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ABSTRACT 
 

    In this study, a novel discrete Peridynamics framework called the “State-Based Peridynamic 

Particle Model (SPPM)” is introduced. In this approach, a solid body is simulated by neither 

solving differential equations nor integral equations; instead, the simulation is accomplished by 

directly solving discrete systems of equations using finite summations. SPPM is formulated for a 

random distribution of particles, hence, it can be considered as a meshfree method. The 

assumptions of continuity and homogeneity are not necessary in this approach. The SPPM is a 

generalization of the “State-Based Peridynamic Lattice Model (SPLM)”. In the SPLM 

formulation, for sake of simplicity and computational efficiency, a lattice of particles is employed 

and the horizon size is fixed. The proposed SPLM approach differs from the previous versions in 

that the procedures for calculating the bond forces, damage and plasticity are improved. A novel 

and robust damage approach called the “Two Spring Damage Model”, with the capability of 

modeling partial damage, is also proposed and developed for the SPPM and the SPLM.  

The re-formulated SPLM method is then calibrated and employed to simulate concrete structures. 

The obtained results are compared with the previous SPLM versions, experimental tests, and the 

commercial finite element software, Abaqus. The advantages and difficulties of each modeling 

approach are described. The re-formulated SPLM demonstrates significant improvements over the 

previous versions. The obtained simulation results indicate that the SPLM approach produces 

similar, and in some ways more realistic results than the well-developed Abaqus methods, but is 

much simpler to understand and use. The obtained results also reasonably replicate the available 

laboratory data. 
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 Chapter 1                                                                           

Introduction 
A reliable simulation tool for concrete structures, with the ability to predict damage and 

fracture, would aid structural engineers.  

In recent decades, computers have greatly improved. Consequently, various computational 

tools and numerical techniques have been developed by engineering professionals and 

academics. Among the proposed numerical approaches, the finite element method (FEM) 

has been the most successful. Nowadays, numerous FEM-based applications and codes are 

available for both industrial and academic use. Despite significant achievements, the FEM, 

and more generally, classical mechanics, have been rather unsuccessful in simulating 

strain-softening and damage in solids. Although methods have been developed for 

simulating damage and fracture, the FEM generally has limited capability with respect to 

damage and fracture. Other difficulties with FEM models can be addressed as the necessity 

for having a well-structured mesh, and problems regarding modelling moving boundary 

and large deformation problems. 

Recently, some of the difficulties with FEM, related to mesh generation, are overcome by 

introducing new types of methods called “meshless or mesh-free” approaches [2-4]. It has 

been claimed that meshless techniques provide more accuracy, decrease discretization 

costs, produce more flexibility in modelling complicated boundaries, and facilitate 

advanced adaptive refinement methods [5]. However, mesh-free approaches typically 

require more computational effort than conventional FEM approaches due to the expense 

of meshless shape function construction [6]. Modelling progressive damage and cracking 

are also approached by application of specific constitutive material models such as 

nonlocal microplane models [7] and implementation of smeared crack models [8], etc., 

within the continuum mechanics framework.  

The commercial code “Simulia Abaqus” is one of the most prominent commercial 

nonlinear FEM software packages available. Abaqus includes three different concrete 

constitutive models. All three Abaqus standard concrete cracking models are based upon 

smeared cracking approaches. The Abaqus concrete models are named the “brittle cracking 

model”, the “smeared cracking model”, and the “damaged plasticity model” [9, 10]. The 

Abaqus product suite contains the Abaqus/Standard Solver (an implicit solver that is 

designed to efficiently solve static and low speed dynamic problems), and the 

Abaqus/Explicit Solver (an explicit solver designed for efficient solution of nonlinear 

dynamic problems and recommended for nonlinear analysis). The brittle cracking model is 

implemented on Abaqus/Explicit, the damage plasticity model is implemented on both 

Abaqus/Explicit and Abaqus/Standard, and the smeared cracking model is only available 

in Abaqus/Standard [9, 10]. The Abaqus concrete cracking models are studied in this 

research. 

All the mentioned approaches (FEM, Meshless, etc.) are designed to solve spatio-temporal 

partial differential equations and are based upon continuum mechanics theory. On the other 
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hand, in 2000, an alternative approach, called “peridynamic” theory, a re-formulation of 

continuum mechanics in terms of nonlocal forces, was proposed. Peridynamics was 

initially introduced by Silling [11]. The peridynamic model avoids an assumption of 

differentiability of the displacement field. In this theory, the concept of stress is replaced 

by a nonlocal pairwise force, which is a function of particle positions. Two different 

peridynamics approaches were proposed. In the first approach, called the “bond-based 

peridynamic model [11]” the pairwise force function between two interacting particles is 

assumed to be a function only of the relative initial position and the relative displacement 

between the interacting pair of particles. The bond-based model was found to be 

insufficiently general, requiring a non-arbitrary Poisson’s ratio and lack of the capability 

to adequately model the plastic volumetric deformations. In a later paper, the issue of the 

non-arbitrary Poisson’s ratio was resolved by the development of the “micropolar bond-

based peridynamic model [12]” which includes the rotational and moment degrees of 

freedom. In 2007, a second continuum peridynamics approach, called the “state-based 

peridynamic model”, was published [13]. In the state-based approach, the pairwise force 

function is not only a function of the positions of the two adjacent interacting particles, but 

is also a function of other neighboring particles. The state-based model allowed for more 

general solid models, without the mentioned limitations of the bond-based method. 

However, compared to the bond-based method, the state-based approach is more complex. 

In addition, due to having more particles involved in computation of the pairwise force 

function, the computational cost of the state based approach is higher than that of the bond-

based model.  

 It should be also noted that in both the bond-based and the state-based peridynamic 

approaches, the reference material space is treated as a continuum. Hence, the mentioned 

Silling’s methods are continuum peridynamics models. In 2015, Gerstle re-formulated the 

state-based peridynamic in a non-continuum, integer Cartesian, solid material space. The 

proposed method is called the “state-based peridynamic lattice model (SPLM) [14]”, in 

which the material geometry is discretized by a finite number of particles with a lattice 

configuration. By employing the lattice topology for particles, the number of neighboring 

particles and also the reference locations of the neighboring particles in every peridynamic 

horizon are fixed. At each time step of the analysis, each particle “knows” which particles 

it should interact with (without need for any extra calculations). The topological 

neighborhood of each particle remains invariant throughout the simulation. The 

computational implementation of SPLM is much simpler than conventional continuum 

peridynamic methods in the sense that storing and loading the data is easier and there is no 

need for numerical integration and other complex numerical operations. Therefore, SPLM 

can be more efficient, in terms of computation effort and accuracy, than continuum 

peridynamic approaches.  

Despite the novelty and the addressed advantages, further studies showed that the initial 

version of SPLM [14] was insufficiently objective for models with damage. The 

simulations including damage did not match the classical solutions, and did not accurately 
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replicate experimental behavior; did not converge well with lattice refinement, and were 

sensitive to lattice rotation and translation.   

In this thesis, firstly, a new formulation of discrete Peridynamics called the “State-Based 

Peridynamics Particle Model (SPPM)” is introduced. In this approach, which can be 

considered as a mesh-free method in a peridynamic framework; the assumption of a 

continuum domain is relaxed, and the classical spring theory is combined and strengthened 

with the concepts of state-based peridynamics. In addition, a damage model with the 

capability of modelling partial damage, named the “two-spring damage model”, is 

developed within the SPPM framework. The two-spring damage model employs the 

concepts of combined spring systems as well as state based peridynamic ideas. This 

approach is considered a particle-based damage approach since the damage and failure are 

associated with the particles instead of bonds. A suitable plasticity method is also proposed 

for the SPPM framework. Afterwards, the improved SPLM (which is a special case of the 

SPPM) is also proposed. The improved SPLM method is then demonstrated, by solving 

several plain stress concrete problems. The results are compared with those of FEM, 

experimental, and theoretical solutions.  

In this thesis, we investigate and evaluate the capabilities of the improved SPLM in the 

simulation of plain concrete. We demonstrate conformity with laboratory test results, and  

compare the SPLM results with the various Abaqus concrete cracking models, as well as 

the classical solutions. 

We investigate and evaluate the advantages and disadvantages of each modelling approach.  

The obtained results demonstrate promising capability and efficiency of the SPLM method 

in modelling concrete structures. The SPLM/SPPM approach might be more 

computationally efficient and more accurate than the continuum peridynamics approach. 

Despite the relatively simple algorithm, the introduced SPLM/SPPM method may provide 

more realistic damage and cracking simulations than those of well-developed commercial 

FEM codes like Abaqus. 
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 Chapter 2                                                                                                

Literature Review 
In this chapter, the key features of Abaqus concrete cracking models, including 

assumptions, limitations, brief theory, and input setup are presented. More details can be 

found in the Abaqus user’s manuals [9, 10]. In addition, a brief discussion of the available 

peridynamic models is persented. 

 

     2.1. Abaqus Brittle Cracking Model 

This method, applicable for plain or reinforced concrete, is the simplest of the Abaqus 

cracking approaches to understand, implement and calibrate. This approach is for the 

applications in which the concrete behavior is dominated by tensile cracking. The 

compressive behavior is assumed to be linear elastic [9]. This model is claimed to be 

applicable for modelling any kind of concrete structure (beam, truss, solid, etc.). The main 

idea of this approach is that when the maximum principal tensile stress exceeds the tensile 

strength of the brittle material, the crack forms.  The formed crack is assumed to be 

irrecoverable (remains constant) and the constant crack surface is defined normal to the 

direction of maximum tensile principal stress. These are questionable assumptions because 

of the changing the direction of principal stresses over time.  

In this approach, Modes I and II fracture (tension and shear softening/retention) can be 

implemented [9, 10]. Tension softening (Mode I fracture) is based on the fictitious fracture 

concept of Hillerborg [15], and can be defined by tabulating the tensile strength of concrete 

(post peak behavior) as a function of either crack opening strain, 𝜀𝑐𝑟, or crack opening 

displacement, 𝐶𝑂𝐷. The fracture process zone is large in concrete, and the assumption of 

the crack opening strain being normal to the fixed crack surface is questionable. The 

relation between the 𝐶𝑂𝐷 and crack opening strain, 𝜀𝑐𝑟, is defined as follows. 

𝐶𝑂𝐷 = 𝜀𝑐𝑟𝐿𝑒 ,                                                                                                                               (2.1) 

where 𝐿𝑒 is the characteristic length of the cracked elements. The definition of the element 

size, and subsequently the characteristic length of elements, are vague in all the Abaqus 

models. Abaqus manual define the characteristic length of the first order square elements 

as 𝐿𝑒 = �̅�√2, (�̅� is the element size:  side of the square elements); however, even for the 

structured mesh construction, having a perfectly square element may not be possible due 

to the shape of the geometry. Consequently, choosing a correct value of characteristic 

length is almost impossible for most of the cases. Moreover, based on Eq. (2.1), the crack 

opening strain is essentially a function of characteristic length of the cracked element; 

hence, by changing the element size, the crack opening strain should be re-calculated. 

Consequently, using stress-crack opening strain option makes the results mesh dependent, 

and thus non-objective. However, defining stress-crack opening displacement relation 

(which is an alternative option to stress-crack opening strain) can decrease, although not 

eliminate, the mesh dependency of the model. 
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Shear softening, necessary to model Mode II fracture, can be also implemented via the 

shear retention model [10].  In this arguable approach, the reduction in shear modulus due 

to crack opening is specified by defining the post-cracked shear stiffness, 𝐺𝑐, as a function 

of uncracked shear modulus, 𝐺, as  

𝐺𝑐 = 𝜌𝐺,                                                                                                                                        (2.2) 

where 𝜌 is the shear retention factor which is a function of crack opening strain. In the 

software, the value of shear retention factor can be assigned as a tabular function of crack 

opening strain across the crack.  In this thesis, a bilinear relation between the shear retention 

factor and the crack opening strain is specified, in correspondence with Fig. (4.4) in chapter 

4. As illustrated, defining Mode II fracture behavior is optional in the program, however, 

employing it will make the model mesh dependent due to the need for defining the crack 

opening strain (due to the mentioned issues with re-calculating the characteristic length of 

elements for different element sizes). 

Besides of the mesh dependency and other mentioned limitations, although the Abaqus 

brittle cracking model seems to have the capability of modelling partial tensile damage, 

partial damage cannot be visualized, as no contour plots are available for partial damage. 

Instead, Abaqus can show only complete damage, by removing the fully-cracked elements 

based on a failure criterion [9]. Element removal is another controversial issue with this 

model and seems is not rational in the cases where transverse compression exists (since 

failed materials under tension are expected to withstand some compressive stress). When 

cracking strain or displacement at a material point reaches the user-defined failure value, 

the material point fails and all the stress components are set to zero. Element removal then 

takes place when all of the material points in an element have failed [9]. Element removal 

can be disabled and the Abaqus manual refers the effective use of element removal to the 

user and their own knowledge of structural behavior (which is questionable and disqualifies 

the objectivity of the approach). More details about this model can be found elsewhere 

[10].  

The brittle cracking approach can only allow the user to visualize the ultimate damage  

through element removal via the STATUS contours [9]. Therefore, the STATUS contours 

are used in Chapter 4 of this thesis. 

 

    2.2. Abaqus Plasticity Damage Model 

The plasticity damage model implemented in Abaqus is based upon the damage-plasticity 

models proposed by Lubliner [16] and by Lee and Fenves [17]. This model claims to 

provide a comprehensive capability for modeling plasticity and damage in all kinds of 

concrete structures. However, defining the input parameters and calibrating the model is 

more complicated than the other proposed concrete cracking methods in Abaqus. The 

description of the model in the Abaqus manual is not very clear; hence, some of the key 

formulations are simplified and illustrated as follows.  
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The plasticity damage model essentially assumes that the main two failure mechanisms are 

tensile cracking and compressive crushing of the material [9]. This method assumes a 

reduction in the material’s elastic stiffness, 𝑫𝑒𝑙, by defining the scalar damage degradation 

parameter, 𝑑𝑝, as 

𝑑𝑝 = 1 − (1 − 𝑠𝑡𝑑𝑐)(1 − 𝑠𝑐𝑑𝑡),                                                                                              (2.3)  

and  

𝑫𝑒𝑙 = (1 − 𝑑𝑝)𝑫0
𝑒𝑙 ,                                                                                                                    (2.4) 

where 𝑫0
𝑒𝑙 is the uncracked elastic stiffness, and 𝑑𝑐 and 𝑑𝑡 are, respectively, the 

compressive and tensile damage parameters. Note that 𝑑𝑝, 𝑑𝑐, and 𝑑𝑡 vary between 0 (no 

damage) to 1 (full damage). 𝑠𝑐 and 𝑠𝑡 are the stiffness recovery parameters (essentially for 

cyclic loading) which are defined as functions of a “stress weight factor”, r=r(𝝈), and the 

recovery weight factors, 𝑤𝑐 and 𝑤𝑡,  as follows: 

𝑠𝑡 = 1 − 𝑤𝑡𝑟,                                                                                                                                (2.5) 

 

𝑠𝑐 = 1 − 𝑤𝑐(1 − 𝑟),                                                                                                                    (2.6)     

 

where 

 𝑟 =

1
2 (
∑ (|𝜎𝑖| + 𝜎𝑖))
𝑛
𝑖=1

∑ |𝜎𝑖|
𝑛
𝑖=1

;                                                                                                           (2.7) 

 

and 𝑤𝑐, 𝑤𝑡, and r vary between 0 and 1, 𝜎𝑖 are the principal stress components, and n is the 

number of principal stresses (n=2 for the plane stress case and n=3 for the three-

dimensional multiaxial condition). In this damage model, there are four user input 

parameters, as well as tension softening and compressive hardening inputs, that must be 

defined by user:  𝑤𝑐, 𝑤𝑡, 𝑑𝑐, and 𝑑𝑡. In this thesis, since the cyclic loading steps are not 

considered, 𝑤𝑡 and 𝑤𝑐 are, respectively, assumed to be zero and one (default values). Note 

that per Eq. (2.7), in the case of uniaxial tension, 𝜎𝑖 = 𝜎1 > 0, hence, r=1; and for uniaxial 

compression 𝜎𝑖 = 𝜎1 < 0, hence, r=0. 

 Accordingly, the stress-strain relation for a multiaxial condition is defined as 

𝝈 = 𝑫𝑒𝑙(𝜺 − �̃�𝑝𝑙) = (1 − 𝑑)𝑫0
𝑒𝑙(𝜺 − �̃�𝑝𝑙) = (1 − 𝑑)𝝈,                                                    (2.8) 

where, 𝜺  𝑎𝑛𝑑 �̃�𝑝𝑙 are, respectively, the total strain and equivalent plastic strain vectors, 

and 𝝈 is the effective cohesion stress vector. In case of uniaxial loading, Eq. (2.8) can be 

simplified for uniaxial tension, Eq. (2.9), and compression, Eq. (2.10), as follows 
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𝜎𝑡 = 𝐸(𝜀𝑡 − 𝜀�̃�
𝑝𝑙) = (1 − 𝑑𝑡)𝐸0

𝑒𝑙(𝜀𝑡 − 𝜀�̃�
𝑝𝑙)

= (1 − 𝑑𝑡)𝜎𝑡,                                                                                                    (2.9) 

𝜎𝑐 = 𝐸(𝜀𝑐 − 𝜀�̃�
𝑝𝑙) = (1 − 𝑑𝑐)𝐸0

𝑒𝑙(𝜀𝑐 − 𝜀�̃�
𝑝𝑙)

= (1 − 𝑑𝑐)𝜎𝑐,                                                                                                 (2.10) 

where 𝐸0
𝑒𝑙 is the uncracked elastic modulus. Therefore, from Eqs. (2.9) and (2.10), the 

following relationships for 𝜀�̃�
𝑝𝑙

 and 𝜀�̃�
𝑝𝑙

 are derived as follows. 

𝜀�̃�
𝑝𝑙 = 𝜀𝑡 − 

𝜎𝑡
(1 − 𝑑𝑡)𝐸0

𝑒𝑙  ,                                                                                                       (2.11) 

𝜀�̃�
𝑝𝑙 = 𝜀𝑐 − 

𝜎𝑐
(1 − 𝑑𝑐)𝐸0

𝑒𝑙 .                                                                                                       (2.12) 

In the damage-plasticity model, the tension softening behavior can be defined exactly in 

the same way as in the brittle cracking model (shown in Fig. (4.4)). The tensile damage 

parameter, 𝑑𝑡 can be specified as a function of either cracking strain, 𝜀�̃�
𝑐𝑟

, or 𝑢𝑡
𝑐𝑟 (crack 

opening displacement). The software automatically converts 𝜀�̃�
𝑐𝑟

 to 𝜀�̃�
𝑝𝑙

. The cracking 

strain, 𝜀�̃�
𝑐𝑟

, is defined as 

𝜀�̃�
𝑐𝑟 = 𝜀𝑡 −

𝜎𝑡

𝐸0
𝑒𝑙  .                                                                                                                        (2.13) 

By substituting 𝜀𝑡 from  Eq. (2.13) into Eq. (2.11),   

𝜀�̃�
𝑝𝑙 = 𝜀�̃�

𝑐𝑟 − 
𝑑𝑡𝜎𝑡

(1 − 𝑑𝑡)𝐸0
𝑒𝑙 .                                                                                                    (2.14) 

In terms of plastic displacement, 𝑢𝑡
𝑝𝑙, Eq. (2.14) can be rewritten as 

𝑢𝑡
𝑝𝑙 = 𝑢𝑡

𝑐𝑟 − 
𝑑𝑡𝜎𝑡𝑙0

(1 − 𝑑𝑡)𝐸0
𝑒𝑙 ,                                                                                                   (2.15) 

where 𝑙0 is the specimen length (assumed to be one unit length, 𝑙0 =1). Also, 𝑑𝑡, is 

specified, from Eq. (2.14), as 

𝑑𝑡 =
(𝜀�̃�

𝑐𝑟 − 𝜀�̃�
𝑝𝑙)𝐸0

𝑒𝑙

𝜎𝑡 + (𝜀�̃�
𝑐𝑟 − 𝜀�̃�

𝑝𝑙)𝐸0
𝑒𝑙
=  

(𝜀�̃�
𝑐𝑟 − 𝜀�̃�

𝑝𝑙)

(𝜎𝑡/𝐸0
𝑒𝑙 + 𝜀�̃�

𝑐𝑟 − 𝜀�̃�
𝑝𝑙)
,                                                (2.16) 

and from Eq. (2.16) as 

𝑑𝑡 =
(𝑢𝑡

𝑐𝑟 − 𝑢𝑡
𝑝𝑙)

(𝜎𝑡/𝐸0
𝑒𝑙  +  𝑢𝑡𝑐𝑟 − 𝑢𝑡𝑝𝑙)

.                                                                                              (2.17) 

If the calculated equivalent plastic strain (or plastic displacement), based on Eqs. (2.14, 

and 2.15), values become negative, Abaqus will give an error massage and the analysis will 

terminate. Hence, in specifying 𝑑𝑡, the user should make sure that 𝜀�̃�
𝑝𝑙 ≥ 0 (𝑜𝑟 𝑢𝑡

𝑝𝑙 ≥ 0 ). 
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Moreover, as can be seen from Eqs. (2.11) and (2.12), we have (1 − 𝑑𝑡) in the 

denominator; therefore, the user cannot specify the damage parameter exactly as one. It is 

recommended to avoid using values of the damage parameters above 0.99, which 

corresponds to a 99% reduction of the stiffness [9]. The user may face a material data 

regularization error if the smallest defined interval (in this case for the damage parameters) 

is small compared to the range of the independent variable. In such a condition, the user 

should either redefine the material data, in this case redefine damage parameters, (which 

may not be practical due to possibility of getting the other mentioned errors) or change the 

tolerance value in the property modulus [9].  The mentioned issues make the definition of 

damage parameters extremely complicated. 

Similarly, for compressive crushing behavior, the user must tabulate the compressive 

strength as a function of so the called inelastic (or crushing) strain, 𝜀�̃�
𝑖𝑛, which is defined 

as 

𝜀�̃�
𝑖𝑛 = 𝜀𝑐 −

𝜎𝑐

𝐸0
𝑒𝑙  .                                                                                                                       (2.18) 

The compressive damage parameter should also be specified as a function of 𝜀�̃�
𝑖𝑛

, and the 

software will automatically convert the inelastic strain values to compressive plastic strain, 

𝜀�̃�
𝑝𝑙. Following a similar procedure as with the tensile damage parameter, the following 

equations are obtained. 

𝜀�̃�
𝑝𝑙 = 𝜀�̃�

𝑖𝑛 − 
𝑑𝑐𝜎𝑐

(1 − 𝑑𝑐)𝐸0
𝑒𝑙 ,                                                                                                    (2.19) 

and 

𝑑𝑐 =
(𝜀�̃�

𝑖𝑛 − 𝜀�̃�
𝑝𝑙)

(𝜎𝑐/𝐸0
𝑒𝑙 + 𝜀�̃�

𝑖𝑛 − 𝜀�̃�
𝑝𝑙)
,                                                                                                (2.20) 

Note that we have the same issues with analysis errors in defining the compressive damage 

parameter as in the tensile case. 

In this thesis, to keep the models simple, elastic-perfectly plastic behavior is assumed for 

concrete in compression. In addition, the tensile and compressive damage parameters are 

specified similar to [18] and corresponding to the assumed tension softening and 

compressive crushing mechanisms. In order to avoid getting the error of negative converted 

plastic strain value, Eqs. (2.17) and (2.20) are checked in the process of defining the 

damage parameters. 

In the damage plasticity model, the yield surface is defined based on the yield function, 

𝐹(𝝈, �̃�𝑝𝑙) [10]; and the Drucker-Prager hyperbolic flow potential function is used for the 

plastic flow rule [10]. In Abaqus, there are five input parameters related to plasticity and 

the yield surface that must be set by user [9]. These parameters are:  biaxial/uniaxial 

compressive yield stress ratio, 𝜎𝑏0 𝜎𝑐0⁄ , with the default value of 1.16; dilation angle, 𝜓, 
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with the default value of 15 degrees; the ratio of the second stress invariant on the tensile 

meridian to compressive meridian at initial yield, Kc, with a default value of 2/3; flow 

potential eccentricity, 𝜖, with a default value of 0.1; and viscosity, 𝜇, with a default value 

of zero. In this thesis, due to insufficient experimental data, all the mentioned plasticity 

input parameters are set to the default values. In addition, the viscoplastic regularization 

feature [10] is not considered in this thesis. 

Among the Abaqus approaches, only the damage plasticity method has the capability of 

contouring the partial damage directly using the software’s visualization package. In this 

thesis, SDEG contours, which is the damage parameter (𝑑𝑝), introduced in Eq. (2.3), are 

presented. 

 

    2.3. Abaqus Smeared Cracking Model 

The Abaqus smeared cracking model is another proposed Abaqus approach that claims to 

provide a general capability to simulate the post-cracking response of plain and reinforced 

concrete structures.  

The smeared cracking model has the capability to model Mode I fracture (tension 

softening), Mode II fracture (via shear retention), and the compressive behavior of concrete 

[9, 10]. In the smeared cracking model, two independent yield functions of  𝐹𝑡 and 𝐹𝑐 are 

defined for the tensile and compressive yield surfaces [10]. When the state of stress is 

predominantly tensile, the model uses the “crack detection” or “failure” surface (based on 

𝐹𝑡), and in the case of having a dominantly compressive stress state, it uses the 

“compressive” or “yield” surface (based on 𝐹𝑐). Both 𝐹𝑡 and 𝐹𝑐 are defined as functions of 

first and second stress tensor invariants (p and q). Four failure ratios must be specified by 

the user in Abaqus [9].  

Unlike the other Abaqus models, this model is only implemented in Abaqus/Standard, 

which is an implicit solver. Although the dynamic-implicit solver claims to use automatic 

time incrementation; the time integration is not fully automatic and the user must define 

the maximum number of time increments as well as initial and minimum increment size. 

Defining a proper value for the mentioned parameters is not easy for the user, and affects 

the obtained results, total computational time, and convergence behavior of the simulation. 

The mentioned difficulties cause a lack of objectivity of this approach. In addition, this 

approach is essentially applicable only for monotonic loadings under low confining 

pressures (less than 5𝑓𝑐
′) [10]. Therefore, due to the limited simulation capabilities, the 

smeared cracking approach is not considered in this study. 

 

    2.4. Summary and Conclusions regarding the Abaqus Concrete Models 

As discussed, the commercial FEM software package, Abaqus, presents three standard 

methods particularly for modeling damage and fracture in concrete structures. The main 

difficulties of the Abaqus concrete cracking models are summarized as follows. 
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1) Limited modelling capabilities and complexity in defining the input parameters. As 

discussed, for calibrating some of the approaches (for instance the damage 

plasticity method) it is required from the user to define more than ten input 

parameters; while, there are no such experimental data for some of those 

parameters. The authenticity of the main theories of the developed methods (in 

accommodating with the real structural behavior of concrete) are questionable. On 

the other hand, the simpler models (like brittle cracking) have limited simulation 

abilities and simplified assumptions which do not capture the real physical behavior 

of concrete.   

2) Mesh dependency. All the Abaqus concrete methods are mesh dependent; in that 

the tension softening behavior is modeled using the fictitious crack approach which 

requires the characteristic length of the cracked elements. Consequently, in the case 

of using non-rectangular elements, the difference in the characteristic length of the 

elements and what is defined in input data leads to some inaccuracies in the results. 

3) Convergence issues. Mesh refinement study is not recommended since it leads to 

narrower crack bands and, therefore, different results. In other words, the results 

will not converge to a unique solution by performing the convergence study. This 

issue is explicitly mentioned in the Abaqus manual [9].  

In conclusion, none of the Abaqus concrete cracking models are satisfactory for modelling 

real structural behavior of concrete; which is addressed as lack of objectivity of the 

proposed models. Nevertheless, among the presented methods, the Abaqus damage 

plasticity model seems to be more powerful and more realistic. The Abaqus brittle cracking 

model is handy and easy to calibrate, however, the limitations of this method should be 

clear for the user before starting to employ this approach. 

    2.5. Peridynamic Models 

The continuum peridynamics theory is introduced by Silling [11, 13] and developed for 

modelling solid mechanics [19]. Different forms of discretization are employed such as 

finite element discretization [20], and meshfree discretization [21, 22] to solve the 

continuum peridynamics integral equations numerically. The issues related to continuum 

peridynamic approaches are discussed in detail in the following chapters.  

About the research in the field of simulation of concrete structures using peridynamics, 

there are a limited number of publications in the literature. The first effort in modelling 

concrete structures with the bond-based peridynamics theory is performed by Gerstle and 

colleagues [12, 23, 24]. Some more recent studies based on the state-based theory are also 

available in the literature [25].   
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 Chapter 3                                                                                       

State-Based Peridynamics Particle Model 

   3.1. Introduction 

Continuum state-based peridynamic theory was initially proposed by Silling [13] as an 

alternative to classical continuum mechanics methods; which was expressed as 

𝜌(𝒙)�̈�(𝒙, 𝑡) =  ∫ 𝒇𝒙𝒙′

𝐻𝒙

𝑑𝑉𝒙′ + 𝑩(𝒙, 𝑡),                                                                                  (3.1) 

where 𝒙 and 𝒙′ are, respectively, the position vector of two neighboring particles in the 

spherical horizon of particle 𝒙 . 𝜌 is the mass density associated with particle 𝒙 in the 

reference configuration, 𝒖 is the displacement vector field, 𝑩 is the body force vector, 

and 𝒇𝒙𝒙′ is a function called “pairwise force function”, introduced in form of Eq. (3.2) as 

𝒇𝒙𝒙′ = 𝑻[𝒙, 𝑡]〈𝒙
′ − 𝒙〉 − 𝑻[𝒙′, 𝑡]〈𝒙 − 𝒙′〉.                                                                            (3.2) 

Here, 𝑻 is a function namely “force vector state field” or “force state”; which could be 

defined as a function of the deformation of all the bonds connected to particle 𝒙 in the 

neighborhood, 𝐻𝒙,of particle 𝒙. The mathematical notation 𝑻[𝒙, 𝑡]〈𝒙′ − 𝒙〉 means that the 

force state, 𝑻, is acting on particle 𝒙, at time 𝑡, and in the bond direction of 〈𝒙′ − 𝒙〉. Note 

that 𝒇 should always satisfy Newton’s second and third laws so that Eq. (3.1) could be 

valid; however, there is no necessity for 𝑻 to be defined in such a way that it satisfies 

Newton’s laws.  

The mentioned constitutive peridynamic equation of motion (Eq. (3.1)) is defined based on 

the following assumptions. 

(1) The peridynamic horizon of particle 𝒙 is apparently defined in a continuum domain. 

In other words, the reference material domain is assumed to be a continuum. 

(2) The pairwise force function (𝒇), or essentially force state (𝑻), should be Reimann 

integrable; and the integral in Eq. (3.1) should converge uniformly [13]. 

(3) As can be understood from Eq. (3.2), both 𝑻 and 𝒇 are apparently assumed to be 

calculated at time t (in other words, the in same time step). 

Although the state-based peridynamics approach, proposed by Silling, is a superior 

formulation compared to the classical continuum mechanics, because it can directly deal 

with discontinuities and singularities, it is considered as an alternative continuum approach, 

since it is developed based on the mentioned questionable assumptions. From a physical 

behavior point of view, the validity of Eq. (3.1) for the materials without a continuous 

physical domain (such as concrete) is questionable. Therefore, similar to the issue with the 

classical continuum approaches, continuum peridynamics models, based on Eq. (3.1), 

generally do not have a good correspondence with the real physical behavior of non-

continuum materials. Moreover, with no regard to the method of discretization of the 

problem domain (mesh-free or mesh-based), the integral equation shown in Eq. (3.1) must 
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be discretized using quadrature methods or other numerical integration approaches. 

Performing such discretizations are necessary, and may increase the numerical errors and 

computational costs; since to reach the desired accuracy is specific cases, more integration 

points may be needed than the initial discretization nodes.  

In light of the mentioned issues, the continuum formulations of state-based peridynamics 

seems to be unsatisfactory to simulate the realistic behavior of non-continuum materials. It 

is also computationally inefficient.  

In this study, the discrete framework of the state-based peridynamic theory is proposed. 

The method is called “state-based peridynamic particle method (SPPM)”. In this approach, 

the assumption of the continuity of the problem domain is relaxed and a finite number of 

particles is assumed for each peridynamic horizon; the integrals are substituted by finite 

summations, and the effect of overlapping the horizons on each other are considered more 

carefully by calculating 𝑻 and 𝒇 in two different consecutive time steps. The general 

scheme of the SPPM formulation is shown in Eqs. (3.3) and (3.4) as 

𝑚(𝒙)�̈�(𝒙, 𝑡𝑛) =  ∑𝒇𝒙𝒙′

𝐻𝒙

+ 𝑩(𝒙, 𝑡𝑛),                                                                                    (3.3) 

and  

 

𝒇𝒙𝒙′ = 𝑻[𝒙, 𝑡
𝑛−1]〈𝒙′ − 𝒙〉 − 𝑻[𝒙′, 𝑡𝑛−1]〈𝒙 − 𝒙′〉,                                                               (3.4) 

where 𝑚 is the mass of particle 𝒙, and 𝑛 is the time step number. Another criticism to the 

published refences of the continuum state-based peridynamics methods is that, for 

unknown reason, the simple theory of peridynamics is proposed using unnecessary and 

complicated mathematical definitions and notations; which makes it hard for the 

researchers to follow the math and study the theory. Hence, in this study, a simpler, 

common mathematical formulation is employed. A precise form of SPPM formulation is 

proposed in the following sections of this chapter. In the following sections, an elastoplastic 

damage method is developed.  
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    3.2. SPPM Linear-Elastic Formulation 

In this section, the 3D formulation of SPPM is proposed and discussed. The introduced 

formulation can be then specialized to 2D/1D cases. 

Consider an arbitrary problem domain, Ω, (can be a continuum or non-continuum) with its 

boundaries, Γ,   which is discretized with a random finite number of particles, 𝑁𝑃Ω,  shown 

in Fig. (3.1). Note that, the definition of analytical boundaries do not exist in this approach, 

and the desired physical domain will substitute with integer number of particles; 

consequently, the resolution of the modelled boundaries depends upon the number of the 

particles used for boundary discretization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Assuming problem domain substituted by randomly-distributed 

finite number of particles. (a) before discretization, (b) after discretization. 

a 

b 

𝚪 
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Now consider a spherical peridynamic horizon (𝐻𝑖), centered upon particle 𝑖, and with the 

radius of ri, shown in Fig. (3.1). Depending the radius size, the horizon of particle i will 

include a finite number of particles, 𝑁𝑃𝑖, interacting with i, so called the “neighboring 

particles” or “neighbor-list of particle i” (𝑁𝑃𝑖 does not include particle i itself). Moreover, 

it is assumed that the particles located outside of the horizon of particle i will not have any 

interaction with particle i. In other words, particle i only interacts particles within its 

horizon.  Choosing a satisfactory horizon radius is an important and controversial issue in 

the literature. The horizon size could depend on the material type or even loading rate; and 

it could also affect the computational efficiency of the method. One can assume a fixed 

number of particles for each particle horizon and calculate r based on the average distance 

of those particles from i. Another approach which is frequently used in the literature would 

be considering a fixed radius for all the particle horizons [14, 21, 24]. This approach would 

be more applicable for the regularly distributed particle configurations. The proposed 

method for calculating the horizon size for SPPM approach is discussed in section 3. 5. 

Coming back to Fig. (3.1), in SPPM approach it is assumed that particle i is interacting 

with each particle inside its horizon, via a bond (shown by arrows in Fig. (3.1)). Therefore, 

for each horizon, the total number of bonds would be equal to the number of particles, 𝑁𝑝𝑖, 

in that horizon. The acceleration of particle i at time step n, �̈�𝑖
𝑛 = �̈�(𝒙𝑖, 𝑡

𝑛), can be 

calculated by the simplest form of equation of motion (similar to Eq. (3.3)) as 

𝑚𝑖�̈�𝑖
𝑛 =∑(𝐹𝑏)𝑖𝑗

𝑛

𝑁𝑃𝑖

𝑗=1

+ 𝐵𝑖
𝑛,                                                                                                            (3.5) 

where 𝑚𝑖 is the mass of particle i, 𝑁𝑃𝑖 is the total number of particles in the neighbor list 

of particle i, B is the body force acting on particle i, and (𝐹𝑏)𝑖𝑗
𝑛  is the bond force acting on 

particle i in the direction of particle j; can be generally defined as a function of force states, 

(𝐹𝑠)𝑖𝑗
𝑛 , as 

(𝐹𝑏)𝑖𝑗
𝑛 = Φ((𝐹𝑠)𝑖𝑗

𝑛−1, (𝐹𝑠)𝑗𝑖
𝑛−1).                                                                                                  (3.6)  

The function Φ in SPPM should be defined so that satisfies the following conditions: 

(1) Newton’s third law should be satisfied ((𝐹𝑏)𝑖𝑗
𝑛 = −(𝐹𝑏)𝑗𝑖

𝑛 ). 

(2) The force states, (𝐹𝑠)𝑖𝑗 , should be calculated in the previous time step (time step 𝑛 − 1). 

(3) The force states, (𝐹𝑠)𝑖𝑗 , may be not only a function of the stretch of bond ij, but also 

all the other bonds in the horizon of particle i. 

Any combination of force states fulfilling the first condition (for instance minimum, 

maximum, average, etc.) for defining Φ could be valid. Furthermore, note that the classical 

continuum peridynamics approaches [11, 13] does not consider the second mentioned 

condition; instead, they calculate the bond forces and the force states in the same time step. 

The third condition is obligatory to satisfy the state-based peridynamics theory. In the 
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following, it is shown that considering the second condition will significantly improve the 

accuracy of the results in proposed SPLM approach (see chapter 4).   

In this study, the simplest form of the function Φ, the average of the force states, is 

proposed for SPPM approach. Therefore, Eq. (3.6) can be re-written as 

(𝐹𝑏)𝑖𝑗
𝑛 = 

1

2
((𝐹𝑠)𝑖𝑗

𝑛−1 + (𝐹𝑠)𝑗𝑖
𝑛−1) ,                                                                                            (3.7) 

In linear-elastic SPPM, the Force State, (𝐹𝑠)𝑖𝑗 , acting on particle i in direction of particle 

j, can be assumed to be a linear function of the elastic stretch between i and j, as well as a 

linear function of the summation of the stretches of all the other bonds in the horizon of 

particle i. Hence,  (𝐹𝑠)𝑖𝑗  is defined, in a general form, as a summation of a bond-based term 

plus state-based terms, as 

(𝐹𝑠)𝑖𝑗 = 𝑎𝑖(𝑆𝑒)𝑖𝑗 + 𝑏𝑖 ∑(𝑆𝑒)𝑖𝑚

𝑁𝑃𝑖

𝑚=1

+ 𝑐𝑖 ∑(𝑆𝑒)𝑖�̅�

𝑁𝐼𝐼

�̅�=1

,                                                            (3.8) 

where the constants 𝑎𝑖 is defined as a bond-based micro-elastic modulus, and 𝑏𝑖 and 𝑐𝑖 are 

defined as state-based peridynamics micro-elastic modules associated with particle i; 𝑁𝐼𝐼 
is the total number of particles that located in the second-half of the horizon of particle i 

(second nearest neighbors) defined so that {𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑗 ∈  𝑁𝐼𝐼 | 𝐿0 > 𝑟𝑖 2⁄ }, where 𝐿0 is defined 

in Eq. (3.10). (𝑆𝑒)𝑖𝑗  is the elastic stretch in bond ij, generally defined as follows. 

(𝑆𝑒)𝑖𝑗 = (𝑆𝑇)𝑖𝑗 − (𝑆𝑃)𝑖𝑗  .                                                                                                         (3.9) 

In Eq. (3.9), (𝑆𝑇)𝑖𝑗  and (𝑆𝑃)𝑖𝑗   are, respectively, the total stretch and plastic stretch between 

particles i and j. Note that for the linear elastic case, the plastic term of Eq. (3.9) will cancel 

out. The total stretch, (𝑆𝑇)𝑖𝑗 , can be defined as 

(𝑆𝑇)𝑖𝑗 = (
𝐿 − 𝐿0
𝐿0

 )
𝑖𝑗

   ,                                                                                                           (3.10) 

where 𝐿 and 𝐿0 are, respectively, the current and reference length of the bond between 

particles i and j, calculating as 𝐿 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2 , and 𝐿0 =

√(𝑋𝑗 − 𝑋𝑖)2 + (𝑌𝑗 − 𝑌𝑖)2; where (𝑥, 𝑦) and (X,Y) are, respectively, the coordinates of the 

particles in current and reference configuration. The force-stretch relation can be shown in 

a matrix form as 

𝑭𝑺𝑖 = 𝑲𝑖𝑺𝒆𝑖,                                                                                                                              (3.11) 

where  

𝑭𝑺𝑖 = [(𝐹𝑠)𝑖𝑗 ]𝑁𝑝𝑖×1
= [(𝐹𝑠)𝑖1, … , (𝐹𝑠)𝑖𝑗 , … , (𝐹𝑠)𝑖𝑁𝑃𝑖]

𝑇, 



16 

 

𝑺𝒆𝑖 = [(𝑆𝑒)𝑖𝑗 ]𝑁𝑝𝑖×1
= [(𝑆𝑒)𝑖1, … , (𝑆𝑒)𝑖𝑗 , … , (𝑆𝑒)𝑖𝑁𝑃𝑖]

𝑇, 

And the micro-elastic stiffness matrix associated with particle i, 𝑲𝑖, (would be square and 

symmetric) can be shown in a typical form as 

𝑲𝑖 = 

                                                                                                                                     (3.12) 

Given a global XY cartesian coordinate system, The SPPM kinematic stretch-strain 

relationship can be defined as 

𝑆𝑖𝑗 = (𝑁𝑥𝑖𝑗)
2
𝜀𝑥 + (𝑁𝑦𝑖𝑗)

2
𝜀𝑦 + 𝑁𝑥𝑖𝑗𝑁𝑦𝑖𝑗𝛾𝑥𝑦,                                                          (for 2D case) 

𝑆𝑖𝑗 = (𝑁𝑥𝑖𝑗)
2
𝜀𝑥 + (𝑁𝑦𝑖𝑗)

2
𝜀𝑦 + (𝑁𝑧𝑖𝑗)

2
𝜀𝑧 + 𝑁𝑥𝑖𝑗𝑁𝑦𝑖𝑗𝛾𝑥𝑦 +

                                                                               𝑁𝑦𝑖𝑗𝑁𝑧𝑖𝑗𝛾𝑦𝑧 + 𝑁𝑥𝑖𝑗𝑁𝑧𝑖𝑗𝛾𝑥𝑧 ,         (for 3D case) 

  (3.13) 

And in matrix form as 

𝑺𝑖 = 𝑵𝑖𝜺𝑖,                                                                                                                                   (3.14) 

where 𝑺𝑖 = [𝑆𝑖𝑗]𝑁𝑃𝑖×1
= [𝑆𝑖1, … , 𝑆𝑖𝑗, … , 𝑆𝑖𝑁𝑃𝑖]

𝑇

, 𝜺𝑖 = [𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦, 𝜀𝑧 , 𝛾𝑦𝑧 , 𝛾𝑥𝑧]𝑖
𝑇
, (T 

denotes the transpose operation) and the transformation matrix, 𝑵𝑖, is defined as follows. 

𝑵𝑖 =

[
 
 
 
 
 𝑁𝑥𝑖1

⋮
𝑁𝑥𝑖𝑗
⋮

𝑁𝑥𝑖𝑁𝑃𝑖

𝑁𝑦𝑖1

𝑁𝑦𝑖𝑗

𝑁𝑦𝑖𝑁𝑃𝑖

𝑁𝑥𝑖1𝑁𝑦𝑖1     𝑁𝑧𝑖1     𝑁𝑦𝑖1𝑁𝑧𝑖1     𝑁𝑥𝑖1𝑁𝑧𝑖1

⋮                                              ⋮
𝑁𝑥𝑖𝑗𝑁𝑦𝑖𝑗     𝑁𝑧𝑖𝑗     𝑁𝑦𝑖𝑗𝑁𝑧𝑖𝑗     𝑁𝑥𝑖𝑗𝑁𝑧𝑖𝑗

⋮                                             ⋮
         𝑁𝑥𝑖𝑁𝑃𝑖𝑁𝑖𝑁𝑃𝑖

𝑁𝑧𝑖𝑁𝑃𝑖 𝑁𝑦𝑖𝑁𝑃𝑖𝑁𝑧𝑖𝑁𝑃𝑖 𝑁𝑥𝑖𝑁𝑃𝑖𝑁𝑧𝑖𝑁𝑃𝑖]
 
 
 
 
 

𝑁𝑃𝑖×6

.   

                                                                                                                                                        (3.15) 

Here, 𝑁𝑥𝑖𝑗 is defined the direction cosine between the bond ij and x-axis in the reference 

configuration (and so on). 
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In SPPM, in order to find the mico-elastic constants (ai, bi and ci) for a finite volume (∆𝑉𝑖) 

of a linear-elastic solid, associated with particle i in the reference configuration (∆𝑉𝑖 is 

defined in section 3.5); the internal virtual work of the classical linear-elastic model and 

SPPM approach are assuming to be identical:  

𝛿𝑊𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 𝛿𝑊𝑆𝑃𝑃𝑀 → 𝝈𝑖
𝑇𝛿𝜺𝑖∆𝑉𝑖 = 

1

2
𝑭𝑺𝑖

𝑇𝑳0𝑖𝛿𝑺𝒆𝑖 ,                                                (3.16)  

where 𝛿𝑺𝒆𝑖 and 𝛿𝜺 are, respectively, infinitesimal virtual elastic stretch and strain matrixes, 

𝝈𝑖 = [𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, 𝜎𝑧 , 𝜏𝑦𝑧 , 𝜏𝑥𝑧]𝑖
𝑇
, and 𝑳0𝑖 is the diagonal reference bond length matrix, 

shown as 

𝑳0𝑖 =

[
 
 
 
 
(𝐿0)𝑖1 0 ⋯ 0

0
⋮ ⋱ ⋮

0
0 ⋯ 0 (𝐿0)𝑖𝑁𝑃𝑖]

 
 
 
 

𝑁𝑃𝑖×𝑁𝑃𝑖

,                                                                 (3.17)  

where (𝐿0)𝑖1 is defined in Eq. (3.10). By substituting Eq. (3.14) into Eq. (3.16) and 

canceling 𝛿𝜺 from both side of the equation, the following relation for calculating the 

global stresses will obtain: 

𝝈𝒊 = 
1

2∆𝑉𝑖
𝑳0𝑖𝑵𝑖

𝑇𝑭𝑺𝑖 = 𝑴𝑖𝑭𝑺𝑖.                                                                                           (3.18) 

From the classical linear-elastic theory [26], the stress-strain relation is introduced as 

𝝈𝒊 = 𝑫𝜺𝑖                                                                                                                                     (3.19) 

where 𝑫6×6 is the classical elastic stiffness matrix. By substituting Eq. (3.11) into Eq. 

(3.18), and equating Eqs. (3.18) and (3.19); the following constitutive relation of SPPM for 

particle i derived: 

 𝑫 = 𝑴𝒊𝑲𝒊𝑵𝒊                                                                                                                             (3.20) 

For every particle in the reference configuration, Eq. (3.20) represents a linear system of 

equations, including 9 equations and 3 unknowns (which are SPPM micro-elastic 

module’s); therefore, by solving Eq. (3.20) for every particle, the SPPM micro-elastic 

constants (𝑎𝑖, 𝑏𝑖, and 𝑑𝑖) can be obtained. Note that Eq. (3.20) would be only valid for the 

linear-elastic solids (small deformation problems). Considering that assumption, Eq. (3.20) 

can be once solved for the reference configuration and the obtaining constant values for 𝑎𝑖, 

𝑏𝑖, and 𝑐𝑖, can be stored for each particle and employed for the rest of the analysis. Note 

that, assuming a linear-elastic isotropic material, the obtained micro-elastic constants will 

be a function of Young’s modulus (E), and the Poisson’s ratio (𝜈). Note that depending on 

the arrangements of particles on each horizon, Eq. (3.20) may have multiple or even none 

solutions for special cases. This issue should be addressed as one of the difficulties with 

SPPM (similar to the issue of ill-conditioned or singular matrixes in the calculation of 
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meshless shape functions [6]). There are solutions for these such problems in the literature 

which are out of aims of this study. In this study, as a starting point, the simplest case (a 

lattice particle distribution) is considered which avoids such mentioned problems and 

verifies the practicality of the whole formulation (see chapter 4).  

 

 

    3.3. SPPM Two Spring Damage Model 

In this section, a novel damage approach is proposed for SPPM framework; which provides 

the capability of modelling partial/complete damage. In this method so called “two-spring 

damage approach”, the classical theory of springs is correlated and combined with the 

SPPM framework. In following, first off, the classical theory of serial spring system is 

discussed; afterwards, the integrated form of the mentioned theory with SPPM is proposed. 

 

 

 

 

 

 

 

 

Consider Fig. (3.2-a) showing a system of serial springs between two nodes i and j; where 

the stiffness of the springs are defined as ki and kj. Presuming having a linear-elastic spring 

system, the following constitutive relations are dominant based on the serial springs 

classical theory: 

𝐹𝑒𝑞 = 𝐹𝑖 = 𝐹𝑗  ,                                                                                                                            (3.21) 

and 

∆𝑒𝑞= ∆𝑖 + ∆𝑗  .                                                                                                                            (3.22) 

Here, 𝐹𝑖 is the internal force in spring i, 𝐹𝑗 is the internal force in spring j; ∆𝑖 𝑎𝑛𝑑 ∆𝑗 are, 

respectively, the displacements of springs i and j, and 𝐹𝑒𝑞 and ∆𝑒𝑞 are, respectively, the 

equivalent internal force and equivalent displacement in the equivalent spring system (Fig. 

(3.2-b)). The following relations for the forces can also be written as 

𝐹𝑖 = 𝑘𝑖∆𝑖=  𝑘𝑖𝐿𝑖𝑆𝑖 ,                                                                                                                 (3.23) 

𝐹𝑗 = 𝑘𝑗∆𝑗=  𝑘𝑗𝐿𝑗𝑆𝑗 ,                                                                                                                  (3.24) 

Figure 3.2. (a) An assuming system of serial springs, and (b) the equivalent spring system. 
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and 

𝐹𝑒𝑞 = 𝑘𝑒𝑞∆𝑒𝑞=  𝑘𝑒𝑞𝐿𝑆𝑒𝑞,                                                                                                       (3.25) 

 

Here, 𝐿𝑖 and 𝐿𝑗 are, respectively, the reference lengths of the springs i and j; and  𝑆𝑖 and 𝑆𝑗 

are, respectively, the stretches in springs i and j; 𝐿 = 𝐿𝑖 + 𝐿𝑗 , and 𝑆𝑒𝑞 is the equivalent 

stretch of the springs system. By substituting Eqs. (3.23) and (3.24) into Eq. (3.21). The 

following relation between the relative displacements of two serial springs can be obtained; 

as 

∆𝑗

∆𝑖
=  

𝑘𝑖
𝑘𝑗
 .                                                                                                                                    (3.26) 

Moreover, by substituting Eqs. (3.23), (3.24), and (3.25) into Eq. (3.22), the equivalent 

stiffness of the serial springs system, 𝑘𝑒𝑞, can be derived as 

1

𝑘𝑒𝑞
=
1

𝑘𝑖
+
1

𝑘𝑗
    →    𝑘𝑒𝑞 =

𝑘𝑖𝑘𝑗

𝑘𝑖 + 𝑘𝑗
                                                                                     (3.27) 

In SPPM method, in general, every bond is presumed to be equivalent to a system of spring-

damper, as shown in Fig. (3.3). 

 

 

 

 

 

 

 

 

 

 

In other words, every bond is considered as a combination of two serial axial springs (with 

the same reference length) plus an internal damper acting between two interacting particles. 

Ignoring the existence of a damper here, in order to integrate the State-based Peridynamics 

Particle Model and the theory of springs; the equivalent stiffness of the serial spring system 

(Eq. (3.27)) is corresponded to peridynamic micro-elastic modulus’s in SPPM (derived in 

Eq. (3.20)). Starting with a simpler case, considering only the bond-based term of the force 

Figure 3.3. Equivalency of Peridynamic bonds to a system of spring-damper. 



20 

 

state defined in Eq. (3.8) for linear elastic materials, (𝐹𝑠)𝑖𝑗 , = 𝑎𝑖(𝑆𝑒)𝑖𝑗 , the bond ij is 

assumed to be an equivalent spring with the equivalent stiffness of 𝑘𝑒𝑞 = 𝑎𝑖/𝐿0; therefore, 

the following relation can be written considering Eq. (3.27), as 

𝑘𝑒𝑞 =
𝑎𝑖
𝐿0
=

𝑘𝑖𝑘𝑗

𝑘𝑖 + 𝑘𝑗
                                                                                                                  (3.28) 

By assuming (∆𝑒)𝑖𝑗 = 𝐿0(𝑆𝑒)𝑖𝑗substituting Eq. (3.26) into Eq. (3.28), and solving Eq. 

(3.28) for 𝑘𝑖 and 𝑘𝑗 we have 

𝑘𝑖 = (
𝑎𝑖
𝐿0
) (
∆𝑖 + ∆𝑗

∆𝑖
) = (

𝑎𝑖
𝐿0
) (
(∆𝑒)𝑖𝑗

∆𝑖
),                                                                               (3.29) 

𝑘𝑗 = (
𝑎𝑖
𝐿0
) (
∆𝑖 + ∆𝑗

∆𝑗
) = (

𝑎𝑖
𝐿0
) (
(∆𝑒)𝑖𝑗

∆𝑗
).                                                                              (3.30) 

Here, we re-name 𝑘𝑖 and 𝑘𝑗 as an undamaged stiffness of each of the serially connected 

springs. Furthermore, for the linear-elastic material, the assumption of ∆𝑖= ∆𝑗= (∆𝑒)𝑖𝑗/2 

will be acceptable (by considering the assumption of having two spring with equal length 

and equal stiffness); therefore, Eqs. (3.29) and (3.30) can be simplified as 

𝑘𝑖 = 𝑘𝑗 =
2𝑎𝑖
𝐿0
 .                                                                                                                          (3.31) 

Now, by having the undamaged stiffness of the serial springs system, the damaged stiffness 

associated with each spring, �̅�𝑖 and �̅�𝑗,  are proposed as 

�̅�𝑖 = (1 − 𝑤𝑖)𝑘𝑖 = (1 − 𝑤𝑖) (
2𝑎𝑖
𝐿0
),                                                                                     (3.32) 

�̅�𝑗 = (1 − 𝑤𝑗)𝑘𝑗 = (1 − 𝑤𝑗) (
2𝑎𝑖
𝐿0
).                                                                                    (3.33) 

where 𝑤𝑖 and 𝑤𝑗 are, respectively, the damage parameters associated with particle i and j. 

Note that one could consider the proposed approach as an isotropic damage model; since a 

single damage parameter, 𝜔, is associated with each particle. In other words, all the bonds 

associated with particle i in the material horizon would have the same amount of damage 

in each time step. 

Therefore, the equivalent stiffness of the damaged serially connected springs can be 

calculated as 

�̅�𝑒𝑞 =
�̅�𝑖�̅�𝑗

�̅�𝑖 + �̅�𝑗
= (

2𝑎𝑖
𝐿0
) (
(1 − 𝑤𝑖)(1 − 𝑤𝑗)

2 − 𝑤𝑖 − 𝑤𝑗
),                                                                    (3.34) 

and the bond-based force state can be finally derived as   
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(𝐹𝑠)𝑖𝑗 = �̅�𝑒𝑞(∆𝑒)𝑖𝑗= 

        (
2𝑎𝑖
𝐿0
) (
(1 − 𝑤𝑖)(1 − 𝑤𝑗)

2 − 𝑤𝑖 − 𝑤𝑗
) (∆𝑒)𝑖𝑗 = (

2(1 − 𝑤𝑖)(1 − 𝑤𝑗)

2 − 𝑤𝑖 − 𝑤𝑗
)𝑎𝑖(𝑆𝑒)𝑖𝑗 .                  (3.35) 

The obtained formulation in Eq. (3.35) can be easily expanded to state-based theory; by 

considering all the bonds connected to particle i each as a mentioned two-spring system 

and following the same proposed procedures. 

Hence, the general formulation of the force state, (𝐹𝑠)𝑖𝑗 , by integrating the state-based 

peridynamic particle approach and serial springs theory; and in a more sophisticated way 

by distinguishing the tensile and compressive bonds, is proposed as follows 

(𝐹𝑠)𝑖𝑗 , =  𝑑𝑖𝑗𝑎𝑖(𝑆𝑒)𝑖𝑗 + 𝑏𝑖 ∑ 𝑑𝑖𝑚(𝑆𝑒)𝑖𝑚

𝑁𝑝𝑖

𝑚=1

+ 𝑐𝑖 ∑ 𝑑𝑖�̅�(𝑆𝑒)𝑖�̅�

𝑁𝑟ΙΙ

�̅�=1

 ,                               (3.36) 

where 𝑑𝑖𝑗 is call the “damage factor” associated with particles i and j, defined as  

𝑑𝑖𝑗 =

{
  
 

  
 (𝑑𝑡)𝑖𝑗 =

2(1 − 𝑤𝑡𝑖)(1 − 𝑤𝑡𝑗)

2 − 𝑤𝑡𝑖 − 𝑤𝑡𝑗
                           (𝑆𝑒)𝑖𝑗 ≥ 0     

(𝑑𝑐)𝑖𝑗 =
2(1 − 𝑤𝑐𝑖)(1 − 𝑤𝑐𝑗)

2 − 𝑤𝑐𝑖 − 𝑤𝑐𝑗
                           (𝑆𝑒)𝑖𝑗 < 0     

 ,                        (3.37) 

where 𝑑𝑡 and 𝑑𝑐 are, respectively, a tensile and compressive damage factor, 𝑤𝑡𝑖 and 𝑤𝑐𝑖 

are, respectively, the tensile and compressive damage parameters associated with particle 

i, and so on. The damage parameters, 𝑤𝑡 and 𝑤𝑐, can vary between 0 (undamaged case) 

and 1 (fully damaged case), or, similar to what is done in many continuum peridynamics 

models [21], can be defined as a binary value (0 or 1). The damage parameters should be 

defined regarding the failure criterion and the material type. Note that although the 

proposed formulation allows having two different damage parameters, defining only one 

damage parameter is also possible for special materials. In this study, damage parameters 

are calibrated and proposed for concrete problems (expressed in chapter 4). 

The Two-Spring Damage Method, proposed in this chapter, should be considered as a 

robust damage approach for the SPPM framework; in the sense that: 

(1) It will ensure the correctness of the obtaining results (satisfying the Newton’s laws). 

(2) It will provide the capability of modelling partial damage as well as ultimate failure. 

(3) It will ensure the symmetry of the results in symmetric problems (symmetric particle 

configuration with symmetric boundary conditions). 

(4)  As it can be verified from Eq. (3.36), once one of the adjacent particles, i or j, get fully 

damaged, the force states associated with both particles, (𝐹𝑠)𝑖𝑗and (𝐹𝑠)𝑗𝑖 , (in other 

word the bond force) will become zero. This capability will lead to more localized and 
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more realistic damage patterns. In addition, in the case of having no damage (linear-

elastic case), Eq. (3.36) will, basically, simplify to Eq. (3.8). 

 

 

   3.4. SPPM Plasticity Model 

In this section, the proposed plasticity approach for State-based Peridynamic Particle 

Model is expressed. The plastic yield criterion and plastic flow rule for SPPM is proposed 

and discussed. The yield condition, presented in this study, is based on the concepts of the 

simplest multiaxial yield criterion (J2 plasticity and Von Mises yield surface); and can be 

only valid under small deformations. 

Consider Eq. (3.9) which is introduced in the previous chapter. Eq. (3.9) can be expressed 

in a more general form as 

(𝑆𝑒)𝑖𝑗 = (𝑆𝑇)𝑖𝑗 − (𝑆𝑃)𝑖𝑗 = (𝑆𝑇)𝑖𝑗 −
1

2
((𝑆𝑃𝑠)𝑖𝑗 + (𝑆𝑃𝑠)𝑗𝑖),                                          (3.38) 

where (𝑆𝑃)𝑖𝑗  is the plastic stretch of bond ij, and (𝑆𝑃𝑠)𝑖𝑗  is defined the plastic stretch state 

associated to particle i (similar to definition of force states). Therefore, the calculation of 

(𝑆𝑃𝑠)𝑖𝑗  and (𝑆𝑃𝑠)𝑗𝑖 , and subsequently(𝑆𝑃)𝑖𝑗 , is of our interest in this section. 

Starting with the yielding condition, from the classical continuum theory, the stress tensor, 

at a particle in a solid domain, 𝝈𝑖, can be written in terms of deviatoric, 𝝈𝒅, and hydrostatic, 

𝝈𝒉, parts as 

 𝝈𝑖 = (𝝈𝒅)𝒊 + (𝝈𝒉)𝒊.                                                                                                                (3.39) 

The hydrostatic stress is known as the average of the diagonal components (normal 

components) of the stress tensor ((𝝈𝒉)𝒊 =
1

3
(𝑡𝑟(𝝈𝑖)) 𝑰); therefore, the deviatoric stress 

tensor can be computed as 

(𝝈𝒅)𝒊 = 𝝈𝑖  − (𝝈𝒉)𝒊 = 𝝈𝑖  −
1

3
(𝑡𝑟(𝝈𝑖)) 𝑰.                                                                          (3.40) 

From the SPPM linear-elastic theory, the relation between the classical stress vector, 𝝈𝒊, 
and SPPM force state vector is defined as (same as Eq. (3.18)) 

𝝈𝒊 = [𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, 𝜎𝑧, 𝜏𝑦𝑧 , 𝜏𝑥𝑧]𝑖
𝑇
= 𝑴𝑖𝑭𝑺𝑖 ,                                                                           (3.41) 

where 𝑴𝑖 and 𝑭𝑺𝑖 are defined in Eq. (3.18). By performing the matrix multiplication of Eq. 

(3.41), the stress components of 𝝈𝒊 (acting on particle i) can be obtained in terms of force 

states. Therefore, by substituting the obtained values of stress components from Eq. (3.41) 

into Eq. (3.40), the equivalent deviatoric stress tensor in terms of force states can be 
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computed. Finally, the equivalent J2 Plasticity for SPPM approach can be defined (for 

particle i) as a half of the L2 norm of the equivalent deviatoric stress tensor as follows 

(𝐽2𝑒𝑞)𝑖
= 
1

2
‖(𝝈𝒅)𝒊‖2 .                                                                                                            (3.42) 

The yielding condition is then implemented by defining a parameter, 𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑖𝑜𝑖, as 

shown as follows 

𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑖𝑜𝑖 =
(𝐽2𝑒𝑞)𝑖

(𝐹𝑒𝑓𝑓)
2/3
 .                                                                                                   (3.43) 

Here, 𝐹𝑒𝑓𝑓 is defined as the effective yielding function (which can be defined as a function 

of yielding strength and ultimate strength of the material). Therefore, the yield condition is 

reached when 𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑖𝑜𝑖 ≥ 1. Note that our effective yielding function for concrete is 

proposed in the next chapter.  

For calculating the plastic flow, two general approaches are proposed here, which are:  

(1) The evolution of the plastic stretch (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (∆𝑆𝑃𝑠)𝑖𝑗 ). 

(2) The evolution of the plastic strain (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝚫𝜺𝒑𝒍)𝑖
). 

The first approach was introduced by Gerstle [14], and the modified, generalized version 

is presented in this study. It is assumed that in analogy to Eq. (3.40), the plastic flow can 

be caused by the deviatoric components of the force state vector, as follows. 

(𝑭𝑺𝑑𝑒𝑣)𝑖
= 𝑭𝑺𝑖 − (𝐹𝑆𝑎𝑣𝑔)𝑖

 .                                                                                                 (3.44)  

Here, (𝑭𝑺𝑑𝑒𝑣)𝑖
 is the deviatoric part of the force state vector, 𝑭𝑺𝑖 (from Eq. (3.11)), 

calculating at particle i; and (𝐹𝑠𝑎𝑣𝑔)𝑖
 is the average of the components of 𝑭𝑺𝑖, defined as 

(𝐹𝑆𝑎𝑣𝑔)𝑖
= 𝑎𝑣𝑔(𝑭𝑺𝑖) =

1

𝑁𝑝𝑖
∑(𝐹𝑠)𝑖𝑗

𝑁𝑝𝑖

𝑗=1

.                                                                              (3.45) 

The change in the plastic stretch vector, ∆𝑺𝑷𝒔𝑖 = [(∆𝑆𝑃𝑠)𝑖𝑗 ]𝑁𝑝𝑖×1, is then defined as 

∆𝑺𝑷𝒔𝑖 = ∆𝜆
(𝑭𝑺𝑑𝑒𝑣)𝑖

‖(𝑭𝑺𝑑𝑒𝑣)𝑖
‖
2

 ,                                                                                                    (3.46) 

where  

∆𝜆 =  
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
(𝑌𝑖𝑒𝑙𝑑𝑅𝑎𝑡𝑖𝑜𝑖 − 1).                                                                                            (3.47) 

Here, ∆𝜆 is defined the SPPM flow constant, analogues to Levy-Mises flow constant from 

the classical theory, E is the young’s module and 𝜎𝑦𝑖𝑒𝑙𝑑 is the yielding strength of material. 
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Therefore, the plastic stretch state of particle i (at time step n +1), (𝑆𝑃𝑠)𝑖𝑗
𝑛+1, can be 

computed as 

 (𝑆𝑃𝑠)𝑖𝑗
𝑛+1 = (𝑆𝑃𝑠)𝑖𝑗

𝑛 + (∆𝑆𝑃𝑠)𝑖𝑗
𝑛 ,                                                                                             (3.48) 

and by substituting Eq. (3.48) into Eq. (3.38), the elastic stretch of bond ij can be calculated. 

The second approach for calculating the plastic flow for the SPPM framework is 

calculation of plastic strain increments, (𝚫𝜺𝒑𝒍)𝑖
. From Eq. (3.18), the relation between 

force states and classical stress components are known (From Eq. (3.18)); hence, the plastic 

strain increments can be calculated from classical stress components and by using any 

method that is presented in classical plasticity literature (for instance, Levy-Mises 

approach). Afterwards, the plastic strain and stretch can be calculated from below  

(𝜺𝒑𝒍)𝑖
𝑛+1

= (𝜺𝒑𝒍)𝑖
𝑛
+ (𝚫𝜺𝒑𝒍)𝑖

𝑛
→ 

                                          𝑺𝑷𝒔𝑖 = 𝑵𝑖(𝜺𝒑𝒍)𝑖
.                                                                            (3.49) 

Here,  𝑺𝑷𝒔𝑖 = [(𝑆𝑃𝑠)𝑖𝑗 ]𝑁𝑝𝑖×1, and 𝑵𝑖 is defined in Eq. (3.15). The obtained values from 

Eq. (3.49) are then can be substituted into Eq. (3.38) for calculating the elastic stretch of 

bond ij.  

Note that damage due to the excess plastic strain (or stretch) can be included into SPPM 

approach via the proposed damage model, and by defining a proper damage parameter (See 

Eq. (3.37)). In that, the damage parameters should be defined in correspondence with the 

employed ultimate strength of material and the effective yielding function (Eq. (3.43)). In 

this study, calibrated damage parameters are proposed for concrete (see the next chapter). 

 

 

 

    3.5. Numerical Implementation of SPPM 

In this section, the SPPM damage-plasticity approach is summarized, the numerical 

discretization of SPPM is discussed, and the constitutive numerical algorithm is proposed 

by flowcharts. 

Consider Fig. (3.1). As it is discussed in section 3. 2, in SPPM method, the problem domain 

will initially discretize with the finite number of (randomly distributed) particles. The 

horizon radius of particle i is assumed to be calculated as follows. 

𝑟𝑖 =  (𝐿0)𝑖6
,                                    (for 2D)                

𝑟𝑖 =  (𝐿0)𝑖18
,                                  (for 3D)                                                                              (3.50) 
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where, (𝐿0)𝑖6 is the distance of the sixth nearest particle from i (an so on). By having this 

definition for the horizon radius, we would end up in the same number of particles in each 

horizon in spite of having arbitrary particle distribution (it significantly increases the 

computational efficiency of the model). Afterwards, the neighbor-list of particle i can be 

obtained by considering only the particles near i that their distance from particle i are less 

than or equal the horizon radius (𝑟𝑖) (the neighbor-list should be sorted in a descending 

order and stored for every particle). Note that in order to decrease the computational cost, 

the neighbor-list will only generate based on the reference configuration and keep constant 

in the rest of the analysis (it means that no matter how particle j will deform, it will remain 

in the neighbor-list of particle i till the end). The total number of particles in the horizon of 

particle i is named 𝑁𝑝𝑖. The general form the equation of motion for SPPM can be written 

for particle i and in time step n, as 

𝑚𝑖�̈�𝑖
𝑛 =∑{(𝐹𝑏)𝑖𝑗

𝑛 + (𝐹𝑑𝑎𝑚𝑝𝑖𝑛)𝑖𝑗
𝑛
}

𝑁𝑃𝑖

𝑗=1

− (𝐹𝑑𝑎𝑚𝑝𝑒𝑥)𝑖𝑗
𝑛
+ 𝐵𝑖

𝑛,                                             (3.51) 

Where �̈�𝑖
𝑛 is the acceleration of particle i at time step n (�̈�𝑖

𝑛 = �̈�(𝒙𝑖, 𝑡
𝑛)), (𝐹𝑏)𝑖𝑗

𝑛  is the bond 

force acting on particle i in the direction of j (Eq. (3.7)), 𝐵𝑖
𝑛 is the body force; 𝑚𝑖 is the 

mass of particle i which is defined proportional to the mass density of particle i (𝜌𝑖), and 

the associated finite volume (∆𝑉𝑖) of particle i, as 

𝑚𝑖 = 𝜌𝑖∆𝑉𝑖 ,                                                                                                                               (3.52) 

where the volume of particle i is assumed the volume of the Voronoi diagram of particle i. 

In order to increase the computational efficiency, ∆𝑉𝑖 can be also approximated as a half 

of the horizon volume; therefore:  

∆𝑉𝑖 =∰𝑉𝑜𝑟𝑜𝑛𝑜𝑖(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖) 𝑑𝑉 ≈  
1

2
(
4

3
𝜋𝑟𝑖

3).                                                           (3.53) 

Note that 𝑚𝑖 and ∆𝑉𝑖 should be calculated once, and only for the reference particle 

configuration. In Eq. (3.51), 𝐹𝑑𝑎𝑚𝑝𝑒𝑥 and 𝐹𝑑𝑎𝑚𝑝𝑖𝑛 are, respectively, the external and 

internal damping forces acting on particle i (defined in following). Eq. (3.51) in global 

coordinates (cartesian), in a matrix form, can be written as 

𝑚𝑖�̈�𝑖
𝑛 = 𝑵𝒊

𝒏 ((𝑭𝒃)𝑖
𝑛 + (𝑭𝑑𝑎𝑚𝑝𝑖𝑛)𝑖

𝑛
) − (𝑭𝑑𝑎𝑚𝑝𝑒𝑥)𝑖

𝑛
+ 𝑩𝑖

𝑛,                                            (3.54) 

Where 𝑵𝒊
𝒏 is introduced in Eq. (3.15), and (𝑭𝑑𝑎𝑚𝑝𝑖𝑛)𝑖

𝑛
and (𝑭𝑑𝑎𝑚𝑝𝑒𝑥)𝑖

𝑛
are defined as 

(𝑭𝑑𝑎𝑚𝑝𝑖𝑛)𝑖
𝑛
= 𝐶𝑖𝑛𝑽𝐴𝑥𝑖𝑎𝑙 = (2𝑚𝑖𝜉𝑖𝑛𝜔𝑖)[�̇�𝑖𝑗

𝑛 ]
𝑁𝑝𝑖×1

  ,                                                       (3.55) 

 and 

(𝑭𝑑𝑎𝑚𝑝𝑒𝑥)𝑖
𝑛
= 𝐶𝑒𝑥�̇�𝑖

𝑛 = (2𝑚𝑖𝜉𝑒𝑥𝜔𝑠𝑡𝑟𝑢𝑐𝑡)�̇�𝑖
𝑛  .                                                                 (3.56) 
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Here, 𝐶𝑖𝑛 = 2𝑚𝑖𝜉𝑖𝑛𝜔𝑖 (shown in Fig. (3.3)) and 𝐶𝑒𝑥 = 2𝑚𝑖𝜉𝑒𝑥𝜔𝑠𝑡𝑟𝑢𝑐𝑡 are, respectively, 

the internal and external damping coefficients; 𝜉𝑖𝑛 and 𝜉𝑒𝑥 are, respectively, the internal 

and external damping ratios that should be defined by user, 𝜔𝑖 is the highest natural 

frequency associated with the horizon of particle i, and 𝜔𝑠𝑡𝑟𝑢𝑐𝑡 is considered as the 

fundamental natural frequency of the entire structure. 𝜔𝑖 can be approximated, assuming 

the shortest wavelength that can be physically represented by the material horizon is 𝜆𝑖 ≈
𝑟𝑖/2 , as follows 

𝜔𝑖 ≈
2𝜋�̃�𝑖
𝜆𝑖

≈
4𝜋

𝑟𝑖
√
𝜅

𝜌
       ,                                                                                                         (3.57) 

where, �̃�𝑖 is the speed of sound associated to particle i, 𝜅 is the Bulk’s modulus (𝜅 =

𝐸 3(1 − 2𝜐⁄ ), and 𝑟𝑖 is the horizon radius. Note that 𝜔𝑠𝑡𝑟𝑢𝑐𝑡 can be also approximated or 

estimated thorough the numerical simulations. 

Note that �̈�𝑖
𝑛 in Eq. (3.54), can be discretized in time using the central deference method 

as shown below: 

�̈�𝑖
𝑛 =

𝒖𝑖
𝑛+1 − 2𝒖𝑖

𝑛 + 𝒖𝑖
𝑛−1

Δ𝑡2
  ,                                                                                                  (3.58) 

where Δ𝑡 is the time stepping increment. 

Calculation of principal stresses and strains are also of interest, particularly for considering 

the failure criteria. The components of the classical stress tensor (in cartesian coordinate 

system), 𝝈𝑖, can be obtained by solving Eq. (3.18) (𝝈𝒊 = 𝑴𝑖𝑭𝑺𝑖); therefore, the principal 

stresses can be simply obtained by calculating the eigenvalues of stress tensor as  

 𝝈𝒑𝒊
= [𝜎1 𝜎2 𝜎3]𝑻 = 𝒆𝒊𝒈(𝝈𝑖).                                                                                        (3.59) 

The strain tensor, 𝜺𝑖, can be also obtained by calculating the strain components, substituting 

Eq. (3.18) into Eq. (3.19), as follows. 

𝜺𝑖 = 𝑫
−𝟏𝝈𝒊 = 𝑫

−𝟏𝑴𝑖𝑭𝑺𝑖,                                                                                                      (3.60)  

where 𝑴𝑖 =
1

2∆𝑉𝑖
𝑳0𝑖𝑵𝑖

𝑇. Afterwards, the strain tensor can be generated and the principal 

strains can be also computed by calculating the eigenvalues of the strain tensor as 

𝜺𝒑𝒊
= [𝜀1 𝜀2 𝜀3]𝑻 = 𝒆𝒊𝒈(𝜺𝑖).                                                                                           (3.61) 

The general algorithm of the SPPM approach is proposed (in form of a flowchart) in Fig. 

(3.4). 
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Figure 3.4. The general flowchart of SPPM method. (Serial code). 
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 Chapter 4                                                                                                  

Re-formulated State-Based Peridynamic Lattice Model 
 

    4.1. Introduction 

The initial version of State-based Peridynamic Lattice Model (SPLM) was introduced by 

Gerstle [14] in 2015. Some other versions of SPLM, with minor modifications and the 

same algorithm with the original version, were also proposed by some other graduate 

students in the University of New Mexico Department of Civil Engineering. It is concluded 

that neither the Gerstle’s original version nor the prior efforts were successful. All the 

former versions of SPLM had the following major issues: 

(1) Incorrect results. None of the previous versions of SPLM could provide the results 

that could be either verified with the classical solutions (even for the simple 

benchmark problems), or validated with the experimental tests.  

(2) Non-objectivity. It was evident that the obtained results from the former versions 

were mesh-sensitive; in that, for a typical problem, by rotating the lattice 

configuration different results were obtained. 

(3) Convergence issues. Indeed, convergence does not have any meaning in the 

previous versions of SPLM. Increasing the number of particles was only providing 

different results and not making any improvement. 

(4) Asymmetry. It was seen that for a given completely symmetric problem (geometry 

and boundary conditions), and with the defined isotropic-homogeneous material 

properties; the asymmetric crack patterns were obtained, despite expcting 

symmetric cracking pattern. 

The main response to the mentioned issues, frequently stated by the former SPLM 

developers, was:  SPLM is something totally different than classical approaches. In view 

of the author of this study, SPLM is a re-formulation of continuum peridynamics theory, 

as well as classical continuum approaches. Therefore, obtaining the same results as the 

continuum methods, at least for the elastic (pre-peak) region and for the benchmark 

cracking problems, is a requirement.  

In this chapter, the re-formulated version of SPLM method (based on the introduced SPPM 

algorithm) is proposed and calibrated for simulating cracking and damage in concrete. The 

new SPLM method provides objective, symmetric, convergent, and correct results (in 

accordance with the mentioned issues).  
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    4.2. Linear-Elastic SPLM 

The proposed SPLM formulation is the simplified form of the proposed SPPM method (in 

chapter 3). In this approach, instead of considering an arbitrary reference particle 

distribution, a lattice configuration is employed to discretize the problem domain. The 

fundamentals of generating the lattice topology is presented in [14]. In accordance with the 

chosen lattice configuration, the neighbor-list of particle i possesses six particles in 2D and 

eighteen particles in 3D. The 2D lattice topology used in this study is the close-packed 

hexagonal configuration, shown in Fig. (4.1). Using this configuration leads to symmetric 

and equally spaced particles in every horizon. Therefore, except for boundary particles, the 

number of particles in every particle horizon in the bulk will be 𝑁𝑝𝑖 = 6. The reference 

bond length matrix (defined in Eq. (3.17)) is simplified as  

𝑳0𝑖 = 𝑳0 =

[
 
 
 
 
𝐿0 0 ⋯ 0

0
⋮ ⋱ ⋮

0
0 ⋯ 0 𝐿0]

 
 
 
 

6×6

,                                                                                  (4.1)  

Note that the radius of the horizon of particle i is fixed as the lattice spacing (𝑟𝑖 = 𝑟 = 𝐿0). 

The associated finite volume with each particle (defined in Eq. (3.53)) in the material bulk 

can also be simplified, by calculating the volume of the Voronoi diagram of particle i 

(shown in Fig. (4.1)), to ∆𝑉𝑖 = ∆𝑉 = (√3 2⁄ )𝑡𝐿0
2, where t is the material thickness.  

  

 

 

 

 

  

 

 

 

 

 

 

 

 

𝒋  (= 𝟏) 

𝟑 𝟓 

𝟐 

𝟒 𝟔 

i 

Figure 4.1. Lattice topology and bond numbering order of particles.  

The Voronoi diagram of particle i (= ∆𝑉)  is shown with gray hatch.   



30 

 

For the SPLM approach, the equation of motion for particle i, shown in Fig. (4.1), is written 

similar to Eq. (3.51). Note that regarding the considered lattice topology, j varies from 1 to 

6 (as shown in Fig. (4.1)); in other words, in SPLM method, the numbering order of all the 

surrounding particles are fixed for every horizon, which extremely simplifies the 

computations.  

The definition of force states is also simplify in SPLM. For 2D formulation, since we only 

have six neighbor particles with identical reference bond length, the third term of Eq. (3.8), 

related to second nearest neighbors, can be canceled. Hence, the force state can be 

formulated, for 2D problems, as    

(𝐹𝑠)𝑖𝑗 = 𝑎(𝑆𝑒)𝑖𝑗 + 𝑏 ∑(𝑆𝑒)𝑖𝑚

6

𝑚=1

,                                                                                             (4.2) 

where 𝑎 is the bond-based micro-elastic modulus, and 𝑏 is the only state-based micro- 

elastic modulus considered for 2D SPLM. Subsequently, the K matrix, defined in Eq. 

(3.12), is simplified as 

𝑲𝑖 = 𝑲 =

[
 
 
 
 
𝑎 + 𝑏 𝑏
𝑏 𝑎 + 𝑏

⋯
𝑏         𝑏

        𝑏
⋮               ⋱                 ⋮
𝑏       
𝑏      𝑏

⋯
𝑎 + 𝑏 𝑏
𝑏 𝑎 + 𝑏]

 
 
 
 

6×6

.                                                         (4.3) 

By (1) neglecting the effects of having fewer bonds in boundary particles (assuming 𝑲 is 

valid for all the horizons in the problem domain), (2) associating the same material volume 

(∆𝑉) to all the particles in reference configuration, and (3) assuming constant N matrix 

(Eq. (3.15)); Eq. (3.20) can be solved only once and constant micro-elastic modulus can be 

obtained for all the horizons; therefore, Eq. (3.20) can be written as 

𝑫3×3 = 𝑴3×6𝑲6×6𝑵6×3 .                                              (in 2D)                                             (4.4) 

and the micro-elastic constants, a and b, can be obtained for 2D plane stress problems as 

follows 

𝑎 =
2𝐸𝐿0𝑡

√3(1 + 𝜈)
,  

and 

𝑏 =
𝐸𝐿0𝑡(1 − 3𝜈)

6√3(𝜈2 − 1)
;                                                                                                                    (4.5) 
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and for the 2D plane strain case as 

𝑎 =
2𝐸𝐿0𝑡

√3(1 + 𝜈)
, 

and 

𝑏 =
𝐸𝐿0𝑡(1 − 4𝜈)

6√3(2𝜈 − 1)(𝜈 + 1)
;                                                                                                     (4.6) 

where E is the Young’s modulus and 𝜈 is the poisson’s ratio.  

For the 3D problems, the same procedure is followed and Eqs. (3.8) and (3.51) is used for 

the Face Centered Cubic (FCC) lattice configuration [14] with ∆𝑉𝑖 = ∆𝑉 = (√2 2⁄ )𝐿0
3, 

and Eq. (4.4) is re-written for 3D FCC lattice as 

𝑫6×6 = 𝑴6×18𝑲18×18𝑵18×6 .                                       (in 3D)                                             (4.7) 

Hence, the micro-elastic constants (a, b and c) can be computed for the reference lattice 

configuration, accordingly; obtained as 

𝑎 =
𝐸𝐿0

2

√2(1 + 𝜈)
, 

 𝑏 =
(√2 − 1)𝐸𝐿0

2(1 − 4𝜈)

24(2𝜈 − 1)(𝜈 + 1)
,  

 𝑐 =
(1 − 2√2)𝐸𝐿0

2

4(1 + 𝜈)
= (

1

2√2
− 1) 𝑎.                   (for 3D case)                                        (4.8) 
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    4.3. SPLM Damage-Plasticity Model for Concrete 

The general formulation of SPLM method (including plasticity and damage) can be 

generated based on the proposed SPPM framework (chapter 3). The general form of a 

particle horizon in the re-formulated SPLM approach is shown in Fig. (4.2). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Here, some of the introduced equations in chapter 3 are simplified for SPLM and re-

written. More details about the definition of the variables are provided in chapter 3. 

Considering Fig. (4.2) and Eq. (3.51), the equation of motion can be re-written as follows 

𝑚𝑖�̈�𝑖
𝑛 =∑{(𝐹𝑏)𝑖𝑗

𝑛 + (𝐹𝑑𝑎𝑚𝑝𝑖𝑛)𝑖𝑗
𝑛
}

6

𝑗=1

− (𝐹𝑑𝑎𝑚𝑝𝑒𝑥)𝑖𝑗
𝑛
+ 𝐵𝑖

𝑛,                                               (4.8) 

where the bond force is defined as 

(𝐹𝑏)𝑖𝑗
𝑛 =

1

2
 ((𝐹𝑠)𝑖𝑗

𝑛−1 + (𝐹𝑠)𝑗𝑖
𝑛−1) ,                                                                                            (4.9) 

and by applying the Two-Spring damage method, the force state (Eq. (4.2)) can be re-

formulated (for 2D), based on Eq. (3.36), as 

(𝐹𝑠)𝑖𝑗 = 𝑑𝑖𝑗𝑎(𝑆𝑒)𝑖𝑗 + 𝑏 ∑ 𝑑𝑖𝑚(𝑆𝑒)𝑖𝑚

6

𝑚=1

 .                                                                           (4.10) 

Note that for calculating the damping forces, Eqs. (3.55-3.57) can be used assuming 𝜆𝑖 ≈
2𝐿0, where 𝐿0 is the lattice spacing. 

Figure 4.2. General SPLM horizon scheme. 

Plastic Element 

Spring 

Damper 
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The damage factor (𝑑𝑖𝑗), defined in Eq. (3.37), is 

𝑑𝑖𝑗 =

{
  
 

  
 (𝑑𝑡)𝑖𝑗 =

2(1 − 𝑤𝑡𝑖)(1 − 𝑤𝑡𝑗)

2 − 𝑤𝑡𝑖 −𝑤𝑡𝑗
                           (𝑆𝑒)𝑖𝑗 ≥ 0     

(𝑑𝑐)𝑖𝑗 =
2(1 − 𝑤𝑐𝑖)(1 − 𝑤𝑐𝑗)

2 − 𝑤𝑐𝑖 − 𝑤𝑐𝑗
                           (𝑆𝑒)𝑖𝑗 < 0     

 .                        (4.11) 

In this chapter, suitable and calibrated damage parameters (𝑤𝑡 and 𝑤𝑐 ) are proposed in 

correspondence with the physical mechanical behavior of concrete. As is briefly discussed 

in chapter 3, in the SPLM/SPPM approach, the damage phenomenon is associated with 

particles instead of bonds, in that the damage parameters are defined and calculated based 

upon the “stress” and “strain” states of each particle in global coordinates. In this view, one 

could name this method as an “isotropic damage” model or “particle based” damage model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Flowchart of calculating the tensile damage parameter (wt). 
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In the SPLM approach, tensile damage behavior of concrete is modeled based on 

Hillerborg fictitious crack model [15]. The process of simulating the tensile damage in 

SPLM (damage initiation and evolution) is shown in Fig. (4.3) as a flowchart. The tensile 

damage initiation condition for SPLM is based on the stress condition, as shown in Fig. 

(4.3). Once the damage initiation condition satisfied, tensile damage initiates in particle i. 

In Fig. (4.3), (𝜎PΙ)𝑖
𝑛

 is the maximum positive principal stress component, defined as  

(𝜎PΙ)𝑖
𝑛
= 𝑚𝑎𝑥 {𝑚𝑎𝑥 {(𝝈𝒑)𝑖

𝑛
} , 0},                                                                                       (4.12) 

and (𝜎PΙII)𝑖
𝑛

 is defined as the minimum of the other two principal stress components (𝝈𝒑𝑖
 

is defined in Eq. (3.59)). The user defined parameters in tensile damage initiation condition 

are the tensile strength of concrete, 𝑓𝑡
′,  and the compressive strength of concrete, 𝑓𝑐

′.  

The evolution of the tensile damage (tension softening) of concrete is simulated via a 

bilinear tensile strength-COD curve shown in Fig. (4.4). By taking the multiaxial state of 

stress-strain into account, the equivalent crack opening displacement (𝐶𝑂𝐷𝑒𝑞) associated 

with particle i and its representative material volume is formulated as a function of 

maximum principal strain at particle i, defined as  𝜀𝑝Ι, as 

(𝐶𝑂𝐷𝑒𝑞)𝑖
𝑛
= (2𝐿0)𝜀Ι,                                                                                                            (4.13) 

where 𝐿0 is the lattice spacing, 𝜀Ι = 𝑚𝑎𝑥 {(𝜺𝒑)𝑖
𝑛
}, and (𝜺𝒑)𝑖

𝑛
 is defined in Eq. (3.61). 

Following the algorithm shown in Fig. (4.3), the tensile damage parameter (𝑤𝑡)𝑖 is defined 

based on bilinear tensile strength-COD curve (Fig. (4.4)), as follows. 

(𝑤𝑡)𝑖 =  

{
 
 
 
 

 
 
 
 

0               
  

                                                                                           𝐶𝑂𝐷𝑒𝑞 < 0

1 − (
𝑓𝑡
′

𝐸𝐶𝑂𝐷1𝜀Ι
) (𝐶𝑂𝐷1 + (𝛾 − 1)𝐶𝑂𝐷𝑒𝑞)                              

0 ≤ 𝐶𝑂𝐷𝑒𝑞 < 𝐶𝑂𝐷1

1 − (
𝛾𝑓𝑡

′

𝐸𝜀Ι
)(
𝐶𝑂𝐷𝑐 − 𝐶𝑂𝐷𝑒𝑞

𝐶𝑂𝐷𝑐 − 𝐶𝑂𝐷1
)

                                              
𝐶𝑂𝐷1  ≤ 𝐶𝑂𝐷𝑒𝑞 < 𝐶𝑂𝐷𝑐

         1                                                                                                           𝐶𝑂𝐷𝑒𝑞 ≥ 𝐶𝑂𝐷𝑐

  ,    

 (4.14) 

where E is the Young’s modulus, 𝑓𝑡
′ is the tensile strength, 𝛾 is the tensile damage 

parameter at “knee”, 𝐶𝑂𝐷𝑐 is the critical crack opening displacement, and 𝐶𝑂𝐷1 =

𝛼𝐶𝑂𝐷𝑐; see Figs. (4.4-4.5). In this study,  𝛼 = 0.1 and 𝛾 = 0.25 are assumed. It follows 

that the tensile damage parameter, 𝑤𝑡, varies in a nonlinear fashion and goes to 1 as the 
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𝐶𝑂𝐷𝑒𝑞 increases. In addition, when 𝐶𝑂𝐷𝑒𝑞 reaches 𝐶𝑂𝐷0, the damage parameter 

immediately jumps to a finite value, rather than starting from zero (see Fig. (4.5)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐶𝑂𝐷0 𝐶𝑂𝐷1 𝐶𝑂𝐷𝑐 
𝑪𝑶𝑫 

𝝈𝒕 

𝑓𝑡
′ 

𝛾𝑓𝑡
′ 

Figure 4.4. Bilinear tensile strength-𝐶𝑂𝐷 (tension softening) curve. 

Figure 4.5. Tensile damage parameter, 𝑤𝑡-CODeq curve. 
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Note that, as can be seen from the proposed formulation, plasticity and damage are 

integrated in SPLM approach. The plasticity method proposed in chapter 3 is applied to 

SPLM and the linear hardening model, shown in Fig. (4.6), is employed. The effective 

yielding function, 𝐹𝑒𝑓𝑓, (introduced in Eq. (3.43)) is defined and calibrated for concrete so 

that hardening can be modelled, as 

𝐹𝑒𝑓𝑓 = 𝑓𝑦 + (
𝑓𝑢𝑙𝑡 − 𝑓𝑦

𝜀𝑢𝑙𝑡
) 𝜀eff,                                                                                                 (4.15) 

where, 𝑓𝑦 and 𝑓𝑢𝑙𝑡 are, respectively, the yielding strength and ultimate strength of concrete, 

and 𝜀𝑢𝑙𝑡 is the ultimate strain that concrete can carry, 𝜀eff is defined in Eq. (4.17). 

 

 

 

 

 

 

 

 

 

 

 

 

In the SPLM approach, damage due to excessive compression is also modeled via defining 

the compressive damage parameter. It is understood that once some of the particles become 

damaged, the stress state of the neighboring particles can possibly change from tension to 

compression mode (and vice versa). In other words, some of the bonds that have a tensile 

force in time step n, may become compressive in timestep n+1 (and vice versa). Consider 

we have a bond with 30% of tensile damage in time step n, if the direction of load changes 

to compression in time step n+1, it would not be realistic to assume that bond will have the 

same 30% damage in compression as well; it is so plausible that the mentioned bond will 

have some damage but the damage percentage under compression would be different than 

what it was under tension. In another view, if we consider a concrete specimen that is failed 

under tension, it does not mean that it cannot carry any compression anymore (it will still 

sustain some compression). Therefore, applying the same value of tensile damage 

parameter to the force state of the bonds under compression is conceptually, theoretically, 

𝜺𝒚 𝜺𝒖𝒍𝒕 𝜺 

𝝈𝒄 

𝒇𝒚 

Figure 4.6. Compressive stress-strain relation with linear hardening for SPLM. 

Based on 𝐹𝑒𝑓𝑓 (Eq. (4.15)). 

𝒇𝒖𝒍𝒕 



37 

 

and numerically wrong (one of the major issues with the former SPLM versions). In 

another physical point of view, consider a concrete specimen that is partially damaged 

under uniaxial tension, if we change the direction of the loading (making it uniaxial 

compression), it would be so predictable that the specimen will fail under lower 

compressive peak load than the undamaged specimen (and vice versa).  

All the mentioned subtle issues lead to define a separate compressive damage parameter 

for SPLM/SPPM method. Failure due to excessive plastic strain is also considered in the 

definition of compressive damage parameter. The compressive damage parameter for 

particle i, 𝑤𝑐𝑖, is modeled as a function of  𝑤𝑡𝑖 and ultimate strain (𝜀ult), shown in Figs. 

(4.6-4.7), and defined as.  

𝑤𝑐𝑖 =

{
  
 

  
 

𝑤𝑐𝑚𝑎𝑥

(

 
√𝑤𝑡𝑖 − √(𝑤𝑡𝑐𝑟)𝑖

1 − √(𝑤𝑡𝑐𝑟)𝑖 )

 𝑤𝑡𝑖  > (𝑤𝑡𝑐𝑟)𝑖

0 𝑤𝑡𝑖  ≤ (𝑤𝑡𝑐𝑟)𝑖

       .                                         (4.16) 

In Eq. (4.16), 𝑤𝑡𝑖 is the tensile damage parameter, 𝑤𝑡𝑐𝑟 is the critical tensile damage 

parameter which is assumed as a threshold for initiating partial compressive damage, and 

𝑤𝑐𝑚𝑎𝑥 is the maximum value of the compressive damage parameter defined in model. The 

current SPLM model is calibrated for concrete by the assuming values of 𝑤𝑡𝑐𝑟 = 1 /3, and 

𝑤𝑐𝑚𝑎𝑥  = 1. The procedure of calculating the compressive damage parameter in SPLM is 

shown in Fig. (4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. compressive damage parameter, wc, curve in SPLM. 
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The plastic failure condition (as shown in Fig. (4.8)) is defined based on the multiaxial 

yielding function, 𝜀eff, which is assumed as a function of principal strains, as 

𝜀eff = √
1

2
((𝜀1 − 𝜀2)2 + (𝜀2 − 𝜀3)2 + (𝜀3 − 𝜀1)2)   ,                                                        (4.17) 

where 𝜀1, 𝜀2, and 𝜀3 are the principal strain components (defined in Eq. (3.61)). Once 𝜀eff 

at particle i becomes greater than the ultimate strain value, 𝜀ult, (user defined), the 

compressive damage parameter will jump to 1 (full damage). In other words, partial plastic 

damage is directly not modeled in this approach. However, since 𝜀Ι is involved in the 

calculation of tensile damage parameter, and 𝜀Ι is a function of plastic strains; partial 

damage due to plasticity is indirectly included in this model.  

 

Figure 4.8. Flowchart of calculating the compressive damage parameter (wc). 
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 Chapter 5                                                                                    

Numerical Results 

    5.1. Introduction 
In this chapter, the numerical results of simulating the plain concrete are presented and 

discussed. In this study, generally, the obtained results from the re-formulated SPLM is 

compared with older SPLM versions, the mentioned Abaqus models, and the lab tests.  

In section 5.2, the re-formulated SPLM is compared with the older versions. The 

comparison between SPLM, Abaqus, and experimental tests are conducted in section 5.3, 

and some convergence studies are performed in section 5.4. 

    5.2. Re-formulated SPLM versus the older versions 
In this section, three benchmark problems of uniaxial tension, uniaxial compression, and 

Brazilian split cylinder are considered; simulated with the re-formulated SPLM approach 

(named SPLM-2017 in this chapter) and compared with the results of a version namely 

SPLM-2016 (which is a modified and debugged version of the older versions of SPLM). 

The mentioned problems are also solved for three different lattice rotations to verify the 

objectivity of the proposing approach. The results of the static analysis of SAP2000 

(fictitious crack model) are also included to examine the capability of the SPLM codes to 

provide similar solutions with the classical methods.  

To have a fair comparison between new and older SPLM codes, SPLM-2016 is 

implemented by the author and considered as the best possible representative of the 

versions following the wrong algorithm (all the minor issues are fixed).  

    5.2.1. Material properties and parameters 

Note that arbitrary material properties are considered for this part of the study (material 

properties do not perfectly match with a specific lab test data here; however, they can be 

considered as typical common properties for normal concrete as frequently reported and 

employed in various concrete references).  

The concrete properties and parameters, defined in the models, are shown in Table. 1. The 

tensile strength of concrete is calculated using ACI 318-92 correlation [27] as follows 

𝑓𝑡
′ = 6√𝑓𝑐′ ,                  (𝑖𝑛 𝑈𝑆 𝑢𝑛𝑖𝑡𝑠)                                                                                       (5.1)  

and, the elasticity modulus, 𝐸, is calculated based on ACI 318-14 design code [28] as  

𝐸 = 33𝜌
3
2√𝑓𝑐′,             (𝑖𝑛 𝑈𝑆 𝑢𝑛𝑖𝑡𝑠)                                                                                       (5.2) 

where 𝜌 and 𝑓𝑐
′ are, respectively, mass density and compressive strength of concrete. In 

this study, the fracture energy, 𝐺𝑓, is considered as a material property and the critical 

Crack Opening Displacement, 𝐶𝑂𝐷𝑐, is calculated based on the fracture energy. The 

following correlation for estimating the fracture energy based on the maximum aggregate 

size is proposed by CEB-FIP-90 code [29] as  
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𝐺𝑓 = 𝐺𝑓0 (
𝑓𝑐𝑚
𝑓𝑐𝑚0

)
0.7

,                                                                                                                    (5.3) 

where  𝐺𝑓0 is the base fracture energy, 𝑓𝑐𝑚 is the mean compressive strength which is 

defined as a function of the characteristic compressive strength as 𝑓𝑐𝑚 = 𝑓𝑐
′ + 8 𝑀𝑝𝑎, and 

𝑓𝑐𝑚0 = 10 Mpa. The value of 𝐺𝑓0 depends upon the maximum aggregate size, 𝑑𝑚𝑎𝑥 [29]; 

Once the fracture energy is estimated from Eq. (5.3), the critical Crack Opening 

Displacement, 𝐶𝑂𝐷𝑐, can be calculated from the area underneath the considered tension 

softening curve (inelastic region) of concrete, Fig. (4.4), as 

𝐶𝑂𝐷𝑐 =
2𝐺𝑓

𝑓𝑡
′(𝛼 + 𝛾)

,                                                                                                                    (5.4) 

and 𝐶𝑂𝐷1 (see Fig. (4.4)) is calculated as 𝐶𝑂𝐷1 = 𝛼𝐶𝑂𝐷𝑐, where 𝛼 is assumed to be 0.1. 

All the other parameters are introduced in Table 1.  

 
Table 1. Material properties and constant parameters for section 5.2. 

 
 

Parameter 
Uniaxial 

Tension (SI) 

Uniaxial 

Compression 

(SI) 

Split Brazilian 

Cylinder (SI) 

Compressive strength, 𝑓𝑐
′ 27.580 Mpa 27.580 Mpa 27.580 Mpa 

Yielding strength, 𝑓𝑦 22.983 Mpa 22.983 Mpa 22.983 Mpa 

Tensile strength, 𝑓𝑡
′ 2.6168 Mpa 2.6168 Mpa 2.6168 Mpa 

Mass density, 𝜌 2323.0 𝑘𝑔/𝑚3 2323.0 𝑘𝑔/𝑚3 2323.0 𝑘𝑔/𝑚3 

Maximum aggregate size, 

𝑑𝑚𝑎𝑥 
0.019 m 0.019 m 0.019 m 

Base fracture energy, 𝐺𝑓0 33.49 𝐽/𝑚2 33.49 𝐽/𝑚2 33.49 𝐽/𝑚2 

Poisson’s ratio, 𝜐 0.2 0.2 0.2 

Damping ratio external, 𝜉𝑒𝑥 0.2 0.2 0.2 

Damping ratio internal, 𝜉𝑖𝑛 0.2 0.2 0.2 

Tensile damage parameter, 

𝛾 
0.25 0.25 0.25 

Lattice spacing, L0 0.01 m 0.01 m 0.005 m 
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   5.2.2. Uniaxial Tension Problem 

In this problem, a cubic concrete specimen of size 0.3m×0.15m with the thickness of 0.15m 

is considered. The boundary conditions are defined such that the bottom boundary is fixed 

only in y direction and the time-varying displacement (Eq. (5.5)) is applied to the top 

boundary. In SPLM, the mentioned boundary conditions are imposed to two rows of 

particles at top and bottom of the specimen (shown in the results by green particles). 

∆𝑦(𝑡) =   (
Δ𝑚𝑎𝑥
2

) (1 − cos (
𝜋𝑡

𝑡𝑟𝑎𝑚𝑝𝑒𝑛𝑑
)).                                                                            (5.5) 

In Eq. (5.5), Δ𝑚𝑎𝑥 is the maximum applied displacement assumed to be calculated as 

Δ𝑚𝑎𝑥 = 1.5𝐶𝑂𝐷𝑐, 𝑡𝑟𝑎𝑚𝑝𝑒𝑛𝑑 = 0.8𝑡𝑒𝑛𝑑, and 𝑡𝑒𝑛𝑑 is calculated based on the fundamental 

period of vibration of the specimen and the time stepping increment (more details can be 

found here [14]). Note that the fundamental periods of the specimens are estimated from 

the linear elastic modal FEM analysis of each problem. For this problem, fundamental 

period of 0.00042 s is estimated and used. The mentioned problem is solved with both 

SPLM-2016 and SPLM-2017; each for three different lattice rotations of 0, 15, and 30 

degrees. The obtained Force-displacement curves are shown in Fig. (5.1), the cracking 

pattern obtained for each lattice rotation is shown in Fig. (5.2), and data comparisons and 

some additional information regarding the outputs (i.e. obtained peak loads for each 

analysis, number of particles, etc.) are provided in Table 2. The results show significant 

improvements (specifically in post-peak region) in SPLM-2017; also much better match 

with the classical solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison between SPLM-2016 and SPLM-2017 for Uniaxial Tension problem.   

 Obtained Peak Loads 
Number 

of 

Particles 

Number 

of  

time steps 

SPLM-

2016 

(KN) 

SPLM-

2017 

(KN) 

Theoretical 

(KN) 

Uniaxial 

Tension 

Problem 

Lattice rotation 

 0 
54.32 57.70 

59.27 

605 23100 

Lattice rotation 

15 
50.61 55.82 595 23100 

Lattice rotation 

30 
53.53 56.76 569 23100 

Average  52.82 56.76 - 590.0 
 

Error 

Percentage 

(compared with 

the theoretical) 

11% 4% 
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Figure 5.1. Comparison between SPLM-2016 and SPLM-2017 for Uniaxial Tension problem 
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a b c 

Figure 5.2. Obtained cracking patterns for Uniaxial tension problem at the final timestep, .for SPLM-2017, 

with lattice rotations of:  (a) 0 degree, (b) 15 degree, and (c) 30 degree. 
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    5.2.3. Uniaxial Compression Problem 

In this problem, a cubic concrete specimen of size 0.3m×0.15m with the thickness of 0.15m 

is considered (the same as tension problem). The same boundary conditions as uniaxial 

tension problem are considered for this case, except the direction of the applied 

displacement is flipped in order to apply compression to the specimen.  

This problem is also solved with both SPLM-2016 and SPLM-2017; each for three 

different lattice rotations of 0, 15, and 30 degrees. The obtained Force-displacement curves 

are shown in Fig. (5.3), the cracking pattern obtained for each lattice rotation is shown in 

Fig. (5.4). Note that the yielded particles due to plasticity are shown with the black color. 

The data comparisons are provided in Table 3. Significant improvements can be recognized 

for the new SPLM code based on the presented results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison between SPLM-2016 and SPLM-2017 for Uniaxial Compression problem.   

 Obtained Peak Loads 
Number 

of 

Particles 

Number 

of  

time 

steps 

SPLM-

2016 

(KN) 

SPLM-

2017 

(KN) 

Theoretical 

(KN) 

Uniaxial 

Compression 

Problem 

Lattice 

rotation 

 0 

-637.2 -615.8 

-624.7 

605 23100 

Lattice 

rotation 15 
-589.7 -602.2 595 23100 

Lattice 

rotation 30 
-765.9 -628.8 569 23100 

Average  -664.27 -615.6 - 590.0 
 

Error 

Percentage 

(comparing 

with the 

theoretical) 

6% 1% 
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Figure 5.3. Comparison between SPLM-2016 and SPLM-2017 for Uniaxial Compression problem 
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a b c 

Figure 5.4. Obtained cracking patterns for Uniaxial Compression problem at the final timestep, for SPLM-2017, 

with lattice rotations of:  (a) 0 degree, (b) 15 degree, and (c) 30 degree. 
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    5.2.4. Split Brazilian Cylinder 

In this problem, a circular cylinder with a diameter of 0.15m and height of 0.30m, subjected 

to compression along its diameter, is simulated. The same time varying displacement (Eq. 

(5.5)) is applied at top and bottom of the Split Cylinder models. In SPLM the displacement 

is applied to certain particles, defined at top and bottom of the specimen (the green particles 

shown in the results), to emulate the loading plates. 

This problem is also solved with both SPLM-2016 and SPLM-2017; each for three 

different lattice rotations of 0, 15, and 30 degrees. The obtained Force-displacement curves 

are shown in Fig. (5.5), the cracking pattern obtained for each lattice rotation is shown in 

Fig. (5.6). Note that the yielded particles due to plasticity are shown with the black color. 

The data comparisons are provided in Table 4. According to the obtained results, the 

superiority and robustness of the re-formulated SPLM method versus the older versions 

can be verified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Comparison between SPLM-2016 and SPLM-2017 for Split Cylinder problem.   

 Obtained Peak Loads 
Number 

of 

Particles 

Number 

of  

time steps 

SPLM-

2016 

(KN) 

SPLM-

2017 

(KN) 

Theoretical 

(KN) 

Split 

Cylinder 

Problem 

Lattice rotation 

 0 
-149.3 -103.8 

-96.48 

839 29400 

Lattice rotation 

15 
-153.3 -104.8 841 29400 

Lattice rotation 

30 
-131.4 -103.3 843 29400 

Average  -144.67 -103.97 - 841.0 
 

Error 

Percentage 

(comparing with 

the theoretical) 

50% 7% 

  

 



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Comparison between SPLM-2016 and SPLM-2017 for Split Cylinder problem 
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Figure 5.6. Obtained cracking patterns for Split Cylinder problem at the final timestep, .for SPLM-2017, with 

lattice rotations of:  (a) 0 degree, (b) 15 degree, and (c) 30 degree. 

a 

b c 
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5.3. Re-formulated SPLM versus Abaqus and Experimental data 
In this section, the problems of Dog-bone shaped concrete specimens, with two different 

sizes [1], and Split Brazilian Cylinder based on [30] are simulated with all the mentioned 

numerical approaches. The obtained results are then compared together and validated with 

the lab tests. 

The material properties and parameters used for the simulations are presented in sec. 

(5.3.1). the Dog-bone problems are discussed in sec. (5.3.2), and Split cylinder is 

considered in sec. (5.3.3). 

5.3.1. Material properties and parameters 

For the Dog-bone problems, concrete properties are mostly defined based on [1] and for 

the Split Cylinder problem based on [30]; however, some of the properties that were not 

clearly presented in the lab data are decided to be calculated from the design codes.  

The concrete properties and parameters, defined in the models, are shown in Table. 5. For 

all problems solved in this section, since the reported value of tensile strength in reference 

papers are not reliable (presumably not represent the real tensile strength because of the 

difficulties in performing the experiments); the tensile strength of concrete is calculated 

using the ACI formula (Eq. (5.1)). The Young’s modulus is also estimated from Eq. (5.2), 

and Eq. (5.4) is considered for calculating critical crack opening displacement. Note that 

the applied displacement-rate is considered slow enough so that avoid probable pre-peak 

nonlinearities and dynamic effects. Moreover, the external damping is not defined in either 

Abaqus or SPLM models.  
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 Table 5. Material properties and constant parameters in section 5.3. 

 

Parameter 
Split Brazilian 

Cylinder (SI) 

Dog-Bone specimens 

(SI) 

Compressive strength, 𝑓𝑐
′ 41.23 Mpa 50.0 Mpa 

Tensile strength, 𝑓𝑡
′ 3.20 Mpa 2.415 Mpa 

Yielding strength, 𝑓𝑦 34.36 Mpa 41.67 Mpa 

Mass density, 𝜌 2323.0 𝑘𝑔/𝑚3 2183.0 𝑘𝑔/𝑚3 

Maximum aggregate size, 𝑑𝑚𝑎𝑥 0.019 m 0.008 m 

Base fracture energy, 𝐺𝑓0 33.49 𝐽/𝑚2 25.00 𝐽/𝑚2 

Poisson’s ratio, 𝜐 0.2 0.2 

Damping ratio internal, 𝜉𝑖𝑛 0.2 0.2 

Damping ratio external, 𝜉𝑒𝑥 0.2 0.2 
 

0.0 0.0 

Tensile damage parameter, 𝛾 0.25 0.25 

Element size, �̅� 0.005 m 0.008 m 

Lattice spacing, L0 0.005 m 
0.008 m 

(for D) 

0.004m 

(for B) 
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    5.3.2. Dog-Bone Specimens Under Uniaxial Tension 

As it mentioned, the specimens of sizes B and D [1] are selected and simulated for this 

study. The specimen dimensions are shown in Fig. (5.7). The boundary conditions are 

defined such that the bottom boundary is fixed only in y direction and the time-varying 

displacement, ∆𝑦(𝑡), (see Eq. (5.5)) with the maximum displacement, Δ𝑚𝑎𝑥, of 0.5mm is 

applied to the top boundary. The fundamental periods of 0.0017s for Specimen D, and 

0.00042s for specimen B are considered. In SPLM, the mentioned boundary conditions are 

imposed to 2~3 rows of particles at top and bottom of the specimen (the green particles 

shown in Figs. (5.9) and (5.10)); while in Abaqus models, the boundary conditions are 

directly applied to the boundary edges. A structured, symmetric, 4-node plane stress 

quadrilateral elements (CPS4R), with the total number of 220 elements for specimen B and 

3680 elements for specimen D, are exploited in Abaqus models. The Abaqus dynamic-

explicit solver is considered for analyzing the problems. The force-displacement curves for 

specimens, B and D, comparing SPLM and Abaqus results, are plotted in Fig. (5.8).  The 

obtained cracking patterns at final time step are shown in Figs. (5.9) and (5.10). Note that 

the contour levels shown in Figs. (5.9) and (5.10) are defined the same in both SPLM and 

Abaqus models. the obtained peak loads are shown in Table 6; and compared with those 

of theoretical engineering peak loads. Some other information (number of 

particles/elements) are also gathered in Table. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Dog-Bone specimen dimensions (from [1]). 
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Figure 5.8. Force-displacement curves of Dog-bone problems. (a) Specimen B, (b) Specimen D. 
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a b c 

Figure 5.9. Obtained cracking patterns for specimen B,  at the final timestep. (a) SPLM, 

(b) Abaqus brittle Cracking (STATUS), (c) Abaqus Damage Plasticity (SDEG). 

a b c 

Figure 5.10. Obtained cracking patterns for specimen D,  at the final timestep. (a) SPLM, 

(b) Abaqus brittle Cracking (STATUS), (c) Abaqus Damage Plasticity (SDEG). 
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Before starting the interpretation of the outcomes, the following difficulties of all the 

Abaqus concrete cracking models, mentioned in chapter 2, should be addressed. The SPLM 

also has some issues listed as follows. 

1) The proposed lattice topology lead to a condition of having less number of 

generated particles in certain rows along the width of the specimens, and 

subsequently less bonds. Therefore, the failure in SPLM models will occur along 

the smaller defined width of material (which means lower estimation of the peak 

load).  

2) One of the differences between SPLM and continuum based methods is the 

difference in the stiffness of the boundary particles with the particles in the bulk. In 

Abaqus approaches, before getting damage, the stiffness of all the elements (on the 

boundaries or inside the domain) are the same. However, in SPLM approach, even 

in undamaged case, all the boundary particles are connecting to less bonds and 

subsequently having lower stiffness. This issue is mostly related to the estimation 

of the bond-based micro-elastic modulus a (defined in Eq. (4.2)) which is 

calculating based on having 6 bonds in the horizon, while for boundary particles 

we have less than 6 bonds (in other words less stored elastic energy per particle in 

boundaries) [14]. This issue implies having intrinsically less stiffness in boundaries 

and affect the obtained peak loads and cracking patterns.  

In light of the mentioned difficulties, the obtained results For the Dog-bone problems can 

be interpreted as follows. 

As it can be seen from the figures and Table 6, by comparing the numerical results, in both 

case of small and big concrete specimens, the Brittle cracking, Damage plasticity, and 

Table 6. Comparison between lab, theoretical, and numerical results.   

 

Peak loads 
Number of 

particles in 

SPLM 

Number of 

elements 

in FEM 
Lab test 

(KN) 

Theory 

(KN) 

SPLM 

(KN) 

Damage 

Plasticity 

(KN) 

Brittle 

Cracking

(KN) 

Dog-Bone 

Specimen 

B 

17.27 21.14 20.26 20.80 20.71 1035 220 

Dog-Bone 

Specimen 

D 

60.37 84.56 72.66 74.23 73.83 3577 3680 

Split 

Cylinder 
-204 ~ -236 -235.9 -245.3 -245.9 2145 839 864 

 



56 

 

SPLM models roughly reached the same peak load (within 2% of variation). On the other 

hand, for specimen B, the obtained peak loads are almost matching with the analytical 

solution; however, the obtained peak loads are lower than the analytical solution in case of 

Specimen D. The probable reason of getting lower peak loads for Specimen D can be 

because of ignoring the size effects in both calculation of the analytical solution and also 

calculation of the tensile strength of concrete (lower strength should be considered for 

bigger specimens). 

Comparing numerical and lab results, the predicted peak loads from all the numerical 

simulations are higher. It should be noted that in this study, the size dependency of the 

tensile strength (as it can be verified from [1]) is ignored; and the values based on ACI 

formula (Eq. (5.1)) for the tensile strengths are employed for numerical simulations (shown 

in Table 5). Therefore, since ACI correlation is overestimating the tensile strength, using 

the exact reported values for the tensile strength from [1] will lead to lower peak loads. 

Nevertheless, it should be considered that the correctness of the reported nomonal tensile 

strengths are also questionable; hence, using ACI correlation seems to be more reliable.  

Comparing the force-displacement curves, the pre-peak behavior of all the numerical 

approaches are almost identical. However, the post peak behaviors are slightly different 

which is rational and happens due to having different damage techniques and failure 

methods in the models. For the smaller specimen, specimen B, less post peak vibrations 

are captured from the numerical simulation which is reasonable due to the small size of the 

specimen B (small mass). On the other hand, for the bigger specimen, specimen D, more 

vibrations can be seen in the post-peak regions of the curves, as it is expected.  

As it can be seen from the cracking patterns of Dog-bone models (Figs. (5.9) and (5.10)), 

in general, Abaqus models are showing more localized crack (a single crack in the middle) 

than the SPLM approach. Theoretically, the element sizes should not be defined smaller 

than the aggregate size (minimum size of the fracture process zone in concrete). In the case 

of specimen B, since the size of the specimen is so small comparing the specified element 

size, the convergence problem is so probable because of having insufficient number of 

elements. This issue, Inaccuracy and lack of objectivity in modelling the small specimens 

due to meshing limitations, should be addressed as one of the major difficulties of FEM 

based fracture models. As it can be seen from the Abaqus results for specimen D, a single 

crack is propagated exactly at the center of the specimen. However, in SPLM, a complete 

crack (from above the center line of the shape) and some partial damages are propagated. 

Therefore, too much localized cracking issue is also evident in the results of Abaqus 

approaches for the bigger specimen which is not so realistic. 

Furthermore, based on the obtained results, SPLM shows the superior capability of 

predicting size effect in concrete specimens. According to the size effect theory, which is 

verified in the reference paper for this study [1] and also other literature [31], by increasing 

the size of the specimen we should expect lower tensile strength. As it can be seen from 

Fig. (5.10), in the bigger specimen the ultimate damage occurred in the thicker region of 

the specimen which has a bigger effective area. Therefore, if we recalculate the nominal 
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strength using that bigger area, we would get lower strength. Hence, this issue could justify 

the capability of SPLM method in predicting the size effect. 

In conclusion, SPLM is showing reasonable conformity (in both pre-peak and post-peak) 

with the well-developed Abaqus codes. The obtained solutions are also corresponding with 

those of theoretical solutions and experimental results. 
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    5.3.3. Brazilian Split Cylinder 

In this problem, a circular cylinder with a diameter of 0.15m and height of 0.30m, subjected 

to compression along its diameter, is simulated. The same time varying displacement (Eq. 

(5.5)) is applied at top and bottom of the Split Cylinder models. In Abaqus models, in order 

to apply a uniform displacement, a length of one-sixth of diameter (0.025m) from top and 

bottom boundaries of cylinder is flattened; while, in SPLM the displacement is applied to 

certain particles, defined at top and bottom of the specimen (the green particles shown in 

Fig.(5.12)), to emulate the loading plates. In Abaqus models, the same element types as the 

Dog-Bone problems used. The total number of 864 elements in Abaqus models and 839 

particles in SPLM are exploited. The obtained force-time curves of the simulations are 

plotted in Fig. (5.11). The cracking patterns are shown in Fig. (5,12). The theoretical 

solution for the peak load of the split cylinder, 𝑃, considering the effect of the loading 

block, is given [32] as 

𝑃 =
𝜋

2
(𝑓𝑡

′𝐷𝐻) (1 − 𝛽2)1.5⁄ ,                                                                                                     (5.6) 

where D is the diameter, H is the height, 𝛽 = (𝑏𝑙𝑜𝑐𝑘 𝑤𝑖𝑑𝑡ℎ)/𝐷, and 𝑓𝑡
′ is the tensile 

strength of the cylinder. Although the extent of validity of Eq. (5.6) is not clear, the 

mentioned correlation is employed to estimate the analytical peak load. The obtained peak 

loads are presented in Table 6. Note that the theoretical peak load, shown in Fig.  and Table 

6, is calculated based on the value of 𝑓𝑡
′obtained from ACI correlation (Eq. (5.1)).  

As it can be seen from Fig. (5.1), the pre-peak and post-peak behavior obtained from SPLM 

and damage plasticity approaches are the same; however, the obtained peak load and post 

peak behavior of Brittle cracking model is different. Brittle Cracking method shows much 

higher peak load than other methods which is essentially because of inability of this method 

in modelling the compressive failure. Comparing the cracking patterns (Fig. (5.12)), in 

spite of having much simple damage method in SPLM; Damage-Plasticity and SPLM are 

showing reasonable and similar crack propagation (tensile fracture at the center and 

compressive crushing at the loading boundaries). However, Brittle Cracking method is 

showing unrealistic cracking patterns (i.e. horizontally propagated cracks).  

Considering the obtain peak loads (shown in Table 6), SPLM and Damage-Plasticity 

approaches are showing conformity with the theoretical solution and lab test results. As it 

mentioned, the presented experimental peak loads in Table 6 are estimated based on the 

reported tensile strengths of cylinder, values of  2.79 Mpa and 3.24 Mpa [30]. Assuming 

the validity of Eq. (5.6) for calculating the peak load based on cylinder tensile strength, the 

cylinder peak load values of 204 KN, and 236 KN can be estimated (𝛽 is assumed zero in 

this part to comply with [30]).  

Therefore, SPLM is showing identical results to Damage Plasticity method and also 

consistent with the experimental and theoretical solutions. 
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Figure 5.11. Force-displacement curves obtained for Split Brazilian Cylinder. 
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b c 

a 

Figure 5.12. Obtained cracking patterns for Split Cylinder problem at the final time step.   

(a) SPLM, (b) Abaqus Damage-Plasticity (SDEG), (c) Abaqus Brittle Cracking (STATUS). 
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     5.4. Convergence Study 
In this section, a small convergence study is performed to show the capability of the new 

SPLM approach to converge to the classical solutions. Here, the small Dog-bone specimen 

(introduced in section 5.3.2) is solved with different lattice spacings. The results are then 

compared with Abaqus models. Note that the mesh sizes used in Abaqus analysis are not 

changed here. The lattice spacings of 0.004m and 0.008m are chosen for this study. The 

obtained cracking patterns are shown in Fig. (5.13), and force-displacement plots are 

presented in Fig. (5.14). As it can be seen from Fig. (5.14), by making the lattice spacing 

twice smaller, the pre-peak and post-peak results are both improve, and almost match with 

the Abaqus outputs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b 

Figure 5.13. Obtained cracking patterns for Dog-bone Specimen B.                                                       

(a) Course mesh (287 particles), (b) Fine mesh (1035 particles).  
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Figure 5.14. Obtained Force-displacement curves for Dog-bone specimen B (convergence study). 

(a) Course mesh (287 particles), (b) Fine mesh (1035 particles).   

 

a 

b 
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 Chapter 6                                                                                  

Discussions and Conclusions 

    6.1. Summary 

In this study, the State-Based Peridynamics Particle Approach (SPPM) is proposed for 

solid mechanics. SPPM can be considered as a re-formulation of continuum state-based 

peridynamics, based on discrete, randomly-positioned, particles. In SPPM, instead of 

solving integral equations, discrete equations in the form of finite summations are solved. 

A spring theory is combined with the state-based peridynamics concept, and a novel 

damage model called the “Two-Spring Damage Model” is introduced. A suitable and 

simple plasticity model is also proposed for SPPM. The advantages of SPPM method are 

listed as follows. 

(1) Computational implementation of SPPM is more efficient than continuum 

peridynamics. Since SPPM starts with discrete equations, the equation 

discretization cost is lower than with continuum peridynamics (numerical 

integration may need more nodes than what is used for domain discretization, while 

in SPPM these is no need to define extra integration points). In addition, the 

proposed meshless algorithm, in general, decreases the computational cost of the 

domain discretization.   

(2) SPPM formulation is more accurate than continuum peridynamics. Considering the 

mentioned issues in number (1), SPPM directly deals with discrete equations and 

no numerical integration is needed in this approach. SPPM has the capability to 

model complex geometries, and boundaries can be modeled with more accuracy 

than the continuum peridynamics. 

(3) Implementation of damage theories are more convenient within the SPPM 

framework. The SPPM formulation is easier to implement than continuum 

peridynamics. 

Next, the SPLM method was re-formulated and calibrated for concrete. SPLM can be 

considered as a lattice-based form of SPPM since the lattice mesh is employed to distribute 

the particles. The reason of proposing a lattice-based approach while having a meshfree 

formulation is listed as follows. 

(1) Computational efficiency. In general, all the Peridynamics-based approaches need 

computation power since lots of floating point operations are involved in 

Peridynamics computations. Having a lattice configuration simplies the 

calculations and increases the compuitational efficiency. 

(2) Having a more deterministic model. Having a random particle distribution may lead 

to varying solutions (specifically varying cracking patterns). Although this issue 

can be considered as one of the advantages of the SPLM/SPPM model, performing 

this study was not in the scope of this research.   

(3) Parallel processing. Generally, parallel programming (particularly the Message 

Passing Interface (MPI) method) is more complicated in cases of random particle 

distributions (for instance, defining the overlapping domains). The efficiency of 
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parallel domain discretization (allocating different cores to different domain region 

in MPI (load balancing issue)) would not be very high; since having a dense particle 

distribution in on region of the problem domain might result in performing most of 

the computations with only a few cores. The mentioned issues will affect the 

performance of the parallel approach.  

By employing SPLM the accuracy in modelling geometries and boundary conditions will 

decrease. Therefore, although using lattice increases the computational efficiency of the 

approach, it will have the tradeoff of lower expected accuracy. 

The re-formulated SPLM is then used to solve some 2D planer concrete problems. The 

obtained outputs are then compared with those of Abaqus concrete cracking models, 

theoretical solutions, and some available experimental data. The obtained results 

demonstrate that SPLM is capable of simulating concrete reasonably, and produces similar 

results to FEM-based methods and other theoretical solutions.  

 

 

 

    6.2. Discussion and Remarks 

According to the results of our simulations, the following observations are made: 

(1) The SPLM formulation facilitates computations and decreases the computational 

cost. However, in addition to the difficulties of modeling smooth boundaries with 

the lattice, the following assumptions are also made in SPLM formulation to 

simplify the model, that cannot be neglected while analyzing the results: 

a. Constant transformation matrix is used (Eq. (3.15)) based on the reference 

lattice configuration. (𝑵𝑖 will not update in each time step.) 

b. Constant micro-elastic modules (a, and b) are employed for all the particles. 

(Boundary particles should have different a and b because of having less 

bonds.) 

c. The same material volume is associated with all the particles, including 

boundary particles.  

(2) Comparing the re-formulated SPLM version to the older versions, the new SPLM 

is more accurate, objective, symmetric, convergent, and in general more reliable.  

(3) The changing the state of particles from compression to tension (and vice versa), 

after getting damage in the neighboring particles, is recognized and fixed in this 

study; which is a complex and realistic phenomenon.  

(4) Despite getting almost the same results for different lattice rotations, more lattice 

rotation sensitivity is seen in compression problems (although the differences in the 

results were not significant). The possible reasons for this issue probably relates to 

the mentioned assumptions in number (1); the performance of the proposed 

plasticity model in matching with the classical theory is questionable. Hence, 

further studies are recommended on this issue. 
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(5) Although SPLM/SPPM is a novel numerical approach and in the initial stages of 

development, the obtained results showed the capability of this method to compete 

with well-known, well-developed commercial FEM codes such as Abaqus.  

(6) The SPLM is much simpler than comparable finite element models. Computational 

implementations of the method, such as damage evolution approaches, are much 

easier in SPLM than FEM continuum based methods. Furthermore, defining and 

understanding the input parameters is also easier and the model needs less effort to 

calibrate. 

(7) The small differences between SPLM and the theoretical and FEM results (elastic 

region slope, and also post-peak behavior), can be justified by considering the 

mentioned issues expressed in number (1). Nevertheless, the obtained results 

demonstrated the ability of SPLM to seriously challenge continuum FEM 

approaches. 

(8) Despite having similar pre-peak and post-peak behaviors for different lattice 

rotations in SPLM, different cracking patterns were obtained (not unlike to real 

physical behaviors). It can be interpreted as the ability of SPLM/SPPM in 

producing more realistic solutions. This issue should be considered as one of the 

advantages of SPLM/SPPM compared to FEM.  

(9) The main weakness of SPLM compared with FEM models, in general, can be 

expressed as more computational effort. However, since lots of complex 

optimizations have been made in Abaqus codes, comparing the SPLM method and 

Abaqus FEM models in terms of analysis timing is not rational, and is not 

performed in this study. 

(10)  Comparing only different Abaqus models with each other, the Abaqus damage 

plasticity approach illustrated better and closer solutions to theoretical results. On 

the other hand, defining the input parameters (specifically, defining the damage 

parameters) for the damage plasticity model is much harder for the user than other 

methods.  In addition, other Abaqus approaches have more limitations and less 

capabilities in modeling the real behavior of concrete. The brittle cracking model 

can only simulate the tensile damage and cannot model the plastic behavior of 

concrete; however, it has fewer input parameters and the model can be defined and 

calibrated with less effort by the user. 

(11)  Mesh sensitivity issues, related to use of characteristic length of elements, can be 

considered as another major difficulty of Abaqus concrete cracking approaches. In 

addition, difficulties in performing convergence (mesh refinement) studies is 

another deficiency of the FEM concrete cracking approaches.   
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    6.3. Final Thoughts 

The proposed re-formulated SPLM can reasonably model concrete structures and provide 

even more realistic results than the commercial FEM software packages. 

In conclusion, SPLM/SPPM, and peridynamics-based methods generally, are promising 

numerical methods for solid mechanics simulations. Further development of the 

SPLM/SPPM may make it competitive with FEM and other conventional continuum 

approaches for simulating cementitious materials 

    6.4. Future Studies 

The following suggestions for future research (for SPLM framework) are presented (sorted 

based on the level of complexity): 

(1) Define better SPLM damage functions. 

(2) Develop more realistic plasticity models (for both plastic flow and plastic yielding 

envelope). For instance, the Drucker Prager plasticity model [33] is recommended 

to be implemented in the SPLM framework for simulating concrete, because of the 

reported correspondence of this approach to concrete behavior. 

(3) Evaluate SPLM for simulating other materials, and propose calibrated SPLM 

models for other materials. Models for steel structures are desirable. 

(4) Investigate the current SPLM applied to cyclic loading and fatigue damage. 

(5) Study the behavior of concrete structures under high loading rates. Study the 

abilities of SPLM in simulating highly dynamic problems. 

(6) Modify the current SPLM model to include creep and shrinkage. Develop a creep-

cracking model. 

(7) Propose adaptive refinement approaches suitable for the SPLM method. 

Refinement methods for SPLM can be categorized into two general forms of (1) 

increasing the horizon radius (considering more bond while keeping the lattice 

spacing constant), and (2) using more particles in certain regions (changing the 

lattice spacing). For the first mentioned scenario, considering bigger horizon sizes 

for the boundary particles are suggested.  In order to implement adaptive refinement 

procedures, defining an error indicator/estimator for SPLM/SPPM framework is 

necessary. Note that more complex and more objective adaptive refinement 

techniques can be implemented using SPPM formulation. 

 

More general (and probably more complicated) study suggestions are proposed based on 

SPPM/SPLM approach: 

(1) Implement a hybrid SPLM/SPPM approach. The obtained results from this study 

indicate that having a lattice configuration would be sufficient to match with the 

classical solutions with less computational effort than a pure SPPM approach. 

However, boundary problems and other mentioned issues with lattice formulations 

remain. Use the SPPM formulation for boundary particles, and use SPLM for the 

particles in the material bulk. 
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(2) Propose a non-deterministic approach (random method) based on the SPPM 

formulation. 

(3) Investigate updating the particle neighbor-lists, also re-calculation of micro-elastic 

modulus, in every time step (particularly, after damage initiation). The outcomes of 

this study may lead to developing more realistic damage models. 

(4) Combine SPPM/SPLM with other numerical approaches (for instance FEM, or 

other meshless methods). 

(5) Going further from the classical elastic-plastic behaviors and formulate different 

concepts. Consider impact forces or contact forces for the damaged particles, even 

defining new material behavior. 
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