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ABSTRACT 

 High-quality Ge-on-Si heterostructures have been actively pursued for many 

advanced applications, including near-infrared photodetectors, high-mobility field effect 

transistors, and virtual substrates for integrating III-V multijunction solar cells.  However, 

growing epitaxial Ge on Si poses many engineering challenges, ranging from lattice 

mismatch, to thermal expansion coefficient mismatch, to non-planar morphological 

evolution.  The lattice mismatch between Ge and Si often leads to a high density of 

threading dislocations.  These dislocations, if not reduced, propagate through the 

subsequently grown GaAs layer, deteriorating its quality.  To overcome these engineering 

challenges, we have developed three different approaches based on molecular beam 

epitaxy to significantly reduce, manage, or eliminate the defects in Ge films grown on Si.  

 viii



The first approach involves the nucleation of Ge islands within nanoscale windows in a 

thin layer of chemically grown SiO2 and successive island coalescence over the SiO2 to 

form a continuous film.  Nanoscale contact areas between Ge and Si effectively relieve 

the lattice mismatch stress between Ge/Si so that dislocations do not nucleate.  We 

observe that annealing the nucleated islands prior to full coalescence also leads to Ge 

films that are free of defects, along with significant improvement in GaAs integrated on 

Ge.  The second approach involves trapping dislocations in Ge between high aspect ratio 

walls of SiO2.  Defects form during coalescence of Ge from adjacent channels and at the 

corners of the SiO2 walls due to stress resulting from differences in thermal expansion 

coefficients of Ge, Si, and SiO2.  The third approach involves filling etch pits, which 

reveal dislocations, with SiO2 and subsequent Ge growth over SiO2.  The filling prevents 

dislocations in the lower Ge layer from propagating into the upper Ge layer.  The third 

method reduces the defect density from 2.8  108 cm-2 to 9.1  106 cm-2, and is proven to 

be the most effective at reducing the defects in epitaxial growth of Ge on Si.  We expect 

that our engineering approaches may finally resolve a longstanding engineering challenge 

in heteroepitaxy, finally providing the cost reduction needed for widespread 

commercialization of multijunction solar cells, light-emitting diodes, and high-mobility 

transistors on Si substrates. 
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CHAPTER 1 INTRODUCTION 

1.1 Importance and Applications of Heteroepitaxy 

Heteroepitaxy is the integration of one crystalline material upon another where 

the materials have different physical properties.  The field of heteroepitaxy has been 

intensely researched for several decades for three primary application areas:  substrate 

engineering, heterojunction devices, and device integration.  Figure 1-1 shows the 

bandgap versus lattice constant for several important semiconductors that are used for 

device fabrication.   

 

 

Figure 1-1.  Band gap versus lattice constant for many important semiconductors.1 
Especially important is the Ge-GaAs-AlAs system that is widely researched due to the 
similarity of the lattice constants of the materials. 
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The band gap is an especially important property because it determines the emission 

and/or absorption wavelength of devices made from these materials such as  

light-emitting diodes (LEDs), solar cells, lasers, and detectors.  In general, a combination 

of materials with different band gaps will require the use of heteroepitaxy due to the 

differing lattice constants of the materials.   

Substrate engineering is necessary because many important semiconductors are 

not available in large-area, high-quality, single-crystal wafers.  The few materials that are 

available as wafers include Si, Ge, GaAs, InP, SiC, and sapphire.  However, Si is by far 

the most abundant material and available at much lower cost compared to the other 

semiconductors.  A tremendous cost savings can be realized, therefore, by integrating 

devices made with these other materials onto Si substrates. 

Heterojunction devices are another important application area of heteroepitaxy.  

Many devices now in commercial use require semiconductor heterojunctions.  These 

devices include solar cells, high-brightness LEDs, and high-mobility transistors.  Other 

devices still in the research phase that require heteroepitaxy include quantum dot and 

strained layer superlattice (SLS) lasers and detectors, and single-electron transistors. 

Lastly, integrated circuits represent another area where heteroepitaxy can enable 

new capabilities.  A single material cannot satisfy all the requirements for high-density 

digital circuits, sensors, modulators, and optoelectronic devices operating over a wide 

range of frequencies and wavelengths.  Heteroepitaxy can be used to integrate the 

applications of several niche materials onto a single chip, leading to a substantial 

reduction in cost, size, and weight. 
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One of the most studied systems of heteroepitaxy is the Ge-Si system.  

Applications of Ge on Si (GoS) include the heterojunction bipolar transistor (HBT), and 

strained Si technology.  The HBT is now used extensively in radio-frequency 

telecommunications and high-bandwidth instrumentation.  Strained Si is created by 

epitaxial growth onto a GexSi1-x layer and is used to enhance mobility in complementary 

metal-oxide-semiconductor (CMOS) field-effect transistors.2  In addition, the lattice 

constant of Ge closely matches that of III-V group materials such as GaAs and AlAs, as 

shown in Figure 1-1.  Lattice mismatch is important in heteroepitaxy because it leads to 

the formation of defects in the material that degrade its electronic properties.  This will be 

further discussed below.  However, there are three important applications for integrating 

GaAs based materials onto Ge.  The first application is multijunction (MJ) solar cells,3-10 

the second is monolithic integration of optoelectronics with Si CMOS technology,11,12 

and the third is high mobility CMOS electronics using nMOS III-V and pMOS Ge 

transistors13-16. 

First, MJ solar cells have achieved record efficiencies of over 40 %.17  High 

efficiencies are achieved in these cells by using a series of III-V semiconductor materials 

that each absorbs a range of wavelengths in the solar spectrum.  A schematic of an MJ 

solar cell is shown in Figure 1-2.   

The MJ solar cells are primarily used in space power applications, but could also 

be useful for terrestrial applications if their cost can be reduced.  Part of the high cost is 

due to the use of a Ge substrate on which the III-V active layers are deposited.  A 

significant cost reduction can be achieved by using a cheaper Si substrate on which a thin 

film of Ge is grown.  These ‘virtual substrates’ could replace the more expensive Ge 
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substrates if the GoS quality can match that of the Ge substrate.  Silicon substrates also 

provide additional advantages over Ge for MJ solar cells.  First, Si exists in abundance 

compared to Ge, which is produced as byproducts of zinc and coal mining.18  Second, Si 

is mechanically stronger and less brittle than Ge, which is important for ease in 

processing  

 

Figure 1-2.  Schematic of a triple junction solar cell.  The cell consists of a series of 
layers in order of largest to smallest bandgap from top to bottom.  Each layer collects a 
range of the solar spectrum shown in the inset at the lower right.  The III-V layers are 
closely lattice matched to one another and to the Ge substrate. 
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and obtaining higher yield.  Third, Si is less dense than Ge, potentially reducing the 

overall weight of the solar array made for space applications.  Virtual substrates can also 

be used to monolithically integrate optoelectronics with Si based CMOS technologies.   

Optoelectronics such as semiconductor lasers and detectors can be used for 

optical interconnects for chip-to-chip communication with a large bandwidth.  Having 

optoelectronics monolithically integrated with Si CMOS can achieve lower cost, lighter 

weight, and greater speed than having separate chips performing separate functions and 

interconnected with Cu wires.19  Again, GoS can serve as a virtual substrate for 

integrating optoelectronics with Si electronics, taking advantage of the functionality of 

different semiconductors simultaneously on the same chip.  An example of a III-V based 

optical device integrated onto a virtual substrate is shown in Figure 1-3.  Lastly, III-V and 

Ge heteroepitaxy can both greatly extend the computing speed of CMOS electronics. 

Silicon based CMOS electronics continue to approach fundamental physical 

limitations in shrinking the transistors to achieve faster computing speeds.20,21  However, 

Ge has one of the highest hole mobilities of any semiconductor at 1900 cm2 V-1-s-1 

compared to 480 cm2 V-1-s-1 for Si.  Likewise, GaAs has an electron mobility of 8500 

compared to 1350 cm2 V-1-s-1 for Si.  Therefore, an ideal CMOS design will utilize Ge 

pMOS and GaAs nMOS transistors to achieve much greater switching speeds, as 

depicted in Figure 1-4. 
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Figure 1-3.  Optical interconnect architecture showing possibility of monolithic 
integration with Si based circuits. 

 

 

 

 

Figure 1-4.  High mobility complementary metal-oxide-semiconductor electronics 
utilizing a Ge based p-metal oxide semiconductor and III-V n-metal oxide semiconductor 
structure.   
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1.2 Barriers to Integration of High-Quality Ge on Si 

The viability of GoS virtual substrates for device applications has not yet been 

commercially demonstrated because of the difficulty in achieving Ge of sufficient 

quality.  This is primarily due to the 4.2 % lattice mismatch and 116% thermal mismatch 

between Ge and Si.  The former can result in threading dislocation densities (TDD) on 

the order of 109-1010 cm-2, while the latter can lead to microcracks in Ge films that 

exceed about 5 microns in thickness as the sample cools from a growth temperature of 

853 K.  Both theoretical and experimental evidence suggests that the TDD in the Ge films 

must be less than 106 cm-2 to achieve a minority carrier lifetime in III-V films on GoS 

that is comparable to that of lattice-matched III-V growth on Ge and GaAs substrates.22,23 

An additional difficulty in achieving high-quality heteroepitaxy of a divalent 

material such as GaAs on a monovalent material like Ge or Si is the formation of 

antiphase boundaries (APBs).  An example of this defect is shown in Figure 1-5, and 

involves the formation of Ga-Ga or As-As bonds along the APB.   

The APBs can form in at least two different ways.  First, an APB occurs if an 

incomplete initial monolayer of either Ga or As forms on the surface of the monovalent 

material.  The GaAs growth is usually initiated in an As overpressure to create a 

monolayer of As on the monovalent semiconductor surface.  The vapor pressure of As is 

much greater than that of Ga, such that excess As readily desorbs from an As monolayer.  

In contrast, Ga can aggregate on the surface and form droplets.  Second, APBs form at 

single height atomic steps that normally exist on single crystalline substrates due to a 

small unintentional angle of miscut relative to the crystal orientation.  The suppression of 
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APBs is generally found to occur when using a substrate intentionally offcut by greater 

than 4 degrees toward a [110] direction.   

 

 

Figure 1-5.  Antiphase domain boundary that occurs from the epitaxial growth  of a zinc-
blende structure on diamond cubic materials such as Ge or Si in the presence of single 
height atomic steps. 
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The explanation for the suppression of APBs using offcut substrates is that the large 

offcut angle favors the reconstruction of the surface into atomic steps of double height, as 

shown in Figure 1-6.24  Complete monolayer nucleation on the double height 

reconstructed surface prevents the formation of APBs.  While the formation of APBs can 

be suppressed by growing on offcut substrates, the problems associated with lattice and 

thermal expansion coefficient mismatch have not yet been resolved.   

 

 

Figure 1-6.  Rendition of the double height step reconstruction that occurs on substrates 
offcut by several degrees toward the [110] direction.  The morphology suppresses the 
formation of anti-site defects occurring in zinc-blende epitaxy on diamond cubic 
materials. 

 

1.3 Dislocation Nucleation Models 

 
In heteroepitaxy, the lattice constant of the film is generally different from that of 

the substrate on which it is grown.  The adoption of the substrate lattice constant by the 

epitaxial film leads to stress in the film and the eventual nucleation of dislocations to 
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relieve the stress.  However, there is an energy barrier associated with the nucleation of 

dislocations.  The energy barrier of the dislocations allows the film to adopt the lattice 

constant of the substrate in the early stages of growth when the film thickness is small.  

This stage of film growth is termed pseudomorphic growth.  The lattice mismatch strain 

is defined as: 

s
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      (1-1) 

 

where as and af are the substrate and film lattice constants, respectively.  The in-plane 

stress required to generate the in-plane strain ||, is based on Hooke’s Law and is equal to 
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where G is the shear modulus and  is the Poisson ratio.  The in-plane stress leads to a 

tetragonal distortion of the lattice in the direction perpendicular to the growth direction.  

Figure 1-7 (a) shows an example of pseudomorphic growth for Ge on Si.  The energy 

associated with lattice mismatch as a function of film thickness h is given by 
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Equation (1-3) shows that the energy of the system increases linearly with film thickness.  

However, there is a critical value of the film thickness at which the system can lower its 

total energy by nucleating stress-relieving dislocations, as shown in Figure 1-7 (b).   
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Figure 1-7.  Image (a) shows the pseudomorphic growth of Ge on Si.  Image 1-7(b) 
shows the nucleation of a misfit dislocation to relieve the stress at larger Ge thickness. 
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Matthews25 derived the critical layer thickness based on total energy considerations.  

First, the energy associated with a square array of misfit dislocations with average 

separation S is 

)1(2

]1)/)[ln(cos1(1 22






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bRGb

S
Ed    (1-4) 

 

where  is the angle between the Burgers vector and the line vector for the dislocations, b 

is the length of the Burgers vector, and R is the cutoff radius for the determination of the 

dislocation line energy.  Matthews assumed R equal to the film thickness, h.  Mismatch 

strain is relieved as dislocations begin to nucleate.  The residual strain of the system with 

dislocations becomes 
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where  is the angle between the interface and the normal to the slip plane.  The total 

energy of the system is equal to E|| + Ed.  There will be a minimum total energy at 

equilibrium found from the condition 
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The solution of Equation (1-6) gives the in-plane strain for energy minimization, or the 

equilibrium strain 

 13






cos)1(8

]1)/)[ln(cos1(
)(

2

|| 



h

bhb

f

f
eq    (1-7) 

 

The critical layer thickness for the onset of dislocation nucleation is the thickness for 

which ||(eq) = f.  Solving, 
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van der Merwe26,27 developed an alternative expression for the critical layer thickness by 

equating the strain energy in a pseudomorphic film to the interfacial energy of a network 

of misfit dislocations.  The areal energy density of the misfit dislocation network was 

estimated to be 
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By setting Equations (1-3) and (1-9) equal and solving for the critical layer thickness, van 

der Merwe found 
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where as is the lattice constant of the substrate.  The predictions for the critical thickness 

of Matthew’s and van der Merwe’s models are similar.  Both models predict a critical 

thickness value of about 3 nm for GoS. 
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Some experimentally observed values of critical thickness for GoS are about ten times 

greater than 3 nm.   

People and Bean27 derived an alternative expression for the critical thickness that 

is in much better agreement with their experimentally observed values.  Staring with 

Equation (1-3), People and Bean considered a dense network of screw dislocations at the 

interface with a spacing of 

saS 22      (1-11) 

 

The areal energy density of this misfit dislocation array is 
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Setting Equations  (1-3) and (1-10) equal to each other and solving for the thickness, they 

estimated the critical thickness to be 
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People and Bean used this expression to calculate the critical layer thickness for GoS as a 

function of composition in Si1-xGex/Si (001), for which the lattice mismatch strain is f = -

0.04x.  These results are shown in Figure 1-8, along with the calculations of Matthews 

and van der Merwe.  Also shown for comparison are experimental data for the Si1-xGex/Si 

(001) heteroepitaxial system measured by Bean et al.28, and Houghton29.  The model by 

Matthews appears to be in better agreement with the data of Houghton, whereas the data 

from Bean is in better agreement with the model of People and Bean.  The discrepancy in 
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the data is likely due to the finite resolution of the measurements made for the onset of 

dislocation nucleation.  However, all the models predict that the critical thickness for 

GoS is only a few nanometers in thickness.  This means that dislocations will be 

unavoidable for planar films of practical thickness.  This has led to methods to reduce or 

manage dislocations in the film to acceptable levels.   

 

 

Figure 1-8.  Comparison of different models for dislocation nucleation in heteroepitaxy.  
The data of Bean et al. appear to support the model of People and Bean, whereas the data 
of Houghton et al. are in better agreement with the model of Matthews. 
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1.4 Previous Approaches to Reduce Threading Dislocations in Heteroepitaxy 

 
 Graded buffer layers of Si1-xGex/Si, where x is slowly increased up to a value of 1, 

have been successful in reducing the TDD in the Ge films.22,30-32  Slowly increasing the 

strain with increasing film thickness allows dislocations to nucleate more slowly and they 

are able to glide longer distances without becoming entangled with other dislocations.  

The glide of threading dislocations (TDs) leads to the formation of stress relieving misfit 

dislocation segments as shown in Figure 1-9. 

 

 

Figure 1-9.  Glide of a threading dislocation to a boundary at the film edge leaving 
behind a misfit dislocation segment at the interface. 
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There are at least two major drawbacks to graded buffer layers.  The first is that the stress 

fields from the misfit dislocation segments create surface undulations known as 

crosshatch that inhibit dislocation glide in the films.  The pinning of dislocations at 

surface crosshatch leads to dislocation pileups and subsequent nucleation of additional 

dislocations.33  Currie et al.31 successfully applied chemical-mechanical polishing (CMP) 

to remove the surface undulations and achieved a TDD in the Ge films of 106 cm-2.  

However, the second drawback to graded buffer films is the large film thickness that is 

required to achieve low TDD.  The thick films exhibit cracking due to the mismatch in 

thermal expansion coefficient with the Si substrate when cooled from growth to room 

temperature.  An alternative approach to reduce the TDD in heteroepitaxy is the use of a 

SLS.34-39  

 The stain fields associated with a pseudomorphically grown SLS will overlap 

with the strain fields associated with TDs.  Depending on the relative signs of the strain 

fields, the dislocation may either be attracted to or repelled by the SLS.  A compressive 

strain field emanating from the SLS will repel a compressive strain field associated with a 

TD.  Oppositely, a tensile strain field emanating from the SLS will attract a TD 

associated with a compressive strain field.  Figure 1-10 shows an example of a threading 

dislocation being bent into the (001) growth plane due to the interaction with a strained 

Al0.3Ga0.7As layer on a GaAs film.   
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Figure 1-10.  The principal of strained layer defect filtering is illustrated in the 
transmission electron microscope image of an Al0.3Ga0.7As-GaAs structure.  The stress 
field of the Al0.3Ga0.7As layer repels the stress field associated with the threading 
dislocation and bends it into the (001) growth plane. 

 

However, in general, SLSs are not successful in greatly reducing the TDD in 

heteroepitaxy by much more than a factor of two or three.  Another technique that has 

successfully reduced the TDD in heteroepitaxy is cyclical annealing. 

 Thermal cyclical annealing is method that employs a series of annealing cycles to 

promote glide and annihilation of TDs in the film.  The TDs experience a thermally 

induced stress occurring from differences in thermal expansion coefficient between film 

and substrate, and this stress leads to glide of the TDs.  The TDs in highly mismatched 

systems with large numbers of TDs often become entangled with one another, however, 
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inhibiting their glide motion.  The result of thermal cyclical annealing is that the TDD in 

the film is only lowered by one or two orders of magnitude.  Cyclical annealing also has 

the added drawback of requiring high temperatures that can cause significant intermixing 

between the film and substrate.40-42  Another technique employed to lower the TDD in 

heteroepitaxy is the use of finite growth areas. 

 Finite growth areas are created on the substrate using a combination of 

lithography and etching to create raised mesas surrounded by amorphous material such as 

SiO2.  Heteroepitaxial growth then selectively takes place on top of the mesas.  The finite 

lateral extent of the mesas allows TDs to glide short distances before reaching the edge of 

the mesa.  The glide of a TD leaves behind a misfit dislocation at the interface, as 

depicted earlier in Figure 1-9.  The effect of small growth areas is that fewer TDs become 

entangled with one another before creating stress-relieving misfit segments.  Finite lateral 

growth has successfully demonstrated TDDs of 104 to105 cm-2 in GoS.40,43,44  This 

method, while capable of achieving low TDD, has the considerable drawback of having 

only small areas on the substrate suitable for device fabrication.  A related method called 

aspect ratio trapping has also produced small growth areas of high-quality heterepitaxy.45-

52 

 Aspect ratio trapping involves the creation of narrow trenches or windows in a 

thick amorphous material such as SiO2.  The substrate is revealed at the bottom of the 

windows, and selective growth takes place within the openings.  The finite growth area 

within the openings allows TDs to glide short distances before reaching the edge of the 

opening.  In addition, the steep walls of the SiO2 block any TDs not able to glide to the 
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edge of the openings.  An example of aspect ratio trapping within trenches is pictured in 

Figure 1-11.  

 

 

Figure 1-11.  Heteroepitaxial growth selectively takes place within the patterned trenches 
and traps threading dislocations between the SiO2 walls leading to high-quality material 
near the tops of the trenches.  Coalescence of adjacent trenches, however, can lead to the 
nucleation of additional defects.  In addition, the mask material itself may induce defects 
as the epitaxial film grows laterally over the mask regions. 

 

If growth is allowed to continue above the pattern features, then eventually the growth 

fronts from adjacent openings will merge together.  While coalescence of adjacent 

trenches leads to a continuous film for device fabrication, research shows that the regions 

where the growth fronts merge possess a large TDD.48,52,53  Aspect ratio trapping has thus 

far produced similar TDD results to finite area growth, along with the same drawback of 

producing only small regions of device quality material.  Finally, in an effort to overcome 

the limitations of the previous approaches, we use nanoheteroepitaxy as an approach to 

achieving low TDD heteroepitaxial films.54-59 

 Nanoheteroepitaxy utilizes the fact that additional strain relief mechanisms 

besides dislocation formation become dominant at very small length scales.  For example, 
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Ge growth taking place on Si within windows in SiO2 that are only a few nanometers in 

diameter can relax their strain by deforming outward over the SiO2 layer, forming a 

mushroom shape.  In addition, the lattice planes within the substrate also deform and 

absorb some of the mismatch strain.  An example of this deformation is shown in Figure 

1-12, based upon Finite Element Modeling (FEM) of the strain between a Ge island and 

Si substrate.  60-63 

 

Figure 1-12.  Finite element model showing the deformation of lattice planes occurring in 
the tensile strained heteroepitaxial island and within the compressively stained substrate. 

 
Luryi and Suhir64 were the first researchers to report a theory of lattice mismatch strain in 

nanoheteroepitaxy.  Luryi and Suhir showed that in islands with lateral finite size the 

critical thickness depends on the island diameter.  In their work, Luryi and Suhir 

calculated the critical layer thickness for mismatched heteroepitaxial islands that make 
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rigid contact with the substrate only on round seed pads having a diameter of 2l.  They 

showed that in a GoS pseudomorphic structure, the strain in the heteroepitaxial layer 

decays exponentially with distance from the interface.  Furthermore, the characteristic 

length he for the strain decay is on the order of the seed pad lateral dimension.  Due to the 

exponential strain decay, the critical thickness increases as the island diameter is reduced.  

For a particular value of the lattice mismatch, there is an island diameter for which the 

critical thickness diverges to infinity, so that structures entirely free of misfit dislocations 

may be produced.  The analysis of Luryi and Suhir64 starts with an expression for the in-

plane stress in the epitaxial deposit 

 

)2/2exp(),(
1|| lzy

E
f 


 


    (1-14) 

 

where E is Young’s modulus, the z-axis is perpendicular to the substrate, and the y-axis 

lies in the plane of the interface, along the center of the seed pad, and 
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where he is the effective range for the stress in the z-direction, to be determined below, 

and the interfacial compliance parameter k is given by 
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The strain energy density per unit volume is 
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and is maximum at y = 0.  The strain energy per unit area is found by integrating over the 

thickness of the epitaxial deposit and is maximum at y = 0, which is 
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The right-hand side of Equation (1-18) defines the characteristic thickness he, which is 

then given implicitly by 
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The right-hand side of this equation defines the reduction factor (l/h).  For l >> h, he  ≈ 

h, and for l << h, 
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The strain energy per unit area from Equation (1-18) is used in conjunction with an 

energy calculation for the critical thickness to find the critical layer thickness for an 

island of radius l.  The result is 
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where Matthew’s calculation for the critical thickness, Equation (1-8), is inserted into 

Equation 1-21 to yield 
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The critical thickness is shown in Figure 1-13 as a function of lattice mismatch, with the 

island diameter 2l as a parameter.  Matthew’s calculation for the critical thickness, which 

assumed a planar film, corresponds to 2l → ∞.  
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Figure 1-13.  Critical thickness versus lattice mismatch based on Matthew’s total energy 
calculation.19  The solid line is Matthew’s result for a planar film in contact with the 
substrate.  The dotted and dashed lines represent an island of 200 and 20 nm, 
respectively, in contact with the substrate based on Luryi and Suhir’s model. 

 
 For nanometer-scale islands, the critical thickness can be increased significantly.  

Additionally, for a given mismatch, there is a critical island diameter for which the 

critical thickness diverges to infinity.  For GoS, this island diameter is approximately 10 

nm, and is shown in Figure 1-14.  
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Figure 1-14.  Critical island diameter versus lattice mismatch.19  Island diameters below 
the solid line have infinite critical thickness for a given mismatch and will relax without 
the formation of dislocations.   

 
 Chapter 4 will describe our experiments in which the Ge seed pad diameters are less then 

10 nm.  Next, a review of molecular beam epitaxy is given, followed by a description of 

the deposition chamber used in this work. 
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CHAPTER 2 MOLECULAR BEAM EPITAXY 
 

2.1 Theory of Evaporation 

 
Most thin-film deposition techniques require a reduced pressure environment, and 

therefore, a discussion of vacuum science and vapor deposition is now given.  The kinetic 

theory of gases provides the foundation for understanding the relationship between the 

atoms or molecules of a gas and measurable properties such as temperature and pressure.  

A basic assumption of the theory is that the gas molecules are in a continuous state of 

random motion, based on the temperature of the gas.  The gas molecules collide both 

with the confining vessel walls and with one another.  The number of collisions per unit 

area and time is dependent on the concentration or pressure of the gas.  The following 

development of the kinetic theory of gases is based upon Ohring65 and Smith.66  The net 

result of the continual elastic collisions and exchange of kinetic energy is that a steady-

state distribution of molecular velocities occurs given by the Maxwell-Boltzmann 

formula 
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where v is velocity, n is the number of gas molecules present, M is the molecular weight 

of the gas, T is the temperature in Kelvin, and R is the gas constant on a per-mole basis.  

The root-mean-square (RMS) velocity of the gas molecules is given by 
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This velocity depends only on the temperature and molecular weight of the gas.  Implicit 

in the derivation of the Maxwell-Boltzmann distribution is the ideal gas law.  In the ideal 

gas approximation, attractive and repulsive forces between the gas molecules are 

neglected, as well as the atomic volume that the gas molecules occupy.  The ideal gas law 

is valid therefore, at high temperatures, and/or low pressures, as in vacuum deposition. 

 The pressure of a gas is related to the momentum transfer from the gas molecules 

to the vessel walls.  The momentum of the gas molecules is related to their kinetic energy 

or temperature, thus 
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where NA is Avogadro’s number.  Equation (2-3) is an expression for the ideal gas law, 

with pressure depending on the number of gas molecules, n, and temperature.  The gas 

molecules make continual collisions with the vessel walls and with each other.  The mean 

distance that they travel between collisions is called the mean-free path, mfp, and is an 

important quantity that depends on the pressure.  It is given as 
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where dc
2 is the collision cross section of a gas molecule.  At pressures below 10-3 torr, 

mfp is large enough that gas molecules effectively collide only with the vessel walls.  

One of the most important quantities in vacuum science and deposition is the gas 

impingement flux, .  It is equal to the frequency with which gas molecules impinge on a 

surface per unit area and time and is given by 
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Substituting Equation (2-2) into (2-5), the flux is equal to 
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Substituting in the ideal gas law given by Equation (2-3) yields the useful formula 
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where P is expressed in torr.  A useful application of Equation (2-7) is the calculation of 

the time required to coat a surface with gas molecules.  For the time to complete one 

monolayer coverage on a surface containing 1015 atoms cm-2, the use of Equation (2-7) 

yields 
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In air at atmospheric pressure and ambient temperature, a surface will acquire a 

monolayer of gas in 3.5 nanoseconds, assuming all impinging atoms stick to the surface.  

At a pressure of 10-10 torr, the surface will remain uncoated for 7.3 hours.  These 

calculations demonstrate the importance of ultra-high vacuum background pressures 

when film purity is important. 

 

2.2 Substrate-Source Geometry and Deposition Rate 

 
Equation (2-7) gives the impingement rate of gas molecules on a surface, but this 

may not be equal to the deposition rate on the sample surface.  There is a finite 

probability that molecules that impinge on the surface can be reflected back into the 

vacuum, and not stick to the surface.  Equation (2-7) can be modified by multiplying by a 

sticking coefficient, S, which is the probability that an impinging molecule will stick to 

the surface.  The sticking probability depends heavily on the kinetic energy of the 

impinging gas molecules and the substrate surface temperature.  In addition, the 

deposition rate on the sample surface also depends on the orientation of the surface 

relative to the evaporation source.  Gas molecules have large values of mfp at low 

pressures, so that gas molecules being evaporated from a surface source will travel along 

straight trajectories until reaching the sample surface.  Figure 2-1 shows the source-

substrate geometry as it affects the deposition rate.   
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Figure 2-1.  Substrate-source geometry affecting the deposition rate, after Smith.66  The 
flux emanating from the effusion cell follows a cosine distribution.  The cosine term is 
raised to the power n, reflecting the degree of collimation of the effusion flux. 

 

The evaporation source is the effusion cell located at a distance ro from the 

sample surface.  Equation (2-7) describes the evaporation rate from the effusion cell at 

the sample surface based on the vapor pressure of the material being evaporated within 

the cell.  The deposition rate R,s on the sample surface depends on the distance from the 

source, ro and the angle of the sample relative to the source, , and is given by 
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where n is an integer that describes the lobe shape of the vapor cloud distribution 

emerging from the effusion cell.  The vapor cloud is lobe shaped and partially collimated 

because the evaporation source material is at some distance below the effusion cell 

opening.  The deposition rate is maximal at the point on the sample perpendicular to the 

effusion source, and decreases at larger values of .  A factor of cos2 is introduced based 

on the additional distance r from source to substrate at larger values of .  An additional 

factor of cos is introduced because the substrate surface is not perpendicular to the 

vapor cloud at  > 0.  These geometric factors account for the cos3 term in Equation (2-

9), whereas the deviation of the vapor cloud shape from spherical to lobe-shaped 

introduces the factor cosn.  As n increases, the vapor cloud is more collimated and the 

deposition rate decreases more rapidly at increasing values of .  The actual deposition 

rate on the substrate must generally be measured experimentally at different vapor 

pressures of the source material, and Equation (2-9) is then fit to the data to determine the 

parameter n. 

 

2.3 Molecular Beam Epitaxy Experimental Setup 

 
Figure 2-2 shows a schematic of the molecular beam epitaxy (MBE) deposition 

chamber used in this work.  The deposition chamber is connected to an entrance load lock 

that is pumped with a turbomolecular pump operating at 240 L/s.  The load lock is vented 

with pure N2 gas and the pressure is monitored with a thermocouple (TC) and cold-

cathode gauge for measuring low and high vacuum, respectively.  The deposition 

chamber is pumped with a 500 L/s turbo pump and a 400L/s ion pump that produce a 
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base pressure of 5 × 1010 Torr, which is measured with an ion gauge.  The effusion cell 

has a dual-filament with a double-walled pyrolytic  

 

Figure 2-2.  Schematic of the molecular beam epitaxy vacuum chamber used in this work 
with major components labeled.   

 

boron nitride (PBN) crucible filled with Ge source material of 99.9999 % purity.  The 

effusion cell temperature is measured using two TCs placed near the outside of the PBN 

crucible.  The deposition rate is measured at a point on the sample that is perpendicular to 

the source at several substrate temperatures, where  = 0.   

The measurement of the deposition rate is done by placing a clean 2-inch 

diameter Si substrate into the deposition chamber and depositing a thick Ge layer with the 
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Si substrate held at room temperature.  The thickness is then measured using cross-

sectional scanning electron microscopy (SEM).  The deposition rate is then given by the 

Ge layer thickness divided by the time of deposition.  The measurement is accurate to 

within about 1 % and is limited by the resolution of the SEM.  Equation (2-7), (2-9), and 

the TC readings of the effusion cell are used to calculate the deposition rate based on 

published values67 of Ge vapor pressure versus temperature.  The deviation of the 

measured and calculated deposition rates allows calculation of the parameter n.  The 

distance between the Ge source material and the substrate surface normal is measured at 

16.7 cm, so that  is 8.75º at the edge of the 2-inch Si substrate.  The calculated value of 

n is 11, leading to a 15 % decrease in the deposition rate at the substrate edge as 

compared to the center.  Appendix A shows a plot of the measured and calculated 

deposition rate using Equation (2-9) based on the vapor pressure of the Ge source 

material for a given TC reading and the measured parameters ro and n.  The solid line 

corresponds to the center of the sample where t = 0; the dashed line shows the deposition 

rate at the edge of the 2-inch wafer.  The data points show the measured deposition rates 

at both the center (squares) and edge of the wafer (circles).  The close agreement between 

Equation (2-9) and the measured values of deposition rate allows good predictive growth 

rates at other effusion cell temperatures.  Appendix B shows detailed drawings and 

dimensions of the MBE chamber used in this work.  Next, a description is given of the 

substrate heater and sample transfer system. 

Figure 2-3 shows a schematic of the substrate heater transferable assembly.  The 

substrate heater is a 50 mm  50 mm plate consisting of a pyrolytic graphite filament 

encased in PBN and made by GE Advanced Materials.  The substrate is mounted directly 
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on the heater using clips made of tungsten.  The substrate heater power-leads are 

connected to banana plugs that are compatible in ultra-high vacuum.  The substrate heater 

assembly is transferred to/from the deposition chamber from the load lock using a 

magnetically coupled manipulator.  The deposition chamber is fitted with a receiver 

mounting that guides the heater assembly banana plugs into the female plug receptacles.  

These receptacles are connected, in turn, to a power feed-through vacuum fitting.  The 

heater assembly has additional banana plug fittings to add a TC to the heater. 

 

 

 

Figure 2-3.  Schematic of the substrate heater assembly utilizing ultra-high vacuum 
compatible banana plugs for electrical connections. 
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The substrate heater calibration is done using a K-type TC mounted in the center 

of the heater.  The heater power supply is manually operated to produce an output percent 

ranging from 0 to 35 % power.  The temperature is measured from ambient to 1000 ºC 

using the TC.  Additional measurements are also made using a pyrometer for 

temperatures from 700 to 1000 ºC.  Appendix C shows a calibration plot of the pyrometer 

and TC readings versus percentage output on the power supply.  The pyrometer and TC 

readings generally agree with each other within ± 8 ºC.  Next, a brief review is given of 

the different characterization techniques used in this work. 
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CHAPTER 3 FUNDAMENTALS OF CHARACTERIZATION TECHNIQUES 
 

3.1 X-ray Diffraction 

 
X-ray diffraction is a non-destructive technique that is used to estimate the 

crystalline quality of thin films, as well as their composition and strain state.  The method 

utilizes coherent x-rays that interact elastically with a specimen.  Coherent x-rays are 

emitted from the sample at characteristic angles called Bragg angles.  The Bragg angle is 

directly related to the lattice spacing of the material through Bragg’s equation 

 sin2dn       (3-1) 

where n is an integer, usually taken as 1, d is the spacing between lattice planes (the 

planes are denoted by their Miller indices), and  is the Bragg angle.  The x-ray source 

uses Cu K radiation of wavelength 0.154 nm, which is ideal for measuring the 

interatomic distances of 0.15 to 0.4 nm found in most materials.  The Bragg angle of the 

symmetric (004) reflection is used in this work to measure the residual strain in the Ge 

films.  The measurement of the (004) reflection gives the d-spacing in the direction 

perpendicular to the film surface.  The full-width-half-maximum (FWHM) of the (004) 

reflection is used to assess the relative crystalline perfection of the Ge film, usually 

compared to a control sample.  Figure 3-1 shows a schematic of the double crystal 

diffractometer-specimen geometry used in this work.  The lower image in Figure 3-1 

shows the basis of Equation (3-1) in probing the interatomic spacing in the sample using 

x-rays. 
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Figure 3-1.  Schematic of the diffractometer-specimen geometry.  The lower image 
shows the basis of Bragg’s equation in probing the spacing of interatomic planes in the 
specimen using x-ray radiation. 

 
Assessing the crystal quality of a material by the FWHM of the (004) peak must be used 

with caution because the line profile is a convolution of several factors.  Some of the 

factors that cause peak broadening are residual strain, defects, small film thickness, and 

alloying of the film and substrate.  The complicating factors sometimes require the use of 
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a model to simulate and fit a particular peak profile to deconvolute the factors.  In 

addition, the FWHM is not sensitive to strains present from defects in the film below a 

density of approximately 107 cm-2.  Despite these complications, XRD is a relatively 

quick and nondestructive technique that is widely used in materials characterization.   

 

3.2 X-ray Photoelectron Spectroscopy 

 
 X-ray photoelectron spectroscopy (XPS) is a nondestructive surface-sensitive 

analytical technique that is commonly used to identify the chemical composition at the 

surface of a material.  The technique of XPS is based upon the photoelectric effect, in 

which X-rays are used to dislodge core-shell electrons from the material.  The following 

energy balance gives the kinetic energy, KE, of the emitted electrons 

 

sBEhKE        (3-2) 

 

where h is plank’s constant,  is the frequency of the incident radiation, BE is the binding 

energy of the core-shell electron of the chemical element in the sample (relative to the 

vacuum level), and s is the spectrometer work function.  The BE is equal to the 

ionization energy of the electron from the particular atomic orbital in which it resides.  

The BE is sensitive to the local bonding environment of the material and can therefore 

provide identification of compounds as well as individual elements.  The energy of the 

radiation used in this work is 1253.6 eV, and corresponds to Mg K x-rays.  The 

interaction depth of the radiation with the sample varies from 1 to several microns, 

however, most of the ionized electrons do not escape from the material.  The interaction 
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probability of the emitted electrons with the sample from which they are emitted is such 

that only electrons existing within a few nanometers of the surface can escape without 

energy loss.  The electrons emitted from the sample are collected and give rise to peaks in 

the energy spectrum.  Electrons that are emitted near the surface that sustain energy 

losses give rise to the background of the spectrum.  Figure 3-2 depicts the interaction of 

the incident radiation on the sample and the escape depth and intensity of the emitted 

core-shell electrons.   

 

 

Figure 3-2.  Pictorial representation of the distribution of the emission of core-shell 
electrons from the specimen due to absorption of x-rays, after Watts and Wolstenholme.68 

 

The electrons emitted from the sample are collected by an electron spectrometer.  The KE 

of the collected electrons is determined by applying a retarding potential that can vary 

from zero up to the incident radiation energy.  The potential is varied until the emitted 

electrons are completely repelled by the collector, and the collected current drops to zero.  
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The analyzer is normally operated to accept only a range of energies of 50 eV, referred to 

as the pass energy.  The number of electrons is digitally recorded for a given dwell time 

and is reported as counts per second.  The spectrometer used in this work has an energy 

resolution of about 0.1 eV, and a schematic of the XPS chamber with major components 

labeled is shown in Figure 3-3.   

 

 

Figure 3-3.  Depiction of the x-ray photoelectron spectroscopy chamber used in this work 
with major components labeled.   

 
The XPS technique has a detection limit of about 0.1 atomic percent.69  Quantitative 

analysis using XPS involves finding the relative concentrations of the constituent species.  

Quantitative analysis begins by measuring the peak areas of all detected species using an 
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appropriate background subtraction method.  The concentration of species x is related to 

the area of the peak for that species by the following equation 




i
ii

xx
x SI

SI
C

/

/
     (3-3) 

where Ix is the total measured intensity of species x (area under measured peak), Sx is an 

empirical parameter called a sensitivity factor for species x.  The sensitivity factor is a 

parameter that encompasses a number of geometric, detector, and electron-specimen 

interaction variables.  Sensitivity factors used for this work are listed in Wagner et al.70 

 

3.3 Transmission Electron Microscopy 
 

Transmission electron microscopy (TEM) is used extensively throughout this 

work.  It is the de-facto method for investigating a host of material properties and 

interfaces.  It is capable of atomic spatial resolution and often combines the added 

capabilities of chemical spectroscopy such as energy dispersive (EDS) and electron 

energy loss (EELS) spectroscopy.  The TEM technique is used in this work to 

characterize the structure and defect density of Ge and III-V films, measure residual 

strain, and determine orientation and composition of nanometer sized islands.  Some 

drawbacks of TEM are that is a destructive technique that requires significant effort to 

prepare specimens, although with the advent of the Focused Ion Beam (FIB), sample 

preparation is becoming more routine.  Samples are typically thinned to less than 100 nm 

thickness using a combination of mechanical thinning followed by ion polishing, 

although samples should be less than 50 nm for higher resolution.  Figure 3-4 shows the 

apparatus used to mechanically thin specimens for TEM.  The specimen is glued to a 
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glass work piece that is mounted on a tripod polishing jig.  The specimen is mechanically 

ground on a silicon carbide impregnated polymer sheet that is mounted to a rotating 

wheel.  The thickness of the sample after mechanical polishing is 7 to 15 m.  Ion 

polishing is used to remove the damage from mechanical grinding and for final thinning 

of the specimen to electron transparency.  Ion polishing utilizes argon ions accelerated to 

several keV to sputter material from the specimen at glancing angles of 1 to 10 degrees 

with respect to the specimen surface.  Figure 3-5 shows the operating principle of ion 

polishing. 

 

 

Figure 3-4.  Apparatus for mechanically thinning transmission electron microscope 
specimens.  The specimen is mounted to the tripod jig on the glass piece and ground 
down on a silicon carbide impregnated polymer sheet that is placed onto a rotating wheel. 
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Figure 3-5.  Operating principle of ion polishing that is used for final specimen thinning 
for the transmission electron microscope. 

 
The thinned sample is then transparent to high-energy electrons, which is the 

basis for TEM.  Figure 3-6 shows the major components of the TEM and the diffraction 

of electrons from a crystalline specimen.   

In the TEM, a 200 keV beam of nearly temporally and spatially coherent electrons 

is focused onto the sample.  The spatial resolution of the electrons is less than 1 

angstrom, but due to a number of lens aberrations, the typical point resolution of the 

instrument is approximately 1.5 nm.  Newer instruments with aberration correction can 

achieve sub-angstrom point resolutions.  For crystalline specimens, many of the electrons 

that impinge on the sample get elastically scattered, i.e. diffracted.  The diffracted beams 

occur at particular angles called Bragg angles, akin to x-ray diffraction.  Diffraction 

occurs in the back focal plane of the TEM, and the diffraction pattern of the specimen can 

be imaged and digitally recorded for analysis.  An aperture placed just below the 

objective lens of the microscope can also be used to filter out one or more of the 

diffracted beams from contributing to image formation of the specimen. 
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Figure 3-6.  Schematic of a transmission electron microscope and interaction of incident 
electrons onto a crystalline specimen. 

 
The basis of forming bight and dark-field images involves using either the 

transmitted (undiffracted) beam to form the image, or using one or more diffracted 

beams. In bright-field imaging, only the undiffracted beam is allowed to pass through the 

objective aperture, whereas in dark-field imaging, the undiffracted beam is blocked by 

the aperture.  The advantage of bright and dark field imaging is the greatly enhanced 
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contrast that occurs, known as diffraction contrast.  For example, in bright-field images, 

defects such as TDs often appear in images as dark lines.  The TDs appear dark because 

the strain field that is present around the dislocation core bends some of the crystal planes 

into the Bragg condition for diffraction.  Since the diffracted beams do not contribute to 

formation of the image, the diffracting region around the dislocation appears dark, and 

the defects can easily be seen in the image.  In dark field imaging, the defects appear 

bright on a dark background, since the diffracting planes are the only ones contributing to 

the image formation.  At higher resolution of crystalline specimens, a different type of 

contrast known as phase contrast occurs.   

In phase contrast TEM, the specimen is tilted so that the incident electron beam is 

directed along a particular low index direction in a crystal.  The resulting diffracted and 

transmitted beams then interfere with one another.  The interference of the beams results 

in a fringe pattern in the image, and under certain conditions, the spacing between the 

fringes is directly related to the lattice spacing in the crystal.  Figure 3-7 (a) shows an 

example of a crystalline Si specimen oriented along a [110] direction so that diffracted 

beams from (111), (220), and (113) planes can interfere and give rise to lattice fringes in 

a high-resolution TEM image.  The accompanying diffraction pattern of the Si sample is 

also shown in Figure 3-7 (b). 

In addition, the lattice fringe images can be Fourier filtered or transformed back 

into diffraction images for orientation and strain analysis at very high spatial resolution.  

In addition to the elastic interaction of the electron beam with the specimen in forming 

diffracted beams, inelastic scattering also occurs, forming the basis of the scanning 

transmission electron microscopy (STEM).   
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Figure 3-7.  Image (a) shows the crystal structure of diamond cubic Si oriented along a 
[110] direction.  The (111) plane is highlighted by the red line.  Image 3-7(b)shows the 
diffraction pattern corresponding to the Si sample in image 3-7(a). 
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3.4 Scanning Transmission Electron Microscopy 

In STEM mode, the electron beam is focused into a diameter less then 1 nm onto 

the sample, and is called an electron probe.  The probe is then scanned across the 

specimen similar to SEM.  Electrons that are transmitted and inelastically scattered 

through the sample at high angles are collected onto a charge coupled device to form an 

image of the specimen.  The scanned area on the sample and the electron probe diameter 

determine the magnification of the image, and resolutions can be less than 1.5 nm.  Image 

interpretation in STEM is usually much easier than phase contrast images in TEM.  

Another advantage of STEM mode is the use of small electron probe to excite a very 

small volume of material in the sample for electron spectroscopy.  Nanometer resolution 

is possible in collecting spectroscopic information from emitted x-rays using EDS or 

from inelastically scattered electrons in EELS.  The configuration and major components 

of STEM are shown in Figure 3-8. 
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Figure 3-8.  Scanning transmission electron microscope configuration with 
accompanying spectroscopic capability. 

 

3.5 Energy Dispersive Spectroscopy 
 

In EDS, x-rays are generated within the specimen due to inelastic scattering by 

electrons in the probe.  The x-rays are collected into a Si-Li drift detector that converts 

the x-rays into an electronic signal.  The accuracy and detectability of the method is 

dependent on the number of x-rays that can be collected.  If high spatial resolution is 

desired, then a smaller probe size is best, however, the current in the probe is also 
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smaller, meaning that longer counting times are required to collect the signal.  

Excessively long collection times encounter two primary difficulties.  One, the sample 

drifts during the time of the measurement.  This problem can be offset with a drift 

correction algorithm in the EDS software that is applied to keep the probe on the same 

location on the sample.  The second problem is that a carbon layer quickly deposits on 

the location of the specimen that is irradiated by the electron probe.  The carbon film 

comes from decomposition of hydrocarbon contamination that exists due to imperfect 

vacuum in the TEM, and the carbon buildup will eventually cause loss of signal from the 

illuminated area.  In this work, a total of 10,000 counts are collected using a 1 nm 

diameter probe size.  This probe diameter contains enough current to make a composition 

measurement within a few minutes that is accurate within ±10 %.  The detection limit of 

EDS is approximately 1 atomic percent. 

 

3.6 Scanning Electron Microscopy 
 

The SEM is used extensively in this work to measure the thickness of films and 

surface topography, and is often used in conjunction with other techniques such as EDS 

and backscatter diffraction orientation analysis.  The SEM works by focusing and 

scanning a beam of electrons onto the sample surface.  The electrons interact with the 

sample generating elastic and inelastic collisions.  Elastically scattered electrons, known 

as backscattered electrons (BE) and inelastically scattered electrons, known as secondary 

electrons (SE) are emitted from the sample.  The BE and SE electrons are collected into a 

detector and used to build an image on the screen.  Although the diameter of the electron 

probe is 1 to 2 nm, the excited volume on the sample may be up to 1 m in diameter for 
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30 keV electrons.  The SE and BE are emitted from the entire excited volume and 

contribute to the image formation so that the resolution of the SEM is generally on the 

order of 5 to 10 nm.  Using lower electron energies to excite a smaller volume of sample 

material and using coatings of high atomic number materials like Pt or Au can increase 

the resolution to 1 to 3 nm in some cases.71  Figure 3.9 depicts the excitation processes 

occurring within the sample due to absorption of incident high-energy electrons from the 

probe; image (a) for 5 keV incident electrons, image (b) for 30 keV electrons. 

 

 

Figure 3-9.  Depiction of the electronic excitation processes occurring within the sample 
due to absorption and scattering of high-energy incident electrons for 3-9(a) 5 keV, and 
3-9(b) 30 keV incident electrons, after Goldstein et al.71 
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3.7 Focused Ion Beam 
 

The FIB is a method of imaging and patterning materials using a beam of Ga ions.  

The technique works analogously to the SEM where the beam of Ga ions is scanned 

across the surface to generate SE and BE electrons that are used for image formation.  

The heavy Ga ions can also be focused into a small probe diameter on the sample surface 

such that material is sputtered from the irradiated area at a high rate.  The sputtering 

effect is used to pattern and etch materials, including preparation of thin sections for 

TEM analysis.  The ion beam instrument is also used in conjunction with SEM imaging 

to provide real-time monitoring of the patterning taking place with the ion beam, as 

shown in Figure 3-10.   

 

 

Figure 3-10.  Operating principle of the scanning electron microscope and focused ion 
dual beam instrument that is used simultaneously for imaging and patterning. 
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A dual electron/ion beam instrument is used to prepare some of the cross-

sectional TEM samples used in this work.  Care must be taken to remove the damage 

done by irradiating the sample with 30 keV Ga ions.  The damaged layer is up to 70 nm 

deep at 30 keV.72  The instrument voltage is reduced to 5 keV for final specimen 

thinning, leaving a damaged layer only a few nm deep.  High quality TEM specimens are 

regularly produced that are 50 nm or less in thickness in about 4 hours with the FIB.  

Figure 3-11 shows SEM images of the TEM specimen at different stages of preparation 

using the FIB.   

 

 

Figure 3-11.  Specimen preparation for the transmission electron microscope using a 
focused ion beam.  Image 3-11(a) shows the cross-section cut-out of the specimen being 
lifted out with a tungsten tip.  Image 3-11(b) shows the specimen mounted to a copper 
half-grid.  Image 3-11(c) shows the specimen after thinning to electron transparency.  
The left side of the specimen has been over thinned such that a hole has formed in the 
center. 

 

3.8 Atomic Force Microscopy 
 

Atomic force microscopy (AFM) is used to image topography by scanning a 

physical probe across the sample surface.  The probe is a Si cantilever with a sharp tip at 

the end.  The tip protrudes downward from one side of the Si cantilever and has a radius 

of curvature of 10 to 30 nm.  The tip is scanned across the surface using piezoelectric 
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crystals.  Topography on the sample surface causes the cantilever and tip to deflect up 

and down.  The deflection of the cantilever is monitored as it moves across the sample 

surface with a HeNe laser that is reflected from the backside of the cantilever onto a 

position-sensitive photodetector.  The deflection of the cantilever causes the reflected 

laser beam to change positions on the photodetector, and these changes are converted into 

height measurements that correspond to the sample topographic features.  Figure 3-12 

shows the primary components of the AFM.   

 

 

Figure 3-12.  Illustration of the major components and operating principle of the atomic 
force microscope.   
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The AFM can be operated in contact or non-contact modes, but non-contact is 

usually preferable.  Contact mode involves physically dragging the Si cantilever tip 

across the sample surface.  The resulting topography measurements are most accurate for 

hard materials, but the tip can be worn and damaged while scanning.  Additionally, the 

tip can easily become contaminated by small particles on the sample surface, decreasing 

the accuracy of the measurement in contact mode.  Non-contact mode involves bringing 

the tip into close proximity to the sample surface such that van der Waals forces between 

the sample and tip cause the tip to deflect.  This method is slightly less accurate in 

measuring the surface topography, but doesn’t suffer from the drawbacks mentioned for 

contact mode, and non-contact is the mode used throughout the work shown here. 

 

3.9 Etch Pit Density 
 

Etch pit density (EPD) measurements are used to measure the number of certain 

types of defects that intersect a sample surface.  The method works by creating a layer of 

oxide on the sample surface by exposing the sample to an oxidizing agent such as sulfuric 

or nitric acid.  A second reagent such as HF is added to the oxidizer to subsequently 

dissolve the oxide on the sample.  Often, water or acetic acid is used as a dilutant to 

control the etch rate of the sample.  Etching of the sample reveals defects by selectively 

removing material at a faster rate at the defect site compared to the surrounding material, 

thereby creating a recessed area or pit at the defect site.  The pits are then counted to 

provide an estimate for the number of defects intersecting the sample surface.  The faster 

etch rate at defects such as dislocations, twins, stacking faults (SF), and APBs, is caused 

by the internal stress fields that exist around these defects.  The excess stress around the 
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defects lowers the bond strength of the material making it more reactive to the etchant.  

The advantage of the etch pit density measurement is that it is fast and easy and can 

provide much more reliable counting statistics of the defect density in a material, 

especially indirect bandgap semiconductors that cannot use cathodoluminescence (CL) 

imaging for defect counting.  Figure 3-13 illustrates the formation of etch pits created 

around the TDs intersecting a sample surface.   

 

 

Figure 3-13.  Stress fields occurring around threading dislocations in the sample cause 
those regions to etch faster than the surrounding material.  Counting the etch pits can 
provide an estimate of the dislocation density in a material. 

 
The drawback of the technique is that it may not reveal all defects in a material, and the 

defect density usually needs to be measured or calibrated with another technique such as 

plan-view TEM.  The defect density usually must be below 4 x 108 cm-2 so that the pits 

can be clearly resolved from one another for accurate counting.  Higher defect densities 

must be determined using TEM.  The method of EPD overlaps nicely with measurements 

made with TEM because the lower limit of defect counting in the TEM is about 107 cm-2. 
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3.10 Photoluminescence and Cathodoluminescence 
 

Photoluminescence (PL) is an optical excitation technique in which photon 

emission is generated in a material using a coherent light source and the energy of the 

emitted photons are analyzed with a spectrometer.  The advantages of PL are that the 

measurements are fast, easy, and nondestructive.  The energy and intensity of the emitted 

photons gives information on the bandgap of the material, impurity type and 

concentration, residual strain, and defect density.  In this work, the PL intensity is used to 

compare relative defect concentrations in a sample by comparison with a control sample.  

In addition, by measuring the decay rate of the PL signal, the minority carrier lifetime of 

the sample is obtained.  The minority carrier lifetime of the sample is a strong function of 

the non-radiant recombination defect density in a material.  The minority carrier lifetime 

is the most conclusive predictor of performance of minority carrier devices such as solar 

cells.  The decay rate of the PL in this work is measured using time-correlated single-

photon counting.  Photon emission is generated in the sample using a low intensity pulsed 

laser source.  The photon emission from the sample is collected into a photomultiplier 

tube where single photoelectron states are created and detected.  The advantages of using 

low level light sources for PL decay measurement are added stability and better signal to 

noise ratio, as compared to using higher intensity excitation sources.  The technique of 

CL is closely related to PL and provides similar information about the sample.  In CL, 

high energy electrons are used to excite photons emission in a material rather than 

photons.  The CL technique is, however, limited to direct bandgap materials to get 

appreciable photon generation from the sample.  Advantages of CL include 
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nondestructive, fast, and easy measurements.  The CL measurement also provides the 

advantage of being able to image the sample, including defects, at high spatial resolution.  

The CL measurement is a capability that is often added to an SEM, which provides a 

source of focused high-energy electrons for photon excitation of the sample. 

3.11 Interferometric Lithography 
 

Interferometric lithography (IL) is a patterning technique capable of generating 

periodic arrays of feature sizes less than 20 nm.  The method involves the use of a 

coherent light source (355 nm fourth harmonic of an Nd:YAG laser) in which the laser 

beam is defocused to provide a large exposure area.  The distance traveled by half of the 

laser beam is then changed by reflection from a plane mirror to create a phase difference 

between the reflected and unreflected portions of the beam.  The reflected and unreflected 

parts of the beam then interfere with each other to produce an interference pattern on the 

photoresist (PR) coated sample.  A single exposure and develop step results in the 

generation of an array of parallel lines in the PR.  A second exposure on the sample that 

is rotated by 90o with respect to the first exposure results in the generation of a square 

array of holes (posts) for negative PR (positive PR).  The feature size is a function of the 

wavelength of the light that is used and the angle of the reflection from the plane mirror, 

and is given by the following relationship 

     



sin2

p      (3-4) 

where p is the pitch of the feature,  is the wavelength of the illumination source, and  

is the angle of reflection from the plane mirror.  Figure 3-14 is a schematic of the IL 

setup used in this work.   

 59



 

 

Figure 3-14.  Schematic of the interferometric lithography experimental setup and 
operating principle. 

 
 The pitch refers to the wavelength of the pattern that is created, whereas duty 

cycle refers to the symmetry of the pattern.  A one-dimensional array of trenches in 

patterned PR with a duty cycle of 50 % means that the width of the trench is equal to the 

width of the wall in the pattern.  A duty cycle greater than 50 % means that the wall is 

wider than the trench width.  The duty cycle can be varied by utilizing nonlinearities in 

the PR, such as exposure and development time.  The typical pitch used in this work 

varies from 300 to 400 nm, and duty cycles greater than 50 %. 
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CHAPTER 4 SURFACE PROCESSES OCCURING DURING EPITAXY 
 

4.1 Fundamentals of Epitaxy 

Chapter 2 discussed the process of evaporation and the transport of vapor species 

from the effusion cell to the substrate surface.  Chapter 4 discusses the atomistic 

processes occurring on the substrate surface due to the impingement of atoms from an 

evaporation source.  The atomistic processes occurring on the surface include adsorption, 

surface diffusion, bonding, and desorption, each with potential energies represented by 

Eads, Ediff, Eb, and Edes, in turn.  The energetic terms represent the depth of potential 

energy wells for the various processes in which the adatoms interact on and with the 

surface of the substrate.  The term Eads is usually negligible in MBE where the adatoms 

are highly reactive neutral species.  The term Ediff represents the potential energy that an 

adatom must overcome to hop from one adsorption site to another on the surface.  The 

term Eb represents the binding energy of an adatom with another adatom of the same 

species.  The Edes term represents the energy barrier for an adatom to leave the surface 

after adsorption, so that Edes is the bond energy of the adatom with the substrate surface.  

The energetic terms are unique to each material, but Ediff is generally about 3 times 

smaller than Edes.
73   

Figure 4-1 shows a simplified view of a crystalline material surface.   
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Figure 4-1.  The Terrace-Ledge-Kink model of a crystalline surface showing the 
important features and bonding sites for adatoms (shown in red). 

 
The surface shown in Figure 4-1 contains a structure consisting of terraces, ledges, and 

kinks that provide a variety of potential bonding sites for adatoms numbered 1 through 5, 

each possessing different values of Edes.  The relative energies of Edes can be ranked using 

a nearest-neighbor bonding model.  Bonding sites with a greater number of nearest-

neighbor bonds represent deeper potential energy wells and greater values of Edes.  For 

example, site one, on top of the terrace, has 3 nearest neighbor bonds, while site five has 

9 bonds, compared to a total possible 12 bonds for an atom in the bulk of the material.  

Site five, called a kink site, is a particularly unique site because an adatom in this position 

has 6 nearest-neighbor bonds, exactly one half of the total possible bonds.  Upon addition 

of an adatom to a kink site, another kink position is formed, and therefore, adatoms can 

be continually added or removed from kink sites without changing the overall free energy 

of the surface.  Epitaxial growth occurring layer-by layer from adatom attachment to kink 
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sites is called step-flow growth and occurs at elevated temperatures on crystalline 

substrates.  In general, there are three different modes of crystal growth that have been 

observed, and these are depicted in Figure 4-2. 

The epitaxial growth mode shown in Figure 4-2 (a) occurs when islands grow 

either as 2-dimensional (2D) platelets or in the step-flow growth mode described above.  

Layer-by-layer growth is also known as Frank-van der Merwe growth and generally 

occurs in homoepitaxy, where the condensing vapor species is identical to the substrate 

material.  The FM growth mode occurs for Eb ≤ Edes, meaning that adatoms bond more 

strongly or equally as strong to substrate atoms as they do with other adatoms of the same 

species. 

 

Figure 4-2.  The three modes of epitaxy, 4-2(a) Frank-van der Mere, 4-2(b) Stranski-
Krastanov, and 4-2(c) Volmer-Weber growth. 
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 The growth mode pictured in Figure 4-2 (b) is called Stranski-Krastanov (SK) 

growth and occurs when growth is initially layer-by-layer, but is later driven into a 3-

dimensional (3D) island growth mode.  The SK growth mode occurs for Eb < Edes, where 

the bond formed between the adatom and the substrate is stronger than the bond that 

adatoms have with one another.  The transition to 3D island formation is often driven by 

lattice mismatch stress, which increases with film thickness as shown in Equation (1-3).  

Island formation occurs because it partially relieves the mismatch strain of the system as 

shown by the work of Luryi and Suhir and discussed in Chapter 2.  The 3D islands often 

form after a few monolayers (ML) of 2D growth, and this layer is called a wetting layer.  

The SK growth mode is commonly observed in most heteroepitaxial systems, including 

GoS.   

Lastly, Figure 4-2 (c) depicts Volmer-Weber (VW) growth in which 3D island 

formation occurs without formation of a wetting layer.  This situation occurs for Eb > 

Edes, where adatoms bond more strongly to each other than to substrate atoms.  This 

situation occurs during growth of most metals and semiconductors on insulating materials 

such as amorphous SiO2 or Si3N4.  Understanding island nucleation behavior on these 

insulators is important in selective epitaxial growth (SEG). 

 

4.2 Selective Epitaxial Growth 

The SEG of Ge and GeSi has become increasingly important in a variety of 

advanced device applications, including high-speed HBTs74-76 and metal-oxide 

semiconductor field-effect transistors (MOSFET)77-80.  Other applications include ordered 

arrays of quantum dots81-85 for photodetectors86 and quantum cellular automata87.  In 
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addition, SEG is required in the aspect ratio trapping and finite area growth defect 

reduction strategies for heteroepitaxy discussed in Chapter 1. 

In SEG, the substrate surface contains areas of crystalline material adjacent to 

amorphous insulating materials.  Epitaxial growth is desired on the crystalline portion of 

the substrate, but not on the insulating portions.  Nucleation on amorphous insulators is 

random in nature and leads to polycrystalline or amorphous thin film growth.  For 

successful SEG, random nucleation on the insulator must be prevented.  Thus, it is 

important to determine the mechanisms and energetics of nucleation on the insulator 

responsible for optimal selectivity.  The nucleation energetics can be extracted by 

applying atomistic nucleation theory to measurements of island densities on the insulator.  

The fundamentals of atomistic nucleation theory are presented next and applied to 

experimental results of Ge nucleation on SiO2 to extract the energetics of the nucleation 

process.  The energetics of Ge nucleation on SiO2 are then used, in turn, to achieve 

optimal selectivity of Ge on Si versus SiO2, and to understand the mechanisms involved in 

achieving SEG. 

 

4.3 Atomistic Nucleation Theory 

 
Atomistic nucleation theory is a rate-equation approach used to predict the 

energetics that are involved in the island nucleation process.  Figure 4-3 graphically 

depicts the important atomistic processes of adsorption, desorption, surface diffusion, 

nucleation, and island growth that occur simultaneously on the substrate surface during 

deposition.  Atomistic nucleation theory uses mathematically coupled rate equations to 

describe the surface processes and predict the nucleation density of islands as a function 
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of time.  Measurement of the island density can be used to extract the fundamental 

energetics of the system such as Edes, Ediff, and Eb.  The magnitude of the energetic terms 

can then be used to optimize the growth conditions to achieve maximum selectivity in 

SEG experiments.   

 Figure 4-3 also introduces the notation used in developing the rate equations 

describing the atomic processes occurring on the surface.   

 

 

Figure 4-3.  Depiction of the atomic processes occurring on a surface due to impingement 
of atoms from an evaporation source.  The notation used in developing atomistic 
nucleation theory is also shown for each process.   

 
The term n1 represents the atoms impinging on surface from the evaporation source.  

These atoms undergo surface diffusion in moving from one adsorption site to another that 
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requires the atom to overcome an energy barrier represented by Ediff.  Atoms can also be 

desorbed back into the vacuum after acquiring an energy represented by Edes.  The 

characteristic time that the adatoms spend diffusing on the surface before desorbing is 

represented by des.  Adatoms diffusing on the surface can also collide with other adatoms 

on the surface and bond to each other to create an island.  The rate of formation of islands 

on the surface is the nucleation rate and is represented by n.  These small islands may not 

be stable at elevated temperature and can break apart into individual adatoms.  Islands 

that decay back into adatoms are called subcritical clusters and are represented nj, 

whereas larger clusters that grow by capturing adatoms are termed stable clusters and are 

represented by nx.  An island at the critical size, ni, is one that will form a stable island 

and continue to grow upon addition of one additional adatom.  These critical clusters are 

made up of i number of adatoms and the adatoms in the cluster have a bond energy with 

one another of Ei.  Stable clusters continue to grow and give rise to film growth on the 

surface.   

 The kinetic processes described in Figure 4-3 are represented mathematically 

based on Venable’s88,89 treatment: 
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where ax is the surface area of a stable island, i and x are called capture numbers and 

are described below, and D is the surface diffusion coefficient given by 
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in which || is the substrate surface vibration frequency in the surface plane (~ 1013 s-1), 

No is the surface density of adsorption sites, and T is the substrate temperature.  The 

desorption rate, des is given by 
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where  is the surface vibration frequency perpendicular to the surface plane.  Together, 

equations (4-1) to (4-4) are coupled differential equations describing the processes 

depicted in Figure 4-3. 

Equation (4-1) describes the time rate of change for individual adatoms on the 

surface.  The first term on the right hand side of equation (4-1) is the impingement rate of 

atoms from the evaporation source and is given by Equation (2-7).  The second term in 

Equation (4-1) is the rate of desorption of adatoms from the surface, and the third term 
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describes the capture of adatoms by stable islands from direct impingement from the 

vapor source and from surface diffusion of adatoms to the island edge.   

Equation (4-2) describes the time rate of change of subcritical clusters.  The 

equation is set equal to zero with the assumption of equilibrium between subcritical 

clusters, so that their net rate of formation is zero.  A detailed balance analysis of the 

subcritical clusters leads to the conclusion that only islands at the critical size, ni, 

contribute to the nucleation rate of stable islands, nx.  The result is given by the Walton90 

relation describing the net rate of formation of critical clusters 
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where Ei is the binding energy of adatoms in a critical size island.   

 Equation (4-3) describes the nucleation rate of stable clusters.  The right hand side 

of Equation (4-3) describes the rate that critical size clusters capture an additional adatom 

that is diffusing on the surface.  The capture of the adatom by a critical size island then 

converts it into a stable growing island, nx.  Solution of the coupled Equations (4-1) 

through (4-3) requires a solution for the capture numbers i and x. 

 The capture of adatoms by critical and stable islands requires a model for how 

adatoms diffuse on the substrate surface and attach to islands.  Simplifications are made 

by assuming that the diffusive adatom flux on the surface can be described by a ‘mean’ 

diffusion field, giving rise to the descriptive term ‘mean-field theory’.  The true diffusion 

field varies with island size, so by assuming that each island exists in an average field of 

diffusing species means that island-island correlations are not accounted for.  However, 
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for large ensembles of islands, the assumption of a mean diffusion field for each island 

should not greatly affect the average rates described in the coupled rate equations.  

Solution of a 2D mean diffusive field for both critical and stable islands leads to solutions 

for the capture numbers in the form 
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where K1 and K0 are modified Bessel functions and the argument X is (rk/Ddes), where rk 

is the radius of the island; rk = rx for stable islands and rk = ri for critical size islands in 

the expression for x and i, respectively.   

 The 2D diffusive flux occurring on the surface due to the capture of adatoms at 

the edges of existing islands leads to regions of reduced adatom concentrations around 

the islands.  The regions that are partially depleted of adatoms are called nucleation 

exclusion zones, and are depicted in Figure 4-4. 
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Figure 4-4.  Illustration of the effect on the local adatom population due to a diffusive 
flux toward the island edge. 

 
Analytical solutions of Equations (4-1) through (4-8) are made possible under conditions 

of steady-state nucleation for particular deposition conditions.  The general solution for 

the maximum or saturation island density is given as 
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Expressions for the energy, En, and the exponent p are listed in Table 4-1 for the specific 

conditions of complete, initially incomplete, and extreme incomplete condensation.   

 Extreme incomplete condensation is associated with low desorption (Edes) and 

diffusion (Ediff) activation barriers.  These low activation barriers lead to an extremely 

short characteristic surface diffusion length much less than the interdistance of nucleated 

islands.  Thus, islands grow solely from direct impingement from the vapor.  In 
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comparison, the initial incomplete regime is generally associated with high Edes but low 

Ediff.  This regime exists when the nucleation density is sufficiently low, such that the 

characteristic diffusion length does not exceed the interdistance of nucleated islands, and 

therefore some of the diffusing adatoms desorb before reaching an island.  However, 

once the saturation nucleation density is reached, the nucleated islands capture all 

diffusing adatoms.  The third regime categorized as complete condensation is associated 

with extremely high Edes and/or extremely low Ediff, such that adatoms can diffuse until 

being captured by an island.  

 

 

Table 4-1.  Expressions for the exponent p and energy En in Equation (4-9) that depend 
on the condensation regime and whether the islands are two or three-dimensional. 

 
 Depending on the regime of condensation and the island morphology described 

above, natural log of the saturation number density of islands can be plotted against 1/T 

to extract En associated with desorption (Edes) and diffusion (Ediff) of Ge as well as lateral 

binding energy (Ei) of adatoms in the critical nuclei.  Atomistic nucleation theory has 

undergone a significant amount of testing since its development to determine its validity. 

Nucleation theory of thin films deposited from the vapor has a long history and 

originated from metal nucleation studies, eventually leading to semiconductors.  Early 
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work was focused on Au deposition onto alkali halide substrates.91-93  While providing 

qualitative confirmation of the theory, early nucleation studies on alkali halide substrates 

were complicated by the formation of defects on the substrate caused by stray electrons 

emitted from the deposition source.  These defects caused additional nucleation to occur 

on the substrate during the deposition.94  More recently, Schmidt et al.95 studied the 

nucleation of several metals on amorphous SiO2 films and found that their nucleation 

behavior agreed with nucleation theory.  In general however, metal nucleation on 

insulating substrates appears to be dominated by surface defects, especially at low 

deposition temperatures.96-98  Following the metal-insulator studies, metal-metal and 

metal-semiconductor systems were studied and found to differ in nucleation energetics 

and behavior from insulating substrates.99 

These early nucleation studies are examples of VW or SK growth, during which 

nucleation densities are measured by either SEM or TEM.  With the advent of scanning 

tunneling microscopy (STM), nucleation and island growth are studied at the atomic level 

with sub-monolayer sensitivity, and much insight is gained into the fundamental 

processes of 2-D atomic motion on surfaces.  The use of STM provides the opportunity to 

test nucleation theory at the atomic level.  Explicit measurement of critical nucleus sizes 

and the flux dependence of the stable island density quantitatively validated the rate 

equation approach to modeling nucleation of thin films.99-105  Complementing the STM 

work, Monte Carlo simulations have also confirmed that the rate equation approach is an 

accurately quantitative description of the nucleation process.106  Although measurements 

using low-temperature STM are more precise than those inferred from SEM using 
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nucleation theory, the STM cannot be used on insulating substrates.  Thus, we use SEM 

in this work to measure nucleation densities of Ge on SiO2. 

In previous studies of metal and semiconductor growth on insulators, island 

growth is generally observed due to low surface energy of the insulators, and this is also 

the case for Ge-SiO2 at typical growth temperatures (673 to 923 K) used in our 

experiments.  In addition, these systems are characterized by small Edes and Ediff.  For 

example, for Ag on SiO2, Poppa estimates the desorption energy as 0.52-0.43 eV.107  

Specifically for Ge on SiO2, Li et al.108 reported 0.44 ± 0.03 eV  for an experimentally 

measured desorption activation energy of Ge from SiO2.  In the present study, we extend 

the measurement of Ge nucleation on SiO2 over a much broader range of temperatures 

and deposition rates and extract the critical nucleus size, cluster binding energy, and 

surface diffusion energy of Ge on SiO2 from the rate equation approach to nucleation.  

Preparation of the samples for nucleation experiments of Ge on SiO2 are described next. 

 

4.4.1 Experimental Details 

 
For SiO2 sample preparation, Si (001) wafers are first cleaved into narrow strips 

of 1 cm w x 5 cm l pieces.  The Si wafers are doped with boron with a resistivity of 1 – 

10 Ω-cm.  The cleaved samples are cleaned in a Piranha bath consisting of 3 volumetric 

parts H2SO4 (96 wt%) to 1 part of H2O2 (30 wt%).  The samples are subsequently dipped 

into a buffered oxide etch solution (20 parts 40 wt% NH4F: 1 part 49 wt% HF) diluted in 

deionized (DI) water by 6:1 volumetric ratio to remove the chemical oxide.  The 

chemical oxidation and etching process is repeated twice.  The samples are dried with N2 

and then loaded into a dry oxidation furnace, in which 100 nm of oxide is grown at 1423 
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K.  Before Ge deposition, the samples are again cleaned in Piranha and dipped into a 

dilute HF solution for 10 sec.  The dilute HF is made by mixing 20 volumetric parts of DI 

water with 1 part of 49 wt % electronic grade HF solution.  After the HF dip, which 

removes approximately 1 nm of the thermally grown SiO2, the samples are rinsed in DI 

water and dried with N2 gas.  After being loaded into the deposition chamber, the samples 

are degassed at 873 K for 10 min.  The effusion cell is set to the desired temperature and 

allowed to stabilize for 30 min.  The substrate heater is then set to the deposition 

temperature and allowed to stabilize for 5 min.  The shutter is subsequently opened for 

deposition, while the deposition time is recorded.  The pressure in the chamber remains 

below 1x10-8 Torr during the deposition.   

After deposition, the Ge nucleation density is counted ex situ from SEM images.  

The microscope is a JEOL 6400F capable of ~10 nm resolution.  The samples are sputter 

coated with 5 nm of Au to prevent charging of the SiO2 surface during SEM imaging and 

to enhance the resolution and contrast of Ge islands.  Eight images are recorded across 

the sample in plan-view geometry to provide reliable counting statistics for nucleation 

densities.  The island densities vary by 2 to 4 times from center to edge of the samples.  

Sample edges are more prone to variation due to possible contamination from cleaving 

and sample handling.  Thus, we limit our counting to 8 locations near the center along the 

5-cm strip to minimize edge effects.  Figure 4-5 shows representative SEM micrographs 

where the island nucleation density decreases with increasing substrate temperature at a 

fixed flux of 4.2 x1014 atoms cm-2-s-1 (40 ML min-1).  The islands appear semicircular 

and are randomly distributed across the surface.  
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Figure 4-5.  Scanning electron micrographs of Ge islands on SiO2 at saturation island 
density at a flux of 4.2 x 1014 atoms cm-2-s-1 (40 ML min-1) with increasing substrate 
temperature: 4-5(a) Tsub = 673 K and 80 ML exposure, 4-5(b) Tsub = 723 K and 200 ML 
exposure, 4-5(c) Tsub = 773 K and 400 ML exposure, and 4-5(d) Tsub = 823 K and 800 
ML exposure. 

 
4.4.2 Results and Discussion  
 

The number of Ge islands nucleated on the SiO2 is a function of substrate 

temperature Tsub, deposition rate R, and time t.  Nucleation density measurements are 

made over substrate temperatures from 673 to 973 K and deposition rates from 6.9 x 1014 
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atoms cm-2-s-1 (65 ML min-1) to 5.1 x 1013 atoms cm-2-s-1 (5 ML min-1).  Figure 4-6 

shows the time dependence of the nucleation density at a fixed deposition rate for several 

substrate temperatures.   

 

 

Figure 4-6.  Nucleation density versus time for flux of 4.2 x 1014 atoms cm-2-s-1 (40 ML 
min-1) for several substrate temperatures.  The time to reach the saturation island density 
increases with increasing temperature and occurs well before island coalescence except at 
the lowest measured substrate temperature of 673 K. 

 
The time to reach the saturation nucleation density decreases with decreasing substrate 

temperature and increasing deposition rate.  Qualitatively, at low temperatures, a larger 

number of Ge adsorbates exist on SiO2 surface to form islands, and therefore a larger 
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overall nucleation density.  This in turn is likely to cause the system to reach the 

saturation density much more quickly than at elevated temperatures.  The saturation 

nucleation density can be described by the Equation (4-9). 

Natural log of the saturation nucleation density versus 1/Tsub is shown in Figure 4-

7 and found to vary by over 5 orders of magnitude.   

 

 

Figure 4-7.  Natural log of the saturation nucleation density versus reciprocal substrate 
temperature.  This plot reveals two distinct slopes that occur over the temperature 
intervals of 673 to773 K and 773 to 973 K, and this graph is used to extract the activation 
energies involved in the nucleation process. 
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Two different slopes appear in the data: one from 673 to 773 K and one from 773 to 973 

K.  The discontinuity in the slope may stem from a change in the critical nucleus size (i) 

or from a transition in the regime of Ge condensation on SiO2.  To delineate the cause of 

this discontinuity, the level of Ge condensation is first characterized by integral 

condensation coefficient (), which is a ratio of total mass of Ge condensed to total mass 

of Ge impinged on the surface. 

The integral condensation coefficient, , is estimated by first measuring the island 

diameter for each island in a micrograph in two perpendicular directions and then 

calculating the arithmetic average.  Next, we assume hemispherical shapes to calculate 

the amount of Ge condensed versus the amount impinged from the effusion cell.  Figure 

4-8 shows  versus t for several substrate temperatures for a fixed deposition rate. 
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Figure 4-8.  Integral condensation coefficient, , is estimated from scanning electron 
micrographs and plotted against time for several substrate temperatures.  Values of  are 
less than 0.1 even at the lowest measured substrate temperature of 673 K, and are much 
less than one even after reaching the saturation island density at higher temperatures.  
This indicates that condensation is extremely incomplete over the range of substrate 
temperatures investigated. 

 

We observe that  does not exceed 0.1 even at the lowest substrate temperature of 673 K 

even after reaching the saturation nucleation density.  From this observation, we conclude 

that the condensation regime is extremely incomplete over the entire experimental range.  

Moreover, we deduce that the slope change occurring at 673 K in Figure 4-7 is due to a 

change in the critical nucleus size (i). 
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To measure (i), natural log of saturation island density (N) is plotted versus 

natural log of deposition flux (R) at a fixed substrate temperature.  Figure 4-9 shows this 

data measured at 723 and 773 K.   

 

 

Figure 4-9.  Natural log of the saturation density versus deposition rate used to determine 
the critical nucleus size, i, for the low and high temperature slopes shown in Figure 4-8.  
Broken lines indicate the slopes expected for different values of i under extreme 
incomplete condensation. 

 

These substrate temperatures lie on either side of the discontinuity in slope in Figure 4-7.  

Linear regression is conducted on ln(N) vs. ln(R), whose slope yields the exponent p 

according to Equation (4-7).  In the case of extreme incomplete condensation,89  
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where Ei is the binding energy of the critical nucleus relative to i isolated atoms.  The 

linear regression yields a value of p = 0.8  0.1 at 723 K and p = 1.4  0.2 at 773 K.  For 

the 723 K case, we calculate i to be approximately 1.  However, i = 2 also results in a 

slope that traces the experimental data within the margin of experimental error.  

Therefore, the values of p are consistent with a range of i values from 1 to 2 at 723 K and 

2 to 3 at 773 K, respectively.  In the following section, we will show that En extracted 

from Figure 4-7 places a limit on i, which in turn must be consistent with Ei.  That is, Ei 

and i are inter-dependent in Equation (4-9).  As shown next, the form of En and its 

measured values for the two temperature intervals in Figure 4-7 allow us to deduce the 

exact value of i for both intervals.  However, to determine i and Ediff, we first use, as an 

upper limit for Ei, the free-vacuum binding energy of the critical nucleus size for Ge 

dimers and trimers. 

Measurements of free-vacuum cluster binding energies for Ge dimers and trimers 

have been made using a mass spectrometry technique with values of 2.65 and 6.24 eV, 

respectively.109  We expect these Ge-Ge binding energies to be smaller for Ge clusters 

adsorbed onto SiO2, as Ge forms bonds with the underlying substrate.  Therefore, the 

free-vacuum binding energies represent an upper limit to the true binding energy.  These 

binding energy estimates, along with the measured values for En, are used to determine 

the value of i for each temperature interval.  For the low temperature interval (673 – 773 

K), the only value of i consistent with the data is i = 1, leading to a result 2Edes – Ediff = 

0.65  0.02 eV.  Using Edes = 0.44 ± 0.03 eV that we had experimentally determined 
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using x-ray photoelectron spectroscopy, leads to a value for Ediff = 0.24 ± 0.05 eV.  

Similarly, the only possible value for i in the high temperature interval (773 – 973 K) is i 

= 3.  Using the above values for Edes and Ediff leads to the value Ei=3 = 3.7  0.1 eV for a 

surface adsorbed trimer.  This value for Ei=3 is considerably lower than the free-vacuum 

binding energy of 6.24 eV.  However, consider a Ge trimer with three bonds to the 

underlying SiO2.  Assuming that the binding energy of the free-vacuum cluster is equal to 

the total binding energy of the surface-adsorbed cluster, which includes three Ge-SiO2 

bonds, 3Edes + Ei=3 = 6.24 eV.  Using Edes = 0.44 ± 0.03 eV yields a value for Ei=3 of 4.9 

± 0.1 eV.  This qualitative estimate is only meant to demonstrate the reasonableness of 

the calculated value for Ei=3.  Due to the imprecise structure of the amorphous SiO2 

surface, and the unknown configuration of a Ge trimer adsorbed onto this surface, we 

cannot speculate further about the accuracy of the measured value for Ei=3. 

Based on the experimentally measured Edes and Ediff, we consider the implications 

of the measured activation barriers on selective growth.  The average distance, X , that Ge 

adatoms migrate on the surface before desorbing is equal to110 
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We estimate No to be 1 x 1015cm-2 based on the structure and bond lengths between 

oxygen atoms in -quartz111 and assuming that each SiO4 tetrahedron provides a potential 

adsorption site.  Inserting the measured values for Edes and Ediff results in a migration 

distance of only 0.9  0.3 nm at 673 K and 0.5  0.2 nm at 973 K.  Given these low 
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diffusion distances for Ge adatoms, we expect that the selective growth occurring on a 

patterned substrate is due to the short adatom lifetime on the oxide surface.  This 

conclusion is a correction to our previous work in which we suggested that selective 

growth occurs by Ge adatom diffusion to the openings in the SiO2 mask. 

Figure 4-10 shows an oxidized Si sample with a patterned window density of 6  

106 cm-2 where the windows are etched down to the Si substrate.  The top micrograph 

represents a templated Si substrate at 673 K exposed to a Ge flux of  

4.2 x 1014 atoms cm-2-s-1 (40 ML min-1) and shows extensive random nucleation on the 

oxide, as well as growth inside the windows.   

 

 

Figure 4-10.  Scanning electron micrograph showing the highly selective growth 
achieved for a three micron separation between mask openings at 873 K, but random 
nucleation occurring at 723 K.  Deposition flux is 4.2 x 1014 atoms cm-2-s-1 (40 ML min-1) 
in both images. 

 

The sublimation energy for Ge on Si (001) has been estimated to be 4.25 eV;73,112 

therefore, we expect nearly all the Ge to stick to Si exposed inside the windows.  If the 

characteristic diffusion length of Ge on SiO2 were longer than the window pitch, the 
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rapid nucleation of Ge on Si should produce a nucleation exclusion zone (or area of 

reduced Ge adatom concentration) around the periphery of each opening.  However, no 

such exclusion zone is detectable in Figure 4-10 (a), in support of the calculated short 

diffusion lengths for Ge on SiO2.  Additionally, the random nucleation density on the 

oxide is the same as that on an unpatterned sample.  This result is also expected if the 

average surface diffusion length of Ge adatoms on the oxide is much less than the 

distance between openings in the oxide.  Lastly, we plot the saturation nucleation density 

as a function of substrate temperature and deposition rate to provide a guide for 

deposition conditions that favor highly selective growth (Figure 4-11). 

 

 

Figure 4-11.  Numbers of random Ge nuclei occurring on the SiO2 are shown versus 
substrate temperature for different deposition rates. 
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Figure 4-11 shows the number of random Ge nuclei obtained for a given substrate 

temperature and flux.  Since random Ge nucleation is suppressed at high temperatures but 

not fully eliminated, it is not possible to demarcate a region of selective versus 

nonselective growth.  Rather, Figure 4-11 can be used to choose deposition conditions 

that will produce a minimal number of random nuclei.  Additionally, it is possible that an 

amount of random nucleation below the detection limit of the SEM occurs at defect sites 

on the mask surface.  However, the observation that the random nucleation density 

continues to decrease precipitously without a plateau in Figure 4-11 as a function of 

increasing substrate temperature indicates that the defect-induced random nucleation is 

likely to be minimal in the temperature range explored in this work. 

 

4.4 Conclusions of Ge Nucleation on SiO2 

 
The saturation nucleation density of Ge islands on SiO2 during MBE growth is 

measured and used to determine the optimal growth conditions for selective growth on 

patterned samples.  The nucleation measurements and mean-field theory are combined 

with our previously measured desorption activation energy to determine the size and 

binding energy of the critical nucleus and activation energy for surface diffusion.  The 

small desorption and surface diffusion activation barriers lead to extremely short adatom 

lifetimes and diffusion lengths on the SiO2 at elevated growth temperatures, leading to 

selective growth on window-patterned samples.  In contrast, Ge strongly binds to Si such 

that the growth occurring inside the windows on patterned samples progresses mostly by 

direct impingement from the vapor and subsequent lateral diffusion within the holes.  

This result is confirmed by two observations made on the patterned samples: (1) the lack 
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of nucleation exclusion zones around the window openings and (2) the independence of 

the random Ge nucleation density occurring on the oxide surface on patterned versus 

unpatterned samples. 
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CHAPTER 5  NUCLEATION OF GERMANIUM WITHIN NANOSCALE  

OPENINGS IN SILICON DIOXIDE 

5.1 Introduction and Background 

 
The theory of stress reduction using nanoheteroepitaxy and the possibility to grow 

dislocation-free GoS is reviewed in Chapter 1.  The method under current investigation to 

improve the GoS film quality is the nucleation of Ge islands within nanoscale windows in 

a thin layer of chemically grown SiO2 and successive island coalescence over the SiO2.   

The density of small openings that form in the SiO2 layer is greater than 1011 cm-2, 

and these openings result from exposure to a Ge flux at elevated temperatures.  Epitaxial 

Ge islands then selectively nucleate within the openings in the SiO2.  Continued growth 

leads to the formation of larger islands that coalescence over the remaining SiO2 template 

until eventually a continuous Ge layer is formed.   

Shklyaev et al.81 were the first to demonstrate the technique of Ge nucleation 

through nanometer openings in SiO2.  Shklyaev and others have pursued this technique 

for quantum dot113-116 and memory applications;117,118 however, our group was the first to 

apply this method to obtain low TDD Ge films on Si.55,58,59  Luryi and Suhir developed 

the theoretical analysis of Ge growth within the nanometer-sized openings in SiO2, and 

its potential to produce low TDDs, as reviewed in Chapter 1.64  The two specific 

requirements that must be met for dislocation-free growth of Ge on Si are as follows:  1) 

Ge island diameter should be less than 10 nm, and 2) Ge islands should be spaced by 

more than 3 nm apart.64  Later analyses using finite element modeling of Ge islands on Si 

largely confirm these findings and show that Ge islands deform outward to enhance strain 
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relaxation.60-62  The specific requirements for dislocation-free growth of Ge on Si are met 

by the process of Ge nucleation through nanometer-sized openings in chemical SiO2.   

 

5.2 Experimental Details  

The Si substrate consists of a 2-inch wafer doped with boron with a resistivity of 

1 – 10 Ω-cm.  The Si wafers are cleaned for 5 min in a Piranha bath consisting of 3 

volumetric parts H2SO4 (96 wt %) to 1 part of H2O2 (30 wt %) and heated to 373 K.  The 

heated Piranha bath results in a slightly thicker oxide but a more consistent thickness 

compared to our previous chemical oxidation procedure done at 353 K.58,59  The samples 

are subsequently dipped into a buffered oxide etch solution (20 parts 40 wt% NH4F: 1 

part 49 wt% HF) diluted in DI water by 6:1 volumetric ratio to remove the chemical 

oxide.  The chemical oxidation is then repeated, and the wafer is rinsed in DI water and 

blown dry with N2.  After being loaded into the deposition chamber, the samples are 

degassed at 873 K for 10 min.  The effusion cell temperature is set to produce a flux of 

1.9 x1014 atoms cm-2-s-1 (19.1 ML min-1) and allowed to stabilize for 30 min.  The shutter 

is subsequently opened for deposition, while the deposition time is recorded.  A total of 

100 nm of Ge is deposited, and then the deposition rate is increased to 60 ML min-1 until 

a film thickness of 3.5 m is reached.  The pressure in the chamber remains below 1x10-8 

Torr during the deposition.   

Samples that undergo annealing at an early stage of Ge growth follow the same 

procedure described above, up to the step before the shutter is opened to begin 

deposition.  Four samples are produced with an equivalent amount of 8, 12, 18, and 25 

nm of Ge deposition, assuming all Ge sticks to the surface.  A second set of samples is 
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then produced with identical Ge depositions, but which undergo annealing under vacuum 

after the deposition.  For samples in which Ge islands are annealed, the shutter is 

subsequently closed after deposition, and the substrate temperature is raised to 1073 K for 

30 min.  This anneal step is previously reported to lead to Ge films free from twins upon 

further Ge growth at 853 K after the anneal step.55 

Ge/SiO2 template/Si samples are polished using a Logitech PM5 

lapping/polishing machine on a Logitech Chemcloth polishing pad.  The polishing 

solution consists of 50 parts DI water and 1 part 30 wt% H2O2.  Afterward, the wafers are 

rinsed in DI water and cleaned for 10 min in a capacitively coupled plasma reactor 

operating at 250 watts and 1 Torr with 30 sccm O2 flow rate. 

The integration of III-V layers consisting of GaAs and AlGaAs is performed at 

National Renewable Energy Laboratory (NREL) and at Sandia National Laboratories 

(SNL).  The NREL growth consists of a 10-period superlattice of GaAs and Al0.2Ga0.8As 

layers.  The first layer is GaAs, and each layer is 50 nm thick except for the last 100 nm 

thick Al0.2Ga0.8As layer.  This is followed by 1500 nm of GaAs, 200 nm of Al0.2Ga0.8As, 

and finally a 10 nm thick GaAs cap.  The III-V growth performed at NREL is done in an 

atmospheric pressure metal-organic vapor phase epitaxy (MOVPE) reactor, using 

trimethylgallim (TMG), trimethylaluminum (TMA), and arsine delivered in H2.  The 

samples are first annealed at 973 K for two minutes under 1.2 Pa of arsine.  The 

temperature is then reduced to 923 K for growth.  All Ga0.8Al0.2As layers are grown at a 

rate of 2.3 m/hr and V/III inlet ratio of 70.  All GaAs layers are grown at 1.8 m/hr with 

V/III inlet ratio of 86.  The SNL growth stack consists of 50 nm of GaAs, 100 nm of 

Al0.2Ga0.8As, and followed by 1000 nm of GaAs.  The III-V growth performed at SNL is 
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done using MOVPE in a Veeco D125 system.  Immediately before GaAs growth, the 

wafers are rinsed in DI water followed by a 30 s dip in a dilute HF solution (1 part 49 wt. 

% HF: 100 parts DI water).  The wafers are first degassed at 373 K for 30 min and then 

heated to 973 K to remove Ge surface oxide.  The growth precursors TMA, TMG, and 

arsine are delivered in an H2 ambient.  For AlGaAs growth, the deposition occurs at 923 

K with partial pressures of 0.9 mTorr TMA, 2.1 mTorr TMG, and 0.4 Torr arsine.  

Control samples for NREL and SNL III-V growth consist of 2-inch 6° offcut Ge 

substrates manufactured by AXT and are Ga doped to a resistivity of 0.016-0.022 Ω-cm. 

The SEM imaging is performed on an FEI Quanta 3D operating at 30 kV.  The 

AFM imaging is done using a Park Scientific Instruments Autoprobe CP operating in 

non-contact mode.  Both STEM and TEM images are collected on a JEOL 2010F and 

JEOL 2010, respectively, operating at 200 kV.  The TEM samples of Ge islands and III-

V films on Ge are prepared using the FIB apparatus of the FEI Quanta 3D.  The 

composition of the annealed Ge islands is performed using Nanoprobe EDS in STEM 

mode on the JEOL 2010F using a 1 nm spot size.  The x-ray signal is collected using an 

Oxford Instruments SiLi drift detector with an ultra-thin window. 

Mechanical polishing is used to prepare the x-TEM samples of Ge films followed 

by ion milling.  The pv-TEM samples are prepared by chemically removing the Si 

substrate in a 30 wt % solution of KOH and DI water heated to 313 K.  The free-floating 

Ge film is then rinsed in DI water and thinned to electron transparency using a Gatan 

PIPS ion polisher.  An Omicron SEM operating at 5 kV with a 5 nm spot size is used to 

collect CL images at SNL.  The detector is a Gatan MonoCL2 of Cs:GaAs having a 

detectable wavelength range below 890 nm.  Additional CL spectrum imaging 
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measurements at 300 K and 15.5 K are made at NREL using an SEM operating at 15 kV 

and 500 pA with a Si detector.  Time-correlated single photon counting is employed in 

the collection of the time resolved PL spectra.  A Ti:Sapphire laser producing 200 fs 

pulses at 250 kHz repetition rate is used as the excitation source.  The excitation 

wavelength is 750 nm with average power of 0.5 mW and beam diameter of 0.5 mm.  

The detector is a Hamamatsu near infrared-sensitive photomultiplier tube used to collect 

measurements at 870 nm.   

 

5.3 Results and Discussion  

 The thickness of SiO2 chemically formed from the 100 C Piranha solution is 1.4 

nm as measured in the STEM image in Figure 5-1. 
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Figure 5-1.  High resolution cross-sectional scanning transmission electron micrograph 
showing the Ge/SiO2/Si interface.  Voids of 3 to 7 nm in diameter are created in the SiO2 
where Ge subsequently nucleates and grows as islands.  The islands eventually coalesce 
into a continuous film overgrowing the remaining oxide.   

 

This figure shows a cross-sectional view of the Ge-Si interface after nanoscale Ge islands 

form within the openings in the thin SiO2 layer and subsequently coalesce over the oxide.  

STEM provides elemental contrast based on atomic weight, where heavier elements 

scatter more electrons into the detector.  Thus, epitaxial Ge appears brightest at the top of 
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the image, whereas Si appears darker and is shown at the bottom.  Oxygen atoms 

contained in the remaining SiO2 scatter the least; therefore, remaining SiO2 appears as the 

dark broken line at the Ge-Si interface.  The STEM image shows the high density of 3 to 

7 nm wide openings in the SiO2 and the Ge-Si epitaxial registry at the heterojunction 

within the oxide openings.  Additionally, a thin GeSi interdiffusion layer of 2 nm is 

faintly visible beneath the oxide layer.  In addition, EDS spectra are collected (not shown 

here) and further verify the elemental composition of the Si, Ge, and SiO2 near the 

interface.  The above interfacial architecture is maintained across the 2-inch-diameter 

wafer for proper scale-up of the growth technique we have developed. 

 

5.3.1 Mechanism of Nanoscale Window Formation 
 
 The mechanism that creates openings in the oxide and allows epitaxial Ge island 

formation is still not completely understood.  However, a sizeable body of work119-138 has 

been done on the thermal decomposition of thin layers of SiO2, substantiating some of the 

mechanism’s elementary steps.  First, the thermal decomposition of SiO2 in an oxygen 

deficient atmosphere at elevated temperatures is believed to occur via the overall 

reaction:139 

Si(s) + SiO2(s) → 2SiO (g)     (5-1) 

 

Tromp et al.131 first showed that this reaction does not occur uniformly across the oxide 

surface.  Rather, the reaction occurs inhomogeneously, leading to a random array of 

openings in the oxide.  These openings then grow as Si diffuses to and reacts with SiO2 at 

the periphery of the openings.  Using isotopically labeled O2
18 with thermal desorption 
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mass spectroscopy , Sun et al.137 demonstrated that the decomposition of the SiO2 begins 

at the SiO2-Si interface.  The above observations lead us to postulate the following 

elementary steps to nucleate voids at the Si-SiO2 interface: 

 

SiO2–Si defect (I) + SiOx (I) ↔ SiO (I)   (5-1a) 

SiO (I) → SiO (S)      (5-1b) 

SiO (S) → SiO (g)      (5-1c) 

 

where I stands for interface, S is surface, and g is gas phase.  Equation (5-1a) represents a 

reaction between sub-stoichiometric oxide that exists in a thin layer at the SiO2-Si 

interface [for a review see Ref. 140] and interface defect sites.  For oxides thicker than 1 

monolayer, Equation (5-1b) describes SiO diffusion from the interface to the SiO2 

surface.  Lastly, Equation (5-1c) describes SiO desorption from surface to vacuum.   

The exact defect sites where the SiO2 decomposition begins are still unknown, but at least 

two possible candidates have been identified.  Poindexter et al.141 used electron spin 

resonance spectroscopy to determine that approximately 1012 cm-2 dangling bond defects 

(called Pb0) occur at the SiO2–Si interface.  Another possibility is interstitial silicon point 

defects that occur to minimize strain at the interface from the volume expansion during 

the oxidation.142-147 

 Once voids are nucleated at the SiO2–Si interface, they grow by consumption of 

substrate Si.  Johnson et al. have proposed the following model for the void growth:145 

 

Si (L) ↔ Si (m)     (5-1d) 
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Si (m) ↔ Si (P)     (5-1e) 

Si (P) + O (P) ↔ SiOx (P)    (5-1f) 

SiOx (P) → SiO (g)     (5-1g) 

 

where L, m, and P represent lattice site, surface monomer, and sites at the void periphery, 

respectively.  Equation (5-1d) describes the formation of a Si surface monomer from the 

lattice-site Si.  In Equation (5-1e), a Si monomer diffuses to the void periphery, where it 

can react with O to produce SiOx in Equation (5-1f).  Lastly, Equation (5-1g) corresponds 

to desorption of SiO from surface to vacuum.  Modeling of the void size with annealing 

time indicated that Si monomer formation in Equation (5-1d) is the rate-limiting step in 

their proposed mechanism.145  Johnson measured an activation energy of 3.64 eV in 

qualitative agreement with the formation energy of Si adatoms from the Si lattice.145 

 Several researchers have also found that SiO2 decomposition in the presence of a 

Ge59,119,121,130,132,134 or Si122,132,135 atom flux, or other metal impurities (e.g., Au, Ag, Cu, 

W, Ni, Pt, Ti, Mg, Al)148,149 occurs faster and at lower temperatures than in their absence.  

Figure 5-2 captures this reduction in decomposition temperature upon Ge impingement 

for different SiO2 thicknesses.  The figure includes data taken from several studies,119-138 

including the present authors’ (▲), and plots natural log of SiO2 thickness versus inverse 

temperature.  The dashed line (---) is a linear fit (R2 = 0.727) with activation energy Ea ~ 

0.7 eV in the absence of a Ge flux, whereas the solid line (―) is a linear fit (R2 = 0.699) 

with Ea ~ 0.5 eV in the presence of a Ge flux.   
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Figure 5-2.  Natural log of SiO2 thickness versus inverse temperature of the SiO2 
decomposition.  The broken line is a linear fit to the data without a Ge vapor flux (open 
symbols).  The solid line is a linear fit showing the same trend but shifted to lower 
temperatures in the presence of a vapor flux of Ge or Si atoms (closed symbols).  Data 
points are referenced as follows:  (■);119 (●);130 (▼);134 (◄);122 (►);132 ();121 ();137 
();124 ();133 ();122 ();136 ();127 ();131 ();128 ();150 ();125 ();123 ();120 
();129 ();138 and ().126 

 

Both lines indicate that the oxide decomposition temperature increases with increasing 

oxide thickness.  However, for a given SiO2 thickness, the decomposition occurs at lower 

temperatures in the presence of a Ge flux.  The scatter in the data is likely the result of 

using different experimental methods to detect the onset of decomposition, different Si or 

Ge atomic fluxes, and different procedures for preparing SiO2. 
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 Two deductions can be made from the data shown in Figure 5-2 concerning the 

creation of openings in the SiO2.  First, the fact that Ge exposure lowers the observed 

decomposition temperature for a given SiO2 thickness strongly suggests that Ge can also 

react with SiO2.  The simplest reaction between Ge and SiO2 can be written as follows: 

 

Ge (g) + SiO2 (s) → GeO (g) + SiO (g)   (5-2) 

 

By directly adding Ge or Si atoms from a vapor flux, Ge or Si adatoms can diffuse to and 

react at defect sites at the SiO2–Si interface, thus eliminating the need for lattice Si to be 

activated and diffuse to defect sites.  In fact, adding atomic species of Ge or Si increases 

the SiO2 decomposition rate, thus depressing the observed decomposition temperatures 

shown in Figure 5-2.  Secondly, since supplying additional reactant species of Ge or Si 

increases the reaction rate, these reactants must participate in the rate-limiting reaction 

step.  That is, the Ge or Si flux is equivalent to the formation of Si monomers in reaction 

(5-1d), which therefore must be the rate-limiting step in the decomposition reaction, in 

agreement with the findings of Johnson et al.145  If either the reaction of Si with SiO2 

Equation (5-1f) or diffusion of SiO to the oxide surface Equation (5-1g) are rate-limiting, 

then addition of atomic Ge or Si would not increase the reaction rate and lower the 

observed decomposition temperature. 

 Last, the data in Figure 5-2 show an exponential dependence of decomposition 

temperature on oxide thickness, both with and without an external Si or Ge flux.  

Although one can attribute this trend to the energy barrier for thermally activated SiO 

diffusion in Equation (5-1c), the exponential dependence extends to oxide coverages that 
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are less than one monolayer.  Since there is no bulk SiO diffusion barrier at these low 

coverages, SiO diffusion cannot entirely explain the exponential trend.  We speculate that 

the exponential dependence originates from a change in reactivity at the SiO2-Si interface 

as a function of oxide thickness.  In regards to the change in reactivity, numerous studies 

have established that a structural and compositional transition layer exists at the SiO2-Si 

interface.140  Engstrom et al.151 and others152,153 have shown that the transition layer 

contains suboxides (i.e., Si+1, Si+2, and Si+3) and that their concentration relative to Si+4 

decreases with oxide thickness and higher oxidation temperatures.  That is, the oxide at 

the SiO2-Si interface becomes more stoichiometric with both increasing thickness and 

oxidation temperature.  These observations may explain the increase in oxide stability 

with thickness for both sub-monolayer and thicker oxides, but more studies are needed to 

fully understand this exponential dependence. 

 In contrast to the deductions discussed above, there have been reports that Ge 

impingement on SiO2 did not lead to SiO2 decomposition for thicker oxide layers.  Both 

Yun132 and Winkenwerder154 reported no decomposition of 10 nm thick SiO2 in the 

presence of Ge flux at 810 °C and 700 °C, respectively.  Li et al.108 observed no 

decomposition for 6 nm thick SiO2 at 700 °C.  However, consistent with the observation 

that the SiO2 decomposition begins at the SiO2–Si interface, Ge must first diffuse through 

the oxide to the interface137, and the reaction products, SiO and GeO, must counter-

diffuse to the SiO2 surface.  Therefore, we surmise that the substrate temperatures used in 

the experiments of Yun,132 Winkenwerder,154 and Li108 with thicker oxides are probably 

not high enough to readily allow Ge diffusion to the interface, especially in light of 

substrate temperatures required to induce SiO2 loss in Figure 5-2.  Additionally, we 
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expect that Si atoms can diffuse more readily through SiO2 to the interface than the larger 

Ge atoms.  In support of this argument, Yun132 observed decomposition of a 10 nm SiO2 

using a Si atom flux, and a faster decomposition using both a Si and Ge flux.  In addition, 

the sticking coefficient of Ge on SiO2 becomes very low at higher temperatures,54 leading 

to short Ge adatom lifetimes (~16 ns at 700 °C) on the SiO2 surface before Ge desorption.  

This short lifetime would mean that very little Ge may actually reach the Si-SiO2 

interface for thicker oxides even at temperatures high enough to achieve Ge diffusion 

through the oxide. 

 Once the growing voids that begin at the SiO2–Si interface have reached the SiO2 

surface and the nanoscale windows form, Ge begins to nucleate on the exposed Si.  At 

this stage, Ge selectively grows within the voids, and eventually grows over the 

remaining SiO2 upon Ge island coalescence.  The whole process from void nucleation to 

island coalescence and film planarization is schematically depicted in Figure 5-3.  Image 

5-3 (a) shows the processes occurring to Ge adatoms including desorption, surface 

diffusion, and bulk diffusion to the Si-SiO2 interface.  Images 5-3(b-c) shows the 

nucleation and growth of voids from the Si-SiO2 interface toward the SiO2 surface.  In 5-

3 (d), the nucleation of Ge islands occurs within the void openings, while 5-3(e-f) depict 

the coalescence of islands into a continuous film and subsequent planarization.  The 

diagonal line running through the Ge film in Figure 5-3 (e-f) represents a stacking fault 

and will be discussed further in a later section.   
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Figure 5-3.  Overall depiction of the process from void nucleation and growth to Ge 
island coalescence and planarization.  Shown in 5-3(a) are the processes occurring to Ge 
adatoms on the SiO2 surface including desorption, surface diffusion, and diffusion to the 
Si-SiO2 interface.  Images in 5-3(b-c) show the nucleation and growth of voids from the 
Si-SiO2 interface toward the SiO2 surface.  In 5-3(d), Ge selectively nucleates and grows 
on the newly exposed Si within the void openings.  Images 5-3(e-f) show the coalescence 
of adjacent Ge islands resulting in a SF and subsequent film planarization using 
chemical-mechanical polishing. 
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The competition between the SiO2 decomposition and selective deposition of Ge means 

that the substrate temperature is very important to simultaneously balance the SiO2 

erosion rate versus Ge growth rate.  For the 1.4 nm thick SiO2 used in this study, 

substrate temperatures below 550 °C are insufficient to create openings in the oxide 

resulting in amorphous Ge islands nucleated at the oxide surface.  Likewise, at 

temperatures above 780 °C, the SiO2 is completely removed before Ge islands can 

coalesce, leading to a large number of TDs as discussed next. 

 Figure 5-4 shows low-resolution, bight-field TEM images along the [110] zone 

axis of Ge grown on bare Si versus Ge grown on the oxidized Si.  These bright-field 

images provide enhanced diffraction contrast of defects in the films.  Figure 5-4 (a) 

shows that Ge on bare Si has a high density of TDs in the Ge film, while Figure 5-4 (b) 

shows that the Ge grown on the oxidized Si primarily contains twins.  Most of the twins 

terminate within 200 nm from the interface, but many also propagate to the film surface.  

The SF density that reaches the film surface is estimated to be approximately 5x107 cm-2 

out of an estimated total of 109 to 1010 cm-2 near the SiO2-Si interface, based on sampling 

more than 10 m along the interface in low-resolution TEM images.   
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Figure 5-4.  Low-resolution transmission electron micrographs, 5-4(a) Ge grown on bare 
Si and containing a large density of threading dislocations, and 5-4(b) Ge grown on the 
oxidized Si substrate and having a large density of stacking faults, many of which 
terminate within 200 nm of the interface. 
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Li et al.58 previously showed that one mechanism for the SF formation is coalescence 

between adjacent Ge islands, and is depicted in Fig. 5-3 (e).  This mechanism is well 

established by previous studies showing that twins may form between islands when they 

coalesce if the islands are slightly twisted or tilted relative to one another.155  Another 

possibility is that a SF may form from a translation mismatch between the islands.156,157  

That is, the distance between islands may not be an integer multiple of lattice spacing.  

Therefore, a SF or a threading dislocation may form during coalescence.  This would 

especially be the case for Ge islands nucleated on Si but separated by SiO2 because the 

islands are firmly anchored to the Si substrate and are not mobile.  Figure 5-5 illustrates 

the types of misalignment that may exist between adjacent islands on the substrate.   
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Figure 5-5.  Potential misalignments of islands that can lead to defect formation upon 
island coalescence, 5-5(a) tilt misorientation, 5-5(b) twist misorientation, and 5-5(c) 
translation misalignment. 

 
Next, a discussion is given of experiments that are performed to elucidate the origin of 

the twins in Ge films formed through nucleation within openings in chemical SiO2. 
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5.3.2 Origin of Stacking Faults in Ge Films 

The Ge films, created by the eventual coalescence of islands nucleated within 

nanoscale openings in chemical SiO2, contain a large number of twins.  However, the 

exact mechanism by which these twins form remains unknown.  One possibility is that 

twins may result from the coalescence of Ge islands that nucleate randomly on top of the 

chemical SiO2 with Ge islands that nucleate epitaxially within openings in the oxide.   

This may occur, for example, if Ge islands that have nucleated on SiO2 undergo either 

recrystallization or reorientation upon coalescence with epitaxial Ge islands.  Both 

processes have been observed to lead to twin/SF formation at the merging junction of 

islands in several different material systems.158-164  To determine the presence of random 

nucleation and potential possibility of SF formation, we have measured the saturation 

island density at two different substrate temperatures and deposition rates and examined 

these measurements within the context of mean-field theory. 

The results of mean-field theory show that for random nucleation, the saturation 

(maximum) island density varies exponentially with both substrate temperature and 

deposition rate.88,89,165  For Ge islands randomly nucleating on top of thick SiO2, we have 

previously observed an exponential decrease in the saturation Ge island density with 

increasing substrate temperature, and an increase in the island density with increasing 

deposition rate.54  In contrast, the saturation island density for defect-induced nucleation 

is independent of temperature and deposition rate.96  In the latter case, the saturation 

island density is determined solely by the density of defects at the surface of the substrate 

and is invariant over a wide range of deposition conditions.  The saturation Ge island 
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density resulting from our growth technique utilizing chemical SiO2 is expected to 

behave similarly to defect-induced nucleation.  There are two reasons to expect this 

outcome.  First, the number of openings that form in the SiO2 is determined by the 

reaction of Ge and Si at a defect site at the Si-SiO2 interface.131  Second, the strong 

binding energy of Ge on Si should induce preferential and selective nucleation of Ge 

islands within the openings in the SiO2 where Si is exposed.73  There fore, the number of 

openings that form in the SiO2 should remain constant over a temperature range sufficient 

to decompose the SiO2 at the defect sites and desorb the volatile byproducts.  Moreover, 

the number of openings should determine the saturation island density.  If some of the Ge 

islands are nucleating both randomly on top of the chemical SiO2 and selectively within 

openings in the SiO2, then the number of randomly nucleated Ge islands on top of the 

SiO2 should be greatly reduced at an elevated substrate temperature and increased at 

higher deposition rates.  The result will be a reduction in the total island density with 

increasing substrate temperature, and an increase in the overall island density at higher 

deposition rates.   

The density of Ge islands that form upon exposing the chemical SiO2 on Si to Ge 

flux is examined through a series of high-resolution SEM images collected at increasing 

amounts of Ge deposition.  Figure 5-6 (a-d) shows images taken after Ge exposures 

equivalent to 8, 12, 18, and 25 nm of Ge, respectively.  The substrate temperature is held 

at 853 K, and the Ge flux is maintained at 19.1 ML/min during exposure.  The density of 

Ge islands is measured for the samples (Set 1) shown in Figure 5-6 (a-d); higher 

magnification images are used in the case of relatively small Ge islands as shown in the 

inset of Figure 5-6 (a).  Figure 5-6 (a) and (b) have island densities of 2.6 ± 0.2 x 1011 and 
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1.4 ± 0.2 x 1011 cm-2, respectively.  This indicates that, on average, each island has 

coalesced with one of its neighbors between deposition of 8 and 12 nm of Ge.  By 

analyzing the islands shown in Figure 5-6 (c) similarly for 18 nm of Ge deposition, the 

island density is nearly unchanged at 1.2 ± 0.1 x 1011 cm-2 indicating that islands grow 

without further coalescence between 12 and 18 nm of Ge deposition.  Analyzing similarly 

for Figure 5-6 (d), in which 25 nm of Ge is deposited, the island density further decreases 

to 3.2 ± 0.1 x 1010 cm-2 indicating that four coalescence events per island have occurred.  

Therefore, we deduce that the maximum island density for these deposition conditions 

must occur with less than or equal to 8 nm of Ge deposition.   
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Figure 5-6.  Scanning electron micrographs of Ge islands deposited within openings in 
chemical SiO2.  Images 5-6(a-d) have initial amounts of 8, 12, 18, and 25 nm of Ge 
deposition.  The images track the coalescence and morphology of the islands with 
increasing deposition.  Higher magnification images, as shown in the insets of 5-6(a-b), 
are used to estimate the amount of Ge contained within the islands based on the average 
island density and diameter. 

 

For comparison, two additional sets of samples are prepared and imaged after the 

same Ge exposure levels (i.e., 8, 12, 18, and 25 nm).  One set (Set 2) is made at a 

substrate temperature that is 70 degrees higher at 923 K and at the same deposition rate of 

19.1 ML min-1.  The other set (Set 3) is made at the same substrate temperature of 853 K 

as that of the first set, but at a higher deposition rate of 60 ML min-1.  The set of samples 
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made at the higher substrate temperature (Set 2) shows the same maximum island density 

as Set 1 of 2.6 ± 0.2 x 1011 cm-2, occurring at both 8 and 12 nm of Ge deposition.  Island 

coalescence then decreases the island density to 7.1 ± 0.1 x 1010 cm-2 and 5.9 ± 0.1 x 1010 

cm-2 for 18 and 25 nm of Ge deposition, respectively.  These island densities are higher 

for the same amount of Ge deposition compared to the samples made at the lower 

temperature of 853 K, indicating that coalescence is suppressed at higher temperature.  

This can be explained by increased surface diffusion at the higher temperature, thus 

allowing Ge islands to achieve a greater contact angle with the surrounding SiO2 and 

leading to larger spacing between Ge islands.  A large contact angle of Ge islands on 

SiO2 is energetically favored based on the 3.9 eV Ge-Ge binding energy compared to 

0.44 eV for Ge-SiO2.
54,73,108  Lastly, the island densities in the samples made at the higher 

deposition rate (Set 3) are all identical to those found in the series shown in Figure 5-6 

(Set 1), with the maximum island density of 2.6 ± 0.2 x 1011 cm-2 occurring after 8 nm of 

deposition.  

Overall, the finding is that the maximum Ge island density remains unchanged at 

higher substrate temperature and deposition rate.  This result is consistent with selective 

Ge nucleation within openings in SiO2 in the absence of random nucleation on top of the 

oxide.  Therefore, we deduce that twins are not likely to result from random Ge island 

nucleation on top of the SiO2 layer.   

Another possible mechanism responsible for SF formation is that some Ge islands 

are nucleating in a tilted orientation to the Si substrate within openings in the SiO2 layer.  

For example, an island rotated by 70.5° about a [110] direction would form a coherent 
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twin boundary when coalescing with a (001) oriented epitaxial island.  This possibility is 

discussed next. 

To investigate the possibility that twins arise during coalescence of twin-oriented 

Ge islands, an x-TEM specimen is created from the sample shown in Figure 5-6 (b).  This 

sample is chosen to observe Ge islands that have just begun to coalescence.  The x-TEM 

sample is oriented so that the viewing direction is along the [110] zone axis.  The Ge 

islands in the sample are then analyzed at high-resolution to obtain lattice fringe images.  

The lattice fringes from the Ge islands are then Fourier transformed into diffraction 

patterns to obtain orientation information from individual islands.  Figure 5-7 (a) shows 

an example of two Ge islands that have just begun to coalesce.  The diffraction patterns 

of the Si and Ge islands are also shown as insets in the figure, and reveal that the Ge 

island on the left is epitaxially oriented to the Si substrate.  The Ge island on the right, 

however, is tilted by 70.5º counter-clockwise about the [110] direction with respect to the 

Si, putting it in a twin relationship to the Si.  A coherent twin boundary has formed at the 

junction of the islands upon coalescence.  The twin boundary is magnified in the filtered 

Fourier image shown in the inset of Figure 5-7 (a), at the merging point of the two 

islands.  The dashed line marks the coherent twin boundary between the Ge islands.  The 

(-111) and (-11-1) planes are common to both Ge islands and are marked by the solid 

white lines on either side of the twin boundary.  Figure 5-7 (b) shows a structural model 

of the two Ge islands on the Si.  The twin-oriented Ge island on the right is also in a twin 

relationship to the Si substrate, but the boundary between the Si and Ge island lies in the 

(100) plane, and therefore forms a  = 3 incoherent twin boundary.  The atomic structure 
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of the incoherent twin boundary is obscured in the TEM image by the remaining SiO2 

template that the Ge islands have merged upon.   

 

 

Figure 5-7.  Image 5-7(a) is a high-resolution cross-sectional transmission electron 
microscope image of the sample with 12 nm of Ge deposition, where the Ge islands have 
just begun to coalescence.  The Ge island on the right is nucleated in a twin relationship 
to the Si and has formed a coherent twin boundary at the junction with the epitaxial Ge 
island on the left.  The twin boundary is magnified in the filtered image that is inset 
where the islands have merged.  The diffraction patterns of the islands and substrate are 
also included as insets.  Image 5-7(b) is a schematic drawing of the orientation of the 
islands corresponding to the image in Figure 5-3(a). 
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The  notation comes from the Coincident Site Lattice (CSL) model and denotes 

a special high-symmetry orientation relationship between two misoriented crystal lattices.  

The concept of the CSL model is shown in Figure 5-8.  Image 5-8(a) shows a (110) plane 

of a diamond cubic lattice viewed along the [110] direction.  Image 5-8(b) shows the 

same lattice in (a) but rotated by 70.5 counter-clock-wise about the [110] direction.  

Figure 5-8 (c) shows the net result when the two lattices in 5-8(a) and 5-8(b) are 

translated so that they are overlapping.  The two-tone blue and white lattice sites are 

coincident to both lattices in Figure 5-8 (a) and (b) and form the coincident site lattice.  

The CLS unit cell is marked with the dotted line.  Sigma is defined as the reciprocal of 

the ratio of the CSL sites to total lattice sites within the unit cell of the CSL.  The 

example is Figure 5-8 (c) contains a total of 12 lattice sites within the CSL unit cell.  A 

total of 4 sites within the CSL unit cell are shared by both lattices, therefore  = 4 / 12 = 

3.  The = 3 boundary is a special high-angle grain boundary known as a twin boundary.  

The TEM analysis reveals both twins and other misorientation boundaries between Ge 

islands and the Si substrate. 
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Figure 5-8.  Illustration of the Coincident Site Lattice model.  Image 5-8(a) shows a (110) 
diamond cubic lattice viewed along the [110] direction.  Image 5-8(b) is the same lattice 
shown in 5-8(b) but rotated by 70.5 degrees counter-clock wise about the [110] direction.  
Image 5-8(c) shows the overlap of lattices 5-8(a) and 5-8(b) and shows the coincident 
sites marked in two-tone blue and white.  The unit cell of the coincident site lattice is 
outlined with the dashed line.  
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Orientation analysis is applied to a total of 50 Ge islands in the sample, and a total 

of 8 Ge islands are found to have nucleated in twin relationships to the Si.  Based on the 

total Ge island density of 1.4 ± 0.2  1011cm2 in this sample, the twin/SF defect density 

that will result from coalescence of these twin-oriented islands is estimated to be greater 

than 4  1010 cm-2.  This estimate is in qualitative agreement with the TEM measured 

twin/SF density of approximately 5  1010 cm-2 that exists at the interface in fully 

coalesced Ge films, as shown in the TEM image of Figure 5-4 (b).  In addition to 

observing 8 twin-oriented islands, 4 of the 50 islands examined at high-resolution have a 

small angle of tilt misorientation to the Si that ranges from 1.8 to 5.6 degrees.  This 

indicates that approximately 2  1010 cm-2 of the total Ge islands form a low-angle grain 

boundary with the Si.   

 The reason that approximately 16 % of the Ge islands nucleate in twin 

relationships to the Si and 8 % nucleate with small tilt misorientation to the Si is not 

presently understood.  The mechanistic details describing how epitaxy occurs within the 

confined openings that form in the SiO2 is lacking.  These details are currently being 

investigated using molecular dynamics simulations.  Next, a method is described for 

planarizing GoS. 

5.3.3 Planarization of Ge Films 

 
The Ge films grown on the oxidized Si have a RMS roughness of 8 to 10 nm.  

This roughness is due to the 3D island growth of Ge on Si and subsequent coalescence.  

To prepare the films for GaAs growth, it is necessary to planarize the films using CMP.  

However, slurry for Ge CMP is not commercially available, so a combination of slurry 

and pad types is tried to obtain an optimal surface.  Using a soft pad (Chemcloth made by 
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Logitech) in conjunction with a colloidal SiO2 slurry (SF1 from Logitech) gives an RMS 

roughness of less than 1 nm but leaves a large number of shallow scratches on the Ge 

surface.  To prevent the scratches, a solution of 1 part H2O2 (30 wt%) to 50 parts DI 

water is used in conjunction with the soft pad to produce RMS values of 0.5 nm without 

scratches.  The Ge etch rate of the dilute peroxide is approximately 11 nm / min in bulk 

solution, but the etch rate is 3 to 5 times faster during the chemical polish.  The soft 

abrasion provided by the pad in contact with raised features on the Ge surface enhances 

the local etch rate of the peroxide solution to produce the good planarity and surface 

finish of the films.  Figure 5-9 (a) and (b) show AFM images of the Ge film before and 

after polishing, respectively.  Figure 5-9 (b) shows a large number of raised lines 

protruding from the surface.  These lines are 1 to 2 nm high and correspond to the twins 

that terminate at the film surface, which apparently etch at a slower rate than the 

surrounding material.  The density of these lines is 3-to-5 x107 cm-2 in good agreement 

with TEM images.  The presence of the twins in the Ge films and their termination as 

raised lines at the polished Ge surface have led us to investigate methods to reduce or 

eliminate them.  We have found that annealing Ge islands leads to Ge films free from 

twins.55,56 
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Figure 5-9.  Atomic force microscope images of 5-9(a) 3 m Ge sample grown on 
oxidized Si before polishing, 5-9(b) same sample after polishing with dilute H2O2 for 20 
min.  In 5-9(b), the raised lines are the result of twins that terminate at the Ge surface, 
and which polish at a slower rate than the surrounding material. 

 

5.3.4 Annealing Ge Islands 

 
Twins do not manifest themselves if an anneal step is done for 30 min at 1073 K 

on Ge islands before extensive coalescence has resulted in the formation of a continuous 

Ge film.  Anneal temperatures below 1073 K for 30 min are found to be ineffective at 

completely removing the twins.  Figure 5-10 (a-c) shows AFM images of 3 m thick Ge 

films that are annealed at temperatures of 923, 1003, and 1073 K, and then planarized.  In 

each case, the anneal step was performed for 30 min after deposition of 10 nm of Ge on 

the oxidized Si at 853 K, but before full Ge coalescence to form a continuous film.  The 

density and dimensions of the SF lines decrease with increasing annealing temperature, 

until at 1073 K, twins are no longer detectable in AFM images.   
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Figure 5-10.  Atomic force micrographs of Ge films taken after polishing reveal the twins 
that terminate at the Ge surface.  The images 5-10(a-c) correspond to samples that are 
annealed at 923, 1003, and 1073 K for 30 min after first depositing 10 nm of Ge. 

 

Correspondingly, Figure 5-11 shows that the XRD FWHM of the (004) reflection 

of the Ge film decreases by a factor of 2.3 as compared to unannealed films.  The FWHM 

of the (331) reflection (not shown) decreases even further, by a factor of 3.3.  These 

results indicate that twins are removed, and the crystal quality of the Ge films 

significantly improves during the 1073 K anneal that is performed during the island stage 

of Ge growth. 
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Figure 5-11.  The x-ray diffraction peaks of the (004) reflection of Ge films that are 
unannealed (solid line), annealed at 923 (dotted line), 1003 (dashed line), and 1073 K 
(dot-dashed line) for 30 min after first depositing 10 nm of Ge. 

 

Annealing at 1073 K is also done at different stages of Ge island coalescence.  

Two samples are created, Sample 1 with 50 nm and Sample 2 with 100 nm of Ge 

deposition.  Significant Ge island coalescence has occurred on both samples and some 

islands are observed with SEM to be over 200 nm in diameter; however, the Ge islands 

still do not form a continuous film across the surface.  The samples are then annealed at 

1073 K for 30 min, followed by further Ge growth to 3 m thickness.  In both cases, 

twins are not observed in AFM images of the Ge films observed after polishing.  In 

contrast, this was found not to be the case, if the anneal step is done after complete 
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coalescence of the Ge film, such that the SiO2 template is completely covered with Ge.  

Complete coalescence is observed to occur in SEM images after approximately 300 nm 

of Ge deposition.  Films annealed at 1073 K for 30 min after complete coalescence result 

in twins remaining in the Ge film.  This result is confirmed by AFM images taken after 

CMP where twins reveal themselves similarly as in Figure 5-9 (b).   

If twins originate from the coalescence of an epitaxial (100) Ge island and a Ge 

island tilted by 70.5° about the [110] direction, as suggested previously, then large 

islands that form as a result of multiple coalescence events should contain twins.  For 

example, the large Ge islands in Figure 5-6 (d) have undergone several coalescence 

events and some of these islands will likely contain twins.  Yet, we find that annealing 

even larger islands than these is effective in obtaining Ge films without twins.  This 

suggests that the annealing is somehow effective at driving the twins out of the islands up 

to approximately 200 nm in size.  Moreover, the finding that twins remain in the Ge film 

if annealing is done after a continuous film occurs also suggests that free surfaces are 

needed for twin removal.  The removal of twins may arise from a combination of glide of 

the Shockley partial dislocations that bound the fault and atomic rearrangement during 

annealing.  A detailed study is discussed next specifically investigating how twins are 

removed by annealing of Ge islands. 

 

5.3.5 Desorption of Chemical SiO2 During Annealing 
The high temperature anneal step, in addition to removing twins from Ge islands, 

also likely removes any chemical SiO2 not covered by the Ge islands.  This assertion is 

based on observations made after annealing of a chemical SiO2 layer on Si, under 
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vacuum, at 1073 K, for 30 min.  Immediately after the anneal step, the sample is cooled 

to room temperature and coated with 100 nm Ge deposited from the effusion cell.  This 

coating is used to prevent subsequent re-oxidation of the Si interface upon removal from 

the vacuum chamber.  The sample is then examined in cross-section using STEM, which 

provides good contrast based on the atomic density of a material.  The SiO2 is less 

atomically dense than either Si or Ge, and therefore, it appears in STEM images as a dark 

layer at the interface between the Si substrate and the Ge capping layer.  Figure 5-12 (a) 

shows that the chemical SiO2 layer does not appear in the STEM image and indicates that 

the SiO2 layer is completely desorbed upon annealing at 1073 K.  Contrastingly, the 

STEM image of the sample shown in Figure 5-12 (b) consists of a chemical SiO2 layer on 

Si that is first coated with 100 nm Ge deposited at room temperature, and then annealed 

at 1073 K for 30 min.  The chemical SiO2 does appear in the STEM image, in this case, 

indicating that the SiO2 layer remains in place if capped before annealing.  The result 

shown in Figure 5-12 (a) suggests that annealing a sample with Ge islands will 

effectively desorb the chemical SiO2 layer that exists between the Ge islands.  However, 

the result in Figure 5-12 (b) suggests that SiO2 buried beneath large islands that have 

formed from the coalescence of smaller islands should remain intact during the anneal 

step.   
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Figure 5-12.  Scanning transmission electron micrograph images taken after annealing a 
layer of chemical SiO2 on Si, and used to determine the stability of the oxide layer during 
annealing.  Image 5-12(a) is taken after annealing the sample at 1073 K for 30 min under 
vacuum, then subsequently capped with 100 nm of Ge deposited at room temperature.  
The SiO2 layer appears to have been desorbed during annealing.  The sample shown in 
image 5-12(b) is the same as in 5-12(a), except that 100 nm of Ge is first deposited at 
room temperature, and followed by annealing at 1073 K for 30 min. 

 

Subsequent Ge growth that occurs after annealing Ge islands, based on the above 

results, will occur directly on existing Ge islands and on freshly exposed Si where SiO2 

was desorbed in the areas between the Ge islands.  The deposition occurring on the newly 
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exposed Si after the anneal step is, therefore, expected to lead to a large number of TDs 

to relieve the lattice mismatch stress between Ge grown directly on Si.  The nucleation of 

TDs is experimentally investigated next, in addition to the mechanism of SF removal by 

annealing Ge islands. 

 

5.3.6 Mechanism of Stacking Fault Removal by Annealing Ge Islands 
 

Four samples are created with identical amounts of Ge deposition as the samples 

shown in Figure 5-6 (a-d).  These samples are annealed at 1073 K for 30 min, in vacuum, 

immediately after deposition.  The results are shown in the SEM images in Figure 5-13 

(a-d) for 8, 12, 18, and 25 nm of deposition, respectively.  The island density and 

morphology change considerably after annealing.  The island density of 2.6 ± 0.2  1011 

cm-2 that is present for 8 nm of Ge deposition prior to annealing, as shown in Figure 5-6 

(a), is now reduced to 1.5 ± 0.4  1010 cm-2 in the sample shown in the SEM image in 

Figure 5-13 (a), taken after annealing with the same 8 nm of initial Ge deposition.  The 

average island diameter has also increased to 18 nm.  The island density for the sample 

shown in 5-13 (b), with 12 nm of Ge deposition has the same island density as the 

annealed sample with 8 nm, but the average island diameter is increased to 40 nm.  The 

islands in 5-13 (b) have also developed square shaped facets parallel to <110> directions.  

The annealed sample with 18 nm of Ge deposition, shown in Figure 5-13 (c), has two 

sizes of islands.  The small islands have approximately the same size and density as the 

annealed sample shown in Figure 5-13 (b).  The large islands have a much lower density 

of 5.6 ± 0.6  107 cm-2, but their diameter is significantly larger at about 765 ± 200 nm, 

and a few of the islands even exceed 2 m in diameter.  The largest islands also appear to 
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have trenches at certain points around them, as shown in the inset of Figure 5-13 (d).  The 

sample shown in Figure 5-13 (d), annealed after deposition of 25 nm of Ge, has the same 

density of large islands as the sample with 18 nm of deposition, but with an average 

island diameter larger than 1 m.  In addition, most of the small islands appear to have 

disappeared in this sample.  The changes that are observed upon annealing the Ge islands 

are discussed next. 

 

 

Figure 5-13.  Scanning electron micrographs of Ge islands after annealing with initial 
deposition of 8, 12, 18, and 25 nm [images 5-12(a-d), respectively].  The islands density 
is reduced by a factor of 16 after annealing.  Images 5-12(c-d), and insets therein, also 
show the formation of very large Ge islands surrounded by trenches that extend down 
into the Si.  The density of the large islands is the same in both images. 
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First, there is a 16-fold decrease in the island density and a 30% increase in the 

average island diameter between the unannealed and annealed samples with 8 nm of Ge 

deposition.  The amount of Ge deposited as islands is calculated for both samples to 

determine whether this amount of Ge is conserved.  The amount of Ge contained in the 

islands is calculated by multiplying the island density in each sample by the average 

volume of an island in the sample, assuming a hemispherical island shape.  The total 

amount of Ge in the islands of the unannealed sample in 5-6 (a) is equivalent to a uniform 

layer of Ge that is 1.2 nm thick per unit area.  In comparison, the equivalent uniform 

layer of Ge for the annealed sample in 5-13 (a) is only 0.23 nm thick.  However, we also 

know that the SiO2 template uncovered by Ge islands is desorbed during the anneal step.  

This is expected to lead to the formation of a Ge wetting layer, which occurs in Ge on Si 

epitaxy.  Assuming that a 3 monolayer thick wetting layer forms, and correcting for the 

area of the annealed sample where islands are present, increases the equivalent Ge 

thickness to 0.65 nm.  This value is about half that of the unannealed sample, and the 

discrepancy is likely due to interdiffusion of Si-Ge that occurs during annealing.  

Performing the same calculation for samples 5-6 (b) and 5-13 (b), with 12 nm of Ge 

deposition, yields the same result.  These calculations indicate that the reduction in Ge 

island density that occurs during annealing is due to the dissolution of Ge islands in 

forming a wetting layer and subsequent Si-Ge interdiffusion layer.  This explanation is 

further confirmed by x-TEM analysis that is discussed later. 

Some additional changes observed in the annealed Ge islands can be understood 

by comparison to previous studies of Ge on Si epitaxy.  In these studies, Ge growth 

usually begins on a clean reconstructed Si surface.  In contrast, the Si surface in our 
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annealing experiments already contains a pre-determined amount of Ge that is made up 

of islands, surrounded by the layer of chemical SiO2.  However, once the remaining SiO2 

layer is desorbed during annealing, the system then progresses toward equilibrium and 

should possess some features in common with Ge on Si epitaxy.  For example, the 

smaller island density of 1.5x1010 cm-2 is contained in both annealed samples 5-13 (a) 

and 5-13(b), despite having different initial amounts of Ge deposition.  This island 

density is within the range of 4  109 to 3  1010 cm-2, commonly observed in the 

Stranski-Krastanov growth mode of Ge on Si.166-168  However, this island density is also 

very close to the value of 1  1010 cm-2 estimated for the number of tilt misoriented Ge 

islands in the unannealed samples.  This point will be further discussed below in the 

section on TEM analysis of annealed islands. 

Another feature that the annealed island samples have in common with Ge-Si 

epitaxy is the formation of large Ge islands that are observed on samples having 18 and 

25 nm of Ge deposition.  These islands are not observed in the annealed samples with 

less deposition, and appear to require a critical amount of Ge for their formation.  Figure 

5-13 (c) shows that these large islands are dome-shaped and multifaceted, and surrounded 

by a sea of the smaller square shaped islands.  This feature may be akin to the pyramid-

dome-superdome transition observed with increasing Ge deposition in Ge-Si epitaxy.169-

171  Moreover, most of the large islands appear to have a trench around them that extends 

down into the surrounding Si.  Although more extreme in the case observed here, this 

feature has also been observed in Ge on Si epitaxy, and has been explained as a stress-

relieving effect.168,169,172-174  The larger stress that exists at the island edges is found to be 

partially relieved by the formation of the trench based on Monte Carlo and finite element 
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modeling.175,176  The stress at the island edge is also believed to enhance the diffusion of 

Si into the island, thereby creating a recessed region around the islands.171,173,174  Next, 

two x-TEM samples are prepared from the annealed samples shown in Figure 5-13 (a) 

and (d) to further examine the Ge islands that exist after annealing. 

 Figure 5-14 (a) shows the x-TEM image of the sample in 5-13 (a) viewed along 

the [110] direction.  The 4 islands in boxes are magnified in 5-14 (b-e) and the islands all 

appear to rest upon a GeSi alloy layer.  A total of 15 islands are observed in this sample, 

and all possess a small amount of tilt misorientation to the Si.  For example, the island in 

5-14 (b) is tilted counter-clockwise about the [110] direction by about 4º, whereas the 

islands in 5-14 (c), (d), and (e) are tilted by 2, 5, and 3º, respectively.  The dislocations 

located at the interface between the island and alloy layer in 5-14 (b) are pure edge type 

with a spacing that is approximately 5 nm.  Figure 5-15 shows a high-resolution TEM 

image of the island in 5-14 (b) with edge dislocations marked.  The spacing between the 

dislocations is consistent with the island misorientation being a pure tilt boundary 

according to Frank’s equation:  = b/D.177  Here,  is the angle of misorientation, b is the 

Burgers vector of the dislocations (b = a/2 [110], where a is the lattice constant of Ge), 

and D is the spacing between the dislocations.  By applying the measured dislocation 

spacing of 5 nm, the resulting misorientation angle is 4.6º, in close agreement with the 

value measured in the TEM image.  The dislocation spacing in the islands shown in 5-14 

(c-e) is much closer, ranging from 1.5 to 3 nm apart.  This suggests that there is also a 

small degree of twist misorientation associated with these islands, and they form a more 

complicated boundary structure with the underlying Si-Ge alloy layer.  Next, we discuss 

the composition and defect density of the Si-Ge alloy layer. 
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Figure 5-14.  Cross-sectional transmission electron microscope images of the annealed 
islands with 8 nm of initial Ge deposition.  Image 5-14(a) is a low-resolution image 
showing the morphology of the surface.  Images 5-14(b-e) are high-resolution images of 
the islands 1 through 4 shown in image 5-14(a).  The islands rest upon a Ge-Si alloy layer 
and are slightly misoriented with respect to the Si substrate. 

 

 We use EDS to estimate the atomic percent of Ge in the Si-Ge alloy layer, which 

is thickest directly beneath the islands, and also between the islands where it is thinner.  

The measurement was performed in STEM mode using a 1 nm probe size.  A total of 10, 

000 counts are collected at each point labeled 1 through 5 in Figure 5-15.  The KGeSi 
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factor used to quantify the Ge and Si composition is 1.91, and is calculated by the Oxford 

INCA EDS software.  The Ge compositions at points labeled one through three in Figure 

5-15 are 63, 44, and 12%, in turn.  The Ge fraction at point four is below the detection 

limit of about 1 % for the EDS technique.  The measurement made at point five is 25 % 

Ge, and is taken 2 nm below the surface and further away from the island where the alloy 

layer is thinner.  Ten additional EDS measurements are made at 2 nm below the surface 

along the [110] direction.   

 

 

Figure 5-15.  High-resolution cross-sectional transmission electron microscope image of 
island number 4, from Figure 5-14(a).  This island is found to possess a small angle tilt 
boundary with the Si, with an edge dislocation spacing of 5 nm.  The numbered regions 
correspond to locations where the composition is measured using energy dispersive 
spectroscopy.   
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These measurements are made between the islands, where the alloy layer is thinnest, and 

show that the average Ge content of the layer in this region is 22 ± 7 %.   

The value of 63 % Ge averaged over the Ge island at point 1 is in qualitative agreement 

with composition of Ge-Si islands measured in the TEM using EELS.  In that study, the 

Ge composition in the islands is reported to be 40% for growth at 973 K.178  The 

measured composition of 22 % found in the thinner part of the GeSi alloy layer is also in 

good agreement with a finding of 28 % Ge in Ge-Si islands annealed at 1073 K.179 

 The composition of the GeSi alloy layer that exists between the Ge islands that 

remain after annealing is used to estimate the amount of Ge that is consumed in forming 

the alloy layer in this region.  Assuming that the GeSi alloy layer is 2 nm thick and is 

composed of 22 % Ge, the equivalent thickness of pure Ge consumed is equal to 0.37 nm, 

after correcting for the area taken by the Ge islands.  This value closely accounts for the 

difference observed in the amount of Ge that is contained within islands before and after 

annealing that was found from the earlier calculations based on the SEM images of the 

average island density and diameter.  Therefore, it appears that the 16-fold reduction in 

island density observed after annealing is accounted for by dissolution of islands in 

forming the GeSi alloy layer.   

The measurements of the composition and lattice spacing of the alloy layer are 

also used in conjunction to estimate the strain within the layer.  Measurements of the  

(-11-1) lattice fringe spacing are made within the thicker part of the alloy layer that exists 

below the Ge islands.  For example, the measured lattice fringe spacing of the layer 

shown at point two in Figure 5-15 is 0.318 ± 0.002 nm.  This leads to a value of 35 ± 14 

% Ge composition using Vegard’s law and assuming complete relaxation of the layer.  
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This result compares favorably with the value of 44% measured using EDS and falls 

within the margin of error for the measurement based on (-11-1) lattice fringe spacing.  

The agreement between the measurements suggests that the alloy layer is fully relaxed, 

even though the thickness of this layer is well below experimentally measured values for 

the critical thickness for plastic deformation. 

The reported values for the critical thickness of Ge0.44Si0.56 and Ge0.22Si0.78 on Si 

are 15 and 100 nm.180  These compositions correspond to the alloy layer beneath the 

island shown in Figure 5-15, and for the alloy layer that exists between the islands.  

However, the estimated thickness of these layers is 5 and 2 nm, respectively.  These 

layers are well below their critical thicknesses; however, it is likely that the high 

annealing temperature of 0.88Tm, where Tm is the melting temperature of bulk Ge, 

overcomes the energy barriers to plastic deformation.  The equilibrium edge dislocation 

spacing for relaxed layers of Ge0.44Si0.56 and Ge0.22Si0.78 on Si are 22 and 43 nm.  A single 

dissociated dislocation was detected in the thicker part of the alloy layer beneath 2 of the 

15 total islands examined in x-TEM images.  There are no dislocations detected in x-

TEM images taken of the thinner part of the alloy layer between the islands, but this is 

likely due to the limited area of sampling.  Next, we discuss the large Ge islands observed 

after annealing the sample with 25 nm of initial Ge deposition. 

The x-TEM image shown in Figure 5-16 corresponds to the sample in Figure 5-13 

(d) containing large Ge islands.  Orientation analysis of these islands shows that they are 

epitaxially aligned with the Si.  They contain a large number of threading dislocations 

that appear to bend toward the nearest facet plane at the island surface.  This can be 

attributed to image forces on the dislocation, and is observed in Ge on Si epitaxy.47  In 
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addition, the trenches around the large Ge islands observed in the SEM images also 

appears to the right of the Ge island, and extends 30 nm below the Si surface.  The alloy 

layer beneath the large islands is up to 60 nm thick, and is very uneven.   

 

 

Figure 5-16.  Cross-sectional transmission electron microscope image of large Ge island 
that forms after annealing the sample with 25 nm of initial Ge deposition.  The island is 
epitaxially oriented to the Si and is contains threading dislocations.  The trench that 
extends down into the Si is shown to the right of the island. 

 

The kinetics and mechanism of the formation of these large islands is unknown.  

Interestingly, their density does not appear to depend on the initial size and density of the 

Ge islands before annealing.  For example, the islands shown before annealing in Figure 
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5-6 (c-d) differ in both average island size and density, yet the density of the large islands 

is the same after annealing these samples.  The large islands only differ in size, with the 

islands being larger in the sample having the greater amount of initial Ge deposition.   

The formation of large islands in Ge -Si epitaxy has been observed and attributed 

to strain relaxation via dislocation nucleation and Si incorporation into Ge islands.  The 

large trench in the Si is also attributed to stress relaxation and Si incorporation via surface 

diffusion, and suggests that the large islands must also contain a large percentage of Si, 

although the composition is not measured.  In addition, the alloy layer between the large 

islands does not greatly differ in thickness from the sample annealed after only 8 nm of 

Ge deposition.  It ranges from 3 to 5 nm in thickness, and shows qualitatively that most 

of the 25 nm of initially deposited Ge is contained in the large islands.  In addition, small 

islands with small tilt misorientation are observed between the large islands.  These small 

islands do not appear to differ from the ones observed in the annealed sample with only 8 

nm of initial Ge deposition.  It also appears that the large Ge islands, during their 

formation, must either consume or overgrow the small misoriented islands.  The high 

density of twins is longer observed at the Si-Ge interface after annealing both samples 

with 8 and 25 nm of initial Ge deposition. 

It now appears that the mechanism for the removal of twins during annealing is 

the dissolution of the majority of the Ge islands.  However, it remains a possibility that 

twins are annealed out of the islands before the SiO2 template is desorbed and Ge diffuses 

from the islands to the freshly exposed Si.  The removal of twins by annealing has 

previously been reported, as well as the realignment of small misoriented islands upon 

annealing.  To determine whether twins are removed by annealing, and to gain some 
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insight into the process that leads to the drastic changes in island morphology upon 

annealing, we have conducted the following experiment.  The sample shown in Figure 5-

6 (d), with 25 nm of initial Ge deposition, is capped using a spin-on-glass (SOG) 

polymer.  The polymer is composed of methyl-siloxane and is stable at high 

temperatures.  The sample is then annealed at 1073 K for 30 min and analyzed using x-

TEM.  Figure 5-17 shows the resulting sample after annealing.   

 

 

Figure 5-17.  Cross-sectional transmission electron microscope image of Ge islands with 
25 nm of initial Ge deposition.  The islands are then capped with spin-on-glass and then 
annealed.  Stacking faults and twins remain within the islands, and their morphology is 
unchanged from the pre-annealed state.  The chemical SiO2 layer is also preserved during 
annealing.  The inset shows a close-up view of one of the islands and reveals the GeSi 
alloy layer formed beneath the island.   
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The island density and morphology is unchanged prior to annealing.  In addition, twins 

and SFs are observed within the islands.  The inset in Figure 5-17 shows the formation of 

a GeSi alloy layer beneath the islands.  In contrast to the uneven nature of this layer 

observed in the uncapped annealed sample in Figure 5-17, this alloy layer in the capped 

samples is quite uniform and mirrors the shape of the islands themselves.  Lastly, the 

SiO2 template remains intact and is observed at the GeSi interface, where it has a lighter 

contrast than the SOG.   

The result of the capped-annealed experiment demonstrates conclusively that the 

mechanism of SF removal is the dissolution of most of the Ge islands in forming a GeSi 

alloy layer during annealing.  Furthermore, the result of this experiment shows that 

surface diffusion is the primary mode in effecting the changes in island density and 

morphology that take place upon annealing.  Surface diffusion likely begins to transfer 

Ge from the islands to the surrounding Si once the SiO2 template is desorbed. 

We previously reported that the SiO2 template is preserved during annealing if it 

is capped with a 100 nm thick layer of Ge56, as the SOG capped annealing experiment 

also shows.  Based on this observation, we assumed that the SiO2 layer covered by Ge 

islands during the initial Ge deposition would be stable against desorption.  However, no 

remaining SiO2 is detected in any of the x-TEM images of the uncapped annealed Ge 

islands, including beneath any of the islands that remain exist after annealing.  This 

observation suggests that the SiO2 can desorb through thinner layers, or becomes 

uncovered during annealing.   

Removal of the SiO2 is expected to have two important effects with regard to 

explaining the dissolution of many of the Ge islands.  First, the removal of the SiO2 layer 
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will generate a large strain between the epitaxial Ge islands and the Si.  Second, removal 

of the SiO2 exposes the Si surface and will promote transfer of Ge by surface diffusion 

from the islands to the Si to form a Ge wetting layer.  In addition, intermixing of Ge and 

Si has been observed to reduce the aspect ratio of Ge islands on Si, and even causes 

decay of the islands back to a nearly planar film.166,171,181  The combination of these 

factors can lead to the dissolution of Ge islands upon annealing.  Furthermore, as Ge 

transfers to the Si, the high temperature anneal should also promote relaxation of the 

strain that builds by plastic relaxation.  This conjecture is consistent with the combination 

of composition and lattice fringe spacing measurements described earlier, and with the 

presence of dislocations that are detected within the Si-Ge alloy layer.  Figure 5-18 (a-c) 

pictorially represents the processes that are believed to lead to the observed island 

morphology and Si-Ge alloy layer. 
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Figure 5-18.  Depiction of the evolution of the Ge islands during annealing.  Image 5-
18(a) shows the nucleation of the Ge islands within the openings in SiO2.  The cross-
hatch island indicates a tilt misorientation with respect to the Si substrate.  Annealing 
causes desorption of the SiO2 layer.  Image 5-18(b) represents the surface diffusion 
taking place from the epitaxial Ge islands to the exposed Si substrate, as well as 
interdiffusion of Si and Ge.  Ge also migrates by surface diffusion to the misoriented 
island.  Image 5-18(c) shows the growth of the misoriented islands and the larger GeSi 
alloy layer that forms beneath the island. 

 

 The reason that approximately 16 % of the Ge islands nucleate in twin 

relationships to the Si and 8 % nucleate with small tilt misorientation to the Si is not 

presently understood.  The mechanistic details describing how epitaxy occurs within the 
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confined openings that form in the SiO2 is lacking.  These details are currently being 

investigated using molecular dynamics simulations.   

 

5.3.7 Conclusions of Annealing Ge Islands 
 
 We have determined the origin of the high density of twin/SF defects found in Ge 

films created from the nucleation and coalescence of Ge islands within small openings in 

SiO2.  The twins originate from the nucleation of Ge islands in twin relationships to the 

Si within the SiO2 windows, and form coherent twin boundaries when merging with other 

Ge islands that are epitaxial to the Si.  In addition to the twin oriented Ge islands, many 

of the Ge islands nucleate with a small misorientation angle to the Si.  Annealing the Ge 

islands leads to the desorption of the SiO2, and the transfer of most of the Ge in the 

islands to the freshly exposed Si.  Intermixing then leads to the formation of a strain 

relaxed GeSi alloy layer, and subsequent growth results in Ge films free of twins.  

Dissolution of most of the Ge islands appears to be the mechanism by which twins are 

removed.  This is confirmed by the experiments in which the initially deposited Ge 

islands are first capped with SOG before annealing to prevent surface diffusion and SiO2 

desorption.  Subsequent analysis after annealing reveals that the twin/SF defects remain 

in the islands, and the islands retain their overall shape and orientation prior to annealing.   

In addition, some very large Ge islands are formed after annealing samples that have a 

critical amount of initial Ge deposition.  The formation of theses large islands is not 

currently well understood, but the mechanism of their formation may be analogous to the 

shape transitions observed in pyramid-dome-superdome formations observed in Ge-Si 

epitaxy.  The large islands found after annealing are oriented to the Si and contain 
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threading dislocations, in agreement with the findings of Ge-Si growth directly on Si, 

whereby large islands form after the nucleation of dislocations relaxes the strain buildup 

from the lattice mismatch.  Next, we report the characterization of Ge films formed from 

additional growth performed after annealing Ge islands nucleated within nanoscale 

windows inSiO2. 

 

5.3.8 Characterization of Ge Films 

 
The x-TEM image shown in Figure 5-19 is of a Ge film formed after annealing 

Ge islands nucleating within openings in chemical SiO2.  The image reveals the presence 

of a large number of TDs that exist within 200 nm of the Ge-Si interface.   

 

 

Figure 5-19.  Cross-section transmission electron micrograph of a Ge-on-oxidized Si film 
that is annealed at 1073 K for 30 min after deposition of 10 nm Ge.  A tangled network of 
threading dislocations now appears within 200 nm of the Ge-Si interface. 
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The existence of TDs at the GoS interface is in contrast to the high density of twins 

previously shown in Figure 5-4 to exist at the GoS interface for samples that are 

unannealed.  Most of the dislocations terminate within a tangled network close to the Ge-

Si interface, but occasionally one is seen to propagate toward the surface of the Ge.  The 

TDD that intersects the film surface is too low to be accurately determined from the x-

TEM images.  However, pv-TEM images, such as that shown in Figure 5-20, consistently 

show that the TDD within the middle of the Ge film is 5.3 x 107 cm-2.   

 

 

Figure 5-20.  Plan-view transmission electron micrograph showing dislocations in a Ge-
on-oxidized Si film that is annealed at 1073 K for 30 min after deposition of 10 nm Ge. 

 

The TDD value obtained with pv-TEM is now compared to the TDD value 

obtained using EPD measurements.  Figure 5-21 is an SEM image showing an annealed 

Ge-on-oxidized Si sample that is dipped for 30 s in a solution of 2:1:20 volumetric parts 
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of 49 wt. % HF: HNO3: acetic acid.  The SEM image shows that the pits are square 

shaped and provide good counting statistics that result in an EPD value of 5.7 x 107 cm-2, 

highly consistent with pv-TEM images.  Consequently, EPD is shown to be a technique 

that can provide an accurate value of the TDD in Ge films as long as the pits can be 

clearly resolved.  This restriction puts an upper bound on the TDD of perhaps 5  108 cm-

2 and complements the higher TDD densities that can be more accurately measured using 

TEM.   

 

 

Figure 5-21.  Scanning electron micrograph of annealed Ge-on-oxidized Si film etched 
for 30 s revealing square shaped etch pits. 
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The TDD in Ge films formed after the annealing step is 5  107 cm-2.  This value 

is comparable to well annealed Ge on Si films and is 1-2 orders of magnitude less than 

Ge growth on Si without annealing.  The segments of misfit dislocations are much longer 

than in unannealed Ge on Si growth and exist mainly within a region extending 200 nm 

from the interface, as shown in Figure 5-19.  The dislocation structure at the interface 

bears some resemblance to that found in graded GexSi1-x structures.  This resemblance 

can be understood based on the results shown after annealing 8 nm of initial Ge 

deposition.  The results show that growth that occurs after annealing will take place on a 

strain relaxed Ge0.22Si0.78 alloy layer.  Fewer new dislocations will be required to relax 

the additional growth, allowing those dislocations to glide further before becoming 

blocked or entangled with one another.  Next, several methods are investigated for 

cleaning and passivating the Ge surface after the planarization step. 

 

5.3.9 Cleaning and Passivating the Ge Surface for III-V Growth 

 
 Previously reported methods of producing a clean Ge surface generally fall into 

either one of two categories: wet-chemistry methods (e.g., dilute HF, HCl, H2O2, and 

NH4OH)182-187 and dry chemistry methods [e.g., UV-generated ozone188,189 or oxygen 

plasma exposure190].  In general, these methods follow the Shiraki process of preparing 

clean Si substrates, where the last step produces a thin oxide layer that is thermally 

decomposed at high temperatures.120,190  Producing clean Ge surfaces using aqueous 

methods presents additional challenges because the Ge oxide is a mixture of GeO and 

GeO2, with GeO2 being water soluble.191  In addition, both HF187,192 and NH4OH190 can 

cause significant Ge surface roughening.  Overall, previous studies of Ge surface 
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cleaning methods using scanning tunneling microscopy report 0.03-0.08 ML of residual 

carbon on the surface of the Ge, even after desorbing the Ge oxide.183,186,190  Gan et al. 

also found that the fraction of carbon remaining after oxide desorption scales with the 

initial amount of carbon on the germanium oxide surface.186  In our study, XPS spectra 

are collected at a take-off angle of 15º, defined here as the angle between the surface and 

the detector, to quantify the fraction of carbon present at the Ge surface for the following 

five cleaning methods:  1:10 HF-DI water, 1:10 HCl- DI water, 1:10 H2O2-DI water, DI 

water rinse, and oxygen plasma exposure. 

Table 5-1 shows the surface composition for the different cleaning methods.   

The atomic fractions of Ge, C, Cl, and O are calculated using the atomic sensitivity 

factors found in Ref. 70.  The fraction of C present on the surface is highest at 18% 

immediately after the polishing.  The ratio of O to Ge is approximately 2 indicating that 

the germanium oxide is composed mainly of GeO2.  The polishing solution is itself a 

dilute H2O2, and after rinsing in the fresh H2O2 solution, the C fraction is reduced to 11%.  

In contrast, rinsing in DI water reduces the O-to-Ge ratio to 1.4, consistent with the water 

solubility of GeO2, which leaves sub-stoichiometric germanium oxide on the surface.   
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Table 5-1.  The average and standard deviation of the chemical composition of the 
surface as revealed with x-ray photoelectron spectroscopy for different surface cleaning 
methods.  The sample labeled “post polishing” has not undergone any cleaning treatment 
after the planarization step using dilute H2O2.  Overall, the O2 plasma treatment results in 
the lowest residual carbon contamination on the surface. 

 

However, the surface C is 12%, nearly unchanged compared to the H2O2 clean.  The 

reduction in C from 18% to 12% upon removal of GeO2 in DI water indicates that nearly 

30% of the C is contained on or near the surface of the sample after polishing.  The 

remaining C must either be contained within the insoluble Ge oxide and at the GeO2-Ge 

interface.  Another possibility is that some of the residual C is from the DI water itself.  

The cleaning solution least effective at removing C is the dilute HF.  This is in agreement 

with the findings of Ravillon et al. who found that hydrogen terminated Ge has a greater 

affinity for hydrocarbon contamination.192  The most effective wet cleaning solution at 

reducing C contamination is the dilute HCl, which shows a 9% C concentration and a Cl 

terminated surface.  For the ex-situ O2 plasma exposure, the sample is first rinsed in DI 

water to remove the bulk of the surface C and the GeO2 layer.  Overall, the O2 plasma 

treatment is the most effective way of reducing surface C, in agreement with the study by 
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Chan et al.190  The C concentration is reduced to 6 %, and some of the remaining C is 

likely due to the exposure to the ambient air while the sample is being transferred to the 

XPS chamber.  Therefore, the DI rinse/O2 plasma treatment is the method adopted here to 

clean Ge surfaces prior to GaAs growth.  Next, III-V growth on the annealed Ge films is 

compared to growth previously obtained on unannealed Ge films that have twins. 

 

5.3.10 III-V Growth and Characterization on Ge 

 
 For GaAs growth on engineered Ge/Si substrates, several engineering challenges 

still remain, including formation of APBs and surface roughness.  First, the results are 

presented for growth performed at SNL following the procedure given in Section 5.2.  

Gallium arsenide is grown on Ge substrates on both nominal and 6-degree-offcut toward 

[110] to determine if APBs can be eliminated with the off-cut.  Samples are etched in a 

mixture of 10 parts 49 wt% HF to 1 part 70 wt% HNO3 for 10 s to reveal the APBs.193  

Figure 5-22 (a) shows that an APB density of 5x107 cm-2 exists at the surface of 1 m 

thick GaAs film grown on the nominal substrate.  However, no APBs are detected on the 

vicinal Ge substrate as shown in Figure 5-22 (b). 
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Figure 5-22.  Scanning electron micrographs of the GaAs surface after etching for 5-22(a) 
nominal surface that reveals the antiphase boundaries in the sample, and 5-22(b) offcut 6 
degrees toward [110] revealing that antiphase boundary formation is suppressed. 

 

Figure 5-23 (a) shows an AFM image of a GaAs film grown on a 6-degree-offcut 

Ge substrate made by Umicore.  The RMS value is 0.9 nm, and the FWHM is 49 arcsec 

using the (004) reflection in XRD.  This is compared to GaAs grown on Ge-on-oxidized 

Si in the AFM image shown in Figure 5-23 (b).   
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Figure 5-23.  Atomic force micrographs of 5-23(a) GaAs layer grown using metal-
organic chemical vapor deposition on a Ge wafer, and 5-23(b) GaAs layer grown on 
polished Ge-on-oxidized Si substrate.  Image 5-23(b) reveals that the GaAs morphology 
closely follows that of the original Ge surface, showing the same raised lines due to the 
twins that terminate the Ge surface as seen in Figure 5-9(b). 

 

The morphology of the GaAs closely follows that of the Ge surface, and shows the same 

raised lines attributed to twins in the Ge.  The RMS roughness is 36 nm and the FWHM 

of the (006) GaAs reflection is 335 arcsec.  These results suggest that the twins in the Ge 

either propagate into the GaAs layer, or produce APBs in the GaAs.  The latter are likely 

due to the morphology of the twins as raised lines at the Ge surface, which would disturb 

the double step structure of the vicinal Ge surface.   

 Photoluminescence results are taken and compared in Figure 5-24 for a GaAs film 

grown on a GaAs substrate ( dotted line), an offcut Umicore Ge substrate ( dashed 

line), and GaAs grown on Ge-on-oxidized Si ( thick solid line).   
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Figure 5-24.  Room temperature photoluminescence spectra recorded for GaAs grown on 
Ge-on-oxidized Si compared to GaAs grown on a commercial Ge and GaAs wafer.  The 
GaAs/Ge/oxidized Si sample intensity is 20-25% that of the GaAs grown on Ge and 
GaAs wafers.  This reduced intensity is attributed to defects in the GaAs caused by the 
twin defect morphology of raised lines at the Ge surface.  Evidence is provided by a 
comparison of PL intensity from GaAs grown on an annealed Ge-on-oxidized Si sample 
(heavy solid line) that is free of twins in the Ge.  The photoluminescence intensity from 
this sample is comparable to GaAs grown on a GaAs substrate. 

 

The inset in Figure 5-24 shows the energy band diagram of the test structure grown at 

SNL, with band energies shown relative to vacuum level.  A film of GaAs grown on the 

Ge substrate has about 23% more intensity than GaAs grown on a GaAs substrate.  This 

is likely due to the diffusion of Ge into the GaAs film where the Ge acts as a dopant 
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source providing centers for radiative recombination.194-197  Overall, the intensity of the 

GaAs grown on Ge-on-oxidized Si is about one fourth that of GaAs grown on the 

commercial Ge substrate.  Again, we attribute this reduced intensity to the twin defect 

morphology at the Ge surface, where twins may propagate from the Ge film into the 

GaAs layer, or produce APBs along the raised lines in the GaAs.  Further evidence for 

the detrimental effect on the GaAs layer due to the SF morphology at the Ge surface is 

provided by the PL shown in Fig. 5-24 (—— thin solid line).  This sample is an annealed 

Ge-on-oxidized Si sample where the twins are eliminated from the Ge.  The PL intensity 

for this sample is comparable to the structure grown on a GaAs substrate.   

The image taken in Figure 5-25 (a) corresponds to an SEM image of the GaAs 

surface grown on Ge-on-oxidized Si, while Figure 5-25 (b) shows the corresponding CL 

image.  The CL image shows that the radiative intensity from raised lines in the GaAs is 

greatly reduced compared to the surrounding regions, again confirming the detrimental 

effect on the GaAs layer from the twins in the Ge.  However, further analysis such as 

TEM is needed to fully clarify the nature of the corresponding defect that is created in the 

GaAs. 
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Figure 5-25.  (a) Scanning electron micrographs of the GaAs on Ge-on-oxidized Si 
surface showing the raised lines that correspond spatially to the twins at the Ge surface, 
and 5-25(b) corresponding cathodoluminescence image revealing the non-radiative nature 
of the twin defect morphology in the GaAs layer. 

 

The growth of III-V materials on the annealed Ge films have a much smoother 

surface morphology as compared to those grown on unannealed Ge-on-oxidized Si films 

that have twins.55  The III-V growth on Ge films containing twins resulted in films with a 

root-mean-square (RMS) roughness of 36 nm.55  In comparison, the AFM image in 

Figure 5-26 (a) shows the III-V structure grown at SNL on the annealed Ge-on-oxidized 

Si substrate that is free of twins.  The RMS roughness is 3.45 nm, and the surface is 

similar in morphology to the same III-V structure grown on a 6o offcut Ge substrate, 

which is shown in Figure 5-26 (b).  In this case, the film RMS roughness is slightly lower 

at 1.35 nm.   
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Figure 5-26.  Atomic force micrographs of GaAs grown on 5-26(a) offcut Ge substrate, 
and 5-26(b) annealed Ge-on-oxidized Si. 
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A plot of the CL intensity versus energy is shown in Figure 5-27 for the III-V 

structure grown at SNL.  The measurements are performed at NREL and are taken over 

an area of 100  100 m2 at temperatures of 298 K and 15.5 K under nearly identical 

excitation conditions.  The measurements indicate that the structure grown on the 

annealed Ge is comparable in intensity to that grown on the offcut Ge substrate.  The III-

V structure grown on the unannealed Ge sample that contains twins has an intensity only 

about 15 % compared to growth on the Ge substrate.  This result is consistent with the 

previous PL intensity measurement shown in Figure 5-24 obtained for the same series of 

samples.55  The III-V growth on the Ge substrate was verified to contain TDs below the 

detection limit of CL imaging; therefore, the fairly wide FWHM of the CL intensity peak 

measured at 298 K is likely due to high levels of unintentional doping.  We speculate that 

Ge auto-doping during III-V growth is the likely culprit for the peak broadening.  The 

low temperature measurements give a similar result but show both the excitonic transition 

for the annealed Ge-Si sample at 1.516 eV and a second transition at 1.496 eV.  A second 

transition is often observed in low temperature measurements of GaAs on Si at about 19 

meV below the excitonic peak.198-200 This second peak can be attributed to the breaking 

of the light and heavy-hole valence band degeneracy caused by residual strain in the 

epilayer due to the mismatch in thermal expansion coefficient to the substrate.198-200  

However, the residual strain from thermal stress is also observed to cause a shift toward 

lower energy in the GaAs excitonic peak by about 25-30 meV198-200, but this shift is not 

observed in the measurements shown here.  Therefore, the lower energy peak is most 

likely due to recombination of a free electron-carbon acceptor pair.199,200   
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Figure 5-27.  Plot of cathodoluminescence intensity versus energy taken at temperatures 
of 298 5-27(a) and 15.5 K 5-27(b) for GaAs on Ge substrate, and on both unannealed and 
annealed Ge-on-oxidized Si.  The low intensity peak represented by the solid line is from 
GaAs on the unannealed Ge that contains twins.  The higher intensity peaks given by the 
dotted and dashed curves are for GaAs on the annealed Ge film and Ge substrate, in turn.   
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A low-resolution CL image is collected and displayed in Figure 5-28 for the III-V 

structure grown at SNL on the annealed Ge on oxidized Si substrate. 

 

 

Figure 5-28.  Cathodoluminescence image of GaAs grown on annealed Ge-on-oxidized 
Si and used to estimate the threading dislocation density in GaAs grown on annealed Ge-
on-oxidized Si. 

 

The image shows that the TDD in the GaAs films grown on the annealed Ge-Si is 2.5  

107 cm-2, or about one half the starting TDD in the Ge film.  The image in Figure 5-28 
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shows no evidence of the SF lines found in the III-V growth on unannealed Ge shown in 

the CL image of Figure 5-25 (b).  Low temperature (< 20 K) CL images of the same 

sample indicate that the many of the dislocations exist as dipole pairs separated by 200 to 

300 nm.  The CL intensity of the excitonic peak taken on the dislocations is reduced by 

20 % compared to the background intensity.  The results are now presented for  the III-V 

structure grown at NREL that is described in Section 5.2. 

The III-V structure grown at NREL is shown in the x-TEM image in Figure 5-29.   

 

 

Figure 5-29.  Transmission electron microscope image of National Renewable Energy 
Laboratory III-V structure grown on 5-29(a) Ge substrate, and 5-29(b) annealed Ge-Si 
substrate.  No defects were detected in the sample shown in 5-28(a), while the sample in 
5-29(b) contained some twin/SF defects along with a few dislocations. 
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This structure is grown on a GaAs, Ge, and annealed Ge-on-oxidized Si sample.  

The x-TEM image of Figure 5-29 (a) shows that the defect density of the NREL structure 

grown on the Ge substrate is below the resolution limit of the TEM.  However, some 

twin/SF defects and a few TDs are seen in the same structure grown on annealed Ge-on-

oxidized Si, and shown in Figure 5-29 (b).  The defect density in the sample is estimated 

from TEM images to be 5  107 cm-2.   

The minority carrier lifetime of all three samples is measured using time resolved 

PL in conjunction with time-correlated singe photon counting.  The time resolved PL 

kinetics shown in Figure 5-30, shifted for clarity, is similar for all three samples with 

expected maxima at 870 nm.  However, the decay rate of the PL in the structure on 

annealed Ge-on-oxidized Si is much faster compared to growth on the Ge and GaAs 

substrates.  Deconvolution is used to extract a lifetime of 67 ps for the annealed Ge 

sample compared to 4 to 5 ns for both Ge and GaAs substrates.  Clearly, the quality of the 

annealed Ge must be further improved to be viable as a virtual substrate for minority 

carrier devices such as solar cells.   
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Figure 5-30.  Time-resolved photoluminescence spectra of GaAs are collected and used 
to calculate the minority carrier lifetime.  The samples measured correspond to GaAs on 
annealed Ge-Si (solid line), GaAs on offcut Ge substrate (dotted line), and GaAs on 
GaAs substrate (dashed line). 

 
The method of nucleating nanometer sized Ge islands within openings in 

chemical SiO2 inherently leads to large numbers of twins in the Ge film.  However, the 

method of annealing the Ge islands, while effective in removing SF’s from the Ge 

islands, results in removal of the remaining SiO2 that exists between the islands.  Further 

Ge growth is believed to result in the nucleation of TDs to relieve the lattice strain due to 

the Ge growth that occurs on the freshly exposed Si.  One possible solution may be to re-

oxidize the exposed Si after the high temperature anneal step, thus preventing further Ge 
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growth from occurring directly on Si.  The re-oxidation step is then followed by 

preferential thermal desorption of GeOx at 853 K, leaving SiO2 intact. 

 

5.3.11 Conclusions of III-V Growth on Ge 
 

We find that annealing the Ge islands before complete coalescence over SiO2 

results in removal of the twins.  Consequently, the morphology and CL intensity of III-Vs 

grown on the polished Ge films is greatly improved compared to films containing twins.  

However, the resulting Ge films now contain a density of TDs that propagate into the 

GaAs and lower the minority carrier lifetime by two orders of magnitude compared to 

similar films grown on GaAs or Ge substrates.  We suspect that TDs form during later Ge 

growth because the anneal step that removes twins also desorbs the remaining chemical 

SiO2 uncovered by Ge islands.  Thus, the SiO2 template responsible for the enhanced 

strain relaxation during initial Ge growth is destroyed.  We propose that a second 

oxidation step performed after the high temperature anneal and selective sublimation of 

GeOx over SiO2 may lead to improved minority carrier lifetime in III-V grown on our 

Ge/SiO2 template/Si substrates.  
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CHAPTER 6  STRESS INDUCED DEFECTS IN GERMANIUM GROWTH IN 

TRENCH PATTERNED SILICON DIOXIDE FILMS ON SILICON AND 

GERMANIUM SUBSTRATES 

6.1 Introduction and Background 

The use of trench-patterned SiO2 films on substrates for heteroepitaxy and 

subsequent epitaxial lateral overgrowth (ELO) has been shown to substantially reduce the 

threading dislocation density in highly mismatched systems such as Ge on Si46,48,49,201-203 

and GaN on sapphire204,205.  The reduction in defect density for Ge on Si is attributed to a 

combination of dislocation glide and trapping at the SiO2 sidewalls within the narrow 

channels.203,204  Previous studies show, however, that additional defects occur at the 

merging growth fronts of adjacent channels during ELO.  The additional defects that 

occur from coalescence limit the area of device-quality film that can be produced with 

ELO.  The cause of the coalescence boundary defects has been studied in several systems 

such as GaN206,207 and GaAs208,209 and is ascribed to tilting of the epitaxial layer as it 

grows laterally over the SiO2.  The tilt results in the formation of a low-angle grain 

boundary at the merging junctions of the lateral overgrowth regions.209,210  The low-angle 

grain boundary is made up of a vertical wall of edge dislocations, some of which possess 

threading arms that terminate at the film surface.   

In this study, we explore the nature and possible causes of coalescence defects in 

Ge on Si grown within trench-patterned SiO2 and subsequent ELO.  The coalescence 

defects are examined for thermally grown SiO2 that is patterned into channels running 

along both [110] and [100] directions.  In addition, we also examine coalescence defects 

in Ge homoepitaxy in which SiO2 is deposited by chemical vapor deposition (CVD) on a 
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Ge on Si film and a Ge substrate and subsequently patterned into channels along the 

[110] direction.  The epitaxially grown Ge is observed x-TEM.  Finite element modeling 

(FEM) is used to estimate the thermal stresses in the Ge film resulting from differences in 

thermal expansion coefficients with the Si and SiO2.  The EPD measurements are used to 

characterize the overall defect density of the ELO Ge films. 

 

6.2 Experimental Details 

The (001) Si substrates used in this study are boron doped with a resistivity of 1 – 

10 Ω-cm.  The Si wafers are cleaned for 5 min in a Piranha bath consisting of 3 

volumetric parts H2SO4 (96 wt %) to 1 part of H2O2 (30 wt %) and heated to 100 C.    

The samples are subsequently dipped into a buffered oxide etch solution (20 parts 40 

wt% NH4F: 1 part 49 wt% HF) diluted in DI water by 6:1 volumetric ratio to remove the 

chemical oxide.  Figure 6-1 (a-g) schematically depicts the sample fabrication process.  

Images 6-1 (a-d) show the formation of SiO2 on the Si substrate, followed by spin coating 

layers of anti-reflective coating and photoresist, in turn.  The SiO2 films on Si are 

thermally grown in a dry O2 oxidation furnace and patterned into 200 nm wide stripes 

using a combination of interferometric lithography and reactive ion etching, as depicted 

in Figure 6-1 (e-f).  The samples are cleaned in O2 plasma [Figure 6-1 (g)] and are 

subsequently re-oxidized to produce a 20 nm thick sacrificial SiO2 layer at the bottom of 

the trenches.  The sacrificial oxide is used to remove the damaged Si in the bottom of the 

SiO2 trenches caused by the plasma etching and is removed in a dilute HF solution before 

Ge growth.   
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Figure 6-1.  Schematic depiction of the fabrication process used to create channels of 
SiO2 on the Si substrate.  Images 6-1(a-d) shows the formation of SiO2 on Si, followed by 
spin coating a layer of anti-reflective coating and photoresist, in turn.  Images 6-1(e-f) 
show the exposure and development of the photoresist into channels followed pattern 
transfer to the SiO2 using reactive ion etching.  Lastly, image 6-1(g) shows the sample 
after removal of the photoresist and anti-reflective coating in O2 plasma. 

 
The (001) Ge substrates are 2-inch wafers with a 6° offcut manufactured by AXT 

and are Ga doped to a resistivity of 0.016-0.022 Ω-cm.  The SiO2 is deposited at room-

temperature onto the Ge substrates using plasma-enhanced chemical vapor deposition 

(CVD) with SiH4 and N2O.  The SiO2 film on Ge is then patterned into trenches 
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following the same procedure used to pattern the thermally grown SiO2 on Si substrates 

shown in Figure 6-1 (c-g).  The Ge samples are subsequently cleaned in O2 plasma and 

etched for 3 min in a solution of 50 parts DI water to 1 part 30 wt % H2O2 to remove 

approximately 30 nm of Ge from the bottom of the SiO2 trenches.  Epitaxial Ge is 

selectively grown within the SiO2 trenches at 973 K and 1.1 monolayers/s.   

Samples of Ge on Si are produced after following the same Si substrate pre-

cleaning procedure described above.  After being loaded into the deposition chamber, the 

samples are degassed at 873 K for 10 min.  The effusion cell temperature is set to 

produce a flux of 1.9  1014 atoms cm-2-s-1 (19.1 ML min-1) and allowed to stabilize for 

30 min.  A total of 100 nm of Ge is deposited, and then the deposition rate is increased to 

60 ML min-1 until a film thickness of 1.5 m is reached.  The sample is chemically 

polished following the Ge deposition.  The Ge on Si sample then follows the same 

fabrication steps to produce trench patterned SiO2 on the Ge film as outlined above for 

the Ge substrates. 

Samples in which Ge is grown until complete coalescence takes place are 

planarized using CMP.  The CMP is performed on a Logitech PM5 using a slurry-free 

dilute solution of 50 parts DI water to 1 part 30 wt % H2O2.  The samples are prepared for 

x-TEM using an FEI Quanta 3D focused ion beam and examined on a JEOL 2010 

operating at 200 kV.  The etchant solution for EPD measurements consists of 2 parts 49 

wt % HF and 1 part 0.1 M K2Cr2O7.   
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6.3 Results and Discussion 

 
 Figure 6-2 shows an x-TEM image of Ge grown within the SiO2 trenches on a Si 

substrate.  The Ge growth is stopped before coalescence of adjacent trenches takes place 

in order to study the defects in the Ge prior to coalescence.  The sample is coated with a 

SOG to planarize the sample for TEM preparation.  Black lines are drawn around the 

SiO2 walls to delineate the boundary between Ge, SiO2, and the SOG in Figure 6-2.  The 

SiO2 walls have an undercut at their base that is caused by the 30 nm SiO2 oxidation and 

dilute HF removal step.  Defects in the Ge growth include threading and misfit 

dislocations that are confined within the trench openings.  Defects are not observed in 

any of the regions over the SiO2 walls where lateral Ge growth has taken place.   

 

 

Figure 6-2.  Cross-sectional transmission electron microscope image of selective growth 
of Ge within the SiO2 channels patterned along the [110] direction.  The Ge growth is 
interrupted before growth from adjacent channels coalescences. 

 

Figure 6-3 shows an x-TEM image of Ge growth in which complete coalescence 

has occurred and the resulting Ge film is planarized using CMP.  Figure 6-3 (a) shows 
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trenches patterned along the [110] direction, while Figure 6-3 (b) shows trenches running 

along [100].  Twins are found near the center of the SiO2 walls in several TEM images of 

the coalesced samples.  Additionally, threading dislocations now commonly occur near 

the top corners of many of the SiO2 walls.  Voids are commonly observed above the 

center of the SiO2 in trenches patterned along the [100] direction, but not in the sample 

with trenches along [110]. 

 

 

Figure 6-3.  Cross-sectional transmission electron microscope images of coalesced Ge 
grown within SiO2 channels along 6-3(a) the [110] direction, and 6-3(b) channels along 
[100] direction.  Threading dislocations near the top corners of the SiO2 walls and voids 
appearing over the center of the SiO2 are marked with arrows.  A twin defect appearing 
above the center of the SiO2 is labeled in 6-3(a). 
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Previous reports of the tilt misorientation between adjacent trenches in GaN206,210 and 

GaAs209 films that are formed using growth in trench-patterned SiO2 and subsequent ELO 

range from 2 to 2.8 degrees for GaN and 0.22 to 0.24 degrees for GaAs.  The Ge on Si 

samples that are fully coalesced are analyzed with x-TEM to determine whether tilting of 

the Ge epilayer causes the defects appearing over the SiO2.  A series of high-resolution x-

TEM images are taken 200 nm apart in a clockwise circuit around a total of 5 of the SiO2 

walls that have twins and dislocations above them.  The angular orientation and lattice 

spacing of the (111) and (220) planes of the Ge are compared to those of the underlying 

Si.  The angular orientation measurement is accurate to ± 0.1 degree.  The result of the 

orientation analysis for Ge on Si shows that no net tilt occurs in the Ge within the error of 

the measurement.  This finding is in agreement with a previous study of Ge on Si grown 

within SiO2 trenches where high-resolution x-ray diffraction is used to measure the tilt of 

the Ge epilayer in the perpendicular direction to the trenches.211  The authors report a tilt 

ranging from 0.09 to 0.16 degrees211, consistent with the finding of less than 0.1 degree 

of tilt in this study.  The presence of such small tilt values, in conjunction with the 

inconsistent formation of defects at coalescence boundaries indicates that the defects may 

result from local tilt misorientations rather than macroscopic tilt as observed in GaN206,207 

and GaAs208,209 ELO films.  Local tilt misorientations can result from roughness of the 

tops of the SiO2 walls and the uneven nature of the faceting of adjacent Ge growth fronts 

as seen in Figure 6-2. 

The threading dislocations observed at the upper corners of the SiO2 trenches in 

coalesced samples also contribute to the defect density of the Ge film above the SiO2.  

Defects that emanate from sharp corners of SiO2 are previously observed in Si 
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homoepitaxy occurring in ELO films.212-214  Stress occurring in the ELO film due to 

mismatch in thermal expansion coefficients of Si, Ge, and SiO2 can become concentrated 

at the sharp corners.   

Figure 6-4 shows an x-TEM image of a coalesced Ge film grown on the sample of 

Ge on Si with CVD deposited SiO2 channels aligned with the [110] direction.  The SiO2 

channels effectively block most of the threading dislocations formed from lattice 

mismatch at the Si/Ge interface.  The voids between the Ge and CVD deposited SiO2 are 

much larger than in the sample of Ge grown on Si with thermally grown SiO2, previously 

shown in Figure 6-3.  The voids are large enough that the upper Ge layer does not contact 

the SiO2 walls where threading dislocations are observed in the sample with thermally 

grown oxide.  The twins previously observed above the center of the thermally grown 

SiO2 walls, however, are present above the center of the SiO2 walls.  The presence of 

twins, despite the lack of contact between Ge and SiO2 wall, indicates that twin defect 

formation is caused by stress occurring from the coalescence of adjacent Ge channels. 
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Figure 6-4.  Ge growth on Ge on Si film within SiO2 channels deposited with chemical 
vapor deposition and patterned into channels aligned along the [110] direction.  Large 
voids are formed between the Ge and SiO2 such that the upper Ge layer does not contact 
the SiO2.  The SiO2 channels effectively block the threading dislocations near the Si/Ge 
interface from propagating into the upper Ge layer.  Twins often appear over the center of 
the SiO2 walls. 

 
The coalescence defects are further studied independent of lattice mismatch using 

Ge substrates with CVD deposited SiO2 that is patterned into trenches along the [110] 

direction.  A selectively grown and fully coalesced Ge homoepitaxial film is created at a 

growth temperature of 973 K.  The sample is then planarized and analyzed with x-TEM 
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and shown in Figure 6-5.  The CVD deposited SiO2 is considerably rougher than the 

thermally grown SiO2.  Twins are observed at the center of several of the SiO2 walls 

similarly to that observed in the Ge on Si coalesced films.  In contrast, however, 

threading dislocations are not observed at the top corners of the SiO2 in the Ge 

homoepitaxial sample. 

 

 

Figure 6-5.  Cross-sectional transmission electron micrograph of Ge selectively and 
epitaxially grown within SiO2 channels deposited using chemical vapor deposition on a 
Ge substrate.  The SiO2 channels are patterned along the [110] direction and marked with 
arrows.  Twins and dislocations appear to emanate from the top center of the SiO2 and are 
also marked with arrows. 

 

The thermal stress in the coalesced samples of Ge on Si is analyzed using 2-

dimensional finite element modeling (FEM), and the result is shown in Figure 6-6.  The 

FEM results in Figure 6-6(a-c) show the thermal stress in the Ge film based on the 

geometry of the SiO2 channels and a temperature excursion of 700 K.  The temperature 

excursion corresponds to the cooling  of the sample from a growth temperature of 973 K 

to room-temperature.  The analysis in Figure 6-4 (a) shows that the maximum stress of 

2.7  108 Pa occurs in the Ge film near the top corners of the SiO2 walls for Ge on Si 

growth.  The top corners of the SiO2 walls are where the threading dislocations are 

observed to occur in the fully coalesced samples.  Figure 6-6 (b) shows the thermal stress 
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in the structure of Ge coalesced over CVD deposited SiO2 on the Ge on  Si film.  The 

maximum stress of 2.1  108 Pa is similar in magnitude to the Ge on Si sample.  

However, the Ge does not contact the corners of the SiO2 and threading dislocations are 

not observed in these regions in x-TEM images of this sample.  Figure 6-6(c) shows that 

the maximum stress for the Ge growth within CVD deposited SiO2 trenches on the Ge 

substrate is 1.1  108 Pa near the top corners of the SiO2 walls.  This value for growth on 

the Ge substrate is approximately half compared to Ge growth on the Si substrates and 

threading dislocations are not observed to emanate from the corners of the SiO2 in the 

sample.  The correlation between the thermal stress analysis of the FEM and the x-TEM 

indicate that thermal mismatch stress between the Si substrate, SiO2 walls, and Ge film 

can contribute to the formation of the threading dislocations that originate at the top 

corners of the SiO2 walls during cooling of the sample from growth to room-temperature. 
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Figure 6-6.  Finite element model of the thermal stress occurring from thermal expansion 
coefficient mismatch.  Image 6-4 (a) for coalesced Ge/SiO2/Si substrate, 6-4 (b) for 
coalesced Ge/SiO2/Ge/Si substrate, and 6-4 (c) for coalesced Ge/SiO2/Ge substrate.   
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 The presence of twins above the center of the SiO2 walls may be caused by either 

local roughness of the SiO2 wall or translation mismatch between adjacent Ge channels.  

The SiO2 roughness may induce a small local tilt misorientation in the Ge during lateral 

growth over the SiO2 and cause formation of a twin defect during coalescence.  

Translation mismatch is shown in Figure 5-5(c) and occurs when the width of an SiO2 

wall is not an integral number of lattice spacings of Ge.  A large stress can occur during 

coalescence over the center of the SiO2 leading to twin defect or TD formation.  The 

translation mismatch mechanism for twin formation appears more likely than SiO2 

roughness based on the observations shown in Figure 6-4.  The Ge does not contact the 

SiO2 in the sample shown in Figure 6-4 due to the large voids that appear in the Ge over 

the SiO2.  Therefore, the presence of twin defects over the SiO2 in this sample is most 

likely due to translation mismatch rather than SiO2 roughness.  In addition, the CVD 

deposited SiO2 is much rougher than the thermally grown SiO2 as shown in Figures 6-3 

and 6-4, yet the density of twins is approximately the same in samples with both types of 

SiO2, as discussed next. 

Lastly, etch pit densities of the coalesced samples of Ge on Si with thermally 

grown SiO2 on Si and CVD deposited SiO2 on a Ge substrate are analyzed and shown in 

the SEM images in Figure 6-7 (a-c).  The Ge grown on Si within SiO2 is shown in Figure 

6-7 (a) for trenches along [110], (b) trenches along [100], and (c) Ge homoepitaxy within 

[110] SiO2 trenches.  The rectilinear and L-shaped pits aligned with <110> directions are 

due to twins that propagate to the film surface, whereas square or circular shaped pits are 

due to threading dislocations.  The threading dislocation and twin defect density is 7.2  

107 cm-2, and 1.5  107 cm-2 respectively, for the sample shown in Figure 6-3 (a) with 
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SiO2 trenches along [110].  The threading dislocation density is similar for the Ge on Si 

with [100] SiO2 trenches, but the twin density is nearly double at 2.5  107 cm-2.  

Moreover, there is a preferential alignment of the twins in the sample with channels 

aligned along [110]. The twins in the sample with SiO2 trenches along [110] have a ratio 

of 5 to 1 for twins aligned along [110] versus the perpendicular [1-10] direction.  In 

contrast, the sample with SiO2 trenches along [100] contains an almost equal number of 

twins aligned along [110] (9.8  106 cm-2) and [1-10] (1.5  107 cm-2) directions.   

The preferential alignment of twins in the case of channels along [110], but not 

[100] can be explained with reference to the {111} <110> slip system of Ge.  Twins exist 

only on {111} planes and intersect the (100) surface along <110> directions.   

Our FEM results show that large stresses exist at the edges of the Ge growth fronts during 

ELO over the SiO2 walls.  The overlap of the stress fields of the merging Ge growth 

fronts results in large stresses occurring during coalescence.  Twins aligned along the 

[110] channel direction can relieve the greatest amount of coalescence stress in the Ge.  

Twins aligned with <110> directions are less efficient at relieving stress for channels 

along [100], which explains why there is approximately twice the number of twins 

formed when channels are along [100] versus [110].  In addition, twins aligned with 

either [110] or [1-10] relieve equal amounts of stress for channels along [100], which 

explains the presence of equal numbers of twins aligned along both directions in this 

sample. 

Figure 6-7 (c) shows the sample of homoepitaxial Ge coalesced over CVD 

deposited SiO2 channels along [110] on a Ge substrate.  The density of twins in the 

sample is 1.7  107 cm-2 and is similar to the sample of Ge on Si in SiO2 channels along 
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[110], despite the roughness of the CVD deposited SiO2.  The twins also show the same 

preferential alignment along the [110] channel direction.  The inset of Figure 6-7 (c) 

shows that the twins exist over the center of the SiO2 channels.  The analogous results 

obtained for the Ge on Si and homoepitaxial Ge samples with [110] patterned channels 

shows that coalescence induced stress over the SiO2 walls is the likely cause of twin 

defect formation in ELO growth of Ge, rather than local tilt misorientation of the Ge. 
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Figure 6-7.  Scanning electron microscope images showing the etch pit density of the 
coalesced Ge in trench patterned SiO2 channels.  Image 6-7(a) shows the sample of Ge on 
Si with SiO2 channels along the [110] direction.  Image 6-7(b) shows the sample of Ge on 
Si with SiO2 channels along the [100] direction.  Image 6-7(c) shows the sample of Ge on 
Ge with chemical vapor deposition of SiO2 channels along [110] direction. 
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6-4 Conclusions of Ge Growth in Trench Patterned SiO2 Channels 

 
 The defects occurring in Ge films on SiO2 patterned films on Si and Ge substrates 

are observed with x-TEM and EPD measurements.  Threading dislocations occurring due 

to the lattice mismatch between Ge and Si are successfully trapped near the bottom of the 

SiO2 walls.  Additional defects occur after coalescence of adjacent Ge emerging from the 

channels in SiO2.  Threading dislocations and twins are commonly observed near the top 

corners and center of the SiO2 walls, respectively.  Finite element modeling is used to 

show that the threading dislocations occurring at the top corners of the SiO2 walls is 

likely caused by thermal stress in the Ge film occurring from mismatch in thermal 

expansion coefficients of Ge, Si, and SiO2.  The twin defects occurring over the top 

center of the SiO2 walls are likely caused by the translation mismatch between adjacent 

Ge channels that leads to large stresses in Ge upon coalescence over the SiO2 walls. 

 

 

 

 

 

 

 

 

 

 

 

 175



CHAPTER 7.  DISLOCATION BLOCKING IN GERMANIUM ON SILICON 

HETEROEPITAXY USING SILICON DIOXIDE LINED ETCH PITS AND 

EPITAXIAL LATERAL OVERGROWTH 

7.1 Introduction and Background 

Previous methods described to reduce the defect density in GoS using SiO2 

structures all have the disadvantage of forming additional defects during coalescence 

over the SiO2.  The method described in this chapter to improve the GoS film quality is 

the passivation of etch pits in the Ge film using SiO2, and subsequent ELO.  The GoS 

samples are characterized using SEM, x-TEM, and EPD measurements. 

 

7.2 Experimental Details 

The (001) Si substrate consists of a 2-inch wafer doped with boron with a 

resistivity of 1 – 10 Ω-cm.  The Si wafers are cleaned for 5 min in a Piranha bath 

consisting of 3 volumetric parts H2SO4 (96 wt %) to 1 part of H2O2 (30 wt %) and heated 

to 100 C.    The samples are subsequently dipped into a buffered oxide etch solution (20 

parts 40 wt% NH4F: 1 part 49 wt% HF) diluted in DI water by 6:1 volumetric ratio to 

remove the chemical oxide.  The chemical oxidation is then repeated, and the wafer is 

rinsed in DI water and blown dry with N2.  After being loaded into the deposition 

chamber, the samples are degassed at 873 K for 10 min.  The effusion cell temperature is 

set to produce a flux of 1.9  1014 atoms cm-2-s (19.1 ML min-1) and allowed to stabilize 

for 30 min.  A total of 100 nm of Ge is deposited, and then the deposition rate is 
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increased to 60 ML/min until a film thickness of 1.5 m is reached.  The sample is 

planarized following the Ge deposition. 

The GoS wafers are polished using a Logitech PM5 lapping/polishing machine on 

a Logitech Chemcloth polishing pad.  The polishing solution consists of 50 parts DI 

water and 1 part 30 wt% H2O2.  Figure 7-1 schematically depicts the processing steps 

following GoS polishing.  Figure 7-1 (a) shows the polished GoS sample with threading 

dislocations that intersect the Ge surface.  Etch pits are created in the Ge using a solution 

of 2 parts 49 wt % HF and 1 part 0.1 M K2Cr2O7, as shown in Figure 7-1 (b).  The GoS 

sample with etch pits is then coated with 15 nm of SiO2 deposited in a plasma-enhanced 

CVD chamber using SiH4 and N2O, corresponding to Figure 7-1(c).  Figure 7-1 (d) 

depicts a 50 nm thick film of polymethyl methacrylate (PMMA) spin-coated onto the 

sample following the SiO2 deposition.  The PMMA flows into the etch pits and planarizes 

the GoS surface.  Figure 7-1 (e) depicts how the PMMA and SiO2 is etched away to the 

top of the etch pits using reactive ion etching with CHF3 and O2.  The residual PMMA is 

removed from within the etch pits using an O2 plasma, and depicted in Figure 7-1 (f).  

Lastly, Figure 7-1 (g) shows an additional 2 m of Ge that is selectively deposited on the 

processed sample using MBE, followed by polishing.  The SiO2 blocks the threading 

dislocations from propagating into the top layer of Ge. 
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Figure 7-1.  Schematic depiction of the sample fabrication process.  Image 7-1(a) shows 
the threading dislocations terminating at the surface of the initial Ge on Si film.  Image 7-
1(b) shows the formation of etch pits in the surface of the Ge where the dislocations 
terminate.  Image 7-1(c) shows the deposition of a thin layer of SiO2.  Image 7-1(d) 
shows a thin layer of polymethyl-methacrylate that is spin-coated onto the sample 
surface.  Image 7-1(e) shows the sample after reactive ion etching removes the SiO2 and 
polymethyl-methacrylate from the planar Ge surface.  Image 7-1(f) shows removal of the 
residual polymethyl-methacrylate from within the etch pits.  Lastly, image 7-1(g) shows 
the growth of a selective epitaxial lateral overgrowth layer of Ge in which the SiO2 lined 
etch pits block the threading dislocations in the initial Ge film from propagating into the 
top Ge layer. 

 

7.2 Results and Discussion 

 Figure 7-2 is an SEM image of the etch pits created in the first Ge layer grown 

directly on Si.  The thickness of the Ge layer after formation of etch pits is approximately 
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500 nm and the EPD is 2.8  108 cm-2.  The etch pits range in diameter from 300 nm to 1 

m and range in depth from 30 to 100 nm.  The EPD measurements are previously shown 

to accurately represent the dislocation density in the Ge film bases on plan-view TEM.56 

 

 

Figure 7-2.  Scanning electron microscope image after etch pit formation in the initial Ge 
on Si film. 

 

Figure 7-3 shows an SEM image of the sample corresponding to Figure 7-1 (f) in which 

the etch pits are passivated with the SiO2.  The SiO2 lined pits show up darker than the 
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surrounding planar regions of the Ge surface.  The deeper etch pits are lined with SiO2 

near the top of the pit, whereas shallower pits have SiO2 only near the bottom of the pit.   

 

 

Figure 7-3.  Scanning electron microscope image showing the SiO2 lining within the Ge 
etch pits. 

 

Figure 7-4 shows an x-TEM of the Ge ELO film over the SiO2 lined etch pits.  The 

deposition is carried out at a substrate temperature of 673 K such that Ge growth is not 

selective and random Ge nucleation takes place on the SiO2.  Figure 7-4 shows that the 

Ge nucleated on the SiO2 lined etch pits is polycrystalline and contributes additional 
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defects to the upper Ge layer formed during ELO.  The EPD of the resulting GoS is 

greater than 5  108 cm-2.  The inset in Figure 7-4 shows the threading dislocation in the 

lower Ge layer blocked by an SiO2 lined etch pit.  In contrast, the Ge ELO performed at 

higher substrate temperatures leads to much better Ge film quality. 

 

 

Figure 7-4.  Cross-sectional transmission electron microscope image of the resulting 
structure after Ge epitaxial lateral overgrowth coalesces over the SiO2 lined etch pits.  
The low substrate temperature results in non-selective Ge growth and polycrystalline Ge 
forms on the SiO2 within the etch pits.  The polycrystalline Ge leads to additional defects 
created in the upper Ge layer.  The inset shows a close-up view of an SiO2 lined etch pit 
that blocks the lower dislocation. 
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Figure 7-5 shows an x-TEM image where ELO growth is carried out at 973K and 

results in selective growth of Ge over SiO2.  The TEM image shows the epitaxial growth 

that takes place during ELO over the SiO2 lined etch pits that block dislocations from 

below.  The inset in Figure 7-5 reveals a void between the Ge and the SiO2 lined etch pit 

that is formed upon Ge coalescence over the pit.   

 

 

Figure 7-5.  Cross-sectional transmission electron microscope image at a higher growth 
in which the Ge is grown selectively and laterally over the SiO2 lined etch pits.  The 
threading dislocations are blocked below the etch pits and the Ge overgrowth is epitaxial 
and high quality.  The inset shows that a void is formed between the Ge and the SiO2 
over the etch pit. 
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Figure 7-6 shows the EPD of the resulting ELO Ge film.  Twin/SF defects 

(rectilinear pits) and threading dislocations (square pits) are present after EPD.  The 

density is 5.5  106 cm-2 for twin/SF defects and 3.1  106 cm-2 for threading dislocations, 

leading to a total defect density of 8.6  106 cm-2 in the Ge ELO film.  The reduction 

factor in defect density is 31 for the Ge ELO layer compared to the initial GoS growth.  

The twin/SF defects in the Ge ELO layer likely result during coalescence of the Ge ELO 

layer over the SiO2 lined etch pits.  Previous studies of Ge ELO films formed over stripe-

patterned SiO2 films show the formation of twins at the merging junction of adjacent Ge 

growth fronts.  The residual threading dislocations in the Ge ELO layer may come from 

etch pits that are initially very shallow and all the PMMA and SiO2 are removed during 

reactive ion etching.  We expect further reduction in defect density in the Ge ELO layer 

by further optimizing the initial GoS growth to result in fewer initial threading 

dislocations.   
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Figure 7-6.  Scanning electron microscope image showing the etch pit density in the 
resulting Ge film selectively grown over the SiO2 lined etch pits.  The elongated pits 
correspond to twins or stacking faults, while square shaped pits correspond to threading 
dislocations. 

 

Lastly, we performed annealing at 1073 K for 30 min on the GoS sample with 

SiO2 lined etch pits.  The sample is cooled to 973 K for the Ge ELO growth, polished, 

and then examined with EPD.  We find that the sample that was annealed at high 

temperature prior to the Ge ELO growth has a defect density of 1.2  108 cm-2.  The 

reduction factor from the initial defect density is only 2.3.  We believe that the high 

temperature anneal step leads to significant dislocation climb.  The dislocations initially 
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blocked by the SiO2 lined pits can climb around the obstacle and continue to propagate 

into the Ge ELO layer. 

 

7.3 Conclusions for Dislocation Blocking with SiO2 Lined Etch Pits 

A significant reduction in the threading dislocation density is obtained in GoS 

using etch pits passivated with SiO2 along with subsequent ELO.  Twin/SF defects and 

TDs are found in the ELO Ge film.  Twins have been observed in ELO of Ge over SiO2 

and are believed to occur upon coalesce of Ge over the SiO2.  The dislocations likely 

result from the shallowest etch pits in which the PMMA and SiO2 is completely removed 

from the pit during reactive ion etching.  Selective growth during ELO is necessary to 

obtain an improvement in the Ge ELO film quality.  In addition, high processing 

temperatures after formation of the passivated etch pits in GoS leads to a high density of 

threading dislocations in the Ge ELO film.  We speculate that the high processing 

temperatures allow dislocations to climb around the SiO2 obstacles and propagate into the 

subsequent Ge layer. 
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CONCLUSIONS AND FUTURE WORK 

 

 Three different approaches are presented to eliminate, reduce, or manage defects 

in GoS heteroepitaxy.  The first approach involves the formation of a high density of 

nanoscale openings in a thin layer of chemical SiO2.  Germanium selectively nucleates 

within the openings to form islands that grow and eventually coalesce into a continuous 

film.  The nanoscale areas of contact between islands and substrate allows stress 

relaxation to occur in the Ge without the need for dislocations to form.  A fraction of the 

Ge islands nucleate in twin relationships and slight misorientations compared to the 

surrounding Si and epitaxial Ge islands.  The twin-oriented Ge islands cause the 

formation of twins upon coalescence with epitaxial Ge islands.  The twins act as non-

radiative recombination centers and cause significant roughness in GaAs films grown on 

the GoS.  Annealing the Ge islands followed by additional Ge growth leads to Ge films 

free of twins, however, annealing the Ge islands also leads to desorption of the SiO2 

layer.  Surface diffusion then transfers Ge from the epitaxial and twin-oriented Ge islands 

to the freshly exposed Si substrate.  Dissolution of the epitaxial and twin-oriented Ge 

islands takes place followed by formation of a GeSi alloy layer.  The dissolution of the 

twin-oriented Ge islands is the mechanism by which Ge films formed after additional 

growth are free of twins.  The Ge films contain TDs, however, due to the loss of SiO2 and 

the increased contact between Ge and Si.  Despite the formation of TDs, the roughness of 

the GaAs on the annealed GoS is greatly reduced and the PL intensity matches GaAs 

growth on Ge and GaAs substrates.  The minority carrier lifetime of GaAs on the 

annealed GoS, however, is nearly two orders of magnitude less than growth on a GaAs 
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and Ge substrate and is attributed to the TDs in the Ge film that propagate into the GaAs 

layer. 

 The second approach to reducing defects in GoS is trapping of dislocations in Ge 

between high aspect ratio walls of SiO2.  The method requires selective growth of Ge on 

Si over SiO2.  Nucleation experiments are carried out to determine the optimal deposition 

rate and substrate temperature to achieve selective growth using MBE.  The nucleation of 

Ge on SiO2 experiments lead to measurement of the important energetics of Ge 

nucleation on SiO2.  Measurement is made of the critical Ge island size, binding energy, 

and surface diffusion energy of Ge on SiO2.  The small desorption energy of Ge on SiO2 

allows selective growth to occur at high substrate temperatures and low deposition rates.   

 Dislocations formed from the lattice mismatch between Ge and Si are effectively 

trapped within the SiO2 channels, however, additional defects form upon coalescence of 

adjacent Ge channels.  Threading dislocations emanate from the top corners of the SiO2 

walls and twins are found over the top center of the SiO2.  Finite element analysis is done 

to estimate the stress in the Ge film occurring form differences in the thermal expansion 

coefficients between Ge, Si, and SiO2.  The FEM analysis reveals that the maximum 

thermal stress in the Ge film occurs at the upper corners of the SiO2 walls where TDs are 

observed.   

 Twins are also observed to occur over the top center of the SiO2 walls.  The twin 

formation is best explained based on translation mismatch of adjacent Ge channels.  The 

translation mismatch occurs because the SiO2 walls are not an integral number of Ge 

lattice spacings.  The translation mismatch will lead to large stresses in the Ge upon 

coalescence. 
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 The third method to reduce defects in GoS is the creation of etch pits in a layer of 

GoS.  The etch pits are lined with CVD deposited SiO2.  A second layer of Ge is then 

selectively grown over the SiO2 lined etch pits.  The SiO2 blocks TDs in the lower Ge 

layer from propagating into the upper Ge layer.  The method of blocking dislocations 

using SiO2 lined etch pits is found to be the most effective method at reducing defects in 

GoS.  Further optimization of the process could result in the commercialization of 

electronic devices made using GoS. 

 Future work should include optimization of the method of dislocation blocking 

using SiO2 lined etch pits.  For example, minimizing the TDD in the lower Ge layer by 

employing an anneal step will result in fewer etch pits in the layer.  The result will be 

fewer defects in the subsequently grown upper Ge layer.  In addition, more research on 

methods to alleviate stress in the Ge due to the large mismatch in thermal expansion 

coefficient with Si is needed.  Specifically, the use of patterned SiO2 and other methods 

should be systematically evaluated to determine if an increase in the GoS thickness could 

be achieved without the formation of cracks in the Ge.  Lastly, electronic devices such as 

MOSFETs should be fabricated and electrically characterized on the improved GoS using 

etch pit dislocation blocking and compared to a control sample of GoS.  The 

improvement of the Ge may now be sufficient for efficient operation of majority carrier 

devices, though not yet good enough for minority carrier device operation. 
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