to analyze the very widely used Brazilian split cylinder test in estimating the 

uniaxial tensile strength of concrete. Additionally, the direct tension test and the modulus of 

rupture test are modelled to better understand the tensile strength of concrete and concrete 

behavior.   
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Chapter 1   Introduction 

1.1 Motivation 

Human understanding has evolved over the years. Technological advancements have made 

it possible to understand and solve increasingly complex problems. Necessity is the mother of 

invention. The first freely programmable mechanical computer in the world, Z1 was built by 

Konrad Zuse in 1938 (Rojas, 1997). It was unforeseen then, how computers would dominate 

technology. But now, computers have become a necessity and have forever changed science and 

technology.  

Understanding the behavior of deformable bodies has gained a lot of attention in the field 

of design. Though many models already exist, a new model for deformable solids is needed. In 

this thesis, it is attempted to explain the need for this new model and also describe it with examples. 

Some of the great engineering minds of the past who used calculus to analyze structural members 

are Newton, Euler, Bernoulli, Navier, Cauchy, etc.  The theories proposed by the latter four 

involved a set of partial differential equations to solve linear elastic problems. These methods were 

impractical for direct engineering applications and this gave birth to simplified theories of 

elasticity to analyze deformable solids. Later, two main categories, namely mechanics of materials 

and continuum mechanics, were developed. 

While mechanics of materials had become the most workable method for the human mind, 

it was only approximate and limited. Continuum mechanics brought much more generality 

allowing solutions to nonlinear relations between stress and strain of the material. However, the 

major drawback in continuum mechanics is that it could not simulate any discontinuity in the solid 

body. Large deformations were solvable but the fact that these deformations may ultimately lead 
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to discontinuities was ignored. In concrete members for example, cracks are observed even before 

load is applied to them, thus making the members discontinuous. 

The need for a new material model was acknowledged by Stewart Silling who came up 

with the concepts of bond-based peridynamics (Silling, 2000). This theory was developed in the 

year 2000 and improved in the later years to be called the state-based peridynamics (Silling, Epton, 

Weckner, Xu, & Askari, 2007). Now, we have the state based peridynamic lattice model (SPLM) 

developed by Walter Herbert Gerstle which assumes that a solid body is composed of discrete and 

finite number of particles that interact with each other via force functions. SPLM is a promising 

approach involving computational simulations to evaluate the design strength of concrete 

structures. The SPLM particle’s motion follows Newton’s laws. 

1.2 Scope of Thesis 

Concrete, the most widely used material in construction, is the topic of interest in this 

thesis. Over the years, concrete structures have become an important part of the infrastructure. An 

increasing need for efficient structures demands accurate behavior of concrete, as a material. The 

quality of bond developed between the aggregate and the cement paste is dependent both on the 

compressive and tensile strength of concrete. Tensile strength has a great role to play in the 

evaluation of shear resistance in light weight concrete structural members. Crack initiation and 

propagation in concrete are very closely related to the tensile properties of the material. This affects 

the appearance, stiffness and damping of the structure (Cornelissen & Reinhardt, 1984).  

Thus the study of loading capacity, serviceability and, in the long term, durability of 

structures requires the knowledge of tensile strength of concrete. The three test methods to evaluate 

the tensile strength of concrete are 
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1. the modulus of rupture test 

2. the direct tension test 

3. the Brazilian split cylinder test. 

Among these tests, the Brazilian split cylinder test is widely used. While the results from 

this test are used as an indirect measure of concrete splitting strength, research proves that this 

method is a poor indicator of the uniaxial tensile strength of concrete. This thesis presents a 

detailed study of the behavior of concrete cylinder specimens under the traditional Brazilian split 

cylinder test method using the concepts of the state-based peridynamic lattice modelling. The other 

two tests to determine concrete tensile strength which are the modulus of rupture test and the direct 

tension test are also simulated and the results are studied. These results are then compared to lab 

results discussed later. 

The simplicity of the SPLM is potentially very attractive to practicing engineers. With the 

SPLM, the engineer has the opportunity to represent with great physical fidelity the behavior of 

reinforced concrete structures. A parallel particle simulation code called pdQ is used to analyze 

these models. To perform SPLM simulations and analyze models, the FORTRAN and MATLAB 

programming languages are used. Using pdQ, the effects of parameters such as elasticity, 

plasticity, damage, geometrical nonlinear behavior, bond configuration and interaction between 

different lattice bodies on the strength of concrete are studied. By comparing the simulation results 

to laboratory results from the tests conducted by Wright (1955) and SAP2000 analysis, both the 

strengths and the limitations of using the SPLM for such practical purposes are determined.  

The aim of this thesis is to offer practical modeling advice for engineers using the SPLM, 

provide computational timing statistics, investigate the objectivity of the SPLM and discuss 
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methods for applying the loads and the support conditions. With the concepts of SPLM along with 

the power of modern computers, it is intended to show that the classical approaches, namely those 

mentioned in the ACI code, for analyzing reinforced concrete structures may be improved upon. 

1.3 Outline of Thesis 

This thesis includes seven chapters: Introduction, Theories of Deformation of Solids, State-

based Peridynamic Lattice Model, Concrete Uniaxial Tensile Strength, Investigation of the 

Objectivity of SPLM, SPLM Analysis of Lab Specimens, and Discussion, Conclusions and Future 

Work. 

Chapter Two discusses the theories of deformable solids and describes the models arising 

from them. This will help in understanding the similarities and differences between these theories 

and SPLM. An overview of the theory of elasticity, continuum mechanics, and fracture mechanics 

is given. Also, Silling’s and Gerstle’s theories of peridynamics are introduced.  

Chapter Three is about SPLM in detail, describing the lattice and the particles and their 

properties. Also described are the elastic, plastic and damage models in SPLM which are used to 

solve the problems in this thesis. 

Chapter Four explains the significance of the tensile strength of concrete. The three tests 

used to determine the tensile strength of concrete are described.  The standard test procedure of 

the tests are given. Linear elastic analysis of a standard cylinder model is shown using SAP2000. 

Comments on an Indirect Tensile Test on Concrete Cylinders (Wright, 1955), a paper published 

in the Magazine of Concrete Research in 1955 is described in this chapter and the results of each 

of the test methods in the paper are listed. 
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Chapter Five investigates the objectivity of the SPLM. Aspects like position of steel 

platens, effect of time dependent analysis on split strength, and interaction between steel and 

concrete lattice bodies are analyzed. 

Chapter Six presents comparison of peak loads between SPLM analysis and laboratory 

tests of the Brazilian split cylinder test, direct tension test and the modulus of rupture test. Also, 

the effect of concrete lattice rotation on the peak strength is analyzed.  

Chapter Seven presents a summary of analysis and discussion of the simulations conducted 

along with some conclusions. Scope for future research work is also discussed. 

  



6 

 

Chapter 2   Theories of Deformation of Solids 

In the very beginning, man began to understand the concepts of design and construction 

with the help of trial and error methods with wood, soil and stone as the basic materials. Later, the 

quest for a better and safer lifestyle increased and the applications of mathematics got more and 

more involved in this process. Pioneers in the past had limited computational power and 

capabilities. This required them to perform hand calculations to solve problems and then apply 

them realistically in engineering practice. This could be not be done unless the models were 

simplified enough. Later, modern equipment like calculators, electronic computers and digital 

computers were developed which eliminated these limitations. This paved the way for new models 

and theories. 

When Newton established the concepts of mass, force, acceleration and simultaneously 

calculus, many engineering problems had unexpected solutions. A great amount of attention was 

then given to the study of elastic axial members using this fundamental tool of mathematics. 

Natural philosophers, such as Euler and the Bernoulli brothers, were able to model elastic and axial 

members such as beams and columns successfully without including the concepts of stress and 

strain. The notions of stress and strain was introduced by Cauchy, which today define what we 

mean by a ‘deformable body’.  

This chapter first provides a brief description of some crucial theories and models along 

with their limitations, and subsequently introduces the modelling concepts of peridynamics.  
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Firstly, let us see where the classical solid mechanics fails. The fundamental concepts in 

classical solid mechanics are stress and strain. The traction vector or the stress vector defined only 

with respect to a point on a particular oriented surface is 

 
𝒕 ≡  lim∆𝐴 →0 (

∆𝑭

∆𝐴
) 

(2.1) 

where ∆𝑭 is the force vector acting upon area ∆𝐴. This is illustrated in Figure. 2.1. 

Figure 2.1 Traction vector - from pp.10 (Gerstle, 2015) 

 

For convenience, the vectors are in bold font and the scalars are in normal font. Similarly, 

the uniaxial normal infinitesimal strain component 𝜀𝑥𝑥  also called Cauchy or small-displacement 

strain is  

 
𝜀𝑋𝑋  ≡  lim∆𝑥 →0 (

∆𝑢

∆𝑋
) =  

𝜕𝑢

𝜕𝑋
 ,  

(2.2) 

where u is the axial displacement and X is the uniaxial reference position.  
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As long as the above limits exist to a reasonable approximation, these definitions work 

fine. The traction vector is defined only when the outward-pointing unit normal 𝒏̂ is defined 

uniquely. However, all real materials have microstructure, which means that these limits cannot 

exist uniquely in any real material. For geometric discontinuities like cracks and corners, these 

limits do not exist uniquely. So when the displacement field is discontinuous, these definitions are 

inapplicable. 

Consider a typical simply supported beam problem loaded centrally with a point load. 

When classical linear elastic stress-strain behavior is assumed, an exact closed-form analytical 

solution to the linear differential equations of elasticity of this problem does not exist. When the 

solution is expressed as an infinite sum of analytical basis functions, it can be observed that 

singularities in the stress and strain fields at the supports and the point of loading exist.  

In contrast, with SPLM, singularities cannot arise in the solution. Rather than relating stress 

and strain to interpret material behavior, there exists a constitutive function which relates the 

peridynamic discrete deformation state to the peridynamic discrete force state. Thus structural 

deformations and velocities under mechanical loadings are predicted using SPLM in a simpler 

way, shedding the stress strain paradigm. In order to appreciate the SPLM, it is important to firstly 

understand the theory of solid mechanics and its history.  

2.1 Theory of Elasticity 

The modern theory of elasticity developed over more than four centuries starting with 

Leonardo da Vinci, Galileo Galilei, Robert Hooke, Isaac Newton, Bernoulli brothers, Euler, 

Lagrange and Timoshenko. Combined with the concepts of stress and strain, the modern theory of 

elasticity was first developed in the 1820’s by Navier and in the late 1820’s by Cauchy.  
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Navier and Cauchy wrote the pioneering papers about the theory of elasticity in French and 

this is probably the reason why the basic assumptions they made were misunderstood by many 

(Gerstle, 2015). These papers have been annotatively translated into English in the book 

‘Introduction to Practical Peridynamics’ written by Gerstle. In this book, the theory is discussed 

using more familiar notation to modern readers which we will summarize in further sections.  

Consider two distinct points 𝑷 at reference (undeformed) location (𝑋, 𝑌, 𝑍) and 𝑷’ at a 

reference location (𝑋’, 𝑌, 𝑍’) in an elastic body. With respect to the (𝑋, 𝑌, 𝑍) coordinate system, 

these points are considered to be position vectors. In the non-deformed states, the relative position 

vector between these two points is given by 𝑹 ≡  𝑷’ –  𝑷. As the body deforms, points 𝑷 and 𝑷’ 

move to 𝒑 and 𝒑’ respectively. Figure 2.2 comprehensively illustrates these states. 

The displacement field can be represented using Taylor series expansion as 

 
𝑼′ ≅ 𝑼 + 

𝝏𝑼

𝝏𝑿
𝑹 

(2.3) 

 

and the linearized relative displacement vector between p’ and p can be defined as  

 
∆𝒖 = 𝑼′ − 𝑼 =  

𝝏𝑼

𝝏𝑿
𝑹 

(2.4) 

The displacement gradient 
𝝏𝑼

𝝏𝑿
, is a tensor and represented as a 3x3 matrix.  
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There are several important fundamental assumptions which limit the applicability of this 

theory. Only for displacement vectors 𝒖 with magnitude much less than 𝑹, is the linearized relative 

displacement between two points valid. The magnitude of 𝑹 must be small compared to the norm 

of the first derivative to the norm of the second derivative of the displacement field   

 

||𝐑|| ≪    
||
𝝏𝑼
𝝏𝑿

||

||
𝝏𝟐𝑼
𝝏𝟐𝑿

||
⁄  

(2.5) 

 

  

∆𝒖 = 𝑼′ − 𝑼 

𝑼′ = 𝑼+ 
𝝏𝑼

𝝏𝑿
𝑹 

𝒓 

𝑹 

𝑹 

𝑷 

𝑷’ 

𝒑’ 

𝒑 

𝑼 

𝑼 

Figure 2.2 Updated representation of Navier theory 
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In addition, the displacement field U must be differentiable i.e. continuous. The magnitude, 

||𝑹|| must be such that points 𝑷 or 𝑷’ are inside the body. In Navier’s model, the change in length 

∆𝑅 of bond 𝑹 is given in indicial notation as 

 
∆𝑅 = 

(𝑈𝑖,𝑘𝑅𝑘)𝑅𝑖

√𝑅𝑗𝑅𝑗
 

(2.6) 

  

Navier then assumes a force-per-unit-volume, 𝐹, acting upon 𝑷. This 𝐹 corresponds to the 

volume, 𝑑𝑉, associated with particle, 𝑷, due to the relative displacement of 𝑷’. 𝐹 is proportional 

to the change in length, ∆𝑅, of the bond between the two particles. Considering 𝐺(𝑅) to be the 

rapidly decaying function only of 𝑹 =  ||𝑹|| and 𝑑𝑉’ is the differential volume associated with 

particle 𝑷′, 𝐹 is given by 

 𝐹 =  𝐺(𝑅) ∆𝑅𝑑𝑉’ (2.7) 

 

Then by going through a virtual elongation 𝛿∆𝑅, the internal virtual work done by each 

bond is 

 𝛿𝑊𝑏𝑜𝑛𝑑 =  𝛿∆𝑅 . 𝐹 = 
1

2
 𝛿(∆𝑅2)𝐺(𝑅)𝑑𝑉′ (2.8) 

 

After integration over the entire spatial domain followed by integration in Cartesian and 

spherical coordinate system, the virtual work per unit volume is obtained in terms of an elastic 

parameter, 𝜀. Navier assumes body forces, 𝑩, acting per unit volume, Ω, and surface tractions, 𝑻, 

acting per unit boundary surface area, Γ to obtain his final equation of elasticity.  
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The detailed derivation of this equation can be obtained in (Gerstle, 2015). Navier’s 

equation cannot simulate material with Poisson’s ratio other than one quarter since 𝜀 is the only 

elastic parameter in Navier’s equation of elasticity which is given by 

 
𝜀 ≡  (

2𝜋

15
)∫ 𝑅4𝐺(𝑅)𝑑𝑅

∞

0

 
(2.9) 

 

Cauchy showed that Navier’s theory was insufficiently general to represent all isotropic 

linear elastic materials. Therefore, he came up with a model which introduced the concepts of 

stress and strain. Navier and Cauchy together developed the modern theory of elasticity which was 

a corrected mathematical formulation involving a set of partial differential equations and relying 

heavily upon the assumptions of continuity and calculus.  

This theory was much more general than to mechanics of materials but was incapable of 

modelling important features of deformation of solids. Some assumptions related to spatially 

continuous deformations and small deformations are unrealistic, except in very special conditions. 

The solutions obtained from this theory are physically unrealistic, involving singularities in stress 

and strain fields. This led the way to a much more generalized theory of continuum mechanics 

discussed in the next section.   

2.2 Continuum Mechanics 

Continuum mechanics is much more generalized than the linear theory of elasticity because 

the partial differential equations are nonlinear and highly mathematical. The engineering world 

has been dominated by continuum mechanics over the years. This theory is able to model large 

deformation problems with nonlinear stress strain relationships. This theory rests on the idea of 
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the material body being continuous and by assuming continuous spatial, kinematic and kinetic 

behavior of the materials analyzed. It is essential to include the description of continuum 

mechanics in this thesis to understand the similarities and differences between the state based 

peridynamic model, the state based peridynamic lattice model and continuum mechanics.  

The roots of continuum mechanics are from Newton’s calculus, which rests on the 

Cartesian coordinate system of real numbers, and 𝑁𝑅-dimensional real Cartesian space denoted by 

ℝ𝑁𝑅  invented by Descartes. Since continuum mechanics is mathematically expressed using 

tensors, we shall define a tensor briefly. An nth-order tensor can be defined as a real-valued m-

linear function of vectors. This implies, an mth-order tensor, T, is an m-linear function that takes 

m vectors in ℝ𝑁𝑅  and maps them to a real number (Gerstle, 2015). This can be illustrated as 

 T: ℝ𝑁𝑅  × …× ℝ𝑁𝑅  →  ℝ (2.10) 

 

To understand the basis of continuum mechanics model, the kinematics needs to be studied 

which is a major part of the continuum mechanics model. Consider the initial spatial position, 𝑿 

of a continuum particle, 𝑃. The deformed configuration of this particle, 𝑃, is called its current 

spatial position, 𝒙. A continuous deformation mapping function, 𝝋, is used to describe this current 

spatial position given by  

 𝒙 = 𝝋(𝑿) (2.11) 
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The deformation function, 𝝋, is a one-to-one bijective because no self-overlap of the body 

is allowed in deformation and no continuum particle in the initial reference configuration, 𝑿, can 

map to two different continuum particles in the deformed configuration, 𝒙. This implies  

 𝑿 = 𝝋−𝟏(𝒙) (2.12) 

Between two initial reference points, 𝑿 and 𝑿’, the reference vector is defined as  

 𝒅𝑿 = 𝑿′ − 𝑿 (2.13) 

and the spatial vector is defined as 

 𝒅𝒙 = 𝒙′ − 𝒙 (2.14) 

 

The infinitesimal spherical neighborhood of particle, 𝑿, is deformed into an infinitesimal 

ellipsoidal neighbourhood of particle, 𝒙. This gives the mapping, 𝑭, from d𝑿 to d𝒙 called the 

deformation gradient. 𝑭 is a second order tensor which transforms under the conventional rules of 

𝑒1̂ 

𝑒2̂ 

𝑒3̂ 

𝑿 

𝒙 

𝒖 

𝒅𝑿 

𝒅𝒙 

Deformed 

Un-deformed 

Figure 2.3 Continuum mechanics model 
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tensor transformation. This deformation gradient captures at a point, the local spatial rate of 

deformation. The deformation gradient provides an affine mapping in which parallel lines remain 

parallel after transformation. This mapping is done in the neighborhood of the particle from un-

deformed configuration to the deformed configuration as discussed earlier. 𝑭 is given by 

 
𝑑𝒙 =  

𝝏𝝋

𝝏𝑿
𝑑𝑿 = 𝑭𝑑𝑿 

(2.15) 

 

In order to define strain, the Cauchy-Green deformation tensor is used as a basis in solid 

mechanics which is given by 

 𝑪 ≡ 𝑭𝑻𝑭. (2.16) 

The Lagrangian strain tensor E is given by  

 
𝑬 = 

1

2
(𝑪 − 𝑰) =

1

2
(𝑭𝑇𝑭 − 𝑰). 

(2.17) 

Similarly, the Euler-Almansi strain tensor is given by 

 
𝒆 =  

1

2
(𝑰 − 𝑩−1) =

1

2
(𝑰 −  𝑭−𝑻𝑭−1). 

(2.18) 

 

𝑰 is the identity matrix in the above equations. Both the Lagrangian and the Euler-Almansi 

strain tensors (E and e respectively) may be linearized with respect to a given configuration, x. If 

they are linearized about the initial reference configuration, the Cauchy small strain tensor, 𝝐, can 

be obtained. After the kinematics of the continuum mechanics model, the physical laws of 
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mechanics which are related to mass, momentum and thermodynamics may also be applied. For 

further discussion, refer to (Gerstle, 2015). 

Cauchy defined traction, t, as the force per unit area in the current configuration. Within a 

material body, the tractions acting on opposing faces of a planar surface must be equal and 

opposite. This gives 

 𝒕(𝒙, 𝒏) =  −𝒕(𝒙,−𝒏), (2.19) 

where, n, is the unit normal vector shown clearly in Figure 2.1. With this, the Cauchy stress tensor, 

𝝈, which is a second-order tensor, can be obtained as 

 𝒕(𝒏̂) =  𝝈. 𝒏.̂ (2.20) 

This stress tensor gives the traction vector acting upon a unit area of material in the deformed 

configuration. The Cauchy stress tensor is divided into two components namely a volumetric 

component and a deviatoric component. The deviatoric component, s, is given by 

 𝒔 = 𝝈 + 𝑝𝑰, (2.21) 

where 𝑝, is the pressure, which is the hydrostatic part of the Cauchy stress tensor. 𝑝, is given in 

terms of the trace of a tensor as 

 
𝑝 =  

−𝑡𝑟(𝝈)

3
. 

(2.22) 

Defining the first Piola-Kirchoff stress tensor (𝑷) and the second Piola-Kirchoff stress 

tensor (𝑺) and the Kirchoff stress tensor (𝛕), we arrive at an expression which defines the Cauchy 

stress tensor in terms of the deformation gradient. 𝑷, 𝑺, 𝛕 are given by 

 𝑷 =  𝛕𝑭−𝑇 (2.23) 
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 𝑺 =  𝑭−1𝑷 (2.24) 

 𝛕 = 𝑑𝑒𝑡(𝑭)𝛔 = J 𝛔 (2.25) 

Therefore, the Cauchy stress tensor is 

 
𝝈 =

𝟏

𝐽
𝑭𝑺𝑭𝑇 

(2.26) 

In large-deformation mechanics of continuous bodies, these stress measures are meaningful. 

However, they are very difficult for a practicing engineer to apply. To obtain the elastic constants 

for a linear elastic isotropic material, linearized stress strain equation is written in terms of the 

increment in the second Piola-Kirchoff stress tensor (𝑑𝑺), the increment in the Green-Lagrangian 

strain (𝑑𝑬) and the Cauchy-Green deformation tensor (C) as 

 𝑑𝑆𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑑𝐸𝑘𝑙 (2.27) 

 𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (2.28) 

 

Here, 𝜆 and 𝜇 are called Lamé constants. In terms of Young’s modulus E and Poisson’s 

ratio ν, the Lamé constants are given by   

 𝜇 =  
𝐸

2(1+ 𝜈)
 and 𝜆 =  

𝜈𝐸

(1+𝜈)(1−2𝜈)
 (2.29) 

 

The theory of continuum mechanics demands all fields associated with a material body be 

continuous. This spatially continuous body is fundamentally a collection of discrete particles like 

atoms, molecules, aggregate, and sand. With the nonlinear partial differential equations, this 

discipline of continuum mechanics claims to model large deformations and plasticity but this is 
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complicated and unrealistic. This is because no geometric domain with sharp corners, cracks, and 

rough boundaries can have a continuous traction vector. Materials do not always deform 

continuously. Also, these problems may have non-quantitative solutions as sharp corners and 

cracks permit infinite stresses and strains.  

Due to these limitations of both the classical elastic theory and continuum mechanics, 

fracture mechanics was developed in the early twentieth century. 

2.4 Fracture Mechanics 

Fracture was not a scientific discipline until the mid-1800s. Industrial advancements and 

evolution demanded solutions to problems involving fracture and cracking. Fracture was largely 

ignored by the pioneers of elastic theory. This was probably because calculus was based on smooth 

and continuous functions and these functions cannot easily describe sharp discontinuities like 

cracks. In the twentieth century, Charles Edward Inglis (Inglis, 1913)  provided the first analytical 

solution to a problem which was similar to a crack. He showed that for solids with sharp cracks, 

the traditional stress based approach cannot be allowed to predict load at failure because there 

exists a singularity in stress. Inglis considered a problem of an infinitely large plane-stress plate 

having an elliptical hole and subjected to uniaxial tension shown in Fig. 2.4. 
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Inglis showed that the stress within the directly adjacent material on the major axis of the 

ellipse reaches infinity as the elliptical hole becomes narrow. The maximum tensile stress on the 

major axis of the elliptical hole is given by 

 

𝜎𝑚𝑎𝑥 = 𝜎0 (1 + 2√
𝑎

𝜌𝑐
) 

(2.30) 

where, 𝜌𝑐 = 
𝑏2

𝑎
, is the radius of curvature at the end of the major axis of the ellipse. For an 

infinitely sharp crack, the ratio, 
𝜎𝑚𝑎𝑥

𝜎0
=  ∞. The stresses at this crack tip for plane strain and plane 

stress problems were given by Westergaard (Westergaard, 1939) and Williams (Williams, 1997). 

Through the expressions for stress, stress intensity factors 𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼 are introduced which 

correspond to the three modes of deformation namely opening mode, sliding mode and tearing 

mode. Using these factors, the stress field at points within a singular elastic zone located close to 

the crack tip can be obtained. However, this is far from the volume of material close to the crack 

front, within which damage takes place, mostly referred to as a fracture process zone (FPZ). 

Figure 2.4 Inglis’ infinite plate with hole - from pp.121 (Gerstle, 2015) 
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An energy criterion was brought to the linear elastic fracture mechanics (LEFM)  by 

(Griffith, 1921). He explained first that one must look beyond the theoretical infinite stresses at 

sharp cracks and corners, to energy, to understand crack propagation. He developed a very 

important crack propagation criterion called the “Griffith energy criterion” which predicts that 

when the rate of change of potential energy with respect to the newly formed crack area exceeds a 

critical value (otherwise called the critical energy GF), the necessary potential energy needed for 

the crack to propagate is released. It was proved that this criterion worked well for glass but when 

accidents involving steel ships breaking into two halves occurred, it was evident that this criterion 

underestimated the resistance of steel to crack growth and propagation. 

Later, Irwin (Irwin, 1957) proposed that a plastic zone exists in the FPZ in steel which 

absorbs more energy as a crack propagates than what is absorbed as only the surface energy. When 

the plastic portion of the FPZ is smaller than other dimensions in the problem, it contains a stress 

field affected by only 𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼, otherwise, the problem geometry and loading affect this stress 

field. Irwin’s equation for the critical fracture energy thus includes surface energy and energy of 

plastic work which is given by 

 𝐺𝐹 = 𝐺𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐺𝐹𝑃𝑍𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦. (2.31) 
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For a symmetrically loaded crack, with distance from crack tip (r) and angle with respect 

to the plane of the crack (𝜃), the elastic stress field in the vicinity of the crack tip having Cauchy 

stress components 𝜎𝑖𝑗(𝑟, 𝜃) and simple trigonometric functions 𝑓𝑖𝑗 is given by 

 
𝜎𝑖𝑗(𝑟, 𝜃) =  

𝐾𝐼

√2𝜋𝑟
 𝑓𝑖𝑗(𝜃) 

(2.32) 

The energy release rate G for a planar crack growth is 

 
𝐺 = 

𝐾𝐼
2

𝐸′
+
𝐾𝐼𝐼
2

𝐸′
+
𝐾𝐼𝐼𝐼
2

2𝜇
, 

(2.33) 

for plane stress, 𝐸′ =  𝐸, (2.34) 

for plane strain, 
𝐸′ = 

𝐸

1 − 𝜈2
, 

(2.35) 

and 
𝜇 =  

𝐸

2(1 +  𝜈)
, 

(2.36) 

where E is the Young’s modulus, 𝜈 is the Poisson’s ratio and 𝜇 is the shear modulus. 

Equation 2.32 is not valid in three-dimensional crack problems where the stress intensity 

factors may vary along the crack front. Also, with mode II crack growth, the crack changes 

direction. Irwin then came up with stress intensity factor called fracture toughness 𝐾𝐼𝐶 at which a 

plane-strain Mode I crack begins to propagate. But this factor also has a lot of limitations.  

Thus LEFM only works for specific situations and problems. The linear elastic theory of 

fracture mechanics allows prediction of the propagation of cracks by modifying the geometry of 

the domain with the help of finite element methods or boundary element methods. These cracks 

thus propagate and the point of nucleation of these cracks along with its trajectory is determined 

by the theory of fracture mechanics. This process is not simple. It is not easy to modify the 
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geometry and boundary conditions in a consistent manner using finite element meshes unless 

simplifying assumptions are made. The traditional linear elastic fracture mechanics concept 

considers a crack to be a surface of separation with no tractions between the newly developed 

crack surfaces. This is not completely true. The theory is insufficient in conditions where plasticity 

enters the regime of propagating cracks.  

This led to the development of nonlinear fracture mechanics which proposed the concepts 

of fictitious crack models called nonlinear fracture mechanics models. These models could not be 

solved analytically and required computational models to solve for at least approximate solutions. 

This gave birth to the computational fracture mechanics. There were three methods included in 

this approach (Gerstle, 2015). They were, 

1. Discrete crack models 

2. Smeared crack models 

3. Lattice and particle models. 

While the smeared crack models have been widely used to predict the nonlinear behavior 

of concrete structures, lattice models have been more specific in modelling materials at the meso-

scale level and more complex than macro-scale behavior.  

A more fundamental approach to fracture mechanics was then proposed by Silling (2000), 

who developed the peridynamic model. Peridynamic modelling is introduced along with the bond-

bond based peridynamic model and the state-based peridynamic model in the following sections. 
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2.5 Peridynamics 

Peridynamics, developed by Stewart Silling (Silling, 2000), is a coherent alternative 

framework to the Cauchy stress strain theory. Peridynamics is derived from the Greek roots ‘peri’ 

which means near and ‘dynamic’ which means force. The first theory of peridynamics was the 

bond-based peridynamic theory. This original continuum peridynamic model is based on the 

assumption that Newton’s second law is true for every infinitesimal particle within the domain of 

analysis (Gerstle, 2015; Silling, 2000). In this theory the force between any two particles is 

assumed to be a function of only the states of the two particles. This force is referred to as a 

peridynamic kernel or a force density function also known as the pairwise force function having 

units of force per unit volume per unit volume. The pairwise force function is not dependent on 

nearby particles’ states.  

When the bond-based theory was found to be insufficiently general to model some known 

behaviors of real materials, Silling introduced the state-based peridynamic theory in (Silling et al., 

2007). Both bond-based and state-based peridynamic theories rest on the concepts of continuum 

mechanics assuming material to be spatially continuous.  

Later, to include the concepts of peridynamic particle moments and rotations, micropolar 

peridynamic theory was introduced (Gerstle, Sau, & Silling, 2007). This theory had much more 

advantages when compared to the bond-based theory but was quite complicated when large 

rotations were involved. In light of these difficulties, Gerstle introduced the state-based 

peridynamic lattice model shedding entirely the assumptions of spatial material continuity. In this 

theory, rather than an infinite number of continuum particles, a material is modelled as a finite 
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number of lattice particles interacting with each other. A state based peridynamic lattice model is 

adopted in the current thesis.  

2.6 Bond-based Peridynamic Theory  

To understand the kinematics of the bond based continuum peridynamics, consider a 

particle, 𝑃, at undeformed location, 𝑿, which deforms to location, 𝒙, under an applied load. 

Similarly, consider a particle, 𝑃’, at undeformed location, 𝑿’, which deforms to a location, 𝒙’. The 

displacement vector of particle 𝑃 is 𝒖 = 𝒙 –  𝑿 and the displacement vector of 𝑃’ is 𝒖’ =

𝒙’ –  𝑿’. The vector from 𝑿 to 𝑿’ in Figure 2.5, is defined as the reference bond 𝝃. The  

deformed configuration of the reference bond or otherwise the image of 𝝃 is called the 

deformed bond, 𝝃 +  𝜼. The basic assumption in bond-based theory is that the force between 𝑃 and 

𝑃’ depends only on 𝝃 and 𝝃 +  𝜼, the reference and the deformed bonds respectively. 

 

The vector-valued function, 𝒇, is the interactive force between particles at 𝑿 and 𝑿’. 𝒇, is 

a function of the undeformed bond and the deformed bond of the two particles. The particles at 𝑿 

and 𝑿’ interact only if they are ‘close enough’. This finite distance is referred as the material 

horizon radius, 𝜹. Function 𝒇 is given by 

Figure 2.5 Kinematics in bond-based peridynamic theory – from pp149 

(Gerstle, 2015) 
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 𝒇(𝜼, 𝝃) = 𝟎, ∀ 𝜼, ∀ ||𝝃|| >  𝜹                                                                                                           (2.37) 

2.7 Pairwise Force Function 

Consider the force acting on particle, 𝑃, located at undeformed position, 𝑿. At any time 𝑡, 

this force per unit volume, 𝑳𝒖, is given as the sum of infinitesimal pairwise forces acting on 𝑃 

given by 

 𝑳𝒖(𝑿) =  ∫ℛ  𝒇(𝒖
′ − 𝒖,𝑿′ − 𝑿)𝑑𝑉′,   𝑜𝑛 ℛ (2.38) 

Say, particle 𝑃 has differential mass 𝑑𝑚 = 𝜌0𝑑𝑉 ≡  𝜌0𝑑𝑉(𝑋) where, 𝜌0, is the mass-per-

unit-reference-volume. Applying Newton’s second law to 𝑃, 

    𝑑𝑚𝒖̈ = 𝜌0𝑑𝑉𝑢̈ = (𝑳𝒖 + 𝒃)𝑑𝑉, 𝑜𝑛 ℛ (2.39) 

where the externally applied body force-per-unit-reference-volume is 𝒃 and ℛ is the reference 

space assumed to be a subset of a real three-dimensional Cartesian space, ℝ3. Finally, 

     𝜌0𝒖̈ = ∫ℛ  𝒇(𝒖
′ − 𝒖,𝑿′ − 𝑿)𝑑𝑉′ + 𝒃,   𝑜𝑛 ℛ (2.40) 

where 𝒇(𝒖′ − 𝒖,𝑿′ − 𝑿) = 𝒇(𝜼, 𝝃), is called the pairwise force function with units of force-per-

(volume squared). Density and body force are concepts dependent on continuity of the mass 

distribution and of the reference space, ℛ. For simplicity, the reference space is assumed to be a 

homogeneous, single material. If 𝒇 > 𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒, then peridynamic micro-damage, 𝜔, can 

occur. This will cause 𝒇 to decrease with increasing bond stretch and discontinuities may form in 

the deformation field. This ultimately leads to a crack or fracture. Thus the peridynamic model has 

the ability to model continuous behavior, damage and fracture in a unified computational 

framework (Gerstle, 2015). 
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𝒇, need not be a smooth function, but it has a few restrictions. 𝒇, must satisfy Newton’s 

third law and also the conservation of angular momentum. This theory required that the forces 

between a pair of particles are not only functions of the reference and deformed locations but also 

equal, opposite and collinear with deformed locations of the two particles. This can be represented 

as shown in Fig. 2.6.  

 

The bond-based model is insufficiently general to model materials with Poisson’s ratio 

other than one-quarter. As a result, the bond-based micropolar peridynamic model was introduced 

which included peridynamic particle moments and rotations. The advantages of this model were 

that materials with varying Poisson’s ratio could be modeled and also complex material behavior 

could be modeled. It was also possible with this model to simulate reinforcement with behavior 

such as bending and shear and also a single line of particles. This model however becomes 

complicated for large rotations. Due to all these difficulties, the state based peridynamic theory 

was introduced. 

Figure 2.6 Pairwise force function 𝒇 
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2.8 State-based Peridynamic Theory  

The state-based peridynamic theory was introduced as an extension to the bond-based 

peridynamic theory by including the concepts of force state 𝑻 and deformation state 𝒀. This theory 

allows the pairwise force function between two particles, 𝑃 and 𝑃’, to be a function of the relative 

reference position, 𝝃, and the relative displacement, 𝜼, as well as the reference and deformed 

positions, X and x, of all particles that are within the union of material horizons of both particles 

𝑃 and 𝑃’.  

The state-based peridynamic theory is more general than continuum mechanics. Linear 

elastic materials with varying Poisson’s ratio can be modelled using this theory. Additionally, rate 

dependent analysis can also be included. It is capable to represent continuous and discontinuous 

deformations and also dynamic behavior of materials. While all these generalizations exist, it is 

still unclear how the discontinuous fields can be represented on the computer in a simple way. The 

state-based peridynamic theory is explained in Chapter 3.   
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Chapter 3   State Based Peridynamic Lattice Model (SPLM) 

3.1 Introduction 

The state-based peridynamic lattice model (SPLM) was introduced by Gerstle and his 

students in which, rather than an infinite number of continuum particles, the material is modelled 

as a finite number of interacting lattice particles. This is a specialization of Silling’s continuum 

peridynamic model. The problem of defining mass density can be avoided by employing a lattice 

particle. The interaction of these particles with a specified mass is done by way of peridynamic-

bond forces interacting with neighboring particles. It is assumed that these forces are a function of 

bond stretches of all neighboring particles. The SPLM is combined with powerful computers to 

solve problems in solid mechanics.  

Prior to moving on to the SPLM, Gerstle noted that neither the bond-based peridynamic 

lattice model nor the micropolar lattice model was promising to implement isochoric plasticity 

(Gerstle, 2015). In this chapter, we will describe briefly the key concepts of the SPLM which will 

enable the reader to understand the simulations performed in the next chapters. In order to 

understand the SPLM, it is first important to study the discretization of the material body. Later 

on, we will study lattice particles and the peridynamic lattice models for elasticity, damage, 

plasticity. 
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3.2 Lattice Model and Particles 

3.2.1 The Lattice 𝓛 

In order to obtain a computational solution, the system needs to be discretized.  With the 

bond-based theory, general material behavior cannot be modelled. Both the bond-based and the 

state-based peridynamic theories rest on the concepts of continuum mechanics. This means that 

the constitutive model has infinite number of points and at all of these points,  𝜌0𝒖̈ =

∫
ℛ
 𝒇(𝒖′ − 𝒖,𝑿′ − 𝑿)𝑑𝑉′ + 𝒃,   𝑜𝑛  ℛ must be satisfied. Thus, the system of equations need 

discretization in order to be implemented on a modern computer (Gerstle, 2015). To discretize the 

model, geometry of the solid body may be represented as a lattice of material particles instead of 

a continuum. 

The motion of this material body is described using four methods according to (Truesdell, 

1965). To apply Newton’s laws and implement them on digital computers, we will use the natural 

material description unlike in continuum mechanics which uses the relative, spatial or the 

referential description as the independent variable. Thus, position is defined as 𝒙 = 𝒙(𝑃, 𝑡) and 

velocity is defined as 𝒗 = 𝒗(𝑃, 𝑡) where, the independent variables describing the domain of 𝒙, 𝒗 

are 𝑃, 𝑡. Note that 𝑃 is the name of a particle and not the position of a particle. 

There are several reasons for using a lattice to represent a solid body. Simplicity is one of 

them. Also, in a finite-mass-particle-based-model, mass is conserved by virtue of the fact that the 

mass of particle does not vary with time. Momentum is conserved by applying Newton’s second 

and third laws appropriately to a particle. Conservation of energy is achieved by selecting 

appropriate peridynamic and thermodynamic particle interactions. Symmetry can be exploited by 
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adopting a lattice. In a lattice, each particle occupies an identical volume. Several other advantages 

of lattices are found in (Gerstle, 2015). 

3.2.2 Lattice Topology, Material Neighborhood, Domain Discretization 

Topology, material neighborhood and domain discretization are significant in the study of 

peridynamic lattices. The study of connectivity is referred to as topology. Questions like nearest 

neighbor to a certain particle, second nearest neighbors to that particle and so on can be answered 

with the help of lattice topology. Lattice topology also gives an organized bond structure to a 

particle and its neighbors such that the constitutive model of SPLM can be easily represented. 

Lattice topology is also useful to understand whether a particle is on the boundary of a lattice body 

or not. We can also identify numbering of bonds with lattice topology which is introduced in the 

next section. In order to simplify the identification of the nearest neighbor to a point, we will 

consider the topology of an integer metric space. 

The set of points with which each material particle interacts within the solid body is called 

the neighborhood of the particle. If the particle domain has 𝑁𝑃 particles then, the number of force 

interactions per time step is 𝑁𝐹 = 
𝑁𝑃(𝑁𝑃−1)

2
=

𝑁𝑃
2

2
. This is for a large number of particles. In order 

to reduce the number of force interactions, the domain can be decomposed into an array of cubical 

cells whose size is greater than the peridynamic horizon 𝛿. Now the force interactions of a particle 

are only with particles within its own cell (𝑁𝑄 ≈ 18) and particles within adjacent cells (𝑁𝐴 ≈ 27) 

and 𝑁𝐹 ≈
𝑁𝑃×𝑁𝐴×𝑁𝑄

2
. Thus the number of force interactions are reduced with domain 

decomposition. To avoid domain decomposition, a neighbor list which defines the topology of 

discrete particles can be precomputed before entering the time integration loop which will be 

discussed later. 
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3.2.3 Mathematical Description of a Particle Lattice Model 

A regular rectangular, hexagonal close packed (HCP) or face-centered cubic (FCC) array 

of particles are shown in Fig. 3.1. The layers of an FCC packing step constantly. Refer to 

definitions 6.2 and 6.3 in Gerstle (2015). For a one dimensional problem, a straight row of equally 

spaced particles can be assumed. For a two dimensional problem, a close packed hexagonal lattice 

and for a three dimensional problem, a face-centered cubic lattice can be assumed. 

 

 

Lattice Λ𝑁𝑅 contains an infinite number of lattice points. The lattice coordinates are given 

by 𝑁𝑅 × 1 array of integer components {𝑎𝑖} with respect to a lattice basis, 𝐵𝑁𝑅 . The important 

parameters needed to describe a lattice mathematically are given in Table. 3.1. 

 

 

 

(a)  (b)  

Figure 3.1 (a) Rectangular array (b) Face centered cubic array and Hexagonal array – from pp187. (Gerstle, 2015) 
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Table 3.1 Lattice related notations 

 ℤ3 3D integer space 

ℝ3 3D Real Euclidian space 

ℝ𝑁𝑅   𝑁𝑅-dimensional real Euclidian space 

𝑿 =  ∑ 𝑋𝑖𝒆̂𝒊
𝑁𝑅

𝑖=1
 

Initial reference location of particle P 

𝒆̂𝒊 Unit basis vector 

{𝑋𝑖} Array of initial, undeformed coordinates 

𝑿𝟎 Location of origin of lattice coordinates 

𝐵𝑁𝑅 Lattice basis with a set of 𝑁𝑅-dimensional vectors 𝒃𝒊 

𝐵𝑁𝑅 = {𝒃𝟏…𝒃𝑵𝑹} A set of 𝒃𝒊 ∈ ℝ
𝑁𝑅  

[𝐵𝑁𝑅] =  [

𝑏11 ⋯ 𝑏𝑁𝑅1

⋮ ⋱ ⋮
𝑏1𝑁𝑅 ⋯ 𝑏𝑁𝑅𝑁𝑅

] 

Lattice basis matrix 

Λ𝑁𝑅 𝑁𝑅-dimensional lattice in ℝ𝑁𝑅  

Λ Lattice when 𝑁𝑅 is unimportant 

ℒℛ Lattice body-subset of the particles within ℛ 

ℛ 𝑁𝑅-dimensional solid body in ℝ𝑁𝑅 

d(Λ𝑁𝑅) = 𝑑𝑒𝑡[𝐵𝑁𝑅] Co-volume of a lattice 

 

 A material in a linear elastic regime is represented by two properties namely modulus of 

elasticity E and Poisson’s ratio 𝜈. In SPLM another property called lattice spacing L is introduced. 

For each material body, a material lattice provides a length scale L. This is helpful in constitutive 

modeling as it specifies the level of detail of the material body. This scale should not be smaller 
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than the intrinsic length scale of a material. The only restriction on the particle mass is that the 

lattice spacing cannot be smaller than the largest component of the meso material. This is why a 

lower limit is set on the lattice spacing for solid modeling in SPLM. 

3.2.4 Bond and Particle Bond List 

  Bond is defined as the potential interaction of a particle 𝑃𝑖 ∈ Λ, with other particles. 

For a single typical particle in FCC particle lattice with lattice particle spacing 𝐿, and a rigid body 

rotation matrix [𝑄], the lattice basis matrix is given by 

 

[𝐵3] = 𝐿[𝑄] 

[
 
 
 
 
 
 
 1

1

2

1

2

0
√3

2

1

2√3

0 0 √
2

3 ]
 
 
 
 
 
 
 

 

 

 

(3.1) 

A sequential list with all the bonds between a particle and other potentially interacting 

particles in the lattice is called a lattice particle bond list 𝔹. The numbering is done as sequential 

integers from 1 to the number of bonds per particle, 𝑁𝐵 (refer to Definition 6.6 in (Gerstle, 2015)). 

𝑃𝑖’s neighbor list 𝒩[𝑃𝑖] maps the particle bond list to adjacent lattice particles, 

 𝒩[𝑃𝑖]〈∙〉: 𝔹 ⟶  ℙ (3.2) 

 

If there is no adjacent particle for 𝑃𝑖, then  

 𝒩[𝑃𝑖]〈𝐵𝑗〉 =  𝑃∅ (3.3) 

where 𝑃∅, is a null particle of ℙ. The numbering and positioning of the bonds, 𝐵𝑗, for a single 

particle in FCC lattice is shown in Fig. 3.2.  
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Figure 3.2 Bond numbering order and reference coordinates of first and second nearest neighboring particles for 

FCC lattice – from pp191. (Gerstle, 2015) 

 

The twelve nearest neighbors are of an undeformed length, 𝐿, and the six second-nearest 

neighbors are of undeformed length, √2𝐿. The reference coordinates, 𝑿, of the corresponding bond 

number are listed in Table 3.2 
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Table 3.2 Reference coordinates 

Bond 

Number 

 

(X,Y,Z) Bond 

Number 

 

(X,Y,Z) 

 

 

1 (1,0,0) 

 

10 
(
1

2
,
−√3

6
,
−√6

3
) 

 

2 (−1,0,0) 
 

11 
(0,

−√3

3
,
√6

3
) 

 

3 
(
1

2
,
√3

2
, 0) 

 

12 
(0,

√3

3
,
−√6

3
) 

4 
(
−1

2
,
−√3

2
, 0) 

 

13 
(0,

2

√3
,
√6

3
) 

5 
(
−1

2
,
√3

2
, 0) 

 

14 
(0,

−2

√3
,
−√6

3
) 

6 
(
1

2
,
−√3

2
, 0) 

 

15 
(−1,

−√3

3
,
√6

3
) 

7 
(
1

2
,
√3

6
,
√6

3
) 

 

16 
(1,

√3

3
,
−√6

3
) 

8 
(
−1

2
,
−√3

6
,
−√6

3
) 

 

17 
(1,

−√3

3
,
√6

3
) 

9 
(
−1

2
,
√3

6
,
√6

3
) 

18 
(−1,

√3

3
,
−√6

3
) 
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3.2.5 Lattice Model for a Deformable Solid Structure 

The definitions of a structure, a material body, a material particle and its attributes are 

represented in Fig. 3.3. A structure has component lattice bodies which are of different materials. 

A material body consists of a lattice body, a particle list, a bond list, and a neighbor list. A material 

particle is characterized by particle fixed attributes and particle alterable attributes. 

  

  

Structure

ℒ𝑅1 Material1

ℒ𝑅2 Material2

ℒ𝑅3 Material3

etc. etc.

Material Body

Lattice body ℒ𝑅1

Particle list ℙ

Bond list 𝔹

Neighbor list 𝒩 𝑃𝑖

Material 
Particle

Fixed Attributes

𝑃𝑖

Initial 
position 𝑿

BC Codes

Mass m

Alterable Attributes

Spatial 
position 𝒙

Current 
velocity

Rotational 
parameters

Particle state 
variables

Figure 3.3 Charts representing a deformable solid structure 
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3.3 State-based Peridynamic Lattice Model (SPLM) 

In this section, we describe the state-based peridynamic theory and the state-based 

peridynamic lattice model. As discussed earlier, the state-based peridynamic theory was 

introduced as an extension to the bond-based peridynamic theory by including the concepts of 

force state 𝑻 and deformation state 𝒀. The pairwise force function between two particles, 𝑃 and 

𝑃’, is not only a function of the relative reference position, 𝝃, and the relative displacement, 𝜼, but 

also a function of the reference and deformed positions, X and x, of all particles that are within the 

union of material horizons of both particles 𝑃 and 𝑃’. 

A bond-based state is defined in definition 8.1 (Gerstle, 2015). Basically a bond-based state 

is a tensor field defined upon a domain. Table 3.3 compares the parameters from Silling’s state-

based peridynamic theory and Gerstle’s state-based peridynamic lattice model.  

Table 3.3 Bond-based peridynamic theory vs state-based peridynamic lattice model 

‘Bond-based state’ based Peridynamic 

Theory 

‘State’-based Peridynamic Lattice 

Model 

Particle 𝑃 is an element of a continuous 

subset ℛ 

Particle 𝑃 is an element of a lattice body 

ℒℛ 

ℛ is defined upon ℝ3 ℒℛ is defined upon Λ𝑁𝑅 

Domain of the state ℋ Domain of the state 𝔹 
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In the state-based theory, tools called reduction and expansion were introduced. Reduction 

is approximating a vector state with a second-order tensor and expansion is expanding a second-

order tensor to a vector state (Gerstle, 2015). In other words, stress to a force state and strain to a 

deformation state. It is better to avoid this approximation as it can cause loss of information.  

 The application of Newton’s second law in the (bond-based) state based peridynamic 

theory is represented as 

 𝑚𝒙̈(𝑃𝑖, 𝑡) =  ∑ {𝑻[𝑃𝑖 , 𝑡]〈𝐵𝑗〉 − 𝑻[𝑃𝑖, 𝑡]〈𝐵𝑗′〉} + 𝒃(
𝔹

𝑃𝑖 , 𝑡), 
(3.4) 

The relation that provides values for the force vector state field in terms of the deformation vector 

state field is the state based constitutive model represented as  

 𝑻 =  𝑻̃(𝑿𝑹, 𝒙𝑹, Λ0) (3.5) 

where, 𝑻̃ is a vector state-valued function of a vector state, and Λ0 represents all variables except 

current and reference deformation states. We use constitutive models suited directly to the SPLM 

to solve some practical problems in this thesis. 
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3.4 Elastic Model 

The linear elastic model in SPLM is actually a non-linear model in the overall sense 

because the large deformation bond stretches are non-linearly related to spatial positions. Unlike 

Navier-Cauchy’s linear elasticity, the statically applied forces in SPLM are not linearly related to 

particle displacements. For full explanation, refer to (Gerstle, 2015). The relation between the 

lattice-based stretch matrix {𝑆} and the lattice-based force matrix {𝑇} is linear given by  

 {𝑇} = [𝐾]{𝑆} (3.6) 

where [𝐾] is the stiffness matrix, a crucial parameter which will enable SPLM to simulate a 

classical elastic continuum and simulate the SPLM as a two-parameter model. The stretch matrix 

associated with particle Pi is 

 

{𝑆} = 

{
  
 

  
 
𝑆1
.
.
𝑆𝑗
.
.
𝑆18}
  
 

  
 

𝑖

, 

 

 

(3.7) 

where, 𝑆𝑗 represents the stretch of an individual bond 𝐵𝑗 given by 

 
𝑆𝑗 = 

𝐿∗ − 𝐿0
𝐿0

, 
(3.8) 

where, 
                        𝐿0 ≡ √(𝑋𝑗 − 𝑋𝑖)

2
+ (𝑌𝑗 − 𝑌𝑖)

2
+ (𝑍𝑗 − 𝑍𝑖)

2
 , 

(3.9) 

 
                         𝐿∗ ≡ √(𝑥𝑗 − 𝑥𝑖)

2
+ (𝑦𝑗 − 𝑦𝑖)

2
+ (𝑧𝑗 − 𝑧𝑖)

2
, 

(3.10) 

where, 𝐿0 is the length of the bond in the reference configuration between particle i, j, and 𝐿∗is the 

bond length in deformed configuration.  
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The force matrix {𝑇} associated with particle 𝑃𝑖 is one-half of the vector of peridynamic 

force magnitudes {𝐹𝑗}𝑖 , acting in the reference bond direction {𝑛𝑆} or spatial bond direction {𝑛𝐿} 

directed away from particle 𝑃𝑖.  

 

{𝑇}𝑖 =  
1

2

{
  
 

  
 
𝐹1
.
.
𝐹𝑗
.
.
𝐹18}
  
 

  
 

𝑖

. 

(3.11) 

 

The information provided by the deformation state in the state-based peridynamic theory 

is the same as what the stretch matrix provides and the information provided by the force state in 

the state-based peridynamic theory is the same as what the force matrix provides. Next, strain 

matrix and stress matrix can be represented as  

 

{𝜺} =

{
 
 

 
 
𝜀𝑋𝑋
𝜀𝑌𝑌
𝛾𝑋𝑌
𝜀𝑍𝑍
𝛾𝑌𝑍
𝛾𝑋𝑍}

 
 

 
 

 and  {𝝈} =

{
 
 

 
 
𝜎𝑋𝑋
𝜎𝑌𝑌
𝜏𝑋𝑌
𝜎𝑍𝑍
𝜏𝑌𝑍
𝜏𝑋𝑍}

 
 

 
 

.  

 

(3.12) 

To map the classical small strain matrix to the SPLM stretch matrix, [N] is defined as an 18 x 1 

matrix for a 3D particle which has eighteen links in an FCC close-packed lattice. The stretch matrix 

takes into account both elastic and plastic deformations, 

 {𝑆} = [N] {𝜀} (3.13) 

 {𝑆} =  {𝑆𝑒} + {𝑆𝑝} (3.14) 
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Finally, to obtain a relation between SPLM force matrix {𝑇} and the classical stress 

matrix {𝜎}, it is established that the internal virtual work under kinematically equivalent virtual 

deformations of both classical and SPLM models are equal  

 𝛿𝑊𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 =  𝛿𝑊𝑆𝑃𝐿𝑀, (3.15) 

where 𝛿𝑊𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = ⌊𝜎⌋{𝛿𝜀}∆𝑉 (3.16) 

and            𝛿𝑊𝑆𝑃𝐿𝑀 = ⌊𝐹⌋ (
𝐿𝑖

2
) {𝛿𝑆}. (3.17) 

Hence, we obtain 

 
⌊𝜎⌋{𝛿𝜀}∆𝑉 = ⌊𝐹⌋ (

𝐿𝑖
2
) {𝛿𝑆}. 

(3.18) 

{𝐹} and {𝜎} are linearly related as 

 {𝜎} = [M] {𝐹} (3.19) 

where [M] = 
1

2Δ𝑉
[𝑁]𝑇[𝐿𝑖]. (3.20) 

Volume per particle is given by the co-volume 𝑑(Λ𝑁𝑅) as 

 
∆𝑉 = 𝑑(Λ3) =

𝐿3

√2
 

(3.21) 

For the linear elastic state based peridynamic lattice constitutive model, a micro-elastic SPLM 

stiffness matrix [𝐾] is assumed as 

 

 

[𝐾] =

[
 
 
 
 
 
 
 
[

𝑎 + 𝑏 𝑏 ⋯ 𝑏
𝑏 𝑎 + 𝑏 ⋯ 𝑏
⋮ ⋮ ⋱ ⋮
𝑏 𝑏 ⋯ 𝑎 + 𝑏

] [0]

[0] [

𝑐 0 ⋯ 0
0 𝑐 ⋯ ⋮
⋮ ⋮ ⋱ 0
0 0 0 𝑐

]

]
 
 
 
 
 
 
 

. 

 

 

(3.22) 
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A classical constitutive matrix [𝐷] is 

[𝐷] = [𝑀][𝐾][𝑁], where (3.23) 

 

[𝐷] =
𝐸

(1+𝜈)(1−2𝜈)

[
 
 
 
 
 
 
 
(1 − 𝜈) 𝜈 0 𝜈 0 0
𝜈 (1 − 𝜈) 0 𝜈 0 0

0 0
(1−2𝜈)

2
0 0 0

𝜈 𝜈 0 (1 − 𝜈) 0 0

0 0 0 0
(1−2𝜈)

2
0

0 0 0 0 0
(1−2𝜈)

2 ]
 
 
 
 
 
 
 

. 

 

 

(3.24) 

 

Solving [𝐷] = [𝑀][𝐾][𝑁], 

𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are obtained as 
𝑎 =

𝐸𝐿2

√2(1 + 𝜈)
, 

  (3.25) 

 
𝑏 =

√2𝐸𝐿2(1 − 4𝜈)

32(2𝜈 − 1)(1 +  𝜈)
, 𝑎𝑛𝑑 

(3.26) 

 
𝑐 =

𝐸𝐿2

4(1 + 𝜈)
. 

(3.27) 

 

For plane stress, 

 

 

𝑎 =
2𝐸𝐿𝑡𝑏

√3(1 + 𝜈)
, 

 

(3.28) 

 
𝑏 =

2𝐸𝐿𝑡𝑏 (1 − 3𝜈)

6√3(𝜈2 − 1)
. 

(3.29) 

 

 

  

(3.30) 
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For plane strain, 
𝑎 =

2𝐸𝐿𝑡𝑏

√3(1 + 𝜈)
, 𝑎𝑛𝑑 

 
𝑏 =

2𝐸𝐿𝑡𝑏 (1 − 4𝜈)

6√3(2𝜈 − 1)(1 +  𝜈)
. 

(3.31) 

where 𝑡𝑏 is the thickness of the problem. Derivations can be found in (Gerstle, 2015). 

3.5 Plastic Model 

When a load is applied to a solid body, it is not always the case that the body returns to its 

original shape after removing the load. Solid materials flow almost like fluids at sufficiently high 

deviatoric stress levels (Gerstle, 2015). The plastic model is developed within the basic framework 

of SPLM, leaving behind the stress and strain approach. 

The three essential parts of a plasticity model are 

1. Yield condition (Von Mises surface), 

2. Flow rule (evolution of plastic strain 𝜖𝑝), 

3. Evolution of yield surface (ignored). 

3.5.1 Yield Condition 

The Von Mises distortional strain energy density criterion is used by 𝐽2 plasticity. 

According to this criterion, yield commences when the deviatoric strain energy density reaches a 

certain value. The Cauchy stress tensor is a combination of deviatoric part, 𝝈𝑫, and hydrostatic 

part, 𝝈𝑯, given by 

 𝝈 = 𝝈𝑫 + 𝝈𝑯 (3.32) 

where 
𝝈𝑯 = 

1

3
(𝜎𝑋𝑋 + 𝜎𝑌𝑌 + 𝜎𝑍𝑍)𝑰. 

(3.33) 
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The strain tensor, 𝜖, is the sum of plastic strain tensor and elastic strain tensor given by 

 𝝐 =  𝝐𝒑 + 𝝐𝒆. (3.34) 

𝐽2 plasticity is given by 

 
𝐽2 =

1

2
‖𝝈𝑫‖

2, 𝑜𝑟 
(3.35) 

 
𝐽2 =

1

6
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2]. 
(3.36) 

The material yields when 

 𝐽2 = 𝑘
2, (3.37) 

where,  𝑘 = 𝜏𝑌𝑖𝑒𝑙𝑑 =
𝜎𝑌𝑖𝑒𝑙𝑑

√3
. (3.38) 

Von Mises yield surface is sketched in stress space in fig. 3.4. 

 

Figure 3.4 Tresca and Von Mises yield surface 

 

Hydrostatic axis 

𝜎1 = 𝜎2 = 𝜎3 

 

Von Mises yield 

surface 

𝜎1 

𝜎2 

𝜎3 
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3.5.2 Flow Rule 

The ‘Levy-Mises’ flow equations are 

 𝑑𝜖1
𝑝 = 𝑑𝜆𝜎𝐷1 , 𝑑𝜖2

𝑝 = 𝑑𝜆𝜎𝐷2 , 𝑑𝜖3
𝑝 = 𝑑𝜆𝜎𝐷3 , (3.39) 

where 𝑑𝜆 is a proportionality constant. Isochoric plastic flow is ensured because  

 𝑑𝜖𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐
𝑝 = 𝑑𝜖1

𝑝 + 𝑑𝜖2
𝑝 + 𝑑𝜖3

𝑝 =  𝑑𝜆(𝜎𝐷1 + 𝜎𝐷2 + 𝜎𝐷3) = 0. (3.40) 

In terms of stress components, the flow rule can be represented as plastic strain rate versus stress 

 𝑑𝜖𝑋𝑌
𝑝 = 𝑑𝜆𝜎𝐷𝑋𝑌 , 

𝑑𝜖𝑌𝑍
𝑝 = 𝑑𝜆𝜎𝐷𝑌𝑍 , 

𝑑𝜖𝑋𝑍
𝑝 = 𝑑𝜆𝜎𝐷𝑋𝑍 . 

 

(3.41) 

 

3.5.3 Evolution of the Yield Surface 

Assuming perfect plasticity, we ignore this part.  

3.5.4 Implementation of Plasticity in SPLM 

fig. 3.5 represents briefly how plasticity is implemented in SPLM model. 

 

 

{𝐹𝑖} is known Find 𝝈𝑯 = 
1

3
(𝜎𝑋𝑋 + 𝜎𝑌𝑌 + 𝜎𝑍𝑍)𝑰 

Check 𝐽2 = 𝑘
2 

Find 𝝈𝑫, ‖𝝈𝑫‖ 

{𝐹} = {𝐹𝑎𝑣𝑔} +{𝐹𝑑𝑒𝑣} {𝐹} = {𝐹𝑎𝑣𝑔} + {𝐹𝑑𝑒𝑣} 

If ||{𝐹𝑑𝑒𝑣}|| ≥ 𝑘2 Yield occurs 

Figure 3.5 Implementation of plasticity in SPLM 
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If a particle yields, {∆𝑆𝑝} = ∆𝜆 {𝐹𝑑𝑒𝑣}. This ensures that isochoric flow occurs 

(∑Δ𝑆𝑖
𝑝 = 0). We assume that ∆𝜆 is given by 

 
∆𝜆 =

𝜎𝑌𝑖𝑒𝑙𝑑
𝐸

(
||{𝐹𝑑𝑒𝑣||

𝑘2
− 1). 

(3.42) 

If a particle is right on the yield surface, there will be no flow and iteration is not done within a 

time step. Plastic deformation does not cause a reduction in stiffness. In contrast, damage involves 

reduction in material stiffness with no permanent deformation upon unloading. Let us proceed to 

describing the damage model of SPLM.  

3.6 Damage Model 

Damage mechanics originated in 1958 with (Kachanov, 1958) introducing a spatially 

continuously-varying parameter at the macro level called the damage parameter 𝜔. This parameter 

varies continuously from 𝜔 = 0 to 𝜔 = 1 with time. 𝜔 = 0, represents no damage and 𝜔 = 1, 

represents complete damage. Kachanov defined the uni-axial stress strain relationship as 

 𝜎 = (1 − 𝜔)𝐸𝜀, (3.43) 

where E is the Young’s modulus. This relationship gives null stress when damage is complete.  

We will concentrate in this chapter more on damage mechanics in the state based 

peridynamic lattice model, which is essential to solve problems discussed in the next chapters. The 

reader is encouraged to read (Gerstle, 2015) to understand more about the history of damage 

mechanics, the continuum damage mechanics theory and the damage mechanics for the micropolar 

peridynamic lattice model.  
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To briefly describe these models, in the continuum damage mechanics, the damage 

parameter at a point is assumed to depend on either the stress tensor or the strain tensor at that 

point. In nonlocal continuum mechanics, at a certain point, the damage is assumed to be dependent 

on the stress and strain which are averaged over a point’s neighborhood. In the micropolar 

peridynamic lattice model, damage is associated with the bond and not with the particle. This may 

require the computational model to store more damage parameters than are necessary.  

Therefore, damage model in SPLM is concerned with a single damage parameter, 𝜔, 

associated with a lattice particle instead of a bond. This makes the analysis computationally simple. 

Less data is computed and stored because when compared to lattice particles, bonds are more in 

number (18 more in 3D FCC lattice models). In order for the damage to be independent of lattice 

rotation, it is assumed in SPLM that the damage parameter is a scalar function of the average 

elastic stretch in all the bonds connected to a lattice particle. A scalar damage would mean that as 

damage evolves, identical softening is observed in the stiffness of all the bonds connected to a 

particle, 

 

𝑆𝐴𝑣𝑔
𝑒 =

1

𝑁𝑏
∑𝑆𝑒𝑗

𝑁𝑏

𝑗=1

 

(3.44) 

𝑆𝑒𝑗 is the elastic component of the stretch in bond i, 𝑁𝑏 is the number of bonds connected a lattice 

particle. When 𝑆𝐴𝑣𝑔
𝑒  is greater than a critical value, damage is will initiate and evolve. 

 This critical value or critical average stretch is defined as 

 
𝑆𝐴𝑣𝑔𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙
𝑒 = (

1 − 2𝜈

3
) 𝜖𝑡 = (

1 − 2𝜈

3
)
𝜎𝑡
𝐸

 
(3.45) 
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 Once damage is initiated, a parameter named ‘equivalent crack opening displacement’ is 

introduced for the damage to evolve. This parameter is a function of the maximum total stretch of 

any bond 𝑆𝑇𝑜𝑡𝑀𝑎𝑥 that is connected to a particle. The COD equivalent is given by 

 𝐶𝑂𝐷𝑒𝑞 = 𝑆𝑇𝑜𝑡𝑀𝑎𝑥𝐿 (3.46) 

Tensile damage evolves according to the following conditions 

if 𝑆𝐴𝑣𝑔
𝑒 < 𝑆𝐴𝑣𝑔𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙

𝑒  𝜔 = max (0, 𝜔𝑝𝑟𝑒𝑣) (3.47) 

The tensile strength 𝜎𝑡, the crack opening displacement 𝐶𝑂𝐷𝑐, and the parameter 𝛾 define 

the damage model in SPLM, as shown in Fig. 3.6. This is called the elastic/cohesive SPLM 

damage model. After the damage initiation and evolution, further damage is dependent on the 

maximum elastic stretch 𝐶𝑂𝐷𝑒𝑞 = 𝑆𝑀𝑎𝑥
𝑒 𝐿. 

 

  

else if 𝐶𝑂𝐷𝑒𝑞 ≤ 𝐶𝑂𝐷𝑐 

𝜔 = max (1 −

𝛾
𝜎𝑡𝐿

𝐸𝐶𝑂𝐷𝑒𝑞
(𝐶𝑂𝐷𝑐 − 𝐶𝑂𝐷𝑒𝑞)

𝐶𝑂𝐷𝑐
, 𝜔𝑝𝑟𝑒𝑣) 

(3.48) 

else 𝜔 = 1 (3.49) 

𝜎𝑡
𝐸
𝐿 

𝜎𝑡 

𝛾𝜎𝑡 

𝜎 

𝐶𝑂𝐷𝑐 𝐶𝑂𝐷𝑒𝑞 𝜎𝑡
𝐸
𝐿 

1 

0 

𝜔 

𝐶𝑂𝐷𝑐 𝐶𝑂𝐷𝑒𝑞 

Figure 3.6 (left) 𝝈 versus 𝑪𝑶𝑫𝒆𝒒 (right) 𝝎 versus 𝑪𝑶𝑫𝒆𝒒 
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Chapter 4 Concrete Uniaxial Tensile Strength 

4.1 Types of Tests  

 The uniaxial tensile strength of concrete is determined using three methods:  

1) The modulus of rupture test, 

2) The direct tension test, 

3) The Brazilian split cylinder test. 

The direct tension test is a method to determine the tensile strength of concrete but it is a 

difficult test to perform. The modulus of rupture test and the Brazilian split cylinder test are both 

indirect tests. The modulus of rupture test, otherwise known as the flexure test, is also not 

frequently adopted. The Brazilian split cylinder test is a more traditional method to evaluate the 

tensile strength of concrete and this is because of its simplicity and convenience. 

This thesis concentrates on the analysis of the Brazilian split cylinder, model the direct 

tension test, and the flexure test using the computational principles of the state based peridynamic 

lattice model. We will now describe each of the above mentioned tests adopted to measure the 

tensile strength of concrete. 

4.2 Direct Tension Test 

This method is used to determine the tensile strength of concrete by applying tensile 

stresses on the ends of specimens. Concrete specimens are gripping devices. In the laboratory test 

setup, one end of the cylinder specimen is fixed and the other end is tensioned with the gripping 

device. In the SPLM model of the direct tension test, we apply displacement to a layer of particles 
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at the top of the cylinder upwards and also apply displacement to a layer of particles at the bottom 

downwards. Fig. 4.1 shows the direct tension test schematically. 

 

 

The direct tension is difficult to conduct due to secondary stresses induced at the gripping 

devices. The test results indicate that premature failure occurs at the ends of specimens due to 

stress concentration near gripping devices. The difficulty in conducting the experiment free of 

eccentricity also makes this test complicated (Bazant, Kazemi, Hasegawa, & Mazars, 1991). The 

tensile strength from direct tension test is obtained from the expression 

 
𝜎𝑡 =

𝑃

𝐴
, 

(4.1) 

where 𝜎𝑡 is the tensile stress, 𝑃 is the peak load, 𝐴 is the area of cross-section of the cylinder 

specimen.  

  

Concrete cylinder 

specimen 

oad 
P 

P 

Figure 4.1 Direct Tension test 
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4.3 Modulus of Rupture Test 

The modulus of rupture test and the splitting test are indirect tests which were developed 

because of the difficulties experienced with the complications in direct tension test. Modulus of 

rupture is defined as the tensile stress assuming linear elastic conditions, at failure at the bottom 

face of the beam. Center point loading or symmetrical two point loading on beams is the primary 

method of loading used in indirect modulus of rupture test as shown in Fig. 4.2 

Figure 4.2 Modulus of Rupture Test 
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½ Load 

 

½ Load 
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The stress obtained from the modulus of rupture test for a beam with length 𝐿, section 

width W, section height H, Young’s modulus 𝐸 and moment of inertia, 𝐼, from the classical Euler-

Bernoulli beam theory is given by 

 
𝜎 =

𝑀. 𝑦

𝐼
 

(4.2) 

where bending moment 𝑀 =
𝑃𝐿

4
 and 𝑦 =

𝐻

2
 in this case. 

Direct proportionality of the stress with respect to the distance from neutral axis is the 

crucial assumption when calculating the modulus of rupture (Bazant et al., 1991). The main 

disadvantages of the flexure test are its sensitivity to preparation, handling, and curing of the 

specimen. The large weight of beam specimens often causes them to be damaged when handled 

and transported in the lab. Also, casting and curing of the specimens need a considerable amount 

of time. 
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4.4 Brazilian Split Cylinder Test 

The split cylinder test, otherwise known as the Brazilian split cylinder test, was first 

introduced by Carneiro and Barcellos during the fifth conference of the Brazilian association for 

Standardization in 1953 (Boulekbache, Hamrat, Chemrouk, & Amziane, 2014). It has been 

adopted in various international concrete testing standards as a standard testing method. Some of 

the standards are ASTM C496, ISO 4105, and BS 1881 (Boulekbache et al., 2014).  

 

The Brazilian split cylinder test is an indirect measure of the uniaxial tensile strength of 

concrete and is considered the most reliable method (Boulekbache et al., 2014). While the direct 

tension test and the modulus of rupture test are not very frequently adopted due to difficulties in 

test methods, the Brazilian split cylinder test is a common test to determine the concrete tensile 

strength (Bazant et al., 1991). The split cylinder test has a simple experimental procedure and is 

convenient for use in the concrete laboratory since no additional equipment is needed other than 

what is essential for compression strength is testing. 

In this test, a concrete cylinder specimen is loaded in compression diametrically using two 

platens (Boulekbache et al., 2014). Linear elastic theory predicts that a nearly uniform maximum 

principal tensile stress is produced along the diameter of the cylindrical specimen due to this 

Figure 4.3 Brazilian Split Cylinder Test 

(http://www.expeditionworkshed.org) 

 

http://www.expeditionworkshed.org/
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loading. This stress generated causes the cylinder to fail by splitting (Boulekbache et al., 2014). 

Concurrently, a compressive normal stress is also generated which is three times the tensile stress. 

The split test of a cylindrical specimen produces generally a lower coefficient of variation 

compared to the other tests. Also, the strength obtained from the Brazilian split cylinder test is 

typically more than the strength obtained from the direct tension test but less than the strength 

obtained from flexure test (ASTM-C496/C496M 2011). 

4.5 ASTM Standard Test Procedure  

(ASTM-C496/C496M 2011) describes the detailed standard procedure to conduct the 

Brazilian split cylinder test in the laboratory. Briefly, in this test, load is applied by subjecting a 

concrete cylinder specimen to compression along its diameter, as show in Fig. 4.4. This specimen 

is placed horizontally between loading platens of testing machine. Between the platens and the 

specimen, strips of a soft packing material are placed. Refer to (ASTM-C496/C496M 2011) for 

detailed test procedure and setup.  

 

To estimate the tensile strength from the Brazilian split cylinder test, the classical linear 

elastic theory is used. The splitting strength 𝑓𝑠𝑝, according to classical linear elastic theory is 

𝜎𝑋𝑋 𝐷 

𝜎𝑌𝑌 

𝜎𝑌𝑌 = −3𝜎𝑋𝑋 

Figure 4.4 Loading setup and stresses in Brazilian split cylinder test 
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defined as the elastic stress calculated on the basis of the tested ultimate load, 𝑃𝑚𝑎𝑥 (Hoang, 

Andersen, Hansen, & Jónsson, 2014).  

The split strength in the middle of the tested cylinder specimen is denoted as, 𝑓𝑠𝑝. Assuming 

perfectly linear elastic behavior up to the point where a vertical crack through the center of the 

cylinder forms due to exceedance of the tensile strength, the split tensile strength of the concrete 

cylinder is given by 

 
𝑓𝑠𝑝 =

2𝑃𝑚𝑎𝑥
𝜋𝐿𝐷

. 
(4.3) 

𝑃𝑚𝑎𝑥 represents the maximum load obtained from the experiment. 𝐿 is the thickness of the cylinder. 

The diameter of the cylinder is 𝐷 and as mentioned before, the split tensile strength is 𝑓𝑠𝑝. 

4.6 SAP2000 Analysis 

The stress distribution in a concrete cylinder under applied loads at the top and bottom 

nodes using the finite element software called SAP2000 is as shown in Fig. 4.5. 

 

X 

Y 

ksi 

Figure 4.5 SAP2000 analysis of cylinder under compression indicating 𝝈𝑿𝑿 
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SAP2000 is used to analyze models with linear elastic material properties. Conducting a 

finite element analysis of a simple 6 inch diameter cylinder with material properties of concrete 

helped understand how the stress concentration appeared as a result of the compressive loading. 

The cylinder specimen in 2D is subjected to compression under the two point loads. The 𝜎𝑋𝑋 stress 

values indicated on the right in Figure 4.5 shows that the stress concentration under the loads is 

very high compared to the stress along the diameter.  

For the given mesh, stress values can be obtained at desired locations. As the mesh is 

refined, this stress under the applied loads keeps increasing without limit, which is highly 

unrealistic. Thus linear elastic analysis is not an appropriate model for interpreting the behavior of 

concrete. 

4.7 Comments on an Indirect Tensile Test on Concrete Cylinders (Wright, 1955)  

Comments on an Indirect Tensile Test on Concrete Cylinders by Wright (1955) published 

in the Magazine of Concrete Research summarizes a new test that originated in Brazil to determine 

the tensile strength of concrete. The experimental setup of this test is such that compressive load 

is applied to opposite generators of a concrete cylinder specimen with strips of packing material 

placed between concrete cylinder specimen and loading platens. This method involves applying a 

compressive load to a cylinder which sets up a nearly uniform tensile stress over the plane along 

the diameter of the cylinder. The specimen then fails in tension across the diametral plane of 

loading.  

In the paper, the study conducted investigates the effect of packing strip material and 

dimensions on the strength. A comparison of results from the Brazilian test, the direct tension test 

and the modulus of rupture test is made.   
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The effect of size of specimen on the strength is also analyzed. The specimen sizes for each 

of these tests are shown in Table 4.1 and Fig. 4.6. 

Table 4.1 Dimensions of test specimens 

TEST CONCRETE SPECIMEN SIZE 

Brazilian split cylinder test D = 6 inch, L = 12 inch 

Direct tension test D = 4 inch, L = 18 inch 

Modulus of rupture test W = 4 inch, H = 4 inch, L = 12 inch 

 

 

Figure 4.6 Specimen sizes for (a) Brazilian split cylinder test (b) Direct tension test  

(c) Modulus of rupture test 

 

𝐿 = 12" 𝐿 = 18" 
𝐷 = 6" 𝐷 = 4" 

𝐿 = 12" 𝑊 = 4" 

𝐻 = 4" 

(a) 
(b) 

(c) 
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Our interest lies in comparing the results from these tests to the results obtained from SPLM 

simulations of these tests. The compressive strength of concrete was obtained to be 5980 psi. We 

will use this 𝑓𝑐 in our SPLM models. The average value of tensile strength obtained by testing 32 

specimens of each type are shown in Table 4.2.  

Table 4.2 Concrete properties  

Type of Test Average Strength (lb./sq.in.) 

Brazilian split cylinder test 405 

Direct Tension Test 275 

Modulus of rupture of beams 605 

 

We use the tensile strength 𝐹𝑡 obtained from the direct tension test as the tensile strength 

of concrete in the SPLM models. We will back calculate the peak load from each of the laboratory 

test results using Equations 4.1, 4.2, and 4.3. These peak loads can be later compared to the peak 

loads obtained from the SPLM simulations. 

 

1) Brazilian split cylinder test 

2) Direct tension test 

 
𝑃𝑑𝑖𝑟𝑒𝑐𝑡 𝑝𝑢𝑙𝑙 = 𝐹𝑡 ×

𝜋𝐷2

4
= 275 𝑝𝑠𝑖 ×

𝜋 × (4 𝑖𝑛𝑐ℎ)2

4
= 3.45 𝑘𝑖𝑝 

(4.5) 

 

  

 
𝑃𝑠𝑝𝑙𝑖𝑡 =

𝜋𝐿𝐷𝑓𝑠𝑝

2
=
𝜋 ∗ 12 𝑖𝑛𝑐ℎ ∗ 6 𝑖𝑛𝑐ℎ ∗ 405 𝑝𝑠𝑖

2
= 45.8 𝐾𝑖𝑝 

(4.4) 
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3) Modulus of rupture test 

 

𝑃𝑟𝑢𝑝𝑡𝑢𝑟𝑒 =
4𝜎𝐼

𝐿𝑦
=
4 × 605 𝑝𝑠𝑖 × (

44

12)

12 × (
4
2)

= 2.15 𝑘𝑖𝑝 

(4.6) 

 

In Chapter 5, we study the objectivity of SPLM by modelling the Brazilian split cylinder 

test. We will see the time dependent analysis, effect of the position of loading plate on the bonds 

between steel and concrete, and the interaction of steel and concrete lattice bodies.  
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Chapter 5 Investigation of the Objectivity of SPLM 

The primary purpose of this chapter is to understand the objectivity of the state based 

peridynamic lattice model and analyze the behavior of plain concrete. In this chapter, a time 

dependent analysis is conducted. We will address three main aspects in this objective study: 

1. Firstly, the effect of change in the loading rate on the peak load and crushing patterns of the 

plain concrete split cylinder specimen is studied. From the analysis, we will obtain the time of 

simulation time needed to get reasonable test results. It is very important to understand how 

long the displacement must be applied because peridynamic study is a non-linear time 

dependent analysis. We can also understand with this test the computational power needed to 

solve simple problems and obtain solutions. 

2. The second aspect we will study is the loading condition of the Brazilian split cylinder. The 

position of the steel platens, to which displacement is applied, is changed and the results are 

observed. The interaction between steel and concrete lattice bodies can be further understood 

with these tests. The position of the steel platen which gives reasonable results is considered. 

The plasticity and damage models of plain concrete can be further understood from this 

analysis.  

3. The next important aspect is the effect of lattice rotation on the concrete specimens. We will 

rotate the lattice and observe the percentage difference in the results in Chapter 6. 
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5.1 Specifications for the Brazilian Split Cylinder Test 

To perform a nonlinear analysis of the Brazilian split cylinder test, a 6 inch diameter 

cylinder with a thickness of 12 inch is loaded in compression along its diameter as shown in Fig. 

5.1.. The smooth time-varying displacement-controlled loading is given by ∆𝑌(𝑡) =
∆𝑚𝑎𝑥

2
 ( 1 −

cos (
𝜋𝑡

𝑡𝑒𝑛𝑑
)), as shown in Fig. 5.2. 

 

 

Time-varying displacement  

𝜟 (𝒕)

2
 

Y 

Steel Platen 

6 inches 

Concrete Cylinder 

X 

𝜟 (𝒕)

2
 

Figure 5.1 Brazilian split cylinder 
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𝒕𝒆𝒏𝒅 = End of simulation 

𝜟 

2
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Figure 5.2 Time varying displacement 
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A uniaxial compressive strength of 𝑓’𝑐 = 5980 PSI for a normal strength concrete is used 

for this problem which is obtained from the laboratory according to (Wright, 1955). Lattice spacing 

for both lattice bodies, steel and concrete, is considered to be a constant value of 1 cm. This is a 

lower limit value beyond which the normal concrete is certainly no longer homogeneous (Gerstle, 

2015). For two-dimensional problems, a hexagonal lattice is used. The material parameters are 

given in Table 5.1. 

Table 5.1 Material properties of concrete 

Parameter English Value SI Value 

Compressive Strength, 𝐹′𝑐 = 𝜎yield 5980 PSI 41.23 MPa 

Young’s modulus, 𝐸 3605 KSI 30.39 GPa 

Poisson’s ratio, 𝜈 0.20 0.20 

Lattice spacing, L 0.3937 inch 1.0 cm 

Internal damping ratio, 𝜁internal 0.2 0.2 

Uniaxial tensile strength, 𝐹𝑡 = 𝜎𝑡 400 PSI 1.896 MPa 

Ultimate tensile damage crack opening 

displacement, 𝑤𝑐 

0.008736 inch 0.2 mm 

Tensile damage parameter gamma, 𝛾 0.25 0.25 

Fracture energy 𝐺F 0.787 lb./inch 137.9 N/m 

 

For the SPLM analysis, the fundamental period of a concrete cylinder is to be obtained. 

The fundamental period of a structure is estimated by analyzing it as an elastic problem. This can 
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be done using SAP 2000, which is a linear elastic code. For a cylinder with dimensions mentioned 

above and with both bottom and top nodes pinned, the fundamental period (Tfundamental) was found 

to be 0.00025 seconds.  

The critical time step required for a linear elastic dynamical simulation is calculated based 

on the lattice spacing, damping ratio and the speed of sound. The critical time step ∆𝑡 is 3 x 10-7 

seconds. To efficaciously simulate the quasistatic loading of the Brazilian split cylinder using the 

SPLM, an approximately accurate value for time of simulation must be obtained which is given 

by 𝑛 × 𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙. After obtaining this value, the number of time steps is then given by  

 
𝑡𝑒𝑛𝑑𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝 =

𝑛 × 𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙

∆𝑡
 

(5.1) 

The computational model of the concrete cylinder must faithfully simulate both the 

behavior of concrete and the steel platen. The bond between concrete and steel should be 

interpreted accurately. Plain concrete is modeled using the elasticity, plasticity and damage models 

discussed earlier.  

5.2 Steel Platens  

The steel platens, both on top and bottom, have a width of 4 cm and a thickness of 2 cm. 

The stiffness of the steel platen takes into account the plywood strip used in the laboratory. Thus 

the stiffness of the steel platen is lower than the actual steel stiffness. The position of the steel 

platen requires to interact with the concrete particles in a stabilized manner is needed. Lattice 

spacing in both the material bodies is assumed to be same. The force in an individual SPLM bond 

between steel and concrete lattice particles with stretch 𝑆 is given by 
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𝐹 = (1 − 𝜔𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒)𝑎𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 (

𝑚𝑠𝑡𝑒𝑒𝑙

𝑚𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
) 𝑆. 

(5.2) 

Here, 𝑎𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 is the stiffness parameter for the concrete body, 
𝑚𝑠𝑡𝑒𝑒𝑙

𝑚𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒
 is a factor which ensures 

that the elastic stiffness of the bonds between steel and concrete are not so high that numerical 

instability arises. In all the simulations, to make certain that the loading plates are simulated as 

perfectly elastic, both the damage flag and plasticity flag for the platen are turned off. The SPLM 

parameters of steel loading plates are given in Table 5.2. 

 

Table 5.2 Steel loading plates - Material parameters 

Parameter English Value SI value 

Yield Strength, 𝐹𝑌 = 𝜎𝑦𝑖𝑒𝑙𝑑  60,000 PSI 413.7 MPa 

Young’s modulus, 𝐸 29,000 KSI 200.0 GPa 

Poisson’s ratio, 𝜈 0.30 0.30 

Mass Density, 𝜌 490 PSF 7849. Kg/m3 

Lattice spacing, 𝐿 0.3937 inch 1.0 cm 

Support size in 𝑌 1.5748 inch 4.0 cm 

Damping Ratio, 𝜁 0.2 0.2 
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5.3 Time Dependent Analysis 

The SPLM simulation is conducted under quasistatic loading conditions. For this, the 

modeler must approximate the fundamental period of the structure and then consider the suitable 

time of simulation which is a function of this period. But what value of this time of simulation 

gives reasonable results? To answer this, SPLM simulations with six multiples of the fundamental 

period are conducted. The SPLM model of concrete cylinder at the beginning of loading is shown 

in Fig. 5.3. 

 

Consider the first case with time of simulation of 2 ×  𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙. This indicates a 

reasonably fast rate of loading and thus represents a dynamic load application. The concrete lattice 

is represented by the blue colored particles. The green particles represent the steel loading platens. 

The red lines indicate the external links or the bonds between steel and concrete.  

Concrete particle 

Bond between concrete and steel 

Steel platen 

Figure 5.3 Initial SPLM model for 𝟐 × 𝑻𝒇𝒖𝒏𝒅𝒂𝒎𝒆𝒏𝒕𝒂𝒍 
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With a significant amount of concrete crushing and damage, the peak load was 790 kN 

when analyzed for 2 ×  𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙. After analyzing for a longer time duration, we will be able 

to decide which value can result in reasonable values of peak load and concrete behavior. Similar 

analysis is conducted for different time of simulation and the results are observed. The final stage 

of loading for 2 ×  𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 is shown in Fig. 5.4. 

 

 

The large difference between the residual and the peak values of load indicates that the 

displacement is being applied suddenly to the steel platens. Instead of simulating a gradual load 

application in this case, the SPLM simulates a sudden or dynamic load. This is not the desired 

loading method to obtain reasonable results. 

Partially damaged or crushed particle 

Damaged particle 

Figure 5.4 (top) Final SPLM model (bottom) Force vs Time 
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It can be noted that along the diameter, concrete crushes and under the load, there is 

compressive plastification. This means that concrete is failing under the compressive loads 

diametrically. Further analysis is conducted with 4, 8, 16, 32, 64 and 128 times the fundamental 

period. The final SPLM models are shown in Fig. 5.5. 

 

 

4 ×  𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 8 ×  𝑇
𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙

 16 ×  𝑇
𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙

 

32 ×  𝑇
𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙

 64 ×  𝑇
𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙

 128 ×  𝑇
𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙

 

Figure 5.5 SPLM models for six different simulation time 
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It was observed that as the time of simulation increases, the peak and the residual loads 

come closer. Also, the concrete behavior changes from one simulation to the other. The peak and 

residual loads are observed to be much closer when the analysis is conducted for greater n values. 

From n = 16 to 128, the maximum and residual loads vary within 1% - 3%.  

 

It can be concluded from this analysis that in order to obtain a reasonable results within a 

2% difference between peak loads from the quasistatic loading condition in SPLM, it is advisable 

to conduct the analysis for a time of simulation of 16 x 𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙. If the user demands more 

accuracy, then it is advisable to perform the analysis for a longer time of 128 x 𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 

keeping the computational power in mind.  
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Figure 5.6 Plot of Load vs n 
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5.4 Position of Plate on Bond, Crushing and Peak Load 

To understand the changes in orientation of bond and subsequently the loading condition, 

the steel platen position must be analyzed. The center of the steel support is shifted from one point 

to another vertically as a function of the diameter of the cylinder specimen (D), support size (S) 

and the lattice spacing (L). To review the parameters used for this problem, see Table 5.1 and 

Table 5.2. 

The top of the cylinder is at diameter/2 which is 0.075m from center (O). Consider the 

center of the steel platen (C) from the top of specimen within +0.01m range and -0.01m range from 

bottom of the cylinder as shown in Fig 5.7. 

 

SPLM analysis is conducted with various plate positions as shown in Fig 5.8, and the 

resulting interaction between concrete and steel is studied. That position of the plate which gives 

an adequate overlap in the reference configuration between steel and concrete lattice bodies in 

order to ensure stability between the two bodies is obtained from these tests. 

Center of specimen @ 0 m 

Top of specimen @ 0.075 m 

Center of platen @ 0.085 m 

+Y axis - meter 

(C) 

(O) 

Split cylinder 

Figure 5.7 Schematic depecting the points of interest  
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The bond configuration between steel and concrete changes from when the center of the 

top plate is at 0.085 m to 0.082 m from the center of the cylinder. When the center of the top platen 

0.085 meter 0.082 meter 

0.0795 meter 0.079 meter 

Figure 5.8 SPLM model indicating orientation of bonds for different cases 
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moves closer and closer to the top of the split cylinder, the angle that the bond makes with the 

horizontal reduces even more until it becomes 90 degrees at 0.0795 m. In this case, the bond 

becomes perpendicular to the horizontal and the orientation can be clearly observed.  

One interesting observation is that when the center of the top platen is shifted from 0.0795 

m to 0.079 m from the center of the cylinder, the interaction between the steel and the concrete 

particles is behaving very different compared to the other cases. The bond between these two 

materials seems to be ‘snapping’ through creating an instability issue. This is the plate position we 

would want to avoid in our simulation. The plot between the positions of the center of the top plate 

from the center of the cylinder in meters on Y axis versus the load in kilo Newton on X axis is in 

Fig. 5.9.  
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The transition highlighted indicates that when the center of the top platen is shifted from 

0.0795 m to 0.079 m from the center of the cylinder, the change in peak loads between the two 

positions is very large. This position of the plate which gives an instable interaction between steel 

and concrete particles needs to be avoided in the SPLM simulation of the Brazilian split cylinder 

test in order to get reasonable results. It should also be noted that for stable interactions between 

steel and concrete lattice bodies, the position of steel platen has a significant change of around 7% 

on an average in the peak load values. An aspect to think about here is whether the Brazilian split 

cylinder test is reasonable when the values of peak loads from the test are affected interaction with 

the loading platen.  

5.5 Bond Configuration 

Consider a nonlinear elastic analysis of the split cylinder with the position of top and 

bottom plate at 0.0795 m from the center of the cylinder. A non-linear elastic analysis can be 

achieved by turning off the plasticity and damage models and simulating only the elastic model in 

the pdQ. The nonlinear analysis of the split cylinder can help us understand better how the bonds 

between steel and concrete work and if there is any issue which must be understood for the sudden 

drop in loads. For this, let us observe the variation of load with time. Figure 5.10 shows SPLM 

simulation of the Brazilian split cylinder test at three different stages of time.   
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0.01284 seconds  

0.01345 to 0.01364 seconds  

0.0126 seconds 

Figure 5.10 Different stages in split cylinder simulation 
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The orientation of bonds between steel and concrete lattice bodies transitions gradually for 

a certain time. The load increases to a certain value and then starts decreasing gradually down to 

a point. After this point of time, there is a sudden decrease in load and the bonds between steel and 

concrete in this phase snap through. This would be the phase where the bonds are acting in an 

instable manner. After this phase, the load drops down to 0 kN and remains 0 kN until the 

completion of the analysis. The time phases in which this behavior is observed can be clearly noted 

in Figure 5.10. 

Let us eliminate the plate for now and observe how the load varies when displacement is 

applied to the concrete particles of the lattice instead of a steel loading platen. The top and bottom 

particles of the concrete split cylinder are subjected to a time-varying displacements. In other 

words, the cylinder is subjected to compression without interaction of concrete with any other 

material. The SPLM model without plate is shown in Fig. 5.11. 

 

 

  

6 inches 

Concrete Cylinder 

(a) (b) 

Loaded particle 

Figure 5.11 Split cylinder without steel plate (a) Schematic and (b) SPLM model 
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This clearly indicates concrete plastification under direct application of load to the 

particles. Conducting a time dependent analysis indicates that the peak loads are within 5% 

difference for the different simulation time similar to what was observed for the split cylinder with 

steel platen. Therefore, the analysis can be conducted for 16 × 𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙, as indicated by Fig. 

5.12. 

 

Now, with adequate information regarding the position of the steel loading platen, a stable 

concrete-steel interaction condition and a reasonable time of simulation, we proceed to modelling 

the Brazilian split cylinder test, the direct tension test and the modulus of rupture test. The peak 

loads obtained from the SPLM simulations are then compared to the peak loads obtained from the 

laboratory tests conducted in (Wright, 1955). 
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Chapter 6 SPLM Analysis of Lab Specimens 

6.1 Brazilian Split Cylinder Test 

The peak load obtained from (Wright, 1955) for the Brazilian split cylinder test is 𝑃𝑙𝑎𝑏 =

45.8 𝑘𝑖𝑝. The peak load obtained from SPLM analysis for 𝜃 = 00 is 𝑃𝑆𝑃𝐿𝑀 = 126 𝑘𝑖𝑝. The plots 

between displacement, time and force for the split cylinder simulation are shown in Fig. 6.1. 

Therefore,  𝑃𝑆𝑃𝐿𝑀
𝑃𝐿𝑎𝑏

= 
126 𝑘𝑖𝑝

45.8 𝑘𝑖𝑝
= 2.75. 

 

(6.1) 

 

 

 

 We now simulate the concrete cylinder rotated 00 and 300 counterclockwise. Applying the 

same displacement to the steel loading platens, the plastification and subsequent tensile cracking 

pattern is observed in all the three cases.   

(a) 

(b) 

(c) 

Figure 6.1 (a) Displacement vs. time (b) Force vs. time (c) Force vs. displacement for Brazilian 

split cylinder test at 𝜽 = 𝟎𝟎 
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It can be seen that there is a slight variation in the damage and fracture behaviour with 

change in lattice rotation. The peak load observes a 17% increase when transitioning from a lattice 

with 𝜃 = 00 to a lattice with 𝜃 = 300. These errors are imputed to variations in modelling the 

exact dimensions when lattice is rotated. It is however clear that the damage and plasticity models 

in SPLM behave as expected. The damage patterns for models with different lattice rotations are 

shown in Fig. 6.2.   

 

  

𝜃 = 00 𝜃 = 100 𝜃 = 300 

Figure 6.2 Damage patterns as a function of lattice rotation for Brazilian split cylinder 
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6.2 Direct Tension Test 

For the tension specimen, the fundamental period from SAP2000 was obtained to be 

0.00019 seconds. For this test in SPLM, the top and bottom two layers of particles were subjected 

to a time-varying displacement. Peak load obtained from (Wright, 1955) for the direct tension test 

is 𝑃𝑙𝑎𝑏 = 3.45 𝑘𝑖𝑝. Peak load obtained from SPLM analysis for 𝜃 = 00 is 𝑃𝑆𝑃𝐿𝑀 = 3.72 𝑘𝑖𝑝. The 

plots between displacement, time and force for the split cylinder simulation are shown in Fig. 6.3. 

Therefore,  𝑃𝑆𝑃𝐿𝑀
𝑃𝐿𝑎𝑏

= 
3.72 𝑘𝑖𝑝

3.45 𝑘𝑖𝑝
= 1.07 

(6.2) 

 

 

 

 

 

(a) 

(b) 

(c) 

Figure 6.3 (a) Displacement vs. time (b) Force vs. time (c) Force vs. displacement for direct tension test 
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Similar analysis of rotation of concrete lattice with the tension specimens in direct tension 

test is conducted. The crushing patterns in the three concrete specimens with lattice rotation angle 

of 𝜃 = 00, 100, 300 respectively can be seen in Figure 6.4.  

The difference in peak load at 𝜃 = 00 and 𝜃 = 300 is 17%. Though there is a slight 

variation in the damage and fracture behavior, as well as the values of peak load, the reason is 

clearly understood as discussed earlier.   

𝜃 = 00 𝜃 = 100 𝜃 = 300 

Partial damage 

Figure 6.4 Damage patterns as a function of lattice rotation for direct tension test 
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6.3 Modulus of Rupture Test 

For the flexure beam, the fundamental period from SAP2000 was obtained as 0.0005 

seconds. Three top particles in the center of the beam were subjected to a time-varying 

displacement. The displacement applied to these particles was calculated from the deflection 

equation ∆=
𝑃𝐿3

48𝐸𝐼
. Peak load obtained from (Wright, 1955) for the modulous of rupture test is 

𝑃𝑙𝑎𝑏 = 2.15 𝑘𝑖𝑝. Peak load obtained from SPLM analysis for 𝜃 = 00 is 𝑃𝑆𝑃𝐿𝑀 = 4.07  𝑘𝑖𝑝. The 

plots between displacement, time and force for the split cylinder simulation are shown in Fig. 6.5. 

Therefore,  𝑃𝑆𝑃𝐿𝑀
𝑃𝐿𝑎𝑏

= 
4.07 𝑘𝑖𝑝

2.15  𝑘𝑖𝑝
= 1.9 

 

(6.3) 

 

 

Figure 6.5 (a) Displacement vs. time (b) Force vs. time (c) Force vs. displacement for modulus of rupture 

test 
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In the simulation of the modulus of rupture test, the peak load obtained when the lattice is 

not rotated i.e; at 𝜃 = 00 is half the peak load obtained for a 300 rotated lattice. The damage 

pattern can be clearly observed in Figure 6.6. 

 

  

𝜃 = 00 

𝜃 = 100 

𝜃 = 300 

Figure 6.6 Damage patterns as a function of lattice rotation for modulus of rupture test 
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Chapter 7 Discussion, Conclusions and Future Work   

7.1 Summary of Test Results  

In this chapter, a summary of the analysis is given. The SPLM results are compared to lab 

results. Later, the mechanism of failure in split cylinders is analyzed. Some conclusions are made 

regarding the damage model, the bond configuration and interaction between different lattice 

bodies in SPLM. The stress distribution in concrete specimens cast in the laboratory is questioned. 

Later, the testing machine of the SPLM and the concepts of displacement controlled loading and 

load controlled loading are discussed. 

Summarizing all the results obatined from the three test methods, the difference between 

the peak loads obtained from the laboratory tests and SPLM analysis is given in Table 7.1. 

Table 7.1 Peak load obtained from for each test (lab vs. SPLM)  

Type of Test Lab Results (Wright, 1955) SPLM results 

Brazilian split cylinder test 45.8 kip 126 kip 

Direct tension test 3.45 kip 3.72 kip 

Modulus of rupture test 2.15 kip 4.07 kip 

 

 The peak loads of the laboratory tests were calculated from the tensile strengths listed in 

(Wright, 1955). This calculation was discussed earlier in section 4.7. For the peak loads obtained 

from SPLM, classical linear elastic theory would predict the tensile stregth to be as follows 

1. Brazilian split cylinder test  

𝑓𝑠𝑝 =
2𝑃𝑚𝑎𝑥
𝜋𝐿𝐷

=
2 × 126

𝜋 × 12 × 6
= 1114 𝑝𝑠𝑖, 

 

(6.4) 
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2. Direct tension test  

𝐹𝑡 =
𝑃

𝐴
=

3.72

𝜋 × 22
= 296 𝑝𝑠𝑖, 

 

(6.5) 

3. Modulus of rupture test  

𝜎 =
𝑀. 𝑦

𝐼
=

𝑃𝐿
4 𝑦

𝐼
=
4.07 × 12 ×

4
2

4 ×
44

12

= 1144 𝑝𝑠𝑖. 

 

(6.6) 

 

Therefore, the comparison of tensile strength obtained from the three tests from laboratory, 

SPLM analysis as predicted by classical theory is given in Table 7.2. 

Table 7.2 Classical theory prediction of tensile strength from each test (lab vs. SPLM) 

Type of Test Lab Results SPLM results 

Brazilian split cylinder test 405 psi 1114 psi 

Direct tension test 275 psi 296 psi 

Modulus of rupture test 605 psi 1144 psi 

 

It is observed that the tensile strength obtained from direct tension test is the least compared 

to the Brazilian split cylinder test and the modulus of rupture test in both SPLM analysis and lab 

tests. The direct tension test can produce reasonable results if the test is conducted with the 

appropriate specimen shape. Nevertheless, the direct tension is the most conservative among all 

the three tests. The classical theory prediction of tensile strength for the Brazilian split cylinder 

test is higher than the direct tension test but lower than the modulus of rupture test. The lab results 

also show similar a relationship.  
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7.2 Split Strength Indicator 

To verify if the maximum load, at which the split cylinder fails is dictated by plastification 

and crushing of concrete under the applied compressive loads or the damage of concrete particles, 

the SPLM models at different stages of loading are presented in Figure 7.1 indicating concrete 

crushing and subsequent tensile cracking.  

The load corresponding to each stage is indicated in the load versus time step graph shown 

in Figure 7.1. Diametral tensile cracks are formed but only after significant plastification. The peak 

load is observed to be 561 kN which corresponds to stage 2. The third stage shown, where the 

partial damage, yielding and plastification is observed along the vertical diameter represents a load 

of 527 kN. The final stage where the full damage is observed corresponds to a load of 470 kN.  

The peak load occurs well before the tensile crack forms as represented in the Figure 7.1 

indicating that the formation of tensile crack in the middle of the cylinder is not the proximate 

failure mechanism but it is because of concrete plastification or crushing (Gerstle, 2015). 
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Figure 7.1 Plot of Load vs time for split cylinder 
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7.3 Stress Distribution in Concrete Specimens 

The power of computational analysis allows us to simulate the same concrete cylinder 

specimen for every analysis. But is that the case when a physical experiment is conducted in the 

lab? Every specimen is different in its matrix arrangement as shown in Fig. 7.2. 

 

 

Would the stress distribution be the same at the top and bottom of the specimen shown in 

Figure 7.2? Not really! Concrete does not hold Hooke’s law as the apparent value of Young’s 

modulus decreases with increasing stress (Wright, 1955). The highly stressed parts in a concrete 

specimen are tend to be relieved by such a stress-strain curve and the additional stress is thrown 

on to those parts where stress is lower. The load required to break the specimen will therefore tend 

to increase and thus high values of peak loads may be observed (Wright, 1955). An important 

aspect here is also the stiffness of loading plate. If the test results depend on the value of stiffness, 

is it a good test? 

Figure 7.2 Rough sketch of tress distribution showing 

aggregates 
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7.4 Suggestions for Future Research  

Tensile damage in SPLM initiates when the average elastic stretch in a bond is sufficiently 

high. One possible aspect for future research is to understand if the tensile damage should initiate 

when the maximum elastic stretch in a bond or a particle reaches a critical value. This would highly 

improve the crack propagation in SPLM models.  

SPLM has immense potential to model reinforced concrete structures. The interaction 

between different lattice bodies could be perfected to simulate the behavior of any composite 

structure like reinforced concrete more accurately.  

The SPLM models in this thesis are tested by applying a time varying displacement to the 

steel platens. The testing machine in SPLM is currently displacement controlled and the stiffness 

is infinity. It would be interesting to know how the model works if the test was load controlled. In 

laboratory experiments, the splitting test is a load controlled test. 

Another interesting aspect in concrete which can be studied is the micro-cracking effect 

dominant in concrete. 

7.5 Conclusions 

As computer hardware and software become much more powerful in the upcoming future, 

the ability to obtain solutions to much larger problems than what were solved in this thesis will be 

possible within a much lesser time frame with SPLM. The time of simulation, for accuracy within 

3%, is 16 x 𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 and the user can change this value based on the demand of accuracy. The 

longest analysis for this thesis was for 128 x 𝑇𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙  which was around 90000 time steps and 

this analysis took about 8 minutes on Intel Core 17-4790K CPU @4.0 GHz. The operating system 
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type is 64-bit and the installed (RAM) has 31.8 GB usable memory. With a much more powerful 

computer or using parallel computers, this analysis will take even shorter time to finish. 

SPLM has the potential and ability to model plasticity, damage, elasticity in practical 

problems as we have seen. SPLM has the advantages of being simple and extremely user friendly 

when compared to other contemporary computation modelling techniques. It is well suited to 

modern digital computers. SPLM has the capacity to predict the behavior of a wide range of 

materials and to do so, it does not make too many assumptions when compared to classical 

continuum mechanics. SPLM excels in the simulation of dynamic behavior of structures. Short 

term dynamic events can be best modelled using SPLM. SPLM powerfully aids in understanding 

of material behavior.  
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