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ABSTRACT 

Massive amounts of wood ash are deposited into nearby streams as a result of runoff from storm 

events after increasing frequency of wildfire events that negatively affect water quality. Ash and 

debris from burned vegetation can alter the pH, turbidity and dissolved oxygen (DO) in water 

and can release heavy metals, organic matter, and nutrients. We investigated interfacial processes 

affecting metal mobility in wood ash burned under laboratory-controlled conditions using 

aqueous chemistry, microscopy and spectroscopy analyses. Wood was collected from the Valles 

Caldera National Preserve in New Mexico which has experienced two wildfires since 2011 that 

have caused devastating effects. Wood samples (e.g. Ponderosa Pine, Quaking Aspen, and 

Colorado Blue Spruce) collected from this site were exposed to temperatures of 60°C, 350°C and 

550°C. Pine ashes burned at 350°C and 550°C were associated with high concentrations of 

metals (i.e., Cu, Cr, Si, Ni, Fe, K and Mg). Pine ash burned at 350°C had the highest content of 

Cu (4997 + 262 mg kg-1), Cr (543 + 124 mg kg-1), and labile dissolved organic carbon (DOC, 

11.3 + 0.28 mg L-1). Metal sorption experiments were conducted by reacting 350°C Pine ash 

separately with 10μM solutions of Cu(II) and Cr(VI), as examples of a cation and an oxyanion 

found in high concentrations in water following wildfire events near VALL. High decrease in 

Cu(II) concentration (up to 92%) was observed in solution while Cr(VI) showed limited decrease 

(up to 13%) in concentration after 180 mins of reaction. X-ray photoelectron spectroscopy (XPS) 
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analyses detected increased association of Cu(II) on the near surface region of the reacted ash 

from the sorption experiments compared to the unreacted ash. The results from this investigation 

suggest that dissolution and sorption processes are essential to understand the transport of metals 

in water following wildfires. This study provides relevant insights about the potential effects of 

metals transported by wood ash on water quality that have important implications for post-fire 

recovery and response strategies 
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Chapter 1: Introduction 

The thesis has been divided into 3 chapters and an appendix. Chapter 2 provides a summary on the 

current state of scientific knowledge on the topic, which includes a background on impacts of 

wildfire ash on water chemistry, mechanisms affecting wood ash reactivity, ending with a review 

of research gaps and limitations in the proposed field of study. Chapter 3 is the main body of work 

of the thesis, formatted as a research paper which will be submitted to the peer-reviewed journal 

Environmental, Science & Technology. The main topic covered in Chapter 3 relates to the 

investigation of metal reactivity in laboratory burned wood from a watershed affected by wildfire. 

The objective of the study presented in Chapter 3 was to investigate the interfacial processes 

affecting wood ash reactions with water by integrating laboratory experiments, spectroscopy, 

microscopy, and aqueous chemistry methods. This chapter also discusses the observed results with 

discussions providing mechanistic explanations and environmental implications of this study. The 

Appendix contains supplementary data obtained for the study presented in Chapter 3.  
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Chapter 2: Background and Literature Review 

1. Background and Significance. 

Wildfires cause catastrophic damages to natural resources around the world every year. 

Large scale economic and societal impacts are often observed following a wildfire event. Post-fire 

adverse impacts on water quality often disrupt the drinking water supply for nearby communities. 

The effects of wildfires are particularly relevant in semi-arid regions of the world, such as the 

South-western region of the US, in which the combination of earlier spring snowmelt, decreased 

winter precipitation and greater vapor-pressure deficit in the warm season results in substantial 

water limitation stress on forests.1-4 Additionally, climate change has contributed to increased 

drought severity and frequency in the south-western US.5 The complex interactions between these 

factors, combined with uncontrolled urbanization and forest management practices (i.e. fire 

suppression by forest thinning), have contributed to increased level of wildfire activity.6  

Wildfires can cause a wide range of effects on the nearby surface water quality. Post-fire 

storm events in burned watersheds can cause the transport of wood ash, debris and sediments into 

nearby streams which has detrimental impacts on water quality. Several post fire investigations 

have reported increased concentration of metals such as Fe, Pb, Ni, Zn, Al, As, Cd, Mn and Cu in 

the watershed affected by increased loading of ash and sediments.7-10 The Valles Caldera National 

Preserve (VALL) in north central New Mexico is an example of a site with frequent wildfire 

activity in recent years.11 Two major wildfires have affected the VCNP watershed since 2011: (1) 

The Thompson Ridge wildfire burned 23,965 acres in VCNP in 201312 and (2) The catastrophic 

Las Conchas, one of the largest in New Mexico history, which burned over 156000 acres of area 

in the Jemez Mountains in 2011.13 Post-fire runoff of debris and ash in the Rio Grande river, 

following thunderstorms over the burned area caused turbidity peaks of over 1000 NTU and sags 
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in dissolved oxygen (DO) and pH.14 The VCNP contains the headwaters of multiple streams 

including the East Fork Jemez River,15 a tributary of the Middle Rio Grande which serves as a 

drinking water source for nearby communities. The load of ash and debris forced temporary 

shutdowns of local water treatment plants in Albuquerque and Santa Fe. Post fire runoff effects 

like the one after the Las Conchas fire can cause transport of organic matter, metals and nutrients 

with debris and ash, which can significantly affect the quality of water supplied to nearby 

communities and agriculture.14,16,17 

 

Figure 1: Relevant biogeochemical processes affected by wildfires in a watershed ecosystem.  

Information on the composition and reactivity of metals associated with wood ash is 

important to better understand the potential impacts on water quality caused by wildfires. The 

following subsections will discuss in more detail, the minerology and chemical characteristics of 

wood ash, the effects of different burning temperatures on wood ash minerology and the current 

literature on reactivity of metals in wood ash and other similar materials like biochar. 
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2. Wildfire Ash and Water Chemistry. 

The current literature on wildfire impacts on water quality is focused heavily on suspended 

sediment, dissolved organic matter, and nutrients. The knowledge on the impacts of metals 

associated with ash and debris on water quality is still limited. Wildfire can transform fuel (i.e. 

biomass, wood, soil organic matter) into ash and other materials of different physical and chemical 

properties.18 Wood ash is derived from burned vegetation. Plants contain macro (Ca, K, Mg) and 

micronutrients (Fe, Mn, Zn, Cu, Ni) essential for their growth.19 Composition and distribution of 

the nutrients in plants are mainly controlled by the surrounding soil composition and ecosystem 

changes.19-21 These nutrients become concentrated in the ash produced from burnt vegetation 

because of wildfire.22,23 The nutrients, trace elements and other inorganic and organic constituents 

in wood ash can accumulate in nearby surface water sources post-fire and impact water quality. 

2.1. Release of Metals.  

Previous studies have reported elevated concentrations of metals in watersheds due to the 

transport of ash after wildfire events. After the 2009 station fire in California, total concentrations 

of As, Pb, Zn and Ni were reported higher in the burned watersheds.10 Trace elements (e.g., Fe, 

Mn, Hg) from burned soil and ash were also found in elevated concentrations in nearby streams 

after the fire.10 Elevated concentrations of As, Al, Cd, Cr, Fe, Pb, Hg, Ca, Mg, Mn, Ba and K have 

also been observed in sediments and streamflows in fire-affected watersheds, several months after 

the fire events.7,24-27 A previous study by Ignatavicius et al.28 compared long term environmental 

data in Lithuanian rivers and correlated the increase of heavy metals such as Cu, Pb and Zn to the 

occurrences of land fires. In New Mexico, the Cerro Grande fire in May 2000 burned over 7400 

acres of mixed conifer forests in the Valles Caldera National Preserve (VALL) area near the Los 

Alamos National Laboratory (LANL),8 resulting in accumulation of ash and debris in the burned 
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watershed.  After the fire, runoff samples were collected from 40 sites and elevated concentrations 

of trace metals were found in some samples. For example, elevated concentrations of total Cu (610 

μg L-1) and total Cr (510 μg L-1) were measured in post fire runoff water samples collected from 

the burned watersheds near Guaje Canyon, close to the Los Alamos National Laboratory.8 Reports 

from these post-fire investigations show that concentrations of trace metals in water and soil near 

a burned watershed can increase from the addition of ash and debris by storm water runoff. 

2.2. Release of Nutrients. 

Wildfires can release high concentrations of nutrients that can significantly impact the 

water quality. The primary nutrients of concerns after a wildfire are Phosphorus (P), Nitrogen (N) 

and Carbon (C). A previous by study by Uldis et. al.29 investigated P availability in post-fire 

watersheds and found that P concentration were 2 to 13 times higher in burned watersheds than in 

unburned watersheds. Higher availability of P in burned watersheds can facilitate strong algal 

productivity and shifts in ecological responses.29 Phosphate, Nitrate and Ammonium 

concentrations above 5 to 60 fold over background levels were measured in fire affected streams 

in Glacier National park.30 In New Mexico, post fire runoff caused transport of organic matter and 

nutrients (6 × background levels for NO3-N and 100 × background levels for PO4) with debris and 

ash in the VALL, which significantly affected the quality of water supplied to nearby 

communities.14,16 Slow recovery of nutrient concentrations leads to long term nutrient availability 

in the fire affected sites and leaching of nutrients into soil. Another important and widespread 

water quality issue called eutrophication, is caused by high concentrations of nutrients such as P 

and N in surface water sources. High P and N in water can lead to the growth of algal blooms, 

which are toxic and can increase fish kills and reduce water quality.31 
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2.3. Elevated levels of Dissolved Organic Carbon (DOC) and Disinfection Byproducts 

(DBPs). 

After a wildfire event, elevated levels of dissolved organic matter (DOM), generally 

measured as DOC, in downstream of nearby water sources has been associated to heavy loads of 

ash and debris by several previous studies.18,26,32 Recent studies have linked water extractable 

organic matter (WEOM) from burned soil17,33 and ash34 to the formation of disinfection byproducts 

(DBPs).35,36 DBPs are of particular concern due to their effect on public health, which includes 

risks of bladder cancer and disruption in cell growth. 37,38 Two types of DBPs that are of interest 

are Carbonaceous DBPs (C-DBPs) and Nitrogenous DBPs (N-DBPs). Commonly studied C-DBPs 

include trihalomethanes (THM) and haloacetic acids (HAA), while N-DBPs such as 

haloacetonitriles (HAN) and halonitromethanes (e.g., chloropicrin) are also of interest. These 

species have been observed to form in solution of laboratory burned soil and ash following addition 

of chlorine.33,39 

2.4. Change in water quality parameters (pH, DO, turbidity).  

Water quality degradation after a wildfire is a commonly observed phenomenon. A 

previous study by C. N. Dahm et al.14 measured continuous water quality data in the middle Rio 

Grande and found marked changes in pH, dissolved oxygen (DO) and turbidity over a period of 

two months after the Las Conchas fire. Turbidity peaks of up to 2500 NTU, pH sags (up to 0.75 

units) and DO sags (as low as 0 mg L-1) were observed as a result of heavy loadings of ash, debris 

and sediments.14 Sherson L. R. et. al.16 observed similar effects of DO and pH sags in the East 

Fork Jemez river after the Las Conchas fire. The transport of ash and nutrient often changes the 

water quality downstream, although it is difficult to quantify the different contributions of ash, 

sediments and nutrients to the changes in water quality. The change in water quality parameters 
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caused by ash, sediment and nutrients affects the treatability of source water to be used for drinking 

purposes and has become a matter of particular concern for many local water authorities.17,25 

3. Characteristics of wood ash at different burn intensity and severity. 

The terminologies ‘burn intensity’ and ‘burn severity’ has specific usages in literature 

related to wildfires.40 Fire intensity has been related to the energy released during different phases 

of a fire which is dependent on several factors such as reaction intensity, fireline intensity, 

temperature, heating duration and radiant energy.40 The term ‘burn severity’ is generally associated 

with the loss of organic matter and conversion of organic matter to ash.40 The effects of burn 

severity and burn severity can have a wide range of impacts on ash properties, specifically on the 

concentration of nutrients and other major and minor elements present in the ash. These effects 

can also be used to understand the availability and impacts of wildfire ash on the surrounding soil 

and water quality post-fire. The following subsections discuss, in detail, the effects of different 

burn intensity and severity on ash properties. 

3.1. Physical and hydrological properties of ash.  

The effect of burn severity on ash is evident in different responses observed in physical 

properties such as color, mass, particle size, hydraulic conductivity and water storage capacity. 

The color of ash goes from darker shades of brown to lighter shades of gray and white as burning 

temperature increases.18,41 Although the rate of mass loss can vary dependent on the particular tree 

species being considered, generally the percentage of mass loss increases with higher 

temperature.41 In a previous study, Bodi et. al. observed finer ash particle size with increasing 

temperature between 350°C to 700°C.18 The hydraulic conductivity and water storage capacity of 

ash can also vary significantly depending on the burning temperature. Post-fire watersheds are 

often covered with a layer of ash that affect the infiltration of water after storm events. Several 
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post-fire investigations have reported increased infiltration and water repellency behavior of ash-

covered soil in the burned watersheds.18,42,43 However, this behavior is difficult to correlate with 

properties like hydraulic conductivity and temperature difference due to the highly variable nature 

of fuel and burning conditions. Further studies linking the hydraulic properties of ash with water 

repellency behavior is necessary. 

3.2. Chemical and mineralogical properties of ash. 

Ash can contain both organic and inorganic constituents depending on the combustion 

temperature. Bodi et. al.18 has reported previously that at low burning temperature of below 4500C, 

organic constituents are likely to be present in higher amount. Dlapa et. al found that the loss of 

organic matter in ash with increasing temperature leads to significant decrease of hydrophobic 

surfaces in ash. The loss of hydrophobicity in ash has important implications in terms of post-fire 

runoff events. The inorganic constituents consist of a range of macro and micro elements. The 

macro elements such as Ca, K and Mg are abundant across all tree species.19 Micro elements 

include a range of elements such as As, Al, Cd, Cr, Fe, Pb, Hg, Mn, Zn, Si etc. Mineralogical 

composition of wood ash likely consists of carbonates and oxide phases of different metals.23 The 

dissolution of these carbonate and oxide phases in reaction of ash with water can cause rapid pH 

increase in solution.23,44  

3.3. Effects of temperature on ash chemical and mineralogical properties. 

Temperature is a particularly important factor that affects the elemental composition of 

wood ash.18,45,46 Wildfires can have a wide temperature range from 2000C to 12000C.47-49 

Depending on the combustion temperature, ash can contain a range of inorganic minerals, 

nutrients, heavy metals, trace elements, and organic substances.18,22,50 At temperatures lower than 

4500C18,50 ash is likely to contain higher levels of organic substances than at temperatures higher 
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than 4500C, where most of the organic carbon is volatilized.18,50 Similar results have been reported 

in experiments with burned soil samples.33 The increase in burning temperature has varying effects 

on the elements present in wood ash. Previously L. Etiégni et. al.51 observed that K, Na, Zn and 

CO3 content decreases with increasing burning temperature from 538°C to 1093°C but other metals 

tend to remain constant or increase. The amount of ash yield after burning can also vary depending 

on the type of tree species and burn temperature. Increase in burn severity can result in the increase 

of CaCO3 and pH of ash, as observed in previous field investigations.41,52 Increase in the loss of 

total carbon (TC) and total nitrogen (TN) is observed with increasing burn temperature.52 The loss 

of TC and TN contribute significantly to the total mass loss of ash at higher temperatures.46   

4. Mechanisms Affecting Wood Ash Reactivity. 

Recent studies have linked water extractable organic matter (WEOM) from burned soil17,33 

and ash34 to the formation of disinfection byproducts (DBPs)35,36.The alteration of DOM with 

increasing temperature from Ponderosa Pine ash has been studied previously by Wang et al.39 and 

they observed decreased reactivity of the ash in forming DBPs such as trihalomethane (THM) and 

chloral hydrate (CHD) with increasing temperature from 500C to 4000C. The DOM loss at higher 

temperatures for ash in this study is comparable to that observed in laboratory heated soil reported 

in a previous study by Cawley et al33. Thus, the temperature dependent variability for both ash and 

soil can have implications in terms of variable loading of DOM and DBP precursors from different 

burn conditions associated with wildfires and prescribed fires, as suggested by previous studies33,39 

More insights into the mechanisms of metal mobilization by wood ash can be found from 

literatures relating metal mobilization to biochar, a material similar to wood ash in composition53,54 

and is increasingly applied in environmental remediation as a natural sorbent for organic and 

inorganic contaminants55-57. Previous studies have reported Cu(II) sorption to organic functional 
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groups of biochar in water at pH 6, while at pH 7 to 9, carbonate phases like azurite 

(Cu3(CO3)2(OH)2) and oxide phases like tenorite (CuO) precipitated within the biochar58. 

Adsorption between Cu2+ and negatively charged biochar was reported as the prevailing 

mechanism of Cu immobilization in soil57,59. Biochar has also been proven effective in 

immobilizing positively charged Cd and Zn in water at pH 6 to 860. Conversely, enhanced mobility 

of oxyanions like As61,62 and Sb63 were found in biochar treated soil. The effectiveness of biochar 

in Cr(VI) immobilization is significantly reduced at pH 5 and above, both in soil64 and water65,66.   

Carbon-based materials like ash and biochar contain negatively charged surface functional 

groups that contribute to the sorption of heavy metals. The analysis of light elements such as C, 

N, O and H and molar ratios of these elements can indicate changes of properties in the material. 

For example, higher degree of aromaticity and lower degree of hydrophilicity is associated with 

increasing burn temperatures for biochar.67,68 Oxygen containing functional groups (e.g., -C=O, 

and -COOH) can act as dominant binding sites. The surface charge of biochar is increasingly 

negative and the surface area increases with higher burning temperature, suggested by previous 

studies.67,69  

Wood ash, like biochar has applications to agriculture and forestry. The high alkalinity of 

wood ash is useful for treatment of acidic soil generally found in tropical forests. The application 

of wood ash to plants can be beneficial for the growth of the plants because of increase in the 

concentration of macro elements (Ca, K, Mg) and P and decrease in trace metal (Cd, Cu, Cr, Mn, 

Ni, Pb, Zn) concentration. Previously, Etiegni et al.70 observed that, wood ash, if used in levels of 

2% or lower, can work as an effective fertilizer and liming agent. However, repeated and long-

term application of wood ash can cause leaching of trace metals into soils, as suggested by previous 
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studies.53,71 More studies are necessary to better understand the mechanisms affecting adsorption, 

precipitation, and dissolution reactions facilitated by wood ash that affect metal mobility. 

5. Research Gaps. 

While other studies have characterized metals in wood ash,22,23,72 the specific mechanisms 

affecting metal mobilization by ash remain poorly understood. Most of the existing literature on 

wildfire impacts has focused on the effects of nutrients and dissolved organic carbon on water 

quality parameters such as pH, turbidity, DO and DBP potential.14,17,25,34,73 The release of metals 

from wood ash and debris has been reported in a number of post-fire investigations.7,9,10,74 Previous 

studies have reported the presence of Ca, Mg, Al, Fe and Mn as metal bearing carbonate and oxide 

phases in wood ash burned at 5500C.23,46 These metal bearing phases are easily dissolvable in 

reaction of ash with water, resulting in rapid and significant increase in solution pH.22,23 However, 

the adsorptive capacity of the carbonate phases in ash often contribute to the re-adsorption of 

metals from solution to ash.23 Burning of organic matter often results in the presence of negatively 

charged functional groups (i.e. C=O, -COOH) in ash. These functional groups attract positively 

charged cationic metals, therefore contributing to metal uptake from solution. The ash-metal 

interaction in solution is also highly dependent on pH. For example, at an environmentally relevant 

pH range of 6 to 8, metals that act as Lewis acid in solution, such as Cu(II), exhibit positive charge. 

However, at pH of 6 to 8, metals such as Cr(VI) are known to exist in solution as negatively 

charged soluble forms of CrO4
2-, HCrO4

- and Cr2O7
2-. This reversal of charges causes selective 

adsorption of metal ions from solution by ash. All of these processes play a key role in mobilization 

of metals by ash after a wildfire. This is why, the investigation of these interfacial processes in 

reaction of wood ash and water is necessary to facilitate better understanding of post fire metal 

mobilization. Additionally, the effects of different burn temperatures on the properties and 
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reactivity of wood ash is necessary to better understand metal and DOC leaching from ash. The 

investigation presented in this thesis attempts to address these knowledge gaps.           
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ABSTRACT: We investigated interfacial processes affecting metal mobility by wood ash under 

laboratory-controlled conditions using aqueous chemistry, microscopy and spectroscopy. The 

Valles Caldera National Preserve in New Mexico experiences severe catastrophic wildfires of 

devastating effects. Wood samples of Ponderosa Pine, Colorado Blue Spruce and Quaking Aspen, 

collected from this site were exposed to temperatures of 60°C, 350°C and 550°C. The 350°C Pine 

ash had the highest content of Cu (4997 + 262 mg kg-1), Cr (543 + 124 mg kg-1), and labile 

dissolved organic carbon (DOC, 11.3 + 0.28 mg L-1). Sorption experiments were conducted by 

reacting 350°C Pine, Spruce and Aspen ashes separately with 10μM Cu(II) and Cr(VI) solutions. 

Up to 94% decrease in Cu(II) concentration was observed in solution while Cr(VI) concentration 

showed limited decrease (up to 13%) after 180 mins of reaction. X-ray photoelectron spectroscopy 

(XPS) analyses detected increased association of Cu(II) on the near surface region of the reacted 

350°C Pine ash from the sorption experiments compared to the unreacted ash. The results suggest 

that dissolution and sorption processes should be considered to better understand the potential 

effects of metals transported by wood ash on water quality that have important implications for 

post-fire recovery and response strategies. 
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Figure 2: TOC figure showing the process from laboratory burning to metal sorption experiments. 
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1. Introduction 

Post-fire storm events in watersheds can cause the transport of wood ash into nearby 

streams which has detrimental impacts on water quality. In the United States, the forests in the 

south-western regions have seen increased occurrences of large intensity wildfires because of 

worldwide effects of climate change.24,75,76 The Valles Caldera National Preserve (VALL) in north 

central New Mexico is an example of a site with frequent wildfire activity in recent years.11 For 

example, the following two major wildfires have affected the VALL watershed since 2011: (1) 

The Thompson Ridge wildfire burned 23,965 acres in VALL in 201312 and (2) The catastrophic 

Las Conchas, one of the largest in New Mexico history, which burned over 156,000 acres of area 

in the Jemez Mountains in 2011.13 Post-fire runoff of debris and ash in the Rio Grande river, 

following thunderstorms over the burned area caused turbidity peaks of over 1000 NTU, sags in 

dissolved oxygen (DO) and fluctuations in pH (7.5 to 9).14 Total concentrations of Al and Cu in 

the Rio Grande following the Las Conchas fire were above aquatic life criterion for both metals.77 

Additionally, post fire runoff caused transport of organic matter and nutrients (6 × background 

levels for NO3-N and 100 × background levels for PO4) with debris and ash in the VALL, which 

significantly affected the quality of water supplied to nearby communities.14,16 Information on the 

composition and reactivity of metals associated with wood ash is important to better understand 

the potential impacts on water quality. 

While previous studies have characterized metals and organic matter in ash and 

soil,22,23,33,72 the specific mechanisms controlling post-fire metal mobilization remain poorly 

understood. Elevated concentrations of metals have been observed in sediments and surface water 

in fire-affected watersheds, for several months after the fire events.7,24-27 Recent studies have 

linked water extractable organic matter (WEOM) from burned soil17,33 and ash34 to the formation 
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of disinfection byproducts (DBPs).35,36 Temperature is a particularly important factor that affects 

the elemental composition and mineralogy of wood ash.18,45,46 For example, a previous study from 

our group identified the presence of Ca, Mg, Al, Fe and Mn as metal bearing carbonate and oxide 

phases in wood ash burned at 550°C.23 Results from laboratory batch experiments suggested that 

these metal-bearing phases are readily water soluble, but the re-adsorption of these metals to ash 

can occur in later times of the experiments.23 Although this study provides valuable insights into 

the presence of metal bearing phases in ash and their potential effects on metal re-adsorption, the 

knowledge on the specific processes affecting metal dissolution and sorption in wood ash is still 

limited.  

More mechanistic investigations have been reported in the literature related to reactivity of 

biochar, a material similar to wood ash in composition.53,54 Biochar is a natural sorbent and is 

increasingly applied in environmental remediation of organic and inorganic contaminants.55-57 The 

sorption of  Cu(II) to organic functional groups of biochar in water can occur at pH below 7.58  

However, Cu-associated phases like azurite (Cu3(CO3)2(OH)2) and tenorite (CuO) precipitate 

within the biochar surface at pH higher than 7.58 Sorption between positively charged ions and 

negatively charged biochar is an effective mechanism for immobilizing metals in soil.57,59,60 The 

immobilization of Cr(VI) through biochar sorption is significantly reduced at pH 5 and above.64, 

65,66 Enhanced mobility of oxyanions like As61,62 and Sb63 has been observed in biochar-treated 

soil. Similar mechanistic studies are necessary to better understand sorption, precipitation, and 

dissolution reactions facilitated by wood ash that can affect post fire metal mobility.   

The main objective of this study is to investigate the interfacial processes affecting wood 

ash reactions with water by integrating laboratory experiments, spectroscopy, microscopy, and 

aqueous chemistry methods. Soil and surface water chemistry from burned areas of VALL provide 
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environmental context for the study. The release of metals and dissolved organic carbon (DOC) 

was assessed in batch experiments reacting laboratory burned wood ash with water.  Additional 

experiments were conducted to investigate sorption processes that affect ash-metal interactions. 

The focus of this study is to identify interfacial physical-chemical processes that have not been 

extensively studied in the existing wildfire literature. The results from this investigation have 

relevant implications for the improvement of post-fire response in affected watersheds. 

2. Materials and Methods 

Field Sampling and Ash Preparation. The East Fork Jemez River and the adjacent area were 

affected by the Las Conchas and Thompson Ridge wildfires in the past. There is a lack of 

information about metals in soils, water and wood from the VALL.  Water and soil sampling were 

done to assess the current availability of metals in this fire affected watershed. Wood was collected 

from an unburned area to experiment with laboratory burn temperatures. Additional details about 

sampling methods are provided in the SI. The description and co-ordinates of the sampling sites 

in Valles Caldera for wood, water and soil samples are shown in Figure S1. The vegetation in the 

VALL is dominated by different species of Pine, Spruce, Aspen, and Oak.78 Wood samples of 

Ponderosa Pine, Colorado Blue Spruce and Quaking Aspen were collected from higher elevation 

mixed coniferous forest areas which have a fire disturbance history from Las Conchas and other 

fires.23,79 This area in VALL is also densely forested which undergoes prescribed burns 

periodically and account for approximately 25% of the precipitation volume in the Caldera.80 From 

this point on, we will call these tree species simply Pine, Spruce, and Aspen. The collected wood 

samples were crushed using a wood chipper (Sun Joe CJ601E). The crushed samples were ground 

to fine powders using a Powdertec 3090 sample mill and then oven dried at 60°C for 48h before 

burning. The ground and dried samples for each tree were mixed together in a container to 
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homogenize the samples before burning. The homogenized samples were burned in a laboratory 

muffle furnace at 350°C (moderate burn) and at 550°C (high burn) for 4 hours to prepare ash. Table 

S1 contains data on mass of samples before and after burning.  

Acid Digestion and Solution Chemistry Analyses. Wood samples were acid digested in 

triplicates (n = 3) at 95° C for 4 hours using Aqua Regia [2 mL HNO3 (67-70%) + 6 mL HCl (34-

37%), trace metal grade]. Following heating, acid extracts were diluted with 18MΩ water to 50 

mL. Processing of all aqueous samples (water, soil and wood) for this study was done by filtering 

through a 0.45 μm filter, acidifying with 2% HNO3 and refrigerating at 4°C until further solution 

chemistry analyses. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES, 

PerkinElmer Optima 5300DV) was used for detection of concentrations of major elements (Ca, 

Mg and K). Minor or trace elements were analyzed using Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS, PerkinElmer NexION 300D). Both the ICP-OES and ICP-MS analyzed 

an internal indium standard and were calibrated using a 5-point calibration curve.  The quality of 

the results was ensured with proper quality control and quality assurance standards.  The detection 

limits for the ICP-OES and ICP-MS for specific elements are shown in Table S2. The DOC in 

these samples was measured using a Tekmar-Dohrmann Phoenix 8000 TOC Analyzer. 

Batch Experiments for DOC concentration and metal dissolution. For DOC dissolution 

experiments, batch reactors were operated in triplicates by reacting 0.1g sample of 60°C, 350°C 

and 550°C Pine, Spruce and Aspen samples with 30 mL of 18MΩ deionized water. Replicates 

(n=3) were sampled at 0, 4, 24 and 72 hrs and were analyzed using a Tekmar-Dohrmann Phoenix 

8000 TOC Analyzer, following 5310-C persulfate-ultraviolet (UV) method.81 For metal 

dissolution experiments, 0.1g samples of 350°C and 550°C Pine ash were reacted with 30 mL of 
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18 mΩ water. Samples were collected at 0, 4, 24 and 72 hours, centrifuged at 3000 rpm (1660×g) 

for 15 mins and processed for further ICP analyses. 

Batch sorption experiments of Cu(II) and Cr(VI) onto 350°C Ash. Batch sorption experiments 

in triplicates were conducted to investigate the effect of 350° Pine, Spruce and Aspen ashes on 

mobilization of Cu(II) and Cr(VI) in water. We selected Cu(II) and Cr(VI) as examples of a cation 

that acts as a Lewis Acid (e.g. Cu) and an oxyanion (e.g., CrO4
2-) that could negatively impact 

surface waters. Additionally, elevated concentrations of these metals were found in surface water 

following wildfire events near VALL.8,77 Before the sorption experiments, ash samples were 

characterized by measuring Brunauer-Emmett-Teller (BET) specific surface area, zeta potential 

and C, H, N, O elemental contents (wt %). Detailed descriptions of these methods are in the 

supporting information (SI). For the sorption experiments, stock solutions (1000 ppm) of Cr(IV) 

and Cu(II) were prepared by dissolving analytical grade (>99% purity) K2Cr2O7 and CuCl2.2H2O 

in 18MΩ water. For the experiment, 0.1g sample of 350°C Pine, Spruce and Aspen ashes was 

reacted separately with 10 μM of Cu(II) and Cr(VI) stock solutions mixed in 50mL of 18MΩ 

water. The concentrations of Cu(II) and Cr(VI) were chosen to reflect maximum levels measured 

in water samples collected during storm events after the Cerro Grande fire.8 The pH was adjusted 

to 7.0+0.2 using 2% HCl. Control experiments were done at pH 7.0+0.2 for Cu(II) and Cr(VI). 

Samples were collected at 0, 4, 24 and 72 hours, centrifuged at 6000 rpm (6640×g) for 3 mins and 

were processed for further solution chemistry analyses using ICP-MS. 

Solid Phase Analyses. (SEM/EDX, EPMA, XRD, XPS). Solid phase analyses were performed 

on the unreacted and reacted 350°C Pine ash from the batch sorption experiments applying X-ray 

photoelectron spectroscopy (XPS), scanning electron microscopy coupled to energy dispersive X-



21 

 

ray spectroscopy (SEM/EDX), electron probe microanalysis (EPMA) and X-ray diffraction 

(XRD). Additional descriptions of these methods are in the supporting information (SI). 

Statistical Analysis. Univariate data analysis were performed using the statistical software R.82 

The statistical package in OriginPro83 was used for Principal Component Analysis (PCA). Due to 

the non-normality of the data, nonparametric tests for differences in acid extractable metal 

concentrations (log10 transformed to reduce skewness in distribution) were performed to 

differentiate among 3 tree species (Pine, Spruce, Aspen) and among 3 temperatures (60°C, 350°C 

and 550°C). Kruskal-Wallis test was performed to determine if the tree species and the 

temperatures differ significantly (defined as p < 0.05) with respect to metal concentrations (log10 

transformed). Wilcoxon rank sum test was used to do pairwise comparisons of all the samples to 

test for significant differences between tree species and temperatures (defined as p < 0.05). PCA 

was performed to better understand the correlations among ash samples in triplicates with respect 

to acid extractable metal (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Ni, Si, Sr, Zn) concentrations for all tree 

species. 

3. Results and Discussion 

Water Quality and Sediment Data from Valles Caldera. The presence of Cu, Cr, Fe, Zn, and 

Mn was observed in water from the wildfire affected East Fork Jemez River and in soils exposed 

to varying burn severities upslope from the East Fork Jemez River headwaters (Table 1). 

Maximum total concentrations of Cu (37.4 μg L-1) and Fe (2650 μg L-1) in the water samples 

collected from site 2 and Zn (352 μg L-1), from site 3 were above the USEPA standards for acute 

or chronic exposure values for aquatic life in freshwater (Tables 1 and S3). Total Cr (105 µg L-1) 

in the water samples collected from site 1 exceeded the USEPA standards for acute or chronic 

exposure for both Cr(III) (74 µg L-1) and Cr(VI) (11 µg L-1). In a 2001 study by the New Mexico 
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Environment Department, Al, pH, DO, and turbidity in the East Fork Jemez river were listed as 

exceeding the Total Maximum Daily Load, while metals, such as Cu, Cr and Zn were found to be 

below detection limit, 84,85 lower than found in this study. Average concentrations of major and 

trace elements (mg kg-1) in non-anthropogenically affected soils in the US estimated by Burt et 

al.86 (Table S3) were used to evaluate the metal concentrations in the soil samples collected along 

the river ranges. Iron (Fe) was the most abundant metal with concentrations ranging from 4980 

mg kg-1 to 9850 mg kg-1. Copper (Cu) concentration in the collected soil samples from sites V1, 

V2 and V3 ranges from 44.2 mg kg-1 to 261 mg kg-1, higher than the average Cu concentration 

(24.7 mg kg-1) of non-anthropogenic affected soils in the US (Table S3). Concentrations of Cu, Cr 

and Fe were found lower in soils collected from high, low and unburned sites of V4 to V6 (Table 

1) compared to soil in the channel and banks of the East Fork Jemez River. The higher 

concentrations of metals in water and soil in a river located near a burned watershed, such as the 

East Fork Jemez, can increase from the addition of ash and debris by storm water runoff. For 

example, after the Cerro Grande fire in 2000, elevated concentrations of total Cu (610 μg L-1) and 

total Cr (510 μg L-1) were measured in post fire runoff water samples collected from the burned 

watersheds near Guaje Canyon which is close to the Los Alamos National Laboratory.8 Additional 

laboratory experiments were done to determine the concentrations of metals in oven dried wood 

and ash and assess the reactivity of wood ash upon reaction with 18MΩ water. 

Acid Extractable Metal Content in Wood Exposed to 60°C, 350°C, and 550°C. We compared 

the acid extractable metal contents in 9 samples (Pine, Spruce and Aspen at 60°C, 350°C and 

550°C, Figure 3, Table S4). Median metal concentrations at 350°C (moderate burn) and 550°C 

(high burn) for all tree species (e.g., Pine, Spruce, and Aspen) were significantly higher (p < 0.05, 

Table S5, S6) compared to oven dried wood at 60°C (unburned). The acid extractable metal 
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concentrations for all samples at 60°C, 350°C and 550°C are shown in Table S4. Pairwise 

comparisons suggest that metal contents in oven dried wood at 60°C for Pine, Spruce and Aspen 

were not significantly different from each other (p > 0.05, Table S5, S6). Among the ash samples 

at 350°C and 550°C, Pine and Aspen were significantly different (p < 0.05, Table S6) from each 

other with respect to acid extractable metal concentrations. Principal Component Analysis (PCA, 

Figure S2) suggests that 350°C and 550°C Pine ash samples were associated with high 

concentrations of most of the metals (Cu, Cr, Si, Ni, Fe, K and Mg). High concentrations of Ca, 

Sr and Zn were associated with 350°C and 550°C Aspen ash samples, while 350°C and 550°C 

Spruce ash samples were associated with high concentrations of Mn, Al and Fe.   

 Major elements (Ca, Mg, K) were found to be predominant in oven dried wood (60°C) and 

in ash samples (350°C and 550°C) for all tree species (Table S4), consistent with findings for 

wood87 and wood ash23,88 from previous studies. Pine ash showed higher concentrations with 

increasing temperatures for major elements (Ca, Mg and K) and for heavy metals such Al, Fe, Mn 

and Ni (Table S4), consistent with findings from a previous study conducted on Lodgepole Pine.51 

The concentration of Cu in Pine ash (4997 + 262 mg kg-1 at 350°C and 2765 + 302 mg kg-1 at 

550°C) was higher than previously reported values for Pine ash.23,51 Due to the dominance of Pine 

tree species in the forests of western United States, much of the existing literature has focused on 

the metal and DOC composition of ash produced from different species of Pine (e.g. Ponderosa 

and Lodgepole).17,23,39,73,89 We conducted additional experiments with 350ºC Pine, Spruce and 

Aspen ashes to assess the release of dissolved organic carbon and other metals over time. 

Metal and DOC Leachates from Pine Ash (350°C and 550°C) Reacted with Water. Metal 

leaching experiments were conducted to observe the dissolution of selected metals (Cr, Ni, Fe, Cu 

and Zn) in reaction with 350°C and 550°C Pine ash in deionized water (Figure 4a to 4d). 
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Dissolution of metal bearing phases caused rapid increase in the pH of water (Figure S3), measured 

at 10.0 + 0.5 for the duration of the experiment. Less than 3% by mass [determined in acid 

extractable analysis (Table S4)] of Cr, Ni, Fe, Cu and Zn were released in solution after 72 hours 

of reaction. Metals like Cu, Fe, Zn and Ni showed initial release followed by decrease in metal 

concentration over time for both the 350°C and 550°C Pine ash (Figure 4a to 4d). Limited 

fluctuations in the concentration of Cr released in solution were observed over time (Figure 4b, 

4d). The high pH and alkalinity in these experiments (Figure S3) are likely due to the dissolution 

of metal bearing carbonate and oxide phases, such as calcite, quartz and whewellite [Ca(C2O4). 

H2O], which were identified by XRD analysis in the unreacted 350°C Pine ash (Figure S4). A 

previous study from our group also identified the presence of calcite and other metal bearing 

phases in ash burned at 550°C.23 

 The DOC concentration decreased with increasing temperature in reaction of 60°C, 350°C 

and 550°C samples with 18 MΩ water. The 60°C (unburned) samples released higher DOC 

concentrations (110.7 to 338 mg carbon L-1) compared to 350°C (4.25 to 11.3 mg carbon L-1) and 

550°C ash samples (1.27 to 2.77 mg carbon L-1) (Figure 4e, 4f). In this study, different sections 

(i.e. leaves, twigs, needles) of the collected tree species were crushed and ground to powders and 

homogenized before conducting the experiments. This process could have contributed to the high 

DOC release from the unburned samples. Additionally, a variable release of DOC could result 

from contributions from different tree sections, obtaining DOC concentrations that are higher than 

the ones reported in this study.90,91  The decrease in DOC concentration from 350°C to 550°C ash 

suggests that a greater loss of organic matter occurs at a higher burning temperature, consistent 

with findings from previous studies.23,33 The range of DOC concentrations (1.27 to 11.3 mg carbon 

L-1) measured for 350°C and 550°C ash samples in this study are consistent with those reported in 
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previous studies from field 17,25 and laboratory studies.33 Previously. Wang et al.39 observed 

decreased reactivity of the ash in forming DBPs such as trihalomethane (THM) and chloral hydrate 

(CHD) with increasing temperature from 50°C to 400°C. The DOC loss at higher temperatures for 

ash in this study is comparable to that observed in laboratory heated soil by Cawley et al.33 Thus, 

the temperature dependent variability for both ash and soil can have implications in terms of 

variable loading of DOM and DBP precursors from different burn conditions associated with 

wildfires and prescribed fires, as suggested by others.33,39 

Sorption to 350°C Ash. We further explored the sorption of Cu(II) (a cationic metal) and Cr(VI) 

(an oxyanion) to 350°C ash at pH 7.0 + 0.2 in batch sorption experiments. Zeta potential 

measurements for the 350°C Pine ash showed increasingly negative surface charge with increasing 

solution pH (Figure S5), similar to another carbon-based material like biochar.67,69 The surface 

area of Pine ash increased from 36.9 m2/g at 350°C to 294.4 m2/g at 550°C (Table S7). Previously, 

Mendonça et al.69 reported increase in surface area due to creation of micropores for biochar 

burned at 400°C and 600°C. Higher loss of  C, H and O occurred in ash with increasing temperature 

(Table S8). Lower H/C ratios in 350°C and 550°C can be a measure of higher degree of aromaticity 

in the ash samples, as suggested by previous studies on biochar.67,92 Higher O/C and (O+N)/C 

ratios, for the 350°C and 550°C ash samples, are indicators of increased hydrophilicity and 

polarity.67,92,93 We observed more than 80% decrease initially in Cu(II) concentration in solution 

reacting with 350°C Pine ash (Figure 5a), as indicated by measured Cu(II) concentration (103.6 + 

3.1 μg L-1) after 5 mins of reaction and up to 92% decrease after 180 mins of reaction. Cu(II) 

concentration in the control decreased only 5%, to 601.2 + 53.8 μg L-1 after 180 mins of reaction 

from the initially added concentration of 635 μg L-1. In experiments with Cr(VI), low decrease in 

Cr(VI) concentration was observed, as the measured concentration after 180 mins was 451.7 + 7.8 
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μg L-1, representing only 13% decrease from the initially added Cr(VI) of 520 μg L-1 (Figure 5b). 

Cr(VI) showed negligible decrease in concentration in the Cr(VI)-control experiment (Figure 5b). 

Similar results were observed for both Cu(II) and Cr(VI) in the sorption experiments with 350°C 

Spruce and Aspen ashes (Figure S6). These results suggest that burning caused similar effects on 

metal reactivity of all three ashes (Pine, Spruce and Aspen).  

 The different response of Cu(II) and Cr(VI) concentration during the sorption experiments 

suggests that high Cu(II) association to ash occurred due to possible electrostatic attraction of the 

positively charged Cu(II) to the negatively charged ash surface. The effect of sorption capacity of 

the carbonate phases in wood ash in reacting with cations such as Ca+2, Mg+2, Al+3, Mn+2, Fe+2, 

Pb+2, Cu+2, Zn+2 and Cd+2 has been discussed in other studies.23,72 This is a relevant property of 

wood ash that should be considered when investigating the persistence of metals such as Cu, Pb, 

Ni, Fe, Zn associated with ash and debris in wildfire affected watersheds, as reported in several 

post-fire investigations.9,10,74 The low sorption of Cr(VI) observed in this study is consistent with 

other studies reporting low sorption rates for As(V), Cr(VI) and Se(VI) to carbonaceous materials 

at pH 5.0 and above.94-96 For example, a recent study by Alam et al. observed over 90% removal 

of Cd(II) and below 20% removal for Se(VI) at pH 6.0 and above, using biochar as an adsorbent.94 

At the experimental pH of 7.0 + 0.2 used in this study, Cr(VI) is expected to exist in the solution 

as stable oxyanion forms (e.g., CrO4
2-, HCrO4

-).97 Therefore, the electrostatic repulsion between 

the negatively charged ash surface and Cr(VI) oxyanions can account for the low decrease in 

Cr(VI) concentration in solution. The association of Cu(II) in the unreacted and reacted 350°C Pine 

ash solids were further analyzed using microscopy and spectroscopy. 

Solid Phase Analyses of Unreacted and Reacted 350°C Pine Ash. SEM analysis detected the 

presence of Cu on 350°C Pine ash before and after exposure to batch experiments (Figure S7). For 
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example, EDS spectra of a Cu grain showed 69.51 wt % of Cu for the unreacted ash, and 63.55 wt 

% of Cu for the reacted ash. SEM/EDS results confirmed the high Cu concentration (4997 + 262 

mg kg-1) measured from the acid extraction analyses. Electron microprobe mapping detected low 

level of Cu (0.012%) associated with the Ca+2 minerals in the reacted ash (Figure S8), while below 

detection limit for the unreacted ash. The predominant form of the Ca+2 mineral is most likely 

calcite (CaCO3), given the presence of 76-78 wt% of calcite in the reacted sample (Figure S4). 

Given that Ca is a macronutrient in plants, Ca+2 minerals in the form of CaO and CaCO3 are 

abundant across a variety of plant cells.98,99 XRD analyses on reacted and unreacted samples 

indicated presence of quartz and calcite (CaCO3) as predominant mineral phases (Figure S4). 

While microscopy analyses identified the presence of Cu, it was challenging to obtain specific 

information about the association of Cu on the reacted ash surface from these analyses. Thus, 

additional analyses using XPS were done to measure the signal of Cu 2p on the “near-surface” 

region to identify the possible association of Cu to ash after reaction in batch sorption experiments. 

Results from XPS survey scan revealed that 0.11% Cu 2p was present in the reacted ash, 

suggesting that Cu is associated at the top 5-10 nm of the ash “near surface” region (Table S9). 

However, the Cu 2p % for the unreacted ash was below detection limit (Table S9). So, the high 

resolution Cu 2p peak obtained for the unreacted ash was noisy and could not be used for curve 

fitting analyses (Figure 6). Curve fitting of high resolution XPS Cu 2p spectra obtained for the 

reacted sample was conducted using reference spectra for CuO, CuCO3, Cu2O and Cu metal as 

indicated in the Materials and Methods section. Curve fitting analysis suggests that the main 

species of Cu present on the reacted ash are: Cu(II) in the form of CuO (64.2%) and CuCO3 

(18.6%), and Cu(I) in the form of Cu2O (17.3%) (Figure 6). The presence of Cu(I) on the reacted 
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ash surface suggests possible reduction of some of the Cu(II) to Cu(I), as suggested by a previous 

study by Bogusz et al.93  

The association of Cu on the reacted 350°C Pine ash near surface region suggests a likely 

surface controlled process involved in the removal of Cu(II) in the sorption experiments. Curve 

fitting analysis of C 1s high resolution spectra showed an increase in the percentages of C*-COx, 

C=O and C-OH bonds in the reacted ash (Figure S9). The presence of surface functional groups (-

C=O, -COOH) in ash can act as negatively charged binding sites for positively charged cations. 

The increased polarity (higher O/C and (O+N)/C ratios) in the ash samples measured by the C, H, 

N, O analyses (Table S8) is consistent with the increase in functional groups, identified by XPS. 

The removal of cationic metals such as Cu+2 and Cd+2  through associations with surface functional 

groups of biochar has been discussed in the literature.58,93,100 These properties are also relevant to 

better understand the effect of burned soil and ash on post fire mobilization of heavy metals.  

4. Environmental Implications 

The results from this investigation indicate how metal and DOC content associated with ash burned 

at different temperatures (350°C and 550°C) can differ for Pine, Spruce and Aspen. This outcome 

may have relevant implications when considering the wide variation in vegetation across large 

watersheds when assessing response to wildfire events. Ash burned at 350°C had higher DOC 

concentration in water compared to ash burned at 550°C. This observed increase may have 

important implications in terms of increased DOC fluxes in post fire watersheds from moderately 

burned ash and soil reported in previous studies.25,101 The batch experiments conducted in 18 MΩ 

water indicate that metals such as Cr, Ni, Fe, Cu and Zn were dissolved in the initial stages of the 

experiment, followed by decrease in concentration over the duration of the experiment. This 

observation is consistent with a previous study suggesting that metal (Ca, Mg, Al, Fe and Mn) 
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dissolution occurred in initial stages of the batch experiments conducted with ash from Pine, Aspen 

and Spruce trees from the Caldera, followed by re-association of these metals to ash over time.23 

However, a new finding was obtained from the sorption experiments conducted in this study which 

indicate that up to 94% of Cu is removed from solution after 180 mins of reaction due to association 

of this metal in the 350°C Pine ash surface. A similar behavior is expected for other positive cations 

such as Ca2+, Mg2+, Zn2+, Al+3, Fe+2, Cd+2, Pb+2  among others, as suggested in other studies related 

to wood ash23,72 and biochar57,102 reactivity. The integration of results from the metal dissolution 

and sorption experiments in this study provide novel insights about post fire mobilization of 

cationic metals in burned watersheds. However, oxyanions such as Cr(VI) are expected to have 

limited association to ash in natural pH conditions and are likely to have higher mobility in 

watersheds affected by wildfires. Future experiments are necessary to study metal reactivity in 

wood ash in dynamic flow conditions which allow interactions between ash and sediments in 

water. This study provides relevant insights on water quality that could be considered for post fire 

response and recovery strategies by local authorities.  
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Table 1. Elemental content of water (site 1 to 5) and soil (site V1 to V3) samplesa from the East 

Fork Jemez River within the Valle Grande area in VALL. Site V4 to V6 contain soil samples from 

the hill slope of the Sierra de Los Valles dome located near the headwaters of the river. Ranges of 

concentrations (minimum to maximum) for each site is shown. 

 

 

 

 

 

 

 

  

 Water elemental content (μg L-1) 

Site pH 
Alkalinity 

(mg L-1) 

TOC 

(mg C L-1) 

Cu  

Total  

Cr  

Total 

Fe 

 Total 

Zn 

 Total 

Mn 

 Total 

Site 1 7.17 - 8.44 30.5 - 42.0 0.80 - 2.00 2.81 - 16.7 BDLb - 105 289 - 932 52.2 - 103 6.90 - 57.2 

Site 2 7.11 - 8.06 31.0 - 38.3 1.60 - 10.8 5.44 - 37.4 BDL - 8.20 465 - 2650 41.4 - 335 8.83 - 146 

Site 3 6.55 - 7.66 24.1 - 43.8 4.00 - 10.3 7.93 - 23.4 BDL - 48.4 38.2 - 677 57.4 - 352 1.58 - 39.2 

Site 4 6.48 - 8.01 38.7 - 43.7 4.60 - 11.3 5.31 - 21.7 BDL - 16.5 358 - 757 60.7 - 241 6.56 - 22.4 

Site 5 6.48 -7 .97 33.8 - 40.9 3.20 - 11.0 BDL - 25.2 BDL - 11.5 331 - 948 72.8 - 135 BDL - 44.4 

Soil sampling sites Soil elemental content (mg kg-1) 

Site V1 59.4 - 86.9 10.9 - 35.3 7800 - 9620 13.0 - 38.5 219 - 319 

Site V2 71.3 - 89.9 9.25 - 20.4 4980 - 9850 10.2 - 31.4 50.8 - 194 

Site V3 44.2 - 261 11.0 - 17.2 5050 - 7940 14.9 - 37.9 92.7 - 139 

Site V4 (High burn) 7.16 - 17.5 5.81 - 13.3 109 - 221 19.5 - 35.2 260 - 347 

Site V5 (Low burn) 5.97 - 18.6 4.96 - 15.2 86.4 - 190 22.2 - 54.2 179 - 344 

Site V6 (Unburned) 7.97 - 13.9 5.31 - 11.3 102 - 184 30.8 - 39.4 217 - 454 

aAqueous and soil elemental content measured with ICP-OES and ICP-MS bBDL = Below detection limit 
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Figure 3. Acid extractable concentrations (mean ± SD) of 9 metals varied across different tree 

species of (a) Pine, (b) Spruce and (c) Aspen. The major elements (Ca, Mg and K) were 

predominant in all tree species at 60°C, 350°C and 550°C (Table S2). Ash produced at both 350°C 

(moderate burn) and 550°C (high burn) contained higher metal concentrations than in samples 

dried at 60°C (unburned) for all species. 
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Dissolution of metals (Fe, Cu, Zn, Cr, Ni) DOC concentration 

 
 

 
 

Figure 4. Concentrations of (a) Fe, Cu, Zn and (b) Cr, Ni at 0, 4, 24 and 72 hours in reaction of 

550°C Pine ash with 18 MΩ water. In figures (c) and (d), metal concentrations are shown for 

reaction of 350°C Pine ash with 18 MΩ water. DOC concentration (mg carbon L-1) at 0, 4, 24 and 

72 hours (n=3) is shown in figure (e) for 350°C and 550°C ash samples and in (f) 60°C crushed 

wood samples.  
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Figure 5. Results from the metal sorption experiments (n=3, sampling interval = 5 min, 15 min, 

30 min, 1 hr, 2 hrs and 3hrs) conducted by reacting 10 μM of (a) Cu(II) and (b) Cr(VI) separately 

in a solution containing 0.1g of 350°C Pine ash with 50mL of 18MΩ water. Note that the control 

experiments were conducted by reacting 10μM of Cu(II) and Cr(VI) in 18MΩ water without ash.  
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c)   % Content 

Sample Cu2O (I) CuO (II) CuCO3 (II) 

Binding energy, eV 932.2 934 936 

Unreacted 350°C Pine ash BDL1 BDL1 BDL1 

Reacted 350°C Pine ash 17.26 64.17 18.56 

 1Below detection limit 

Figure 6. Cu 2p high resolution spectra for the (a) Reacted 350°C Pine ash and (b) Unreacted 

350°C Pine ash (c) Percentages of different oxidation states in the Cu 2p spectra for the reacted 

ash determined by using reference Cu 2p spectra for CuO, CuCO3, Cu2O and Cu metal. 
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Appendix: Supporting Information  

Metal Reactivity in Laboratory Burned Wood from a Watershed Affected by 

Wildfires 

 

Additional Materials and Methods. 

 

Wood Sampling Methods. Wood samples of Ponderosa Pine, Quaking Aspen and Colorado Blue 

Spruce were collected from the Valles Caldera National Preserve area in New Mexico. We 

collected tree branches with attached twigs, leaves and needles from unburned live trees. The 

collected tree branches were crushed to powders using a laboratory milling machine and then oven 

dried for at 60°C for 48 hours before burning. 

Water and Soil Sampling Methods. Surface water samples were collected as grab samples in 

125 mL polypropylene bottles after three rinses.  Samples for dissolved analysis were filtered 

through a 0.45 µm filter.  Samples for metals’ analysis were acidified to a pH of 2 with nitric acid. 

Soil samples were collected using a soil auger down to 6 inches and homogenized prior to 

preparation for analysis.  

Solid Phase Analyses. Elemental composition and the oxidation states in the near surface (5-10 

nm) were acquired using a Kratos Axis DLD Ultra X-ray photoelectron spectrometer. A 

monochromatic Al Kα source was used, operating at 225W with no charge compensation. The Cu 

2p spectra from reference Cu samples were used to identify the species of Cu present on the near 

surface region of the reacted ash sample. Reference Cu samples (Cu metal, Cu(I, II) oxide  and 

Copper(II) carbonate basic) were purchased from Sigma Aldrich, Strem Chemicals and Alfa Aesar 

respectively. All the chemicals were >99% pure except the Copper(II) carbonate basic (>95% 

purity). The high-resolution spectra, along with the binding energies obtained for the Cu 2p regions 



36 

 

for these reference materials are shown in Figure S10. Curve fitting and quantification were 

performed using CasaXPS software. Spectra of all the samples were calibrated using gold powder 

deposited on each sample with respect to the Au 4f peak position at 84 eV. Electron scattering 

background was removed using a Shirley background; curve fitting of spectra was done using a 

70% Gaussian/30% Lorentzian [GL (30)] line shape. Qualitative mapping of the ash samples was 

done using an electron probe microanalyzer (EPMA) using wavelength dispersive X-ray 

spectroscopy (WDS). A JEOL JXA-8200 Super-Probe was used, operating at 10 kV with a 10 μm 

probe diameter and 30 nA probe current. 

Characterization of 60°C, 350°C and 550°C samples (BET, zeta potential and C, H, N, O 

analysis). The Brunauer-Emmett-Teller (BET) specific surface area for the 350°C and 550°C ash 

samples were measured using a Gemini 2360 V5 surface area analyzer. The zeta potential of the 

ash samples was determined using a Malvern Zetasizer Nano-ZS equipped with a He-Ne laser 

(633nm) and non-invasive backscatter optics (NIBS). N and C contents (wt %) for 60°C, 350°C 

and 550°C samples were measured using a Costech ECS 4010 Elemental Analyzer coupled to a 

Thermo Fisher Scientific Delta V Advantage mass spectrometer via a CONFLO IV interface. O 

and H contents (wt %) were measured using a Thermo Chemical Elemental Analyzer (TCEA) 

coupled to a Thermo Fisher Scientific Delta V Advantage. Wt % C, H, N and O values were 

calculated using the Elemental Spruce Powder Standard B2213.   
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Table S1. Mass of wood (e.g., pine spruce and aspen) samples for (a) oven drying and (b) burning 

procedure of wood samples. 

a) 

Sample 

Name 

Mass before oven 

drying at 60°C 

for 48 hours (g) 

Mass after oven 

drying at 60°C 

for 48 hours (g) 

% mass lost 

(moisture 

content) 

% mass remaining 

due to loss of 

moisture content  

Pine 2164 1612 25.5 74.5 

Spruce 3342 2762 17.4 82.6 

Aspen 2802 2173 22.4 77.6 

 

 

b) 

Sample 

Name 

Mass 

before 

burning at 

550°C for 4 

hours (g) 

Mass after 

burning at 

550°C for 4 

hours (g) 

% mass 

remaining 

after 

burning  

Mass 

before 

burning at 

350°C for 

4 hours (g) 

Mass after 

burning at 

350°C for 

4 hours (g) 

% mass 

remaining 

after 

burning 

Pine 450.2 22.55 5.01 200.2 7.32 3.66 

Spruce 450.4 17.16 3.81 200.2 6.96 3.48 

Aspen 450.1 24.01 5.33 200.2 10.94 5.47 
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Table S2. Detection limits for analyses using: a) inductively coupled plasma optical emission 

spectrometry (ICP-OES), and b) inductively coupled plasma mass spectrometry (ICP-MS). 

 
a) ICP-OES 

Element IDL (mg L-1) MDL (mg L-1) 

Al 0.0280   0.0280  

Ca 0.0100   0.0100  

Cu 0.0054   0.0054  

Fe 0.0062   0.0062  

Mg 0.0030   0.0030  

Mn 0.0014   0.0014  

Ni 0.0150   0.0150  

Pb 0.0420   0.0420  

V 0.0064   0.0064  

Zn 0.0018  0.0018  

 
 
b) ICP-MS 

Element IDL (mg L-1) MDL (mg L-1) 

Cu 0.004  0.009 

Ni 0.006  0.02 

Pb 0.0003 0.0004 

V 0.006 0.01 

Zn 0.04 0.1 

 
**IDL = Instrument Detection Limit 

**MDL = Method Detection Limit
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Table S3. Maximum Contaminant Level (MCL) and different standards for exposure limits set by USEPA for Cr, Cu, Fe, Mn and Zn. 

Additionally, average concentrations of these 5 metals in natural soils (without known anthropogenic additions) are also provided for 

comparison with soil samples collected along the East Fork Jemez river ranges for this study. 

 

Element 

Drinking 

water 

standard- 

Maximum 

Contaminant 

Level (MCL) 

(µg L-1)2 

Drinking 

water 

action level 

(µg L-1)3 

Drinking 

water 

secondary 

standard 

(µg L-1)1 

Surface water 

human health for 

the consumption 

of water + 

organism (µg L-1)3 

Aquatic 

Life 

Freshwater 

CMC Acute 

Exposure 

(µg L-1)   

Aquatic Life 

Freshwater 

CCC 

Chronic 

Exposure 

(µg L-1)  

Average 

concentrations of 

metals in non-

anthropogenically 

affected soils in the 

US (mg kg-1) by 

Burt et al.5  

Chromium (III)     570 74  

Chromium (total)  100      88.7 

Chromium (VI)     16 11  

Copper (Cu)  1300  1300 24 1.34 24.7 

Iron (Fe)   300   1000 19000 

Manganese (Mn)   50 50   62.6 

Zinc (Zn)   5000 7400 120 120 589 
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Table S4. Acid extractable elemental content (mg kg-1) for wood samples (Pine, Spruce, Aspen) at 60°C, 350°C and 550°C. Data are 

presented as Mean + standard deviation. 

Acid Extractable Elemental Content (mg kg-1) 

Temperature: 550
°
C 

Sample Al Ca Cr Cu Fe K Mg Mn Ni Si Sr Zn 

Pine 

 

 

4138.40 

+ 

100.17 

181967.73 

+ 

6195.55 

476.16 

+ 

9.12 

2765.07  

+ 

302.26 

5050.52 

 + 

767.95 

78075.67  

+ 

1781.05 

27881.15 

+ 

35.82 

1575.62 

 + 

14.15 

803.60 

+ 

22.81 

814.26 

+ 

93.11 

505.93 

+ 

1.75 

938.27 

+ 

4.94 

Spruce 

 

 

4734.25 

+ 

64.55 

164204.50  

+ 

3723.07 

81.50 

+ 

1.07 

71.88 

+ 

1.59 

4154.38 

+ 

40.74 

33847.64 

+ 

628.85 

9807.35 

+ 

106.4 

3933.69 

+ 

41.92 

242.56 

+ 

2.91 

334.93 

+ 

29.36 

551.96 

+ 

6.25 

590.30 

+ 

7.67 

Aspen 

 

 

177.41 

+ 

3.19 

307080.02 

+ 

4896.33 

12.91 

+ 

2.01 

72.42 

+ 

1.62 

238.57 

+ 

14.5 

47800.02 

+ 

728.85 

14193.24 

+ 

129.61 

175.14 

+ 

0.74 

277.82 

+ 

1.64 

289.68 

+ 

1.58 

1372.46 

+ 

15.07 

1209.62 

+ 

12.29 

Temperature: 350
°
C 

Pine 

 

 

2384.54 

+ 

96.48 

122157.57 

+ 

4502.43 

543.31 

+ 

123.69 

4996.51 

+ 

261.96 

4151.65 

+ 

441.79 

55823.72 

+ 

2122.64 

19205.62 

+ 

747.69 

1179.05 

+ 

61.36 

524.65 

+ 

101.22 

310.14 

+ 

18.17 

332.28 

+ 

12.89 

638.32 

+ 

23.33 

Spruce 

 

 

4477.69 

+ 

175.93 

186287.82 

+ 

5459.71 

112.24 

+ 

3.06 

81.47 

+ 

5.42 

3598.13 

+ 

908.11 

37261.72 

+ 

1050.50 

6168.71 

+ 

48.12 

4760.57 

+ 

315.24 

266.93 

+ 

3.04 

322.53 

+ 

23.09 

646.79 

+ 

27.32 

799.14 

+ 

36.21 

Aspen 

 

 

184.81 

+ 

1.67 

294197.49 

+ 

1343.51 

11.83 

+ 

0.13 

62.89 

+ 

0.60 

225.13 

+ 

4.72 

45153.30 

+ 

242.64 

13275.79 

+ 

73.52 

182.36 

+ 

1.08 

264.34 

+ 

3.52 

241.02 

+ 

5.76 

1390.40 

+ 

3.89 

1206.46 

+ 

8.47 

Temperature: 60
°
C 

Pine 

 

91.1 

+ 

3.05 

9364.2 

+ 

220.03 

4.97 

+ 

1.29 

58.2 

+ 

18.24 

114.7 

+ 

45.69 

8696.5 

+ 

35.69 

466.3 

+ 

8.47 

59.6 

+ 

2.81 

6.1 

+ 

0.25 

202.8 

+ 

11.56 

13.1 

+ 

0.61 

23.3 

+ 

1.81 

Spruce 

 

131.5 

+ 

3.32 

11294.7 

+ 

248.46 

12.9 

+ 

0.46 

4.6 

+ 

0.31 

198.9 

+ 

7.93 

8628.5 

+ 

28.68 

419.1 

+ 

15.13 

185.1 

+ 

6.5 

12.5 

+ 

0.9 

258.8 

+ 

1.67 

24.3 

+ 

0.61 

33.2 

+ 

0.4 

Aspen 

 

22.2 

+ 

1.15 

22359.3 

+ 

565.51 

5.1 

+ 

0.03 

5.7 

+ 

0.88 

22.4 

+ 

8.53 

9709.04 

+ 

25.86 

858.5 

+ 

4.22 

10.6 

+ 

0.15 

17.9 

+ 

0.82 

23.7 

+ 

3.9 

86.8 

+ 

0.35 

78.6 

+ 

1.49 
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Table S5. The Kruskal Wallis test was used to determine if significant differences exist (defined as p-value < 0.05) between the tree 

species (Pine, Spruce, Aspen) at three temperatures (60°C, 350°C and 550°C) with respect to acid extractable metal concentrations (log10 

transformed). Individual contribution of the metals was not considered here due to limited number of observations (n=3) for each metal. 

No significant difference (highlighted, p-value =0.4007 > 0.05) was observed for Pine, Aspen and Spruce at 60°C. The limitation of 

Kruskal Wallis test is that it does not specify which specific sample is contributing to the overall difference. To address this, Mann 

Whitney U test was done to do pairwise comparisons between the samples.    

 Comparison between Pine, Spruce and Aspen at 60°C, 350°C and 

550°C (n=9) 

Data χ2 statistic p-value 

acid extractable element concentrations 

(log10 transformed) 

89.85 4.982 × 10-4 

 
Comparison between Pine 60, Spruce 60 and Aspen 60 (n=3) 

Data χ2 statistic p-value 

acid extractable element concentrations 

(log10 transformed) 

1.8293 0.4007 

 Comparison between Pine 350, Spruce 350 and Aspen 350 (n=3) 

Data χ2 statistic p-value 

acid extractable element concentrations 

(log10 transformed) 

8.1227 0.01723 

 Comparison between Pine 550, Spruce 550 and Aspen 550 (n=3) 

Data χ2 statistic p-value 

acid extractable element concentrations 

(log10 transformed) 

9.5225 0.00855 
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Table S6. The Wilcoxon rank sum test (Mann-Whitney U test) was used to do pairwise comparisons (n= 9 samples, 9C2 = 36 

combinations of pairs) of tree species (Pine, Spruce, Aspen) at 60°C, 350°C and 550°C to test for significant differences (defined as p < 

0.05) in metal concentrations (log10 transformed). Individual contribution of the metals was not considered here due to limited number 

of observations (n=3) for each metal. 

Serial No. Pair considered Diff. W p-value 
 

Serial No. Pair considered      Diff. W p-value 

1 Aspen 350 – Aspen 60     1.078 990 1.20 × 10-4  19 Pine 60 – Aspen 60      0.164 726 0.383 

2 Aspen 550 – Aspen 60     1.108 991 1.15 × 10-4   20 Spruce 60 – Aspen 60     0.331 765 0.190 

3 Spruce 550 – Aspen 60    1.407 1043 8.87 × 10-6  21 Spruce 60 – Pine 60    0.642 690 0.103 

4 Spruce 350 – Aspen 60    1.477 1053 5.22 × 10-6  22 Aspen 550 – Aspen 350   0.021 672 0.793 

5 Pine 350 – Aspen 60     1.678 1080 1.18 × 10-6   23 Spruce 550 – Aspen 350   0.401 788 0.117 

6 Pine 550 – Aspen 60     1.748 1101 3.47 × 10-7  24 Spruce 350 – Aspen 350   0.462 798 0.092 

7 Aspen 350 – Pine 60      0.761 960 3.38 × 10-4  25 Pine 350 – Aspen 350     0.532 912 2.64 × 10-3 

8 Aspen 550 – Pine 60  0.780 967 2.43 × 10-4  26 Pine 550 – Aspen 350     0.634 927 1.45 × 10-4 

9 Spruce 550 – Pine 60    1.261 1043 3.67 × 10-6   27 Spruce 550 – Aspen 550  0.371 775 0.155 

10 Spruce 350 – Pine 60    1.284 1042 3.91 × 10-6  28 Spruce 350 – Aspen 550   0.434 783 0.130 

11 Pine 350 – Pine 60      1.413 1110 3.06 × 10-8  29 Pine 350 – Aspen 550     0.542 911 2.75 × 10-3 

12 Pine 550 – Pine 60       1.547 1133 4.36 × 10-9  30 Pine 550 – Aspen 550   0.651 927 1.45 × 10-3 

13 Aspen 350 – Spruce 60    0.774 903 3.73 × 10-3  31 Spruce 350 – Spruce 550  0.043 694 0.610 

14 Aspen 550 – Spruce 60    0.777 910 2.86 × 10-3  32 Pine 350 – Spruce 550   0.140 738 0.316 

15 Spruce 550 – Spruce 60   1.238 1008 2.91 × 10-5  33 Pine 550 – Spruce 550    0.324 783 0.130 

16 Spruce 350 – Spruce 60   1.235 1008 2.91 × 10-5  34 Pine 350 – Spruce 350   0.150 713 0.470 

17 Pine 350 – Spruce 60     1.339 1114 2.21 × 10-8  35 Pine 550 – Spruce 350 0.282 761 0.207 

18 Pine 550 – Spruce 60     1.431 1134 3.99 × 10-9  36 Pine 550 – Pine 350   0.150 738 0.316 

 

 = p-value < 0.05 = Significant difference 

 = p-value > 0.05 = No significant difference 
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Table S7. Specific surface areas (m2/g) of the Pine, Spruce and Aspen ash samples measured by 

Brunauer-Emmett-Teller (BET) method. 

Sample BET Multipoint Surface Area (m2/g) 

Pine Ash 350°C 36.91 

Pine Ash 550°C  294.37 

Spruce Ash 350°C 20.29 

Spruce Ash 550°C  124.77 

Aspen ash 350°C 7.06 

Aspen ash 550°C 12.9 
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Table S8. Elemental composition (C, H, N, O) and ratios of Pine, Spruce and Aspen samples at 

60°C, 350°C and 550°C. H/C is the atomic ratio of hydrogen to carbon; O/C is the atomic ratio of 

oxygen to carbon and (O+N)/C is the atomic ratio of the sum of nitrogen and oxygen to carbon.  

 Elemental composition    

Sample C (%) H (%) N (%) O (%) 

Molar 

H/C 

Molar  

O/C 

Molar 

(O+N)/C 

Pine 60°C 52.1 6.91 0.5 37.7 1.589 0.542 0.549 

Spruce 60°C 50.3 6.86 0.3 41.2 1.638 0.614 0.619 

Aspen 60°C 51.1 6.87 0.4 39.4 1.615 0.578 0.585 

Pine 350°C 31.8 1.10 2.4 26.9 0.414 0.634 0.699 

Spruce 350°C 15.0 0.48 0.7 21.5 0.384 1.078 1.115 

Aspen 350°C 14.0 0.42 0.3 28.6 0.361 1.537 1.555 

Pine 550°C 16.3 0.57 0.4 21.8 0.421 0.998 1.018 

Spruce 550°C 25.3 0.62 0.4 19.7 0.294 0.583 0.598 

Aspen 550°C 6.1 0.26 0.4 27.1 0.513 3.326 3.379 
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Table S9. Atomic content for the unreacted and reacted 350°C pine ash as determined by X-ray 

photoelectron spectroscopy (XPS) survey scan. 

   % Atomic Content 

Sample C 1s O 1s Cu 2p 

Unreacted 350°C pine ash 66.2 33.8 BDL1 

Reacted 350°C pine ash 73.2 26.7 0.11 

 1Below detection limit 
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Wood Sampling 

Sample Latitude Longitude 

Pine 35.86175 -106.60199 

Spruce 35.86430 -106.61074 

Aspen 35.90903 -106.61167 

Water Sampling 

Site Latitude Longitude 

1 35.86603 -106.45366 

2 35.86211 -106.45808 

3 35.85827 -106.47035 

4 35.85579 -106.47388 

5 35.85467 -106.47750 

Soil Sampling 

Site Latitude Longitude 

V1 35.86603 -106.45366 

V2 35.85827 -106.47035 

V3 35.85467 -106.47750 

V4 35.90417 -106.41451 

V5 35.90326 -106.41623 

V6 35.88911 -106.41855 

   

   

Figure S1. Map showing the sampling locations for (a) wood, (b) water and soil and (c) soil samples in Valles Caldera. The co-ordinates 

of the sampling locations are shown beside the map. This site map is adapted from the map published in a previous study by Cerrato et 

al.23 

Reference  

(1)  Cerrato, J. M.; Blake, J. M.; Hirani, C.; Clark, A. L.; Ali, A.-M. S.; Artyushkova, K.; Peterson, E.; Bixby, R. J., Wildfires and 

water chemistry: effect of metals associated with wood ash. Environ. Sci. Process. Impacts.  2016, 18, (8), 1078-1089.  
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Element 

Coefficients 

of PC 1 

Coefficients 

of PC 2 

Al 0.32329 -0.2157 

Ca -0.33562 0.14808 

Cr 0.36557 0.03147 

Cu 0.29553 0.26884 

Fe 0.34826 -0.15737 

K 0.15423 0.47189 

Mg 0.12975 0.46318 

Mn 0.26729 -0.32558 

Ni 0.26484 0.35895 

Si 0.24515 0.2337 

Sr -0.35604 0.08592 

Zn -0.26742 0.31536 

 

Figure S2.  Principal component analysis was run on metal concentrations for 350°C and 550°C triplicate measurements of ash samples 

(Pine, Spruce, Aspen). The first two principal components explained 91.34% of the total variance. The metals such as Al, Cr, Cu, Fe, 

Mn and Si showed high positive loadings on PC 1; and PC 2 showed high positive loadings for the major elements (Ca, K, Mg) and 

metals such as Ni, Sr and Zn. Coefficients of the metals on the principal components are shown in the table. The figure also shows the 

component scores of the Pine, Spruce and Aspen ash samples. 350°C and 550°C Pine ash samples had positive scores on the both the 

principal components. 
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(a) (b) 

  

Figure S3. pH and alkalinity measured at 0, 4, 24 and 72 hours are shown in figure (a) and (b) 

respectively. In figure (a), the open symbols represent the pH of 18MΩ water. 
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Compound Name Unreacted Ash 

(atomic wt.%) 

Reacted Ash 

(atomic wt.%) 

Calcite (CaCO3) 79% 78% 

Quartz (SiO2) 12% 11% 

Whewellite (Ca(C2O4).H2O) 9% 11% 

 

Figure S4. XRD patterns of the (a) reacted and the (b) unreacted 350°C Pine ash sample from the 

batch sorption experiments with Cu(II). The two samples are very similar in terms of crystalline 

composition which is predominantly calcite (78-79 %) with lesser amounts of quartz (11-12 %) 

and whewellite (9-11 %). 
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(b) 

 

 (c) 

  

Figure S5. Zeta Potential (mV) measurements of (a) Pine 350°C ash, (b) Spruce 350°C ash and (c) 

Aspen 350°C ash in different solution pH values. The reported values are the average of three 

measurements.  
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Figure S6. Results from the metal sorption experiments (n=3, sampling interval = 5 min, 15 min, 

30 min, 1 hr, 2 hrs and 3hrs) conducted by reacting 10 μM of (a) Cu(II) and (b) Cr(VI) separately 

in a solution containing 0.1g of 350°C Spruce ash with 50mL of 18MΩ water. Figures (c) and (d) 

show the same analysis with Aspen ash. Results from the control experiments without the ash are 

included in all the figures. 
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Figure S7. SEM images of the (a) unreacted and the (b) reacted 350°C Pine ash from the batch sorption experiments with Cu(II). EDS 

spectrum from a Cu grain on both the ash samples shows presence of Cu peaks. The atomic wt.% distribution for the respective spectrum 

is also shown for a specific Cu grain highlighted in red circle.

 

 

 
kV  20.0 

   Takeoff Angle  35.0° 

Elapsed Livetime 30.0 

Elt. Line 

Intensity 

(c/s) Conc Units 

Error 

2σ* 

MDL 

3σ 

C Ka 36.11 7.161 wt.% 0.584 0.597 

O Ka 151.37 12.566 wt.% 0.399 0.217 

Mg Ka 53.62 2.914 wt.% 0.189 0.185 

Al Ka 4.88 0.212 wt.% 0.117 0.170 

Si Ka 10.29 0.359 wt.% 0.103 0.144 

P Ka 43.42 1.342 wt.% 0.117 0.139 

S Ka 36.71 0.984 wt.% 0.101 0.125 

K Ka 71.77 1.867 wt.% 0.115 0.125 

Ca Ka 114.96 3.089 wt.% 0.133 0.124 

Cu Ka 715.75 69.507 wt.% 0.973 0.332 

  Total 100.000 wt.%   
 

  *2σ equals 95% confidence interval 

 

 

 

Elt. Line Intensity 

(c/s) 

Conc Units Error 

2σ* 

MDL 

3σ 

C Ka 100.62 21.423 wt.% 0.662 0.415 

O Ka 349.71 1.326 wt.% 0.020 0.006 

Si Ka 19.73 0.588 wt.% 0.087 0.120 

P Ka 35.91 0.959 wt.% 0.084 0.108 

S Ka 324.25 7.659 wt.% 0.135 0.094 

Ca Ka 97.24 3.322 wt.% 0.132 0.140 

Fe Ka 29.62 1.173 wt.% 0.102 0.124 

Cu Ka 736.98 63.551 wt.% 0.680 0.238 

  Total 100.000 wt.%   
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Elapsed Livetime 30.0 

*2σ equals 95% confidence interval 
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Figure S8. Microprobe mapping of Mg, P, O, Ca and Cu on the (a) reacted and (b) unreacted 350°C Pine ash. Microprobe analysis showed presence 

of low level of detectable Cu associated with mineralized Ca in the reacted ash, shown in figure (c). In table (d), the wt% of the elements associated 

with the mineralized Ca region is shown. At 95% confidence level, the Cu in the reacted sample is detectable at 0.012 wt% but below detection limit 

in the unreacted sample. Detection limit for Cu at 95% confidence level was 0.009 wt%.

 (a)  

 

(b) 

 
(c) Microprobe mapping of the mineralized Ca region [red circled in figure (a)] of the reacted ash 

  

(d) K (wt%) Ca (wt%) Mg (wt%) Cu wt% Si (wt%) S (wt%) P (wt%) O (wt%) C (wt%) Total (wt%) 

Average of 7 reference 

lines (Reacted sample) 

0.033 16.957 0.018 0.012 0.006 0.007 0.097 46.430 14.825 78.384 

Average of 7 reference 

lines (Unreacted 

sample) 

0.137 17.557 0.014 BDL* BDL 0.054 0.013 46.270 14.691 78.727 

*BDL = Below detection limit at 95% confidence interval 
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c) Percentages of surface carbon bonds determined from curve fitting of C 1s high 

resolution XPS spectra 

 
C-C % C*-COx % C=O % C-OH % 

Binding energy, eV 285 285.6 287.5 289.5 

Untreated ash  35.3 16.8 4.7 9.4 

Reacted ash  25.3 24.2 11.9 11.8 

 

Figure S9. XPS high resolution C 1s spectra for the (a) Unreacted 350°C Pine ash sample and (b) 

the reacted 350°C Pine ash sample. (c) Percent compositions of the C 1s spectra for the unreacted 

and the reacted ash. 

  

282284286288290292

0

500

1000

1500

2000

2500

3000 a)
C

P
S

Binding energy, eV

  Experimental Spectra

  Fitted Spectra

  C-C/C=C

  C*-COx

  C=O

  C-OH

282284286288290292

0

500

1000

1500

2000

2500

3000 b)

C
P

S

Binding energy, eV

  Experimental Spectra

  Fitted Spectra

  C-C/C=C

  C*-COx

  C=O

  C-OH



55 

 

  

  
 

(e) Binding energy values obtained for reference samples using XPS high resolution Cu 2p 

spectra 

 

Reference Samples Binding Energy (eV) 

Cu metal 932.8 

Cu2O (I) 932.4 

CuO (II) 934.9 

CuCO3 (III) 935.7 

 

Figure 10. XPS high-resolution Cu 2p spectra for (a) Cu metal, (b) Cu2O (I), (c) CuO (II) and (d) 

CuCO3 (II). (e) The binding energies obtained for the Cu 2p regions for these reference materials 

are shown. 
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