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ABSTRACT 

 

The work contained herein describes the use of various magnetic fields to control the 

structure and dynamics of magnetic particle suspensions, with the practical aim of 

enhancing momentum, heat, and mass transport. The magnetic fields are often 

multiaxial and can consist of up to three orthogonal components that may be either 

static (dc), time-dependent (ac), or some combination thereof. The magnetic 

particles are composed of a ferromagnetic material—such as iron, nickel, cobalt, or 

Permalloy—and can exist in a variety of shapes, including spheres, platelets, and 

rods. The shape of the particles is particularly important, as this can determine the 

type of behavior the suspension exhibits and can strongly affect the efficacy of various 

transport properties. The continuous phase can be almost any fluid so long as it 

possesses a viscosity that allows the particles to orient and aggregate in response to 

the applied field. Additionally, if the liquid is polymerizable (e.g., an epoxy system), 

then composite materials with particular, field-directed particle assemblies can be 

created. 

Given the many combinations of various particles, suspending fluids, and 

magnetic fields, a vast array of behavior is possible: the formation of anisotropic 

particle structures for directed heat transport for use as advanced thermal interface 

materials; the stimulation of emergent dynamics in platelet suspensions, which give 
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rise to field-controllable flow lattices; and the creation of vortex fluids that possess a 

uniform torque density, enabling such strange behaviors as active wetting, a negative 

viscosity and striking biomimetic dynamics. Because the applied fields used to 

produce many of these phenomena are uniform and modest in strength, such adaptive 

fluids open up the possibility of tuning the degree of mixing or heat/mass transfer for 

specific operating conditions in a number of processes, ranging from the microscale 

to the industrial scale. Moreover, the very nature of magnetism provides for the 

manipulation of magnetic materials in a noncontact manner, making the application of 

these effects simple and robust by eliminating the need for complex, moving parts 

that may require maintenance and be prone to failure. 

  



vii 

 

Table of Contents 

 

Preface                   1 

Background and Significance                 4 

Part I: DIRECTED HEAT TRANSFER IN MAGNETIC-FIELD–STRUCTURED COMPOSITES 

1. Field-structured magnetic platelets  
as a route to improved thermal interface materials           16 

2. Field-structured, multilayered platelets 
enable high performance, dielectric thermal composites          44 

Part II: VORTEX MAGNETIC FIELD MIXING 

3. Strong intrinsic mixing in vortex magnetic fields           72 

4. Vortex magnetic field mixing with anisometric particles          88 

Part III: ISOTHERMAL MAGNETIC ADVECTION 

5. Isothermal Magnetic Advection: 
Creating functional fluid flows for heat and mass transfer                  100 

6. Controlling the column spacing in isothermal magnetic 
advection to enable tunable heat and mass transfer         110 

7. Stimulation of vigorous rotational flows and 
novel flow patterns using triaxial magnetic fields         127 

8. Multiaxial fields drive the thermal conductivity 
switching of a magneto-responsive platelet suspension         145 

Part IV: DYNAMICS OF VORTEX FLUIDS 

9. Symmetry-breaking magnetic fields create a vortex fluid 
that exhibits a negative viscosity, active wetting, and strong mixing       166 

 



viii 

 

10. Torque density measurements on vortex fluids 
produced by symmetry-breaking rational magnetic fields        193 

11. Fully alternating, triaxial electric or  
magnetic fields offer new routes to fluid vorticity         215 

12. Quantifying vorticity in magnetic particle suspensions 
driven by symmetric and asymmetric multiaxial fields        259 

13. Complex magnetic fields breathe life into fluids         288 

 



1 

 

Preface 

Far and away the best prize that life has to offer is the chance to work hard at work worth doing.—

Theodore Roosevelt 

Due to the possibility that the structure of this dissertation may appear somewhat 

unorthodox, I thought it suitable to provide a preface to orient the reader. The work 

contained herein, perhaps seemingly disparate at first glance, is unified by a common theme 

as exemplified by the title: Controlling the structure and dynamics of magnetoresponsive particle 

suspensions for enhanced transport phenomena. Despite this common theme, however, each 

research topic is sufficiently distinct as to deserve its own treatment. As such, this 

dissertation is comprised of four parts: 

Part I: Directed heat transfer in magnetic-field–structured 

composites presents a class of magnetic particle-polymer composite 

materials for use as enhanced thermal interface materials (TIMs). Unlike 

conventional TIMs, which rely upon very high loadings (~70 vol.%) of highly 

thermally conductive particles resulting in a paste-like consistency and 

achieving only modest thermal conductivities; our approach makes use of 

magnetic fields to structure the magnetic particle phase, which is suspended in 

the polymer resin, prior to curing. In this way, we can optimize a composite’s 

effective thermal conductivity (in any desired direction) at a given volume 

fraction without incurring the penalty of an unworkable viscosity. 

Additionally, the use of anisometric particles such as platelets is shown to 

substantially increase the effective thermal conductivity of the composite as 

compared to spherical particles. 

Part II:  Vortex magnetic field mixing introduces a technique for mixing 

liquids that relies on the propensity of magnetic particles in a suspension to 
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form numerous chains that whirl around in perpetual pursuit of the dynamic 

magnetic field vector of the vortex magnetic field, thereby agitating the 

suspending liquid. The concept of a vortex magnetic field (which underlies 

this technique) and the mechanism responsible for mixing are established. 

Also covered, are the experimentally-observed trends for the mixing torque 

on the relevant parameters (i.e., magnetic field strength, frequency, vortex 

field angle, and fluid viscosity), which compare well with prior theory. 

Part III: Isothermal Magnetic Advection introduces an entirely new 

class of fluid flows that are stimulated when platelet-shaped magnetic particles 

in suspension are subjected to particular biaxial magnetic fields. At once, a 

lattice of interdigitated columns transporting fluid in each of two principal 

directions emerges. The morphological characteristics of this flow lattice can 

be manipulated by selecting particular values for the magnetic field 

frequencies, strengths, or phase relationship between the two field 

components. This technique, which requires neither gravity nor a thermal 

gradient, is ideally suited to situations where conventional cooling solutions 

cannot work (e.g., convection in microgravity environments). 

Part IV: Dynamics of vortex fluids introduces the concept and 

realization of creating deterministic vorticity in magnetic particle suspensions 

by applying complex, time-dependent magnetic fields of two principal types: 

Symmetry-breaking rational magnetic fields and Rational triad magnetic fields.  The 

ratios of the component frequencies form small rational numbers (e.g., 1:2:3). 

(In fact, symmetry-breaking fields generalize the concept of the “vortex 

magnetic field” introduced in Part II, which is the particular case of 1:1:dc.)  

In general, these complex magnetic fields need not possess a net circulation to 

produce vorticity. A phenomenological theory is presented for these fields 
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that relies on the symmetries of the applied field vector, and that predicts 

many of the trends observed in experiments. These vortex fluids possess a 

uniform torque density making them capable of such bizarre phenomena as 

active wetting, negative viscosity, and stunning biomimetic dynamics. 

Each of these four parts is comprised of “self-contained” chapters, wherein each chapter is 

based on an article that has already undergone peer review and been published in a scientific 

journal.  (As of the date of writing of this dissertation Chapter 12 has not yet been 

published.)  The citation for each original source journal article is included as a footnote on 

the bottom of the first page of each chapter.  As can be expected, each chapter is in a format 

typical of a scientific article: (1) an Introduction to establish the context, background, and 

purpose of the work; (2) an Experimental section outlining the particular techniques, 

apparatus, and considerations involved in performing the work; (3) Results and Discussion 

sections; and (4) a Conclusions section to discuss the implications of the work, emphasize 

key results and limitations, and possible extensions or interesting directions for future 

related work.  The references are provided at the end of each chapter.  A key advantage of 

organizing the material in this way is that any particular chapter that a reader may find 

interesting can be read on its own. 

Finally, an introductory Background and Significance section is provided, establishing 

motivation for the work and discussing some general concepts, which the reader is 

encouraged to read before any other parts. 

Kyle J. Solis 

Albuquerque, New Mexico 

February 2015 
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Background and Significance 

The subject of transport phenomena is central to the study of chemical engineering 

operations, and encompasses the topics of fluid dynamics, heat transfer, and mass transfer. The 

respective transfer of momentum, energy, and mass are important concepts in many areas of 

engineering and science because they occur in most physical, biological, and chemical 

processes, and oftentimes simultaneously [1]. Moreover, effectively managing various 

transport phenomena is critical for ensuring the success and economic feasibility in many 

technological and industrial processes.  

Take the production of automobile tires as an example. All of the constituents that 

will comprise the finished tire: natural/synthetic elastomers; reinforcing fillers such as 

carbon black and silica; resin/oil plasticizers; and chemical additives such as antioxidants, 

antiozonants, and the “cure package” must first be thoroughly mixed—a process termed 

compounding [2]. While the mixing process itself is an example of momentum transfer, the 

mixing also generates considerable heat due to shearing and internal friction [3] as well as 

the heat evolved by the vulcanization reaction [4]. As is typical of chemical reactions, the 

vulcanization reaction rate possesses a large temperature coefficient (~2.65 × per 10 °C) 

[4], and this generated heat must be carefully controlled to prevent premature vulcanization 

or scorching of the batch. 

The Importance of Mixing 

Mixing is a commonly-encountered unit operation in many industrial and engineering 

processes, the aim of which is to ensure that two or more different substances or phases are 

spatially distributed such that the resultant mixture can be considered homogeneous—

exhibiting uniform desired properties. Oftentimes this description of ideal mixing cannot be 

realized in practice, so consideration must be given to the requirements and constraints of 

the particular mixing problem at hand [5]. Two primary considerations accompanying any 
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mixing problem are the relevant scales of length and time [6], which determine the “extent” 

of mixing required for a system to be considered well-mixed. Thus the extent of mixing 

required for a batch of concrete will be different than for a gasoline blend because the 

relevant length scale of homogeneity for concrete is much larger than for gasoline. 

Mixing problems have gained a reputation for being notoriously difficult to address 

both from a theoretical and practical standpoint. The difficulties concerning mixing depend 

on any combination of a variety of factors, such as the states of the substances being mixed 

(i.e., solid, liquid, gas), the material properties of the components (e.g., miscibility, density, 

viscosity, particle shape and size), the scale of the mixing problem (e.g., industrial, 

laboratory, microfluidic), and the geometry and design of the mixing equipment. Another 

concern regarding mixing operations is the stability of the mixture. That is, once mixed, will 

the dispersed components segregate or separate over time, and under what conditions? 

Familiar examples of segregation/separation include the so-called ‘Brazil nut effect’ [7] in 

which the migration of larger nuts to the top of a container of variously-sized mixed nuts 

occurs upon mechanical agitation (i.e., granular convection), and the phase separation in 

vinegar-and-oil salad dressings (i.e., emulsions), which occurs rather quickly even after 

vigorous shaking. The means by which segregation is mitigated depends on the particular 

destabilizing mechanism. For the mixed nut example, a solution would be to process the 

nuts so they are all roughly the same size; whereas, to stabilize the immiscible components 

of the salad dressing, an emulsifier—such as mustard—is required. 

Not only is mixing one of the most challenging unit operations encountered, it is 

arguably one of the most important [5,6]. One reason is that mixing operations are essential 

and pervasive to so many industries. Some examples include chemical processing, 

petrochemicals, pharmaceuticals, food processing, drinking and wastewater treatment, 

paints, polymer processing, and pulp/paper. Moreover, within each industry the efficacy of 

mixing operations can drastically affect product yield and quality. Another reason mixing 

holds such importance is its impact on manufacturing costs. There are the obvious costs 
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associated with the design, implementation, and operation of successful mixing processes. 

However, the lost revenues due to improper scaling up of mixing processes can be quite 

substantial [5,6], making the investments in addressing problems at the process development 

stage well worth their cost. While the scaling up of mixing processes has many associated 

complexities [8], so does their scaling down. In fact, some particularly challenging mixing 

problems are encountered with micro- and nanofluidic technologies, wherein the small 

length scales involved mitigate against inducing turbulence [9]. 

The Importance of Moving Fluids 

With regard to the transport of mass and heat in fluids, the ability to generate bulk motion 

of the fluid (i.e., convection) is far more efficient than the comparatively “passive” process of 

molecular collisions (i.e., diffusion/conduction). This fact is illustrated by comparing the 

characteristic time for convection, which scales with distance, to that for diffusion, which 

scales as the square of distance. Thus, doubling the distance over which some quantity is 

transported results in a four-fold decrease in the timescale for convection as compared to 

diffusion. From this consideration it becomes clear why for many transport processes 

involving fluids, such as mixing and heat transfer operations, it is desirable to achieve 

turbulent rather than laminar flow in the working fluid. 

In reality, momentum transport within a fluid is ultimately mediated by molecular 

collisions regardless of the flow regime. The kinetic energy of a turbulent flow “cascades” 

down a hierarchy of progressively smaller eddies until molecular diffusion dominates—at 

the Kolmogorov length scale—causing viscous dissipation of energy [10]. Nonetheless, it is 

the macroscopic motions of the fluid that accelerates this process of chaotic mixing, which 

makes turbulence so efficient at transport. This description of turbulence is elegantly 

articulated in the following verse by the English mathematician Lewis F. Richardson [11], 

“Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to 

viscosity.” 
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The word convection, in the context of thermal transport, generally refers to the 

exchange of energy between a surface that is in relative motion to an adjacent fluid. 

However, a distinction is made between forced or artificial convection—in which bulk 

motion of the fluid is effected by some external means, such as a pump or fan, and natural or 

free convection—in which an unstable, temperature-induced, density gradient in the fluid 

sustains buoyancy-driven circulation. 

Under the proper conditions,† natural convection in a fluid can form an exquisitely-

ordered pattern of hexagonal flow cells. Thermal transport by such convection cells was first 

visualized by French physicist Henri Bénard in 1900 [13]. In 1916, Lord Rayleigh developed 

a theoretical understanding [14] of the experimental conditions that give rise to convection 

by analyzing Bénard’s experiments. (In fact the dimensionless number that characterizes the 

onset of convection is now called the Rayleigh number.) Depending on the particular 

experimental conditions, convection cells can assume a variety of complex and beautiful 

patterns including rolls, circles, and linear and square patterns. Such rich displays of 

nonlinear dynamics, the implications for heat transfer, and the simple, well-defined, 

experimentally-accessible conditions have made convective phenomena one of the most 

intensively studied self-organizing, non-linear systems over the last century [15–17]. 

Around 1970, it was discovered that applying a magnetic field gradient along the 

thermal gradient could enhance natural convection in magnetic fluids [18,19]. However, the 

enhancement is dependent upon the thermal gradient and does not lead to new flow 

patterns. Such thermomagnetic convection [20] can be explained in terms of the 
                                                           
† Some comments are necessary to clarify the particular conditions that give rise to the various convective 
phenomena in fluids. Bénard’s original experiments on convection, wherein a thin layer of liquid with a free 
top surface was heated from below, were actually demonstrating the thermocapillary effect. While Bénard 
attributed the buoyancy of the fluid near the hot surface as the mechanism by which the convection cells 
formed, it was later discovered [12] that the free liquid surface develops temperature-induced surface 
tension gradients that drive the convection. Thus, the case of convection with a free fluid surface is now 
called thermocapillary convection or Bénard–Marangoni convection (in honor of the 19th century Italian 
scientist Carlo Marangoni, who studied surface-tension-driven flows); whereas, the case of convection in a 
liquid confined between two horizontal plates, which is buoyancy-driven, is called Rayleigh–Bénard 
convection or simply Bénard convection. 
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temperature dependence of the Kelvin force (the force on a magnetic object in a field 

gradient) on an individual particle. This Kelvin force increases with decreasing temperature, 

due to the negative pyromagnetic coefficient of ferrofluids. So if the magnetic field gradient 

is applied along the thermal gradient, the body force is larger on the cooler fluid, which adds 

to the buoyancy that drives natural convection. Thus, the possibility of using magnetic fields 

to influence the behavior of magnetic fluids and thereby controlling transport properties 

becomes evident. 

Magnetoresponsive particle-fluid dynamics 

In this dissertation we review recent work on structure formation and emergent phenomena 

in suspensions of magnetic particles driven by time-dependent, multiaxial magnetic fields. 

This work is focused on magnetic systems, because almost all of the phenomena we will 

describe were discovered in this context, for reasons given below. 

Driving particle systems with time-dependent fields can generate a variety of 

behavior, and we discuss two categories of field-driven assembly. The first category can be 

called static assembly. Static assembly occurs in instances where the frequencies of the field 

components are sufficiently high that the particles and the fluid they are coupled to cannot 

follow the changing field vector. Static particle assemblies then form that are directed by 

their time-averaged interactions. These particle assemblies can be highly organized and 

exhibit unique and interesting symmetries that are strongly dependent on the relative 

amplitudes of the field components. (In one particular case, the static assemblies that result 

from a time-dependent uniaxial field are identical to those created using a static dc field.) 

The second category, dynamic assembly, can occur when the field frequencies are 

sufficiently low that the particles or their assemblies can couple to the dynamic field vector. 

In this case a variety of highly organized emergent behaviors can arise that are dependent on 

the nature of the driving field, the particle geometry, coupling to the fluid, and the 

dimensionality of the system. These behaviors tend to be robust, due to the significant 
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power that the dynamic field can impart to the system, which is dissipated through the 

vigorous fluid flows that occur. Examples of such behavior include the simple rotational 

flow that occurs when spherical particles assemble in “vortex fields” and the much more 

complicated emergence of advection and vortex lattices when magnetic platelets are driven 

by particular multiaxial fields. 

It is clear that the range of phenomena that can be produced is broad, and includes 

the formation of particle composites having a variety of optimized structures, novel methods 

of magnetic mixing, the stimulation of advection lattices, and the creation of vortex fluids. 

While most of these phenomena have application to sensors, actuators, fluid mixing and heat 

and mass transfer, some are also quite scientifically intriguing, such as the animation of 

suspended magnetic fluid droplets to produce striking biomimetic dynamics. 

Why magnetic systems? 

Before introducing the body of the work, it is helpful to discuss why the focus of this work is 

on magnetic systems. A dipole is a dipole, so in principle any of the magnetic phenomena of 

interest here can also be created with time-dependent electric fields. This fact has the 

practical implication that dielectric particles can be used to create composites with possible 

applications as dielectric materials for capacitors, electrostrictive actuators, capacitance-

based sensors and so forth. However, there are important practical differences between 

electric and magnetic systems. Foremost among these is that free magnetic monopoles don’t 

exist, so magnetic interactions are not “charge” screened. Highly cooperative, long-range 

phenomena are thus easily stimulated and observed [21]. 

The lack of free magnetic monopoles also eliminates the concern over breakdown at 

the high fields required to create structure in particle suspensions. Consequently, magnetic 

fields are capable of generating extremely large particle interactions. These interactions are 

proportional to the energy density of the field, and an electric field that is 10 kV/cm has the 

same energy density as a magnetic field of only 35 Oe. Electric fields of the order of 
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40 kV/cm can easily create breakdown in particle suspensions, whereas an applied magnetic 

field of 140 Oe, which has comparable energy density, is quite modest and far below the 

saturation field of most ferrous materials in particle form. Moreover, a magnetic field of this 

magnitude is easily generated over a large volume with open-air Helmholtz coils. In addition 

to breakdown issues, electric fields can also cause charge injection, which leads to chaotic 

advection instead of structure formation. Free charge causes another practical difficulty: in 

order to create interactions mediated by the dielectric contrast between the particle and 

liquid phase, the field frequency must be fast compared to the RC time of the fluid. 

Satisfying this condition can require field frequencies in excess of 1 kHz and the finite slew 

rate of amplifiers can severely limit the gap over which such high frequency fields can be 

applied. 

The ease of creating uniform multiaxial magnetic fields over large volumes is perhaps 

the greatest experimental benefit of magnetism. Open-air Helmholtz coils can create 

remarkably uniform fields over a roughly spherical volume that fills their accessible interior 

volume, which is also visually accessible. Orthogonal Helmholtz coils do not have mutual 

inductance, nor does one coil distort the field produced by another, since the permeability 

of copper is essentially that of free space. The induction of eddy currents can be eliminated 

by the appropriate wire gauge selection, so proximity effect losses can be negligible below 

some characteristic frequency. Coils can have high inductances, but running the coils in 

series resonance with a capacitor bank confines the high voltages to the coils and the banks, 

allowing an ordinary audio amplifier to be used to drive the circuit since this is attached 

across the low voltage points on the resonant circuit and sees a purely nonreactive 

impedance [22]. The triaxial magnet used to perform much of the research discussed herein 

is shown in Figure 1, and can create homogeneous, time-dependent fields over a roughly 

spherical volume 8 cm in diameter and can operate at frequencies up to 1 kHz and produce  
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Figure 1.  Triaxial Helmholtz coil magnet assembly used in the research comprising this 

dissertation. 

fields as large as 300 Oe rms. In contrast, creating uniform multiaxial electric fields over a 

significant volume is difficult because the permittivity of the conducting electrode material is 

not that of free space, but is infinite. Each set of electrodes thus interferes with the fields 

produced by the other sets, creating severe fringing fields and poor field homogeneity. 

Creating a triaxial field is especially problematic because at least one electrode must be 

transparent (e.g., indium tin oxide) to observe the suspension. On the other hand, it is clear 

that the effects of free charge are responsible for some of the complex phenomena that have 

yet to be observed in magnetic systems, such as the observation of transverse bands of 

circulating particles in confined dielectric particle suspensions subjected to uniaxial ac 

electric fields [23,24]. 

The principal difficulty with magnetic field studies is determining the macroscopic 

field within the sample. This is not generally a problem with electric fields since the 

electrodes are in contact with the sample. The macroscopic field can be substantially lower 

than the applied field, due to the demagnetizing fields [25] that occur in a typical experiment 

wherein the field is applied to a sample by magnetic coils. In electric field studies the 

corresponding depolarizing fields can be zero if the field is applied to the sample via 
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contacting electrodes, which is often the case. Accurately accounting for demagnetizing 

fields is especially important for samples of large relative permeabilities, and can so 

thoroughly dominate magnetostriction measurements on composites that the sign of the 

effect is altered. However, for much of the work described here the particle suspensions are 

sufficiently dilute that demagnetization fields are weak. When these fields are significant, the 

macroscopic internal field can always be accurately computed. 

Hopefully the reader can appreciate the possibilities and advantages for using 

magnetism to control transport phenomena in a variety of systems. 
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Chapter 1 

Field-structured magnetic platelets as a route to 

improved thermal interface materials1 

The development of high-performance thermal interface materials (TIMs) is crucial to 

enabling future generations of microelectronics because the TIM is usually the limiting 

thermal resistance in the heat removal path. Typical TIMs achieve modest thermal 

conductivities by including large volume fractions of randomly-dispersed, highly-

conductive, spherical particles in a polymer resin. This chapter explores field-structured 

magnetic platelet composites as a new approach to more effective TIMs. The motivation for 

this approach is rooted in shape functional theory, which shows that when the particle 

material has a significantly higher thermal conductivity than that of the polymer, the particle 

shape and orientation are the factors that limit conductivity enhancement. Oriented platelets 

are highly effective for heat transfer and if these are magnetic, then magnetic fields can be 

used to both orient and agglomerate these into structures that efficiently direct heat flow. In 

this paper we show that such field-structured composites have a thermal conductivity 

anisotropy of ∼3, and at the highest particle loading of 16 vol.% we have achieved a 23-fold 

conductivity enhancement, which is 3-times larger than that achieved in unstructured 

platelet composites and 8-times greater than unstructured spherical particle composites. 

1.1 Introduction 

The increasing power densities of microsystems have created a need for significantly 

improved thermal interface materials (TIMs). TIMs are used to bond a die to a heat sink and 

must efficiently conduct heat for the operating device to remain within an acceptable 

temperature range. A TIM should have a large thermal conductivity, small coefficient of 

                                                           
1 Originally published as:  K.J. Solis and J.E. Martin, Field-structured magnetic platelets as a route to improved thermal interface 
materials, Journal of Applied Physics 111, 073507 1–10 (2012). 
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thermal expansion, good adhesive/cohesive strength, and workable rheology. In some cases 

a large electrical resistivity and significant dielectric standoff are required. Interest in TIMs is 

currently quite high, as they are often the largest thermal resistance encountered in the heat 

removal path from many microsystems and are a key impediment to the implementation of 

many high-power-density devices. 

One standard approach to TIMs is to produce a polymer resin that contains particles 

of a material that has substantially greater thermal conductivity than that of the polymer 

phase, the so-called high contrast case. Unfortunately, most such particles are nearly 

spherical, and when a spherical particle is placed in a continuous phase having an initially 

uniform thermal gradient, the isotherms tend to mostly steer around the particle, leaving 

only a small thermal gradient within the particle [1.1,1.2]. The thermal conduction inside 

such a particle is consequently only a few times larger than that of the unfilled polymer. 

Using spherical particles of exceptionally high contrast is of little benefit, since as the 

thermal contrast increases, the internal thermal gradient decreases, with the result that at 

reasonable loadings a spherical particle never exhibits an apparent thermal conductivity 

greater than four times that of the polymer. (The apparent thermal conductivity is that value 

that gives the correct effective composite thermal conductivity at low particle loadings using 

a parallel rule of mixing. It is sometimes referred to as the virial coefficient [1.3]. For 

example, adding 10 vol.% spherical particles of infinite thermal conductivity to a polymer of 

thermal conductivity 0.20 W/m·K would give a composite with a thermal conductivity of 

∼(4 × 0.10 + 0.90)  × 0.20 W/m⋅K = 0.26 W/m⋅K , which is only marginally greater than 

that of the polymer. To obtain high thermal conductivities one can increase the particle 

loading, but at best this increases the resin viscosity commensurately [1.3] and can even 

result in Bingham plastic rheology. A second approach is to increase the loading such that the 

particles percolate and then sinter the composite. This approach requires processing 

temperatures that are above the reflow temperature of the bonding materials used in many 

microsystems and results in a highly electrically conductive material that is not suitable for 
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all applications. In this chapter we report a new approach that is based on resins containing a 

modest loading of magnetic platelets that are magnetically aligned and agglomerated to 

create a TIM with efficient, directed heat flow. 

Much greater enhancements are possible with anisometric particles [1.3–1.8], 

especially if they are preferentially aligned with their long axes along the thermal gradient 

and agglomerated into appropriate structures. Rods are a highly effective shape, but even 

very modest loadings create severe congestion and poor flow rheology, so we have chosen 

to use magnetic platelets. As we will show, aligned Ni platelets have good thermal 

transport, yet have a manageable rheology even at relatively high loadings. 

For any given choice of particles, polymer, and loading, the thermal conductivity of a 

composite will depend on the only remaining variable, the orientation of the particles and 

their relative positions, which we will collectively call the composite structure. In principle, 

one could develop a simulation to find the optimal structure for thermal transport, but even 

if this were known it would be technically very challenging to actually create this structure 

in the lab. Fortunately, in the case of magnetic particles, simply applying a magnetic field 

both determines and creates the optimal composite structure, at least in the presence of 

thermal fluctuations. So using magnetic fields to optimize composite conductivity is not 

simply hopeful, but is founded on the known isomorphism between the magnetic 

permeability and the thermal conductivity of particle composites [1.9]. (This isomorphism is 

only exact in the absence of the Kapitza resistance, which may somewhat reduce the 

measured thermal conductivity enhancement from that which obtains for the magnetic 

permeability.) 

In the case where the particle material has both a much greater magnetic permeability 

and thermal conductivity than the polymer, and where the apparent particle magnetic 

permeability and thermal conductivity are limited by particle shape, then both the 

permeability and thermal conductivity enhancements of a particle composite will be 

identical. For example, Ni has a relative magnetic permeability of ∼600, which is, 
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therefore, ∼600×  that of a diamagnetic or paramagnetic material and has a thermal 

conductivity (at 300 K) of 91 W/m·K, which is ∼400× that of an epoxy. These contrast 

ratios are sufficiently large that the apparent particle properties will be shape-limited for the 

platelets of interest here, as described in detail below. When a suspension of such Ni 

platelets is subjected to a structuring magnetic field (i.e., a field well below that which 

causes magnetic saturation), the platelets will orient and agglomerate to minimize their 

magnetostatic contribution to the free energy. Because the energy of an induced particle 

dipole in an applied field is negative, this minimization maximizes the composite 

permeability and therefore the composite thermal conductivity. This principle of 

magnetically maximizing the thermal conductivity has already been demonstrated for 

spherical particle composites [1.10], where both the permeability and thermal conductivity 

enhancements have been shown to be both substantial and equal. In the following we 

describe the results of applying this principle to magnetic platelets to produce composites 

with extremely large specific thermal conductivities. 

1.2 Theory 

Platelets offer a substantial advantage over spherical particles for property enhancement 

because their shape results in much greater field (i.e., thermal gradient) penetration for the 

component of the field that lies in the platelet plane and this consequently results in a much 

larger in-plane apparent particle thermal conductivity. In the following we will describe 

some of the theory of composites containing these particles. 

The apparent particle thermal conductivity Kapp is defined through the parallel mixing 

rule for the effective composite thermal conductivity,  apppolyeff KKK  )1( , where Kpoly 

is the polymer thermal conductivity and  is the particle volume fraction. For most systems 

of interest, Kapp has little dependence on the thermal conductivity of the material of which 

the particle is comprised, but is strongly dependent on the particle shape, orientation, and 

spatial correlations between particles. At low particle loadings, the effective thermal 
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conductivity Keff of a random composite of particles can be expressed as the so-called virial 

expansion 

...)1(  polyeff KK ,        (1-1) 

where α is the first virial coefficient [1.3], which in the limit of low particle loading is given 

by 1/  polyapp KK . In the present context it is more descriptive to refer to α as the 

transport virial coefficient. As mentioned above, for high-contrast spherical particles the 

transport virial coefficient approaches 4 −1 = 3, so the thermal conductivity enhancement is 

very modest. However, in the high-contrast limit the transport virial coefficient is a strong 

function of particle shape, particle orientation, and particle agglomeration. Platelets offer 

the opportunity to exploit all of these effects to obtain unusually large specific conductivity 

enhancements (the relative increase in the effective thermal conductivity of the composite 

per volume fraction of particles). 

The computation of the transport virial coefficient is the subject of shape functional 

theory [1.3] and has been worked out exactly for generalized ellipsoids [1.11] and some 

other elementary shapes, such as tori [1.3]. For an ellipsoid placed in an initially uniform 

thermal gradient, the steady-state internal thermal gradient is constant, regardless of particle 

orientation. This condition makes the determination of the virial coefficient a tractable 

problem with a simple solution. The principal components of the so-called “polarizability” 

tensor (a term that derives from the consideration of the isomorphic dielectric properties) 

can generally be expressed in terms of the relative thermal conductivity polypr KKK /  of 

the particle phase to the continuous (polymer) phase by 

zyxw
Kn

K

rw

r
w ,, ,

)1(1

1





 .        (1-2) 

In general, the “demagnetization” or “depolarization” factors nw are positive numbers that are 

strong functions of particle shape and weak functions of the contrast factor. For general 
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ellipsoids these demagnetization factors are functions of particle shape alone and are subject 

to the sum rule 1 zyx nnn . In the remainder of this discussion we will focus on prolate 

and oblate spheroids and to be definite we will take the z axis to be along their polar axis and 

the x and y axes along their diameter, so yx nn  . For any given aspect ratio (which is greater 

than 1 for prolate spheroids and less than 1 for oblate spheroids), there will be certain 

demagnetization factor values for the principal moments, and it is only important at this 

point to know that along a long axis these values become very small. In other words, for 

prolate spheroids, yxz nn ,  and for oblate spheroids, yxz nn , . For prolate spheroids, it is 

useful to write the depolarization factors along the diameter as zyx nn 
2

1

, . The parameter 

nz approaches zero quadratically with inverse aspect ratio for large aspect ratios, so for 

acicular particles 2/1, yxn . For oblate spheroids the depolarization factor along the polar 

axis can be written as yxz nn ,21 , where yxn ,  vanishes as the aspect ratio for small aspect 

ratios. For highly oblate spheroids 1zn . 

In the limit of large contrast, defined as rKn 1

min , where nmin is the minimal 

principal component of the polarizability tensor, the transport virial coefficient is a function 

of particle shape alone. This is the usual experimental situation. For the simple case of 

randomly oriented particles, the virial coefficient is 1/3 the trace of the polarizability tensor 

[1.3], 3/)( zyx   , so in the large contrast limit 3/)( 111   zyx nnn . For highly 

prolate spheroids the virial is 1

3

11 3/)4(   zzpro nn and for highly oblate spheroids it is

1

,3

21

, 3/)21(   yxyxobl nn . For randomly dispersed particles with their long axes oriented 

along the thermal gradient, these virials are 1 zpro n and 1

,

 yxobl n , so field orientation 

alone can increase the virial by a factor of 3 and 3/2, respectively, for such strongly 

anisometric particles. An applied field also causes particle agglomeration, with the result 

that the experimental enhancements can be much larger than that due to particle orientation 

alone, as we shall see. The effect of field agglomeration is amenable to theoretical analysis 
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for spherical particles forming a wide variety of agglomerations [1.4,1.10,1.12], but is a 

very complex issue that has not yet been treated for other shapes. 

In the work of Douglas et al. [1.3] there are presented extensive tables of the 

principal moments of the polarizability tensor for ellipsoids in the limit of infinite contrast. 

Citing some experimentally relevant examples gives an appreciation for the importance of 

particle shape. For the sphere the sum rule gives nw =1/3 , so α=3 . For a prolate spheroid 

of aspect ratio 40, the principal components are 2.004, 2.004, and 473. Randomly-aligned 

rods would give α = 159, and magnetically-oriented rods would give  = 473. For an oblate 

spheroid of aspect ratio 40, the principal components are 1.04, 52.6, and 52.6. Such 

randomly-aligned particles would give a virial of ∼35.4 and oriented particles would give 

52.6. So particle shape is an appreciable effect for physically attainable aspect ratios, 

especially when field alignment is employed. 

Field alignment can also be useful in directing thermal transport, since in the 

directions orthogonal to the alignment field the thermal conductivity is relatively low. For 

highly prolate spheroids aligned along the z' axis, the transverse virial will be 21

,,  

 yxyx n  

(primed coordinates denote the direction of the applied thermal gradient in the composite 

material). For highly oblate spheroids magnetically aligned along the z' axis the transverse 

virial will be 1

,2

111

,, 2/)( 

  yxzyxyx nnn , showing that in this instance the thermal 

conductivity anisotropy will be only a factor of 2 (although we shall see that particle 

agglomeration will cause it to be more substantial). The anisotropy for highly oblate 

spheroid composites can be much larger if a biaxial field is used to align the platelets in the 

x'-y' plane. In the plane of the platelets the transport virial will be 1

,



yxn  and in the z' direction 

it will be only 1)21/(1 ,

1 

yxz nn . For such biaxially-oriented platelets the conductivity 

anisotropy can be extremely large, being limited only by the contrast factor Kr. Such 

materials could be highly effective heat spreaders. 
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In the following we discuss in further detail the demagnetization factor and the 

isomorphism between the magnetic permeability and thermal conductivity, which ultimately 

derives from the fact that the magnetostatic potential and the temperature field during 

steady-state heat conduction both obey Laplace’s equation. This discussion will clarify the 

role of the demagnetization factor in predicting the thermal conductivity of particle 

composites. 

1.2.1.  The demagnetization factor 

When a magnetic particle is inserted into an initially uniform magnetic field the particle 

magnetizes, producing capping magnetic “monopole” layers that create a field within the 

particle that opposes the applied field 0H . This effect can be quantified by the so-called 

demagnetization factor n [1.11], defined by 

MHH n 0int ,          (1-3) 

where intH  is the internal macroscopic field, and M is the particle magnetization. This 

equation implies that the internal field is uniform, which is the case for particles in the shape 

of ellipsoids and tori [1.13]. We recall from above that for ellipsoidal particles the 

demagnetization factors along the principal axes x, y, z are positive, subject to the sum rule

1 zyx nnn , and independent of the susceptibility of the material of which the particle is 

comprised. In the following we treat the case where the particle is aligned with the field 

along one of its principal axes. 

In the linear response regime the magnetization of a particle is related to the internal 

macroscopic field by its susceptibility, intHM  . Here  is r − 1, where r is the 

permeability of the material of which the particle is comprised relative to that of the 

continuous phase. Substituting this relation into Equation 1-3 gives )1/(0int n HH  for 

the internal field. The apparent particle susceptibility is defined by 0HM app  and thus is 
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The effective permeability of a composite can be computed by considering the magnetization 

per unit field, with the result ...)1(   apppolyeff
, which is analogous to the virial 

expansion presented for the thermal conductivity. The first virial coefficient is thus simply 

the apparent particle susceptibility from this magnetics perspective. The apparent particle 

permeability and apparent susceptibility are related through polyappapp  )1(   [1.14]. This 

calculation shows that at least for ellipsoidal objects, the dependence of the virial coefficient 

on the permeability contrast factor r is simple, since n is independent of this contrast factor. 

Numerical work on the virial coefficient can thus be restricted to n as a function of particle 

shape. (For general shapes, where the internal field is not uniform, the demagnetization 

factor is a function of the contrast factor, a point to which we will return in the simulation 

section §1.5 of this chapter.) As a matter of interest, for large positive contrast (r = ∞) the 

virial coefficient approaches 1/n, and for large negative contrast (r = 0) this virial is 

−1/(1− n). For a sphere these limits are 3 and −3/2. Finally, the magnetic induction inside 

the particle can be computed from )( int0int MHB   , which gives 0int
1

1
BB





n


 . The 

case of finite contrast factor has been considered by Garboczi and Douglas from a somewhat 

different perspective [1.15]. 

The heat conduction problem can be mapped onto the permeability problem because 

in steady state both the magnetic induction B and the heat flux density J obey Laplace’s 

equation. By definition the heat flux within the particle is intint TK pJ . The thermal 

gradient is isomorphic to the magnetic field, so the thermal gradient within the particle is 

related to the applied thermal gradient by )1/(0int nTT  , where the relative thermal 

susceptibility  is defined by  = Kr − 1 in terms of the relative thermal conductivity 

polypr KKK /  of the particle and polymer phases. Combining these expressions gives 
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
 , showing that the thermal flux density is analogous to the magnetic flux 

density. From this relation the demagnetization factor can be written as 
rr

rr

JK

JK
n

)1( 


  in 

terms of the relative thermal flux density 0int / JJJr   (note that Jint and J0 are parallel 

vectors when a principal axis is aligned with the applied field). The incremental thermal flux 

density within the particle is 0intint )( JJ apppolyp TKK  , where we recall that the 

apparent thermal susceptibility )1/(  napp   is the transport virial coefficient. The 

incremental flux density is thus analogous to the magnetization. For the sake of 

completeness we mention that in the numerical studies described below we obtain the virial 

coefficient from 
r

r

r
app J

K

K 1
 . 

1.3 Experimental 

The formation of functional composites with high effective conductivities requires both a 

high transport virial coefficient and a high particle loading. To achieve both we structured 

our platelet composites with a magnetic field having a strong gradient parallel to the field. 

This gradient field orients the particles and then draws them into the high field region. This 

is done in a 1 cm square cuvette that is initially filled to a level of 3 cm with the dilute 

epoxy-particle suspension. The field gradient concentrates the particles into the bottom of 

the cuvette, to a height that is typically ∼5 mm. After the epoxy cures, a 1.5 mm thick, 

1 cm square composite is machined for laser flash diffusivity measurements. With this 

procedure the platelets consistently achieve a loading of ∼10%. Loadings as high as 

16 vol.% were produced by vibrating the sample in the structuring field. The image in 

Figure 1-1 was taken parallel to the structuring field and shows unexpected texture. 
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Figure 1-1.  Photograph illustrating the textured ordering of Ni platelets observed in a composite 

in which the magnetic field was applied normal to the plane of the picture. 

We used four grades of Novamet platelets, marketed as: Conductive Ni platelets, 

Fine Water Grade Ni, Fine Leafing Grade Ni, and Standard Leafing Grade Ni. These 

platelets differ in their typical thicknesses and are quite irregular in shape, with a typical 

width of ∼20 m. These thicknesses are 0.7, 0.5, 0.5, and 0.6 m, respectively, so the 

typical aspect ratios range from ∼30 to 40. (In both the experimental and simulation 

sections that follow we will define the aspect ratio as the particle diameter divided by its 

thickness. This is the inverse of the definition used in the discussion above, where we sought 

to avoid confusion with prolate ellipsoids, but is much more intuitive in all that follows.) 

As a matter of interest, composites were also made of some magnetic Novamet 

particles having exceedingly complex shapes, including Ni-coated graphite and filamentary 

Ni powder. These field-structured composites are included for comparison to the platelets 

and were made in the hope that they might actually give greater enhancements. 

Finally, spherical particle composites were produced in a uniform field and were 

made at loadings from ∼5–30%, using 10 m Novamet Conductive Nickel Spheres (CNS). 

These composites were made to demonstrate the ability of field structuring to direct heat 

flow and to quantitatively demonstrate the advantage of using platelets. 
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1.4 Experimental Results 

Before presenting our experimental results, it is necessary to point out that we cannot make 

measurements at extremely low particle concentrations, due to the errors associated with 

these measurements for samples with low thermal conductivities. Because of this fact, and 

the manner in which our samples are synthesized, our samples have loadings that are 

typically around 10  vol.%. Much of our experimental data is therefore presented as a specific 

conductivity enhancement, defined through 

poly

polyeff

K

KK





ˆ .         (1-5) 

In the limit of zero particle volume fraction this parameter is equal to the virial coefficient. 

The advantage of reporting our measurements in this form, rather than as a thermal 

conductivity, is that ̂  is independent of the polymer thermal conductivity and is more 

weakly dependent on the particle volume fraction. For unstructured spherical particle 

composites the Maxwell theory gives )1/(ˆ   , so at 10  vol.% the specific conductivity 

enhancement is just 11% larger than the virial coefficient. In any case, we will specify the 

loadings of our samples. 

In the following we first give results for field-structured Ni spherical particle 

composites as a basis for comparison to platelet composites. We then give results for Ni and 

stainless steel platelets, and finally describe field-structured composites containing particles 

having complex geometries. 

1.4.1.  Spherical particle composites 

Spherical particle composites can be fabricated over a wide range of loadings, so many 

samples were made at specified loadings and in a uniform structuring field. The thermal 

conductivities of these materials, presented in Figure 1-2, show a significant conductivity 

anisotropy, about 3:2 at the highest loading, with the thermal conductivity highest along the 
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chains. The field enhancement is purely due to particle agglomeration, since multi-domain 

spherical particles cannot orient. However, the thermal conductivities are not that high, not 

exceeding even 1 W/m·K at 30 vol.%. Samples structured in a field gradient achieved an 

average loading of 37.9% and a thermal conductivity of 1.44 W/m·K, for a specific 

enhancement of 16.4. Higher loadings resulted in a composite precursor that was too 

viscous to degas reliably and otherwise process, so something like a conductivity of 

1.5 W/m·K is about the performance limit for this spherical material. Random composites 

give conductivities comparable to the transverse results shown here. Noteworthy also is the 

essentially linear dependence of the thermal conductivity on particle loading, an effect we 

have discussed at length elsewhere, and which can be understood through self-consistent 

local field calculations of simulated field-structured composites [1.10]. 

(Another spherical Ni Novamet powder marketed as 4SP Ni gave a somewhat higher 

loading of 43.3 vol.% under field gradient structuring, resulting in a thermal conductivity of 

2.14 W/m·K. The reason for this improved performance is not clear.) 

 

Figure 1-2. Thermal conductivity as a function of particle volume fraction for composites 

containing spherical Ni particles. Measurements were made parallel (♦) and transverse (◊) to the 

structuring field. The conductivity anisotropy is purely due to particle chain formation. 

  



29 

 

1.4.2.  Platelet composites 

Platelet composites were fabricated using four types of Novamet particles, marketed as: 

Conductive Ni platelets, Fine Water Grade Ni, Fine Leafing Grade Ni, and Standard Leafing 

Grade Ni. These platelets differ in their typical aspect ratio and size. All of these materials 

gave composites with loadings of about 10.6–11.4 vol.%, save the Conductive Ni platelets, 

which attained 16.6 vol.%. The measured specific conductivity enhancements were 38.8, 

81.0, 86.5, and 97.6, respectively and the corresponding conductivities were 1.56, 1.93, 

2.16, and 2.41 W/m·K. These values are much higher than the spherical particle 

composites even though the loadings are much lower. Both particle orientation and 

agglomeration are at play in these results. 

Because the standard leafing grade platelets produced the best result, we used this 

material to develop composites with higher loadings and to investigate the conductivity 

anisotropy. When mechanical vibrations were applied to the sample during field structuring, 

we found we could increase the particle loading to as much as 16.1 vol.%, ultimately 

achieving a thermal conductivity of 4.4 W/m·K (Figure 1-3), which is a specific 

enhancement of 121, significantly better than the value of 3.6 expected for an unstructured 

spherical particle composite at this loading. This value is ∼3× higher than that obtained for 

field-structured spherical particle composites, even though the loading was 2.4× lower. 

Figure 1-3 also shows that transverse to the structuring field the specific enhancement is 

3.5× lower, demonstrating that these materials can effectively direct heat flow. This 

anisotropy is much greater than that observed for the spherical particle composites, because 

of the dominant effect of particle orientation in such high aspect ratio particles. The 

unstructured platelet composite has a thermal conductivity comparable to the transverse 

conductivity, so field structuring increases the specific conductivity enhancement by a factor 

of ∼3.5. 
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Figure 1-3. Summary of results for the composites made of Novamet standard leafing grade Ni 

platelets. The thermal conductivity parallel to the structuring field is much higher than transverse, 

and the unstructured platelet sample is comparable to the transverse result. Arctic Silver is a 

commercial material that was cured under the same conditions and is included to show how it 

compares to the field-structured platelets. 

It is of some interest to compare our results to a commercially available high 

performance thermal interface material marketed as “Arctic Silver” that is also made at a low 

cure temperature and is therefore not sintered. Under the same conditions of cure this 

material gave a specific enhancement of 25.5 and a thermal conductivity of 0.98 W/m·K. 

We conclude that field-structured magnetic platelet composites show significant potential as 

thermal interface materials. 

We also obtained 316L stainless steel platelets from Novamet marketed as Standard 

Water Grade and Fine Water Grade. The Standard Water Grade materials gave samples in 

the range of 11.9–14.1 vol.% and specific enhancements from 24.3 to 27.0. The Fine 

Water Grade platelets gave samples in the range of 6.4–11.6 vol.% and specific 

enhancements from 21.4 to 30.0. Neither of these materials produced conductivities even 

close to the Ni, and this is not entirely unexpected, as the thermal conductivity of 316L is 

only 16.2 W/m·K, almost 6× lower than that of Ni. This issue of contrast is discussed in 

more detail in the simulation section below (§ 1.5). 
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1.4.3.  Composites of magnetic particles having complex geometries 

Novamet produces a variety of other magnetic particles, some of which have extremely 

complex morphologies, and we made field-structured composites out of several of these just 

to satisfy our curiosity. In all cases the particles were concentrated and aligned with a field 

gradient, so the loadings vary in accordance with the dictates of the particle geometry. The 

first type is marketed as 525 Conductive Ni powder, and it has an exciting filamentary 

structure that looked as though it might really work. It did not: The loading achieved was 

only 12.8 vol.% and the conductivity was only 0.75 W/m·K, for a specific enhancement of 

21.5. Vale Inco markets a filamentary powder as T255 Ni Powder, and it is similar in 

structure to the Novamet 525 product. It gave a loading of 10.1 vol.%, a conductivity of 

0.58 W/m·K and a specific enhancement of 19.0. 

Novamet Ni-Coated Graphite particles of an irregular but compact shape with 

significant anisometry gave a loading of 42.5 vol.% and a conductivity of 2.8 W/m·K, for a 

specific enhancement of 30.6. This material is quite good but the particles can easily 

approach 100 m in size, too large to achieve the very thin bond lines needed for most 

thermal interface applications. None of the more complex particles exceed the platelet 

results so these seem to present the best opportunity for developing high performance 

moldable composites. 

1.5 Simulations 

To obtain a detailed understanding of thermal transport in these composite materials would 

require a simulation of structure formation in magnetic fields, in order to quantify the 

contributions from both particle orientation and agglomeration. This is a fairly easy task for 

spherical particle composites, since a simple point dipole approximation to the magnetic 

interactions is sufficient to give physically compelling structures from Brownian dynamics 

simulations. (In fact, numerous papers have been published on structure formation in such 

systems, many in connection with electro- and magnetorheology.) These structures can then 
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be used to compute the thermal conductivity by treating the local field self-consistently, 

again in the point dipole approximation. This is the approach we have taken in computing 

the thermal conductivity, magnetic permeability, and electrostriction of magnetic field-

structured spherical particle composites, including those structured by multi-axial ac fields. 

Unfortunately, simulating the field-structuring of platelet suspensions is a much more 

challenging task because the self-consistent point dipole approximation is completely 

unrealistic, and could even lead to such unphysical phenomena as spontaneous 

magnetization. In this study we will take a first step in understanding our results by 

considering the virial coefficient of field-aligned platelets as a function of aspect ratio and 

thermal conductivity contrast. 

There are two basic approaches to the numerical computation of the virial 

coefficient: discrete element and Brownian walk algorithms [1.16]. We have taken the 

discrete element approach. The virial coefficient can be computed in a straightforward 

manner by simply meshing the desired object in a simulation volume, then relaxing 

Laplace’s equation to find the effective thermal conductivity, which we accelerate by using 

over-correction. The transport virial coefficient can then be estimated by inverting the first 

order virial expansion to obtain 

 
poly

polyeff

K

KK





, .        (1-6) 

This estimated virial coefficient is a function of the relative thermal conductivity

polypr KKK / , where Kp is the thermal conductivity of the material of which the particle is 

comprised, as well as both the discrete mesh size  and the volume fraction of the particle in 

the simulation volume, . To compute the first virial coefficient accurately requires that 

both the mesh size dependence and particle volume fraction dependence be removed by 

extrapolations to zero. The volume fraction extrapolation is analytic in form, being related 



33 

 

to the image fields created by the boundary conditions of the simulation volume, which to 

first order are dipolar in form. 

In practice we do not actually compute our transport virial coefficients from the 

increase in thermal conduction, but from the “demagnetizing fields” within the particle 

(these could be called “dethermalizing fields” in this context), an approach we find is more 

accurate. Our simulations are 2-D, so we consider heat conduction along the principal axes 

normal to the long axis of infinite rods with a generally rectangular cross section. The field 

inside a particle is not uniform, so the demagnetization factor is defined for average 

properties and becomes a weak function of the relative thermal conductivity. Because of the 

symmetry of these particles, the flux density averaged over the particle volume is parallel to 

the applied thermal gradient, so 
0int   and GG  are parallel. The average internal flux density 

can be computed from the average internal thermal gradient, which is just the average of the 

temperature difference on the two surfaces normal to the applied gradient divided by the 

gap between these surfaces. Computing the demagnetization factor from this average flux 

density gives exactly the same result as Equation 1-6, but we find the extrapolation to zero 

mesh size is more accurate, due to the weaker dependence of the results of this approach on 

mesh size. A second advantage of this approach is the weak dependence of the 

demagnetization factor on the relative conductivity, compared to the strong dependence of 

the transport virial coefficient on this factor. We find we can fit the demagnetization factor 

from our simulations to 

r

K
K

a
nn


 

1
,         (1-7) 

where )1/( rKa   is generally quite small compared to n . The transport virial coefficient is 

computed from Equation 1-7 using )]1(1/[)1(  rKr KnK . 

To test the accuracy of our numerical approach, we consider the square, because for 

the limiting case of infinite thermal contrast (where  n/1 ) this problem has been solved 
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exactly by Douglas et al. using a conformal mapping calculation. Figure 1-4(a) shows the 

extrapolation to zero mesh size for a relative thermal conductivity of 16. Figure 1-4(b) 

shows the extrapolation to zero volume fraction, which eliminates the effect of image fields. 

Analysis of the image fields in 2- or 3-D shows their effect is linear in the volume fraction, as 

this plot demonstrates. These extrapolations were repeated for each value of the contrast 

ratio and the dependence of the demagnetization factor on this variable is shown in Figure 

1-5(a). A best fit gives 744,45.0n  and 110392,96.0 a , so for infinite conductivity 

contrast this gives 1861.21  

n . The exact result is 1884.2/)4/1( 2/32

4

1
   [1.3]. 

Our result is about 0.11% lower than this exact value, which is certainly adequate for 

comparison to experiment. This double extrapolation was repeated for aspect ratios up to 8, 

and the results are shown in Figure 1-5(b). The rectangular objects were modeled by 

simply increasing the conductivities of all the bonds transverse to its major axis by the aspect 

ratio squared, relative to those parallel to its major axis. In other words, the discrete 

elements were mathematically similar rectangles. 

 
Figure 1-4. (a) The extrapolation to zero mesh size for the square, which is comprised of N

2 

discrete elements. (b) The extrapolation to zero volume fraction for the square eliminates the 

effect of image fields. 
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Figure 1-5. (a) Extrapolation to infinite thermal contrast for the square. The value 1.32 is used here 

to give greater accuracy in the extrapolation. (b) Summary of the demagnetization factor as a 

function of contrast ratio for rectangles of a range of aspect ratios, each aspect ratio differing 

from the next by a factor of √2. 

An adequate description of the functional dependence of the transport virial 

coefficient on both aspect ratio and contrast ratio can be obtained by reference to the plots 

in Figures 1-6(a) and (b), which show that to good accuracy RAn 8829.0343.11 

  and

2/3310337.81824.0/ RAna 

  . The demagnetization factor is consequently described by  
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which is valid for thermal contrast ratios and aspect ratios greater than 1. Substituting this 

expression into Equation 1-2 gives the desired expression for the virial coefficient, which is 

plotted for various aspect ratios as a function of contrast ratio in Figure 1-7(a). 
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Figure 1-6. (a) The maximum virial coefficient, obtained for the case of infinite thermal contrast 

Kr, is a linear function of particle aspect ratio for aspect ratios >>1. (b) The ratio a/n∞ is essentially 

a linear function of the three halves power of the aspect ratio. 
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Figure 1-7. (a) The virial coefficient saturates at ever-higher contrast ratios as the aspect ratio 

increases. (b) The contrast ratio required to achieve 90% of the maximum virial coefficient is 

shown as a function of aspect ratio. 

The transport virial coefficient saturates at high contrast ratios, so it is interesting to 

determine the contrast ratio required to achieve nearly the maximum possible virial 

coefficient for any particular aspect ratio. Figure 1-7(b) shows that to achieve 90% of the 

maximum virial coefficient requires a contrast ratio that is roughly 10× the aspect ratio. For 

the Ni platelets used in our composites, the contrast ratio is

400)KW/m 23.0/()KW/m 91(  , which is sufficient to take full advantage of an aspect 

ratio of 40, which is characteristic of the thinnest platelets we studied. The stainless steel 

platelets have a contrast ratio of ∼70, so a high aspect ratio of the platelets is not appropriate 
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for this material. In this case an aspect ratio of ∼7 would be much better, as this would 

enable much higher packing densities. 

1.6 Discussion 

There have been a number of studies of the use of platelets to enhance the thermal 

conductivity of polymers. Though none of these used field alignment, it is interesting to 

compare their results to those obtained herein. A very nice paper by Tekce et al. [1.5] 

compares the conductivity enhancement of 45 m Cu platelets, 600 m short Cu fibers, and 

50 m Cu spheres. The micrographs show that the aspect ratio of the fibers and platelets is 

quite large, and Cu has a thermal conductivity in the range of 350–384 W/m·K, which is 

much larger than that of the polyamide matrix, 0.32 W/m·K. At loadings of 16.0 vol.% we 

can compute from the data in their Figure 4 the thermal conductivity enhancements they 

achieved ( polyeff KK / ). For the Cu platelets the enhancement was 4.6, which is in excellent 

agreement with our own results for both control samples and the thermal conductivity of 

field-structured Ni platelets transverse to the structuring field. Parallel to the structuring 

field our Ni platelet composites gave a conductivity enhancement of 20. For the Cu fiber 

samples Tekce et al. [1.5] achieved an enhancement of ∼10.8 and for the Cu spheres the 

enhancement is ∼1.7, though it is difficult to extract this latter value from their plot. In any 

case, our Ni spheres gave an enhancement of 1.6 transverse to the structuring field and 2.8 

parallel to the field at 16.0 vol.%. We conclude that the higher thermal conductivity of Cu 

in comparison to Ni is not an important factor for these composites. However, the field 

orientation and agglomeration is a significant benefit. 

The thermal conductivity of epoxy composites containing graphite nano-platelets 

made from exfoliating graphite particles were studied by Yu et al., [1.8] who achieved a 

thermal conductivity of 4.0 W/m·K at 16.0 vol.% particles. This is a good result for a 

random composite and is close to the value of 4.5 W/m·K we obtained at the same loading. 
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Presumably the large aspect ratio of their nanoparticles, which they estimate as 28, is 

responsible for this high value. 

Hill et al. [1.6] studied the thermal conductivity of a variety of platelet-filled epoxy 

composites, using Al2O3, TiB2, SiC, and BN. The aspect ratios of these platelets were 10.4, 

3.8, 4.0, and 9.8, respectively. The thermal conductivities of these materials were all much 

larger than that of the epoxy molding compound they used, which was given as 

0.21 W/m·K. In this study it was found that composites of Al2O3, TiB2, and SiC prepared at 

filler loadings higher than 45 vol.% did not have enough mechanical strength to remain 

intact. Even at 45 vol.% the thermal conductivity of these materials did not exceed 

3.9 W/m·K, and at 16 vol.% the thermal conductivity was only ∼0.5 W/m·K. The BN 

was similar in performance up to loadings of about 30 vol.%, but then showed a significant 

increase in performance. At 45 vol.% the conductivity was ∼4.6 W/m·K. Again, one 

would expect a material prepared at this loading to have a paste-like rheology that might not 

be suitable for some applications. 

Shahil et al. [1.17] studied graphene sheets as a filler material for epoxy resin and 

achieved a factor of 5 conductivity enhancement at a loading of 5 vol.%, which would give a 

conductivity of ∼1.0 W/m·K. For some specific samples made at the same loading they 

report an enhancement twice this large, but no details were given about the cause of such 

variations or their reproducibility. 

Some of these studies on platelet composites give good thermal conductivities, even 

if the loading is fairly high. What then is the benefit of using field structuring? Why worry 

about the loading? The main benefit of field structuring derives from the observation [1.3] 

that the suspension viscosity enhancement is very nearly the same as the thermal 

conductivity enhancement provided the filler particles are essentially rigid and have a large 

thermal contrast to the resin, as is typically the case. This observation, which seems to be 

valid to ∼1%, [1.3] is based on the finding [1.3] that the rotationally-averaged Green’s 
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function for the Stokes equation (the so-called Stokeslet or Oseen tensor) is the Green’s 

function for the Laplacian. Thus no matter what filler particles are used to achieve a 

particular thermal conductivity enhancement, a commensurate viscosity enhancement will 

occur. Field-structuring reduces this viscosity penalty by a factor of a little more than three, 

since the field can be applied after the filled resin has flowed into place. 

Future work will focus on the use of multilayered magnetic platelets, comprised of a 

magnetic core coated with a dielectric, to enhance the polymer thermal conductivity. These 

platelets will not electrically conduct, yet should be as effective as the pure Ni platelets 

investigated here in raising the effective thermal conductivity of composites. 

1.7 Conclusions 

In this study we have explored field structuring of magnetic particle suspensions as a method 

for substantially increasing the thermal conductivity of polymer composites, for applications 

such as thermal interface materials. This approach is based on the isomorphism between the 

effective thermal conductivity and effective magnetic permeability of particle composites 

comprised of particles whose relative thermal conductivity and relative magnetic 

permeability are either large enough that particle shape is the limiting factor in determining 

their intrinsic properties—the typical experimental case—or are closely matched. (This 

isomorphism is limited: the Kapitza resistance will reduce the effective thermal conductivity 

enhancement relative to the magnetic permeability enhancement.) When a magnetic field is 

applied to a particle suspension the particles orient and agglomerate so as to minimize their 

magnetostatic contribution to the free energy, which maximizes the effective permeability 

of the composite and thus the effective thermal conductivity. In more physical terms, the 

particles structure in such a way as to maximize their local magnetic field, which in light of 

the isomorphism maximizes their local thermal gradient when the applied thermal gradient 

is aligned with the structuring field. 
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We have demonstrated the efficacy of field structuring for a variety of particle 

morphologies, with emphasis on Ni spheres and platelets. In both cases field structuring 

increases the thermal conductivity substantially along the applied field without a significant 

reduction transverse to the field. Results for the Ni platelets are especially encouraging: an 

epoxy composite with a 16 vol.% particle loading gave a conductivity of 4.5 W/m·K which 

is ∼23 times that of the unloaded epoxy. Field structuring increases the thermal 

conductivity by a factor of three over that of the same composite formulation cured in the 

absence of a field, so a given thermal conductivity can be achieved without the usual 

commensurate increase in the filled resin viscosity. Field structuring also introduces a three-

fold anisotropy in the thermal conductivity and so can be used to direct heat flow. 

Finally, we have presented an analysis of thermal conduction in platelets in terms of 

the demagnetization factor. Discrete element calculations for 2-D platelets show how the 

demagnetization factor depends strongly on particle shape and weakly on the relative 

thermal conductivity. The apparent single particle conductivity was then expressed as a 

function of its shape and relative thermal conductivity and for any given particle aspect ratio 

one can then determine the necessary relative thermal conductivity required to substantially 

benefit from the particle shape. These calculations explain why the measured conductivity 

enhancements for the stainless steel platelet composites are much less than those observed 

for the Ni platelets. 
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Chapter 2 

Field-structured, multilayered platelets enable high 

performance, dielectric thermal composites2 

Moldable, thermally conductive polymer composites have broad applications as thermal 

interface materials and encapsulants. These thermal composites are generally comprised of 

single-phase particles that are randomly oriented and dispersed. Magnetic platelets have 

been shown to give exceptionally high thermal conductivities when magnetically aligned 

along the intended direction of heat flow, but produce composites that are electrically 

conductive. We have designed precision multilayered platelets that enable the development 

of high performance thermal composites that are electrically insulating. These platelets 

consist of a thin Ni core that permits field alignment, Al or Cu coatings that facilitate heat 

transport, and dielectric layers of MgF2 or SiO2 that ensure that the final composite is 

electrically insulating. These platelets can be made flat or corrugated, square or irregular, 

and the thickness of the various layers can be varied over a wide range. Thermal 

conductivity data for a variety of platelet compositions, layer thicknesses, and geometries 

demonstrate that these platelets are highly effective at producing composites with thermal 

conductivities much greater than that of the resin. Simulation data are presented that show 

that multilayer platelets have surprising dependencies of their efficiency for heat transfer on 

the relative thermal conductivities of the various layers. In fact, analysis shows that if the 

thermal conductivity of the particle phase is much greater than that of the resin, then the 

thermal conductivity of the composite, at fixed number density of particles, is insensitive to 

the platelet thickness. These electrically insulating composites would be especially useful as 

thermally conductive encapsulants for electronic devices. 

  

                                                           
2 Originally published as: J.E. Martin, K.J. Solis, D. Rademacher, and V. Raksha, Field-structured, multilayered platelets enable 
high performance, dielectric thermal composites, Journal of Applied Physics 112, 054306 1–10 (2012). 
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2.1 Introduction 

Composites based on moldable polymeric resins are used as thermal interface layers for a 

variety of microsystems, and thus there is considerable interest in their development [2.1-

2.6]. To increase the thermal conductivity of the composite, the polymer is often filled with 

randomly dispersed, thermally conductive particles. If the particles are spherical, the 

effective thermally conductivity of the composite is surprisingly insensitive to the thermal 

conductivity of the particle phase, and significant conductivity enhancements require high 

particle loadings. Anisometric particles such as platelets give significantly better results, but 

high performance materials require that the platelets be oriented and agglomerated along the 

direction of heat flow. Magnetic platelets, such as Ni, enable manipulation with magnetic 

fields, but particle agglomeration leads to appreciable electrical conductivity, which is 

unsuitable for many applications. To produce high performance thermal composites that are 

electrically insulating, we have designed and fabricated a series of precision multilayered 

platelets that are comprised of a thin magnetic core (Ni), coated with thermally conducting 

layers (Al or Cu), and over-coated with dielectric materials (MgF2 or SiO2). In this chapter, 

we demonstrate that these multilayered platelets enable the development of field-structured 

thermal composites that are electrically insulating, yet have high thermal conductivity 

enhancements at low particle loadings. 

The principal advantage of field-structuring is that it enables the production of 

composites with thermal conductivity enhancements that are large compared to the 

(undesirable) viscosity enhancement of the filled resin. In traditional composites, substantial 

particle loadings are required to achieve a significant increase in the thermal conductivity, 

and even in the absence of Kapitza resistance the particles incur a commensurate increase in 

the resin viscosity, regardless of particle shape or loading [2.7]. The underlying reason for 

this proportionality is that the rotationally averaged Green’s function for the Stokes equation 

is the Green’s function for Laplace’s equation [2.8], so these properties are essentially 
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isomorphic, at least within ∼1%. (When the Kapitza resistance is significant, the viscosity 

enhancement will be even larger than the conductivity enhancement, and the same is true 

when the thermal conductivity of the particle phase is not substantially greater than that of 

the resin.) Field-structuring the particles during resin cure breaks this coupling, because 

field structuring can be used to substantially raise the thermal conductivity of the loaded 

resin after it has flowed into position, in which case the viscosity increase is of no concern. 

Results for spherical particle composites show the benefit of field structuring, as well 

as the limitations the spherical particle shape imposes. Using a uniaxial field to organize 

roughly spherical magnetic particles into chains increases the specific thermal conductivity 

(the relative thermal conductivity increase per unit volume fraction of particles, Equation 2-

4 below) of the particle phase by a factor of ∼2, relative to that of randomly dispersed 

particles [2.9]. Somewhat greater thermal conductivity enhancements can be achieved by 

structuring with heterodyned ac triaxial magnetic fields, which produce complex particle 

networks. But the spherical particle shape limits the achievable increase in thermal 

conductivity, even after optimizing the particle structure. Our best spherical particle epoxy-

based field-structured composite (FSC) had a thermal conductivity of 1.5 W/m·K at a 

particle loading of 41 vol. % (epoxy itself is 0.21 W/m·K). So, although field-structuring 

can optimize the thermal conductivity at a given particle loading, highly conductive 

composites cannot be made with spherical particles at reasonable loadings. 

As was demonstrated in Chapter 1, field-structuring single-phase magnetic Ni 

platelets dispersed in polymeric resins gives significantly better enhancements, because of 

the combined effects of the anisometric particle shape, orientation, and agglomeration 

[2.10]. The applied field orients the platelets such that their director (a unit vector parallel 

to their minor axis) is normal to the applied field, to produce structures such as those shown 

in Figure 2-1. This figure also shows that the platelet director is randomly oriented in the  
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Figure 2-1. Optical images of field-structured composites containing square multilayered 

platelets made by JDSU Flex Products Group. In the (left) image the field is applied horizontally, 

and the platelets are oriented such that their director is normal to the field. Platelet chaining is 

also evident. The (right) image is viewed parallel to the field, and shows that the director is 

randomly oriented in the plane orthogonal to the field. 

plane orthogonal to the field. Such platelet composites have significantly enhanced thermal 

conductivity along the direction of the structuring field. In fact, we have shown in Chapter 1 

that field-structuring increases the specific thermal conductivity of the platelets by a factor of 

3, relative to that of unstructured controls, enabling us to achieve a thermal conductivity of 

4.5 W/m·K for an epoxy containing 16.1 vol.% Ni platelets. However, these composites 

are electrically conducting, and so they are not suitable for all applications, especially device 

encapsulation. 

The magnetic platelets that are the subject of this study were made by JDSU Flex 

Products using a precise deposition process. These five-layered platelets consist of a 

magnetic core that is typically 60 nm thick (Ni or stainless steel) coated on both sides with a 

thermally conductive layer (Al or Cu) whose uniform thickness is a design variable, ranging 

from 80 to 200 nm in this study. The thickness of the dielectric over-coatings (MgF2 or 

SiO2) is another design parameter and ranges from 80 to 470 nm. The platelets are typically 

∼20 m across, less than 1 m thick, and can also differ in form and texture. The form is 
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either irregular or square, and the texture is flat, corrugated, or cross-corrugated. In all 

cases, composites of these materials are electrically insulating, yet the thermal conductivity 

enhancements are comparable to those achieved with uncoated Ni platelets. In this chapter, 

we explore the dependence of the specific thermal conductivity enhancement on various 

platelet parameters to determine the platelet geometry and composition that optimizes 

thermal transport in field-structured composites. Simulations of thermal transport through 

multilayered platelets are presented that help explain some of the unexpected results we 

find. 

2.1.1 Background 

Magnetic fields are highly effective at increasing the specific thermal conductivity of the 

particle phase because they organize the particles into optimally conductive structures. To 

understand this effect, one must appreciate that a wide variety of the physical properties of 

particle systems are isomorphic under suitable conditions of contrast, a subject discussed at 

length by Batchelor [2.11]. Examples include the hydrodynamic effective virtual mass, 

dielectric permittivity, magnetic permeability, thermal conductivity, electrical conductivity, 

suspension viscosity, and so forth. These isomorphisms are based on the fact that these 

properties can be computed from a field that is subject to Laplace’s equation in regions 

interior and exterior to the particle surfaces, and that there are boundary conditions for the 

field that can be expressed in the same form. For example, when comparing the thermal 

conductivity to the magnetic permeability, the magnetic field H plays the same role as the 

thermal gradient, and the induction field B, which quantifies the material polarization 

response, plays the same role as the thermal flux density. The permeability corresponds to 

the thermal conductivity. When a magnetic field is applied to a particle suspension, the 

particles will orient and agglomerate so as to minimize their magnetostatic contribution to 

the free energy. This contribution is minimized when the permeability, and therefore the 

thermal conductivity, is maximized. Of course, the ratio of the particle and polymer 
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permeabilities might not be equal to the ratio of their conductivities, but in many cases of 

interest both these ratios are large. Kapitza resistance complicates the relationship between 

these properties, reducing the thermal conductivity enhancement relative to the 

permeability enhancement by creating temperature discontinuities at material interfaces. 

This effect can be difficult to quantify in complex composite materials. At this point, the use 

of magnetic fields to create optimized composite properties has had impact on chemical 

sensors, strain sensors, magnetostrictive actuators, and composite magnets. The 

development of electrically insulating thermal composites presents a new challenge for this 

class of materials. 

2.2 Experimental 

The magnetic platelets were made in experimental quantities for these thermal conductivity 

studies by JDSU Flex Products Group using a vacuum deposition process. Multilayered 

stacks were coated in vacuum on a microstructured substrate having an organic release 

layer. The deposited material was subsequently removed from the substrate and in the case 

of the irregular platelets ground to the desired size of 20 m. Table 2-1 summarizes the 

properties of the platelets employed in this study. The formation of functional composites 

with high effective conductivities requires both a high virial coefficient and a high particle 

loading. To achieve both, we have structured our platelet composites with a magnetic field 

having a strong gradient parallel to the field. This gradient field orients the particles and then 

draws them into the high field region. Field structuring was performed in a 1 cm square 

cuvette that was initially filled to a level of 3 cm with the dilute epoxy-particle suspension. 

The field gradient concentrates the particles into the bottom of the cuvette, to a height that 

is typically ∼5 mm or more. After the epoxy cured, a number (from 1 to 4) of 1.5 mm-

thick, 1 cm square composite wafers were precision machined for laser flash diffusivity 

measurements. The volume fraction of platelets is computed from the composite density, 

which was determined for each wafer. With this procedure, any particular platelet type  
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sample form core coating 1 coating 2 vol. % K (W/m-K) specific 

conductivity 

M1315-3490 irr. corr. 60 nm Ni 80 nm Al 200 nm MgF2 12.1 1.72 59.4±0.9 
M1315-3491 irr. corr. 60 nm Ni 120 nm Al 200 nm MgF2 10.5 1.58 62.1±1.2 
M1315-3492 irr. corr. 60 nm Ni 160 nm Al 200 nm MgF2 8.9 1.28 57.3±12.4 
M1315-3493 irr. corr. 60 nm Ni 200 nm Al 200 nm MgF2 8.4 1.02 46.0±3.4 

        
M1315-3494 sq. flat 60 nm Ni 80 nm Al 200 nm MgF2 15.4 1.82 49.6±0.5 
M1315-3495 sq. flat 60 nm Ni 120 nm Al 200 nm MgF2 15.1 1.78 50.2±5.8 
M1315-3496 sq. flat 60 nm Ni 160 nm Al 200 nm MgF2 14.7 1.99 57.4±0.4 
M1315-3497 sq. flat 60 nm Ni 200 nm Al 200 nm MgF2 13.7 1.82 56.0±0.3 
        
M1315-3498 irr. flat 60 nm Ni 80 nm Al 200 nm MgF2 11.0 1.13 39.9±0.5 
M1315-3499 irr. flat 60 nm Ni 120 nm Al 200 nm MgF2 11.6 1.34 46.5±0.3 
M1315-3500 irr. flat 60 nm Ni 160 nm Al 200 nm MgF2 11.2 1.36 48.8±0.4 
M1315-3501 irr. flat 60 nm Ni 200 nm Al 200 nm MgF2 11.3 1.38 49.3±0.8 
        
M1315-3503 irr. flat 60 nm Ni 160 nm Cu 200 nm MgF2 7.3 0.98 50.2±0.3 
M1315-3504 sq. flat 60 nm Ni 160 nm Cu 200 nm MgF2 7.1 1.01 53.9±0.5 
M1315-3505 irr. corr. 60 nm Ni 160 nm Cu 200 nm MgF2 5.3 0.72 46.1±0.8 
        
CDL-7442 irr. flat 60 nm Ni 160 nm Al 200 nm MgF2 12.6 1.50 49.0±0.5 
CDL-7942 irr. corr. 60 nm Ni 160 nm Al 200 nm MgF2 12.2 2.00 70.0±0.3 
        
1315-3455 sq. corr. 50 nm Ni 80 nm Cu 80 nm Si 7.5 1.43 76.9±5.7 
1315-3456 irr. xcorr. 50 nm Ni 80 nm Cu 102 nm Si 5.0 0.72 48.5±1.3 
        
1315-2676 irr. flat 60 nm Ni 80 nm Al 470 nm MgF2 21.7 1.59 30.2 
1315-2678 irr. flat 60 nm Ni 80 nm Al 240 nm MgF2 13.9 1.31 37.8 
1315-2683 irr. flat 60 nm Ni 160 nm Al 240 nm MgF2 13.8 1.33 38.5 
1315-2686 irr. flat 30 nm Ni 160 nm Al 470 nm MgF2 14.3 1.28 35.6 
        
1315-2688 sq. flat 60 nm Ni 80 nm Al 470 nm MgF2 21.7 1.53 28.6 
1315-2693 sq. flat 60 nm Ni 80 nm Al 240 nm MgF2 16.5 1.57 41.1 
1315-2695 sq. flat 60 nm Ni 160 nm Al 240 nm MgF2 18.8 2.23 51.9 
1315-2697 sq. flat 30 nm Ni 160 nm Al 470 nm MgF2 18.4 1.97 45.5 

 

Table 2-I. Platelet description and results for their composites. irr., irregular; sq, square; corr., 

corrugated; and xcorr., cross-corrugated. 

generally achieves a consistent loading, but the loadings achieved are dependent on the 

platelet morphology. Finally, when more than one wafer could be machined from the 

sample, the standard deviation of the mean was computed for the specific thermal 

conductivity. 

Thermal conductivities were computed from the measured thermal diffusivities by 

multiplying by the volumetric heat capacity of the composite. The volumetric heat capacity 
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of the composite was computed as a volume-fraction–weighted average of the known heat 

capacities of each phase (e.g., polymer, Ni, Al, MgF2). 

2.3 Results 

Most of our measurements were made at low particle concentrations, so it is helpful to have 

some appreciation of the dependence of the effective properties on particle shape in this 

regime. The effective thermal conductivity Keff of a random composite of particles can be 

expressed as a Taylor expansion 

...1  
poly

eff

K

K
,         (2-1) 

where Kpoly is the thermal conductivity of the polymer phase. Because this expression is 

similar in form to the virial expansion of a gas, the coefficient  has sometimes been referred 

to as the first virial coefficient [2.7]. This transport virial coefficient is a strong function of 

particle shape when the contrast ratio  polypr KKK /  is large. Under these conditions, the 

transport virial coefficient can be independent of the thermal conductivity, Kp, of the 

material of which the particle is comprised. When the contrast ratio is infinite, the virial 

coefficient has simple values for elementary shapes [2.7]. Normal to the surface of a thin 

platelet the virial coefficient is 1, normal to the cylindrical axis of a long rod the virial is 2, 

and for a sphere [2.12] the virial is 3. Parallel to the major axis of a long prolate ellipsoid 

(roughly a rod), the virial increases asymptotically as the square of the aspect ratio, and so 

can be very large, and in the plane of an oblate spheroid (roughly a platelet) the virial 

increases asymptotically as the inverse aspect ratio. If the particles are organized into 

structures, this can significantly affect the virial. For example, simulations of sphere chaining 

in a uniaxial field give a computed virial of ∼7.25 parallel to the chains and ∼2.3 

perpendicular to the chains [2.13]. 
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In Chapter 1 [also Ref. 2.10] we computed the transport virial coefficient for solid 2-

d platelets as a function of aspect ratio AR and contrast factor Kr and found that parallel to the 

platelet plane the virial is given by 
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Equation 2-2 is a general relation that expresses the virial coefficient in terms of the 

demagnetization factor nK [2.14]. The demagnetization factor is strongly dependent on 

geometry and weakly dependent on the contrast ratio. Equation 2-3 is an empirical relation 

that gives this demagnetization factor as a function of the contrast factor and the aspect ratio. 

This expression, developed for platelet aspect ratios between 1 and 8, shows that as the 

aspect ratio increases, the virial approaches Kr − 1. Even for solid Ni platelets in epoxy, this 

computed virial can approach ∼450, but measurements we have reported on solid Ni 

platelets show virial coefficients not higher than 85 [2.10], suggesting that the measured 

virial is limited by sample geometry and/or Kapitza resistance. 

Before presenting our experimental results, it is necessary to point out that we 

cannot make accurate measurements at extremely low particle concentrations. Because of 

this limitation, and the manner in which our samples are synthesized, our samples have 

significant loadings. Much of our experimental data are therefore presented as a specific 

conductivity enhancement, defined through 

poly

polyeff

K

KK





ˆ .         (2-4) 

At vanishingly small particle concentrations, this specific conductivity enhancement can be 

termed the intrinsic thermal conductivity of the particles, in analogy to the intrinsic viscosity 
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concept used in polymer science [2.7]. This intrinsic property terminology is more 

descriptive than “virial coefficient” and is also used in the literature. 

2.3.1.  Effect of platelet morphology and thickness  

We first present the results of a study of the specific thermal conductivity of platelet 

composites made at loadings averaging ∼12 vol.%. These platelets vary in shape, texture, 

and thickness. There are three platelet morphologies: irregular flat, Figure 2-2, irregular 

corrugated, Figure 2-3, and square flat, Figure 2-4. The corrugated platelets have a 

spacing of 1500 lines/mm. All of these platelets are comprised of five layers: a 60 nm Ni 

core, Al layers varying in thickness from 80 to 200 nm, and 200 nm outer coatings of MgF2. 

The platelet thickness thus ranges from 620 nm to 860 nm. The ambient thermal 

conductivities of the three platelet materials are 91, 237, and 10.0 W/m·K, respectively, all 

of which are significantly larger than that of the epoxy, which we recall is ∼0.21 W/m·K. 

The volume-averaged thermal conductivity of these platelets ranges from 76 to 

121 W/m·K, so the virial is limited to ∼361–575, values that could only be achieved for 

extremely high aspect ratio platelets that do not exhibit Kapitza resistance in epoxy. 

 

Figure 2-2. An SEM image of irregular flat platelets illustrates their complex shape. These platelets 

are typically 20 μm in size. 
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Figure 2-3. An SEM image of irregular corrugated platelets shows their highly elongated fracture 

pattern, with the corrugation lines parallel to the long axis of the platelets. The wavelength of the 

corrugations is 670 nm. 

 

 

Figure 2-4. An SEM image of square flat platelets shows the uniform size of the platelets, though 

some twins are evident. 

Figure 2-5 shows that the specific thermal conductivities for both flat platelets are 

weakly dependent on the thickness of the Al layers, but are significantly greater for the 

square platelets, achieving a maximum of 57.4 ± 0.4, than for the irregular platelets, for  
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Figure 2-5. The dependence of the specific thermal conductivity on the thickness of the Al layers 

of three different platelet morphologies is shown. In all cases, the Ni core is 60 nm thick and the 

outer MgF2 layers are 200 nm thick. The irregular corrugated platelets offer the best 

performance, peaking at an Al layer thickness of 120 nm. 

which the values do not exceed 49.3 ± 0.8. Increasing the thickness of the Al layers reduces 

the aspect ratio of the platelets (which we hereafter define as the ratio of the platelet width 

to thickness), which one would expect to reduce the virial coefficient, but decreases the 

relative proportion of the low conductivity MgF2 layers. The irregular corrugated platelets 

achieve an even greater specific conductivity than the flat platelets, attaining a value of 

62.1 ± 1.2 at an Al coating thickness of 120 nm. Curiously, the specific conductivity falls off 

significantly as the Al layer thickness increases. All of these composites exhibit negligible 

electrical conductivity over the frequency range of our LCR bridge, 20–106 Hz, and these 

specific thermal conductivities are much greater than the virial coefficient of 3, which 

applies to a random composite of spherical particles having asymptotically large thermal 

contrast. 

Because the corrugated shape proved so effective, a second set of both irregular 

corrugated and irregular flat platelets were made in the same vacuum deposition chamber at 
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the same time in order to ensure that they would have precisely the same layer thicknesses, 

thus isolating only the shape difference. These platelets have a 60 nm Ni core, 160 nm Al 

layers, and 200 nm MgF2 layers. Four composites were made of each platelet type and the 

measured specific conductivities were 49.0 ± 0.5 and 70.0 ± 0.3 for the flat and corrugated 

platelets, respectively, thus affirming that platelet corrugation can significantly increase the 

thermal conductivity. At only 12.7 vol.%, the corrugated platelet composite gave a thermal 

conductivity of 2.1 W/m·K. Figure 2-3 shows that the corrugated platelets tend to 

fragment into rectangular shapes with the corrugations parallel to their long axis. Both the 

direction of the corrugations and the rectangular shape cause these platelets to field align in 

the direction of their long axis, which would tend to increase the virial coefficient. 

2.3.2.  Copper versus aluminum 

Five-layered platelets having the same three morphologies—irregular flat, square, and 

irregular corrugated—were prepared with Cu instead of Al, to determine if the greater 

thermal conductivity of Cu (401 W/m·K) increases the specific thermal conductivity of the 

platelets. In these platelets, the Ni core remains at 60 nm, the Cu layers are 160 nm, and the 

MgF2 coatings are 200 nm, enabling a direct comparison to one of the Al-based platelets 

described previously. The specific thermal conductivity of the irregular flat platelets was 

found to be 50.2 ± 0.3, which is comparable to the 48.8 ± 0.4 obtained for the 

corresponding Al-based platelet. The square flat Cu-based platelets gave 53.9 ± 0.5, which 

is slightly lower than the Al analogue, which gave 57.4 ± 0.4. The Cu-based corrugated 

platelets gave a specific conductivity of 46.1 ± 0.8, which is significantly lower than the 

value 57.3 ± 6 obtained for the Al-based platelets. The high thermal conductivity of Cu 

provides no real advantage for the aspect ratio of platelets we are using, and actually reduces 

thermal transport probably because its Kapitza resistance is larger. In fact, for platelets 

having the aspect ratio we are using, even if the Cu had infinite thermal conductivity the 
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specific thermal conductivity of the platelets would not be appreciably greater. This point is 

discussed in greater detail in Section 2.4. 

2.3.3.  Square corrugated platelets 

The aforementioned results indicate that corrugated square platelets might give very high 

specific conductivities. To investigate this possibility, some special platelets were fabricated, 

Figure 2-6, in the form of 25 m corrugated squares with 1500 lines/mm. These platelets 

are very thin, 390 nm, consisting of a 50 nm Ni core surrounded by 80 nm Cu layers coated 

with 80 nm of SiO2 on one side and 100 nm of SiO2 on the other (the unequal SiO2 layers 

were not intentional). The specific thermal conductivity was found to be 76.9 ± 5.7, which 

is significantly higher than that of the other samples. This high value might be a consequence 

of the extremely large aspect ratio (64) of these platelets, but it is interesting to note that 

this high specific conductivity occurs despite the very low thermal conductivity 

(1.3 W/m·K) of amorphous silica. We will address this point in greater detail in the 

discussion below. 

 

Figure 2-6. An SEM of 25 μm corrugated square platelets shows a high degree of platelet 

uniformity. These platelets gave a specific conductivity of 76.9, which corresponds to a ten-fold 

thermal conductivity increase of the composite over the base polymer at a loading of only 

11.7 vol.%. The wavelength of the corrugations is 670 nm. 
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2.3.4.  Irregular cross-corrugated platelets  

Cross-corrugated platelets were fabricated by JDSU Flex Products Group with 

3500 lines/mm. The extremely fine structure of these platelets can be observed in the 

scanning electron micrographs in Figure 2-7. The layers were 102 nm SiO2/80 nm 

Cu/50 nm Ni/80 nm Cu/107 nm SiO2. There is no compelling reason to suspect that these 

platelets might have a really high specific thermal conductivity, and in fact our 

measurements gave only 48.5 ± 1.3. 

 

Figure 2-7. An SEM image of irregular cross-corrugated platelets with a corrugation wavelength 

of 286 nm. Although these are fascinating structures, they did not give unusually large specific 

thermal conductivities, unlike those platelets that are corrugated in a single direction. This is 

probably because the cross-corrugations do not lead to elongated fragments. 

2.3.5.  MgF2 thickness 

Flat platelets were made with very thick MgF2 coatings to determine the effect of the 

dielectric coating thickness on thermal transport. Because MgF2 has such a low thermal 

conductivity, it might be expected that platelets with thick MgF2 coatings have very low 

specific thermal conductivities. In addition, these platelets were made in both irregular and 

square shapes, to further investigate the shape effect. The thickest platelets had 470 nm 

layers of MgF2 surrounding 80 nm thick Al layers and a 60 nm Ni core. The MgF2 

component thus comprised 81% of the platelet volume. Measurements gave a specific 
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thermal conductivity of 28.6 for the square platelets and 30.2 for the irregular platelets, 

Figure 2-8. These values are understandably low and the difference is not significant. When 

the MgF2 layers were reduced to 240 nm (68.6 vol. %), the specific conductivities increased 

to 37.8 and 41.1 for the square and irregular platelets. Increasing the Al layers to 160 nm 

reduced the MgF2 component to 55.8 vol.% and increased the specific conductivities to 

51.9 and 38.5, a significant increase for the square platelets. Finally, it was thought that by 

reducing the thickness of the magnetic cores, the magnetic interactions between platelets 

would be reduced relative to the Kelvin force drawing the platelets into the high field 

region. This occurs because the platelet-platelet interaction scales as the square of the core 

thickness, whereas the Kelvin force is proportional to the thickness. These platelets had a 

30 nm Ni core, 160 nm Al layers, and 470 nm MgF2 layers. Despite the high MgF2 content 

(72.9 vol.%), a surprisingly high specific conductivity of 45.5 was obtained for the square 

platelets, whereas the irregular platelets measured only 35.6. 

 

Figure 2-8. Specific thermal conductivity results for irregular and square MgF2/Al/Ni platelets with 

thick MgF2 layers. The numbers above the bars refer to the layer thicknesses in nm. The square 

platelets give significantly better performance. 
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2.4 Discussion 

Understanding the data we have presented would require an accurate model of the 

composite structure in order to compute the specific thermal conductivity. Such a model is 

not forthcoming, as it would require the simulation of field structuring of particles that have 

complex magnetic interactions. We have written field-structuring simulations for spherical 

particles, where the magnetic interactions can be reasonably described by a simple self-

consistent point dipole approximation. But, such an approach can lead to mathematical 

singularities for proximal interacting platelets. Modeling the interactions between platelets 

would seem to require a discrete element computation, which would then have to be 

coupled with a suitable dynamics code. Such a code would require significant computing 

resources and is beyond the scope of this experimental study. Nonetheless, relatively simple 

isolated platelet computations lead to some interesting and surprising insights about heat 

conduction in multilayered platelets. 

The issue of platelet orientation is straightforward. In the absence of a structuring 

field, the platelets would be randomly oriented and thus the virial coefficient for the thermal 

conductivity would be Ptr 1

3
, where P is the polarizability tensor (in the case where Kapitza 

resistance can be ignored the permittivity and thermal conductivity are isomorphic). For 

very thin platelets, the polarizability normal to the plane of the platelets is negligible, so the 

virial is ||

2

3
p , where p|| is the in-plane polarizability. For field-oriented platelets, the virial is 

just the in-plane polarizability, so platelet orientation alone should increase the virial by 

50%. Two issues remain: the determination of the in-plane virial of an isolated multilayered 

platelet and the effect of field agglomeration on the virial. 

The field-agglomeration effect has been extensively studied for spherical particles, 

and the results of analysis, simulation, and experimental work [2.15] show that it is less than 

an 8/3 enhancement over non-structured controls at low particle loadings. For solid Ni 

platelets, we have shown in Chapter 1 [also Ref. 2.10] that field-structuring increases the 
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specific thermal conductivity by a factor of 3, relative to that of the non-structured control. 

Therefore, given that the platelet orientation effect is a factor of 1.5, the agglomeration 

effect must be a factor of ∼2. 

The computation of the in-plane transport virial coefficient for solid 2-d platelets is 

given in Equations 2-2 and 2-3 above. For multilayered platelets, there are additional 

parameters to consider, since each layer has its own aspect ratio and contrast. Still, 

illustrative results can be obtained by considering the simple case of a core coated on both 

sides, such that all three layers have identical thicknesses. We consider two cases. In the first 

case, the core (of thickness L1) has a high fixed thermal contrast to the embedding matrix, 

and the dependence of the virial coefficient on the coating thermal contrast is determined. In 

the second case, the coating (each layer of thickness L2) has fixed high contrast and the 

thermal contrast of the core is varied. The virial expansion can now be expressed as 
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where 1 and 2 are the core and coating virials and the platelet thickness is 
21 2LLL  . 

The total virial coefficient  is the term in the parentheses. 

A 2-d discrete mesh algorithm was used to relax Laplace’s equation with the 

appropriate boundary conditions (continuity of heat flow). The details of our approach have 

been described elsewhere. To compute the virial for each phase, we use the expression 

[2.10] 

 
0

int
, 1

T

T
K iri




 ,         (2-6) 

where intT  is the average internal thermal gradient within either the core or coating, and 

0T is the applied thermal gradient, which is uniform. We set the aspect ratio of the platelet 

to 32  (which is a good compromise between high aspect ratio and facile numerics) and set  
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Figure 2-9. Dependence of the computed virial coefficient on the coating thermal conductivity 

contrast of platelets that have a high (1024) thermal contrast of the core relative to the polymer. 

Note that although the core and coating virials vary significantly, the total virial is almost 

unaffected. 

the core/polymer conductivity ratio to 1024, which is close to the ratio for Al and epoxy 

(217/0.21 ∼ 1033) and about twice that for Ni and epoxy. We varied the thermal 

conductivity ratio for the coating to the epoxy from 2 to 4096, and obtained the results 

shown in Figure 2-9. 

We were surprised to discover that increasing the conductivity of the coating has an 

insignificant effect on the total thermal transport through the platelet, which at least 

superficially seems absurd. However, as the coating conductivity increases, heat conduction 

through the coating increases and heat conduction through the core decreases 

commensurately. This decrease occurs because a high coating thermal conductivity reduces 

the thermal gradient in the coatings, which in turn reduces the thermal gradient in the core. 

As the coating thermal conductivity approaches infinity, the thermal gradient in the core 

approaches zero. Considering two tractable limits is helpful: when the coating contrast ratio 

is unity the coating virial is zero. The core virial is then given by Equations 2-2 and 2-3 for a 
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platelet with an aspect ratio of 323 , and is ∼16.3 in the limit of infinite core thermal 

contrast. The total virial is 4.50
3

2
3.16

3

1
 . When the coating thermal contrast is 

equal to that of the core, the total virial can be computed by substituting the aspect ratio 

32  into Equations 2-2 and 2-3. If we again take the infinite thermal contrast limit, this 

total virial is 6.34. As a result, increasing the coating conductivity, which is 2/3 the volume 

of the platelet, from that of the polymer to infinity does not really help much at this aspect 

ratio. For other aspect ratios, the result is somewhat different, Figure 2-9, but the 

conclusion is the same: When the thermal contrast of the core is sufficiently large that the core virial 

is dominated by geometry alone, then the total virial depends weakly on the thermal contrast of the 

coating. In fact, the coating contrast becomes even less important as the aspect ratio 

increases. By sufficiently large we specifically mean that   11 rK Kn , (the typical 

experimental condition) such that Equation 2-2 becomes 1 KK n . In terms of the core 

volume fraction 1, the total platelet virial ratio is 
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in terms of the platelet aspect ratio AR. Figure 2-10 is simply a plot of this equation for 

various relative core thicknesses. Provided that the condition   11 rK Kn  is satisfied, even 

a core whose thickness is much smaller than that of the coatings will give essentially the same 

benefit as a thick core. These conclusions might still seem counterintuitive, but consider that 

we are working in the high thermal contrast limit. 

In the opposite limit, where   11 rK Kn , the platelet virial is limited not by 

geometry, but by the thermal conductivity of its constituents. In this case, the virial ratio in 

Equation 2-7 is just L/L1, so the coating thermal conductivity can become extremely 

important, especially if the core is relatively thin. This circumstance is not the typical 

experimental case, as it would require extremely large aspect ratio particles to attain this  
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Figure 2-10. The ratio of virial coefficients as a function of platelet aspect ratio AR. The numerator 

is the virial for the case where the coating thermal conductivity is that of the polymer, the 

denominator is for the case when the coating thermal conductivity is that of the core. In both 

cases, the core thermal conductivity is assumed to be infinite. The three curves are for when the 

core thickness is 1/3, 1/9, and 1/27 of the total platelet thickness. For aspect ratios greater than 

∼10, the coating thermal conductivity has little effect on thermal transport. 

limit for the kinds of high thermal conductivity materials of which the added particles are 

normally comprised. For example, substituting  1/1  rK Kn  into Equation 2-3 shows that 

the required aspect ratio is 
rR KA 1.1  for large Kr . For a pure Ni platelet, this is an aspect 

ratio of nearly 500, which is far beyond what is practically attainable or useable, since at this 

aspect ratio the particles would incur a severe viscosity increase in the loaded resin at even 

very small volume fractions. 

Similar computations on a platelet with the same aspect ratio of 32  were 

performed wherein the coating was assigned a high thermal contrast ratio and the core 

thermal conductivity was varied. The results in Figure 2-11 show that varying the core 

thermal conductivity has little effect on the total platelet virial. The principal effect of 

increasing the core thermal conductivity is to increase the thermal flux in the core and  
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Figure 2-11. Dependence of the computed virial coefficient on the core thermal conductivity 

contrast of platelets that have a high (64) thermal contrast of the coating relative to the 

polymer. As in Figure 2-9, the core and coating virials vary significantly, but the total virial is 

almost unaffected. 

decrease the flux in the coatings. This occurs because increasing the core thermal 

conductivity to a value much greater than that of the coating causes the thermal gradient in 

the coating to decrease drastically. This situation is opposite, but similar to, the case 

presented in Figure 2-9. 

These calculations demonstrate that there is a great deal of latitude in designing 

multilayered platelets to enhance thermal transport. If either the coatings or the core have a 

high thermal contrast to the polymer, then the controlling parameter for an isolated platelet 

will be its aspect ratio. For the platelets studied in this paper, the Ni core always has a high 

thermal contrast ratio (∼433), so all of our attempts to add thermally conductive Al or Cu 

coatings to this core did not produce any significant trends. Moreover, even rather thick 

MgF2 coatings gave reasonable virials, and the highest virial was indeed obtained for highest 

aspect ratio particles. However, a clear dependence of the virial on aspect ratio was not 
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obtained, possibly because of the unknown effect of particle agglomeration and Kapitza 

resistance. 

The insights provided by these 2-d numerical results have led us to make an 

interesting analytical observation about the use of platelets to increase the thermal 

conductivity of a polymer or any other continuous phase. The in-plane demagnetization 

factor of an oblate spheroid is given by [2.14] 
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In the large contrast case, where   11 rKn , the in-plane platelet virial coefficient 

is simply the inverse of this demagnetization factor, so for high aspect ratio platelets  
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The volume fraction of particles is simply the product of the particle number density 

N times the particle volume, which in terms of the platelet width W and thickness L is
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The effective thermal conductivity of the composite is thus given simply by N′, which 

is the average number of platelets within a box of volume W3, and is completely independent of 

the platelet thickness. For spheres of diameter W, the corresponding expression is 
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thus an isolated and field-aligned platelet of width W increases the thermal conductivity of a 

continuous phase somewhat less than does a sphere of diameter W. The platelet thickness 

can therefore be minimized if cost is an issue, but other factors, such as platelet stiffness and 

surface scattering, might be limiting factors if the platelets are made too thin. 

Although the focus of this study is platelets, a similar computation can be made for 

high contrast rods. The demagnetization factor of a prolate spheroid parallel to its long axis, 

of length W, is 
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The effective thermal conductivity of a composite of aligned prolate spheroids is thus 
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Because the width of the prolate spheroid only appears in the logarithmic term, a rod 

of length W increases the thermal conductivity of a continuous phase on the same order of 

magnitude of a sphere whose diameter is the rod length. 

In the classical computations presented here, it would seem that increasing the aspect 

ratio of the particles is desirable if the goal is to increase the thermal conductivity of the 

polymer at low filler volume fraction (and thus cost). However, because the platelet size is 

already comparable to the bond layer thickness of typical thermal interfaces, the only way to 

increase the aspect ratio is to decrease the platelet thickness. This would, however, increase 

surface scattering of phonons and electrons, which is known to decrease thermal transport 

[2.16]. To clarify this issue, future work will focus on measuring transport in thin layers of 

the materials of which these platelets are comprised. 
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2.5 Conclusions 

We have shown that field-structured multilayer magnetic platelets can be used to create 

efficient thermally conductive polymers that are electrically insulating. These platelets are 

10–25 times more effective than spherical particles in raising the thermal conductivity, and 

computations and experiments show that they remain effective even when very thick 

electrically insulating layers are used as coatings. In fact, both experiments and 

computations show that their efficiency at increasing thermal transport is very insensitive to 

their composition, provided that at least one of the layers has a thermal conductivity greatly 

exceeding that of the polymeric phase. For the best platelets tested, the specific thermal 

conductivity was ∼77, so raising the polymer thermal conductivity by a factor of 10 would 

require only 11.7 vol.% particles. These materials would be suitable as thermal interface 

materials and as encapsulants for electronic devices. 
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Chapter 3 

Strong intrinsic mixing in vortex magnetic fields3 

We report a method of magnetic mixing wherein a “vortex” magnetic field applied to a 

suspension of magnetic particles creates strong homogeneous mixing throughout the fluid 

volume. Experiments designed to elucidate the microscopic mechanism of mixing show that 

the torque is quadratic in the field, decreases with field frequency, and is optimized at a 

vortex field angle of ∼55°. Theory and simulations indicate that the field-induced formation 

of volatile particle chains is responsible for these phenomena. This technique has applications 

in microfluidic devices and is ideally suited to applications such as accelerating the binding of 

target biomolecules to biofunctionalized magnetic microbeads. 

3.1 Introduction 

There are many cases where improved methods of fluid mixing are needed, especially in 

small confined geometries, such as microfluidic channels, where the low Reynolds numbers 

make it difficult to induce turbulence. There have been numerous attempts to address this 

problem with magnetic fields, and these fall into two classes: field gradient and uniform field 

techniques. Field gradients are used to generate forces on magnetic particles, and uniform 

fields are used to generate torques on acicular magnetic structures, or Lorentz forces on 

charges. The resulting fluid flow vastly accelerates mixing when compared to fluid diffusion 

times at the relevant length scales. 

Methods relying on field gradients include shuttling particles through the fluid with a 

moving permanent magnet [3.1], spinning the fluid across permanent magnetic arrays [3.2], 

and flowing the fluid across wires that create a field gradient by current flow [3.3]. A strong 

roughly uniform dc magnetic field has been used to create a Lorentz force on ions 

                                                           
3 Originally published as:  J.E. Martin, L. Shea-Rohwer, and K.J. Solis, Strong intrinsic mixing in vortex magnetic fields, Physical 
Review E 80, 016312 1–6 (2009). 
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transported between two electrodes [3.4], and a strong ac magnetic field has been used to 

rotate glass particles containing magnetite inclusions, apparently due to their small 

remanence [3.5]. 

Stir-bar strategies have been extended to the microscale by exposing either 

permanent or volatile acicular magnetic structures to a spatially uniform rotating magnetic 

field. Permanent structures include fabricated magnetic rods [3.6,3.7] and magnetite-loaded 

microbeads chemically bonded into chains [3.8]. These extrinsic methods produce a mixing 

torque that is limited by the low volume fraction of acicular structures that can be loaded 

into a fluid without serious congestion. A modest level of mixing can be achieved by 

exposing a fluid containing magnetite-loaded microbeads to a rotating field. At low volume 

fractions and field frequencies these beads will self-assemble into volatile chains, providing a 

modest level of mixing within the fluid [3.9,3.10]. When these beads are used to bind target 

biomolecules this mixing may be called intrinsic, since no foreign objects need be introduced 

to effect mixing. However, at higher field frequencies and particle loadings the time-average 

dipolar interaction between fixed spherical particles becomes negative, so particles form 

sheets, not chains, and mixing does not occur [3.11,3.12]. 

We have developed a different method of intrinsic magnetic mixing that generates 

large torques with modest fields. Our approach is to apply a vortex magnetic field to a 

suspension of spherical magnetic particles. A vortex field is a rotating field created from two 

ac fields of identical frequency in quadrature phase, to which a third dc field component 

normal to the rotating field plane is added. The resulting field vector has the precession-like 

motion illustrated in Figure 3-1, and when the root-mean-square (rms) values of the three 

field components are equal we call the vortex field balanced. 

To the first order, the time-average dipolar interaction between stationary particles 

vanishes in balanced triaxial fields [3.13], of which a balanced vortex field is a special case, so 

particles can only interact strongly when they form chains that follow the vortex field vector  
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Figure 3-1. The combination of a rotating field (blue) with an orthogonal dc field component 

(yellow) produces a vortex magnetic field (green) of magnitude H0 that makes a constant angle 

f to the z-axis, and sweeps out a conical surface. 

 

 

 

 

Figure 3-2.  The vortex field makes a constant angle θf to the z axis, which is parallel to the dc 

field. The rotating field component is created by applying ac fields in quadrature phase along 

the x and y axes. A spherical particle chain makes an angle θm with the z axis and exhibits an 

azimuthal phase lag ϕm. 

 

  



75 

 

(Figure 3-2). The mixing torque is independent of particle size, so nanoscale volumes can 

be mixed with nanoparticles, and only the very modest fields that can be produced with 

Helmholtz coils are required. This method is effective with particles that do not have 

magnetic remanence, so it would be an ideal method of accelerating the binding of target 

biomolecules to functionalized “paramagnetic” microbeads, which would simultaneously 

provide the mixing torque. 

The mixing effects created by a vortex field are striking. When 4–7 m iron particles 

are added to a low viscosity liquid they quickly settle. Subjecting this sediment to a 200 Hz 

rotating magnetic induction field produces no discernible effect until a dc magnetic field of 

comparable amplitude is applied normal to the rotating field plane. The sediment then 

disperses to form a suspension that whirls around in the sample cell. Increasing or decreasing 

the dc field greatly reduces this mixing. Vortex fields with amplitudes as modest as 0.02 T 

(200 G) rotate the fluid fast enough that the centrifugal force moves the opaque suspension 

up onto the walls of the cell, so that the cell bottom is free of fluid. 

In this chapter we report experiments designed to elucidate the microscopic 

mechanism of mixing, and these show some surprising effects. First, the mixing torque does 

not increase with field frequency. By contrast, a stir bar gives a mixing torque proportional 

to frequency until stagnation occurs. Second, the mixing torque is quadratic in the field, 

whereas with a stir bar the torque is field independent above the stagnation field. Third, 

with a soft magnetic material such as iron, the torque is nearly zero in a rotating field and 

maximizes when the dc component is comparable to the rotating field magnitude. Stir bars 

function optimally in a simple rotating field. 

3.1.1 Mechanisms of torque production 

There are several factors that could give rise to a torque on a particle suspension in a vortex 

field. Each of these factors has a unique dependence on the strength of the vortex field, on 
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the relative strength of the dc component of the vortex field, on the field frequency, and on 

the fluid viscosity. 

a) PARTICLE SHAPE ANISOTROPY will cause a soft magnetic particle to 

preferentially align with its long axis parallel to the instantaneous magnetic 

field. In a vortex field an acicular particle will have a precession-like 

motion that will impart torque to the fluid. Above the stagnation field this 

mixing torque will be independent of the field, since the particle will 

rotate at the field frequency. The torque will be optimal in a simple 

rotating field, because this maximizes the moment of the particle around 

the mixing axis, and will increase in proportion to field frequency until 

stagnation occurs. Finally, the torque will increase with fluid viscosity 

until stagnation occurs and, thus, will vanish for particles in a solid matrix. 

An analysis of a nanorod in a vortex field explores these issues [3.14], and 

a more recent paper on isolated ellipsoidal particles explores some of these 

issues as well, including the residual asynchronous motion that occurs in 

the stagnation regime [3.15]. 

b) A FREQUENCY-DEPENDENT SUSCEPTIBILITY will cause the dipole moment of 

a particle to lag behind the field, creating torque. This torque will increase 

with frequency, reach a maximum, and then decrease. This torque will be 

insensitive to fluid viscosity and will persist even for particles in a solid 

matrix. The torque will be strong in a rotating field. 

c) PARTICLE AGGLOMERATES can lead to a fluid torque if the agglomerates 

have a susceptibility anisotropy. For example, a low-frequency rotating 

field applied to a very dilute suspension will assemble particles into chains. 

Magnetic measurements on particle chains show that the susceptibility 

parallel to a chain is nearly three times larger than perpendicular. Because 
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of this, a chain will rotate with the applied field. However, a chain is not a 

simple stir bar; it is a volatile structure that can grow through aggregation 

or shrink through fragmentation induced by hydrodynamic forces. A full 

consideration of particle chaining in a vortex magnetic field is involved 

[3.14], but the results are easily summarized. The torque will increase 

with the field energy density, will be roughly independent of the field 

frequency, and will vanish for a solid composite. Finally, the application of 

a dc field is essential to torque production. If the dc field is too small the 

agglomerates will have a sheet-like structure with a negligible 

susceptibility anisotropy; if the dc field is too large, the chains will tend to 

grow without bound and collapse along the vertical (mixing) axis, 

producing negligible torque. 

3.2 Experiment 

Torque measurements were made on 4–7 m carbonyl Fe powders obtained from Lord 

Corporation, chosen for their low remanence. These particles were either dispersed in 

liquids of differing viscosities  [ethanol, with  = 1 cP at 25 °C, benzyl alcohol (8 cP) or 

ethylene glycol (16 cP)] or immobilized by a polymerizable resin to create a solid 

composite. Typically, 150 mg of Fe particles were dispersed in 2 mL of liquid to create a 

1.0  vol.% suspension. 

Torques were measured by suspending the samples into the triaxial magnet with a 

0.75-mm-diameter nylon torsion fiber and measuring the angular displacement of the vial in 

the field. The vortex field has three parameters: frequency f, magnitude H0, and polar field 

angle f. These parameters are defined through 

  zyxH ˆcosˆ)2cos(ˆ)2sin(sin00 ff ftftH   ,      (3-1) 
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so the dc field (mixing axis) is in the z direction. For a balanced vortex field the three rms 

field components are equal, so 3/2sin f , 3/1cos f , and  7.54f . 

3.3 Results 

We first examine the dependence of the mixing torque on the magnitude of a balanced 

vortex field, comprised of a rotating field and a vertical field whose magnitude is equal to 

the rms value of either of the rotating field components. The vortex angle of such a field is 

 7.54)2atan( , the so-called magic angle in NMR. Measurements on an ethanol 

suspension show a nearly field-squared dependence, Figure 3-3(a), over the frequency 

range of 100–500 Hz, but the more viscous ethylene glycol suspensions show a complex 

field dependence, Figure 3-3(b), especially at 500 Hz, where the torque is low at low 

fields. These measurements indicate that particle agglomerates, probably chains, produce 

mixing. The vortex field produces little torque on the solidified suspension, so the 

frequency-dependent susceptibility of Fe plays a negligible role. 

 

Figure 3-3.  The specific torque density (torque per unit volume of particles) of Fe particles in 

balanced vortex fields (θf≈54.7°) is shown as a function of field strength. (a) The specific torque 

density in ethanol is essentially independent of field frequency and roughly quadratic in the field, 

although at higher fields the effect of magnetic saturation is apparent. (b) In ethylene glycol, 

which has a viscosity 16 times that of ethanol, the field dependence is much more complex, 

especially at 500 Hz, where mixing is very weak at low fields. 
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Figure 3-4.  The specific torque density of Fe particles in ethanol is strongly dependent on the 

vortex field angle, with a maximum near a balanced vortex field. 

The second issue is the dependence of the torque on the vortex field angle f. The 

results in Figure 3-4 show a maximum torque at a vortex field angle near 60°—essentially 

a balanced vortex field. The torque falls off rapidly at higher angles because the particles 

form sheet-like structures [3.12] that have negligible susceptibility anisotropy in the plane. 

The falloff at lower angles is discussed below. 

The ethylene glycol data in Figure 3-5(a) show that the mixing torque is essentially 

independent of frequency at the highest field strength and falls off rapidly with frequency at 

the lowest. Furthermore, Figure 3-5(b) shows that at 500 Hz the torque decreases with 

increasing viscosity. These trends are opposite to that expected for fluid mixing by particle 

rotation, which should be quite similar to mixing with a magnetic stir bar, and we shall see 

that this is a complex aspect of torque production by volatile agglomerates. 
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Figure 3-5.  The specific torque density of Fe particles in balanced vortex fields (θf≈54.7°) is shown 

as a function of frequency and viscosity. (a) At the highest field the torque is essentially 

independent of frequency, but at the lowest field it decreases rapidly with frequency. (b) The 

torque density is independent of liquid viscosity at 100 Hz but decreases with viscosity at 500 Hz. 

3.4 Discussion 

The experimental results we have shown can be explained by the field-induced formation of 

particle chains, the shape of which is shown in the dynamical simulation in Figure 3-6. As 

shown in Figure 3-2, these chains follow the vortex field, but with a phase lag m in the 

azimuthal angle swept out by the field. This phase lag decreases with field strength and 

increases with chain length, field frequency, and fluid viscosity. As the phase lag increases, 

the polar angle of the chain to the dc field m decreases. This reduces the moment of the 

chain and thus the mixing torque. 

Particle chains are volatile structures that are held together by the magnetic 

interactions between particles, which must be strong enough to balance the viscous forces 

on the spinning chains. Larger fields promote the formation of longer chains, and higher 

frequencies reduce the average chain length. In general, spinning chains will aggregate to 

form longer chains until the viscous forces dominate the magnetic forces, at which point a 

chain will fragment near its center. The physical picture is similar to the chain model of 

electro-rheology and magneto-rheology [3.16], but the geometry is more complex. 
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Figure 3-6.  Brownian dynamics simulation of a chain in a balanced vortex field shows the 

curvature of a chain near its maximum possible length. Inset is the view along the mixing axis. 

An analysis of chains in a vortex field [3.14] leads to results that are consistent with 

our experimental observations. First, the torque density in the fluid is given by 

 45 for cossin
12

1 222

0 fffp M  ,     (3-2) 

where p is the particle volume fraction, M is the particle magnetization, and  is the 

vacuum permeability. This expression predicts that the mixing torque is proportional to the 

field squared at low fields and is independent of field frequency, fluid viscosity, and most 

notably, particle size. Our data show these effects, as well as more complex behavior that 

arises when the experimental conditions do not strongly support mixing (i.e., low field, high 

frequency, high viscosity). 

The transition from mixing to quiescent regimes is governed by the so-called Mason 

number Mn, a ratio of the viscous forces that tend to fragment particle agglomerates to the 

magnetic forces that cause agglomeration. In terms of the liquid viscosity  and the field 

frequency , 
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Our expression for the mixing torque is only valid for very small Mn, where the dominant 

magnetic interactions promote particle chaining. A calculation shows that the maximum 

stable chain size is related to the Mason number through 
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,     (3-4) 

where the number of particles in a chain is 2N. The maximum chain size increases with the 

field, decreases with increasing viscosity and field frequency, and is independent of the 

particle size. Remarkably, the change in the chain size with these parameters is exactly what 

is needed to keep the mixing torque constant. This strange behavior is a manifestation of the 

well-known shear-thinning viscosity of magnetorheological fluids in an applied field. 

The transition from the mixing to quiescent regimes is due to the failure of chain 

formation. Above a critical Mason number Mn∗ the viscous forces so dominate the magnetic 

forces that even particle dimers do not form. By substituting Nmax = 1 into Equation 3-4 this 

critical Mason number is shown to be 


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 45 for  
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22

*

f

ff


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.      (3-5) 

In a balanced vortex field particles chain only when the Mason number is smaller than 

roughly 0.1. 

Although we cannot predict how the mixing torque will fall off when the Mason 

number exceeds Mn∗, we can still use the Mason number to create a master curve that 

demonstrates that particle agglomeration is responsible for mixing. To compute the Mason 

number at low fields we use 0HM p  for the particle magnetization and the theoretical  
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Figure 3-7.  Plotting all of the balanced vortex field data in Figures 3-3, and 3-5 on dimensionless 

axes suggested by the chain model results in a master curve that affirms the conclusion that 

particle agglomeration is responsible for mixing. Strong mixing, described by Eq. 3-2 and 

indicative of robust chaining, is observed for Mn<0.02. Mixing is essentially nonexistent (90% 

lower) above the critical Mason number of 0.1. 

value 3p  for the apparent susceptibility of a sphere of high susceptibility magnetic 

material such as iron [3.17]. The torque density should then be of the form

)Mn(004

3
gHBp , where g(Mn)=1 for Mn⪡Mn∗ and is monotonically decreasing for 

Mn⪢Mn∗. Data plotted on the dimensionless axes )/( 00HBT p  versus Mn should thus yield a 

master curve. Plotting the data in Figures 3-3 and 3-5 on these axes indeed yields the master 

curve in Figure 3-7. The chain model thus predicts the mixing behavior in the strong 

mixing regime, where Mn < 0.02. Above the predicted critical Mason number of 0.1 the 

torque should technically be zero, and it is indeed 90% smaller than in the strong mixing 

regime. The maximum amplitude of ∼2 of the dimensionless torque )/( 00HBT p  is more 

than four times our predicted value of 43.04/3  . In fact, accounting for local dipolar 

fields increases the predicted dimensionless torque amplitude to 1.0 (see Eq. 34 of Ref. 

[3.14]), and the remaining factor-of-2 discrepancy can be partly attributed to the fact that 
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the particles are somewhat aspherical, which increases their magnetization in a given applied 

field [3.17]. But an additional source of this discrepancy is that the chain model we have 

proposed only accounts for dipolar interactions, which is only correct in saturating magnetic 

fields. For multidomain particles in low fields multipolar interactions significantly increase 

the interaction force [3.16]. 

The dependence of the measured torque on vortex field angle is not easily explained. 

Equation 3-2 predicts that the torque should vanish for vortex field angles smaller than 45°, 

a trend seen in the experimental data. This falloff occurs because for low vortex angles it is 

possible for particle chains to grow without limit and align with the dc field, becoming 

stationary. For vortex field angles larger than 45° this alignment cannot occur because the 

chains become unstable and fragment as their phase lag increases and their polar angle 

decreases. For large vortex angles Equation 3-2 does not apply because the particles form 

stationary sheets, not chains, under such circumstances [3.13]. In fact, vortex mixing works 

better than predicted at smaller vortex angles, and we attribute this to the fact that the shear 

field in the fluid itself causes the chains to fragment at lower field angles. The single chain 

model we have proposed assumes that this fluid is stationary, in other words, we have 

ignored the collective hydrodynamic interactions of a many-chain system. 

The second reason a balanced vortex field is so effective for mixing is that it does not 

strongly favor the formation of competing stationary structures. This is because in a 

balanced field the negative dipolar interaction produced by the rotating field on a pair of 

stationary particles cancels, to the first order, the positive dipolar interaction produced by 

the dc field [3.13]. In fact, the formation of stationary structures is possible, but only for 

Mason numbers exceeding Mn∗. 

3.5 Conclusions 

We have shown that magnetic particle suspensions can be efficiently mixed in a balanced 

vortex field. This mixing is much more effective than that produced by a simple rotating 
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field and is due to the formation of volatile particle chains that follow the field with a 

precession-like motion. In the low Mason number, chain-forming regime, the mixing torque 

increases quadratically with the field and is independent of the field frequency, fluid 

viscosity, and particle size. This mixing technique is a viable technology for mixing problems 

on any scale, including mixing in microchannels and accelerating the binding of 

biomolecules to surface-functionalized magnetite-loaded microbeads. 
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Chapter 4 

Vortex magnetic field mixing with anisometric 

particles4 

In Chapter 3, we introduced a vigorous, scale-adaptive mixing technique suitable for 

microfluidic applications, wherein a suspension of spherical magnetic particles is subjected 

to a vortex magnetic field, which induces the formation of dynamic particle chains that 

efficiently stir the solution. Here we explore the dependence of the mixing torque on 

particle shape, and show that increasing degrees of shape anisometry (i.e., spheres, platelets, 

rods) give increased mixing torque at the same particle volume fraction. Moreover, all 

particles, regardless of shape, exhibit similar dependencies of the mixing torque on the 

vortex field parameters: the torque is maximized in a balanced vortex magnetic field, is 

proportional to the square of the field strength, and is independent of the field frequency. 

However, the torque advantage of anisometric particles is somewhat offset by their 

increased packing volume, which can make the removal of trapped fluid difficult. 

4.1 Introduction 

Strong, efficient mixing in microfluidic devices is challenging due to the extremely small 

Reynolds numbers encountered in such flows. However, we have recently developed a 

mixing technique based on subjecting suspended magnetic particles to vortex magnetic fields. 

Such a field is defined as a rotating field, to which a dc component is added normal to the 

field plane, to give the field vector a precession-like motion. Vortex fields cause spherical, 

magnetically-soft, suspended particles to assemble into whirling chains that vigorously stir 

the fluid. Despite the superficial resemblance to stir-bar mixing, a theoretical analysis [4.1] 

for spherical particles shows that vortex mixing has sharply distinguishing attributes, due to 

the volatile nature of the particle chains. For example, in stir-bar mixing the torque 

                                                           
4 Originally published as:  K.J. Solis, R.C. Bell, and J.E. Martin, Vortex magnetic field mixing with anisometric particles, Journal 
of Applied Physics 107, 114911 1–4 (2010). 
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increases with frequency and fluid viscosity, is independent of the field strength (above the 

stagnation field), and is strongest in a simple rotating field. Conversely, in vortex mixing the 

torque is expected to be independent of frequency and viscosity, proportional to the square 

of the applied field, and a rotating field should produce little torque. These predictions have 

indeed been confirmed by experiment in Chapter 3 [also Ref. 4.2]. 

Suspensions of anisometric particles, such as platelets and rods, should exhibit 

greater mixing torque than those of spherical particles, because the magnetic field will cause 

anisometric particles to orient so as to give significantly larger induced particle 

magnetization. This effect is due to the much greater particle magnetization when the 

applied field is in the plane of the platelet, or parallel to the rod. The purpose of this chapter 

is to explore the effects of particle shape anisometry on the mixing behavior of particle 

suspensions subjected to vortex magnetic fields. 

4.2 Experiment 

Four separate magnetic particle suspensions were created by dispersing 12.5 wt % (∼1.25 

vol %) of ferromagnetic particles in ethyl alcohol ( η ≈ 1 cP at 25 °C ). The particles, 

shown in Figure 4-1, exhibited progressive degrees of shape anisometry: spheres [three 

dimensional (3D)], platelets [two dimensional (2D)], and rods [one-dimensional (1D)]. The 

“3D” material was 3–7 m carbonyl nickel powder (Goodfellow) whose particle 

morphology is popcorn-like spherical agglomerate. The “2D” structures consisted of either 

300 nm-thick, 20 m nickel platelets coated with magnesium fluoride (JDSU), or 1 m-

thick, 20 m conductive Ni platelets (Novamet HCA-1). The “1D” particles were cobalt 

nanorods (d=310±56 nm, l=3.2±0.6 m) , synthesized as in Ref. 4.3. 



90 

 

 

Figure 4-1.  Scanning electron micrographs of the experimental materials. (a) 3–7 μm spherical 

Ni particles, (b) JDSU 20 μm MgF2-coated Ni platelets, (c) Novamet 20 μm Ni platelets, and (d) 

3.2 μm Co nanorods. The white scale bars at the bottom of each image represent 20 μm. 

The magnetic fields were created by three orthogonal Helmholtz coils in series 

resonance with tunable, computer-controlled capacitor banks. With this magnet 

arrangement, we can create numerous time-dependent magnetic fields, but in this study we 

focus on vortex magnetic fields, which are comprised of two orthogonal, ac components of 

equal amplitude and frequency in quadrature phase, to which a third dc component is added 

perpendicular to the biaxial-field plane (x-y plane). The result is a magnetic field vector that 

sweeps out the surface of a cone about the z-axis (see Figure 4-2). The experimental field 

parameters are the vortex field angle (f) , field frequency (f) , and the field strength (H0) , 

defined through the relation, 

  zyxH ˆcosˆ)2cos(ˆ)2sin(sin00 ff ftftH   ,     (4-1) 

where the vortex field angle f is the angle the field vector makes to the z-axis. So a simple 

rotating field has a vortex field angle of 90°, and a balanced vortex field—one in which all 

three rms field components are equal—has a vortex angle of 54.7°. 
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Figure 4-2. Schematic representation of a vortex magnetic field of magnitude H0 and field angle 

θf. 

Mixing torques were measured using a simple torsion balance. A vial containing the 

sample suspension was suspended into the triaxial magnet cavity by a nylon torsion fiber 

with a torsion constant of 10 N·m/rad. The desired vortex magnetic field was then 

applied, and from the measured angular displacement the mixing torque was computed. 

Angular displacements were measured with the biaxial field rotating both clockwise and 

counterclockwise to increase the accuracy of the results. 

4.3 Results 

4.3.1.  Vortex field angle dependence 

In our first experiment, we investigated the dependence of the mixing torque on the vortex 

field anglef. Figure 4-3 shows that for all of the particle suspensions the mixing torque 

maximizes at a field angle of approximately 60°, which is essentially a balanced vortex field. 

As the field angle decreases from this maximum, we observe a strong fall-off of the mixing 

torque, as predicted by the theory for spherical particles [4.1]. This fall-off at small vortex 

field angles is due to the tendency for chains to aggregate into ever-longer chains that 

eventually just align with the z-axis. At large vortex field angles, the particles form  
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Figure 4-3.  Normalized torques of magnetic particles as a function of applied vortex field angle. 

For small field angles, chains grow unbounded and co-align with the mixing axis ( z-axis) 

producing no torque. The mixing torques maximize for a balanced vortex field near 60°. Finally, 

at large field angles, spherical particles and JDSU platelets produce little torque due to structure 

formation, while nanorods and Novamet platelets exhibit strong mixing and torque production. 

stationary sheets because the time-average magnetic interactions are a negative dipolar 

interaction [4.4]. These sheets are static structures so there is no mixing; however, a finite 

torque still exists because the frequency-dependent susceptibility of nickel causes the 

magnetization of the material to lag behind the field. In a balanced vortex field, various 

instabilities prevent unlimited chain aggregation, yet the time-average dipolar interactions 

do not favor sheet formation. This same behavior is observed for platelets, and we have 

indeed observed sheet formation with platelets in high viscosity solvents. 

In a simple rotating field, each type of particle suspension displays differentiating 

behavior: the spherical particles form static sheets, the JDSU platelets develop columnar 

structures that whirl around the vial, the Novamet platelets mix while exhibiting a fine 

sheet-like structure, and the nanorods mix strongly, as shown in Figure 4-4. The strong 

mixing torque of the nanorod dispersion in a simple rotating field is expected because a rod  
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Figure 4-4.  Photographs of particle suspensions in simple rotating fields (θf=90°). Each particle 

shape displays distinct structures or dynamics: (a) spherical particles form horizontal, static sheets 

parallel to the rotating field plane, (b) JDSU platelets form columnar structures (faint vertical 

striations) that whirl around the vial, (c) Novamet platelets form fine sheet-like structures with 

mixing, and (d) Co nanorods display strong mixing. 

will tend to follow a rotating field, just like a stir bar. The ability to mix with only two field 

components is a clear advantage of nanorods over spherical particles. The Novamet platelets 

also stir well in a rotating field, retaining over 80% of their peak mixing torque, probably 

because of their somewhat ellipsoidal shape. 

An interesting issue is whether the nanorods form agglomerates. Studies of the field 

and frequency dependence will determine this: if nanorod agglomeration occurs, the torque 

should be independent of frequency and should increase with the field. If the nanorods do 

not agglomerate, they should act like stir bars and the torque will increase with frequency 

and be independent of field. 

4.3.2.  Field strength dependence 

To investigate the field strength dependence of the mixing torque, we subjected the 

suspensions to a balanced vortex magnetic field. This field scheme yields a vortex angle of 

54.7°, which is close to the optimal mixing angle of ∼60°. The results of these experiments 

are in Figure 4-5. Just above the stagnation field the torque increases as the field-squared  
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Figure 4-5.  Normalized torques of magnetic particles as a function of applied field strength for a 

balanced vortex field (θf=54.7°). Stagnation occurs for low fields and magnetic saturation 

develops at high field strengths. 

for all four particle shapes, then levels off at higher fields due to magnetic saturation. This 

field-squared dependence agrees with the theory for spherical particles, and is just a 

consequence of field-induced particle agglomeration. In essence, under any particular field 

conditions the agglomerates will increase in size until they become unstable. At higher fields 

the agglomerates are larger, so the mixing is stronger. 

4.3.3.  Frequency dependence 

In our final experiments, we examined the frequency dependence of the mixing torque by 

subjecting the particle suspensions to balanced vortex fields at different frequencies. Figure 

4-6 shows that the mixing torques for all particles are essentially frequency independent, 

which again agrees with the spherical particle theory [4.1]. This behavior is also due to 

particle agglomeration, demonstrating that the magnetic mixing is not due to single 

particles. Certainly for single nanorods, the torque would simply be proportional to field 

frequency, provided stagnation does not occur. The greatest specific torque is generated by 

the  
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Figure 4-6.  Specific torques of magnetic particles as a function of applied field frequency. The 

mixing torque is essentially frequency-independent for all particles, and increases with shape 

anisometry. All data acquired in balanced vortex fields (θf=54.7°). 

nanorods, followed by the platelets (JDSU, then Novamet), and finally the spherical 

particles. 

4.4 Discussion 

So what particles are best for mixing? Are anisometric particles advantageous? For every 

field parameter tested (i.e., field angle, strength, and frequency), we have found that the 

torque is greatest for the nanorods, followed by the platelets, and then the spherical 

particles. Thus, a primary conclusion from the results of these experiments is increasing 

degrees of shape anisometry produce greater mixing torque. 

If the only consideration is achieving maximum mixing torque for a given volume of 

material, then the choice of particle shape is clear—rods. However, one needs to also 

consider the relative packing density of the particles, since a low packing density could 

impede flow in a microchannel and cause undesirable retention of the working fluid. 

Retention could be problematic for sequential batch-mode analysis unless a purge fluid was 

used. In Figure 4-7, the settling heights are shown for the different particle shapes at equal  
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Figure 4-7.  Photograph of the settling heights of the various particles illustrating steric effects, 

which increase with shape anisometry. (a) 3–7 μm spherical Ni powder, (b) 20 μm Novamet Ni 

platelets, (c) 20 μm JDSU MgF2-coated Ni platelets, and (d) 3.2 μm Co nanorods. All suspensions 

are at 1.25 vol % of particles. 

volume fractions (1.25 vol %) . We observe a trend for packing efficiencies reversed from 

that of torque production. The sedimentation volume for the Novamet Ni platelets is 1.6× 

that of the spherical particles, the JDSU Ni platelets are 3.5×, and the Co nanorods 5.4×. 

So increasing degrees of shape anisometry correspond to greater steric interactions. 

In a practical microfluidic mixing device, the particles would likely be retained in the 

mixing volume by a field gradient when not in use. We find that the disparity in 

sedimentation heights is greatly attenuated when a magnetic field gradient (supplied by 

NdFeB permanent magnet) is applied. The dramatic change in settling heights is due to the 

way the different particles interact in the presence of a magnetic field gradient. The 

spherical particles form spikes that extend further than their gravity-induced sediment, 

whereas the nanorods pack much more tightly in a field gradient as compared to gravity. 

Figure 4-8 compares the sedimentation heights under gravity and a magnetic field gradient, 

as well as the maximum mixing torques at a fixed balanced vortex field magnitude of 260 G 

for each particle suspension, relative to the values for spherical particles. (Because the JDSU 

platelets are a composite material, its specific torque was computed based on the volume of 

nickel content, as opposed to the total particle volume.) 
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Figure 4-8.  Comparison of the relative magnitudes of the mixing torque, and sedimentation 

heights under gravity and a magnetic field gradient. For each condition, the values are 

normalized to those for spherical particles. 

Another consideration is the price and availability of the materials. The spherical Ni 

particles and Novamet Ni platelets are off-the-shelf materials available in large quantities for 

reasonable prices. The JDSU Ni platelets and Co nanorods are more costly, exotic materials 

that require advanced manufacturing. However, for mixing in microfluidic applications, the 

required material volumes are quite small and price may not be a prohibitive factor. 

4.5 Conclusions 

We have investigated the mixing effects of suspensions of anisometric ferromagnetic 

particles with respect to the parameters of a vortex magnetic field: the vortex field angle, 

field strength, and frequency. Consistent with theory, the measured mixing torque is 

observed to maximize near a balanced vortex magnetic field (∼55–60°); display a field-

squared dependence; and be independent of the field frequency for all particles, regardless 

of shape. In contrast to spherical particles and JDSU platelets, which exhibit diminished 

torque production in rotating fields due to structure formation, Novamet platelets and 

nanorods display strong mixing, consistent with stir-bar behavior. For all field parameters, 
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we observe that increasing degrees of shape anisometry of the particles result in greater 

torque production. Nanorods produce the most torque, followed by platelets, and then 

spherical particles. However, the sedimentation volume increases with shape anisometry as 

well. Each material has its own merits, and is probably well-suited for particular 

applications. 
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Chapter 5 

Isothermal Magnetic Advection: Creating functional 

fluid flows for heat and mass transfer5 

Natural convection has been of interest for over a century due to its rich nonlinear dynamics 

and applications to heat transfer. However, convection occurs only when both gravity and a 

destabilizing thermal gradient exist. We have discovered a unique class of vigorous, 

emergent fluid flows that have the full functionality of natural convection but can be 

stimulated regardless of gravity or thermal gradients, simply by subjecting a platelet 

suspension to certain time-dependent biaxial magnetic fields of modest strength. This 

enigmatic phenomenon may facilitate cooling in microgravity environments and in other 

circumstances where convection fails. 

5.1 Introduction 

Thermal transport by convection cells was first visualized in 1900 by Henri Bénard [5.1], in 

an experiment wherein a thin layer of liquid with a free top surface was heated from below. 

This experiment produced a hexagonal pattern of flow cells that Bénard attributed to the 

buoyancy of the fluid near the hot surface. In 1916, Rayleigh [5.2] obtained a theoretical 

understanding of the experimental conditions that give rise to “Rayleigh–Bénard” 

convection—at least for the case where the liquid surfaces are bounded by contacting 

plates—and predicted convective rolls, circles, and linear and square patterns. Experimental 

and theoretical work in the ensuing century elucidated many such complex and beautiful 

convection patterns [5.3–5.5]. 

Around 1970, it was discovered that applying a magnetic field gradient along the 

thermal gradient could enhance natural convection in magnetic fluids [5.6,5.7]. The 

                                                           
5 Originally published as:  K.J. Solis and J.E. Martin, Isothermal Magnetic Advection: Creating functional fluid flows for heat and 
mass transfer, Applied Physics Letters 97, 034101 1–3 (2010). 
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enhancement is dependent upon the thermal gradient and does not lead to unique flow 

patterns. 

We have now discovered a method of stimulating heat and mass transport in fluids 

that requires neither a thermal or magnetic field gradient, nor gravity. This method gives 

rise to a unique class of vigorous, magnetic-field-stimulated flow patterns we call advection 

lattices, which can be used to transport heat or mass along any desired direction, using only 

the modest magnetic fields produced by Helmholtz coils. The scale of these flow lattices is 

fully controllable by the applied field, enabling either the efficient transfer of heat and mass, 

or the transport of mass without the extraction of heat. Especially surprising are the variety 

of effects that can occur, including the production of helical flows, the spontaneous 

formation of freestanding fluid structures, and the creation of chaotic advection. A 

theoretical understanding of these effects does not appear to be immediately forthcoming, 

but in the following we describe our experiments and observations. 

5.2 Experimental 

The formation of advection lattices occurs when a suspension of magnetic platelets is 

subjected to particular time-dependent, biaxial magnetic fields [5.8]. These biaxial fields 

consist of two orthogonal components whose relative frequencies can be expressed as a ratio 

of small integers. For such just intervals—in music terminology: octaves, perfect fourths and 

fifths, major thirds, etc.—a variety of flow patterns can be produced whose structure is 

largely determined by the phase between field components. These patterns generally consist 

of a checkerboard of antiparallel flow columns that are normal to the biaxial field plane, as 

illustrated in Figure 5-1. With the 20 m platelets we employ, vigorous flow patterns can 

be produced with field frequencies in the low audio range (10–1000 Hz) and component 

amplitudes in excess of ~0.01 T. 
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Figure 5-1.  Schematic illustrating the geometry of the advection lattice and biaxial magnetic 

field, showing the columns form normal to the magnetic field plane. Red columns are flowing 

oppositely to the blue ones. 

5.3 Results and discussion 

The simplest flow pattern we have observed occurs with an octave biaxial field having a 

phase angle of 45°. (This phase angle is added to the high-frequency field component with 

both components expressed as sinusoids.) A Lissajous plot of the field vector makes the 

bowed figure eight in Figure 5-2(a). Applying this field to the platelet suspension 

immediately stimulates the striking flow pattern in Figure 5-2(b), which consists of 

1.3 mm-diameter flow columns that span the 3 cm cell. Each column has a sharp tail and a 

diffuse tip, with the flow running from tail-to-tip. Tracer particle studies show that the flow 

rate is about 3 cm·s−1, and that adjacent columns flow in opposite directions. A tracer 

particle in the dark regions between columns rapidly spins either clockwise or 

counterclockwise, due to the high shear rate in these regions. Figure 5-2(c) shows that 

these columns pack “antiferromagnetically” into a rectangular lattice, so the advection lattice 

can be described as a checkerboard of columns, as in Figure 5-3. This symmetric flow  
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Figure 5-2.  (a) Lissajous plots of the magnetic field vector for an octave field at selected values 

of the phase angle. (b) View in the plane of the magnetic field of the advection lattice for an 

octave field (75 and 150 Hz components with rms amplitudes of 150 G) at a 45° phase angle. 

The pattern is insensitive to the boundaries, and the flow runs from the sharp column tails to the 

diffuse tips. (see Supplementary Movie 5-1) (c) View of the advection lattice normal to the field 

plane shows the columns form a rectangular lattice. 
 

 

 

 

Figure 5-3. Schematic illustrating the flow at each column tip feeding the four adjacent columns. 
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Figure 5-4. (a) At a phase angle of 0° the advection lattice produced by an octave field 

becomes wavy and animated, due to chiral symmetry breaking that produces alternating 

helical flow within the columns. [see Supplementary Movie 5-2] (b) Large particle concentrations 

result in surface instabilities, such as this nearly vertical view of a 1 cm-high ridge produced by an 

octave field with a 0° phase angle. This ridge consists of both striped and checkered phases. 

[see Supplementary Movie 5-3] (c) A 300:100 Hz field with a 0° phase angle produces helical flow 

of the same vorticity in all columns, resulting in a body torque on the fluid ridge that causes it to 

flow up the right side of the cell. This view is normal to the field plane. A phase angle of 180° 

reverses the torque so the fluid flows up the left side of the cell. 

pattern is unique to this effect and does not occur in Rayleigh–Bénard convection, 

presumably because in that case gravity breaks up-down symmetry. 

To explore the dependence of the flow pattern on the phase between field 

components, we phase modulated the octave interval by increasing the high-frequency 

component by 0.1 Hz. This phase modulation produces a striking sequence of complex flow 

patterns that repeat every 10 seconds. At a phase angle of 0° the columns are wavy and 

writhing and exhibit defects such as bifurcation at the free surface of the liquid, as in Figure 

5-4(a). High resolution video suggests that this pattern is a result of spontaneous chiral 

symmetry breaking, with adjacent columns having opposing helical flow. Near a phase angle 

of 45°, these writhing columns become straight and stationary. At a phase angle of ~90°, 

the columns become faint and fine, roughly half the diameter of the 45° columns. The 

transitions between phases are mesmerizing, as some patterns transform in most unexpected 

ways, whereas others suddenly appear, then vanish abruptly. 

Experiments with a biaxial field having a 3:1 frequency ratio (a twelfth interval) 

produce helical flow within the columns, but in this case the vorticity is in the same sense 

for all columns, producing a body torque. These helical flows reach a maximum intensity at 
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phase angles of 0° and 180°, and are equal and opposite in sign, as determined by measuring 

the body torque with a torsion balance. The flow vorticity also produces a rapid migration of 

the columns normal to their flow direction, which causes the fluid to pile up on one or the 

other side of the cell, depending on the phase angle. (This effect does not constitute chiral 

symmetry breaking, as the sign of the torque is deterministic.) The appearance of a body 

torque is surprising: the torque on a platelet that has an induced magnetic moment is due to 

the rotation of the magnetic field, HH  , but this quantity varies periodically and averages 

to zero for biaxial fields comprised of sinusoidal components of differing frequencies. 

At higher particle concentrations, one can observe surface instabilities in the form of 

stationary ripples that run parallel to the intersection of the field plane with the fluid surface. 

If one starts with a dry powder of platelets, the dropwise addition of solvent causes the 

progressive emergence of a freestanding fluid ridge supported only by the vigorous flow 

contained within, Figure 5-4(b). In a phase-modulated twelfth field, the alternating helical 

flow causes this ridge to slosh from side-to-side, Figure 5-4(c). 

Finally, if a strong dc field component is applied normal to the biaxial field, the 

advection becomes chaotic, producing extremely strong mixing. This chaotic advection 

could be useful for mixing in microfluidic devices. 

The effects we have described cannot be understood in terms of a magnetic force on 

a single particle suspended in a liquid, but are an emergent behavior of an ensemble. This 

distinguishes isothermal magnetic advection in a fundamental way from thermomagnetic 

convection [5.9], which can be explained in terms of the temperature dependence of the 

Kelvin force (the force on a magnetic object in a field gradient) on an individual particle. 

This Kelvin force increases with decreasing temperature, due to the negative pyromagnetic 

coefficient of ferrofluids. So if the magnetic field gradient is applied along the thermal 

gradient, the body force is larger on the cooler fluid, which adds to the buoyancy that drives 

natural convection. 
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Although the origin of isothermal magnetic advection is enigmatic, we can identify 

the key ingredients of this effect. A uniform magnetic field in an isothermal fluid cannot 

exert a force on a particle, but it can exert a torque on anisometric particles, such as 

platelets or rods. Experiments show that advection lattices do not form in suspensions of 

spherical particles subjected to biaxial fields [5.8], but neither do they form in nanorod 

suspensions. Something more than a field-induced torque is at issue, and it is apparent that 

the emergent dynamics is a consequence of hydrodynamically coupled platelet fluttering in 

the time-dependent fields. In a static field, a magnetically soft platelet will orient such that 

the local field vector (the sum of the applied and particle fields) lies in the platelet plane—a 

so-called demagnetizing field effect that minimizes its magnetostatic energy [5.10]. The 

orientation of the platelets will be strongly coupled by their magnetic interactions, yet each 

platelet will still be free to rotate around this local field vector, so a soft orientational degree 

of freedom remains, as in a weather vane. In a time-dependent field, the platelets will 

continuously reorient in an attempt to minimize their magnetostatic energy. These field-

driven motions couple hydrodynamically to produce the emergent behavior we have 

observed. 

It will likely prove a significant theoretical and computational challenge to 

understand isothermal magnetic advection. A typical column produced in our experiments 

contains approximately 105–7 platelets, so a large-scale continuum simulation will be 

required. However, experiments over one decade in field frequency show an inverse 

dependence of column diameter on frequency (Figure 5-5), so it is possible that the scale of 

the computation can be significantly reduced. This ability to control the scale of the 

advection lattice also has the practical implication of optimizing heat transport at different 

scales, and enables the possibility of transporting mass in a fluid without transporting heat. 

This effect will occur when the column diameter is small compared to the column length, 

causing the fluid to act like a counter-current heat exchanger, and could be useful for fueling 

chemical and biological processes without heat extraction. 
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Figure 5-5.  The advection lattice column diameter is inversely proportional to the magnitude of 

the field frequency. These data are for an octave biaxial magnetic field. Here f0=100 Hz and 

d0=1.5 mm is the measured column diameter for a biaxial field having components of 100 and 

50 Hz. 

5.4 Conclusions 

Isothermal magnetic advection is a useful technology that enables the transfer of heat and 

mass without pumps, seals or contact with the fluid—even in microgravity environments—

and without the need for a thermal gradient of any magnitude. Understanding the unique 

symmetries of the flow patterns is an exciting scientific challenge, and we have only begun 

to explore the experimental possibilities. How do these advection lattices interact with 

natural convection? Will unique flow patterns emerge? Does the use of larger particles lead 

to commensurately broader columns? Are unique flow patterns possible in ac triaxial fields 

or in biaxial fields whose components are periodic but non-sinusoidal? We hope that the 

investigation of these and other issues will lead to a greater understanding of this 

phenomenon and its technical implications. 
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Chapter 6 

Controlling the column spacing in isothermal 

magnetic advection to enable tunable heat and 

mass transfer6 

Isothermal magnetic advection (IMA) is a recently discovered method of inducing highly 

organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform 

ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither 

a thermal gradient nor a gravitational field, and so can be used to transfer heat and mass in 

circumstances where natural convection does not occur. These advection lattices are 

comprised of a square lattice of antiparallel flow columns. If the column spacing is 

sufficiently large compared to the column length and the flow rate within the columns is 

sufficiently large, then one would expect efficient transfer of both heat and mass. 

Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will 

be efficiently transferred. Although this latter case might be useful for feeding a reaction 

front without extracting heat, it is likely that most interest will be focused on using IMA for 

heat transfer. In this chapter, we explore the various experimental parameters of IMA to 

determine which of these can be used to control the column spacing. These parameters 

include the field frequency, strength, and phase relation between the two field components, 

the liquid viscosity, and particle volume fraction. We find that the column spacing can easily 

be tuned over a wide range to enable the careful control of heat and mass transfer. 

6.1 Introduction 

Isothermal magnetic advection (IMA), introduced in Chapter 5 [also Ref. 6.1], is a recently 

discovered, non-contact technique for stimulating flow in dilute suspensions of magnetic 

                                                           
6 Originally published as:  K.J. Solis and J.E. Martin, Controlling the column spacing in isothermal magnetic advection to enable 
tunable heat and mass transfer, Journal of Applied Physics 112, 094912 1–7 (2012). 



111 

 

platelets. IMA occurs when these suspensions are subjected to particular uniform biaxial 

magnetic fields, generally comprised of two orthogonal ac induction fields of modest 

strength (∼0.015 T rms) having a carefully selected frequency ratio and phase relation. 

Although a variety of flow patterns can be stimulated, of particular interest is a highly 

regular advection lattice that consists of antiparallel flow columns arranged in a square 

lattice, such that any column transporting fluid in one direction is surrounded by four 

countercurrent columns. In other words, the flow columns form a square lattice with 

“antiferromagnetic” ordering. This flow symmetry is not observed in natural convection, but 

seems well configured for efficient heat and mass transfer, provided the column spacing can 

be appropriately adjusted to the scale of the volume over which the thermal gradient is 

applied. The goal of the study reported herein is to isolate those experimental factors that 

control the column spacing. 

IMA possesses some unique characteristics that distinguish it from forced and natural 

convection. Unlike natural convection which requires an unstable thermally induced density 

gradient within the fluid, IMA requires neither a thermal gradient nor gravity. Moreover, 

the direction of the advection lattice is always normal to the biaxial field plane, so by simply 

changing the orientation of the applied field, the flow direction of the advection lattice can 

be controlled. These characteristics make IMA an attractive technique for situations where 

convection does not occur, such as cooling under hot objects, in microgravity environments, 

and when the thermal gradient is simply insufficiently large to exceed the critical Rayleigh 

number for convection. In contrast to forced convection, IMA is a non-contact method that 

does not rely on pumps, valves, or any other moving parts to function, and so is a 

particularly simple and robust technique. Thermomagnetic convection is another non-

contact method of initiating fluid flow and occurs in non-uniformly heated ferrofluids 

subjected to strong magnetic field gradients [6.2,6.3], and is due to temperature dependent 

magnetization of such fluids. However, a substantial thermal gradient is required to initiate  
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Figure 6-1.  Schematic illustrating the two transfer modes possible with IMA, depending on the 

sizes of the advection lattice columns. (a) For small column diameters, the lattice serves as a 

countercurrent heat exchanger, allowing mass transport without heat transport. (b) For large 

column diameters, both mass and heat are effectively transported. 

flow and the resultant flow patterns have the symmetries of natural convection. The 

requirement of having a significant field gradient makes scaling thermomagnetic convection 

to large volumes challenging. A uniform magnetic field has also been predicted to induce 

thermomagnetic convection [6.4], but only within very thin fluid layers (∼1 mm). 

The ability to control the advection lattice column spacing has the practical 

implication of determining the type of transport that will occur within a given fluid gap 

across which a thermal gradient is imposed. Small column diameters, slow fluid flow, and 

high fluid thermal diffusivity will favor heat transfer between columns, causing the advection 

lattice to act as a countercurrent heat exchanger, albeit one without actual pipes [Figure 6-

1(a)]. This regime could be useful for feeding a reaction front without extracting heat. 

Large column diameters, rapid laminar flow, and low fluid thermal diffusivity will favor heat 

transfer across the gap [Figure 6-1(b)]. The timescale for the transverse thermal 

equilibration of an “antiferromagnetic” lattice of flow columns is tT DR /2 , where Dt is 

the thermal diffusivity and R is the column spacing. The timescale for fluid transit across the 

gap is v/Gadvec  , where G is the gap width and v is the magnitude of the fluid velocity 

within a column. Efficient heat transport will occur when the advection time is short 

compared to the transverse thermal equilibration time, so 1
v2


tGD

R
. The column spacing 
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dependence is quadratic, so efficient heat transfer will be strongly dependent on this 

parameter. Understanding of how the experimental parameters affect the column spacing 

and dynamics of advection lattices not only has the practical implication of enabling different 

modes of heat and mass transfer, but also may aid in eventually developing a mechanistic 

understanding of the processes that govern this intriguing emergent phenomenon. 

6.2 Experimental 

The platelet suspensions were created by dispersing a fixed amount (∼0.87 g) of magnetic 

platelets (supplied by JDSU Flex Products Group) into varying amounts of liquid to achieve 

a desired volume fraction, which ranged from ∼2–9 vol.%. The multilayer magnetic 

platelets possessed an irregular shape, and were ∼20  m across by ∼234 nm thick, 

consisting of a 50 nm nickel core sandwiched between 92 nm-thick layers of magnesium 

fluoride. A variety of liquids were used for the viscosity study, including acetone 

( 25 °C = 0.306 cP), ethanol ( 25 °C  = 1.074 cP), isopropanol ( 25 °C  = 2.038 cP), and 

benzyl alcohol ( 25 °C  = 5.474 cP). All of the suspensions were contained in a square glass 

cell of interior width 3 cm and 6 cm high. 

The suspensions were placed in the central cavity of two orthogonally nested 

Helmholtz coils that were operated in series resonance using computer-controlled capacitor 

banks. The time-dependent biaxial fields had components that ranged over the frequency 

range of ∼72–1000 Hz and rms induction field amplitudes from 0.005 to 0.020 T. The 

biaxial fields can be classified according to the frequency relationship between their two 

components. For instance, a simple rotating field, one in which both components have the 

same frequency but are in quadrature phase, is referred to as a 1:1 biaxial field. Biaxial fields 

with just intervals are those comprised of components whose frequencies are related by a 

ratio of small integers n:m (e.g., 2:1, 3:2, 3:1, etc.). Harmonic biaxial fields, which we most 

often use to stimulate IMA, have a frequency relationship of n:1, where n is a small integer. 

In all cases, the phase relation between the field components is critical to the symmetry of 
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the flow pattern produced. We define this phase angle to be that which is applied to the 

high-frequency field component. 

The column spacing data were acquired from overhead photographs taken of the 

suspension with one field component along the vertical axis and the other horizontal. 

Regardless of which parameter was being investigated (e.g., field strength, viscosity, etc.), all 

data were acquired for 2:1 fields, or octave fields, with a 45° phase angle. This phase was 

chosen because it produces advection lattices of fairly calm, straight, and ordered columns, 

which are much more easily characterized than the writhing columns produced at 0° phase 

angle. 

6.3 Results and Discussion 

We now consider how the structure, dynamics, and column spacing of advection lattices are 

affected by the magnetic field parameters, which we discuss first, and the suspension 

properties. 

6.3.1 Magnetic field parameters 

As we have mentioned before, IMA occurs when a suspension of magnetic platelets is 

subjected to particular magnetic fields. Although only one component of the biaxial field 

needs to be time-dependent for IMA to occur [6.5], the variety of achievable advection 

lattices and their dynamics is limited as compared to those achievable with fully ac biaxial 

fields, which are used exclusively in this study. Fully ac biaxial fields have two addition 

parameters, the frequency ratio and phase angle, and these can be used to stimulate a much 

richer variety of flow patterns. In general, the applied field can be expressed as  

yxH ˆ)sin(ˆ)sin()(   mtnHtHt yx ,      (6-1) 

where n/m ≥ 1 is the just interval and  is the phase angle. The complexity of these biaxial 

fields, and their dependence on the phase angle , can be appreciated by examining their 

associated Lissajous curves (plots of Hx versus Hy). Although the detailed mechanism of IMA 
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is not understood, each platelet is at a magnetostatic energy minimum when the local field is 

orthogonal to the platelet director (surface normal). Therefore, the detailed shape of the 

Lissajous plot determines the platelet dynamics. For completeness, we mention that we 

recently demonstrated that IMA also occurs in ac-ac-dc triaxial magnetic fields, and results 

in novel advection lattice patterns and the stimulation of vigorous rotational flows [6.5], 

which is the topic of Chapter 7. 

Frequency 

The frequency dependence of the column spacing was studied using a 2:1 harmonic field 

with a phase angle of 45°, which gives very regular and straight flow columns. Over the 

range of particle volume fractions studied (2.3%–9.3%), the column spacing is proportional 

to the inverse of the field frequency (Figure 6-2), so the wavenumber is proportional to the  

 

Figure 6-2.  The column spacing is inversely proportional to the magnitude of the field frequency. 

These data are for octave biaxial fields (2:1) with a 45° phase angle, and an rms component 

magnetic induction of 0.015 T. The column spacing at each frequency is normalized to the value 

at f0 = 100 Hz, for a 100:50 Hz field. Data for three different volume fractions are shown (● 2.3%, ■ 

5.8%, and ▲ 9.3%), as well as a plot of y(x)=x−1 , where x = ( f/ f0). 
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frequency. The field frequency is thus a simple and effective way to select the column 

spacing. Insets in Figure 6-2 are images of flow lattices for a 130:65 Hz field and a 

370:185 Hz field. 

Phase angle 

The phase relation between the field components is another variable that can be used to 

control the flow pattern and column spacing. The results in Figure 6-3 show that the effect 

is not large, roughly 50%, with the column spacing for the 45° phase angle being larger than 

that at 0°. In Section 6-2, we mentioned that virtually all of the column spacing data were 

acquired for octave biaxial fields that have a 45° phase angle. The reason for this definite 

preference is that the dynamics of advection lattices depend strongly on the phase relationship 

 

Figure 6-3.  The column spacing varies inversely with the magnitude of the field frequency for an 

octave biaxial field (2:1) with phase angles of 0° (●) and 45° (■), with the column spacing at 45° 

being on average ∼1.5× that at 0°. These data are for a 2.3 vol.% isopropanol-platelet 

suspension subjected to octave biaxial fields with rms component induction amplitudes of 

0.015  T. The insets illustrate the effect of the phase angle on the advection lattice morphology, 

and are for a 180:90 Hz field. 
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between the two field components. At a phase of 0°, the advection lattice has significant 

dynamic disorder that is characterized by writhing motions of the columns, the continual 

creation, and annihilation of bifurcations, Figure 6-3(inset), which makes a determination of 

the column spacing less accurate. The 45° phase angle renders the columns rather straight, 

uniform, and stationary, Figure 6-3(inset), which facilitates accurate measurement. And the 

flow within these straight columns is still vigorous enough to be of interest for heat transfer. 

(At a phase of 90°, the advection lattice becomes faint, and the flow within the columns is 

significantly reduced, making this phase angle a poor choice for heat and mass transfer.) 

Finally, we mention that the phase dependence of the advection lattices that are 

produced by any just frequency interval can be conveniently and continuously explored by 

phase modulating the field, which is accomplished by a slight alteration of the frequency of 

one of the field components. Phase modulation yields visually stunning transitions between 

the different flow patterns. 

Field strength 

To investigate the field dependence of the column spacing we dispersed 2.3 vol.% platelets 

into isopropanol and subjected them to a harmonic field of 100:50 Hz at a phase angle of 

45°. Figure 6-4 shows that the column spacing increases as the power law,

30.0)( cBBconst  , at least over the range of the data we are able to collect. Here 

Bc  ∼ 0.005 T is a critical field whose meaning is discussed below. This dependence implies 

that efficient heat transfer requires a reasonably uniform magnetic field, especially parallel to 

the thermal gradient. Otherwise, the column spacing would change along the thermal 

gradient, which would cause flow columns to terminate. 

In addition to changing the column spacing, the field strength alters the characteristic 

flow pattern. At high fields (0.0125 T rms), the advection lattices are animated [Figure 6-

5(a)] with significant column writhing, probably due to the increasing importance of fluid 

inertia as the flow rates within the columns increase. Conversely, as the field is reduced to  



118 

 

 

Figure 6-4.  The advection lattice column spacing increases as a power law with the magnetic 

induction amplitude. The abscissa is the rms value of the magnetic induction for each field 

component. These data are for a 2.3 vol.% isopropanol-platelet suspension subjected to a 

100:50 Hz biaxial field with a 45° phase angle. 

0.005 T rms the pronounced writhing motions of advection lattices produced with a 0° 

phase angle diminish [Figure 6-5(b)], eventually becoming nearly as calm, straight, and 

ordered as those produced with the 45° phase angle. Upon decreasing the applied field 

further, the columns become progressively smaller, until they vanish and static layered 

sheets emerge parallel to the biaxial field plane, and thus normal to the flow of the advection 

lattice. The nascent fine layers can be seen in the upper and lower portions of Figure 6-

5(c), but they are more clearly observed after being given time to more fully develop, 

Figure 6-5(d). This transition occurs at a critical field Bc of ∼0.005 T. 

If the field is then progressively increased, these layered sheets persist at fields well 

above the layering transition threshold under decreasing field conditions. The transition back 

to an advection lattice occurs as a wave-like instability in the pronounced sheets that form 

when the field is increased to ∼0.010 T, Figure 6-5(e). From these instabilities, columns  



119 

 

 

Figure 6-5.  Photographs illustrating the effect of the magnetic induction amplitude on the 

morphology of an advection lattice formed in a 2.3 vol.% isopropanol-platelet suspension 

subjected to a 100:50 Hz field with a 0° phase angle. (a) Brms = 0.0125 T produces an animated 

advection lattice with wavy columns and defects actively propagating throughout the lattice. 

(b) Reducing the component magnetic induction to Brms = 0.005 T produces an advection lattice 

with subdued dynamics and straight, ordered columns. (c) At a component magnetic induction 

of Brms = 0.0025 T faint, static, column-like structures form that are composed of parallel sheet 

segments, (d) which eventually coarsen into sheet structures that are aligned with the biaxial 

field plane. (e) Upon increasing the magnetic induction to Brms = 0.01 T, the sheet structures 

become disrupted and undergo wavy instabilities. (f) Domains of fine advection lattice column 

segments emerge, appearing as horizontal bands, which will eventually coalesce into a fully 

formed advection lattice. 

eventually emerge in bands that eventually coarsen into a coherent advection lattice. This 

incipient transition can be seen in Figure 6-5(f). 

The layered sheet structures are similar to those previously observed for spherical 

particles [6.6,6.7], but spherical particles do not exhibit a transition to advection lattices (at 

least over the conditions of field which we are able to apply). Although the layered phase is 

not of interest to the transfer of heat and mass, understanding the nature of this transition 
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would be worthwhile, so that the regime of effective heat and mass transfer can be 

identified. 

6.3.2 Suspension parameters 

Liquid viscosity 

The viscosity of the liquid phase is important to both the formation of the advection lattice 

and to the magnitude of the flow within the columns. We have investigated a variety of 

fluids spanning a range in viscosity of nearly 3 decades, including air (  = 0.017 cP), 

acetone ( 25 °C  = 0.306 cP), and ethylene glycol ( 25 °C  = 16.1 cP), and some manner of 

advection lattice forms in all of them, although at high liquid viscosities the flow is 

extremely slow. The formation of an advection lattice in air was simply to demonstrate that 

IMA can occur with fluids of such low viscosity. However, in air the lattice is not 

particularly robust, so air is not an ideal medium for the study of IMA. Alternatively, if the 

fluid viscosity is very large, as is the case for ethylene glycol, the flow patterns are extremely 

faint and sluggish. Liquids having viscosities on the order of 1 cP (e.g., isopropanol, ethanol, 

water) yield the most diverse range of behavior, so isopropanol ( 25 °C  = 2.038 cP) was 

chosen as the solvent for all of the other parameter studies. 

A plot of the dependence of the column spacing on solvent viscosity is shown in 

Figure 6-6, where it is observed that no significant viscosity effect exists. This is an 

important result, as it demonstrates that an advection lattice possessing a single column spacing 

can span a thermal gradient and therefore very effectively transport heat and mass. A 

significant viscosity dependence would require a continual adjustment of the column spacing 

parallel to the thermal gradient, and the continual termination of flow columns would result 

in relatively poor transport. 

The viscosity dependence was probed using frequency as a tuning parameter for the 

column spacing and using a biaxial field comprised of 0.015 T rms components. A 1-decade  
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Figure 6-6.  The column spacing is essentially independent of the viscosity of the liquid phase for 

a given frequency. All suspensions were prepared at 5.8 vol.% and subjected to octave biaxial 

fields with a 45° phase angle and rms component magnetic induction of 0.015 T. 

frequency range was investigated for each viscosity; however, we were not able collect data 

for all solvents at all frequencies. For example, in a benzyl alcohol suspension ( 25 °C 

 = 5.474 cP) with 2.3 vol.% platelets, an advection lattice does not form at frequencies 

above 250:125 Hz, at the chosen component amplitudes of 0.015 T. Instead, the suspension 

appears dark and quiescent, due to the static sheet formation described above. This effect is 

not entirely surprising, since advection lattice formation and its dynamics are likely 

governed by the ratio of the hydrodynamic torque that results from the rotation of a platelet 

in a viscous liquid, to the field-induced magnetic torque on a platelet. This dimensionless 

ratio is conceptually similar to the Mason number, which is the dimensionless ratio of 

particle viscous forces to polarization forces [6.8,6.9]. (We have successfully used the 

Mason number to describe the dynamics of other magnetic suspensions, such as the apparent 

viscosity of electro- and magneto-rheological suspensions [6.10], and the mixing torques 

generated by vortex magnetic fields [6.11].) However, the Mason number pertains to 
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collections of interacting spherical particles, since uniform fields do not create a magnetic 

force on an isolated particle. However, a uniform field does exert a magnetic torque on an 

isolated platelet. If this torque dominates the hydrodynamic torque, then isolated particle 

motion will be significant. Indeed, when the component induction fields are increased to 

0.020 T, advection lattices are observed up to frequencies of 550:275 Hz for the 2.3 vol.% 

benzyl alcohol-platelet suspension. For an induced dipole the magnetic torque is 

proportional to the field squared, whereas the viscous torque is proportional to the 

frequency. Thus, the magnetic torque is increased by a factor of (20/15)2 ∼ 1.7, whereas 

the viscous torque is increased by a factor of 275/125 ∼ 2.2, which is only a rough 

agreement. A detailed study of the transition field will be the subject of future work. 

 

Figure 6-7.  Photographs of advection lattices formed in a 250:125 Hz field with a 45° phase 

angle and rms component magnetic induction of 0.015 T in (a) acetone, (b) ethanol, (c) 

isopropanol, and (d) benzyl alcohol. While the column spacing for these advection lattices is 

similar regardless of the liquid viscosity (see Figure 6-6), their appearances and dynamics vary 

considerably. 
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Although the solvent viscosity does not significantly impact the column spacing, it has 

a pronounced effect on the flow rate within the columns and thus on the dynamics of the 

advection lattice. Low viscosity liquids, such as acetone, produce lattices of writhing 

columns that vigorously transport the suspension [Figure 6-7(a)]. More viscous liquids, 

such as ethanol and isopropanol, produce straighter, more uniform columns, and less 

vigorous flow, as seen in Figures 6-7(b) and (c). Benzyl alcohol, which has a viscosity 

∼18× that of acetone, yields the highly ordered advection lattice in Figure 6-7(d), but the 

flow rate is quite low. Finally, when ethylene glycol is used as a suspending fluid, an 

advection lattice forms, but the flow is barely discernible, on the order of 0.1 cm·s−1 for a 

100:50 Hz field at a 0° phase angle with 0.015 T rms components. 

The writhing columns produced in acetone are evidently due to the importance of 

fluid inertia at the high flow rates that low viscosity fluids can generate. Optimal heat 

transfer is promoted by such high flow rates, but the instabilities that characterize the ragged 

columns are undesirable. It is very easy to produce advection lattices in acetone, so liquid 

nitrogen with a viscosity smaller by a factor of ∼2, could be used as a suspending medium 

for cryogenic heat transfer with IMA. 

Particle volume fraction 

The volume fraction of platelets is the most important suspension property governing IMA, 

since vastly different suspension dynamics are possible, depending on this value. For 

example, particle loadings greater than ∼10 vol.% produce a suspension with a thick, 

slurry-like consistency. When 0.015 T rms biaxial fields are applied to such suspensions, 

they develop various surface instabilities, such as freestanding fluid ridges with vigorous 

internal flow, which are shown in Chapter 5 [also Ref. 6.1]. Here, we will limit our 

discussion to volume fractions large enough for advection lattices to readily form, but small 

enough that surface instabilities do not emerge. This gives a range of ∼2–9 vol.%. 
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Figure 6-8.  The advection lattice column spacing increases weakly with increasing volume 

fraction. For each volume fraction, frequency-dependent data are shown for an octave biaxial 

field with a 45° phase angle and rms component magnetic induction of 0.015 T. 

Figure 6-8 shows that the column spacing increases only weakly with increasing 

particle volume fraction. However, the flow rate of the advection lattices increases 

significantly as the volume fraction of platelets decreases, which we find surprising. For 

instance, although an advection lattice that forms in an 8 vol.% suspension displays a similar 

overall flow pattern as that produced in a 4% suspension, the flow within the columns is 

slow. As the 8% suspension is progressively diluted, the flow rate increases dramatically. 

However, this increase in advection lattice dynamics with decreasing volume fraction has 

limits. Even though advection lattices will continue to form in suspensions with volume 

fractions below ~1 vol.%, the columns become extremely thin and faint, and the flow rate 

becomes very low. So there is an optimal volume fraction in which the dynamics of 

advection lattices are maximized, and for the platelets we use this is ~4 vol.%. 
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6.4 Conclusions 

Isothermal magnetic advection has characteristics that make it an attractive method for heat 

and mass transfer. The columns can be tuned over a wide range by adjusting the field 

frequencies, to effect either heat and mass transfer or mass transfer alone for any given 

thermal gap. The column spacing is unaffected by the viscosity of the suspending fluid, so 

the advection lattice will remain coherent even across a significant thermal gradient, where 

the fluid viscosity can vary considerably. High flow rates can be obtained by the use of low 

viscosity liquids, such as alkanes, lower alcohols, acetones, etc., making possible the use of 

the Fluorinert ™ family of dielectric liquids and cryogenic fluids such as liquid nitrogen. The 

flow rates were also strongly dependent on the particle loading, with loadings on the order 

of 4 vol.% producing the most vigorous flow. The magnetic field is also an important 

control parameter. At low fields, a static layered phase forms, with the particle layers 

parallel to the biaxial field plane. The advection lattice only forms above a critical field and 

the column spacing increases as a power law with a small exponent above this field. Higher 

fields thus promote heat transfer by increasing the column size and the flow rate. However, 

reasonable field homogeneity across a thermal gap would be required to ensure that the flow 

columns do not terminate in order to adjust the lattice spacing and to prevent the magnetic 

particles from accumulating in a high field region. Future work will focus on quantitative 

measurements of flow rate within the columns and on measuring heat transfer rates. 
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Chapter 7 

Stimulation of vigorous rotational flows and novel flow 

patterns using triaxial magnetic fields7 

We have discovered that new flow patterns can be created by applying a dc field to the ac 

biaxial fields that are used to induce isothermal magnetic advection (IMA). IMA is a recently 

discovered fluid flow phenomenon that occurs in suspensions of magnetic platelets subjected 

to particular time-dependent, uniform, biaxial magnetic fields. IMA is characterized by the 

formation of emergent flow patterns called advection lattices. We find that a dc field can 

disrupt the antiparallel flow symmetry of the advection lattice and give rise to qualitatively 

new flow patterns, including vigorous rotational flows and a highly regular diamond lattice. 

The rotational flows are very robust and may have applications to heat transfer. The 

diamond lattice is an intriguing and challenging example of emergent dynamics. Both of 

these effects occur when the dc field is applied orthogonal to the plane of the biaxial field. 

7.1 Introduction 

In Chapter 5 we reported the discovery of magnetic-field-stimulated, noncontact fluid 

flows, which we termed isothermal magnetic advection (IMA) [7.1]. IMA occurs when a 

suspension of magnetic platelets (IMA does not occur with spherical or acicular particles) is 

subjected to particular time-dependent, spatially uniform, biaxial magnetic fields of modest 

strength (~10−2 T). The result is the emergence of striking flow patterns we call advection 

lattices. These advection lattices are generally comprised of an “antiferromagnetic” square 

lattice of flow columns, such that each column flows antiparallel to its four nearest 

neighbors. This lattice extends throughout the suspension volume and the flows are 

orthogonal to the plane of the biaxial field. Uniform fields cannot create a Kelvin force on an 

                                                           
7 Originally published as:  K.J. Solis and J.E. Martin, Stimulation of vigorous rotational flows and novel flow patterns using 
triaxial magnetic fields, Soft Matter 8, 11989–11994 (2012). 
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isolated particle, so these flows are an emergent behavior of the system. The flow symmetry 

breaking is not characterized by a net body force; however, a uniform field can create a 

torque on an isolated particle, and we do observe a net body torque on the suspension under 

certain circumstances. In this chapter we demonstrate that new flow patterns and vigorous 

rotational flows can be stimulated by applying a dc field perpendicular to the plane of the ac 

biaxial field to create a triaxial field, which we define as a field created by three orthogonal 

components. 

The ability to create bulk movement of fluids—broadly referred to as convection—is 

of significant importance because of the vastly increased rates of heat and mass transfer that 

can be achieved in comparison to conduction. Forced convection typically requires some 

combination of pumps, seals, valves, and in many cases, substantial pressures. IMA requires 

no moving parts, simply the application of modest, uniform magnetic fields to a platelet 

suspension, and, unlike natural convection, can create flow in any direction without 

requiring a thermal gradient or gravity. These attributes establish IMA as a simple, robust, 

noncontact method of creating functional fluid flows that offers new possibilities for 

applications in heat and mass transfer, especially in those circumstances where natural 

convection does not occur. 

Although stimulating IMA with triaxial fields is a new development, triaxial fields 

have already been demonstrated to create interesting and useful effects in spherical particle 

suspensions. Examples include the field-induced formation of particle foams and classical 

molecular clusters [7.2], strong intrinsic vortex magnetic field mixing [7.3,7.4], field-

structured composites as efficient thermal interface materials [7.5], and the dynamic self-

assembly of viscoelastic paramagnetic colloidal clusters [7.6]. Even less complex field 

configurations can stimulate interesting phenomena, ranging from the simple chain 

formation that occurs in magnetorheology [7.7], to the formation of folding clusters [7.8] 

and even highly organized colloidal structures such as snake-like swimmers [7.9–7.11] and 

asters, which occur when magnetic colloids confined to an interface are driven with a 
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uniaxial ac field [7.12]. In the following we describe the various effects an ac-ac-dc triaxial 

field can have on IMA when the ac biaxial field components are harmonically related, with 

frequency ratios of 1:1, 2:1, and 3:1. 

7.2 Experimental 

The magnetic platelet suspensions were prepared by dispersing a fixed amount of platelets 

(~0.875 g) in varying amounts of isopropyl alcohol to achieve the desired volume fractions 

p. The platelets were supplied by JDSU Flex Products Group, and are seen in the SEM of 

Figure 7-1 to possess a highly irregularly shaped morphology with an average size of 

~20 m across by ~234 nm thick. The multilayer platelets are comprised of a 50 nm Ni 

core sandwiched between 92 nm MgF2 coatings. The suspensions are contained in a 3 cm 

square glass cell that is about 6 cm tall. 

For these studies we employed a variety of ac-ac biaxial and ac-ac-dc triaxial 

magnetic fields. The ac components of the biaxial fields were supplied by a pair of  

 

Figure 7-1.  SEM image showing that the magnetic platelets possess an irregular morphology, 

high aspect ratio, and a fairly polydisperse size distribution. 
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orthogonally nested Helmholtz coils operated in series resonance with computer-controlled, 

fractal capacitor banks. These coils were used to create time-dependent biaxial fields in the 

low audio frequency range (~72 to 1000 Hz) with amplitudes up to ~200 G (rms amplitude 

of each component). The relative frequencies of the two components are just intervals, 

expressible as a ratio of small integers (m:n). Harmonic biaxial fields are those wherein one 

component is an integer multiple of the other (i.e., 2:1, 3:1, etc.). As this ratio increases, the 

Lissajous plot of the two ac field components increases in complexity. 

The flow patterns we observe are strongly dependent on the phase relation between 

the field components. To explore this dependence we phase modulate the biaxial field by 

adding a small frequency (0.1–1 Hz) to the higher frequency field component. This addition 

periodically modulates the phase at exactly the added frequency, enabling a rapid 

investigation of the phase effect. If any interesting effects or structures are noted during 

phase modulation, one can simply input the appropriate phase angle to the base frequencies 

in order to lock-in that particular feature for further study. 

The ac-ac-dc triaxial fields were created from some type of n:1 ac biaxial field, to  

 

Figure 7-2.  (a) Schematic representation of the magnetic field sources: orthogonal Helmholtz 

coil pairs (light and dark gray), ceramic plate magnets (striped); and the sample cell (dotted) at 

the center. (b) Compass rose indicating the convention used to refer to the various directions in 

describing the flow patterns and magnetic fields. (c) Photograph showing a quiescent 

suspension housed in a square glass cell within the central cavity of the Helmholtz coil pairs, one 

of which is partially seen as the circular enclosure. This photograph corresponds to the dashed 

region in (a). 
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which a uniform, dc field component was applied orthogonally. This dc component was 

supplied by two 1×4×6 in3 ceramic plate magnets, whose separation was varied to achieve 

the desired field strength. For example, a separation of ~9½ inches—which is imposed by 

the outermost Helmholtz coil pair—produces a magnetic field of about 125 G. 

The geometry of the experimental apparatus, including the relationship of the 

magnetic fields to the suspension, is shown in Figure 7-2(a). The cell containing the 

magnetic suspension is supported within the central cavity of the two Helmholtz coils. 

Taking the sample cell as the origin of a right-handed Cartesian coordinate system, one 

Helmholtz coil (light gray) produces a field component along the x-axis, while the other 

(dark gray) produces a field along the z-axis, so that all ac biaxial fields lie within the x–z 

plane. (The force of gravity is pointing into the page along the −z direction.) The dc 

component (striped) is applied along the y-axis. However, instead of constantly referring to 

the x, y, and z axes throughout the chapter, we use the cardinal directions [Figure 7-2(b)], 

such that north and south are along the positive and negative y axes, and east and west are along 

the positive and negative x axes, respectively. The directions along the positive and negative 

z axes are referred to as up and down. Figure 7-2(c) shows a photograph of the sample cell 

and part of a Helmholtz coil to familiarize the reader with the layout, as most of the results 

will be pictures taken from this same perspective, albeit excluding the surrounding magnet. 

Finally, we must specify the direction of the rotating field. A rotating field created by a 90° 

phase shift to the coil that produces the U–D field rotates counterclockwise in the E–W, U–

D plane when viewed from the south. This rotating field can be reversed by shifting the 

phase to 270°. (This point is only of importance for one who wishes to exactly reproduce 

the results described below.) 

7.3 Results and Discussion 

When a uniform dc magnetic field is applied orthogonal to the biaxial field plane, the 

advection lattice becomes altered. The manner and degree to which the dc field affects the 
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advection lattice depends on a number of factors, including the just interval of the biaxial 

field, the phase relationship of the components, the strength and polarity of the dc field, and 

the volume fraction of platelets in the suspension. To make the presentation of the results as 

clear as possible, we first summarize some general observations about the suspension 

dynamics in ac-ac-dc triaxial magnetic fields, and then describe the particular details for the 

various harmonic biaxial fields. 

7.3.1 General observations 

For a given biaxial or triaxial field, the particle volume fraction is a principal determinant of 

the suspension dynamics. For the isopropanol-platelet suspensions we study, a volume 

fraction of ~4.7% marks a transition in the dynamics. The pattern-forming regime is above 

4.7%, and we will start by describing this regime. It is important to note that unless 

otherwise specified, the low frequency field component is E–W and the high frequency 

component is vertical. Each ac magnetic induction field has an rms amplitude of 0.015 T 

(150 G) unless otherwise noted. 

The effects of a dc field on the suspension dynamics were explored by applying an 

increasing dc field to a phase-modulated biaxial field. The diagram shown in Figure 7-3 

illustrates the general effects of an increasing dc field on the various advection lattices, and 

corresponds to the description that follows. This diagram also points to the figures that 

contain images of the various lattices, and referencing this diagram frequently can clarify the 

following discussion. For weak dc fields (~10 to 75 G), the advection lattice becomes 

distorted in ways that depend on the type of biaxial field, as discussed in detail in the 

following sections. As the dc field is increased to ~100 G, the advection lattice produced by 

the biaxial field becomes barely distinguishable (Transition zone). Finally, as the dc field is 

increased to full strength (~125 G) the original advection lattice vanishes and the suspension 

sloshes back-and-forth in the sample cell at the phase modulation frequency. The two phases  
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Figure 7-3.  Diagram illustrating the general effects that an increasing dc field has on advection 

lattices formed in three different harmonic biaxial fields (n : 1). The referenced figures are 

positioned according to their approximate values of relative dc field strength. 

at which the fluid surface achieves maximum, but opposite, inclinations depends on the type 

of biaxial field, yet are always separated by 180°. These inclined fluid surfaces can be 

maintained indefinitely by simply locking-in the appropriate phase angle. Moreover, these 

inclined fluids are sustained by rotational flow, a fact that can be clearly visualized by 

dispensing solvent drop-wise onto the inclined surface. When a drop contacts the surface, it 

is quickly transported uphill in tiny rivulets. These rotational flows should be highly 

effective at heat and mass transfer. 

Investigating a variety of harmonic (n:1) biaxial fields reveals a peculiar trend 

regarding the directions of the sloshing displacements: the fluid displacements for even and odd 

harmonic fields are orthogonal to each other. In other words, for odd values of n, E–W fluid 

flows occur, whereas for even values of n, N–S fluid flows occur. However, regardless of 

the value of n, the sign of fluid vorticity, and thus the direction of surface flow, can be 

reversed by changing the phase by 180°. The vorticity of fluid flow can also be reversed by 

changing the polarity of the dc field, but curiously only for even harmonic fields. 

The even and odd harmonic fields differ in another important respect. For odd 

harmonic fields, the axis of fluid vorticity is along the north–south axis, which is parallel to 

the dc field. If the biaxial field components are switched, such that the low frequency field  
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Figure 7-4.  Time series development of strong rotational flow for a 3.5 vol% suspension subjected 

to a 150 Grms, 250:125 Hz, 0° phase/125 Gdc ac–ac–dc triaxial field. (a) When the ac biaxial field is 

initially turned on, the platelet sediment erupts into plumes that quickly disperse throughout the 

supernatant. (b) Within a few seconds, the suspension is vigorously flowing from north to south at 

the surface. (c) After ~5 seconds the flow is nearly fully developed. 

component is in the vertical direction, the axis of vorticity does not change. However, for 

the even harmonic fields the axis of vorticity is along the low frequency field component, 

which creates north–south flow when the low frequency field is applied in the east–west 

direction. If these biaxial field components are switched, such that the low frequency field 

component is in the vertical direction, the axis of vorticity does change, and the fluid rotates 

around a vertical axis. 

In addition to the sloshing behavior, the surface can develop new flow patterns for 

certain phase angles, which again vary with the type of biaxial field employed, as described 

in detail below. 

For platelet volume fractions less than * ~4.7 vol%, the advection lattices are weak 

or nonexistent in ac-ac-dc triaxial fields. However, the rotational flows are much more 

vigorous (Figure 7-4), while the surface of the suspension is less inclined and becomes 

progressively more horizontal with decreasing platelet loading. This regime is undoubtedly 

the best for heat transfer. 

Having introduced the general behavior of platelet suspensions subject to triaxial 

magnetic fields, we will now discuss the detailed behavior of suspensions subjected to 

triaxial fields having unison, first, and second harmonic biaxial field components. We will 
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focus on the suspension dynamics for volume fractions greater than *, as this regime is 

dominated by flow patterns that display a rich variety of behavior. All of the flow patterns in 

the following figures are for 7 vol% suspensions. 

7.3.2 1:1 Biaxial fields 

When a platelet suspension is subjected to a unison biaxial field—which is simply a rotating 

field when the components are in quadrature phase—flow columns form that extend 

perpendicular to the field plane. These columns are extremely dynamic and appear to roll 

over each other, piling up on one or the other side of the cell depending on whether the 

phase is 90° or 270°. If the field components are phase modulated, the columns will migrate 

side-to-side commensurately with the ever-changing circulation of the field, which is 

generally elliptical. When the phase is either 90° or 270°, the columns accumulate to one 

side of the cell [Figure 7-5(a)], and the fluid surface becomes inclined toward that wall. A 

solvent droplet will flow uphill, indicating a strong rotational flow component. These 

behaviors suggest that the flow columns formed in rotating fields possess vorticity of the 

same sign. A phase of 45° or 225° attenuates the dynamics of the columns enough that they 

become much more ordered, as shown in Figure 7-5(b), and changes the direction of their 

motion relative to that obtained at 90° and 270°, respectively. However, this 45° reduction 

in phase angle does not change the flow direction of a solvent droplet. Phases of 0° or 180° 

result in a completely stagnant suspension, because the biaxial field reduces to a simple 

uniaxial ac field in this case. 

New flow patterns emerge as a dc field is applied, but this field component does not 

alter the overall flow vorticity. A weak dc field (~10 to 50 G, Region Ia in Figure 7-3) 

causes coarsening of the fluid columns. Further increasing the dc field (~50 to 100 G) 

distorts the columnar flow pattern, resulting in a disordered flow field (Transition zone, 

Figure 7-3). Finally, at a dc field of ~100 to 125 G, distinctly new flow patterns arise 

(Region Ib, Figure 7-3). As Figure 7-5(c) shows, for phases of 0° and 180°, a columnar  
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Figure 7-5.  Flow patterns for 1:1 fields in a 7 vol% suspension. The biaxial field for parts (a)–(e) is a 

100 Hz rotating field at 150 Grms. (a) Dynamic columns piling up toward the left side of the cell in 

a rotating field (phase = 90°), leaving a region devoid of suspension, appearing as the black 

region at the right. The surface of the suspension is inclined toward the left. (b) A phase of 45° 

results in calmer columns that drift toward the right, while solvent dripped on the surface is 

transported left. (c) A phase of 0° with a 125 G dc field causes this columnar pattern to emerge. 

The surface is inclining to the left and the fluid is slowly flowing uphill within the columns. (d) A 

phase of 90° and a 125 G dc field results in a vortex magnetic field, creating strong rotational 

flow of the suspension, as seen by the fluid being driven up the container wall. This image is an 

oblique-downward view into the magnet cavity. The north–south direction is indicated by the 

dashed white line. (e) A phase of 45° and a 125 G dc field results in this diamond-like pattern. 

The surface is inclined to the left, and the suspension is flowing uphill. (f) Increasing the field 

frequency to 500 Hz at a phase of 0° replaces the columnar pattern in (c) with a very fine 

diamond mesh pattern that is flowing toward the left, exposing a region of the sample cell floor 

at the center-right. 

pattern emerges that is perpendicular to the columnar lattice pattern that formed in the 

biaxial field. The surface columns are all transporting fluid along their lengths in the same 

direction, which can be reversed by changing the phase by 180°. These columns extend 

parallel to each other and are quite ordered, but occasionally contain bifurcations. Upon 

close inspection, these large columns are seen to be separated by extremely fine column 

segments. (The formation of these columnar patterns at phases of 0° and 180° in an ac-ac-dc 

triaxial field is in stark contrast to what the suspension does at these same phases for the 
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purely biaxial field—nothing.) Setting the phase to either 90° or 270° results in strong, 

featureless flow that drives the fluid all the way up the walls of the container if the field is 

applied sufficiently long [Figure 7-5(d)]. Such strong flow isn't entirely surprising 

considering that at phases of 90° and 270° the biaxial field is a rotating field, to which the 

addition of an orthogonal dc field constitutes what we called a vortex magnetic field in 

Chapters 3 and 4 [also Refs. 7.3,7.4], and induces very strong mixing of magnetic particle 

suspensions. Finally, phases of 45° and 225° produce the diamond-like pattern in Figure 7-

5(e). 

The pattern displayed in the triaxial field also depends on the magnitude of the 

frequency. For biaxial field frequencies less than 140 Hz, the patterns described above are 

observed. However, once the frequency exceeds ~140 Hz, the columnar pattern observed 

at phases of 0° and 180° transitions to a diamond-like, mesh pattern whose feature size 

varies inversely with frequency magnitude. Other than this difference in the type of pattern 

formed, the general behavior discussed above in regards to the phases still applies: phases of 

90° and 270° create rotational flows that climb the container walls; whereas, phases of 0° 

and 180° give rise to a calm diamond-structured surface [Figure 7-5(f)] that inclines in the 

same respective directions as for phases of 90° and 270°, and also demonstrates uphill flow. 

7.3.3 2:1 Biaxial fields 

Biaxial fields with a 2:1 frequency ratio can create three principal types of advection lattices. 

These types are selected by controlling the phase between the field components. (Regardless 

of the phase, this first harmonic biaxial field itself does not create body torques on the 

suspension, as evidenced by the lack of sloshing in the fluid upon phase modulation.) At 

phases of 0° and 180°, the advection lattice columns have a ragged, almost turbulent 

appearance [Figure 7-6(a)]. These ragged columns exhibit rapid writhing motions and 

column bifurcations that quickly propagate through the lattice. Phases of 45° and 225° result  
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Figure 7-6.  Flow patterns for 2:1 fields in a 7 vol% suspension. Parts (a)–(c) are purely biaxial fields 

of 150:75 Hz and 150 Grms at various phases: (a) irregular columns at a 0° phase; (b) straight, 

uniform columns at a 45° phase, with a defect present at the right-center of the image; and (c) 

faint, fine columns at a 90° phase. Parts (d)–(f) are for various ac–ac–dc triaxial fields: (d) 

dynamic diamond pattern for a 500:250 Hz, 150 Grms biaxial field at 0° phase and 125 G dc field; 

(e) column size biasing for a 150:75 Hz, 150 Grms biaxial field at a 45° phase and ~20 G dc field; 

and (f) parallel herringbone pattern for a 150:75 Hz, 150 Grms biaxial field at a 90° phase and 

125 G dc field (the sloped surface is inclining toward the top of the image [north]). 

in straight columns that are uniformly spaced, as shown in Figure 7-6(b). Despite the 

vigorous antiparallel flow, this lattice is remarkably stable, the only interesting dynamics 

being an E–W drift, the direction of which fluctuates. (However, the drift direction can be 

selected by tilting the container appropriately.) Column bifurcations also occasionally form 

and these defects are very dynamic. At phases of 90° and 270° the columns are much finer 

and more indistinct, as shown in Figure 7-6(c). 

Applying a dc field produces a variety of effects, depending on its relative strength. 

When a weak dc field (~10 to 20 G, Region IIa in Figure 7-3) is applied parallel to the 

straight columns, a pronounced asymmetry in the column diameters occurs, as shown in 

Figure 7-6(e). Although the average lattice spacing does not change, columns flowing 

south become thinner while those flowing north become thicker when the dc field direction 
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is south. Changing the phase of the biaxial field by 180° (or reversing the dc field) reverses 

this asymmetry. As the dc field is increased to ~50 G, the columns begin to display a diffuse 

appearance (Transition zone, Figure 7-3). At ~90 G, transverse (E–W) bands appear, and at 

~125 G (Region IIb, Figure 7-3) these become more numerous and acquire a herringbone-

like appearance, similar to that shown in Figure 7-6(f). The suspension also inclines toward 

one of two walls (north or south) depending on the phase, indicating rotational flow about 

an E–W axis. The direction of incline and of uphill flow is in the same direction as the flow of 

the columns that become thicker when biased at weaker fields. 

We recall that at phases of 90° and 270°, the N–S columns are thin and indistinct. 

However, the application of a 125 G dc field (Region IIb, Figure 7-3) creates the striking 

herringbone pattern shown in Figure 7-6(f). This pattern consists of parallel E–W bands that 

move uphill (either north or south, depending on the biaxial field phase or dc field polarity). 

Each band has a texture produced by alignment of platelet agglomerates that is in one of two 

canted orientations. These orientations alternate from one band to the next, and the pattern 

exhibits highly mobile band bifurcation defects, similar to those observed for columns. In 

addition to the herringbone pattern, the suspension is maximally inclined to either the north 

or south walls at these phases, and displays quite vigorous uphill flow, as evidenced by the 

transport of solvent dripped on the surface. 

The writhing, ragged columns produced by the biaxial field at phases of 0° or 180° 

[Figure 7-6(a)] are transformed into the dynamic, shimmering diamond lattice in Figure 7-

6(d) by the application of a dc field. At low field frequencies this pattern is faint, but as the 

frequency increases to 250:125 Hz the pattern becomes quite distinct. The characteristic 

scale of this diamond mesh varies inversely with frequency magnitude, so at high frequencies 

(>500:250 Hz) the pattern resembles a finely woven fabric. Viewing the sample container 

from the side reveals that this diamond mesh pattern is produced by a lattice of 

countercurrent columns in the vertical direction. In principle, these columns can be viewed 

from the top surface by interchanging the field frequencies of the two Helmholtz coils, so 
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that the 2:1 field becomes a 1:2 field. Remarkably, when this is done the fluid displays only 

a slow, churning motion, Figure 7-7(a), with no visible chains. However, if the field of the 

high-frequency component is now reduced by half, the surface develops a mottled 

appearance [Figure 7-7(b)], and further reductions produce highly irregular columns that 

extend E–W, as shown in Figure 7-7(c). 

Returning to the original 2:1 field (250:125 Hz) and reducing the magnetic induction 

of the high-frequency (vertical) component from 150 Grms causes the dynamic, somewhat 

disordered diamond pattern in Figure 7-7(d) to become much sharper and less active 

[Figure 7-7(e)]. Similarly, as the vertical component of the 1:2 field is reduced, a highly  

 

Figure 7-7.  Parts (a)–(c) show the progressive emergence of an irregular advection lattice as the 

high-frequency component amplitude is reduced for a 125:250 Hz ac–ac–dc triaxial field. (a) 

B250Hz = 150 Grms results in a mostly featureless, slowly churning suspension. (b) Reducing the field 

by half (B250Hz = 75 Grms) causes the surface to develop a mottled structure. (c) When the field is 

reduced to a quarter of its original strength (B250Hz = 37.5 Grms), an E–W advection lattice with very 

irregular columns emerges. (d) A 250:125 Hz ac–ac–dc triaxial field produces a dynamic, 

disordered diamond lattice pattern that becomes much calmer and very ordered (e) when the 

high-frequency (vertical) component amplitude is reduced by half (B250Hz = 75 Grms). (f) A highly 

ordered diamond pattern also emerges when the vertical component amplitude of the 1:2 field 

is reduced (B125Hz = 37.5 Grms). 
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ordered diamond pattern emerges [Figure 7-7(f)] that is finer than for the corresponding 

2:1 case because the dominant ac component frequency is now higher. In both of the above 

cases (i.e., 2:1 and 1:2 fields), distinct flow patterns persist as the magnitude of either ac 

component is reduced to zero, demonstrating that only one component of a biaxial field 

needs to be time dependent to stimulate isothermal magnetic advection. 

7.3.4 3:1 Biaxial fields 

A second harmonic biaxial field produces flow patterns that are similar to those produced by 

the first harmonic field, but have some significant differences. In general, the application of a 

dc field distorts and eventually obliterates these patterns, producing vigorous rotational flow 

about the dc axis, but no new flow structures in this case. 

At phases of 0° and 180° [Figure 7-8(a)] the advection lattice consists of ragged,  

 

Figure 7-8.  Flow patterns for 3:1 fields in a 7 vol% suspension. The biaxial field for all images is 

300:100 Hz and 150 Grms. Parts (a)–(c) are purely biaxial fields at various phases: (a) phase = 0°; 

(b) phase = 45°; and (c) phase = 90° (the bowed columns are drifting to the left). Parts (d)–(f) are 

ac–ac–dc triaxial fields: (d) phase = 0° and ~30 G dc field; (e) phase = 45° and ~30 G dc field 

(diffuse columns are drifting left); and (f) phase = 90° and ~15 G dc field (column size biasing 

and drifting left). 
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writhing columns that are similar to those produced by the 2:1 biaxial field. At phases of 90° 

and 270° well-defined, bowed columns emerge that drift rapidly either east or west, 

depending on the field phase [Figure 7-8(c)]. The bowing is likely due to the stick 

boundary conditions at the N–S walls creating parabolic flow at the fluid surface. When the 

phase is set to either 45° or 225°, the advection lattice is complex and difficult to describe. 

It consists of the moving bowed columns observed at 90°/270°, obscured by faint columns 

that cross these at an oblique angle and move in the opposite direction [Figure 7-8(b)]. 

Deformation of the surface was observed as well, with the fluid at one corner of the cell 

significantly depressed in height. 

When a dc field is progressively applied to any of these flow lattices (Region IIIa, 

Figure 7-3), the columns progressively become more asymmetrical in diameter [Figure 7-

8(c) and (f)], just as for the 2:1 field. For the 0° or 180° phase, the columns noticeably 

change their appearance as the field is increased, as in Figure 7-8(d). When the dc field 

reaches ~125 G (Region IIIb, Figure 7-3) the columns have completely disintegrated, giving 

way to a textured surface and vigorous rotational flow about the dc field axis when the field 

phase is 0° or 180°, which is curious, since without the dc field the fluid does not exhibit 

vorticity. This vigorous flow should be very useful for heat and mass transfer. 

7.4 Conclusions 

The effects we have described demonstrate the ability to control the fluid flow direction by 

appropriately adjusting the magnetic field. Although the rotational flows are not visually 

stunning like the flow patterns that emerge at higher volume fractions, they are likely to 

prove useful for heat and mass transfer. Future work will focus on quantifying the heat 

transport in liquids using isothermal magnetic advection and evaluating the effectiveness of 

the various flows we have observed, as well as exploring the effects of applying a time-

dependent third field component. 
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Chapter 8 

Multiaxial fields drive the thermal conductivity 

switching of a magneto-responsive platelet 

suspension8 

We demonstrate the ability to change the thermal conductivity of a magnetic platelet 

suspension from insulating to conducting by using either uniaxial or multiaxial ac magnetic 

fields to control the suspension structure and dynamics. The equivalent thermal conductivity 

of the suspension can be modified either by creating static particle structures that facilitate 

or block heat transfer, or by using multiaxial ac fields to drive emergent particle dynamics 

that create vigorous, organized, non-contact flow. The equivalent thermal conductivity of a 

single suspension can be varied over a 100-fold range, and an equivalent thermal 

conductivity as high as 18.3 W·m−1·K−1 has been achieved in an aqueous suspension 

containing only 2.0 vol% platelets. This value is more than twice the conductivity of liquid 

mercury. 

8.1 Introduction 

High power density microsystems are driving the need for more efficient thermal 

management and liquid cooling is the solution of choice for the current generation of high 

performance supercomputers. Better thermal management solutions could be devised if the 

thermal conductivity of the fluid could be actively controlled, especially if the dynamic 

range is significant. In recent years we have found that multiaxial magnetic fields can be used 

to direct the assembly of complex particle composites with highly tailorable, anisotropic 

properties [8.1–8.10], and can also drive highly organized flow lattices in magnetic particle 

suspensions, as discussed in Chapters 5, 6, and 7 [also Refs. 8.11–8.13]. In this chapter we 

                                                           
8 Originally published as:  K.J. Solis and J.E. Martin, Multiaxial fields drive the thermal conductivity switching of a magneto-
responsive platelet suspension, Soft Matter 9, 9182–9188 (2013). 



146 

 

combine both of these findings to create extremely large changes in thermal transport 

through a platelet suspension. 

Because the thermal conductivity of most liquids is notoriously low, there has been a 

rapid increase in research intended to control, or at least increase, the thermal conductivity 

of simple liquids. Quite a bit of this work has focused on suspensions of nanoparticles, as it 

had been thought that these might provide a benefit exceeding the classical prediction of 

Maxwell for the thermal conductivity of spherical particle suspensions. Unfortunately, it is 

now reasonably well established that particle size is not a significant factor, nor is the 

thermal conductivity of the material of which the particles are comprised, provided it is 

significantly larger than that of the suspending liquid [8.14]. These findings are problematic, 

because the Maxwell theory predicts that adding spherical particles of infinite thermal 

conductivity to a liquid scarcely increases its thermal conductivity. The reason is simple: the 

spherical shape efficiently excludes the thermal gradient. In fact, the apparent thermal 

conductivity of such a particle is just four times the thermal conductivity of the liquid phase, 

so adding 10 vol% particles to a liquid increases its effective thermal conductivity by only 

30%. If the particles are formed into chains along the thermal gradient the total effective 

thermal conductivity increase is 80% [8.17], so applying a magnetic field to magnetic 

spheres would give only a ~38% control range. 

In this study we demonstrate that a suspension of magnetic platelets can be 

manipulated by a variety of static and dynamic fields to give a substantially larger range of 

effective thermal conductivity control, as much as nearly 10 000%. This increased range is 

due to the particle geometry, which contributes in two distinct ways. First, when a platelet 

is oriented such that its polar axis is normal to the thermal gradient, transport within the 

particle is greatly enhanced because of the much higher thermal gradient within the particle, 

compared to that within a spherical particle of the same volume. Because the thermal 

conductivity and magnetic permeability are isomorphic properties [8.18] (in the absence of 

Kapitza resistance), this increased transport can be quantified in terms of the 
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demagnetization factor of the particle, which is a known function of particle geometry alone 

for generalized ellipsoids [8.19]. This demagnetizing field effect also causes the particles to 

align and agglomerate in such a way as to maximize thermal transport. In Chapters 1 and 2 

[also Refs. 8.20,8.21] we have shown that composites containing these field-driven, static 

particle assemblies can be effective in either enhancing or suppressing thermal transport, 

depending on their orientation. 

Platelet geometry can also enable enhanced thermal transport by creating emergent 

flows when the suspension is driven by ac biaxial [8.11] or triaxial magnetic fields [8.12], as 

was demonstrated in Chapters 5 and 7. In this case the platelet geometry enables the 

dynamic field to persistently inject energy into the fluid by applying a torque to the 

particles. This coupling leads to spontaneous flow symmetry breaking and the formation of 

either flow lattices (see Chapters 5–7) [8.11] or fluid vorticity (see Chapters 3, 4 and 7) 

[8.12,8.22–8.24], depending on the nature of the multiaxial field. In this chapter, fluid 

vorticity is created by applying a dc field orthogonal to the plane of an ac biaxial field 

comprised of two orthogonal components having a 2:1 frequency ratio. The dc field creates 

parity in the field trajectory, which enables the development of deterministic fluid vorticity. 

This fluid vorticity causes highly effective thermal transport at uniform induction field 

amplitudes as low as 0.0075 T, and requires neither a thermal gradient nor gravity. In all 

cases the volume fraction of particles is less than 4%, so the heat capacity of the fluid 

remains essentially unaffected. 

Finally, the manipulation of particles with fields mitigates the need for stable particle 

suspensions, since the magnetic fields can quickly disperse sedimented particles throughout 

the fluid volume. It also enables rapid thermal switching for feedback control of the device 

temperature. Generating these fields is quite simple because they are spatially uniform and 

sufficiently weak to be produced by open-air Helmholtz coils. Series resonant coils can be 

driven by low voltage power supplies, dissipate very little power, are easily scalable to any 

fluid volume, and contain no moving parts. 
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In the following we describe the method of calibrating our heat transfer cell and then 

present thermal transport data from resistance thermometry measurements for a variety of 

field strategies. 

8.2 Experimental 

8.2.1 Materials 

Fluorinert™ FC-40 was used as the suspending liquid for most of the heat transfer 

measurements because it is extremely chemically inert and is a non-solvent for the 

polyimide laminates surrounding the resistance heater. As a result, no measurable resistance 

drift occurred when using this liquid. Magnetic platelets were added to this liquid at 

volumetric loadings in the range of 2–4%. Two types of platelets were studied: (1) a 

multilayered composition supplied by JDSU Flex Products Group comprising a 50 nm Ni 

core sandwiched between 92 nm-thick MgF2 layers; and (2) a pure Ni Fine Leafing Grade 

(500 nm thick) supplied by Novamet, both of which are ~20 m across and are shown in 

Figure 8-1. 

 

Figure 8-1.  SEM images of the Ni platelets. (a) The multilayer flakes from JDSU, and (b) the 

Novamet Fine Leafing Grade pure Ni flakes. 
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8.2.2 Thermal transport cell 

A steady-state thermal transport cell was constructed to fit inside the central cavity of our 

Helmholtz coils [Figure 8-2(a)]. To prevent heating the cell from eddy currents induced by 

the ac magnetic fields, the cell is constructed of dielectric materials such as nylon, Teflon™, 

and Lexan™. The schematic in Figure 8-2(b) identifies the main components of the cell. 

The cell is a symmetrical design consisting of a central, 2.54 cm2 thin-film polyimide heater 

(Thermofoil™ from Minco) that bisects the fluid cavity, ensuring that heat flux is largely 

directed through the fluid. At either end of the cell are cooling blocks through which water 

is circulated. These cooling blocks are separated from the heat transport fluid by 0.67 mm 

thick silicon wafers. Silicon has a relatively high thermal conductivity 

(kSi = 149 W·m−1·K−1), so the thin wafers have negligible thermal resistance. The vertical 

orientation of the heater and parallel silicon cooling plates establishes a thermal gradient 

perpendicular to the direction of gravity, to minimize the likelihood of buoyancy-driven 

convection. Finally, a Lexan™ lid was fitted to the top of the cell to reduce evaporation and 

drafts. 

 

Figure 8-2.  (a) An oblique downward view of the cell within the central cavity of two nested, 

orthogonal Helmholtz coils. The red wire leads can be seen extending from the heater, which 

bisects the fluid cavity (empty in the picture). Transparent cooling water lines are seen extending 

up from the cooling water blocks. (b) Side view, cross-section schematic of the flow cell. (1) 

Cooling water inlet, (2) cooling water exit, (3) cooling blocks, (4) silicon partition, (5) foam-filled 

cavity within the nylon body, (6) thin-film polyimide heater, (7) heat transfer fluid reservoir. 
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8.2.3 Resistance thermometry measurements 

The equivalent thermal conductivity kequiv. of the magnetic platelet suspensions was 

determined using resistance thermometry to measure changes in the steady-state 

temperature of the heater under various field conditions, and thus fluid conditions. The 

heater thus served as both the heat source and temperature sensor. The heater 

thermoresistance was calibrated using a highly accurate Agilent 4284A Precision LCR bridge 

and the temperature coefficient of resistance was found to be  ≈ 1.26 × 10−4
 K−1, where 

dT

dR

R

e

e0

1
 .          (8-1) 

The reference resistance at 0 °C is Re0 = 160.597 Ω and dRe/dT = 20 mΩ·°C
−1. This 

thermoresistance is sufficient to give a measurement resolution of 0.05 °C using the Agilent 

bridge. Although the heater foil element is ferromagnetic (the heater is attracted to a strong 

NdFeB permanent magnet), measurements indicate that the heater resistance is not 

measurably affected by the relatively weak, uniform magnetic fields used to control the 

fluid. The LCR bridge was run at 182.6 Hz, a frequency chosen to be incommensurate with 

the magnetic field frequencies, in order to avoid interference. Because this bridge has a 

maximum voltage output it is used both to drive the heater and measure its resistance. The 

bridge is used in constant applied voltage mode, but because of the low temperature 

coefficient of resistance the change in the dissipated power is negligible: even a 40 °C 

temperature rise increases the heater resistance (and thus decreases the dissipated power) by 

only 0.5%. 

To obtain reliable fluid thermal conductivities for our platelet suspensions requires 

that the heat transfer cell be calibrated with a liquid of known thermal conductivity in order 

to determine its stray thermal resistance, Rth,cell. The presence of such a parallel thermal path 

results in measured temperature differences smaller than if all of the heat was transferred 

through the fluid. Accordingly, the following expression was developed to correct the 

measured temperature changes by accounting for this stray thermal resistance, 
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where ΔTcorr is the corrected temperature difference, ΔTmeas is the measured temperature 

difference, and Pd is the power dissipated by the heater. The corrected temperature rises are 

those that would occur if the polymers comprising the cell were perfectly insulating. This 

issue of computing the cell thermal resistance cannot be neglected, especially in light of the 

fact that the thermal conductivity of FC-40 is only 0.065 W·m−1·K−1 and a typical value for 

the polymers of which the cell is comprised is ~0.25 W·m−1·K−1. 

In principle, to determine Rth,cell one would simply measure the temperature rise 

using pure FC-40 at a given heater power output, and compute the cell thermal resistance 

from Equation 8-2 knowing what the expected temperature rise (ΔTcorr) would be for pure 

conduction through FC-40. Unfortunately, this approach is complicated by the occurrence 

of convection in the pure FC-40 liquid. Although we designed the cell to minimize the 

likelihood of convection due to buoyancy effects, a free top fluid surface remains allowing 

for thermocapillary convection (aka Bénard–Marangoni convection) to occur. To prevent 

this surface-tension-driven convection we loaded the FC-40 with 4 vol% of the JDSU 

multilayer platelets and applied a 300 Hz uniaxial field to structure the platelets into vertical 

chains orthogonal to the thermal gradient. Although these chains prevent fluid motion, 

extensive experiments on particle composites show that transverse particle chains do not 

significantly affect the effective thermal conductivity of the continuous phase. Using the 

thermal conductivity of quiescent FC-40 gives a stray cell thermal resistance of 160 °C·W−1. 

To confirm this value of the stray thermal resistance we next loaded the cell with 

pure glycerin, chosen because its high viscosity (934 cP at 25 °C) reduces the possibility of 

convection. Steady-state temperature rise measurements were made at heater powers that 

were 25%, 50%, 75% and 100% of the maximum heater power of 623.6 mW. For each of 

these powers the thermal conductivity of glycerin was computed from Equation 8-2 using 
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our measured stray cell resistance, and a slight increasing dependence of the measured 

conductivity with heater power was noted, probably due to some slight convection. 

Extrapolating these conductivities to zero heater power gave a quiescent fluid conductivity 

of 0.292 W·m−1·K−1, which is the known thermal conductivity of glycerin [8.25]. Because 

of this excellent agreement one could take the point of view that the stray thermal resistance 

of our cell was determined by running glycerin. 

Our measured temperature rises were corrected using Rth,cell = 160 °C·W−1 in 

Equation 8-2. This correction is only really correct for steady-state rises, but we corrected 

all of our data in this way, just to have continuous temperature rises to plot, as in Figure 8-

3. It is important to note that only the steady-state data were used to compute 

conductivities. 

 

Figure 8-3.  Plot showing the result of correcting for the stray cell thermal resistance. The blue 

curve is the measured data and the red curve is the corrected data. (The correction formula 

was developed for the temperature differences at steady state, but the temperature rise data 

are not used to determine conductivities.) The corrected heater temperature rise ΔT1 is for a 

quiescent suspension, whereas ΔT2 is for the same fluid driven by a triaxial magnetic field. 
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Temperature rise experiments were performed for a variety of magnetic field 

strategies to investigate the dependence of heat transfer on the structure and dynamics of the 

platelet suspensions. For each experiment an initial baseline was established by applying only 

100 mV across the heater to acquire a stable signal while minimizing heating. (The dissipated 

power at this level is only 0.06 mW.) The applied heater voltage was then increased to 10 V 

to increase the dissipation by four orders of magnitude (Pd = 623.6 mW) to obtain a 

measureable temperature rise for the fluid. After steady state was achieved any of a number 

of magnetic fields was applied to alter thermal transport to a new steady-state value by 

creating either static platelet structures or dynamic flows. The data were then corrected for 

the stray cell thermal resistance and the equivalent suspension thermal conductivities were 

computed from the corrected data using Fourier's law of heat conduction. When the 

magnetic field is used to create advection the equivalent thermal conductivities are geometry 

dependent because the transport is ballistic, not diffusive. These values thus apply to our 

particular cell, with its 1 cm path lengths, but they nonetheless illustrate the relative 

differences in heat transfer for various driving fields. Increasing the path lengths would yield 

even higher equivalent thermal conductivities for the driven fluids. 

8.3 Results and Discussion 

8.3.1 Static structures 

The first series of heat transfer experiments focused on creating static structures within the 

fluid to modify the thermal transport. By using appropriate uniaxial or biaxial magnetic 

fields, we created either chain-like or sheet-like particle assemblies, respectively [8.3]. In 

either case these structures can be aligned parallel or perpendicular to the thermal gradient. 

Experiments on composite materials have shown strong thermal conductivity anisotropy in 

field-structured nickel platelet composites (see Chapters 1 and 2) [8.20, 8.21], so the 

orientation of the structuring field relative to the thermal gradient is expected to be an 

important factor in these suspensions as well. 
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When 4  vol% platelets are formed into chains perpendicular to the thermal gradient 

it is expected that the thermal conductivity enhancement is very low and measurements bear 

this out. The solid Ni platelets have a thermal conductivity of keff,Nova = 0.082 W·m−1·K−1, 

which is 26% greater than that of the multilayered platelets, which we have shown above has 

essentially the conductivity of pure FC-40 (0.065 W·m−1·K−1). 

In contrast, when the static chains are oriented parallel to the thermal gradient the 

effective thermal conductivity is greatly enhanced for both types of platelets. The 

multilayered platelets give keff,JDSU = 0.23 W·m−1·K−1, which is a 250% increase over the 

base fluid, and the pure Ni platelets give keff,Nova = 0.68 W·m−1·K−1, which is a 950% 

increase. The respective thermal conductivity anisotropies are ~3.5 and ~8.3, so these 

structures effectively direct heat transfer. 

The platelets can be organized into layered structures (a bit like mica) by applying an 

appropriate ac biaxial field. A layered structure should suppress heat transfer if the sheets 

are created normal to the thermal gradient and should enhance heat transfer if the thermal 

gradient is in the plane of the sheets. This layered structure was created by applying a biaxial 

field comprised of 600 Hz and 300 Hz orthogonal components having rms component 

amplitudes of 0.015 T to a suspension of 4  vol% platelets. Such high frequencies are needed 

to prevent the formation of an advection lattice or other fluid motion. Layered structures 

can also be produced by applying high-frequency rotating fields, but an octave field does not 

produce a net body torque. 

A layered structure of the pure Ni Novamet platelets strongly suppressed thermal 

transport when the layers were created normal to the thermal gradient. In fact, the 

conductivity dropped to 0.016 W·m−1·K−1, which is 4× smaller than that of the FC-40 base 

fluid. Because even a series model of heat conduction (which should be very good for this 

composite geometry) would predict that the platelets should increase the effective 

conductivity, we surmise that such a highly-insulating state is due to impedance mismatch at 
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the platelet–liquid interfaces (i.e., Kapitza resistance). This issue will be an area of future 

investigation. 

Alternatively, if the sheets are created so they extend parallel to the thermal 

gradient, heat conduction through the fluid is enhanced (keff,Nova = 0.23 W·m−1·K−1), albeit 

not nearly as much as with the pure Ni parallel chains. Still, these measurements indicate a 

14.4× anisotropy in heat conduction in these layered structures, so they could act as 

effective heat spreaders. In previous work on field-structured composites of spherical 

particles we have also noted lower in-plane enhancements for layered structures as opposed 

to chains [8.3, 8.17]. Sheet structures formed of the JDSU multilayer flakes were not 

studied. Before moving to field-induced flow, we point out that these static structures have 

thermal conductivities ranging from 0.016 to 0.68 W·m−1·K−1, which is a 42.5× control 

range. 

8.3.2 Field-stimulated flows 

In our next series of experiments we investigated heat transfer using magnetically-stimulated 

flows. Because the heat transfer is ballistic in this case, a comparison with heat conduction 

due to diffusion is problematic because the comparison will be dependent on the fluid gap in 

the cell. For diffusive transport the heater temperature rise will increase linearly with the 

gap, whereas for perfect ballistic transport the temperature rise will be independent of the 

gap. Because our flow cell has a fixed gap we cannot explore this issue and will simply 

quantify the heater temperature rise as an equivalent thermal conductivity kequiv. for our 1 cm 

gap cell. These equivalent thermal conductivities are not an intensive property of the driven 

suspension and would be expected to nearly double for a 2 cm gap cell, and so forth. 

Before describing the results of these heat transfer experiments it is helpful to 

describe our method of generating these flows. These flows were created by subjecting 

4  vol% platelet suspensions to ac-ac-dc triaxial fields of the form 

zyxH ˆ]ˆ)sin(ˆ)[sin(2)( zrms HtntHt   .     (8-3) 
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Here n is a small integer that is set to 2 in these experiments and  is a phase angle. 

The use of this field strategy requires some explanation. If the ac biaxial field alone is applied 

(i.e., Hz = 0) an advection lattice is formed. However, if a dc component is applied at an 

amplitude comparable to that of the rms biaxial field components, the advection lattice is 

obliterated and rotational flows of surprising vigor emerge (see Chapter 7). An interesting 

aspect of these rotational flows is that the orientation of the vorticity axis is dependent on 

the whether the field frequency ratio is even or odd. For a 2:1 field with a 0° phase angle the 

vorticity axis is parallel to the low frequency field component. In this case the fluid vorticity 

can be reversed by either changing the biaxial field phase angle by 180° or by reversing the 

direction of the dc field. 

This fluid rotation is due to the dc field causing chiral symmetry breaking of the 

trajectory of the field vector and its opposite, a point that requires a little explanation. For a 

2:1 field with a 0° phase angle the Lissajous plot of the field vector is a figure eight, with the 

zero field point at the center. The trajectory of the field vector is chiral and will circulate in 

the opposite sense if the phase is shifted by 180°. However, the magnetic interactions are 

due to induced magnetic moments and thus scale as the square of the applied field, so 

inverting the sign of the total applied field will have no effect. It is therefore the combined 

trajectory of the applied field and its opposite that is the critical issue: in other words, the 

trajectory of a line. A little thought will convince one that the trajectory of this “field line” is 

not chiral for the biaxial field in question, so there is no reason to expect deterministic 

rotational flow. However, if one also applies an orthogonal dc field the zero point of the 

field shifts outside the plane of the figure eight, as shown in Figure 8-4. The field line now 

bridges two separated figure eight curves and because it can now circulate in opposite senses 

it is chiral. Changing either the sign of the dc field or shifting the phase of the biaxial field 

causes a change in the parity of the trajectory and thus reverses the fluid vorticity. These 

basic parity considerations are a necessary condition for the development of deterministic 

rotational flow in such a field. 
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Figure 8-4.  When a dc field is applied orthogonal to the plane of a 2:1 biaxial field the zero point 

of the field vector is shifted. Because induced dipole effects depend on the square of the field 

there are two equivalent field trajectories: one circulates on the upper figure eight and one on 

the lower. When two equivalent Lissajous plots are separated by a gap created by the dc field 

along the z axis it is apparent that the combined field vectors can circulate in two opposing 

directions, opening up the possibility of rotational flow. The parity of the trajectory can be 

changed by either changing the phase of the biaxial field by 180° or by changing the sign of the 

dc field. In fact, either of these reverse the fluid vorticity. 

If the field frequency is 3 : 1, and the phase is 90°, strong rotational flow also occurs 

when a dc field is applied, but the axis of vorticity is the dc field. In this case changing the 

phase of the biaxial field by 180° also reverses the flow, but altering the direction of the dc 

field does not. These observations are also consistent with parity considerations for the 

simultaneous trajectory of the field line. The 3 : 1 field line trajectory is chiral even for the 

biaxial field itself, which is why a small deterministic body torque can be observed in this 

case. An orthogonal dc field component of either sign does not alter the parity of this 

trajectory, but changing the phase of the biaxial field by 180° does. 

To maximize heat transfer the rotational flows were induced so fluid flow occurs 

along the thermal gradient. The vorticity axis was arbitrarily chosen to be horizontal as well. 

This ‘artificial convection’ should provide significantly better heat transfer than the static 

structures described above, whose heat transfer mode was limited to conduction. 



158 

 

Initial experiments were performed with a biaxial field comprised of 100 Hz and 

50 Hz components having 0.015 T rms induction field amplitudes and a 0° phase angle. The 

dc induction field amplitude was also 0.015 T. This field resulted in values of kequiv. for the 

JDSU multilayer platelet suspensions of 1.26 W·m−1·K−1, and for the pure Ni Novamet 

platelets 1.61 W·m−1·K−1, which are respectively about 19× and 25× greater than that of 

the FC-40 base fluid. It should be emphasized that because the flow is ballistic, these 

conductivity values should scale as the fluid gap, providing diffusive transport makes a 

negligible contribution. Increasing the frequency of the biaxial field by a factor of 3 (to 300 :

150 Hz) produced a modest decrease in heat transfer for the multilayer flakes 

(kequiv.,JDSU = 0.94 W·m−1·K−1), indicating that the heat transfer efficacy is not highly 

sensitive to field frequency, provided the frequency remains below that at which static 

structures form. 

Biaxial fields with a 3:1 frequency ratio can also be used in ac-ac-dc triaxial fields to 

stimulate rotational flows (see Chapter 7) [8.12]. For these flows the axis of fluid vorticity is 

rotated 90° with respect to those produced using 2:1 fields, so the flow cell was rotated by 

90° to maintain the flow direction parallel to the thermal gradient. As Figure 8-5 shows, a 

value of kequiv. = 0.71 W·m−1·K−1 was obtained using the Novamet Ni flakes subjected to 

such a field (150:50 Hz, 90° phase, 0.015 T rms ac components; and a 0.015 T dc 

component), which is over a factor of 2 lower than for the octave biaxial field case 

(1.61 W·m−1·K−1). This difference is due to the relatively slow fluid flow with this field 

configuration. 

Field strength is obviously an important factor as it controls the flow rate and thus 

the efficiency of heat transfer. We progressively reduced the 100:50 Hz and dc field 

components from 0.015 T to 0.005 T and found that the heater temperature did not 

appreciably rise until the fields were reduced to 0.005 T (Figure 8-6). These results 

demonstrate that efficient heat transfer can be achieved using very modest fields  
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Figure 8-5.  Effective and equivalent thermal conductivities for static structures and dynamic 

flows in FC-40. The dashed line indicates kFC-40 = 0.065 W m−1 K−1. 

 

Figure 8-6.  Plot of the corrected temperature differences vs. the component induction field 

amplitude demonstrating that efficient heat transfer occurs for fields as low as 0.0075 T. 



160 

 

(~0.0075 T) to stimulate the flows. This field is one quarter the energy density of the 

0.015 T field and requires one quarter of the dissipated power to generate. 

Using FC-40 as a base fluid we have at this point demonstrated effective and 

equivalent thermal conductivities for our 1 cm cell that are as low as 0.016 W·m−1·K−1 and 

as high as 1.61 W·m−1·K−1, which is a control range of 100. However, these thermal 

conductivities can be significantly increased by using water as the suspending liquid since 

water itself has a thermal conductivity of ~0.60 W·m−1·K−1, which is about 1 decade larger 

than that of FC-40. Water swells the polymer used to encapsulate the resistance heater, 

which leads to drift in the resistance measurements, but this linear drift can be accounted for 

very accurately for short experiments. 

Water-based suspensions were created using Fine Water Grade Novamet Ni flakes, 

which have the same dimensions and morphology as the Fine Leafing Grade used earlier but 

are more easily dispersed in water, especially with the aid of the surfactant Triton X-100™. 

Using a 4 vol% suspension, and the same field strategy initially used for FC-40, a value of 

kequiv. = 9.21 W·m−1·K−1 was obtained, which is 5.7× larger than the highest value obtained 

with the FC-40-based suspension. During the experiments, we observed that the initial 

startup of the rotational flows appeared more vigorous than once they became fully-

developed, and so it became clear that a lower volume fraction might result in faster flow 

rates, and thus better heat transfer. Accordingly, we prepared and tested a 2 vol% 

suspension and the measured heat transfer increased by a factor of 2 for a value of 

kequiv = 18.33 W·m−1·K−1, which is a 30× enhancement over quiescent water and 11.4× 

larger than the best result using FC-40. This equivalent thermal conductivity is very similar 

to the thermal conductivity of the metal antimony at this fluid gap. To put this in 

perspective, the uncorrected heater temperature rise was only 0.3 °C in this case (with the 

heater power at 623.6 mW), whereas it reached 58 °C for perpendicular sheets in FC-40. 

Future work will focus on characterizing the heat transfer capabilities of the many 

possible isothermal magnetic advection flow patterns, investigating the contribution of the 
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interfacial thermal resistance regarding heat transfer in these adaptive fluids, and possibly 

studying the relationship between the mixing torque generated by the rotational flows and 

their heat transfer efficacy. It may also prove interesting to study the suspension dynamics 

using smaller platelets so this technique could be developed for use in microfluidic 

applications. 

8.4 Conclusions 

Using resistance thermometry in a symmetrical flow cell we have demonstrated the ability 

to use uniaxial and multiaxial magnetic fields to change the equivalent thermal conductivity 

of a magnetic platelet suspension over an appreciable range. These fields can be used to 

create a variety of static particle structures or can be used to create rotational flow. Creating 

static sheets of platelets perpendicular to the thermal gradient decreased heat conduction by 

a factor of 4, relative to the base fluid FC-40; whereas, creating chains of platelets parallel to 

the gradient increased heat conduction by a factor of 10.5. Using an ac-ac-dc triaxial field to 

drive emergent particle dynamics that creates vigorous rotational flow increased heat 

conduction by a factor of 25. Heat conduction of a single suspension in a 1 cm cell can thus 

be varied over a 100-fold range. With an aqueous suspension of only 2.0 vol% platelets an 

equivalent thermal conductivity as high as 18.3 W·m−1·K−1 has been achieved, which is 

more than twice the conductivity of liquid mercury and is comparable to the metal 

antimony. 
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Chapter 9 

Symmetry-breaking magnetic fields create a vortex 

fluid that exhibits a negative viscosity, active wetting, 

and strong mixing9 

There are many areas of science and technology where being able to generate vigorous, 

noncontact flow would be desirable. We have discovered that three dimensional, time-

dependent electric or magnetic fields having key symmetries can be used to generate 

controlled fluid motion by the continuous injection of energy. Unlike natural convection, 

this approach does not require a thermal gradient as an energy source, nor does it require 

gravity, so space applications are feasible. The result is a highly active material we call a 

vortex fluid. The homogeneous torque density of this fluid enables it to climb walls, induce 

ballistic droplet motion, and mix vigorously, even in such complex geometries as porous 

media. This vortex fluid can also exhibit a negative viscosity, which can immeasurably extend 

the control range of the “smart fluids” used in electro- and magnetorheological devices and 

can thus significantly increase their performance. Because the applied fields are uniform and 

modest in strength, vortex fluids of any scale can be created, making applications of any size, 

from directing microdroplet motion to controlling damping in magnetorheological dampers 

that protect bridges and buildings from earthquakes, feasible. 

9.1 Introduction 

Creating controlled, organized fluid flow is a long-standing fluid dynamics problem that is 

relevant to many aspects of materials research and bioscience. In the vast majority of cases 

flow is induced using impellers, but such mechanical systems are subject to failure, require 

replacement items such as seals and bearings, are difficult to microfabricate, and create 

                                                           
9 Originally published as:  J.E. Martin and K.J. Solis, Symmetry-breaking magnetic fields create a vortex fluid that exhibits a 
negative viscosity, active wetting, and strong mixing, Soft Matter 10, 3993–4002 (2014). 
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nonuniform flow. Having the ability to generate noncontact flow without using moving parts 

would eliminate these problems and could impact a range of technologies. For example, 

more efficient and reliable methods of fluid mixing are needed [9.1] in microfluidic [9.2–

9.9] and microdroplet systems [9.10–9.22] because the small length scales mitigate against 

inducing turbulence. Increasing heat extraction in liquid-cooled electronic microsystems is 

critical to increasing power densities and performance. (In fact, liquid cooling systems have 

now become a complex and problematic aspect of massively parallel computers 

[9.23,9.24].) Noncontact methods of generating vorticity at key points in the cooling system 

could reduce the need for high overall flow rates, enabling more energy-efficient heat 

transfer. Having the ability to generate vorticity in a fluid subject to a shear strain rate can 

cause the observed shear stress to vanish, or even become negative, so that zero or negative 

viscosities result. This would result in “smart fluids” with an unprecedented control range 

for use in a wide range of clutches and dampers [9.25,9.26]. Finally, having the ability to 

induce mixing in microdroplets would further the development of massive containerless 

arrays for bioassays and reactions. 

These challenges highlight the need for noncontact flow techniques that are scale 

adaptive and efficient. In the following we describe how an infinite family of spatially 

uniform, multiaxial magnetic or electric fields can create a vigorous vortex fluid from a dilute 

suspension of magnetic or dielectric particles. The defining aspect of this vortex fluid is the 

spatially uniform torque density that drives its motion, causing such odd effects as active 

wetting and wall climbing, Figure 9-1(top). The direction of fluid flow can be altered by 

minor adjustments of the frequency or phase of one field component, so it is easy to direct 

the fluid along any particular path. 

The effects described in this chapter are a development of the rapidly growing field of 

driven colloids, wherein time-dependent fields are used to drive colloidal suspensions into 

far-from-equilibrium states. The field-induced interactions can easily dominate thermal 

fluctuations, electrostatic, and van der Waal's interactions and can lead to static or 
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Figure 9-1.  Active wetting of a vortex fluid and Lissajous plots for a 4:3 frequency ratio. (Top) 

When a symmetry-breaking multiaxial magnetic field is applied to a dilute magnetic Permalloy 

platelet suspension a fluid with a uniform torque density emerges. This fluid crawls up and over 

the walls of the container, thoroughly wetting the surface. Images a–f were taken at 0.25 s 

intervals. (Bottom) A closed curve (left) that has two reflection planes occurs at the phase angles 

 = 0°, 60°, … (right). The two open curves have a single reflection plane. The blue curve occurs 

at phase angles  = 30°, 150°, … and the red curve occurs at phases of  = 90°, 210°, … 

dynamical assemblies with striking symmetries and behaviors [9.27–9.29]. Certain time-

dependent driving fields have been shown to evolve dynamic assemblies sustained by the 

continuous injection of energy into the system, an example of “active materials” [9.30]. In 

bulk suspensions the creation of advection lattices and vortex lattices has been reported 

[9.31,9.32], which were discussed in Chapters 5 and 7, and for particles confined to liquid–

liquid or air–liquid interfaces a number of surprising dynamic structures have been observed 
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[9.33,9.34], including “swimming snakes” [9.35,9.36] and “asters” [9.37]. These assemblies 

have been shown to have implications for fluid mixing at a surface [9.38–9.40] and for the 

controlled surface transport of material. 

In Chapters 3 and 4 we demonstrated noncontact flow in suspensions of magnetic 

spheres, platelets and nanorods [9.41–9.43] subjected to a field with a precession-like 

motion. Because either clockwise or counter-clockwise field circulation is possible, a field of 

this type has the required parity to generate deterministic vorticity. Here we demonstrate 

that highly symmetric ac-ac-dc fields having zero net circulation can generate fluid vorticity, 

due to more subtle aspects of the field symmetry. There are an infinite variety of such fields, 

and small adjustments of the field frequencies can cause the axis of fluid vorticity to switch 

to any of three principal directions, enabling rapid and unprecedented control over fluid 

flow. 

Our purpose in this chapter is to present a theoretical framework that predicts the 

orientation of the vorticity axis for these vortex fluids. A surprising aspect of this theory is 

that, unlike the physical theory developed to explain the mechanism underlying vortex field 

mixing [9.41], no such consideration of complex microscopic physical details is needed here. 

Instead, this theory is based solely on details concerning the symmetries of the applied 

symmetry-breaking rational fields, and as such highlights the novelty of this phenomenon. 

Although this study is largely theoretical in nature, select experimental results are presented 

to demonstrate the predictive capabilities of the theory. In fact, a detailed experimental 

study quantifying the torque densities produced by vortex fluids comprising a variety of 

particle shapes is the subject of Chapter 10. 

9.2 Materials & Methods 

Our experimental system consists of a series resonant triaxial Helmholtz coil [9.44] (Figure 

9-2) that produces uniform magnetic fields over the fluid volume, which is typically about  



170 

 

 

Figure 9-2.  Triaxial Helmholtz coils. (a) Photograph of our experimental triaxial Helmholtz coil 

system. (b) Schematic illustrating one possible configuration for the relative orientations of the 

high-frequency (blue), low-frequency (yellow), and dc (red) coils. 

10 mL. Field frequencies from 50–1000 Hz and field strengths as high as 500 Oe can be 

produced, but typical rms field strengths are 150 Oe for each component. 

A variety of particle geometries were used in these experiments. The spherical 

particles were 4–7 micron carbonyl iron, obtained from ISP technologies, Inc. The Ni 

nanorods were 500 nm in diameter and 5 microns in length and were synthesized for us by 

R. Bell, Penn. State, Altoona. A variety of platelets were used, including solid Ni and 

Permalloy particles (fine leafing grade) from Novamet that are roughly 20 microns in size 

and ~1 micron thick. The Permalloy platelets were used to demonstrate that a remanent 

magnetic moment is not required to induce fluid vorticity. Multilayered magnetic platelets 

of various types were obtained from JDSU FlexProducts. These consisted of either a 60 nm 

thick Ni or Permalloy core that is coated with ~200 nm layers of Al, and overcoated with 

200 nm MgF2. These platelets are roughly 20 microns in size and some of these materials are 

actually square in shape, whereas some are irregular. These particles were usually dispersed 

in isopropanol, but other liquids, such as water, work equally well. The particle suspensions 

generally contained 1–3 vol% particles. The most vigorous vorticity was obtained with the 

anisometric particles, because this geometry increases field penetration. 
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To quantify the fluid vorticity we used a torsion fiber apparatus consisting of a 1.0 m 

nylon fiber that is 0.75 mm in diameter. Specific torque densities in the range of 500–

1200 J·m−3 were computed from the total volume of particles and the angular displacement 

of the sample. 

9.3 Rational Fields 

The creation of the vortex fluid is accomplished through the application of rational fields that 

consist of three orthogonal components, two of which are alternating. This field is of the 

form 

zyxH ˆˆ
360

22sinˆ)2sin()( 00 dcac HtnftmfHt 









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
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     (9-1) 

where we have used the common experimental variables for waveform generators 

(frequency in Hz and phase in degrees). The dc field serves to break the symmetry of the 

biaxial ac field, as described below, which induces vorticity. Both n and m are integers, so 

the frequency ratio n:m is rational, and these fields can be classified as even:odd, odd:even, 

or odd:odd (even:even fields can be reduced to one of these cases). In all cases n > m, so ŷ is 

the high frequency axis. The frequency f0 can be varied over a wide range, but nf0 and mf0 

are less than 1 kHz in our experiments. The phase angle  determines both the sign and 

strength of the vorticity. Finally, in this chapter H represents the applied magnetic field, but 

for experiments employing dielectric particles it would represent the applied electric field. 

Lissajous plots of the biaxial ac field components are shown in Figure 9-1(bottom) 

for m = 3, n = 4 and phase angles of 0° and 30°. These phase angles were chosen because 

they give highly symmetric Lissajous plots of two types: closed and open curves. These types 

are central to understanding the experimental results described herein. 

Before discussing the experiments it is helpful to point out that rational fields that 

induce deterministic fluid vorticity generally have zero net circulation. The circulation of the 
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field can be computed by considering the angular displacement of an acicular particle, such 

as a nanorod, comprised of an isotropic material that polarizes only in the presence of a 

field. The applied field is strong enough that the major axis of the particle is always aligned 

with the instantaneous field. The rational field will cause the particle to variously rotate 

clockwise and counter-clockwise around the z axis; however, in one full cycle of a rational 

field (Δt = 1/f0) there may or may not be a net rotation. Because the orientation of the 

particle at the end of a cycle is indistinguishable from its orientation at the beginning of a 

cycle, any net rotation must be an integer multiple of 180°. If a net rotation does occur then 

fluid vorticity around the z axis could occur, even without the dc field, but without a net 

rotation fluid vorticity is not expected. Of course, any net circulation is only possible for 

closed-curve Lissajous fields. 

To compute the field circulation we start with the angular velocity of the acicular 

particle, which is  where h =H(t) / H(t) , ĥ =H(t) / H(t)  and  is the  

 

Figure 9-3.  Angular displacement of a nanorod subjected to Lissajous fields. (Left) The reduced 

angular velocity θ/f0 (in cycles) and change in orientation Δθ are given as functions of the 

reduced time f0t for a 4:3 biaxial field. The clockwise rotations are exactly balanced by the 

counterclockwise rotations so that no net rotation occurs. In fact, all even, odd fields are 

noncirculating. (right) For odd:odd biaxial fields, in this case a 5:3 ratio, one net rotation occurs 

for each field cycle. 
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orientation of the particle in the x–y plane. A time integral of the angular frequency 

 gives the change in particle orientation. Figure 9-3(left) shows that for a 4:3 

field there is no net rotation. In fact, this is a general property of closed-curve rational fields 

having even:odd (or odd:even) ratios, so these fields can be classified as noncirculating. 

Figure 9-3(right) shows that for a closed-curve 5:3 field there is one full revolution for 

each field cycle, so the mean rotational frequency is just f0. All closed-curve odd:odd fields 

have exactly this net rotation, so for these circulating fields vorticity around the z axis can be 

expected. 

In the following our experimental results are described. A discussion of the 

symmetry of rational fields is then given and it is shown how these lead to the phenomena 

we observe. Principal among these is the observation that the frequency ratio n:m is the 

critical factor that determines whether the vorticity axis is parallel to the dc, low frequency, 

or high frequency field. 

9.4 Results 

In our initial experiments a Permalloy platelet suspension was subjected to an ac biaxial field 

of frequencies 150 and 100 Hz, corresponding to n:m = 3:2 and f0 = 50 Hz. The rms field 

amplitude of each component was 150 Oe and the phase angle was initially zero. This field 

generated the flow pattern called Isothermal Magnetic Advection (see Chapter 5), consisting of 

a square lattice of antiparallel flow columns orthogonal to the field plane. Ramping up the dc 

field caused this lattice to transform into a vigorous vortex around the high frequency axis 

(H), Figure 9-4(b), and reversing the dc field direction reversed the flow. 

Increasing n to 4 (n:m = 4:2 = 2:1) and applying all three fields again created 

vorticity, but oddly enough this now occurred around the low frequency axis (L), though 

reversing the dc field still reversed the flow, Figure 9-4(a). For n = 5 the results were the 

same as for n = 3, but n = 6 (n:m = 6:2 = 3:1) gave vorticity around the dc field (D), 

Figure 9-4(c), and reversing the dc component did not reverse the flow. It is thus possible  
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Figure 9-4.  Fluid vorticity around three orthogonal field components. These views are parallel to 

the high frequency axis and the vertical direction is always the dc field axis. Vorticity occurs 

around (a) the low frequency axis for a 2:1 rational field (200 & 100 Hz), (b) around the high 

frequency axis for a 3:2 field (150 & 100 Hz), and (c) around the dc axis for a 3:1 field (300 & 

100 Hz). In each image the vorticity axis is color-coded to the respective Helmholtz coil axis in 

Figure 9-2(b), and the flow direction is indicated by white arrows. This sample contained multi-

layered magnetic platelets obtained from JDSU Flex Products. 

to create vorticity around any of the three field directions and the sequence H, L, H, D 

found for n = 3 to 6 was found to repeat as n was further increased from 7 to 10, as did the 

dependences on dc field reversal and phase angle change. For odd n changing the phase angle 

 in Equation 9-1 by 180° did not reverse the flow. 

We next increased the field denominator m to 3 and explored the high frequency 

field sequence n = 4, 5, … For even values of n fluid vorticity was observed to form around 

the low frequency axis, whereas for odd values vorticity formed around the dc field, giving 

the repeating sequence L, D, … For this denominator vorticity did not occur around the 

high frequency axis. For even values of n the flow reversed when the dc field was reversed, 

but for odd values it did not. In all cases changing the phase angle by 180° reversed the flow, 

in contrast to the m = 2 case. 

These puzzling vorticity axis sequences were explored for larger even values of m as n 

increased successively from m + 1. For m = 4 the repeating sequence was found to be H, H, 

H, L, H, H, H, D, … For m = 6 the sequence became simpler, H, L, H, D, … which is the 

same as found for m = 2. For m = 8 the repeating pattern is quite long, but for m = 10 it is 

again the same as for m = 2. Likewise, the sequence for m = 12 is that of m = 4 and m = 14 
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is that of m = 2. These experimental findings might seem rather bewildering, but in fact can 

be easily understood by considering the symmetry of the dynamic field. 

9.5 Discussion 

The suspensions we employ contain soft ferromagnetic platelets whose moment is induced 

by the field. The magnetic interactions between particles, as well as the interaction of the 

particle moments with the field, are therefore proportional to the field squared at non-

saturating fields. Reversing the field thus generates the same forces and torques, so in 

considering the symmetry of the time-dependent field one must consider both the field H 

and its converse –H. The converse field trajectory is related to the field trajectory by a 180° 

rotation about the z axis. Note that in the following it is sometimes necessary to use the 

variables n′, m′, where n′:m′ = n:m, but n′ and m′ share no common factors. Also, in the 

following a great many properties of Lissajous curves are stated without proof. These proofs 

are presented in Appendix A and the numerous results are summarized in Tables 9-1 and 

9-2. 

9.5.1 Closed curves 

For any rational frequency ratio n:m there is a set of phase angles that produce Lissajous 

plots of two distinct types. The first type, Figure 9-1(bottom left), is a closed curve 

characterized by reflection symmetry around the x and y axes, so (x, y) → (−x, y) and (x, y) 

→ (x, −y). For even:odd or odd:even frequency ratios this symmetric loop occurs at phase 

angles of 0°, 180°/m ′, 360°/m ′, … and has a zero field crossing. For odd:odd frequency 

ratios this closed curve occurs at phase angles of 90°/m ′, 270°/m ′, 450°/m ′, … and lacks 

a zero crossing. 

Even–odd fields.  For the even-odd fields the trajectory of the biaxial field has parity, 

but the converse field has opposite parity. The combined trajectories of the biaxial field and 

its converse therefore lack parity, so deterministic fluid vorticity cannot occur in this case. 
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However, applying the dc field moves the field vector and that of its converse onto separate 

parallel planes, Figure 9-5(top), creating the parity symmetry breaking that permits 

deterministic fluid vorticity. For odd:odd ratios the trajectory of the field and its converse 

have identical parities, Figure 9-5(bottom), so the dc field is not needed to permit 

deterministic fluid vorticity. But experiments show that without this dc field the vorticity is 

weak and is obscured by a competing flow lattice, so in a practical sense the dc field is 

necessary. 

The field and converse field trajectories of these closed curves have one C2 rotational 

axis (symmetric under rotation by 180°), but the orientation of this symmetry axis depends 

on the frequency ratio. For even:odd frequency ratios the symmetry axis is parallel to the 

low frequency field. Rotation by 180° about either the high frequency or dc field reverses 

the parity of the field trajectories. Fluid vorticity around the low frequency field shares these 

symmetries and is therefore symmetry allowed. Likewise, the high frequency field is the C2 

symmetry axis for odd:even frequency ratios and 180° rotation about either the low 

frequency or dc field reverses the parity. In both cases vorticity around the C2 axis is 

observed and in both cases a phase change of 180°/m′ reverses the parity of the field and 

converse field trajectories and does indeed reverse the observed vorticity. 

This latter observation explains the significance of rational frequency ratios in 

producing fluid vorticity. Irrational frequency ratios can be thought of as phase-modulated 

rational ratios and therefore would cause any fluid vorticity that does occur to periodically 

reverse, so that the time-averaged fluid vorticity will be zero. A change in the sign of the dc 

field component also reverses trajectory parity and does indeed reverse fluid flow. In the 

absence of a dc field the deterministic fluid vorticity should therefore be zero and replacing 

the dc field component with an ac field should not produce net fluid vorticity, at least around 

the same axis. 
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Figure 9-5.  Illustrations of the symmetry of field trajectories on closed curves. (Top) A 4:3 field at 

0° phase angle produces a symmetric closed curve. When a dc field is applied normal to the ac 

field plane the field vector H and its converse Hc trace out trajectories of opposite parity on 

parallel planes, as indicated by the arrows, so dc field reversal is antisymmetric. The low 

frequency field axis is a C2 axis for these combined trajectories, whereas a 180° rotation about 

either the high field or dc axis is antisymmetric. (Bottom) For a 5:3 field at 30° phase angle the 

field and converse field trajectories have the same parity and are symmetric under dc field 

reversal. The dc axis is the C2 axis and rotations about the low and high frequency axes are 

antisymmetric. 
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Odd–odd fields.  Odd:odd frequency ratios have a C2 symmetry axis parallel to the dc 

field, whereas 180° rotations about the other axes reverse the parity of the field trajectories. 

Experiments confirm that vorticity occurs around the dc field. A phase change of 180°/m′ 

changes the parity but reversing the dc field does not. Experiments confirm flow reversal in 

the former case but not in the latter. Because the parity does not reverse upon dc field 

reversal it should be possible to observe steady fluid vorticity if the dc field component is 

instead alternating. Experiments confirm this possibility. 

A simple rule – The above observations of the vorticity axis for closed Lissajous 

curves are easily summarized: for even:odd or odd:even frequency ratios it is the odd axis, 

whereas for odd:odd ratios it is the dc axis. For odd denominators m the repeating vorticity 

axis sequence is thus simply L, D, …, but for even denominators the repeat sequence can be 

quite long and includes the high frequency axis. For m = 2k
p, where p is odd, the repeating 

vorticity axis sequence is (2
k − 1)·H, L, (2k − 1)·H, D as n = m + 1, m + 2… (a proof of 

this is given in Appendix B). This expression is consistent with the experimental 

observations we have described. 

9.5.2 Open curves 

The second type of Lissajous plot is an open curve, such as that in Figure 9-1(bottom right). 

The discussion of these paths follows that of the trajectories above, but there are important 

differences. For even:odd or odd:even frequency ratios symmetric open curves occur at 

phases of 90°/m′, 270°/m′, … and there is no zero crossing. For odd:odd frequency ratios 

these curves occur at 0°, 180°/m′, 360°/m′, … and there is a zero crossing. 

Trajectories on these open curves lack parity, but these open curves have less 

symmetry than the closed curves described above. For even–odd frequency ratios there is 

one reflection axis and for odd:odd ratios there is none, as shown in Figure 9-6. For even–  
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Figure 9-6.  Illustrations of the symmetry of open field curves. (Top) A 4:3 field at a 30° phase 

angle produces a symmetric open curve. When a dc field is applied normal to the ac field 

plane the field vector H and its converse Hc trace out antisymmetric curves on parallel planes, so 

dc field reversal is antisymmetric. The low frequency field axis is a C2 axis for these combined 

curves, whereas a 180° rotation about either the high field or dc axis is antisymmetric. (Bottom) 

For a 5:3 field at a 0° phase angle the field and converse field generate similar curves that are 

therefore symmetric under dc field reversal. The dc axis is the C2 axis and rotations about the low 

and high frequency axes are antisymmetric. 

odd ratios the converse field path is antisymmetric to the field path, so the combined paths 

lack parity and deterministic fluid vorticity is symmetry forbidden. However, applying the 

dc field breaks this symmetry, splitting the field and its converse onto separate parallel 

planes. The odd axis is a C2 symmetry axis for the field and its converse path but these are 

antisymmetric under 180° rotation about the even or dc field axes. Vorticity around the odd 
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axis is therefore symmetry allowed and does indeed occur, just as it does for the closed 

Lissajous curves of this class. Changing the phase by 180°/m′ creates antisymmetric paths 

and is observed to reverse fluid flow, as does reversing the dc field. 

For the odd:odd open curves the field and its converse lie on identical paths. The dc 

field direction is a C2 symmetry axis, whereas the paths are antisymmetric under 180° 

rotation about the ac field axes. Fluid vorticity about the dc field axis is symmetry allowed 

and changing the dc field direction should not reverse the flow, in agreement with 

experiment. Changing the phase by 180°/m′ creates antisymmetric paths and is observed to 

reverse fluid flow. 

We conclude that for any frequency ratio n:m the open-curve fields produce vorticity 

around the same axes as observed for the closed-curve fields. Field symmetry therefore 

allows fluid vorticity at phases of j × 90°/m′, where j is an integer. 

9.5.3 Intermediate phases 

A few comments can be made about fluid flow for Lissajous curves having intermediate 

phases. For successive odd values of j and for successive even values of j flow reversal must 

occur. As j successively increases, the sign of the fluid vorticity must therefore follow the 

repeating sequence +, +, −, −, … or a cyclic permutation thereof. At each sign change 

there must be an intermediate phase where there is zero vorticity. These null points must be 

separated by 180°/m′. For example, for a frequency ratio of 4:3 the closed Lissajous curves 

are at 0°, 60°… and the open curves are at 30°, 90°, … For the phase sequence 0°, 30°, 

… the experimentally determined pattern of vorticity signs is +, −, −, +, … A null point 

must occur at some phase angle 0° < 0 < 30° and then at successive angles 0 + 60°, 0 + 

120°, … Experiments confirm this prediction, as shown in Figure 9-7 for a 2:1 field. The 

angle 0 cannot be predicted from symmetry considerations alone, although if the fluid 

vorticity is equally strong for the open and closed Lissajous curves one would expect it to be 

near the middle of the permissible range. However, experiments often show a striking  
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Figure 9-7.  Dependence of the fluid vorticity on phase angle. Measurements of the specific 

torque (torque per unit volume fraction of particles) of a 2 vol% Permalloy platelet suspension 

subjected to a 2:1 field at frequencies of 300 & 150 Hz. This torque density is proportional to the 

field squared and in this instance the ac field had rms components of 150 Oe and the dc field 

amplitude was 150 Oe. For this frequency ratio the closed Lissajous curves are at 0°, 180°… and 

the open curves are at 90°, 270°, … For the phase sequence 0°, 90°, … the experimentally 

determined pattern of vorticity signs is +, +, −, −, … A null point must occur at some phase angle 

90° < 0 < 180° and then at successive angles 0 + 180°, 0 + 360°, … These nearly sinusoidal data 

give 0 ≈ 135° and flow extrema at 45° and 225°. 

difference in the magnitude of fluid vorticity for the open and closed curves. For some cases 

the open curve generates much stronger vorticity and in some cases it generates far less. 

These symmetry arguments cannot explain the dependence of the fluid torque 

density on n:m and , but we have noticed that when n:m can be expressed as a ratio of small 

integers the torque is generally large, which can result in oscillating fluid vorticity. For 

example, if the field components have frequencies of 150 and 75 Hz vorticity will occur 

around the low frequency axis when the dc field is applied. If the high frequency component 

is increased to 150.1 Hz the frequency ratio becomes 1501/750 and vorticity should occur 

around the high frequency axis. But because this condition is a 0.1 Hz phase modulation of the 

2:1 frequency ratio, one might expect oscillating vorticity around the low frequency axis. 

Oscillating vorticity is indeed observed, but the time-averaged vorticity around the low 
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frequency axis is zero. Any vorticity around the high frequency axis is obscured by these 

oscillations and must be weak. In short, certain frequency ratios can introduce a timescale to 

which the fluid vorticity can respond. In this case the symmetry rules can be used to predict 

both the quasi-adiabatic and time-averaged behavior. 

Finally, a few words about the connection of the effects we have described to 

negative viscosity. As one manifestation imagine a Couette cell with the axis of field-driven 

vorticity parallel to its cylindrical axis. With the field off, applying a torque to the inner 

cylinder with the outer cylinder constrained can cause this cylinder to rotate, say 

counterclockwise. Applying an appropriate symmetry-breaking rational field can overcome 

the applied torque, causing the inner cylinder to rotate clockwise. The applied stress is thus 

opposite to the observed strain, so this could be called a negative viscosity. The term 

negative viscosity has previously been used to describe the effect of ac field-induced Quincke 

rotation in simply reducing the applied stress required to achieve a particular strain rate 

[9.45,9.46]. The effect we describe is much stronger, since Quincke rotation alone cannot 

induce global flow. 

Conclusions 

Symmetry-breaking rational triaxial fields can create strong vorticity in dilute particle 

suspensions, especially those containing anisometric particles. This vorticity can occur 

around the low frequency, high frequency or dc field axis by controlling the frequency ratio 

n:m. Small frequency adjustments can change the vorticity axis, providing a simple means of 

controlling fluid flow to achieve tailorable heat and mass transfer or mixing. Flow reversal 

can be achieved by changing the phase angle between the two ac field components and 

sometimes by simply changing the dc field direction. Because these effects are produced by 

uniform magnetic or electric fields of modest strength, this technology is scalable and ideally 

suited to microfluidic applications. Future work will focus on measurements of the fluid 

torque density under a variety of field conditions, as well as theoretical and simulation work 
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intended to elucidate the microscopic mechanism of torque generation. Additionally, 

experimental work will focus on controlling the motion of droplets on remarkable 

superhydrophobic surfaces [9.47] that have recently been developed and on surfaces that 

have tunable wetting [9.48]. 

Appendices 

A. Symmetry properties of Lissajous curves and their trajectories 

In this appendix the various symmetries that are responsible for selecting the vorticity axis of 

a magnetic particle suspension subjected to a symmetry-broken rational field are proven. 

We consider four symmetry operations of Lissajous curves: time reversal, reflection about 

the x axis or y axis, and rotation about the z axis. Recall from Equation 9-1 that x, y, z 

correspond to the low frequency, high frequency, and dc field axes, respectively. In the 

following n′:m′ = n:m, but n′ and m′ share no common factors. We consistently use the 

primed variables to avoid confusion, even though it is not always necessary to do so. All of 

the results derived in the following are presented in Tables 9-1 and 9-2. 

Time reversal. Time reversal is given by the transformation t → −t in Equation 9-1. This 

is equivalent to the phase change  →′, where 

 





m
nm

180
)3('          (A1) 

Time reversal can be used to distinguish closed Lissajous curves from open curves 

and to compute the phases at which these occur: closed curves must be antisymmetric under 

time reversal whereas open curves must be symmetric. 

To explore this symmetry operation we first define four sets of Lissajous curve 

phases: 

 

 evenjmjmp

oddjmjmp

p

p

 , /180/90 B

  , /180/90 A




      (A2) 
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where p is 0 or 1. In the following we will establish the importance of these sets for each of 

the three rational field types. 

Substituting the phases in Equation (A2) into Equation (A1) gives the phases 

m
jpnm

m
pj











180
)3(

90
       (A3) 

that correspond to time reversal for each value of j. This expression can be examined for 

each of the three field types. 

For even:odd and odd:even rational fields 3m′ −n′ − p is odd for p = 0 and even for 

p = 1. Because j and 3m′ −n′ −j have opposite parities, Equation (A3) maps A0 → B0, B0 → 

A0. This mapping shows that the two sets of even:odd or odd:even curves with p = 0 must 

be closed and their trajectories must have opposite parities. However, the paths of these 

trajectories must be indistinguishable (i.e., the plots look the same for even and odd j) for 

this mapping to occur. In contrast, j and 3m′ −n′ − 1 − j have the same parity, so time 

reversal maps curves with p = 1 onto themselves, A1 → A1, B1 → B1. These curves must 

therefore be open. Because in this case the j odd and j even sets do not map onto each other, 

they must be distinguishable. In fact, we will show that they are related by spatial symmetry 

operations. 

For odd:odd fields 3m′ −n′ − p is even for p = 0 and odd for p = 1. The resultant 

mappings are A0 → A0, B0 → B0 and A1 → B1, B1 → A1, respectively. Curves with p = 0 

are thus open and those with p = 1 are closed. Again, the two sets of closed curves must 

have trajectories of opposite parities and the open curves are geometrically distinguishable. 

Reflection about the y axis. To demonstrate the symmetries of the three types of 

rational fields we start by considering reflection about the y axis (x → −x). This 

transformation corresponds to  → ′ where 

 





m
nm

180
)2( .        (A4) 

Substituting in the phases from Equation (A2) gives 
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For even:odd rational fields 2m′ −n′ is even, so 2m′ −n′ + j has the parity of j, and 

thus Ap → Ap and Bp → Bp. Even:odd Lissajous curves are therefore symmetric under 

x → −x. This is true for both the trajectories and the paths. 

For odd:even and odd:odd rational fields 2m′−n′ is odd, so 2m′ −n′ + j has the 

opposite parity of j and Ap → Bp and Bp → Ap. These rational fields, both closed and open, 

are antisymmetric under reflection about the y axis. 

Reflection about the x axis. Reflection about the x axis (y → −y) is similarly 

treated. This transformation is given by ′ = 180° +  and for the phases in Equation (A2) 

can be written 

m
mj

m
p





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180
)1(

90
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If m′ is even, then 1 + m′ is odd and the product j × (1 + m′) has the parity of j so 

this transformation maps Ap and Bp onto themselves. We conclude that odd:even Lissajous 

curves are symmetric under reflection about the x axis. Even:odd and odd:odd fields map 

Ap → Bp and vice versa, and are therefore antisymmetric. 

Rotation about the z axis. The combined reflections x → −x, y → −y comprise a 

rotation by 180° around the z axis. The results of the transformation are obvious from the 

symmetries we have already derived, but for the sake of completeness we will treat this case 

in the same manner as above. The appropriate transformation is 
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which for the set of phases in Equation (A2) is 
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The sum 3m′ −n′ is only even for odd:odd fields so 3m′ −n′ + j has the parity of j and 

thus the sets Ap and Bp map onto themselves under this transformation. Odd:odd Lissajous 

curves are thus symmetric under rotation about the z axis. Even:odd or odd:even curves are 

antisymmetric under this transformation. 

In summary, we have identified sets of phases associated with open Lissajous curves 

and the most highly symmetric closed Lissajous curves. We have identified the symmetry 

properties of these curves that are responsible for selecting the vorticity axis of a fluid 

subjected to such a field. The results are summarized in Tables 9-1 and 9-2, where the 

variable p refers to Equation (A2). 

Table 9-1 Properties of closed Lissajous curvesa  

 
a(A=antisymmetric, S=symmetric) 

 

Table 9-2 Properties of open Lissajous curvesa  

a(A=antisymmetric, 

S=symmetric)An example of the use of these Tables is helpful. For even:odd fields the 

converse field can be seen to be antisymmetric relative to the field, since it is a 180° rotation 

about the z axis. A reflection about the x axis is also antisymmetric and thus makes the 

converse field identical to the initial field. The x axis (low frequency axis) is thus the 

vorticity axis in this case (see Figures 9-5 and 9-6). 
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B. The vorticity axis sequences 

The axis sequences for the denominators we explored form a repeating pattern whose length 

depended on m in a peculiar way. From the symmetry rules we have developed it is 

straightforward to derive these repeating sequences as n increases successively from m + 1. 

We recall that rational fields can be classified as one of three types: even:odd, odd:even, and 

odd:odd. These types give rise to vorticity about the low frequency (L), high frequency (H), 

and dc fields (D) respectively, so we will identify these rational numbers according to these 

field abbreviations. Without loss of generality the sequence of rational numbers with 

denominator m can be expressed as 


 



,...,1,0  and 2,...,1  where 
2

22 1
1

lj
p

ljp k

k

kk

.      (B1) 

Here m is written as 2k
p where p is odd. If the integer j = 2k, Equation (B1) reduces 

to (p + 1 + 2 l)/p which is even:odd (L) for all l. If j = 2k+1 Equation (B1) becomes (p + 2 

+ 2 l)/p which is odd:odd (D) for all l. All other values of j can be written as 2i
q where i < k 

and q is odd. For this case Equation (B1) is (2k−i
p + q + 2k+1−i

l)/2k−i
p, which is odd:even 

(H) for all l. This demonstrates that the axis sequence is independent of l and is the repeating 

sequence (2k − 1)·H, L, (2k − 1)·H, D. 
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Chapter 10 

Torque density measurements on vortex fluids 

produced by symmetry-breaking rational magnetic 

fields10 

In Chapter 9 we reported on the discovery that an infinite class of triaxial magnetic fields is 

capable of producing rotational flows in magnetic particle suspensions. These triaxial fields 

are created by applying a dc field orthogonally to a rational biaxial field, comprised of 

orthogonal components whose frequencies form a rational ratio. The vorticity axis can be 

parallel to any of the three field components and can be predicted by a careful consideration 

of the symmetry of the dynamic field. In this chapter we not only test the field-symmetry 

predictions, but also quantify fluid vorticity as a function of the field parameters (strength, 

frequency ratio, phase angle and relative dc field strength) and particle shape. These 

measurements validate the symmetry predictions and demonstrate that rational fields are as 

effective as vortex fields for producing strong fluid mixing, yet have the advantage that small 

changes in the frequency of one of the field components can change the vorticity axis. This 

approach extends the possibilities for noncontact control of fluid flows and should be useful 

in areas such as microfluidics, and the manipulation and mixing of microdroplets. 

10.1 Introduction 

Methods of inducing vigorous noncontact fluid flow are of interest for heat and mass transfer 

and fluid mixing. Of particular interest are methods that do not create flow patterns with a 

characteristic macroscopic correlation length (such as that exhibited by natural convection) 

and are therefore adaptable to the nanoscale. We have shown in Chapter 9 that an infinite 

class of spatially-uniform applied magnetic or electric fields, called symmetry-breaking rational 

                                                           
10 Originally published as:  K.J. Solis and J.E. Martin, Torque density measurements on vortex fluids produced by symmetry-
breaking rational magnetic fields, Soft Matter 10, 6139–6146 (2014). 
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fields, can create strong fluid vorticity when applied to suspensions of magnetic or dielectric 

particles, respectively [10.1]. In fact, such fields create a vortex fluid capable of crawling up 

the sides of a container (active wetting) and exhibiting a negative viscosity. The purpose of 

this chapter is not only to validate the symmetry-based theoretical predictions previously 

made, but to determine how the magnitude of the fluid torque density depends on a variety 

of experimental parameters, including those pertaining to the applied field and those 

pertaining to the particle suspension. In the course of these studies two new phenomena 

have been discovered: flow reversal and surface flow reversal, and these are presented as 

well. 

Symmetry-breaking rational fields are comprised of three orthogonal components. 

Two of these are ac fields having a rational frequency ratio that can be written as an 

irreducible ratio n:m, where n and m are integers. One field component is higher in 

frequency than the other, so without loss of generality n > m. The third field is dc and serves 

to break the symmetry of the rational field, thus creating deterministic fluid vorticity. This 

vorticity can occur around the high frequency (H), low frequency (L), or dc (D) field axis. 

This fluid vorticity is quite unexpected, because in general the field vector is 

noncirculating (i.e., zero net rotation of the field vector over one field cycle) and thus there is 

no immediately obvious field parity of the type that something like a simple rotating field 

possesses. The strangeness of this manner of generating vorticity can be illustrated by the 

following example: when the increasing frequency ratio sequence 5:4, 6:4, 7:4, … is 

successively applied to a particle suspension, the repeating vorticity axis sequence H, H, H, 

L, H, H, H, D, … occurs, but only if the dc field is applied. Longer or shorter axis 

sequences occur for other denominators, and only for certain frequency ratios does 

reversing the dc field reverse the vorticity or does reversing the leads on the high frequency 

coil reverse the vorticity. 

As was shown in Chapter 9, a consideration of the symmetry of the dynamic field 

leads to predictions of all of these effects [10.1]. These predictions are remarkably simple: 
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(1) for even:odd or odd:even fields the vorticity axis is the odd axis and reversing the dc 

field reverses the vorticity; (2) for odd:odd fields the dc field is the vorticity axis and 

reversing the dc field does not reverse the vorticity; (3) a change in the phase of the high 

frequency field by 180°/m reverses the vorticity. These symmetry predictions are consistent 

with experimental observations, but symmetry alone cannot predict the dependence of the 

magnitude of the fluid torque density on the frequency ratio of the ac components or the 

phase angle between these components. Nor can it address how the torque density depends 

on ac field strength, dc field strength or particle shape. Yet a quantitative understanding of 

these issues is essential to developing applications that require vigorous vorticity. 

In this study we quantify the vorticity produced by three primary rational fields, 2:1 

(even:odd), 3:2 (odd:even) and 3:1 (odd:odd). These fields produce vorticity around the 

low frequency, high frequency, and dc field axes, respectively. Using these fields we explore 

the dependence of the torque density on frequency, phase angle, field strength, and particle 

shape. 

Three particle shapes are studied: spheres, platelets, and rods. In general we find that 

the various dependencies observed for platelets and rods are similar, whereas spheres are 

quite distinct. This difference is likely a reflection of the fact that an applied field can create 

a geometry-driven torque on an isolated platelet or rod, but cannot exert such a torque on 

an isolated magnetically soft sphere. Only if spheres form anisometric clusters, such as 

particle chains, can such a torque be generated, so the dynamic field must be able to create 

such structures without the formation of competing structures, such as particle sheets. We 

find that symmetry-breaking rational fields are generally as effective as vortex magnetic 

fields (see Chapters 3 and 4) at creating strong mixing within magnetic particle suspensions, 

despite the fact that the former fields are generally noncirculating. 
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10.2 Background 

Because there are many instances in which noncontact methods of manipulating and agitating 

fluids would be useful (e.g., cooling high-performance microprocessors, fluid handling in 

bioassays, microfluidic applications…), the search for effective, practical methods of 

inducing fluid flow has been longstanding. Magnetic fluids and suspensions naturally lend 

themselves to noncontact control, since an applied magnetic field easily penetrates most 

containers and can thereby be used to manipulate the magnetic fluid. Spatially uniform 

fields—such as we use—do not create a body force on a fluid, so most other methods of 

manipulation rely on field gradients. Gradients create a force on each volume element of the 

fluid that is described by the Kelvin force, HmF  , where H is the magnetic field and 

m is the fluid volume magnetic moment. Ferrofluids have been the focus of much of this 

research [10.2], because they are thermodynamically stable suspensions of particles that are 

not subject to sedimentation. Three principal approaches to inducing flow have been 

realized for ferrofluids, and each is specific to a particular type of ferrofluid flow 

phenomenon, which we now briefly discuss. 

The first approach, thermomagnetic convection [10.3–10.5], is a passive mechanism 

by which toroidal convective motion in a ferrofluid is initiated by applying a substantial 

magnetic field gradient parallel to an imposed thermal gradient. This technique exploits the 

temperature-dependent susceptibility of ferrofluids (i.e., a negative pyromagnetic 

coefficient) to generate a magnetic Kelvin force gradient. This force gradient has exactly the 

same effect as the gravitational force gradient that arises because of the thermal expansion of 

a fluid subjected to a temperature gradient. The magnetic field gradient can therefore 

produce convective flow patterns if it is sufficiently large and properly aligned relative to the 

thermal gradient. A field gradient can be produced by a permanent magnet, so the source of 

the energy driving the fluid motion is the heat transfer that maintains the thermal gradient, 

just as is the case with natural convection. Limitations of this approach are that a thermal 

gradient is required, in addition to an extremely large magnetic field gradient (of the order 
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of 1–10 T·m−1), which makes scaling up this approach problematic. Because of this 

limitation thermomagnetic convection is usually applied to very thin fluid layers (1–10 mm) 

where it is difficult to induce natural convection because the required destabilizing thermal 

gradient scales as the inverse fourth power of the fluid thickness. 

Ferrohydrodynamic pumping is another means of moving a ferrofluid, and occurs by 

applying a travelling solenoidal field to regions of a pipe, which produces linear flow of the 

ferrofluid down the pipe [10.6,10.7]. This effect is due to the field gradient producing a 

Kelvin force on the fluid and is the magnetic field equivalent of the peristalsis that occurs in 

intestines. In recent work by Mao et al., a maximum volumetric flow rate of 0.69 mL·s−1 

was achieved by applying a modest non-uniform propagating/travelling solenoidal field to 

regions of the pipe [10.7]. 

Finally, weak rotational flows within ferrofluids have also been studied, and occur 

when rotating magnetic fields are applied [10.8–10.11]. This effect is due to a lag between 

the magnetic moment of the particle and the rotating field vector. 

Our own previous work focused on creating fluid vorticity in suspensions of micron-

sized particles using a “vortex” magnetic field [10.12], wherein the field vector exhibits a 

precession-like motion that describes the surface of a cone (see Chapter 3). When such a 

field is applied to a suspension of magnetic particles, pronounced fluid vorticity develops 

throughout the entire fluid volume. Torsion fiber measurements have shown that the 

resultant torque has surprising dependencies on experimental parameters, in comparison to 

conventional stir bar mixing [10.12]. Within certain limits the torque is quadratic in the 

field (for spherical particles the specific torque density is roughly four times the energy 

density of the field), and independent of the field frequency and fluid viscosity. Theory has 

shown that these dependencies are due to the field-induced formation of volatile chain-like 

agglomerates that whirl around in pursuit of the dynamic field vector [10.13]. In Chapter 4 

we demonstrated that vortex field mixing with suspensions of anisometric particles 

(platelets and nanorods) show similar trends in the mixing behavior [10.14]. However, 
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when the dc field is removed—to create a simple rotating field—strong differences emerge: 

the spherical particles form static sheets, the rods continue to mix, but the platelet 

suspensions perform a stunning and unexpected trick—the formation of advection lattices 

[10.15]. 

These advection lattices not only form in rotating fields but in a broader class of 

biaxial magnetic fields (see Chapter 5). Advection lattices are generally in the form of a 

lattice of antiparallel flow columns that extend orthogonal to the plane of the biaxial field. 

The appearance and flow characteristics of advection lattices, as they depend on various 

magnetic field parameters and fluid properties, was discussed in Chapter 6 [also Ref. 10.16]. 

Chapter 7 showed that applying a third field component in the form of a dc field 

orthogonally to the biaxial field plane (parallel to the flow columns) alters the dynamics of 

advection lattices in numerous ways [10.17]. One such alteration is the creation of vigorous 

rotational flow, the subject of this chapter. Such rotational flow was shown in Chapter 8 to 

have the potential for significantly enhancing heat transfer [10.18]. 

In the following section we describe the materials we use, the method of generating 

the dynamic fields, and the torsion fiber apparatus used to quantify the fluid torque density. 

10.3 Experimental 

The suspensions were prepared by dispersing 1.5 vol% magnetic particles into isopropyl 

alcohol, and were contained in 1.8 mL vials. Figure 10-1 shows SEM images for the 

different magnetic particles that were studied. These included 4–7 m spherical carbonyl 

iron powder (ISP Technologies Inc.); ~50 m-wide by 0.4 m-thick molybdenum 

Permalloy platelets (Novamet Corp.); and 8–10 m-long, 300 nm-diameter cobalt 

nanorods (Richard Bell, Pennsylvania State University, Altoona College). (All of these  
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Figure 10-1.  SEM images of the magnetic particles. (a) 4–7 μm spherical agglomerate carbonyl 

iron powder, (b) Permalloy platelets roughly 50 μm across by 0.4 μm thick, and (c) cobalt 

nanorods 8–10 μm long by 300 nm diameter. The white scale bar in each image represents 

20 μm. 

materials are magnetically soft and so have little remanence.) The sample vial was mounted 

to a Macor fixture at the end of the torsion fiber and suspended in the central cavity of three 

orthogonally-nested Helmholtz coils, two of which are operated in series resonance with 

computer-controlled fractal capacitor banks [10.19] to generate uniform fields up to 200 G 

(0.02 T) in the low audio frequency range (~100–1000 Hz), while the third coil was used to 

produce a uniform dc field of up to 200 G. The specific torque density (torque per unit 

volume of magnetic particles) of the suspension was computed from measured angular 

displacements on a torsion balance employing a 96.0 cm-long, 0.75 mm-diameter nylon 

fiber with a torsion constant of ~13 μN·m rad−1. A photograph of the triaxial Helmholtz 

magnet assembly and torsion balance is shown in Figure 10-2. 
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Figure 10-2.  Torsion balance and Helmholtz coils. An oblique upward view (three-point 

perspective) of the experimental apparatus, showing the three nested Helmholtz coils and the 

torsion balance (supported by the aluminum frame). Suspended in the central cavity of the coils 

is a vial containing the sample, which is attached to the end of the torsion fiber via the white 

rod-shaped fixture. The vorticity axis of the rotational flows must be oriented parallel to the 

torsion fiber axis to measure a body torque in the fluid. 

10.4 Results 

In this section we present results of the measured specific torque densities for a variety of 

particle suspensions subjected to symmetry-breaking rational fields. We consider all three 

possible “parities” of frequency ratios—even:odd, odd:even, and odd:odd. These fields 

produce vorticity around the low frequency, high frequency, and dc field components, 

respectively. To measure a body torque within the suspension requires the vorticity axis of 

the rotational flows to be parallel to the torsion fiber, which is vertical. So for each of the 

three parity cases we simply applied the appropriate fields with the correct geometry to 

ensure that the vorticity axis was always collinear with the torsion fiber. (One could also 
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rotate the entire triaxial magnet assembly, but this is cumbersome and defeats the concept of 

being able to control the orientation of the vorticity axis with the applied field alone!) A 

study of the specific torque dependence on the phase angle between the biaxial field 

components was first performed for each rational field to identify the phase angle at which 

the largest torque values are produced. This optimal phase angle was then used during the 

subsequent study of the effect of the dc field amplitude. In all cases (except for the field 

strength study) the rms induction field of each ac biaxial field component was 150 G. 

10.4.1 Even:odd biaxial fields 

Phase dependence. The simplest rational field that produces vorticity around the 

low frequency axis is the even:odd 2:1 field (see Lissajous plots in Figure 10-3). Figure 

10-4(a–c) shows measured torque densities for each particle shape as a function of the 

phase angle between the ac biaxial field components. In all cases torque extrema occur at 

phase angles separated by 180°, which validates the symmetry prediction that flow maxima 

occur at intervals of 180°/m for all n:m rational fields (see Chapter 9) [also Ref. 10.1]. The 

platelets and rods yield continuous, roughly sinusoidal torque curves, whose peak values 

shift slightly toward lower phase angles and increase modestly with the magnitude of the 

frequency. The curves for the platelets are roughly sinusoidal, while those for the rods are 

somewhat skewed. 

In contrast, for spherical particles the torque density is especially sensitive to the 

phase angle: an adjustment of only 20° causes the torque to substantially drop from its 

maximum value at 0°. Although this decrease distorts the shape of the curve, the torque 

extrema are still separated by 180°. However, the torque minimum is strangely smaller in 

magnitude than the maximum. This occurs because the torques were measured by changing 

the phase angle while the field is applied. As the phase angle increases from 0° and the 

torque collapses it simply does not recover by simply adjusting the phase angle. This 

suggests that at intermediate phases the particles form a relatively stable quasi-static  
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Figure 10-3.  Lissajous curves for three primary n:m rational fields. (Top row) Closed curves for 2:1, 

3:2, and 3:1 fields. (Bottom) Corresponding open curves. 

 

Figure 10-4.  Torque curves for 2:1 (even:odd) rational biaxial fields. Top row shows the torque 

density as a function of phase angle for (a) spheres, (b) platelets, and (c) rods. The bottom row 

shows the torque density as a function of the dc field amplitude.  
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structure that is not easily disrupted [10.20]. However, if the field is entirely turned off and 

re-applied with an initial phase angle of 180°, a torque magnitude comparable to that 

obtained at 0° is obtained, apparently because turning off the field allows the stable 

quiescent structure to collapse via sedimentation. 

Both nanorods and platelets give larger specific torques than spheres and do not 

develop this troublesome stable phase, so are better choices than spheres. Platelets have a 

higher packing density than rods and are the best choice for inducing vorticity in situations 

where congestion would be problematic. 

dc field dependence. The dependence of the specific torque on the dc field 

amplitude was determined by varying the dc field at the phase angle that produced the 

maximum torque for each particle type. Trends for the anisometric particles [Figure 10-

4(e–f)] are similar: the torque increases monotonically with the dc field and saturates at 

higher fields. A balanced field gives nearly a maximum torque. In contrast, the spherical 

particles display peculiar torque curves characterized by a narrow maximum peak at a dc 

field substantially lower than balanced (~50–100 G), Figure 10-4(d). The discontinuity in 

the torque is again due to the formation of quasi-static structures that compete with the 

particle mixing, as was seen in the phase angle study [Figure 10-4(a)]. Again, platelets and 

rods show much more robust torque development. 

Field strength and frequency. Finally, we investigated the dependence of the 

specific torque on the strength of the applied field for 2:1 biaxial fields. Plots of the specific 

torque versus the field squared (proportional to the energy density of the field) are shown in 

Figure 10-5 for both types of anisometric particles. In both cases the torques increase 

monotonically with field strength, and the specific torque densities are of the order of the 

energy density of the field. These curves display similar trends to those observed in Chapter 4 

for anisometric particles subject to vortex magnetic fields [10.14]. Moreover, the curves for  
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Figure 10-5.  Field strength study for 2:1 (even:odd) rational biaxial fields. Field squared 

dependence (proportional to the field energy density) of the specific torque for (a) Permalloy 

platelets and (b) Co nanorods. The sharp narrow peak in the torque curve for the spherical iron 

particles [Figure 10-4(d)], which occurs at fields lower than a balanced field, made their field 

strength dependence too difficult to study. 

the cobalt nanorods are largely independent of field frequency, whereas the Permalloy 

platelets show a significant frequency dependence at low fields. As the field frequency 

increases, the torque falls off more rapidly at lower field strengths, suggesting a Mason 

number effect [10.14] where the field-induced attractive forces have become insufficient to 

hold particle structures together at higher frequencies. For vortex fields such particle 

structures are responsible for torque production [10.13]. 

10.4.2 Odd:even biaxial fields 

Phase dependence. The simplest rational field that produces vorticity around the 

high frequency axis is the odd:even 3:2 field (see Lissajous plots in Figure 10-3). This field 

also produces large specific torques, even though it is noncirculating [10.1]. The phase angle 

studies, Figure 10-6(a–c), show that for all particles the extrema in the specific torque are 

now separated by 90°, since here m = 2 and Δ = 180°/m. The platelets and rods produce 

symmetrical, nearly sinusoidal torque curves with maxima at similar phase angles. As with 

the 2:1 case, the spherical particles again exhibited strong sensitivity to the value of the 
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phase angle, resulting in a discontinuous and asymmetric torque curve that is dependent on 

the suspension history. 

dc field dependence. The dependence of the torque density on the dc field 

amplitude [Figure 10-6(d–f)] is distinct for each particle shape. For spherical particles, 

there is only a narrow range of dc field amplitude that gives appreciable torque. In addition, 

there is a strange phenomenon that was not observed for the 2:1 field: flow reversal. As the dc 

field is progressively increased the torque increases to a maximum, decreases to zero and 

then reverses, as does the observed flow! Also, as with the 2:1 case, the peak torque obtains 

at slightly higher dc fields as the frequency of the biaxial field is increased. 

The torque curves for the platelets maximize near a balanced field and show a broad 

shoulder in this region, then abruptly fall off for fields below ~100 G. In contrast, a 

 

Figure 10-6.  Torque curves for 3:2 (odd:even) rational biaxial fields. Top row shows plots as a 

function of the phase angle for (a) spheres, (b) platelets, and (c) rods. The bottom row shows the 

corresponding torque curves as a function of the dc field amplitude. 
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maximum is not seen for the nanorods, but this is probably simply due to the fact that we 

cannot apply a sufficiently large dc field with the current supply we have. The torque curves 

for the nanorods look remarkably similar to those for the 2:1 fields. 

Frequency dependence. The anisometric particle data show the torque density to 

be fairly insensitive to field frequency, which is exactly the same result found for a vortex 

field. In the case of a vortex field this weak dependence could be attributed to the formation 

of volatile particle chains whose typical size simply adjusts to the field frequency. Higher 

frequencies lead to shorter chains, but because these are more numerous the torque density 

is unaltered. This suggests that for these rational fields torque production is due to the 

formation of particle clusters. For vortex fields there is also no predicted dependence on 

particle size, which might well be the case for these rational fields. Spherical particles have a 

stronger frequency dependence, which suggests that for these particles the Mason number is 

simply too large. The large Mason number is expected because the spherical shape produces 

large demagnetizing fields and thus low internal fields and low polarization. 

10.4.3 Odd:odd biaxial fields 

Phase dependence. The simplest rational field that produces vorticity around the dc 

field axis (other than a vortex field, which is 1:1) is the odd:odd 3:1 field (see Lissajous plots 

in Figure 10-3). Currently, our largest Helmholtz coil is only capable of resonating at 50 Hz 

and 100 Hz, so this limits the number of 3:1 fields that we could investigate here to two: 

150:50 Hz and 300:100 Hz. (For the latter case the frequencies were actually 

300.6:100.2 Hz, since the resonant frequency of 100.2 Hz was dictated by the value of 

capacitance we were able to achieve given the capacitors we have.) As Figure 10-7(a–c) 

shows, the torque maxima are 180° apart, as expected for this field. As with the previous 

two cases, the curves for the anisometric particles are very similar—nearly symmetric and 

sinusoidal, though the platelets give significantly greater torque. Although the torque curve 

for the spherical particles does not show the same sensitivity on the phase angle as in the two  
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Figure 10-7.  Torque curves for 3:1 (odd:odd) rational biaxial fields. Top row shows plots as a 

function of the phase angle for (a) spheres, (b) platelets, and (c) rods. Bottom row shows the 

corresponding torque curves as a function of the dc field amplitude. 

previous field cases, a peculiar flattening out is observed at ~120–180°, distorting the curve 

from a simple sinusoidal shape. 

dc field dependence. The dc field study [Figure 10-7(d–f)] shows that all three 

particles produce torque curves with a clear maximum. The torque curve for the spherical 

particles possesses a notably more jagged appearance, showing an abrupt jump near 100 G, 

whereas those produced with the anisometric particles are smooth and continuous. 

Nonetheless, in all three cases the torque maximizes for a dc field of ~100 G (or lower). 

10.4.4 Surface flow reversal 

Rotational flow in magnetic platelet suspensions subject to ac-ac-dc triaxial fields other than a 

vortex magnetic field was first observed in open-cell experiments reported in Chapter 7 

[also Ref. 10.17]. In these experiments it is easy to observe the flow direction at the free 

fluid surface, especially if tracer particles are used. As mentioned earlier, a consideration of 

field symmetry cannot identify the flow direction, at least for noncirculating fields, but does 
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show that the flow can be reversed by changing the phase angle between the ac biaxial field 

components by 180°/m. As mentioned above, for even, odd fields reversing the polarity of 

the dc field also reverses flow. 

In addition to these predicted reversal mechanisms we have now discovered that flow 

reversal occurs when increasing the amplitude of the dc field component. When a dc field is 

applied orthogonal to the plane of a 2:1 rational field and progressively increased, rotational 

flow will develop in a dilute platelet suspension (a few volume percent). In an open cell, the 

fluid can be observed to move across the top surface, provided the axis of vorticity is not 

normal to this surface. At low dc fields, the fluid initially flows sluggishly, increasing in 

vigor as the dc field is increased. Near some critical dc field value, B*
dc, the flow becomes 

vastly attenuated and sometimes appears frustrated, pulsating in one direction and then the 

opposite, or sometimes a nearly direct upwelling of fluid is observed that flows radially in 

variable directions at the surface. As the dc field is increased further, rotational flow 

resumes but in the opposite direction and becomes stronger as the dc field approaches the rms 

value of the rational field components (150 G). If the amplitude of the dc field is instead 

lowered to zero from its maximum value, a small but discernible hysteresis effect is 

observed. Essentially a reverse of the above-described events occurs with the subtle but 

consistent effect that flow reversal occurs at a slightly lower field (~2–3 G lower). Figure 

10-8 shows that B*
dc increases as a power law of the root frequency of the 2:1 rational field. 

For this experiment the rms values of the magnetic induction of the biaxial components 

were set to 150 G. The surface flow direction is labeled as either “north” or “south” simply 

to distinguish the direction. A study of 4:3 fields revealed the flow direction to remain 

constant over the entire range of dc field amplitude, as well as with 3:1 fields, so flow 

reversal is apparently not merely a function of field symmetry. 

To determine if the small magnetic remanence of the multilayered, magnesium 

fluoride-coated, Ni core platelets (JDSU, Flex Products Group) could play a role in dc-field 

driven flow reversal we did some additional experiments with pure Permalloy platelets 
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Figure 10-8.  Critical-field flow reversal study. The critical dc field amplitude at which surface flow 

reversal occurs increases with the root component frequency magnitude as a power law: 

B*dc = 7.95(f − fc)0.39. These data were collected for the multilayer JDSU platelets subjected to ac–

ac–dc triaxial fields whose ac biaxial component comprised a 2:1 field, 150 Grms, phase = 0°. 

(Novamet). These platelets also displayed the reversal effect, so remanence is not a 

determining factor either. Suspensions of carbonyl iron spheres also showed dc-field driven 

flow reversal but the Co nanorods did not, so particle shape evidently does play a role. 

We were surprised to find that the observed flow reversal did not lead to a measured 

torque reversal. In fact, the only instance of torque reversal was for the spherical particles 

subjected to 3:2 fields [Figure 10-6(d)]. These results indicate that the flow reversal 

observed at the free top surface does not occur throughout the bulk of the fluid. At this time 

it is not clear what the origin of this surface reversal effect is and why it only manifests under 

certain conditions. However, we point out that a similar effect has been observed with 

ferrofluids subjected to rotating magnetic fields (the so-called spin-up flow case), in which 

the flow direction of the free top surface of the ferrofluid is observed to co-rotate or 

counter-rotate with the applied field depending on the field strength and/or frequency; 
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whereas, the bulk of the fluid is always found to co-rotate with the rotating field as verified 

by torque measurements [10.21] and the ultrasonic velocity profile method [10.22]. 

10.5 Discussion 

A comparison of the absolute values of the peak specific torque densities we have achieved is 

shown in Figure 10-9. For all particles tested, the 2:1 fields produced the highest torque 

values. The next highest values—for spheres and nanorods at least—were produced using 

3:2 fields, followed by 3:1 fields. Moreover, under all field conditions tested, the 

anisometric particles produced higher torques than the spherical particles, and the platelets 

achieved higher torques than the nanorods. For the three different fields the Permalloy 

platelets gave maximum torques from ~630–1280 J·m−3; the cobalt nanorods gave ~370–

920 J·m−3; and the carbonyl iron spheres ranged from ~100–760 J·m−3. The disparity 

between the peak torques produced by the anisometric and spherical particles becomes 

progressively greater moving from the 2:1, to 3:2, and finally to the 3:1 fields. In fact, for  

 

Figure 10-9.  Summary of specific torque densities. Comparison of the peak torque values 

produced by each particle shape for each type of biaxial field. The platelets produced the 

highest peak torque values for all fields. 
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2:1 fields the spheres achieved ~59% of the peak torque produced by the platelets, but fell 

to only ~12% for the 3:1 field. 

In a prior study (see Chapter 4 [also Ref. 10.14]) of mixing in vortex magnetic fields 

(in which case n:m = 1:1), cobalt nanorods were found to produce the highest specific 

torques (~1300–1500 J·m−3), followed by platelets (~600–900 J·m−3), and lastly spherical 

particles (~400–500 J·m−3). However, the cobalt rods used in that study were considerably 

shorter (l = 2–4 m) compared to those used here (l = 8–10 m), which may account for 

the difference via reduced steric interactions with the shorter rods, thus enabling more 

effective dispersion and more efficient mixing. Nonetheless, comparing the ranges of values 

obtained for the different particles from these two studies demonstrates that rational biaxial 

fields can generate mixing as powerful as that produced by vortex fields, and that 

anisometric particles produce substantially greater torques than spherical particles. The 

JDSU platelets have the additional advantage of being coated with MgF2, rendering them 

inert to a wide range of chemicals. 

10.6 Conclusions 

We have measured the torque densities of rotational flows produced by a new class of ac–

ac–dc triaxial magnetic fields. These fields are comprised of a rational biaxial field—a field 

whose orthogonal components have frequencies that form a rational ratio—and an 

orthogonal dc field. Depending on the “parity” of the rational biaxial field (i.e., even:odd; 

odd:even; or odd:odd), the vorticity axis of the rotational flow can be oriented along any of 

the three orthogonal field component axes. Moreover, the intensity of the rotational flow 

can be controlled by judicious selection of the phase angle between the biaxial field 

components or the amplitude of the dc field. Torque measurements demonstrate that these 

flows are as effective as those produced by vortex magnetic fields. This new class of rational 

triaxial fields in combination with vortex magnetic fields comprises a general class of triaxial 

magnetic fields capable of producing strong, field-controllable, rotational flows that should 
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be useful for mixing and heat and mass transfer operations. Future work will focus on 

further quantifying the heat transfer efficacy of these rotational flows, and investigating the 

effect of a time-dependent third field component. 

Acknowledgements 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. 

Department of Energy's National Nuclear Security Administration under contract DE-

AC04-94AL85000. This work was supported by the Division of Materials Science, Office of 

Basic Energy Sciences, U.S. Department of Energy (DOE). We thank Matt Groo at 

Novamet and Vladimir Raksha, Paul Coombs, Tom Markantes, Bill Kittler, and Kees-Jan 

Delst at JDSU for supplying the magnetic platelets. We also thank Richard Bell at The 

Pennsylvania State University, Altoona College for synthesizing the cobalt nanorods. 

References 

10.1 J.E. Martin and K.J. Solis, Symmetry-breaking magnetic fields create a vortex fluid 

that exhibits a negative viscosity, active wetting, and strong mixing, Soft Matter 10, 

3993–4002 (2014). 

10.2 R.E. Rosensweig, in Ferrohydrodynamics, (Cambridge University Press, Dover, 

NewYork, 1985). 

10.3 B.A. Finlayson, Convective instability of ferromagnetic fluids, J. Fluid Mech. 40, 

753–767 (1970). 

10.4 D.P. Lalas and S. Carmi, Thermoconvective stability of ferrofluids, Phys. Fluids 14, 

436–438 (1971). 

10.5 R.A. Curtis, Flows and wave propagation in ferrofluids, Phys. Fluids 14, 2096–2102 

(1971). 



213 

 

10.6 B.U. Felderhof, Ferrohydrodynamic pumping of a ferrofluid or 

electrohydrodynamic pumping of a polar liquid through a planar duct, Phys. Fluids 

23, 042001 1–6 (2011). 

10.7 L. Mao, S. Elborai, X. He, M. Zahn and H. Koser, Direct observation of closed-

loop ferrohydrodynamic pumping under traveling magnetic fields, Phys. Rev. B: 

Condens. Matter Mater. Phys. 84, 104431 1–7 (2011). 

10.8 R. Moskowitz and R.E. Rosensweig, Nonmechanical torque-driven flow of a 

ferromagnetic fluid by an electromagnetic field, Appl. Phys. Lett. 11(10), 301–303 

(1967). 

10.9 R.E. Rosensweig, J. Popplewell and R.J. Johnston, Magnetic fluid motion in 

rotating field, J. Magn. Magn. Mater. 85, 171–180 (1990). 

10.10 M. Zahn and D.R. Greer, Ferrohydrodynamic pumping in spatially uniform 

sinusoidally time-varying magnetic fields, J. Magn. Magn. Mater. 149, 165–173 

(1995). 

10.11 A. Chaves, M. Zahn and C. Rinaldi, Spin-up flow of ferrofluids: Asymptotic theory 

and experimental measurements, Phys. Fluids 20, 053102 1–18 (2008). 

10.12 J.E. Martin, L. Shea-Rohwer and K.J. Solis, Strong intrinsic magnetic mixing in 

vortex magnetic fields, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 80, 016312 1–6 

(2009). 

10.13 J.E. Martin, Theory of strong intrinsic mixing of particle suspensions in vortex 

magnetic fields, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 011503 1–12 

(2009). 

10.14 K.J. Solis, R.C. Bell and J.E. Martin, Vortex magnetic field mixing with 

anisometric particles, J. Appl. Phys. 107, 114911 1–4 (2010). 

10.15 K.J. Solis and J.E. Martin, Isothermal Magnetic Advection: Creating functional fluid 

flows for heat and mass transfer, Appl. Phys. Lett. 97, 034101 1–3 (2010). 

10.16 K.J. Solis and J.E. Martin, Controlling the lattice spacing in isothermal magnetic 

advection to enable tunable heat and mass transfer, J. Appl. Phys. 112, 094912 1–7 

(2012). 



214 

 

10.17 K.J. Solis and J.E. Martin, Stimulation of vigorous rotational flows and novel flow 

patterns using triaxial magnetic fields, Soft Matter 8, 11989–11994 (2012). 

10.18 K.J. Solis and J.E. Martin, Multiaxial fields drive the thermal conductivity switching 

of a magneto-responsive platelet suspension, Soft Matter 9, 9182–9188 (2013). 

10.19 J.E. Martin, A resonant biaxial Helmholtz coil employing a fractal capacitor bank, 

Rev. Sci. Instrum. 84, 094704 1–11 (2013). 

10.20 J.E. Martin, R.A. Anderson and R.L. Williamson, Generating strange magnetic and 

dielectric interactions: Classical molecules and particle foams, J. Chem. Phys. 118, 

1557–1570 (2003). 

10.21 A.D. Rosenthal, C. Rinaldi, T. Franklin and M. Zahn, Torque measurements in 

spin-up flow of ferrofluids, Trans. ASME 126, 198–205 (2004). 

10.22 A. Chaves, C. Rinaldi, S. Elborai, X. He and M. Zahn, Bulk flow in ferrofluids in a 

uniform rotating magnetic field, Phys. Rev. Lett. 96, 194501 1–4 (2006). 

  



215 

 

Chapter 11 

Fully alternating, triaxial electric or magnetic fields 

offer new routes to fluid vorticity11 

Noncontact methods of generating strong fluid vorticity are important to problems 

involving heat and mass transfer, fluid mixing, active wetting, and droplet transport. 

Furthermore, because zero or even negative shear viscosities can be induced, vorticity can 

greatly extend the control range of the smart fluids used in magnetorheological devices. In 

Chapters 9 and 10 we have shown that a particular class of ac-ac-dc triaxial fields (symmetry-

breaking rational fields) can create strong vorticity in magnetic particle suspensions and have 

presented a theory of the vorticity that is based on the symmetry of the 2-d Lissajous 

trajectories of the field and its converse. In this chapter we demonstrate that there are three 

countably infinite sets of fully alternating ac-ac-ac triaxial fields whose frequencies form 

rational triads that have the symmetry required to drive fluid vorticity. The symmetry of the 

3-d Lissajous trajectories of the field and its converse can be derived and from this the 

direction of the vorticity axis can be predicted, as can the dependence of the sign of the 

vorticity on the phase relations between the three field components. Experimental results 

are presented that validate the symmetry theory. These discoveries significantly broaden the 

class of triaxial fields that can be exploited to produce strong noncontact flow. 

11.1 Introduction 

Methods of generating noncontact fluid motion have applications to problems such as mixing 

and heat and mass transfer, active wetting, control of droplet motion, biomimetic dynamics, 

and generating fluids that are effectively inviscid in applied shear. One approach is to 

prepare a suspension of magnetic or dielectric particles to create fluids that are field 

                                                           
11 Originally published as:  J.E. Martin and K.J. Solis, Fully alternating, triaxial electric or magnetic fields offer new routes to 
fluid vorticity, Soft Matter 11, 241–254 (2015). 



216 

 

responsive. When such fluids are exposed to uniaxial dc or ac magnetic or electric fields 

they appreciably stiffen, creating a rheology that is approximately that of a Bingham fluid 

[11.1–11.3]. When the field is biaxial, with at least one of the field components ac, the same 

sort of stiffening occurs if the particles are spherical, but if the particles are oblate spheroids 

(platelets) the fluid can form highly organized advection patterns (see Chapter 5 [also Ref. 

11.4]) and lattices of vortices (see Chapter 7 [also Ref. 11.5]), depending on the details of 

the field frequencies, phase angle and particle concentration. In contrast, a triaxial field 

comprised of a dc field orthogonal to a rotating field can induce bulk vorticity (see Chapter 

3 [also Refs. 11.6, 11.7]). Inducing bulk vorticity with such a field is intuitively reasonable 

because such a vortex field is circulating and can be reversed. Because this vorticity is a 

consequence of the symmetry of the field trajectory its occurrence is not dependent on 

particle shape (see Chapter 4 [also Refs. 11.8, 11.9]). More complex ac-ac-dc triaxial fields, 

consisting of components with distinct frequencies, can induce vorticity, even though many 

of these field trajectories lack circulation (see Chapter 9 [also Ref. 11.10]). These fields even 

include those whose trajectories lie on open curves and so simply travel back and forth on a 

curved line. Again, particle shape is not a primary factor since the symmetry of such fields 

drives the vorticity (see Chapter 10 [also Ref. 11.11]). 

The problem addressed in this chapter is whether or not fully alternating, ac-ac-ac 

triaxial fields can be used to generate fluid vorticity and if so, how the direction of the 

vorticity axis and the sign of the flow (clockwise or counterclockwise) can be predicted as a 

function of the three field frequencies and their relative phase angles. We show that these 

predictions can be made by analyzing the symmetry of the field trajectories. Observations of 

the direction and sign of the vorticity validate the relevance of the field symmetry analysis. 

Measurements of the torque density as a function of two independent phase angles produce a 

3-d plot having translational symmetries that are in agreement with predictions and also 

show that the specific torque density exceeds the energy density of the field. 
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This research is a contribution to the rapidly growing area of driving colloidal fluids 

far from equilibrium to create novel structures and dynamic phenomena [11.12, 11.13]. For 

example, when magnetic colloids are confined to an air-liquid interface the application of an 

ac magnetic field normal to the interface forces the assembly of the particles into segmented 

snake-like structures that emerge that are coupled to indirectly induced surface waves 

[11.14–11.16]. Symmetry breaking of various kinds can induce these snakes to swim. When 

the particles are confined to a liquid–liquid interface the field induces the formation of ring-

like particle assemblies termed “asters” and “anti-asters” that can be induced to open, grab 

cargo, and then transport and discharge this cargo [11.17]. Particles confined to a magnetic 

garnet substrate can interact with an applied field through the formation of magnetic stripes 

[11.18, 11.19] and bubbles [11.20–11.23]. The particles interact with these magnetic 

domains and by clever field manipulations the coherent motions of particle assemblies can be 

induced. These motions can be as simple as ballistic motion, but much more complex 

dynamics, such as coherent exchange hopping, can be induced. 

11.2 Background 

In Chapter 9 we demonstrated that symmetry-breaking, rational magnetic fields can possess 

the symmetry that creates vorticity when applied to magnetic particle suspensions [11.10]. 

These fields are comprised of two orthogonal ac components whose frequency ratio is a 

rational number, and a third, mutually orthogonal, dc field whose purpose is to break the 

symmetry of the rational field itself, thus creating the underlying field parity (direction 

motion on a closed curve) or symmetry (for open curves) that allows for vorticity. Such ac-

ac-dc triaxial fields can produce vorticity along the high frequency, low frequency or dc field 

axes, depending on the frequency ratio of the ac components, and can generate specific 

torque densities well in excess of the energy density of the applied field. The dependence of 

the direction and sign of the vorticity on both the phase angle and the sign of the dc field can 

be predicted by a consideration of the symmetry of the 2-d Lissajous trajectories of the field 
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and its converse. The basic conclusions can be expressed concisely. The frequency ratio of 

the ac components can be expressed as n:m, where at least one of these integers is odd. (1) 

The vorticity axis is parallel to the odd frequency component unless both n and m are odd, in 

which case it is parallel to the dc field. (2) Only for the odd:odd case does reversing the dc 

field not reverse the sign of the vorticity. (3) Changing the phase angle by certain discrete 

amounts will reverse the vorticity while maintaining its magnitude. These conclusions were 

experimentally validated in Chapter 10 [also Ref. 11.11], where the magnitude of the 

vorticity is also reported. 

Fully alternating triaxial fields can be represented as 3-d Lissajous curves and it is not 

obvious that such fields possess the symmetry needed to drive vorticity in a magnetic 

particle suspension. In this study we consider four enumerable classes of fully alternating 

triaxial fields whose frequencies form a rational triad l:m:n, where l, m and n are integers. 

These classes are odd:odd:odd, even:odd:odd, even:even:odd where l:m is odd:odd, and 

even:even:odd where l:m is even:odd. We will show that three of these classes possess the 

symmetry required to produce vorticity and that the direction of vorticity can be predicted, 

as well as the phase changes that produce flow reversal at constant magnitude of vorticity. 

We consider fields of the form 

zyx
H

ˆ)2(ˆ)2(ˆ)2(
)(

000 tnfFtmfFtlfF
H

t
kji

ac

       (11-1) 

where )sin()(1 xxF  , )cos()(2 xxF  , )sin()(3 xxF  , and )cos()(  4 xxF  . Because these 

functions may be written )sin( x , where = 0°, 90°, 180° and 270°, respectively, we 

often refer to the various functions as “phases”. For any given rational triad we thus consider 

43
 = 64 fields, but only 16 of these are distinct Lissajous trajectories, since the zero of time is 

not an important factor in a steady-state excitation. (In this study a trajectory refers to the 

curve produced by the dynamic field vector as well as its direction of motion on that curve, 

which is referred to as the field parity if the meaning of parity is not clear. The term 
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numerical parity is used to refer to an integer being even or odd.) However, we shall see 

that considering all 64 cases simplifies the analysis. We have chosen this particular set of 

phases because in these cases all projections of the 3-d Lissajous curve along the three 

principal axes yield highly symmetric 2-d Lissajous curves, and this quality simplifies the 

analysis. We will refer to the fields expressed by Equation (11-1) as principal Lissajous 

curves. 

A few basic facts about symmetric 2-d Lissajous curves and trajectories bear 

mentioning (for details and an analytical derivation of the following statements see Chapter 

9 [also Ref. 11.10], especially Appendix A therein). Consider these curves to be in v-w 

plane. First, there are two types of curves: open and closed and these occur at certain discrete 

phases, Figure 11-1. The closed curves have both a horizontal and a vertical symmetry 

plane (symmetric under each of the mappings wwvv   and  ) and thus are symmetric 

upon rotation by 180° around the orthogonal axis wv . These closed curves have parity in 

the sense that their time evolution is antisymmetric. In other words, a recording of the time 

evolution of these parametric plots lacks time reversal symmetry because it is possible to 

move on these curves in opposite directions. Changing the direction of the motion of the 

field (parity) requires only a phase shift. When the symmetry-breaking dc field is applied 

vorticity occurs that can be reversed by changing the parity of the trajectory alone: the 

Lissajous curve remains unchanged. 

The open curves do have time reversal symmetry because once you reach a terminus 

you must simply turn back. However, the open curves have less symmetry than the closed 

curves: in the even:odd (or odd:even) case there is a single symmetry plane whereas in the 

odd:odd case there are no symmetry planes but the curve is symmetric under rotation by 

180° around wv . In each case there are two distinct open curves and these occur at 

distinct sets of phase angles. For the even, odd cases these separate open curves are related 

by a single reflection, (this may be either wwvv   or    , but not both) but the distinct 

odd:odd curves are related by a reflection about either axis. Strangely enough, it can be  
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Figure 11-1.  (a) Closed curve for a 2 : 1 ratio. (b) Open curves for the 2 : 1 ratio. (c) Closed 

curve for a 3 : 1 ratio. (d) Open curves for the 3 : 1 ratio. 

shown that the results of the relevant symmetry operations (reflections) on the trajectories of 

the closed curves are identical to those of the open curves themselves [11.10]. When the 

symmetry-breaking dc field is applied vorticity occurs that can be reversed by changing the 

orientation of the Lissajous curve. 

The key point is that for symmetry-breaking rational fields flow reversal occurs by 

reversing the field parity, whereas for open curves flow reversal occurs by changing the 

orientation of the Lissajous curve. 

The object of this chapter is to determine whether 3-d Lissajous trajectories have the 

required symmetry to induce vorticity. In Figure 11-2 we show four 3-d Lissajous curves 

for the simplest rational triad, 1:2:3. Each of these curves has distinct phases. In Figure 11-2  
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Figure 11-2.  Four 3-d Lissajous curves for the rational triad 1 : 2 : 3. These fields give vorticity 

around the y axis. In (top left) the respective phases are [S, S, C] and all of the projections along 

principal axes are closed curves. In (top right) the phases are [S, C, S] and the principal 

projections are open curves (thus the 3-d curve is itself open). In (bottom left) the phases are [S, 

S, S] and there are two closed curve projections and one open curve projection. In (bottom 

right) the phases are [S, C, C] and there are two open curve projections and one closed curve 

projection. The number of closed projections determines the change that causes flow reversal. 

(top left) the closed curve is given by [S, S, C] (i.e., 

 zyxH ˆ)2cos(ˆ)2sin(ˆ)2sin()( 000 tlftmftnfHt ac   ) and all of the projections are closed 

curves, as they must be. In Figure 11-2 (top right) the phases are [S, C, S] and all of the 

projections are open curves (thus the 3-d curve is itself open). In Figure 11-2 (bottom left) 

the closed curve is given by [S, S, S] and there are two closed projections. In Figure 11-2 

(bottom right) the closed curve is given by [S, C, C] and there is one closed projection. 

These are the four types of principal 3-d Lissajous trajectories for this rational triad. 
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Before launching into the details of the symmetry arguments it is helpful to outline 

our approach, which is a straightforward, but somewhat laborious method focusing on the 

three principal projections of the 3-d Lissajous trajectories. First, for any rational triad we 

will create a method of identifying the type of each principal projection as a function of the 

discrete phase angles defined above. Second, we will conduct reflections and rotations of the 

field and its converse to determine if these trajectories possess the symmetry that supports 

vorticity. For a suspension of induced dipoles the field and its converse are physically 

identical, and this principle is critical to the symmetry arguments. This procedure will 

enable the prediction of both the direction and sign of the vorticity. It will also identify those 

phase changes necessary to reverse flow. 

11.3 Experimental 

The magnetic particle suspension consisted of molybdenum-Permalloy platelets ~50 m 

across by 0.4 m thick (Novamet Corp.) dispersed into isopropyl alcohol at a low volume 

fraction. The uniform triaxial ac magnetic fields (rational triads) were produced by three 

orthogonally-nested Helmholtz coils, operating in series resonance with appropriately-

configured capacitor banks, two of which employ a computer-controlled fractal design 

[11.24]. For all of the rational triad fields in this work the fundamental frequency was 50 Hz 

(with the exception of 1:2:6, for which the root frequency was 100.4 Hz) and all three 

induction field component amplitudes were 150 Grms. All three field components were 

phase-locked via two Agilent/HP function generators (equipped with Option 005), allowing 

for stable control of the phase angle of each component. (If the field components are not 

phase-locked there will be a very slow phase modulation between the components due to 

the finite difference in the oscillator frequency of each function generator, preventing 

meaningful studies of the phase angle.) 

Surface flow observations of vorticity were performed in an open glass cell (~3 cm 

square × 6 cm high) by using a polystyrene bead (~4 mm), in which case the rotation 
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direction of the bead (clockwise or counterclockwise) was easily discerned. To quantify the 

magnitude of the vorticity, the torque density of the suspension was computed from 

measured angular displacements on a custom-built torsion balance. In this case the 

suspension (1.5 vol%) was contained in a small vial (1.8 mL) attached at the end of the 

torsion balance and suspended into the central cavity of the Helmholtz coils via a 96.0 cm-

long, 0.75 mm-diameter nylon fiber with a torsion constant of ~13 N·m rad−1. 

11.4 Symmetry theory 

The classification of the type of trajectory of the 2-d projections is described in Appendix A, 

from which Tables 11-1 and 11-2 can be constructed, one for odd:even or even:odd ratios 

the other for odd:odd. For the discrete set of 2-d Lissajous trajectories of the form 

wv ˆ)(ˆ)( tpFtqF ji    these tables identify whether the curve is open or closed. For closed 

curves the parity of the trajectory is given as either plus “+” or minus “−” (arbitrary 

distinction) and for open curves the symmetry of the curve is likewise designated as either plus 

“+” or minus “−” (arbitrary distinction). For example, for a frequency ratio q:p = 3:4 phases 

of [C, S] give a “+Closed” trajectory whereas phases of [S, C] give a “−Open” curve. 

Table 11-1. Classification of projections for odd q, even p [C, S indicates cos(qt), sin(pt) etc.] 

q,p +Closed -Closed +Open -Open 

 

q=1,5… 

p=2,6… 

S,S 

-S,S 

-C,-S 

C,-S 

C,S 

-S,-S 

-C,S 

S,-S 

S,C 

-S,C 

C,-C 

-C,-C 

C,C 

-C,C 

-S,-C 

S,-C 

 

q=3,7… 

p=2,6… 

S,S 

-S,S 

-C,-S 

C,-S 

C,S 

-S,-S 

-C,S 

S,-S 

C,C 

-C,C 

-S,-C 

S,-C 

S,C 

-S,C 

C,-C 

-C,-C 

 

q=1,5…  

p=4,8…  

S,S 

C,S 

-S,S 

-C,S 

S,-S 

C,-S 

-S,-S 

-C,-S 

S,C 

C,C 

-C,C 

-S,C 

S,-C 

C,-C 

-S,-C 

-C,-C 

 

q=3,7… 

p=4,8…  

S,S 

C,S 

-S,S 

-C,S 

S,-S 

C,-S 

-S,-S 

-C,-S 

S,-C 

C,-C 

-S,-C 

-C,-C 

S,C 

C,C 

-S,C 

-C,C 

 

Table 11-2. Classification of projections for odd q, odd p (p > q) [C, S indicates cos(qt), sin(pt) 

etc.] 
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q,p +Closed -Closed +Open -Open 

 

q=1,5… 

p=1,5… 

C,S 

-C,-S 

S,-C 

-S,C 

S,C 

-S,-C 

-C,S 

C,-S 

C,C 

S,S 

-C,-C 

-S,-S 

-C,C 

C,-C 

-S,S 

S,-S 

 

q=3,7… 

p=1,5… 

S,C 

-S,-C 

C,S 

-C,-S 

-S,C 

S,-C 

-C,S 

C,-S 

S,S 

-S,-S 

C,-C 

-C,C 

C,C 

-C,-C 

S,-S 

-S,S 

 

q=1,5… 

p=3,7... 

-S,C 

S,-C 

-C,S 

C,-S 

S,C 

-S,-C 

C,S 

-C,-S 

S,S 

-S,-S 

C,-C 

-C,C 

C,C 

-C,-C 

S,-S 

-S,S 

 

q=3,7… 

p=3,7… 

S,C 

-S,-C 

-C,S 

C,-S 

C,S 

-C,-S 

-S,C 

S,-C 

S,S 

C,C 

-S,-S 

-C,-C 

S,-S 

C,-C 

-S,S 

-C,C 

 

These tables are central to analyzing each of the four classes of Lissajous trajectories. Note 

that each projection can be given by four different fields. These fields are related to each 

other by a shift in the zero of time, as discussed in Appendix B. 

11.4.1 Symmetries that support vorticity 

Before discussing the results for the various field types considered, it is helpful to have a 

clear idea of the field symmetries that stimulate vorticity, since this paper is based on 

searching for these symmetries. In Figure 11-3 a rotating cylinder aligned along the z axis 

of a Cartesian coordinate system is portrayed, with the direction of rotation indicated. This 

direction of rotation is antisymmetric under reflections about either the x-z plane ( yy  ) 

or the y-z plane )( xx  , but symmetric under reflection about the x-y plane )( zz  . 

Likewise, this direction of rotation is symmetric to a C2 (180°) rotation about the vorticity 

axis z ) , ( yyxx   and antisymmetric to 180° rotations about either x 

)  ,( zzyy   or y )  ,( zzxx  . Of course, these rotational symmetries are a 

result of the reflection symmetries. Symmetric operations and combinations thereof 

preserve the sign of the vorticity, whereas antisymmetric operations reverse the vorticity. 

By enumerating these operations it is found that for each vorticity axis the fields form the  
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Figure 11-3.  A rotating cylinder aligned along the z axis has a symmetric reflection around the x–

y plane and antisymmetric reflections around the x–z and y–z planes. 

Table 11-3. Fields with common vorticity sign are listed for each principal vorticity axis, X, Y or Z. In 

each column a field and its converse are shaded similarly  

 

 

 

distinct CW and CCW groups in Table 11-3. For example, for vorticity around the z axis 

the fields [x, y, z], [x, y, −z], [−x, −y, z] and [−x, −y, −z] must have the same vorticity. The 

field [−x, −y, −z] is simply the converse of [x, y, z] and therefore must produce the same 

vorticity, just as [−x, −y, z] is converse to [x, y, −z]. To determine whether any particular 

Lissajous trajectory drives vorticity one can assume a particular vorticity axis and determine 

whether the transformations given in Table 11-3 lead to the proper relative vorticity 

directions. This process will become clear by giving some examples. 

11.4.2 Class I: Even, odd, odd fields 

Open curves. We start with the case of even, odd, odd fields and as an example use the 

rational triad 1:2:3 with the phases of the field components given by [S, C, S], which  

X Y Z 

CW CCW CW CCW CW CCW 

x, y, z x,-y, z x, y, z -x, y, z x, y, z -x, y, z 

-x, y, z x, y, -z x,-y, z x, y,-z x, y,-z x,-y, z 

x,-y,-z -x, y,-z -x, y,-z x,-y,-z -x,-y, z x,-y,-z 

-x,-y,-z -x,-y, z -x,-y,-z -x,-y, z -x,-y,-z -x, y,-z 
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Figure 11-4.  Flow reversal illustrated by complementary Lissajous field objects for a 1 : 2 : 3 triad. 

(left) A field with the phases [S, C, S] (blue) and its converse (red) [−S, −C, −S] produce clockwise 

flow. (right) Counterclockwise flow is produced with the phases [S, C, −S] (green) and [−S, −C, S] 

(magenta). Despite the fact that in each case the field and its converse are chiral 

enantiomorphs, they produce the same sense of vorticity because chirality is not a symmetry 

possessed by vorticity. However, reflection symmetry is obeyed by vorticity and is displayed 

between the two Lissajous field objects, as illustrated by the blue and green curves, which are 

reflections of each other about the y–z and x–y planes, as are the red and magenta curves. 

leads to the simple open curve in Figure 11-2 (top right). Open 3-d curves are a good place 

to start this analysis because their symmetries alone are of importance: there is no need to 

worry about the parity of the trajectory, as there is none. It is thus easy to visualize the 

symmetry operations. Closed curves will be treated later. Note that all of the projections 

are necessarily open in this case. 

It is interesting to note that this open Lissajous curve is chiral, which seems 

suggestive. But the converse field [−S, −C, −S] in Figure 11-4(left) is related to the field 

by three reflections and thus must have opposite handedness. This converse field must 

produce the same direction and sign of vorticity, so field chirality has nothing to do with 

vorticity, because it is simply not a symmetry of vorticity. In fact, fields that produce 

vorticity are not generally chiral. 

In Table 11-4 are tabulated the symmetries of the three 2-d Lissajous curves— L1,2, 

L2,3, L1,3 with frequency ratios 1:2, 2:3, 1:3, respectively— that result when the 3-d 1:2:3 

Lissajous curve is projected along the three principal axes. These results are obtained by  



227 

 

Table 11-4. Projections for the rational triad 1:2:3. An “S” in the column labeled “2” indicates 

sin(2t), etc. 

1 2 3 L1,2 L2,3 L1,3 

Sin Sin Sin +Cd +Cd +O 

S S C +Cd -Cd -Cd 

S S -S +Cd +Cd -O 

S S -C +Cd -Cd +Cd 

Sin Cos Sin +O -O +O 

S C C +O +O -Cd 

S C -S +O -O -O 

S C -C +O +O +Cd 

Sin - Sin Sin -Cd -Cd +O 

S -S C -Cd +Cd -Cd 

S -S -S -Cd -Cd -O 

S -S -C -Cd +Cd +Cd 

Sin -Cos Sin -O +O +O 

S -C C -O -O -Cd 

S -C -S -O +O -O 

S -C -C -O -O +Cd 

Cos Sin Sin -Cd +Cd -Cd 

C S C -Cd -Cd -O 

C S -S -Cd +Cd +Cd 

C S -C -Cd -Cd +O 

Cos Cos Sin -O -O -Cd 

C C C -O +O -O 

C C -S -O -O +Cd 

C C -C -O +O +O 

Cos - Sin Sin +Cd -Cd -Cd 

C -S C +Cd +Cd -O 

C -S -S +Cd -Cd +Cd 

C -S -C +Cd +Cd +O 

Cos -Cos Sin +O +O -Cd 

C -C C +O -O -O 

C -C -S +O +O +Cd 

C -C -C +O -O +O 

- Sin Sin Sin +Cd +Cd -O 

-S S C +Cd -Cd +Cd 

-S S -S +Cd +Cd +O 

-S S -C +Cd -Cd -Cd 

- Sin Cos Sin +O -O -O 

-S C C +O +O +Cd 

-S C -S +O -O +O 

-S C -C +O +O -Cd 

- Sin - Sin Sin -Cd -Cd -O 

-S -S C -Cd +Cd +Cd 

-S -S -S -Cd -Cd +O 

-S -S -C -Cd +Cd -Cd 

- Sin -Cos Sin -O +O -O 

-S -C C -O -O +Cd 

-S -C -S -O +O +O 

-S -C -C -O -O -Cd 
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-Cos Sin Sin -Cd +Cd +Cd 

-C S C -Cd -Cd +O 

-C S -S -Cd +Cd -Cd 

-C S -C -Cd -Cd -O 

-Cos Cos Sin -O -O +Cd 

-C C C -O +O +O 

-C C -S -O -O -Cd 

-C C -C -O +O -O 

-Cos - Sin Sin +Cd -Cd +Cd 

-C -S C +Cd +Cd +O 

-C -S -S +Cd -Cd -Cd 

-C -S -C +Cd +Cd -O 

-Cos -Cos Sin +O +O +Cd 

-C -C C +O -O +O 

-C -C -S +O +O -Cd 

-C -C -C +O -O -O 

 

reference to Tables 11-1 and 11-2 and include all 64 phases under consideration. Note that 

two of these projections are even, odd and one is odd:odd. Only odd:odd open 2-d Lissajous 

curves have a zero crossing, so the 3-d Lissajous curve cannot cross zero because this would 

require that all three projections have a zero crossing. Thus the field never vanishes. 

For the field phases [S, C, S] the three projections are given by (+O, −O, +O), 

respectively, where “O” is an abbreviation for “Open” and the plus and minus signs serve to 

differentiate the two distinct open projections. The converse field [−S, −C, −S] gives the 

projections (−O, +O, +O) and even though these projections differ from those of the field 

they are physically equivalent and thus produce the same direction, sign and magnitude of 

vorticity. 

Let us now assume that the y axis is the vorticity axis, which is along the field having 

the relative frequency of 2. Then from Table 11-3 we see that the phases [S, −C, S] should 

produce the same sign of vorticity. Table 11-4 shows that these phases give the projections 

(−O, +O, +O). The reflection yy   therefore maps the field onto the physically 

equivalent converse field, which conserves vorticity. Likewise, a rotation about the y axis, 

[−S, C, −S], gives (+O, −O, +O) and thus maps the field onto itself. These results are 

consistent with the y axis being the vorticity axis. Experiments confirm that the vorticity 



229 

 

direction is the same for all of these phases and that it is indeed around the y axis, which is 

the even component of this rational triad. The sign of the vorticity is also identical for these 

phases. 

If y is the vorticity axis the phases with opposite vorticity (Table 11-3) are the 

reflection xx  , [−S, C, S], the reflection zz  , [S, C, −S], the rotation about the x 

axis, [S, −C, −S], and the rotation about the z axis, [−S, −C, S]. These fields give the 

projections (+O, −O, −O), (+O, −O, −O), (−O, +O, −O) and (−O, +O, −O), 

respectively. None of these projections map onto those of the original field or its converse 

and experiments confirm that this group does indeed produce vorticity having the opposite 

sign of that produced by the field [S, C, S], as predicted. These flow-reversing fields are shown 

in Figure 11-4 (right) and note that flow reversal can occur by a change in the orientation of 

the 3-d Lissajous curve, quite like for symmetry-breaking rational fields that are open 

curves. In particular, a change in the orientation of the L1,3 projection is sufficient to cause 

flow reversal. 

Note that if the x or z axis is assumed to be the vorticity axis then the relevant 

reflections and rotations that should conserve or reverse vorticity do not do so. 

These results (and many others) are tabulated in Table 11-5 along with experimental 

observations of the direction of fluid vorticity. This table is divided into four blocks and each 

block is divided into two groups that should have opposite vorticity if the symmetry 

arguments given above are correct. The case just described for the curves with all open 

projections are in the third block and the experimental observations of the flow direction, 

given in the last column, indicate that the two groups do indeed give opposite flow. Note, 

however, that there are twice as many entries in this block as those we have just discussed, 

which are of the class [±S, ±C, ±S]. These additional entries are of the class [±C, ±C, ±C] 

and are simply alternative representations of the same Lissajous curves. It is easy to show 

that for 1:2:3 these two sets are related by redefining the zero of time. For example, the 

time shift  9022 00 tftf   changes [S, C, S] to [C, −C, −C], which does of course have 



230 

 

the same projections, (+O, −O, +O). In fact, the eight CW fields listed in this group have 

only two projections, as do the eight CCW fields, so each Lissajous trajectory can be 

obtained by four different fields. These features are common to the other three blocks, so 

we will not belabor this point further. 

Table 11-5. Fields, projections and observed flow directions for 1:2:3. Within each of the 4 blocks 

of 16 rows the fields are shaded to highlight their class and a similar scheme is used to highlight 

the common projections. 

f(2s) f(4s) f(6s) L1,2 L2,3 L1,3 flow 

Sin Sin -Cos +Cd -Cd +Cd CW 

S -S -C -Cd +Cd +Cd “ 

-S S C +Cd -Cd +Cd “ 

-S -S C -Cd +Cd +Cd “ 

Cos Sin -Sin -Cd +Cd +Cd “ 

C -S -S +Cd -Cd +Cd “ 

-C S S -Cd +Cd +Cd “ 

-C -S S +Cd -Cd +Cd “ 

Sin Sin Cos +Cd -Cd -Cd CCW 

S -S C -Cd +Cd -Cd “ 

-S S -C +Cd -Cd -Cd “ 

-S -S -C -Cd +Cd -Cd “ 

Cos Sin Sin -Cd +Cd -Cd “ 

C -S S +Cd -Cd -Cd “ 

-C S -S -Cd +Cd -Cd “ 

-C -S -S +Cd -Cd -Cd “ 

       

Sin Cos -Cos +O +O +Cd CW 

S -C -C -O -O +Cd “ 

-S C C +O +O +Cd “ 

-S -C C -O -O +Cd “ 

Cos Cos -Sin -O -O +Cd “ 

C -C -S +O +O +Cd “ 

-C C S -O -O +Cd “ 

-C -C S +O +O +Cd “ 

Sin Cos Cos +O +O -Cd CCW 

S -C C -O -O -Cd “ 

-S C -C +O +O -Cd “ 

-S -C -C -O -O -Cd “ 

Cos Cos Sin -O -O -Cd “ 

C -C S +O +O -Cd “ 

-C C -S -O -O -Cd “ 

-C -C -S +O +O -Cd “ 

       

Sin Cos Sin +O -O +O CW 

S -C S -O +O +O “ 

-S C -S +O -O +O “ 

-S -C -S -O +O +O “ 

Cos Cos -Cos -O +O +O “ 
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C -C -C +O -O +O “ 

-C C C -O +O +O “ 

-C -C C +O -O +O “ 

Sin Cos -Sin +O -O -O CCW 

S -C -S -O +O -O “ 

-S C S +O -O -O “ 

-S -C S -O +O -O “ 

Cos Cos Cos -O +O -O “ 

C -C C +O -O -O “ 

-C C -C -O +O -O “ 

-C -C -C +O -O -O “ 

       

Sin Sin Sin +Cd +Cd +O CW 

S -S S -Cd -Cd +O “ 

-S S -S +Cd +Cd +O “ 

-S -S -S -Cd -Cd +O “ 

Cos Sin -Cos -Cd -Cd +O “ 

C -S -C +Cd +Cd +O “ 

-C S C -Cd -Cd +O “ 

-C -S C +Cd +Cd +O “ 

Sin Sin -Sin +Cd +Cd -O CCW 

S -S -S -Cd -Cd -O “ 

-S S S +Cd +Cd -O “ 

-S -S S -Cd -Cd -O “ 

Cos Sin Cos -Cd -Cd -O “ 

C -S C +Cd +Cd -O “ 

-C S -C -Cd -Cd -O “ 

-C -S -C +Cd +Cd -O “ 

 

Closed curves. The closed curves are of three types, characterized by having 1, 2 or 3 

closed projections. For 1:2:3 Lissajous curves with all closed curve projections the 

conclusions are identical. We will start with the case of three closed curve projections, for 

which a zero crossing of the field is not possible because any odd:odd 2-d closed Lissajous 

curve does not have a zero crossing. 

a) Three closed projections. The field phases [S, S, C] give the three closed 

projections (+Cd, −Cd, −Cd), where “Cd” is an abbreviation for “closed”, and its converse 

field [−S, −S, −C] gives (−Cd, +Cd, −Cd). Even though these closed projections differ only 

in parity, Figure 11-5 (left) shows that the 3-d Lissajous curves are not coincident. This 

must be the case because only two of the three projections have opposite parities. The  
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Figure 11-5.  (Left) The blue 1 : 2 : 3 curve is given by [S, S, C] and has all closed projections [see 

Figure 11-2(top left)]. The red curve, which does not overlap, is the converse field [−S, −S, −C]. 

This field has the same projected 2-d curves, but the even, odd projections have opposite parity. 

(Right) This blue 1 : 2 : 3 Lissajous curve [see Figure 11-2(bottom right)] is given by [S, C, C] and 

has two open projections and one closed projection. The red curve is the converse field, for 

which the single closed curve projection is identical in parity, but for which the closed 

projections are related to those of the blue curve by a reflection. 

reflection yy   gives the phases [S, −S, C], producing the projections (−Cd, +Cd, −Cd) 

and thus mapping the field onto its converse, which conserves vorticity. A rotation about the 

y axis produces [−S, S, −C] which projects to (+Cd, −Cd, −Cd), mapping the field onto 

itself. 

If y is the vorticity axis the fields with opposite vorticity are (see Table 11-3) [−S, S, 

C], [S, S, −C], [S, −S, −C] and [−S, −S, C]. These give the projections (+Cd, −Cd, +Cd), 

(+Cd, −Cd, +Cd), (−Cd, +Cd, +Cd) and (−Cd, +Cd, +Cd), respectively, which should have 

the opposite vorticity of the field [S, S, C]. The experimental results in Table 11-5 

demonstrate that they do. Note that the two curves with the projections (+Cd, −Cd, +Cd) 

are identical to the converse field curve but have opposite parity. The curves with 

projections (−Cd, +Cd, +Cd) are identical to the field but have opposite field parity. We 

conclude that for all closed projections flow reversal can be achieved by a change in field 

parity, in particular the parity of the L1,3 projection. Flow reversal due to parity change alone is 
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a characteristic of symmetry-breaking rational fields having closed curves. As for the open 3-

d curve, the y axis is demonstrated to be the vorticity axis and there are only two sets of 

projections that give vorticity of either sign. 

b) Two closed projections.  The closed Lissajous curve [S, S, S] in Figure 11-

2(bottom left) has two closed projections and one open projection. Analysis shows that this 

will also produce vorticity around the y axis. Should flow reversal occur by a parity change 

or by a change in orientation for this case? A key feature of this curve is that it has a zero 

crossing, which requires the even, odd projections to be closed and the odd:odd projection 

to be open. In Appendix C it is shown that fields with zero crossings have the property that 

the Lissajous trajectory of the field and its converse are coincident, but have opposite field 

parity. In this case reversing the field parity does not reverse the flow! This field projects to 

(+Cd, +Cd, +O) and to reverse the flow requires only a reflection about the x-y plane, 

giving [S, S, −S], which projects to (+Cd, +Cd, −O). Flow reversal thus occurs by a change 

in the orientation by 180° of the only open projection, L1,3. In fact, in this case the 

orientation of the open projection is the sole determinant of the sign of the vorticity, the 

parity of the closed projections being of no consequence. 

c) One closed projection.  The last type of 3-d curve, Figure 11-2(bottom 

right), is one having two open projections and one closed projection. This too produces 

vorticity around the y axis. One such field is given by [S, C, C], which projects to (+O, 

+O, −Cd). Its converse projects to (−O, −O, −Cd) and thus is non-coincident, Figure 11-

5(right). The results of the symmetry analysis, Table 11-5, show that in this case it is the 

parity of the closed projection L1,3 that is the sole determinant of the vorticity sign. 

In summary, we have used symmetry considerations to determine the vorticity axis 

for the even, odd, odd field class, and groupings of fields that must produce the same or 

opposite vorticity directions. It is conspicuous that changing the parity or orientation of the 

L1,3 projection is the critical factor for flow reversal for the four types of fields we have 
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considered. We find that a change in the parity of L1,3 reverses the flow for fields that have 1 

or 3 closed projections; whereas, a change in the orientation of L1,3 can reverse flow for 

curves with 0 or 2 closed projections. However, we cannot determine the absolute sign of 

vorticity nor can we predict its magnitude. For this class of rational triads the vorticity axis 

has been determined to be the axis with unique numerical parity. Though worked out for this 

specific case this is a general conclusion, since the symmetries of the 2-d Lissajous 

projections are determined by the parity of the integers that describe their frequency ratio 

alone, as described in Chapter 9 [also Ref. 11.10]. 

11.4.3 Class II: Even, even, odd fields with even:even → even:odd 

A simple example of this class of triad is 2:3:4 (4:2 = 2:1). Lissajous plots of three field 

phases for this triad are given in Figure 11-6, including their projections. Once again the 

projections for each of the 64 field primary field phases are first tabulated for reference, as in 

Table 11-4. A significant difference between this case and the even, odd, odd case is that all 

three projections are even, odd. Therefore, the only 3-d Lissajous trajectories that have zero 

crossings are those for which all three projections are closed. 

Open curves.  First we treat the simple case of fields that give only open projections, 

such as [C, C, C]. This particular field projects to (L23, L34, L12)=(+O, −O, −O) and its 

converse, [−C, −C, −C], projects to (−O, +O, +O) and is therefore not coincident with 

the field. A reflection yy   gives the phases [C, −C, C] which projects to (+O, −O, 

−O). This reflection thus maps the field onto itself. A rotation around the y axis produces 

the phases [−C, C, −C] which projects to (−O, +O, +O), mapping the field onto its 

converse. We conclude that the y axis (parallel to the field component with relative 

frequency 3) is the vorticity axis. 
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Figure 11-6.  Three types of 2 : 3 : 4 curves. These fields give vorticity around the y axis. (top left) A 

closed curve having three closed projections [S, S, S], (top right) an open curve having three 

open projections [C, C, C], and (bottom) a closed curve with two open projections [S, C, C]. 

The fields having opposite vorticity are [−C, C, C], [C, C, −C], [C, −C, −C] and 

[−C, −C, C]. These give the projections (−O, −O, −O), (+O, +O, +O), (+O, +O, 

+O) and (−O, −O, −O), respectively, which should have the opposite vorticity of the field 

[C, C, C]. The experimental observations in Appendix D Table 11-7 demonstrate that 

these are indeed flow-reversing fields. For this field the flow can be reversed by changing 

the orientation of the single projection L2,3. 
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Closed curves.  Closed 2:3:4 fields can be worked out similarly, and it is readily shown 

that the vorticity axis is parallel to the field component with relative frequency 3. For this 

class of fields the vorticity axis is again along the direction of unique even, odd numerical 

parity. The results of the symmetry analysis for all of the principal fields is given in 

Appendix D Table 11-7 along with the results of experimental observations, which are in 

agreement with the predictions of the symmetry considerations. 

As for the even, odd, odd case we find that there are four types of fields, 

distinguished by the number of closed projections (0, 1, 2 or 3). For those fields that have 1 

or 3 closed projections flow reversal occurs by changing the parity of a single projection, 

L2,3, whereas for 0 or 2 closed projections reversal occurs by changing the orientation of this 

projection. (Identical to the 1:2:3 case except the critical projection in that case was L1,3.) 

Once again, within each block of 16 fields there are only two distinct CW and two distinct 

CCW Lissajous trajectories. 

11.4.4 Class III: Even, even, odd fields with even:even → odd:odd 

The simplest example of this class of triad is 1:2:6, since 6:2 = 3:1. Selected curves are 

given in Figure 11-7. An interesting aspect of this field is that the four types of fields are 

quite different, consisting of one type with all open projections and three types with just one 

open projection. These three types differ in that the open projection lies normal to the x, y, 

or z axis, as indicated in Appendix D Table 11-8. 

Once again we will explicitly treat only the simple case of fields that give open 

projections, such as [S, C, C], leaving the other cases to those interested in working them 

through. This field projects to (L12, L13, L16) = (+O, −O, +O) and its converse, [−S, −C, 

−C], projects to (−O, −O, −O). In this case only two of the Lissajous projections are even, 

odd, just as for Class I. 

The field reflection xx   gives the phases [−S, C, C] which projects to (+O, −O, 

+O). This reflection thus maps the field onto itself. A rotation of the field around the x axis  
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Figure 11-7.  Three examples of 1 : 2 : 6. These fields give vorticity around the x axis. (Top left) The 

closed curve [S, S, S] has a zero crossing and one open projection. (Top right) The curve [S, C, C] 

has three open projections. (Bottom) The converse field [−S, −C, −C] has the same vorticity but is 

not coincident. 

produces the phases [S, −C, −C], which projects to (−O, −O, −O), mapping the field 

onto its converse. We conclude that the x axis, which is parallel to the field component with 

relative frequency 1, is the vorticity axis and experimental observations confirm this 

prediction. 

The fields having opposite vorticity are [S, −C, C], [S, C, −C], [−S, C, −C] and 

[−S, −C, C]. These fields give the projections (−O, +O, +O), (+O, +O, −O), (+O, 

+O, −O) and (−O, +O, +O), respectively, which should have the opposite vorticity of the 
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field [S, C, C]. Experimental observations of the sign of fluid vorticity, presented in 

Appendix D Table 11-8 for all 64 symmetric 1:2:6 fields, confirm this prediction. 

The orientation of the L2,6 = L1,3 projection correlates to the sign of the vorticity in 

this case, but it is not possible to alter this orientation without affecting the orientation of 

one other projection. This is also true for the case where the only open projection is L2,6 

except that it is the parity of one other projection that is affected. When the single open 

projection is L1,2 or L1,6 the sign of vorticity again correlates to the L2,6 projection, but in 

these cases it is the parity of this closed projection that correlates to the expected and 

observed vorticity. The dominance of a particular projection to the observed vorticity sign is 

a feature of all classes of rational triads that induce vorticity. 

Note that for this class of fields the vorticity axis is once again along the direction of 

unique numerical parity, in this case 1. How could it be otherwise for a system whose 

symmetries are based on numerical parity? 

11.4.5 Class IV: Odd, odd, odd fields 

Open curves. Finally we come to the last class of fields, where all the Lissajous 

projections are odd:odd. In the first three field classes the vorticity axis was along the 

direction of the field component whose relative frequency had the unique numerical parity, 

whether even or odd. For odd:odd:odd fields there is no unique axis, so it is hard to imagine 

that symmetry arguments could predict a vorticity axis. In the following we will 

demonstrate this point by using the example 1:3:5, shown in Figure 11-8. [In musical 

terms, for all of the examples above the rational triad was an open fifth (ignoring octaves): 

now we have a major chord, though inverted.] A complete tabulation of the projections of 

the symmetric fields is given in Appendix D Table 11-9. Consider the open field 

trajectory [S, S, S], which projects to (L13, L35, L15)  =  (+O, +O, +O). In this case the 

converse field [−S, −S, −S] is identical, (+O, +O, +O), which is a general characteristic of  
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Figure 11-8.  Two examples of 1 : 3 : 5. These fields do not have the symmetry of vorticity. (Left) A 

closed field with one open projection, [S, S, C]. (Right) An open field with all open projections [S, 

S, S]. 

Class IV fields (see the proof in Appendix C). We will consider all three possible vorticity 

axes. 

If x is the vorticity axis then the reflection xx  , [−S, S, S], and the rotation about 

x, [S, −S, −S], must map the field onto itself. These two operations produce converse fields 

and thus must produce the same projections for this class of fields. This projection is (−O, 

+O, −O), and because this is not the field or its converse x is not the vorticity axis. 

If y is the vorticity axis then the reflection yy  , [S, −S, S], and the rotation about 

y, [−S, S, −S], must map the field onto itself. But these operations give the projections 

(−O, −O, +O), which are not those of the field or its converse, so y is not the vorticity 

axis. 

If z is the vorticity axis then the reflection zz  , [S, S, −S], and the rotation 

around z, [−S, −S, S], must map the field onto itself. These operations give the projections 

(+O, −O, −O), and because these are not those of the field or its converse, z is not the 

vorticity axis. 

Trajectories on closed curves in this class have the property that the trajectory of the 

field and its converse have identical parity, possible only because they do not have a zero 
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crossing (i.e., the field never vanishes), as discussed in Appendix C. One might think that 

reversing this parity could thus reverse flow, but in fact the curves lack the symmetry of 

vorticity. 

For this final class of rational triads there is no vorticity axis that can be predicted 

from symmetry. Experiments on suspensions of magnetic platelets show some flow, but it is 

complex and frustrated, not simple vorticity. In fact, from another perspective the situation 

can be seen to be rather delicate. We have previously shown that for ac-ac-dc triaxial fields 

odd:odd frequency ratios do exhibit vorticity, the axis of vorticity is orthogonal to the ac 

field plane (parallel to the dc field component) and the sign of the vorticity does not depend on 

the sign of the dc field. Therefore a very low frequency, quasi-dc field will still produce 

vorticity. Interestingly enough, as this field frequency is increased to a frequency of the same 

order of magnitude of the ac components, such that an even:odd:odd triad is produced, the 

field trajectory has the symmetry of vorticity. But if an odd:odd:odd triad is produced then 

one can argue that vorticity can be produced orthogonal to any of the three odd:odd field 

planes. Thus a frustration occurs and some net vorticity may in fact occur, simply because of 

a difference in the magnitude of vorticity orthogonal to each of the three field planes. For 

example, for the 1:3:5 triad the 1:3 vorticity is greater than the 3:5 vorticity when 

orthogonal dc fields are applied. 

11.5 Experimental results and discussion 

11.5.1 The 1:2:3 triad 

The torque density of a magnetic particle dispersion subjected to a fully alternating triaxial 

field (rational triad) can be expressed as a function of any two phase angles. Varying the 

third phase angle simply shifts the zero of time. For the 1:2:3 field we chose the phase angles 

31,   and thus consider reduced fields of the form 

zyx ˆ)6sin(ˆ)4sin(ˆ)2sin()( 31   ssssh      (11-2) 
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where tfs 0  is the dimensionless time. After some thought the expected lattice vector for 

the periodic torque density is )90, 90(), ( 31  . If this is correct, the field 

zyx ˆ)906sin(ˆ)4sin(ˆ)902sin()( 31   ssssh    (11-3) 

should produce the same torque as the field in Equation (11-2). To see this simply shift the 

dimensionless time in Equation (11-3) according to  9022 ss  . This gives 

zyx ˆ)6sin(ˆ)4sin(ˆ)2sin()( 31   ssssh     (11-4) 

which is simply the field converse to Equation (11-2). This converse must give the same sign 

and magnitude of vorticity, so )90, 90(   must be a correct lattice vector. 

Reversing the flow given by Equations 11(2–4) while maintaining its magnitude can 

be accomplished by applying the field 

zyx ˆ)906sin(ˆ)4sin(ˆ)902sin()( 31   ssssh .   (11-5) 

We will refer to such a field as a flow-reversing field, with the understanding that this term 

also implies the magnitude of vorticity is preserved. To show that this is a flow-reversing 

field the same change of variables,  9022 ss  , can be applied to Equation (11-5) to 

give 

zyx ˆ)6sin(ˆ)4sin(ˆ)2sin()( 31   ssssh .    (11-6) 

From Table 11-3 it can be seen that for vorticity around the y axis, which is the case here, 

the [S, −S, −S] field is indeed a flow-reversing field relative to Equation (11-2), [S, S, S]. 

Simply adding a phase of 90° to the 1 and 3 components is all that is required to reverse 

flow. Alternatively, adding a phase of 180° to the 3 component can be shown to reverse 

flow. 

The experimental data are shown in Figure 11-9 as a 3-d plot and as a topographic 

plot. The symmetries just derived can be seen in these data. (Note that the boundaries are 

cyclic, so it would be ideal to present these data on a torus.) The specific torque density  
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Figure 11-9.  Experimental torque density phase maps for a 1 : 2 : 3 rational triad are presented 

as a 3-d plot (left) and a topographic plot (right). The boundary between the red and green is 

the locus of zero torque. 

maximizes at 907 J·m−3 for this field. This value is nearly 70% greater than the energy 

density of the field, which is 537 J·m−3 for a triaxial field with each rms field component 

being 150 Oe. The undulating boundary between the green and red zones is the locus of 

points that give zero torque. It is possible that such torqueless fields could generate 

interesting particle structures. 

11.5.2 The 2:3:4 triad 

The symmetry of the torque data for the 2:3:4 field is also easily derived. In this case the 

variable phase angles are applied to the components l = 2 and m = 3 (for no compelling 

reason) to give the reduced field 

zyx ˆ)8sin(ˆ)6sin(ˆ)4sin()( 32 ssssh   .     (11-7) 

The lattice vector for this case is )45, 90(), ( 32   which can be seen by demonstrating that 

the reduced field 

zyx ˆ)8sin(ˆ)456sin(ˆ)904sin()( 32 ssssh      (11-8) 

is either the field or its converse. The change of variables  9044 ss   leads to 

zyx ˆ)8sin(ˆ)6sin(ˆ)4sin()( 32 ssssh       (11-9) 
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which is indeed the converse of Equation (11-7). So this change of phases preserves both the 

sign and magnitude of the vorticity. 

The reversing field is given by 

zyx ˆ)8sin(ˆ)906sin(ˆ)4sin()( 32 ssssh   .              (11-10) 

To confirm that this is indeed a reversing field the change of variables  18044 ss  can 

be applied to Equation (11-10) to obtain 

zyx ˆ)8sin(ˆ)6sin(ˆ)4sin()( 32 ssssh   .   (11-11) 

For vorticity around the y axis, which is the case for this 2:3:4 field, Table 11-3 shows that 

Equation (11-11), which is [−S, S, S], is a flow-reversing field for [S, S, S]. 

The experimental data are shown in Figure 11-10 as a 3-d plot and as a topographic 

plot. These data demonstrate the symmetries derived in this section. The specific torque 

density maximizes at 723 J·m−3 for this field, which is ~35% greater than the 537 J·m−3 

energy density for this triaxial field. In this case the zero torque locus, which is the boundary 

between the green and red zones, is nearly straight. 

 

Figure 11-10.  Experimental torque density phase maps for a 2 : 3 : 4 rational triad are presented 

as a 3-d plot (left) and a topographic plot (right). The boundary between the red and green is 

the locus of zero torque. 

  



244 

 

11.5.3 The 1:2:6 triad 

The symmetry of the torque data for the 1:2:6 field is simple if the variable phase angles are 

applied to the l = 1 and n = 6 components. In this case the reduced field is 

zyx ˆ)12sin(ˆ)4sin(ˆ)2sin()( 61   ssssh .    (11-12) 

The lattice vector for this case is )0, 90(), ( 61   which can be seen by demonstrating that 

the reduced field 

zyx ˆ)12sin(ˆ)4sin(ˆ)902sin()( 61   ssssh    (11-13) 

is either the field or its converse. The change of variables  9022 ss   leads to 

zyx ˆ)12sin(ˆ)4sin(ˆ)2sin()( 61   ssssh .   (11-14) 

Table 11-3 shows that for vorticity around the x axis [S, S, −S] is a flow reversing field 

relative to [S, S, S]. So adding a phase of 180° to the z component reverses flow. 

The experimental data are shown in Figure 11-11 as a 3-d plot and as a topographic 

plot. These data demonstrate the symmetries derived in this section. The specific torque  

 

Figure 11-11.  Experimental torque density phase maps for a 1 : 2 : 6 rational triad are presented 

as a 3-d plot (left) and a topographic plot (right). The boundary between the red and green is 

the locus of zero torque. 

  



245 

 

density maximizes at 596 J·m−3 for this field, which is only 11% greater than the 537 J·m−3 

energy density for this triaxial field. In this case the zero torque locus, which is the boundary 

between the green and red zones, is nearly straight. 

11.6 Summary 

The results we have presented are extensive enough that a concise summary is warranted, or 

at least helpful. 

• We have shown that there are three classes of countably infinite sets of fully alternating 

ac-ac-ac triaxial fields whose frequencies form rational triads that have the symmetry 

required to drive vorticity in magnetic particle suspensions. These classes are: 

even:odd:odd; even:even :odd fields with even:even → even:odd; and even:even:odd fields 

with even:even → odd:odd. The fourth class, odd:odd:odd does not possess the requisite 

symmetry to drive vorticity. 

• For any particular rational triad one can enumerate 64 Lissajous trajectories that have 

maximally symmetric projections when viewed along each of its three principal axes. Some 

of these are open curves, but mostly they're closed. These trajectories are formed of 

principal components that can be expressed as simple sines or cosines and their negatives. 

There are generally only 16 distinguishable trajectories, each having four representations 

that differ only in the choice of the zero of time. 

• It is found that when the trajectory of the field has the symmetry of vorticity, defined 

by whether the sign of vorticity is symmetric or antisymmetric under the 3 rotations about 

principal axes and 3 reflections parallel to these axes, vorticity can indeed be induced 

experimentally. It is found that chirality of the trajectory has nothing to do with vorticity. 

• From these symmetry considerations the vorticity axis can be predicted and it is always 

the unique axis in terms of numerical parity. For example, for the class even:odd:odd it is 

the even axis. 
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• For a particular triad it is also possible to group trajectories into four sets. Each of these 

sets consist of two distinct trajectories that are CW and two that are CCW. 

• Flow reversal can sometimes be achieved by a change in the parity of the trajectory of a 

closed projection and sometimes by a change in the orientation of an open projection. 

• Experimental observations of the direction and sign of vorticity validate the predictions 

of the symmetry theory. 

• The specific fluid torque density was measured as a function of two independent, 

continuously variable phases applied to two of the field components, resulting in periodic 3-

d plots of the torque density. The derived lattice vector for these plots was found to agree 

with experiment. A flow-reversing lattice vector was also predicted and found to agree with 

experiment. 

11.7 Conclusions 

We have shown that fully alternating triaxial fields do indeed possess the symmetry required 

to drive vigorous vorticity in magnetic particle suspensions (the specific torque densities are 

in excess of the energy density of the field, at times nearly twice as great) and have provided 

an analytical method of demonstrating this that is based on projections of the dynamic field. 

This discovery opens up endless schemes for controlling fluid motion and transporting 

droplets on surfaces by creating vorticity around an axis in the plane of the surface. Simply 

controlling the phase angles of 1 or 2 of the field components enables the torque density to 

be increased, decreased, nullified or reversed. (Under zero torque conditions it is very likely 

that the suspension organizes itself into novel structures, which is a possible avenue for 

future research.) Likewise, changing just one of the field frequencies can change the 

vorticity axis, enabling complex fluid mixing strategies, heat transfer strategies and 3-d 

control of droplet motion. In this chapter experimental measurements were restricted to 

magnetic platelets at low particle densities. Future research directions include applying these 

fields to the dense particle suspensions that are used in magnetorheological devices and to 
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magnetic fluids (ferrofluids). Preliminary measurements indicate the presence of vorticity in 

both of these systems. 

11.8 Appendices 

A. Canonical classification of 2-d Lissajous trajectories 

Tables 11-1 and 11-3 are central to understanding symmetry operations on the 3-d Lissajous 

trajectories. These tables classify 2-d Lissajous curves according to whether they are open or 

closed. If they are closed curves the parity of their trajectory is assigned as “+” or “−”. If 

they are open curves the “+” or “−” refers to their orientation. In Appendix A of Chapter 9 

[also Ref. 11.10] it is demonstrated analytically that high-symmetry (principal) rational 

Lissajous plots can be expressed as 

yxh ˆ
90

2sinˆ)2sin()( 






 


q
jpsqss        (A-1) 

where s is a reduced time and h is a reduced field. It is also shown that these curves can be 

classified as in Table 11-6. The assignment of “+” or “−” is arbitrary and the repeating 

pattern is shaded. Note that all of these principal curves can be represented by the first two 

terms on the right hand side of Equation (11-1). 

Table 11-6. . Classification of the types of symmetric (principal) Lissajous curves. Here “O” is open 

and “Cd” is closed and the repeating pattern is shaded. 

j Type (even, odd) Type (odd, odd) 

-3 +O -Cd 

-2 -Cd -O 

-1 -O +Cd 

0 +Cd +O 

1 +O -Cd 

2 -Cd -O 

3 -O +Cd 

4 +Cd +O 

 

Because of the central importance of Tables 11-1 and 11-2 it is probably worthwhile 

to show how these are obtained from Equation (A-1) and Table 11-6. Our approach is to 

take each principal function and express it in the form yx ˆ)2sin(ˆ)2sin(   psqs  so that the 
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phase can be compared to Equation (A-1) and the field type then obtained from Table 11-

6. This is a straightforward but tedious process. 

q odd, p even. First consider the curve yx ˆ)2sin(ˆ)2sin( psqs   , which we 

abbreviate as [S, S]. This corresponds to j = 0 in Equation (A-1), so for all q, p these curves 

are +Cd. Now the curve [S, C], corresponds to  qq /90 , so j in Equation (A-1) is q. 

Because q is odd the only two cases are q = 1, 5,… which Table 11-6 shows is +O and 

q = 3, 7,… which is −O. The curve [C, S] gives the phase 
q

p



90

  so for p = 2, 6,… this 

curve is −Cd and for p = 4, 8,… this curve is +Cd. The curve [C, C] gives 

 qpq /90)(   so if q = 1, 5,… & p = 2, 6,… or q = 3, 7,… & p = 4, 8,… then 

q − p = 3, 7,… and the curve is −O. If q = 1, 5,… & p = 4, 8,… or q = 3, 7,… & p = 2, 

6,… then q − p = 1, 5,… and the curve is +O. For the curve [S, −S] the phase is 

 qq /902   so because q is odd these curves are always −Cd. For [S, −C] the phase is 

 qq /903  . For q = 1, 5,… this gives 3q = 3 (mod 4) so the curve is −O. For q = 3, 

7,… 3q = 5 (mod 4) so the curve is +O. At this point one can demonstrate that we have 

determined at least one representation of a Lissajous curve for each cell in Table 11-1. 

Appendix B shows how the degenerate representations can be computed to verify every 

entry in every cell. 

q odd, p odd. For the curve [S, S] all of the curves are +O. For [S, C] the phase 

is  qq /90  so for q = 1, 5,… this gives −Cd and for q = 3, 7,… the curve is +Cd. For 

[C, S] the phase is  qp /90  so for p = 1, 5,… the curve is +Cd whereas for p = 3, 

7,… the curve is −Cd. The phase is  qq /902   for [S, −S] which gives −O for all odd 

q. For [−S, C] the phase is  qq /903   which gives +Cd for q = 1, 5,… and −Cd for q = 

3, 7,… Again we have populated each cell in Table 11-2 at least once and the equivalent 

representations of each curve can be determined by referring to Appendix B. 
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B. Degenerate phases for principal Lissajous trajectories. 

We have seen that any principal Lissajous trajectory can be represented by four different 

phases. To understand this degeneracy, and how Tables 11-1 and 11-2 were generated, we 

will work out the first row of Table 11-1 in its entirety. The first cell in Table 11-1 shows 

that for q = 1, 5…; p = 2, 6… the four phases [S, S], [−S, S], [−C, −S] and [C, −S] all 

produce a +Closed Lissajous trajectory. These phases are easily derived by shifting time by 

an appropriate amount. For the first instance the reduced field ||/ HHh   in the v-w plane 

can be written 

wvh ˆ)'sin(ˆ)'sin()( psqss  .       (B-1) 

Redefine the zero of the reduced time s by letting  90' iqsqs , where i is an integer, to 

obtain 

wvh ˆ90sinˆ)90sin()( 









q

ip
psiqss .    (B-2) 

Letting q = 4j + 1, j = 0, 1, 2… and p = 4k + 2, k = 0, 1, 2… the reduced field becomes 

wvh ˆ90
14

24
sinˆ)90sin()( 















j

k
ipsiqss .    (B-3) 

If 14  ji  then  90)360(mod 90i  for all integer values of j and 

 180)360(mod 90)24( k  for all integer values of k. The reduced field is thus 

wvh ˆ)sin(ˆ)cos()( psqss  .        (B-4) 

If )14(2  ji  the two phases in Equation (B-3) become 180° and 0° (mod 360°), 

respectively, and the field becomes wvh ˆ)sin(ˆ)sin()( psqss  . Finally, if )14(3  ji  the 

two phases become 270° and 180° and the reduced field is wvh ˆ)sin(ˆ)cos()( psqss  . To 

summarize, the equivalent fields for these values of q and p are [S, S], [C, −S], [−S, S] and 

[−C, −S], which are just those listed in the first cell of Table 11-1. 

With these results the other cases in the first row of Table 11-1 can be worked out 

quickly. The second cell in the first row of Table 11-1 is for the −Closed Lissajous 

trajectory. The first field that gives this trajectory is [C, S]. All we have to do to generate the 
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remaining fields is to add 90° to the first component of the equivalent fields we have just 

derived, [C, −S], [−S, S] and [−C, −S]. The equivalent fields for −Closed are thus [C, S], 

[−S, −S], [−C, S] and [S, −S]. 

The third cell in the first row of Table 11-1 is for the +Open case. This starts with 

[S, C] so the remaining entries are obtained by adding a phase of 90° to the second 

component of the list [C, −S], [−S, S] and [−C, −S]. This gives the equivalent fields [S, C], 

[C, −C], [−S, C] and [−C, −C]. 

The fourth cell in the first row of Table 11-1 is for the −Open case. This starts with 

[C, C] so the remaining entries are obtained by adding a phase of 90° to each field 

component in the list [C, −S], [−S, S] and [−C, −S]. This gives the equivalent fields [C, C], 

[−S, −C], [−C, C] and [S, −C]. 

The other three rows in Table 11-1 and the four rows in Table 11-2 can be worked 

out by similar derivations. 

C. Cases where the field and its converse lie on coincident closed 

curves 

It is interesting to note that in some instances the trajectories of the field and its converse 

not only lie on the same closed curves, but also have identical parity. Other than a phase lag 

these trajectories are thus identical. For this to occur requires that the condition 

)()(
2

1
shshc   be satisfied, where h denotes the reduced field, hc denotes the converse 

reduced field and s denotes the reduced time. This condition is equivalent to 

)()(
2

1
shsh  . The reduced fields of interest in this paper can be written in terms of sine 

or cosines and 










 odd for  ) 2sin(

 even for   )2sin(
)](2sin[

2

1

qqs

qqs
sq




  










 odd for  ) 2cos(

 even for  ) 2cos(
)](2cos[

2

1

qqs

qqs
sq




  
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Therefore, the only closed fields whose complement has an identical trajectory are those for 

which the reduced frequency ratios are odd, such as the rational triad 1:3:5 (see Figure 11-

8). Such closed fields do not include the origin and thus never vanish. This can be seen from 

Chapter 9 [also Ref. 11.10], where it is shown that odd : odd closed curves do not include 

the origin. 

A second interesting case is where the closed curves for the field and its converse are 

identical, but the trajectories have opposite parity. Consider the condition )()( shshc  , 

which is equivalent to )()( shsh  . This condition is obviously satisfied for fields where all 

of the components are sine functions. Such fields are characterized by periodically vanishing, 

which is the key characteristic of closed Lissajous curves whose field and converse 

trajectories differ only in parity. Of course, we have seen that [S, S, S] fields can have other 

equivalent representations, but then the condition required to demonstrate the parity 

difference of the trajectories changes as well. 

D. Supplementary tables from above main text 

Supplementary Table 11-7. Fields, projections and observed flow directions for 2:3:4. 

 

f(4s) f(6s) f(8s) L2,3 L3,4 L2,4 flow 

Sin Sin Sin + Cd +Cd +Cd CCW 

-S S -S -Cd -Cd -Cd “ 

S -S S +Cd +Cd +Cd “ 

-S -S -S -Cd -Cd -Cd “ 

Sin -Cos -Sin -Cd -Cd -Cd “ 

-S -C S +Cd +Cd +Cd “ 

S C -S -Cd -Cd -Cd “ 

-S C S +Cd +Cd +Cd “ 

Sin Sin -Sin +Cd -Cd -Cd CW 

-S S S -Cd +Cd +Cd “ 

S -S -S +Cd -Cd -Cd “ 

-S -S S -Cd +Cd +Cd “ 

Sin -Cos Sin -Cd +Cd +Cd “ 

-S -C -S +Cd -Cd -Cd “ 

S C S -Cd +Cd +Cd “ 

-S C -S +Cd -Cd -Cd “ 

       

Cos Cos Cos +O -O -O CCW 

-C C -C -O +O +O “ 

C -C C +O -O -O “ 
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-C -C -C -O +O +O “ 

Cos -Sin -Cos -O +O +O “ 

-C -S C +O -O -O “ 

C S -C -O +O +O “ 

-C S C +O -O -O “ 

Cos Cos -Cos +O +O +O CW 

-C C C -O -O -O “ 

C -C -C +O +O +O “ 

-C -C C -O -O -O “ 

Cos -Sin Cos -O -O -O “ 

-C -S -C +O +O +O “ 

C S C -O -O -O “ 

-C S -C +O +O +O “ 

       

Sin Cos -Cos -Cd +O -O CCW 

-S C C +Cd -O +O “ 

S -C -C -Cd +O -O “ 

-S -C C +Cd -O +O “ 

Sin -Sin Cos +Cd -O +O “ 

-S -S -C -Cd +O -O “ 

S S C +Cd -O +O “ 

-S S -C -Cd +O -O “ 

Sin Cos Cos -Cd -O +O CW 

-S C -C +Cd +O -O “ 

S -C C -Cd -O +O “ 

-S -C -C +Cd +O -O “ 

Sin Sin -Cos +Cd +O -O “ 

-S -S C -Cd -O +O “ 

S -S -C +Cd +O -O “ 

-S S C -Cd -O +O “ 

       

Cos Cos -Sin +O -Cd +Cd CCW 

-C C S -O +Cd -Cd “ 

C -C -S +O -Cd +Cd “ 

-C -C S -O +Cd -Cd “ 

Cos -Sin Sin -O +Cd -Cd “ 

-C -S -S +O -Cd +Cd “ 

C S S -O +Cd -Cd “ 

-C S -S +O -Cd +Cd “ 

Cos Cos Sin +O +Cd -Cd CW 

-C C -S -O -Cd +Cd “ 

C -C S +O +Cd -Cd “ 

-C -C -S -O -Cd +Cd “ 

Cos -Sin -Sin -O -Cd +Cd “ 

-C -S S +O +Cd -Cd “ 

C S -S -O -Cd +Cd “ 

-C S S +O +Cd -Cd “ 
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Supplementary Table 11-8. Fields, projections and observed flow directions for 1:2:6. 

 

f(2s) f(4s) f(12s) L1,2 L2,6 L1,6 flow 

Sin Sin Sin +Cd +O +Cd CW 

S -S -S -Cd +O -Cd “ 

-S S S +Cd +O +Cd “ 

-S -S -S -Cd +O -Cd “ 

Cos Sin Sin -Cd +O -Cd “ 

C -S -S +Cd +O +Cd “ 

-C S S -Cd +O -Cd “ 

-C -S -S +Cd +O +Cd “ 

Sin Sin -Sin +Cd -O -Cd CCW 

S -S S -Cd -O +Cd “ 

-S S -S +Cd -O -Cd “ 

-S -S S -Cd -O +Cd “ 

Cos Sin -Sin -Cd -O +Cd “ 

C -S S +Cd -O -Cd “ 

-C S -S -Cd -O +Cd “ 

-C -S S +Cd -O -Cd “ 

       

Sin Cos Cos +O -O +O CCW 

S -C -C -O -O -O “ 

-S C C +O -O +O “ 

-S -C -C -O -O -O “ 

Cos Cos Cos -O -O -O “ 

C -C -C +O -O +O “ 

-C C C -O -O -O “ 

-C -C -C +O -O +O “ 

Sin Cos -Cos +O +O -O CW 

S -C C -O +O +O “ 

-S C -C +O +O -O “ 

-S -C C -O +O +O “ 

Cos Cos -Cos -O +O +O “ 

C -C C +O +O -O “ 

-C C -C -O +O +O “ 

-C -C C +O +O -O “ 

       

Sin Sin -Cos +Cd +Cd -O CCW 

S -S C -Cd +Cd +O “ 

-S S -C +Cd +Cd -O “ 

-S -S C -Cd +Cd +O “ 

Cos Sin -Cos -Cd +Cd +O “ 

C -S C +Cd +Cd -O “ 

-C S -C -Cd +Cd +O “ 

-C -S C +Cd +Cd -O “ 

Sin Sin Cos +Cd -Cd +O CW 

S -S -C -Cd -Cd -O “ 

-S S C +Cd -Cd +O “ 

-S -S -C -Cd -Cd -O “ 

Cos Sin Cos -Cd -Cd -O “ 

C -S -C +Cd -Cd +O “ 
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-C S C -Cd -Cd -O “ 

-C -S -C +Cd -Cd +O “ 

       

Sin Cos -Sin +O +Cd -Cd CCW 

S -C S -O +Cd +Cd “ 

-S C -S +O +Cd -Cd “ 

-S -C S -O +Cd +Cd “ 

Cos Cos -Sin -O +Cd +Cd “ 

C -C S +O +Cd -Cd “ 

-C C -S -O +Cd +Cd “ 

-C -C S +O +Cd -Cd “ 

Sin Cos Sin +O -Cd +Cd CW 

S -C -S -O -Cd -Cd “ 

-S C S +O -Cd +Cd “ 

-S -C -S -O -Cd -Cd “ 

Cos Cos Sin -O -Cd -Cd “ 

C -C -S +O -Cd +Cd “ 

-C C S -O -Cd -Cd “ 

-C -C -S +O -Cd +Cd “ 

 

 

Supplementary Table 11-9. Projections for the rational triad 1:3:5. An “S” in the column 

labeled “3” indicates sin(3t), etc. 
 

1 3 5 L1,3 L3,5 L15 

Sin Sin Sin +O +O +O 

S S C +O +Cd -Cd 

S S -S +O -O -O 

S S -C +O -Cd +Cd 

Sin Cos Sin -Cd +Cd +O 

S C C -Cd -O -Cd 

S C -S -Cd -Cd -O 

S C -C -Cd +O +Cd 

Sin -Sin Sin -O -O +O 

S -S C -O -Cd -Cd 

S -S -S -O +O -O 

S -S -C -O +Cd +Cd 

Sin -Cos Sin +Cd -Cd +O 

S -C C +Cd +O -Cd 

S -C -S +Cd +Cd -O 

S -C -C +Cd -O +Cd 

Cos Sin Sin -Cd +O +Cd 

C S C -Cd +Cd +O 

C S -S -Cd -O -Cd 

C S -C -Cd -Cd -O 

Cos Cos Sin -O +Cd +Cd 

C C C -O -O +O 

C C -S -O -Cd -Cd 

C C -C -O +O -O 

Cos -Sin Sin +Cd -O +Cd 

C -S C +Cd -Cd +O 

C -S -S +Cd +O -Cd 
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C -S -C +Cd +Cd -O 

Cos -Cos Sin +O -Cd +Cd 

C -C C +O +O +O 

C -C -S +O +Cd -Cd 

C -C -C +O -O -O 

-Sin Sin Sin -O +O -O 

-S S C -O +Cd +Cd 

-S S -S -O -O +O 

-S S -C -O -Cd -Cd 

-Sin Cos Sin +Cd +Cd -O 

-S C C +Cd -O +Cd 

-S C -S +Cd -Cd +O 

-S C -C +Cd +O -Cd 

-Sin -Sin Sin +O -O -O 

-S -S C +O -Cd +Cd 

-S -S -S +O +O +O 

-S -S -C +O +Cd -Cd 

-Sin -Cos Sin -Cd -Cd -O 

-S -C C -Cd +O +Cd 

-S -C -S -Cd +Cd +O 

-S -C -C -Cd -O -Cd 

-Cos Sin Sin +Cd +O -Cd 

-C S C +Cd +Cd -O 

-C S -S +Cd -O +Cd 

-C S -C +Cd -Cd +O 

-Cos Cos Sin +O +Cd -Cd 

-C C C +O -O -O 

-C C -S +O -Cd +Cd 

-C C -C +O +O +O 

-Cos -Sin Sin -Cd -O -Cd 

-C -S C -Cd -Cd -O 

-C -S -S -Cd +O +Cd 

-C -S -C -Cd +Cd +O 

-Cos -Cos Sin -O -Cd -Cd 

-C -C C -O +O -O 

-C -C -S -O +Cd +Cd 

-C -C -C -O -O +O 
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Chapter 12 

Quantifying vorticity in magnetic particle suspensions 

driven by symmetric and asymmetric multiaxial fields12 

We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle 

suspensions. The first method employs Symmetry-Breaking Rational Fields. These fields are 

comprised of two orthogonal ac components whose frequencies form a rational number and 

an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity 

required to induce deterministic vorticity. The second method is based on Rational Triads, 

which are fields comprised of three orthogonal ac components whose frequency ratios are 

rational (e.g., 1:2:3). For each method a symmetry theory has been developed that enables 

the prediction of the direction and sign of vorticity as functions of the field frequencies and 

phases. However, the theory has its limitations. It only applies to those particular phase 

angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have 

a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude 

of the torque density induced by the field. In this chapter a single functional of the multiaxial 

magnetic field is proposed that not only is consistent with all of the predictions of the 

symmetry theories, but also quantifies the torque density. This functional can be applied to 

fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of 

effects and trends that cannot be predicted from the symmetry theories. These trends 

include the dependence of the magnitude of the torque density on the various frequency 

ratios, the unexpected reversal of flow with increasing dc field amplitude for certain 

symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 

1:3:5, that do not have the symmetry required to analyze by symmetry theory. 

Experimental data are given that show the degree to which this functional is successful in 

predicting observed trends. 

                                                           
12 As of the date of completion of this dissertation this chapter is not yet published, but will be soon. 
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12.1 Introduction 

Methods of inducing vigorous noncontact fluid flow are important to technologies involving 

heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, 

pipes and seals, all of which compromise reliability. Unfortunately, noncontact methods of 

inducing strong organized flows are few, and have limitations of their own. For example, 

natural convection [12.1–12.3] requires both gravity and a destabilizing thermal gradient. 

Magnetohydrodynamics [12.1] requires the injection of large currents into conducting 

liquids and high magnetic fields. Thermomagnetic convection in ferrofluids [12.4,12.5] 

requires gravity, a destabilizing thermal gradient and a large magnetic field gradient, which 

makes scaling to large volumes challenging. A more flexible method that eliminated these 

requirements would be more amenable to a broad range of applications. 

We have discovered several classes of triaxial fields of modest strength that induce 

vigorous noncontact fluid flow in dilute magnetic particle dispersions without requiring 

gravity, a thermal gradient, or a magnetic field gradient. Such fields can create flow lattices 

(see Chapter 5 [also Ref. 12.6]), vortex lattices and vortex fluids (see Chapters 7, 9, 10, and 

11 [12.7, 12.8]). These induced flows have been used to direct droplet motion [12.9], 

create a thermal valve (see Chapter 8 [also Ref. 12.10]), effect active wetting (see Chapter 9 

[12.7]), and stimulate a variety of biomimetic dynamics, which is the topic of Chapter 13 

[12.9]. However, at this point our understanding of these flows is based only on the 

symmetry of the multiaxial fields and this non-quantitative approach is useful only for 

certain highly symmetric fields. In this chapter a functional of the magnetic field is 

introduced that pertains to the measurable fluid torque densities. The purpose of this study 

is to investigate the degree to which this functional conforms to the wide range of observed 

phenomena, to demonstrate that it conforms to the many predictions of symmetry theory, 

and to use this functional to make predictions where symmetry theory cannot be applied. 
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12.2 Symmetry theory background 

The symmetry theories we have developed are for two classes of fields that induce vorticity, 

each of which is comprised of three orthogonal components. The first class we call symmetry-

breaking rational fields (see Chapters 9 and 10 [12.7,12.8]). These fields employ two 

alternating components and one dc component. The frequencies of the ac components form 

a rational number l:m, where l and m are relative primes, so either one or both are odd. The 

second class of fields we call rational triads (see Chapter 11 [12.11]), which differ in that all 

three components are alternating. Once again the frequency ratios are rational numbers, 

such as 1:2:3. For both field classes it can be shown that the dynamic fields have the 

symmetry of vorticity and thus have the parity required to allow deterministic fluid vorticity 

and flow reversal. 

The primary goal of the symmetry theories is to predict whether deterministic 

vorticity can occur and if so, to predict the direction of the fluid vorticity vector and the 

field changes required to reverse the sign of the vorticity without changing its magnitude. 

For symmetry-breaking fields the predictions are that the vorticity axis is parallel to the odd 

axis unless both axes are odd, in which case it is parallel to the dc field. Only if the vorticity 

is around an ac axis does reversing the dc field reverse the flow, but changing the phase of 

the high frequency (n) component by 180°/m always reverses the flow. In Chapter 10 these 

predictions were experimentally confirmed for all fields investigated [12.8]. 

For rational triads the symmetry theory predicts that vorticity occurs around the field 

component whose reduced frequency has unique numerical parity (e.g., the “2” in 1:2:3). In 

the case where all reduced frequencies are odd (e.g., 1:3:5) the dynamic field does not have 

the symmetry of vorticity, so it is not possible to make predictions about flow with this 

approach. Symmetry theory also predicts the phase changes required to reverse flow. These 

predictions were also experimentally confirmed in Chapter 11 for the fields we have 

investigated [12.11]. 
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Symmetry theory has some limitations. First, it is not possible to make predictions 

for fields whose Lissajous trajectories are not highly symmetrical. For symmetry-breaking 

fields these 2-d trajectories occur at particular phase angles between the two ac components. 

For example, for a 1:2 field these special phase angles (applied to the high frequency 

component) are 0°, 90°,180°,… In all cases there are four distinct Lissajous trajectories that 

can be treated out of this 1-d set of continuous phases. All other phase angles cannot be 

treated. For rational triads the symmetric Lissajous trajectories can be obtained by applying 

the phase angles 0°, 90°,180°,… to each of the three frequencies in any combination. It 

turns out that this creates only 16 distinct 3-d Lissajous trajectories that can be analyzed out 

of the 2-d set of independent phase angles (there are only two independent phases for three 

frequencies since the zero of time is unimportant). 

A second limitation of symmetry theory is the inability to make any kind of estimate 

of the magnitude of the torque density created within a magnetic particle dispersion subjected 

to a multiaxial field. Intuitively it is reasonable that a 1:2 symmetry-breaking field will 

create greater vorticity than a 13:20 field, but there is currently no method of justifying this 

belief. Even more disconcerting is the inability to deal with the effect of small frequency 

changes. For example, the symmetry-breaking field 150:100 factors to 3:2, so vorticity is 

predicted to occur around the high-frequency field axis. But if the low frequency is 

increased to obtain 150:101 the low frequency axis becomes odd so vorticity should now 

occur around this axis. But 150:101 can be viewed as a phase-modulated 3:2 field, so we 

expect to observe oscillating vorticity around the high frequency axis, which is indeed the 

experimental observation. Symmetry theory cannot address this oscillating flow. 

Finally, symmetry theory cannot address the utter peculiarity of the origin of these 

flows. There is just something strange about predicting vorticity for fields that in general are 

non-circulating. Yet these flows can be quite vigorous. In fact, the symmetry theory only 

shows that these flows are allowed and cannot make any statement about whether they 

should or should not occur. For these reasons it is desirable to have a physically reasonable 
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method that for any given field can produce a vorticity vector. One approach is to simulate 

the system microscopically. This would lead to knowledge of the microscopic magnetic 

particle dynamics as well as addressing the issues raised above, but such an approach would 

be extremely time consuming. A second approach is to develop a closed form theory of the 

microscopic particle dynamics that can at least be numerically integrated. A third approach 

is to use physical insight and previous results to develop a functional that produces the 

vorticity vector. This is the approach we have taken as a first step on the path to quantifying 

vorticity in any multiaxial field. 

12.3 The torque density functional 

A physically meaningful functional must conform to all of the above-mentioned predictions 

of the symmetry theories and yet must also conform to various experimental observations. 

These observations include the finding that the torque density in a particle suspension 

exposed to a particular field is independent of particle size, liquid viscosity, and the 

magnitude of the field frequencies, provided that the Mason number is below a critical value 

that permits particle chaining. For the restricted case of a “vortex field,” which consists of a 

rotating field to which an orthogonal dc field is applied, an expression has been derived for 

the suspension torque density that is based on the analysis of volatile particle chains that lag in 

phase behind the field [12.12]. This is a phase lag problem in three dimensions for particle 

chains whose size is determined by various instabilities that lead to fragmentation. This 

theory successfully accounts for all of the experimental observations on vortex fields, the 

result being  

 45  for  cossin
12

1 222

0 fffp M       (12-1) 

where p is the volume fraction of particles, 0 is the permeability of free space, M is the 

particle magnetization, and f is the angle the field vector makes to the dc field. For this case 

the Mason number is defined as )2(9 2

0MMn  , where  is the field frequency. 
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Equation 12-1 is valid when this Mason number is less than ~0.02 for balanced vortex 

fields—those having equal rms field components ( 2tan f ). In the case of linear 

magnetic polarization the particle magnetization for a dilute suspension is given by 0Hp  

where 3p  is the intrinsic susceptibility of a magnetic sphere comprised of a material 

whose relative permeability greatly exceeds that of the liquid, which is the typical case for 

soft ferromagnetic particles. In short, the specific torque density p  is simply 

proportional to the energy density 2

00H  of the field. 

The vortex field is a very simple case because it admits a steady-state solution. For 

other multiaxial fields, such as 1:2:dc the field magnitude is not constant and the axis about 

which instantaneous field rotation occurs is not so easily described. If we make the 

approximation that the instantaneous field energy density gives the instantaneous torque 

density then all that remains is dealing with the direction of the instantaneous torque vector. 

As a second approximation this torque direction is taken to be the direction about which the 

instantaneous field rotates, )()()()( 0000 tttt HHHH   . In other words, this vector is 

normal to the instantaneous rotation plane of the field. If the torque is indeed caused by 

particle chains lagging the field, then this is a good approximation when the phase lag is 

small (which should be the case if mixing occurs, because the phase lag “self-corrects” by 

way of chain fragmentation if the phase lag becomes too large [12.12]). The expression for 

the torque density functional M is thus 

  where )(
1

0 dssMM ds
ss

ss
ss

)()(

)()(
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hh
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






      (12-2) 

where s = ft is the reduced time, f is a frequency, and h is the reduced field. For symmetry 

breaking fields the reduced field is 

zyx
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h ˆ
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l and m are relative primes and by convention l  ≤  m. The rms reduced field is 22 2c . 

(For a balanced field, where all rms field components are equal c = 1.) For the rational triads 

we restrict our attention to balanced fields, so 

zyx
H

h ˆ)2sin(ˆ)2sin(ˆ)2sin(
)(

)(
0

0
nml ftnftmftl

H

t
t    .    (12-4) 

In this case the rms reduced field is 2/3  and to be definite l  ≤  m  ≤  n. The predicted 

torque density is related to the dimensionless torque density functional by 

MT
2

00Hconst p . 

This expression may be viewed as an ansatz, not a theory per se; however, it produces 

many useful results that are in accord with both symmetry theory and experiment, and also 

can be used to successfully predict unexpected effects that we have observed in experiment. 

Some of these predictions were sufficiently strange that we literally ran down to the lab to 

verify them, and verify them we did, as will be discussed below. 

12.4 Experimental 

The magnetic particle suspension consisted of molybdenum-Permalloy platelets ~50 m 

across by 0.4 m thick (Novamet Corp.) dispersed into isopropyl alcohol at a low volume 

fraction. The uniform triaxial ac magnetic fields were produced by three orthogonally-

nested Helmholtz coils, operating in series resonance with appropriately-configured 

capacitor banks, two of which employ a computer-controlled fractal design [12.13]. For the 

1:3:5 rational triad field studied in this work the fundamental frequency was 50 Hz and all 

three induction field component amplitudes were 150 Grms. All three field components were 

phase-locked via two Agilent/HP function generators (equipped with Option 005), allowing 

for stable control of the phase angle of each component. (If the field components are not 

phase-locked there will be a very slow phase modulation between the components due to 
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the finite difference in the oscillator frequency of each function generator, preventing 

meaningful studies of the phase angle.) 

To quantify the magnitude of the vorticity, the torque density of the suspension was 

computed from measured angular displacements on a custom-built torsion balance. In this 

case the suspension (1.5 vol%) was contained in a small vial (1.8 mL) attached at the end of 

the torsion balance and suspended into the central cavity of the Helmholtz coils via a 

96.0 cm-long, 0.75 mm-diameter nylon fiber with a torsion constant of ~13 N·m rad−1. 

12.5 Results and Discussion 

12.5.1 Computations for symmetry-breaking fields 

The first issue that must be addressed is whether the functional conforms to the predictions 

of symmetry theory. The case of a 2:3:dc field with both phase angles set to zero is given in 

Figure 12-1. Recall that vorticity must occur around the high frequency (y) axis in this 

case. In these figures the three components of the integrand of M(s) are given as functions of 

the reduced time and the integral. This integral corresponds to the rotation of a body subject 

to this time-dependent torque density. Along both the x and z axes the integrands are  

 

Figure 12-1.  Instantaneous values of the computed torque functional are given for a 2:3:dc 

symmetry-breaking field. The integral of these functions corresponds to the rotation of a free 

body subjected to this torque. A persistent rotation only occurs around the y axis, which is 

indeed the prediction of symmetry theory. The time-averaged torque density functional is the 

slope of the integral. It is this slope that pertains to measurement, since the field frequencies are 

typically in the audio range, generally above 48 Hz in our laboratory and frequently much 

higher, and so the fluctuations only give rise to rapid fluctuations of the needle in our torsion fiber 

apparatus. 
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perfectly symmetric around zero, so the integral over one cycle is zero and the average slope 

of the integral, which is proportional to the torque density, is thus zero. Along the y axis the 

integral is asymmetric, and the integral has a finite average slope and torque density. So this 

particular case conforms to the predictions of symmetry theory. In fact, even the predicted 

fluctuations in the torque can be observed experimentally. 

12.5.2 Dependence on phase and dc field 

The torque density has a strong dependence on the relative phase between the ac field 

components, as well as on the magnitude of the dc field. This dependence is shown in 

Figure 12-2 for the y axis torque created by the 2:3:dc field. At zero dc field the torque 

functional is zero, in accordance with symmetry theory for even, odd fields, but for finite dc 

fields the torque is non-vanishing, is periodic on the interval 180°, and can be reversed at 

constant magnitude by any 90° shift of the high frequency phase, in agreement with both 

symmetry theory (see Chapter 9 [also Ref. 12.7]) and experiment (see Chapter 10 [also Ref. 

12.8]). Moreover, symmetry theory shows that reversing the dc field reverses the torque for 

even, odd fields and the torque functional also shows this reversal. In general, for the field 

l:m symmetry theory shows that when plotted against the high-frequency phase the torque  

 

Figure 12-2.  Computed torque density as a function of the high frequency phase for the 2:3:dc 

field.  The dc field is relative to the rms amplitude of either of the ac field components. 
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curve is periodic on the interval 360°/l and reverses at constant magnitude for phase shifts 

of 180°/l. 

Odd:odd fields differ in that vorticity is symmetry allowed even in the absence of the 

dc field component and therefore must not reverse upon dc field reversal. Computations for 

the 1:3 field do indeed show that the torque functional does not vanish in the absence of a dc 

field, but grows stronger as the dc field increases and cannot be reversed by reversing the dc 

field. This suggests the possibility of torque when the dc field is replaced by an ac field, a 

subject discussed below. However, the experimental situation is complicated by the fact that 

in the absence of the dc component the particles experience a time-averaged interaction that 

can be described as a negative dipolar interaction, causing the particles to form into parallel 

stationary sheets [12.14–12.16] (like baklava), instead of forming the volatile chains that 

give rise to vorticity. Because of this competing effect, fluid vorticity does require the 

presence of the dc component, at least for spherical particles. For platelets made of soft 

ferromagnetic materials the situation is more complex. Although stationary sheets can form 

in a biaxial field under some circumstances (e.g., very high frequency, very high viscosity, 

low field), flow instabilities typically occur in the form of a square lattice of antiparallel flow 

columns normal to the plane of the field (see Chapter 5 [also Ref. 12.6]). When these 

columns form in an odd:odd field there is pronounced vorticity as well, the axis of which is 

parallel to the flow columns. At higher platelet loadings a normal-field instability can occur 

that causes the particle dispersion to rise up as a ridge, within which the lattice of flow 

columns can be observed (see Figure 5-4 in Chapter 5 [also Ref. 12.6]). The vorticity in the 

absence of a dc field can easily be confirmed by detuning one of the field components to 

create a phase modulation that periodically reverses the vorticity. The ridge then sloshes 

back-and-forth in response to the oscillating vorticity, which brings us to the next issue: 

field heterodyning. 
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12.5.3 Heterodyning 

A more interesting problem is that of heterodyning, which occurs when one of the 

frequencies is detuned to create a modulation of phase and flow reversal. In Figure 12-3 

are presented computations for the case 101:150:dc. Because this is a modulation of 2:3:dc 

it is expected that a periodic torque around the y axis will occur, and this is indeed observed  

 

Figure 12-3.  When a 2:3:dc field is detuned field to 101:150:dc the heterodyne beating creates 

periodic flow reversal around the y axis, which is indeed observed in the laboratory.  (left) The 

torque functional demonstrates this flow reversal and shows that the peak torque density is 

expected to be the same as for the non-heterodyned field.  However, symmetry theory shows 

that for the 101:150:dc field the average torque can be non-vanishing only around the x axis.  

For this field the torque functional shows that around the y axis does indeed average to zero and 

a small but finite net torque does occur around the x axis (right). 

in the component My(s). More importantly, the time-average of this torque is zero, in 

conformity to symmetry theory. However, symmetry theory allows a finite time-average 

torque around the x axis, and although this torque is quite small, the slope can be seen in the 

data in Figure 12-3(right). 

12.5.4 Torque density for fields of increasing complexity 

As the irreducible ratio of the field frequencies requires larger integers to represent, both 

experiment and intuition indicate that the suspension torque density diminishes, though 

symmetry theory is uninformative on this point. To examine this issue we have considered a 
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few particular sequences of irreducible rational numbers. The first two sequences arise in 

investigations of the fractional quantum Hall effect [12.17] and serve as useful examples here 

as well. Both of these sequences approach 1/2, one from above [k : (2k − 1), k = 1,2,…] and 

one from below [k : (2k + 1), k = 1,2,…]. All of these calculations are for balanced fields and 

the relative phase angle between the field components (either x or y will do) is varied to 

find the maximum of the torque functional. 

The dependence of |M| on the denominator of these ratios is shown in Figure 12-

4(top). For the sequence approaching ½ from above the torque vacillates between the high 

frequency and dc field directions, in agreement with symmetry theory, and falls off 

asymptotically as the inverse of the number of domains N in the relevant Lissajous curve, 

given by )1)(1(  mllmN . Fields such as 21:41 therefore give rise to very small torques 

in comparison to something like 2:3. For the sequence approaching ½ from below, Figure 

12-4(top, right), the behavior is very similar, with the odd:odd fields showing somewhat 

greater torque. 

Both of these sequences were investigated experimentally, with the torque data 

shown in Figure 12-4(bottom). The experimental torque values display the alternation of 

the vorticity axis between the high frequency and dc field axes, in accord with the torque 

functional and symmetry theory. Furthermore, an oscillatory trend in the relative 

magnitudes of the torques between the two vorticity axes is also observed; however, the 

trend in the relative magnitudes is reversed from that predicted by the functional. The 

reason for this discrepancy is not clear. Finally, the overall magnitude of the torque is 

observed to decay rapidly with increasing denominator frequency, corresponding to an 

increasing number of Lissajous domains. 

Two sequences approaching unity were investigated as well. The first consists of 

irreducible ratios containing an even integer, [k : (k + 1), k = 1,2,…], and the second consists 

of only odd numbers, [(2k − 1) : (2k + 1), k = 1,2,…]. Figure 12-5(top, left) shows that for 

the even, odd field sequence there is an oscillation between the torque being around the low 



271 

 

and high frequency axis, as expected from symmetry theory, and that the maximum torque 

is again asymptotically scaling as the inverse number of domains in the Lissajous plot. For 

odd:odd fields the torque is predicted to occur only around the dc field direction and once  

 

 

Figure 12-4.  (top) The maximum of the torque functional as a function of phase is plotted versus 

the relative denominator frequency for rational number sequences approaching ½ from above 

and below. Multiplying these peak torques by the number of domains in the 2-d Lissajous plots 

shows an approach to an asymptote, indicating an algebraic decay. The alternation in the 

torque axes are predicted by symmetry theory as well. (bottom) Experimental torque data for 

rational number sequences approaching ½ from above and below show the alternation of the 

vorticity axis between the high frequency and dc field axes, although the relative magnitude of 

the torque around each axis is reversed from the trend predicted by the functional. In both 

cases the magnitude of the torque is observed to decay rapidly as the number of Lissajous 

domains increases. 
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again it falls off as the inverse number of domains, Figure 12-5(top, right), but the 

amplitude is much larger for any given domain number than for the other cases investigated. 

 

 

Figure 12-5.  (top) The maximum of the torque functional as a function of phase is plotted versus 

the relative denominator frequency for even:odd and odd:odd frequencies approaching unity. 

Multiplying these peak torques by the number of domains in the 2-d Lissajous plots shows an 

approach to an asymptote, indicating an algebraic decay. The odd:odd torques are expected 

to be especially strong. (bottom) Experimental torque data for even, odd and odd,odd 

frequency ratios approaching unity. An oscillatory series of torques are produced for the even, 

odd series whose vorticity axis alternates between the high and low frequency components, 

whereas the vorticity axis is always along the dc field in the odd, odd series. In both cases the 

magnitude of the torque is observed to decay rapidly as the number of Lissajous domains 

increases. 
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Experimental torque data were also collected for the even, odd sequence 

approaching unity, Figure 12-5(bottom, left). In accord with the predicted data from the 

functional in Figure 12-5(top, right), the experimental torque values display an oscillatory 

behavior as the overall magnitude rapidly decays with increasing denominator frequency. 

The oscillations in torque correspond to the vorticity axis alternating between the high and 

low frequency components. However, as was observed with the sequences approaching ½ 

from above and below, the trend in the relative magnitudes between the two vorticity axes 

is reversed from that predicted by the functional. The odd:odd ratio approaching unity was 

also investigated [Figure 12-5 (bottom right)], in which case the torque only occurs 

around the dc field axis and falls off rapidly with increasing denominator frequency. 

Finally, neighboring terms in a Fibonacci sequence are relative primes and so make 

sequences of irreducible rational numbers. We investigated the sequence 1:1, 1:2, 2:3, 3:5, 

5:8, 8:13,… This sequence approaches the inverse golden ratio. The maximum torque 

functional for this sequence is plotted in Figure 12-6. The vorticity axis is observed to form 

 

Figure 12-6.  The Fibonacci sequence creates a periodic transition between all three field axes 

and once again the peak torque falls off as the inverse of the number of domains. 
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the repeated axis sequence dc, low, high, which is once again in accord with symmetry 

theory. Once again the torque falls off as the inverse number of domains in the Lissajous 

plots. 

12.5.5 Flow reversal 

In Chapter 10 [also Ref. 12.8] we reported a very strange observation for a 1:2 field. After 

applying the ac fields the dc field was slowly ramped up, which caused fluid vorticity to 

initiate and progressively increase. As the field was progressively increased further the 

vorticity slowed down, stopped, and then reversed direction. Symmetry theory cannot 

address this issue, but can the torque functional shed light on this? In Figure 12-7 

calculations are shown for a 1:2 field over a range of dc field strengths, ranging from c = 0 to 

1.25 (see Equation 12-3). Flow reversal occurs at roughly c = 0.75, which is commensurate 

with experimental observations of surface flow [12.8]. We pursued this issue by 

investigating many different symmetry-breaking rational fields and for all SBR fields of the 

form odd:odd + 1 that we have investigated flow reversal is indicated. We can find no other 

fields where the torque functional indicates flow reversal. 

 

Figure 12-7.  For all of the odd:odd+1:dc fields we have investigated (1:2, 3:4,…) the torque 

functional indicates flow reversal with increasing field.  Flow reversal seems to be unique to this 

class of fields. 
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12.5.6 Inducing vorticity with biaxial fields? 

It is quick and easy to investigate a lot of ideas with the torque functional, including ideas 

that might be difficult to screen experimentally. Symmetry-breaking rational fields consist of 

three orthogonal components and thus are three-dimensional fields. Is it possible to initiate 

strong vorticity with fields confined to a plane? Take for example the biaxial field in the x-y 

plane with frequency ratio 2:3. Recall that this field produces vorticity around the y axis 

when a dc field is applied along the z axis. If instead a dc field is applied along the y axis, 

which is the odd axis, the torque functional indicates torque around the z axis, Figure 12-8. 

The dependence of the torque functional on phase angle approaches a square wave, which is 

striking. The z axis is a C2 symmetry axis for this case when one considers the equivalency of 

the field and its converse and the other two axes are antisymmetric under a 180° rotation. 

Because this symmetry is shared by vorticity around the z axis this observation could have 

been anticipated. Experiments on platelet suspensions do indeed confirm this prediction. 

On the other hand, if a dc field is applied along the x axis the torque functional predicts that 

vorticity will not occur, and it is notable that all three axes are C2 axes for the field and its 

converse, which is not the symmetry of vorticity. 

Similar observations apply to the 1:2 field: when a dc field is applied along the odd 

axis (which in this case is the low frequency axis) the torque functional indicates torque 

around the z axis. When a dc field is applied along the even axis the functional predicts no 

torque. Again, this behavior could have been anticipated from the symmetry of the 

trajectories. It would appear that all even, odd fields are capable of producing a z axis torque 

when a dc field is applied along the odd field component. 

As discussed above, odd:odd fields produce torque around the z axis even in the 

absence of a dc field, because odd:odd fields possess the symmetry of vorticity, with the z 

axis being the C2 axis of symmetry. Applying a dc field along either of the ac components 

does not change this symmetry and does not appreciably alter the dependence of the torque 

functional on phase angle. Odd:odd fields do not seem to be interesting as regards the 
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Figure 12-8.  When a dc field is applied along the high frequency axis of a 2:3 field the resulting 

biaxial field produces torque around the normal to the field plane. 

addition of in-plane dc fields. However, suspensions of spherical particles have a strong 

tendency to form particle sheets, and the dc field component reduces this tendency, 

allowing the particles to form the chains that presumably give rise to the torque. (Spherical 

particles in epoxy do not give an appreciable torque due to the high viscosity.) 

12.5.7 Rational Triads 

The experimental investigation of the torque generated by rational triads is time consuming 

because there are two independent phase angles. If torque measurements are made at 10° 

intervals for each of the two phase angles, over 1200 measurements are required. At roughly 

5 minutes per measurement that requires 100 hrs. of continuous work. Any new ideas about 

rational fields are therefore tough to sort through, especially those that might lead to off-axis 

vorticity (see below), which could triple the measurement time, since measurements would 

in general have to be made along all three field directions. In contrast, it is a matter of much 

less than a minute to compute the torque functional for the same set of phase angles. These 

results are sufficiently useful to guide experimental work. In the following we will explore 
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the torque density functional for the specific cases of the four classes of rational triads, three 

of which we have previously investigated experimentally in Chapter 11 [ also Ref. 12.11]. 

In Chapter 11 we have shown that there are four classes of rational triads [12.11]. 

The first is even, odd, odd and 1:2:3 is the simplest example of this class. Symmetry theory 

shows that this field produces vorticity around the even axis. The second class is even, even, 

odd fields with even:even factoring to even:odd. A simple example of this class is 2:3:4 and 

symmetry theory shows that vorticity is around the odd axis for this class (i.e., “3” in this 

case). The third class is even, even, odd with even:even factoring to odd:odd and once again 

symmetry theory predicts vorticity around the odd axis. The example of this class that was 

experimentally investigated in Chapter 11 is 1:2:6. Finally, the fourth class is odd:odd:odd, 

for which symmetry theory could not make predictions, simply because fields of this class do 

not have the symmetry of vorticity. These fields can be treated by the torque density 

functional, however, which we will find predicts off-axis vorticity for the example field 

1:3:5. 

The symmetry theory for rational triads is based on those 3-d Lissajous trajectories 

that have highly symmetric projections on faces normal to each of the three field directions. 

These symmetric 3-d trajectories can be expressed by assigning to each of the three sine 

terms in Equation 12-4 one of the phases 0°, 90°, 180°, 270°, corresponding to sine, 

cosine, −sine, −cosine. There are thus 4 × 4 × 4 = 64 symmetric 3-d Lissajous trajectories 

that can be treated by symmetry theory. These 64 trajectories can be classified into 4 groups 

of 16. In each of these groups the magnitude of the torque density is fixed, but 8 of the 

trajectories are clockwise and 8 are counterclockwise. In addition to predicting the vorticity 

axis, symmetry theory also predicts these groups and the relative vorticity sign for each 

trajectory within each group. 

The 1:2:3 triad.  Calculations for the 1:2:3 field show that vorticity does indeed occur 

around the even axis. In Figure 12-9 calculations are presented for the torque functional as 
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a function of each possible set of two independent phase angles, (1, 2), (2, 3) and (1,3). 

Of course, all of these data sets contain the same information and can be related to each 

other by a change of variables. For the 1:2:3 field the equivalent phase angles are

)3, 2, 0), (, 0, ), (0, , ( 11222

3

22

1

121   . 

In the (1, 2) plane one lattice vector that defines the unit cell (a vector that 

preserves torque density) is seen from Figure 12-9(top left) to be A=(0°, 180°). 

Substituting this phase shift into Equation 12-4 (with 03  ) gives  

zyx
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0 snsmsl
H

t
t ml

      (12-5) 

where  90ss . The torque equivalence of the fields [−C, S, C] {abbreviation for 

[−cos(1s), sin(2s), cos(3s)]} and [S, S, S], is in accord with symmetry theory, as shown in 

Table 11-5 of Chapter 11 [also Ref. 12.10]. The second lattice vector is B = (120°, 60°). 

The change of variables  30ss  leads to [C, S, −C], which is also shown by symmetry 

theory to be equivalent to [S, S, S]. Experimental data need only be taken over this unit cell, 

which is only 1/6 the computed area. The lattice vectors are those phase changes that 

preserve vorticity. To reverse vorticity at constant magnitude requires a phase change of 

(60°, 120°). 

It is interesting to examine how the unit cell transforms in other data planes. For the 

(1, 3) plane the lattice vectors A and B become (270°, 90°) and (90°, −90°), which is the 

rather large and experimentally awkward unit cell observed in Figure 12-9(top right). In the 

(2, 3) plane the lattice vectors A and B transform to (180°, 0°) and (−180°, 360°) to 

create the unit cell apparent in Figure 12-9(bottom). (Of course, a simpler choice for the 

unit cell is the lower half of the plane.) In any case, the torque functional can determine 

which pair of phase shifts leads to a unit cell suitable for experimental investigation and 

avoids the issue of taking redundant data. In the (1, 3) plane flow reversal at constant  
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Figure 12-9.  The torque functional correctly predicts torque around the y axis for the 1:2:3 triad.  

The torque density is plotted as a function of the three possible sets of phases. 

magnitude requires a phase shift of (90°, 90°) and in the (2, 3) the required phase shift is 

(0°, 180°). 

The torque functional can also be computed for the exact phases of all of the 64 

symmetric 3-d Lissajous trajectories presented in Table 11-5 of Chapter 11 [also Ref. 

12.10]. These computations show that within each group of 16 fields the torque magnitude 

is indeed constant and the computed relative vorticity signs (CW or CCW) are in agreement 

as well. 

In Chapter 11 experimental data were collected in the (1, 3) plane and demonstrate 

the predicted lattice vectors. However, the “dog bone” shaped peaks and valleys in Figure 

12-9(top left) are merely elongated single peaks in the experimental data. 
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The 2:3:4 triad.  In this case the torque functional shows torque around the odd axis 

(“3”), in accord with the predictions of symmetry theory. The equivalent phase angles are 

)2, , 0), (, 0, ), (0, , ( 222

3

333
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33

2

232    and in the (2, 3) plane lattice vectors are 

A=(0°, 180°) and B=(90°, 45°), Figure 12-10(top left). These phase shifts transform [S, 

S, S] to [S, −S, S] and [S, −C, −S], respectively. Table 11-7 of Appendix D in Chapter 11 

shows that symmetry theory shows the equivalence of [S, S, S], [S, −S, S], and [C, −S, −S]. 

Moreover, torque functional calculations for the 64 symmetric Lissajous trajectories within 

this table are in agreement with the vorticity magnitude and sign groupings. Flow reversal at 

constant magnitude can be achieved by the phase change (0°, 90°). 

 

Figure 12-10.  The torque functional correctly predicts torque around the y axis for the 2:3:4 triad.  

The torque density is plotted as a function of the three possible sets of phases. 
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The lattice vectors A and B become (120°, 240°) and (60°, −60°) in the (2, 4) 

plane and the unit cell in this case is shown in Figure 12-10(top right). Flow reversal at 

constant magnitude can be achieved from the phase change (0°, 180°). In the (3, 4) plane 

the lattice vectors become (180°, 0°) and (90°, 180°) and a unit cell corresponding to these 

vectors is shown in Figure 12-10(bottom). The simplest flow reversal vector in this plane 

is (90°, 0°). 

In Chapter 11 experimental data were collected in the (2, 3) plane, which was 

perhaps not the best choice. The symmetry of these data reflect that of the torque 

functional, but both the shape of the maxima and their exact locations differ somewhat. 

The 1:2:6 triad. This is the final example of a rational field for which we previously 

collected experimental data in Chapter 11. Once again the torque functional demonstrates 

torque around the axis predicted by symmetry theory, which in this case is the odd axis. The 

computed magnitudes and the signs of the vorticity are in accord with the predictions of 

symmetry theory given in Table 11-8 of Appendix D in Chapter 11. In the (1, 6) plane the 

lattice vectors are (0°, 360°) and (90°, 0°), which transform [S, S, S] to [S, S, S] and [C, S, 

S] respectively. Table 11-8 in Appendix D of Chapter 11 shows that symmetry theory 

predicts that the torque density will be invariant for these fields. Flow reversal at constant 

magnitude can be achieved with the phase change (0°, 180°). 

The equivalent phase angles are )6, 2, 0), (0, , ), (, 0, ( 16163

1

66

1

161   . In the 

(1, 2) plane the lattice vectors transform to (60°, 120°) and (90°, 0°). In the (2, 6) plane 

the lattice vectors become (0°, 360°) and (180°, 540°). The unit cells for each of these 

representations are evident in Figure 12-11. 

In Chapter 11 experimental data were taken in the (1, 6) plane. These data reflect 

the symmetry of the torque functional, but the peak torques occur at somewhat different 

phase angles, demonstrating the limitations of the torque functional. 
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Figure 12-11.  The torque functional correctly predicts torque around the x axis for the 1:2:6 field.  

Again the torque density is plotted as a function of the three possible sets of phases. 

The 1:3:5 triad. Odd:odd:odd fields do not have the symmetry of vorticity and so we 

could not conclude anything about the torque created by these fields in Chapter 11 [also 

Ref. 12.10]. However, some interesting comments can be made about such fields. Recall 

that for symmetry-breaking, odd:odd fields the vorticity is invariant to the direction of the 

dc field. This fact implies that if the dc field is replaced by an alternating field fluid vorticity 

will still occur around the same axis. Indeed, odd:odd:dc and odd:odd:even both produce 

vorticity around the z axis. However, by the same logic odd:odd:odd fields should produce 

vorticity around all axes, so the situation is one of competing amplitudes, which is the 

domain of the torque functional. 
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Figure 12-12.  The torque functional predicts torque around all axes for the 1:3:5 field. 

 

 

Figure 12-13.  Experimental torque density data for the (1, 5) plane for a 1:3:5 rational triad 

(f0=50Hz; B=150 Grms).  These data possess the same lattice vector and thus the same symmetry 

as those in Figure 12-12(top left) despite the superficial difference in their appearance. 
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For the 1:3:5 field the torque functional predicts torque around all field directions, 

so the net torque will be off axis. The computed torques around the x, y, and z axes are 

shown in Figure 12-12. Under the qualitative reasoning of the previous paragraph torque 

around the x axis is produced by the 3,5 components. The torque functional peaks at 0.175 

for this axis. The torque functional around the z axis peaks at 0.081 and can be roughly 

thought of as being created by the 1,3 components. Finally, the torque functional around the 

y axis peaks at only 0.0033 and can be approximately attributed to the 1,5 components. In 

fact, calculations for the balanced symmetry breaking field 1:3 produces a torque maximum 

of 0.163, for 3:5 the maximum is 0.067 and 1:5 maximizes at 0.002. The torque around the 

y axis is too small to measure, but the other torques were mapped out in the (1, 5) plane, 

Figure 12-13. 

Although the experimental torque data almost appear sheared or skewed compared 

to those predicted by the functional in Figure 12-12(top left), both sets possess the same 

lattice vectors (180°, 0°) and (0°, 360°) and thus the same unit cell. The similarity in 

symmetry between the experimental and predicted data can be appreciated by considering 

the crossed white lines (with round endpoints) connecting extrema in each image. Despite 

the fact that the data possess the same symmetry—the orientation and scale of these lines are 

identical—there is a phase shift between the predicted and experimental data indicated by 

the fact that the positions of the white lines are not in the exact same location in each phase 

map. The origin of this phase offset is not clear at this time, but was also seen with 

previously studied rational triads in Chapter 11 (i.e., 1:2:3, 1:2:6, and 2:3:4) [12.10]. There 

is a noteworthy consequence concerning flow reversal due to the subtle differences between 

the experimental data compared to those predicted by the functional. Recall that the locus 

of points that delineate the green and red regions in these torque plots are points of zero 

torque, and thus indicate points of flow reversal. For both the predicted and experimental 

data, there is only one point of flow reversal along the horizontal white lines, indicated by 

the white cross tick. However, a comparison of the vertical white lines reveals that the 
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functional predicts two points of flow reversal on this interval, whereas experiments reveal 

four. 

12.6  Concluions 

We have developed a functional—by using physical insight and previous results based on the 

theory of vortex magnetic field mixing—that can be used to predict the relative magnitude 

and direction of the vorticity vector in magnetic particle suspensions driven by complex, 

time-dependent magnetic fields (symmetry-breaking rational fields and rational triads). We 

find that the functional predicts results that are in agreement with both the symmetry 

theories developed for these new classes of fields as well as experimental observations. Such 

a functional allows for the rapid investigation of innumerable magnetic field schemes, which 

can be used to direct future experimental work, and serves as a natural first step toward 

understanding the microscopic origins of the observed vorticity. 
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Chapter 13 

Complex magnetic fields breathe life into fluids13 

The vast majority of materials research exploits equilibrium or quasi-equilibrium processes 

to produce inert materials. In contrast, living systems depend on far-from-equilibrium 

kinetic processes that require a continuous flux of energy to persist and perform useful 

tasks. The Greek god Hephaestus forged metal automatons that he miraculously animated to 

perform the tasks of living creatures. Is something like this actually possible? Here we show 

that subjecting magnetic fluids suspended in an immiscible liquid to uniform, 

multidimensional, time-dependent magnetic fields, generates a variety of life-like collective 

dynamics, including various forms of locomotion, swarming and feeding, that are sustained 

by the continuous injection of energy via the applied field. These leaderless emergent 

behaviors occur autonomously, without human guidance, and are quite surprising. Such self-

healing, remotely-powered fluid automatons could be used as an extraction/separation 

technology to efficiently purify water by scavenging toxic chemicals and microorganisms, or 

alternatively enable the controlled release of chemicals. Other possible applications include 

vigorous fluid mixing and even microdroplet manipulation for microfluidic bioassays. 

13.1 Introduction 

The search for soft matter systems that mimic the complex dynamics of living organisms 

extends back to Bütschli, who discovered in 1890 that emulsions driven by saponification 

reactions could exhibit something reminiscent of the motions of single-cell organisms 

[13.1]. More than a century later, and long after Bütschli had been forgotten, Snezhko and 

co-workers [13.2] discovered that magnetic colloids confined to an air–liquid or liquid–

liquid interface can exhibit structures with plausibly biomimetic dynamics when energy is  

                                                           
13 Originally published as:  K.J. Solis and J.E. Martin, Complex magnetic fields breathe life into fluids, Soft Matter 10, 9136–9142 
(2014). 
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injected with a uniaxial ac magnetic field tuned to couple to standing waves at the interface. 

The “snakes” and “asters” that form exhibit sub-carangiform locomotion (a type of fish-like 

swimming), phagocytosis and cargo transport. In all cases such emergent phenomena arise 

from the continuous injection of energy into the system, but an applied magnetic field has 

the advantage that it constitutes a limitless supply of energy that can be presented in a 

bewildering variety of time-dependent, multiaxial forms. 

In recent years we have used particular triaxial magnetic fields consisting of three 

orthogonal components to drive emergent phenomena in the form of advection lattices (see 

Chapter 5 [also Ref. 13.3]), vortex lattices and vortex fluids (see Chapters 7, 9, and 10 

[13.4,13.5]), but none of these phenomena are biomimetic. Each of the three fields has an 

independent frequency, amplitude and phase, so the field vector can be directed to gambol 

about in three dimensions in an infinite variety of ways. The connection of these fields to the 

world of biomimetic motion occurred when we finally released the magnetic fluid from the 

confines of a solid container by immersing it in an immiscible fluid. Now the magnetic fluid 

could deform at will, driven by the emergent dynamics of the countless suspended magnetic 

particles. The marvelous feats this fluid performs would amuse and perhaps even astonish 

both Hephaestus and Bütschli. We have observed the formation of countless swarming 

“bees” that dart around vigorously; created a magnetic serpent—complete with flicking 

tongue—that grows by striking out with its head and cannibalizing the bees from which it 

emerged; formed slugs that crawl, slime molds that send out a web of tentacles, and 

amoebas that project pseudopodia to dance about weirdly and unpredictably. 

These biomimetic motions are especially surprising because the spatially uniform fields 

we apply cannot generate a body force on the fluid, nor are the fields modulated or directed 

in any way to effect motion. However, in Chapters 9 and 10 we have shown that the 

trajectories of such dynamic fields have subtle aspects of symmetry that can lead to a body 

torque on the fluid, even with magnetically-soft spherical particles [13.4,13.5]. In addition, 

the suspended particles couple to each other through their induced magnetic and 
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hydrodynamic interactions, both of which are notoriously long-ranged. The magnetic 

interactions have significant many-body effects in triaxial fields, so these dynamic 

phenomena are a nontrivial emergent behavior of the system. 

Systems driven far from equilibrium often display emergent dynamics, but it's 

difficult to define emergence precisely. Is turbulence an emergent property? The economist 

Jerry Goldstein defined emergence this way: “the arising of novel and coherent structures, 

patterns and properties during the process of self-organization in complex systems”. This 

definition in turn begs the definition of “complex” which itself is a little difficult to pin 

down, so we'll just stick with “complex systems inspire awe.” To the natural scientist these 

definitions call to mind such classic examples as swarming, schooling, and the spectacular 

murmurations of starlings and purple martins [13.6,13.7]. In the physical sciences familiar 

examples include pattern formation in convection [13.8,13.9], chemical clock reactions 

[13.10], granular materials [13.11], and dendrite formation [13.12,13.13]. In the area of 

dynamical systems emergent phenomena include cardiac arrhythmias [13.14], the phase 

synchronization of flashing fireflies [13.15], and many others [13.16,13.17]. Field-driven 

colloids [13.18] are a convenient and rich system for the study of emergent behavior because 

of the variety of many-body dissipative and conservative interactions that can be carefully 

tuned (e.g., van der Waals, surface/interfacial steric [13.19,13.20], Coulomb [13.21], 

dipolar [13.22–13.24], hydrodynamic, etc.). Add to these natural interactions the 

fluctuating, globally-coherent magnetic interactions that can be created by the infinite 

variety of time-dependent triaxial fields and the parameter space is simply overwhelming. In 

fact, even very simple magnetic fields can already produce varieties of static and dynamic 

self-assembly of magnetic fluid droplets [13.25] and magnetic disks at an air–liquid interface 

[13.26]. In the following we will describe some investigations within this immense 

parameter space and hope to convey the wealth of opportunities for structural and dynamic 

biomimicry offered by this approach. Specifically we investigate the effects of the fluid type 
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(both for the magnetic fluid and the suspending liquid), the type of magnetic field, and the 

effects of the field strength, frequency, and phase. 

13.2 Experimental 

The magnetic fluid consists of roughly spherical 4–7 m carbonyl iron particles (ISP 

Technologies, Inc.) dispersed in either water (ρ = 1 g·cm−3, η25°C = 0.89 cP) or isopropyl 

alcohol (ρ = 0.786 g·cm−3, η25°C = 2.04 cP). The suspending liquid is Fluorinert FC-40 (3M 

Corporation) (ρ = 1.850 g cm−3, η25°C = 3.40 cP), which is a perfluorinated dielectric liquid 

chosen for its immiscibility with aqueous phases. The magnetic liquids were dispensed into 

the suspending liquid, whose depth was typically ~7–8 mm (in all cases the depth exceeded 

the magnetic droplet diameter) and was contained in a 50 mm-diameter glass Petri dish 

treated with a hydrophobic polysiloxane surface agent (Rain-X). The magnetic fields were 

produced with a triaxial Helmholtz coil system whose components are in series resonance 

with computer-controlled fractal capacitor banks [13.27], and is capable of producing fields 

of up to 500 Oe in the low audio frequency range. The effects described in this chapter 

occur for modest fields in the range of 100–200 Oe, and for field frequencies generally in 

the range of ~50–500 Hz. A variety of magnetic fields can be produced with this setup; 

however, for the experiments in this study we use three principal fields: (1) a vortex field 

(see Chapter 3 [13.28,13.29]), comprised of a rotating field to which a dc field is applied 

orthogonally, 

  zyxH ˆcosˆ)2cos(ˆ)2sin(sin)( 000 ff tftfHt       (13-1) 

where H0 is the rms field strength of the ac components, which is equal to the dc field 

strength for a balanced vortex field, f0 is the frequency, and θf is the vortex field angle. This 

field produces a strong, uniform torque density in magnetic particle suspensions, and 

belongs to the broader class of magnetic fields called symmetry-breaking rational fields (see 

Chapters 9 and 10 [also Refs. 13.4, 13.5]). (2) A fully alternating triaxial field (aka rational 
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triad, see Chapter 11) whose orthogonal components have frequency ratios of 1 : 2 : 3 (a 

heterodyned version of this field was created by slightly detuning one of the frequencies), 

 zyxH ˆ)32sin(ˆ)22sin(ˆ)2sin()( 000 tftftfHt ac      (13-2) 

where Hac is the rms field strength and f0 is the fundamental frequency. This field induces the 

swarming and coarsening dynamics of the bees, the writhing serpent, and the slime mold 

slugs. When heterodyned this field produces the amoeboid motions for the water-based 

magnetic fluid and one of the plasmodial slime mold phases for the isopropanol-based fluid. 

(3) A 3 : 1 symmetry-breaking rational field (see Chapters 9 and 10), 

zyxH ˆ)ˆ)
360

232sin(ˆ)2sin()( 00 dcac HtftfHt 












    (13-3) 

where Hac and f0 have the same meanings as in Equation (13-2) and Hdc is the field strength 

of the symmetry-breaking dc field, and  is a phase angle. The other plasmodial slime mold 

phase was produced by this field when applied to the isopropanol-based magnetic fluid. 

13.3 Results 

When a vortex magnetic field [13.28,13.29] is applied to an aqueous magnetic particle 

suspension immersed in Fluorinert™ pandemonium ensues (see Supplementary Movie 13-

1). This animating field causes the magnetic fluid to quickly disintegrate into countless 

“bees” that sprout wings and dart through the suspending fluid with great vigor, perpetually 

driven by energy injection from the field [Figure 13-1(a–e)]. When the field stops, these 

bees immediately form quiescent spherules [Figure 13-1(f)], but applying a different (fully 

alternating) triaxial magnetic field instantly reanimates the bees. Under this field the bees 

form swarms and after a time one of these swarms nucleates a voracious writhing serpent, 

complete with flicking tongue [Figure 13-1(g–l)]. This serpent strikes out with its head 

and devours each and every bee, progressively growing in size and appetite. Even after the 

prey are fully consumed the magnetic field continues to animate the serpent, but when the 

field is turned off the serpent transforms into a small number of dormant “eggs” [Figure 13-
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1(m–o)]. If the field is turned back on these eggs immediately reassemble into the serpent. 

This elaborate behavior constitutes a nucleated transition from one driven phase (the bee 

phase) to another (the serpent phase) that occurs by cannibalism, much as bullfrogs grow by  

 

Figure 13-1.  Time series of field-directed magnetic droplet disintegration and coalescence. This 

sequence of images was taken from Supplementary Movie 13-1. (a) Quiescent aqueous 

magnetic droplet in an immiscible liquid (Fluorinert). (b) The application of a vortex magnetic 

field (f0 = 150 Hz, 200 Grms) causes the droplet to explode into countless “bees” that vigorously fly 

throughout the fluid (c–e). The white bar represents 1 cm. (f) Removing the animating magnetic 

field results in static microdroplets dispersed throughout the fluid. (g) Application of a fully ac 1 :

2 : 3 triaxial magnetic field (f0 = 50 Hz, 150 Grms) causes the bees to form swarms that eventually 

nucleate an incipient magnetic “serpent” (h). (i–l) This serpent moves throughout the fluid striking 

out and consuming the bees while growing in length until virtually all the bees are consumed 

(m). (n) Turning the magnetic field off causes the serpent to fragment and form several spherical 

droplets (o). If the 1 : 2 : 3 field is turned back on these remnant droplets reassemble into a 

serpent. 
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Figure 13-2.  Trypanosoma parasites surrounded by red blood cells are compared to the 

magnetic serpents produced by a 1 : 2 : 3 triaxial field [same field conditions as in Figure 13-1(g-

m)]. The comparison is compelling, but there is at present an issue of scale. These magnetic 

serpent images were taken from Supplementary Movie 13-1, and so they are similarly sized as 

the serpent shown in Figure 13-1. Image of Trypanosoma parasites is public domain and was 

obtained from Wikipedia, Content provider: Dr. Myron G. Schultz, Centers for Disease Control 

and Prevention's Public Health Image Library. 

consuming tadpoles. From another point of view the morphology and dynamics of the 

serpent bring to mind the Trypanosoma protozoa carried by the tsetse fly that are the cause of 

sleeping sickness, Figure 13-2. 

Both the bee and serpent phase are accompanied by chaotic advection, Figure 13-3, 

which can be visualized by adding aluminum flakes to the Fluorinert. The fluid dynamics, 

shown in Supplementary Movie 13-2, is reminiscent of convection and shows that these 

driven phases could be useful for mixing, for the controlled release of beneficial agents, or 

for purifying water by first scavenging and then collecting harmful agents (in which case the 

magnetic fluid would be hydrophobic). Because the bee dynamics are easily controlled by 

the field amplitude and frequency, the rate of agent dispersal can be controlled. Likewise, 

the serpent or Trypanosoma phase could be used for controlled coalescence and recovery. 

Slime molds are so complex that J. T. Bonner has spent much of the last 70 years at 

Princeton University peering through a microscope to understand their many fascinating 

behaviors [13.30]. Cellular slime molds, such as Dictyostelium discoideum, begin life as 

amoebas that move by projecting pseudopodia. When food is plentiful they exist 
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Figure 13-3.  Fine aluminum flakes dispersed in the Fluorinert FC-40 suspending liquid provide 

effective visualization of the local flow fields. (a) Turbulent chaotic advection, characterized by 

the small length scales of the tortuous flow structures, is created by the extremely vigorous bees 

that are produced by a vortex magnetic field (f0 = 100 Hz, 200 Grms) (taken from Supplementary 

Movie 13-2). (b) The unstable coherent swarms of bees in Figure 13-1 (g-l) have a more subdued 

flow field with larger flow structures. These are produced by an ac/ac/ac triaxial field having 

frequency ratios 1 : 2 : 3 (f0 = 50 Hz, 150 Grms). The white bars represent 1 cm. 

independently, but when times get tough they assemble into macroscopic pseudo-plasmodia 

that can exhibit organized collective motion, sometimes referred to as “leaderless motion,” 

even though the pseudo-plasmodia is devoid of muscles or even a nervous system. These 

pseudo-plasmodia slither along slug-like, leaving a distinct slime trail and fusing when they 

collide. When even this motion no longer alleviates the food shortage the slugs give up and 

rise up to form a fruiting body that produces spores that germinate and give life to a new 

generation of amoebas. 

The amoeboid motion can be produced by an animating field that is only slightly 

different from that which produces the serpent or Trypanosoma phase. The snapshots of this 

motion in Figure 13-4 show various pseudopodia that are uncannily similar to those 

exhibited in actual amoeboid motion. The magnetic fluid moves much faster, like an 
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Figure 13-4.  A comparison of real and magnetic amoebae. In a phase modulated, fully ac 1 : 2

: 3 triaxial field (f0 = 50 Hz, 150 Grms) the magnetic fluid mimics the forms of amoebae, including 

the projecting pseudopodia. These pseudopodia are probably driven by demagnetization 

fields, since such deformations increase the field penetration and thus reduce the 

magnetostatic energy. However, the magnetic fluid dynamics is many orders of magnitude 

faster and seems to be highly unpredictable as concerns the direction of motion. These still 

images of magnetic amoebae were taken from Supplementary Movie 13-3). The white bars 

represent 1 cm. Images of amoebae are attributed as follows: (a) Image obtained under 

CreativeCommons license (https://creativecommons.org/licenses/by-nc-sa/2.0/), Content 

provider: Proyecto Agua (https://www.flickr.com/photos/microagua/2695978355/) Original color 

image was modified to grayscale. (b) Amoeba (magnified). [Photograph]. In Encyclopaedia 

Britannica. Retrieved from http://www.britannica.com/EBchecked/media/4194/Amoeba (Russ 

Kinne/Photo Researchers). Original color image was modified to grayscale. (c) Amoeba image 

obtained from (http://www.arcella.nl/morphology) Ferry Siemensma. (d) Amoeba image 

obtained from http://naturalscienceseducation.wordpress.com/2012/06/22/ilabs-well-fed-

amoebas/ Original color image was modified to grayscale. (e) “Amoeba with engulfed diatom” 

image obtained from http://colinlmiller.com/microscopy/amoebas.htm Copyright 2009 Colin L. 

Miller. 

amoeba on stimulants, but Supplementary Movie 13-3 shows that the manner of motion is 

similar. 

The slug-like motion in Figure 13-5 can be produced by simply increasing all three 

field frequencies commensurately. This alteration produces slugs that slither along the  
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Figure 13-5.  Slug-phase biological and magnetic slime molds. Panel Ia shows aggregates of the 

cellular slime mold Dictyostelium discoideum (taken from a video: John Bonner’s slime mold 

movies, Princeton University (http://www.youtube.com/watch?v=bkVhLJLG7ug)). Inset of slime 

mold slug obtained from http://ucsdnews.ucsd.edu/archive/newsrel/science/mcamoeba.asp 

Credit: Dirk Dormann, University of Dundee. These actively move, even producing convincingly 

slug-like shapes (inset). The magnetic analogue, Panel Ib, is produced with a high-frequency, 

fully ac 1 : 2 : 3 triaxial field (f0 = 100.2 Hz, 150 Grms). These incipient slugs translocate, fuse and 

leave magnetic slime trails as shown in Panel II. The white bars represent 1 cm. 

bottom of the Petri dish, even leaving a trail of magnetic slime and fusing when they collide, 

just like real Dictyostelium discoideum. 

Plasmodial slime molds, such as Leocarpus fragilis, consist of a single membrane 

containing countless nuclei. These slime molds can move by streaming out multiple strands, 

which is something Dictyostelium discoideum just can't do. These strands enable it to eventually 

ooze over and consume organic matter, such as an unlucky fungus, leaf, or even a discarded 

newspaper. Examples of these streaming structures are shown in Figure 13-6, but the 

dynamics are much more interesting than any single image can convey (for example, see 

http://www.youtube.com/watch?v=GY_uMH8Xpy0). Eventually the plasmodium forms  
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Figure 13-6.  Plasmodial-phase magnetic and biological slime molds. (a) Photograph of the 

streaming strand motion of an isopropanol-based magnetic fluid, which has a lower interfacial 

tension with Fluorinert (this structure was produced by a symmetry-breaking rational field with a 1

: 3 frequency ratio [f0 = 100 Hz, 150 Grms]). The white arrow indicates the direction of motion of 

the magnetic web, which is about to reverse direction. This can be compared to the 

plasmodium slime mold Leocarpus fragilis in (b), which has a somewhat more disordered web-

like structure, but similar dynamics (see Supplementary Movie 13-4). (c) If the animating field is 

changed to a heterodyned fully alternating 1 : 2 : 3 triaxial field (f0 = 50 Hz, 100 Grms), the 

magnetic fluid changes morphology, and this is perhaps a little more similar to the streaming 

strand structure of Leocarpus fragilis in (d). The white bars represent 1 cm. (c) Plasmodial slime 

mold Copyright 2007 Stephen Sharnoff. (d) Plasmodial slime mold Copyright Clare Staveley, 

Curbstone Valley. 

a network that gives birth to a host of fruiting bodies that produce spores that germinate to 

create the next generation. 

The streaming strand motion of the plasmodial phase can be mimicked by reducing 

the interfacial tension on the magnetic fluid, accomplished by using isopropanol as the 

suspending liquid for the magnetic particles. Figure 13-6 shows a few snapshots of the 

streaming strands of both the magnetic fluid and Leocarpus fragilis. The structural 

resemblance is perhaps not as compelling as the streaming strand dynamics, which can be 

seen in Supplementary Movie 13-4. In this case the animating field is phase modulated by 
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detuning one of the field components, which creates the periodic streaming and migration of 

the magnetic fluid web. 

13.4  Discussion 

Understanding all the phenomena we have observed is a substantial long-term undertaking 

but at least certain aspects are clear enough. The selected structures and dynamics are 

controlled by a number of magnetic and hydrodynamic factors, including the type of 

magnetic field applied (i.e., vortex, symmetry-breaking, or fully ac), the field frequency, the 

field strength, the particle volume fraction of the magnetic fluid, and the type of base liquid 

used for the magnetic fluid (i.e., water, isopropanol, acetone). We now discuss some of 

these factors as they relate to our observations. 

The structure of the bees allows them to interact with the applied field in such a way 

as to drive self-propulsion. The bees are actually “microdroplets” that elongate along the 

instantaneous magnetic field vector to reduce their demagnetizing field, Figure 13-7(a & 

b), thus increasing their magnetization and decreasing their magnetostatic energy. This 

elongation is finite because it is balanced by increased interfacial energy. In the so-called 

vortex field (see Experimental section) the bees wobble as in Figure 13-7(c), stirring the 

local fluid vigorously. The darting movements of the bees appear to be a consequence of 

spontaneous chiral symmetry breaking of their shape. In fact, E. coli and certain other 

bacteria move by rotation of their chiral flagella [13.31]. At other times the bees can exhibit 

more subdued motion and may even hover in place for brief periods. A vortex field also 

creates a body torque on a droplet, and this could also contribute to the bees' motion if they 

are near a surface or interface. Finally, the spinning of the bees creates a strong 

hydrodynamic repulsion and for this reason they are rarely observed to fuse in the stable bee 

phase. The size and number density of the bees can be controlled by a number of factors: 

smaller, more numerous bees are favored by high field strengths, low density base liquids 

for the magnetic fluid (e.g., isopropanol, acetone), and high magnetic particle content. Of  
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Figure 13-7.  Structure and dynamics of magnetic bees. (a) Bees appear to possess “wings” (like 

that of the inset) which propel them vigorously throughout the suspending fluid and give them a 

star-like appearance [field conditions: vortex field (f0 = 100 Hz, 150 Grms)]. (b) High-speed 

photography shows that these bees are actually microdroplets that are elongated along the 

applied dynamic field vector [field conditions: vortex field (f0 = 100 Hz, 200 Grms)]. (c) The 

elongated microdroplets undergo a wobbling motion—akin to the motion of a kayaker's 

paddle—and also have internal vorticity around the dc field axis. These factors, combined with 

spontaneous chiral symmetry breaking of form, cause them to self-propel. (d) A three 

dimensional Lissajous plot of the trajectory of the triaxial field vector for the case where the x, y, z 

field component frequency ratios are 1 : 2 : 3. The white bars represent 1 cm. (Inset) Image of 

hovering bee obtained from http://adreamkiller.wordpress.com/tag/when-bees-hover/ Content 

link:http://www.mosbybuildingarts.com/blog/wp-

content/uploads/Mosby%20Carpenter%20Bee.jpg. 

course, an actual living bee is vastly more complex than a precessing, deformable ellipsoid, 

but it is interesting that such a simple system as this can display visually similar trajectories, 

especially considering the mechanism of locomotion is so different. 

The transition from the bee to serpent phase is a result of switching from the ac-ac-dc 

vortex field to a fully ac-ac-ac field (rational triad) with frequency ratios of 1 : 2 : 3, Figure 

13-7(d). This field still creates a body torque as was shown in Chapter 11 [also Ref. 13.32], 

but can neither originally create nor indefinitely sustain the bee phase. The pronounced 

difference in bee dynamics is illustrated in Figure 13-3, where it is seen that the turbulence 

is much more subdued for the 1 : 2 : 3 field. Once the bees nucleate a serpent it assumes the 
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form of an irregular helicoid aligned with the low frequency field component. Because all of 

the field components have equal rms values, the observed direction of elongation cannot be 

a demagnetizing field effect alone. The serpent seems to strike out at the bees, even though 

it has no senses with which to locate them. This interaction is a very complicated many body 

effect, which is already quite complex even for two spherical particles in a triaxial field 

[13.33]. But one of the most remarkable aspects of the serpent is its large aspect ratio, 19:1 

(length-to-diameter). This far exceeds the Plateau–Rayleigh stability criterion [13.34] of π 

for jets, and the fact that interfacial tension causes the serpent to fragment into five droplets 

upon field cessation demonstrates the importance of the field in stabilizing such an elongated 

fluid structure. 

Phase modulating the 1 : 2 : 3 field, by detuning one of the component frequencies, 

gives rise to the various amoeboid structures and dynamics shown in Figure 13-4 and 

Supplementary Movie 13-3, provided that the droplets possess a large enough volume 

fraction of magnetic particles. For the water-based magnetic fluid, a volume fraction of 

12.4% carbonyl iron particles produces a neutrally buoyant drop in the FC-40 suspending 

liquid. The amoeboid free body dynamics are observed for magnetic fluid droplets of high 

enough volume fraction such that they sink. The phase modulation causes periodic reversal 

of the vorticity within the magnetic fluid. This constantly changing vorticity direction 

coupled with interfacial forces between the liquid phases drives the observed dynamics. 

However, if the volume fraction is low enough that the magnetic fluid droplet floats, no 

amoeboid motion is observed. Instead, the floating droplet deforms and races back-and-

forth at the FC-40 fluid surface in concert with the changing field. This effect is due to the 

uniform torque density produced within the magnetic fluid droplet in combination with a 

surface or interface, which produces asymmetrical/unbalanced shear forces thereby 

propelling the droplet. In fact, with judicious application of appropriate magnetic fields, a 

floating magnetic fluid droplet can be steered to any position at the surface. Such non-
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contact, field-induced controllability would seem promising for applications involving the 

controlled movement of and mixing within microdroplets for containerless assays. 

By simply increasing the magnitude of the frequencies of the 1:2:3 field that gives rise 

to the amoeboid dynamics, the slithering slug phase shown in Figure 13-5 can be produced, 

again subject to the constraint of an appropriate volume fraction for the magnetic fluid. 

Production of the slug phase is achieved by first exploding an original, single droplet using a 

vortex field (or symmetry-breaking magnetic field) as in Figure 13-1(a–e). A high-frequency 

1 : 2 : 3 field (f0 ≥ 100 Hz) is then applied to the resultant dispersed spherules. However, 

there is no reason that all of these globules should possess the same volume fraction. And in 

fact they do not, as can be clearly seen in Supplementary Movie 13-1. When the animating 

field that sustains the bees is turned off many of them coalesce into larger sub-droplets that 

sink and cease moving, while many smaller ones continue moving because they are entrained 

by the inertia of the FC-40 suspending liquid. When the high-frequency 1 : 2 : 3 animating 

field is applied to this distribution of droplets, the sunken droplets in contact with the floor 

of the Petri dish become “bound slugs” and are observed to predominantly slither in one 

particular direction; whereas, any suspended, neutrally-buoyant droplets are observed to 

deform and slowly wobble in the opposite direction. If such a neutrally-buoyant droplet 

should encounter the upper free surface of the suspending liquid it races back in the opposite 

direction (the same direction as the slugs). These observed droplet motions are again 

understood by a consideration of the uniform torque density in combination with a surface 

or interface. 

The effects of interfacial tension between the magnetic fluid and the suspending 

liquid were illustrated in Figure 13-6 and Supplementary Movie 13-4 by substituting 

isopropanol for water in the magnetic fluid. The isopropanol-based magnetic fluid exhibits a 

lower interfacial tension with the FC-40 suspending liquid as evidenced by the fact that the 

application of a vortex magnetic field—which will produce the same specific torque density 

in the two magnetic fluids—produces smaller, more numerous bees with the isopropanol-
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based magnetic fluid. If a 1 : 3 symmetry-breaking field is applied, the web-like, plasmodial 

slime mold phase is produced. If this field is phase modulated, by imposing a 0.1 Hz addition 

to the high-frequency component, the magnetic fluid web begins to sprawl back-and-forth 

across the bottom of the container, reversing direction every five seconds, as in 

Supplementary Movie 13-4. This periodic movement is driven by the vorticity produced 

within the magnetic fluid, which occurs around the dc field component for odd:odd 

symmetry-breaking fields (see Chapters 9 and 10 [also Refs. 13.4,13.5]). The phase 

modulation causes this vorticity to reverse direction periodically. 

13.5 Conclusions 

The various phenomena we have described are only a sampling of the many phenomena that 

can be produced with these complex fields. This approach enables unprecedented control of 

fluid motion and will likely prove useful for mixing, heat and mass transfer, and releasing or 

scavenging chemicals or even organisms from an immiscible fluid. Clearly, there is great 

opportunity to further quantify many of these phenomena. Our goal at present is to simply 

present this new driven colloid system and its associated emergent dynamics. 
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