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ABSTRACT 

Enzymatic biofuel cells are a very attractive young technology based on utilization of 

natural, renewable and plentiful resources that offer an alternative energy source. Most 

fuel cells run on hydrogen; but it is extremely expensive and difficult to obtain, which is 

why research has moved to target fuels that are already available in nature, avoiding high 

costs of production, both economically and environmentally. Several biofuels with very 

high energy densities are available to us in abundance, but the challenges to make use of 

them are plenty. These biofuels contain several carbon-to-carbon bonds which make their 

oxidation processes significantly more complex than those of hydrogen. Examples of 

these biofuels are sugars and alcohols. If we refer back to nature, we have learned that 

enzymes play a very important role in oxidizing these types of fuels to obtain energy. If 

we could mimic such processes in a fuel cell, we would be able to harvest the energy of 

the fuels and convert it into electrical power. There are several advantages to using 

enzymes as catalysts for biofuel cells including their availability, easiness to produce in 

large quantities and selectivity.  

The main pitfall when mimicking nature’s pathways to oxidize biofuels by enzymatic 

action is that they usually require multiple oxidation steps. The full energy potential of 



 

viii 
 

biofuels can only be attained if all of the reaction steps are completed achieving the 

complete oxidation to CO2. This must be achieved by including all individual enzymes 

that catalyze each step of the oxidation of biofuels. Several of the necessary enzymes for 

those oxidation steps depend on the diffusive cofactor NAD+/NADH which by itself 

presents a great challenge. The optimal performance of a biofuel cell requires continuous 

operation and oxidation of the fuel which can only be achieved if the enzymes’ cofactors 

are constantly regenerated. NADH oxidation has been a practical challenge in 

biotechnology over decades, since it requires very large overpotentials. In this work, we 

evaluated the utilization of standardized fuel cell apparatus built for cross-lab analysis by 

preparing poly-(MG) electrocatalysts for NADH oxidation onto different electrode 

materials. These electrocatalysts have been studied and characterized both 

electrochemically and structurally in order to develop NAD+-dependent enzyme anodes. 

Immobilization of enzymes also represents an important design aspect. One 

immobilization technique is chosen in this research; based on the combination of porous 

chitosan scaffolds and multi-walled carbon nanotubes that stabilizes enzymes while 

enabling mass transport of fuels and providing electrical conductivity.  

This research ultimately introduces a common technology platform for NADH re-

oxidation in a flow through electrode format that can sustain single- or multi-enzyme 

anodes into biofuel cell technology. Future directions and optimization of the design are 

discussed.  
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Chapter 1.  Introduction 

Interest in energy harvesting devices based on alternative fuels has exponentially 

increased over the last decades. Several factors have pushed the search for alternative 

energies in the U.S. and worldwide, including the limited availability of fossil fuels and 

the environmental consequences of their extraction and use. Consequently, it has made 

sense for government agencies to invest in research that enables the development of 

clean, efficient, and renewable energy technologies.  

Biofuel cell history dates to the early 1910s with the demonstration of a half cell 

using microorganisms, when M.C. Potter observed electricity production by E. coli.1 

However, it was not until the early 1960s2-4 that the expansion of fuel cell research was 

triggered by the U.S. space program. This program led the development of microbial fuel 

cells as a waste disposal system that would also generate power for space flights. In 

addition, in the late 1960s, research in biofuel cell using enzyme systems began, with the 

initial goal of supplying power for an implantable artificial heart. 

Researchers have increasingly drawn their attention to biological fuel cells in recent 

years, seeing that conventional fuel cell technologies are reaching mass-market 

introduction (Figure 1-1). Reasons for this shift in interest are based on conditions of 

operation that cannot be met by conventional fuel cells; namely low-temperature 

operation (20-40 °C) activity near neutral pH and, selective catalytic activity. Even 

though the research in biofuel cells has not been extensive; the work on biosensors based 

on biocatalytically modified electrodes over the past decades, provides a solid foundation 

for biofuel cell development. Both technologies involve many of the same technical 
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requirements such as chemical and mechanical stability, selectivity, and cost of 

materials.5  

The main difference between both technologies is that biosensors are usually energy-

consuming devices, while biofuel cells are energy-producing devices. Biofuel cells must 

be able to generate maximum power, meaning both high current and high voltage. In this 

perspective, biofuel cells are designed with materials and structures that can minimize 

overpotentials due to kinetics, mass transport limitations and ohmic resistance for 

maximum current densities. For biofuel cells to be used in any practical application (e.g. 

implantable devices, portable energy sources), operating lifetimes must range between 

months and years. Long-term stability is required. These design constraints can be 

achieved by immobilization of the biocatalytic species in porous materials. In this way, 

the biofuel cell research path has taken an independent route to that of biosensors.  

Development of self-sustaining biofuel cells requires an understanding of the 

fundamentals, comprising electron and proton transfer kinetics between biocatalytic 

species and the electrode surface, novel electrode design for enhanced stability and the 

lifetime of biocatalytic species, theoretical modeling of mass transport in biofuel cells, 

and optimization of current and power production for high efficiency. With such an 

understanding, biological fuel cells then become a promising alternative for conventional 

energy harvesting devices.   
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across cell membranes. Enzymatic biofuel cells also possess various limitations, but they 

usually offer higher current and power densities that make them applicable in micro- and 

miniscale technologies. These limitations are mainly due to incomplete oxidation of 

biofuels by single-enzymes systems and the difficulties in achieving long-term stability 

of enzymes for prolonged operation of biofuel cells.     

Enzymes are excellent catalysts that work by lowering the activation energy for their 

specific reactions. They are highly selective, meaning that catalysis is substrate specific; 

an attribute unique to biofuel cells. Figure 1-2 shows a schematic for an enzymatic 

biofuel cell that oxidizes methanol by a cascade of three enzymes. An oxido-reductase 

enzyme in the cathode is used to reduce the oxygen from air to water. An ion exchange 

membrane separating the anode from the cathode is also shown in the figure. Due to the 

enzyme selectivity, the reactions of the cathode and anode do not interfere with each 

other, negating the need to design for crossover prevention. This allows for a simpler and 

possibly cheaper fuel cell. 

Traditional fuel cells run on hydrogen with the use of platinum or other metal 

catalysts. Oxidation of fuel at the anode becomes more complex with the addition of 

carbon atoms. The presence of these carbon atoms can result in carbon dioxide poisoning 

of the metal catalysts. Fortunately, enzymes are immune to this phenomenon. Enzymes 

do not suffer from carbon dioxide contamination; and advantage of these biological 

systems. Enzymes are also naturally abundant, green (sustainable) and cheap to produce, 

which is not necessarily the case for metallic catalysts. Overall, there are a number of 
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(Eq. 1-3) 

(Eq. 1-4) 

voltage of the fuel cell is determined by measuring the open circuit voltage (E0cell, voltage 

at zero current) or by taking the difference of the open circuit potentials of the cathode 

and anode (E0c and E0a, potential at zero current).  

The maximum theoretical cell voltage is known as the thermodynamic (reversible) 

open circuit voltage (OCV) or electromotive force (EMF) and it can be calculated from 

Eq. 1-3 with thermodynamic data of Gibbs free energy of formation for the anodic and 

cathodic species, with n being the number of electrons transferred and F the Faraday 

constant (96,485 C/mol). 

= −∆
 

If we consider a biofuel cell that fully oxidizes glucose in the anode and uses oxygen 

in the cathode, the reactions will be: 

Anode:    C6H12O6 + 6 H2O       6 CO2 + 24 H+ + 24e- 

   Cathode: 6 O2 + 24 H+ + 24e-   12H2O 

   Overall:  C6H12O6 + 6 O2         6 CO2 + 6 H2O 

With the values of Gibbs free energy for the species in Eq. 1-4 and n = 24, the 

maximum theoretical cell voltage is found to be 1.24 V.  

The principal method used to evaluate fuel cell performance is the construction 

polarization and power curves. Figure 1-3 shows a typical polarization curve (in blue) for 

a fuel cell indicating the maximum theoretical cell voltage (thermodynamic OCV) as well 

as the maximum operating cell voltage (E0cell). A power curve (in red) can be constructed,  

by multiplying the current density (i) with the measured cell voltage (Ecell) as depicted in 

Eq. 1-1. Deviation from the thermodynamic OCV is usually known as overpotential or 

overvoltage.  
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(Eq. 1-7) 

(Eq. 1-8) 

(Eq. 1-9) 

(Eq. 1-10) 

(Eq. 1-6) 

 

=  

With R being the ideal gas constant, T is the temperature, n is the number of 

electrons, α is called the charge transfer coefficient, and F is the Faraday constant.  

At intermediate current densities, ohmic or resistive overvoltage is observed (ηiR). 

The voltage drop is caused by resistance to the flow of electrons through the electrode 

materials, as well as the resistance to flow of the ions through the electrolyte. It is 

proportional to the current density; therefore it is identified as the linear area of the curve. 

It is defined by Eq. 1-6: =  

In the region of high current densities, the main contributor to electrode polarization 

is the mass transport or concentration overvoltage (ηconc). This arises from a failure to 

transport enough fuel to the electrode surface resulting in a change of concentration of the 

reactants. The concentration overvoltage is defined by the Nernst equation as: 

= −
 

Where the limiting current ilim is defined as: 

=  

In Eq. 1-9 D is the diffusion coefficient of the reagent, δ is the Nernst diffusion layer, 

and C0 is the bulk concentration of the reagent.  

The total overvoltage across the fuel cell is defined by Eq. 1-10: = + +  
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In the case of enzymatic biofuel cells, the operating cell voltage will depend on the 

enzymes used in both the anode and the cathode along with the mechanisms of electron 

transfer between the enzymes and electrode surface.  

There are two types of mechanisms in which the electron transfer between the active 

site of the enzyme and the electrode surface can occur. Direct electron transfer (DET) 

occurs when the active site of the enzyme is close enough to the electrode surface so 

there is direct electrical communication between the enzyme and the electrode to transfer 

the electrons. Mediated electron transfer (MET) consists of using a redox couple as a 

mediator to shuttle the electrons between the active site of the enzyme and the electrode 

surface. The use of mediator is necessary in many cases and usually results in losses of 

cell voltage compared to the non-mediated system. 

Figure 1-4 shows a potential vs. current diagram with individual polarization curves 

for the cathode and anode of an enzymatic fuel cell. This figure indicates the position of 

the thermodynamic potentials for oxygen reduction and glucose oxidation. The difference 

of these values results in the theoretical maximum cell voltage of 1.24 V for glucose 

oxidation. However, the values of redox potentials of the enzymes that could be used for 

the cathodic and anodic reactions are usually a little different. Cathodic enzymes have 

active sites with redox potentials that are very close to the thermodynamic potential of 

oxygen reduction. Furthermore, there are several reports indicating that DET is possible 

with enzymes such as laccase and bilirrubin oxidase.2-33   
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this reaction might participate in other reaction routes for electrochemical oxidation of 

NADH.19, 20  

To summarize, direct electrochemical reactions of the NAD+/NADH cofactors at 

metallic or carbon electrodes are highly irreversible, occur at large overpotentials and can 

be affected by side reactions and fouling (adsorption) of cofactor related products.9 The 

development of biotechnology devices based on NAD+-dependent dehydrogenases 

cannot rely on direct electrochemical reactions of the oxidized or reduced form of the 

cofactor. Many years of research have been especially devoted by numerous scientists in 

finding suitable methods for the electrochemical oxidation of NADH.   

As previously stated, in an enzyme-catalyzed reaction involving the NAD+/NADH 

cofactor, NAD+ is reduced to NADH while the substrate is oxidized. If used in a biofuel 

cell, NAD+ that is reduced to NADH, must be re-oxidized to NAD+ in order to perpetuate 

the reaction cycle and continue to oxidize the fuel. However, direct oxidation of NADH 

at ordinary electrodes like gold or glassy carbon requires high overpotentials exceeding 1 

V.23-25 By overcoming this high overpotential, one could possibly use any NAD+-

dependent enzyme in a biofuel cell anode and create cascades of enzymes that could 

achieve deep oxidation of complex fuels, giving us a wide variety of these biofuels to 

choose from. Hence, finding ways of re-oxidizing the NADH active site is a crucial task 

that will broaden the opportunities for enzymatic biofuel cells. 

1.2.3. Mediators for electrochemical oxidation of NADH 

The use of mediators for chemically modified electrodes (CMEs) to reduce the 

overpotential of NADH oxidation and improve its kinetics started in the late 1970s and 
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has been extensively reported on since then and summarized in several reviews.9, 26-37 An 

appropriate mediator must meet very specific demands. It must: 

i) Substantially decrease the overpotential of NADH oxidation while preserving good 

reaction rates that approach diffusion-controlled regimes. In the particular case of biofuel 

cells, the E°’ (formal redox potential) value of the mediator should approach that of the 

enzyme cofactor NAD+/NADH so that the energy loses are minimized.24, 38  

ii) Possess high chemical and electrochemical stability in the presence of NADH, as well 

as long term stability (weeks-months)36 so that the immobilization of the mediator must 

be irreversible. 

iii) Be selective for NADH oxidation and yield enzymatically active NAD+; while 

maintaining high reaction rates of the mediator modified system. This includes 

maximizing electron transfer rates between the electrode and mediator (ks), fast charge-

transfer rates within the mediator, and fast reaction rates between NADH and the 

mediator (kobs).36 

The first researchers to report a significant decrease in the overpotential of 

electrochemical oxidation of NADH on CMEs were Kuwana and Tse.39 They achieved 

this by activating glassy carbon electrodes with cyanuric chloride and then modifying 

them with immobilized primary amines containing o-quinone derivatives, dopamine, or 

3,4-dihydroxybenzylamine, forming a monolayer film on the electrode. These electrodes 

showed a decrease in overpotential of about 0.4 V. This report was followed by many 

others that investigated similar structures for the mediation of electrochemical oxidation 

of NADH, all containing a basic catalytic functionality that can be characterized by being 

ortho- or para-quinone,39-46 phenothiazine and phenoxazine derivatives that contain 
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solutions with weak acidity and that basic media is actually optimal for the polymer 

growth.65 They later reported the main advantage of electropolymerized methylene blue 

as a catalyst for NADH oxidation to be its improved long-term stability compared to its 

monomeric form.66 The work of Karyakin’s group continued over the years, investigating 

different azine monomers that could be electropolymerized in search of the best one for 

NADH oxidation.70, 71 In 1999, they reported that poly-(methylene green) (poly-(MG)) 

was the best catalyst among the ones they studied.71 More recently, Dai et al. have 

reported that a poly-(MG) modified electrode can oxidize NADH by a simultaneous two-

electron reaction and reduce the overpotential of NADH oxidation by about 0.65 V.108  

1.2.4. Electropolymerization of azines 

From the point of view of applications, the electrochemical polymerization of cheap, 

simple aromatics benzoid or nonbenzoid and heterocyclic compounds is of extreme 

interest. The reaction is usually an oxidative polymerization, although reductive 

polymerization is also possible. Chemical polymerization can also be used in certain 

cases (e.g. the oxidation of pyrrole or aniline by Fe(ClO4)3 in acid media leads to the 

respective polymer), but electropolymerization is preferred if the resulting polymer is 

intended for use as a polymer film electrode, thin-layer sensor, in microtechnology, etc. 

Due to the potential control during the synthesis, it is necessary for producing a good-

quality material and form the polymer film at the desired location for practical 

applications. 

In general, the electropolymerization process consists of polymerizing a monomer by 

an electrochemical technique. Electropolymerization can be achieved by potentiostatic 

(constant potential), galvanostatic (constant current) or cyclic voltammetry (multi-scan) 
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methods resulting in well-adhered polymer films. Polypyrrole, the most studied 

conducting polymer, was one of the first structures achieved by electropolymerization, 

method that proved to be the most effective for its synthesis.122  

In an electrochemical polymerization, the monomer, dissolved in an appropriate 

solvent containing the desired anionic doping salt, is oxidized at the surface of an 

electrode by application of an anodic potential (oxidation). The choice of the solvent and 

electrolyte is of particular importance in electrochemistry since both solvent and 

electrolyte should be stable at the oxidation potential of the monomer and provide an 

ionically conductive medium. In the case of pyrrole, that has a relatively low oxidation 

potential, electropolymerization can be carried out in aqueous electrolytes that are not 

possible for thiophene or benzene.122 

The mechanism and the kinetics of electropolymerization have been widely studied, 

especially in the cases of polyaniline and polypyrrole; by addressing two aspects: the 

chemical reaction and kinetics of the growth on a conducting surface. A general scheme 

cannot be provided since there is a great chemical diversity of the compounds studied. 

Nevertheless, it has been showed that the first step is the formation of cation radicals. The 

following step of this highly reactive species depends on the experimental conditions (i.e. 

composition of the growing solution, temperature, potential or the rate of the potential 

change, galvanostatic current density, electrode material, etc.). In favorable cases, the 

next step is a dimerization reaction and then stepwise chain growth proceeds via the 

association of free radical ions (RR route) or the association of a cation radical with a 

neutral monomer (RS route).123 Parallel dimerization reactions leading to different 

products or to a polymer with a disordered structure may occur.  
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Inactive ions present in the solution may play a key role in the stabilization of the 

radical ions. Potential cycling is usually more efficient than potentiostatic method since it 

allows a partial reduction of the oligomer helping the polymerization reaction. This might 

be the case if the RS route is preferred and the monomer carries a charge (e.g. a 

protonated aniline molecule). A relatively high concentration of cation radicals should be 

maintained in the vicinity of the electrode. The cation radicals and the dimers can diffuse 

away from the electrode, hence intensive stirring of the solution usually decreases the 

yield of the polymer produced. 

Usually the oxidation of the monomer is an irreversible process and takes place at 

higher positive potentials than that of the reversible redox reaction of the polymer. 

However, in the case of azines, reversible redox reactions of the monomers occur at less 

positive potentials and this redox activity can be retained in the polymer; this means that 

the polymerization reaction that takes place at higher potentials does not substantially 

alter the redox behavior of the monomer. The catalytic activity towards the oxidation of 

biological molecules like NADH of azine dyes like methylene blue is then preserved in 

its polymeric form.   

The kinetics of electropolymerization also depends on the factors previously 

mentioned, though the role of the electrode material and the properties of its surface are 

more pronounced. The specific interactions and the wetting may determine the nucleation 

and the dimensionality of the growth process. The resulting film morphology is highly 

dependent on the composition of the solution, particularly on the type of counterions 

present in it, and the plasticizing ability of the solvent molecules. If the conditions are not 
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carefully optimized, a mixed material containing electrochemically active and conducting 

as well as inactive and insulating parts can be deposited on the electrode surface.124  

Polymer-modified electrodes that are prepared by electropolymerization of monomers 

with mediating properties towards NADH oxidation are then very attractive since the 

synthesis is irreversible and enhances the long-term stability of the electrode while 

retaining the catalytic properties of the monomer in many cases. A diversity of reports on 

electropolymerization of o-quinone derivatives,29, 93, 125-132 and phenothiazine and 

phenoxazine derivatives61, 65-68, 70-74, 76-78, 85, 91, 133-140 with different levels of success for 

practical applications, can be found in the literature. Electropolymerization of azine 

derivatives has mainly been reported on gold68, 70 and platinum,141 glassy carbon 

electrodes,66, 71, 73, 77, 79, 88, 108, 124, 139, 142-144  and other carbonaceous electrode materials 

(Toray paper,6, 7, 145 graphite140 and screen printed carbon76, 80, 81). 

Svoboda et al.  have studied the morphology of poly-(MG) films grown on platinum 

electrodes and observed that a conformal coating of the electropolymerized film is 

deposited on the two-dimensional structure of the electrode.141  

1.3. Enzyme immobilization techniques 

Another practical challenge that is encountered in the design of an enzymatic biofuel cell 

is given by the fact that enzymes are not used to staying put. On the contrary, in nature 

they are freely floating and very active; but to be able to work in a fuel cell they have to 

stay in a specific place and remain active and stable over time. The process of holding an 

enzyme in place is called immobilization. This procedure can provide the enzyme with 

enhanced chemical, thermal and mechanical stability due to the improvement in 

resistance to several denaturation factors like extreme pH and temperature, high ionic 
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strength, etc.146, 147 Furthermore, by holding the enzyme in place it can be separated from 

the products of the reaction allowing for the enzyme to be reused, continuous operation 

of the enzymatic processes and controlled product formation.148 All of these aspects are 

requirements for an operational and efficient enzymatic biofuel cell.  

There are several techniques that can be used for immobilizing enzymes to specific 

supports that can be chosen depending on the enzyme, the surface to be immobilized on, 

and the desired applications. These techniques must in general satisfy certain conditions: 

the binding process should not cause loss of enzymatic activity, and the active site of the 

enzyme should remain unaffected. Among the types of immobilization techniques that 

have been developed we can find: 

- Physical adsorption: This technique is based on the physical adsorption of the 

enzyme on the surface of water-insoluble supports. Even though this method is 

easy, cheap and causes little or no conformational damage to the enzyme, it is 

disadvantageous because it results in a weak binding since the enzyme can easily 

leak from the carrier or support.  

- Covalent binding: This procedure is based on the formation of covalent bonds 

between the enzyme and the supporting matrix. There are several functional 

groups that might participate in this type of binding, including: amino group, thiol 

group, hydroxyl group, carboxyl group, phenolic group, among others. This 

technique requires more complicated and less mild conditions that may result in 

structural conformational changes, resulting in some loss of activity. Nonetheless, 



Chapter 1. Introduction 
 

25 
 

leakage of enzyme is very unlikely due to the strong binding provided by this 

method.   

- Ionic binding: This method relies on the ionic binding of the enzyme to water-

insoluble supports that contain ion-exchange residues. The conditions for this 

procedure are much milder than the ones in covalent binding, usually resulting in 

immobilized enzymes with high activity. Leakage of the enzyme can occur under 

extreme conditions of ionic strength and pH. Polysaccharides and synthetic 

polymers that contain ion-exchange centers are usually used as carriers.149  

- Cross-linking: Immobilization of enzymes can also be achieved by intermolecular 

cross-linking of the enzyme to another protein molecule or to functional groups 

on a support matrix. This method is usually combined with another one like 

adsorption in order to increase the stability and prevent leakage of the enzyme. 

The most popular cross-linker used for this technique is glutaraldehyde. The 

conditions of this procedure are somehow harsh and they can result in 

conformational changes by decreasing freedom of the active center to move and 

change configuration, and thus decrease the enzymatic activity.  

- Entrapment: This method is based on the localization of the enzyme within the 

lattice of a polymer lattice or membrane149. The process generally retains the 

enzyme while allowing the substrate to penetrate and react. During this type of 

immobilization the enzyme does not attach to the support surface, which makes 

this method very applicable, contrasting with covalent binding where there is 

linkage between the enzyme and the carrier. However, the conditions during the 

process can also be severe and it can cause loss in activity of the enzyme.   
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which means chitosan is generally soluble at pH below 6. At basic pH, the free amino 

groups are no longer protonated ant the polymer becomes insoluble.143  

Since it is soluble in various aqueous solutions and can adopt a semirigid shape, it can 

be largely used in various applications in different forms (solutions, beads, gels, films, 

fibers, sponges). In addition, chitosan is also known to for its diverse properties like 

being non-toxic, biocompatible, biodegradable and chemically inert. All of these 

characteristics make this material very versatile for biomedical and biotechnology 

applications. There are several reports of the use of chitosan in tissue engineering155-167 

and other biomedical applications168-175; and for protein and enzyme immobilization for 

biosensing151, 154, 176-206 and biofuel cell applications.142-144, 207-216 A common approach 

that has been used for enzyme immobilization or biomolecule entrapment within chitosan 

films is the use of dip-coating or drop-casting techniques.142, 151, 154, 174, 176, 177, 179, 180, 192, 

217 Other approaches have used freeze-gelation and freeze-drying techniques to produce 

macroporous chitosan scaffolds with highly interconnected pores for biomedical 

applications including slow drug release and support matrices for tissue growth.155, 156, 158-

167, 169, 173 More recently, chitosan has been used to decorate CNTs as a solubility 

dispersing agent and to create new composite nanomaterials with combined properties.175, 

183-191, 194-197, 199, 201-203, 205, 209, 213, 218-222 The resulting CNTs-chitosan films result in a very 

attractive material for biosensor and biofuel cell applications since chitosan provides an 

immobilization matrix for biomolecules and the CNTs offer conductive properties that 

are desired in any electrochemical technology.  

A novel method that combines the addition of CNTs to chitosan matrices and uses 

freeze-drying as the fabrication method has been developed by Lau et al. , resulting in 
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macroporous and highly conductive chitosan-CNTs composite scaffolds as an advanced 

material to build electrodes for biocatalysis applications.215 Chitosan scaffolds are 

produced by a thermally induced phase separation (TIPS) process in which the water 

present in the chitosan aqueous solution is frozen into ice crystals that are surrounded by 

thin layers of the precipitated polymer. This process is followed by a freeze-drying step 

that allows for the frozen crystals to sublimate under vacuum conditions yielding a highly 

macroporous scaffold structure; the final pore structure is determined by the shape of the 

sublimated ice crystals. There are several parameters that can affect the final structure of 

the scaffold, these include: pH, freezing rate, orientation of thermal gradient, and chitosan 

concentration.143, 144, 215 The presence of carboxyl and amine side groups along the 

polymer backbone of chitosan allows for functional modifications that can change the 

polymer properties (e.g. hydrophobicity) for enhanced enzyme immobilization. The 

addition of alkyl chains along the hydrophilic backbone of chitosan gives the polymer an 

amphiphilic character creating internal forces that tend to fold the polymer chain and 

create regions exhibiting micellar behavior.223, 224 Such regions seem to provide good 

enzyme retention and enhanced lifetimes without loss of activity exhibiting overall an 

ideal chemical microenvironment for enzymes.143 Furthermore, the porosity of the 

resulting scaffolds allows for mass transport of the enzymatic substrates in flow-through 

regimes for biosensor and biofuel cell applications. The addition of CNTs into chitosan 

scaffolds also holds the promise of facilitating electron transfer in certain systems due to 

the provided conductivity that could either shorten the diffusion distance (i.e. mediated 

electron transfer systems); or eliminate the use of mediators (i.e. direct electron transfer 

systems). 
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1.4. Biofuel cell applications 

The range of possible applications of biofuel cells can be classified in two main areas: ex-

vivo applications and in-vivo applications. Evidently, the latter comprises the novelty and 

principal attraction of biofuel cells. In-vivo applications include microscale cells 

implanted in human or animal tissue or larger cells or larger cells implanted in blood 

vessels; such as pacemakers, glucose sensors for diabetics or small valves for bladder 

control; all of which can potentially be fueled by blood-borne glucose which would be 

available without limit, providing long-term power supply. Pacemakers nowadays are 

powered by lithium-iodine batteries with an operating power output of ~1μW and 

lifetimes of over 10 years.5 The benefit of an implantable biofuel cell compared to such a 

battery is given by high power density (currently ranges between hundreds of μW/cm2 

and a few mW/cm2) and possibly infinite energy density from the available physiological 

fuel. Moreover, biocatalysts are suitable for implantable power since they can efficiently 

catalyze reactions at physiological temperature and pH, and for the most part generating 

reaction products that are tolerable to the host organism. However, biological 

compatibility of the immune system with foreign materials as well as implantation of the 

devices, have not yet received much attention in the context of biofuel cells design.  

Ex-vivo applications are even more diverse. At a large scale, power can potentially be 

recovered from waste water with simultaneous remediation by microbial fuel cells. 

Smaller scale applications are usually targeted with enzymatic fuel cells devices that 

allow for miniaturization, and their greatest potential lies in the replacement of battery 

packs for consumer electronic devices like laptop computers or cell phones. The 

exploitation of ambient fuels (e.g. carbohydrates derived from plants or from effluent of 
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human or animal processes) is very attractive for such small devices applications. In this 

category of applications, biofuel cells must compete with conventional fuel cell 

technologies that are better understood and characterized. Hence, biofuel cells must take 

advantage of the natural biocatalytic properties that cannot be reproduced by 

conventional catalysts (i.e. activity at low temperatures and neutral pH, selectivity, low-

cost production).  

Lastly, cost is always crucial when commercializing a new technology like fuel cells. 

In conventional fuel cells, the major costs associated with these systems are related with 

the materials, the separator inside the fuel cells, and primarily catalyst materials. It can be 

expected that the cost of separator materials will decrease as their production increases 

and competitive materials emerge. Nonetheless, the costs of conventional catalysts like 

noble metals, especially platinum, are expected to increase due to increased production 

and demand. This is when the employment of alternative catalysts comes to play; 

including biotacatalysts that are available in nature (e.g. enzymes) and can be produced in 

large quantities through low-cost well established processes that are at the same time 

environmental friendly.   

The work of this dissertation is presented in several chapters, the next two chapters 

describing the problem statement, objectives and methodology. The following chapters 

describe studies performed on the evaluation of stackable modular cell (Chapter 4), 

development and evaluation of electrocatalyst for NADH oxidation in 2-D electrodes 

(Chapter 5), their incorporation into 3-D electrodes for flow-through anodes with 

immobilized NAD+-dependent enzymes (Chapter 6), combination with a biocathode for 

building a fully enzymatic biofuel cell (Chapter 7), and initial MATLAB simulation 
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studies for optimizing biofuel cell parameter (Chapter 8). The last chapter presents the 

conclusions of this work as well as some considerations for future work. Additionally, the 

appendices show some publications that represent contributions of the author to other 

aspects of enzymatic biofuel cells that are not part of dissertation topic.  
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Chapter 2.  Problem Statement and Objectives 

2.1. Problem statement  

The development of the young technology of enzymatic biofuel cells has been very 

limited by several factors, one of the main factors being the inability of fully oxidizing 

complex biofuels. The use of multi-enzyme systems could be very efficient in achieving 

complete oxidation of fuels like glucose. However, before building an anode based on 

such a system, the obstacles inherent to the enzyme-catalyzed reactions must be 

overcome. A number of enzymes that are of interest for biofuel cell applications depend 

on the NAD+/NADH cofactor. The issues regarding NADH re-oxidation have been 

described in the previous chapter. As a consequence, the practical implementation of this 

group of enzymes is restricted by the regeneration of their active site; thus a great deal of 

attention has been given to finding ways of re-oxidizing NADH. Despite the effort of 

many researchers and the many reports that have been published, there is still little 

progress in the use of NAD+-dependent enzymes in fully enzymatic biofuel cells.  

The first reports on electrodes that were able to decrease the overpotential of NADH 

oxidation are focused on CMEs, in which mediators are used to overcome the energy 

barrier of the reaction. As new techniques were implemented (e.g. 

electropolymerization), those mediators (e.g. azine monomers) were transformed into 

electrocatalysts (poly-azines) with enhanced performance and stability. Several reports 

on different catalysts are found in the literature of electropolymerization to build poly-

azines for NADH oxidation since the early 90s.  
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The ability of these catalysts to oxidize NADH has been attributed to the presence of 

certain chemical moieties that are originally present in the monomer form (mediator). 

The resulting structures from electropolymerization of the monomers are not completely 

understood.  

2.2. Hypothesis  

This research is focused in studying some of the electrocatalysts for NADH oxidation and 

providing a scientific understanding of their structures. Poly-(methylene green) (poly-

(MG)) and of poly-(methylene blue) (poly-(MB)) are of particular interest, because of 

their ability to oxidize NADH at low potentials. The fabrication method of these 

polymers can be adapted to provide the means of modifying different electrode supports 

depending on the specific application which is highly desirable.  

If we achieve an understanding of these polymers, their structures and their 

properties; we will be able to provide a basis for design of successful catalysts-modified 

materials for NADH oxidation. Moreover, these materials will have the capability of 

being integrated into enzymatic anodes for biofuel cells with improved geometries (i.e. 3-

D electrodes for flow-through systems) for optimal performance.  

2.3. Objectives and specific aims 

The scientific objectives of this work mainly involve the study and understanding of the 

nature of the electrocatalyst materials by performing structure-to-property studies, 

characterizing them and proposing a mechanism for their formation and structures. In 

addition, the following task will be to incorporate the electrocatalysts for NADH 

oxidation into the design of a 3-D anode that can house NAD+-dependent enzymes for the 
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ultimate goal of integrating it in a fully enzymatic biofuel cell. Thus, the main focus of 

this work is on the material building at different length-scales. At the nano-scale we can 

create a good electrical contact between the enzyme and the catalyst for NADH oxidation 

by utilization of CNTs into the enzyme immobilization matrices. The immobilization of 

enzymes by entrapment into CNTs-chitosan scaffolds provides a conductive and stable 

matrix that can retain their stability and activity supporting long lifetime. Their porosity 

is also advantageous to support both efficient mass transport and high loading densities. 

And finally, it will be necessary to incorporate these chitosan scaffolds onto a 

carbonaceous electrode material that will act as a house and mechanical support for the 

bioanode. The plan of research is detailed in the following specific aims. 

• Understand the mechanism of electropolymerization of poly-azines by depositing it 

on different electrode materials via cyclic voltammetry (glassy carbon, carbon 

nanotubes, Toray paper, and reticulated vitreous carbon).  

• Identify possible bond formations when creating the polymers and establish a 

hypothetical structure of the poly-azines by using characterization tools like angle-

resolved X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance 

(NMR) as well as studying their morphologies with high-resolution scanning electron 

microscopy (SEM).  

• Demonstrate the catalytic capabilities of poly-(MG)-modified electrodes for NADH 

oxidation in neutral media through electrochemical characterization performing cyclic 

voltammetry and chronoamperometry experiments.This also includes testing the 

poly-(MG)-modified electrode in the presence of a NAD+-enzyme in solution to 

determine if it can successfully oxidize its substrate. 
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• Evaluate the catalytic performance of poly-(MG)-modified electrodes at different pH 

solutions via cyclic voltammetry experiments, in order to determine the optimal 

conditions for operation in fuel cells. 

• Evaluate immobilization of enzymes into chitosan and CNTs-chitosan porous 

scaffolds prepared by freeze-drying process and demonstrate that the addition of 

CNTs enhances the catalytic activity of the enzymes in two-dimensional (glassy 

carbon) electrodes. This can be done electrochemically by testing the electrodes with 

the different scaffolds via chronoamperometry that can yield the necessary 

information to examine Michaelis-Menten type of behavior of the enzymes.   

• Study the electropolymerization of poly-(MG) catalysts onto the three-dimensional 

porous surface of RVC and its catalytic performance. Electropolymerization will be 

performed by varying the amount of deposition cycles to determine the best 

conditions for obtaining the highest catalytic activity of the electrocatalyst.   

• Incorporate enzymes through immobilization into a poly-(MG)-modified RVC in 

order to get a flow through electrode system that can be tested for enzymatic activity. 

Anodic polarization curves will be built to describe the performance of the electrode.  

• Combine the anode based on a NAD+-dependent enzyme built for a flow through 

system with an enzymatic cathode to obtain a fully enzymatic biofuel cell and test its 

performance. Performance will be tested by determining the operating voltage of the 

cell and obtaining its polarization and power curves.   

• Use of theoretical models developed in MATLAB for catalytic oxidation at 

enzymatic bioanodes based on poly-(MG)-modified electrodes to predict their 

performance. Comparison with the experimental data will be made to demonstrate the 
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validity of the model. This technique will provide with the means for optimizing the 

electrode design based on the materials’ parameters. 
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Chapter 3.  Experimental Methodology 

3.1. Electrochemical characterization techniques  

A standard three-electrode electrochemical cell setup is typically used when analyzing 

processes that occur at individual electrodes (e.g. anode). The cell consists of a working 

electrode (WE) which is the electrode system of interest, coupled with a reference 

electrode (RE) of known potential that approaches ideal non-polarizability; and a the 

third electrode known as counter electrode (CE) passes all the current needed to balance 

the current observed at the WE. The CE must be chosen so that its electrochemical 

properties do not affect the behavior of the electrode of interest (WE).225  

3.1.1. Cyclic voltammetry 

Cyclic voltammetry (CV) is the most used technique for obtaining general information 

about an electrochemical process. It is usually the first experiment performed in 

electroanalytical studies, because it quickly provides information about the 

thermodynamics of redox reactions and kinetics of electron transfer reactions.226 It 

consists of linearly scanning the potential of a working electrode, using a triangular 

potential waveform. It can be performed during single or multiple cycles. The potential is 

applied at a given scan rate and the resulting current is measured. Figure 3-1 shows a 

typical cyclic voltammogram for a reversible redox couple. The cathodic peak Epc and 

anodic peak Eca are observed providing information of the potentials at which reduction 

and oxidation reactions occur.   
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Figure 3-1 Cyclic voltammogram for a reversible redox couple 

From this information the formal redox potential (E0’) for a reversible couple can be 

calculated as shown in Eq. 3-1. 

= +2  

In this work, CV technique will be used for both analyzing electrode systems and also 

for synthesis of poly-azines by electrodeposition.  

3.1.2. Chronoamperometry 

Chronoamperometry is a controlled-potential technique that involves stepping the 

potential of the working electrode and maintaining it at a constant value with respect to a 

reference electrode, while the current response due to a faradaic process (caused by the 

potential step) is monitored over a period of time. Figure 3-2a shows the waveform of an 

applied potential step for a chronoamperometric measurement. In this type of experiment 

the electroactive species must be inactive at the initial potential E1, but undergo a faradaic 

process (oxidation or reduction) at a diffusion-limited rate at E2.       
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3.2. Scanning electron microscopy (SEM) 

High-Resolution SEM is a useful technique for making visual direct observations at the 

nano-scale of the morphology of the materials that will be synthesized. This technique is 

based on probing a sample using an accelerated beam of electrons, under vacuum 

conditions. SEM detects electrons that are scattered off of the sample surface at different 

angles from a beam accelerated at 2-20 keV. The beam current absorbed by the sample 

can be detected and used to create images of the distribution of sample current.  This 

technique requires very small amounts of a sample, in comparison to other 

characterization methods.  

SEM will allow us to observe the morphology and features of poly-(MG) on different 

materials. It will also be used to observe the morphology of chitosan composite materials 

on RVC. This tool will give us ideas about uniformity of poly-(MG), as well as the 

homogeny of integration of CNTs into chitosan scaffolds and their incorporation with 

RVC. Two SEMs were used in this work: Hitachi S-5200 which provides resolution up to 

~5 nm and very small samples; and Quanta 3-D FEG which allows for observation of 

bigger samples like planar glassy carbon and RVC materials.     

3.3. X-ray photoelectron spectroscopy (XPS) 

XPS is quantitative spectroscopic technique that measures the elemental composition 

within a material and provides information about the chemical state of the elements 

detected. It uses an x-ray source to irradiate the sample surface and induce the emission 

of photoelectrons whose energies (eV) are characteristic of the elements within the 

sample.  
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For this work, a Kratos Axis Ultra XPS was employed. It possesses a monochromatic 

Al KR (1486.6 eV) source running at 300 W. This instrument is useful for complex 

materials such as poly-azines, because small shifts from the expected emission energy for 

a pure element indicate chemical bonding with other elements. The probing depth 

depends upon the mass of the sample and the incident angle of the beam, usually ranging 

between 3-10 nm. Angle-resolved XPS is an essential technique for compositional 

analysis and can be used for studying the complex composition of poly-azines and help 

elucidate their structures.  
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Chapter 4.  Standardized Characterization of Electrocatalytic 

Electrodes 

This research is part of a collaborative effort across four independent laboratories in 

different universities for designing and building enzymatic fuel cells. This has raised the 

need for a standardized testing platform as well as standardized protocols to allow 

exchange of results and comparative analysis. The work presented in this chapter 

describes the assessment of such standardized experimental platform and protocols using 

the material processing and electrochemical characterization of poly-(MG)-modified 

glassy carbon (GC) electrodes as a model system. The apparatus used is a modular stack 

cell with defined geometry and dimensions designed at the University of Hawaii in 2008. 

The configuration of the stack cell is flexible and can be modified for different 

electrochemical studies, and its use will result in controlled conditions of experimental 

parameters, avoiding uncertainties that can often cause inconsistent results. Some of these 

parameters include electrolyte concentration and its volume in the cell, and positioning of 

each electrode in the cell.  

This chapter presents the results obtained at the University of New Mexico as part of 

standardized test protocols to support the cross-lab comparison of materials and 

electrochemical measurements to characterize poly-(MG)-modified electrodes for NADH 

oxidation at neutral pH and low overpotential. The modular stack cell is completely 

reusable, and can be easily assembled, disassembled, and cleaned.  

Glassy carbon (GC) electrode characterization and modification was chosen as model 

experiments. It was first characterized using a redox couple (ferri-/ferrocyanide) to 
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determine its electrochemical accessible surface area and then it was modified with poly-

(MG) by electropolymerization via cyclic voltammetry (CV).227 The last experiment 

tested the poly-(MG)-modified GC for its ability to oxidize NADH. Poly-(MG) was 

chosen because it has already been reported in the literature that it works as a catalyst for 

NADH oxidation in NAD+-dependent enzymes in biofuel cells.228, 229 These experiments 

were analyzed across labs to assess reproducibility of experiments, and the variations in 

the results are all summarized in a collaborative report published in 2008.124  

4.1.   Experimental 

Potassium ferricyanide (K3Fe(CN)6) of analytical grade and purity of 99% (Sigma Cat. 

393517), analytical grade methylene green (Fluka Cat. 66870), β-nicotin adenine di-

nucleotide reduced form (β-NADH) of 98% purity (Sigma Cat. N8129), analytical grade 

potassium nitrate (KNO3, EMD Cat. PX1520-1), sodium phosphate monobasic (NaH2PO4, 

EMD Cat. SX0710-1) and sodium phosphate dibasic (Na2HPO4, EMD Cat. SX0720-1) 

were used without further purification. Ag/AgCl/3.0 M KCl was used as reference 

electrode (CH Instruments Inc. Cat. CHI111) and all potential values are given against 

this reference.  Glassy carbon (GC) electrodes (CH Instruments Inc., Cat. CHI104) were 

used as working electrodes. The GC electrode possesses a polished glassy carbon disk of 

3 mm diameter and prior to use, it was polished with alumina (BAS Polishing kit, Al2O3, 

1 µm) to a mirror finish. The counter electrode was platinum gauze of thickness 0.127 

mm and purity 99.9% (Alfa-Aesar Cat. 10282). 

4.1.1. Modular stack cell 

The modular stack cell is comprised of three stacking modules: the reaction chamber with 

reference electrode inlet and solution filling ports, a working electrode plate with inlet for 
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The GC electrode was then rinsed ultra pure water in order to remove any residual 

methylene green solution, any water drops remaining on the tip of the electrode were 

blown off with a stream of N2 gas.   

4.1.4.  NADH oxidation by poly-(MG)-modified electrode 

The final experiment tested the catalytic ability of the poly-(MG) film deposited on the 

GC electrode. Cyclic voltammetry technique was chosen in this case because it has been 

frequently used in the literature to test mediator modified electrodes for NADH 

oxidation.70, 71, 227, 229 Choosing approaches from the literature seemed to be a reasonable 

basis for the standardization purposes of this work. Other techniques for catalytic 

characterization of poly-(MG)-modified electrodes like steady-state chronoamperometry 

and rotating disk electrode experiments are explored in the following chapters.   

NADH solution was freshly prepared in PBS (0.1 M, pH 7.0) to a final concentration 

of 1 mM and then immediately transferred to the reaction chamber of the stack cell and 

left to rest for 20 min for its temperature to reach room temperature and to allow wetting 

of the electrodes. An aliquot of the stock solution was set aside, at room temperature, as a 

reference sample. CV was applied for 5 cycles from -0.5 V to 0.5 V (vs. Ag/AgCl) at a 

scan rate of 50 mV/s. Upon completion, the solution was retrieved from the stack cell, 

and its absorbance was measured at 340 nm by UV-vis spectrophotometer, and compared 

to the reference sample. The amount of NADH oxidized at the electrode surface was 

estimated by calculating the difference between the concentration of reference sample 

and the concentration of the remaining solution in the chamber, using Beers law with an 

extinction coefficient ε = 6300 M-1cm-1.  
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4.2. Results and discussion 

4.2.1. GC electrode quality test 

The first experiment was performed to verify the proper operation of the three electrodes 

in the modular stack cell. The electrochemistry of ferri-/ferrocyanide redox couple is well 

defined and it is known to be very reversible. It follows the reaction: 

Fe(CN)6
3-  +  e- Fe(CN)6

4-  

Figure 4-3 presents five consecutive CV cycles in the presence of the redox couple 

indicating the position of the anodic and cathodic peaks. The values of formal redox 

potential (E0’), peak separation (ΔE), anodic and cathodic peak currents (ipa, ipc) and their 

ratio ipc/ipa. Table 4-1 summarizes these values.  
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Figure 4-3 Electrode testing: CV cycling of electrodes in 1 mM ferricyanide solution; scan rate 50 

mV/s, cycles 1 to 5. Current reported by geometrical surface area (0.07 cm2) 
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Table 4-1 Electrochemical parameters obtained from CV in ferri-/ferrocyanide 

 E0’(V) ΔE (V) ipa (μA/cm2) ipc (μA/cm2) ipc/ipa 

 0.224 0.152 119.7 115.7 0.97 

 

The values of formal redox potential, reduction and oxidation peak current and their 

ratios helped verify the standardization conditions and reproducibility when comparing to 

the results obtained by the other labs. The formal redox potential specifically describes 

the thermodynamics of the system and the peak currents provide information about the 

kinetics.  

This experiment was also used to check the surface quality of the GC electrode. Since 

the specified polishing of the electrode does not actually provide very effective and 

reproducible control of the true surface area of the electrode, this experiment measures its 

electrochemical accessible surface area for the given reaction. The ratio of cathodic to 

anodic peak currents (ipc/ipa) provides information about the reversibility of the reaction, 

which should be unrelated to the active surface area of the electrode. A completely 

reversible reaction has a ratio of cathodic to anodic peak currents of unity. The result 

obtained (Table 4-1) indicates that the expected reversible reaction was achieved. 

By comparing the results with the other labs it was possible to verify the proper 

behavior of the GC electrode, in terms of correct redox potential of ferri-/ferrocyanide 

reaction, as well as the general operation of the three-electrode cell. This indicates that 

the modular stack cell was properly constructed thanks to the protocols that were 

developed.  
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4.2.2.  Poly-(MG) deposition 

Figure 4-4 shows a typical cyclic voltammograms for the electrochemical polymerization 

of methylene green onto the GC electrode for 10 cycles, performed in the modular stack 

cell. The three important regions are indicated on the graph. The first region corresponds 

to the adsorption of positively charged methylene green MG+ onto the electrode surface. 

According to the literature227 the positively charged methylene green s then reduced in a 

two-electron, single-proton reaction. This reduced form undergoes then an anodic process 

defined in the second region, where it is oxidized and then desorbed. Another anodic 

process begins at potential values above 0.9 V vs. Ag/AgCl defines the third region 

where the oxidation processes that complete the poly-(MG) development occur and it is 

referred to as the polymerization shoulder.   
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Figure 4-4 CV deposition of methylene green on GC electrode for 10 cycles; scan rate 50 mV/s 



Chapter 4. Standardized Characterization of Electrocatalytic Electrodes 

51 
 

The parameters of cathodic (Epc, ipc) and anodic (Epa, ipa) peak potentials and currents, 

the peak current ratio (ipc/ipa), and the potential and current (iinf) associated with the 

inflection point of the polymerization shoulder; were determined in order to characterize 

key aspects associated with the electropolymerization of MG. The inflection point was 

determined as the maximum value of the first derivative of the current. All of the 

parameters were obtained from the last deposition cycle and are summarized on Table 

4-2. 

Table 4-2 Electrochemical parameters obtained from electropolymerization of MG 

Epc (V) Epa (V) ipc (μA/cm2) ipa (μA/cm2) ipc/ipa iinf (μA/cm2) 

-0.17 0.23 197.9 326.7 0.61 266.3 

 

All of these parameters were also compared to those obtained by the other labs. 

Different statistical criteria were applied to again demonstrate good reproducibility of the 

results of this experiment across labs.124 

4.2.3. Oxidation of NADH by poly-(MG) 

The last experiment was conducted to evaluate the ability of the poly-(MG)-modified GC 

electrode prepared in the modular stack cell towards NADH oxidation. The oxidation of 

NADH by poly-(MG) and other poly-azines has been extensively studied.69-71, 85, 228 

When in contact with the oxidized poly-(MG) film, NADH reacts with it and forms a 

complex that subsequently decomposes the NADH to NAD+ and reduces the poly-(MG+) 

to its reduced form poly-(MGH). The oxidized form of the polymer is then regenerated 

when the reduced poly-(MGH) is electrochemically reoxidized to poly-(MG+).  Figure 

4-5 shows five consecutive CV cycles applied to the poly-(MG)-modified electrode in the 
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presence of 1 mM NADH solution. This voltammograms illustrates the anodic oxidations 

of poly-(MGH) to poly-(MG+) and the cathodic reduction of the oxidized poly-(MG+) to 

poly-(MGH). Four inflection points (Eip1, Eip2, Eip3, Eip4) that were used for comparison 

across labs, are indicated in  Figure 4-5. Table 4-3 summarizes the potential values of 

the four inflection points.  
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 Figure 4-5 CV of NADH oxidation by poly-(MG)-modified GC electrode; scan rate 50 mV/s 

Table 4-3 Inflection points of 5th cycle CV of NADH oxidation by poly-(MG) electrode 

Ep1 (V) Ep2 (V) Ep3 (V) Ep4 (V)

-0.13 0.19 0.14 -0.22 
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The 5th cycle of CV shown in Figure 4-5 possess very small features (peaks) that are 

not very distinctive, which is why the inflection points that are found mathematically 

were chosen to evaluate the reproducibility of the experiment when comparing the results 

to those obtained by the other labs. Most of the parameters met the reproducibility criteria 

except for Ep2, probably due to the fact that its value, unlike the other inflection points, 

decreases with the cycle number.  

The lack of reproducibility in this last experiment across labs does not imply that the 

modular stack cell cannot work as standard platform, since this was already demonstrated 

with the previous experiments. The oxidation of NADH is a much more complex reaction 

that might not necessarily be well controlled by the researcher. In order to further 

characterize this reaction, an ex-situ spectrophotometric measurement of the actual 

amount of NADH that was oxidized was performed. The equivalent charge (Qeqv) of 

oxidized NADH was calculated and compared to the analyzed charge surplus between the 

anodic and cathodic charges (Qa – Qc = ΔQ) over the CV cycles. Table 4-4 summarized 

these values.  

Table 4-4 Summarized results of NADH oxidized measured spectrophotometrically compared with 

charge measured through CV  

Electrochemical UV-vis spectrophotometry 

Qeqv/ ΔQ 

 

Total Qa 

(μC/cm2) 

Total Qc 

(μC/cm2) 

ΔQ 

(μC/cm2) 

NADH oxidized 

(μmol) 

Qeqv 

(μC/cm2) 

5.129 2.564 2.583 0.250 682.603 264.3 
 
 

The electrochemical oxidation of poly-(MGH) is balanced with the chemical 

oxidation of NADH. Thus the equivalent charge associated with the NADH concentration 

drop that was measured ex-situ, can be directly compared to the surplus charge from the 
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electrochemical analysis. From Table 4-4 it is seen that this equivalent charge is 264 

times higher than the oxidative charge surplus. This ratio indicates that the amount of 

charge measured electrochemically does not account for the amount of charge that would 

be theoretically expected, as based upon the amount of NADH determined to have been 

oxidized that was measured by spectrophotometric technique. Several factors that are 

beyond the researcher control could have originated this result (e.g. lower reaction rate of 

the electrochemical oxidation, irreversibility of reduction of poly-(MG+)).  

4.3. Conclusions  

The experiments performed on this work were useful for assessing standardized 

experimental platform and protocols to allow cooperative research across different labs. 

Exchange of results, comparative analysis and collaborative pursuit of benchmark 

improvements in electrocatalytic electrode design and performances will be greatly 

facilitated by these standard protocols and platform. The modular stack cell was used to 

characterize GC electrodes regarding their performance in the presence of ferri-

/ferrocyanide redox couple. The GC electrode was then modified by electrodeposition of 

poly-(MG) via cyclic voltammetry, and this electrode was finally tested for NADH 

oxidation capabilities. The reproducibility analysis is reported as a collaborative work124 

and it showed that the NADH oxidation by poly-(MG)-modified GC is still not 

completely understood and it requires further research.  
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chemical state of the elements present in our materials, allowing for deriving possible 

binding strategies of polymers. Proton NMR allows for us to analyze the formation or 

removal of C-H, N-H, O-H, or S-H bonds. This provides information about the chemical 

reactions occurring during polymerization.   

5.1. Experimental 

Methylene green (Fluka Cat. 66870), methylene blue (Mallinckrodt Chemicals Cat. 5891-

57), malate dehydrogenase (MDH) from porcine heart (USB products from Affymetrix 

Cat. 18665), L-(-)-malic acid (Sigma Cat. M1000), NADH (Sigma Cat. N6005), and 

NAD+ (Fluka Cat. 43407) were used without further purification. All other chemicals 

were of reagent grade. NADH and NAD+ stock solutions were prepared with phosphate 

buffer, pH 7.0. Enzyme stock solution was prepared with TRIS buffer, pH 7.0. L-malic 

acid was prepared with distilled water and its pH was adjusted to 7.4 with concentrated 

NaOH. Electrochemical measurements were carried out in a one-compartment 

electrochemical cell containing platinum gauze as the counter electrode and Ag/AgCl/3.0 

M KCl reference electrode (CH Instruments Inc.). All potential values are given against 

this reference.  Glassy carbon (GC) plates (SPI Supplies, 25 mm x 25 mm x 1 mm) and 

glassy carbon rods (CH Instruments Inc., 3 mm diameter) were used as working 

electrodes. Prior to use, the working electrode was polished with alumina (BAS Polishing 

kit, Al2O3, 1 µm) to a mirror finish.  

5.1.1. Poly-azine preparation 

Methylene blue and methylene green were polymerized on glassy carbon surfaces 

electrochemically by cyclic voltammetry. The electropolymerization of the two azines 
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was carried out by cyclic voltammetry at a scan rate of 50 mV/s. The monomer 

concentration in the growing-solution was 0.5 mM in the presence of 0.1 M KNO3. All of 

the monomer solutions were prepared in phosphate buffer pH 7.0. In every case, the 

potential sweep range was different according to the established procedures. All three of 

them were deposited under an oxygen-depleted environment. Electropolymerization was 

carried out for 1, 2, 10, 20 25 and 50 cycles on the planar GC for XPS and NMR analysis. 

The electrochemical instrument used for all the electrochemical analysis 

(electrodeposition and chronoamperometric curves) was Gamry Reference 600 

Pontentiostat/Galvanostat/ZRA. 

5.1.2. NADH oxidation  

Poly-(methylene green) was chosen to be tested with respect to NADH oxidation. 

Amperometric curves were obtained at 0.05 V vs. Ag/AgCl by consecutive additions of 

the substrate from a 25 mM NADH stock in pH 7.0 phosphate buffer. A calibration curve 

was consecutively obtained from the steady-state current data.  

5.1.3. L-malic acid oxidation in the presence of MDH 

A poly-(MG)-modified GC electrode was put in pH 7.0 phosphate buffer electrolyte in 

the presence of the enzyme and MDH (50 µg/mL), and its cofactor NAD+, in excess (5 

mg/mL). L-Malate (substrate of MDH) amounts were added every 300 seconds from a 1 

M stock in order to obtain an amperometric curve to show the catalytic activity of the 

enzyme. A calibration curve was consecutively obtained from the steady-state current 

data.  
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5.1.4. X-ray photoelectron spectroscopy (XPS) 

Angle-resolved XPS (ARXPS) spectra were acquired by a Kratos AXIS Ultra 

photoelectron spectrometer using a monochromatic Al Kα source operating at 300W. 

The base pressure was 2x10–10 torr, and operating pressure was 2x10–9 torr. Charge 

compensation was accomplished using low energy electrons. Standard operating 

conditions for good charge compensation are –4.1 V bias voltage, -1.0 V filament voltage 

and a filament current of 2.1 A. The MG and MB samples polymerized at 1, 10, 25 and 

50 cycles were analyzed at three different Take-off-angles of 90, 50 and 15o. Clean glassy 

electrode was also analyzed at the same angles as a reference. The reported ARXPS data 

represent averages from 2-3 areas per sample. The survey of each area is done first, 

followed by the recording of high-resolution spectra of C 1s, O 1s, N 1s and S 2p for all 

the samples. Linear background was used for elemental quantification of C1s, N1s, O1s 

and S 2p spectra. Quantification utilized sensitivity factors provided by the manufacturer. 

All the spectra were charge referenced to the aliphatic carbon at 284.8 eV. Curve fitting 

was carried out using individual peaks of constrained width, position and 70% 

Gaussian/30% Lorentzian line shape.  

5.1.5. Nuclear magnetic resonance (NMR) 

A solution of each dye solution described above was prepared and degassed.  A 10 cm x 

10 cm square of Toray paper was used for the working electrode.  The same cyclic 

voltammetry parameters for electropolymerization as described above were employed on 

the working electrode for 2 or 20 scans.    The electrode was rinsed with water.  Then, the 

working electrodes were treated with acetone to dissolve the polymer off of the Toray 

paper and into solution.  The solution was dried.  The remaining solid was dissolved in 
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1000 µL of deuterated acetone and added to an NMR tube.  Methylene green monomer, 

water, acetone, methanol and a blank were also added to deuterated acetone and run in 

the NMR for comparison.  128 scans of proton NMR were run on a 400 MHz 

Ultrashield™ Bruker NMR for each sample.    

5.2. Results and discussion 

5.2.1. Electropolymerization of azines 

A change of color on the GC electrodes can be directly observed after the electrochemical 

polymerization is done. Poly-(MG) appears to be golden green, whereas poly-(methylene 

blue) (poly-(MB)) appears to be blue shifted. This color change is indicative of the 

formation of a layer of new material on the surface of the electrodes. Figure 5-2 shows 

cyclic voltammograms (1st and 50th cycle) that were obtained for deposition of the two 

azines. A significant increase in the current density from the first to the last cycle 

indicates the enhancement of the electrochemical accessible surface area (EASA) of the 

electrode which also implies deposition of a polymer film on the surface of the carbon 

electrode. Furthermore, a shift of the initial potential peak (0.010 V for MG and -0.140 V 

for MB) to more anodic regions (0.472 V for MG and 0.285 V for MB) is observed in all 

cases when comparing the first and the last cycles. This observation could indicate an 

increase in the amount of electroactive species confirming that the polymer film has been 

formed on the surface of the GC. Certain differences can be observed across monomers. 

On the first cycle, MG shows two oxidation peaks (a small one at -0.164 V and a bigger 

one at 0.010 V) whereas the other monomer only shows one peak. However, these two 

peaks shown by MG combine into only one peak by the 50th cycle of polymerization (at 
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0.472 V).The extra peak observed in the first cycle of methylene green polymerization 

corresponds to the contamination of methylene blue in the starting material. This was 

confirmed when this peak increased in intensity when methylene blue’s percentage is 

increased in the starting material.  The extra anodic peak in the cyclic voltammograms is 

due to impurity of the methylene green. The largest initial oxidative peak of MG is 

observed at a more anodic potential than that of MB, which is indicative of the nitro 

functional group’s affect on the redox potential. It can be observed in every case that the 

electropolymerization process that dominates is oxidative, as reported elsewhere.25, 70, 71, 

230 
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Figure 5-2 1st and 50th cycle electropolymerization of: a) methylene green, and b) methylene blue. 

Scan rate: 50 mV/s; monomer concentration: 0.5 mM in 0.1 M KNO3 
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Cyclic voltammetry is used as the polymerization procedure, since a reductive step is 

also necessary for formation of these poly-azines. From a general perspective, the two 

monomers show a very similar behavior regarding their electrochemical polymerization. 

For this reason and due to the fact that our biofuel cell research has previously utilized 

poly-(MG) and the similarities described regarding characterization, electrocatalytic 

activity measurements are reported for only poly-(MG) modified electrode.    

5.2.2. Characterization 

X-ray photoelectron spectroscopy (XPS) 

Table 5-1 shows elemental quantification results for poly-(MG) and poly-(MB) samples 

polymerized for 1, 10, 25 and 50 cycles at three take-off-angles of 90, 50 and 15 degrees. 

Results from blank glassy carbon electrode and powder MG and MB monomers are also 

shown for reference. Blank electrode samples have 1.4-.1.7 atom% of N and negligible 

amounts (0.14-0.27 atom%)  of S.  The MG sample prepared by 1 cycle of voltammetric 

deposition has ~12 % N and 2.5-3% S, while smaller amounts of N (5.1%) and S (1.6%) 

are detected for MB sample prepared by 1 cycle. A slight enrichment of C and depletion 

of O towards the sample/air interface is detected for both samples.  The composition of 

polymerized MG sample is very similar to that of the monomer, with slightly larger O 

and fewer C amounts. The composition of poly-(MB) is more different from that of the 

monomer, with lower N and S and higher O concentrations. The poly-(MG) sample 

prepared by 10 voltammetric cycles has even more N and S, with both of those being 

slightly more enriched towards the electrode/polymer interface. The poly-(MB) sample 

prepared by 10 voltammetric cycles has twice as much N and S as the 1-cycle sample. 
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The composition is stable for both polymers formed by greater than 10 deposition cycles. 

Stable composition is achieved faster for MG sample than for MB.  

Table 5-1 Elemental Quantification of carbon, nitrogen, oxygen and sulfur, on poly-(MG)- and poly-

(MB)-modified electrodes during different deposition cycles 

90 deg 

C 1s 

% 

N 1s 

% 

O 1s 

% 

S 2p 

%  50 deg 

C 1s 

% 

N 1s 

% 

O 1s 

% 

S 2p 

%  15 deg 

C 1s 

% 

N 1s 

% 

O 1s 

% 

S 2p 

% 

Blank 85.7 1.4 12.6 0.27  Blank 50 86.1 1.7 12.0 0.18  Blank 15 80.1 1.7 18.0 0.14 

MG 1 71.7 11.9 13.4 3.0  MG 1 50 72.3 11.6 13.1 2.9  MG 1 15 76.4 9.7 11.6 2.4 

MG 10 68.3 13.7 14.7 3.4  MG 10 50 68.4 12.8 15.4 3.4  MG 10 15 70.1 10.9 16.1 2.9 

MG 25 66.6 12.5 17.8 3.1  MG 25 50 67.6 11.5 17.9 3.0  MG 25 15 69.9 10.8 16.7 2.6 

MG 50 67.8 12.2 16.8 3.2   MG 50 50 68.1 11.2 17.8 2.9   MG 50 15 69.9 8.4 19.3 2.4 

MG powder 75.3 13.4 8.2 3.1    
 

 

       

 

 

MB 1 81.0 5.1 12.3 1.6  MB 1 50 80.7 5.8 11.6 1.9  MB 1 15 75,6 7,1 14.6 2.7 

MB 10 69.1 11.4 15.9 3.5  MB 10 50 69.2 11.5 15.5 3.8  MB 10 15 70.9 9.5 16.5 3.1 

MB 25 69.3 10.9 15.9 3.9  MB 25 50 70.1 10.7 16.0 3.3  MB 25 15 72,8 8.7 15.3 3.3 

MB 50 69.4 11.3 15.5 3.7   MB 50 50 70.2 11 15.3 3.6   MB 50 15 73,4 8,7 14.3 3.6 

MB powder 79.5 11.5 5.5 3.5   
  

 

       

 

 

 

Deconvolution results for C, N and S for all samples are shown Table 5-2. Figure 5-3 

shows curve fitted N 1s high resolution spectra for MG and MB monomer and poly-(MG) 

and poly-(MB) deposited by 10 deposition cycles. Both monomers have pyridine N 

(399.8 eV) and protonated amine (401.6 eV) types of N detected, while MG also has the 

nitro group (406 eV). In addition to these peaks, both polymerized samples have a new 

peak at 400.2 eV detected. This peak is being formed primarily at the expense of a 

decrease of pyridinic N. At 10 deposition cycles, increase in all types of nitrogen, except 
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nitro nitrogen is detected. The increase in pyridinic and 400.2 eV peak from 1 to 10 

voltammetric cycles is much stronger for MB due to overall more dramatic increase in N 

concentration. For a larger number of cycles, only a slight change in overall N chemistry 

is observed for both poly-(MG) and poly-(MB) in comparison with the 10-deposition 

cycles sample.  

Table 5-2 High resolutions spectra, 0 take off angle 

 C N S 

 C=C 
C-S, 

C*CO 

C-N=C, 

C-N-R3/ 

C-NO2/ 

C=N-

(CH3)2 

C-O C=O 
N-

C=O 

C-

N=C 
CNarH 

C=N-

(CH3)2
+ 

NO2 C-S SO3 

 284.7 285.5 286.1 286.9 287.7 288.4 399.4 400.2 401.6 406 164.3 167.7 

Blank 43.7 18.6 7.8 4.5 3 6.2 0.27 0.26 0.5 0.43 0.23 0.32 

MG 

powder 
20.2 36.5 6.1 2.1 3.3 4.6 9.68 0 1.59 4.01 2.1 1.2 

MG1 24.6 15.9 15.8 2.6 3.6 5.4 0.9 5.5 0.49 4.17 2.2 0.81 

MG10 17.1 16 17 4.7 3.1 5.7 1.16 7.11 1.23 3.98 2.68 1.11 

MG25 17.7 16.5 13.9 6 1.3 8.3 1.09 3.93 0.74 5.75 2.33 0.57 

MG50 22.9 17.5 11.7 3.3 1 8 0.49 4.17 0.41 5.81 2.33 1.04 

             

MB 

powder 
20.2 40.4 8.0 1.4 2.6 5.3 11.2 0 1.3 - 2.5 1.4 

MB1 44.6 12.0 10.2 2.9 5.2 6.1 2.45 2.01 0.65 - 1.07 0.55 

MB10 24.7 24.4 8.5 1.2 3.0 7.3 6.29 4.52 0.56 - 2.80 0.74 

MB25 23.3 22.5 11.0 3.4 3.4 5.7 6.88 3.30 0.75 - 2.80 1.06 

MB50 20.7 23.1 11.1 3.0 3.0 6.3 5.74 4.88 0.72 - 2.74 0.99 
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being formed is through the formation of a ring-N(CH3)-ring bond 70. A decrease in 

aromatic carbons which would participate in such a bond and an increase in the peak at 

286.1 eV (C-N) confirm this type of polymerization. MB undergoes more dramatic 

changes during polymerization that MG does, as manifested by very different carbon 

structure for 1 and 10 cycles. Alternative ring-to-ring coupling, which is suggested in the 

literature 70, 73 is not possible to confirm by XPS, as new bonds that are being formed 

have exactly the same binding energy (BE) as the origin species. No change in nitro 

group is observed indicating that this moiety does not participate in polymerization of 

MG. Two types of S, i.e. C-S and S-O, are detected for both monomer and all 

polymerized samples. XPS, thus, confirms (1) reduction of pyridinic nitrogen to 

secondary amine, (2) oxidation and removal of proton on the protonated amine and (3) 

formation of a ring-N(CH3)-ring type of bonding between monomer units. 

Nuclear magnetic resonance (NMR) 

In order to study the polymer structure, poly-(MG) and poly-(MB) were analyzed with 

proton NMR.  The most significant change between the spectra of the monomers versus 

polymers was a doublet at 7.58 ppm changed to two quartets at 7.53 and 7.63 ppm.  This 

is indicative that there is an addition of protons added for the polymer near the two 

protons responsible for the doublet at 7.58 ppm.   These and other NMR data values are 

reported in Table 5-3. From NMR simulations using ChemExper, the peaks in this area of 

the NMR spectrum are a result of the protons located two carbons away from the nitrogen 

in the thiazine ring. Thus, the NMR data does not show a loss of the proton two carbons 

away from the nitrogen in the ring, but rather an addition of protons elsewhere on the 

structure.  Also, for both poly-(MG) and poly-(MB), a new peak appeared in the NMR 
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spectra for the polymers at 4.08 ppm.  ChemExper predicts that this proton peak is from 

the addition of a proton onto a carbon near the sulfur atom.  

Table 5-3 1H NMR data of representative peaks unique to each monomer or polymer. (Data provided 

by Prof. Shelley Minteer’s group in Saint Louis University)  

 

 

 

 

 

In comparison to each other, the NMR spectrum for poly-(MG) had a single peak at 

6.77 ppm that was not in the monomer’s spectrum and poly-(MB) had a new singlet peak 

at 7.37 ppm.  From NMR simulations, it indicates that the singlet at 6.77 ppm may be 

from the addition of a proton at the carbon farthest from the NO2 group.  As for poly-

(MB), the simulation indicates that the peak at 7.37 ppm is from a proton added on to a 

carbon in the ring.  

Representative proton peaks from the monomer of MB at 2.81, 3.38 and 7.99 ppm are 

not present in the spectra for the polymer of MB.   NMR simulations indicate that the 

peaks at 2.81 and 3.38 ppm are caused from the protons of the methyl groups.  Therefore, 

at least one link of the polymer may be at one of the carbons or nitrogens that are not part 

of the thiazine backbone structure.  The broad peak at 7.99 ppm obtained from analyses 

of MB is not present for either poly-(MB) formed from two voltammetric scans or 20 

voltammetric scans.  Simulations correspond to the proton two carbons away from the 

sulfur.   

Compound 1H (ppm) 

MG monomer 7.52, 7.61, 7.57 

Poly-(MG) 4.08, 6.77, 7.53, 7.63 

MB monomer 2.81,3.38,7.37,7.53,7.63 

Poly-(MB) 4.08, 7.53, 7.62 
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(Eq. 5-1) 

5.2.3. NADH oxidation electrocatalysis 

One of the goals of this investigation is to demonstrate the role of poly-(MG) as an 

electrocatalyst for NADH oxidation. Poly-(MG(ox)) reacts with NADH, subsequently 

regenerating poly-(MG(red)) and active NAD+. An electrochemical response of such 

process would be given by the following reaction: 

poly-(MG(ox)) + NADH          poly-(MG(red)) + NAD+  + H+  + 2e-   

 In order to investigate the catalytic ability of the poly(MG) films with respect to 

NADH oxidation, a hydrodynamic voltammogram was obtained. This was done applying 

different potentials to a poly-(MG)-modified electrode at different NADH concentrations, 

and recording the steady-state current for each potential. The formal potential of MG in 

aqueous solution is found to be -0.07 V vs. SCE58, 231 (-0.025 V vs. Ag/AgCl), whereas 

the formal potential for NADH oxidation is -0.56 V vs. SCE47 (-0.515 V vs. Ag/AgCl). 

The potential range chosen was between -0.3 V and 0.35 V, since the poly-(MG) catalyst 

will ultimately determine the electrode operating potential. Figure 5-5 shows the curves 

for three different NADH concentrations in solution. These curves were obtained by 

plotting the steady-state currents versus the applied potentials. Concentration dependence 

is observed for applied potentials greater than 0 V vs. Ag/AgCl. This observation 

indicates that NADH oxidation may occur at potentials as low as 0 V vs. Ag/AgCl in the 

presence of poly-(MG) as the electrocatalyst. Even though an optimal biofuel cell anode 

will perform at a lower open circuit voltage, this result can be considered as a good step 

forward to decreasing the overpotential of NADH oxidation.  
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Figure 5-5 Hydrodynamic voltammogram of poly-(MG)-modified electrode: a) in absence of NADH, 

b) in 1 mM NADH and, c) in 5 mM NADH 

Once the possible operating potential of the poly-(MG)-modified electrode was 

determined, the amperometric response was measured for NADH oxidation. Figure 5-6 is 

a representative curve that was obtained by performing consecutive additions of NADH 

in the presence of a poly-(MG)-modified GC electrode at an applied potential of 0.05 V 

vs. Ag/AgCl, showing the dependence of the current density with respect to the 

concentration of NADH. A maximum current of 3.13 µA/cm2 is observed in this curve at 

a concentration of NADH of 12 mM, but the concentration dependence curve shows that 

higher current densities are possible by increasing the substrate concentration. For 

concentrations higher than 8 mM of NADH, deviation from linearity (dashed line, Fick’s 

law) is observed, and a behavior that resembles Michaelis-Menten kinetics (pseudo-mono 
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molecular kinetics) is acquired with apparent maximum current of 7.1 ± 0.4 μA/cm2. 

Further discussion on this type of observation is presented in Chapter 6. These results are 

valuable since they show how poly-(MG) can be a good candidate for NADH oxidation.   
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Figure 5-6 Amperometric current dependence with NADH additions in a poly-(MG) modified GC 

electrode at 0.05 V vs. Ag/AgCl. Inset: Chronoamperometric response 

5.2.4. Enzyme catalyzed malate oxidation 

In order to further demonstrate the catalytic effect of electropolymerized poly-(MG) films 

towards NADH oxidation, NAD-dependent enzyme bioelectrocatalysis at a poly-(MG) 

electrode was evaluated. Malate dehydrogenase (MDH) was chosen as a NAD-dependent 

enzyme that is readily available and can be used without further purification. MDH plays 

the role of catalyzing the oxidation of malate, while reducing NAD+ to NADH.  Figure 
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Figure 5-8 Michaelis-Menten behavior for amperometric response of poly-(MG)/NAD+/MDH system 

to consecutive additions of malate at 0.1 V vs. Ag/AgCl applied potential. Inset: Eadie-Hofstee fit 

5.3.  Conclusions 

The presented characterization studies have shown that different mechanisms are 

involved in the electrochemical polymerization of azines. An oxidative step was observed 

during electropolymerization and also confirmed by a proton’s removal shown in NMR 

and confirmed by XPS. A reductive step was also observed during electropolymerization 

and confirmed by proton’s addition shown in XPS. HR-SEM gave us important 

information about the morphology of the polymer film grown on GC electrodes, creating 

a layer that is conformal to the underlying substrate. Furthermore, the electrocatalytic 

activity of poly-(MG) towards NADH oxidation was observed at potentials as low as 0.05 
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V vs. Ag/AgCl. Electrocatalytic activity studies in the presence of MDH elucidate how 

poly-(MG) electrodes can be good electrocatalysts for future bioanode integration. 
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Chapter 6.  Flow-Through 3-D Biofuel Cell Anode for NAD+-Dependent 

Enzymes  

In the previous chapter the work of structural and electrochemical characterization poly-

(MG) polymers grown on glassy carbon electrodes was presented, demonstrating their 

ability to oxidize NADH at potentials as low as 0.05 V vs. Ag/AgCl.232 Once a mediator 

for NADH oxidation has been chosen, one can move forward to targeting other design 

considerations for biofuel cell anodes based on NAD+-dependent enzymes.  

In order to build a biofuel cell that can achieve maximum power densities the 

electrode design needs to move from “flow-by” to “flow-through”.187 A key design point 

is the electrode material. It is necessary to choose an electrode material for the anode that 

can support mass transport of the fuels while providing a high surface area.  Reticulated 

vitreous carbon (RVC) is a novel open-pore foam material with exceptionally high void 

volume and high surface area233 that makes it a desired choice for flow-through 

electrodes. This material is based on vitreous carbon which is why its chemical properties 

can be expected to be the same and make it an attractive material for modification via 

electropolymerization of MG for NADH oxidation catalysis.  

Furthermore, an immobilization technique for NAD+-dependent enzymes is to be 

provided in order to obtain higher enzyme stabilities and increased lifetimes. Chitosan 

has been chosen due to its biocompatibility, versatility and ability to form three-

dimensional porous scaffolds that support mass transport while enhancing the enzyme 

stability. This chapter describes how the best immobilization conditions were chosen for 

the enzyme studied, as well as a scaling up of the 2-D electrodes to 3-D structures.  
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6.1. Experimental 

Methylene green (Fluka Cat. 66870), L-(-)-malic acid (Sigma Cat. M1000), NADH 

(Sigma Cat. N6005), NAD+ (Fluka Cat. 43407), alcohol dehydrogenase (ADH) from 

Saccharomyce cerevisiae (Sigma Cat. A3263, 347 un/mg), ethanol (200 proof, VWR Cat. 

89125172), chitosan (CHIT) (medium molecular weight, Aldrich Cat. 448877), multi-

walled carbon nanotubes (MWCNTs) (20-30 nm outer diameter, 10-30 μm length, 95 

wt% purity from www.cheaptubesinc.com) and concentrated acetic acid (EMD 

Chemicals Cat. EMAX0073P5) were used without further purification. All other 

chemicals were of reagent grade. Malate dehydrogenase (MDH) from porcine heart (USB 

products from Affymetrix Cat. 18665, 2580 un/mg) was purified by dialysis (Slide-A-

Lyzer MINI dialysis units and concentrating solution from Thermo scientific) with TRIS 

buffer pH 7.03 in three steps (30 minutes, 1 hour and 30 minutes) against 500 mL of 

buffer. The final MDH stock solution contained 1 mg MDH/10 μL TRIS buffer. Chitosan 

was pretreated before use to achieve a final deacetylation degree of 95% by autoclaving 

for 20 minutes at 121°C in 40 wt% NaOH solution, filtrated, washed with DI water and 

pH 8.0 phosphate buffer and dried in a vacuum oven at 50°C for 24 hours.234 A 1 wt% 

CHIT stock solution was prepared in 0.25 M acetic acid and its pH was then adjusted to 

5.8 with concentrated NaOH and stored at room temperature with stirring. A 

MWCNTs/CHIT solution was prepared from this stock solution with a final 

concentration of 2.5 wt% of MWCNTs. NADH and NAD+ stock solutions were prepared 

with phosphate buffer, pH 7.01. L-malic acid was prepared with distilled water and its pH 

was adjusted to 7.4 with concentrated NaOH. Electrochemical measurements were 

carried out in standard three-electrode electrochemical cell containing platinum wire as 
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6.1.1. Poly-(methylene green) electrode preparation 

Poly-(MG) catalyst was deposited on GC and RVC electrodes electrochemically by 

cyclic voltammetry according to a standard procedure previously reported.124, 232 The 

electropolymerization of MG was carried out by cyclic voltammetry under a scan rate of 

50 mV/s in a potential range from -0.5 V to 1.3 V vs. Ag/AgCl. The monomer 

concentration in the growing-solution was 0.5 mM in the presence of 0.1 M KNO3 in 50 

mM phosphate buffer pH 7.01. Poly-(MG) was deposited under an oxygen-depleted 

environment. Electropolymerization was carried out for 10, 25, 50 and 200 cycles on the 

RVC for SEM imaging in order to determine a deposition mechanism. Deposition of 10 

cycles was used for all of the catalytic experiments. The electrochemical instrument used 

for all the electrochemical analysis (electrodeposition and chronoamperometric curves) 

was Gamry Reference 600 Pontentiostat/Galvanostat/ZRA. 

6.1.2. Enzyme immobilization 

Chitosan polymeric scaffolds were used for immobilizing malate dehydrogenase by 

entrapment. Both chitosan and CNTs-chitosan scaffolds were prepared according to 

procedures presented by Cooney et al. 143, 144, 212, 215 For GC electrodes, 25 μL droplets of 

Chit/(CNTs)/NAD+/MDH (10 μL chitosan: 0.35 mg NAD+: 1 μL MDH) were cast and 

frozen at -4°C overnight. This was followed by freeze-drying for 1 hour in order to 

remove water from the scaffolds. For RVC electrodes, 500 μL of 

Chit/CNTs/NAD+/MDH (same ratio as GC electrodes) were added to the electrode and 

frozen at -4°C overnight. Freeze-drying was performed for 4 hours in order to eliminate 

water from the scaffold. The amount of ADH immobilized in GC and RVC electrodes 
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was calculated based on the enzyme’s activity in order to obtain comparable results to 

those of MDH. 

6.1.3. NADH oxidation  

Poly-(MG) modified electrodes were tested with respect to NADH oxidation. 

Amperometric curves were obtained at 0.05 V vs. Ag/AgCl by consecutive additions of 

the substrate (25 mM NADH stock). A calibration curve was consecutively obtained 

from the steady-state current data.  

6.1.4. L-malate oxidation in the presence of MDH 

Poly-(MG)-modified electrodes with immobilized MDH were tested towards L-malate 

oxidation (pH 7.01 for GC electrodes, pH 6.3 for RVC electrode) in the presence of 

excess (5 mg/mL) NAD+ cofactor. L-Malic acid (substrate of MDH) amounts were added 

every 300 seconds (1 M stock) in order to obtain an amperometric curve to show the 

catalytic activity of the enzyme. The applied potential was 0.05 mV vs. Ag/AgCl for 

every electrode. A calibration curve was consecutively obtained from the steady-state 

current data. In the case of RVC electrodes in the flow through cell, the buffer solution 

was pumped through the peristaltic pump at a speed of 3 mL/min. Similar experiments 

were performed with ADH for ethanol oxidation.    

6.1.5. MDH bioanode polarization curves 

Galvanostatic and potentiostatic polarization curves were obtained for the 3-D RVC 

electrode with immobilized MDH while flowing 500 mM L-malate at a speed of 3 

mL/min. A pH 6.3 PBS buffer was used for all experiments since it has been shown to be 

the optimal pH for both MDH based bioanode and laccase based biocathodes, which are 

later integrated in a biofuel cell (Chapter 7).   
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6.2. Results and discussion 

6.2.1. L-malate oxidation on 2-D poly-(MG)-modified electrodes 

Electrochemical characterization of three 2-D GC electrodes was performed. Table 6-1 

shows how each electrode was prepared. GCA was modified with poly-(MG) and MDH 

was immobilized into a chitosan scaffold. GCB and GCC both had immobilized MDH in 

a MWCNTs/CHIT scaffold, but only GCC had been pre-modified with a poly-(MG) film. 

GCB did not contain the electrocatalyst for NADH oxidation in order to determine if 

MWCNTs play a role in NADH oxidation. The NAD+ cofactor was added in excess in 

order to ensure that the losses of cofactor to the bulk are minimized, and to optimize the 

electrochemical conversion of NAD+ at the interface of the electrode.  

The three electrodes were tested by chronoamperometry at an applied potential of 

0.05 V vs. Ag/AgCl in order to determine the enzyme’s activity towards L-malate 

oxidation. All of the steady-state current measurements were normalized with respect to 

the enzyme loading (Figure 6-3). By comparing electrode GCA to GCB and GCC, we 

can observe that the enzyme immobilized onto the unmodified GC electrode shows very 

little activity towards L-malate oxidation in comparison with the GC electrodes that were 

modified with poly-(MG). This observation is a clear indication of the catalytic effect for 

NADH oxidation of poly-(MG) electrocatalysts and demonstrates their utility when 

integrated with NAD+-dependent enzymes. The immobilized enzyme on the poly-(MG)-

modified electrodes always showed higher current responses than the enzyme free in 

solution (data not shown). This was to be expected since the immobilization method 

provides the enzyme stability and closeness to the electrode surface and therefore to the 

catalyst for NADH re-oxidation.  
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Figure 6-3 Michaelis-Menten kinetics for MDH on electrodes GCA-C. Applied potential: 0.05 V vs. 

Ag/AgCl 

The small activity observed at GCA can be attributed to the presence of MWCNTs in 

the immobilization matrix and it could suggest that there is some catalytic effect of the 

MWCNTs towards NADH oxidation as it has been previously reported in the literature.61 

Such effect might be caused by some metal traces that are usually present in MWCNTs 

(iron and nickel) and can be observed by energy dispersive X-ray spectroscopy (EDS) 

when imaging MWCNTs. Furthermore, if we compare electrodes GCB and GCC, we can 

also observe that immobilization in MWCNTs/CHIT scaffold resulted in a much higher 

current response. The addition of MWCNTs into the chitosan scaffold results in an 

increased micro-porosity (pores in the range of 100-200 μm) of the immobilization 
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matrix, and thus increased overall electrochemical accessible surface area. In comparison 

with the chitosan scaffold which contains larger macro-pores and higher void volume, the 

MWCNTs/CHIT scaffold allows for higher residence times of NAD+ cofactor resulting 

in higher conversion of the enzyme’s substrate.  

Apparent Michaelis-Menten constants (KM
app) were estimated for the three electrodes 

and also summarized on Table 6-1.. It is important to notice that they are apparent 

because they account for all of the reactions occurring in the system (oxidation of 

NADH, reduction of NAD+ and oxidation of enzyme’s substrate). The three electrodes 

showed the typical Michaelis-Menten kinetics behavior which is to be expected for 

enzymatic electrodes. Electrodes GCB and GCC showed very similar KM
app values (23 ± 

3 and 21 ± 2 mM, respectively) and GCC showed a KM
app that was much higher (200 ± 

100). This can be explained by the fact that there is because of the absence of poly-(MG) 

on electrode GCB, there is no oxidation of NADH.  By missing this essential step in the 

sequence of reactions, the enzymatic oxidation of the substrate is not favored, which is 

consequently reflected in the value of KM
app. Figure 6-3 and imax (Table 6-1) show clearly 

a 6.5-fold current increase by incorporating the same amount of enzyme into a conductive 

MWCNTs embedded scaffold design (electrode GCC) compared to a non-conductive 

scaffold design (electrode GCB). These results helped us understand which 

immobilization technique proves to be more effective for the enzyme studied to further 

transfer the system to a three-dimensional bioanode design. The following sections 

discuss such a design. 
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6.2.2. Electropolymerization of poly-(MG) on 3-D electrodes 

Poly-(MG) was successfully deposited on RVC three-dimensional electrodes by the 

standard protocol previously described. Due to the hydrophobic nature of the electrode 

material, it was necessary to pre-treat it with oxygen plasma cleaning. This material was 

chosen because of its technological advantages including open pore structure that provide 

a high surface area to volume ration, high conductivities and low resistance to flow that 

allow for the mass transport of the fuels.  

Poly-(MG) was deposited while varying the number of deposition cycles in order to 

determine the mechanism of growth of the polymer. Figure 6-4 shows a representative 

voltammogram of the poly-(MG) deposition on a piece of RVC for 10 cycles at a scan 

rate of 50 mV/s performed in a flow through system.  
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Figure 6-4 Poly-(MG) deposition on RVC 60 ppi, 10 cycles, 50 mV/s 
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With the micrographs we were also able to observe that for higher deposition cycles 

(higher deposition times), the amount and size of particles was increased. It is also 

evident that the particle size distribution becomes less uniform with higher deposition 

times. This is typical of a progressive nucleation mechanism,235 in which the particles are 

deposited progressively in time resulting in a broad size distribution of the particles. This 

observation of the nucleation mechanism is consistent with our past results of 

electrodeposition of metal particles on RVC materials.236 

6.2.3. NADH oxidation by poly-(MG)-modified 3-D electrodes  

After studying the morphology of the poly-(MG)-modified RVC electrodes, we were 

interested in studying their electrochemical performance as electrocatalysts for NADH 

oxidation. It was expected that the electrodes would oxidize NADH due to their similarity 

to GC electrodes. Chronoamperometric measurements were performed on each electrode 

in order to evaluate their performance as electrocatalysts. The current response to NADH 

additions of each electrode was recorded at steady-state conditions.  

Figure 6-6 shows the steady-state current response dependence with the concentration 

of NADH for each electrode. In every case we obtained a non-linear dependence that 

resembles a Michaelis-Menten type of kinetics. This observation is in agreement with the 

model proposed by Gorton et al. 55 for mediator-modified electrodes for NADH oxidation 

and that have also been reported elsewhere.36, 57, 237 From this data we can also observe 

the decrease in catalytic activity of poly-(MG) with increase of the thickness of the 

polymer given by the number of deposition cycles. Similar observations have been 

widely reported in the literature for other NADH mediators.9, 36, 41, 44, 45  This fact has 

been attributed to the low partition coefficient of NADH and the diffusion coefficient of 
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NADH within the polymer.36 Despite this behavior of the polymer catalyst, this 

experimental observation helps us build an electrode with a layer of polymer particles 

thin enough to reach their best electrocatalytic activity towards NADH oxidation. The 

electrode modified by 10 CVs showed the highest imax (1700 ± 200 μA), at least double 

the amount of current of the electrode prepared by 200 deposition cycles, and was 

therefore chosen for the bioanode design.     
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Figure 6-6 Amperometric response to consecutive additions of NADH to poly-(MG)-modified RVC 

6.2.4. L-malate oxidation on 3-D poly-(MG)-modified electrode 

Once the appropriate design conditions were determined for the MDH-based anode, it 

was build and tested in a flow-through system. The first parameter was the deposition 

cycle which was determined to be 10 cycles for higher current responses as previously 
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discussed. The second parameter was the immobilization technique for MDH. The 

technique used was freeze-dried MWCNTs/CHIT scaffold which had yielded a higher 

current response due to increased enzyme loading and conductivity.  

Figure 6-7 shows the comparison of the 3-D poly-(MG)-modified RVC electrode and the 

2-D poly-(MG)-modified GC electrode, both with the same immobilization technique for 

MDH ( 

Figure 6-7a) and ADH ( 

Figure 6-7b). This figure shows an apparent Michaelis-Menten behavior that can be 

observed for both systems.  
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Figure 6-7 Michaelis-Menten kinetics on 2-D and 3-D poly-(MG)-modified electrodes for: a) MDH 

and b) ADH 

It can be observed that higher current densities per amount of enzyme immobilized 

can be achieved in a 3-D system for both enzymes. This increase in current density (15-

fold for MDH, 21-fold for ADH) coincides with the earlier observed current 

amplification (Figure 6-3) due to introduced three-dimensionality on GC electrodes. 
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Furthermore this identical kinetic behavior on both carbonaceous materials (GC and 

RVC) confirms similar depositing and catalysis mechanism of poly-(MG). Flow-through 

operation of the system also allows for higher residence times resulting in higher 

oxidation of the substrate. Table 6-1 also summarizes the kinetic parameters obtained for 

the 3-D MDH and ADH electrodes.  

It is important to consider that the large volume and surface area of RVC can actually 

accommodate higher amounts of enzymes than the amount used in these experiments and 

this would significantly increase the performance of the 3-D bioanode for biofuel cells.   

Table 6-1 Summary of Michaelis-Menten parameters obtained electrochemically for GC and RVC 

electrodes 

Electrode Preparation KM
app 

(mM) 

imax  

(μA/mg enzyme) 

GCA Unmodified GC with MDH immobilized in 

a MWCNTs/CHIT scaffold 
200 ± 100 0.022 ± 0.007 

GCB Poly-(MG)-modified GC with MDH 

immobilized in a CHIT scaffold 
23 ± 3 0.061 ± 0.001 

GCC Poly-(MG)-modified GC with MDH 

immobilized in a MWCNTs/CHIT scaffold 
21 ± 2 0.395 ± 0.008 

RVCA Poly-(MG)-modified RVC with MDH 

immobilized in a MWCNTs/CHIT scaffold 

50 ± 10 5.8 ± 0.4 

GCD Poly-(MG)-modified GC with ADH 

immobilized in a MWCNTs/CHIT scaffold 

32 ± 4 0.33 ± 0.01 

RVCB Poly-(MG)-modified RVC with ADH 50 ± 10 6.9 ± 0.4 
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immobilized in a MWCNTs/CHIT scaffold 

 

 

6.2.5. Polarization curves of MDH 3-D bioanode 

After studying the kinetics of MDH immobilized in MWCNTs/CHIT scaffold in 3-D 

poly-(MG)-modified RVC electrode and demonstrating that it is catalytically active 

oxidizing L-malate, we constructed polarization curves. Figure 6-8 shows the polarization 

curves obtained under controlled-current and controlled-potential conditions.  

 

Figure 6-8 Polarization curves measured in galvanostatic and potentiostatic mode of MDH 3-D 

bioanode in flow through cell 
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The open circuit potential (OCP) for this bioanode was of -35 mV vs. Ag/AgCl, with 

limiting currents near 70 μA. This result is promising for the construction of a fully 

enzymatic biofuel cell.  

6.3. Conclusions 

This work has approached different design considerations for building a 3-D bioanode for 

NAD+-dependent enzymes. The electropolymerization of MG was achieved for the first 

time onto the surface of porous RVC. The resulting poly-(MG) was deposited in the form 

of particles due to low wetting (hydrophobicity) of the electrode surface. The mechanism 

of growth of these catalyst particles was determined to be progressive via visual 

observation by SEM. This study also elucidated that low number of deposition cycles (i.e. 

10 cycles) for poly-(MG) deposition results in higher catalytic activity for NADH 

oxidation, at low potentials (50 mV vs. Ag/AgCl). MWCNT/s/CHIT suspension was 

found to be the best immobilization technique compared to CHIT for MDH, due to the 

conductivity and higher surface area introduced by the use of MWCNTs. The 3-D RVC 

electrode modified with poly-(MG) and integrated with the immobilized MDH was tested 

in a flow-through 3-D modular stack cell and yielded the highest current densities per 

amount of immobilized MDH. The construction of the polarization curve for the 3-D 

bioanode based on MDH allowed us to demonstrate its potential capabilities for 

integration into a fully enzymatic biofuel cell, starting at operating open circuit potential 

of -35 mV vs. Ag/AgCl and with limiting currents near 70 μA.   
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Chapter 7.  Fully Enzymatic Flow-Through Biofuel Cell 

This chapter covers the construction and evaluation of two fully enzymatic biofuel cells 

based on the previously studied NAD+-dependent enzymes (MDH and ADH). In order to 

create a membrane-free biofuel cell, both the anode and cathode must operate with the 

same electrolyte and thus at the same pH. So far, we have only studied the behavior of 

the anodic enzymes at neutral pH values, but in order to integrate the anode with the 

cathode a compromise has to be made regarding the optimal operating conditions for both 

electrodes.  

Typically, multi-copper oxidases enzymes like laccase are very active at acidic pH 

values lower than 5 (pH 4.5 for laccase from Trametes versicolor) and NAD+-dependent 

enzymes are active at slightly basic or close to neutral pH values (pH 7.4 for MDH and 

pH 8.8 for ADH). Our research group has developed immobilization techniques for 

laccase from Trametes versicolor that allow for the enzyme to be active at pH values as 

high as 6.3. Therefore it has been necessary to explore the performance of poly-(MG) 

catalysts as well as NAD+-dependent MDH and ADH at such pH values. 

This chapter starts with pH studies that were performed with poly-(MG) and NAD+-

dependent enzymes in order to determine the optimal operating conditions for the 

enzymatic biofuel cell in terms of supporting electrolyte. In addition, it describes the 

assembly of two flow-through fully enzymatic biofuel cell models and presents their 

evaluation and performances.   
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7.1. Experimental 

Methylene green (Fluka Cat. 66870), L-(-)-malic acid (Sigma Cat. M1000), NADH 

(Sigma Cat. N6005), NAD+ (Fluka Cat. 43407), alcohol dehydrogenase (ADH) from 

Saccharomyce cerevisiae (Sigma Cat. A3263, 347 un/mg), laccase from Trametes 

versicolor (Sigma Cat. 53739, 25.5 un/mg ), chitosan (CHIT) (medium molecular weight, 

Aldrich Cat. 448877), ethanol (200 proof, VWR Cat. 89125172), multi-walled carbon 

nanotubes (MWCNTs) (20-30 nm outer diameter, 10-30 μm length, 95 wt% purity from 

www.cheaptubesinc.com), dimethyl sulfoxide (DMSO, Sigma), 1-Pyrenebutyric acid N-

hydroxysuccinimide ester (PBSE 95%, Sigma-Aldrich Cat. 457078), carbon black 

(XC72R, Cabot), and concentrated acetic acid (EMD Chemicals Cat. EMAX0073P5) 

were used without further purification. All other chemicals were of reagent grade. Malate 

dehydrogenase (MDH) from porcine heart (USB products from Affymetrix Cat. 18665, 

2580 un/mg) was purified by dialysis (Slide-A-Lyzer MINI dialysis units and 

concentrating solution from Thermo scientific) with TRIS buffer pH 7.03 in three steps 

(30 minutes, 1 hour and 30 minutes) against 500 mL of buffer. The final MDH stock 

solution contained 1 mg MDH/10 μL TRIS buffer. Chitosan was pretreated before use to 

achieve a final deacetylation degree of 95% by autoclaving for 20 minutes at 121°C in 40 

wt% NaOH solution, filtrated, washed with DI water and phosphate buffer pH 8.0 and 

dried in a vacuum oven at 50 °C for 24 hours.234 A MWCNTs/CHIT solution was 

prepared with 1 wt% CHIT 0.25 M acetic acid stock solution to a final concentration of 

2.5 wt% of MWCNTs. Citrate, acetate, phosphate and TRIS buffers were prepared by 

following standard protocols at different pH values. NADH stock solutions were prepared 

with each buffer. L-malic acid was prepared with distilled water and its pH was adjusted 
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to 7.4 with concentrated NaOH. Electrochemical measurements were carried out in a 

stackable flow through electrochemical cell with platinum mesh (100 mesh, Alfa Aesar 

Cat. 10282) as the counter electrode and Ag/AgCl/sat KCl reference electrode (CH 

Instruments Inc.) when working in the three-electrode setup. For the fuel cell experiments 

(two-electrode setup) the cathode was connected to the potentiostat as the working 

electrode and the anode was connected as the counter and reference electrodes. All 

potential values are reported against Ag/AgCl. RVC 60 ppi was used for the anode 

supporting material and it was pretreated with oxygen plasma cleaning for 15 seconds for 

hydrophilization of their surfaces. 

7.1.1. pH dependence of NADH oxidation reaction studies 

GC electrodes were modified by electropolymerization of MG as described in previous 

chapters. Cyclic voltammetry in 1 mM NADH in eleven different buffer solutions were 

performed for three cycles between -0.5 and 0.5 V vs. Ag/AgCl. The pH values studied 

ranged between 3.00 and 8.98. After recording the CV, the half-wave potentials were 

determined.  

7.1.2. MDH pH dependence studies  

MDH was immobilized on poly-(MG)-modified electrodes in a MWCNTs/CHIT scaffold 

as described on Chapter 6. Two PBS buffers (pH 5.8 and pH 6.98) were used as 

supporting electrolyte for chronoamperometric measurements with consecutive additions 

of L-malate. The steady-state currents were plotted against the concentration of substrate. 

7.1.3. Anode design 

Two enzymatic anodes were built for these experiments. The supporting material for both 

anodes was RVC 60 ppi modified with poly-(MG) as previously described by 10 
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deposition cycle ns. The immobilization technique for both enzymes (MDH and ADH) 

was freeze drying of MWCNTs/CHIT. For MDH anode the amount of enzyme 1 mg/100 

μL chitosan and for ADH it was 3 mg/100 μL.  

7.1.4. Cathode design 

The gas-diffusion cathode consists of two layers, a gas diffusion and a catalytic layer.  

About 80 mg of carbon black XC72R with a teflon content of 35 wt% were placed into a 

round dye of about 2 cm diameter and pressed by hand onto a nickel mesh (Alfa Aesar 

Cat. 39704) that serves as current collector. About 10 mg of teflonized multi-walled 

carbon nanotubes (3.5 wt% PTFE) were evenly distributed on top the gas diffusion layer.  

Both layers were fused together by pressing for 1 minute at 1 klbs in a hydraulic press to 

a final thickness of 0.5 mm 4 mg PBSE (1-Pyrenebutyric acid N-hydroxysuccinimide 

ester) in 0.5 mL DMSO were allowed to soak into the catalytic layer for about 2 hours the 

electrode was rinsed with DMSO and water and 4mg/ml laccase in PBS (pH 6.3) were 

cross-linked at +4 °C over night. Figure 7-1 shows SEM micrographs of the gas diffusion 

cathode indicating its layers. 
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(pH = 8.20) electrolyte, the catalytic current is at least two times higher than that of the 

one performed in lower pH (pH = 3.00). Moreover, the half-wave potential is lower for 

the higher pH value.  Figure 7-3b shows the linear dependence of the half-wave potential 

with increasing pH. In this graph it is seen that the half-wave potential value decreases 

with increasing pH value. Since the use of NADH oxidation catalysts attempts to lower 

the overpotentials for this reaction, higher pH values are more desirable than lower pH 

values. Furthermore, phosphate buffer presented the most stable and reproducible 

behavior in comparison with the other buffers, particularly TRIS buffer which would also 

be desirable for high pH values.  

 

Figure 7-3 a) Cyclic voltammograms of poly-(MG)-modified GC electrodes in 1 mM NADH at 

different pH values, b) half-wave potential dependence with pH for NADH oxidation. A and B denote 

repetitions of each experiment 

7.2.2. MDH behavior at different pH electrolytes 

Phosphate buffer has been the electrolyte of choice through all the work presented, and 

the experiments presented in the previous section that it has definitely been an 
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determine whether the studied anodic enzymes will work at the cathode conditions. Thus, 

the kinetics of immobilized MDH was studied in two different buffers: pH 6.98 PBS 

since all of the previous data was obtained in that buffer, and pH 5.8  PBS since the 

laccase for the cathode has usually been studied in that buffer at UNM. Figure 7-4 shows 

the Michaelis-Menten data obtained from chronoamperometric experiments 

demonstrating that MDH follows the expected enzyme kinetic behavior even at a pH 

lower than its optimal pH. The Michaelis-Menten constant obtained at lower pH 

conditions was higher (KM
app = 49 ± 3 mM) compared to the one obtained at neutral pH 

(KM
app = 20 ± 2 mM) which shows better reaction kinetics at neutral pH. However, the 

fact that the enzyme is still active at slightly acidic pH is very encouraging for integration 

in a membrane-free biofuel cell with a laccase cathode.  
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Figure 7-4  Michaelis-Menten behavior of MDH at different pH electrolytes 
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7.2.3. MDH-laccase biofuel cell 

Polarization curves were constructed for the anode, cathode (controlled-potential regime) 

and biofuel cell under both controlled-potential and controlled-current regimes. 

Evidently, for the case of fuel cells evaluation  under of the system under controlled-

current regime is more appropriate since we are interested in observing the voltage output 

that the fuel cell can sustain, but it was necessary to also perform the controlled-potential 

experiment in order to have an idea of the operational current range of the device.  

Figure 7-5 shows an open circuit voltage 0.584 V for the MDH-laccase biofuel cell 

which is in agreement with current values reported in the literature for enzymatic biofuel 

cells (0.6 V).238   
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Figure 7-5 Polarization curves of: (●) MDH-anode, (■) laccase-cathode, and (▲, ▼) biofuel cell. L-

malate concentration: 500 mM. OCV = 0.584 V 
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From Figure 7-5 it is clearly observed that the MDH-anode is very limited by ohmic 

losses and transport limitations. The laccase-cathode on the other side, only presented 

small kinetic losses in the current operation range of the anode. The biofuel cell 

polarization curve shows a kinetic-limited behavior for current lower than μA where the 

sustained voltage is almost independent of the current. For current higher than 10 μA 

ohmic losses are observed and the anode limits the performance of the biofuel cell only 

reaching a maximum current of about 65 μA.  

Figure 7-6 shows power curves that were constructed for the MDH-laccase biofuel 

cell per volume of the anode and per area of the cathode. The volume of the anode was 

determined to be ~1.5 cm3 and the area of the cathode ~1.3 cm2. A maximum power 

density of ~9 μW/cm2 can be observed in this figure. This value is also in good 

agreement with reports for enzymatic biofuel cells based on a single dehydrogenase 

enzyme.239, 240  

The maximum power per unit volume (of anode) is found to be ~8 μW/cm3. Current 

biofuel cell technologies report their maximum current and power outputs per unit area, 

but for scaling-up of biofuel cells reporting outputs per unit volume is more significant.  
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Figure 7-6 Power curves of MDH-laccase biofuel cell in 500 mM L-malate: a) raw power curve, b) 

power curve per area of the cathode, c) power curve per volume of the anode 

7.2.4. ADH-laccase biofuel cell 

A second biofuel cell was design with the same laccase-cathode and an ADH-anode. 

Figure 7-7 shows the open circuit potential curves obtained for each electrode, as well as 

the cell voltage curve. The OCP of the anode approached –0.05 V vs. Ag/AgCl while the 

OCP of the cathode approaches 0.58 V vs. Ag/AgCl. This adds to a maximum cell 

voltage of 0.63 V for the biofuel cell. However, Figure 7-7 shows a cell voltage of 0.61 V 

close to steady-state. The small loss in voltage could have been due to prolonged 
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operation of the biofuel cell by the time the curve was recorded and thus loss in 

enzymatic activities.   
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Figure 7-7 Open circuit potentials of laccase-cathode and ADH-anode, and cell voltage of biofuel cell. 

Figure 7-8 shows the polarization curves of the anode and cathode (obtained in 

potentiostatic regime) and the biofuel cell (galvanostatic regime).  

In the current operating range the cathode shows the typical behavior of an air 

breathing electrode with kinetic limitations at low currents, ohmic losses between 30 and 

150 μA and a very sudden drop in potential at higher currents due to transport limitations 

given by the diffusion of air. This biofuel cell sustained an OCV of 0.618 V, slightly 

higher than that of the MDH-laccase biofuel cell. 
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Figure 7-8 Polarization curves of: (▲) ADH-anode, (■) laccase-cathode, and (●) biofuel cell. Red 

dashed line represents the theoretical full cell polarization curve. Ethanol concentration: 475 mM. 

OCV = 0.618 V 

For both of the biofuel cell studies, it is observed that the anode is the limited 

electrode, and mainly by ohmic losses. This is consequence of various design aspects. 

First of all, the supporting electrolyte only contained a total salt concentration of 0.4 M 

that compared to what is usually used in other devices (e.g. batteries) is very low. 

Enzymes however, could be inactivated at high salt concentrations, which is why the 

choice of electrolyte concentration needs to be carefully studied. Moreover, the 3-D 

design and dimensions of the anode introduce a substantial separation between the 

electrodes. This macroscopic separation (~1 cm) between the anode and the cathode and 
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the flow of low conductive ions significantly contribute to the ohmic losses in the biofuel 

cell.  

Figure 7-9 shows power curves that were constructed for the ADH-laccase biofuel 

cell in the same way as those for the MDH-laccase one. The maximum power density 

was determined to be ~25 μW/cm2 which is almost three times higher than that obtained 

for the MDH-laccase biofuel cell. In terms of volumetric density the maximum power 

was ~21 μW/cm3.  

 

Figure 7-9 Power curves of ADH-laccase biofuel cell in 475 mM ethanol: a) raw power curve, b) 

power curve per area of the cathode, c) power curve per volume of the anode 
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7.3. Conclusions 

Two membrane-less fully enzymatic biofuel cells based on a single NAD+-dependent 

enzyme were built and evaluated in a flow-through operation. The MDH-laccase 

demonstrated limitations in the anode performance that were reflected in a limiting 

current ~65 μA, and maximum power densities of ~9 μW/cm2 or ~8 μW/cm3 (at 0.373 

V). The ADH-laccase showed higher performance achieving limiting current ~160 μA 

and maximum power densities of ~26 μW/cm2 or ~22 μW/cm3 (at 0.372 V). This higher 

performance of the ADH-laccase is due to the higher enzymatic activity of ADH that has 

previously been observed. This single-enzyme design serves as a model for future 

multiple-enzyme anodes that will have the capacity of multi-step oxidation of biofuels 

generating even larger current and power densities.  

Large ohmic losses characterized the both anodes resulting in polarization curves that 

resemble resistive behavior. This ohmic effect was a consequence of the low conductivity 

of the supporting electrolytes as well as the macroscopic separation between the anode 

and the electrode. Improvements in design have been suggested including the utilization 

of paper electrodes that will allow for the electrodes to be placed in most immediate 

contact, and “cross-flow” between the ionic and mass flows.   
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Chapter 8.  Modeling of Malate and Ethanol Oxidation Coupled with 

Electrochemical NADH Oxidation on Poly-(Methylene Green) Surface 

This chapter presents the use of a MATLAB model to simulate and predict the behavior 

of the 3-D bioanode output by varying design parameters. The model that is used was 

provided by the research group of Prof. Scott Calabrese Barton’s group at Michigan State 

University. The description and utilization of the model in multi-step enzymatic anode is 

presented in a recent manuscript by Kar et al.241   

In summary, the model was designed by Kar et al.241 for catalytic oxidation of 

substrates by NAD+-dependent enzymes coupled with NADH oxidation catalyzed by 

poly-(MG) in a flow-through bioanode. The model was originally built for a 3-D Toray 

paper electrode but since it is geometry independent it can be also utilized in different 

systems. Figure 8-1 shows the schematic of the flow-through electrode for enzymatic 

oxidation of L-malate that is used in Chapters 7 and 8 and that has been simulated 

through this model.  

This numerical simulation can provide the information about the impact of different 

design parameters in the performance of the biofuel cell. The following section describes 

the mathematical treatment and model development provided by Kar et al.241  
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(methylene green)) surface, where NADH is electro-catalytically re-oxidized (Eq. 8-2), 

transferring the electrons to the solid phase. The enzymatic oxidation reaction of L-

malate involves the transfer of two electrons to one molecule of NAD+ and all reactions 

area assumed to be irreversible. Oxidation of L-malate is given by Eq. 8-1 and the 

electrochemical reaction for NAD+ regeneration is given by Eq. 8-2: + 						 					 + +  

						 					 + + 2  

By neglecting transport limitations on the scale of the electrode pores, the system can 

be treated as one-dimensional with steady state and the material balances for L-malate, 

NAD+ and NADH can be described by Fick’s law for a system with diffusion, convection 

and chemical reaction,242 and they are given (below) by Eq. 8-3, 8-4 and 8-5 respectively. 

− =  

 

− = −  

 

− = − +  

Where ,  and 	(cm2/s) correspond to the diffusivities of L-malate, 

NAD+ and NADH respectively;	 ,   and  (moles/cm3) correspond to the 

concentrations of L-malate, NAD+ and NADH respectively; v (cm/s) is the flow velocity 

of the fuel and co-factor; and  and  are the rates of reactions of MDH and 

NADH.  

(Eq. 8-1) 

(Eq. 8-3) 

(Eq. 8-4) 

(Eq. 8-5) 

(Eq. 8-2) 
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For simplicity, Kar et al. chose a ping-pong bi-bi243 mechanism to describe the 

kinetics of the oxidation of substrates by NAD+-dependent enzymes, and it is expressed 

in the following equation for the L-malate oxidation reaction: 

= ,+ +  

Where  and  are the Michaelis-Menten constants for the cofactor (NAD+) 

and substrate respectively; the latter being obtained from the electrochemical data. 

,  is the total reaction rate of the enzyme (assuming L-malate oxidation is faster 

than cofactor reduction) that can be obtained from the electrochemical data of Michaelis-

Menten kinetics for L-malate oxidation by the equation:244 

=  

With n the number of electrons transferred (two), F Faraday’s constant and A the 

surface area of the electrode. The electrode reaction rate (RNADH) can be described by Eq. 

8-8 and it includes a NADH concentration dependence term (first term in braces) and a 

potential dependent term (second term in braces): 

= + 1 +  

The first term in Eq. 8-8, a, is the specific area per unit volume of the electrode 

(cm2/cm3). The second term, k, is the rate constant for NADH oxidation, which is related 

(Eq. 8-7) 

(Eq. 8-6) 

(Eq. 8-8) 
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to the maximum steady-state current density NADH oxidation, iNADH, on the surface of 

poly-(MG) and can be determined from electrochemical data with the following equation: 

 

=  

In Eq. 8-8 the first term is expressed in terms of the concentration of NADH, CNADH 

and KS (the dissociation constant of the substrate catalyst complex) which resembles a 

Langmuir isotherm type of kinetics as previously described for NADH oxidation. The 

second term in braces is a Nernstian expression for potential dependence. The parameters 

β (V/decade) and U (V vs. Ag/AgCl) are Tafel slope and redox potential, respectively; V 

is the anode potential. Ks, β and U can be obtained from electrochemical data for NADH 

oxidation.  

Moreover, Kar et al.241 developed non-dimensional material balance equations (from 

Eq. 8-3 to 8-5) by normalizing all species concentrations by the bulk concentration of L-

malate, CMal, normalizing position within the electrode by the electrode thickness, w, and 

normalizing all diffusivities to the L-malate diffusivity DMal; and by further multiplying 

both sides of the material balance equations by w2/DMalCMal yielding Eq. 8-10 to 8-12: 

− =  

− = −  

 

− = −  

(Eq. 8-9) 

(Eq. 8-10) 

(Eq. 8-11) 

(Eq. 8-12) 
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Where ,  and  are dimensionless concentrations, 	 and  

are dimensionless diffusivities, obtained by normalizing the dimensional diffusivities by 

the diffusivity of L-malate. Pe = v w / DMal is the Peclet number, a ratio of the rate of 

convection to the rate of diffusion. Moreover, Kar et al.241 

= ′ ′[ + ] 
In Eq. 8-13 the Damkohler number is introduced and it is defined as: 

=  

Eq. 8-13 also includes non-dimensional Michaelis-Menten constants =/  and = / . In a similar way, the electrode reaction rate is 

expressed in non-dimensional form: 

 

= +  

With the Damkohler number given by: 

= 1 +  

And = /  

(Eq. 8-13) 

(Eq. 8-14) 

(Eq. 8-15) 

(Eq. 8-16) 
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Kar et a.241 made assumptions of fixed concentrations of L-malate and NAD+ at the 

electrode-electrolyte interface at the inlet while the concentrations of all other species 

were considered zero. Assumptions of zero gradients for all species at the outlet were 

used. The boundary conditions for the non-dimensional mass balances result in: 

′ = / ;	 = 0		at		 ′ = 0 

 ′ ′ = ′ ′ = ′ ′ = 0		at		 = 1 

Finally, the current per unit area, i (A/cm2) can be obtained by integrating the 

dimensionless rate of NADH oxidation (rNADH) over the dimensionless electrode length, 

x’ as described in Eq. 8-19: 

= ′ 
8.2. Determination of parameters  

Several of the necessary parameters needed to simulate Eq. 8-19 have already been 

mentioned in the previous section but Table 8-1 includes all remaining parameters that 

were employed in the simulation. 

 

 

 

 

(Eq. 8-17) 

(Eq. 8-18) 

(Eq. 8-19) 
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Table 8-1 Parameters and nominal values used in the simulation 

Parameter Value (units) Source 

Electrode area per unit volume, a 40 cm2/cm3 RVC 60 ppi233 

Anode potential, V 0.6 V 241 

Electrode width, w 1.2 cm Experimental 

conditions 

Reversible potential for NADH oxidation, U 0.0708 V vs. Ag/AgCl  Fit Figure 8-2  

Exchange current density for NADH oxidation, 

i0 

5.65 x 10-6 μA/cm2 Fit Figure 8-2 

Surface adsorption constant for NADH, KS 1.8 x 10-5 moles/cm3 Fit Figure 5-6 

Tafel slope, β 0.056 V/decade Fit Figure 8-2 

Velocity of fuel and cofactor solution, v 4.2 cm/s Experimental 

parameters 

Enzyme concentration, CMDH 2.857 x 10-7 moles/cm3 Experimental 

conditions 

Turnover number for MDH, kcat 2.505 s-1 Fit  

Figure 6-7 

Michaelis-Menten constant for mediator, KNAD
+ 1.4 x 10-7 moles/cm3 241 

Michaelis-Menten constant for substrate, KMal 5 x 10-7 moles/cm3 Fit from  

Figure 6-7 

Bulk concentration, CMal 0.5 x 10-3 mol/cm3 Experimental 

conditions  

Bulk concentration of NAD+, CNAD
+ 1.5 x 10-6 mol/cm3 Experimental 

conditions 

Diffusivity of L-malate, DMal 4 x 10-6 cm2/s Assumed as diffusivity 

of methanol241 

Diffusivity of NAD+ DNAD
+ and NADH, DNADH 3.3 x 10-8 cm2/s 241 

  

Figure 8-2 presents the fit of curve c from Figure 5-5 (5 mM NADH) that was used to 

obtain the parameters of the Nernstian term in equation 8-8. 
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Figure 8-2 Polarization curve of poly-(MG)-modified GC in 5 mM NADH for determination of U, i0 

and β 

8.3. Simulation of L-malate oxidation by MDH coupled with NADH oxidation  

Provided the MATLAB code to model Eq. 8-19 and all experimental parameter from 

Table 8-1, an initial simulation of the system was ran. The output of the simulation is 

shown in Figure 8-3 and it describes the current density with respect to the position 

(width) at the electrode. This first simulation shows that during the first millimeter of the 

anode, the resulting oxidative current density does not reach steady state behavior. This 

clearly indicates that for the enzymatic system that was simulated, there is a limitation 

when building very thin electrodes with orthogonal flow, probably due to low activity of 

the system. Thus, high residence times are necessary for high conversion of species at the 

electrode surface.  
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This observation is in agreement with the hypothesis discussed in the previous 

chapter where we proposed that for a paper based anode, parallel flow of the fuel with 

high residence time would be beneficial.  

 

Figure 8-3 MATLAB simulation of current density per volumetric unit with respect to the position at 

the electrode. Equation 8-19 was simulated. 

 

Currently, the simulation model is not developed to describe biofuel cells with such 

high flow velocities. Further modification and simulations will be necessary in order to 

evaluate the effect of fuel, co-factor and enzyme concentrations, cell potential, electrode 

surface area, and surface area per unit volume of the electrode material and thus optimize 

the bioanode design for improved performance. This model could also be extended to 

multi-enzyme enzymatic electrodes mimicking metabolic processes.      
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Chapter 9.  Conclusions and Outlook 

The principal objective of this work was to engineer a biofuel cell anode for NAD+-

dependent enzymes while developing a platform technology that can be used for mono- 

or multiple enzyme systems. This goal was achieved by carrying out specific task that 

helped building the technology step-by-step. The achievements of each task are 

summarized here: 

Standardized Characterization of Electrocatalytic Electrodes 

These experiments were useful for assessing standardized experimental platform and 

protocols to allow cooperative research across different labs. They also provided 

information about the electropolymerization of MG onto glassy carbon surfaces and 

about its catalytic activity towards NADH oxidation.  

Structure and Electrochemical Properties of Electrocatalysts for NADH Oxidation 

Through this study further electrochemical characterization of the poly-(MG)-modified 

GC was achieved and its catalytic activity towards NADH oxidation was again 

demonstrated. Structural characterization of poly-(MG) films on GC electrodes was 

possible by the use of analytical techniques like XPS and NMR. Both XPS and NMR 

confirmed that electropolymerization of MG consists of an oxidative step, and XPS also 

confirmed the reductive step that is also observed in cyclic voltammetry. Furthermore, 

XPS suggests that a ring-N-(CH3)-ring bond is possible.  HR-SEM provided important 

information about the morphology of poly-(MG) onto GC electrodes which appears to 

have a conformal character. And ultimately, the electrocatalyst proved to be functional in 

combination with a NAD+-dependent enzyme (MDH) for electrocatalytic oxidation.  
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Flow-Through 3-D Biofuel Cell Anode for NAD+-Dependent Enzymes 

The immobilization of MDH in different chitosan scaffolds showed that the addition of 

MWCNTs into the immobilization matrix enhanced the electrocatalytic activity of the 

enzyme by increased conductivity and electrical wiring provided by the nanotubes as well 

as higher electrochemically accessible surface area. Moreover, the electropolymerization 

of MG was achieved on the 3-D structure of RVC and its catalytic activity towards 

NADH oxidation was established. The best deposition conditions were determined for the 

3-D to achieve the highest catalytic activity. The growth of poly-(MG) onto this material 

was different than the growth on the 2-D GC electrode and it its morphology was studied 

via SEM and found to be in the form of particles instead of a conformal film coating. 3-D 

electrodes were tested in combination with NAD+-dependent MDH and ADH which 

showed Michaelis-Menten kinetics. Lastly, the utility of 3-D electrode design was proven 

in the construction of a single-enzyme anode based on NAD+-dependent MDH with OCP 

of -35 mV vs. Ag/AgCl.  

This design resulted in a common technology platform for bioanodes that can be used 

for any NAD+-dependent enzyme due to two contributing factors: the presence of poly-

(MG) as the NADH electrocatalyst, and the use of chitosan or modified-chitosan scaffold 

that can accommodate different or multiple enzymes for multi-step oxidation of fuels. 

Fully Enzymatic Flow-Through Biofuel Cell 

In the last set of experiments, a laccase-cathode was integrated with two different  NAD+-

dehydrogenase anodes to construct a biofuel cell. The first biofuel cell was a MDH-

laccase system with L-malate as the fuel. This cell sustained an OCV of 0.584 V with 

maximum power densities of ~9 μW/cm2. The second biofuel cell was a ADH-laccase 
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system fueled by ethanol. It sustained a slightly higher OCV of 0.618 V with ~25 

μW/cm2. In both systems the main losses were due to resistance limitations. The fairly 

low concentration of electrolytes combined with the macroscopic separation of the 

electrodes originated ohmic losses. However, these biofuel cells based on a single-

enzyme anode demonstrated to be in agreement with the literature. 

Future Outlook 

Several challenges are still to be overcome in enzymatic biofuel cell technologies. The 

bioanode that has been designed can be improved and optimized in various ways. First of 

all, chitosan can be hydrophobically modified to enhance enzyme’s activity, stability and 

lifetime. Furthermore, multiple enzymes can be immobilized in chitosan scaffolds in 

order to achieve complete oxidation of biofuels that would originate higher current and 

power densities. 

However, the major challenge is posed by ohmic losses, which means that the 

electrode configuration in continuous-flow design needs to be re-considered. We have 

proposed that a “cross-flow” configuration (Figure 7-10) with a paper-based anode would 

help by placing the electrodes in most immediate contact while allowing for long 

residence time of the biofuel (high conversion rates). Such a design should diminish 

ohmic losses in the cell voltage and improve the limiting current and thus power output 

of the biofuel cell.   
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Abstract 

This work demonstrates a new approach for building bioinorganic interfaces by 

integrating biologically derived silica with single-walled carbon nanotubes to create a 

conductive matrix for immobilization of enzymes. Such a strategy not only allows simple 

integration into biodevices but presents an opportunity to intimately interface an enzyme 

and manifest direct electron transfer features. Biologically synthesized silica/carbon 

nanotube/enzyme composites are evaluated electrochemically and characterized by 

means of X-ray photoelectron spectroscopy. Voltammetry of the composites displayed 

stable oxidation and reduction peaks at an optimal potential close to that of the 

FAD/FADH2 cofactor of immobilized glucose oxidase. The immobilized enzyme is 

stable for a period of one month and retains catalytic activity for the oxidation of glucose. 

It is demonstrated that the resulting composite can be successfully integrated into 

functional bioelectrodes for biosensor and biofuel cell applications. 

Keywords: electron transfer; glucose oxidase; nanocomposites; photoelectron 

spectroscopy; silica immobilization.  
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A.1. Introduction 

Direct bio-electrocatalysis of redox enzymes has attracted increasing attention for the 

development of the next generation of electronic nanoscale biomaterials and devices for 

industrial, clinical, environmental, space exploration, and defense applications.183, 245-249
 

The fusion of electrocatalysis with biology, for example, facilitates the development and 

commercialization of disposable biochips with near perfect selectivity for a given target 

analyte.247, 249
 Efficient communication between enzyme and electrode can also aid the 

development of biofuel cells with high power output.5, 245, 250, 251
 Direct electron transfer 

(DET) between an enzyme and an electrode provides the most potential for 

miniaturization and high power output because the requirement for complex electron 

mediators is negated. In addition, an enzyme-electrode based on DET theoretically 

functions at a potential range that is close to the redox potential of the enzyme itself. 

Immobilization of enzymes for DET, however, has proven to be problematic as 

accessibility of the enzyme redox center and hence efficient transfer of electrons to the 

electrode is limited.  

Glucose oxidase (GOx) is a widely studied enzyme, particularly with respect to DET, 

and as such provides a suitable model system applicable to the development of biosensors 

and biofuel cells.252 GOx is a stable enzyme with high catalytic activity and an 

inexpensive substrate source; utilizing glucose as a widely available fuel. In aqueous 

solution at physiological pH, the redox potential of FAD/FADH2 at the enzyme active 

site is negative and therefore well suited to operation at the anode of a biofuel cell.5, 253, 

254 The optimal redox potential of FAD/FADH2, however, is only achieved under DET as 

employing redox mediators for anodic processes such as glucose oxidation requires the 
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use of a redox potential that is more positive than that of the enzyme active site. This 

leads to additional overpotential to facilitate charge transfer from the enzyme to the 

mediator and results in a decrease in the cell voltage. Several limitations therefore must 

be addressed for the successful application of GOx in direct bio-electrocatalysis. The 

FAD/FADH2 redox center of GOx is located deep within the apoenzyme (approximately 

13 Å) and hence the electron-transfer rate between the active site of glucose oxidase and 

the electrode surface is inherently slow.252, 255, 256 Over recent years, efforts have been 

made to reduce the electron-tunneling distance between GOx and the electrode using 

different promoters.5, 246, 247, 254-257 One strategy is to incorporate the enzyme into an 

electrically conductive matrix such as carbon nanotubes (CNTs), which potentially 

reduces the distance from the redox center of GOx to the CNTs, which then act as a 

microelectrode surface.258 We have previously demonstrated the ability of multi-walled 

CNTs to be used as an efficient conductivity matrix for DET between the active site of 

GOx and a carbon electrode, indicating that CNTs successfully orientate the enzyme 

active site and redox-active cofactor with respect to the electrode surface. The resulting 

electron-transfer rate constant of approximately 2.4 s-1 indicated that the heterogeneous 

DET process was significantly greater than previously observed for unmodified 

electrodes. The three-dimensional network of electronically conductive CNT 

significantly increases the surface area for enzyme immobilization and provides an 

electronic circuit as a series of “nanowires” for the enzyme.246, 253, 256 The work reported 

herein utilizes single-walled CNTs in place of multi-walled CNTs owing to their superior 

electron-transfer properties. 
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The crux of bio-electrocatalysis, however, is the development of enzyme-

immobilization techniques that provide continuous electron transfer from the enzyme to 

the electrode, whilst maintaining high catalytic activity and enzyme stability. The 

majority of methods for enzyme immobilization utilize an inert support that serves no 

further specific catalytic function. When the immobilization support is an electrode or 

transducer surface, highly integrated functional enzymatic systems can be realized. 

Recent studies have demonstrated the remarkable versatility of a biomimetic silicification 

reaction as a means of enzyme immobilization.259, 260 Biosilicification is a rapid ambient 

precipitation of silica mediated by a biological catalyst. A wide variety of peptides and 

proteins can catalyze the precipitation of silica and become encapsulated as the silica 

matrix forms.261-264 The reaction provides an efficient method for enzyme immobilization 

and provides significant mechanical stability to the resulting silica matrix. Lysozyme, for 

example, catalyzes the formation of silica particles when mixed with a silicic acid 

precursor. The process is a one-step procedure and additional enzymes added during the 

reaction become entrained and retain a high level of catalytic activity.265 Initial studies 

demonstrated that the technique was successful for immobilizing enzymes directly at a 

surface with retention of catalytic activity, but extension of the application to bio-

electrocatalysis has not yet been demonstrated.266 This work describes an approach to 

create a bio–nano interface suitable for direct electrochemistry of enzymes. Direct bio-

electrocatalysis of glucose oxidation is demonstrated by entrapping GOx in a silica/CNT 

composite obtained through lysozyme-catalyzed synthesis of silica. 
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A.2. Experimental Section 

Materials: GOx from Aspergillus niger (EC1.1.3.4), tetramethyl orthosilicate (TMOS), 

99%, lysozyme from chicken egg white (EC3.2.1.17) and carboxylated single-walled 

carbon nanotubes were obtained from Sigma–Aldrich (St. Louis, MO). Toray carbon 

paper TGPH-060, was obtained from E-TEK, K, Somerset, NJ (now a division of BASF). 

Screen-printed electrodes were obtained from Alderon Biosciences Inc. (Durham, NC). 

All other reagents and chemicals were of analytical grade and obtained from standard 

commercial sources. Enzyme stock solutions were prepared in 0.1 M phosphate buffer 

(pH 7.0). All other solutions were prepared with deionized water and filtered before use.  

Preparation of the enzyme/CNT/silica composites: GOx and CNT were immobilized 

on a screen-printed carbon electrode surface and on TP by entrapment within a silica 

matrix using a modification of immobilization methods described previously.259, 260 For 

screen-printed carbon electrodes, lysozyme was nonspecifically adsorbed on the working 

carbon electrode surface by soaking the surface in a solution of lysozyme (0.5 mL, 25 mg 

mL-1) and the excess removed by washing with phosphate buffer (0.1 M, pH 8). A 

homogeneous GOx/CNT suspension was prepared by sonicating CNT (2 mg) in 

phosphate buffer (1 mL, 0.1 M, pH 7) for 1 h. An aliquot (0.1 mL) of the CNT 

suspension was then mixed with GOx (3 mg) and sonicated for a further 20 min. The 

silica precipitation reaction mixture consisted of phosphate buffer (0.7 mL, pH 8), TMOS 

(0.1 mL, 1 M in 1 mM HCl) and GOx/CNT (0.1 mL in phosphate buffer, pH 7). The 

silica precipitation mix (20 mL) was dropped onto the lysozyme-modified surface and 

incubated for 30 min at room temperature to allow the silica to form. For the preparation 

of TP electrodes, the lysozyme-modified TP (prewashed by sonication) was placed into a 
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mini-column (prepared from micro-fuge filtration columns (Qiagen, lnc. Valencia, CA) 

modified to accommodate a circle of TP) and the precipitation mix was flowed through 

the minicolumn four times under gravity. Finally, both screen-printed carbon electrodes 

and TP modified with CNT, GOx, and silica were washed with water and dried before 

analysis. 

Characterization of enzyme/CNT/silica composites: The surface morphology of the 

GOx/CNT/Silica modified carbon electrodes was visualized using a Hitachi (S-5200) 

SEM equipped with an energy dispersive spectrometer. The microscope was operated at 

10 kV for imaging. No conductive coatings or other treatment were performed on the 

samples prior to SEM observations. XPS spectra were acquired using a Kratos AXIS 

Ultra photoelectron spectrometer using a monochromatic Al Ka source operating at 300 

W (base pressure: 2x10-10 Torr, operating pressure: 2x10-9 Torr, 1 Torr=133.322 Pa). 

Charge compensation was accomplished using low-energy electrons. Standard operating 

conditions for good charge compensation were –4.1 V bias voltage, –1.0 V filament 

voltage and a filament current of 2.1 A. The sample surface survey was completed 

initially, followed by determination of high-resolution spectra of C1s, O1s, Si2p, and N1s 

for all samples. Take-off angles of 908 and 158 were selected for angle resolved studies, 

corresponding to ≈	8–10 and ≈	2 nm of the surface respectively. Data is presented as the 

average of 1–2 samples at 3–4 areas per sample. A linear background of C1s, N1s, O1s 

and Si2p spectra was used. Quantification- utilized sensitivity factors were provided by 

the manufacturer. All the spectra were charge referenced to the aliphatic carbon at 285 

eV. Curve fitting was carried out using individual peaks of constrained width and shape. 

A 70% Gaussian, 30% Lorentzian line shape was used for the curve fits. 
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Determination of GOx surface concentration: The surface concentration of GOx was 

calculated from the equation Γ=Q/nFA, where Γ is the surface concentration of GOx, Q is 

the charge obtained from integration of the anodic peak, n is the number of electrons per 

oxidation of GOx (FADH2) molecule, F is the Faraday constant, and A is the electrode 

surface area in contact with the electrolyte (electrochemically accessible surface area, 

EASA).267 EASA was calculated using the capacitance of the electrode obtained from 

cyclic voltammetry in a potential region where no Faradic processes occur. In order to 

elucidate the EASA the specific capacitance for carbonaceous material (CNT) was 

assumed to be 20 mF cm-2. The EASA of the Si- and CNT-modified carbon electrode was 

calculated to be 3.7 cm2. 

Electrochemical measurements: Electrochemical measurements were performed with 

a potentiostat/galvanostat (Princeton Applied Research, Model 263A) in a three-electrode 

cell with a 5 mL working volume and consisting of the silica/GOx/CNT working 

electrode, a carbon counter electrode and an Ag/AgCl reference electrode (Bioanalytical 

Systems Inc., Evansville, IN). The electrolyte solution was composed of equal volumes 

of phosphate buffer (0.1 M, pH 6.2) and KCl (0.1 M). Electrochemical experiments were 

carried out at 20 ± 0.5 °C. Cyclic voltammograms were used to calculate the electron-

transfer rate constant using the method of Laviron.268 

Determination of glucose oxidase activity: The enzymatic activity of GOx was 

determined according to the supplier’s quality control test procedure (Sigma–Aldrich) 

with dextrose as substrate. For stability experiments, stock samples were incubated at 25 

°C with shaking for 1 month. Aliquots were removed periodically for analysis of GOx 

activity. The pH profile of GOx was determined using the same glucose oxidase assay 
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adjusted to a range of pH values with 1 M NaOH. The immobilization efficiency (%) is 

calculated as a ratio of enzyme activity after immobilization, relative to free enzyme 

under identical experimental conditions. 

A.3. Results and Discussion 

Biocatalytic precipitation of silica composites containing GOx, were prepared on Toray 

carbon paper (TP), with and without the addition of CNT. Lysozyme provided the 

scaffold for silica formation and binds to the carbon-electrode surface by physical 

adsorption, negating any requirement for chemical modification or pretreatment of the 

TP. The morphology of the resulting silica precipitate was investigated by scanning 

electron microscopy (SEM). The filaments of TP were clearly visible by SEM (Figure A-

1a) and following the silicification reaction, a surface-coated layer of silica can be clearly 

differentiated from the uncoated fibers.  

The surface morphology of the TP appears more coarse, although still uniform, 

indicating that the silicification reaction occurred homogeneously on the surface (Figure 

A-1b). The majority of the silica forms as a network of fused particles in agreement with 

previous studies (Figure A-1c).259 The presence of CNT embedded within the silica 

matrix is also evident (Figure A-1d). 

X-ray photoelectron spectroscopy (XPS) was used to analyze the chemistry of the 

silica composite. XPS is a powerful technique allowing estimation of the elemental and 

chemical composition of the upper 10 nm of a surface and has been demonstrated as an 

effective tool to quantify protein immobilized or adsorbed during enzyme 

immobilization.269-274 
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and relatively higher Si and O signals were observed, suggesting either a lower degree of 

enzyme immobilization or a more complete coverage of GOx by silica that blocks the 

encapsulated enzyme from XPS analysis. No changes in composition with depth were 

observed for any of the samples. 

Table A-1 XPS elemental quantitative results. Values are represented as a percentage of the total. TP 

is Toray Carbon Paper 

Sample Depth C1s O1s Si2p N1s O/C N/C N/O 

[nm] [%] [%] [%] [%] 

TP 10 97.1 2.9 

2 97.6 2.4 
TP and 
CNT 10 97.6 2.4      

2 98.5 1.5 
TP and 
silica 10 46.5 35.9 9.1 8.5 0.77 0.18 0.24 

2 45.7 35.5 10.3 8.5 
TP/silica/G

Ox 10 36.9 48.5 14 0.6 1.31 0.02 0.01 

2 37.2 49.1 13.8 0.7 
TP/silica/G

Ox/CNT 10 39.5 42.5 13.1 4.9 1.08 0.12 0.11 

2 35.4 45.6 14 5.1 

GOx 68.1 23.1 8.8 0.34 0.13 0.38 

Lysozyme 65.2 19.1 15.7 0.29 0.24 0.82 

 

XPS was also used to determine O/C and N/C ratios in an effort to obtain protein 

fingerprints for lysozyme and GOx. Analysis of soluble solutions of GOx and lysozyme, 

however, showed an O/C ratio of approximately 0.3 for both proteins, making distinction 

between the two difficult. In addition, the O/C ratios for composites containing silica 

were much higher owing to the excess of silica (SiO2). The N/C ratio may therefore be a 

more appropriate measure of the interaction of enzyme chemistry at the surface. The N/C 

ratio predicted by the polypeptide sequences is much larger for lysozyme (0.24) than for 

GOx (0.13). For samples containing both GOx and lysozyme, an N/C ratio of 0.12 is very 



Appendix A 

130 
 

close to that of GOx alone, which may indicate that the majority of enzyme detected by 

XPS is GOx. In comparison, in a GOx-free control, the ratio is much larger (0.18) as 

would be expected for lysozyme alone.  

High resolution C1s and O1s spectra of each sample were obtained and deconvoluted 

using conventional curve fitting (Figure A-2) and quantitative results were calculated 

(Table A-2). The C1s spectrum of GOx has three main peaks corresponding to the 

following bonds: aliphatic C*H–CH (284.8 eV) that may have originated from surface 

contamination, oxydrilic C*–OH and amidic N–C*H–CO (286.6 eV), and N–CH–C*=O 

(288.3 eV), where the respective carbon species are marked by an asterisk. The analysis 

of the binding energies of the N1s (400.2 eV) and two peaks for O1s (532 and 533.2 eV) 

confirmed that these elements are attributable to the enzyme component. The C1s 

spectrum of lysozyme also has major peaks due to C–C and C–H carbon (284.8 eV), and 

higher binding energy peaks at 285.8 and 288.2 eV that are attributed to the C*–N and –

C*O–NH– or –C*OO– carbon, respectively. Smaller peaks at 284.2 and 286.6 eV are 

thought to be due to contamination during preparation, but did not interfere with the 

chemical analysis.  

High-resolution C1 s spectrum of the silica composite (containing lysozyme, GOx 

and CNT) contains features of both pure enzyme samples, that is, a dominant peak at 

286.6 eV that corresponds to the spectra for GOx and a secondary signal at 285.8 eV that 

corresponds to the primary peak in the spectra of lysozyme. A background signal of Si–C 

was detected in all samples. High-resolution O1s spectra for pure enzymes and the silica 

composite all exhibit spectra corresponding to the presence of immobilized biomolecules 

(533 eV). In addition, the composite exhibits a high binding energy that can be attributed 
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Table A-2 C1s and O1s deconvolution results of XPS analysis. Values shown are represented as a 

percentage of the total 

C-Si, 
C=C 

C-C, 
C-H  

C-NH2, 
CO-NH, 
C*-C-N, 
C*-C-O 

N-C*-H-
C=O, C*-
OH 

CN, C*-
O-C=O 

N-CH-
*C=O, O-
C*=O O-C O=C Si-O2 

Binding energy  284.2 284.8 285.8 286.6 287.2 288.2 531.9 533.2 534.1 

GOx  27.1 57.4 15.5 23.8 76.2 

Lysozyme  12.3 13.9 38.8 35 78.7 21.3 

TP and silica  5.1 13.9 32.6 8.3 20.6 19.4 20.5 79.5 

TP/silica/GOx/CNT  2.8 10.3 14.1 47.6 12.8 12.4 6 63.6 29.4 
 

The initial microscopy and spectroscopy demonstrated the formation of a 

heterogeneous matrix composed of silica particles that encapsulate GOx and CNT, 

attached to TP as a model electrode surface. The electrochemical characteristics of the 

GOx/CNT composite were then investigated further by cyclic voltammetry. The key 

issue was to determine whether GOx can undergo DET when immobilized at a carbon 

electrode surface. Initially, the DET between the active sites of GOx and the electrode 

was investigated in the absence of glucose (i.e., no catalytic turnover). Two types of 

carbon electrodes (screen-printed and TP) showed similar behavior. The cyclic 

voltammograms of GOx/CNT modified carbon electrodes (Figure A-3, curve 2) show 

that a pair of well-defined redox peaks (reduction and oxidation) was observed. The 

formal redox potential is –406 mV at pH 6.2 versus Ag/AgCl, which is close to the redox 

potential of the FAD/FADH2 cofactor in the enzyme. The redox peaks can be attributed 

to the redox reaction at the active site of GOx immobilized on the surface of the 

electrode. 
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molecule to be ≈	6.0 nm, corresponds to a surface area of ≈	4.2 cm2. The total amount of 

GOx immobilized (deposited) on the electrode surface was 4.1x10-9 mol, indicating that 

less than 1% of the introduced GOx was electroactive in terms of DET, in good 

agreement with previous studies.277 The data suggests that the electrochemically active 

GOx (2.5x10-11 mol) forms a monomolecular electroactive layer on the electrode surface. 

The high efficiency of the biomimetic silicification reaction for the simultaneous 

entrapment of CNT and GOx at an electrode surface is attributed to the mild 

immobilization conditions that minimize enzyme denaturation and provides a 

stabilization effect for the resulting composites. As such, we examined the stability of the 

silica-entrapped GOx/CNT composite in respect to catalytic activity. Enzyme activity of 

soluble GOx with glucose was comparable in the presence or absence of CNT (data not 

shown). Silica encapsulation of GOx provided an immobilization efficiency of ≈	18% 

(17.9 ± 1.9). The immobilization efficiency of GOx in the presence of CNT was slightly 

higher at ≈	25% (26.0 ± 0.55) and was attributed to nonspecific binding of GOx to the 

CNT that provides a preliminary scaffold to stabilize the enzyme activity during 

subsequent silica encapsulation.278 The silica formation appears to cause some initial 

inactivation of the enzyme because of the alkaline reaction conditions. Silica 

immobilization of GOx was not as high as has been observed for other enzymes and this 

is attributed to the loss of activity of GOx upon disparate changes in pH. Silica formation 

from lysozyme requires pH>7, whereas GOx has a pI of 4.2. Although the silica 

formation reaction is rapid (<2 min), some loss of enzyme activity upon rapid changes in 

local pH may occur. The immobilized enzyme, however, retained its enzymatic activity 

and retains a pH activity profile comparable to the native GOx suggesting that no 
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significant catalytic modification of the enzyme active site has occurred (Figure A-6a). In 

addition, silica-immobilized GOx is stable when stored at 25 °C for up to one month. 

Soluble GOx undergoes slow denaturation over time under the same conditions (Figure 

A-6b). The enhanced stability provided by silica encapsulation may therefore provide an 

opportunity to develop enzyme-based DET systems that can withstand continuous 

operation over a time frame that has not yet been realized. 

A.4. Conclusions 

In conclusion, we have demonstrated the potential to create bioinorganic functional 

nanomaterials that serve as a starting point for a variety of technology solutions. Potential 

applications include sensor systems, actuation devices and micropower sources. The 

immobilization of GOx in a silica matrix, doped with CNT, was demonstrated and 

supported efficient electrical conductivity. The high electroactive surface area of the 

composite confirms the understanding that intimate contact between the enzyme 

molecule and electrode surface is a prerequisite for DET bioelectrocatalysis. 

The immobilization not only stabilized enzyme activity over a period of at least one 

month but also facilitates mediator-free DET coupled to the oxidation of glucose. The 

method of co-immobilization of enzyme and CNT based on a biomimetic silicification 

reaction demonstrates a number of advantageous properties including excellent film-

forming ability, good adhesion, biocompatibility and bioelectrocatalytic properties. 

Enzyme immobilization with direct bioelectrocatalysis is widely applicable, for example, 

in mechanistic studies of enzyme reactions in biological systems. Primarily, however, the 

GOx electrode system demonstrated herein based on DET provides significant 

simplification and application to the design of an anode for biofuel cell applications. The 



Appendix A 

138 
 

inherent change in electrochemistry of the system in the presence and absence of glucose 

as substrate, however, also provides a further opportunity to develop the system for 

sensitive glucose detection and application in the field of reagent-free glucose sensors.
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Appendix B.  Chemical polymerization and electrochemical 

characterization of thiazines for NADH electrocatalysis applications 

Marguerite N. Arechederraa, Courtney Jenkinsa, Rosalba A. Rincónb, Kateryna 

Artyushkovab, Plamen Atanassovb, Shelley D. Minteera,∗	
a Chemistry Department, Saint Louis University, St. Louis, MO 63103, United States 

b Department of Chemical & Nuclear Engineering, Center for Emerging Energy Technologies, University 
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Abstract 

Electrochemically polymerized azines have been employed frequently as NADH 

electrocatalysts in biosensors and biofuel cells. However, some applications of these 

electrocatalysts do not lend themselves to electropolymerization. Therefore, this research 

investigates the chemical synthesis and application of poly(methylene blue) (PMB) and 

poly(methylene green) (PMG) in electrocatalysis. In an attempt to develop a simple 

synthesis for polymerized thiazines that could be immobilized on any surface, we 

investigated several polymerization protocols that are described in this paper. Structural 

analyses imply that the chemically synthesized polymers are chemically unique in 

comparison to the electropolymerized polymers. Amperometric investigations were used 

to compare the catalytic activity of chemically and electrochemically synthesized 

polymers as electrocatalysts for the oxidation of NADH and the chemically synthesized 

polymers were employed at the bioanode of a methanol/air biofuel cell to show their 

utility for this application. 

Keywords: NADH electrocatalysts, thiazine, poly(methylene green), poly(methylene 

blue), biofuel cells.  
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In order to better understand the structure of the polymers and the functional 

relationship to their uses, the electrochemistry of the polymers has also been analyzed in 

detail in several papers with differing electropolymerization protocols.70, 124, 141, 227, 232 

Although electropolymerized polymers have shown their use in applications and their 

catalytic activity, there are some applications where electropolymerizing is not feasible. 

For this reason, it is important to consider chemical synthesis approaches, which have 

been employed for other conducting polymers. For example, chemical syntheses for 

polymerizing aniline and dimethylaminoaniline have already been developed.283, 284 In 

this paper, we employ two chemical synthesis approaches in making PMG and PMB. 

These chemical synthesis protocols are modifications of the protocols employed in the 

references above for aniline and dimethylaminoaniline. We were interested in using Ce3+ 

as an initiator in acidic conditions since Hand and Nelson showed that this protocol can 

cause direct coupling of dimethylaminoaniline cationic radicals.283 In another experiment 

of interest, aniline undergoes oxidative polymerization as described by Yasuda and 

Shimidzu through a Fe3+ catalyst and more mild conditions.284 We had postulated that 

MG and MB would undergo similar polymerization chemistry as aniline and 

dimethylaminoaniline in the protocols described, due to their similarities in functional 

groups and aromatic nature. 

In the present paper, we are reporting the modification of a glassy carbon electrode 

with chemically polymerized PMG and PMB and comparing them to electropolymerized 

PMG and PMB. The redox chemistry was studied first in order to determine which 

polymers would be ideal candidates for electrocatalysis. The kinetics of the 

electrocatalysts are also reported. We have proposed structural features of the polymers 
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based on UV–vis, nuclear magnetic resonance (NMR), and X-ray photoelectron 

spectroscopic (XPS) chemical analyses. Finally, we compared the performance of the 

chemically and electrochemically synthesized polymers as electrocatalysts in a 

methanol/air biofuel cell to show their utility for this application. 

B.2. Experimental 

Materials and electrode preparation 

All of the chemicals used were of analytical grade and used without further purification. 

All aqueous solutions were prepared using 18 MΩ water. Tetrabutylammonium bromide 

modified Nafion was prepared by a previously established procedure.208 A CH 

Instruments 650a potentiostat interfaced to a PC was used for all experiments along with 

a glassy carbon electrode (GCE) as the working electrode, a saturated calomel electrode 

(SCE) as the reference electrode and platinum mesh as the counter electrode, unless 

otherwise stated. Prior to the film depositions or immobilization, the GCEs were polished 

with 0.05 μm alumina on Buehler polishing pads and washed thoroughly. The GCEs used 

for electropolymerization of polymers were pretreated by running cyclic voltammetry 

from −2.0 to 2.0 V at a scan rate of 0.05 V/s in concentrated nitric acid for four segments 

or until a constant background was reached. 

Electrochemical synthesis 

The working electrode was placed in a solution of pH 7.0 phosphate buffer with 0.5mM 

monomer and 0.1M KNO3, which had been purged with nitrogen for 1 h. The film was 

formed by 12 segments of cyclic voltammetry at a scan rate of 50 mV/s and a potential 

window between −0.6 and 1.3 V for PMB and −0.5 and 1.3V for PMG. After 

polymerization, the electrodes were rinsed with water and allowed to dry before use. 
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Chemical synthesis and immobilization 

PMB and PMG were chemically synthesized using a protocol similar to that described by 

Yasuda and Shimidzu284  in the oxidative polymerization of aniline. 0.28 g of monomer 

(MG or MB), 91.7 mL water and 8.3 mL of concentrated HCl were mixed and cooled in a 

dry-ice bath overnight. This was followed by the addition of 0.81 g of iron(III) 

chloride.284 The polymers were purified with gravimetric filtration using successive 

rinses of 1 M hydrochloric acid, 1 M ammonia, 1-methyl-2-pyrrolidone, methanol, and 

diethyl ether.284 This protocol resulted in a PMB product that appeared black and a PMG 

solid product that appeared dark green, almost black. These products will be referred to 

as Yasuda PMB and Yasuda PMG for the remainder of the paper. 

Using a protocol similar to Hand and Nelson283 for the oxidative polymerization of 

aniline analogues, a solution of 0.25 g of monomer (MG or MB), 62.5 mL methanol and 

12.5 mL concentrated H2SO4 was cooled in a dry-ice bath overnight followed by the 

addition of 0.42 g cerium(IV) sulfate and 0.69 g ammonium cerium(IV) nitrate. The color 

of the PMB product was gold and that for PMG was cranberry. These products will be 

referred to as Hand PMB and Hand PMG for the remainder of the paper. 

In order to produce a porous layer of the chemically synthesized polymers on glassy 

carbon electrodes, a solution of 0.71 mg of PMB (or 0.81 mg of PMG) was mixed with 

5.0 mL of acetonitrile. A drop of the solution was pipetted on the glassy carbon 

electrodes and the electrodes were dried in a vacuum desiccator. 

Voltammetric evaluation of PMG and PMB 

To evaluate the electrochemical properties of the PMG and PMB films, the polymer 

modified glassy carbon electrodes were equilibrated in 10m M pH 7.4 phosphate buffer 
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with 1 M sodium nitrate. Cyclic voltammograms were obtained on the GCEs at a scan 

rate of 50 mV/s. The potential window used was −0.5 to 0.5 V versus SCE. 

NADH electrocatalysis studies 

The electrochemical experiments were carried out in a traditional three-electrode 

electrochemical cell. A Ag|AgCl (saturated KCl) reference electrode was used for these 

experiments and a platinum counter electrode. Amperometry was performed in pH 7.4 

phosphate buffer with 1M sodium nitrate with an application of +200mV versus Ag|AgCl 

upon the addition of 0.1, 1, 10, 25 and 50 mM NADH. Plots of current versus 

concentration were utilized to determine the Vmax and the corresponding kcat for each 

polymer. 

Methanol/air biofuel cell 

Toray paper electrodes were used for the bioanodes. For the electrochemically 

synthesized polymers, a thin film of methylene blue or methylene green was 

electropolymerized onto the surface utilizing the electropolymerizing procedure 

described above. The electrodes were rinsed with 18 MΩ water three times and allowed 

to air dry overnight. 

In order to immobilize the chemically synthesized polymers, we used a similar 

protocol to that for the NADH experiments. However, we added a stabilizing agent. The 

stabilizing agent, tetrabutylammonium fluoride (TBAF), was chosen since the electro-

negativity of fluoride in the salt makes it a good candidate to interact with the positively 

charged polymers thus preventing them from being as soluble in buffer and enzyme 

casting solution. So, each polymer was immobilized on the bioanode by mixing 0.71 mg 
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of PMB (or 0.81 mg of PMG) and 0.01 M TBAF in 5.0 mL of acetonitrile. 50 μL of the 

mixtures were pipetted onto the electrodes and dried in a dessicator for at least 2 h. 

Next, the azine coated electrodes were coated with a casting solution containing a 

mixture of Nafion suspension and enzyme solution. 1 mg of NAD+ and 1 mg of alcohol 

dehydrogenase were added to 1 mL of pH 7.4 phosphate buffer and vortexed. 200 μL of 

enzyme buffer solution was mixed with 100 μL of tetrabutylammonium bromide 

modified Nafion® polymer suspension. The mixture was vortexed for at least 2 min a 

3000 rpm. 50 μL of enzyme/Nafion casting solutions were pipetted onto 1 cm2 of Toray 

carbon paper electrode that was previously coated with either a chemically synthesized 

polyazine or electropolymerized with an azine and left to air dry in the refrigerator for at 

least 24 h. Once dry, the electrodes were soaked in electrolyte/coenzyme solution in the 

refrigerator for at least 24 h. Electrolyte and coenzyme solution was 10 mM pH 7.4 

phosphate buffer containing 6 M of sodium nitrate and 1.5 mM of NAD+. This sodium 

nitrate concentration was sufficiently high to minimize cell resistance. Electrochemical 

measurements were carried out in a custom fabricated test cell as described in 

Arechederra et al.285 Toray carbon paper was used for the bioanode as described above 

and commercial gas diffusion electrodes containing Vulcan XC-72 with 20% platinum 

(PEMEAS E-TEK) were used for the cathode and hot pressed against the Nafion® NRE-

212 PEM (Sigma). 

 Analytical characterization techniques 

For NMR, the polymers were dissolved in 600 μL of methanol-d4. 128 scans of proton 

NMR were run on a 400 MHz UltrashieldTM Bruker NMR for each sample. For UV–vis 

spectroscopy, analyses were obtained with a UV-2501 PC Shimadzu instrument. The 
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electrochemically synthesized polymer was studied by polymerizing them onto indium 

tin oxide coated glass microscope slides and the monomers and chemically synthesized 

polymers were dissolved in methanol and acetonitrile, respectively. XPS analysis of the 

polymer layers was performed on a Kratos AXIS Ultra photoelectron spectrometer using 

a monochromatic Al Kα source operating at 300 W. All of the spectra were charge 

referenced to the aliphatic carbon at 284.8 eV. Individual peaks of constrained width, 

position and 70% Gaussian/30% Lorentzian line shape were used for curve fitting. XPS 

of powders was performed for the monomer and chemically synthesized polymers. 

Analysis of the electropolymerized polymers on GCEs were performed as well. 

B.3. Results and discussion 

We synthesized PMG and PMB utilizing two different chemical protocols. The first 

protocol derived from Hand and Nelson employed cerium as an oxidant.283 The synthesis 

derived from Yasuda and Shimidzu employed iron instead.284 Whereas the protocol 

derived from Hand and Nelson used a much more powerful oxidant, we postulated that 

this difference may be a determining factor in the resulting PMG and PMB polymers, as 

well as their electrochemical and electrocatalytic activity.283 The protocols for the two 

syntheses resulted in solid polymer precipitating out of solution and a color change was 

noted for each of the polymers as discussed in Section 2. 

The electrochemistry for each polymer was studied using cyclic voltammetry within 

the potential window of −0.5 to 0.5 V. This window was chosen, since it is the potential 

window typically employed for evaluating the electrochemistry of the electropolymerized 

polymers. Representative cyclic voltammograms are shown in Figure B-2. For reference, 

the electrochemically synthesized polymers are labeled with the abbreviation ES in the 
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We believe these are indicative of increased aromaticity, possibly from a double bond 

formed from a nitrogen to nitrogen linkage between monomer units. However, the 

polymers synthesized with the Hand and Nelson protocol had completely different UV–

vis absorbance spectra. Hand PMB has a broad peak at 340 nm and Hand PMG has a 

peak at 575 nm. The uniqueness of the spectra for the materials formed from the 

synthesis by Hand and Nelson is more evident that this protocol results in material that is 

dramatically different in structure when compared to the monomers and all of the other 

polymers. The difference in the electronic transition of the material formed from the 

Hand and Nelson protocol may be partly due to the absence of methyl groups at the non-

pyridinal nitrogens, but would not entirely account for such a large change indicating that 

a major backbone or functional group change(s) occurred. 

As for NMR analyses, the chemical shifts observed in the NMR spectra of the 

monomers and the polymers are listed in Table B-1. Both chemically synthesized 

poly(methylene blue) products uniquely generated a peak at δ 2.8, which we believe is 

representative of a N–N bond. Yasuda PMB, uniquely, produced a peak at δ 1.3, which is 

indicative of the linkage between the two nitrogens along with the addition of a methyl 

group. Peaks at δ 3.8 and δ 4.5 are unique to the Hand PMB sample. ChemExper predicts 

that these peaks may be from the addition of a hydroxyl on the sulfur atom, indicating 

that the sulfur may have been converted to a sulfone group. The peaks from δ 6.5 to δ 8.7 

in the 1H NMR were used to analyze the aromatic portion of the tetradecalin backbone 

ring system. A doublet of doublets is a typical feature within this region for aromatic 

structures. This was seen at δ 7.4 for MB, δ 7.5 for MG, δ 7.5 for Yasuda PMB and δ 8.7 

for PMB-ES. The fact that we did not see this with the PMG-ES, Hand PMG and Hand 
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Abstract 

Electropolymerization of MG on nanostructured materials based on single-walled carbon 

nanotubes (SWNTs) was investigated and is presented on this paper. The motivation 

behind this exploratory research is based on the comparable size of SWNTs (diameter ~1 

nm) and enzymes, which opens the possibility of creating “smart” materials that provide 

catalytic effects in the proximity of the enzymes. Since the focus of this work is on 

NAD+-dependent enzymes and NADH oxidation needs to be catalyzed, the presence of 

poly-(MG) is necessary in anode design based on those enzymes. Thus, in order to utilize 

SNWTs to wire the enzymes to the electrode and catalyzing the NADH oxidation 

reaction, a question is raised on whether SWNTs can be modified with poly-(MG). A 

novel material called “bucky paper” which is made with SWNTs was chosen as electrode 

material for electropolymerization of MG. If SWNTs can be directly modified with poly-

(MG) they would provide an electrocatalyst for NADH oxidation that can be placed in 

close proximity to the enzyme, increasing the efficiency of the catalysis and therefore of 

the anode.  
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C.1. Experimental 

All experiments were performed in VersaSTAT 3 (Princeton Applied Research). The 

material characterization was performed using Scanning Electron Microscope (Hitachi S-

5200).  

HiPco SWNTs were obtained from Unidym Inc. (Menlo Park, CA) and had a length 

to diameter (aspect) ratio of ~ 600 and a purity of ~ 90%.  Isopropanol (purity > 99%), 

methylene green (Fluka Cat. 66870), lyophilized malate dehydrogenase (MDH) (2700 

units/mg) from porcine heart (USB products from Affymetrix Cat. 18665), L-(-)-malic 

acid (Sigma Cat. M1000), NADH (Sigma Cat. N6005), and NAD+ (Fluka Cat. 43407) 

were used without further purification. Phosphate buffer pH 7 and TRIS buffer pH 7.4 

were prepared from analytical grade reagents. 

Bucky papers preparation 

Two types of SWNTs bucky papers were fabricated for and employed in this work.  BP1 

bucky paper was fabricated by magnetically stirring 60 mg of purified HiPCo SWNTs in 

isopropanol (1 mg/ml) for three days to produce a uniform dispersion of small bundles. 

Then, the dispersion was filtered through a 0.2 μm PTFE filter paper. BP2 bucky paper 

was fabricated by stirring 60 mg SWNTs and 13 mg MG in isopropanol (1 mg/ml) 

followed by filtering the suspension through a 0.2 μm PTFE filter paper.  The bucky 

papers were dried at room temperature for 15 minutes, peeled off the filter paper, and 

vacuum dried overnight at 80 oC. The thickness of the bucky papers was measured to be 

approximately 350 μm. 

In order to maintain the SWNTs’ pristine properties, no sonication or 

functionalization was performed. The SWNTs were stirred in isopropanol to break up 
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large nanotube aggregates while still retaining large ropes of nanotubes. The presence of 

nanotube ropes in the bucky paper increase the porosity of the bucky paper, thus 

facilitating enhanced transport of materials while still preserving a network for electrical 

conductivity.  The MG and SWNTs were stirred together, prior to filtration, in order to 

distribute MG evenly though the nanotubes and to maximize interfacial contact between 

the SWNTs and MG.  

Electrode construction 

A cavity electrode was chosen for this study since it can be filled with any powder 

material for electrochemical analysis. 50% teflonized carbon powder (XC50) was used as 

gluing material and compacted into the cavity of the electrode. Then, a piece of bucky 

paper of the same diameter as the cavity was placed and pressed on top of the compressed 

XC50. The bucky paper’s surface was then modified by poly-(MG) deposition.  

Poly-(MG) was deposited on the surface of the bucky papers by cyclic voltammetry 

in a similar fashion to what has been described in the previous chapters. The standard 

three-electrode cell used Ag/AgCl and Pt wire as the reference and counter electrodes 

respectively, and the bucky paper-cavity electrode as the working electrode. The 

electrodeposition was performed by 10 CVs at a scan rate of 0.005 V/s in a range of -0.5 

to 1.3 V in de-aerated 0.5 mM MG, 0.1 M KNO3, 50 mM PBS at pH 7. Similar steps 

were used, also, for the rotating disk electrode (RDE) at 1600 rpm. By following this 

procedure, the BP1-MG and BP2-MG electrodes were built. 

Hydrodynamic polarization curves 

Hydrodynamic polarization curves were developed in order to find the ideal potential at 

which poly-(MG) on the electrodes oxidizes NADH for both BPl-MG and BP2-MG 
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electrodes. They were developed in quiescent mode as well in RDE experiment at 1600 

rpm. The steady state currents were measured by applying constant potentials that ranged 

from -0.05 V to 0.35 V vs. Ag/AgCl. For NADH, the current was measured in 1 mM 

NADH, 10 mM NADH and a blank of PBS solutions for both BP1-MG and BP2-MG. A 

similar process was performed for the RDE at 1600 rpm. 

NADH oxidation  

For this step, the concentration of NADH stock solution was found experimentally by 

measuring its absorbance using UV-VIS spectrophotometer. Then, chronoamperometric 

curves were obtained by monitoring the steady-state current generated by periodic 

addition of aliquots from 58 mM NADH stock solution to the cell containing PBS pH 7. 

The applied potential was 0.3 V vs. Ag/AgCl, determined from the hydrodynamic 

polarization curves. The steady-state currents were then plotted against NADH 

concentration. 

Evaluation of poly-(MG) modified bucky papers in an enzymatic system  

Chronoamperometric measurements were also performed to evaluate the behavior of 

BP1-MG and BP2-MG in the presence of a NAD+-dependent enzyme (malate 

dehydrogenase, MDH). The electrolyte (KNO3 PBS pH 7) contained free enzyme in 

solution (0.05 mg/mL buffer) and 10 mM NAD+ diffusive cofactor. For the evaluation of 

the performance of the electrodes as NADH electrocatalysts, the steady-state currents 

were monitored after consecutive additions of 1 M L-malate substrate at an applied 

potential of 0.1 V vs. Ag/AgCl. The steady-state currents were then plotted against 

substrate concentration to study the kinetics of the system. 
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C.2. Results and discussion 

Characterization of bucky papers 

SWNTs provide high electrical conductivity to the bucky papers. BP1 showed a 

resistivity of 14.7 mΩ/mg and BP2 47.2 mΩ/mg. As expected, both bucky papers show 

low resistivity demonstrating their quality as conducting material which is highly 

desirable for the electrode design. Additionally, SWNTs enhance the porosity of the 

electrode material which helps providing a higher surface area and would facilitate the 

mass transport through the electrode. The combination of porosity provided by the 

SWNTs and hydrophilicity provided by the isopropanol (IPA) conferred wettability to the 

bucky papers. The SEM images show how the strains of SWNTs effectively conferred 

high porosity (Figure C-1), due to the bundles formed by the nanotubes. Moreover, BP2 

showed better wettability than BP1 due to the presence of MG which is highly 

hydrophilic. Thus the combination of IPA and MG in BP2 conferred the material with a 

higher hydrophilicity than BP1 (IPA + SWNTs). Due to their porosity and their 

hydrophilicity, both materials are quite brittle. Despite their fragility, the cavity electrode 

design provided easiness in the construction of the electrodes.  
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Figure C-2 Electropolymerization of MG on: a) BP1 and b) BP2. Scan rate: 5 mV/s 

The resulting materials were examined by SEM and the micrographs are shown in 

Figure C-3. A clear difference is observed when comparing these images to those of the 

unmodified bucky papers (Figure C-1). It is observed that the electropolymerization of 

MG onto nanostructured bucky paper materials yields different structure of poly-(MG). 

The appearance of particles and clusters of particles within the surface of the carbon 

nanotubes is observed. It can be hypothesized that this type of formation is due to several 

factors such as length-scale, roughness, porosity and partial hydrophobicity of the 

underlying surface of the bucky papers, which avoids the formation of a uniform film as 
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Figure C-4 Hydrodynamic polarization curves at different concentration of NADH for a) poly-(MG)-

BP1 (stirred), b) poly-(MG)-BP2 (stirred), and c) poly-(MG)-BP2 (RDE at 1600 rpm) 

For the poly-(MG)-BP1 electrode, the working potential found was 0.3 V vs. 

Ag/AgCl. It is observed that the current response to applied potentials increases as 

NADH concentration. When comparing Figure C-4a to b at the same concentrations and 

applied potentials, it is observed that a higher current response is produced by poly-

(MG)-BP2 which can be attributed to the presence of MG in the compositional material 

of the bucky paper, enhancing the catalytic effect of the electrode. The steady-state 

current measured at 0.2 V was of approximately 25 µA for 10 mM NADH on poly-
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(MG)-BP1 (Figure C-4a) while its value under at the same potential and concentration of 

NADH was close to 100 μA for poly-(MG)-BP2 (Figure C-4b), resulting in a 4-fold 

increase. 

Since poly-(MG)-BP2 resulted in a higher current increase therefore indicating better 

catalytic activity towards NADH oxidation, the electrode was further studied in RDE 

experiments. Figure C-4c shows a hydrodynamic polarization curve obtained for poly-

(MG)-BP2 in RDE setup with rotating speed of 1600 rpm. When comparing both curves 

with the poly-(MG)-BP2 (Figure C-4a and c) a 2-fold increase is observed in the steady-

state current response at 0.2 V and 10 mM of NADH. This observation suggests that BP2 

exhibits some mass transport dependance in the oxidation process of NADH. The 

increment of the current response in poly-(MG)-BP2 demostrates that the initial amount 

of MG in this material induces a larger number of NADH oxidative reactions per unit 

time, although it does not enhances the conductivity of the material compared to poly-

(MG)-BP1. 

NADH oxidation 

Chronoamperometric experiments were performed in order to evaluate the kinetics of 

NADH oxidation at poly-(MG) modified bucky paper electrodes. The oxidation of 

NADH to NAD+ is electrochemically observed by the increase of current measured with 

each addition of NADH aliquots. The applied potential was of 0.3 V for both electrodes 

and the current was recorded when it reached steady-state conditions. These curves were 

used to study the relationship between the current generated with respect to the 

concentration of the substrate (NADH). It is observed in Figure C-5 that oxidative current 

is generated by poly-(MG)-modified bucky paper electrodes as a consequence of adding 
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NADH, which demonstrates again the electrocatalytic activity of the bucky paper 

electrodes that were prepared. The concentration dependence data was then fitted to a 

linear relationship (Fickian behavior), but a deviation from this behavior can be observed 

for the highest concentration values. This observation is in agreement with previously 

reported results for poly-(MG)-modified electrodes (Chapter 5). Moreover, once again it 

is observed that poly-(MG)-BP2 yields higher catalytic currents than poly-(MG)-BP1. 
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Figure C-5 Steady-state current dependence with respect to NADH concentration for poly-(MG)-BP1 

and poly-(MG)-BP2. Applied potential: 0.3 V vs. Ag/AgCl. Inset: Chronoamperometric curves 

Electrodes evaluation in the presence of NAD+-dependent enzyme 

The oxidation of L-malate catalyzed by NAD+-dependent MDH was observed due in the 

presence of both poly-(MG)-modified BP1 and BP2, catalyzing the enzymatic cofactor’s 

re-oxidation. Michaelis-Menten kinetics behavior was observed for both electrodes and is 

represented in Figure C-6. In order to perform chronoamperometric measurements the 
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cofactor NAD+ was added in excess to the electrolyte, and the enzyme was free in 

solution. The applied potential was 0.1 V as previously studied for poly-(MG)-modified 

GC electrodes. The current was also allowed to reach steady-state conditions after each 

addition of L-malate aliquots, before being recorded. 
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Figure C-6 Michaelis-Menten kinetics of MDH for the oxidation of L-malate for poly-(MG)-BP1 and 

poly-(MG)-BP2 

The MDH enzyme was found to have an apparent Michaelis-Menten constant KM
app 

of 34 ± 5  mM for poly-(MG)-BP1 electrode with a maximum current imax of 9.1 ± 0.5 

μA. For poly-(MG)-BP2 electrode the value of KM
app was found to be 28 ± 3 mM with a 

maximum current imax of 7.4 ± 0.3 μA. Even though poly-(MG)-BP2 shows a lower 

maximum current (unlike the previous results) in comparison with poly-(MG)-BP1, it 

does have a lower KM
app value, suggesting better reaction rates.  
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C.3. Conclusion 

An exploratory study was made to electropolymerize MG onto new nanostructured 

SWNTs-based materials (bucky papers). Poly-(MG) was effectively deposited onto two 

types of bucky papers (BP1 prepared with SWNTs and isopropanol and, BP2 prepared 

with SWNTs, isopropanol and MG) and both demonstrated to be catalytically active with 

respect to NADH oxidation. The oxidation of NADH was further exhibited when adding 

a NAD+-dependent enzyme (MDH) and testing it towards its substrate (L-malate) 

oxidation. Catalytic activity following Michaelis-Menten behavior was observed for each 

electrode and was only possible due to the electrocatalytic effect of poly-(MG) bucky 

papers. Chronoamperometry was used for evaluation of the electrodes towards NADH 

oxidation and later for L-malate oxidation with MDH. The NADH oxidation deviated 

from Fick’s law behavior at high concentrations of NADH, as previously observed for 

poly-(MG) deposited on GC (Chapter 5). The catalytic activity of PMG was observed 

during chronoamperometric measurements of oxidation at 0.3 V for NADH and 0.1 V for 

L-malate oxidation by MDH. The use of SWNTs enhanced the surface area of the 

electrode material and provided sufficient conductivity. The nanostructure of the bucky 

papers allowed for growth of poly-(MG) in the form of particles, resulting in a high 

number of catalytic active sites per unit area for the enzyme to react. BP2 modified 

electrode presented in general better catalytic behavior, expressed in higher oxidative 

currents for NADH suggesting that the presence of MG monomer in the bucky paper 

material improves the electrode design. Despite the favorable results, due to the 

mechanical properties of the bucky paper materials, integration in 3-D bioanode design 
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becomes complicated. This research however demonstrates the versatility of SWNTs and 

opens the door for many potential applications of SWNTs as electrode materials.  
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