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ABSTRACT 

Traffic crashes have resulted in significant cost to society in terms of life and 

economic losses, and comprehensive examination of crash injury outcome patterns is of 

practical importance. By inferring the parameters of interest from prior information and 

studied datasets, Bayesian models are efficient methods in data analysis with more 

accurate results, but their applications in traffic safety studies are still limited. By 

examining the driver injury severity patterns, this research is proposed to systematically 

examine the applicability of Bayesian methods in traffic crash driver injury severity 

prediction in traffic crashes. In this study, three types of Bayesian models are defined: 

hierarchical Bayesian regression model, Bayesian non-regression model and knowledge-

based Bayesian non-parametric model, and a conceptual framework is developed for 

selecting the appropriate Bayesian model based on discrete research purposes. 
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Five Bayesian models are applied accordingly to test their effectiveness in traffic 

crash driver injury severity prediction and variable impact estimation: hierarchical 

Bayesian binary logit model, hierarchical Bayesian ordered logit model, hierarchical 

Bayesian random intercept model with cross-level interactions, multinomial logit (MNL)-

Bayesian Network (BN) model, and decision table/naïve Bayes (DTNB) model. A 

complete dataset containing all crashes occurring on New Mexico roadways in 2010 and 

2011 is used for model analyses. The studied dataset is composed of three major sub-

datasets: crash dataset, vehicle dataset and driver dataset, and all included variables are 

therefore divided into two hierarchical levels accordingly: crash-level variables and 

vehicle/driver variables.  

From all these five models, the model performance and analysis results have 

shown promising performance on injury severity prediction and variable influence 

analysis, and these results underscore the heterogeneous impacts of these significant 

variables on driver injury severity outcomes. The performances of these models are also 

compared among these methods or with traditional traffic safety models. With the 

analyzed results, tentative suggestions regarding countermeasures and further research 

efforts to reduce crash injury severity are proposed. The research results enhance the 

understandings of the applicability of Bayesian methods in traffic safety analysis and the 

mechanisms of crash injury severity outcomes, and provide beneficial inference to 

improve safety performance of the transportation system.  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 General Background  

Traffic crashes have resulted in significant cost to society in terms of fatalities, 

serious injuries, and property losses. Statistical data show that approximately 1.24 million 

people are killed and 50 million people are injured each year in traffic crashes worldwide 

(World Health Organization, 2013). In the U.S., there were 5.6 million reported traffic 

crashes in 2012, resulting in 33,561 deaths and 2,362,000 injuries (National Highway 

Traffic Safety Adminstriation(NHTSA), 2013), and each fatality and incapacitating 

injury, on average, cost approximately $1.42 million and $78,700, respectively (National 

Health Council, 2013). Specific patterns are also revealed from national crash data. 

According to NHTSA (2013), 29% of total roadway crashes result in an injury and less 

than 1% result in a death. 54% of total fatal crashes and 55% of total fatalities occur in 

US rural areas, where only 19% of the total population is living. With regard to crash 

types, 61% of fatal crashes are single-vehicle crashes, and these numbers are 32% for 

injury crashes and 30% for property-damage-only crashes, respectively. Thirty percent of 

fatal crashes were associated with alcohol-impaired driving.  

Significant development in the automotive industry and numerous 

implementations of national road safety strategies have been made to reduce the 

frequency and injury severity of traffic crashes by conducting peer research and applying 

target-oriented countermeasures. At the national strategy level, the Federal Highway 

Administration (FHWA) proposed numerous traffic safety strategies regarding three 
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major aspects-management, human resource and technology-to enhance traffic safety and 

traffic operation efficiency, such as Traffic Safety Management Functions (TSMF), 

Intelligent Transportation System (ITS), Variable Speed Limits (VSL), etc. (NHTSA, 

2001). While at the research level, considerable studies have been conducted to examine 

crash mechanisms, identify contributing factors to crash frequency and severity, and 

propose effective countermeasures to reduce both crash occurrences and injury outcomes. 

Further studies also focus on the characteristics of crashes regarding environmental and 

geometric features, vehicle situations as well as driver behaviors. 

 

1.1.2 Traffic Safety Analysis 

At the beginning of the twentieth century, traffic crashes were believed to be 

occasional and unpredictable (Riviere et al., 2006). With the development of the 

automobile industry and statistical modeling techniques in traffic safety analyses, a traffic 

crash is conventionally considered as a consequence of the complicated interactions of 

factors related to major components: roadway and environment characteristics, vehicle 

characteristics and human factors (Hossain and Muromachi, 2012). In recent years, traffic 

dynamics is proposed to be the fourth contributing component to traffic crashes, 

suggesting that traffic crashes regularly occur due to sudden formation of disrupted traffic 

conditions even on roadways that meet design standards and under favorable weather 

conditions. 

Due to the significant economic and emotional burden that traffic crashes impose 

on social welfare, researchers have persistently sought ways to obtain a better 
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understanding of the factors that affect the frequency of traffic crashes and the degree of 

injury suffered by those involved in crashes, and propose implementable improvements 

in vehicle and roadway design to reduce the number of traffic crashes and traffic injury 

severity levels. In general, crash data are extracted from standard police reports where 

some minor collisions are under-reported, and the detailed driving data (acceleration, 

braking, steering information, driver response to stimuli, etc.) and crash data (for example, 

what might be available from vehicle black-boxes) that would better assist identification 

of cause and effect relationships with regard to crash probabilities are typically not 

available. Therefore, researchers have proposed numerous analytic approaches to study 

the factors that influence the likelihood of a crash occurring or, given that a crash has 

occurred, the heterogeneous factors that may mitigate or exacerbate the degree of injury 

suffered by crash-involved road users. To gain such understanding, safety researchers 

have applied a wide variety of methodological techniques over the years, addressing 

traffic safety concerns from multiple aspects, such as crash locations, crash types, driver 

or vehicle types, weather or road conditions, etc. A summary of the modeling approaches 

applied in traffic safety analyses is provided in Section 1.1.3. 

 

1.1.3 Modeling Approach and Methodology  

Lord and Mannering (2010) summarized the data and methodological issues in 

crash frequency analyses that should be addressed or taken into account in model 

development and data analyses in the following eleven aspects: over-dispersion, under-

dispersion, time-varying explanatory variables, temporal and spatial correlation, low 

sample-mean and small sample size, injury-severity and crash-type correlation, under-
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reported crashes, omitted-variables bias, endogenous variables, functional form, and 

fixed parameters. To deal with these data and methodological issues associated with 

crash-frequency data (many of which could compromise the statistical validity of an 

analysis if not properly addressed), a wide variety of methods have been applied over the 

years.  

Table 1-1 lists the major existing models applied to crash frequency analysis, with 

a peer study as an example for each model. The advantage as well as disadvantage of 

each model was discussed by Lord and Mannering (2010). 

Table 1-1 Crash Frequency Research Model Summary. 

Model Type Related Study Model Type Related Study 
Poisson model Miaou (1994) Random-effects model Wang et al. (2009) 

Negative 
binomial/Poisson-

Gamma model 

Malyshkina and 
Mannering 

(2010) 

Negative multinomial 
model 

Caliendo et al. 
(2007) 

Poisson-lognormal 
model 

Lord and 
Miranda-

Moreno (2008) 

Random-parameter 
model 

Anastasopoulos 
and Mannering 

(2009) 
Zero-inflated 
Poisson and 

negative binomial 
model 

Lord et al. 
(2007) Bivariate/multivariate Ma and 

Kockelman (2006) 

Conway-Maxwell-
Poisson model 

Lord et al. 
(2010) 

Finite mixture/Markov 
switching 

Park and Lord 
(2009) 

Gamma Model Oh et al. (2006) Duration model Chung (2010) 

Generalized 
estimating equation 

Wang and 
Abdel-Aty 

(2006) 

Hierarchical/multilevel 
model Kim et al. (2007) 

Generalized additive 
model 

Xie and Zhang 
(2008) 

Neural network, 
Bayesian network and 
support vector machine 

Li et al. (2008) 

 

On the other hand, Savolainen et al. (2011) summarized data and methodological 

issues in crash-injury severity analyses from eight aspects, some of which are similar to 
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the ones for crash frequency analyses: under-reported crashes, ordinal nature of crash and 

injury severity data, fixed parameters, omitted variable bias, small sample size, 

endogeneity, within-crash correlation, and spatial and temporal correlations. 

Analysis of crash severity can be conducted in different ways for various purposes. 

Some studies focus on the crash frequencies at specific traffic sites associated with 

different severity levels (e.g. fatal, serious, slight) and investigate how geometric, traffic, 

and environmental factors affect the crash severity. While these kind of studies normally 

take each crash as the subject unit, analysis can also be undertaken based on the driver-

vehicle units involved in crashes to examine individual severity. 

Over the years, a wide variety of statistical techniques have been used to study 

crash-injury severities, such as multinomial logit model, ordered logit or probit model, 

artificial neural network, etc. Table 1-2 provides the primary models used for crash-injury 

severity analysis, with an application study for each method. 

Table 1-2 Crash Injury Severity Research Model Summary. 

Model Type Related Study Model Type Related Study 
Artificial neural 
network 

Chimba and Sando 
(2009) 

Mixed joint binary 
logit-ordered logit 

Eluru and Bhat 
(2007) 

Bayesian 
hierarchical 
binomial logit 

Huang et al. (2008) Multinomial logit Islam and 
Mannering (2006) 

Bayesian ordered 
probit Xie et al. (2009) Multivariate probit  Winston et al. 

(2006) 
Binary logit and 
binary probit 

Haleem and Abdel-
Aty (2010) Nested Logit Savolainen and 

Mannering (2007) 
Bivariate binary 
probit 

Lee and Abdel-Aty 
(2008) Ordered logit/probit Wang and Abdel-

Aty (2008) 
Bivariate ordered 
probit 

de Lapparent 
(2008) 

Partial proportional 
odds model Wang et al. (2009) 

Classification and 
regression tree 

Chang and Wang 
(2006) Mixed logit Anastasopoulos and 

Mannering (2011) 
Generalized ordered 
logit 

Quddus et al. 
(2010) Mixed ordered logit Srinivasan (2002) 
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Table 1-2 (Continued) 

Model Type Related Study Model Type Related Study 
Heterogeneous 
outcome model 

Quddus et al. 
(2010) 

Mixed ordered 
probit 

Christoforou et al. 
(2010) 

Heteroskedastic 
ordered logit/probit Lemp et al. (2011) Sequential binary 

logit 
Dissanayake and Lu 
(2002) 

Log-linear model Chen and Jovanis 
(2000) 

Sequential binary 
probit 

Yamamoto et al. 
(2008) 

Markov switching 
multinomial logit 

Malyshkina and 
Mannering (2009) Sequential logit Jung et al. (2010) 

Mixed generalized 
ordered logit Eluru et al. (2008) Simultaneous binary 

logit Ouyang et al. (2002) 

 

1.1.4 Applications of Bayesian Estimation Methods in Traffic Safety Analyses 

Traffic safety engineers are among the early users of Bayesian estimation 

methods for analyzing crash data (Carriquiry and Pawlovich, 2004). Applications of 

Bayesian methods in traffic safety analyses are classified into two categories:  Bayesian 

statistical inference and Bayesian network (BN) modeling. Bayesian estimation methods 

generate a multivariate posterior distribution across all parameters of interest, as opposed 

to the traditional Maximum Likelihood Estimation (MLE) approach, which emphasizes 

and offers on the modal values of parameters and relies on asymptotic properties to 

ascertain covariance. Empirical Bayes (EB) method was the first Bayesian estimation in 

traffic safety analyses and now has been widely accepted in the field (Cafiso et al., 2010; 

de Lapparent, 2006; Elvik, 2013, 2008; Hauer, 2001, 1992; Lord and Park, 2008; Persaud 

and Lyon, 2007; Pulugurtha and Otturu, 2014; Quigley et al., 2011).  

However, there are significant drawbacks in the EB approach regarding model 

assumptions and model time consumption that prevent it from universal applications. 

Therefore, the Full Bayes (FB) method was proposed for model estimation, in particular 

for implementations via multi-level hierarchical models. In a full Bayesian analysis, prior 
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information and all available data are seamlessly integrated into posterior distributions 

based on expert knowledge, with which all uncertainties are accounted for and there is no 

need to pre-process data to obtain Safety Performance Functions (SPF) and other such 

prior estimates of the effect of covariates on the outcome of interest. With these 

advantages over the EB method, the FB method has been widely applied in traffic safety 

analysis (Abdalla, 2005; Eksler, 2010; El-Basyouny and Sayed, 2010; Flask and 

Schneider, 2013; Huang et al., 2008; Ma et al., 2008; MacNab, 2004, 2003; Persaud et al., 

2010; Xie et al., 2013; Yanmaz-Tuzel and Ozbay, 2010).  

BN is a probability inference method incorporating graphic topology theory and 

Bayes’ Theorem. Gregoriades (2007) highlighted the interest of using BN to model 

traffic crashes and discussed the need to not consider traffic crashes as a deterministic 

assessment problem. BNs make it easy to describe crashes that involve many 

interdependent variables. The relationship and structure of the variables can be studied 

and trained from crash data, and it is not necessary to know any pre-defined relationships 

between dependent and independent variables. A BN can be constructed manually, semi-

automatically from the data or by a combination of a manual and data driven process 

(Kjaerulff and Madsen, 2008), and the parameters of the BN is estimated from the 

database using a learning algorithm, such as the Expectation-Maximization (EM) 

algorithm. This approach is easily applicable and the learned structure is understandable 

with expert knowledge involved. Numerous studies have been conducted to analyze 

traffic crash patterns using BN (Bedeley et al., 2013; Borg et al., 2014; Castillo et al., 

2008; Feng and Timmermans, 2013; Goodheart, 2013; Gregoriades and Mouskos, 2013; 

Jin et al., 2010; Liang and Lee, 2014; Liu et al., 2014; Mbakwe et al., 2014; Mujalli and 
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de Oña, 2011; Ozbay and Noyan, 2006; Riviere et al., 2006; Zhao et al., 2012). However, 

searching for an optimal BN classifier in the global space is extremely computation-

intensive considering a large amount of independent variables, and it is indispensable to 

apply a variable selection procedure to find a set of significant contributing variables and 

screening out redundant ones to achieve feasible and effective network structure 

estimation. Therefore, several variable selection techniques based on variable correlation 

or importance ranking are applied to assist BN modeling. 

 

1.2 Problem Statement and Research Objectives 

Currently, statistical and mathematical models are major tools used for traffic 

injury severity analyses. It has been proved in many ways that hierarchical modeling 

regarding data structure and variable characteristics provides more reliable results in 

parameter estimates for traffic crash injury analyses. As discussed before, Bayesian 

estimation methods provide each parameter of interest a posterior density, which is a 

product of a long series sampling from the posterior distribution and the prior information 

about the parameter as well as the data. A Bayesian modeling approach provides a 

considerable interpretive advantage because posterior estimates reflect the probabilities 

that the analyst is primarily interested in, the probability of the null hypothesis being true 

(called a posterior credible interval or credible set) (Washington et al., 2005). However, 

currently studies using hierarchical Bayesian modeling assume crash level heterogeneity 

to be numerical constants (Huang et al., 2008), rather than established mathematical 

relationships between crash variables and vehicle variables. Besides, existing studies on 

traffic crash injury severity, including studies using hierarchical models with FB 
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estimation, generally consider injury outcome as a binary variable in modeling (Huang et 

al., 2008; Yu and Abdel-Aty, 2014a), or modified it as an ordered multi-level variable 

(Huang et al., 2011, 2014), with which the proportional odds assumption are utilized 

(Congdon, 2005). However, these assumptions may not be suitable for non-monotonic-

changing severity data due to the strong model restrictions on the linear relationship 

between explanatory variables and independent outcomes. Therefore, a more commonly 

used unordered discrete choice model, hierarchical multinomial logit model, should be 

used for factor influence examination.  

Meanwhile, as mentioned above, it is for most cases assumed that crash driver 

injury severity or its transformation is a linear regression of its contributing covariates, 

which may not always be appropriate and universally applied. Non-regression and 

conditionally probabilistic relationships might exist among driver injury severity and the 

contributing factors. Hence, Bayesian non-regression models should be applied to 

investigate dependent relationship between crash driver injury severity and the 

contributing factors should be assumed and investigated.  

Furthermore, several popular knowledge-based non-parametric machine-learning 

methods, such as artificial neural network (ANN), and classification and regression tree 

(CART), have been used in traffic safety studies, which is an effective group of methods 

in crash data analysis. However, no Bayesian concept has been incorporated in this 

method group. Therefore, this study also aims to propose a knowledge-based Bayesian 

non-parametric method to examine driver injury severity patterns in traffic crashes.  
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Overall, this study is proposed to systematically examine the driver injury severity 

patterns in traffic crashes by developing or applying new Bayesian family models 

regarding hierarchical regression, non-regression, and non-parametric analyses. The 

research framework is shown as follows in Figure 1-1.  

 

Figure 1-1 Propose Research Framework. 

To meet the aim of this study, the following objectives are to be achieved:  
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1) To develop a methodology framework regarding the appropriate selection of 

Bayesian family methods on crash data analysis based on distinctive research purpose, 

data availability and data structure. 

2) To summarize existing hierarchical Bayesian regression model structures to better 

understand and interpret data heterogeneity among crash and vehicle characteristics based 

on Bayesian inference. 

3) To develop and utilize a new hierarchical random intercept model to capture 

unobserved heterogeneity by systematically examining the cross-level interaction effects 

between crash-level variables and vehicle/driver-level variables. 

4) To develop a new Bayesian non-regression model to predict driver injury severity 

in traffic crashes and quantify non-regression relationship between significant dependent 

attributes and independent crash driver injury severity outcomes. 

5) To develop a new knowledge-based Bayesian non-parametric model to formulate 

crash driver injury severity pattern and qualitatively investigate the contributing factors to 

these injury severity outcomes. 

 

1.3 Dissertation Organization 

The remainder of this dissertation is organized in the following manner. Chapter 2 

reviews previous work related to this dissertation research. First, the macroscopic and 

microscopic focuses of traffic safety analysis are introduced and the popular models used 

in traffic crash frequency analysis are summarized. Then, contemporary work on traffic 
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injury severity analysis is comprehensively examined. In this section, existing 

mathematical and machine-learning models that are utilized in traffic injury severity 

analysis are reviewed, and the contributing factors to crash injury severity, including 

crash location, crash type, vehicle type, driver characteristics and environment factors, 

are discussed. Third, peer applications of Bayesian methods in traffic safety analysis are 

generalized, including Bayesian inference modeling and Bayesian network analysis. 

Additionally, other data mining techniques such as neural network and classification and 

regression tree (CART), and their applications in traffic safety analysis, are examined and 

summarized. Finally, the research explained the unobserved heterogeneity issue in traffic 

safety research, and examined the popular models and peer studies addressing this issue. 

Chapter 3 presents the methodology framework design and the development and 

specifications of the utilized models in this dissertation. The major aim of this research is 

to systematically examine the applicability of Bayesian models in traffic crash driver 

injury severity analysis. Three primary categories of Bayesian methods are defined in this 

study: hierarchical Bayesian regression models, Bayesian non-regression model, and 

knowledge-based Bayesian non-parametric model, and a model selection flow chart is 

developed for the selection of most appropriate model based on discrete data structures 

and research objectives. Then within each model category, detailed structure design and 

model specifications of the five utilized models are presented, including hierarchical 

binary logit model, hierarchical ordered logit model, hierarchical random intercept model 

with cross-level interactions, MNL-BN hybrid model and decision table/naïve Bayes 

(DTNB) model.   
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Using the 2010-2011 New Mexico roadway crash dataset as a base dataset, the 

applicability and effectiveness of the proposed models are evaluated and the results are 

discussed in Chapters 4, 5 and 6. Chapter 4 discussed the case studies using three 

hierarchical Bayesian regression models. A two-year rural interstate crash dataset is 

modeled by the hierarchical Bayesian binary logit model, where the model fitness is 

discussed and the influences of heterogeneous contributing factors are assessed based on 

the estimated posterior coefficients. An extracted rural non-interstate crash dataset is 

simulated by the hierarchical ordered logit model, where the driver injury severity is 

defined with 5 monotonically increasing values: no injury, complaint of or possible injury, 

visible injury, incapacitating injury and fatality. As for the hierarchical random intercept 

model with cross-level interactions, a dataset of rural truck crashes in 2010 and 2011 is 

used to examine the applicability of  this model and the contributing factors related to 

truck driver injury severity outcome, which is treated as a 3-level multi-categorical 

outcome: no injury, non-incapacitating injury, incapacitating injury/death. 

Following Chapter 4, Chapter 5 illustrates a case study of the proposed 

multinomial logit (MNL) -BN hybrid model, where a two-year rear-end crash dataset is 

used in this analysis to examine driver injury severity patterns. The input variables for 

BN classifier training are selected through an MNL model and the model performance is 

evaluated based on classification accuracy, true positive rate, false positive rate, F-

measure, receiver operating characteristic (ROC) curve, area under ROC curve (AUC), 

and classification confusion matrix. The probabilistic influences of contributing factors 

on driver injury severity are assessed through Bayesian probability inference procedure 

and are explicitly discussed.  
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Chapter 6 presents the applicability of the decision table/Naïve Bayes (DTNB) 

classifier, a representative of the knowledge-based Bayesian non-parametric models, in 

traffic safety analysis. The same rear-end crash dataset in MNL-BN analysis is also used 

in this case study. The model performance is also evaluated using the same measurements 

as used in MNL-BN hybrid analysis, and the variable influences are discussed based on 

their frequency of values in the extracted decision rules. Additionally, a side-by-side 

comparison is also conducted to evaluate the performance of the MNL-BN model and the 

DTNB classifier based on their produced results.  

Finally, Chapter 7 provides conclusions of this research effort and 

recommendations for future research.  
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Chapter 2 State Of The Art 

2.1 General Traffic Safety Analysis and Traffic Frequency Analysis 

Traffic safety analyses are conventionally composed of two major parts: traffic 

crash frequency analyses and traffic crash severity analyses. Traffic crash frequency 

analyses, partly overlapping with traffic crash severity analyses, help either at a 

macroscopic level to examine traffic crash frequency on roadway segments for different 

crash injury severity levels (i.e. property-damage-only, injury and fatality), or at a 

microscopic level to identify the contributing factors and their respective influences on 

the probability of each injury severity level in a crash.   

With respect to traffic crash frequency analyses, Lord and Mannering (2010) 

summarized a variety of methodological alternatives that are used in crash frequency 

studies; strengths and weaknesses of these modeling techniques have been assessed. 

According to existing crash frequency studies, the major modeling techniques applied are:  

Random effect models (including Poisson and negative binomial models) (Chin 

and Quddus, 2003; Lord, 2006; Shankar et al., 1995, 1998; Yaacob et al., 2010). For 

example, Shankar et al. (1998) compared Random Effects Negative Binomial (RENB) 

model with cross-sectional Negative Binomial (NB) model in predicting crash occurrence.  

Hierarchical Bayesian models (Huang and Abdel-Aty, 2010; Shively et al., 2010; 

Xie et al., 2013; Yu and Abdel-Aty, 2014b, 2013). For instance, Huang and Abdel-Aty 

(2010) argued that traffic safety studies frequently contain multilevel data structures, e.g. 

[Geographic region level-Traffic site level – Traffic crash level – Driver and vehicle unit 

level – Occupant level] × Spatio-temporal level.  
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Tobit model (Anastasopoulos et al., 2012b, 2008; Farah et al., 2009; Lord and 

Mannering, 2010): For instance, Anastasopoulos et al. (2008) firstly introduced the tobit 

model to analyze crash rates instead of focusing on crash counts of roadway segments. 

Crash rates were treated as a continuous variable with left-censored at zero. The authors 

concluded that tobit regression models had substantial potentials in analyzing crash rate 

data.  

Weather and traffic flow conditions are two major factors related to crash 

occurrence frequency. Weather conditions are relevant to crash occurrence and 

researchers have developed several ways to consider weather influences in the crash 

frequency models (Caliendo et al., 2007; Jung et al., 2010; Malyshkina et al., 2009; 

Usman et al., 2010; Yaacob et al., 2010). For instance, Caliendo et al. (2007) used hourly 

rainfall data and transformed them into binary indicators of daily status of the pavement 

surface (“dry” or “wet”). Traffic variables also play a vital role in crash occurrence 

(Chang and Chen, 2005; Das and Abdel-Aty, 2011; Kononov et al., 2011; Noland and 

Quddus, 2004). For example, Kononov et al. (2011) related traffic flow parameters 

(speed and density) with different functional forms of safety performance functions (SPF) 

and concluded that (1) on un-congested freeway segments, the numbers of crashes 

increase only moderately with an increase in traffic; (2) once some critical traffic density 

was reached, the numbers of crashes would increase at a much faster rate as the increase 

of traffic.  

Efforts were also made to identify factor influence across crash types. Qin et al. 

(2006) utilized a hierarchical Bayesian framework to predict crash occurrence in relation 

to the hourly exposure according to four crash types: single-vehicle, multi-vehicle same 



17 
 

direction, multi-vehicle opposite directions, and multi-vehicle intersecting directions. 

Other previous studies (Jonsson et al., 2009, 2007) have also addressed the crash types’ 

propensity through developing safety performance functions for highway intersections. 

Results demonstrated that the relationship between traffic flow and crash frequency vary 

by different crash types; better model fit could be achieved by modeling different crash 

types separately.  

 

2.2 Traffic Injury Severity Analysis 

2.2.1 Traffic Injury Severity Models 

A variety of methodological techniques have been applied to analyze crash-

severity data, shown in Table 1-2. These methods are affiliated to two major types: 

statistical regression models, or non-regression data-mining methods. The dependent 

variables of existing crash severity models are typically either a binary response outcome 

(e.g., injury or non-injury, or severe or non-severe) or a multiple-response outcome (e.g., 

fatality, disabling injury, evident injury, possible injury, or no injury). Dependent 

variables with multiple-response outcomes have been treated as either ordinal 

(accounting for the ordinal nature of injury data) or nominal (i.e., unordered). 

Traffic crash injury severity analyses such as severe vs. non-severe crashes or 

fatal vs. non-fatal crashes have natural discrete outcomes. Binary logit or probit models 

(fixed parameter) have been widely employed to analyze crash injury severity (Bedard et 

al., 2002; Farmer and Lund, 2002; Lee and Abdel-Aty, 2008). However, although 

modeling procedures and result interpretations of fixed parameter logit models are 
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straightforward, it is not sufficient to describe relationships between explanatory 

variables and crash injury severity outcomes. Extensions of the binary logit models (e.g. 

hierarchical logit model (Huang et al., 2008)) and other non-parametric models (e.g. BN 

models (de Oña et al., 2011)) were introduced to account for unobserved heterogeneity 

and non-linearity. 

Random parameter logit models (also called mixed logit model) have been 

extensively used in crash injury severity analyses. Compared to the fixed parameter 

models, random parameter models account for the unobserved heterogeneity by allowing 

parameters to vary across observations (Hensher and Greene, 2003). Milton et al. (2008) 

utilized a random parameter model to investigate the crash severities along with the 

frequency model. The model allows some variables to vary across different roadway 

segments and in this way the methodology could account for the unobserved effects 

(roadway characteristics, environmental factors and driver behavior) on crash severity. 

Gkritza and Mannering (2008) employed a mixed logit model (model with both fixed and 

random parameters) to achieve better understandings of the effects of safety belts usages 

in single- and multi-occupant vehicles. The mixed logit models were used to account for 

vehicle-specific variations of the independent variables’ effects on safety-belt use 

probabilities. The authors claimed that this approach has its flexibility to capture 

individual-specific heterogeneity. Kim et al. (2013) also utilized a random parameter 

model to analyze single-vehicle crash injury severity data in California. Xiong and 

Mannering (2013) utilized a more general approach to develop the random parameter 

model. The random parameter vector was set to follow a multivariate normal distribution 
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with an unrestricted variance-covariance matrix. Correlation effects of the guardian 

indicator on other explanatory variables were able to be captured. 

Further developed models were also utilized to improve the performance of 

traditional regression models. Malyshkina and Mannering (2009) developed a two-state 

Markov switching multinomial logit model to study crash-injury severity under the 

assumption that there exist two unobserved states of roadway safety. Yamamoto et al. 

(2008) showed that sequential models could provide superior performance to traditional 

ordered-response pro-bit models, which assume the same factors correlate across all 

levels of severity. 

Besides, non-regression statistical models, such as BN and neural network, and 

non-parametric data mining techniques, such as CART, decision tree, support vector 

machine, etc., have been increasingly applied to crash injury severity analysis. Simoncic 

(2004) utilized a BN to examine crash injury patterns in two-vehicle crashes. Chimba and 

Sando (2009) utilized a neural network to predict highway crash injury severity. Kashani 

and Mohaymany (2011) applied classification tree models to predict injury severity 

patterns of two-lane rural roadway traffic crashes. While a CART provides an efficient 

data mining technique, it does not provide the interpretive capabilities of discrete 

outcome models.  

 

2.2.2 Contributing Factors to Crash Injury Severity 

Numerous studies have been conducted through different models to investigate 

the contributing factors related to crash injury severity regarding weather, traffic flow, 
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roadway condition, crash location, crash type, and vehicle and driver characteristics. 

Detailed analyses were also performed to further examine the crash injury patterns with 

respect to a particular factor. 

 

2.2.2.1 Crash Location Analyses 

Particular roadway locations have been identified as crash hotspots, for which 

significant studies were conducted to address the crash severity patterns at these locations. 

According to the FHWA (2010), people killed in crashes on rural highways accounted for 

nearly 57 % of total crash-related fatalities in the U.S in 2009, while the annual Vehicle 

Miles Traveled (VMTs) on rural highways are only approximately 34% of these on entire 

highway networks. Besides, 72% fatal crashes in the United States occurred on two-lane 

highways (NHTSA, 2011). These data indicate that it is critical to investigate the unique 

characteristics and attributes associated with rural crashes, especially those occurring on 

rural two-lane highways. Cafiso et al. (2010) developed synthetical analysis models to 

investigate two-lane rural highway crash characteristics taking into account the factors 

associated with safety performance, such as exposure and context variables. De Oña et al. 

(2011b) studied the impacts of a variety of causal factors, such as crash type, driver age 

and lighting condition on crash injury severity on Spanish rural highways. Weiss et al. 

(2001) compared rural and urban ambulance crashes regarding the frequency, speed, 

vehicle damage and personal injury patterns, and found that rural ambulance and its 

people are more likely to suffer severe injuries. Czech et al. (2010) evaluated the 

corresponding costs induced by alcohol related crashes in rural and urban areas and found 

that the attributable cost in rural areas is four times higher than that in urban environment.  
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Intersection is a hazardous location type on roadways, accounting for a substantial 

portion of traffic crashes. Inappropriate acceleration, insufficient deceleration, less driver 

reaction and perception time, etc. may dramatically contribute to severe crash outcomes. 

Kim et al. (2007) investigated crash outcome potential for different crash types at rural 

intersections, concluding that the variance of outcome probabilities in these crashes is 

closely associated with the heterogeneous nature of different intersection structures. 

Huang et al. (2008) examined the crash injury severity patterns at urban intersections and 

found that X type intersections may have an averagely positive effect on reducing the 

crash severity. Haleem and Abdel-Aty (2010) applied multiple approaches to the analysis 

of crash injury severity at three- and four-legged un-signalized intersections, and 

concluded that having a 90-degree intersection design is the most appropriate safety 

design. Abdel-Aty and Keller (2005) applied probit model to examine the overall and 

specific crash severity levels at signalized intersections and identified that a combination 

of crash-specific information and intersection characteristics results in the highest 

prediction rate of injury level. 

 

2.2.2.2 Crash Type Analyses 

Generally, there are two ways to classify crashes: vehicle-number-based and 

vehicle-action-based. Based on vehicle numbers, crashes are usually defined as Single-

Vehicle (SV) crashes and Multi-Vehicle (MV) crashes. Based on vehicle actions, crashes 

could be classified as rollover, rear-end, side-swipe, angle collision, etc. 
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SV and MV crashes show different crash injury severity patterns. For example, 

according to NHTSA (2013), there were 1,661,000 single-vehicle crashes and 3,677,000 

multi-vehicle crashes in the US in 2011, of which 17,991 and 11,766 were fatal crashes, 

respectively, indicating that there was a higher probability for severe injuries or deaths in 

SV crashes. Ulfarsson and Mannering (2004) discovered that SV and two-vehicle crashes 

should be modeled separately since their differences could not be accurately captured by 

one model. Therefore, researchers started to explore SV and MV crash characteristics 

separately to better understand the unique contributing factors for SV and MV crash 

injury outcomes. Savolainen and Mannering (2007) developed a nested logit model and 

an MNL model to analyze motorcyclists’ injury severities in SV and MV crashes 

respectively. Geedipally and Lord (2010) employed Poisson-gamma models to explore 

the separate modeling effect of SV and MV crashes on predicting confidence intervals. 

They proved the necessity of the separation of SV and MV crashes in highway crash 

analysis. Ivan et al. (1999) analyzed the distinctiveness of contributing factors in 

determining SV and MV crash severities on rural roads.  

Rear-end crashes and rollover crashes are two major types of traffic crashes 

resulting in significant injury outcomes. Li and Bai (2008) analyzed crashes occurred in 

highway construction zones and concluded that rear-end crash is the most frequent type 

of injury crashes. Duan et al. (2013) investigated the minimum safe vehicle headways 

between consecutive vehicles for rear-end crash prevention and developed car-following 

strategies under different weather and traffic conditions. Davis and Swenson (2006) 

conducted a freeway rear-end collision analysis and found that insufficient headway and 

long reaction time are important causes. Hu and Donnell (2011) proposed severity 
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models to examine rollover crashes on rural divided highways, and found that the highest 

probability of a fatal or major injury in rollover crashes was found to occur in cases when 

a driver was not using a seatbelt. Dobbertin et al., (2013) estimated the association 

between vehicle roof crash and head, neck and spine injury in rollover crashes, and 

discovered that increasing roof crush measurements were statistically associated with 

higher odds of injury on head, neck and spine. Conroy et al. (2006) investigated occupant, 

vehicle, and crash characteristics in predicting serious injury during rollover crashes. The 

results indicate that intrusion (especially roof rail or B-pillar intrusion) at the occupant's 

position, the vehicle interior side and roof as sources of injury, and improper safety belt 

use are significantly associated with serious injuries. 

 

2.2.2.3 Driver Characteristic Analyses 

Special care has also been taken in traffic safety analyses to address the impacts 

of driver characteristics on crash injury severity patterns among particular driver 

characteristics, such as age, gender, drug use, etc.  

Driver age has been found to be a significant factor related to crash injury severity 

in many studies. Hilakivi et al. (1989) and Huang et al. (2008) showed that young drivers 

as well as senior drivers are more at risk of being involved in severe crashes. Kockelman 

and Kweon (2002) proposed that senior drivers are less likely to make appropriate and 

immediate responses when facing crash risks due to their relative slow reactions, while 

young drivers are more likely to conduct careless driving or speeding, resulting in a 

considerable potential of severe injuries. Existing studies indicate that teenage drivers 

tend to maintain shorter headways and higher speed when there are two or more 
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passengers in their vehicle (Lambert-Bélanger et al., 2012; Simons-Morton et al., 2005). 

For senior drivers, Rifaat and Chin (2005) found that decrease of visual power, 

deterioration of muscle strength and reaction time may be responsible for the aged drivers 

to be involved in severe crashes. Moreover, Abdel-Aty et al. (1998) comprehensively 

evaluated the effects of driver age across different traffic-related factors on traffic crash 

involvement, indicating the importance of interactive effects between driver age and 

crash-related factors. 

Driver gender is also found to be statistically significant in predicting crash injury 

severities. Kockelman and Kweon (2002) also discovered that male drivers are associated 

with lower driver injury severities comparing to female drivers. Islam and Mannering 

(2006) identified that female drivers have more interacting factors to increase the 

likelihood of injuries and deaths comparing to male drivers. There are also contradictory 

studies with opposite findings. Massie et al. (1995) concluded that vehicles with male 

drivers are more likely to be involved in fatal crashes than female drivers. Kim et al. 

(2013) found that male drivers are a contributing factor to fatal injuries in single-vehicle 

crashes. To be more specific and accurate, Ulfarsson and Mannering (2004) examined the 

distinctive effects of males and females and their respective interactive effects with other 

factors on injury severities.  

It is well known that driver drunk driving or drug usage is significantly associated 

with traffic crashes and casualties, which have been proved in many authentic papers. 

Weiss et al. (2014) concluded that alcohol use is one of the fatal causes in single-vehicle 

crashes. Poulsen et al. (2014) testified the independent effect of cannabis and the 

combined effect of alcohol and cannabis in increasing crash potential. Using a case-
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control experiment design, Hels et al. (2013) verified the close association between high 

risk of severe driver injury and high concentration of alcohol in bodies. Siskind et al. 

(2011) evaluated the impacts of factors containing information on environmental, vehicle 

and operation on fatal crashes in rural Australian area, and found that alcohol 

involvement is one of the major factors for fatal crashes.  

 

2.2.2.4 Vehicle Type Analyses 

Trucks and motorcycles are two major types of vehicles on roads beside 

passenger cars. Trucks induce more impact in traffic crashes and cause more severe 

damage to other vehicles due to their relative large weight and size. The impact of trucks 

on crash injury patterns have been examined from different aspects. Chen and Chen 

(2011) examined the difference between injury severity patterns of truck drivers in rural 

single and multi-vehicle crashes in terms of the impacts of their respective contributing 

factors. Khorashadi et al. (2005) assessed the difference of driver injuries between rural 

and urban highway crashes with large truck involvement, and identified unique variables 

for predicting driver injuries in rural and urban crashes, respectively. As was found by 

Rifaat and Chin (2005), truck crashes in single-vehicle crashes are more likely to result in 

serious injuries and fatalities. However, heavy vehicles, such as trucks and semi-trailers, 

reduce the odds of drivers driving them being severely injured. It is not surprising that as 

the vehicle weight increases, the risks of being injured or damaged decrease substantially, 

even though other driver-vehicle units involved in the same crash may be more 

vulnerable to be injured or damaged. Levine et al. (1999) who reported that every 454 kg 
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(1000 lbs) increase in vehicle weight was equivalent to the driver’s ability to withstand 

front impact crashes of 10 more kph (6 mph) before being fatally injured. 

Motorcyclists are more exposed to open traffic environment and are more 

vulnerable in crashes, compared with drivers of other vehicles. The number of fatalities 

for motorcycle crashes is about 12% of the total fatalities for road traffic crashes, 

although motorcycle crashes account for only 5% of road traffic crashes (Chung et al., 

2014). Support for these findings has been offered from other related studies. Huang et al. 

(2008) discovered that two-wheel vehicles, most of which are motorcycles, are a major 

factor related to severe injuries in traffic crashes at intersections. Kockelman and Kweon 

(2002) discovered that motorcyclists are expected to suffer more severe injuries 

comparing with vehicle drivers. Chiang et al. (2014) found that motorcyclists are the 

most vulnerable driver group on roadways. More detailed research found that head injury 

is the main cause of motorcyclist deaths and helmet use is an effective prevention of 

driver trauma (Hefny et al., 2012; Kelly et al., 1991). 

 

2.2.2.5 Environment Factor Analyses 

Weather condition has been identified as a significant factor to crash injury 

severities. Yu and Abdel-Aty (2014a) incorporated weather data into crash injury severity 

analysis, and found that real-time traffic and weather variables have substantial 

influences on crash injury severities. Weather is highly related to road conditions and 

therefore road surface condition is often used in crash injury severity analyses as an 

alternative. Shaheed et al. (2013) discovered that dry pavement condition significantly 
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increases the potential of fatal and major injuries in motorcycle-involved crashes. 

Through probabilistic modeling, Savolainen and Mannering (2007) found that crashes 

occurring under wet road surface conditions tend to be less severe. Other studies generate 

composite conclusions regarding the safety effect of wet pavement conditions. Morgan 

and Mannering (2011) found that there is significant recognition difference for drivers of 

different age groups and genders on wet pavement conditions, with which wet or 

snow/ice road surfaces tend to decrease the probability of severe injury for male drivers 

less than 45 years old and while increase that for the other driver groups.  

Other factors are related to road geometry, lighting condition, etc. For example, 

Huang et al. (2008) found that right-most driving lane was identified to be significant on 

increasing the odds of severe crashes by 26%, compared with central lane. Khorashadi et 

al. (2005) found that for right driving behavior, if the location of collision is on the left 

lane, the likelihood of injury severity increased by 268.1%. The higher severity risk may 

be caused by higher speed on left-most lane. According to Bedard et al. (2002), traveling 

at speeds exceeding 112 kilometers per hour (kph) is independently associated with a 164% 

increase in the odds of a fatality compared with speeds less than 56 kph. Huang et al. 

(2008) also discovered that a bad street lighting condition can increase the odds of severe 

crashes by nearly 69%. Yau (2004) found that street lighting condition affects the crash 

severity for the SV crashes in Hong Kong. 

 

2.3 Bayesian Method Applications in Traffic Safety Analyses 

2.3.1 Bayesian Inference Modeling in Traffic Safety Analyses 
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As discussed before, EB was firstly applied in traffic safety analysis, and has been 

widely used as an inference method to address different traffic safety issues of interest. 

De Lapparent (2006) studied the probability distribution of different socio-demographic 

elements for four levels of motorcycle crash severity via EB model and found that 

females aged from 30 to 50 riding powerful motorcycles are the most vulnerable group 

for injury. Elvik (2013) provides a discussion on the influence of speed limit on traffic 

crashes with the application of an EB method, and found that the speed limit could 

decrease injury crashes around 30%. 

Due to the internal limitations of EB method, the FB approach was proposed and 

utilized to facilitate the consistent consideration of aleatory and epistemic uncertainties, 

non-linear dependencies amongst the indicator variables and the updating of the 

developed risk models based on new available data. Yanmaz-Tuzel and Ozbay (2010) 

estimated the impact of various road safety countermeasures in reducing crash frequency 

with FB models, and concluded that enhancement in vertical and horizontal alignments 

brought highest crash rate decrease. Persaud et al. (2010) did similar evaluation via 

comparison of FB and EB models, and proved their effectiveness in road safety 

assessment. Flask and Schneider IV (2013) modeled SV motorcycle crash data with FB 

binomial model and discussed its spatial correlation at town and county levels. FB 

inference was proposed to work on hierarchical models for posterior probability inference 

for parameters of interest, and therefore is increasingly known as hierarchical Bayesian 

model. Yu and Abdel-Aty (2013a) employed hierarchical Bayesian model to investigate 

the characteristics of SV and MV crashes on mountainous freeways via aggregate and 

disaggregate modeling procedures. Xie et al. (2013) proposed a Bayesian hierarchical 



29 
 

negative binomial model to examine significant factors from both intersection and 

corridor levels for crash frequency prediction at signalized intersections, and concluded 

that the proposed model was superior to regular Bayesian negative binomial models and 

Bayesian random effect models in traffic risk factor analysis. Deublein et al. (2013) 

proposed a hierarchical Bayesian approach for road crash prediction by grouping gamma 

distribution, multivariate Poisson-lognormal regression and Bayesian inference together 

and proved its robustness in forecasting crash occurrences. MacNab (2003) proposed a 

Bayesian hierarchical Poisson regression model to facilitate crash monitoring and 

prevention in both spatial and temporal domains. Using Bayesian hierarchical Poisson 

model with tolerance of autoregressive dependence, Haque et al. (2010) explored the 

significant factors contributing to motorcycle crash frequencies at signalized T-

intersections and four-way intersections.  

 

2.3.2 BN in Traffic Safety Analyses 

BN method, as a non-regression method in Bayesian family, has been 

increasingly utilized in traffic safety analysis. Ozbay and Noyan (2006) employed a BN 

model to estimate time needed for crash clearance and identify the stochastic 

characteristics of incidents. Gregoriades and Mouskos (2013) proposed an approach to 

identity roadway traffic conditions by measuring traffic crash risks through BN models. 

Goodheart (2013) applied Bayesian belief network to extract the causal rules and predict 

runway crash risks in aviation operations. De Oña et al. (2013) applied Latent Class 

Cluster (LCC) and BN into traffic crash severity classification and analysis, and 

identified the most contributing factors to severe injuries and fatalities. Bedeley et al. 
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(2013) applied BN to examine factors affecting pedestrian crossing patterns, and 

concluded that internal motives were more decisive than external elements in affecting 

pedestrian behavior. Mbakwe et al. (2014) developed a BN model to analyze highway 

safety performance by estimating traffic crash data, assisted by Delphi Process.  

 

2.4 Variable Selection Summery 

Various variable selection approaches have been proposed for applications in 

different research fields. Variable selection methods are either “performance based” or 

“test-based”. Performance-based approach is to repeatedly fit models to the data in order 

to determine the best performing one in terms of prediction accuracy. Svetnik et al. (2004) 

produced several orderings of variables via the computation of importance measures on 

each training set of a 5-fold cross-validation. Jiang et al. (2004) introduced a method in 

which they claim to combine the unsupervised ‘gene shaving’ approach (Hastie et al., 

2000) and the supervised random forests. Similar approach was also proposed by Díaz-

Uriarte and Alvarez de Andrés (2006). It uses the “Out-Of-Bag (OOB)” error and 

computes variable importance only once. The best model is chosen to be the smallest one 

with an error rate within the standard errors of the best performing model.  

Test-based approach applies a permutation test framework to estimate the 

significance of variable importance. Altmann et al. (2010) presented a method that uses a 

permutation test framework to produce unbiased importance measures (Strobl et al., 

2007). An almost identical approach was introduced earlier by Rodenburg et al. (2008) 

whereas these authors directly aimed at introducing of a variable selection approach. 
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They repeated the procedure several times and combine the selected variables in a final 

set. Another related work of Wang et al. (2010) was based on a different kind of 

importance measure called the ‘maximal conditional chi-square importance’ to identify 

relevant Single-Nucleotide Polymorphisms (SNPs) in Genome-Wide Association Studies 

(GWAS). Following the same research goal, Tang et al. (2009) simultaneously permuted 

entire sets of SNPs which belong to the same gene.  

 

2.5 Applications of Other Data-mining Techniques in Traffic Safety Analyses 

Data mining has been an active analytical technique in many scientific areas for 

years. In the field of safety analysis, some studies applied tree-based models to analyze 

crash rates and injury severity problems. Kuhnert et al. (2000) employed logistic 

regression (also called logit regression), CART and Multivariate Adaptive Regression 

Splines (MARS) to analyze motor vehicle injury data. By comparing the analysis results 

with logit regression, they demonstrated that CART and MARS can graphically display 

the analysis results and identify the groups of people with higher crash risk, making them 

attractive for motor vehicle crash analysis. Sohn and Shin (2001) applied classification 

tree, neural network and logit regression models to identify crash severity-related factors 

using road traffic crash data from Korea. The findings indicated that protective device 

(i.e., seatbelt or helmet) is the most important factor in the cash severity variation. Other 

factors include collision type, speed before crash, violent driving, road width and car 

shape (i.e., with or without bonnet). Karlaftis and Golias (2002) applied Hierarchical 

Tree-Based Regression (HTBR) to analyze the effects of road geometry and traffic 

characteristics on crash rates for rural two-lane and multilane roads. The analysis results 
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by HTBR indicated that Annual Average Daily Traffic (AADT), lane width, 

serviceability index, pavement friction and pavement type are critical in determining 

crash rates for rural two-lane highways, while the factors for  multilane highway crash 

rates are AADT, median width, and access control.  

Artificial Neural Network (ANN) is another non-parametric model frequently 

applied to analyze traffic safety problems. Abdel-Aty and Abdelwahab (2004) applied 

multilayer perceptron and fuzzy adaptive resonance theory neural networks to analyze 

driver injury severity in traffic crashes. The results indicated that gender, vehicle speed, 

seatbelt use, vehicle type, point of impact and area type of crash location can affect injury 

severity likelihood. By comparing the prediction performance with an ordered logit 

model, the study shows that ANN models have more accurate prediction capability over 

traditional statistical models. Mussone et al. (1999) employed ANN modeling approach 

to analyze vehicular crashes in Italy. A three-layer neural network model was proposed to 

estimate crash index (defined as the ratio of the number of crashes in the ith intersection 

to the number of crashes in the most dangerous intersection) of urban intersections. Their 

results shows that the ANN model can identify the degree to which factors contribute to 

intersection crashes and demonstrates that ANN is a good alternative method for traffic 

safety analysis. 

 

2.6 Unobserved Heterogeneity Issue in Traffic Crash Modeling  

Unobserved heterogeneity has been recognized as a critical issue in traffic safety 

research. Unobserved heterogeneity is defined as the unobservable factors or data that 
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affect crash potential or severity, and they may generate biased estimations if their 

correlations with observed variables are not accounted for in model design (Mannering 

and Bhat, 2014). The unobserved heterogeneity could be attributed from different types 

of factors, including roadways (Flask et al., 2014; Haleem and Gan, 2013; Malyshkina 

and Mannering, 2010; Morgan and Mannering, 2011), drivers’ demographic and behavior 

characteristics (Haleem and Gan, 2013; Islam and Mannering, 2006; Kim et al., 2013, 

2010; Morgan and Mannering, 2011; Ulfarsson and Mannering, 2004), spatial and 

temporal variations (Malyshkina and Mannering, 2009; Malyshkina et al., 2009; 

Ukkusuri et al., 2011; Xiong et al., 2014; Xu and Huang, 2015), etc.  For instance, Kim et 

al. (2010) evaluated pedestrian injury severity patterns in pedestrian-vehicle crashes 

considering the unobserved pedestrian heterogeneity regarding health, strength and 

behavior. Anastasopoulos et al. (2012) investigated traffic accident rate patterns 

accounting for the unobserved heterogeneity effects of highway segments. Xiong et al. 

(2014) examined crash injury severity patterns based on the heterogeneous temporal 

influence of roadway segment features. 

Thanks to the recent development in crash data organization and mathematical 

model design, numerous advanced models have been proposed and applied into traffic 

accident research to account for unobserved heterogeneity within crash data, of which 

random parameters models and finite-mixture (latent-class) models are two major 

approaches. Random parameters models are a group of models that simulate individual 

unobserved heterogeneity by assuming a distribution for parameters of interest to allow 

them vary across observations or (group of observations) and/or determine observation 

groups, and include popular models such as random parameter logit (mixed logit) model 
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(Anastasopoulos and Mannering, 2011; Gkritza and Mannering, 2008; Haleem and Gan, 

2015, 2013; Kim et al., 2010, 2008; Malyshkina and Mannering, 2010; Milton et al., 

2008; Moore et al., 2011; Pai et al., 2009; Shaheed et al., 2013; Wu et al., 2014), random 

parameter probit model (Christoforou et al., 2010; Russo et al., 2014; Tay, 2015), random 

parameter negative binomial models (Chen and Tarko, 2014; Dong et al., 2014; Flask et 

al., 2014; Venkataraman et al., 2014, 2013; Wu et al., 2013), random parameter Tobit 

model (Anastasopoulos et al., 2012a; Chen et al., 2014; Yu et al., 2015) and Markov 

switching models (Malyshkina and Mannering, 2009; Malyshkina et al., 2009; Xiong et 

al., 2014). Milton et al., (2008) were the first to apply random parameter model in traffic 

crash analysis, and verified its effectiveness in traffic crash data modeling. With that, 

random parameters models, including the popular models listed above, have been 

increasingly used recently to address unobserved heterogeneity relating to multiple 

factors. Shaheed et al. (2013) utilized a mixed logit model to investigate the construing 

factors to crash severities in the collisions between a motorcycle and other automotive. 

Tay (2015) applied a random parameter probit model to assess the difference between 

urban and rural intersection crashes regarding road, traffic, environment and driver 

behavior characteristics. Venkataraman et al. (2014) developed a random parameter 

negative binomial model to crash occurrence patterns based on different interchange 

types with the assumption that the estimated random parameters are heterogeneous in 

their means. Yu et al. (2015) estimated the influence of weather conditions on mountain 

freeway crash potential using a correlated random parameter tobit model. Malyshkina and 

Mannering (2009) modeled unobserved heterogeneity by assuming that the variance 

between two unobserved roadway safety statuses follows a Markov switching pattern on 
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injury severity. But the disadvantage of random parameters models is that it may not be 

able to capture the heterogeneity across different data groups, and therefore result in 

biased estimations. 

Finite-mixture (latent-class) models are another major type of models addressing 

unobserved heterogeneity in crash data, and are developed by relaxing the assumption of 

random parameters models and assuming discrete distribution with a limited number of 

latent classes to identify homogeneous groups in crash data. Finite-mixture (latent-class) 

models are presented with different model structures and have been gaining their 

popularity in traffic safety analysis (Eluru et al., 2012; Lemp et al., 2011; Shaheed and 

Gkritza, 2014; Xie et al., 2012; Xiong and Mannering, 2013; Zou et al., 2014, 2013). For 

example, Shaheed and Gkritza (2014) utilized an MNL model with two latent crash data 

classes to investigate crash severities in single-vehicle motorcycle crashes. Zou et al. 

(2013) advocated that weight parameter configuration is preferred in finite mixture 

negative binomial models to better assess heterogeneity effects in crash data analysis, and 

they further developed different functional forms for weight parameter estimation (Zou et 

al., 2014). Studies were conducted to compare random parameters models and latent class 

models in crash data analysis regarding their pre-assumption, applicability and 

effectiveness (Cerwick et al., 2014; Mannering and Bhat, 2014). For instance, Cerwick et 

al. (2014) comprehensively compared the advantage and disadvantage of random 

parameters models and finite-mixture (latent-class) crash severity analysis, concluding 

that latent class models illustrate slight superiority to mixed logit models in model fit and 

parameter estimation when modeling unobserved heterogeneity. However, a disadvantage 

of finite mixture models is that they neglect the observation heterogeneity within each 
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data group due to the assumption of observation homogeneity in each group. Therefore, a 

hybrid model by combining random parameters and finite mixture models was proposed 

by Xiong and Mannering (2013) to account for both group-specific heterogeneity in crash 

data and individual-observation heterogeneity within each group. 

As discussed before, unobserved heterogeneity may result from correlations 

between unobserved and observed factors, and it may contribute considerably in crash 

injury severity patterns. Previous traffic crash injury severity studies primarily focused on 

the main effects of crash-level and vehicle-level variables, but omitted the potential 

interactions between the cross-level interactions between crash-level and vehicle-level 

variables. These cross-level interaction effects are generally unobservable in the dataset, 

as is aforementioned, but may play an important role in driver injury severity outcomes. 

For example, the variable driver age (vehicle/driver level), as was discussed in 

Mannering and Bhat (2014), is associated with many unobservable factors such as 

physical health and reaction time, while these unobservable factors may affect the drivers’ 

operations on roadway segments with special geometric features (crash level), such as 

curvature or grade. Therefore, there may be an interaction effect between driver age and 

roadway geometry that contributes to driver injury severities. By defining the hierarchical 

Bayesian random intercept model with cross-level interaction configuration, this research 

aims to comprehensively examine the unobserved heterogeneity, represented by cross-

level interactions effects between crash level and vehicle/driver level variables, and 

provides more in-depth findings to supplement contemporary traffic crash injury 

severities studies. 
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Chapter 3 Research Methodology Design 

3.1 Research Methodology Design  

This research aims to comprehensively examine the applicability and 

effectiveness of Bayesian methods in traffic crash driver injury severity analyses. 

Bayesian methods, including Bayesian inference and BN methods, have emerged as a 

powerful framework in traffic safety analyses to identify the contributing factors and their 

relative impact on injury severity outcomes. The Bayesian inference method is generally 

used in parameter estimation in regression models, and BN is a powerful model to extract 

variable statistical dependence using graphic topology and probability inference. 

Because the injury severity outcomes of traffic crashes can be regarded as a 

random event, statistical models, particularly regression analyses, have been extensively 

employed to explore the factors contributing to fatal or injurious crashes. Among these 

regression models, logit regression models and ordered outcome models have been the 

most commonly applied techniques. Meanwhile, hierarchical models are able to capture 

the hierarchical nature of crash data using random parameter estimation and therefore 

provide more reliable results than traditional logit models. But in these hierarchical 

models, the parameters of crash level and vehicle/driver level variables are often 

estimated independently, although their potential connection have been suggested 

(Snijders and Bosker, 2000), and the crash heterogeneity is generally assumed to be 

constants sampled from prior distribution (Huang et al., 2008). Besides, the ordered 

outcome assumption on crash driver injury severity levels may not be always valid since 

non-monotonic-changing effect of contributing factors on severity levels may exist 
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(Moore et al., 2011; Patil et al., 2012). Moreover, it is assumed in these models that 

driver injury severity variable or its transformation is a linear regression of its 

contributing covariates, which may not always be appropriate and universally applied. 

Therefore, in this research, a hierarchical multinomial logit model will be applied to 

examine the significant factors and their impact on injury severity levels. A random slope 

model will be applied and the parameters of vehicle/drier-level variables would be 

assumed to be a function of crash level variables, which enriches existing studies (Huang 

et al., 2008; D.-G. Kim et al., 2007). The Bayesian inference method is superior to 

traditional point estimations by being able to model parameter estimates with posterior 

distributions and predict new observations from a given sample of data, and therefore is 

used in this proposed hierarchical model for point estimation, given informative and non-

informative priors. Other non-linear relationships between the independent and dependent 

variables should also be assumed and investigated. 

Most regression models have their own model assumptions and pre-defined 

underlying relationships between dependent and independent variables. If these 

assumptions are violated, the model could lead to erroneous estimations of the likelihood 

of injury severities. BN is a non-regression method able to model the statistical 

dependence between dependent variable and independent variables based on graphic 

presentation and probability inference without any pre-defined assumptions on these 

variables. Also, BN is capable of capturing the interactions among the independent 

variables, which outperforms regression models. To fully assess the applicability of 

Bayesian method, a BN model would be trained in this study to extract the relationships 

among injury severity and contributing factors based on pre-defined training algorithms 
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and model quality measurements. To overcome the internal disadvantage of BN, that it is 

not able to select the most important variables and remove redundant ones for model 

training, multiple correlation-based and machine-learning methods would be applied for 

variable selection.  

Bayesian statistical methods could also work with non-parametric machine-

learning methods, such as tree-based models, DTs, etc. A DTNB model proposed by Hall 

and Frank (2008) by combining DT and NB classifier provides a connection between 

these two categories. In this research, the DTNB classifier would be used to extract the 

significant variables and the associated decision rules for crash driver injury severity 

prediction, and the performance of this model would be compared with the 

abovementioned hierarchical Bayesian models and BN model. Figure 3-1 illustrates the 

conceptual framework of the appropriate selection of Bayesian models for traffic crash 

driver injury severity analyses, where available Bayesian models, including the proposed 

models in this study, are the boxes highlighted in blue. In Figure 3-1, the green boxes 

represent available model types during the decision making procedure, and the red 

diamonds show the decision points. 
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Figure 3-1 Conceptual Framework for Appropriate Selection of Bayesian Models 
for Driver Injury Severity Analysis.  

 

3.2 Hierarchical Model Development with Bayesian Inference  

3.2.1 Hierarchical Bayesian Binary Logit Model 

3.2.1.1 Model Design 

A two-level hierarchical Bayesian logit model with binary response (indicated as 

Box A in Figure 3-1) was developed to estimate the effects of crash-level variables and 

vehicle/driver-level variables on driver injury severities, with the consideration of within-

crash correlations. In the lower level (vehicle/driver level), the injury severity of driver i 

in crash j, denoted as 𝑆𝑖𝑗, is a binary variable with 𝑆𝑖𝑗 = 0 indicating no injury or slight 

injury, and 𝑆𝑖𝑗 = 1 representing incapable injury or death. The probability of 𝑆𝑖𝑗 = 1, 

denoted as 𝑃𝑖𝑗 = Pr⁡(𝑆𝑖𝑗 = 1), is  assumed to follow a binomial distribution, 
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𝑙𝑜𝑔𝑖𝑡(𝑃𝑖𝑗) = log (
𝑃𝑖𝑗

1−𝑃𝑖𝑗
) = 𝛽0𝑗 + ∑ 𝛽𝑘𝑗𝑉𝑘𝑖𝑗

𝐾
𝑘=1                              (3-1) 

where, 𝑉𝑘𝑖𝑗 is the kth vehicle/driver-level variable for the ith vehicle/driver unit in the jth 

rural interstate crash, and 𝛽𝑘𝑗 is the corresponding coefficient for 𝑉𝑘𝑖𝑗 to be estimated; K 

is the number of vehicle/driver-level variables; 𝛽0𝑗 is the intercept to be estimated in this 

regression model.⁡𝛽0𝑗  and 𝛽𝑘𝑗  are summarized from the regression modeling of crash-

level variables in the upper level to represent the within-crash correlations, and are 

defined as, 

 

𝛽0𝑗 = 𝛾00 + ∑ 𝛾0𝑚𝐶𝑚𝑗
𝑀
𝑚=1 + 𝜇0𝑗                                        (3-2)  

𝛽𝑘𝑗 = 𝛾𝑘0 + ∑ 𝛾𝑘𝑚𝐶𝑚𝑗
𝑀
𝑚=1 + 𝜇𝑘𝑗                                       (3-3)   

where, 𝐶𝑚𝑗 is the mth crash-level variable for the jth rural interstate crash, and M is the 

number of crash-level variables;⁡𝛾0𝑚 and 𝛾𝑘𝑚 are coefficients for 𝐶𝑚𝑗  corresponding to 

𝛽0𝑗  and 𝛽𝑘𝑗  respectively; γ00  and 𝛾𝑘0  are intercepts for 𝛽0𝑗  and 𝛽𝑘𝑗 ; 𝜇0𝑗  and 𝜇𝑘𝑗  are 

random effects representing between-crash variance, which are consistent for vehicles in 

the same crash but vary across different crashes. Equations (3-2) and (3-3) allow to 

model within-crash correlation as well as between-crash variations (D.-G. Kim et al., 

2007).  

The combination of Equations (3-1)-(3-3) produces a random slope model with 

high complexity (Snijders and Bosker, 2000). To avoid excessive model complexity 

resulting in intensive model computation while retaining model reasonableness and 

accuracy, it was  assumed that the between-crash variance only works on the intercepts 

γk0  in Equation (3-3) and the crash-level regression for the kth vehicle/driver-level 
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variable ∑ 𝛾𝑘𝑚𝐶𝑚𝑗
𝑀
𝑚=1  . The random effect part 𝜇𝑘𝑗  was ignored, forming a random 

intercept model (Huang et al., 2008), 

𝛽𝑘𝑗=𝛾𝑘0                                                        (3-4) 

Therefore, the full hierarchical binary logit model is formulated as follows, 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑖𝑗) = log (
𝑃𝑖𝑗

1−𝑃𝑖𝑗
) = 𝛾00 +∑ 𝛾0𝑚𝐶𝑚𝑗

𝑀
𝑚=1 + ∑ 𝛾𝑘0𝑉𝑘𝑖𝑗

𝐾
𝑘=1 + 𝜇0𝑗         (3-5)      

where 𝜇0𝑗 are generally assumed to follow a normal distribution, 𝜇0𝑗~(0, 𝜎02) (Snijders 

and Bosker, 2000). 

In this research, an ordinary logit regression model was also derived from 

Equation (3-5) and provided as a reference for model performance comparisons. An 

ordinary logit regression model was formulated by removing the random effect term 𝜇0𝑗 

in Equation (3-5),  

𝑙𝑜𝑔𝑖𝑡(𝑃𝑖𝑗) = log (
𝑃𝑖𝑗

1−𝑃𝑖𝑗
) = 𝛾00 +∑ 𝛾0𝑚𝐶𝑚𝑗

𝑀
𝑚=1 + ∑ 𝛾𝑘0𝑉𝑘𝑖𝑗

𝐾
𝑘=1           (3-6) 

To examine the between-crash variance, the intra-class correlation coefficient 

(ICC) was  employed (Jones and Jørgensen, 2003; D.-G. Kim et al., 2007; Kutner et al., 

2004), which is defined as  

𝐼𝐶𝐶 =
𝜎𝑐
2

(𝜎𝑣
2+𝜎𝑐

2)
                                                   (3-7)  

where, 𝜎𝑐2 is the between-crash variance which is equal to 𝜎02 in this research; 𝜎𝑣2 is the 

vehicle/driver-level variance, which is equal to 𝜋
2

3
= 3.29 for a hierarchical logit 

distribution (Huang et al., 2008; D.-G. Kim et al., 2007). The ICC is defined in this 

analysis to evaluate the portion of total variance explained by between-crash variance 

with a range from 0 to 1. An ICC value close to 0 suggests that between-crash variance is 
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a small portion of the total variance and the ordinary logit model is more suitable for the 

analysis. A large ICC value close to 1 indicates the significance of between-crash 

variance in explaining total variance and demonstrates that a hierarchical model is 

preferable in the study (Huang et al., 2008; Kutner et al., 2004). 

 

3.2.1.2 Model Specification 

Comparing to MLE, the Bayesian inference method is able to model parameter 

estimates with posterior distributions and predict new observations from a given sample 

of data. Besides, based on the given dataset, the prior information for fixed and random 

effects could both be updated during Bayesian inference procedure and revealed in 

posterior distributions, which are more reliable than regular MLE results. In this research, 

non-informative priors are defined due to limited historical crash data availability for the 

unknown parameters, which are estimated based on previous studies (Huang et al., 2008; 

MacNab, 2003; Yu and Abdel-Aty, 2014b). The intercept term 𝛾00, the coefficients of 

crash-level variables, 𝛾0𝑚, and the coefficients of vehicle/driver-level variables, 𝛾𝑘0, are 

all assumed to follow a normal distribution (0,1000). As stated before, the random effects 

𝜇0𝑗 are assumed as normally distributed(0, 𝜎02), and 𝜎02 is following an inverse Gamma 

distribution (0.001, 0.001). The model simulation procedure was conducted with a Monte 

Carlo Markov Chain (MCMC) algorithm in the WinBUGS platform (Gilks et al., 1995).  

For modeling result interpretation, the odds ratio rather than the estimated mean 

was utilized to explain the influence of the identified variables on driver injury severity. 

The odds ratio is the exponential output of the estimated mean for γ,⁡exp(γ). An odds 
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ratio equal to 1 means no effect for the studied variable on driver injury severity, which is 

corresponding to γ = 0; an odds ratio larger than 1.0 indicates that an increase of one unit 

on the studied variable would increase the odds of drivers being incapably injured or 

killed in a rural interstate crash by 100(exp(γ) − 1)% compared with the base case. An 

odds ratio less than 1.0 implies that an increase of one unit on the studied variable would 

decrease the odds of drivers being incapably injured or killed in a rural interstate crash by 

100(1 − exp⁡(γ))%. The 95% Bayesian Credible Interval (BCI) is provided to indicate 

the significance of the variables (Gelman et al., 2013), and 90% BCI is also calculated as 

an additional reference. A variable is considered significant in affecting driver injury 

severity if the 95% BCI of its odds ratio does not cover 1 and is not significant if 

otherwise. Experience and consensus on traffic safety analyses are also referred to for 

result reasonableness examination. 

 

3.2.2 Hierarchical Bayesian Ordered Logit model 

3.2.2.1 Model Design 

The hierarchical Bayesian binary logit model treats driver injury severity outcome 

as a binomial variable, which is reasonable but may not be able to fully excavate the 

influence of factors on different injury severities. It is understandable that driver injury 

severity is ordinal in nature, and an ordered response model may provide better model fit 

and estimation results. A hierarchical ordered logit model (indicated as Box B in Figure 

3-1) is utilized in this study. Let 𝑆𝑖𝑗 =k be the driver injury severity equal to level k for 

the jth vehicle in the ith crash, which is a response variable with five ordered categories: 
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no injury (𝑘 = 1), complaint of injury/possible injury (𝑘 = 2), visible injury (𝑘 = 3), 

incapacitating injury (𝑘 = 4) and death (𝑘 = 5).  In this ordered-response model, a latent 

variable, 𝑆𝑖𝑗∗ , associated with the actual driver injury severity 𝑆𝑖𝑗, is proposed to establish 

the mathematical relationship between driver injury severity and the predicting covariates. 

A set of four thresholds (ℎ𝑖𝑚 , m=1, 2 ,3, 4) are defined to divide the virtual injury 

severity line into the five abovementioned categories. The actual injury severity variable 

𝑆𝑖𝑗 is associated with the latent variable, 𝑆𝑖𝑗∗ , as follows: 

𝑆𝑖𝑗=𝑘 = {

1, 𝑖𝑓 −∞ < 𝑆𝑖𝑗
∗ < ℎ𝑖1,

𝑚, 𝑖𝑓⁡ℎ𝑖(𝑚−1) < 𝑆𝑖𝑗
∗ < ℎ𝑖𝑚,

5, 𝑖𝑓⁡ℎ𝑖4 < 𝑆𝑖𝑗
∗ < +∞⁡

 m=2, 3, 4                                 (3-8) 

The latent variable 𝑆𝑖𝑗∗  is a prediction of the crash risk factors and could be written 

as follows  

𝑆𝑖𝑗
∗ = 𝜂𝑖𝑗 + 𝜀𝑖𝑗 = ∑ 𝛽𝑝 × 𝑉𝑖𝑗𝑝

𝑃
𝑝=1 + 𝜀𝑖𝑗                                 (3-9) 

where 𝑉𝑖𝑗𝑝 is the pth covariate for the jth vehicle/driver unit in the ith crash; P is the total 

number of variables in model estimation; 𝛽𝑝 is the corresponding coefficient; 𝜀𝑖𝑗 is the 

error term and is assumed to follow a logit distribution. Therefore, the cumulative 

response probability for the five ordinal injury severity categories is expressed as, 

𝑃𝑖𝑗,𝑘 = 𝑃𝑟(𝑆𝑖𝑗 ≤ 𝑘) = 𝑃𝑟(𝑆𝑖𝑗
∗ ≤ ℎ𝑖𝑚) = 𝑃𝑟(𝑆𝑖𝑗

∗ − 𝜂𝑖𝑗 ≤ ℎ𝑖𝑚 − 𝜂𝑖𝑗) = 𝐹(ℎ𝑖𝑚 − 𝜂𝑖𝑗) 

                  = exp⁡(ℎ𝑖𝑚−𝜂𝑖𝑗)

1+exp⁡(ℎ𝑖𝑚−𝜂𝑖𝑗)
 for m=k=1,2,3,4                                            (3-10) 

where F is the cumulative density function. Therefore,  

𝑙𝑜𝑔𝑖𝑡⁡(𝑃𝑖𝑗,𝑘) = 𝑙𝑜𝑔 (
𝑃𝑖𝑗,𝑘

1−𝑃𝑖𝑗,𝑘
) = ℎ𝑖𝑚 − 𝜂𝑖𝑗, for m=1, 2, 3, 4.            (3-11) 
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In this model, ℎ𝑖𝑚 is specified as a random variable associated with crash-level 

variance, 

ℎ𝑖𝑚 = ℎ𝑚 + 𝑢𝑖                                              (3-12) 

where ℎ𝑚 represents the mean of the threshold for all crashes, and  𝑢𝑖 is a random effect 

component indicating the variance among different crashes, and is assumed to follow a 

normal distribution with a mean of zero and a variance of 𝜎2. 

An ordinary ordered logit model dismissing the between-crash variance term 𝑢𝑖 

was also employed to examine the same dataset. 

 

3.2.2.2 Bayesian Inference Specification 

In this study, Bayesian non-informative priors were also applied to infer the 

unknown parameters of interest. The latent threshold mean, ℎ𝑚, and all the coefficients of 

binary response variables, such as driver gender and driver under impairment, were  

assumed to follow a normal distribution (0,1000). The coefficients of each categorical 

value of multi-categorical variables were assumed to follow a normal distribution (0, 

10000). The between-crash variance 𝑢𝑖⁡was assumed to follow a normal distribution 

(0,⁡𝜎2), where 𝜎2 is inversely gamma distributed (0.01, 0.01).  

 

3.2.3 Hierarchical Random Intercept Model with Cross-Level Interactions 

3.2.3.1 Model Design 
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Many discrete choice modeling techniques have been applied to formulate crash 

driver injury severity outcomes, such as MNL models, nested-logit models, ordered 

probit models, etc. Ordered logit models may not be suitable for non-monotonic-

changing severity data due to their strong restrictions on the linear relationship between 

explanatory variables and independent outcomes. For example, the steep roadway grade 

may increase crash driver injury severities when its absolute value is small or moderate. 

When its absolute value continuously increases beyond a certain range, crash driver 

injury severities tend to decrease due to the facts that drivers will travel much slower and 

pay more attention to handle abrupt grade changes in these situations. The application 

restriction of ordered logit models indicates that changing explanatory variables shall 

either increase or decrease crash severities in a monotonic manner across all the possible 

outcomes, which is not always supported by the severity data. Therefore, a more 

commonly used unordered discrete modeling approach, MNL model, is utilized for 

hierarchical modeling development.  

As discussed in Chapter 2, unobserved heterogeneity may result from correlations 

between unobserved and observed factors, and the unobserved heterogeneity may 

contribute considerably in crash injury severity patterns. In the development of the two 

previous models, unobserved heterogeneity was only modeled with the random error 

terms, but neglected the potential interactions between crash-level variables and 

vehicle/driver level variables, and these interactions may play an important role in driver 

injury severity outcomes. For example, the variable driver age (vehicle/driver level), as 

was discussed in Mannering and Bhat (2014), are associated with many unobservable 

factors such as physical health and reaction time, while these unobservable factors may 
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affect the drivers’ operations on roadway segments with special geometric features (crash 

level), such as curvature or grade. Therefore, there may be an interaction effect between 

driver age and roadway geometry that contributes to driver injury severities. Thus, a 

hierarchical Bayesian MNL model with random intercept setting (indicated as Box C in 

Figure 3-1) is utilized, and the cross-level interactions between crash-level and 

vehicle/driver-level variables are examined based on the assumption of linear regression. 

In this model design, a MNL model is developed to estimate the probability of 

three driver injury outcomes in rear-end crashes, and the response variable, driver injury 

severity, is considered as a multi-categorical variable. It is assumed that for any attribute 

changes, the marginal costs for each severity outcome (no injury, injury, and fatality) are 

different. Suppose that the response variable 𝑌𝑖𝑗 = (𝑌𝑖𝑗1, … , 𝑌𝑖𝑗𝐾) has K level, where K=3 

in this study. The multinomial logit regression can be written as  

𝑌𝑖𝑗~𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑃𝑖𝑗1,… , 𝑃𝑖𝑗𝐾)                                (3-13) 

and  

𝑙𝑜𝑔
𝑃𝑖𝑗𝑘

𝑃𝑖𝑗𝐾
= 𝜂𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + ∑ 𝛽𝑝𝑗𝑘𝑉𝑝𝑖𝑗

𝑃
𝑝=1                          (3-14) 

where  𝑃𝑖𝑗𝑘=𝑃𝑟(⁡𝑌𝑖𝑗𝑘 = 1) is the probability of the driver injury severity of vehicle i in 

crash j being in category k (k=1,…,K-1), 𝑉𝑝𝑖𝑗 is the pth vehicle/driver-level variable for 

the ith vehicle/driver unit in the jth crash, and 𝛽𝑝𝑗𝑘 is the corresponding coefficient for 

𝑉𝑘𝑖𝑗  to be estimated; P is the number of vehicle-level predictor variables; 𝛽0𝑗𝑘  is the 

intercept to be estimated in this regression model. The Kth category is set as the reference 

category and therefore the coefficients of the Kth category are zero.⁡𝛽0𝑗𝑘 and 𝛽𝑝𝑗𝑘  are 
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summarized from the regression modeling of crash-level variables in the upper level to 

represent the within-crash correlations, and are defined as, 

𝛽0𝑗𝑘 = 𝛾000 + ∑ 𝛾0𝑚𝐶𝑚𝑗
𝑀
𝑚=1 + 𝜇0𝑗                        (3-15) 

𝛽𝑝𝑗𝑘 = 𝛾𝑝00 + ∑ 𝛾𝑝𝑚𝐶𝑚𝑗
𝑀
𝑚=1 + 𝜇𝑝𝑗                         (3-16) 

where, 𝐶𝑚𝑗 is the mth crash-level variable for the jth rural interstate crash, and M is the 

number of crash-level variables;⁡𝛾0𝑚 and 𝛾𝑝𝑚 are coefficients for 𝐶𝑚𝑗  corresponding to 

𝛽0𝑗𝑘 and 𝛽𝑝𝑗𝑘 respectively; γ000 and 𝛾𝑝00 are intercepts for 𝛽0𝑗𝑘 and 𝛽𝑝𝑗𝑘;  𝜇0𝑗𝑘 and 𝜇𝑘𝑗𝑘 

are random effects representing between-severity level variance, which are consistent for 

vehicles with the same severity level in the same crash. 

The total of (K-1) equations are solved simultaneously to estimate the coefficients. 

The coefficients in the model express the effects of the predictor variables on the relative 

risk or the log odds of being in category j versus the reference category, here K. In this 

model, linear relationships are assumed for them with the crash level covariates 𝐶𝑚𝑗 , 

which is reasonable since the various crash features may result in different severity levels. 

Besides the fixed parts which depend on crash level covariates, random effects are 

assumed to simulate potential random variance across different crashes (𝜇0𝑗 and 𝜇𝑝𝑗) and 

different severity levels (𝜀0𝑘and 𝜀𝑝𝑘).  

In this study, the random intercept model without the cross-level interaction part 

∑ ∑ 𝛾𝑝𝑚𝑘𝐶𝑚𝑗
𝑀
𝑚=1 𝑉𝑝𝑖𝑗

𝑃
𝑝=1 , was used for model comparison purpose and the deviance 

information criterion (DIC) is utilized as a Bayesian measurement for model performance 

measurement. 
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3.2.3.2 Model Calibration Using Bayesian Inference and Prior Information Specification 

Bayesian inference method is applied in this research for model parameter 

estimation and non-informative priors are used. The main intercept term 𝛾00𝑘 , the 

severity-specified coefficients 𝛾0𝑚𝑘 , 𝛾𝑝0𝑘 and 𝛾𝑝𝑚𝑘, are all assumed to follow a normal 

distribution (0,1000). The crash-level random effect 𝜇0𝑗  is assumed to be normally 

distributed (0, 𝜎02), and 𝜎02 follows an inverse Gamma distribution (0.001, 0.001). The 

model simulation procedure was performed with the Gibbs sampler, a Monte Carlo 

Markov Chain (MCMC) algorithm in WINBUGS, and the 95% BCI was also used to 

indicate the significance of examined covariates. 

 

3.2.3.3 Pseudo-Elasticity Analysis 

According to Kim et al. (2007), for discrete choice models with multiple 

categories in the response variable, the positivity or negativity the coefficients could not 

be freely interpreted as the increase or decrease on the probability of injury severity 

levels. This is because the rate of change in the probability is not a simple linear function 

of the coefficient specific to that particular injury severity, but is also a function of its 

effect and the effects of all the other coefficients in all other injury severities. To 

accurately assess the influence of contributing factors on multi-categorical injury 

outcome, the pseudo-elasticity analysis needs to be performed. To properly evaluate the 

influence of contributing factors on injury severity outcomes, a direct pseudo-elasticity 

analysis is necessary by altering the values of each contributing factor and examining the 

probability change.  In this study, the variables were all converted to 0-1 indicator 
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variables for logit modeling. The pseudo-elasticity is defined by the percentage change in 

probability when an indicator variable is changed from 0 to 1 (and 1 to 0), and is 

calculated as follows: 

𝐸𝑥𝑛𝑘
𝑃𝑛𝑖 =

𝑃𝑛𝑖[𝑥𝑛𝑘=1]−𝑃𝑛𝑖[𝑥𝑛𝑘=0]

𝑃𝑛𝑖[𝑥𝑛𝑘=0]
                                                (9) 

where 𝐸𝒙𝑛𝑘
𝑃𝑛𝑖  is the direct pseudo-elasticity of the kth variable from the vector 𝒙𝑛. 𝑃𝑛𝑖 is the 

probability of driver n suffering injury severity level i and is defined as 

𝑃𝑛𝑖 =
𝑒𝛽𝑖𝒙𝑛

∑ 𝑒
𝛽
𝑖′
𝒙𝑛

𝑖′
                                                     (10) 

where 𝛽𝑖 is the vector of coefficients estimated specific to injury severity level i and 𝒙𝑛 is 

a vector of exogenous variables for driver n. This pseudo-elasticity method has been 

utilized in several authentic traffic safety studies (Shankar and Mannering, 1996; 

Ulfarsson and Mannering, 2004), and therefore is also used in this study to evaluate the 

marginal effects of the contributing factors. In this study, the percentage change in 

probability by altering variable values is evaluated for each driver/vehicle record using 

the estimated mean of each coefficient, and the pseudo-elasticity is summarized by 

averaging the result for each observation.  

 

3.2.4 Model Performance Comparison 

In the development of these three hierarchical regression models, corresponding 

control models are developed and used to examine the same datasets for performance 

comparison purpose, in which the Deviance Information Criterion (DIC) is used as model 

performance measurement. DIC is proposed by Spiegelhalter et al.(2002) as a Bayesian 
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measurement for model performance comparison in Bayesian model selection procedure. 

It is a generalization of two hierarchical modeling measurements: Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC). The DIC is defined as 

𝐷𝐼𝐶 = 𝐷(𝛾̅) + 2𝑝𝐷 = 𝐷(𝛾)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝐷                              (3-17) 

where, 𝐷(𝛾̅) is the deviance obtained at the posterior means of estimated parameter 𝛾, 

and is specified as 𝐷(𝛾̅) = −2 log(𝑝(𝑦|𝛾̅)) + 𝐶, where y is the response value, 𝛾̅ is the 

posterior mean of estimated parameter 𝛾, and C is a constant term that could be canceled 

out in model comparison calculation. 𝐷(𝛾)̅̅ ̅̅ ̅̅ ̅ is the posterior mean of the deviance, and is 

defined as 𝐷(𝛾)̅̅ ̅̅ ̅̅ ̅ = 𝐸𝛾(𝐷(𝛾)), which could be considered as a measurement of model 

suitability. 𝑝𝐷 is the effective number of parameters and is generally considered as a 

model complexity measurement, 𝑝𝐷 = 𝐷(𝛾)̅̅ ̅̅ ̅̅ ̅-⁡𝐷(𝛾̅). In model comparison problems, a 

lower DIC value indicates a preferable model for parameter estimation and response 

prediction. 

 

3.3 MNL-BN Hybrid Model 

Most regression models have their own model assumptions regarding data 

structure and underlying relationships between dependent and independent variables, and 

violation of these assumptions could lead to erroneous estimations of the likelihood of 

injury severities. Therefore, non-regression models relaxing these restrictions are needed 

in this study for model applicability examination. A MNL-BN hybrid model (indicated as 

Box D in Figure 3-1) is proposed as a non-regression machine-learning method in this 
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section for driver injury severity prediction, and the detailed model development 

procedure is presented below. 

3.3.1 BN Definition 

BN is employed as a classifier to analyze driver injury severity outcomes based 

on the given variables. BN is capable of quantifying conditional probability relationships 

among variables via graphic presentation, known as a Directed Acyclic Graph (DAG) 

(Bouckaert, 2008). A BN can be represented by a network structure Bs over a set of 

variables, V = {𝑥1, 𝑥2, … , 𝑥𝑣 }, 𝑣 > 1 . The DAG is portrayed to show cause-effect 

relationships among variables. A set of probability tables Bp ={𝑝(𝑥𝑖|𝑝𝑟(𝑥𝑖)), 𝑥𝑖 ∈ 𝑉}⁡ are 

provided to quantitatively interpret these cause-effect relationships depicted by the 

graphical structure, Bs, where 𝑝𝑟(𝑥𝑖)  is the set of parent variables of 𝑥𝑖  in Bs and 

𝑖=1,2,…,v. Technically speaking, A BN over a set of variables, V, represents joint 

probability distribution, P(V)=∏ 𝑝(𝑥𝑖|𝑝𝑟(𝑥𝑖))𝑥𝑖∈𝑉  for 𝑖=1,2,…, v. Using BN to analyze 

crash driver injury severities is to classify a potential driver injury outcome, y=𝑦0 (e.g. no 

injury, injury, fatality), given a set of significant variables identified in the MNL model, 

X = {𝑥1, 𝑥2, … , 𝑥𝑘},⁡𝑘 = 𝑣 − 1. The driver injury outcome, y, and the attribute variables, 

X, constitute the overall variable set V=(X, y). The classifier is a function mapping a case 

of X to an outcome of y, which could be trained from a given dataset D that contains 

sample instances of (X, y). To use BN as a classifier, we need to calculate 

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦|𝑋), the value of y that maximizes 𝑃(𝑦|𝑋), using the distribution P(V), 

where  

                                                 𝑃(𝑦|𝑋) = 𝑃(𝑋,𝑦)
𝑃(𝑋)

 = 𝑃(𝑉)
𝑃(𝑋)
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                                                              ∝ 𝑃(𝑉)  

           = ∏ 𝑝(𝑥𝑖|𝑝𝑟(𝑥𝑖))𝑥𝑖∈𝑉
                                     (3-18) 

The BN structure graphically represents various interactions among variables. The 

variables are denoted as nodes and their interactions are represented by directional arcs 

and edges between two nodes. Unconnected nodes signify direct independence between 

the variables represented by the corresponding nodes. 

BN forms a complete probabilistic model so that it represents the joint probability 

distributions of all variables involved. Theoretically speaking, a BN can use both 

continuous and discrete variables. However, in most approaches to learning BN 

structures from data, one common assumption is made that all the input variables are 

discrete variables to circumvent practical problems in the implementation of the BN 

specification and estimation theory (Buntine, 1991; Cooper and Herskovits, 1992, 1991; 

Heckerman et al., 2013). There are two ways of discretize numeric variable. First, 

numeric variables could be discretized by several discretization algorithms, such as Equal 

Width Interval Binning, Holte’s 1R Discretizer, Recursive Minimal Entropy Partitioning, 

etc. (Dougherty et al., 1995). Besides, numeric variables could also be categorized based 

on the accepted standards or experience in the studied area, such as traffic related 

experience or engineering experience in traffic safety analysis, as shown in many 

authentic studies (Ahmed et al., 2011; de Oña et al., 2011; Huang et al., 2008). In this 

study, numeric variables are discretized based on these previous studies as well as 

engineering experience, rather than relying on discretization algorithms, for the reason 

that engineering experience-based discretization produces more reasonable categories. 

For example, driver age is a popular variable in traffic safety analyses. Based on previous 
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studies or engineering experience, researchers often divide driver age into three exclusive 

categories: Young drivers (16-25), mid-age drivers (26-64), senior drivers(65 or older), 

with which we can examine the age effect on crash frequency or crash severity.  

 

3.3.2 BN Structure Quality Measurement-Scoring Metric 

To find a globally optimal BN structure, the searching algorithm needs to test all 

possible DAG options in the structure space. The number of possible DAGs with n nodes 

is (Mujalli, 2011; Robinson, 1977), 

𝐹(𝑛) = ∑ (−1)𝑖+1
𝑛!

𝑖!(𝑛−𝑖)!
2(𝑛−𝑖)𝐹(𝑛 − 𝑖)𝑛

𝑖=1                          (3-19) 

Generally, searching an optimal BN structure is a Non-deterministic Polynomial-

time hard (NP-hard) problem defined in computational complexity theory. Therefore, it is 

necessary to employ effective training algorithms to find an approximately optimal DAG 

in a heuristic way. In this study, prior knowledge and BN scoring metrics are combined 

to achieve an efficient BN structure estimation. Several BN scoring metrics are 

commonly used as structure quality measurements, such as Minimum Description Length 

(MDL), AIC, Bayes metric, structure entropy, and Bayesian metric with Dirichlet priors 

and equivalence (BDe). 

To describe these metrics, the following terms are defined (Bouckaert, 2008):N is 

the number of instances in a dataset, D; ri is the cardinality of a variable, xi; pr(xi) denotes 

the set of the parent variables of xi in Bs; qi is the cardinality of pr(xi), and qi=∏ 𝑟𝑗𝑥𝑗∈𝑝𝑟(𝑥𝑖) ; 

Nij represents the number of cases in the dataset that pr(xi) takes its jth value; Nijk is the 

number of cases in the dataset where pr(xi) takes its jth value and xi takes its kth value, 
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and Nij=∑ 𝑁𝑖𝑗𝑘
𝑟𝑖
𝑘=1 . P(Bs) represents the prior information for BN structure, Bs; 𝑁𝑖𝑗′  and 

𝑁𝑖𝑗𝑘
′ ⁡are the prior knowledge on Nij and Nijk, restricted by 𝑁𝑖𝑗′ = ∑ 𝑁𝑖𝑗𝑘

′𝑟𝑖
𝑘=1 . Thus, for a 

BN structure, Bs, over a database D: 

The entropy metric H(Bs, D) is defined as 

𝐻(𝐵𝑠, 𝐷) = −𝑁∑ ∑ ∑
𝑁𝑖𝑗𝑘

𝑁
𝑙𝑜𝑔

𝑁𝑖𝑗𝑘

𝑁

𝑟𝑖
𝑘=1

𝑞𝑖
𝑗=1

𝑛
𝑖=1                         (3-20) 

and the number of parameters T as 

𝑇 = ∑ (𝑟𝑖 − 1) ∗ 𝑞𝑖
𝑛
𝑖=1                                              (3-21) 

The AIC metric QAIC(𝐵𝑠,D) is expressed as 

𝑄𝐴𝐼𝐶(𝐵𝑠, 𝐷) = 𝐻(𝐵𝑠, 𝐷) + 𝑇                                    (3-22) 

The MDL metric QMDL(𝐵𝑠,D) is defined as  

𝑄𝑀𝐷𝐿(𝐵𝑠, 𝐷) = 𝐻(𝐵𝑠, 𝐷) +
𝑇

2
log𝑁                               (3-23) 

The Bayes metric is  

𝑄𝐵𝑎𝑦𝑒𝑠(𝐵𝑠, 𝐷) = 𝑃(𝐵𝑠)∏ ∏
Γ(𝑁𝑖𝑗

′ )

Γ(𝑁𝑖𝑗
′ +𝑁𝑖𝑗)

∏
Γ(𝑁𝑖𝑗𝑘

′ +𝑁𝑖𝑗𝑘)

Γ(𝑁𝑖𝑗𝑘
′ )

𝑟𝑖
𝑘=1

𝑞𝑖
𝑗=1

𝑛
𝑖=0             (3-24) 

when 𝑁𝑖𝑗𝑘′ = 1,  𝑄𝐵𝑎𝑦𝑒𝑠(𝐵𝑠, 𝐷)  is converted to K2 metric as follows. K2 metric is a 

entropy-based score metric proposed by Cooper and Herskovits (1992) for BN heuristic 

learning. 

𝑄𝐾2(𝐵𝑠, 𝐷) = 𝑃(𝐵𝑠)∏ ∏
(𝑟𝑖−1)!

(𝑟𝑖−1+𝑁𝑖𝑗)!
∏ 𝑁𝑖𝑗𝑘!
𝑟𝑖
𝑘=1

𝑞𝑖
𝑗=1

𝑛
𝑖=0                      (3-25) 

with 𝑁𝑖𝑗𝑘′ =
1

𝑟𝑖∗𝑞𝑖
, we have the Bayesian BDe metric as follows (Bouckaert, 2008; 

Heckerman et al., 1995): 
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𝑄𝐵𝐷𝑒(𝐵𝑠, 𝐷) = 𝑃(𝐵𝑠)∏ ∏
Γ(

1

𝑞𝑖
)

Γ(
1

𝑞𝑖
+𝑁𝑖𝑗)

∏
Γ(

1

𝑟𝑖∗𝑞𝑖
+𝑁𝑖𝑗𝑘)

Γ(
1

𝑟𝑖∗𝑞𝑖
)

𝑟𝑖
𝑘=1

𝑞𝑖
𝑗=1

𝑛
𝑖=0                (3-26) 

where, Γ(∗) is the Gamma function. Based on these metrics, optimal BN structures could 

be determined in the BN learning and model specification development as detailed in the 

following sections.  

3.3.3 BN Structure Learning Algorithm 

Various structure learning algorithms have been proposed for the optimal BN 

structure, such as hill climbing, simulated annealing, genetic algorithm, etc. In this study, 

a popular hill-climbing based K2 algorithm would be used for BN structure training.  

The K2 algorithm is a type of greedy hill climbing search algorithm, and based on 

this staring point, all the neighboring DAGs are established by adding, removing, and 

reversing an existing arc of the initial DAG. The scoring metrics are used to evaluate 

each DAG performance. A new DAG with a higher score will replace the current DAG, 

and new neighboring DAGs are generated to enable search processes to iterate until a 

DAG is found with the highest score (Cooper and Herskovits, 1992). A DAG with the 

highest score is the optimal network structure. The less restricted version of K2 algorithm 

in this study can allow no predefinition of nodes order but greedily add or remove edges 

between random node pairs and even examine the inversion of existing directed arcs, 

which produced more reliable results (Witten et al., 2011).   

In the training procedure, the initial DAG guided by prior knowledge may 

potentially lead to an optimal model structure specification with reasonable cause-effect 

elaborations. However, the identified BN structure may be greatly impacted by the initial 
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knowledge-based DAG and it could be a locally optimal solution based on this type of 

greedy hill climbing search algorithm. To address this problem, different initial DAGs are 

developed as the starting points for multiple search iterations to ensure at least a globally 

suboptimal DAG will be generated.      

In this study, a simple estimator is used to estimate the conditional probability 

table of a node after the BN structure is determined, taking appropriate prior knowledge 

into account (Bouckaert, 2008). It calculates the conditional probabilities directly as 

follows,  

𝑃(𝑥𝑖 = 𝑘|𝑝𝑟(𝑥𝑖) = 𝑗) =
𝑄𝑖𝑗𝑘+𝑄𝑖𝑗𝑘

′

𝑄𝑖𝑗+𝑄𝑖𝑗
′                                (3-27) 

where, as defined before, Qij represents the number of cases in the dataset that 

pr(xi) takes its jth value; 𝑄𝑖𝑗𝑘 represents the number of cases in the dataset where pr(xi) 

takes its jth value and xi takes its kth value, and 𝑄𝑖𝑗=∑ 𝑄𝑖𝑗𝑘
𝑟𝑖
𝑘=1 . 𝑄𝑖𝑗′  and 𝑄𝑖𝑗𝑘′  are the prior 

knowledge on Qij and Qijk, restricted by 𝑄𝑖𝑗′ = ∑ 𝑄𝑖𝑗𝑘
′𝑟𝑖

𝑘=1 , and could be set. When 𝑄𝑖𝑗𝑘′  is 

set as 0, the Maximum Likelihood Estimation (MLE) would be obtained.  

 

3.3.4 BN Input Variable Selection Procedures 

The ordinary MNL model is a test-based model to identify significant variables 

for a target variable. It is assumed that for any attribute changes, the marginal costs for 

different severity outcomes are different. Pis, the probability of driver, s, being involved 

in a crash with injury severity level, i, is determined by the utility function Uis: 

𝑃𝑖𝑠 = 𝑃(𝑈𝑖𝑠 ≥ 𝑈𝑗𝑠, ∀𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗) = 𝑃(𝑢𝑖𝑠 + 𝜀𝑖𝑠 ≥ 𝑢𝑗𝑠 + 𝜀𝑗𝑠, ∀𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗)    (3-28) 
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where 𝑢𝑖𝑠⁡is the deterministic component that is only modeled by significant variables 

describing the instance; 𝜀𝑖𝑠⁡is the random component representing the hidden effect on 

driver injury severity; C is the choice set of possible driver injury severity outcomes. 𝑢𝑖𝑠 

is defined as a linear function for driver s, 

𝑢𝑖𝑠 = 𝛽𝑖 × 𝑉𝑖𝑠 + 𝛼𝑖𝑠                                            (3-29) 

where 𝑉𝑖𝑠 is the exogenous variable vector influencing injury severity, i, for driver, s, and 

𝛽𝑖  is a coefficient vector to be estimated for measuring the influence of 𝑉𝑖𝑠⁡on driver 

injury severity, i; 𝛼𝑖𝑠  is the constant term. 𝜀𝑖𝑠  is normally assumed to follow a 

Generalized Extreme Value (GEV) distribution, and a MNL model can be derived as 

𝑃𝑖𝑠 =
𝑒𝑢𝑖𝑠

∑ 𝑒
𝑢𝑗𝑠

𝑗∈𝐶
=

𝑒𝛽𝑖×𝑉𝑖𝑠+𝛼𝑖𝑠

∑ 𝑒
𝛽𝑗×𝑉𝑗𝑠+𝛼𝑗𝑠

𝑗∈𝐶

                                   (3-30) 

where, 𝑃𝑖𝑠  is the probability of driver, s, suffering injury outcome, i, in a crash. The 

coefficients 𝛽𝑖  and 𝛼𝑖𝑠  are estimated via MLE method. All the variables are used for 

MNL model development and significant ones are identified based on their T-ratios and 

P-values at the confidence level of p=0.05. These identified significant variables will be 

used for BN structure establishment and probabilistic parameter learning to explicitly 

formulate cause-effect relationships between injury severity outcomes and explanatory 

attributes.  

 

3.4 Knowledge-Based Bayesian Non-parametric Method 

In order to comprehensively investigate the feasibility of applying Bayesian 

methods in crash driver injury severity analyses, non-parametric machine-learning 
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models should also be included. In this section, a Decision Table/Naïve Bayes (DTNB) 

hybrid classifier (indicated as Box E in Figure 3-1) is proposed as a representative model 

for driver injury severity pattern investigation, as discussed in the following sections. 

 

3.4.1 Decision Table (DT) 

DT is a scheme-specific learning algorithm modeling and presenting complicated 

logics (Witten et al., 2011). It is defined as a table representing a complete set of decision 

rules under all mutually exclusively conditional scenarios in a pre-defined problem 

(Witlox et al., 2009). A standard DT consists of four parts. In a DT, the upper left part is 

a list of all the conditions, denoted as Ci for i=1,…, c, where c is the number of 

conditions in the problem. A condition-state set CSi contains all the possible alternative 

states that Ci is able to attain within a particular pre-defined problem: 

CSi = {Si1, Si2,…, Siti}                                               (3-31) 

where ti is the number of alternative states for the ith condition Ci in the pre-defined 

problem. 

The upper right part of a DT is its condition space, which is a Cartesian product of 

all the condition-state sets CSi (i=1,…, c), as shown below: 

SP(C) = CS1 × CS2 ×…× CSc for c>1                                (3-32) 

                                                     =  CS1                                        for c=1                         

Each element in the condition space is a condition entry (CE) with ordered c 

dimensions (also known as an ordered c-tuple) (Witlox et al., 2009), and the whole set of 

these condition entries in the DT is defined as the domain of a DT, denoted as DOM(DT).  
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The lower left part in a DT includes all the possible action subjects used to 

express the decisions, represented as Aj for j=1,…,a, where a is the number of all possible 

actions. Similar to CSi, an action-state set ATj includes all the attainable states for action 

At within a particular pre-defined problem, defined as:  

ATj = {T j1, T j2,…, Tjmj}                                       (3-33) 

where mj is the number of alternatives for Aj in the pre-defined problem.  

The lower right part of a DT is its action space, which is also a Cartesian product 

of the all the action sets ATj for j=1,…,a,  

SP(A) = AT1 × AT2 ×…× ATa for a>1                              (3-34) 

                                                       =  AT1                                       for a=1                  

Similar to the condition space, each element in the action space is an a-

dimensional Action Entry (AE). 

The presentation of a complete DT is a matrix and could be written as follows: 

Let n be the number of decision rules (columns) and c be the number of conditions (rows). 

The condition part of a DT is then expressed as, 

𝐷 = (𝑑𝑖𝑟), 𝑖 = 1,… , 𝑐⁡and⁡𝑟 = 1,… , 𝑛                        (3-35) 

where 𝑑𝑖𝑟 ∈ 𝐶𝑆𝑖⁡ 

The action part could be expressed as: 

𝐸 = (𝑒𝑗𝑟), 𝑗 = 1, … , 𝑎⁡and⁡𝑟 = 1,… , 𝑛                         (3-36) 

where a is the number of actions (rows) and 𝑒𝑗𝑟 ∈ 𝐴𝑇𝑗. Therefore, A DT specifies the 

relations between condition space and action space as, 

𝐷𝑇 = (𝑑𝑡𝑞𝑟) = (𝐷
𝐸
)                                                 (3-37) 

where 𝑑𝑡𝑞𝑟 = 𝑑𝑞𝑟, for 𝑞 = 1,… , 𝑐⁡and⁡𝑟 = 1,… , 𝑛 
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                   = 𝑒(𝑞−𝑐)𝑟, for 𝑞 = 𝑐 + 1,… , 𝑐 + 𝑎⁡and⁡𝑟 = 1,… , 𝑛 

In application, a DT is used as a lookup table based on the selected attributes. 

Each entry in the DT is associated with the class probability estimated based on the 

observed frequencies in the original dataset. The critical procedure of learning a DT is the 

selection of highly discriminative attributes, given the class variable, and it is normally 

conducted by maximizing cross-validated performance (Hall and Frank, 2008). Cross-

validation is efficient for DT learning since the learned structure would not change with 

the addition or deletion of instances, and only the class counts vary according to the 

entries. Detailed explanation of the cross-validation procedure is discussed below in 

Section 3.4.3.  

Lew (1991) and Witlox et al. (2009) concluded the advantages using DTs: they 

can be used for algorithm design in a schematic way; they provide a compact visual 

presentation of the classification results; they are flexible algorithms that enable 

automated error-checking and formal verification; they are also a compatible type of 

model easy to be embedded in other models and computing languages. 

 

3.4.2 Naïve Bayes (NB) Model 

In a classification task, assume Y is the class variable and X=(X1, X2,…, Xn) is the 

set of attribute variables. A Bayes classifier prediction for the value y of class variable Y 

is a process to find y that P(Y=yi) has the highest posterior conditional probability given 

x=(x1,x2,…xn), shown in Equation (3-38).  

P(Y=yi|X= x =(x1,x2,…xn))>P(Y= yj | X= x=(x1,x2,…xn)), ∀𝑗, 𝑗 ≠ 𝑖         (3-38) 
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Using Bayes’ Theorem, it can be expressed as Equation (3-39), 

 𝑃(𝑌 = 𝑦𝑖|𝑋 = ⁡𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)) =
𝑃(𝑋=⁡𝑥=(𝑥1,𝑥2,…,𝑥𝑛)|𝑌=𝑦𝑖)𝑃(𝑌=𝑦𝑖)

𝑃(𝑋=⁡𝑥=(𝑥1,𝑥2,…,𝑥𝑛))
        (3-39) 

An NB classifier is a Bayesian model with the “naïve” conditional independence 

assumption that the presence or absence of an attribute is independent from the presence 

or absence of other attributes in the attribute set, given the class variable value. Therefore, 

the predicting probability of class variable Y=yi conditioned on X= x=(x1,x2,…xn) is as 

follows (Domingos and Plazzani, 1997): 

                              𝑃(𝑌 = 𝑦𝑖|𝑋 = 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)) 

=
𝑃(𝑋 = 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)|𝑌 = 𝑦𝑖)𝑃(𝑌 = 𝑦𝑖)

𝑃(𝑋 = 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛))
 

∝ 𝑃(𝑋 = 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)|𝑌 = 𝑦𝑖)P(𝑌 = 𝑦𝑖) 

       = P(𝑌 = 𝑦𝑖)∏ P(𝑥𝑗|𝑌 = 𝑦𝑖)
𝑛
𝑗=1                                                   (3-40) 

NB classifier demonstrates preferable performance in analyzing many real 

datasets which do not strictly follow the “naïve” independent assumption. Specifically, 

the impact of the “naïve” assumption on the classification performance of an NB 

classifier would be insignificant if the classification tool is evaluated by zero-one loss or 

accuracy (Domingos and Plazzani, 1997). For attributes Xj with discrete values, the 

probability p(xj/yi) was estimated by the proportion of the training instances with both 

Xj=xj and the class variable Y= yi over the number of all instances with the class variable 

Y=yi in the training dataset. Continuous or numeric attributes Xj are usually categorized 

with discretization techniques to enhance model performance, which will also be 

conducted in this research. The probability inference method for discrete variables is also 

applicable for the categorized continuous and numeric variables.  
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Similar to DT learning procedure, NB model learning procedure with cross-

validated performance measurement is also very efficient since the frequency of each 

class could be updated in constant time (Hall and Frank, 2008).  

 

3.4.3 Decision Table/Naïve Bayes (DTNB) Hybrid Model 

As a hybrid classification model, a DTNB is an incorporation of a DT and an NB 

classifier (Hall and Frank, 2008). The learning algorithm for a DTNB is similar to 

learning a stand-alone DT. At each point of attribute search, the learning algorithm 

assesses the merit of splitting the entire attribute set into two disjoint attribute subsets, 

with one modeled by the DT model and the other by a NB classifier. The standard 

method to choose an optimal attribute set for a DT is to maximize cross-validated 

performance. In a typical cross-validation procedure, the entire dataset is divided into two 

segments: one for model learning and the other for model validation, and the training and 

validation sets must cross-over successively so that each data in the entire dataset is 

validated (Refaeilzadeh et al., 2009). A commonly used cross-validation method is 

Leave-One-Out Cross-Validation (LOO-CV) (Witten et al., 2011), which is also applied 

in this study. LOO-CV is a special type of n-fold cross validation, in which n is equal to 

the number of instances in the dataset. In each step of the cross-validation, a single 

instance in the dataset would be put aside and the rest of the dataset would be used for the 

training procedure. The trained classifier is tested by its prediction on the left instance, 

with 1 for success and 0 for failure. This procedure repeats n times and ends till each 

instance in the dataset is used at least once for validation (Kohavi, 1995). Numerous 

evaluation measurements are generally used for cross-validation, including Root Mean-
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Squared Error (RMSE) for numeric classes, accuracy for discrete classes, and AUC. 

Starting with all attributes modeled by the DT, a greedy search algorithm with forward 

selection approach is used for attribute splitting procedure in this study, where the 

selected attributes are modeled with NB classifier and the remaining ones are modeled by 

DT model in each step. LOO-CV accuracy is applied as an evaluation measurement to 

assess the quality of attribute split based on probability estimation produced by the hybrid 

model.  

The classification results and probability estimations of response classes from the 

DT and NB classifier are combined to generate overall modeling results (Hall and Frank, 

2008). Let 𝑋𝐷𝑇 be the attribute set in the DT and  𝑋𝑁𝐵 be the one in the NB model, where 

𝑋𝐷𝑇  and 𝑋𝑁𝐵  are complementary with each other. The overall class probability is 

calculated as follows, 

𝑃(𝑦|𝑋) = 𝛼 × 𝑃𝐷𝑇(𝑦|𝑋
𝐷𝑇) ×

𝑃𝑁𝐵(𝑦|𝑋
𝑁𝐵)

𝑃(𝑦)
                             (3-41) 

where 𝑃𝐷𝑇(𝑦|𝑋𝐷𝑇) and 𝑃𝑁𝐵(𝑦|𝑋𝑁𝐵) are the class probabilities estimated by the DT and 

NB model respectively, 𝛼 is a normalization constant, and 𝑃(𝑦) is the prior probability of 

the class. The Laplace-corrected observed counts are used in the estimation of all 

probabilities. 

3.5 Conclusions 

Traffic Crashes result in significant cost and induce considerable casualties and 

property losses. Investigating traffic crash data and examining the casual mechanisms is 

of practical importance. Statistical models and machine-learning methods are two major 

types of methods that have been extensively used in traffic crash injury severity analysis, 
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and regression models are the mostly developed and used techniques. Compared with 

traditional estimation methods extracting parameters of interest solely from the studied 

dataset, Bayesian methods provides posterior parameter estimations by incorporating 

parameter prior distribution information and evidence from the studied dataset, which is 

more reliable and increasingly used in traffic safety studies. This research aims to 

comprehensively examine the applicability and effectiveness of Bayesian method in 

traffic crash driver injury severity analyses, including hierarchical Bayesian regression 

models, Bayesian non-regression models and knowledge-based Bayesian non-parametric 

method. At the beginning, a Bayesian model selection decision chart is developed based 

on certain research purpose, crash data availability and data structure, where researchers 

could select the most appropriate Bayesian model for their studies. 

Regression models are the mostly applied research models in traffic crash injury 

severity analysis, and it is found that hierarchical Bayesian models are more robust and 

produce more accurate results due to the hierarchical structure of crash data (i.e. road 

section, crash, vehicle/driver). With Bayesian inference method, hierarchical Bayesian 

regression models are an indispensable component in Bayesian method family. In this 

study, three hierarchical Bayesian regression models are considered: hierarchical 

Bayesian binary logit model, hierarchical Bayesian ordered logit model, and hierarchical 

random intercept model with cross-level interactions based on the difference in driver 

injury categorization and model development. In hierarchical Bayesian binary logit 

model, driver injury severity is assumed to be a binary outcome and the unobserved 

heterogeneity is simulated by a random error term representing hidden variance among 

crashes. For hierarchical ordered logit models, driver injury severity is defined as a 
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variable with 5 increasing severity levels, and the unobserved heterogeneity is modeled 

by a crash-level variance random error term. These models both have their own 

disadvantages and could be improved to better excavate driver injury severity patterns. 

To overcome these disadvantages, a random intercept model is developed in this study, 

where the driver injury severity is defined as a three-level multinomial variable, and the 

cross-level interactions between crash and vehicle/driver level variables are considered to 

better illustrate unobserved heterogeneity in crash data.  In all three models, due to the 

limited crash data availability, non-informative prior are all used for parameter posterior 

estimation, and the model simulation procedure are conducted in WinBUGS via a Gibbs 

Sampler, a MCMC algorithm. Traditional regression models are used for model 

comparison purpose and the DIC measurement is utilized to evaluate model performance. 

The posterior parameter coefficients are summarized to indicate variable influence on 

driver injury outcome and 95% BCI are employed to indicate variable significance. 

Most regression models have their own model assumptions and pre-defined 

underlying relationships between dependent and independent variables, which may not 

hold universally, and violation of these assumptions could lead to erroneous estimations 

of the likelihood of injury severities. A MNL-BN hybrid model is utilized as a non-

regression machine-learning method in this study by relaxing certain hierarchical model 

in model assumptions to predict driver injury severities, where the multinomial logit 

model is utilized to select significant variables for driver injury prediction and the BN 

model is used to train an optimal classifier. The model performance is evaluated in terms 

of classification measurements such as prediction accuracy, F-measure, Receiver 

Operating Characteristic (ROC) curve, the area under ROC curve (AUC) and 
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classification confusion matrix. The variable influences on driver injury severities are 

evaluated through Bayesian network probability inference procedure. 

In order to comprehensively investigate the feasibility of applying Bayesian 

methods in crash driver injury severity analyses, a DTNB hybrid classifier, which is an 

incorporation of a decision table and a naïve Bayes classifier and has never been used in 

traffic safety analysis before, is utilized to identify the deterministic attribute set that best 

predicts driver injury severities and extract the corresponding decision rules based on 

these attributes. The model performance would also be evaluated in terms of prediction 

accuracy, F-measure, ROC curve, AUC value and the confusion matrix. The variable 

influences on driver injury severities are evaluated based on extracted decision rules for 

each injury severity. 

The applicability and effectiveness of these models are verified using different 

crash datasets from a complete New Mexico roadway crash dataset collected in 2010 and 

2011. These case studies are described and the analysis results are discussed in the 

following chapters. 
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Chapter 4 Hierarchical Bayesian Modeling Results 

4.1 Hierarchical Bayesian Binary Logit Modeling Analysis 

4.1.1 Case Study Data 

Although it is less populated in rural areas, traffic crashes occurring in rural 

locations result in more severe injuries and fatalities (NHTSA,2013). Rural highways are 

major corridors carrying a significant portion of high speed traffic and are prone to 

inducing traffic accidents with severe injuries. Therefore, a dataset including 3,939 driver 

injury records from 3,137 rural interstate crashes is used for model development and 

estimation in this study. The entire dataset is composed of three major sub-datasets: crash 

dataset, vehicle dataset and driver dataset, revealing explicit information regarding crash 

occurrence time and locations, crash types, weather condition, roadway geometry 

features, vehicle characteristics, driver injury severity, demographic and behavior 

characteristics. After the variable selection procedure for collinearity avoidance, 12 

variables were used as the initial input for hierarchical Bayesian modeling, and 

significant test was conducted to remove insignificant variables. The significant variables 

and their impacts are illustrated in Table 4-1. 
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Table 4-1 Rural Interstate Crash Dataset Description and Statistics. 

Hierarchy Variable Codes/Values 

Driver Injury Severity 

Total No or light 
Injury 

Percentag
e 

Incapacitatin
g Injury or 

Fatality 

Percentag
e 

Crash 
Level 

Variables 

Light 
Daylight 2120 87.14% 313 12.86% 2433 
Dawn/Dusk 170 88.08% 23 11.92% 193 
Dark 1121 85.38% 192 14.62% 1313 

Curve Curve Road 281 84.38% 52 15.62% 333 
Straight Road 3130 86.80% 476 13.20% 3606 

Grade 
Grade(including hill, dip, 
etc) 824 87.47% 118 12.53% 942 

Level 2587 86.32% 410 13.68% 2997 
Number of 
vehicles in 
crash 

Single vehicle 1705 81.74% 381 18.26% 2086 
Two vehicles 1464 91.96% 128 8.04% 1592 
Multiple vehicles 242 92.72% 19 7.28% 261 

Crash 
Location 

Short distance(less than 0.1 
mile) 2096 85.17% 365 14.83% 2461 

Medium distance (between 
0.1  mile and 1 mile) 272 80.95% 64 19.05% 336 

Far distance (more than 1 
mile) 1043 91.33% 99 8.67% 1142 

Vehicle 
Level 

Variables 

Number of 
lanes per 
vehicle 

direction 

One lane 318 86.89% 48 13.11% 366 
Two lanes 2597 86.02% 422 13.98% 3019 
Multiple lanes (three or 
more) 496 89.53% 58 10.47% 554 

Vehicle 
Types 

Light vehicles (passenger 
car and van) 1944 84.97% 344 15.03% 2288 

Heavy vehicles (pickup, 
semi-trucks, bus, trailers, 
etc.) 

1328 88.53% 172 11.47% 1500 

Motorcycles(motorcycle 
and scooter) 1 50.00% 1 50.00% 2 

Driver Age 
Young driver(less than 25) 727 85.73% 121 14.27% 848 
Mid-aged driver(25-63) 2357 87.59% 334 12.41% 2691 
Senior drivers(64 or older) 327 81.75% 73 18.25% 400 

Traffic 
Control 

Traffic Control (no passing 
zone, stop/yield sign, 
signal control, railroad 
gate) 

776 85.65% 130 14.35% 906 

No Control 2635 86.88% 398 13.12% 3033 

Wet Road 
Surface 

Wet surface (water, 
ice/snow, slush, etc) 990 90.49% 104 9.51% 1094 

Dry Road 2421 85.10% 424 14.90% 2845 
Driver 

Alcohol or 
Drug 

Involvemen
t 

Driver Alcohol/drug 
involved 89 61.81% 55 38.19% 144 

Sober Driver 3322 87.54% 473 12.46% 3795 

Driver 
Gender 

Male 2383 88.23% 318 11.77% 2701 
Female 1028 83.04% 210 16.96% 1238 

 

A preliminary statistical analysis was conducted to examine the existence of 

within-crash correlation based on the assumption that vehicles/drivers involved in the 

same crash share the same crash characteristics, which may result in a high probability of 

same driver injury severities. In the studied dataset, 729 crashes were multi-vehicle 
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crashes, and 644 of them have all the drivers in a same crash suffering the same injury 

severities, accounting for 88.3% of all multi-vehicle crashes. Therefore, within-crash 

correlation is assumed to exist in this dataset and should be considered in model 

development and specifications.   

 

4.1.2 Model Fit and Estimation Results 

After checking potential variable collinearity and removing less important 

variables, 12 variables were used as the initial input for hierarchical Bayesian binary logit 

modeling. In the finalized model, two crash-level variables and four vehicle/driver-level 

variables were retained for posterior distribution learning, and three chains with different 

initial value settings were simulated for 20000 iterations in which the first 5000 iterations 

were discarded as “burn-ins”. The trace plots of three iteration chains revealed a good 

mixing, and Brooks, Gelman and Rubin (BGR) convergence diagnostics illustrated 

satisfied modeling convergence (Brooks and Gelman, 1998). In order to reduce the 

autocorrelation among the sampled data, the posterior samples in every fifth iteration 

were extracted and retained for result generalization (Spiegelhalter et al., 2003), with a 

storage of 6000 samples in total. The model estimation results are summarized in Table 2. 

Table 4-2 Hierarchical Bayesian Binary Logit Model Posterior Estimation Results.  

Parameter 
Posterior Point Estimate 95% BCI of Odds 

Ratio 

Mean Standard 
Deviation 

Odds 
Ratio 2.50%  97.50% 

Number of Vehicles in a crash  
Single Vehicle 1.50 0.23 4.48 2.91  7.22 

Multiple Vehicle -0.18 0.49 0.83 0.32  2.13 
Two Vehicle* 0.00 0.00 1.00 1.00  1.00 
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Table 4-2 (Continued) 

Parameter 
Posterior Point Estimate 95% BCI of Odds 

Ratio 

Mean Standard 
Deviation 

Odds 
Ratio 2.50%  97.50% 

Wet Road Surface -0.88 0.22 0.42 0.26  0.62 
Vehicle Type  

Heavy Vehicle -0.09 0.19 0.91 0.63  1.30 
Motorcycle** 4.46 2.61 86.75 0.62  16865.07 
Light Vehicle* 0.00 0.00 1.00 1.00  1.00 
Driver Age  

Young driver (16-25) -0.005 0.20 0.99 0.67  1.47 
Senior driver (>63) 0.91 0.27 2.47 1.49  4.29 
Mid-Age (25-63)* 0.00 0.00 1.00 1.00  1.00 

Driver alcohol or drug 
involvement 2.51 0.42 12.35 5.84  30.05 

Driver Gender -0.64 0.18 0.52 0.36  0.75 
Random Effects       

Between-crash Variance(𝜎02) 6.45 1.97     
Within-crash Variance(𝜎𝑣2) 3.29  

ICC 0.662  
 
Note: *reference category for a multinomial variable 

   **Significant at 90% BCI 

As illustrated in Table 4-2, the ICC value is 0.662, indicating that 66.2% of the 

total variance in the response variable was explained by the variance among different 

crashes. This is consistent with the fact that most of all rural interstate crashes (2408 of 

3137) are single vehicle crashes, generating significant between-crash variance 

contributing to overall data variance. The relatively large ICC value indicates the 

preference of the hierarchical Bayesian model in this analysis.  

In this study, an ordinary binary logit model was also used as a control model for 

performance comparison on the same dataset. The DIC values for both models are listed 

in Table 4-3. The overall DIC value of the proposed hierarchical Bayesian model is 

2522.69, which is lower than that for ordinary logit model (2928.25), verifying that the 
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hierarchical Bayesian logit model is superior to the control model in model fit, and that 

including between-crash variance into the proposed model could sustainably improve 

model performance. 

Table 4-3 DIC Results for Model Comparison. 

 𝐷(𝛾)̅̅ ̅̅ ̅̅ ̅ 𝐷(𝛾̅) 𝑝𝐷 DIC 
Hierarchical Bayesian binary logit model 1726.6 930.517 796.086 2522.69 

Ordinary binary logit model 2917.98 2907.71 10.272 2928.25 
   

4.1.3 Model Analysis results  

Six variables were considered significant in predicting driver injury severities in 

rural interstate crashes, including two crash-level variables and four vehicle/driver-level 

variables: number of vehicles in a crash, wet road surface, vehicle type, driver age, driver 

alcohol or drug involvement and driver gender. The variables are listed in Table 4-2, and 

explicit discussions of these variables occur below.  

There are three discrete levels categorizing the number of vehicles in a crash: 

single vehicle, two vehicles and multiple vehicles. In this analysis, two-vehicle crashes 

are treated as the reference category. The estimated odds ratio for single-vehicle crashes, 

4.48, suggests that the probability for drivers suffering incapable injuries or deaths is 3.48 

times higher in single-vehicle crashes than that in two-vehicle crashes.  The 95% BCI of 

its odds ratio (2.91, 7.22) verifies its statistical significance. Compared to rural interstate 

crashes with two vehicles involved, multi-vehicle rural interstate crashes tend to induce 

less severe driver injuries, indicated by the estimated mean odds ratio 0.83. However, the 

effect is not significant based on its 95% BCI (0.32, 2.13). This discovery is consistent 

with previous studies. According to the NHTSA (2013), there were 1,661,000 single-
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vehicle crashes and 3,677,000 multi-vehicle crashes in the US in 2011, of which 17,991 

and 11,766, respectively, were fatal crashes. This indicates that there was a higher 

probability for severe injuries or deaths in single-vehicle crashes. Further analyses also 

indicate that single-vehicle crashes and multi-vehicle crashes should be examined 

separately due to their distinctive mechanisms in causing traffic casualties. For instance, 

Savolainen and Mannering (2007) applied two different models to analyze motorcyclists’ 

casualties in single-vehicle and multi-vehicle crashes separately.  

Wet road surface condition was found to be a significant variable in predicting 

driver injury severities in rural intestate crashes (95% odds ratio BCI (0.26, 0.62)). Its 

estimated mean odds ratio (0.42) indicates that wet road surface could reduce the 

probability of drivers being incapably injured or killed by 58% compared to dry road 

surface conditions. This finding is also reinforced by previous research. Haque et al. 

(2012) found that wet surface leads to decrease of motorcycle crash risks and concluded 

that motorcycle drivers tend to be more careful when driving on wet road surfaces. 

Shaheed et al. (2013) discovered that dry pavement conditions significantly increase the 

potential of fatal and major injury in motorcycle-involved crashes. Through probabilistic 

modeling, Savolainen and Mannering (2007) found that crashes occurred under wet road 

surface conditions tend to be less severe. However, some studies also draw seemingly 

contradictory conclusions, indicating that wet conditions are a contributory factor to 

traffic crashes. For example, Caliendo et al. (2007) found that wet road conditions are  a 

significant factor increasing crash frequency. The contradiction in research findings is 

explainable. Although the crash frequency is increasing due to low skid resistance, road 

users tend to be more aware of the adverse pavement surface condition and drive at 
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relatively low speeds. However, in dry and clear road conditions, the odds of traffic 

safety might be reduced by the propensity of speeding. Other studies generate composite 

conclusions regarding the safety effect of wet pavement conditions. Morgan and 

Mannering (2011) found that there is significant recognition difference for drivers of 

different age groups and genders on wet pavement conditions. Wet or snowy/icy road 

surfaces tend to decrease the probability of severe injury for male drivers less than 45 

years old but increase for the other driver groups. Mayora and Piña (2009) investigated 

the impact of skid resistance of both wet and dry road surfaces on traffic safety and 

summarized that the increase of skid resistance is negatively associated with crash rates 

regardless of pavement surface conditions. This indicates that pavement surface condition 

is a complex factor related to crash risks and injury severities, and it needs to be 

comprehensive examined.  

Vehicle type is not a statistically significant factor affecting driver injury 

severities in rural interstate crashes based on the 95% BCI, but the motorcycle category is 

significant at 90% BCI. Compared to drivers in light vehicles, drivers in heavy vehicles 

tend to suffer less severe injuries in rural interstate crashes, indicated by the estimated 

mean odds ratio 0.91. This severity probability reduction is small (9%) and insignificant 

(95% BCI of odds ratio (0.63, 1.30)). Motorcycle drivers are more likely to get incapably 

injured or killed in crashes, with a probability increase of more than 80 times (odd 

ratio=86.75). This effect is not significant based on the 95% BCI (0.62, 16868.07) but 

significant based on the 90% BCI of odds ratio (1.41, 6891.20). The large variance and 

insignificance in the estimation for motorcycles are possibly due to the limited number of 

motorcycle records in the dataset (Table 4-1) in which insufficient information on injury 
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mechanism and pattern has been provided. However, as an important vehicle type on 

highways, motorcycles should not be ignored in this study, and more comprehensive data 

are desired to enhance the reliability of the estimation. Although not significant, the 

driver injury patterns and tendencies for heavy vehicles and motorcycles revealed in this 

research are understandable. Heavy vehicles are of significant size and weight where 

drivers are more protected, while motorcyclists are more exposed to open traffic 

environments and more vulnerable in crashes. Support for these findings has been offered 

from other related studies. Kockelman and Kweon (2002) discovered that motorcyclists 

are expected to suffer more severe injuries compared to vehicle drivers. Chiang et al. 

(2014) found that motorcyclists are the most vulnerable driver group on roadways. More 

detailed research found that head injury is the main cause of motorcyclist deaths and 

helmet use is  effective prevention of driver trauma (Hefny et al., 2012; Kelly et al., 

1991). For heavy vehicles, Levine et al. (1999) discovered that vehicle weight increase 

could enhance the driver’s capability of enduring the front impact from crashes, and 

therefore reduce driver injuries. Overall, motorcycles and heavy vehicles are important 

factors for driver injuries severities. Hence, law enforcement on these vehicles and 

defensive driving training for the corresponding drivers are recommended. 

Driver age is found to be significant in affecting driver injury severities, 

especially for senior drivers that are over 64 years old (95% odds ratio BCI (1.49, 4.29)). 

The estimated mean of odds ratio for senior drivers is 2.47, suggesting that the odds of 

senior drivers sustaining incapable injuries or deaths in rural interstate crashes are 147% 

higher than that for mid-age drivers. This finding has been proven by earlier studies. Kim 

et al. (2013) discovered that older drivers (>63 years old) are a significant factor 
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increasing the odds of fatal injuries in crashes. Kockelman and Kweon (2002) proposed 

that senior drivers are less likely to make appropriate and immediate responses when 

facing crash risks due to their relative slow reactions. On the other hand, young drivers 

are more likely to engage in careless driving or speeding, resulting in a considerable 

potential for severe injuries. Huang et al. (2008) showed that both senior driver and 

young driver groups are more likely to suffer severe injuries in traffic crashes. In this 

analysis, however, young age (16-25) is not significantly associated with driver injury 

severities compared to mid-age drivers based on the 95% BCI of odds ratio (0.67, 1.47), 

which does not seem to be supported by previous studies. This could be explained by the 

fact that in this analysis, all types of rural interstate crashes were bundled in the study 

dataset and the driver age impact was not examined by crash type. As is discovered by 

Yasmin et al. (2014), young drivers are more likely to be involved in rear-end crashes 

due to insufficient driving experience and inferior distance judgment, while older drivers 

are more associated with angular collisions due to their relative slow reaction and 

inability to maneuver quickly to complete turning actions. Moreover, Abdel-Aty et al. 

(1998) comprehensively evaluated the effects of driver age across different traffic-related 

factors of traffic accident involvement, which indicated the importance of interactive 

effects between driver age with crash-related factors. As a result, there should be further 

investigations to enrich this research.  

Driver involvement of alcohol or drugs is found to significantly increase the 

probability of drivers with incapable or fatal injuries, illustrated by the 95% BCI of odds 

ratio (5.84, 30.05). It is shown that drivers with drug or alcohol usage have a probability 

of being incapably or fatally injured that is 11.35 times (odds ratio=12.35) higher than 
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that of drivers without any use of alcohol or drugs. This is reasonable since alcohol and 

drugs have significant effects in impairing drivers’ judgment and visibility. This 

discovery echoes our common sense and receives unanimous proof from other studies. 

Weiss et al. (2014) concluded that alcohol use is one of the fatal causes in single-vehicle 

crashes. Poulsen et al. (2014) testified to the independent effect of cannabis and 

combined effect of alcohol and cannabis in increasing crash potential. Using a case-

control experiment design, Hels et al. (2013) verified the close association between high 

risk of severe driver injury and high concentration of alcohol in bodies. Therefore, law 

enforcement of blood alcohol concentration (BAC) testing and drunken driving 

prohibition should be enhanced. 

Driver gender is statistically significant in predicting driver injury severities in 

rural interstate crashes, illustrated by the 95% BCI of its odds ratio (0.36, 0.75). The 

estimated mean of odds ratio (0.52) indicates that the probability of male drivers with 

incapable or fatal injuries is 48% less than that for female drivers in rural interstate 

crashes. Kockelman and Kweon (2002) also discovered that male drivers are associated 

with lower driver injury severities compared to female drivers. Islam and Mannering 

(2006) identified that female drivers have more interacting factors to increase the 

likelihood of injuries and deaths comparing to male drivers. However, other studies 

provided opposite findings. Massie et al. (1995) concluded that vehicles with male 

drivers are more likely to be involved in fatal crashes than female drivers. Kim et al. 

(2013) found that male drivers are a contributing factor to fatal injuries in single-vehicle 

crashes. To be more specific and accurate, Ulfarsson and Mannering (2004) examined the 

distinctive effects of males and females and their respective interactive effects with other 
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factors on injury severities. Other previous studies also addressed the interactive effects 

of driver gender with other factors on traffic crashes rather than examining the gender 

effect alone (Hels et al., 2013; Morgan and Mannering, 2011; Poulsen et al., 2014). The 

gender effect on driver injury severity in this research is a general conclusion for rural 

interstate crashes and a detailed examination of gender effects across other crash-related 

factors should be conducted.  

 

4.2 Hierarchical Bayesian Ordered Logit Modeling Results 

4.2.1 Case Study Data 

According to NMDOT (2012), among rural fatalities, 73.9% happened at rural 

non-interstate locations, despite rural interstate highways carrying the primary portion of 

rural traffic volume.  Based on the complete dataset including all reported crashes in New 

Mexico in 2010 and 2011, a rural non-interstate crash dataset is extracted for this case 

study. Special effort was taken to examine and remove incomplete and erroneous records, 

such as records with driver gender information as “unknown.” Overall, the studied 

dataset contains 10,770 vehicles involved in 8,580 crashes occurring at rural non-

interstate locations, with an average of 1.26 vehicles in each crash. Each record in the 

studied dataset indicates a vehicle/driver unit in a crash. The response variable 

representing driver injury severity is ordinal with five injury levels: no injury, complaint 

of injury/possible injury, visible injury, incapacitating injury and death, denoted by 

integer numbers from 1 to 5, respectively. The detailed descriptive statistics of the dataset 

are illustrated in Table 4-4 below. 
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Table 4-4 Rural Non-interstate Crash Dataset Description and Statistics. 

Hierarchy Variable Codes/Values 
Driver Injury Severity 

Total 
No Injury Percentage Possible 

Injury Percentage Visible 
Injury Percentage Incapacitating  

Injury Percentage Fatality Percentage 

Crash 
Level 
Variables 

Light 

Daylight 5077 73.80% 910 13.23% 550 8.00% 262 3.81% 80 1.16% 6879 

Dawn/Dusk 485 78.35% 67 10.82% 43 6.95% 18 2.91% 6 0.97% 619 

Dark 2406 73.53% 404 12.35% 283 8.65% 136 4.16% 43 1.31% 3272 

Curve 
Curve Road 1442 69.46% 287 13.82% 220 10.60% 98 4.72% 29 1.40% 2076 

Straight Road 6526 75.06% 1094 12.58% 656 7.55% 318 3.66% 100 1.15% 8694 

Grade 
Grade(including hill, 
dip, etc) 1906 74.28% 320 12.47% 216 8.42% 98 3.82% 26 1.01% 2566 

Level 6062 73.89% 1061 12.93% 660 8.04% 318 3.88% 103 1.26% 8204 

Number of 
vehicles in a 
crash 

Single vehicle 3682 71.34% 635 12.30% 542 10.50% 231 4.48% 71 1.38% 5161 

Two vehicles 4013 77.25% 673 12.95% 294 5.66% 164 3.16% 51 0.98% 5195 

Multiple vehicles 273 65.94% 73 17.63% 40 9.66% 21 5.07% 7 1.69% 414 

Crash 
Location 

Short distance(less than 
0.1 mile) 4968 72.40% 922 13.44% 590 8.60% 299 4.36% 83 1.21% 6862 

Medium distance 
(between 0.1  mile and 
1 mile) 

470 67.72% 92 13.26% 92 13.26% 16 2.31% 24 3.46% 694 

Far distance (more than 
1 mile) 2530 78.72% 367 11.42% 194 6.04% 101 3.14% 22 0.68% 3214 

Maximum 
Vehicle 
Damage in 
Crash 

No/Slight 2612 90.26% 214 7.39% 45 1.55% 16 0.55% 7 0.24% 2894 
Functional (affecting 
vehicle normal 
operation) 

2080 87.10% 197 8.25% 81 3.39% 29 1.21% 1 0.04% 2388 

Disabled (Vehicle can't 
be driven) 3276 59.69% 970 17.67% 750 13.67% 371 6.76% 121 2.20% 5488 

Vehicle 
Level 
Variables 

Number of 
lanes per 
vehicle 
direction 

One lane 4562 73.81% 777 12.57% 521 8.43% 238 3.85% 83 1.34% 6181 

Two lanes 2992 74.39% 520 12.93% 317 7.88% 150 3.73% 43 1.07% 4022 
Multiple lanes (three or 
more) 419 73.12% 84 14.66% 39 6.81% 28 4.89% 3 0.52% 573 
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Table 4-4 (Continued) 

Hierarchy Variable Codes/Values 
Driver Injury Severity 

Total 
No Injury Percentage Possible 

Injury Percentage Visible 
Injury Percentage Incapacitating  

Injury Percentage Fatality Percentage 

Vehicle 
Level 
Variables 

Vehicle 
Types 

Light vehicles 
(passenger car and van) 4898 71.96% 973 14.29% 571 8.39% 290 4.26% 75 1.10% 6807 

Heavy vehicles (pickup, 
semi-trucks, bus, 
trailers, etc.) 

3069 77.85% 405 10.27% 295 7.48% 119 3.02% 54 1.37% 3942 

Motorcycles(motorcycle 
and scooter) 1 4.76% 3 14.29% 10 47.62% 7 33.33% 0 0.00% 21 

Driver Age 

Young driver(less than 
25) 2092 71.16% 401 13.64% 298 10.14% 117 3.98% 32 1.09% 2940 

Mid-aged driver(25-63) 5129 75.23% 864 12.67% 493 7.23% 260 3.81% 72 1.06% 6818 
Senior drivers(64 or 
older) 747 73.81% 116 11.46% 85 8.40% 39 3.85% 25 2.47% 1012 

Traffic 
Control 

Traffic Control (no 
passing zone, stop/yield 
sign, signal control, 
railroad gate) 

3258 73.33% 587 13.21% 367 8.26% 184 4.14% 47 1.06% 4443 

No Control 4710 74.44% 794 12.55% 509 8.04% 232 3.67% 82 1.30% 6327 

Wet Road 
Surface 

Wet surface (water, 
ice/snow, slush, etc) 1697 77.38% 288 13.13% 134 6.11% 55 2.51% 19 0.87% 2193 

Dry Road 6271 73.11% 1093 12.74% 742 8.65% 361 4.21% 110 1.28% 8577 

Driver 
Seatbelt Use 

Seatbelt used 7890 75.17% 1346 12.82% 826 7.87% 357 3.40% 77 0.73% 10496 

Seatbelt not used 78 28.47% 35 12.77% 50 18.25% 59 21.53% 52 18.98% 274 

Driver 
Alcohol or 
Drug 
Involvement 

Driver Alcohol/drug 
involved 396 51.03% 121 15.59% 140 18.04% 87 11.21% 32 4.12% 776 

Sober Driver 7572 75.77% 1260 12.61% 736 7.36% 329 3.29% 97 0.97% 9994 

Driver 
Gender 

Male 5147 76.58% 706 10.50% 523 7.78% 249 3.70% 96 1.43% 6721 

Female 2821 69.67% 675 16.67% 353 8.72% 167 4.12% 33 0.82% 4049 
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4.2.2 Model Fit and Estimation Results 

The model simulation procedure was conducted with a Monte Carlo Markov 

Chain (MCMC) algorithm in WinBUGS. With the first 5000 iterations as “burn-ins,” 

sufficient iterations have been simulated and model convergence was achieved. Table 4-5 

illustrates the analyses results of the proposed hierarchical ordered logit model. 

Compared to generalized ordered-response models, this paper applies hierarchical model 

structure specification by taking between-crash variance into consideration and utilizes 

95% BCI to illustrate the significance of the estimated parameter. As discussed before, 

the random effect 𝑢𝑖 follows a normal distribution (0,𝜎2).   It is shown in Table 2 that the 

estimated mean of  𝜎2 is 3.091, with its 95% BCI (2.548, 3.797) indicating that it is 

significantly different from 0. This verifies the existence of between-crash variance, 

which should be considered in crash data modeling. Sufficient sample values of  𝑢𝑖 were 

randomly selected for model assumption checking, and it was found that these values are 

normally distributed, which verifies the appropriateness of the model utilized in this 

study. 

Table 4-5 Hierarchical Bayesian Ordered Logit Model Posterior Estimation Results. 

Variables Estimated 
Mean 

Standard 
Deviation 

95% BCI of Mean 
2.50% 97.50% 

Driver Age 
Young Drivers -0.044 0.070 -0.180 0.095 
Elder Drivers 0.256 0.119 0.021 0.484 

Mid-Aged Drivers* 0.000 0.000 0.000 0.000 

Crash Location 
0.1-1.0mile 0.205 0.126 -0.040 0.453 

Larger than 1.0mile -0.326 0.083 -0.492 -0.165 
Less than 0.1 mile* 0.000 0.000 0.000 0.000 

Lighting 
Condition 

Dark -0.323 0.080 -0.480 -0.166 
Dawn and Dusk -0.564 0.161 -0.881 -0.244 

Daylight* 0.000 0.000 0.000 0.000 
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Table 4-5 (Continued) 

Variables Estimated 
Mean 

Standard 
Deviation 

95% BCI of Mean 
2.50% 97.50% 

Number of 
Vehicles in a 

Crash 

Two Vehicles -0.306 0.077 -0.460 -0.157 
Three Vehicles or More 0.154 0.198 -0.239 0.532 

Single Vehicle* 0.000 0.000 0.000 0.000 

Vehicle Type 
Heavy Vehicles -0.337 0.071 -0.478 -0.200 

Motorcycles 4.379 0.549 3.316 5.472 
Light Vehicles* 0.000 0.000 0.000 0.000 

Maximum 
Vehicle 

Damage in 
Crash 

Functional Damage 0.475 0.123 0.235 0.721 
Disabled Damage 2.612 0.115 2.390 2.842 

No/Slight Damage* 0.000 0.000 0.000 0.000 
Road Curve 0.190 0.086 0.022 0.362 

Wet Road Surface -0.248 0.091 -0.425 -0.072 
Seat Belt Use -3.146 0.200 -3.556 -2.767 

Driver with Impairment 1.083 0.115 0.859 1.311 
Male Driver -0.599 0.070 -0.738 -0.462 

Latent 
Thresholds 

h[1] -0.559 0.208 -0.961 -0.115 
h[2] 0.849 0.208 0.427 1.299 
h[3] 2.459 0.214 2.028 2.909 
h[4] 4.457 0.234 3.999 4.922 

𝜎2 3.091 0.335 2.548 3.797 
*Reference Category for the associated multinomial variable 

An ordinary ordered logit model dismissing the between-crash variance term 𝑢𝑖 

was also employed in this study to examine the same dataset, and Table 4-6 demonstrates 

the DIC values for the two models indicating model fit. It shows that the simulation 

procedure through hierarchical Bayesian ordered logit model produces a lower DIC value, 

suggesting that the proposed model is superior in analyzing the selected dataset. 

 

Table 4-6 DIC Result for Model Comparison. 

Model Design DIC 
Hierarchical Bayesian ordered logit model 15708.3 

Ordinary ordered logit model 16716.5 
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4.2.3 Factor Impact Analysis 

The significant variables extracted for driver injury severity prediction are 

highlighted in Table 4-5, including the significant categorical values in multinomial 

variables. 11 variables were identified to be significant, including three variables 

describing crash features, three variables characterizing environmental conditions at 

occurrence, two variables describing driver demographic features, two variables 

explaining driving status and one variable representing vehicle type, some of which are 

were also found significant for driver injury severity prediction in Section 4.1. The 

positivity or negativity of the estimated mean indicates the increasing or decreasing effect 

on driver injury severity. The detailed effects of these variables are discussed below. 

The three factors regarding crash features found to be significant in predicting 

driver injury severity are crash location, number of vehicles in the crash and maximum 

vehicle damage in the crash, and the last two were also found significant in previous 

studies. Crash location, represented by the distance to the nearest intersection, is an 

important factor associated with driver injury severity. Compared to intersection-related 

locations (less than 0.1 mile to intersection), far crash locations (larger than 1.0 mile) are 

prone to inducing less driver injury severities, indicated by the estimated mean value (-

0.326) and 95% BCI (-0.492, -0.165). Medium crash locations (between 0.1 and 1.0 mile) 

are likely to cause higher driver injury severities in crashes, but the  increasing effect is 

ambiguous, as illustrated by its 95% BCI across zero. These results signify that 

intersection-related locations are crash hotspots for the more severe injury severity 

outcomes. This is reasonable since intersections or intersection-related locations are 

characterized with complicated traffic movements, and any inappropriate acceleration, 
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deceleration or unattended driving may lead to crash occurrence and injuries. On the 

other hand, traffic flow at further locations is relatively stable without much fluctuation, 

which reduces the potential of crash occurrence and severe injuries. This result justifies 

the purpose of traffic safety studies regarding intersections (Huang et al., 2008; D.-G. 

Kim et al., 2007; Wang and Abdel-Aty, 2006).  

The number of vehicles involved in a crash, which has been used to define crash 

types in some studies (Chen and Chen, 2011; Geedipally and Lord, 2010), is an important 

risk factor for driver injury severity prediction in rural non-interstate crashes. Using 

single-vehicle crashes as the reference category, the analyses results show that two-

vehicle crashes reduce driver injury severities significantly (Mean=-0.306, 95% BCI (-

0.460, -0.157)), while multiple-vehicle crashes tend to increase driver injury severities 

(Mean=0.154). However, the impact is not significant (95% BCI (-0.239, 0.532)).  

It is to be expected that the maximum vehicle damage in a crash is closely 

associated with driver injury severity. As shown in the results, both functional and 

disabled vehicle damages have positive correlations with driver injury outcomes, where a 

higher posterior mean for disabled vehicle damage (Mean=2.612) is estimated. This 

indicates a larger impact on increasing injury severity than functional vehicle damage 

(Mean=0.475). As discussed before, it is reasonable since maximum vehicle damage is 

the deformation caused by the crash impact produced in collisions, and it is a reflection of 

the transferrable impact from vehicles to drivers.  

Three variables describing environment elements were found to be significantly 

associated with driver injury severity： road curvature, road surface condition and 
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lighting condition. It was found in this study that road curvature is significantly 

associated with higher driver injury severity. This is to be expected as drivers on road 

curves usually have restricted visibilities on further road conditions. Road curvatures also 

require drivers to take particular care in order to maneuver vehicles properly. Both of 

these factors associated with road curves increase the risk of higher driver injuries in 

crashes. More specifically, van Petegem and Wegman (2014) concluded that road 

curvature is a major factor that increases the potential for run-off-road crashes.  

The research results also suggest that wet road surfaces, contrary to the common 

expectations, are prone to reducing driver injury severity in traffic crashes at rural non-

interstate locations, as inferred from the estimated mean (-0.248) and 95% BCI (-0.425, -

0.072). An explanation for this result is that drivers on rural wet or icy roads tend to be 

more cautious in order to avoid crashes. However, on comfortable road conditions, 

drivers are more likely to engage in reckless driving where the driving safety and comfort 

are compromised. This factor was also found significant in Section 4.1 but with the 

exacerbating influence on driver injury severity. As discussed before, road surface 

condition provides complex influence under different traffic and vehicle conditions, and 

should be further investigated. Similar results were also obtained regarding lighting 

conditions at crash occurrence. The analyses results demonstrated that drivers in rural 

non-interstate crashes occurring under dawn, dusk and dark nighttime conditions, are less 

likely to get severely injured, compared with those occurring during daylight conditions. 

This is probably because drivers with inferior light conditions are aware of the limited 

visibility of the external traffic environment and drive more carefully than when driving 

under daylight conditions.  
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Two driver demographic variables were identified to have significant influence on 

driver injury outcomes in rural non-interstate crashes: age and gender, which were both 

found significant in hierarchical Bayesian binary logit results as well. Taking mid-aged 

drivers as the base category, senior drivers are significantly more vulnerable to higher 

injury severity in these crashes, suggested by the estimated mean (0.256) and 95% BCI 

(0.021, 0.484). This is understandable since senior drivers are less agile in maneuvering a 

vehicle and it takes more time for them to make appropriate and timely responses to deal 

with traffic emergencies. Young drivers tend to be less severely injured than mid-aged 

drivers (mean=-0.044), but with an insignificant trend (95% BCI=(-0.180, 0.095)). 

Compared with female drivers, male drivers, whose estimated mean and 95% BCI are -

0.599 and (-0.738, -0.462), respectively, are significantly more likely to suffer less severe 

injury in rural non-interstate crashes. In other words, females are more likely to suffer 

severe injuries or death in rural non-interstate crashes.  

Seatbelt use and driver with alcohol/drug impairment, two variables describing 

driving status, are significantly correlated with driver injury severity, and they were 

found in Section 4.1 as well. In this analysis, driver seatbelt use is found to provide 

effective protection for drivers from being severely injured, suggested by the negative 

estimation (-3.146) and 95% BCI (-3.556, -2.767). This finding verifies the protective 

effect of seatbelt use while driving. The estimated results illustrate that driver with 

impairment, beyond no expectation, is significantly and positively associated with driver 

injury severities, with an estimated mean of 1.083 and 95% BCI (0.859, 1.311). It implies 

that driver use of alcohol and/or drugs significantly increases driver injury outcomes in 

crashes due to the fact that alcohol and drugs considerably undermine drivers’ normal 
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vision and judgment, making it difficult for drivers to perform appropriately when 

driving. Therefore, even though current blood alcohol concentration (BAC) tests sets a 

certain threshold for permitted alcohol absorption, zero-tolerance of driver alcohol and 

drug use while driving should be advocated.  

In terms of vehicle type, it is not surprising that motorcyclists are more vulnerable 

in rural non-interstate crashes than light vehicle drivers, as showed by the estimated 

results (Mean=4.379, 95% BCI (3.316, 5.472)). This is to be expected since motorcyclists 

are the most exposed to traffic environments and their driving behaviors are more agile 

and unpredictable than other road users. On the other hand, drivers of heavy vehicles, 

such as pickup trucks, semi-trailers, buses, etc., are less related with severe injuries, 

indicated by the negative estimated coefficient. This result supports the finding by Levine 

et al. (1999) that heavy vehicles are able to withstand higher crash impacts than other 

vehicles due to their relative large size and weight, which could provide more protection 

for the drivers from being severely injured. However, it should be noted that heavy 

vehicles impose more impact on other vehicles and drivers in the crash, resulting in more 

damage and higher injury severity. Therefore, more specific restrictions regarding vehicle 

size, weight and speed should be enforced on heavy vehicles.  

 

4.3 Hierarchical Random Intercept Model with Cross-Level Interaction Analysis 

4.3.1 Case Study Dataset 

In this analysis, we utilized a dataset containing all truck records in rural crashes 

extracted from two-year crash records in the State of New Mexico in 2010 and 2011, 
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provided by the New Mexico Department of Transportation (NMDOT) and Geospatial 

and Population Studies (GPS) at the University of New Mexico (UNM). In this study, the 

five-level driver injury severity (as was discussed in Section 4.1.2.1) is simplified to three 

categorical levels based on the data size for each category and the similarities among 

driver injury severity levels: no injury (original Category O, coded as N), non-

incapacitating injury (original Categories B and C, coded as I), and incapacitating injury 

and fatality (original Categories A and K, coded as F). In total, there are 5,398 eligible 

truck records from 4,868 rural crashes included in the studied dataset, which results in 

1.11 vehicles per crash on average. Each record in the studied dataset represents a truck 

unit involved in a rural crash, accompanied with detailed driver and crash information. 

Detailed information of the studied dataset is shown in Table 4-7. 

Table 4-7 Rural Truck Crash Dataset Description and Statistics. 

Variable Description 
Driver Injury Severity 

Total 
N Percentage I Percentage FATALITY F 

Driver Injury Severity 4231 78.38% 926 17.15% 241 4.47% 5398 

Crash-Level Variables 
Intersection Related 

 Intersection related 506 81.48% 97 15.62% 18 2.90% 621 

 
Not intersection 

related 3725 77.98% 829 17.35% 223 4.67% 4777 

First Harmful Event Location 

 
On road  3289 79.93% 651 15.82% 175 4.25% 4115 

Off road* 942 73.42% 275 21.43% 66 5.14% 1283 

Lighting Condition 

 

Dark 1279 75.77% 314 18.60% 95 5.63% 1688 

Dawn/dusk 245 81.67% 43 14.33% 12 4.00% 300 

Daylight* 2707 79.38% 569 16.69% 134 3.93% 3410 

Road Curvature 

 Curve road 640 74.16% 166 19.24% 57 6.60% 863 

 Straight road* 3591 79.18% 760 16.76% 184 4.06% 4535 
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Table 4-7 (Continued) 

Variable Description 
Driver Injury Severity 

Total 
N Percentage I Percentage FATALITY F 

Road Grade 

 Road with grade 982 78.56% 214 17.12% 54 4.32% 1250 

 Level road* 3249 78.33% 712 17.16% 187 4.51% 4148 

Number of Vehicles in Crash 

 One vehicle 1877 73.49% 527 20.63% 150 5.87% 2554 

 Two vehicles* 2139 83.29% 353 13.75% 76 2.96% 2568 

 Three or more 215 77.90% 46 16.67% 15 5.43% 276 

Hazard Material Involvement 

 
Hazard material 

involved 19 76.00% 5 20.00% 1 4.00% 25 

 Otherwise* 4212 78.39% 921 17.14% 240 4.47% 5373 

Maximum Vehicle Damage in Crash 

 Slight damage* 1312 93.05% 90 6.38% 8 0.57% 1410 

 Functional damage 1062 90.77% 91 7.78% 17 1.45% 1170 

 Disabled damage 1857 65.90% 745 26.44% 216 7.67% 2818 

Vehicle-Level Variables 
Driver Residency 

 
Non New Mexico 

driver 1563 80.19% 302 15.50% 84 4.31% 1949 

 New Mexico driver* 2668 77.36% 624 18.09% 157 4.55% 3449 

Road Pavement 

 Road paved 4002 78.39% 880 17.24% 223 4.37% 5105 

 Road not paved* 229 78.16% 46 15.70% 18 6.14% 293 

Wet Road Surface 

 Wet road 1126 80.77% 224 16.07% 44 3.16% 1394 

 Dry road* 3105 77.55% 702 17.53% 197 4.92% 4004 

Traffic Control 

 
Traffic control 1449 78.62% 307 16.66% 87 4.72% 1843 

No traffic control* 2782 78.26% 619 17.41% 154 4.33% 3555 

Number of Lanes Available for That Car's Travel 

 One lane* 2378 78.25% 518 17.05% 143 4.71% 3039 

 Two lanes 1549 77.53% 361 18.07% 88 4.40% 1998 

 Three or more 309 84.20% 48 13.08% 10 2.72% 367 

Vehicle Action 

 Go straight* 3606 77.67% 817 17.60% 220 4.74% 4643 

 
Acceleration or 

deceleration 302 86.04% 37 10.54% 12 3.42% 351 

 Turn 323 79.95% 72 17.82% 9 2.23% 404 

Driver Seatbelt Use 

 Seatbelt is used 4193 79.55% 895 16.98% 183 3.47% 5271 

 Seatbelt not used* 38 29.92% 31 24.41% 58 45.67% 127 
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Table 4-7 (Continued) 

Variable Description 
Driver Injury Severity 

Total 
N Percentage I Percentage FATALITY F 

Driver Age 

 
Young: 24 or 

younger 634 73.46% 175 20.28% 54 6.26% 863 

 
Mid-aged: between 

25 to 63* 3231 79.48% 671 16.51% 163 4.01% 4065 

 Senior: 64 or older 366 77.87% 80 17.02% 24 5.11% 470 

Driver Under Influence 

 

Driver under 
influence 157 51.99% 97 32.12% 48 15.89% 302 

Driver not under* 
influence 4074 79.95% 829 16.27% 193 3.79% 5096 

Driver Gender 

 Male 3567 80.12% 692 15.54% 193 4.34% 4452 

 Female* 664 70.19% 234 24.74% 48 5.07% 946 

Note: * reference category used in the model. 

 

4.3.2 Model Fit and Estimation Results 

All the crash-level and vehicle/driver-level variables listed in Table 4-7 were used 

as inputs for model development. Due to the relative high complexity of this model, a 

single chain was simulated for 65,000 iterations, and the trace plot of the iteration chain 

was examined to ensure reasonable model convergence. The convergence was reached 

after 50,000 interactions, and therefore the first 50,000 iterations were discarded as 

“burn-ins” (Cowles, 2003). To reduce auto-correlation of the extracted samples, every 

fifth sample after “burn-ins” was extracted as posterior samples, with a total of 3000 

samples for parameter estimation. The significant variables and their impacts on driver 

injury severity in terms of estimated mean, standard deviation, and 95% BCI for the 

estimated mean are summarized in Table 4-8. 
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Table 4-8 Hierarchical Bayesian Random Intercept Model Estimation Results. 

Variable Specific 
to 

Estimated 
Mean 

Standard 
Deviation 

95% BCI of Mean 
2.50% 97.50% 

Constant(Intercept)* I -4.349 0.940 -6.369 -2.729 
Constant(Intercept) F -9.427 2.512 -14.230 -5.750 
Intersection Related I 1.783 1.808 -2.149 5.145 

First Harmful Event on Road I -0.736 0.808 -2.626 0.678 
Curve Road I 1.732 0.996 -0.233 3.647 
Road Grade I 3.304 1.294 0.926 5.954 

Lighting Condition  
Dark I -0.824 1.863 -4.495 2.897 

Dawn/Dusk I -0.864 0.905 -2.694 0.868 
Daylight** I 0.000 0.000 0.000 0.000 

Maximum Vehicle Damage in Crash  
Slight damage** I 0.000 0.000 0.000 0.000 

Functional damage I 2.225 1.420 -0.476 5.194 
Disabled damage I 3.301 0.851 1.735 4.969 
Road Pavement I 2.256 0.717 0.728 3.648 

Wet Road I 0.668 0.363 -0.037 1.357 
Vehicle Action  
Go straight** I 0.000 0.000 0.000 0.000 

Acceleration or deceleration I -1.748 0.898 -3.766 -0.142 
Turn I -3.826 1.065 -6.164 -1.897 

Driver Seatbelt Use I 0.432 1.032 -1.066 2.745 
Driver Under Influence I -1.935 0.948 -4.006 -0.253 

Driver Gender I -1.270 0.372 -1.989 -0.553 
Intersection Related F 4.597 2.839 -0.796 10.460 

Road Grade F 5.015 1.697 2.036 8.696 
First Harmful Event on Road F -0.285 1.010 -2.302 1.514 
Number of Vehicles in Crash  

One vehicle F 4.733 1.715 1.960 8.532 
Two vehicles** F 0.000 0.000 0.000 0.000 
Three or more F -5.124 7.376 -20.010 6.563 

Maximum Vehicle Damage in Crash  
Slight damage** F 0.000 0.000 0.000 0.000 

Functional damage F 4.273 2.532 -0.254 9.923 
Disabled damage F 6.054 1.986 3.102 10.660 

Traffic Control F -0.937 0.881 -2.646 0.701 
Vehicle Action  
Go straight** F 0.000 0.000 0.000 0.000 

Acceleration or deceleration F -1.363 2.001 -5.986 2.120 
Turn F -16.350 7.880 -32.240 -4.110 
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Table 4-8 (Continued) 
Variable Specific 

to 
Estimated 

Mean 
Standard 
Deviation 

95% BCI of Mean 
2.50% 97.50% 

Driver Seatbelt Use F 0.918 1.999 -2.340 5.460 
Driver Under Influence F 0.672 1.431 -2.237 3.316 

Driver Age  
Young F -1.836 1.483 -4.950 0.920 

Mid-Aged** F 0.000 0.000 0.000 0.000 
Senior F -11.810 7.462 -25.620 0.535 

Interactive Effects 

 Vehicle/Driver 
Level Crash Level 

Road 
Pavement Curve Road I -1.439 0.473 -2.367 -0.533 

Road 
Pavement One vehicle I -1.339 0.582 -2.395 -0.170 

Wet Road Disabled vehicle 
damage I -0.945 0.278 -1.495 -0.398 

Traffic 
Control 

Intersection 
Related I -0.529 0.244 -1.032 -0.058 

Traffic 
Control Dawn I 0.736 0.379 0.002 1.491 

Traffic 
Control Curve Road I 0.475 0.213 0.065 0.889 

Turn First Harmful 
Event on Road I 3.183 0.805 1.649 4.853 

Turn Dawn I 1.758 0.667 0.465 3.038 
Turn One vehicle I 1.701 0.611 0.525 2.967 

Driver 
Seatbelt Use Road Grade I -3.074 1.221 -5.642 -0.690 

Drive Under 
Influence 

First harmful 
event on road I 1.565 0.430 0.727 2.434 

Drive Under 
Influence 

One vehicle in 
crash I 1.153 0.500 0.184 2.174 

Driver 
Gender Curve Road I 0.625 0.281 0.110 1.195 

Traffic 
Control Dawn F 1.961 0.805 0.481 3.608 

Turn First harmful 
event on road F 4.436 1.969 0.753 8.604 

Driver 
Seatbelt use 

Intersection 
Related F -3.817 1.722 -7.478 -0.455 

Driver 
Seatbelt use Road Grade F -4.452 1.392 -7.367 -1.871 

Driver 
Seatbelt use 

One vehicle in 
crash F -2.850 1.077 -4.965 -0.850 

Young driver First harmful 
event on road F 1.179 0.513 0.178 2.212 
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Table 4-8 (Continued) 
Variable Specific 

to 
Estimated 

Mean 
Standard 
Deviation 

95% BCI of Mean 
2.50% 97.50% 

Young 
driver 

Three or more 
vehicles F 2.580 0.968 0.705 4.498 

Driver 
Under 

Influence 

First harmful event 
on road F 1.597 0.617 0.392 2.809 

Driver 
Under 

Influence 
Road Grade F 1.266 0.651 0.019 2.505 

Driver 
Under 

Influence 
One vehicle in crash F 1.741 0.829 0.212 3.484 

𝝈𝟎
𝟐  3.850 0.761 2.340 5.458 

* Significant variables are marked in bold 
** Reference category for the multi-categorical variable 
 

As is shown in Table 4-8, the estimated 𝜎02 is 3.850. Therefore, the ICC for this 

study is calculated and is equal to 53.92%, indicating that between-crash variance 

accounts for 53.92% of the total unobserved variance and verifying the appropriateness 

of the proposed model structure. 

A generalized random intercept model without cross-level interactions was also 

utilized to analyze the same dataset for model performance comparison, and the DIC 

values for these two compared models are illustrated in Table 4-9. It is shown by the 

close DIC values of these two models that, although with significant higher model 

complexity in model structure (𝑝𝐷  =252.040), the proposed random intercept model 

produces comparable performance in model fit and in parameter estimation, indicating 

the appropriateness of including cross-level interactions in model development. 

Table 4-9 DIC Result for Model Comparison. 

Model Design 𝐷(𝛾)̅̅ ̅̅ ̅̅ ̅ 𝐷(𝛾̅) 𝑝𝐷 DIC 
Hierarchical Random intercept model with cross-level interactions 5840.410 5574.360 252.040 6092.450 

Hierarchical random intercept model without cross-level interactions 5959.770 5914.120 45.650 6005.420 
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4.3.3 Factor Impact Analysis 

Average pseudo-elasticity analysis was conducted for the proposed model to 

quantify the influence of contributing factors on driver injury severity outcome, and the 

pseudo-elasticity results are shown in Table 4-10.  

Table 4-10 Average Direct Pseudo-elasticity Analysis Result for Proposed Model. 

Variable 
Injury Severity 

N I F 
Curve Road -43.85% 223.15% -43.85% 
Road Grade -72.93% 1028.17% 6200.32% 

Maximum Vehicle Damage in Crash    
Disabled Damage -63.20% 2054.92% 13199.89% 
Road Pavement -28.21% 419.93% -28.21% 

Number of Vehicles in crash    
One Vehicle -16.30% -16.30% 4246.86% 

Vehicle Action    
Acceleration or deceleration 76.00% -70.02% -64.11% 

Turn 5967.46% 21.59% -100.00% 
Driver Under Influence 54.16% -75.27% 204.30% 

Driver Gender 73.75% -52.17% 73.75% 

     
Interactive Effects    

Road Pavement Curve Road 54.86% -62.19% 54.86% 

Road Pavement One vehicle 52.54% -54.96% 52.54% 

Wet Road Disabled vehicle damage 34.22% -48.09% 34.22% 

Traffic Control Intersection Related 17.44% -30.88% 17.44% 

Traffic Control Dawn -32.65% 41.17% 354.84% 
Traffic Control Curve Road -14.72% 39.20% -14.72% 

Turn First Harmful Event on Road -74.80% 530.63% 1972.94% 

Turn Dawn -47.91% 211.96% -47.91% 
Turn One vehicle -46.29% 199.93% -46.29% 
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Table 4-10 (Continued) 

Variable 
Injury Severity 

N I F 

Driver Seatbelt Use Road Grade 629.44% -77.30% -94.00% 

Drive Under Influence First harmful event on road -47.90% 145.47% 165.92% 

Drive Under Influence One vehicle in crash -40.42% 84.45% 249.80% 

Driver Gender Curve Road -18.24% 55.05% -18.24% 

Driver Seatbelt use Intersection Related 37.56% 37.56% -97.51% 

Driver Seatbelt use One vehicle in crash 71.77% 71.77% -86.85% 

Young driver First harmful event on road -10.31% -10.31% 194.82% 

Young driver Three or more vehicles -25.95% -25.95% 857.89% 

Driver Under Influence Road Grade -11.52% -11.52% 218.23% 

 
Since driver incapacitating injury/fatality (F) is the chief concern in traffic safety 

analyses, this discussion would primarily focus on variables that are significantly 

increasing or decreasing driver incapacitating injury and fatality (F), and the influences 

of risk factors on complaint of injury and visible injury (I) would be discussed in an 

accompanying way or could be interpreted accordingly. Similar to the results in Section 

4.2, some of these factors were also found significant in the previous two hierarchical 

models to predict driver injury severities. 

Road grade is estimated to be significantly related to truck driver incapacitating 

injury and fatality in Table 4-8. The elasticity analysis regarding road grade illustrates 

that the presence of road grade would increase the average probabilities of injury levels I 

and F by approximately 1,000% and 6,200%, respectively. This is expected since truck 

drivers need to apply brakes more frequently to keep vehicle speeds stable during driving, 
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which increases the risk of brake failure and loss control of vehicle. Besides, trucks with 

high speeds are more likely to get longitudinal rollovers when sudden hard brakes are 

applied on graded roadways. Therefore, it is necessary for truck drivers to inspect and 

maintain brakes on a regular basis and drive more cautiously if there is a significant 

portion of trips on mountainous or hilly roads.   

Maximum vehicle damage in a crash is also a critical predictor of truck driver 

injury severity outcome, as is revealed in Table 4-8 that disabled vehicle damage in a 

crash is significant in predicting truck driver incapacitating and fatal injuries (F). The 

pseudo-elasticities for disabled vehicle damage are 2,054.92% for complaint of injury 

and visible injury (I) and 13,199.89% for incapacitating and fatal injuries (F), indicating 

that disabled vehicle damage is closely associated with high probabilities of driver injury 

and fatalities. These results are understandable since the maximum vehicle damage in a 

crash could be treated as a visible and qualitative measurement of the impact energy 

generated from the crash, and disabled vehicle damage indicates massive crashing impact 

that passes onto drivers’ bodies and causes severe injury outcomes. Additionally, it is 

also found in the pseudo-elasticity analysis that the interaction effect of wet road and 

disabled vehicle damage increase the probability of driver incapacitating injury and 

fatality by 34.22%. Several studies have proposed proper indices or methods to evaluate 

crash impact energy. Riviere et al. (2006) developed Energy Equivalent Speed (EES) to 

measure the impact energy a vehicle receives in a crash, and applied it to retrieving crash 

scene. Therefore, detailed examination of vehicle damage in crashes would be beneficial 

to reconstruct crash scene and facilitate crash investigation. 
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It is expected in the results that the number of vehicles in a crash plays an 

important role in predicting truck driver incapacitating injury and fatality. It is revealed in 

Table 4-8 that single-vehicle rural truck crashes are significantly associated with truck 

driver incapacitating and fatal injuries (F) (4.733, 95%BCI (1.960, 8.532)). The direct 

pseudo-elasticity for single-vehicle truck crash is 4,246.86%, indicating an extremely 

significant increase of fatality probability comparing with multi-vehicle rural truck-

involved crashes. According to NHTSA (2006), the primary type of single-truck crashes 

are roadside departures, accounting for 61% of all single-truck crashes; while there are 

only 3% of multi-vehicle truck-involved crashes resulting from road departure. For 

single-vehicle truck crashes, the top critical events are vehicle loss of control and vehicle 

traveling, and these crashes are primarily caused by improper drivers’ recognition, 

physical and decision factors, such as fatigue driving, driving under the influence, and 

driving while on the phone, etc. Preventive countermeasures, such as retroreflective signs, 

dynamic message signs (DMS) or rumble strips, should be recommended along rural low 

volume roadways to remind drivers to maintain vehicle operation and therefore enhance 

traffic safety.   

Vehicle actions at crash occurrence are found to be significant in truck driver 

injury prediction. It is found that vehicle turning actions (left turn or right turn) is 

significantly associated the potential of driver injury and fatalities ((-3.826, 95% BCI (-

6.164, -1.897)) specific to I, and (-16.350, 95% BCI (-32.240, -4.110)) specific to F), and 

the interactive effect of turning action and first harmful event on road is significant in 

predicting the risk of truck driver injuries (I) and fatalities (F). By examining the 

estimated average pseudo-elasticity, it is found that the interaction effect of turning 
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movement and first harmful event has pseudo-elasticities of 530.63% for complaint of 

injury and visible injury (I) and 1,972.94% for incapacitating and fatal injuries (F). 

Previous studies examined the impacts of left turn and right turn on crash risk and injury 

severity outcomes. Wang and Abdel-Aty (2008) applied partial proportional odds model 

to examine injury severity of left-turn crashes with different collision patterns. Zador et al. 

(1982) found that right-turn on red regulation increased right turn crashes by more than 

20 percent, and their conclusion was supplemented (Frith, 1984) that a 0.7% decrease in 

incapacitating injury crash occurrence was discovered.  

Driver age is also a significant factor predicting truck driver injury severities in 

this study. Although it is found in this study that none of the main effects for the three 

age groups is significant in predicting truck driver injury severities, two interaction 

effects associated with young drivers are found to be significantly contributing to driver 

incapable injuries and fatalities (F): young driver and first harmful event on road (1.179, 

95% BCI (0.178, 2.212)), and young driver and three more vehicles in a crash (2.580, 95% 

BCI (0.705, 4.498)). Furthermore, the average pseudo-elasticities of these two interaction 

effects on driver incapable injuries and fatalities (F) are 194.82% and 857.89%, 

respectively, indicating their considerable effects on introducing more severe injuries and 

fatalities on truck drivers in rural crashes. These are reasonable since young drivers 

generally lack driving experience, proper recognition and decision skills, and they are 

more likely to conduct inattentive or risky driving behavior but less likely to take proper 

actions in road emergencies such as crash occurrence on roadways or multivehicle 

crashes, and therefore suffer higher injury severities. Hence, more effective traffic safety 
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countermeasures regarding young drivers, such as defensive driving course, should be 

recommended and enforced to enhance youth driving safety. 

It is found in this study that driver seatbelt use is an effective way of protecting 

truck drivers from being injured or killed. The interactive impacts of driver seatbelt use 

with several other crash-level factors, including intersection-related crash ((-3.817, 95% 

BCI (-7.478,-0.455)) specific to F), road with grade ((-4.452, 95% BCI (-7.367, -1.871)) 

specific to F, and (-3.074, 95% BCI (-5.642, -0.690)) specific to I) and single-vehicle 

crash ((-2.850, 95% BCI(-4.965, -0.850)) specific to F) are found significant in truck 

driver injury severity prediction, although the main effects of driver seatbelt use ((0.432, 

95% BCI (-1.006, 2.745)) specific to I, and (0.918, 95% BCI(-2.340, 5.460)) specific to F) 

are not found to be significant. The estimated pseudo-elasticities of these interactive 

effects verified the effects of seatbelt in reducing driver injury severities, especially on 

incapable injuries and fatalities (F).  As is shown in Table 4-10, the pseudo-elasticities 

with respect to incapable injury and fatality (F) are -94.00% for the interaction between 

driver seatbelt use and road grade, -97.51% for the interaction between driver seatbelt use 

and intersection-related crash, and -86.85% for the interaction between driver seatbelt use 

and single-vehicle crash, all of which verify the protective effect of seatbelt use in driving. 

These findings also indicate that the protective effects of seatbelt use vary across 

different crash scenarios and should be examined associatively with other factors 

regarding road geometric design, environmental conditions and other crash, vehicle, or 

driver related characteristics. These findings are expected since the interactive effects of 

seatbelt use and other risk factors have been examined by peer studies from multiple 

aspects. Gross et al. (2007) discovered that alcohol consumption is closely associated 
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with insufficient seatbelt usage for Native Americans and contributes to significant 

trauma outcomes in traffic crashes. Chliaoutakis et al. (2000) examined seatbelt usage of 

young drivers and found that lengthy trips and driver discomfort tend to reduce the 

seatbelt usage rate, making drivers less protected. 

Driver under the influence, either alcohol influence or drug influence, is a factor 

describing drivers’ state of consciousness that is expected to be significantly associated 

with truck driver injury severity. It is found in Table 4-8 that its main effect is 

insignificant in predicting driver incapable injuries and fatalities (F) (0.672, 95% BCI(-

2.237, 3.316)), but it is illustrated that the driver under influence interactively works with 

road with grade (1.266, 95% BCI(0.019, 2.505)), first harmful event on road (1.597, 95% 

BCI(0.392, 2.809)), and single-vehicle crash (1.741, 95% BCI(0.212, 3.484)) and 

contributes to severe driver injuries and deaths. The estimated average pseudo-elasticity 

for the variable “driver under influence” is 204.30% for injury severity F, and those for 

these three interactions with respect to F are 218.23%, 165.92% and 249.80%, 

respectively, verifying the considerable impacts of alcohol or drug influence on driver 

incapable injury and fatality outcome. Similar effects are also revealed regarding 

complaint injury/visible injury pattern (I) for its interactions with first harmful event on 

road (145.47%) and with single-vehicle crashes (84.45%), as indicated in Table 6. These 

results are expected since it takes more effort for truck drivers to maneuver properly due 

to the sizes and weights of trucks, especially on grade or bumpy roadways, and alcohol 

and drugs compromise drivers’ capabilities for vehicle operations and judgment, leading 

to single-vehicle crashes such as overturn or run-off-road and multi-vehicle collisions on 

roadways, as well as severe body injuries on truck drivers. Hence, it is necessary for law 
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enforcement to perform driver with impairment (DWI) tests on roadways on a regular 

basis. The other pseudo-elasticity values could be interpreted similarly. These findings 

are helpful to understand the respective or joint impacts of heterogeneous attributes on 

truck driver injury patterns in rural truck-involved crashes. 

 

4.3.4 Unobserved Heterogeneity Simulation Comparison 

Random parameter logit (mixed logit) models are a major type of models to 

address unobserved heterogeneity issue in traffic safety research, and therefore have been 

utilized in the same dataset in this study for model performance comparison. The mixed 

logit model estimation results are shown in Table 4-11. 

Table 4-11 Mixed Logit Model Estimation Results. 

Variable Specific to Value Stddev t-test p-value 
Constant F -2.31 0.549 -4.21 0 
Constant I -0.754 0.301 -2.5 0.01 

 N 0 --fixed--   
Acceleration or Deceleration F 0.948 0.448 2.12 0.03 

Driver Seatbelt Use F -3.33 0.262 -12.72 0 
Disabled Damage F 2.97 0.373 7.96 0 

Driver Gender F -0.4 0.182 -2.2 0.03 
Driver Under Influence F 1.04 0.218 4.75 0 

Functional Damage F 1.1 0.443 2.49 0.01 
Go Straight F 0.876 0.334 2.62 0.01 

Two Vehicles F -0.462 0.159 -2.91 0 
Wet Road F -0.561 0.186 -3.01 0 

Driver Seatbelt Use I -1.21 0.282 -4.3 0 
Disabled Damage I 1.79 0.106 16.91 0 

Driver Gender I -0.681 0.101 -6.74 0 
Driver Under influence I 0.759 0.152 5 0 

Two vehicles I -0.428 0.0857 -4.99 0 
Wet Road I -1.15 0.397 -2.91 0 

Wet Road* I 2.12 0.507 4.18 0 
*Identified random parameter in the model. 
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Table 4-12 Mixed Logit Model Pseudo-elasticity Analysis Results. 

Variable Injury Severity 
N I F 

Two Vehicles 9.03% -28.94% -31.31% 
Disabled Damage -27.65% 333.32% 1310.19% 

Wet Road 18.49% -62.48% -32.39% 
Functional Damage -6.92% -6.92% 179.62% 

Go Straight -2.97% -2.97% 133.00% 
Acceleration or Deceleration -5.80% -5.80% 143.09% 

Driver Seatbelt Use 133.69% -30.31% -91.64% 
Driver under Influence -17.43% 76.38% 133.61% 

Driver Gender 15.37% -41.61% -22.66% 
 

By comparing the pseudo-elasticity results from the mixed logit model (Table 4-

12) and from the proposed random intercept model (Table 4-10), it is shown that minor 

differences exist between these results. A side-by-side comparison of the results from 

these two models was conducted and some agreements as well as discrepancies could be 

identified. For instance, it is found in Table 4-12 that the pseudo-elasticity of “Driver 

Seatbelt Use” is -91.64% for severity level F, and it is shown in Table 4-10 that the 

pseudo-elasticities with respect to incapable injury and fatality (F) are -94.00% for the 

interaction between “Driver Seatbelt Use” and “Road Grade”, -97.51% for the interaction 

between “Driver Seatbelt Use” and “Intersection Related”, and -86.85% for the 

interaction between  “Driver Seatbelt Use” and ”One Vehicle in Crash”, even though the 

main effect of driver seatbelt use is found insignificant in Table 4-8. All of these verified 

the protective effect of seatbelt in reducing driver incapacitating injuries and fatalities. 

Besides, the elasticity for “Driver under Influence” in Table 6 is 133.61% specific to F, 

and it is shown in Table 4-10 that the elasticity of “Driver under Influence” is 204.30% 

specific to F, which is very close to the results in Table 4-12. Even though it is found that 

the elasticities of “Driver under Influence” specific to I are different (76.38% in Table 4-
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12, and -75.27% in Table 4-10), but the elasticities of its interaction effects are consistent 

with the results in Table 4-10 for both severity levels I and F. These results illustrate the 

capabilities of the proposed random intercept model with cross-level interactions in 

examining driver injury severity patterns and variable marginal impacts. Also some 

discrepancies are revealed by comparing these results, regarding significant variable 

detection and pseudo-elasticity estimation. These differences are attributed from model 

structure design and specification, and both of these models have their own advantage in 

modeling crash injury outcomes and examining variable impacts. Therefore, the proposed 

model provides competent performance in parameter estimation comparing with mixed 

logit model and shed more light on understandings of these cross-level interaction effects 

on driver injury severity outcomes in rural interstate crashes.  

 

4.4 Conclusions 

Hierarchical regression models are proved to be effective in predicting traffic 

crash frequency and injury severity outcomes by capturing the hierarchical crash data 

structure and Bayesian inference method produces more accurate estimating results from 

parameter prior information and the studied dataset. To examine the applicability and 

effectiveness of the hierarchical Bayesian regression models in predicting driver injury 

severity in traffic crashes and the heterogeneous influence of contributing factors on these 

outcomes, three representative models are presented in this study: hierarchical binary 

logit model, hierarchical ordered logit model and hierarchical random intercept model 

with cross-level interaction effects. These models are developed and applied in the above 

order by overcoming its predecessor. On the other hand, traffic crashes result in 
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significant life and economic loss, and compared to urbanized areas, rural areas have a 

higher potential of inducing more severe driver injuries in traffic crashes in spite of a 

lower crash frequency. Therefore, three different rural crash datasets are examined 

respectively by the three hierarchical Bayesian models as case studies. 

Hierarchical binary logit model is the simplest model configuration in these three 

hierarchical Bayesian models where the driver injury severity outcome is assumed to be a 

binary response: 0 indicating no injury or slight injury and 1 denoting incapable injury or 

death. A rural interstate crash dataset is utilized for this case study to investigate the 

impacts of crash-level and vehicle/driver-level variables on driver injury severity. 

Research results indicate that the proposed hierarchical Bayesian logit model outperforms 

the ordinary binary logit model in model fit and estimation effectiveness, based on the 

DIC criteria. Variables of crash and vehicle/driver levels are included in this research, 

and their effects on driver injury severities are reported in terms of odds ratio, with  95% 

BCI (or 90% BCI) indicating the statistical significance of the effects. Research results 

show that two crash-level variables (including the number of vehicles in a crash and wet 

road surface) and four vehicle/driver-level variables (including vehicle type, driver age, 

gender and alcohol/drug involvement) are significant in predicting driver injury severities.  

Hierarchical ordered logit model overcomes the disadvantage of binary response 

configuration in the previous model by assuming driver injury severity with 5-level 

monotonic increasing values, and it is used to examine driver injury severity patterns in 

rural non-interstate crashes and variable impacts on driver injury severities. Similarly, the 

research results illustrate that the proposed model structure is superior in analyzing the 

selected dataset to an ordinary ordered logit model dropping off the between-crash 
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variance term, according to the DIC model performance measurement. 11 variables 

regarding crash, vehicle and driver characteristics were identified to be significant in 

driver injury severity prediction in rural non-interstate crashes. In this analysis, road 

segments far from intersections, wet road surface conditions and driver seatbelt use tend 

to reduce driver injury severity levels. Single-vehicle crashes, daylight driving conditions, 

severe vehicle damage in a crash and driver with alcohol or drug impairment increased 

the potential of higher driver injury severities and fatalities. In terms of vehicle type, 

motorcyclists are most vulnerable in traffic crashes, and heavy vehicle drivers receive 

best protection from their vehicles.  It was also found that females and senior drivers are 

two driver groups that are prone to higher injury severities than their counterparts. 

Overall, this study provides reasonable results and deep insights for better understanding 

the internal mechanism of rural non-interstate crashes. 

Hierarchical random intercept model with cross-level interaction effects is 

developed based on the two models and by overcoming the disadvantages of them in 

driver injury outcome configuration and model structure, where the driver injury severity 

is considered a multinomial variable with three exclusive level, and the interaction effects 

between crash-level variables and vehicle/driver level variables are systematically 

examined. The results demonstrate that the proposed model could effectively identify 

significant variables contributing to driver injury outcome and extract cross-level 

interactions among crash-level and vehicle-level attributes, and produces comparable 

performance with traditional random intercept model and the mixed logit model in model 

fit and analyses, even after penalized by the high complexity in model structure. A direct 

pseudo-elasticity analysis is conducted to evaluate the influence of the heterogeneous 
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contributing factors and their interaction effects on driver injury severity outcomes. 

Research results indicate that roadways with grades are a contributing factor to 

incapacitating injury and fatality of truck drivers; compared with two-vehicle truck-

involved crashes, single-vehicle rural truck crashes are more likely to result in driver 

incapacitating injuries and deaths; maximum vehicle damage in truck-involved crashes is 

a significant factor positively related to truck driver injuries. Vehicle turning actions tend 

to reduce driver injury severities, but its interactive effects with other factors are inclined 

to produce severe injury outcome. The protective effect of driver seatbelt use is verified 

from its interactive effects with intersection-related crashes, roadways with grades, and 

single-vehicle truck crashes. Young truck drivers tend to be severely or fatally injured 

when the first harmful event was on road or they are involved in multi-vehicle truck-

related crashes. The adverse effects of drivers using alcohol or drug also work 

interactively with crash-level features to induce serious injuries and fatalities. 

These three models are proposed with increasing model configuration complexity 

by overcoming the disadvantage of the previous one and utilized in rural crash driver 

injury severity patterns in rural traffic crashes. Although each model has its distinctive 

model assumption and limitations, by utilizing Bayesian inference method, they all 

provide reliable analysis results in driver injury prediction, and constitute an important 

component in Bayesian method family. Some although addressing different types of 

crash datasets, some common contributing factors are found, including road surface 

condition, crash type (SV and MV), driver age, maximum vehicle damage in crash, 

seatbelt use, and driver drug or alcohol use.  However, because these models all have 

certain regression assumptions with respect to data structure and parameter distribution, 
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non- regression Bayesian method by relaxing these rigid limitations are needed, whose 

applicability and usefulness are discussed in the following chapters.   
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Chapter 5 MNL-BN Hybrid Model Case Study 

5.1 Case Study Dataset 

We applied the BN into a rear-end crash dataset to predict driver injury severity in 

rear-end crashes. In total, 23,433 driver injury records from 11,383 rear-end crashes are 

used for model development and parameter estimation, where 2010 crash dataset (11,486 

records) was used as training dataset, and 2011 crash dataset (11,947 records) was used 

as testing dataset. Table 5-1 shows the definitions of variables in this dataset in this 

research. 
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Table 5-1 Rear-end Crash Dataset Descriptions and Statistics. 

Attribute Value 
SEV 

Total NO 
INJURY Percentage INJURY Percentage FATALITY Percentage 

DAY Day 

MON Monday 2286 64.09% 1275 35.74% 6 0.17% 3567 
TUE Tuesday 2516 61.76% 1550 38.05% 8 0.20% 4074 
WED Wednesday 2610 63.88% 1470 35.98% 6 0.15% 4086 
THU Thursday 2525 62.45% 1512 37.40% 6 0.15% 4043 
FRI Friday 2712 61.04% 1710 38.49% 21 0.47% 4443 
SAT Saturday 1259 61.96% 760 37.40% 13 0.64% 2032 
SUN Sunday 711 59.85% 471 39.65% 6 0.51% 1188 

RDREL First Harmful  Event 
Location 

ONWAY on roadway 14567 62.38% 8719 37.34% 66 0.28% 23352 
OFFWAY off roadway 52 64.20% 29 35.80% 0 0.00% 81 

LIGHT Lighting Condition 
DAYLIGHT daylight 12600 62.84% 7420 37.01% 31 0.15% 20051 

DARK dark 1547 58.58% 1061 40.17% 33 1.25% 2641 
DAWN/DUSK dawn or dusk 472 63.70% 267 36.03% 2 0.27% 741 

CURVE Curvature CURVE curve road 616 67.62% 295 32.38% 0 0.00% 911 
STAIGHT straight road 14003 62.17% 8453 37.53% 66 0.29% 22522 

RDGRD Road Grade 

LEVEL level 12755 62.84% 7584 37.36% 59 0.29% 20298 
HCRST hillcrest 365 57.21% 273 42.79% 0 0.00% 638 

ONGRADE On grade 1434 59.50% 969 40.21% 7 0.29% 2410 
DIP dip 45 73.77% 16 26.23% 0 0.00% 61 

OTHER other road grade 20 76.92% 6 23.08% 0 0.00% 26 

DRESD Driver Residency ST NM residency 12679 63.01% 7423 36.89% 21 0.10% 20123 
NST other state residency 1940 58.61% 1325 40.03% 45 1.36% 3310 

NVEH Number of Vehicles 
Involved 

TWO two vehicles 11872 67.51% 5671 32.25% 43 0.24% 17586 
THREE three vehicles 2192 49.58% 2215 50.10% 14 0.32% 4421 
MORE more than three vehicles 555 38.92% 862 60.45% 9 0.63% 1426 

RDFUNC Road Function 
URBN urban road 13306 63.21% 7719 36.67% 26 0.12% 21051 
RINT rural interstate 460 52.27% 404 45.91% 16 1.82% 880 

RNINT rural non-interstate 853 56.79% 625 41.61% 24 1.60% 1502 

PEDINV Pedestrian 
Involvement 

Y  involved 5 38.46% 8 61.54% 0 0.00% 13 
N not involved 14614 62.40% 8740 37.32% 66 0.28% 23420 

MCINV Motorcycle 
Involvement 

Y involved 116 29.74% 265 67.95% 9 2.31% 390 
N not involved 14503 62.94% 8483 36.81% 57 0.25% 23043 

HEVINV 

Heavy Vehicle 
Involvement(including 
bus, pickup, semi-
truck and lorries) 

Y involved 388 52.29% 311 41.91% 43 5.80% 742 

N not involved 14231 62.72% 8437 37.18% 23 0.10% 22691 

HZINV Hazard Material 
Involvement 

Y involved 6 46.15% 5 38.46% 2 15.38% 13 
N not involved 14613 62.40% 8743 37.33% 64 0.27% 23420 

DTINC 
Distance from Crash 
Location to 
Intersection 

NEAR <0.1mile 4624 58.87% 3191 40.62% 40 0.51% 7855 
MID 0.1-1.0 mile 596 52.37% 536 47.10% 6 0.53% 1138 
FAR >1.0 mile 9399 65.09% 5021 34.77% 20 0.14% 14440 
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Table 5-1 (Continued) 

Attribute Value 
SEV 

Total NO 
INJURY Percentage INJURY Percentage FATALITY Percentage 

DLRST Driver License 
Restriction 

RST with restriction 3625 62.52% 2153 37.13% 20 0.34% 5798 
NORST no restriction 10994 62.34% 6595 37.40% 46 0.26% 17635 

RDPV Road Paving 
Condition 

PAVED paved surface 14552 62.34% 8724 37.37% 66 0.28% 23342 
UNPAVED unpaved surface 67 73.63% 24 26.37% 0 0.00% 91 

TRFCTL Traffic Control 

NCTL no control 11132 61.59% 6899 38.17% 42 0.23% 18073 
SYSIGN Stop/yield sign control 124 73.37% 45 26.63% 0 0.00% 169 
SGCTL signal control 507 64.18% 279 35.32% 4 0.51% 790 

RRGATE railroad gate 6 85.71% 1 14.29% 0 0.00% 7 

OTHER other control measures, such as passing zones, 
detours,etc.  2850 64.86% 1524 34.68% 20 0.46% 4394 

NLANE 
Number of Lanes 
with Same Direction 
at Crash Location 

ONE one lane 3363 64.40% 1846 35.35% 13 0.25% 5222 
TWO two lanes 6024 62.65% 3550 36.92% 41 0.43% 9615 

MORE more than two lanes 5232 60.87% 3352 38.99% 12 0.14% 8596 

VACT Vehicle Action 

STRT straight 9176 62.69% 5416 37.00% 46 0.31% 14638 
BACK backup 35 89.74% 4 10.26% 0 0.00% 39 
SLOW slow 1411 62.24% 854 37.67% 2 0.09% 2267 
LTURN left turn 484 65.58% 250 33.88% 4 0.54% 738 
RTURN right turn 432 70.70% 176 28.81% 3 0.49% 611 
UTURN U-turn 20 66.67% 10 33.33% 0 0.00% 30 

OTK overtaking 130 64.68% 71 35.32% 0 0.00% 201 
OTHER other action 2931 59.71% 1967 40.07% 11 0.22% 4909 

VTYPE Vehicle Type 

LVEH light vehicle, including passenger car or van 10747 62.35% 6463 37.49% 27 0.16% 17237 

HVEH heavy vehicle, including bus, pickup, semi-truck 
and lorries 3454 63.53% 1950 35.87% 33 0.61% 5437 

MC motorcycle 59 29.65% 136 68.34% 4 2.01% 199 

OTHER other 359 64.11% 199 35.54% 2 0.36% 560 

DBELT Driver Seatbelt Use Y seatbelt used 13698 62.03% 8332 37.73% 52 0.24% 22082 
N seatbelt not used 921 68.17% 416 30.79% 14 1.04% 1351 

DAGE Driver Age 
YOUNG 16~25 4744 65.28% 2510 34.54% 13 0.18% 7267 

MID 25~64 8814 60.91% 5608 38.75% 49 0.34% 14471 
OLD 64 or older 1061 62.60% 630 37.17% 4 0.24% 1695 

DALC Driver Alcohol 
Involvement 

Y involved 115 44.40% 139 53.67% 5 1.93% 259 
N not involved 14504 62.59% 8609 37.15% 61 0.26% 23174 

DSEX Driver Sex M male 7967 63.89% 4454 35.72% 49 0.39% 12470 
F female 6652 60.68% 4294 39.17% 17 0.16% 10963 

MAXDAM Most Serious 
Vehicle Damage  

NSLT no damage or slight damage 6147 72.65% 2312 27.33% 2 0.02% 8461 
FUNC functional damage that affects operations of vehicle 4284 68.61% 1960 31.39% 0 0.00% 6244 

DSABL disabled damage that vehicles can't be driven 4188 47.98% 4476 51.28% 64 0.73% 8728 
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5.2 BN Input Variable Selection 

In this analysis, an ordinary MNL model was used for the BN input variable 

selection procedure. Individual-specific model specifications are established so that each 

variable has different marginal costs for different driver injury severity levels. Three 

different coefficients βki(i=1, 2, 3) specified for NO INJURY, INJURY and FATALITY 

for the kth variable. 18 variables are selected as inputs for BN structure learning, model 

specification development, and conditional probability inference: DALC(driver alcohol 

involvement), DBELT(driver seatbelt use), DSABL(vehicle disabled damage), 

LIGHT(lighting condition), MCINV(motorcycle involvement), NST(non-local driver), 

NVEH(number of vehicles in a crash), TKINV(truck involvement), DINTC(distance of 

crash location to nearest intersection), FUNC(functional vehicle damage), 

HCRST(hillcrest terrain), NCTL(no traffic control), SGCTL(signal control), 

WIND(windy weather), CURVE(road curve), DSEX(driver gender), EVE(evening time), 

and URBN (urban roads). The detailed estimation results from the MNL model are 

shown below in Table 5-2.   
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Table 5-2 MNL Model Estimation Results and Significant Variable Identification. 

Variable Coef.a Std. 
Err.b T-Ratio P-

Value 
Constant (Specific to INJURY) 5.89 0.93 6.33 0.00 

Constant (Specific to NO INJURY) 7.53 0.93 8.09 0.00 
DALC (Specific to FATALITY) 1.36 0.53 2.56 0.01 

DALC (Specific to INJURY) 0.63 0.13 4.75 0.00 
DBELT (Specific to FATALITY) -0.84 0.39 -2.16 0.03 
DSABL (Specific to FATALITY) 3.70 0.73 5.07 0.00 

DSABL (Specific to INJURY) 0.89 0.03 26.22 0.00 
LIGHT (Specific to FATALITY) -0.65 0.14 -4.75 0.00 
MCINV (Specific to FATALITY) 3.02 0.51 5.94 0.00 

MCINV (Specific to INJURY) 1.43 0.12 12.33 0.00 
NST (Specific to FATALITY) 0.95 0.36 2.64 0.01 

NVEH (Specific to FATALITY) 0.26 0.12 2.12 0.03 
NVEH (Specific to INJURY) 0.44 0.02 19.67 0.00 

TKINV (Specific to FATALITY) 3.19 0.37 8.61 0.00 
DINTC (Specific to INJURY) -0.11 0.02 -6.94 0.00 
FUNC (Specific to INJURY) 0.18 0.04 4.83 0.00 
HCRST (Specific to INJURY) 0.21 0.09 2.45 0.01 
NCTL (Specific to INJURY) 0.14 0.04 3.67 0.00 

SGCTL (Specific to INJURY) -1.53 0.53 -2.91 0.00 
SGCTL (Specific to NO INJURY) -1.61 0.53 -3.07 0.00 

WIND (Specific to INJURY) 0.33 0.15 2.24 0.03 
CURVE (Specific to NO INJURY) 0.19 0.08 2.49 0.01 
DSEX (Specific to NO INJURY) 0.22 0.03 7.61 0.00 
EVE (Specific to NO INJURY) 0.11 0.03 3.4 0.00 

URBN (Specific to NO INJURY) 0.20 0.05 4.22 0.00 
Log-likelihood for estimation -14736.40 

Likelihood ratio test 22014.77 
Likelihood ratio index, 2 0.43 

aEstimated Coefficient, bStandard Error. 

 

5.3 BN Model Performance on Rear-end Traffic Crash Driver Injury Severity 

Prediction 

This research employed Weka (Waikato Environment for Knowledge Analysis) 

software (Bouckaert, 2008), developed by University of Waikato, New Zealand, to 
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establish the BN structure and estimate the parameters. The whole dataset was divided 

into two approximately equal-sized subsets, classified by the years of crash occurrences. 

The 2010 crash dataset was used for BN structure learning and the 2011 dataset was 

utilized for model validation and performance test. Three major BN scoring metrics, AIC, 

MDL and BDe, were used for classifier training, and it is found that the MDL score 

controlled training procedure produced BN structures with least variance and achieves 

the best classification performance. Therefore, the MDL score criterion is employed in 

this study for BN structure learning. Based on prior knowledge on the 18 significant 

variables identified by the MNL model, the initial DAGs are developed. In order to avoid 

locally optimal solution, different initial DAGs are used to ensure at least a globally 

suboptimal network structure is generated. 

Table 5-3 MNL-BN Estimation Results. 

 Training Testing 

Correctly Classified Instances Number Percentage Number Percentage 
7677 66.84% 7856 65.76% 

Incorrectly Classified Instances Number Percentage Number Percentage 
3809 33.16% 4091 34.24% 

Total Number of Instances 11486 11947 
 

Table 5-4 MNL-BN Classification Performance by Driver Injury Severities. 

Driver Injury 
Severity 

TP Rate FP Rate Precision F-Measure ROC Area: AUC 

Training Testing Training Testing Training Testing Training Testing Training Testing 

NO INJURY 0.856 0.852 0.634 0.661 0.689 0.683 0.764 0.759 0.679 0.659 

INJURY 0.360 0.332 0.144 0.148 0.600 0.569 0.450 0.419 0.676 0.654 

FATALITY 0.333 0.273 0.002 0.002 0.355 0.281 0.344 0.277 0.987 0.956 

Weighted Average 0.668 0.658 0.448 0.469 0.655 0.640 0.645 0.631 0.679 0.658 

 

As can be seen in Table 5-3, the overall estimation accuracies of this trained BN 

are 66.84% and 65.76% for training and testing datasets, respectively. Compared to the 
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model accuracies ranging from 60% to 65% for testing and training datasets in 

Abdelwahab and Abdel-Aty (2001)’s study and from 61% to 62% in de Oña et al 

(2011) ’s study, the results obtained are reasonably acceptable. The variance between the 

estimation accuracies for training and testing datasets is around 1%, indicating that the 

trained network is transferable and able to explain and model the testing data fairly well.  

The true positive (TP) rates range from 0.273 (FATALITY) to 0.852 (NO 

INJURY) with a weighted average of 0.658 for the testing dataset. The result indicates 

that the BN is capable of classifying 85.2% of no injuries correctly, but its ability to 

classify fatalities is relatively poor. This implies that the BN is able to better classify no 

injuries than injuries and fatalities as expected since the majority of the crash data records 

are no injuries.  

F-measure ranges from 0 to 1 and can be used as an effective performance 

measure for the built BN. F-Measure=0 means extremely poor model classification 

results and F-Measure=1 represents perfect model classification performance. The trained 

BN performs best of the instances of no injuries using the test dataset and its F-Measure 

is equal to 0.759. Overall, for the entire test dataset, the average F-Measure is 0.631, 

indicating an acceptable model predication performance.  

ROC curve is another important indicator to evaluate the overall performance of 

the BN model. Figure 5-1 shows an example of a typical ROC curve. An ROC curve 

above the diagonal line indicates a model performance better than random guess. The 

ROC curves are demonstrated for three driver injury outcomes in Figures 5-2, 5-3 and 5-

4. We can see that all three ROC curves locate above the diagonal lines, indicating that 
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the trained BN performs reasonably well for three injury severity classifications. The 

AUC value is a quantitative index that assesses the overall performance of model 

classification estimation with a maximum value of 1.00, which indicates a perfect 

classification prediction. A value of 0.5 indicates poor model prediction performance so 

that random classification is produced by the model. Figures 5-2, 5-3, 5-4, and Table 5-4 

show the AUCs produced by the trained BN for the test dataset. The highest AUC is 

0.956 showing the best performance achieved by the BN for fatal injury outcome 

classification. The AUCs are 0.659 and 0.654 for classifying severity outcomes of no 

injuries and injuries, respectively. For the entire dataset, the overall AUC can be 

calculated as a weighted average for each injury outcome classification as follows 

(Provost and Domingos, 2001), 

𝐴𝑈𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑ 𝐴𝑈𝐶𝑐𝑖
𝑛
𝑖=1 𝑝(𝑐𝑖)                                        (5-1) 

where 𝐴𝑈𝐶𝑐𝑖  is the AUC for injury severity class 𝑐𝑖 , 𝑝(𝑐𝑖)  is the probability of 

occurrences for injury severity class 𝑐𝑖, and n is the number of classes, which is equal to 3 

in this study. For the testing dataset,   𝐴𝑈𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙=0.658, indicating that the trained BN is 

able to effectively discover the classification patterns and the performance is acceptable 

based on Tape (2001)’s criteria.  

 

Figure 5-1 An Example of ROC Space. 
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Figure 5-2 ROC Curve for the Category of NO INJURY. 

 

Figure 5-3 ROC Curve for the Category of INJURY. 

 

Figure 5-4 ROC Curve for the Category of FATALITY. 

Table 5-5 illustrates the classification confusion matrix for the testing dataset, 

where, each row represents the actual number of observed instances for each injury 
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severity category and each column denotes the number of predicted instances for each 

injury severity category. The diagonal cells indicate the correct predictions and non-

diagonal cells are erroneously predicted instances. As can been seen, the BN tends to 

overestimate the number of instances of no injury and underestimates the number of 

instances of injury. The overall match rate for the test dataset is 65.8%.  

Table 5-5 BN Classification Confusion Matrix for the Test Dataset. 

 
Predicted Instances Classified by Severity 

NO INJURY (9327) INJURY (2588) FATALITY (32) 

Observed Instances 
Classified by Severity 

NO INJURY (7477) 6374 1093 10 
INJURY (4437) 2951 1473 13 
FATALITY (33) 2 22 9 

 

5.4 BN Model Structure and Most Probable Explanation (MPE) Analysis 

The BN is trained and its final network structure is illustrated in Figure 5-5, with a 

conditional probability table for each node, which is used for MPE calculation and 

evidence inference.  

 

Figure 5-5 BN Classifier Structure with MDL Score. 
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Table 5-6 MPE Configuration for Training and Testing Datasets. 

Variable MPE Value Percentage 
Training Testing 

SEV 1 62.18% 62.58% 
LIGHT 3 85.60% 85.54% 
WIND 0 98.91% 99.34% 

CURVE 0 95.73% 96.48% 
HCRST 0 97.27% 97.28% 

NST 0 86.31% 85.45% 
NVEH 1 74.01% 76.04% 
URBN 1 90.62% 89.08% 

MCINV 0 98.36% 98.31% 
TKINV 0 96.68% 96.98% 

EVE 0 77.58% 76.13% 
DTINC 3 61.27% 61.96% 
NCTL 1 76.73% 77.51% 

SGCTL 0 94.21% 94.89% 
DBELT 1 94.35% 94.12% 
DALC 0 98.89% 98.90% 
DSEX 1 53.12% 53.31% 

DSABL 0 62.19% 63.30% 
FUNC 0 77.02% 69.83% 

 

MPE analysis is an effective way to examine the graphical performance of the 

trained BN structure (de Oña et al., 2011). MPE can be calculated based on the most 

probable configuration of values for all the variables given the dataset. By comparing 

MPE to the relative frequency computed based on the dataset, the statistical quality of the 

trained BN structure could be quantitatively measured (Simoncic, 2004). In this study, 

the most probable values and the corresponding frequencies of the variables are 

illustrated in Table 5-6 for both training and testing datasets. Given the trained BN 

structure and conditional probabilities for each node, MPE for the testing dataset can be 

calculated using the MPE formula with the most possible value for each variable 

illustrated in Table 5-7. The relative frequency for the testing dataset, P(Test), is 

computed also for the comparison purposes. Obviously, the MPE is a small probability, 

approximately 0.02829 for the testing dataset, although it represents the most likely 
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explanations. The difference between the MPE and the relative frequency is about 0.29% 

for the testing dataset. Such small difference further verifies that the BN structure 

performs reasonably well.  

Table 5-7 MPE Results for Training and Testing Datasets. 

MPE formula  MPETest  P(Test) 
P(WIND=0)P(CURVE=0)P(HCRST=0|CURVE=0) 
P(NVEH=1|DSABL=0,MCINV=0)P(DSABL=0) 
P(FUNC=0|DSABL=0)P(DTINC=3) 
P(URBN=1|DTINC=3,NCTL=1,NVEH=1) 
P(NST=0|URBN=1)P(NCTL=1) 
P(SGCTL=0|FUNC=0,NCTL=1) 
P(DALC=0)P(EVE=0)P(LIGHT=3|DALC=0,EVE=0) 
P(DSEX=1)P(TKINV=0|NST=0,URBN=1, SGCTL=0, 
DSEX=1)P(MCINV=0|DSEX=1,DBELT=1)P(DBELT=1) 
P(SEV=1|WIND=0,CURVE=0,HCRST=0,NVEH=1,DSABL=0,FUNC=0, 
DTINC=3,URBN=1,NST=0,SGCTL=0,DALC=0,EVE=0,LIGHT=3,DSEX=1, 
TKINV=0,MCINV=0,NCTL=1,DBELT=1) 

 0.028290  0.028207 

 

5.5 Influence of Contributing Factors on Driver Injury Severity 

Two aspects should be included in the results for non-regression influence 

estimation: the learned optimal BN structure, and the influence of variables on crash 

driver injury severities in terms of probability change. In the learned BN structure, the 

nodes indicate the included variables, and the arcs represent the statistical dependence 

among these variables. The BN structure explicitly formulates the interdependency 

among the variables and is capable of providing probability inference analyses based on 

the conditional probability tables for each node. Through setting evidences for the related 

variables, their contributions to crash occurrences with certain severity outcomes can be 

quantified.  
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Table 5-8 BN Probability Inference Results for the Variables Increasing Driver 
Injury Severities. 

Variable Severity 

 
NO 

INJURY INJURY FATALI
TY 

Proportion 
Distribution 0.626 0.371 0.003 

WIND 0.491 0.503 0.006 
DALC 0.425 0.535 0.031 
DSABL 0.490 0.502 0.007 
TKINV 0.490 0.449 0.061 

NST 0.575 0.413 0.012 

DTIN
C 

NEAR 0.410 0.586 0.004 
MID 0.534 0.453 0.014 
FAR 0.654 0.345 0.001 

LIGH
T 

DAYLIG
HT 0.629 0.370 0.001 

DAWN/
DUSK 0.650 0.344 0.007 

DARK 0.595 0.390 0.014 

NVEH 
2 0.671 0.327 0.002 
3 0.510 0.486 0.004 
≥ 4 0.601 0.391 0.008 

 

Table 5-8 illustrates the inference results for the variables which significantly 

increase the likelihoods of driver suffering injury and fatality given rear-end crash 

occurrences. For each variable, the probability of a predetermined value is set as 1.0 in 

the first column during evidence setting processes, and the probabilities for driver injury 

severity outcomes are inferred in other columns showing the impact of these variables 

with specific values on the likelihoods of various driver injury severities. In the first row, 

Proportion Distribution, indicates the corresponding proportion of each driver injury 

severity extracted directly in the testing dataset. In the second row, a probability of 1.0 is 

assigned to the variable, WIND, with the value, 1, (e.g. WIND=TURE) as evidence, and 

the probabilities of INJURY and FATALITY increase from 0.371 to 0.503 and from 
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0.003 to 0.006, respectively, comparing to the original distributions. This implies that 

windy weather conditions will increase the propensity of driver injury and fatality in rear-

end crashes. If a vehicle is involved in a rear-end crash under windy conditions, the 

likelihoods for drivers suffering injury and fatality increase from 37.1% to 50.3% and 

from 0.3% to 0.6%, respectively. Alcohol influence also significantly affects the 

probabilities of driver injury and fatality in rear-end crashes, supported by the inference 

results of the variable, DALC. When alcohol influence is set as evidence, the probabilities 

of INJURY and FATALITY increase from 37.1% to 53.5% and from 0.3% to 3.1%, 

respectively. This implies that drivers under the influence of alcohol are more likely to be 

seriously and fatally injured in rear-end crashes, which is consistent with the conclusions 

in the previous studies (Hels et al., 2013; Weiss et al., 2014).   

As can be expected, the inference results of the variable, DSABL, indicate that 

drivers are more likely to suffer serious injury and fatality when vehicles involving in 

rear-end crashes are disabled. The corresponding probabilities increase up to 53.5% and 

0.7%. It is understandable that severe vehicle damage is normally associated with high 

probabilities of driver injury and fatality since vehicle damage level is a reflection of the 

impact produced in crashes. Truck involvement (TKINV) is a significant factor 

substantially contributing to serious driver injuries and fatalities in rear-end crashes. As 

shown in Table 10, when truck is involved in rear-end crashes, the probability of driver 

fatality increases by 20 times from 0.3% to 6.1% comparing to its probability under 

regular conditions. The likelihood of driver injury also increases from 37.1% to 44.9%. 

These results underscore that the significant impacts of trucks on driver injury and 

fatality in rear-end crashes, which is consistent with the previous study (Chang and 
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Mannering, 1999) that large trucks have the significant impact on the most severely 

injured occupants. Large trucks account for 8% of all vehicles involved in fatal crashes 

although they are only 4% of total registered vehicles in the U. S. in 2010 (NHTSA, 

2012). These findings emphasize that special research efforts should be undertaken to 

address truck involvements in severe rear-end crashes, such as investigations on effective 

countermeasures to improve truck drivers’ visibility.  

Drivers coming outside of the state are more likely to be seriously and fatally 

injured in rear-end crashes. The probabilities of nonlocal drivers being injured and killed 

increase up to 41.3% and 1.2%, respectively, due to their unfamiliarity to local roadway 

networks. In addition, a dependent relationship is also observed in Figure 5-5 between the 

variables, NST and TKINV. It could be explained by the fact that many nonlocal drivers 

are from trucking industry to transporting a large amount of goods and materials through 

the states. Normally, they are less familiar with local roadway network, environment 

characteristics, traffic regulations, and driver behavior. They are more likely to involve in 

severe rear-end crashes. 

The variable, DTINC, denotes the distance between the crash location to the 

nearest intersection with three values: NEAR (less than 0.1 mile), MID (between 0.1 and 

1.0 mile), and FAR (more than 1.0 mile). The reference results indicate when this 

distance increases, the likelihood of drivers being injured in read-end crashes decreases. 

When the distance between the crash location to the nearest intersection is less than 0.1 

mile, the probability of drivers being injured is 58.6% given rear-end crash occurrences. 

As the distance increases up to 1.0 mile, the probability of driver fatality increases by 

more than three times from 0.4% to 1.4%. These findings imply that driver injury 
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severities increase in rear-end crashes around intersections due to the complex conflicting 

movements. However, fatal rear-end crashes are more likely to occur when vehicles are 

approaching intersections at relatively high speeds. Inappropriate acceleration, 

insufficient deceleration, less driver reaction and perception time, etc. may dramatically 

contribute to severe crash occurrences. These unique injury distribution patterns should 

be considered when developing the countermeasures to mitigate intersection-related crash 

severities. This variable was also found significant in hierarchical regression modeling in 

Chapter 4. Lighting condition (LIGHT) is significantly contributing to driver injury 

outcomes in rear-end crashes. The probability inference results indicate that the 

probabilities of FATALITY consistently increase when lighting conditions become 

inferior from DAYLIGHT to DARK. However, under unfavorable lighting conditions at 

dusk and dawn, the likelihood of drivers being injured decreases slightly from 37.0% to 

34.4%. This could be attributed to the facts that drivers become more cautious to prepare 

for unfavorable lighting conditions at dusk and dawn, so the probability of driver injury 

may decreases relative to daylight conditions. Similar analyses can be conducted for the 

variable, NVEH, representing the number of vehicles involved in rear-end crashes. The 

probability of drivers suffering fatality consistently increases when the number of 

vehicles involved increases. Interestingly, drivers are most likely to be injured when three 

vehicles are involved in a rear-end crash. When four or more vehicles are involved a 

crash, the probability of driver injury decreases. These findings are helpful to understand 

the attributes of multi-vehicle involved rear-end crashes.      

 

5.6 Model Performance Comparison with Linear Statistical Models 
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In this case study, performance comparison is conducted between the proposed 

approach and the MNL model in this study. Table 5-9 shows the MNL classification 

confusion matrix for the testing dataset. As illustrated in Table 5-9, the total number of 

correctly predicted observations by the MNL model is 6664 (6664= 4881+1782+1), and 

the overall correction rate of this MNL prediction is 55.78%, which is considerably lower 

than the classification accuracy from the proposed logit-based BN hybrid approach 

(65.76%). It reveals that the proposed approach is more effective and accurate in 

predicting driver injury severities in rear-end crashes.  

Table 5-9 MNL Classification Confusion Matrix for the Testing Dataset. 

 Predicted Instances Classified by Severity 

NO INJURY (7533) INJURY (4377) FATALITY (37) 

Observed Instances Classified by 
Severity 

NO INJURY (7477) 4881 2580 15 

INJURY (4437) 2635 1782 20 

FATALITY (33) 16 16 1 

 

5.7 Conclusions 

Rear-end crash is one of the major traffic accidents and has been investigated in 

the past decades. A good understanding of significant attributes affecting driver injury 

severities and their contributions in rear-end crashes is of practical importance to develop 

cost-effective countermeasures against serious driver injury and fatality in rear-end 

crashes. This case study applies the proposed MNL-BN hybrid model to examine rear-

end crash dataset and investigate the impacts of significant contributing attributes on 

driver injury severity outcomes in rear-end crashes.  
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In model development procedure, the MNL model is developed to identify 

significant variables, and the BN is employed to explicitly formulate statistical 

associations between driver injury severity outcomes and explanatory attributes, 

including driver behavior, demographic features, vehicle factors, geometric and 

environmental characteristics, etc. The BN structure is trained based on prior domain 

knowledge and performance scoring metric using state-wide crash data collected in New 

Mexico from 2010 to 2011. Various statistical model performance measures, such as F-

Measure, ROC curve, AUC, and MPE, are used to quantify the BN model performance. 

The results demonstrate that the trained BN model can effectively discover the 

interdependency among variables and the proposed hybrid approach performs reasonably 

well. 

The inference analyses are conducted to quantify the contributions of the most 

significant variables to driver injuries and fatalities in rear-end crashes. The factors 

including truck involvement, inferior lighting conditions, windy weather conditions, the 

number of vehicles involved, etc. can significantly increase driver injury severities in 

rear-end crashes. For example, when truck is involved in rear-end crashes, the probability 

of driver fatality increases by 20 times from 0.3% to 6.1% comparing to its probability 

under regular conditions. The likelihood of driver injury also increases from 37.1% to 

44.9%. These results underscore the considerable impacts of these significant variables 

on driver injury and fatality in rear-end crashes. The proposed methodology and research 

findings provide insights for developing effective countermeasures to reduce rear-end 

crash injury severities and improve traffic system safety performance. 
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While studies in previous chapters introduced the applicability of hierarchical 

regression models with Bayesian inference in traffic crash injury severity analysis, this 

study introduced Bayesian network model, an indispensable component of Bayesian 

family methods, and assessed its effectiveness in predicting driver injury severity 

outcomes and evaluating variable impacts on injury outcomes, which enhances our 

understanding regarding Bayesian model applications in traffic crash injury severity 

analysis.
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Chapter 6 DTNB Classifier Case Study 

6.1 Case Study Dataset 

In this case study with the DTNB classifier, the same rear-end dataset described in 

Section 4.2 was used for driver injury severity analysis, and therefore the variable 

description table is omitted in this section. Correlation analyses were also conducted to 

avoid significant correlations among the explanatory variables, according to the “naïve” 

assumption of inter-independence for NB models. For variables with significant 

correlations, variables most related to driver injury severities were kept for model 

estimation and less significant ones were removed, based on traffic engineering 

experience. Overall, the studied dataset includes 23,433 driver/vehicle records from 

11,383 rear-end crashes on New Mexico roadways. 

By applying the DTNB model as a classifier into traffic injury severity analyses, it 

is expected to obtain analyses results composed of four aspects: 1) model performance 

analysis; 2) A set of most contributable variables to driver injury severity from the trained 

classifier; 3) variable influence and decision rule analysis, 4) model performance 

comparison with statistical models. 

 

6.2 DTNB Model Performance Analysis 

This dataset was also modeled with a DTNB classifier in WEKA software. Same 

as well, the 2010 dataset was used for DTNB model training and decision rule learning, 

and the 2011 dataset was used as the test dataset for model validation and performance 

assessment.   The detailed model performance measurements are shown in Tables.  
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Table 6-1 DTNB Model Classification Accuracy. 

 Training Test 

Correctly Classified Instances Number Percentage Number Percentage 
8506 74.06% 7494 62.73% 

Incorrectly Classified Instances Number Percentage Number Percentage 
2980 25.94% 4453 37.27% 

Total Number of Instances 11486 11947 
 

Table 6-2 DTNB Classification Performance by Driver Injury Severity. 

Driver Injury 
Severity 

TP Rate FP Rate Precision F-Measure ROC Area: AUC 

Training Test Training Test Training Test Training Test Training Test 

NO INJURY 0.825 0.788 0.325 0.621 0.807 0.68 0.816 0.73 0.804 0.631 

INJURY 0.6 0.36 0.13 0.206 0.735 0.508 0.66 0.421 0.798 0.621 

FATALITY 0.879 0.121 0.055 0.011 0.044 0.03 0.083 0.048 0.975 0.736 
Weighted 
Average 0.741 0.627 0.251 0.465 0.778 0.614 0.755 0.613 0.802 0.627 

 
As is shown in Table 6-1, the overall classification accuracies for the training and 

test datasets are 74.06% and 62.73%, showing reasonable classification performance. The 

relatively large variance (11.33%) between the classification accuracies for training and 

testing datasets indicates that the learned classifier is more specific to the training dataset, 

and a more comprehensive training dataset including sufficient records for each injury 

severity is desirable to produce a more compatible classifier. 

Similarly to Section 4.2, the DTNB classifier also produced performance statistics 

regarding the popularly used classification performance measurements: TP rate, FP rate, 

precision, F-measure, and AUC values. The TP rates range from 0.121 for FATALTY to 

0.788 for NO INJURY with a weighted average of 0.627 for the testing dataset, as 

illustrated in Table 6-2. These results demonstrate that the DTNB classifier is able to 

classify 78.8% of instances with no injuries correctly, while its capability of classifying 

injury and fatal instances is relatively inferior. This implies that this classifier performs 
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better on no injuries and injuries than fatal cases since the majority of the training dataset 

are no injury and injury records, with which more representative decision rules could be 

extracted for injury severity prediction. It is also shown in Table 6-2 that the DTNB 

hybrid model has the best performance in predicting no injury instances in the testing 

dataset, and its F-measure is equal to 0.73. For instances with fatalities, the trained 

classifier performs inferiorly due to the limited sample size, with its F-measure equal to 

0.048. Overall, the average F-Measure is 0.613 for the entire test dataset, implying an 

acceptable model performance of the trained classifier. 

The ROC curves and corresponding AUC values are also trained to support the 

promising performance of this DTNB classifier, as are shown in Figures. It is revealed 

that the DTNB model achieves the best performance for fatal records, with an AUC of 

0.736. This is followed by that for no injury instances and injury instances, with AUCs of 

0.631 and 0.621, respectively. The overall AUC for the test dataset is 0.627, suggesting 

that the learned DTNB classifier is able to effectively extract the injury severity patterns 

and produce an acceptable performance.  

 

Figure 6-1 ROC Curve for the Category of NO INJURY. 
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Figure 6-2 ROC Curve for the Category of INJURY. 

 

Figure 6-3 ROC Curve for the Category of FATALITY. 

The DTNB model also produces a confusion matrix to illustrate misclassifications 

between each pair of injury severity levels, shown in Table 6-3.  As is illustrated in Table 

6-3, 1,531 instances of no injuries are misclassified as injury cases, 52 no injuries are 

misclassified as fatal instances, 2,764 injuries are misclassified as no injuries, 77 injuries 

are misclassified as fatalities, 12 fatalities are misclassified as no injury cases, and 17 

fatalities are misclassified as injury cases. The overall match rate (accuracy) is 62.73%, 

illustrating an acceptable model performance was produced by the DTNB hybrid model. 
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Table 6-3 DTNB Classification Confusion Matrix for the Test Dataset. 

 
Predicted Instances Classified by Severity 

NO INJURY (8670) INJURY (3144) FATALITY (133) 

Observed Instances Classified 
by Severity 

NO INJURY (7477) 5894 1531 52 

INJURY (4437) 2764 1596 77 

FATALITY (33) 12 17 4 

 

6.3 Contributing Variable Selection and Decision Rule Extraction 

In this study, 15 attributes are selected as the decisive feature set by the hybrid 

classifier as follows: DAY, RDREL, LIGHT, WEATHER, RDGRD, NVEH, RDFUNC, 

MCINV, HEVINV, DTINC, RDPV, NLANE, DBELT, DALC, and MAXDAM. These 

variables cover the information regarding weather, lighting condition, road geometry 

characteristics, driver behavior information, etc. Note that the attribute set is selected for 

formulating decision rules for all three injury severities based on the entire dataset, not 

only for a particular injury outcome. 2,865 decision rules are trained by the DTNB 

classifier based on the selected attributes, in which 1,366 rules are used for predicting no 

injury cases, 1,488 for injury prediction, and 11 for fatality prediction. As shown in Table 

6-3, there are 8,670 instances in the test dataset predicted as no injuries, 3,144 as injuries, 

and 133 as fatalities. On average, a decision rule for no injury prediction is used to 

classify 6.3 instances in the testing dataset, a decision rule for injury prediction is used to 

classify 2.1 instances, and a decision rule for fatality prediction is used to classify 12.1 

instances. However, if only the correctly classified instances are considered, the average 

numbers of correct predictions are 4.3 instances for a no injury decision rule, 1.1 

instances for an injury decision rule, and 0.4 instances for a fatality decision rule. Based 

on these results, the learned decision rules for no injury are the most efficient in severity 
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outcome prediction, followed by those for injury. The learned decision rules for fatality 

are the least efficient in correct classification, which explains the lowest TP rate and F-

measure of FATALITY for the testing dataset in Table 6-2.  

 

6.4 Variable Influence Analysis 

A trained DT lists all the decision rules for predicting the most probable driver 

injury severity in rear-end crashes under a set of specific conditions of these selected 

variables. The learned DT is fundamentally a matrix of if-then rules working with 

condition states and action state: if a specific set of conditions for the selected attributes 

is satisfied, a particular injury severity level that a driver is most likely to suffer in a rear-

end crash would be returned. Table 6-4 shows the decision rules for fatality prediction. 

For example,  

If DAY=SUN, and RDREL=ONWAY, and LIGHT=DARK, and WEATHER=CLEAR, 

and RDGRD=ONGRADE, and NVEH=TWO, and RDFUNC=RINT, and MCINV=N, and 

HEVINV=Y, and DTINC=NEAR, and RDPV=PAVED, and NLANE=TWO, and 

DBELT=Y, and DALC=N, and MAXDAM=DSABL, Then SEV=FATALITY. 

Although there are not statistical summaries in the results, the significant effects 

of some condition-states on driver fatal injuries could be detected in Table 6-4.  

RDREL has a unanimous condition state for all the 11 decision rules, 

RDREL=ONWAY, indicating that it is highly likely to result in fatalities if the first 

harmful event of a serial rear-end crash happens on the roadway. This is probably 

because in serial rear-end crashes with multiple vehicles, the first event on a roadway 



134 
 

segment would block traffic and result in consecutive collisions due to limited response 

time for following vehicle drivers. There are 5 out of the 11 decision rules with the 

presence of dark lighting conditions (LIGHT=DARK), indicating that insufficient light 

condition is an important factor in inducing driver fatal injuries in rear-end crashes. The 

other 6 decision rules for driver fatality prediction are associated with daylight conditions, 

which seem contradictory to commonsense. Similarly contradictory findings are also 

concluded for WEATHER, RDGRD, and RDPV, where clear weather, level road grade, 

and paved road surface are the most frequent conditions in predicting driver fatal injuries. 

These contradictions are explainable because  drivers tend to be more aware when 

driving in adverse conditions, such as extreme weather, inferior environment lighting 

conditions, mountainous terrain, wet or icy pavement surfaces (associated with extreme 

weather), granular pavement, etc., while crash risk and severity might induce potential 

speeding or careless driving in comfortable driving environments. This finding receives 

support from multiple studies (Haque et al., 2012; Savolainen and Mannering, 2007; 

Shaheed et al., 2013; Yu and Abdel-Aty, 2014a). For instance, Yu and Abdel-Aty (2014) 

discovered that snowy weather conditions tend to reduce the likelihood of serious crashes. 

Savolainen and Mannering (2007) found that crashes occurring on wet road surfaces also 

tend to be less severe. 

The number of vehicles (NVEH) involved in a crash, as has been shown in 

Chapter 4 for multiple times, is significant in predicting driver fatal injuries in rear-end 

crashes, and two-vehicle rear-end crashes are the most common type resulting in fatalities, 

indicated in Table 6-4. Further analyses also found that the number of vehicles in a crash 

has significant influence on the mechanisms of inducing crash occurrences and casualties. 
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Venkataraman et al. (2013) discovered that the significant attribute sets affecting crash 

potentials vary for distinctive crash groups aggregated by the number of vehicles 

involved. Therefore, the intriguing effect of number of vehicles involved on driver injury 

outcomes should be further examined in future research with separate modeling of 

different crash groups by the number of vehicles involved. 

Heavy vehicle involvement (HEVINV) is significant in predicting driver fatalities 

in rear-end crashes, indicated in Table 6-4. Heavy vehicle involvement was present in 8 

of the 11 rules for fatality prediction, which is consistent with the statistical findings in 

Sections 2 and 4.1. Heavy vehicle type (VTYPE=HEV) is not found to be significant in 

predicting driver injury severity in rear-end crashes, which is probably because heavy 

vehicles make up only a slight portion of all the studied vehicles and its influence is not 

as significant as HEVINV. The number of driving lanes (NLANE) is significant in 

predicting driver injury severities in rear-end crashes, and rear-end crash fatalities are 

most likely to happen on two-lane roadways, as shown in Table 6-4. The influence of the 

number of lanes on crash severity has been assessed by a previous study. Jung et al. 

(2014) discovered that an increase in the number of lanes tends to increase the likelihood 

of incapable injury and fatalities in crashes occurring in rainy weather, and this study 

examined its interactive effects across other crash-related factors.  

Road function (RDFUNC) is a significant factor contributing to driver fatal injury 

in rear-end crashes. As is shown in Table 6-4, fatal rear-end crashes are more likely to 

happen on rural roadways, including rural interstate (RINT) and rural non-interstate 

(RNINT) roadways. This finding is verified by the fact that 55% of the overall fatalities 

in traffic accidents occur on rural roads (NHTSA, 2013). This is explainable because 
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traffic in rural areas normally travels at high speeds, which may result in significant 

deformation of vehicles and, therefore, severe injuries on drivers in rear-end crashes. The 

safety performance of rural roads is generally discussed jointly with lane numbers. In 

New Mexico, 65% of crash-related fatalities occurred on rural highways. More than 80% 

of rural highways are two-lane highways (NMDOT, 2010), which explains the highest 

frequency of two-lane condition in Table 5 among all categories of lane numbers. 

Significant research has been done to address rural crash severities, including rural two-

lane highways (Chen and Chen, 2011; de Oña et al., 2013; Farah et al., 2009; Karlaftis 

and Golias, 2002; Kashani and Mohaymany, 2011; Khorashadi et al., 2005b; Lord et al., 

2005; Pardillo-Mayora et al., 2010; Siskind et al., 2011). For example, Farah et al. (2009) 

investigated drivers’ overtaking strategies on rural-two-lane highways through driving 

simulations. Siskind et al. (2011) discovered that speeding, alcohol involvement, and 

traffic rule violations are major factors of fatal crashes on rural roadways. Table 6-4 also 

indicates that the condition state of rural roadways (RNINT and RINT) is closely 

associated with heavy vehicle involvement (HEVINV). This could be because a 

considerable portion of traffic on rural roadways is heavy vehicles travelling at  high 

speeds due to light traffic, which increases the potential of severe injuries and fatalities in 

rear-end crashes.   

Crash location (DTINC) is also intimately associated with crash injury severities, 

which was also found significant in Chapter 4. Table 6-4 shows that most of the fatal 

crashes occur within 0.1 mile of the nearest intersection (DTINC=NEAR). A reasonable 

explanation is that vehicles decelerate intensively from a high velocity and the headway 

between vehicles varies dramatically when approaching intersections, leading to 
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insufficient response time and severe rear-end collisions. Therefore, fatal rear-end crashes 

are most likely to happen when vehicles are approaching intersections with high speeds 

and inadequate acceleration, insufficient deceleration, short driver perception and 

reaction time, etc. may dramatically contribute to severe crash occurrences. Significant 

studies have been conducted to examine the characteristics of intersection-related crashes, 

including rear-end crashes. Kim et al. (2007) modeled crash risks for different severities 

at rural intersections via binomial hierarchical multilevel models. Xie et al. (2013) 

investigated the safety performance of signalized intersections taking corridor-level 

correlations into account. Huang et al. (2008) studied the driver injury and vehicle 

damage patterns in traffic crashes in urban intersections through hierarchical Bayesian 

models. Therefore, special attention should be paid at intersections, especially for rural 

intersections where vehicles approach at higher speeds. 

Driver alcohol involvement (DALC) is also selected as a necessary factor to 

formulate driver injury severity prediction rules, as listed in Table 6-4, though driver 

alcohol involvement is only present in 1 of the 11 rules. This is likely because alcohol has 

influencing effects in impairing drivers’ visibility and judgments, and the limited 

presence of driver alcohol involvement (DALC=Y) is due to the insufficient amount of 

fatality records. Consistent conclusions are also summarized by Hels et al. (2013), 

Poulsen et al. (2014) and Weiss et al. (2014). The most serious vehicle damage in a crash 

(MAXDAM) is found to be significant in predicting driver injury severities, and vehicle 

disabled damage (MAXDAM=DSABL) appears unanimously in all decision rules for 

driver fatality prediction. This indicates the significant association between vehicle 

disabled damage and driver fatality. A rational interpretation is that vehicle damage is a 
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reflection of the impact generated in a rear-end crash, which is transferrable from vehicle 

bodies to drivers, and severe vehicle damage is generally associated with high casualties. 

Comparing DALC with MAXDAM, it is discovered that disabled vehicle damage is shown 

in most of the fatality decision rules while driver alcohol or drug involvement is rarely 

present, which indicates that the variable MAXDAM has a higher weight in resulting in 

driver fatal injuries in rear-end crashes. However, the most serious vehicle damage is an 

aftermath of rear-end crashes while drivers’ alcohol or drug involvement occurs before a 

crash happens. Therefore, the importance of drunken driving prohibition should not be 

understated and corresponding law enforcement should be enhanced. Similar to DALC, 

other variables, such as motorcycle involvement (MCINV), crash day (DAY), and seatbelt 

usage (DBELT), also illustrate unique patterns in predicting driver injury outcomes. 

Overall, the selected features and their conditions-states are consistent with the statistical 

analysis findings in Section 2, demonstrating the reasonableness of the results produced 

by the hybrid classifier.  
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Table 6-4 Decision Rules for Fatal Injury Classifications from the DTNB Hybrid Classifier. 

DAY RDREL LIGHT WEATHER RDGRD NVEH RDFUNC MCINV HEVINV DTINC RDPV NLANE DBELT DALC MAXDAM SEV 

SUN ONWAY DARK CLEAR ONGRADE TWO RINT N Y NEAR PAVED TWO Y N DISABLE FATALITY 

TUE ONWAY DARK SNOW LEVEL THREE RNINT N Y NEAR PAVED TWO Y N DISABLE FATALITY 

WED ONWAY DARK CLEAR LEVEL TWO RINT N Y NEAR PAVED TWO Y N DISABLE FATALITY 

SAT ONWAY DARK CLEAR ONGRADE TWO RINT N Y NEAR PAVED TWO Y N DISABLE FATALITY 

MON ONWAY DAYLIGHT CLEAR LEVEL TWO RNINT N N NEAR PAVED TWO N N DISABLE FATALITY 

FRI ONWAY DAYLIGHT CLEAR LEVEL TWO RINT N Y NEAR PAVED TWO N N DISABLE FATALITY 

TUE ONWAY DAYLIGHT SNOW LEVEL TWO URBAN N Y NEAR PAVED TWO Y N DISABLE FATALITY 

TUE ONWAY DAYLIGHT CLEAR ONGRADE THREE RNINT N N NEAR PAVED ONE Y N DISABLE FATALITY 

FRI ONWAY DARK RAIN LEVEL TWO RNINT N N NEAR PAVED TWO Y N DISABLE FATALITY 

SAT ONWAY DAYLIGHT CLEAR LEVEL MORE URBAN N Y FAR PAVED ONE Y Y DISABLE FATALITY 

SAT ONWAY DAYLIGHT CLEAR LEVEL MORE URBAN N Y FAR PAVED TWO Y N DISABLE FATALITY 
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6.5 Performance Comparison with Other Models 

Model Performance comparison of this DTNB method with other methods 

consists of two parts: model performance comparison with proposed MNL-BN model, 

and model performance with a generalized MNL model (also used in Section 5.6), since 

they all use the same rear-end crash dataset for model training and calibration. As 

indicated before, there are several common measurements indicating model performance 

in both the semi-statistical machine-learning method and the proposed MNL-BN method: 

prediction accuracy, F-measure, ROC curve and AUC. Therefore, this comparison would 

be made regarding these measurements. For the comparison with the generalized 

multinomial logit model, the prediction accuracy would be used as the major 

measurement indicating model performance. 

As shown in the above Table 5-3 and Table 6-1, in terms of prediction accuracy, the 

DTNB classifier outperforms the proposed MNL-BN model on the training dataset, but 

performs inferior on the testing dataset. Besides, the variance of estimation accuracies for 

the proposed MNL-BN model on training and testing datasets is around 1%, and that for 

the DTNB is around 12% indicating that the trained BN is more transferable and able to 

explain and model the testing data fairly well. As for the other measurements such as F-

measure and AUC shown in Table 5-4 and Table 6-2, it shows the same pattern that the 

DTNB classifier performs better on training dataset and the proposed MNL-BN model 

performs better on the testing dataset, which indicates that the machine-learning method 

is more specific to learning scheme and training dataset and applicable to exploratory 

analysis, but the proposed MNL-BN model produces more reliable and less biased results 

for independent datasets once the model structure is trained. 
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As discussed before in Section 5.6, the total number of correctly predicted 

observations by the MNL model is 6664 (6664= 4881+1782+1), and the overall 

correction rate of this MNL prediction is 55.78%, so the DTNB model is more effective 

and accurate in predicting driver injury severities in rear-end crashes. 

 

6.6 Conclusions 

Based on a two-year rear-end crash dataset in New Mexico, this paper applies a 

DTNB hybrid classifier to select the attributable feature set regarding crash features, 

vehicle information and driver demographic and behavior characteristics for driver injury 

severities in rear-end crashes and extract the decision rules for driver injury severity 

prediction. The DTNB hybrid classifier produces a reasonable classification result, 

indicated by several performance measurements, such as F-measure, ROC curve, and 

AUC.  

The DTNB hybrid classifier outputs the selected feature set for driver injury 

severity prediction, accompanied by a decision table with learned decision rules based on 

the applied dataset. 15 attributes were selected as significant in predicting driver injury 

fatalities, including crash day (DAY), first harmful event location (RDREL), lighting 

condition (LIGHT), weather condition (WEATHER), road grade (RDGRD), number of 

vehicles involved (NVEH), road function (RDFUNC), motorcycle involvement (MCINV), 

heavy vehicle involvement (HEVINV), distance from crash location to the nearest 

intersection (DTINC), road pavement condition (RDPV), number of driving lanes 

(NLANE), seatbelt use (DBELT), driver alcohol involvement (DALC), and maximum 
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vehicle damage (MAXDAM). Decision rules for fatality prediction reveal that the 

involvement of heavy vehicles in rear-end crashes increases the probability of driver 

fatalities, and motorcycle involvement is also significant in predicting driver injury and 

fatalities. Driver fatalities are more likely to occur in a comfortable traffic environment, 

such as clear weather, level road grade, and paved road surface, whereas drivers would be 

more aware of potential risk under adverse driving conditions. Driver fatal injuries are 

most likely to happen on rural roads, especially on rural two-lane highways. Maximum 

vehicle damage in rear-end crashes is positively associated with driver injury severities, 

and drivers are most likely to suffer fatal injuries when vehicles involved in rear-end 

crashes are disabled. The number of vehicles in a rear-end crash significantly affects 

driver injury outcomes, and two-vehicle rear-end crash is the most frequent type resulting 

in driver fatalities. Fatal rear-end crashes are more likely to happen near intersections, 

where vehicles accelerate and decelerate dramatically, resulting in limited time for proper 

responses. The effectiveness of seatbelt use and drunk driving prohibition in reducing 

driver injury severities are verified in the extracted decision rules. 
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Chapter 7 Conclusions and Future Research 

 
7.1 Conclusions of This Study 

Traffic crashes induce significant life and property loss and have imposed heavy 

economic and emotion burden on social welfare. Examination of crash injury severity 

patterns and the major contributing factors to crash injury severity is of practical 

necessity and importance. Transportation researchers have applied multiple types of 

analysis models to examine crash injury severity and the causal mechanisms in the past 

decades.  Traditional crash data analysis techniques summarize crash severity patterns 

and investigate contributing factors and their influence solely based on the studied dataset, 

from which the estimation results might be biased due to limited data size. A Bayesian 

method is able to provide more accurate posterior estimation results by incorporating 

parameter prior distribution information and evidence from the studied dataset, and 

therefore has been increased in traffic safety studies in recent years. Using driver injury 

severity as a representative, this study is proposed to systematically evaluate the 

applicability and effectiveness of Bayesian method in traffic crash injury severity 

analysis, and three major types of Bayesian models are included in this study: 

hierarchical Bayesian regression models, Bayesian non-regression model and knowledge-

based Bayesian non-parametric method, and a Bayesian model selection framework is 

developed based on discrete research purpose, crash data availability and data structure. 

Regression models are the mostly applied research models in traffic crash injury 

severity analysis, and it is found that hierarchical regression modeling is more robust and 

produces less biased results due to the hierarchical structure of crash data, such as 
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national-region-roadway-crash-vehicle/driver/occupant hierarchy. With Bayesian 

inference method utilized for posterior parameter estimation, three hierarchical Bayesian 

regression models are considered in this research: hierarchical Bayesian binary logit 

model, hierarchical Bayesian ordered logit model, and hierarchical random intercept 

model with cross-level interactions based on the difference in driver injury categorization 

and model development, and three rural crash datasets are selected respectively for model 

applicability and performance evaluation. In the calibration procedure of these three 

models, parameter non-informative prior and the Gibbs Sampler are used in for model 

simulation in model simulation. Model performances are compared with the control 

models without considering unobserved heterogeneity based on the DIC criteria. The 

statistical significant of parameters of interest are evaluated by 95% BCI and variable 

influence are assessed by the estimated odds ratio or average pseudo-elasticity. Research 

results indicate that the three proposed Bayesian models outperform their respective 

counterparts, or provide competitive performance after penalized by the high model 

complexity, in model fit and estimation effectiveness (Table 7-1). Significant variables 

contributing to driver injury severities from crash and vehicle/driver levels, such as crash 

location, road surface condition, lighting condition, vehicle type, driver age, driver 

sobriety level, seatbelt use, are identified, and their corresponding influence are evaluated.  
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Table 7-1 Hierarchical Bayesian Regression Model Performance Comparison 
Summary. 

 Model Type Model Name DIC Value 

Hierarchical 
Bayesian 

Regression 
Models 

Regression with Binary 
Reponses 

Hierarchical Bayesian 
binary logit model 2522.69 

Ordinary binary logit model (control 
model) 2928.65 

Regression with Ordered 
Responses 

Hierarchical Bayesian 
ordered logit model 15708.30 

Ordinary ordered logit model (control 
model) 16716.50 

Regression with 
Multinomial Reponses 

Hierarchical random intercept model with 
cross-level interactions 6092.45 

Hierarchical random intercept model 
without cross-level interactions (control 

model) 
6005.42 

 

Regression analyses on crash data are based on certain assumptions on model 

development and crash data, but non-regression causal relationship may exist between 

driver injury severity and contributing factors, and violation of these assumptions may 

lead to biased estimation results.  In this study, a MNL-BN hybrid model is utilized as a 

non-regression machine-learning method in this study by relaxing certain hierarchical 

model in model assumptions to predict driver injury severities, where the multinomial 

logit model is utilized to select significant variables for driver injury prediction and the 

BN model is used to train an optimal classifier. A two-year rear-end crash dataset is used 

for a case study to evaluate model applicability and performance. The test results 

demonstrate that the proposed hybrid approach performs reasonably well and 

outperforms traditional multinomial logit model in prediction accuracy. The Bayesian 

network reference analyses indicate that the factors, such as truck-involvement, inferior 

lighting conditions, windy weather conditions, the number of vehicles involved, etc. 

could significantly increase driver injury severities in rear-end crashes. 
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In this study, a DTNB hybrid classifier, which is an incorporation of a decision 

table and a naïve Bayes classifier and has never been used in traffic safety analysis before, 

is utilized as a representative model of the knowledge-based non-parametric Bayesian 

machine-learning models to identify the deterministic attribute set that best predicts 

driver injury severities and extract the corresponding decision rules based on these 

attributes. A same rear-end crash dataset with the MNL-BN model is also used for case 

study analysis. The test results show that the hybrid classifier performs fairly well, but is 

less transferrable to independent testing datasets comparing with the propose MNL-BN 

model, showing that the machine-learning method is more specific to learning scheme 

and training dataset. It is also superior to traditional MNL model in injury severity 

prediction accuracy. Fifteen significant attributes were found to be significant in 

predicting driver injury severities, including weather, lighting conditions, road geometry 

characteristics, driver behavior information, etc. The extracted decision rules demonstrate 

that heavy vehicle involvement, a comfortable traffic environment, inferior lighting 

conditions, two-lane rural roadways, vehicle disabled damage, and two-vehicle crashes 

would increase the likelihood of drivers sustaining fatal injuries. 

In summary, a framework of selecting the most appropriate Bayesian approaches 

for traffic crash driver injury severity analyses, and five representative models are 

developed and utilized to evaluate the applicability of Bayesian methods in data-driven 

based traffic crash driver injury severity studies. Analysis results from all of these models 

indicate promising performance of Bayesian methods in predicting driver injury outcome 

in traffic crashes, capturing the causal relationship between injury outcome and crash, 

environment, vehicle, driver characteristics, and assessing the heterogeneous influence of 
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the identified contributing factors, among which some are found significant through more 

than one model, such as crash type (number of vehicle in a crash), driver age and gender, 

driver drug or alcohol involvement, seatbelt use, etc. The proposed methods are of 

theoretical and practical importance for transportation researchers and engineers to better 

understand crash mechanisms, develop effective crash severity reduction 

countermeasures and improve traffic system safety performance. 

 

7.2 Future Work Recommendation 

Although the proposed three types of Bayesian models illustrate promising model 

performance on driver injury severity pattern discovery and variable influence assessment, 

further research is still needed regarding model structure development and model 

calibration specification. 

For the three hierarchical Bayesian regression models, the hierarchical Bayesian 

binary logit model is simplified from the random intercept model and serves as the basis 

in model development. The hierarchical Bayesian ordered logit model is developed based 

on the binary logit model by assuming driver injury severity is an ordinal variable with 

multiple injury severity levels, which is able to capture more accurate variable impact on 

different severity levels. Both of these models account for unobserved heterogeneity in 

crash data only using a random error term representing crash-level variance. The 

hierarchical Bayesian random intercept model with cross-level interactions overcomes 

the limitations of the above two models and systematically examines the interaction 

effects between crash-level and vehicle/driver-level variables. More detailed interactive 
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effects among variables within a same hierarchical level should be investigated to 

supplement this study in the future. Due to the model complexity issue in hierarchical 

random intercept model, variables with too many values were simplified with fewer 

categories for model simplicity purpose, where to some extent loss of information is 

inevitable. Therefore, it is desirable to reduce model complexity as well as minimize loss 

of information through model structure design and specification in further studies. In 

these three models, due to the limited availability of historical crash data, non-

informative prior is used for estimations of all parameters of interest. Comprehensive 

historical crash data information is desired for informative prior development for more 

reliable estimation results. 

As is shown in the case study, the proposed MNL-BN model is effective in 

predicting driver injury severity and explicitly formulating statistical associations 

between driver injury severity outcomes and explanatory attributes. In the development 

of this model, the input variables are selected based on MNL modeling, which might not 

be comprehensive. Further research is recommended to introduce more variable 

importance ranking and selection procedures and focus on the influence of these 

procedures on BN classifier performance, which is a necessary step to improve the 

applicability and effectiveness of the BN models. Also, historical crash knowledge is 

desired in Bayesian probability inference procedure (Equation 3-27) discussed in Section 

3.3.3 for more accurate probability inference results.  

The DTNB classifier shows it effectiveness in causal relationship examination 

using decision rules. As indicated before, the attribute set for decision rule learning were 

selected for all three injury severities based on the entire dataset, where an attribute that is 
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critical in predicting a specific injury level may not be significant in predicting the others. 

Therefore, discriminative analysis should be conducted and a unique feature set for each 

injury outcome should be examined in future research. Besides, the DTNB classifier 

extracts a total of 2,865 decision rules for three severity levels, which is a complicated 

presentation even with a succinct and understandable tabular format. Hence, additional 

effort should be made to elaborate these rules in a clustered and ordered way. 
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5. Su Zhang, Susan M. Bogus, Chris Lippitt, Paul R. H. Neville, Cong Chen, Guohui 
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6. Qiong Wu, Xiaodong Pan, Hui Yang, Cong Chen. Research on Driving Safety 
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7. Yongchao Song, Xiaodong Pan, Cong Chen, and Zewen Yu. Study of Connectivity of 
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8. Xiaodong Pan, Cong Chen, Tao Lin, and Yongchao Song. Research on the Dimension of 
Crosswalk-notice Mark on Highways. Highway Engineering, 34(6), 2009, pp.144-148 
(Chinese Edition). 

 
PAPERS UNDER PEER-REVIEW 

1. Cong Chen, Guohui Zhang, Jinfu Yang, John C. Milton, and Adélamar "Dely" 
Alcántara. Rear-end Crash Severity Analysis Using a Decision Table-Naïve Bayes 
Hybrid Classifier. Under review. Accident Analysis and Prevention. 
 

2. Cong Chen, Guohui Zhang, Helai Huang, Jianming Ma, Yanyan Chen, and Hongzhi 
Guan. Hierarchical Bayesian Modeling of Driver Injury Severity in Rural Interstate 
Freeway Crashes. Under review. Journal of Safety Research. 
 

3. Cong Chen, Guohui Zhang, and Helai Huang, Jiangfeng Wang, and Rafiqul A. Tarefder. 
Examining Driver Injury Severity Outcomes in Rural Non-interstate Roadway Crashes 
Using a Hierarchical Ordered Logit Model. Under review. Accident Analysis and 
Prevention. 
 

4. Cong Chen, Guohui Zhang, Zhen Qian, Rafiqul A. Tarefder, and Zong Tian. 
Investigating Driver Injury Severity Patterns in Rollover Crashes Using a Support Vector 
Machine Model. Under Review. Accident Analysis and Prevention. 
 

5. Cong Chen, Yanyan Chen, Jianming Ma, Guohui Zhang, and C. Michael Walton. Driver 
Behavior Formulation in Intersection Dilemma Zones with Phone Use Distraction via a 
Logit-Bayesian Network Hybrid Approach. Under Review. Journal of Intelligent 
Transportation Systems: Technology, Planning, and Operations. 
 

6. Qiong Wu, Guohui Zhang, Cong Chen, Haizhong Wang, and Adélamar "Dely" 
Alcántara. Heterogeneous Imapacts of Gender-Interpreted Contributing Factors on Driver 
Injury Severities in Single-Vehicle Rollover Crashes. Under review, Accident Analysis 
and Prevention. 
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7. Sikai Xie, Cong Chen, Qiong Wu, Qi Lu, Su Zhang, Guohui Zhang, Yin Yang, A Cost-
Effective Kinect-Based Approach for 3D Pavement Surface Reconstruction and Cracking 
Recognition. Under Review. IEEE Transactions on Intelligent Transportation Systems. 

 

CONFERENCE PRESENTATIONS 
1. Cong Chen, Guohui Zhang, Zong Tian, Susan M. Bogus, and Yin Yang. Investigating 

Truck Driver Injury Severity Using a Hierarchical Bayesian Random Intercept Model 
with Cross-Level Interactions. Accepted for Presentation at the 95th Transportation 
Research Board Annual Meeting, Washington, D.C., Jan. 2016. 
 

2. Sikai Xie, Cong Chen, Qiong Wu, Qi Lu, Su Zhang, Kelly R. Montoya, Guohui Zhang 
and Yin Yang. 3D Pavement Surface Reconstruction and Cracking Detection Based on 
Kinect Fusion Techniques. Accepted for Presentation at the 95th Transportation Research 
Board Annual Meeting, Washington, D.C., Jan. 2016. 
 

3. Qiong Wu, Guohui Zhang, Cong Chen, Haizhong Wang, and Adélamar "Dely" 
Alcántara. Heterogeneous Analysis of Gender on Driver Injury Severities in Single-
Vehicle Rollover Crashes. Accepted for Presentation at the 95th Transportation Research 
Board Annual Meeting, Washington, D.C., Jan. 2016. 
 

4. Stephen Lujan, Cong Chen, Guohui Zhang, Rafiqul A. Tarefder, Timothy Parker, and 
Francisco Sanchez. Enhancing Safety Performance of Rumble Strips Through The Use of 
Reflective Striping: An Empirical Study on U.S. 285 in New Mexico.  Accepted for 
Presentation at the 95th Transportation Research Board Annual Meeting, Washington, 
D.C., Jan. 2016. 
 

5. Cong Chen, Guohui Zhang, Hua Wang, Peter J. Jin, and C. Michael Walton. Examining 
Toll Road Utilization Supported by Traffic Information Provision Using a Nest-logit-
based Bayesian Network Approach. Presented at the 94th Transportation Research Board 
Annual Meeting, Washington, D.C., Jan. 2015. 
 

6. Cong Chen, Guohui Zhang, Jinfu Yang, John C. Milton, Adélamar "Dely" Alcántara. 
Prediction of Driver Injury Severity in Rear-end Crashes: A Decision Table/Naïve Bayes 
(DTNB) Classification Approach. Presented at the 94th Transportation Research Board 
Annual Meeting, Washington, D.C., Jan. 2015. 
 

7. Cong Chen, Guohui Zhang, Helai Huang, Jianming Ma, Yanyan Chen, and Hongzhi 
Guan. Examining Driver Injury Severity on Rural Interstate Highways Using a 
Hierarchical Bayesian Approach. Presented at the 94th Transportation Research Board 
Annual Meeting, Washington, D.C., Jan. 2015. 
 

8. Qiong Wu, Cheng Wang, Cong Chen, and Guohui Zhang, 2015. Developing a VISSIM-
Based Simulation Platform for Connected Autonomous Vehicle Control Optimization at 
Intersections. Accepted for presentation at the UTC Spotlight Conference (Nov 4-5, 2015) 
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9. Cong Chen, Su Zhang, Guohui Zhang, Susan M. Bogus, and Vanessa Valentin. 

Temporal-spatial Pattern Discovery of Pavement Distress on New Mexico Major 
Corridors. Presented at 2014 New Mexico Tech Fiesta Student Poster Competition, 
University of New Mexico, Sep. 2014. 
 

10. Cong Chen, Qiong Wu, Guohui Zhang, Jianming Ma, Heng Wei, and Hongzhi Guan. 
Rear-end Crash Casualty Severity Analysis using Multinomial Logit Model and Bayesian 
Network. Presented at the 93rd Transportation Research Board Annual Meeting, 
Washington, D.C., Jan. 2014. 

 
11. Qiong Wu, Cong Chen and Guohui Zhang. Formulating Alcohol-Impaired Driver Injury 

Severities in Intersection-Related Crashes in New Mexico. Presented at 51st Paving and 
Transportation Conference, Albuquerque, New Mexico, Jan. 2014. 

 
12. Cong Chen, Su Zhang, Guohui Zhang, Susan M. Bogus, and Vanessa Valentin. Analysis 

of Pavement Surface Distress Condition on Major Corridors in New Mexico. Presented at 
the 92nd Annual Meeting of Transportation Research Board, Washington, D.C., Jan. 2013. 

 
13. Cong Chen, David Barboza, Susan M. Bogus, Guohui Zhang, and Vanessa Valentin. 

Pavement Distress Condition Data Collection, Process, Analysis, and Interpretation on 
Major Corridors in New Mexico. Presented at 50th Paving and Transportation Conference, 
Albuquerque, New Mexico, Jan. 2013. 

 
14. Cong Chen and Xiaodong Pan. Determining the Sight-Insufficient Locations in Tunnel 

Entrances: Based on a Driving Visibility Experimental Study in Zhejiang Province, China. 
Accepted for presentation at the 91st Transportation Research Board Annual Meeting, 
Washington, D.C., Jan. 2012. 

 
3.  SERVICE AND PROFESSIONAL ACTIVITIES 

 
EXTRACURRICULAR ACTIVITIES 

 January 2015-Present Vice President of New Mexico ITE Student Chapter  
 2015 Volunteer at 52st Paving and Transportation Conference, Albuquerque, New 

Mexico 
 2014 Volunteer at 51st Paving and Transportation Conference, Albuquerque, New 

Mexico 
 2013 Lecturer of UNM Civil Engineering Brycon Career Expo Day 
 2013 Lecturer at Transportation Session in UNM Civil Engineering Open House 
 2013 Volunteer at 50th Paving and Transportation Conference, Albuquerque, New 

Mexico 
 2012 Lecturer on UNM Civil Engineering Brycon Career Expo Day 
 2012 Lecturer at Transportation Session in UNM Civil Engineering Open House 
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ACTIVE MEMBERSHIP 
 Student member of Institute of Transportation Engineers (ITE) 
 Student member of American Society of Civil Engineers (ASCE) 
 Student member of Engineers without Boarders (EWB) 
 Student member of Chinese Overseas Transportation Association (COTA) 

PEER-REVIEW EXPERIENCE 
 The TRB Annual Meeting and Journal of the Transportation Research Board 
 The International IEEE conference on Intelligent Transportation Systems 
 COTA International Conference for Transportation Professionals (CICTP) 
 Accident Analysis and Prevention 

 

 


