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ABSTRACT
Accurate tracking of open-water evaporative losses, one of the largest consumptive uses of
water in the Southwestern USA, is increasingly important with anticipated climate shifts
toward longer and more severe droughts. A new open-water evaporation technique, the
Collison Floating Evaporation Pan, (CFEP), was tested on Cochiti Lake, New Mexico, USA
for one year with objectives being: identify the limitations and potential solutions to
evaporation techniques; deploy, test the reliability, and validity of the CFEP and evaluate
uncertainties in standard evaporation techniques; and improvements over prior evaporation
techniques. The CFEP provided reliable evaporation measurements during sustained winds
greater than 20 m/s. The accuracy of the CFEP was validated with an averaged percent
difference of 1.72 of actual. The CFEP provided more accurate evaporation measurements than
the five methods it was compared to with the Class A Pan underestimating evaporation by 910

acre-feet from May 13 through November 30, 2018.
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Chapter 1: Introduction

1.1 Motivation

Accurate tracking of lake and reservoir evaporative losses, one of the largest
consumptive uses of water in the Southwestern United States (Bureau of Reclamation,
September 2012; Wurbs and Ayala, 2014), is becoming increasingly important with anticipated
climate shifts toward higher temperatures, less available open water, and longer, more severe
droughts (Friedrich et al., 2018; Hurd and Coonrod, 2008; Udall and Overpeck, 2017). As
projected water supplies fail to meet increasing demands, modifications to where and when
water is stored based on the reduction of evaporative losses can have a significant positive
impact on total water supplies (Bureau of Reclamation, December 2012). Understanding where
and when lake and reservoir evaporation rates are the highest/lowest can help water managers
reduce evaporative losses by using the conservation at the source methodology (Friedrich et
al., 2018). This methodology requires accurate and precise open-water evaporation knowledge
in order to be best implemented, but acquiring such knowledge can be very expensive when
using current state-of-science evaporation estimation techniques.

The high costs associated with state-of-science evaporation estimation techniques
results in less accurate state-of-practice evaporation estimation techniques being used instead.
An example of the difference in error rates associated with these two different evaporation
estimation methodologies is represented by how evaporation is determined on the two largest
reservoirs on the Colorado River, USA. Lake Mead and Lake Powell evaporate an estimated
combined 1,400 MCM (million cubic meters; or 1,135 million acre-feet) annually, which is

over five times the water usage of Denver, Colorado, USA (Bureau of Reclamation, December
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2012; Friedrich et al., 2018). The annual evaporation rate of Lake Mead is 720 MCM, with an
average estimated error of 47 MCM (5-8%) using the state-of-science techniques eddy
covariance and Bowen ratio energy budget (Moreo and Swancar, 2013); the annual evaporation
rate of Lake Powell is 680 MCM, with an average estimated error of 153 MCM (15-30%)
using a state-of-practice technique, water budget (Winter, 1981; Myers, 2013). From this, it is
clear that the state-of-science technique used on Lake Mead has a much smaller error rate than
the more commonly used state-of-practice technique used on Lake Powell. However, while the
eddy covariance and Bowen ratio energy budget state-of-science techniques used to estimate
Lake Mead’s evaporation rate are considered one of the most accurate open-water evaporation
estimation techniques (Baldocchi, 2003; Blanken et al., 2000; Foken, 2008; Moreo and
Swancar, 2013; Stannard et al., 2013), they are also limited to well-funded, short-in-duration
scientific studies due to their high cost and complexity of use. In contrast, the state-of-practice
water budget technique used to estimate Lake Powell’s evaporation rate is commonly used by
water resource managers in conjunction with a Class A Pan due to its low cost, ease of use,
and long, reliable records, but it is also considered to be one of the least accurate open-water
evaporation estimation techniques (Duan, 2014; Kumambala and Ervine, 2010; Piper et al.,
1986; Rientjes et al., 2011; Russell and Johnson, 2006; Sena, 2000; Setegn et al., 2011;
Sivapragasam et al., 2009; Velpuri et al. 2012). The large difference in error rates between the
evaporation estimation techniques exemplifies the gap between state of science and state of
practice.

In total, state-of-science evaporation estimation techniques have been completed on
approximately 25-35 lakes and reservoirs within the USA. It is estimated that there are

approximately 31,000 lakes and reservoirs greater than 10,000 m? in the USA that are used for



drinking/irrigation water (National Inventory of Dams, 2019; U.S. Environmental Protection
Agency, 2009). Thus, these accurate state-of-science techniques have only been completed on
approximately 0.1% of the lakes and reservoirs whereas the majority of the remaining 99.9%
of lakes and reservoirs use state-of-practice techniques. This gap between accurate and
inaccurate techniques continues to grow as more accurate evaporation techniques are created,
but are rarely implemented by water resource managers.

The main underlying reason for the gap in accurate, but rarely used and inaccurate, but
commonly used evaporation estimation techniques is the associated costs of each technique.
State-of-science techniques are estimated to cost between $150-300k+ per year for one location
whereas state-of-science techniques generally cost between $10-30k per year (based on a
review of eddy covariance and Bowen ratio energy budget techniques funded by the National
Science Foundation). Additionally, state-of-science techniques are technically and
computationally complicated, requiring a considerable amount of training and postprocessing
of acquired data in order to determine evaporation rates (Mauder and Foken, 2006).

This study aimed to investigate a novel technology, the U.S. patented (Collison, 2018)
Collison Floating Evaporation Pan (CFEP) as a possible solution that can bridge the gap
between state-of-science and state-of-practice evaporation estimation techniques. Specifically,
the CFEP is designed to be easily applied like state-of-practice techniques, and as or more
accurate and substantially lower in cost than state-of-science techniques. The CFEP is designed
around the simplistic premise of a Class A Pan, where a decrease in water level is the
evaporation rate, while overcoming the accuracy drawbacks of the Class A Pan. Additionally,
the CFEP is designed to be fully automated with onboard telemetry for remote access, reducing

the need for field visits. Lastly, the accuracy of the CFEP was verified with a hemispherical



evaporation chamber (dome), considered one of the most accurate techniques for measuring
in-situ open-water evaporation (Crilley and Collison, 2015; Garcia et al., 2008; Masoner and

Stannard, 2010; Stannard, 1988).

1.2 Current Limitations of Evaporation Estimation Techniques

The vast majority of lake and reservoir evaporation is estimated with a Class A Pan
within the United States, Europe, and Australia (Doorenbos and Pruitt, 1977; Famsworth et al.,
1982; Rayner, 2005), even though it is considered one of the least accurate techniques (Alvarez
et al., 2006; Chu et al., 2012; Eichinger et al., 2003; Follansbee, 1934; Grayson et al., 1996;
Tanny et al., 2008; Trask, 2007). The Class A Pan’s widespread use is due to its low cost and
reliability as well as being easily applied. It is inaccurate due to a few reasons, including its
small thermal mass, which is susceptible to diurnal variations in air temperature (Hounam,
1973; Jovanovic et al., 2008; Morton, 1979), and its placement outside the atmospheric
boundary layer (ABL) influence of a body of water.

Large bodies of water absorb solar energy in the spring, resulting in reduced
evaporation rates, and then release the stored energy in the fall, resulting in increased
evaporation rates (Penman, 1948). The Class A Pan and its smaller thermal mass is coupled to
diurnal variations in air temperature, resulting in higher evaporation rates in the spring/early
summer and lower evaporation rates in the fall (Hounam, 1973; Jovanovic et al., 2008; Morton,
1979). This major limitation for Class A Pans, as well as other state-of-practice evaporation
estimation techniques that do not account for stored energy, results in higher uncertainties and
reduced accuracy of measurements. State-of-science evaporation techniques are able to capture
the effects of stored energy on evaporation rates, which increases their annual and monthly

accuracy.



In addition to the stored energy problems of the Class A Pan, another major limitation
of the Class A Pan and other state-of-practice evaporation estimation techniques is collecting
atmospheric variables (air temperature, relative humidity, net radiation, and wind speed) and/or
placement of equipment outside the atmospheric boundary layer influence of a body of water
(Winter et al., 2003). The ABL overlying a lake or reservoir is caused by the higher rates of
open-water evaporation and can be imagined as a “bubble” of cool and moist air that impedes
evaporation (Friedrich et al., 2018; Kaimal and Finnigan, 1994; Kormann and Meixner, 2001;
Stewart, 1979; Troen and Mahrt, 1986). This ABL is more significant in arid/semiarid
environments due to the vast difference in available water for evaporation from a body of water
in comparison to the water-limited land surrounding the body of water. Collecting data outside
the influence of the ABL will result in higher estimated evaporation rates requiring a corrective
value being applied, like the Class A Pan coefficient of 0.7, which reduces the Class A Pans
estimated evaporation rate by 30% (Follansbee, 1934; Kohler, 1954). State-of-science
techniques have to be placed within the ABL influence of the body of water to function
properly, meaning a corrective coefficient does not need to be applied.

The major limitation for state-of-science evaporation estimation techniques, other than
their high cost and complexity, is the requirement of adequate fetch. The general rule for
acquiring adequate fetch is having a homogeneous surface surrounding the weather station at
100 to 1,000 times the instrument height depending on atmospheric stability, stable verses
unstable, respectively (Horst and Weil, 1994; Moreo and Swancar, 2013). Not meeting this
fetch requirement in arid/semiarid environments will result in hot and dry air surrounding the
body of water and interfering with atmospheric measurements, resulting in a higher estimated

evaporation rates, unless this inaccurate data is removed during extensive postprocessing



(Mauder and Foken, 2006). Meeting this requirement is considerably difficult on all but the
largest lakes and reservoirs, especially on lakes and reservoirs in arid/semiarid environments
where the shape of these bodies of water tend to be narrow and long. The dams used to impound
these bodies of water are typically built in narrow-deep sections (e.g., canyons), producing
narrow, long, and deep bodies of water where the fetch requirement is rarely met from all
directions. Additionally, the limitation of adequate fetch distances prevents the understanding
of the effect of shore-to-water and water-to-shore winds on evaporation rates in arid/semiarid
environments.

The last major limitation for both state-of-science and state-of-practice evaporation
estimation techniques is applying a single evaporation estimation to the whole lake or
reservoir, which remote sensing studies have shown to be an inaccurate assumption, as
evaporation rates vary throughout a reservoir based on varying surface water temperatures
(Duan, 2014; Ebaid and Ismail, 2010; Hassan, 2013; Herting et al., 2004; Lenters et al., 2013).
The large fetch distances needed for state-of-science and state-of-practice techniques preclude

quantification of spatially varying evaporation rates.

1.3 Overcoming Limitations

The CFEP is designed to overcome the limitations of high cost, complexity of use, and
adequate fetch requirements associated with state-of-science techniques as well as the
limitations of stored energy, placement outside the ABL, and inaccuracy associated with state-
of-practice techniques. The cost of the CFEP is estimated to range between $40-75k per year,
depending on site specific requirements. The low cost of the CFEP is due in part to its fully
automated design, reducing expensive site visits; in addition, the robustness of the design

allows for long-term use, further reducing costs (see section 3.2.2 for more information).



Overcoming the high costs associated with state-of-science techniques will allow for accurate
evaporation data at more locations and for longer durations.

The CFEP is designed to provide a straightforward but accurate approach to measuring
evaporation, where a decrease in water level within the evaporation pan equals the evaporation
rate (see section 3.2.2 for more information). This clear-cut process provides real-time
evaporation rates as no postprocessing of the data is required, in contrast to state-of-science
techniques which require a significant amount of postprocessing in order for an evaporation
rate to be determined (Mauder and Foken, 2006). Additionally, how the CFEP measures
evaporation is identical to that of a Class A Pan, allowing for straightforward adoption by water
resource managers who are already familiar with this way of measuring evaporation.

The CFEP is designed to overcome the limitation of adequate fetch, as it requires no
fetch distances since the water level within the evaporation pan is identical to the surrounding
lake or reservoir water level (see section 3.2.2 and 3.3.1 for more information). Adequate fetch
is required for both state-of-science and state-of-practice techniques in order to allow for air
overlying the water to equilibrate to the lake or reservoir ABL through atmospheric mixing
before being measured by various atmospheric sensors (Horst and Weil, 1994; Moreo and
Swancar, 2013). As no adequate fetch distance is required for the CFEP, it can be deployed in
fetch-limited locations, such as small coves, small lakes/reservoirs, and/or narrow channels,
presently inaccessible with other evaporation estimation techniques, allowing for a greater
range of deployment locations.

In addition to allowing for more deployment locations, requiring no adequate fetch
allows the CFEP to measure spatially varying evaporation rates. Evaporation rates within the

CFEP’s evaporation pan can be associated with different wind directions; therefore, spatially



varying evaporation rates as a function of wind direction can be determined. Being able to
deploy a CFEP near the shore of a lake or reservoir will increase the knowledge of evaporation
rates during shore-to-water winds and water-to-shore winds in arid/semiarid environments
where it is assumed that the air over the shore has a lower vapor pressure than the air over the
body of water.

The CFEP is designed to capture the effects of stored energy on evaporation in a large
body of water. The CFEP was built with aluminum alloy 6061, which has a thermal
conductivity six times greater than stainless steel, a material that the Class A Pan and other
floating evaporation pans use. This higher thermal conductivity allows for the water
temperature within the CFEP’s evaporation pan to be influenced by the water surrounding it.
The increased temperature of the lake or reservoir water during the fall, due to stored solar
energy from the spring and summer, will influence the water within the CFEP’s evaporation
pan, providing a more accurate evaporation measurement (see section 3.3.3. for more
information). Additionally, when the CFEP is placed within the ABL of a lake or reservoir, the
influence of the ABL will affect the CFEP equally as the water surrounding it, increasing
accuracy.

The CFEP is designed to overcome the limitations associated with state-of-science and
state-of-practice evaporation estimation techniques, allowing for deployment at locations
previously unavailable to prior techniques as well as quantifying spatially varying evaporation
rates, enhancing hydrologic sciences’ knowledge about evaporation rates in fetch-limited
locations. Additionally, the uncomplicated and inexpensive design provides water resource
managers an accurate and affordable evaporation estimating tool, allowing for deployment at

a wider range of locations providing a great benefit for broader impacts.



1.4 Objectives

With funding from the U.S. Bureau of Reclamation and the U.S. Army Corps of
Engineers, this study tested the CFEP on Cochiti Lake, located in central New Mexico, USA,
a 61.7 MCM (50,000-acre-foot) flood-control reservoir from November 2017 through
December 2018. The goal of this research was to advance knowledge of spatial and temporal
evaporation processes in lakes and reservoirs through an improved measurement technique
based on the hypotheses that a properly designed floating evaporation pan will provide near-

actual evaporation rates. This goal was met by addressing the following three objectives:

1. Identify the limitations and potential solutions to evaporation estimation
techniques;

2. Design, deploy, and test the reliability and validity of the CFEP and evaluate
uncertainties in standard evaporation estimation techniques; and

3. Patented improvements over prior evaporation estimating techniques.

These objectives were completed during November 2017 through December 2018,
where different design iterations were adapted to fix problems of waves overtopping the
evaporation pan. The addition of additional buoyancy and an outer splash guard resulted in
zero wave overtopping of the evaporation pan from May 13, 2018 through the end of the study.
The accuracy and precision of the CFEP was determined with a dome on three separate dates.
The CFEP was within 2% of the dome measurements, with the dome shown to be within £5%
of actual evaporation (Reicosky and Peters, 1977; Reicosky, 1981; Reicosky et al., 1983). The
results from the CFEP were compared to the following equations and techniques: the

Hargreaves-Samani equation (Hargreaves and Samani, 1985), the Hamon equation (Hamon,



1961), the U.S. Weather Bureau equation (Kohler et al., 1955), the Penman equation (Penman,

1948), and an onsite Class A Pan.

1.5 Overview of Dissertation

Chapter 2 focuses on the limitations of current state-of-science and state-of-practice
evaporation estimation techniques. This chapter elucidates the barriers that prevent widespread
adoption of state-of-science techniques and why water resource managers continue to use less
accurate state-of-practice techniques instead. Additionally, this chapter offers potential
solutions to this problem by either simplifying state-of-science techniques, increasing the
accuracy of inaccurate state-of-practice techniques, and/or developing a new technique, the
CFEP.

Chapter 3 focuses on the major objectives of this study: design, validation, and
comparison of the CFEP to other techniques. The design period of the study was from
November 2017 through April 2018, where modifications were applied to the CFEP to produce
areliable evaporation measurement. Three separate dome validation tests were completed, and,
finally, the CFEP’s evaporation data was compared to standard evaporation techniques.

Chapter 4 is an overview of the “Floating Evaporation Pan with Adjustable Freeboard
and Surrounding Wave-Guard,” U.S. 10,082,415 B1 patent (Collison, 2018). Detailing the
improvements over a prior U.S. floating evaporation pan patent by Masoner and Christenson
(2007) that were incorporated into the CFEP design, being the wave-guard surrounding the
evaporation pan, which added reliability and a wider range of deployment locations.

Chapter 5 provides a summary of the dissertation’s chapters and their main conclusions,
improvements to hydrologic sciences, broader impacts, and recommendations for future

research.
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Chapter 2: An Examination of the
Limitations of Current Evaporation
Techniques

2.1 Introduction

Within the continental United States of America, there are approximately 31,000 lakes
and reservoirs greater than 10,000 m? that are designated for drinking water or are accessible
for drinking water use (National Inventory of Dams, 2019; U.S. Environmental protection
Agency, 2009). At the majority of these 31,000 locations, open water evaporation losses are
estimated using various evaporation estimation techniques, ranging from simpler techniques,
like the Class A Pan, to more complicated techniques, like eddy covariance. Open water
evaporative loss information is used to help inform water resource management decisions, such
as those concerning water compact deliveries, modification of water credits and/or debits, and
water storage locations. The more accurately evaporation losses are estimated, the more
efficiently the water system can be managed, which further results in more water available for
beneficial uses; currently, however, the most accurate techniques are limited to well-funded,
short-in-duration scientific studies at limited locations.

These well-funded scientific studies on open-water evaporation rates typically consist
of either eddy covariance or Bowen ratio energy budget technique costing between $150-300k
per year with durations rarely longer than four years (Lowe, 2009; and based on a review of
eddy covariance and Bowen ratio energy budget techniques funded by the National Science
Foundation). The high costs associated with both of these techniques has limited detailed
evaporation estimates to approximately 25-35 lakes and reservoirs in the USA, which is 0.1%

11



of the 31,000 lakes and reservoirs used for drinking water. The evaporation rate on the
remaining lakes and reservoirs, if required, is estimated by less accurate techniques, leading to
uncertainties in compact water allocations and inefficiencies in water resource management.

The most widespread open-water evaporation estimation technique is the Class A Pan,
a technology invented in the early 1880’s that is commonly used throughout the United States,
Europe, and Australia (Doorenbos and Pruitt, 1977; Famsworth et al., 1982; Rayner, 2005).
The Class A Pan (see section 2.2.1 for more information) was recommended as the standard
evaporation estimation technique in the 1930’s due to its simplicity of use, inexpensive cost,
and reliability, even though it was the least accurate technique tested (Follansbee, 1934).
Reliability was the main deciding factor for the Class A Pan becoming the standard in the
1930’s, as the accuracy difference between the techniques compared in Follansbee (1934) was
less than 7%. The inaccuracy of the Class A Pan has become more apparent as more accurate
techniques have been invented, providing evidence that the Class A Pan can be off by 20-75%
in arid environments and is one of the least accurate evaporation estimation techniques
available (Alvarez et al., 2006; Chu et al., 2012; Eichinger et al., 2003; Follansbee, 1934;
Grayson et al., 1996; Tanny et al., 2008; Trask, 2007). While it has been shown repeatedly that
the Class A Pan is not very accurate, it is still the standard state of practice even as more
accurate state-of-science technigques have become available.

This gap in accuracy between the state-of-practice and state-of-science evaporation
estimation techniques continues to grow as the state-of-science techniques become more
accurate; further, they are rarely adopted by water resource managers, mainly due to high costs
and complexity of use. The eddy covariance and Bowen ratio energy budget techniques both

require a significant investment in sensitive and expensive instrumentation, significant
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postprocessing of collected data, and an extensive knowledge of how these techniques operate
(Mauder and Foken, 2006). In contrast, the state-of-practice evaporation estimation techniques
include Class A Pans, one-to-four variable atmospheric evaporation estimation equations, and
simple water budget techniques, all of which are very easily applied, require minimal training,
and are inexpensive in practice.

A modification of current techniques and/or a new technique that is accurate, easily
applied, affordable, and adoptable by water resource managers is needed to bridge the gap
between state of science and state of practice. One potential benefit of such a technique would
be increased evaporation knowledge at more locations, leading to improved water management
practices, such as conservation at the source. Conservation at the source relies on accurate
evaporation rates to determine when and where it is best to store water to reduce evaporative
losses and thus provide more water for beneficial use (Friedrich et al., 2018). Another
advantage of such a technique would be more accurate accounting of water losses within a
system, leading to more accurate water operation models and adaptive water management
practices (Huntjens et al., 2011; Pahl-Wostl, 2007). Adaptive water management is a data-
driven process which relies on accurate data of all the gains and losses within a system in order

to improve water management policies and make the system more efficient.

2.2 State of Practice for Open-Water Evaporation Estimation Techniques
State-of-practice evaporation estimation techniques typically consist of easily applied
and inexpensive methods, such as Class A Pans, water budgets, and simple equations that
require minimal atmospheric variables. The accuracy of these techniques is sacrificed for their
simplicity of use, resulting in estimated evaporation rates being off by as much as 75% in arid

environments (Eichinger et al., 2003). Although, simplicity of these techniques helps ensure
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high reliability of their measurements, with data sets greater than a hundred years at some
locations. Reliable and consistent measurements, although inaccurate, provide daily data that
are needed for water management. The atmospheric variables required for the simple
evaporation estimation equations are typically air temperature, wind speed, relative humidity,
and some form of solar radiation derived from the declination of the sun.

Solar radiation, relative humidity, wind speed, and the vapor pressure gradient are the
core mechanics that drive evaporation. Solar radiation is the major driving force of air
temperature on a daily basis and water temperature on a seasonal basis. As the water
temperature rises, the erratic movement of water molecules increases, leading to a greater
diffusion rate based on Fick’s laws of diffusion. Greater diffusion rates lead toward higher
evaporation rates, especially during windy conditions, as the wind causes turbulent mixing of
non-saturated air with saturated air located directly above the water surface. Lastly, the vapor
pressure gradient which is the gradient from saturated air at the water surface to non-saturated
air farther above the lake or reservoir, also drives evaporation (Bowen, 1926). The drier the
overlying air, the steeper the gradient, increasing evaporation rates (Troen and Mahrt, 1986).
The increased vapor pressure overlying a lake or reservoir caused by the evaporating water
forms a “bubble” of cool and moist air that impedes evaporation, with this “bubble” being
referred to as the atmospheric boundary layer (Friedrich et al., 2018; Kaimal and Finnigan,
1994; Kormann and Meixner, 2001; Stewart, 1979; Troen and Mahrt, 1986).

The air within an atmospheric boundary layer (ABL) over lakes and reservoirs has a
greater vapor pressure than the surrounding land in arid/semiarid environments due to limited
precipitation and sources of water (Agam and Berliner, 2006). Evaporation rates and the forces

that drive evaporation vary from within the ABL and outside the ABL, with evaporation
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estimation techniques conducted within the ABL being similar to that of the lake or reservoir
(Winter et al., 2003). The vast majority of all evaporation estimation techniques that use
atmospheric data to estimate evaporation collect data outside the ABL due to difficulties
associated with collecting these data from a floating weather station. Evaporation estimation
techniques conducted outside the ABL often require a corrective coefficient that reduces the

estimated evaporation rate, such as the pan coefficient for the Class A Pan technique.

2.2.1 Land-Based Evaporation Pan Technigues

The most common and standard form of land-based evaporation pans is the Class A
Evaporation Pan, invented in the early 1890’s and established as the standard in 1934
(Follansbee, 1934). The Class A Pan consists of a 22-gauge galvanized iron pan, typically 1.22
m in diameter and 0.254 m deep, on a wood base 0.152 m above the ground. The Class A Pan’s
water level is typically measured once each day in the morning and the pan is typically filled
once a week or if the water level drops below a certain level. By filling the pan once a week,
the thermal mass associated with the water in the pan decreases throughout the week, allowing
the water to be more susceptible to diurnal temperature changes later in the week, which affects
evaporation rates (Hounam, 1973; Jovanovic et al., 2008; Morton, 1979). The heat capacity of
Class A Pans varies substantially from the lakes and reservoirs for which they are estimating
evaporation. The available energy within a land-based pan for evaporation is susceptible to
diurnal variations in air temperature whereas in larger bodies of water, the available energy for
evaporation varies on a seasonal basis, with the body of water absorbing energy in the spring
and then releasing the stored energy in the fall (Penman, 1948). This difference in heat capacity
further decreases the ability of land-based pans to estimate lake or reservoir evaporation

accurately on a daily and monthly basis, with monthly estimated evaporation varying as much
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as 75% in arid-environments (Eichinger et al., 2003), whereas yearly evaporation values have
been shown to be within 20% of actual (Harwell, 2012). In order to overcome the
overestimation of evaporation from land-based pans, due to the pan being placed outside the
ABL of the lake or reservoir, a pan coefficient needs to be applied. Typically, a yearly pan
coefficientaround 0.70 is used (Follansbee, 1934; Kohler, 1954), reducing the evaporation rate
measured by the Class A Pan by 30%.

The Class A Pan’s simplicity of use and low cost ($20-30k per year) has led to its
widespread adoption. However, there are key limitations associated with its use, the first being
its placement outside the influence of the lake or reservoir’s ABL, which is more problematic
in arid/semiarid environments due to the large difference in vapor pressure between the ABL
and surrounding land, resulting in a greater evaporation rate from the Class A Pan. This
limitation can be partially overcome by placing the Class A Pan adjacent to the lake or reservoir
in non-arid/semiarid environments. The second major limitation is the small thermal mass of
the water within the evaporation pan, which results in evaporation rates being a product of
diurnal air temperature changes whereas the lake or reservoir’s water temperature varies on a
seasonal basis. Due to this limitation, Class A Pans typically overestimate evaporation in the
spring when the reservoir is storing solar radiation, and underestimate evaporation in the fall
when the reservoir is releasing the stored energy through evaporation (Gianniou and
Antonopoulos, 2007). This limitation can be partially overcome by using varying monthly pan
coefficients, but this requires another evaporation estimation technique to determine what these
coefficients need to be. Table 2.1 below lists some comparison studies completed with the

Class A Pan and the associated error between the Class A Pan and more accurate techniques.
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Table 2.1: Uncertainty of different evaporation techniques

Quotes from various scientific papers

Techniques!

Source

“Environmental factors can cause as much as 77 percent over
measurement in an arid environment as compared to a well-irrigated
environment in the same climatic zone, such as the San Joaquin Valley
west side.”

Class A pan in
different
environments

Johnson et al.,
1979

“In most instances, except for four instances, the floating pan to land
pan [Class A pan] differences were positive, with the land pan
measurements exceeding floating pan measurements 91 percent of the
time.”

Class A Pan to
Floating Pan

Masoner and
Stannard, 2010

pan evaporation.”

“Evaporation from a rinsed floating pan differed from a Class A pan by | Class APanto | Winter, 1981
14 to 29 percent on a monthly basis, and 22 percent for a six-month Floating Pan
period. Pan to lake coefficients have been shown to vary from about 0.4
to 2.0 for monthly data, and from 0.5 to 0.9 for annual data.”
Recommended Pan Coefficients for Class A Pans placed in dry fallow Class A Pan Allen et al.,
areas with < 40% Relative Humidity: 0.35 to 0.7 (Table 5) Coefficients 1998
“The long-term pan measurements greatly overestimate the amount of Class A Pan to Eichinger et
evaporation, especially during the summer. On a daily basis, the average | Eddy al., 2003
error is on the order of 50% to 75%.” Covariance
“The modified Hamon method estimates of annual reservoir Class APanto | Harwell, 2012
evaporation were always within 20 percent of annual reservoir Mass Transfer
evaporation from pan data.”
“The adjusted FAO-56 Penman-Monteith equation predicted pan Class A Pan to Harwell, 2012
evaporation with an average error of 6.2 percent and the adjusted Energy Budget
ASCE equation predicted pan evaporation with an average error of 10.1
percent.”
“The USWB [U.S. Weather Bureau] method estimates of annual lake Energy Budget | Harwell, 2012
evaporation also have been shown to frequently be within 20 percent to Energy
of energy-budget and water-budget estimates.” Budget and

Water Budget
“Percentage errors between the USWB method and water-budget Energy Budget | Harwell, 2012
estimates at the three locations ranged from 4.4 percent at Lake Hefner | to Water Kohler et al.,
to 14.4 percent at Lake Okeechobee.” Budget 1955
“Kohler concluded that annual lake evaporation could be estimated Class A Pan to Jensen, 2010
within 10-15 percent by applying the annual coefficient 0.70 to Class A | Water Budget Kohler, 1954

1 Comparison of technique X to technique Y

2.2.2 Water Budget Techniqgue

The water budget technique is conceptually straightforward and estimates evaporation
by accounting for lake or reservoir storage volume variations caused by changes in inflow
volumes (surface water, ground water, and precipitation) and outflow volumes (surface water,

ground water, and evaporation). The surface water inflows and outflows are measured by
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stream gaging stations that convert the height of the stream to discharge volumes based on
channel characteristics and historical measurements and observations, which has an error rate
between 5-10% (Turnipseed and Sauer, 2010). Precipitation events that create inflows from
non-gaged side channels are a major unknown for this technique, such that water budgets are
typically calculated during periods of no precipitation. The largest unknowns in the water
budget technigue are the amount of ground water flux (inflows and outflows) and evaporation.
The ground water flux portion of the water budget is sometimes assumed as negligible, leaving
evaporation as the only unknown of the budget, but with high uncertainties (Duan, 2014;
Kumambala and Ervine, 2010; Piper et al., 1986; Rientjes et al., 2011; Russell and Johnson,
2006; Sena, 2000; Setegn et al., 2011; Sivapragasam et al., 2009; Velpuri et al. 2012). The
uncertainties associated with how to measure or ignore ground water fluxes reduces the
accuracy of water budget techniques’ estimation of evaporation rates (Harwell, 2012; Kohler,
1954: Lenters et al., 2005). The most significant water budget study occurred on Lake Hefner,
OK, USA, in the early 1950’s where the unknowns associated with ground water fluxes were
accounted for by a ground water well network of 68 test holes and wells (Kohler, 1954).
Detailed water budget studies like the 1950°s Lake Hefner study are rare and costly and are
typically not completed in a stand-alone study, but in conjunction with other evaporation
estimation techniques.

The major limitation of using the water budget technique to determine evaporation rates
is accounting for unknown ground water fluxes, especially in situations where there are no
nearby ground water wells. Another limitation of the water budget technique is accounting for
inflow from ephemeral streams that are not gaged, adding further uncertainties of the changing

volume of water within the system. Although conceptually simple, acquiring the necessary
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data to do an accurate water budget can be very costly, as stream gaging stations can cost
between $40-75k per year, in addition to the costs associated with monitoring ground water
wells adjacent to the body of water, and/or the cost of installing ground water monitoring wells
if none are accessible. However, using the water budget technique for determining evaporation
rates can be simplified if ground water fluxes are known from prior studies and there is only
one inflow and outflow from the body of water. In ideal instances, the water budget technique
has been shown to be within 20% of more accurate techniques (Harwell, 2012; Kohler, 1954;

Kohler et al., 1955).

2.2.3 Evaporation Estimation Equations

This category of evaporation estimation techniques requires either one or a few of the
following atmospheric parameters: air temperature, water-surface temperature, wind speed,
wind direction, vapor pressure (ambient air and at water surface), and solar radiation. The
simplest of these techniques requires only onsite air temperature measurements in conjunction
with a solar radiation input that is based on the declination of the sun in order to estimate
evaporation, such as the Hargreaves-Samani equation (Hargreaves and Samani, 1985) and the
Hamon equation (Hamon, 1961). Both of these equations were originally developed to estimate
evapotranspiration in rural areas lacking robust datasets of atmospheric parameters and have
been shown to be within 20% of energy-budget techniques and a close approximation to
weighing lysimeters (Brower, 2018; Hargreaves and Samani, 1985; Harwell, 2012).

Slightly more complicated evaporation estimation equations include measurements of
wind speed, vapor pressure, air temperature, and a form of solar radiation. One example of this
type of equation is the U.S. Weather Bureau equation (USWB; Kohler et al., 1955, Harwell,

2012). The USWB equation is a modification of the Penman equation (Penman, 1948), where
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evaporation from a theoretical Class A Pan is used in the Penman equation and is then reduced
by a pan coefficient value of 0.7. The increased atmospheric variables required in these two
equations require dedicated weather stations costing between $30-50k for initial installation
and another $20-50k per year for maintenance, data collection, and postprocessing.

The major limitations of these equations is that they do not incorporate seasonally
stored/released energy from the body of water, which results in overestimated evaporation in
the spring and underestimated evaporation in the fall. Further, the weather stations needed to
collect the variables required for these equations are typically placed outside the ABL of the
body of water, further reducing accuracy. With the proper calibration (empirically derived
fitting coefficients) by more accurate technigues, these equations have been shown to be within

20% of the more accurate technique on an annual basis (Harwell, 2012; Winter, 1981).

2.3 State of Science for Open-Water Evaporation Estimation Techniques
State-of-science evaporation estimation techniques typically consist of (1) energy
budget, where all energy fluxes surrounding as well as to and from a lake or reservoir are
accounted for; (2) eddy covariance, where the vertical transfer of water vapor from a lake or
reservoir is measured; (3) remote sensing, where water surface temperature data is collected
by satellites and/or UAVSs; and (4) floating evaporation pans, where an evaporation pan is

floated on a lake or reservoir. These techniques are described in depth below.

2.3.1 Energy Budget Technique

The most common energy budget technique for estimating lake and reservoir
evaporation is the Bowen ratio energy budget (Bowen, 1926). This evaporation estimation

technique requires accurate accounting of all energy gains and losses within a system in order
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to determine the amount of latent-heat energy used to evaporate water. The energy budget
technique requires the following information: incoming and reflected short wave radiation;
incoming and reflected long wave radiation; latent heat of vaporization; sensible heat flux
conducted to and from the atmosphere from the body of water; energy advected to and from
the body of water; and changes in stored energy within the body of water (Lee and Swancar,
1997; Lenters et al., 2005; Moreo and Swancar, 2013; Rosenberry et al., 2007). In order to
calculate all the aforementioned parameters, the following information needs to be gathered:
water temperature and flow rate entering and leaving the body of water; water temperature
profiles throughout the body of water; surface water temperature throughout the body of water;
net radiation (four components); solar radiation; air temperature; humidity; barometric
pressure; and wind speed and direction. The Bowen ratio part of the energy budget calculates
the ratio of sensible heat to latent heat, which is based on the difference between water
temperature and water surface temperature divided by the difference between saturated vapor
pressure at the water surface and vapor pressure in the air. Simply put, all the energy sources
into and leaving a system are measured, with the energy used for evaporation (latent heat)
being calculated as the closure term to balance the energy inputs and outputs.

The major limitations of this technique are the amount of data that needs to be collected
from many different sources simultaneously and the costs associated with all the
instrumentation, installation, maintenance, and significant postprocessing of all the collected
data (Mauder and Foken, 2006; Winter et al., 2003). A recent review of funded Bowen ratio
energy budget for lakes and reservoirs by the National Science Foundation indicates this
technique costs between $150-300k per year, depending on the number of deployed weather

stations on land and floating and site-specific requirements. In addition to the high costs
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associated with equipment, the difficulty in obtaining accurate net advected energy into lakes
and reservoirs with multiple inflows and calculating accurate changes in stored energy in large
lakes and reservoirs are major limiting factors for the application of the Bowen ratio energy
budget (Elsawwaf et al., 2010).

The major advantage of this technique is the increased accuracy over the techniques
discussed in the State of Practice section, with annual accuracies within 5-20% of actual being
reported (Lee and Swancar, 1997; Lenters et al., 2005; Moreo and Swancar, 2013; Rosenberry
et al., 2007; Winter et al., 2003). This accuracy declines when calculating evaporation on a
monthly time interval due to the unknown amount of advected energy from unmonitored side
channels and varying water temperature profiles on large bodies of water. Lastly, the
deployment location of the instruments used in this technique are within the ABL of the body
of water, eliminating the need for a corrective coefficient which enhances the accuracy of this

technique.

2.3.2 Eddy Covariance Technigue

The eddy covariance technique estimates evaporation by calculating the latent-heat flux
from the water surface using the vertical component of wind speed and corresponding water
vapor density at 10 Hz through a process called turbulent transport or mass-transfer (Brutsaert,
1982; Harbeck, 1962). Eddies created by wind turbulence and convective heat flow transfer
mass (water vapor) and energy (heat) between the surface and the atmosphere. The eddy
covariance technique is considered one of the most accurate open-water evaporation
techniques and is commonly reported as actual evaporation rates (Baldocchi, 2003; Blanken et
al., 2000; Foken, 2008; Moreo and Swancar, 2013; Stannard et al., 2013). This technique

requires less instrumentation than the Bowen ratio energy budget technique, with the main
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instrumentation being a 3D sonic anemometer and krypton hygrometer. Although relatively
straightforward, this technique requires a significant amount of postprocessing of data,
especially in situations where adequate homogeneous fetch in not met in all directions (Mauder
and Foken, 2006; Winter et al., 2003).

Acquiring adequate homogeneous fetch in all directions is the major limiting factor for
this technique, with adequate fetch being defined by a homogeneous surface (water surface) in
all directions where the air has had sufficient distance to become equilibrated to the surface
conditions. The general rule for adequate fetch requirements is 100 times the instrument height
for stable atmospheric conditions and substantially greater (1,000 to 2,000 times instrument
height) for unstable conditions (Horst and Weil, 1994; Moreo and Swancar, 2013). Instrument
height, depending on technique and instrument type, can range between 1 m to over 20 m,
requiring at least 100 to 2,000+ m of fetch depending on atmospheric stability. Meeting this
requirement is considerably difficult on all but the largest lakes and reservoirs, especially on
lakes and reservoirs in arid/semiarid-environments where the shape of these bodies of water
tend to be narrow and long. The dams used to impound these bodies of water are typically built
in narrow-deep sections (e.g., canyons), producing narrow, long, and deep bodies of water
where the fetch requirement is rarely met from all directions. Not meeting the fetch
requirement from all wind directions will produce data that vary with wind direction, further
adding to the uncertainty of evaporation estimates and substantially increasing the amount of
postprocessing required (Moreo and Swancar, 2013).

The ideal deployment location for an eddy covariance system is at the center of a large,
round lake where fetch requirements are met from all wind directions. Deploying an eddy

covariance system on a barge is a potential solution to meet adequate fetch, but wave-induced
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rocking of the barge can add wind direction uncertainties that reduce the accuracy of the
measurement and need to be removed in postprocessing. Placing an eddy covariance system
on a fixed tower is the recommended strategy, but the water depths of many lakes and
reservoirs prevent the placement of such towers. An alternate solution is placing the weather
tower at the edge of the body of water, but depending on the prevailing wind direction, some
or the majority of the wind data might need to be removed during postprocessing. Another
potential placement location is on small islands that meet adequate fetch, which was done in
Lake Mead by Moreo and Swancar. A total of four different small rock-outcrop islands were
used during the duration of their study on Lake Mead, with the eddy covariance tower being
moved as Lake Mead water levels changed seasonally.

The last major limitation of this technique is the high costs associated with the
equipment, routine maintenance, and the considerable amount of postprocessing of the data
(Mauder and Foken, 2006; Winter et al., 2003). The annual costs of this technique are similar
to that of the Bowen ratio energy budget, around $150-300k per year. Weekly or bi-monthly
cleaning of the sensitive 3D sonic anemometer and krypton hygrometer is required for accurate
readings. Due to the costs associated with the equipment, installation, maintenance, data
processing needs, and deployment limitation, this technique is typically limited to short-term,

2-3 years, scientific studies on a few lakes and reservoirs.

2.3.3 Remote Sensing Techniques

Remotely sensed data from satellites, specifically the thermal bands, is being used to
estimate spatially varying evaporation rates from lakes and reservoirs. Remote sensing studies
use the thermal bands to determine the skin-surface water temperature in conjunction with an

on-site weather station, an evaporation estimate can be determined (Cleugh et al., 2006; Ebaid
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and Ismail, 2010; Hassan, 2013; Herting et al., 2004). Two of the more common types of
remote sensing evaporation estimation are regional-scale studies and site-specific studies (e.g.,
lakes and reservoirs). Regional-scale studies typically use MODIS data, which has a ground
sampling distance of 1,000 m? and rely on large scale inputs, such as minimum and maximum
air temperature averages, over large distances (Allen et al., 2007; Savoca et al., 2013; Senay et
al., 2013). Site-specific studies use smaller ground sampling distances, 30 m? or smaller, to
determine evaporation spatially throughout a body of water. The distinction between regional
and site-specific studies is the ground sampling distance, 1,000 m? versus sub-30 m?,
respectively, where the larger ground sampling distances of regional studies are only applicable
on large lakes and reservoirs (e.g., Lake Mead, Lake Powell, the Great Lakes). One of the most
commonly used data for site-specific studies is from the Landsat series of satellites operated
by the USGS.

One major limitation of this technique is accounting for pixels that contains both open
water and the shore. Because of the lower specific heat capacity of the shore compared to the
open water, any pixel containing the shore will have a higher thermal value associated with it.
Depending on the size of the ground sampling distance (pixel size), a significant portion of
pixels will have to be removed that contain shore thermal interference. Additionally, accurate
remote sensing applications require field verifications and calibrations by weather stations
within the study area. These weather stations ideally need to be in the center of the reservoir
to meet fetch requirements and be within the ABL, but due to the difficulty of maintaining a
floating weather station this is typically not done, creating uncertainties in evaporation

estimates.
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The major advantage of open-water evaporation determined through remote sensing is
the low cost of data (free if using LandSat or MODIS data), but the costs of on-site weather
stations, especially floating stations, can substantially increase the cost of this technique. The
free data sources for remotely sensed data have a large ground sampling distance, reducing the
accuracy of the technique. This can be overcome by using data with smaller ground sampling
distance, such as commercially owned satellites that charge per square kilometer or by using
unmanned aerial vehicles but this data can be costly, $50k-150k+ depending on the system

(Koh and Wich, 2012).

2.3.4 Floating Evaporation Pan Techniques

In order to overcome the major drawback of land-based evaporation pans, the positive
correlation of evaporation rates to mean air temperature (Jovanovic et al., 2008), evaporation
pans have been modified to float, where the water surrounding the evaporation pan will reduce
the diurnal temperature variations. Another major advantage with a floating evaporation pan
is its placement within the atmospheric boundary layer of the body of water, ideally resulting
in no correction coefficient. Additionally, the water surrounding the floating evaporation pan
will allow for the seasonally changing water temperature of the body of water to influence the
water temperature within the evaporation pan, thus allowing the floating evaporation pan to
capture the effects of stored energy on evaporation rates.

Recently, Klink (2006) and Masoner and Stannard (2010) used a floating evaporation
pan to estimate evaporation of a lake and lagoon, respectively. Klink (2006) built a wooden
platform that was supported by four plastic floats with a stainless-steel evaporation pan situated
in the middle. This study encountered problems with the structure flexing and bending due to

wave action, causing the evaporation pan to become tilted, preventing accurate water-level
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depth measurements. Additionally, measurements of the water levels in the evaporation pan
were subject to errors from diurnal temperature variations affecting the pressure transducer
because submerged and vented pressure transducers can vary as much as 7 mm daily due to
diurnal water temperature change (Liu and Higgins, 2015).

In Masoner and Stannard (2010), floats were added to a standard Class A Pan that was
then floated on a small lagoon. Masoner and Stannard (2010) also incorporated a hemispherical
evaporation chamber (Stannard, 1988), for validation of the evaporation rates from their
floating evaporation pan. This study demonstrated that through the use of a hemispherical
evaporation chamber near-actual evaporation rates can be measured in-situ and compared well
(97% of actual) to an on-site floating evaporation pan. The major drawback of this study was
the design of the floating evaporation pan, as the evaporation pan had no protection from
human and/or wind produced waves, reducing the reliability of measurements during windy
conditions. Lastly, both of these floating evaporation pan studies had a duration of around two
months, which is not long enough to establish reliability of the device. Further, with no wave
protections built into their respective designs both of these floating evaporation pans could not
be placed on a larger lake or reservoir.

The major limitations of floating evaporation pans are the reliability of the evaporation
measurement. In the 1930’s study that established the Class A Pan as the standard evaporation
technique, a small floating evaporation pan was tested but was deemed unreliable due to the
inability to account for wave action interfering with the water level within the evaporation pan,
splashing of water into or out of the evaporation pan (Follansbee, 1934). The interference from
wave action can be overcome by surrounding the evaporation pan with adequate wave guards.

A wave guard can be used to prevent most waves on lakes and reservoirs, but larger waves on
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lakes like the Great Lakes cannot be prevented and will swamp the evaporation pan. Another
limitation is that the addition of a wave guard can increase the costs of a floating evaporation
pan, with estimates of $40-70k per year, depending on location and site-specific requirements.

An advantage of a floating evaporation pan is the relatively simple and straightforward
way evaporation is measured. Like the Class A Pan, a decrease in water level is the evaporation
rate, requiring minimal, if any, postprocessing of the data. Additionally, redundancy in
evaporation measurements can be incorporated by including a weather station attached to the
floating evaporation pan thus recording atmospheric variables concurrently. Another major
advantage of a floating evaporation pan is the lack of fetch requirement, as the water level
within the evaporation pan is at the same level of the surrounding water. No fetch requirement
allows for a floating evaporation pan to be deployed in situations unfavorable for other state-

of-science techniques that require substantial fetch distances.

2.4 Potential Solution

The gap between the state of science and state of practice for evaporation estimation
techniques continues to grow as more accurate, yet complicated and expensive, techniques are
conceived, but water resource managers continue using less accurate techniques due to their
inexpensive cost and simplicity of use. As the climate shifts towards hotter and drier conditions
in the Southwestern USA (Friedrich et al., 2018; Udall and Overpeck, 2017), conditions in
which Class A Pans tend to greatly overestimate evaporation (Eichinger et al., 2003; Jovanovic
et al., 2008), a replacement technique that is more accurate than the current state-of-practice
technique, easier to use than the state-of-science techniques, and similar in cost to the current
state-of-practice techniques is needed. In order to meet these requirements, modifications of

existing techniques and/or a new technique are necessary.
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One solution is simplifying state-of-science techniques, making them less expensive
and easier to apply. Companies like Campbell Scientific Inc. and LI-COR are supplying
complete eddy covariance kits and the supporting software that simplifies this complex
technique. These complete packages include step-by-step instructions that cover installation
and setup as well as software for postprocessing of the data. These Kits cost between $50-100k,
depending on deployment application and site requirements. Although these kits do simplify
the eddy covariance technique, the costs associated with routine site maintenance, especially
with floating systems, and postprocessing of the data can substantially increase the annual costs
of this technique. These kits make deploying these systems easier, but the required adequate
fetch conditions for eddy covariance technique greatly limits potential deployment locations.

Another potential solution is taking a simple, but inaccurate technique like the Class A
Pan and adding further corrections to improve its accuracy. The Texas Water Development
Board and the National Oceanic and Atmospheric Administration-National Weather Service
(NOAA-NWS) manages and operates over 100 Class A Pans in and around Texas, USA.
Instead of using one state-wide annual pan coefficient to correct the Class A Pan’s evaporation
rate, different pan coefficients are used at each site on a monthly basis. These pan coefficients
were derived from the “Evaporation Atlas for the Contiguous 48 United States” completed by
NOAA in 1982, which was based on Class A Pan and limited weather station data collected
between 1956-1970 (Famsworth et al., 1982). The Texas Water Development Board’s use of
spatial and temporal varying pan coefficients increases the accuracy of lake and reservoir
estimated evaporation from Class A Pans, but their estimated evaporation values are still based

on uncertainties and limitations associated with the Class A Pan at its core (Harwell, 2012).
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The evolving technology of unmanned aerial vehicles, drones, adds an alternative to
expensive remotely sensed data from satellites. The costs of a drone and supporting imaging
equipment and software can vary from simple, inexpensive fixed-wing drones, which cost
around $5k, to more advanced multi-rotor drones, which cost $30-65k (Chapman, 2016; Koh
and Wich, 2012). Drones are capable of gathering images with sub-centimeter ground
sampling distance depending of the camera system installed on a drone. Small ground sampling
distances overcomes one of the major disadvantages of remotely sensed satellite data, shore
thermal interference. After the initial cost of the drone and supporting equipment, the only
costs associated with this technique is labor, which, depending on the number of site visits, can
range greatly. Like remotely sensed satellite data, a weather station with at least air
temperature, relative humidity, and wind speed is required on site for accurate evaporation
estimates, ideally placed within the ABL of the body of water. The added costs of a weather
station and labor costs associated with drone operation and postprocessing of the images can
substantially increase the costs of using drones (Koh and Wich, 2012). If a lake or reservoir
already has a weather station in use, then the addition of periodic drone surveys of water
surface temperatures can enhance the evaporation estimation by including spatially varying
evaporation rates for minor additional costs.

A recent U.S. patented design for an improved floating evaporation pan technique was
issued in September, 2018: the Collison Floating Evaporation Pan (CFEP), U.S. Patent
10,082,415 (Collison, 2018). The CFEP is designed to overcome problems associated with
prior floating evaporation pans, specifically their reliability. Reliability is increased with the
inclusion of an outer wave guard surrounding the evaporation pan, protecting the evaporation

pan from wave overtopping. Additionally, the CFEP includes an adjustable height baffle within
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the evaporation pan to prevent water from sloshing out of the pan. Unaccountable water
entering and leaving a floating evaporation pan were the main reliability problems cited in
Follansbee (1934), leading to the Class A Pan being recommended as the standard technique.
The CFEP’s wave guard and adjustable height baffle remedy these aforementioned reliability
difficulties.

The accuracy of the CFEP is verified with monthly or quarterly hemispherical
evaporation chamber validation tests (Stannard, 1988) similar to those used in Masoner and
Stannard (2010). As the CFEP is also located within the ABL of the body of water, no
corrective coefficient is required, providing an accurate, real-time estimation of evaporation
with minimal data postprocessing. Additionally, the CFEP is also fully equipped with a
complete micrometeorological weather station, adding a redundant evaporation estimation
calculation if the evaporation pan is overtopped by water. This atmospheric data collected by
the on-board weather station can be used in conjunction with remotely sensed data, either from
satellites or drones, allowing for spatially varying evaporation rates to be determined. The fully
automated and telemetry-equipped CFEP technigue reduces maintenance and field visit costs
and allows for real-time acquisition of evaporation estimates. The annual costs associated with
this technique range between $45-70k, depending of the number of validation tests and site-

specific requirements.

2.5 Summary

As drinking water demands increase every year (Federal Energy Management
Program, 2017) and supplies decrease (Friedrich et al., 2018; Udall and Overpeck, 2017),
accurate accounting of lake and reservoir evaporation, one the largest losses (Wurbs and Ayala,

2014), is needed. Better accounting of evaporative losses from lakes and reservoirs will provide
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justification for improved water management techniques, such as adaptive water management
(Huntjens et al., 2011; Pahl-Wostl, 2007) and conservation at the source (Friedrich et al., 2018;
Pelz, 2017). Both of these management techniques rely on accurate data, which is currently
lacking on all but a few lakes and reservoirs, due mainly to the costs associated with the
accurate state-of-science evaporation estimation techniques. Water resource managers, at no
fault of their own, currently use inaccurate and inexpensive evaporation estimation techniques
such as the Class A Pan because an alternative to the expensive state-of-science techniques is
unavailable. A new open-water evaporation estimation technique, the CFEP, was designed to
fill the gap between inexpensive and easily applied, but inaccurate, and expensive and
complicated, but accurate evaporation estimation techniques. The CFEP technique overcomes
the accuracy limitations of the state-of-practice techniques by being within the atmospheric
boundary layer of a body of water and the high costs of state-of-science techniques by being
fully automated and easily applied. Accurate accounting of evaporative losses on the majority
of lakes and reservoirs will lead to better water management policies, making water systems

more efficient, reducing evaporative losses, and providing more water for beneficial use.
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Chapter 3: The Collison Floating
Evaporation Pan: Design, Validation, and
Comparison

3.1 Introduction

Estimating evaporation rates is fraught with complications due to the difficulty in
obtaining various atmospheric variables that affect open-water evaporation rates (Alkaeed et
al., 2006; Harwell, 2012; Rosenberry et al., 2007). Water resource managers need accurate and
precise estimates of evaporation rates in order to apply adaptive water management techniques
and efficiently manage water resources (Huntjens et al., 2011; Pahl-Wostl, 2007), but due to
budget constraints, accuracy and precision are sacrificed for ease of use and reliability, limiting
the accessible evaporation estimation techniques.

The most common and widely used technique for estimating evaporation from lakes
and reservoirs is the Class A Pan, a technology invented in the early 1880s that has changed
very little since its first iteration. This technique is commonly used throughout the United
States, Europe, and Australia (Doorenbos and Pruitt, 1977; Famsworth et al., 1982; Rayner,
2005). The Class A Pan technique is inexpensive and easily applied, and has provided reliable
evaporation measurements for over a hundred years in some areas, but it is also one of the least
accurate ways of estimating open-water evaporation (Alvarez et al., 2006; Chu et al., 2012;
Follansbee, 1934; Grayson et al., 1996; Tanny et al., 2008; Trask, 2007). The magnitude and
timing of evaporation estimated by Class A Pans is questionable (Alvarez et al., 2006; Chu et

al., 2012; Hounam, 1973; Morton, 1979) due in part to both its position outside the reservoir’s
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atmospheric boundary condition (Stewart, 1979) and a positive correlation between mean air
temperature and evaporative rates (Jovanovic et al., 2008).

More accurate, state-of-the-art techniques for estimating lake and reservoir evaporation
are available, with the Bowen ratio energy budget and eddy covariance techniques considered
two of the most accurate (Blanken et al., 2000; Bowen, 1926; Brutsaert, 1982; Foken, 2008;
Lenters et al., 2005; Moreo and Swancar, 2013; Rosenberry et al., 2007; Stannard et al., 2013),
but the major limitations of these two techniques are their high cost and complexity of use,
constraining their use to well-funded and short-duration scientific studies. An alternative to
inexpensive and easily applied, but inaccurate or expensive and complicated, but accurate
evaporation estimation techniques is explored in this study.

More accurate estimates of lake and reservoir evaporation rates can affect compact
deliveries and accrued credits or debits. For example, the Rio Grande Compact (Rio Grande
Compact, 1938) states that any excess water delivered to Texas from New Mexico will be
counted as a credit and that the evaporation rate from Elephant Butte Reservoir, New Mexico,
USA directly reduces any such credit. An overestimation of evaporation from Elephant Butte
Reservoir will decrease delivery credits at a greater rate than they were accrued, benefiting
Texas, but the converse would benefit New Mexico. The annual evaporation on Elephant Butte
Reservoir ranges from 61.7 MCM (50,000 acre-feet) to 308 MCM (250,000 acre-feet),
dependent mostly on the quantity of stored water (Papadopulos and Associates, 2000). The
technique for estimating evaporation from Elephant Butte Reservoir, the Class A Pan, has been
shown to be within 20 to 75% (Eichinger et al., 2003) of actual evaporation in arid
environments, resulting in an uncertainty of annually estimated evaporation on Elephant Butte

Reservoir between +1.2 MCM (10,000 acre-feet) and £231 MCM (187,500 acre-feet).
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Enhancing the knowledge of evaporation rates of different lakes and reservoirs
(spatially and temporally) within the same basin can lead to improved water management by
changing the paradigm of storing water where it is convenient to where it is most efficient
based on reductions in evaporation losses. Currently, the vast majority of water within the Rio
Grande Basin in New Mexico, USA is stored in Elephant Butte Reservoir per Rio Grande
Compact requirements while under Article VII (Rio Grande Compact, 1938). Elephant Butte
Reservoir is the largest southernmost reservoir on the Rio Grande in New Mexico and has an
annual evaporation rate, as measured by a Class A Pan, of 2.86 m. In comparison, the
northernmost reservoir within the same system is Heron Reservoir, which has an annual
evaporation rate of 1.32 m, less than half of the evaporation rate of Elephant Butte Reservoir
(DRI, 2019). A recent article by WildEarth Guardians, “The Rio Grande, rethinking rivers in
the 21% century” (Pelz, 2017), proposed storing water in the northern reservoirs in the Rio
Grande basin instead of the southern reservoirs. The potential water savings due to reduction
in evaporative losses range from 49.3 MCM (40,000 acre-feet) in dry years to 105 MCM
(85,000 acre-feet) in average precipitation years. To put these potential savings into context,
1,233 m® (1 acre-foot) of water is enough to supply a family of four for a year (Pelz, 2017).
The proposed plan by WildEarth Guardians is based around the concept of conservation at the
source.

The premise behind the concept of conservation at the source is knowing accurate
evaporation rates associated with different lakes and reservoirs within the same system, which
can lead to modifications of where and when water is stored based on the reduction of
evaporation losses. Conservation at the source is based on the following two methods: 1)

classifying lakes and reservoirs based on their evaporation rates and storing water where there
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will be less evaporative losses, and 2) using suppressive evaporation techniques by way of
geoengineering, such as shade balls, monolayer films, etc. (Friedrich et al., 2018).
Conservation at the source is focused on making a water resource system more efficient, which
will reduce losses associated with storing water in a lake or reservoir and provide more water.
Additionally, enhanced lake and reservoir evaporation knowledge has the potential of
preventing compact delivery misallocations, resulting in costly litigation. Both of the
aforementioned benefits of enhanced evaporation knowledge require accurate evaporation
rates in order to be properly implemented. Thus, a new open-water evaporation technique that
is cost effective, easily applied, and as or more accurate than current state-of-the-art techniques

is needed.

3.1.1 Study Obijectives

The goal of this research was to advance knowledge of spatial and temporal evaporation
processes in lakes and reservoirs through an improved measurement technique, the Collison
Floating Evaporation Pan (CFEP), U.S. Patent 10,082,415 (Collison, 2018, Figure 3.1), for in-
situ measurements of evaporation from lakes and reservoirs. This goal was met by addressing

the following three objectives:

1. Design, deploy, and test the reliability of the CFEP for in-situ measurements of
evaporation from lakes and reservoirs;

2. Investigate the validity (accuracy and precision) of the CFEP using accepted
best practices; and

3. Evaluate the limitations in standard evaporation measurement techniques.
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The first objective of this study was to finalize the design of a floating evaporation pan
that would provide reliable open-water evaporation estimates. Prior floating evaporation pans
had reliability issues; specifically, there were no safeguards in place to prevent wave
overtopping or the loss of water within the evaporation pan during large wave events, leading
to a loss of data (Follansbee, 1934; Klink, 2006; Masoner and Stannard, 2010). The novelty of

the CFEP is the outer wave guard that prevents wave overtopping of the evaporation pan,

increasing the reliability of evaporation measurements, as seen in Figure 3.1.

Figure 3.1: Collison Floating Evaporation Pan (CFEP) on Cochiti Lake, New Mexico, USA.

The second objective of this study was to investigate the validity (i.e., accuracy and
precision) of CFEP using an accepted best-practices in-situ evaporation estimation technique.
This study used a hemispherical evaporation chamber (Stannard, 1988; henceforth referred to

as “dome”) to validate the CFEP by measuring evaporation rates adjacent to the CFEP, see
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Figure 3.2. The dome evaporation measurements were used to tests the accuracy of the CFEP
(the closeness to near-actual evaporation) and the precision of the CFEP (statistical variability

in CFEP evaporation measurements).

Figure 3.2: Hemispherical Evaporation Chamber (dome) during a validation test on September
30, 2018 on Cochiti Lake, New Mexico, USA.

The third objective of this study was to evaluate the limitations in standard evaporation
estimation techniques in comparison to the CFEP. The evaporative estimation techniques
investigated in this study include the Hargreaves-Samani equation (Hargreaves and Samani,
1985), the Hamon equation (Hamon, 1961), the U.S. Weather Bureau equation (Kohler et al.,
1955), the Penman equation (Penman, 1948) and an onsite Class A Pan (managed by the U.S.
Army Corps of Engineers Cochiti Lake Ranger Station). This study focused on the
aforementioned equations because they are more commonly used in conjunction with Class A
Pans’ evaporation estimation or when Class A Pans are not present (Harwell, 2012). These

equations are discussed in detail in section 3.2.4 below.
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The original premise for floating an evaporation pan in water was to overcome the
inadequacies of land-based pans, particularly their positive correlation of evaporation rate to
daily mean air temperatures (Hounam, 1973; Jovanovic et al., 2008; Morton, 1979). The
available energy for evaporation within a land-based Class A Pan is susceptible to diurnal
variations in air temperature, whereas in larger bodies of water, the available energy for
evaporation varies on a seasonal basis, with the body of water absorbing energy in the spring
and then releasing the stored energy in the fall through evaporation. This storage and
subsequent release of the stored energy from lakes and reservoirs are not captured by land-

based evaporation pans or land-based atmospheric instrumentation.

3.1.2 Open-Water Evaporation Processes

The physical process of evaporation is well known, well established, and based on
Fick’s laws of diffusion (Bird et al., 2007; Fick, 1855): as water temperature increases, the
water molecules become more excited (larger, swifter motion), which allows for a higher
diffusion rate into the air overlying the water. During windy conditions, the saturated air
adjacent to the water surface is replaced by non-saturated air through turbulent mixing
(Brutsaert, 1982), increasing the diffusion rate. The drier the air that mixes with the saturated
air, the greater the diffusion rate, which leads to an increase in evaporation.

The other major physical process controlling evaporation from lakes and reservoirs is
the vapor pressure gradient. The vapor pressure gradient is defined as the gradient between the
saturated vapor pressure at the water surface to the actual vapor pressure of the overlying air
(Bowen, 1926). The larger the lake or reservoir, the smaller the slope of this gradient;
conversely, the smaller the lake or reservoir, the steeper the slope of this gradient, with steeper

gradients associated with a higher evaporation rate (Troen and Mahrt, 1986). The vertical
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height of the vapor pressure gradient overlying a lake or reservoir is referred to as the
atmospheric boundary layer (Friedrich et al., 2018; Kaimal and Finnigan, 1994; Kormann and
Meixner, 2001; Stewart, 1979; Troen and Mahrt, 1986). The shape of the atmospheric
boundary layer overlying a lake or reservoir can be described as a bubble of cooler air with
higher vapor pressure compared to the surrounding land’s air temperature and vapor pressure,
which impedes evaporation rates.

Evaporation estimation techniques that use atmospheric variables or are controlled by
atmospheric variables that are not placed within this atmospheric boundary layer will have
uncertainties related to their accuracy because they are measuring atmospheric variables
associated with the land surrounding the lake or reservoir. Atmospheric variables include the
following: air temperature, humidity, wind speed and direction, solar radiation, and barometric
pressure. The general rule for evaporation estimation techniques that rely upon atmospheric
variables is to have a homogeneous fetch in all directions around the weather station at a
distance of at least 100 times the height of the sensor in stable atmospheric conditions and
1000+ times the height of the sensor in unstable conditions (Horst and Weil, 1994; Moreo and
Swancar, 2013). Obtaining adequate fetch is difficult in arid and semi-arid environments where
lakes and especially reservoirs are long and narrow, limiting suitable deployment locations and

adding accuracy uncertainties for techniques that require adequate fetch.

3.1.3 State of Science and State of Practice

Reliable and accurate accounting of the gains and losses of water from a lake or
reservoir is crucial for operational water management, especially since evaporation is one of
the largest losses, sometimes even exceeding consumptive usage (Friedrich et al., 2018). With

the transition toward more adaptive water management (Huntjens et al., 2011; Pahl-Wostl,
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2007), driven in part by data, reliability of said data is paramount for proper management of
water resources, where consistent data of questionable accuracy is better than sparse data of
high accuracy. Additionally, the costs associated with Class A Pans is two to three orders of
magnitude less than more accurate and complex state-of-the-art techniques, which rely on
many expensive and delicate instrumentation working concurrently in order to estimate
evaporation.

Two examples of evaporation estimation techniques that are considered to be the most
accurate are the Bowen ratio energy budget (Bowen, 1926) and eddy covariance (Baldocchi,
2003; Blanken et al., 2000; Brutsaert, 1982; Foken, 2008; Harbeck, 1962; Moreo and Swancar,
2013; Stannard et al., 2013). Both of these techniques require extensive field measurements
with expensive and delicate instrumentation as well as significant postprocessing of field data
in order to estimate evaporation (Mauder and Foken, 2006), which limits implementation to
well-funded scientific studies at just a few locations. Additionally, these two accurate
evaporation estimation techniques are typically deployed for only two to three years with only
a few studies having a duration greater than five years, including Lenters et al. (2005) with ten
years and Winter et al. (2003) with six years in duration. Due to the costly and complex nature
of state-of-the-art evaporation estimation techniques, an alternative evaporation estimation
technique, floating evaporation pans have been investigated.

Two recent floating evaporation pan studies were completed by Klink (2006) and
Masoner and Stannard (2010), which estimated the evaporation of a lake and lagoon,
respectively. Klink (2006) built a rectangular wooden platform that was supported by four
plastic floats with a semi-submerged, stainless-steel evaporative pan placed in the center. He

encountered problems with the wooden structure flexing and bending due to wave action,
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which would cause the evaporation pan to be non-parallel with the water surface, causing
inaccurate water level measurements. Further, measurement of the water levels in the
evaporation pan was subject to errors from diurnal temperature variations affecting the
pressure transducer because submerged and vented pressure transducers can vary as much as
7 mm daily due to diurnal water temperature change (Liu and Higgins, 2015).

Masoner and Stannard (2010) added three floats to a normal Class A Pan and deployed
the modified Class A Pan in a small lagoon, 450 m by 20 m, and measured the water level
change within the evaporation pan with a float attached to a linear potentiometer. The lagoon
was small enough where wave overtopping of the evaporation pan was not a concern, so no
wave protection was included with their design. This study provided reliable evaporation
estimation from a floating evaporation pan, but their pan cannot be placed in large bodies of
water where wind or human-derived waves are present, limiting the deployment of such a
device to only small bodies of water. Klink (2006) and Masoner and Stannard (2010) both
improved the field of floating evaporation pans, but both had limitations inherent with their
designs, as mentioned above. Both studies were also very short in duration, around two months
each, which is not a significant enough time period to establish the reliability of the devices.

In total, these state-of-the-art evaporation estimation studies have occurred on
approximately 25-35 lakes and reservoirs throughout the USA, which is 0.1% of 31,000 lakes
and reservoirs greater than 10,000 m? in the USA (National Inventory of Dams, 2019; U.S.
Environmental Protection Agency, 2009). All other evaporation estimates are based on state
of practice techniques. The most common of these techniques is the Class A Pan, which has
been shown to have error rates as high as 75% in arid environments (Eichinger et al., 2003),

but are inexpensive and easily applied, leading to wide-spread usage.
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The gap between the more accurate techniques to measure lake and reservoir
evaporation (state of science) and what is commonly used in operational water management
(state of practice) constrains the advancement of hydrologic sciences by limiting state-of-the-
art evaporation estimation techniques to only well-funded scientific studies (Lowe et al., 2009).
This limits the number of locations where a detailed evaporation analysis has occurred. Water
resource managers do not have the necessary funds to implement state-of-the-art evaporation
estimation techniques, as they can cost between $150-300k+ per year for one location (based
on a review of eddy covariance and Bowen ratio energy budget techniques funded by the
National Science Foundation). Accessibility, ease of use, and lower costs for water resource
managers are crucial to expanding the knowledge of accurate evaporation to more than just
0.1% of the accessible 31,000 lakes and reservoirs in the USA. A greater understanding of
evaporation rates at more locations will lead to better water management, enhanced water
management models, and ultimately changes in decision making allowing methodologies like

conservation at the source to be utilized (Friedrich et al., 2018).

3.2 Methods

3.2.1 Study Location and Deployment Details

The CFEP was deployed on Cochiti Lake in New Mexico, USA in November 2017
through December 2018 (see Figure 3.3). Cochiti Lake is a flood-control reservoir constructed
in 1965 and controlled by the U.S. Army Corps of Engineers; it has a permanent recreation
pool of 61.7 MCM (50,000 acre-feet) with the surface area forming an approximate rectangle
2,500 m by 1,200 m in a north-northwest orientation. Cochiti Dam was constructed on Pueblo
de Cochiti Indian Reservation, thus limiting public access. Cochiti Lake was chosen for this

study due to its proximity to Albuquerque, no-wake lake status, limited public access, nearly
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constant stage (except during flood conditions), and a safe deployment location near the
reservoir’s outlet. Additionally, Cochiti Lake consistently experiences high winds, which
provided ideal conditions for testing the durability and reliability of the CFEP during high
wave action. Further, the U.S. Army Corps of Engineers operates a Class A Pan at their Cochiti
Lake Ranger Station, which is their primary technique for estimating Cochiti Lake evaporation.
This Class A Pan is located on the crest of a hill 1,200 m from and 70 m above Cochiti Lake
and has provided continuous evaporation data since 1975.

The CFEP was installed on Cochiti Lake on November 17, 2017. The period from
installation to May 13, 2018 was used to trouble-shoot the CFEP, including the following (now
solved) problems: a small leak in the pan due to a failed weld that was difficult to detect,
difficulties measuring the water level within the pan due to instrumentation malfunction, and
constant swamping of the evaporation pan during high wave events. The CFEP on Cochiti
Lake collected evaporation data every 15-minute from May 13 through November 30, 2018,
with the end date chosen because of frozen surface water conditions in December. During this
time period there were only two gaps in data. A data gap occurred on August 1 at 18:00 through
August 2 at 11:15 due to a failed software update. The second gap, where only the evaporation
pan water level measurements were not recorded, occurred on August 8 at 19:00 through

August 14 at 23:15, due to a disconnected electrical wire.
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Figure 3.3: Cochiti Lake, on the Rio Grande in central New Mexico, USA, with the CFEP
study location and on-site Class A Pan noted by the red dot (Source: Google Earth ©, and
USGS National Map).

3.2.2 Collison Floating Evaporation Pan

The design of the CFEP incorporates several novel features that represent a substantial
advancement from prior floating evaporative pans, including the following: 1) the CFEP is
semi-submerged to minimize the difference in water temperature between the pan and the
surrounding lake or reservoir; 2) the CFEP is designed to have minimal influence on the
atmospheric boundary layer overlying the pan relative to the reservoir; 3) the CFEP has a wave
guard surrounding the evaporation pan, protecting it from wave overtopping; and 4) the CFEP
is made entirely out of aluminum alloy 6061, providing a strong, lightweight, and corrosion-

resistant pan with good malleability and weldability as well as high thermal conductance.
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CFEP Design

The CFEP’s evaporation pan is 2.44 m in diameter and 0.61 m deep surrounded by a
4.88-m-diamter outer wave guard consisting of a half A-frame wave breaker (Hales, 1981) that
prevents large reservoir waves from overtopping the evaporation pan. The CFEP’s evaporation
pan and the outer wave guard are connected by six, 1.22-m-long bracing members (see Figure
3.1). The wave guard on the CFEP consists of a 0.61-m tall vertical wall that forms a circle
surrounding the evaporation pan with a 0.31-m wide horizontal top extending away from the
CFEP (see Figure 3.1 and 3.4). The thermal conductivity of aluminum is four times that of
steel (205.0 W/m K vs 50.2 W/m K; Young and Sears, 1992). This increased thermal
conductivity rate is key to reducing the water temperature difference from the floating
evaporation pan and the surrounding reservoir water, as noted in prior floating evaporation pan
studies (Klink 2006; Masoner and Stannard, 2010).

The round shape of the outer wave guard is essential in reducing the forces acting upon
the CFEP by wave and wind action. A study by Kamath et al. (2015) showed that force from
water waves acting on a rectangular-shaped object (along the long axis) to be 57% higher than
on a cylindrical object. Allowing the waves to diffract around an object instead of being
reflected orthogonally away from the object results in a lower force on the object, thus reducing
the stress on the CFEP and leading to a more stable water level within the evaporation pan.
Floating evaporation pans from prior studies (Follansbee, 1934; Klink, 2006) were typically
rectangular in shape, and in each of these studies, the floating evaporation pans began to
deteriorate or deform after a few weeks of deployment. Additionally, the wave guard protects
the interior evaporation pan from unwanted wave over-toppings, improving the reliability of

evaporation measurements.
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Figure: Horizontal Wae guard on Collison Floating Evaporation Pan.

The outer wave guard has adjustable depth buoyancy floats that provide an extra 12,500
N of buoyancy force, allowing for the CFEP’s buoyancy to be adjusted in order to level out
the CFEP (offsetting the weight of micrometeorological instrumentation). Being able to adjust
the buoyancy of the CFEP allowed for the freeboard height, the height of the CFEP above the
water, to be adjusted throughout the study. The optimal freeboard height will be one that
minimizes wave overtopping and also minimizes water surface wind disturbance, with 0.2 m
being the optimal height determined during this study.

An adjustable height baffle is located within the evaporation pan, that helps prevent the
sloshing of water within the evaporation pan during high wave events, therefore reducing the
risk of water sloshing out of the evaporation pan. An added benefit of the baffle is that the
water within the evaporation pan simulates a mass damper, with a weight of 1,900 kg when
0.41 m deep. The baffle impedes the oscillation of water within the evaporation pan so that the

water’s frequency oscillation is delayed compared to the oscillation frequency of the entire
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CFEP. This difference in frequency acts as a mass damper coupled with the large inertia of the
water within the evaporation pan, further reducing the overall rocking of the whole CFEP.
Additionally, the CFEP was designed to have the majority of mass (wave guard, buoyancy
floats, and weather station) on the outer edges in order to produce a large moment of inertia
around the central axis to increase resistance to rocking motions during wave events. The
anchoring of the CFEP in Cochiti Lake consisted of three independent mooring anchors every

120 degrees, keeping the CFEP’s orientation constant during calm and windy conditions.

CFEP Instrumentation and Equipment

The change in water level height within the CFEP’s evaporation pan was measured
with a linear potentiometer (see Table 3.1) attached to a float, with the float being attached to
a 0.9-m long horizontal arm with a hinge on one end, restricting the float to vertical movement.
Because the float’s path is an arc and not perpendicular to the water surface, a correction from
arc measurements to perpendicular measurements was considered but not used because the
amount of error introduced in the water level measurement due to the path of an arc was less
than 0.001%.

The CFEP was also equipped with atmospheric sensors (see Table 3.1), with data from
these sensors collected every 15 minutes. The data collected by these sensors were used to
estimate evaporation using different evaporation estimation techniques and to calculate
potential evaporation indicators such as vapor pressure deficit. The difference between the
amount of vapor pressure in the air (relative humidity) and the maximum amount of vapor
pressure in the air (saturated vapor pressure), which is a function of air temperature, is called

vapor pressure deficit, VPD, where VPD is calculated as follows:
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VPD = (1—%)*51/19 (3.1)

where:
VPD is the vapor pressure deficit, kPa,
RH is the relative humidity, %,
SVP is the saturated vapor pressure, kPa.

Saturated vapor pressure is calculated as follows from Allen et al. (2005):

(3.2)

SVP = 0.6108 * exp ()

T+237.3
where:

T is air temperature, °C.

The water surface temperature in the CFEP’s evaporation pan and the water surface
temperature adjacent to the CFEP were measured by two different infrared thermal radiometers
(see Table 3.1), but due to consistent infestations of spider nests within the field of view of
these radiometers, the data were suspect and unreliable and not used in any analysis. The CFEP
was also equipped with a precipitation sensor in order to decouple water-level depths in the
evaporation pan from precipitation amounts.

Wind speed was collected as an average over a 15-minute period and wind direction
was collected as a sample once every 15 minutes. Hourly and daily averages of wind speed
and direction were computed by first turning the 15-minute values of wind speed and wind
direction into a vector (magnitude and direction), applying the desired averaging interval, and
then turning the vectors back into separate parameters, wind speed and wind direction.
Additionally, due to the placement of the CFEP near the southern shore of Cochiti Lake,

adequate fetch was not available in all directions. Winds coming from between 84 to 300
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degrees (where north is O degrees) were classified as southerly winds with inadequate fetch
and winds coming from between 0 to 83 degrees and between 301 to 360 degrees were
classified as northerly winds with adequate fetch.

The CFEP was equipped with a camera that had the CFEP’s evaporation pan in the
field of view, allowing for quick assessment of errant water levels within the evaporation pan.
The CFEP was also equipped with a 4G cellular modem for remote download and upload of
information to and from the installed CR1000 data logger. Finally, the water level within the
evaporation pan was maintained by two pumps (see Table 3.1). One pump was set to fill the
pan every night at midnight to a set level of 0.41 m so that every day the evaporation pan would
start out at the same water level and same thermal mass. A second pump was set to drain the
evaporation pan to a set level if it became swamped by a wave.

Minor adjustments to the evaporation pan’s water level data consisted of removing site
visit disturbances, bird landings on and leaving the pan, and periods of high variance water
level data from high winds/waves from the north. In order to correct for the latter, a linear
evaporation rate using the water level before the winds increased and the water level after the
winds subsided was applied. These linear rates were only applied to periods of similar wind
direction. If the wind changed direction during a windy period, then a new linear rate was
applied to the new wind direction. Each linear rate was between 0.05 mm per 15 minutes to
0.2 mm per 15 minutes, which is consistent with evaporation rates during windy periods when

the water level within the evaporation pan did not experience high variance.
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Table 3.1 Instrumentation and equipment installed on the CFEP

Type of measurement Company Name Instrumentand Placement above
model number  water surface (m)

Evaporation pan water Unimeasure HX-PA-24 1.0

level

Air temperature/humidity Campbell Scientific EEE181 2.0

Wind speed and direction R.M Young 5103 2.0

Precipitation R.M Young 50202 2.2

Barometric Pressure Serta Systems 278 1.8

Solar radiation Apogee Instruments SP-110 2.4

Surface water Apogee Instruments SI-111-SS 1.0 (interior) and 0.8

temperature (exterior)

Net Radiation Kipp and Zonen NR-Lite2 1.0

Data logger Campbell Scientific CR1000 1.8

Digital Camera Campbell Scientific CC5MPX 2

Cell Modem Sierra Wireless AirLink Rv50 1.8

Pump Yescom 1100GPH -0.5 (interior &

exterior)

3.2.3 Hemispherical Evaporation Chamber (Dome) and Calibration

The hemispherical evaporation chamber is the most accurate technique for measuring
in-situ open-water evaporation (Crilley and Collison, 2015; Garcia et al., 2008; Masoner and
Stannard, 2010; Stannard, 1988). The specific hemispherical evaporation chamber (henceforth
referred to as “dome”) used in this study was invented by Dave Stannard (Stannard, 1988), see
Figure 3.2. It was originally invented to measure evapotranspiration (ET) over agricultural
crops as a substitute to larger, more expensive, and more difficult to use rapid ET chambers
(Greenwood and Beresford, 1979; Kock et al., 1971; Puckridge, 1978; Saugier, 1976). The
rapid ET chamber measurements were compared to an adjacent weighing lysimeter, with a 5
percent agreement between the two different techniques (Reicosky and Peters, 1977; Reicosky,
1981; Reicosky et al., 1983). One drawback of the dome technique is that the dome cannot be
left out for continuous measurements and has to be used for periodic measurements ranging

from a few hours to a full day (Crilley and Collison, 2015; Garcia et al., 2008; Masoner and
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Stannard, 2010; Stannard, 1988). The dome has to be aired out (de-gassed) between
measurements and routinely cleaned to ensure clear transmission of solar radiation through the
acrylic dome for accurate and precise evaporation measurements.

The 1-m diameter acrylic dome that Dave Stannard created had the accuracy of larger
rapid ET chambers but the added benefit of being usable by one person (Stannard, 1988). These
rapid ET chambers work by measuring the vapor density increase within the enclosed space,
with the vapor density increase being proportional to ET or evaporation rates, depending on
the environment being enclosed by the chamber. The dome was originally developed for ET
measurements (Crilley and Collison, 2015; Garcia et al., 2008; Stannard, 1988), but a recent
study by Masoner and Stannard (2010) used the dome to measure open-water evaporation with
great success. The dome is calibrated by measuring the vapor density of water evaporating
from a container on a balance (the same principle of a weighing lysimeter); therefore, using
the dome over open water instead of over vegetation does not affect the accuracy of the dome’s

measurements.

Dome Design and Calibration

The dome used in this study was made out of 6.35 mm thick acrylic with an interior
diameter of 0.905 m with a 38 mm lip, with the final thickness of 3 mm after being molded.
The acrylic dome was manufactured by California Quality Plastics, Ontario, CA. A 75 mm
thick and 55 mm wide buoyancy foam ring was attached to the bottom of the dome for
buoyancy, with the joint between the dome and the buoyancy foam ring sealed with silicone.
In order to prevent gaps between the dome’s bottom buoyancy foam ring and the water surface
during wave action, the amount of buoyancy force from the foam ring was determined such

that the foam ring would be submerged by 7 cm while still providing adequate buoyancy for

52



the dome. A 10-mm inside diameter, 0.8-m long, coiled, polyethylene hose was inserted
through the side of the dome 22 cm from the bottom. The coiled hose dissipated the sudden
increase in pressure inside the dome when placed on the water surface due to 7 cm of the dome
being submerged (see Figure 3.1), where increased air pressure decreased evaporation rates
(Ozgiir and Kogak, 2015).

Ambient wind conditions outside the dome were reproduced within the dome with two
variable-volt direct-current (0-24 V) fans with 100 mm diameter blades. Following the advice
in Stannard (1988), the fans were mounted at a height 1/4 of the diameter of the dome, 22.5
cm. The fans were mounted opposite of each other to maximize air flow and were aimed 5
degrees above the horizon and 27 degrees to the right of the center axis of the dome. Wind
speed produced by the fans inside the dome was determined by placing the dome on a flat
surface with nine equal grids. In each of the grids, a hand-held anemometer (Wintronic 2,
Kaindl Electronic, Rohrbach, Germany) was secured such that the anemometer cups were 0.2
m above the flat surface. VVoltages of 6, 12, 18, and 24 were applied to the fans for two minutes
and the resulting wind speed for each of the different voltages was measured in every grid cell.
The wind speed for each voltage was averaged over all nine grid cells and a linear least-squares

regression (R? = 0.998) was used to determine the voltage-wind speed relationship:

y =0.212 * x + 0.188 (3.3)
where:
y average wind speed inside chamber, m/s,
X fan supply voltage, V.

During validation tests the wind speed inside the dome was controlled in real time by

a 3-cup anemometer (model 03101, Campbell Scientific, Logan, UT) placed 2 m away from
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the dome and 1 m above the water surface, and connected to a datalogger (CR1000, Campbell
Scientific, Logan UT). The datalogger was programmed with a step function to reproduce
Equation 3.3.

The vapor density changes inside the dome were calculated by measuring air
temperature and relative humidity every two secs with an air temperature and relative humidity
sensor that was inserted through the side of the dome at a height of 0.3 m (model HygroClip
S, Rotronic Instrument Corp., Hauppauge, NY). When the dome is placed over vegetation, or
in this case open water, the vapor density begins to increase quickly during the first 30-45 s
and then it slows down around 60 s as it asymptotically approaches maximum vapor pressure.
The evaporation rate is determined by the rate of change in vapor density, with the steepest 11-
point moving slope being the instantaneous evaporation rate calculated by the following

equation (Stannard, 1988):

E =864 () (3.4)

where:

E evaporation rate, mm/day,

M the steepest slope of vapor density, g/(m3 « s),

\ the volume inside the chamber, m3,

C the calibration factor for the Dome, unitless,

A the area of surface covered by the Dome, m?,

86.4 a conversion factor that converts g.,ater/m?2sec t0 mm,y,¢e./day.

The volume of the dome (V) was 0.226 m?, the area covered by the dome (A) was 0.643

m?, and the calibration factor (C) was 1.0419.
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The calibration factor (C) is used to account for the water vapor absorbed by the acrylic
and poor air mixing by the fans within the dome. The process for dome calibration in this study
followed the steps described by Stannard (1988). A pot of water was placed on a balance
(model MS 32001L, Mettler Toledo, Columbus, OH) that had a 120-volt AC heating element
controlled by a water temperature probe. The dome was placed over the pot once a set
temperature was established and remained in place for three minutes. The water temperature
in the pot was set to 16, 22, 28, and 35 °C, and wind speeds of 0.76 and 2.18 m/s were tested
at each temperature. Higher wind speeds were tested, but the wind turbulences on the surface
of the water interfered with the balance readings. At least three calibration runs were
completed at each temperature and at each wind speed setting. The results of the calibration
tests are shown in Figure 3.5 below, with a linear least-squares regression line through the

origin used to determine the dome calibration factor, C = 1.0419.
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Figure 3.5: Hemispherical evaporation chamber calibration factor determination, C = 1.04.
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Dome Validation Tests

Three validation tests with the dome were completed on September 30, October 19,
and October 21, 2018 with the tests conducted between 7:40 and 14:50, 9:30 and 18:50, and
8:30 and 18:10, respectively. Each validation test consisted of taking dome measurements
every ten minutes adjacent to the CFEP, with each test having a duration of two minutes. After
the dome was lifted off the water surface, it was aired out for eight minutes to remove the built-
up vapor pressure within the dome and to allow the air temperature and relative humidity probe
to equilibrate back to ambient air temperatures and humidity levels.

The entire process was automated by a program that required the following connected
equipment: a high ampere (26 A, 24 V) direct current motor with worm-gear reductions to lift
and lower the dome; two switches to turn the motor off at set locations (dome on the water,
dome in the air); a three-cup anemometer to control the fans inside the dome in real time; an
air temperature and relative humidity sensor installed in the dome; an infrared radiometer; five
solid state relays (one for the motor and four for each wind speed setting); two fans in the
dome; and two 12-volt batters to power both the logger with 12 V and the fans and motor with
24 V. For each dome measurement, the program consisted of the following process: 0 seconds,
turn on fans to current ambient wind speed (based on equation 3.3); 30 s, lower dome onto

water; 120 s, lift dome off water; 240 s, turn off fans; repeat every 600 s.

Dome Relative Humidity Sensor Calibration

The dome’s relative humidity (RH) sensor (model HygroClip S) experiences drift over
time (Bell et al., 2017) and hence was calibrated with a CFEP RH sensor (model EE181) that
was still within factory calibration. The black dots in Figure 3.6 represent corrected dome RH

values and the red dots represent uncorrected RH values. A linear adjustment of the dome RH
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values in the form of RHcaiibrated = M * RHmeasured + b Was applied. The adjustment factors, m
and b, were calculated such that the slope of a linear least-squared regression line for the
corrected data would be equal to one with a y-intercept of zero. This adjustment procedure was
followed for each of the three dome tests with the m and b adjustment factors as follows: 1.503
and -12.975, 1.527 and -21.01, and 1.537 and -18.57 for test dates September 30, October 19,
and October 21, respectively. The close agreement of m and b adjustment factors from the
three different dome tests highlights the consistent drift of the dome RH sensor, with the
correction of the September 30, 2018 validation test shown in Figure 3.6 to illustrate the

uncorrected and corrected differences.
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Figure 3.6: Dome relative humidity sensor correction factor for September 30, 2018.
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3.2.4 Standard Evaporation Estimation Techniques

Class A Pan

The U.S. Army Corps of Engineers operates a Class A Evaporation Pan at their Cochiti
Lake Ranger Station (see Figure 3.3) and supplied the data used in this study. The Class A Pan
is located on the crest of a hill 1,200 m from and 70 m above Cochiti Lake, with continuous
evaporation data since 1975. Measurements of the Class A Pan’s water level is taken every
morning at 08:00. An annual pan coefficient of 0.7 is applied to the Class A Pan’s water level
measurement in order to account for the higher rate of evaporation due to its evaporation rate
being positively correlated to air temperature (Hounam, 1973; Jovanovic et al., 2008; Morton,
1979) and outside the atmospheric boundary layer of the reservoir (Stewart, 1979). In the
middle of November, depending on first freeze, through late March or early April, daily winter
evaporation values are used, where, in 2018, daily winter evaporation values began on
November 12.

The Class A evaporation pan consists of a 22-gauge galvanized iron pan, typically 1.22
m in diameter and 0.254 m deep, on a wood base 0.152 meters above the ground. The Class A
Pan’s water levels are measured once each day in the morning and is typically filled once a
week. By filling the pan once a week, the thermal mass associated with the water in the pan
decreases throughout the week, allowing the water to become more susceptible to diurnal
temperature changes later in the week, which affects evaporation rates (Hounam, 1973,;

Jovanovic et al., 2008; Morton, 1979).

Hargreaves-Samani Equation

The Hargreaves-Samani equation (3.5; Hargreaves and Samani, 1985) was originally

developed to provide a simple estimate of potential evapotranspiration for regions lacking
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complete and/or accurate climatological data, but this equation has been shown to be a rough

estimation of open-water evaporation rates (Brower, 2018). Equation 3.5 is below:

E = 0.0023 %S, * /87 * (T + 17.8) (3.5)
where:
E IS evaporation or evapotranspiration, mm/day,
So IS water equivalent of extraterrestrial radiation, mm/day,
Or is daily max. air temperature minus daily min. air temperature, °C,
T is air temperature, °C,
0.0023 is a calibration coefficient.

The calibration coefficient was determined after eight years of comparing Equation 3.5
to the 29 m? weighing lysimeters data at Davis, California. This CFEP study used a polynomial
least-squared regression (R? = 0.9997) equation to represent extraterrestrial radiation, So, based
on a monthly value from the lookup table in Samani (2019) for northern hemisphere latitude

36. Equation 3.6 is below:

S, = 0.0077m* — 0.1919m3 + 1.211m? — 0.2667m + 6.5922 (3.6)
where;

m is the month of the year, decimal month.

Hamon Equation

The Hamon equation (3.7; Hamon, 1961) is similar the Hargreaves-Samani where the
only atmospheric variable needed is air temperature, with the saturated vapor density portion
of the equation being calculated based on air temperature. This equation was originally

developed as a simple technique to estimate evapotranspiration with minimal inputs:
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E = 0.55(”)2(ﬂ)*25.4 (3.7)

12 100

where:
D Is maximum possible daylight hours, decimal hours,
SV is saturated vapor density, g/m?,
0.55 is a calibration coefficient,
254 IS a conversion to mm/day.

The Hargreaves-Samani (3.5) and Hamon (3.7) equations both require only one
atmospheric input, air temperature, with the other input being a proxy for solar radiation and
is easily calculated based on the declination of the sun and the latitude of the study location.
These two equations have been shown to be generally within 20% of energy-budget equations,

which are considerably more difficult and expensive (Harwell, 2012).

U.S. Weather Bureau Equation and Penman Equation

The U.S. Weather Bureau (USWB, which became the National Weather Service in
1970) Equation 3.8 was first proposed in Kohler et al. (1955) as a way to further increase the
accuracy of the Class A Pan’s evaporation measurements and to theoretically calculate Class
A Pan evaporation rates when no pan is present. Equation 3.8 is a modified version of the
Penman equation (Penman, 1948) with the inclusion of the 0.7 pan coefficient and with Epan

being calculated with Equation 3.9. Equation 3.8 is below:

E=07 [ﬁ 0, + AJVr—yEpan] (3.8)
where:
A is the slope of saturated vapor pressure curve, kPa/°C,
4 is the psychrometric constant, kPa/°C,
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Q. is the effective net radiation, mm/day,
Epan is the amount of evaporation from a Class A Pan, mm/day,

0.7 is a Class A Pan coefficient.

The slope of the saturated vapor pressure curve, A, was calculated using daily average
air temperature in Equation 5 on page 10 in Allen et al. (2005), which was based on work done
by Murray (1967). The psychrometric constant, y, is the product of the specific heat of moist
air (J/kgC) and barometric pressure (kPa) divided by the product of the ratio of the molecular
weight of water (unitless) and the latent heat of vaporization (J/kg). The effective net radiation,
Q,, was calculated using the Equation 2.13 on page 62 in Harwell (2012), where the only
inputs are average daily air temperature and daily solar radiation. Lastly, the theoretical amount
of evaporation from a Class A Pan, E,,,, was calculated with the following equation from

Harwell (2012):

Epan = (s — €4)°%(0.42 + 0.0029v,,) (3.9)
where
e is the saturation vapor pressure, mb,
€y is the vapor pressure at the temperature of the air, mb,
Vp is the average wind speed, km/day.

Equation 3.9 was derived in Kohler et al. (1955) to represent Class A Pan evaporation
rates and was modified for Sl units by Harwell (2012). Two different forms of Equation 3.8
were used in this study and are as follows: 1) using Equation 3.9 with the 0.7 pan coefficient
in equation 3.8, called USWB; and 2) using Equation 3.9 without the 0.7 pan coefficient in
Equation 3.8, called Penman. Equation 3.8 was originally derived using atmospheric variables
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over land, where VPD’s are typically larger than over water, requiring the 0.7 pan coefficient
correction value. In this study atmospheric variables were collected over the water, eliminating
the need for the corrective 0.7 pan coefficient. The Penman version of Equation 3.8 is identical
to the Penman equation (Penman, 1948), with the Qn and Epan being calculated following the
steps described above. The atmospheric requirements of the USWB equation and Penman
equation are air temperature, relative humidity, wind speed, barometric pressure, and solar

radiation.

3.3 Results

3.3.1 CFEP Evaporation Results

The CFEP’s estimated evaporation and measured precipitation are shown in Figure 3.7,
with the total amount that evaporated during the 201-day study being 1.127 m. A second order
polynomial trend line elucidates the seasonal trend in evaporation, with evaporation peaking
in June (7.9 mm monthly average) and remaining semi-steady in July, August, and September:
6.89 mm, 5.99 mm (partial month), and 6.45 mm, respectively. In early October, a sharp
decline in evaporation was observed with a monthly average of 3.9 mm, a product of the region
transitioning from summer monsoonal convection storms to winter frontal storms, as shown in
Figure 3.8 below by the consistent values of VPD below 1 kPa. June 24 had the greatest
evaporation rate of 12.04 mm; a day dominated by VPD between 4 and 4.8 kPa and with the
daily averaged VPD of 3.5 kPa, this was the highest daily averaged VPD during the study’s
duration. The high variability in daily evaporation rates can be explained by precipitation
events, as seen in Figures 3.7 and 3.8, where small evaporation values correspond with low
VPD during precipitation events. Additionally, large and small VPD values as seen in Figure

3.8 correspond with peaks and valleys in evaporation rates as seen in Figure 3.7.
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Three seasonal trends are shown in Figure 3.8: pre-monsoon, monsoon, and post-
monsoon. These seasonal trends are illustrated by the differences in saturated vapor pressure
(SVP) and VPD, where similar values of SVP and VPD indicate very dry air with very little
moisture present, as seen in May and June. The effect of the monsoon season is shown by the
differences between SVP and VPD occurring in early July through September. Finally, the
post-monsoon season is shown by the reduction in differences between SVP and VPD in late

September and early October.
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Figure 3.7: CFEP measured daily evaporation rate on Cochiti Lake, NM, USA for the duratio
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measured at the CFEP on Cochiti Lake, NM, USA.
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Wind Direction on Evaporation Rates

By coupling evaporation to wind direction (northerly and southerly), the evaporation
rate associated with shore-to-water and water-to-shore winds were determined. The CFEP was
placed close to the southern shore of Cochiti Lake where northerly winds had an open-water
fetch distance greater than 2,000 m and southerly winds had an open-water fetch distance
around 100 m, resulting in different evaporation rates based on from where the wind was
coming. The effect of wind direction and VPD on evaporation rates is shown in Figure 3.9,
with cumulative evaporation and cumulative evaporation associated with either northerly or
southerly winds displayed. Evaporation during a northerly wind period accounted for only 38%
of the 1,104 mm that were measured during the 201-day study, with southerly winds

accounting for the remaining 62%.
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Figure 3.9: Cumulative evaporation rate associated with wind direction during each 15-minute
period.

3.3.2 CFEP Validation Results

There was a divergence between evaporation measured by the dome and by the CFEP
in the beginning of the day for the first and last validation tests, but the cumulative evaporation
results converged toward the end of all three tests (Figure 3.10). The evaporation results from
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the CFEP on September 30 before 13:00 and on October 21 before 14:45 follow a similar
pattern: an increase in evaporation rates in the morning followed by a decrease and negative
evaporation rates in the middle of the day, with this pattern emphasized more on the last
validation test. Additionally, the evaporation measured by the dome on these two days follows
a similar pattern with a gradual increase in evaporation in the morning and then a noticeable
increase in evaporation in the afternoon. The results from the October 19 test do not follow
either of these patterns; instead, there is a close agreement between the CFEP and dome and a
consistent evaporation rate measured by the dome for the duration of the test. The dome
measured less cumulative evaporation than the CFEP on the first and last validation tests, and
measured more cumulative evaporation on the middle validation test.

Although there was a divergence between the dome and CFEP’s measured evaporation,
the final cumulative results for all three validation tests had close agreement. Table 3.2 displays
the total cumulative evaporation measured by the CFEP and the dome, the difference in
evaporation between the two techniques, percent difference, and a dome-to-CFEP ratio. The
similar pattern (see Figure 3.10) of evaporation measured by the CFEP on the first and last
validation tests was also reflected in the difference of evaporation measured by both tests: -
0.17 mm, or a percent difference of -6.17 and -7.54 for the first and last validation tests,
respectively. More cumulative evaporation was measured during the first test, even though it
had a shorter duration, explaining the slight percent difference from the last test. The middle
validation test, which displayed a different evaporation pattern (see Figure 3.10), resulted in
the dome measuring more cumulative evaporation than the CFEP: 0.21 mm, or a percent
difference of 8.55. The average cumulative evaporation difference between the dome and

CFEP was -0.04, or an averaged percent difference of -1.72. Lastly, a dome-to-CFEP ratio was
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calculated, where values greater than one indicate that the dome measured more evaporation
and values less than one indicate that the CFEP measured more evaporation. An average dome-

to-CFEP ratio of 0.99 was calculated based on the three validation tests.
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Figure 3.10: Cumulative dome evaporation measurement results (red) and corresponding time
CFEP cumulative evaporation results (blue).
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Table 3.2: Dome and CFEP Evaporation Results

Sept. 30

7:40-14:50

Test duration 7:10
CFEP total evaporation (mm) 2.84
Dome total evaporation (mm) 2.67
Difference (dome to CFEP) -0.17
Percent difference (dome to CFEP) -6.17
Dome-to-CFEP ratio 0.94

Oct. 19
9:30-18:50
9:20

2.35

2.56

0.21

8.55

1.09

Oct. 21 Average
8:30-18:10
9:40
2.34
2.17

-0.17 -0.04

-7.54 -1.72

0.93 0.99

The following three figures (Figure 3.11, 3.12, and 3.13) are included to explain the

anomalous CFEP evaporation measurements during the morning and early afternoon of the

first and last validation tests. Figure 3.11 below shows 15-minute averaged solar radiation

values measured by the pyranometer on the CFEP. During each of the three validation tests

there was no cloud cover present, indicated by the smooth increase and decrease in solar

radiation. The maximum amount of solar radiation during each validation test, assuming no

cloud coverage, is a function of the sun’s declination angle, where a smaller angle corresponds

to less solar radiation, as indicated by Figure 3.11.
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Figure 3.11: Solar radiation measured by a pyranometer on the CFEP.
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Figure 3.12: Wind speed measured by an anemometer on the CFEP.

The wind patterns for the first and last validation test were similar, with winds under 1
m/s during the beginning of each test and then steadily increasing as the day progressed,
whereas the wind pattern during the middle validation started out high with consistent winds
greater than 4 m/s in the morning and early afternoon and then decreased toward the end of the
validation test. Figure 3.12 displays the averaged 15-minute wind speed measured by the
CFEP’s anemometer during each validation test. The effect of wind speed on the surface water
temperature is shown in Figure 3.13, where on 10/19/18, a day with greater winds in the
morning (Figure 3.12), there was a more gradual increase in surface water temperature,
whereas on the first and last validation tests there was very little wind in the morning resulting
in a sharper increase in water surface temperature in the morning. Figure 3.13 displays the
skin-surface water temperature adjacent to the dome measured by an infrared radiometer

attached to the validation test boat.
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Figure 3.13: Skin-surface water temperature adjacent to the dome measured by an infrared
radiometer attached to the validation test boat.

3.3.3 Comparisons between CFEP and Existing Approaches

The evaporation rates from the CFEP were compared to the above four equations and
the on-site Class A Pan managed by the U.S. Army Corps of Engineers at their Cochiti Lake
Ranger station, which switched to set monthly values on November 12. Five-day averaged
evaporation was estimated for the CFEP, Class A Pan, USWB equation, Penman equation, HS
equation, and Hamon equation (see Figure 3.14). The CFEP and Class A Pan had closest
agreement in evaporation rates for May and June with an averaged difference between the
CFEP and Class A Pan being -9 and 0.04 percent, respectively, but the similarities in
evaporation rate discontinued in mid-July through October (see Table 3.3). Overestimation of
evaporation when compared to the CFEP is represented by percent error difference values
greater than zero, and underestimation of evaporation is represented by percent error difference
values less than zero. The Penman equation overestimated evaporation when compared to the
CFEP in May through August, and underestimated evaporation in September through
November. The Penman equation estimated the highest monthly evaporation rate during May

through August and began to underestimate evaporation when compared to the CFEP
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technique in September through November. The total amount of evaporation measured by the
five different techniques is as follows: CFEP 1,104 mm; Class A Pan 927 mm; USWB equation

817 mm; Penman equation 1,167 mm; HS equation 805 mm; and Hamon equation 585 mm.
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Figure 3.14: 5-day averaged evaporation for the CFEP (Collison Floating Evaporation Pan),
Class A Pan, USWB equation (U.S. Weather Bureau), Penman equation, HS equation
(Hargreaves-Samani), and Hamon equation.

Table 3.3: Percentage error difference of the CFEP (Collison Floating Evaporation Pan) to
Class A Pan, USWB equation (U.S. Weather Bureau), Penman equation, HS equation
(Hargreaves-Samani), and Hamon equation. The 25th percentile, median, and 75th percentile
were calculated as the absolute percentage error difference.

Class A (%) USWB (%) Penman (%) HS(%) Hamon (%)

May -9 -13 24 -15 -48
June 0.04 -15 22 -19 -39
July -14 -19 16 -18 -34
August -13 -19 15 -18 -36
September -29 -38 -11 -40 -57
October -40 -40 -28 -48 -64
November -17 -46 -23 -49 -72
Average -17 -29 2 -29 -50
25th Percentile 9 15 22 18 36
Median 14 19 15 19 48
75th Percentile 29 46 24 48 64
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The agreement in evaporation rate between the CFEP and Class A Pan was very similar
during the first part of the study until late August and early September when the CFEP started
to consistently measure higher rates of evaporation. The largest percent difference between the
CFEP and the Class A Pan was in September and October, 29 and 40 percent, respectively (see
Table 3.3 above). This higher evaporation rate in the fall is evident in Figure 3.15 below by
the increase in slope of the CFEP’s cumulative evaporation compared to the slope of the Class
A Pan’s cumulative evaporation. A Pearson’s correlation coefficient of 0.71 (indicating a
strong correlation between daily averaged air temperature at the CFEP and daily evaporation
rate from the Class A Pan) was calculated, which is supported by other studies (Hounam, 1973;
Jovanovic et al., 2008; Morton, 1979). The close agreement between the HS and USWB is

very apparent in Figure 3.15 below, with an average percent difference of 3.3 for the duration

of the study.

1200
—CFEP L —
——Class A 4 “

1000 A
—USWB -
——Penman

800 —Hs <

——Hamon

400

Cumulative Evaporation, mm
D
(=]
o

200

May Jun Jul Aug Sep Oct Nov Dec
Figure 3.15: Cumulative evaporation for the CFEP (Collison Floating Evaporation Pan),
Class A Pan, USWB equation (U.S. Weather Bureau), Penman equation, HS equation
(Hargreaves-Samani), and Hamon equation.
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The peaks in evaporation measured by the CFEP, Class A Pan, and Penman equation
occurred in June, corresponding with the peak air temperatures (see Figure 3.16). The effect
of the stored energy in the reservoir being released through evaporation (see Figure 3.17) is
shown by the increased values of outgoing radiation between late August and early October,
where outgoing radiation values are consistently above the polynomial-least squared
regression line during the period in question. This increase in outgoing stored energy is
reflected by the higher evaporation rates measured by the CFEP between lake August and early
October when compared to the five other techniques, which are not affected by the stored

energy within the reservoir.
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Figure 3.16: Air temperature measured 2 m above the water surface with a polynomial-least
squared regression line visualizing the seasonal trend.

72



a® Voo o » g ® Incoming Radiation

® OQutgoing Radiation

Radiation, kWh/day
wu

May Jun Jul Aug Sep Oct Nov Dec

Figure 3.17: Incoming and outgoing radiation measured at the CFEP (Collison Floating
Evaporation Pan) with two polynomial-least squared regression lines visualizing the seasonal
trend.

The general trend for the five evaporation estimation techniques when compared to the
CFEP technique was overestimated evaporation in the beginning of the study and
underestimated evaporation at the end of the study. The predominate reason for this trend is
that all evaporation techniques evaluated in this study, except for the CFEP technique, do not
include heat energy stored and then released from the reservoir. Figure 3.18 below shows the
five-day averaged evaporation percent difference between the CFEP and the five other
evaporation estimation techniques. The slope of the linear-least squared regression line for the
different evaporation estimation techniques are as follows: Class A Pan -0.265; USWB
equation -0.167; Penman equation -0.244; HS equation -0.167; and Hamon equation -0.166.
The near identical slope of these linear least-squared regression lines indicates that they are

each affected by the lack of accounting for stored energy equally.
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Figure 3.18: 5-day averaged evaporation percentage difference [(B-A)/A]*100, where A are
values from the CFEP (Collison Floating Evaporation Pan), and B are values from the
following: Class A Pan, USWB equation (U.S. Weather Bureau), Penman equation, HS
equation (Hargreaves-Samani), and Hamon equation. Compared to the CFEP, negative
percentage errors reflect B values underestimating evaporation and positive percentage errors
reflect B values overestimating evaporation.

3.4 Discussion

3.4.1 CFEP Reliability and Wind Direction Affecting Evaporation Rates

The reliability of the CFEP’s ability to estimate lake and reservoir evaporation is
evident by the near-continuous plot of daily evaporation rates shown in Figure 3.7, with only
two gaps in evaporation data due to technical issues unrelated to the normal functionality of
the CFEP (human error). The reliability of the CFEP’s evaporation estimation during sustained
windy conditions was a major concern before conducting this study. The concern was that
during sustained wind events on Cochiti Lake, large waves (potentially 1 m in height or greater)
would overtop CFEP’s wave guard and swamp the evaporation pan. On May 21 sustained 15-
minute averaged winds greater than 5 m/s occurred for a period of 15 h (08:00-23:00), peaking
at 9 m/s and gusts over 20 m/s. The evaporation pan’s water-level height experienced some

above average oscillation, but no waves overtopped the evaporation pan. From May 13 through
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the end of the study there were no indications that the evaporation pan’s water level was
affected by water entering or leaving during high wind events, with the largest anomalies in
water levels being caused by birds landing on and then leaving the evaporation pan.

The general trend of highest evaporation rates in mid-to-late June, then a gradual
decrease in evaporation rates through September, and then a sharp decrease in evaporation
rates in early October is a product of the North American Monsoon Season (NAMS), with the
NAMS typically beginning in early July and lasting until mid-September (Grantz, 2007). The
evaporation results of this study match the typical timing of NAMS, with the driest period and
highest evaporation rates occurring in June before the NAMS began around the beginning of
July 2018 (see Figure 3.8). The onset and departure of the 2018 NAMS is clearly visible in
Figure 3.8, with the divergence between SVP and VPD at the beginning of July and then the
transition to frontal storm systems in early October.

The high variability of estimated evaporation rates in Figure 3.7 can be explained by
sharp decreases in VPD, displayed in Figure 3.8, that correspond with precipitation events.
Additional variation in evaporation rates are caused by seasonal changes in SVP and VPD
values and summer convection storms occurring in May through September (see Figure 3.8).
Consequently, the two largest evaporation rates occur roughly midway between precipitation
events that occurred at the beginning, middle, and end of June. Between precipitation events,
the desert surrounding Cochiti Lake would begin to dry, as indicated by the gradual increase
of VPD a few days after precipitation events, resulting in the two peaks of evaporation rates in
June.

The effect of wind direction on evaporation rates was not anticipated. Due to

deployment location limitations, the adequate fetch rule was not followed and the CFEP was
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situated 100 m from the southern shore of Cochiti Lake. The small fetch distance of the
southerly winds did not allow the air to become saturated by reservoir evaporation, and when
this high VPD air (2+ kPa) reached the CFEP, the evaporation rate increased. The longer fetch
distance of the northerly winds allowed the air to become more saturated with water from
reservoir evaporation and when this lower VPD air (~1 kPa) reached the CFEP, a smaller
evaporation rate associated with the wind speed intensity was recorded. Additionally, as shown
in Figure 3.9, the effect wind direction had on cumulative evaporation throughout the entire
study is clearly demonstrated, with wind coming from the south accounting for 62% of the

evaporation measured during the 201-day study.

3.4.2 CFEP Validity and Potential Errors

Because the major driving forces of evaporation are water temperature and wind speed,
the similarities in cumulative evaporation amounts conform to scientific principles, but the
evaporation pattern of the evaporation measured by the CFEP is not as straightforward. The
atmospheric conditions on the three validation test days were similar to the vast majority of
the days during this study, with minimal northerly winds in the morning and stronger southerly
winds in the afternoon. During both the first and last validation test, the CFEP estimated high
rates of evaporation at the beginning of the validation tests, then a gradual decrease (first test)
and larger decrease (last test) in evaporation, indicating an evaporation forcing variable not
present in the middle validation test. Since there was no precipitation (negative evaporation)
as indicated by solar radiation values shown in Figure 3.11, what caused the estimated
evaporation from the CFEP to decrease in the middle of the afternoon or go negative during
the first and last validation test? After careful examination of the many variables (air

temperature, relative humidity, wind speed and direction, vapor pressure deficit, solar
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radiation, surface water temperature, and instrument malfunction) three phenomena may
explain the majority of the evaporation patterns from the CFEP and the dome: (1) thermal
expansion/contraction of the CFEP aluminum, which caused the sharp increase in estimated
evaporation during the first and last test; (2) thermal expansion/contraction of the water within
the CFEP, which caused the reduction and negative values in estimated evaporation during the
first and last test; and (3) high and constant wind conditions, which caused the well-correlated
results between the dome and the CFEP in the middle test.

The sharp increase in estimated evaporation measured by the CFEP during the first and
last test can be explained by the thermal expansion of the CFEP. The expanding evaporation
pan results in an increased volume within the CFEP, and since the water volume is relatively
constant, other than the loss of volume due to evaporation, the water level within the pan
decreases, displaying a higher evaporation rate. Aluminum (alloy 6061) has a linear thermal
expansion coefficient of 23.5 x 10 m/mK where every 10° C temperature increase in the
evaporation pan’s wall increases the volume of the CFEP’s evaporation pan by 444 c¢m?,
decreasing the evaporation pan’s water level by 0.0952 mm. However, this is a theoretical
maximum since the CFEP is in water, which reduces the thermal expansion of the evaporation
pan’s wall that is submerged. Although the temperature of the aluminum sides of the pan was
not measured, a calculation of thermal loading from the sun on the CFEP’s aluminum using
the Stefan-Boltzmann law and emissivity of aluminum (0.2) indicates a sharp rise in
temperature (+65 °C) with a solar radiation value of 800 W/m?.

The reduction and negative values in estimated evaporation from the CFEP can be
explained by the thermal expansion of water. As the water within the CFEP warms up it

expands, with 2.07 x 10 m®/m? °C being the coefficient of thermal expansion of water at 15°C.
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A change in water temperature within the evaporation pan from 15 to 20°C increases the water
level by 0.762 mm (assuming fully mixed water). Since water has almost 4.6 times greater
specific heat capacity than aluminum (4.18 vs. 0.91 kJ/kg K), the thermal expansion of the
water in the evaporation pan is delayed compared to the thermal expansion of the aluminum
CFEP (i.e., the aluminum walls heat up faster than the water). The CFEP’s evaporation pan is
equipped with a baffle to prevent excessive water movement, which reduces the convective
mixing of warmer skin-surface water with cooler water below, further lagging the thermal
expansion of the water. When the evaporation pan’s water expands, the water level within the
evaporation pan increases (displayed as a decreasing, or negative, evaporation rate). Evidence
of this lagged thermal expansion of water is apparent in the first and third validation test and
displayed in Figure 3.10 by the negative cumulative evaporation rate around noon.

The strong correlation between the CFEP’s estimated cumulative evaporation and the
dome’s evaporation measurements during the middle test is explained by the high and constant
wind during the morning and afternoon that day (see Figure 3.12). Wind causes mixing of the
warmer surface water with the cooler water below, allowing the water to more gradually warm
up (middle test) and preventing the sharp increase in water temperatures seen in the first and
last validation (see Figure 3.13). Additionally, the wind during the middle validation test
caused more wave action, which further led to three distinct effects: (1) more mixing of the
reservoir’s surface water to a deeper depth, causing a more gradual increase in surface water
temperature; (2) more rocking motion of the CFEP, causing the water within the evaporation
pan to become more mixed; and (3) increased splashing of water on the CFEP walls, cooling

the aluminum and reducing thermal expansion.
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The thermal expansion/contraction of aluminum and water was an unexpected result
from this study, which affects the precision and accuracy of the CFEP’s evaporation estimation
by increasing the spatial variably of 15-min evaporation data (i.e., precision) and the closeness
to actual evaporation (i.e., accuracy). The effects of the thermal expansion/contraction of
aluminum and water can be ignored by instead taking daily evaporation values at midnight
when thermal expansion/contraction is minimal based on the assumption that thermal
expansion in the morning and thermal contraction in the evening counteract each other. Even
with the inclusion of thermal expansion/contraction, there was high agreement in the final
cumulative evaporation, with the average difference in evaporation measured during the three

validation tests being -0.04 mm with a range of -0.17 mm to 0.21 mm.

3.4.3 CFEP Comparison

Overall, the Penman equation had the closest agreement to the CFEP technique,
especially in July through September, but the agreement between these two techniques diverted
in May and June, with the Penman equation overestimating evaporation, and then again in
October and November, with the Penman equation underestimating evaporation. It has been
shown that the Penman equation typically overestimates evaporation during warmer periods
and underestimates evaporation during cooler periods (Allen et. al., 2005; Winter et al., 1995),
which is consistent with the findings in this study (see Table 3.3). The average monthly percent
error difference between the CFEP and Penman equation was 2% with a range of -28 to 24%.
The next closest agreement in estimated evaporation was between the CFEP and Class A Pan
technique, with the closest agreement in June, 0.04% difference, and increasing to a percent

error difference of -40% in October.

79



The percent error difference between the CFEP and the Penman equation and the Class
A Pan can be explained by seasonally stored energy within the reservoir. From early spring
until late summer, when daily averaged air temperatures are greater than daily averaged water
temperatures, the reservoir water absorbs heat energy until early fall when this stored energy
is released through evaporation. The Penman equation does not account for the storage of heat
energy in the warmest months (May through July) and tends to overestimate evaporation.
Additionally, with the Class A Pan evaporation rate being correlated to daily averaged air
temperatures due to its smaller thermal mass than the reservoir, as the air temperatures
decreased, so did the evaporation rate; however, the CFEP’s evaporation rate decreased at a
slower rate due to the water surrounding the CFEP having a higher thermal mass and cooling
down more slowly. The converse would have been true if this study had data for spring
evaporation rates when the reservoir is storing energy (heating up), with the Class A Pan and
these four equations overestimating evaporation rates (Hounam, 1973; Morton, 1979). Some
locations use different pan coefficients to adjust the Class A Pan’s evaporation rate accordingly
instead of using one annual rate to account for the overestimating of evaporation in the spring
and underestimation of evaporation in the fall.

Further evidence of this stored energy not being accounted for in the Class A Pan and
the four evaporation equations is shown by the increasing underestimation of evaporation when
compared to the CFEP (Figure 3.14), with the largest negative percent different values
occurring between September and October. Consequently, the evaporation rate of the CFEP
during this time period was also 20-70% greater than the Class A Pan (Table 3.3) and the other
four techniques calculated in this study. Underestimating lake and reservoir evaporation

amounts in water resource models can lead to inaccurate allocations of water resources,
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potentially producing shortages in some instances or excess water that is not put toward
beneficial use in other instances.

A surprising discovery in this study was the close agreement between the HS and
USWB techniques. The HS equation’s only on-site measured atmospheric variable is air
temperature whereas the USWB equation requires air temperature, humidity, wind speed, and
solar radiation. The Hamon equation consistently underestimated evaporation for the whole
duration of the project by 30 percent less than the HS and USWB equations, but an adjustment
to the calibration coefficient in the Hamon equation can bring this equation’s evaporation
estimate to within 5 percent difference from the HS equation.

Winter et al. (1995) found that evaporation equations that used solar radiation to
determine evaporation consistently overestimate in the spring and underestimate in the fall
when compared to an energy-budget evaporation equation. In Rosenberry et al. (2004) where
13 evapotranspiration equations were compared, the Hamon equation (3.7) was within 20% of
an energy-budget equation 95% of the time. Lastly, Harwell (2012) found that the Hamon
equation (3.7) had an average annual error between 12.9 and 38.1% and that the USWB
equation (3.8) had an averaged annual error between 4.7 and 14.1% when compared to five
different reservoir Class A Pans spanning between seven and 10 years in duration.

The CFEP technique highlighted the limitations and uncertainties of lake and reservoir
evaporation techniques that do not account for the seasonally stored energy within the body of
water, which was represented by 28 to 64% underestimation of evaporation during September
and October. The current standard method for determining evaporation from Cochiti Lake is
the Class A Pan, which, based on the data from this CFEP study, underestimated evaporation

by 1.12 MCM (911 acre-feet) during this study’s duration, May 13 through November 30,
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2018. Based on the 201-day study and on an average reservoir surface area of 5.62 million m?
(1,388 acres), the CFEP’s evaporation rate translates into 6.33 MCM (5,132 acre-feet) of
evaporation while the Class A Pan’s evaporation rate translates into 5.21 MCM (4,221 acre-

feet) of evaporation.

3.5 Conclusion

This study introduced a novel technique, the Collison Floating Evaporation Pan
(CFEP), for in-situ estimation of evaporation from lakes or reservoirs that proved to be reliable,
accurate, and precise. A pilot deployment of the CFEP on Cochiti Lake, New Mexico, USA
was used to demonstrate the durability of the CFEP in a high wind environment. The accuracy
and precision of the CFEP was determined through the use of a hemispherical evaporation
chamber (dome). The results of this study show that the CFEP is both accurate and precise as
demonstrated by the close agreement in evaporation measured by the dome and the CFEP.

Five common evaporation estimation techniques were compared to the CFEP. Because
common approaches do not include stored energy, they were unable to capture the higher
evaporation rates in the fall, whereas the water within the CFEP’s evaporation pan being
thermally connected with the reservoir’s captured this increased fall evaporation rate. A better
understanding of the uncertainties of these equations contributes to the hydrologic sciences by
elucidating their strengths and weakness in estimating lake and reservoir evaporation, allowing
for corrective actions to be taken which will increase their accuracy and precision. A reduction
in the uncertainties associated with lake and reservoir evaporation estimation techniques will
improve the accuracy of water supply models, allowing water resource manages to have a

firmer grasp on the actual amount of water available.
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The CFEP approach provides many advantages over traditional evaporation estimation
techniques by not requiring homogeneous fetch. Establishing a new evaporation technique that
does not have the limitations and uncertainties associated with deployment locations will
enhance the state of science by allowing a wider range of deployment locations that are
currently inaccessible. This key advantage of the CFEP allows for deployment in fetch-limited
areas, such as smaller lakes and/or channelized reservoirs. Additionally, the CFEP can be
deployed near the shore to quantify the effect of shore-to-water winds on lake and reservoir
evaporation rates, increasing the state of knowledge of spatially variable evaporation rates.

This quantification of the magnitude of shore-to-lake winds’ effect on evaporation rate
is substantial, especially in arid or semi-arid environments where it is assumed the VPD of air
above the land is greater than the VPD of air over water. The enhanced understanding of the
importance of wind on evaporation rates of lakes or reservoirs, where the windward (shore-to-
water) side has a quantifiably greater evaporation rate than the leeward (water-to-shore) side,
is a substantial addition to hydrologic sciences, as the current standard is to use one evaporation
rate for the whole body of water. The additional spatial evaporation information added by not
having adequate fetch from the south in this study further highlights the variable rate of
evaporation throughout the reservoir and why applying one evaporation value to the whole
reservoir can underestimate evaporation amounts by ignoring the greater evaporation rates on
the windward side, especially in an arid environment.

Currently, accurate and precise lake and reservoir estimation techniques are limited to
well-funded scientific studies, constraining the knowledge of accurate evaporation to a select
few locations, limiting the understanding of the evaporation phenomenon and broader

application. The CFEP’s yearly cost is a quarter of an energy budget or eddy covariance
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technique, providing a cost-effective alternative for water resource managers who are
interested in a more accurate lake or reservoir evaporation estimation technique.

An interesting result from the dome validation tests was the effect of diurnal thermal
expansion/contraction of the CFEP’s aluminum evaporation pan and the diurnal thermal
expansion/contraction of the water within the evaporation pan, where steep increases/decreases
in evaporation measured by the CFEP were recorded. These thermal expansion/contraction
effects on the CFEP’s evaporation rate can be omitted by comparing daily midnight-to-
midnight evaporation values when there is no thermal forcing applied to the CFEP.

Future research with the CFEP should focus on further analysis of wind direction
associated evaporation rates via the deployment of multiple CFEPs on one lake or reservoir to
help improve knowledge of this phenomenon spatially and temporally. Additionally, studies
with more dome tests completed at different times of the year will further assess the accuracy
and precision of the CFEP. Lastly, measuring the evaporation rate of the CFEP in the early

spring, when the reservoir is absorbing heat energy, should be investigated.
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Chapter 4: Collison Floating Evaporation
Pan Patent

4.1 Patent

The Collison Floating Evaporation Pan was submitted for a U.S. patent in March 2016;
a patent, entitled “Floating Evaporation Pan with Adjustable Freeboard and Surrounding
Wave-Guard,” U.S. 10,082,415 B1 (Collison, 2018), was issued on September 15, 2018 (see
Figure 4.1). The CFEP patent is an improvement patent of a prior floating evaporation pan
patent by Masoner and Christenson (2007), which was based on the floating evaporation pan
used in the Masoner and Stannard (2010) open-water evaporation study. The CFEP patent’s
main improvements over the prior floating evaporation pan patent include the following: 1) a
baffle system within the evaporation pan to help prevent water from sloshing out of the pan;
2) a wave guard surrounding the evaporation pan to help prevent lake or reservoir waves from
entering the evaporation pan; 3) an adjustable buoyancy system that allows the freeboard of
the CFEP to be adjusted; and 4) an anchoring system that prevents lateral movement of the
CFEP while allowing for vertical change. These improvements allow for the CFEP to be placed
in larger bodies of water where wind and/or human-induced waves are present, as the prior
floating evaporation pan was designed for a body of water 9,000 m? where waves were minimal
or nonexistent. Another improvement of the CFEP is the material from which it was
constructed, 6061 aluminum alloy, which has a thermal conductivity four times greater than
the stainless steel from which the prior floating evaporation pan was constructed. This greater
thermal conductivity allows for the water within the evaporation pan to be more thermally

coupled with the surrounding water, helping to maintain a similar water temperature within the
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evaporation pan to that of the surrounding water. It was noted in the Masoner and Stannard
(2010) study that water temperature within their floating evaporation pan increased at a higher
rate during the morning and decreased at a higher rate in the evening than the surrounding
water, modifying evaporation rates. Lastly, the volume of the water within the CFEP’s
evaporation pan is ten times greater than the prior floating evaporation pan, providing a larger
thermal mass of water within the evaporation pan, which further reduces the diurnal differences
in water temperature between the evaporation pan and surrounding water. An image of the
cover page of the CFEP patent is below in Figure 4.1 and the complete patent is in Appendix

B: Patent.
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Figure 4.1: Collison Floating Evaporation Pan Patent cover page.
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Chapter 5: Summary

Accurate accounting for all gains and losses in a hydrologic system will become
increasingly important with anticipated climate shifts toward higher temperatures, less open
water, and longer, more severe droughts (Friedrich et al., 2018; Hurd and Coonrod, 2008; Udall
and Overpeck, 2017). Open-water evaporative losses are one of the largest consumptive uses
of water in many arid and semi-arid areas in the world, and particularly in the Southwestern
United States (Bureau of Reclamation, 2012; Friedrich et al., 2018), which is predominately
measured by a technology that is inexpensive and easily applied but also known for its
inaccuracies.

This study focused on developing, validating, and comparing a new technique for
measuring open-water evaporation, the Collison Floating Evaporation Pan (CFEP), U.S. Patent

10,082,415 (Collison, 2018). The objectives for this study were

1. Identify the limitations and potential solutions to evaporation estimation
techniques;

2. Design, deploy, and test the reliability and validity of the CFEP and evaluate
uncertainties in standard evaporation estimation techniques; and

3. Patented improvements over prior evaporation estimating techniques.

The first phase of this study focused on producing a reliable evaporation measurement
from the CFEP. Once a reliable evaporation measurement was established, the accuracy and
precision were then tested with a hemispherical evaporation chamber (dome). Once the

accuracy and precision of the CFEP was verified, the CFEP’s evaporation rates were compared
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to an onsite Class A Pan, operated by the U.S. Army Corps of Engineers, and four evaporation
estimation equations: Hargreaves-Samani, Hamon, Penman, and U.S. Weather Bureau

equations.

5.1 Chapter Summaries

5.1.1 Chapter 2

Chapter 2 focused on the limitations of state-of-science and state-of-practice
evaporation estimation techniques. Land-based evaporation pans like the Class A Pan, water
budgets, and simple evaporation estimation equations were grouped into the state-of-practice
category due to their relatively straightforward methods and widespread usage by water
resource managers. Eddy covariance, Bowen ratio energy balance, remote sensing, and floating
evaporation pans were grouped into the state-of-science category due to their limited usage in
only well-funded scientific studies. The major limitations of state-of-practice techniques are
their inaccurate estimation of evaporation due to being outside the atmospheric boundary layer
(ABL) influence of a body of water and not capturing the effect of stored energy from a body
of water. The major limitations of state-of-science techniques are their cost and complexity of
use, greatly reducing their usage and durations of studies.

The CFEP was designed to overcome the limitations of both state-of-practice and state-
of-science techniques by being affordable, accurate, and straightforward in use. Specifically,
the CFEP’s fully automated and robust design limits costly field visits and provides longevity,
reducing year-on-year costs. The high accuracy of the CFEP is a product of the water within
its evaporation pan being thermally coupled with the surrounding lake or reservoir water in
addition to being within the atmospheric boundary layer influence of the lake or reservoir.

Lastly, how the CFEP measures evaporation is a straightforward process: a water level
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decrease equals evaporation, providing real-time evaporation rates that require no

postprocessing.

5.1.2 Chapter 3

The CFEP was installed on Cochiti Lake, New Mexico in late November 2017; stable
and reliable evaporation measurements were established on May 13, 2018, with only two small
data gaps due to logger and instrumentation failure. The CFEP measured a total of 1.127 m of
evaporation over the 201-day study (May 13 through November 30), with a daily peak
evaporation rate of 12.04 mm occurring on June 24 and a daily averaged evaporation rate of
5.6 mm. The results of the three dome tests showed a very close agreement in evaporation
measured by the dome and the CFEP, with a percent difference error between the dome and
CFEP being as follows: -6.17, 8.55, and -7.54 for September 30, October 19, and October 21,
respectively. The average percent difference between the dome and CFEP was -1.72 percent,
meaning the CFEP overestimated evaporation on average by 1.72 percent, well within the error
rate of =+ 5 percent of the dome (Reicosky and Peters, 1977; Reicosky, 1981; Reicosky et al.,
1983). The CFEP’s evaporation results were then compared to an on-site Class A Evaporation
Pan operated by the U.S. Army Corps of Engineers, the Hargreaves-Samani (HS) equation, the
Hamon equation, Penman equation, and the U.S. Weather Bureau (USWB) equation.

The evaporation results from the CFEP and the other four techniques diverged in the
fall, as the heat energy stored in the reservoir contributed to higher fall evaporation rates that
the Class A Pan and all four equations were unable to capture. The current standard method
for determining evaporation from Cochiti Lake is the Class A Pan, which, based on the data
from this CFEP study, underestimated evaporation by 1.12 MCM (910 acre-feet) during this

study’s duration, May 13 through November 30, 2018.
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5.1.3 Chapter 4

Chapter 4 is a brief summary of the Collison Floating Evaporation Pan patent, U.S.
patent number 10,082,415 B1 (Collison, 2018). The CFEP patent is an improvement patent on
an existing floating evaporation pan. Specifically, the improvements to the CFEP are the outer
wave guard and baffle within the evaporation pan. Both of these improvements were
implemented in order to increase the reliability of evaporation measurements, a significant

hindrance for prior floating evaporation pans.

5.2 Advancement in Hydrologic Sciences and Broader Impact

This study has shown that the CFEP can be a reliable, accurate, and precise evaporation
estimation technique. Because the water level in the CFEP’s evaporation pan is identical to the
surrounding water, the CFEP can be deployed in fetch-limited locations, such as small lakes
or channelized reservoirs, locations currently unavailable to other evaporation estimation
techniques. The major advancement in hydrologic sciences provided by this study is the
CFEP’s ability to estimate spatially variable evaporation rates on lakes and reservoirs. This
study showed that the windward side (shore-to-water winds) of a reservoir in an arid
environment can experience at least twice the evaporation rate as the leeward side (water-to-
shore winds).

Currently, a single value of estimated evaporation rates is applied to the entire lake or
reservoir, potentially significantly underestimating evaporation in arid environments.
Underestimating lake and reservoir evaporation amounts in water resource accounting models
can lead to inaccurate allocations of water resources. These inaccuracies can lead to expensive

compact delivery disputes, misuse of limited water resources, and less water available for
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beneficial use. As projected water supplies decrease and water demands increase, these
inaccurate water allocations need to be corrected in order to make water systems more efficient.

A major efficiency improvement to water resource systems is storing water where
evaporative losses are the smallest instead of storing water where it is most convenient, which
is the current practice. One example of storing water where it is convenient is Elephant Butte
Reservoir (EBR) in NM, USA. During periods of low available water, the vast majority of
water is required to be stored in EBR per Rio Grande Compact regulations under Article VII
(Rio Grande Compact, 1938). Elephant Butte Reservoir is also the location of the highest
evaporation rate in the Middle Rio Grande Basin, with an annual evaporation rate of 2.86 m.
Farther north in the Middle Rio Grande Basin are reservoirs capable of storing extra water,
which have annual evaporation rates around 1.32 m. By storing water in these northern
reservoirs, a potential annual water savings of 50-105 MCM (40-85k acre-feet) could be
achieved (Pelz, 2017). Currently, in the Middle Rio Grande Basin when there is plenty of
water, excess water is allowed to be stored in reservoirs with lower evaporative losses, but
when water is scarce, it is stored in the location with highest evaporative losses. If this major
inefficiency is corrected, a significant amount of extra water will be available for beneficial
uses.

Storing water where evaporation is the lowest is the concept of conservation at the
source (Friedrich et al., 2018). In order for conservation at the source methodologies to be
implemented, a significant number of water laws and compacts need to be changed. The
majority of these water laws and compacts were implemented in the early 1900s, when demand
was less and more water was available, so efficiency was sacrificed for convenience.

Additionally, the high inaccuracies of commonly used evaporation estimation techniques
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provide questionable evaporation rates, limiting the certainty of reducing evaporative losses
by applying conservation at the source methodologies.

Water resource managers depend on accurate and reliable lake and reservoir estimated
evaporation in order to properly manage water, but due to budget constraints, accuracy is
sacrificed for reliability. Current state-of-science evaporation estimation techniques can cost
between $150-300k + per year depending on location of deployment, instrumentation used,
maintenance schedule, and data processing needs. Further, they are complicated in practice
and require significant postprocessing of data in order to estimate evaporation. This significant
cost, when compared to the $10-30k per year cost of operating a Class A Pan, limits the most
accurate evaporation estimation techniques to well-funded and short-duration scientific
studies. The cost per year of the CFEP is estimated to be $40-70Kk, significantly less than the
state-of-science techniques, but as or more accurate. The CFEP fills the niche between
inexpensive and easily applied, but inaccurate, and expensive and complicated, but accurate
by being inexpensive, easily applied, and also accurate.

By filling this niche, water resource managers will have access to an affordable and
accurate water estimating technique, which will greatly enhance hydrologic science and have
broader impacts. Knowing accurate evaporation rates at considerably more locations will result
in a better understanding of evaporation losses based on different climatological regions,
geographical regions, and operations practices.

5.3 Future Research

Future research can further establish the CFEP as an accurate and reliable technique

for determining open-water evaporation rates. This can be accomplished by improvements to

the CFEP’s design and instrumentation, and by studies at different locations and seasons.
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5.3.1 Improvements to the CFEP

The CFEP can be improved via a more stable way to measure water level from within
the evaporation pan. The current method, a float attached to a linear-potentiometer, has
unwanted vertical oscillation during high wind events, adding uncertainty to the water-level
measurements’ accuracy and precision. Different water-level measurement techniques will be

tested in future studies.

5.3.2 Lake Powell, Elephant Butte, and Caballo Lake Studies

There is currently a CFEP deployed on Lake Powell, USA in conjunction with the
Desert Research Institute (DRI). DRI has two barges on Lake Powell, each equipped with the
instrumentation necessary to compute both an energy-budget estimation of evaporation and an
eddy covariance technique. The CFEP is attached to the barge in Warm Creek, Lake Powell;
the project started in November 2018 and will continue through December 2021. The CFEP
located on Cochiti Lake will be relocated to Elephant Butte Reservoir during the fall of 2019,
and a new CFEP will be constructed for Caballo Lake (25 km south of Elephant Butte) and
deployed around the same time period. These two CFEPs will be deployed for at least one year
and will be compared to the eddy covariance towers operated by New Mexico State University.
Over the next few years, these three different CFEPs will be validated with additional dome
tests throughout the year and compared to more sophisticated evaporation estimation
techniques to determine more extensively the accuracy and precision of the Collison Floating

Evaporation Pan.

94



References

Agam, N., and Berliner, P.R., 2006, Dew formation and water vapor adsorption in semi-arid
environments, a review, J. of Arid Envir. V 65, | 4, p. 572-590.

Alkaeed, O., Flores, C., Jinno, K., and Tsutsumi, A., 2006, Comparison of several reference
evapotranspiration methods for Itoshima Peninsula Area, Fukuoka, Japan, Faculty of
Engr. Kyushu Univ. Vol 66, No. 1, March.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998, Crop evapotranspiration-guidelines for
computing crop water requirements-FAQ irrigation and drainage paper 56, FAO — Food
and Agriculture Organization of the United Nations, Rome, Vol. 300, No. 9.

Allen, R.G., Walter, I.A., Elliott, R.L., Howell, T.A., Itenfisu, Daniel, Jensen, M.E., and
Snyder, R.L., 2005, The ASCE standard reference evapotranspiration equation:
American Society of Civil Engineers, Reston, Va., 216 p.

Allen, R.G., Tasumi, M., and Trezza, R., 2007, Satellite-based energy balance for mapping
evapotranspiration with internalized calibration (METRIC) — model, J. Irrig. Drain Eng.,
113(4):380-394.

Alvarez, V. M., Baille, A., Martinez, J. M., and Gonzélez-Real, M. M., 2006, Efficiency of
shading materials in reducing evaporation from free water surfaces. Agric. Water
Manage., 84, 229-239, https://doi.org/10.1016/j.agwat.2006.02.006.

Baldocchi, D.D., 2003, Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: past, present, and future: Global Change Biology,
V.9, no. 4, p. 479-492.

Bell, S.A., Carroll, P.A., Beardmore, S.L., England, C., and Mander, N., 2017, A
methodology for study of in-service drift of meteorological humidity sensors,
Metrologia 54 S63.

Blanken, P.D., Rouse, W.R., Culf, A.D., Spence, C., Boudreau, L.D., Jasper, J.N.,
Kochtubajda, B., Schertzer, W.M., Marsh, P., and Verseghy, D., 2000, Eddy covariance
measurements of evaporation from Great Slave Lake, Northwest Territories, Canada:
Water Resources Research, v. 36, no. 4, p. 1,069-1,077.

Bird, B.R., Stewart, W.E., and Lightfoot, E.N., 2007, Transport Phenomena, 2" ed. John
Wiley and Sons Inc. 928pg.

Bowen, I.S., 1926, The ratio of heat losses by conduction and by evaporation from any water
surface: Physics Review, v. 27, p. 779-787.

Brower, A.L, 2018, ET tool box, evapotranspiration toolbox for the Middle Rio Grande, a

water resources decision support tool, version 4.0, online access January 2019:
https://www.usbr.gov/uc/albug/water/ETtoolbox/ettoolbox.pdf.

95



Brutsaert, W.H., 1982, Evaporation into the atmosphere: Boston, Mass., D. Reidel
Publishing, 299 p.

Brutsaert, W., Sugita, M., 1992, Application of self-preservation in the diurnal evolution of
the surface energy budget to determine daily evaporation, Journal of Geophysical
Research Atmospheres 97(D17).

Bureau of Reclamation, September 2012, Colorado River Basin, Consumptive Uses and
Losses Report 2001-2005, Revised.

Bureau of Reclamation, December 2012, Colorado river basin water supply and demand
study, executive summary.

Chapman, Andrew, 2016, Types of drones: multi-rotor vs fixed-wing vs single rotor vs
hybrid VTOL, DRONE magazine, issue 3, June.

Chu, C.R,, Li, M.H., Chang, Y.F., Liu, T.C., and Chen, Y.Y., 2012, Wind-induced splash in
Class A evaporation pan. J. Geophys. Res., 117, D11101,
https://doi.org/10.1029/2012JB009146.

Cleugh, H.A., Leuning, R., Mu, Q., Running, S.W., 2006, Regional evaporation estimates
from flux tower and MODIS satellite data, Remote Sensing of Environment, 106, 285-
304.

Collison, J. W., 2018, Floating evaporation pan with adjustable freeboard and surrounding
wave-guard. U.S. Patent 10,082,415 September 25, 2018.

Crilley, D.M., and Collison, J.W., 2015, A water-budget approach to estimating potential
groundwater recharge from two domestic sewage disposal fields in eastern Bernalillo
County, New Mexico, 2011-12: U.S. Geological Survey Scientific Investigations Report
2015-5060, 32 p., http://dx.doi.org/10.3133/sir20155060.

Dalton, J., 1802, Experimental essays on the constitution of mixed gases; on the force of
steam or vapour from water and other liquids in different temperatures, both in a
Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat,
Mem. Proc. Manchester Lit. Phil. Soc., 5, 535-602.

Davis, J. R., 2001, Alloying: understanding the basics, ASM International, p 351-416,
DOI:10.1361/auth2001p351

Doorenbos, J., Pruitt, W.O., 1977, Food and Agriculture Organization Irrigation and
Drainage Paper, Guidelines for predicting crop water requirements, Rome.

DRI, 2019, Western regional climate center, Evaporation Station, accessed Feb. 2019,
https://wrcc.dri.edu/Climate/comp_table _show.php?stype=pan_evap_avg

Duan, Zheng, 2014, Estimating water balance components of lakes and reservoirs using
various open access satellite databases, Delft University of Technology

96



Ebaid, H.M.1., Ismail, S.S., 2010, Lake Nasser evaporation reduction study, Journal of
Advanced Research, 1, 315-322.

Eichinger, W.E., Nichols, J., Prueger, J.H., Hipps, L.E., Neale, C.M.U., Cooper, D.I., and
Bawazir, A.S., 2003, Lake evaporation estimation in arid environments, IIHR Report
No. 430, July 2003.

Elsawwaf, M., Willems, P., Pagano, A., and Berlamont, J., 2010, Evaporation estimates from
Nasser Lake, Egypt, based on three floating station data and Bowen ratio energy budget,
Theor. Appl. Climatol. 100:439-465.

Famsworth, R.K., Thompson, E.S., and Peck, E.L., 1982, Evaporation atlas for the
contiguous 48 United States: NOAA Technical Report NWS 33.

Federal Energy Management Program, 2017, Water and wastewater annual price escalation
rates for selected cities across the Unites States, U.S. Dept. of Energy, Office of Energy
Efficiency & Renewable Energy, September.

Fick, A., 1855, Poggendorff’s Annalen, Phil. Mag. S.4, Vol. 10, 30-39, 59-86 (in English).
Foken, Thomas, 2008, Micrometeorology: Berlin-Heidelberg, Springer, 306 p.

Follansbee, Robert, 1934, Evaporation from reservoir surfaces. In Transactions, VVol. 99, pp.
704-715. American Society of Civil Engineers, New York, NY.

Friedrich, K., Grossman, R.L., Huntington, J., Blanken, P.D., Lenters, J., Holman, K.D.,
Gochis, D., Livneh, B., Prairie, J., Skeie, E., Healey, N.C., Dahm, K., Pearson, C.,
Finnessey, T., Hook, S.J., and Kowalski, T., 2018, Reservoir evaporation in the western
United States, current science, challenges, and future needs, American Meteor. Society
Jan. 2018 pg. 167-187.

Garcia, C.A., Johnson, M.J., Andraski, B.J., Halford, K.J., and Mayers, C.J., 2008, Portable
chamber measurements of evapotranspiration at the Amargosa Desert Research Site near
Beatty, Nye County, Nevada, 2003-06: U.S. Geological Survey Scientific Investigations
Report 2008-5135, 10 p.

Gianniou, S.K., and Antonopoulos, V.Z., 2007, Evaporation and energy budget in Lake
Vegoritis, Greece, J. of Hydrology, 345, 212-223.

Grantz, K., Rajagopalan, B., Clark, M., and Zagona, E., 2007, Seasonal shifts in the North
American monsoon, Amer. Met. Soc. Journal of Climate, V20, 1923-1935.

Grayson, R.B., Argent, R., Nathan, R.J., McMahon, T.A., and Mein, R.G., 1996,
Hydrological recipes: estimation techniques in Australian hydrology. Cooperative
Research Centre for Catchment Hydrology, 125 pp.

Greenwood, E.A.N., and Beresford, J.D., 1979, Evaporation from vegetation in landscapes
developing secondary salinity using the ventilated chamber technique—I. Comparative

97



transpiration from juvenile Eucalyptus above saline ground-water seeps: Journal of
Hydrology 42, p. 369-382.

Hales, L.Z., 1981, Floating breakwaters: state-of-the-art literature review, U.S. Army, Corps
of Engineers, Coastal Engineering Research Center. Technical Report No. 81-1.

Hamon, W.R., 1961, Estimating potential evapotranspiration, Journal of the Hydraulics
Division, ASCE. 87 (HY3):107-120.

Harbeck, G.E., 1962, A practical field technique for measuring reservoir evaporation
utilizing mass-transfer theory, U.S. Geol. Surv. Prof. Pap., 272-E, 101-105.

Hargreaves, G.H., 1975, Moisture availability and crop production, Trans. Am. Soc. Agric.
Eng. 18(5):980-984.

Hargreaves, G.H., and Allen, R.G., 2003, History and evaluation of Hargreaves
evapotranspiration equation, J. Irrig. Drain Engr, 129(1): 53-63.

Hargreaves, G.H., and Samani, Z.A., 1985. Reference crop evapotranspiration from
temperature. Appl. Eng. Agric. 1(2), 96-99.

Harwell, G.R., 2012, Estimation of evaporation from open water—A review of selected
studies, summary of U.S. Army Corps of Engineers data collection and methods, and
evaluation of two methods for estimation of evaporation from five reservoirs in Texas:
U.S. Geological Survey Scientific Investigations Report 2012-5202, 96 p.

Hassan, M., 2013, Evaporation estimation for Lake Nasser based on remote sensing
technology. Ain Shams engineering journal, 4, 593-604.

Herting, A., Farmer, T., Evans, J., 2004, Mapping of the evaporative loss from Elephant
Butte Reservoir using remote sensing and GIS technology.

Horst, T.W., and Weil, J.C., 1994, How far is far enough?: The fetch requirements for
micrometeorological measurement of surface fluxes, Journal of Atmospheric and
Oceanic Technology, Vol. 11, page 1018-1025

Hounam, C.E., 1973, Comparison between pan and lake evaporation, World Meteorological
Organization, Technical Note No. 126, 52p.

Huntjens, P., Pahl-Wostl, C., Rihoux, B., Schliiter, M., Flachner, Z., Neto, S., Koskova, R.,
Dickens, C., 2011, Adaptive water management and policy learning in a changing
climate: a formal comparative analysis of eight water management regimes in Europe,
Africa, and Asia, Env. Pol. And Gov. 21, 145-163.

Hurd, B.H. and Coonrod, J., 2008. Climate change risks New Mexico’s waterways: its
byways and its flyways. Water Resources IMPACT 10(4).

98



Irmak, S., Irmak, A., Allen, R.G., and Jones, J. W. 2003, Solar and net radiation-based
equations to estimate reference evapotranspiration in humid climates. Journal of
Irrigation and Drainage Engineering. ASCE. 129(5):336-347.

Jensen, Marvin E., 2010, Estimating evaporation from water surfaces, CSU/ARS
Evapotranspiration Workshop, Fort Collins, CO, March 15.

Johnson, H.D., Brown, E.G., and Robie, R.B., 1979, Evaporation from water surfaces in
California. State of California Department of Water Resources, Bulletin 73-79.

Jovanovic, B., Jones, D.A., and Collins, D., 2008, A high-quality monthly pan evaporation
dataset for Australia, Climatic Change, 87:517-535.

Kaimal, J.C., and Finnigan, J.J., 1994, Atmospheric boundary layer flows, their structure and
measurement: New York, Oxford University Press, 289 p.

Kamath A., Chella, M. A., Bihs, H., and Arntsen, A.O., 2015 Evaluating wave forces on
groups of three and nine cylinders using a 3D numerical wave tank, Engineering
Applications of Computational Fluid Mechanics, 9:1, 343-354.

Klink, M., 2006, Evaporation estimation using a floating pan, Clemson University Masters
Theses, Paper 40.

Koch, W., Lange, O. L., and Schulze, E.D., 1971, Ecophysiological investigations on wild
and cultivated plants in the Negev Desert—I. Methods; A mobile laboratory for
measuring carbon dioxide and water vapor exchange: Oecologia 8, p. 296-309.

Koh, L.P., and Wich, S.A., 2012, Dawn of drone ecology: low-cost autonomous aerial
vehicles for conservation, Trop. Conserv. Sci. Vol 5 (2): 121:132

Kohler, M.A., 1954, Lake and pan evaporation, pp. 127-148, In: Water-Loss Investigations:
Lake Hefner Studies, Tech. Rep., Geological Survey Prof. Paper 269, 170 pp.

Kohler, M.A., Nordenson, T.J., and Fox, W.E., 1955, Evaporation from pans and lakes: U.S.
Weather Bureau Research Paper 38, 82 p.

Kormann, R., and Meixner, F., 2001, An analytical footprint model for non-neutral
stratification: Boundary-Layer Meteorology, v. 99, no. 2, p. 207-224.

Kumambala, P.G., and Ervine, A., 2010, Water balance model of Lake Malawi and its
sensitivity to cimate change. Open Hydrology Journal.

Lee, T.M., and Swancar, A., 1997, Influence of evaporation, ground water, and uncertainty in
the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida. Water-
Supply: Paper 2439, US Geological Survey.

99



Lenters, J.D., Kratz, T.K., and Bowser, C.J., 2005, Effects of climate variability on lake
evaporation: results from a long-term energy budget study of Sparkling Lake, northern
Wisconsin (USA). J Hydrol 308:168-195

Lenters, J. D., Anderton, J.B., Blanken , P., Spence, C., and Suyker, A.E., 2013, Assessing
the impacts of climate variability and change on Great Lakes evaporation. In: 2011
Project Reports. D. Brown, D. Bidwell, and L. Briley, eds. Available from the Great
Lakes Integrated Sciences and Assessments (GLISA) Center:

Liu, Z., and Higgins, C.W., 2015, Does temperature affect the accuracy of vented pressure
transducer in fine-scale water level measurements?, Geosci. Instrum. Method. Data
Syst., 4, 65-73.

Lowe, L., Webb, J.A., Nathan, R.J., Etchells, T., and Malano, H.M., 2009, Evaporation from
water supply reservoirs: An assessment of uncertainty. J. Hydrol., 376, 261-274,
https://doi.org/10.1016/j.jhydrol.2009.07.037.

Majidi, M., Alizadeh, A., Farid, A., Vazifedoust, M., 2015, Estimating evaporation from
lakes and reservoirs under limited data condition in a semi-arid region, Water Resources
Manage, 29:3711-3733.

Masoner, J.R., and Christenson, S.C., 2007, Adjustable floating open-water evaporation pan,
U.S. Patent 7,162,923 B1, January 16, 2007.

Masoner, J.R., and Stannard, D.I., 2010, A comparison of methods for estimating open-water
evaporation in small wetlands. Society of Wetland Science, 30:513-524.

Mauder, M. and Foken, T., 2006, Impact of post-field data processing on eddy covariance
flux estimated and energy balance closure, Met. Zeitschrift, Vol 15, No. 6, 597-609

Monteith, J.L., 1965, Evaporation and the environment, in The State and Movement of Water
in Living Organisms, edited by G.E. Fogg, pp. 205-234, Cambridge Univ. Press,
London.

Moreo, M.T., and Swancar, A., 2013, Evaporation from Lake Mead, Nevada and Arizona,
March 2010 through February 2012: U.S. Geological Survey Scientific Investigations
Report 2013-5229, 40 p

Morton, F.1., 1979, Climatological estimates of lake evaporation. Water Resources Research,
15:64-76.

Murray, F.W., 1967, On the computation of saturation vapor pressure, J. Appl. Meteorol.,
6:203-204.

Myers, Tom, 2013, Loss rates from Lake Powell and their impacts on management of the
Colorado River, JAWRA 1-2, DOI: 10.1111/jawr.12081

100



National Inventory of Dams, Washington DC, U.S. Army Corps of Engineers, Federal
Emergency management Agency, http://nid.usace.army.mil, accessed January 2019.

Ozgiir, E., and Kogak, K., 2015, The effects of atmospheric pressure on evaporation, Acta
Geobalcanica, Vol 1, 17-24.

Papadopulos, S.S. and Associates, 2000, Middle Rio Grande water supply study, Boulder,
Colorado.

Pahl-Wostl, C., 2007, Transitions towards adaptive management of water facing climate and
global change. Water Resour. Manage. 21:49-62.

Pelz, Jen, 2017, The Rio Grande, rethinking rivers in the 21% century, WildEarth Guardians,
Santa Fe, NM.

Penman, H.L., 1948, Natural evaporation from open water, bare soil, and grass, Proc. R.
Soc., London, Vol A193:120-145.

Penman, H.L., 1963, Vegetation and hydrology, Tech. Comm. 53. Commonwealth Bureau of
Soils, Harpenden, England.

Peterson, K., Hanson, A., Roach, J., Randall, J., Thomson, B., 2019, A dynamic statewide
water budget for New Mexico: phase I11-Future scenario implementation, NM WRRI
Technical Completion Report No. 380

Piper, B.S., Plinston, D.T., & Sutcliffe, J.V., 1986, The water balance of Lake Victoria.
Hydrological Sciences Journal, 31, 25-37

Priestly, C.H.B., and Taylor, R.J., 1972, On the assessment of surface heat flux and
evaporation using large-scale parameters, Monthly Weather Review, 100:81-82.

Puckridge, D.W., 1978, A comparison of evapotranspiration measurements of crop
communities using lysimeters and assimilation chambers: Australian Journal of Soil
Research 16, p. 229-236.

Rayner, D.P. 2005, Australian synthetic daily Class A pan evaporation. Queensland
Department of Natural Resources and Mines.

Reicosky, D.C., 1981, A research tool for evapotranspiration measurements for model
validation and irrigation scheduling: Proceedings, American Society of Agricultural
Engineers, Irrigation Scheduling Conference, Chicago, p. 74-80.

Reicosky, D.C., and Peters, D.B., 1977, A portable chamber for rapid evapotranspiration
measurements on field plots: Agronomy Journal 69, p. 729-732.

Reicosky, D.C., Sharratt, B.S., Ljungkull, J.E., and Baker, D.G., 1983, Comparison of alfalfa
evapotranspiration measured by a weighing lysimeter and a portable chamber:
Agricultural Meteorology 28, p. 205-211.

101



Rientjes, T.H.M., Perera, B.U.J., Haile, A.T., 2011, Regionalization for lake level simulation
- the case of Lake Tana in the Upper Blue Nile, Ethiopia. Hydrology and Earth System
Sciences, 15, 1167-1183.

Rio Grande Compact, 1938, Rio Grande Compact Commission Report,
https://www.usbr.gov/uc/albug/water/RioGrande/pdf/Rio_Grande_Compact.pdf,
accessed January, 2019.

Rosenberry, D.O., Stannard, D.I., Winter, T.C., and Martinez, M.L., 2004, Comparison of 13
equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake
area, North Dakota, USA: Wetlands, v. 24, no. 3, p. 483-497.

Rosenberry, D.O., Winter, T.C., Buso, D.C., and Liken, G.E., 2007, Comparison of 15
evaporation methods applied to a small mountain lake in the northeastern USA, Journal
of Hydrology, 340, 149-166.

Russell, J.M., & Johnson, T.C., 2006, The water balance and stable isotope hydrology of
Lake Edward, Uganda-Congo. Journal of Great Lakes Research, 32, 77-90

Samani, Z., 2019, Estimating solar radiation and evapotranspiration using minimum
climatological data (Hargreaves-Samani equation), Assoc. Prof. Civil Engr. Dept. New
Mexico State University, online only, accessed January 19, 2019,
http://www.zohrabsamani.com/research_material/files/Hargreaves-samani.pdf

Saugier, B., 1976, Sunflower. In J.L. Montieth (ed.) vegetation and the Atmosphere, v. 2:
London, Academic Press, p. 87-118.

Savoca, M.E., Senay, G.B., Maupin, M.A., Kenny, J.F., and Perry, C.A., 2013, Actual
evapotranspiration modeling using the operational Simplified Surface Energy Balance
(SSEBop) approach: U.S. Geological Survey Scientific Investigations Report 2013-
5126, 16 p., http://pubs.usgs.gov/sir/2013/5126.

Senay, G.B.; Bohms, S., Singh, R.K., Gowda, P.H., Velpuri, N.M., Alemu, H., and Verdin,
J.P., 2013, Operational evapotranspiration mapping using remote sensing and weather
datasets: a new parameterization for the SSEB approach. USGS Staff -- Published
Research. Paper 739.

Sene, K.J., 2000, Theoretical estimates for the influence of Lake Victoria on flows in the
upper White Nile. Hydrological Sciences Journal, 45, 125-145

Setegn, S.G., Chowdary, V.M., and Mal, B.C., 2011, Water balance study and irrigation
strategies for sustainable management of a tropical Ethiopian lake: A Case Study of
Lake Alemaya. Water Resources Management, 25, 2081-2107

Sharma, M.L., 1985, Estimating Evapotranspiration, in Advances in Irrigation: Wembley,
Australia, Academic Press, v. 3, p. 213-281.

102



Sivapragasam, C., Vasudevan, G., Maran, J., Bose, C., Kaza, S., and Ganesh, N., 2009,
Modeling evaporation-seepage losses for reservoir water balance in semi-arid regions,

Water Res. Manage. 23:853-867.

Stannard, D.l., 1988, Use of a hemispherical chamber for measurement of
evapotranspiration: U.S. Geological Survey Open-File Report 88-452, 18 p.

Stannard, D.l., Gannett, M.W., Polette, D.J., Cameron, J.M., Waibel, S., and Spears, J.M.,
2013, Evapotranspiration from wetland and open-water sites at Upper Klamath Lake,
Oregon, 2008-2010: U.S Geological Survey Scientific Investigations Report 2013-5014,

65 p., http://pubs.er.usgs.gov/publication/sir20135014.
Stewart, R. W., 1979, The atmospheric boundary layer, Third IMO Lecture, World Meteor.

Org. No. 523

Tanny, J., Cohen, S., Assouline, S., Lange, F., Grava, A., Berger, D., Teltch, B., and
Parlange, M. B., 2008, Evaporation from a small water reservoir: Direct measurements
and estimates. J. Hydrol., 351, 218-229, https://doi.org/10.1016/j.jhydrol.2007.12.012.

Trask, J. C., 2007, Resolving hydrologic water balances through novel error analysis, with
focus on inter-annual and long-term variability in the Tahoe Basin. Ph.D. dissertation,
University of California, Davis, 378 pp.

Troen, 1.B., and Mahrt, L., 1986, A simple model of the atmospheric boundary layer;

sensitivity to surface evaporation, Boundary-layer Met. 37, 129-148.

Turnipseed, D.P., and Sauer, V.B., 2010, Discharge measurements at gaging stations: U.S.
Geological Survey Technigues and Methods book 3, chap. A8, 87 p.

Udall, B. and Overpeck, J., 2017, The twenty-first century Colorado River hot drought and
implications for the future, Water Resour. Res., 53, 2404 2418,
d0i:10.1002/2016WR019638.

U.S. Environmental Protection Agency (USEPA), 2009, National lakes assessment: a
collaborative survey of the nation’s lakes. EPA 841-R-09-001. U.S. Environmental

Protection Agency, Office of Water and Office of Research and Development,

Washington, D.C.

Velpuri, N.M., Senay, G.B., and Asante, K.O., 2012, A multi-source satellite data approach
for modelling Lake Turkana water level: calibration and validation using satellite
altimetry data. Hydrology and Earth System Sciences, 16, 1-18

Winter, T.C., 1981, Uncertainties in estimating the water balance of lakes: Water Resources

Bulletin, v. 17, no. 1, p. 82-115.

Winter, T.C., Rosenberry, D.O., and Sturrock, A.M., 1995, Evaluation of 11 equations for
determining evaporation from a small lake in the north central United States, Water Res

Research, Vol 31, No. 4, p. 983-993, April.
103



Winter, T.C., Buso, D.C., Rosenberry, D.O., Likens, G.E., Sturrock, A.M., and Mau, D.P.,
2003, Evaporation determined by the energy-budget method for Mirror Lake, New
Hampshire. Limnol Oceanogr 48(3):995-1009

Wurbs, R.A, and Ayala, R.A., 2014, Reservoir evaporation in Texas, USA, J. Hydrol., 510,
1-9.

Young, H.D., and Sears, F.W., 1992, University Physics, 8" ed, Addison-Wesley Pub. Co.
1132p

104



Appendix A: Evaporation Pan History

Prior to the 1934 American Society of Civil Engineers symposium on “Evaporation
from Water Surfaces,” an assortment of evaporation estimation methods was in use. These
methods varied in size, shape, and location, which hampered efforts to compare evaporation
rates from multiple reservoirs and lakes. This symposium was tasked with determining a
standardized method for measuring evaporation. Three main types of pans were compared: the
Class A Pan, the Colorado Sunken Pan, and the USGS floating pan. The Colorado Sunken Pan
was shown to be more accurate than the Class A Pan, but the reliability of the evaporation
measurements was questionable because of debris being blown into the pan due to the top of
the pan being level with the ground surface. The USGS floating pan was shown to be the most
accurate way to measure evaporation, but the reliability of data due to loss or addition of water
to the pan during high wave activity could not be accounted for. Additionally, the difficulty of
daily access (having to boat out to the USGS floating pan) resulted in gaps in the record,
reducing the reliability of records. This symposium determined that Class A Pans should be
the standard method because of the ease of access, low cost of instillation, reliability of data,
and expansive records, even though it was the least accurate method investigated (Follansbee,
1934).

The Class A Pan consists of a 22-gauge galvanized iron pan, typically 1.22 meters in
diameter and 0.254 meters deep, on a wood base 0.152 meters above the ground. The Colorado
Sunken Pan is a 0.914 meters square, 18-gauge galvanized iron pan between 0.457 and 0.914
meters deep with all but the top 50-152 mm of the pan above the surface of the ground, where
the water level within the pan is level with the surrounding ground. For both the Class A Pan

and Colorado Sunken Pan, water levels are typically measured once each day in the morning
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and filled once a week. By filling the pan once a week, the thermal mass associated with the
water in the pan decreases through the week, allowing the water to be more susceptible to
diurnal temperature changes later in the week, affecting evaporation rates.

Lastly, the USGS Floating Evaporation Pan is a 0.914 meters square and 0.457 meters
deep pan made from 18-gauge galvanized iron surrounded by a raft supported by floatation
barrels with all but the top 76 mm of the pan above the water level, where the water level
within the pan is level with the surrounding water. Measurements from the USGS Floating
Evaporation Pan are completed by counting the number of calibrated cups (each cup adds 0.254
mm to the pan) in order to bring the water level within the pan to a set level. Additionally,
during a rain event over a floating pan, the water that splashes in and the water that splashes
out of the pan are considered to be equal to each other and, thus, cancel each other out whereas
water can only splash out of a land-based pan indicating an evaporation loss. Due to the
location of the USGS Floating Evaporation Pan, the middle of a reservoir, daily measurements
were more difficult to obtain and often resulted in missed measurements (Follansbee, 1934).

The reliability limitations of each of the aforementioned pans was the deciding factor
for the 1934 ASCE Symposium’s decision to recommend the Class A Pan as the standard. The
Colorado Sunken Pan had reliability issues related to debris blowing into the pan and the USGS
Floating Evaporation Pan had the problem of not being able to account for waves over topping
the pan or water splashing out of the pan (Follansbee, 1934). Thus, the Class A Pan was chosen
despite its own shortcomings.

One such shortcoming with the Class A Pan relates to the fact that the heat capacity of
land-based pans varies substantially from lakes and reservoirs. The available energy within a

land-based pan for evaporation is susceptible to diurnal variations in weather whereas in larger
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bodies of water, the available energy for evaporation changes on a seasonal basis. This
difference in heat capacity further decreases the ability of land-based pans to estimate lake or
reservoir evaporation accurately on a daily basis. In order to overcome this limitation of
evaporation from land-based pans, a pan coefficient needs to be applied. Typically, a pan
coefficient around .70 is used for annual estimation (Follansbee, 1934; Kohler, 1954). Kohler
(1954) reported that the use of a 0.70 pan coefficient on annual evaporation rates should be
within 10 to 15 percent of actual evaporation of the body of water of interest.

The most common technique for estimating lake and reservoir evaporation in the U.S.
is the Class A Pan. The U.S. is not alone in using the Class A Pan as its main source of lake
and reservoir evaporation estimation; the Food and Agriculture Organization of the United
Nations recommends a Class A Pan when data is not sufficient to use the Penman-Monteith
equation (Allen et al., 1998; Doorenbos and Pruitt, 1977; Monteith, 1965). Additionally,
Australia has used the Class A Pan as its standard since the 1910s and has produced a method
that creates synthetic daily Class A Pan evaporation data, based on many years and locations
of Class A Pan data, in order to estimate areas lacking Class A Pan data (Rayner, 2005).
Clearly, Class A Pan’s are still widely used and are the accepted, standard technique for
measuring estimated evaporation rates. However, issues with accuracy still remain, which is a
severely limiting factor to its continued use as the climate only becomes drier and hotter. As
the climate shifts towards hotter and drier conditions in the Southwestern U.S. (Friedrich et al.,
2018; Udall and Overpeck, 2017), conditions in which Class A Pans tend to greatly
overestimate evaporation (Eichinger et al., 2003; Jovanovic et al., 2008), a replacement

technique for estimating evaporation is needed.
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