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Abstract

This doctoral dissertation presents three topics in modeling fluid transport through

porous media used in engineering applications. The results provide insights into the

design of fuel cell components, catalyst and drug delivery particles, and aluminum-

based materials. Analytical and computational methods are utilized for the modeling

of the systems of interest. Theoretical analysis of capillary-driven transport in porous

media show that both geometric and evaporation effects significantly change the time

dependent behavior of liquid imbibition and give a steady state flux into the medium.

The evaporation–capillary number is significant in determining the time-dependent

behavior of capillary flows in porous media. The analytical solutions for the front

position for 1D and 2D capillary flows and under normal evaporation agree with

experimental results.

The lattice Boltzmann method (LBM) is used for versatile and flexible modeling

of pore-scale phenomena in porous media. The LBM is used to show the the effects

v



of various physical phenomena, such as multiphase, electrochemical, and dissolution,

on pitting corrosion of aluminum surfaces in corrosive environments. In particular,

each of these phenomena may spontaneously manifest phenomenological asymmetries

that influence the growth of the corroding pit. Fluid motion in bimodal porous

particles shows heterogeneous flow behavior in the medium. A brief discussion is

given on implementations of parallel lattice Boltzmann schemes for future increase in

simulation model capabilities. Each of these topic areas may be extended by further

combining models of important physical phenomena.

In the appendices, additional prospective results are overviewed. The font shape of

capillary wicking from a finite line source into a 2D domain agrees qualitatively with

empirical observations. A discussion of the background and application of the LBM

to stress corrosion cracking in aluminum is given, where we show that thin cracks

will retain liquids better than wide cracks. Using a finite element model, we show

that flow through discrete mono-porous particles increases with increasing velocity

and permeability for low characteristic velocity; this scaling law shows that flow rate

is proportional to the Reynolds number times the square root of the Darcy number.
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D.4 Contour plot of front velocity, ṽf , over corresponding dimensionless
quantity and time for flow through thin porous strip. Dotted black
lines distinguish regimes of flow behavior; the lower left section is
dominated by capillary flow and upper right is at steady state. (a)
Dotted lines in the lower left and upper right correspond to Nnt̃ = 0.1
and Nnt̃ = 10, respectively. (b) Dotted lines in the lower left and
upper right correspond to Nst̃ = 0.1 and Nst̃ = 10, respectively.
This figure is similar to the lower right quadrant of (a). (c) Dotted
lines in the lower left and upper right correspond to Bo2

at̃ = 0.1 and
Bo2

at̃ = 10, respectively. (d) Dotted lines in the lower left and upper
right correspond to Nf

2t̃ = 0.1 and Nf
2t̃ = 10, respectively. The

figures, (c) and (d), are essentially identical. . . . . . . . . . . . . . 222

D.5 Contour plot of bulk velocity, Ũ , over corresponding dimensionless
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Chapter 1

Introduction

1.1 Transport in Porous Media

The study of porous media transcends science, engineering, and mathematics. Porous

media are investigated for practical and theoretical reasons in physics, hydrology,

mechanical, civil and chemical engineering, physiology, and medicine.2,3 It is a broad

and complex field ranging from supercomputer simulations of fuel cell catalysis at the

pore-scale to small continuum porous domains described by the Darcy equation.4,5 Ex-

periments on porous media flow range over time scales from seconds in microchannels

to decades in underground water movement.6,7 Mathematical analytical techniques of

porous flows vary from algebraic expressions, to full fluid models with Navier–Stokes,

and even to fractal and group theoretic approaches.8

Numerous critical factors need to be considered before attempting to predict the

transport in any given porous medium. Porous media generally have multiphase,

multi-species, non-isothermal, and non-laminar flows undergoing various chemical

and physical changes. Additionally, the media are often anisotropic and expand and

contract in a variety of fields, e.g. electric, gravitational. Illustrative examples of the
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variety of porous media and related phenomena are shown in figure 1.1. Evidently,

one must reduce the complexity of the system to be studied; some assumptions are

often very easily applied while others are only made as a first-level approximation.

These assumptions lead to the determination of a model types appropriate to the

fluid being studied; models are often computational or analytical and in some cases

may be a simplified experiment. First, the fluid particles may be tracked individually,

statistically, or as a collective mass, corresponding to the Liouville, Boltzmann, and

Navier–Stokes equations, respectively.9 These provide what are known as nanoscale,

mesoscale, and macroscale descriptions of the fluids and define the transition from

discrete to continuum models.10–12 The system becomes significantly more complex

when multiple phases are involved, as is the case in petroleum reservoirs which at the

simplest approximation often contain two liquid phases, one gas phase, and one solid

phase. Furthermore, within each phase it is very common in a variety of systems

for several chemical species to have an important role as is the case in chemically

reacting flows and diffusiophoretic mixtures. Additional difficulties which can arise

in the study of porous media include turbulent fluids for large pore media with high

flow rates, non-Newtonian flows as described by the theory of rheology, and phase

transformations such as freezing and evaporation.13

The solids in the porous media also admits descriptions from discrete fine scale

regimes up to models that utilize only effective parameters over a continuum domain.

To fully understand many complex porous media, a model at the scale of the indi-

vidual pores is required. These discrete pore models are usually more difficult to

construct generalized solutions to continuum models. In some cases, the problem of

interest may only require modeling of single pores or a small bundle of pores in a

simple geometry; in other cases large networks of highly tortuous pores of various

sizes need to be considered.8 A continuum model of a porous medium has certain

parameters described empirically or theoretically determined expressions, where dif-

ferent parameter values lead to different behaiors. The most common model is the

2
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(a) Bottle cork.14 (b) Fractured rock.15 (c) Freezing brick wall.16

(d) Fuel cell powered
clock.17

(e) Silica nanoparticle.18 (f) Corroded aluminum
part.19

Figure 1.1. Examples of porous media.

Darcy law where the velocity of fluid moving through a medium is directly related to

the pressure across the medium. The Darcy equation assumes a continuum approxi-

mation of both the medium and the fluid; it was first found experimentally but may

be derived by averaging over the Navier–Stokes equations.5 Incorporating additional

terms to the Darcy equation increases the accuracy and validity of its solution to

a wider range of media. An example is the Darcy–Brinkman–Forchheimer equation

which further accounts for inertia and multiple porosities.4,20 Other continuum ap-

proximations of pores are used for various physical properties beyond fluid transport

such as heat transfer and acoustics.

This work primarily focuses on some of the more common models of porous media

and additional physical effects. The central viewpoint of the dissertation is continuum

fluids flowing in discrete pores, however this perspective branches into different, but
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related, descriptions as suitable to the problem. We consider both statistical and

continuum models of the fluids, and describe solid domains spanning the scales of

single pore, many-pore, and continuum porous media. Gravitational forces, pressure-

driven flow, multiphase flows, and mass fluxes are used in multiple topics, while

multi-species processes, chemical reactions, and electrochemical transport methods

are lightly touched on. Significant extensions to the models employed would include

heat transfer, fractal solids, and self-consistent electrokinetic phenomena. We do not

consider turbulent or non-newtonian flows, swelling solid media, or solidification in

any detail.

1.2 Objectives

In this dissertation, we discuss three topic areas which involve modeling fluid transport

in porous media used for engineering applications: capillary wetting in macroscopic

fibrous media, single-pore-scale processes in pitting corrosion, and multi-pore scale

transport on the microscale. The goal is to apply fluid mechanics techniques to

design of materials and devices and to better understand fluid transport phenomena

in porous media. Thus, the work in this dissertation has important applications

materials and fluid systems engineering.

First we consider the dynamic influence of geometry and evaporation on liquid

absorbing into a porous medium by capillary forces. This has applications in design-

ing porous media which are used to drive fluids in small devices; an example system

is illustrated in Figure 1.1d where a clock is powered by a glucose reaction.17,21 The

work on capillary imbibition is primarily theoretical with some qualitative and quan-

titative experimental validation. The designs require quantitative means of knowing

the position of the wetted front of the liquid domain, the total rate of fluid entering

the domain, and the local flow-speed at given points in the domain.22 Each of these
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variables are dependent on the shape of the domain, particularly the dimensionality

of the expansion, and on other physical phenomena impacting the flow such as evap-

oration and gravity.23,24 The higher-dimensional or expanding shape of the porous

domain increases the flow rate through the inlet.

Secondly, we model species transport in a single pit on a corroding aluminum

surface. This project intends to give insights into the electrochemical corrosion process

for mitigating damage to aircraft components.25 Figure 1.1f shows an example of

aluminum corrosion which caused mechanical failure. The process is a single-pore

scale multiphysics problem which involves oxidation-reduction reactions and acid-base

chemistry as well as transport by electrokinetics, diffusion, and dissolution. Ideally,

we wish to determine key transport mechanisms of corrosion which can be mitigated

using chemical means and thereby protect the aluminum.

Finally, the third topic is on the single-phase flow of fluids through a porous

medium of two interconnected, distinct pore sizes. These bimodal porous, or simply

biporous, media are not well studied—particularly to understand the pore level effects

on the fluid motion—and may be useful in catalysis because the smaller pores increase

the surface area per volume of the particle.1,26 Thus the particles present a means

to improve surface reaction rates in catalysts.27 Computational methods give the

flexibility in analyzing how the relative pore sizes and interconnectivity of the pores

relates to the overall permeability of the medium. Knowing the transport properties

of biporous materials can also be used to improve the delivery rate of anti-cancer

compounds in drug delivery as illustrated in Fig. 1.1e.18
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Chapter 1. Introduction

1.3 Methods

1.3.1 Analytical

In general, appropriate continuum equations are a set of partial differential equations.

For some systems, such as in capillary wicking, assumptions are usually made to

reduce the complexity of the mathematical system such that the partial or ordinary

differential equations are analytically solvable.28,29 These assumptions include using

known problem geometries which are well described by simple coordinate systems.30,31

In some cases the semi-analytical solutions are derived in the form of non-analytical

integrals; then numerical methods are employed to evaluate these expressions.32,33

1.3.2 Computational

In fundamental chemical engineering research, several common methods in computa-

tional fluid dynamics are applicable to various types of porous simulations, particu-

larly for models of individual or small groups of pores. The finite element method

(FEM) is generally flexible in formulating the domains and discretized physical equa-

tions.34,35 FEM is useful for both flows in discrete porous media and directly for

continuum equations because it is based on variational methods for differential equa-

tions.36 Two other methods, finite differences (FDM) and finite volumes (FVM), are

also widely used partly because they are often simpler to implement.37,38

The lattice Boltzmann method (LBM) is a more recent development which has

matured over the last twenty years to become significant in the modeling of porous

media.13 Numerous other methods are used for modeling fluids transport such as

boundary element method, smooth particle hydrodynamics, dissipative particle dy-

namics, classical density functional theory, and even molecular dynamics.39–43 The

6



Chapter 1. Introduction

lattice Boltzmann method is principally utilized in this dissertation because it han-

dles amorphous solids very easily and is relatively simple to program for multiple

physical effects. In an appendix, we also conduct a finite element simulations to

analyze flow through pores of a single size through isolated particles.

1.3.3 Experimental

This dissertation is largely focused on theoretical and computational models, although

results that are empirically testable are desired for validation of the results. Ulti-

mately, experiment determines when the predictions of models are correctly applied

in a given system. Experimental work on the effects of surface evaporation on liquid

imbibition has been conducted but needs to be extended to account for front and side

boundary evaporation for the proposed theory to be tested comprehensively.∗ Numer-

ous studies of pitting corrosion in aluminum have been carried out,44–46 however we

are focused on computational investigation of the process to uncover phenomena on a

nano to micro scale which may be difficult to observe empirically. Finally, microscale

measurements of the permeability in biporous media would be challenging to profile

physically and are beyond the reasonable scope of this dissertation.1

1.4 Overview

Below we overview the content of this dissertation; the relationships between the

chapter topics are illustrated in Fig. 1.2.

The following five chapters discuss continuum models of the capillary wetting

behavior of dry porous media. In Ch. 2, two-dimensional and three-dimensional

expanding capillary flows are discussed, and the dynamics are compared with the

∗ See Apx. G for details.
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Chapter 1:
Introduction

Chapter 2:
Capillary Flow

Chapter 3:
1D Evaporation

Chapter 4:
2D Surface Evaporation

Chapter 5:
Other Phenomena

2D and 3D

Chapter 6:
Corrosion Modeling

Chapter 7:
Biporous Media

Chapter 8:
Conclusion

Figure 1.2. Layout of the dissertation.

known one-dimensional Lucas–Washburn solution for wetting Darcy flows. The effects

of the three modes of evaporation—normal surface, side, and front evaporation—as

well as restraint by gravity, in thin porous media are introduced and discussed in

Ch. 3. These two chapters are based on as Refs.23 and24, respectively. Normal surface

evaporation, which is predominant in thin media, is investigated in Ch. 4 for 2D

expanding flows. The other phenomena which affect capillary flow, as first discussed

in Ch. 3 for the 1D-like domain, are briefly investigated for 2D and 3D domains in

Ch. 5. For the first time in published literature, we observe the evaporation–capillary

number which determines the time-dependent behavior of capillary porous media and

is central to the analyses given in Chs. 3 through 5.

Chapters 6 and 7 develop computational pore-scale multi-physics models of trans-
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Chapter 1. Introduction

port in porous media using the lattice Boltzmann method. Several models of key

processes in pitting corrosion are modeled using the LBM in Ch. 6. Ch. 7 discusses

flow in biporous media and parallelization of the LBM. Finally, the conclusions are

summarized in Ch. 8.

Appendices provide common background material, supplemental chapter details,

and further preliminary work.
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Chapter 2

Porous Media Capillary Driven

Flow into Expanding Geometries

2.1 Introduction

Capillary driven liquid flows in porous media are ubiquitous phenomena that occur

both in nature and in various practical applications.8,21,47–52 The dynamics of such

flows was first analyzed about a century ago53–55 for the simple case of one dimensional

transport in porous materials (capillaries) of uniform cross-section. The advancement

of the liquid is driven by the capillary pressure due to the curvature of the liquid-gas

interface in each individual pore. Hence the liquid should wet the pore walls with a

contact angle that is less than 90°. As the liquid penetrates further into the porous

material of constant cross section, the total hydrodynamic resistance increases and

the bulk flow rate decreases proportionally to t1/2 (where t is time). This result

is often referred to as the Lucas–Washburn (LW) relationship.54,55 Strictly the LW

model was derived for the flow in a single straight capillary. For a porous media the

LW relationship has an average macroscopic meaning, similar to the Darcy equation

10



Chapter 2. Porous Media Capillary Driven Flow into Expanding Geometries

8,56 with pressure drop determined by capillarity and a permeability coefficient that

is a complex function of the porosity. The LW model is based on the assumption that

the flow is governed by the liquid motion, and the displacement of the gas phase at

the front does not significantly slow the flow due to its much lower dynamic viscosity.

The model assumes a single-phase system with a moving front, and is valid in the

limit of small gas pressure and low density. This has been both experimentally and

theoretically shown to be reasonable for a great number of systems involving liquids

moving in porous media.8,50,57–63 In the case of two immiscible liquids displacing each

other, the flow needs to be treated as a two-phase and will depend on both viscosities.8

The focus of the present paper is on liquid phase capillary flow in porous materials

without entrapment of air anywhere in the wetted region.

Liquid penetration in porous media that is expanding or contracting in the direc-

tion of the flow behaves differently than for a constant cross-section porous media.

Estimations of the bulk flows in 2D and 3D expanding porous media were offered57–59

suggesting that the time dependence of the flow deviates from the LW one-dimensional

(1D) case. The cases of 2D radial flow where the front is represented by a gradually

expanding circle was analyzed in detail by Hyväluoma et al.61 The authors com-

pared the capillary driven flow Darcy type model to a lattice Boltzmann simulation

and obtained excellent agreement, thus validating the analytical approach. The de-

tailed analysis of the 3D case corresponding to an expanding spherical surface was

performed by Xiao et al.60 There the capillary driven transport model was tested

against carefully performed experiments and again both were found to be in agree-

ment. To maintain circular or spherical symmetries the flows must start from a point

or an already circular (for 2D) or spherical (3D) boundary. Hyväluoma et al.61 used

the model to describe the penetration of liquid in two dimensions (2D) from a droplet

with circular circumference sitting on porous paper. They showed that the liquid

velocity decreases with time following a different and more complicated dependence.

Xiao et al.60 used the spherical expansion model to fit experimental data on capil-
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lary penetration of water in packed glass beads. All these results are very important

because they imply that the shape of the porous material leads to qualitative dif-

ferences in the resulting flow patterns. This means that applications using capillary

driven transport in porous media can be optimized by simply shaping the materials

accordingly.50

–a a

(a)

–a a

(b)

–a a

(c)

–a a

(d)

Figure 2.1. Examples for flows in various types of expanding porous media in 2D [see
Eqs. (2.3.1) and Figure 2.2]. Case (a) corresponds to 0 ≤ ψ ≤ π. Case (b) corresponds to
where ψ1 ≤ ψ ≤ π−ψ1 is an arbitrary angle. Case (c) corresponds to ψ1 ≤ ψ ≤ π. Case (d)
corresponds to ψ1 ≤ ψ ≤ π/2. Rotating cases (a) and (b) around the y-axis gives a 3D
flow in expanding media [see Eqs. (2.4.1) and Figure 2.3] with 0 ≤ θ ≤ π/2 and 0 ≤ θ ≤ θ1

respectively, where θ1 is an arbitrary angle.

Here we present analytical results for the flow in porous media that exhibit sudden

expansion (see Figure 2.1). The flow in these cases is not necessarily radial as in the

Refs.60,61 because the entrance to the expanding porous space has finite dimension

and is usually flat instead of circular. Our results include a linear velocity field at each

point (on a scale greater than the typical average pore size) in the domain of interest.

12
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The detailed knowledge of the local fluid velocity is very important for applications

like designing paper based diagnostic devices with different shapes,48,50 delivering

solutions to power fuel cells21 or to better understanding how moisture penetrates

construction materials.57,58 We derive the position of the wetted front as well as the

bulk flow rate in the porous material as functions of the elapsed time. The 2D solution

is applicable to a wide variety of shapes. The 3D case can be treated analytically

only if the domain has axial symmetry. We will limit our analysis to porous domains

with zero flow across the side boundaries and will ignore inertial effects. Inertia and

hydrodynamic nonlinearity are important in the initial moment of liquid penetration

into the porous media and depends on the driving capillary pressure.64 The latter is a

function of the pore (capillary) radius and the wetting contact angle. As the pores may

vary in size, the capillary pressure used in our model is an average over the pore size

distribution, which has to be sufficiently narrow to prevent capillary fingering from

occurring. It was shown by Lavi et al.64 that for radii of the order of 50 µm inertia

is usually important. If the wetting contact angle is 0° then inertial terms might be

significant down to 10 µm pore radii.64 Below these pore sizes, viscosity is dominant

and inertia does not play a role. The solution is restricted to the assumption that

gravitational effects are negligible. For systems that are approximately 2D, this is

usually reasonable even for large systems as the dimensions are commonly orthogonal

to the gravitational field. However in 3D this means that the solution degrades as the

capillary pressure times the surface area approaches the weight of the fluid because

this greatly distorts the front of the advancing fluid by gravitational percolation.59

Finally, our analysis does not include possible evaporation of 2D surfaces or of the

side boundaries for both 2D and 3D systems.∗

In the next section, we present a general overview of the capillary driven flow in

porous materials. Section 2.3 presents the derivation of results for the flow velocity

∗ Permeable evaporative side boundaries and surface evaporation are discussed in Chs. 3

and 4; the former is published as Ref.24.
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in 2D expanding porous media, Section 2.4 presents the solution for the capillary

driven flow in an expanding 3D porous material, Section 2.5 discusses and compares

the results for each of the respective geometries, and Section 2.6 summarizes the

conclusions.

2.2 Governing Equations for the Flow in Porous

Media

The flow of incompressible liquid in porous media is given by the mass balance

∇ · v = 0, (2.2.1)

where v is the linear liquid velocity on a scale that is larger than the individual pore

size. For mass flux a sink or source term, Q, (e.g., evaporation, condensation, etc.)

may be added to the right hand side of (2.2.1); this term is presently ignored.∗ The

liquid flow in porous media is irrotational;65 therefore the velocity can be expressed

by means of the velocity potential, ϕ,

v =∇ϕ = −k
µ
∇P, ϕ = −k

µ
P. (2.2.2)

The right hand side of Eq. (2.2.2) is the Darcy law56,65 with k being the permeability

of the medium, µ is the dynamic shear viscosity of the liquid, and P is the pressure

that drives the flow. In the case of capillary driven flow the pressure is equal to66

Pc = γ cos(α)

(
1

R1

+
1

R2

)
, (2.2.3)

where γ is the interfacial tension at the gas-liquid interface, α is the contact angle

that characterizes the wetting of the solid. R1 and R2 are the two principal radii of

∗ We detail the theoretical basis of this evaporation model in §3.2 and explore it further in

§4.2. See the derivation of Eq. (3.2.2).
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curvature of the pore. Equations (2.2.1) and (2.2.2) can be combined to give

∇2ϕ = 0. (2.2.4)

Eq. (2.2.4) will be used to obtain expressions for the liquid flow in all cases analyzed

below.

2.3 Exact Solution for Two–Dimensional Expan-

sion

Different examples illustrating capillary liquid transport in expanding 2D porous me-

dia are sketched in Figure 2.1. Figures 2.1a and 2.1b show symmetric regions with

different extent of expansion. Figures 2.1c and 2.1d represent two asymmetric cases.

The liquid enters the expanding region through an entrance with finite width. Because

of the finite size of the entrance, the shape of the expanding liquid front is elliptical

rather than circular as in the case discussed by Hyväluoma et al.61 The entrance is

saturated with liquid and the pressure there equals the ambient. The front of the

moving wetted region is where the liquid meets the gas phase in the pores and the

pressure there is equal to the ambient minus the capillary pressure [see Eq. (2.2.3)].

Hence, we look for a solution in the domain that starts at entrance and propagates a

wetted front. The problem is best defined in elliptic coordinates31 (see Figure 2.2)

x = a cosh(η) cos(ψ), (2.3.1a)

y = a sinh(η) sin(ψ). (2.3.1b)

The general form of Eq. (2.2.4) then becomes

1

a2
(
cosh2(η)− cos2(ψ)

) (∂2ϕ

∂η2
+
∂2ϕ

∂ψ2

)
= 0 (2.3.2)
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x

y

−a a

ψ = const

η = const

Figure 2.2. Elliptic coordinates, used to describe the flow in an expanding 2D porous
domain. The points −a and a are the foci of the ellipses.

If there is no liquid flow across the edges of the domain that are defined by and (see

Figure 2.1), there will be no variation of ϕ with respect to the angular variable ψ.

Hence the term ∂2ϕ/∂ψ2 can be omitted from Eq. (2.3.2) and the equation simplifies

to
d2ϕ

dη2
= 0. (2.3.3)

The solution of this equation describes concentric elliptic lines that correspond to the

flow potential ϕ at a given η. The boundary conditions are

ϕ|η=0 = ϕ0 = −k
µ
Pc, (2.3.4a)

ϕ|η=ηf
= 0, (2.3.4b)

where η = 0 at the entrance and η = ηf at the front. The solution of Eq. (2.3.3) is

then

ϕ = −k
µ
Pc

(
1− η

ηf

)
. (2.3.5)
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Hence the velocity of the moving liquid is

v =∇ϕ =
1

a
(
cosh2(η)− cos2(ψ)

)1/2

∂ϕ

∂η

=
1

a
(
cosh2(η)− cos2(ψ)

)1/2

(
kPc

µ

1

ηf

)
. (2.3.6)

Following the approach outlined by Washburn,55 we derive an equation for the velocity

of the moving front

vf = a
(
cosh2(ηf )− cos2(ψ)

)1/2 dηf
dt

=
1

a
(
cosh2(ηf )− cos2(ψ)

)1/2

[
∂ϕ

∂η

∣∣∣∣
η=ηf

=

(
kPc

aµ

)
1(

cosh2(ηf )− cos2(ψ)
)1/2

1

ηf
. (2.3.7)

It is convenient to use a dimensionless velocity that has the form ṽf = (µa/kPc) vf .

The time dependence of the position of the liquid front ηf (t) can be derived by

integrating Eq. (2.3.7)

kPc

µ

ˆ ηf(t̃)

0

(
cosh2(ηf )− cos2(ψ)

)
[∂ϕ/∂η|η=ηf ′

dηf
′ = t̃, (2.3.8)

were t̃ = (kPc/µa
2) t. After integrating Eq. (2.3.8) we find the following relationship

for the time dependent position of the liquid front

ηf sinh(2ηf )−
1

2
cosh(2ηf )− cos(2ψ)ηf

2 +
1

2
= 4t̃. (2.3.9)

Differentiating with respect to time and multiplying, Eq. (2.3.9), by the factor a
(
cosh2(η)− cos2(ψ)

)1/2

gives the time-dependent velocity of the front [see the left hand side of Eq. (2.3.7)].

Alternatively ηf
(
t̃
)

can be introduced in the last line of Eq. (2.3.7) to obtain the time

dependence of the linear velocity ṽf
(
t̃
)
.
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Another quantity of interest is the volumetric flux of liquid U . It is equal to the

integral over the liquid velocity across the area of the front, or [see Eq. (2.3.7)]

U
(
t̃
)

=

¨

A

v · n dA

= a

ˆ ψ2

ψ1

vf
(
t̃
) (

cosh2
(
ηf
(
t̃
))
− cos2(ψ)

)1/2
dψ

=
kPc

µ

1

ηf
(
t̃
) (ψ2 − ψ1). (2.3.10)

Here, we have assumed that the front velocity, ηf , is independent of ψ.∗ Since the

liquid motion occurs in a 2D plane, the above result is per unit length in the direction

normal to the plane surface. The local velocity ṽ will decrease with the increase of

η in an expanding domain and is lowest at the front where η = ηf . The volumetric

flux U conserves because as the velocity decreases the front area increases to exactly

compensate for that. Both, however, will change with time. For fully open entrance

(ψ1 = 0, ψ2 = π) one obtains

U
(
t̃
)

=
kPc

µ

π

ηf
(
t̃
) . (2.3.11)

2.3.1 Asymptotic Results for Small and Large ηf

For short times, ηf is small and we can further simplify the solution (2.3.9) (also

setting ψ = π/2) to read
ηf

2

2
= t̃. (2.3.12)

This expression is formally identical to the LW result54,55

L(t)2

2a2
= t̃, (2.3.13)

which describes the position of the front L(t) in porous domain with constant cross-

section.† Hence for short times and small ηf the effect of the expansion is negligible.

∗ This assumption is often inaccurate as we will discuss in the derivation of Eq. (4.3.22)

and observe in Figures E.1a and E.2. † We derive the Lucas–Washburn equation using

potential flow in Eq. (3.3.25).
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It is also important to stress that the short times discussed here are reflecting only the

effect of the porous media geometry and are still long in comparison to the time-scale

of any inertial fluid motion. Inertia (if present) occurs on a time scale that is much

faster (about at fraction of a second) and practically absent for pores with radii below

10 µm, or for even larger pores if the wetting contact angle is less than 0°.64

The asymptotic result for large ηf is obtained by realizing that sinh(2ηf ) →
exp(2ηf )/2 and cosh(2ηf ) → exp(2ηf )/2. At long times the asymptotic result for

(2.3.9) is
1

8
ηf exp(2ηf )−

1

16
exp(2ηf ) = t̃. (2.3.14)

As will be shown below, Eq. (2.3.14) is identical to the long time asymptotic results

of Hyväluoma et al.,61(
rf
r0

)2

ln

(
rf
r0

)2

−
(
rf
r0

)2

+ 1

≈
(
rf
r0

)2

ln

(
rf
r0

)2

−
(
rf
r0

)2

= 4
kPc

µr2
0

t. (2.3.15)

rf is the position of the expanding liquid front and r0 is the radius of the entrance,

which in their analysis must be circular. Using the relationship between polar and

elliptical coordinates defined by

r2 = x2 + y2 = a2
(
cosh2(η) cos2(ψ) + sinh2(η) sin2(ψ)

)
, (2.3.16)

one can write Eq. (2.3.15) in terms of ηf . Thus tracing the position of the liquid front

along the y-axis we obtain

r2
f

r2
0

=
a2

r2
0

sinh2(ηf ) + 1. (2.3.17)

The term 1 on the right hand side of the above equation is added to ensure that

rf/r0 ≥ 1. Inserting (2.3.17) into (2.3.15) describes the position of the liquid front

(along the y-axis) as a function of time(
sinh2(ηf ) +

r2
0

a2

)
ln

(
sinh2(ηf ) +

r2
0

a2

)
− sinh2(ηf ) = 4

kPc

µr2
0

t = 4t̃. (2.3.18)
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The factor r2
0/a

2 can be found from the condition that entrances for both circular

and elliptical cases are the same. For 0 ≤ ψ ≤ π this condition reads

2a = πr0 or
a

r0

=
π

2
. (2.3.19)

For large ηf we have

cosh2(ηf )→
1

4
exp(2ηf ), sinh2(ηf )→

1

4
exp(2ηf ), (2.3.20)

and
r2
f

r2
0

=
a2

r2
0

1

4
exp(2ηf )

(
cos2(ψ) + sin2(ψ)

)
=
a2

r2
0

exp(2ηf )

4
. (2.3.21)

Then the right hand side of Eq. (2.3.15) becomes

a2

r2
0

exp(2ηf )

4
ln

(
a2

r2
0

exp(2ηf )

4

)
− a2

r2
0

exp(2ηf )

4

=
a2

r2
0

(
exp(2ηf )

4

[
2ηf + ln

(
a2

4r2
0

)]
− exp(2ηf )

4

)
≈ a2

r2
0

[
ηf exp(2ηf )

2
− exp(2ηf )

4

]
, (2.3.22)

since 2ηf � ln (a2/4r2
0). Introducing the above expression in Eq. (2.3.15) makes it

identical to (2.3.14). For very large ηf and one may use the approximation

x lnx− x ≈ ln(x!) ≈ ln[Γ(x+ 1)], (2.3.23)

which allows to write the left hand sides of Eq. (2.3.15) in a more compact form;

1

8
ηf exp(2ηf )−

1

16
exp(2ηf ) ≈

1

16
ln
[
Γ
(
e2ηf + 1

)]
. (2.3.24)

2.4 Exact Solution in Three–Dimensional Expan-

sion

For flow in 3D porous media, a general grasp of the geometry can be obtained from

Figures 2.1a and 2.1b if the graphs are revolved around their vertical axis of symmetry
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x
ya−a

z

η

θψ

x
ya−a

z

η

θ
ψ

Figure 2.3. Oblate spheroid coordinates, used to describe the flow in an expanding 3D
porous domain. (Stereoscopic images) The points −a and a are the foci of the oblate surface
corresponding to η. Only systems with axial symmetry are considered.

(the z-axis in Figure 2.3). The coordinates that are relevant to such system are defined

by31 (see also Figure 2.3)

x = a cosh(η) sin(θ) cos(ψ), (2.4.1a)

y = a cosh(η) sin(θ) sin(ψ), (2.4.1b)

z = a sinh(η) cos(θ). (2.4.1c)

Note that the variable ψ is different from the one used in the elliptic 2D case discussed

above (see Figure 2.3 and compare it to Figure 2.2). The Laplace equation for the

flow potential, Eq. (2.2.4), has the form31

∇2ϕ =
1

a2
(
cosh2(η)− sin2(θ)

) (∂2ϕ

∂η2
+ tanh(η)

∂ϕ

∂η
+
∂2ϕ

∂θ2

+ cot(θ)
∂ϕ

∂θ

)
+

1

a2 cosh2(η) sin2(θ)

∂2ϕ

∂ψ2
= 0.

(2.4.2)

Since we consider an axis-symmetric domain, ∂2ϕ
∂ψ2 = 0, the last term can be omitted.

Additionally, we assume there is no flow across the surface corresponding to θ = π/2

and θ = −π/2, hence there is no change with θ and all derivatives with respect to

the polar angle are zero. Therefore Eq. (2.4.2) can be significantly simplified to

∂2ϕ

∂η2
+ tanh(η)

∂ϕ

∂η
= 0. (2.4.3)
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This equation describes concentric oblate surfaces that correspond to the flow poten-

tial ϕ(η). The boundary conditions for capillary driven flow are identical to those

given by Eq. (2.3.4)

ϕ|η=0 = ϕ0 = −k
µ
Pc, (2.4.4a)

ϕ|η=ηf
= 0. (2.4.4b)

The solution for the flow potential is then

ϕ = ϕ0

(
1− arctan[tanh(η/2)]

arctan[tanh(ηf/2)]

)
. (2.4.5)

Note that for ηf →∞ the above expression becomes

ϕ = ϕ0

(
1− 4 arctan[tanh(η/2)]

π

)
. (2.4.6)

which means that in the 3D case we have a finite asymptotic result for infinite domains

which is not true for the one and two dimensional cases.

The liquid velocity profile in the 3D porous region has only an η-component, which

is

vη =
1

a
(
cosh2(η)− sin2(θ)

)1/2

∂ϕ

∂η

=

(
kPc

aµ

)
1

2 cosh(η)
(
cosh2(η)− sin2(θ)

)1/2
arctan[tanh(ηf/2)]

. (2.4.7)

The velocity of the front is

vf =
1

a
(
cosh2(η)− sin2(θ)

)1/2

[
∂ϕ

∂η

∣∣∣∣
η=ηf

=

(
kPc

aµ

)
1

2 cosh(ηf )
(
cosh2(ηf )− sin2(θ)

)1/2
arctan[tanh(ηf/2)]

. (2.4.8)

The velocity is formally expressed in terms of the spatial and temporal variables by

vf = a
(
cosh2(ηf )− sin2(θ)

)1/2 dηf
dt

. (2.4.9)
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Hence, combining (2.4.8) and (2.4.9) one derives

ˆ ηf(t̃)

0

(
cosh2(ηf

′)− sin2(θ)
)

arctan

[
tanh

(
ηf
′

2

)]
cosh(ηf

′) dηf
′ =

kPc

2µa
t =

t̃

2
.

(2.4.10)

After integration we obtain a relationship between the front position ηf and scaled

time t̃

1

3
arctan[tanh(ηf/2)] [2 + 3 cos(2θ) + cosh(2ηf )] sinh(ηf )

− 1

6
[1 + 3 cos(2θ)] ln[cosh(ηf )]−

1

12
[cosh(2ηf )− 1] = t̃.

(2.4.11)

The front velocity is then obtained by introducing the obtained time dependence of

ηf in Eq. (2.4.8) or (2.4.9). Assuming ηf is not a function of θ, the volumetric flux is

obtained from

U
(
t̃
)

=

¨

A

v · n dA ,

=
kPc

µa

a2

arctan
[
tanh

(
ηf
(
t̃
)
/2
)] ˆ 2π

0

dψ

ˆ θ0

0

sin(θ) dθ ,

=
2πakPc

µ

(1− cos(θ0))

arctan
[
tanh

(
ηf
(
t̃
)
/2
)] . (2.4.12)

For full open entrance (θ0 = π/2), this reduces to

U
(
t̃
)

=
2πakPc

µ

1

arctan
[
tanh

(
ηf
(
t̃
)
/2
)] . (2.4.13)

2.4.1 Asymptotic Results for Small and Large ηf

For short times and small values of ηf and θ = 0, Eq. (2.4.11) simplifies to

ηf
2

2
= t̃. (2.4.14)

The long-time, large ηf , asymptotic result can be derived for Eq. (2.4.14) using the

same arguments as above [see Eq. (2.3.14)] and also noting that arctan
[
tanh

(
ηf
(
t̃
)
/2
)]
→
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π/4. The result is
π

4

exp(3ηf )

12
= t̃. (2.4.15)

For large ηf the front shape should approach that of an expanding sphere. The latter

can be derived from Eq. (2.2.4) written in the form

1

r2

d

dr

(
r2 dϕ

dr

)
= 0, (2.4.16)

together with the following boundary conditions

ϕ|r=r0 = ϕ0 = −k
µ
Pc, (2.4.17a)

ϕ|r=rf = 0. (2.4.17b)

Then the solution for the potential is (see also Ref.60)

ϕ = ϕ0
rfr0

rf − r0

(
1

r
− 1

rf

)
. (2.4.18)

It is interesting to point out that in the case of 3D radial flow, there is a finite solution

for ϕ(r) even if rf is at infinity. In this case

ϕ = ϕ0
r0

r
. (2.4.19)

The radial velocity is then

vr =
∂ϕ

∂r
= −ϕ0

rfr0

rf − r0

1

r2
=

rfr0

rf − r0

kPc

µ

1

r2
. (2.4.20)

At r = rf

vf =
drf
dt

=
r0

rf (rf − r0)

kPc

µ
(2.4.21)

Hence the time-dependent position of the moving front is given by

ˆ rf (t̃)

r0

r′f
(
r′f − r0

)
r3

0

dr′f =
1

3

r3
f

(
t̃
)

r3
0

− 1

2

r2
f

(
t̃
)

r2
0

+
1

6
=
a2

r2
0

t̃. (2.4.22)
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The radial coordinate in 3D oblate spheroid coordinates is

r2 = x2 + y2 + z2,

= a2
(
cosh2(η) sin2(θ) cos2(ψ) + cosh2(η) sin2(θ) sin2(ψ) + sinh2(η) cos2(θ)

)
,

= a2
(
cosh2(η) sin2(θ) + sinh2(η) cos2(θ)

)
. (2.4.23)

At the front η = ηf and for large ηf , we use the approximations cosh2(ηf ) →
1
4

exp(2ηf ) and sinh2(ηf )→ 1
4

exp(2ηf ). Hence

r2
f

r2
0

=
a2

r2
0

exp(2ηf )

4
, (2.4.24)

and Eq. (2.4.22) becomes

1

3

r3
f

(
t̃
)

r3
0

− 1

2

r2
f

(
t̃
)

r2
0

+
1

6
=

a3

3r2
0

exp(3ηf )

8
− a2

2r2
0

exp(2ηf )

4
+

1

6

=
a2

r2
0

t̃, (2.4.25)

or

a

r0

exp(3ηf )

24
− exp(2ηf )

8
+

r2
0

6a2
= t̃. (2.4.26)

Keeping only the leading order term in (2.4.27) and expressing the ratio a/r0 using

Eq. (2.3.19) we obtain
π

2

exp(3ηf )

24
= t̃, (2.4.27)

which is identical to (2.4.15).

2.5 Results and Discussion

2.5.1 Transport in Two–Dimensional Expansions

Two effects govern the liquid transport in an expanding 2D porous region. Both

of them follow from the mass conservation of the incompressible liquid. The first
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Figure 2.4. Position of the liquid front in an expanding 2D porous material as a function
of time [see Eq. (2.3.9)] (solid line). The dashed line is corresponds to the non-expanding
LW result [see Eq. (2.3.12)]. The dotted line represents the result for an expanding circular
front [see Eq. (2.3.15)].

one follows from the mass conservation and is due to the liquid distribution over

an ever-increasing space (or area). This effect leads to an apparent decrease in the

velocity of the moving front. At the same time the liquid travels less distance per

unit time which lowers the friction resistance while the capillary force increases due

to the expansion of the front. The combination of the two effects slows down the

linear velocity and facilitates the bulk flow rate in an expanding porous material.

Figures 2.4 and 2.5 show the dependence of the liquid front position and linear velocity

of capillary driven liquid flow in two dimensional porous regions. The solid lines

correspond to the case depicted in Figure 2.1a (the entrance has finite dimensions).

The plot was derived from Eq. (2.3.9) setting ψ = π/2 i.e., the flow along the y-

26



Chapter 2. Porous Media Capillary Driven Flow into Expanding Geometries

10−2 10−1 100 101 102
10−2

10−1

100

101

t̃
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Figure 2.5. Velocity of the liquid front for capillary motion in expanding 2D porous
material. The solid line corresponds to the flow depicted in Figure 2.1a [see also Eqs. (2.3.7)
and (2.3.9)]. The dashed line shows the LW while the dotted show the 2D radial flows.

axis is traced (see Figure 2.2). It is compared to the LW power-law case54,55 of

non-expanding porous material which maintains constant cross sectional dimension

[dashed line, see also Eqs. (2.3.12) and (2.3.13)], as well as to the case of radial flow61

[see Eq. (2.3.15)]. At short times the front position shows a power law increase similar

to the LW solution. This is due to the fact that the effect of the expansion is weak for

short distances, the liquid has not spread too much, and the streamlines are almost

parallel. As time progresses, however, the expansion effect increases and the distance

traveled by the front in the expanding porous domain decreases in comparison with

the non-expanding LW case because liquid has also moved to the sides to form the

elliptically shaped front. For long times the front becomes less elliptical and more

circular and the solution for the front position asymptotically approaches that for
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Figure 2.6. Bulk flow rate vs. time for expanding 2D porous materials. The solid line
corresponds to the flow depicted in Figure 2.1a [see Eq. (2.3.11) and (2.3.9)]. The dashed
line shows the LW while the dotted—the 2D radial flows for large ηf .

an expanding circle given by the dotted line in Figure 2.4 [see Eq. (2.3.14) and the

discussion thereafter]. Hence, the LW54,55 solution and the circular expansion result

obtained by Hyväluoma et al.61 represent the limiting cases of no expansion and

maximum expansion in 2D. Our result given by Eq. (2.3.9) describes the entire time

behavior including two limiting cases as well as the intermediate case, and as seen

from Figure 2.4. The latter applies to a range of more than two orders of magnitude

of the scaled time.

The time dependence of the linear velocity of the liquid front is shown in Figure 2.5.

The solid line corresponds to our solution given by Eq. (2.3.7) in combination with

(2.3.9). The dashed line is the LW result54,55 and the dotted line is that for the
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radial flow when rf/r0 or, equivalently, ηf are large.61 Clearly the velocity drops with

time for all the cases but at different rates. If the porous region does not expand,

then the reason for the velocity decrease is due to the increase of the length of liquid

penetration. This length contributes to the viscous resistance and hence, slows down

the motion. If the liquid travels in an expanding material (like the examples outlined

in Figure 2.1) the front motion is also slowed by the fact that liquid is diverted

sideways into the available expanding space. The effect of the expansion is strongest

in the case of pure radial flow. At short times our solution is close to that for a non-

expanding medium and asymptotically approaches the one for radial flow for very

long times.

It is interesting to examine the dependence of the bulk (volumetric) flow rate since

it is a measure of the ability of the porous material to absorb liquid. An important

practical application exploiting this ability is to drive fluid in devices and material us-

ing capillary action instead of an external power source.50 The solid line in Figure 2.6

shows the change of the bulk flow rate with time calculated from Eq. (2.3.11). Since

we are considering a 2D domain, the bulk flow rate is calculated per unit length in di-

rection normal to the plane of the flow. Again for comparison both the non-expanding

LW and the radial expanding cases (for large ηf ) are shown. Both are obtained in a

similar way by multiplying the liquid velocity at the front by its length. Clearly an

expanding porous material has better capabilities of absorbing liquids; as it is evident

in the plots, the bulk flow rate decreases much slower with time in comparison with

the non-expanding case.

2.5.2 Transport in Three–Dimensional Expansions

The effect of expansion is stronger when it occurs in three dimensions. The reason

is that there is more space available for the liquid to occupy as it moves forward
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Figure 2.7. Liquid front position as a function of the elapsed time in a 3D expanding
porous material. The solid line corresponds to the solution in oblate spheroid coordinates,
the dashed line is the LW non-expanding case and the dotted line is the solution for spherical
expansion at large ηf .

driven by capillary pressure. The calculations presented below are for fully opened

medium where θ = π/2 (see Figure 2.3). The entrance has a circular shape. The

flow along the y-axis is traced, which corresponds to θ = 0. Figure 2.7 shows the

position of the fluid front as a function of the elapsed time. The solid line corresponds

to the solution in oblate spheroid coordinates given by Eq. (2.4.11) (i.e. the fluid

enters the porous material through a circular entrance with finite dimension) and it

is compared to the non expanding case (dashed line) and the expansion in spherical

symmetry for large rf/r0 [or ηf—see Eq. (2.4.27)]. At short times the expansion effect

is insignificant while at long times the behavior approaches that of an expanding

spherical front. Similarly to the 2D case, our solution interpolates between these two
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ṽ f

Lucas–Washburn
Oblate Spheroidal
Spherical

Figure 2.8. Linear velocity of the moving liquid front in 3D porous material. The solid line
represents the solution for an oblate spheroid front, the dashed line is for the LW solution
and the dotted line corresponds to the asymptotic case of an expanding spherical front.

limiting cases and provides a correct description for the cases where the liquid enters

the 3D expanding porous material through an entrance with a finite size.

The linear velocity of the advancing liquid front is shown in Figure 2.8. The

effect of the expansion on the front velocity resembles 2D (see Figure 2.5) but more

pronounced because of the spreading of the liquid over larger front area. That leads

to greater reduction of the velocity of the moving liquid front.

The bulk volumetric velocity is presented in Figure 2.9. It should be emphasized

that the 3D expanding case allows for a solution where fluid will keep entering the

porous material through the circular entrance. This is also evident from Eq. (2.4.13)
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Figure 2.9. Bulk flow in 3D porous medium. The solid line the result for oblate spheroid
symmetry, the dashed line corresponds to the LW case and dotted line represents the spher-
ical case.

which for time and ηf →∞ becomes

Ũ∞ =
µU∞

2πakPc

=
4

π
. (2.5.1)

This result implies that 3D porous media can be used as capillary pumps to drive

fluids in devices. This cannot be accomplished if the porous material does not expand,

or the expansion is two dimensional (see also the discussion below). The actual rate

of drawing liquid in, however, will depend on parameters such as the average pore

size, liquid viscosity, and pore wetting ability and may turn out in many cases to be

too low (see experimental results in Xiao, et al.60).

Since the asymptotic result, Eq. (2.5.1), follows from the dimensionality of the

system, one may expect that similar relationship to exist for the pure radial (spherical)
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transport (see Figure 2.9). Indeed using equation (2.4.20) we can find the linear

velocity at the entrance where r = r0. To obtain the bulk flow rate one needs to

multiply the result by the area of the entrance which we assume to be a hemispherical

in order to better compare to the oblate spheroid case discussed above. Thus the

asymptotic (rf →∞) expression reads

Ũ∞ =
µU∞

2πakPc

= 1. (2.5.2)

Hence, if the system is 3D stationary solutions are possible, which is generally the

case for Laplace equations in infinite or semi-infinite spaces and is known for similar

processes like heat transfer or diffusion.11

2.5.3 Effect of Expansion Dimensionality

The dimensionality of the porous media is extremely important for the flow rate.

There is no expansion in the case of 1D transport (which is represented by the LW

case54,55) and the linear velocity (as well as the bulk flow rate) drop as 1/
√
t . At

the other extreme, the 3D case allows for a solution even for ηf →∞ [see Eq. (2.5.1)

above]. Figure 2.10 shows a comparison for the time dependent position of the moving

liquid front for 1D, 2D (elliptical) and 3D (oblate spheroid) cases. The 1D case

exhibits the farthest liquid penetration while in 2D and 3D the distance is much

shorter. The rate of liquid motion also decreases with the dimensionality of the flow

(see Figure 2.11). This is due to distribution of the advancing liquid over greater

space. The cross sectional area that the fluid moves through does not change in 1D,

increases linearly with distance in 2D, and quadratically in 3D. Since the liquid is

incompressible it can cover shorter distances per unit time for the two and particularly

the three dimensional cases. It is, however, very different for the bulk flow rate (see

Figure 2.12). The volume absorbed per unit time by the porous domain decreases

the fastest for the 1D flow. The decrease in the bulk flow rate for the 2D expanding
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Figure 2.10. Liquid front position vs. time in 1D (dashed line), 2D (solid line), and 3D
(dotted line).

case is lower and for 3D it levels off to a steady state [see Eq. (2.5.1) above]. The

reason is the bulk flow rate is slowed down by the viscous resistance which increases

with the length of the traveled path. The latter is greatest in 1D, shorter in 2D and

shortest in 3D.∗

∗ The solutions presented in Figures 2.10 and 2.12 will be revisited in Figure 3.2, were we

broaden the applicability of the data from purely asymptotic comparisons into physically

applicable results.
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Figure 2.11. Linear velocity of the liquid front vs. time in 1D (dashed line), 2D (solid
line), and 3D (dotted line).

2.6 Conclusions

We derived solutions for potential capillary driven liquid flow in 2D and 3D expanding

porous media. The selection of suitable coordinate systems allows for simplification

of the mass balance expressions to ordinary differential equations that can be ex-

actly solved. The obtained solutions for expanding 2D and 3D porous materials are

different from the well-known Lucas–Washburn solution describing liquid motion in

non-expanding material geometries. The functional forms of the time dependence of

the front position and velocity are more complicated if the porous domain is expand-

ing. At the same time and the liquid linear velocity is lower, which is due to spreading

of the incompressible liquid over an ever-increasing domain.
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Figure 2.12. Bulk liquid flow vs. time in 1D (dashed line), 2D (solid line), and 3D (dotted
line).

The bulk flows display a qualitative difference in 1D, 2D and 3D. It decreases

the fastest if the porous domain does not expand, less in 2D expanding domain and

least in 3D. In fact, the 3D case can reach a steady state for the bulk flow into the

porous material. This makes it suitable to use in driving fluids through devices using

capillary forces and without the need of an external power source.
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Chapter 3

Evaporation Influences on Wicking

in Thin Porous Strips

3.1 Introduction

Wicking, the capillary suction of liquids into previously dry porous media, is a com-

plex and on-going area of study with numerous physical applications. Several ex-

amples in engineering include microfluidic devices,17,50 medical diagnostics,48,49 tex-

tiles,67 and building materials.57,58 In hydrogeology, porous media is foundational to

aquifer analysis,68 soil studies,4 and contaminant transport.69

Capillary imbibition in a thin porous strip of constant cross section may be in-

fluenced by evaporation through three distinct types of surface. The largest surface

of the strip, which we call the normal surface, dominates the evaporation due to to-

tal surface area. The evaporation along the thin edge, alternatively termed the side

boundary, of the medium also occurs directly into the air. Thirdly, the liquid may

undergo evaporation through the interface of the moving wet front. In this chapter,

we show from theoretical arguments that the effects on a fully saturated capillary
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flow of the normal and side evaporation modes are analogous, even though the side

evaporation gives more complicated front behavior, while the front evaporation ef-

fect is both physically and dynamically different from the other two, but similar to

restraint of the wicking by gravity.

In general, capillary transport in porous media occurs with unsaturated capil-

lary flow,63 which is modeled theoretically by the Richards equation.70 However, the

Green–Ampt71 theory (GAT) considers fully saturated liquid imbibition where the

liquid saturation is modeled with a Heaviside step function. The one-dimensional

(1D) solution to this problem both in porous media and in single capillaries is known

as the Lucas–Washburn Equation (LWE) and relates the wetted length to the square

root of the time of imbibition.54,55 In many instances the GAT is a sufficient approxi-

mation to Richards infiltration with only small deviations due to the diffuse interface

throughout the volume in the Richards model.72 The Green–Ampt theory may be

further applied to expanding or contracting flows which give power laws other than

the Lucas–Washburn relation.23,60,61,73

Gravity also has a significant influence on capillary motion. In a three-dimensionally

(3D) expanding flow the gravity significantly deform the front shape from a sphere in

the direction of the gravitational force.59,62 The solution of 1D capillary rise against

gravity may be given by the Lambert W function.74–76 Gravitational effects may

be ignored for wicking in the plane orthogonal to the gravity vector, and is often

insignificant relative to evaporation.

Capillary flow with evaporation is a growing area of interest. Philip77 discussed

evaporation from a pond which is simultaneously percolating into dry soils. Hohen-

bichler et al.78 described the steady flow into a narrow cylinder of liquid which is

undergoing isothermal evaporation and shows significant front curvature in the evap-

oration dominated zone of the flow. Lockington et al.79 developed an approximate

solution to unsaturated capillary flow in a 1D medium with evaporation. Fries et
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al.80 gave the solution of a Green–Ampt model for capillary rise with evaporation

and gravity restraint. Barry et al.81 compared the Lockington and Fries solutions

and suggested modifications to Fries results due to the Green–Ampt model. In re-

cent work, we have considered normal surface evaporation from a thin medium with

two-dimensional (2D) expanding capillary flow and shown a dimensionless quantity,

called the evaporation capillary number (ECN), determines the time behavior of the

flow.82∗ Other significant works have investigated the fluid evaporation from drying

media.83–85 In addition, evaporation has been commonly discussed coupled with heat

transfer properties in the medium.86,87

Evaporation and its effects on capillary flow is open to further study. Evaporation

is fundamentally complicated because of the coupled physical phenomena involved.

Each of the three modes of evaporation are physically a result of evaporation through

a capillary meniscus around the wet boundary of the entire system. This means

that the contribution of pore scale processes to the bulk properties need intensive

study.84 Unsaturated flow theory provides degrees of freedom in the models which can

reproduce many physical aspects of the imbibition.79 Coupling unsaturated flow in

the porous medium with computational fluid dynamics in the surrounding atmosphere

would significantly resolve nonlinear behavior of the evaporation. Side and front

evaporation are mostly uninvestigated and can benefit from a variety of Green–Ampt

models to characterize their effects on the expanding flows in porous media.78,85

In this chapter, we analyze the effects of evaporation on capillary flow using the

Green–Ampt theory. The analysis is conducted at time scales where the viscous

friction of the liquid dominates the inertia of the liquid in the absorption rate.88,89

This allows us to apply Darcy’s law to describe the velocity by the pressure.64 The

evaporation occurs slowly and isothermally, so there is a constant rate over each of

the surfaces of the medium. The liquid and gas phases are immiscible and without

∗ This is Chapter 4, which was completed and submitted for publication almost simultane-

ously with this chapter.
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trapped gas.83 Nonlinear behaviors such as swelling of the medium90 and viscous

fingering of the wet front are considered negligible.91 We derive general expressions

of the front position and inlet flux, or bulk velocity, for capillary flow in porous me-

dia when all three modes of evaporation and restraint by gravity are present. Each

of these phenomena are discussed individually and compared to capillary flow and

among each other. The developed solutions are analytical or readily calculated with

common numerical integration schemes from a first order nonlinear ordinary differ-

ential or integral equation. This avoids the increased numerical difficulties involved

with tracking phase interfaces in computational fluid dynamics simulations.50

The content of this chapter is organized as follows. The next section details the

general potential flow method of Green–Ampt theory in porous media with evapo-

ration. In Section 3.3, we derive the general solution of the velocity potential for

capillary, gravity, and evaporation forces, and give specific front position solutions for

each phenomenon. Section 3.4 describes the results for each of the phenomena with

comparisons to other results and phenomena to show limitations and differences in

the GAT approach to evaporation. We describe related open problems and summarize

our findings in Section 3.5. In appendix 3.A, we compare our solutions with results

from Fries et al.80, show agreement between the models, and suggest an additional

dimensionless quantity relevant to the analysis.∗

∗ Further results and relevant information are given in the supplemental sections D.1 and

D.2.
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3.2 Theory

3.2.1 The Richards Equation and Green–Ampt Theory

The Richards equation for unsaturated flow in porous media with evaporation is given

by
∂Θ

∂t
= −∇ · v − f(Θ), (3.2.1)

where the fluid velocity, v, may be related to the saturation, Θ, by v = D(Θ)∇Θ,

D(Θ) is the capillary diffusivity, and f(Θ) is the evaporation rate out of the volume

of the medium as a function of the saturation.79 Gravity will be accounted for as a

hydrostatic pressure acting on a boundary, similar to capillary pressure, as we detail

later. Now, in the Green–Ampt model, we have a step change in saturation at some

boundary, Γj, going to a constant full saturation of liquid, Θ = 1. Substituting,

0 = −∇ · v − f(1).

If we define a constant evaporation rate throughout the saturated domain, Q = f(1),

we rearrange to find92

∇ · v = −Q, (3.2.2)

At the boundary of the liquid wetted domain we will have the balance of mass of

the interface
dxΓj

dt
= vΓj − qΓj

, (3.2.3)

where the left hand side describes the change of position of the boundary, xΓj , with

time, t; the liquid velocity due to forces acting on the liquid, vΓj , is calculated on

the boundary from the solution of Eq. (3.2.2); and mass is exchanged through the

boundary by a loss flux, qΓj
. This loss is of the form qΓj

= qΓjnΓj , where positive

values of qΓj represents a loss from the saturated domain and negative values are gains,

such as from the liquid reservoir and nΓj is the outward normal vector calculated by

nΓj = xΓj/|xΓj | .
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3.2.2 Potential Flow Theory

The macroscopic flow in porous media is irrotational,65 so we may describe the ve-

locity by a velocity potential, ϕ,

v =∇ϕ. (3.2.4)

Substituting into Eq. (3.2.2), we have a Poisson equation inside the liquid-filled do-

main;

∇2ϕ = −Q. (3.2.5)

The internal liquid velocity contributes to the boundary by the potential, vΓj =

[∇ϕ|Γj , and the boundary equation (3.2.3) becomes

dxΓj

dt
= [∇ϕ|xΓj

− qΓjnΓj . (3.2.6)

3.2.3 Closure of the Boundary Conditions

In the system of interest, we define three types of boundaries: inlets, fronts, and

sides. The inlets allow liquid to flow into the medium but are fixed in space. The

liquid front is a free moving boundary driven by the fluid potential. Finally, the side

boundaries are the stationary edges of the porous medium through which liquid may

be lost.

Inlet from the Liquid Reservoir

The velocity potential is closely related to the pressure in the liquid by Darcy’s

law5,56,93

v = −k
µ
∇P, (3.2.7)
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where k is the permeability and µ is the liquid dynamic viscosity. If k and µ are

constant, then

ϕ = −k
µ
P. (3.2.8)

In porous media, the principal driving pressure is from the capillary force which, in

the micro-scale, is given by the Young–Laplace equation,

Pc = γ cos(α)

(
1

R1

+
1

R2

)
, (3.2.9)

where γ is the surface tension at the gas-liquid interface, α is the contact angle of

solid wetting, and R1 and R2 are the principal radii of curvature of the pore cross-

section.66 We designate a portion of the boundary as the inlet, where liquid enters

the domain from a reservoir. The pressure at the inlet may be set to a combination

of the capillary, Pc, and restraining hydrostatic pressure of magnitude, ρghf ;

Pi = Pc − ρghf ,

where Pi is the inlet pressure, ρ is the density of the liquid (the gas contribution is

assumed negligible), g is the magnitude of the local gravitational acceleration, and

hf is the height of liquid from the inlet to the front. Thus, the velocity potential at

the inlet, ϕi, is prescribed by

ϕi = −kPc

µ
+
kρghf
µ

. (3.2.10)

The inlet itself does not move, so the boundary equation, Eq. (3.2.6), is reduced to

[∇ϕ|xi = qinxi . The gradient of the potential and the normal vector are known, so qi

is the remaining variable. Defining the total volumetric flux of liquid into the domain

or the bulk velocity—textbf,

U = −
¨

xi

qi dxi,

where the negative sign gives a positive value of U for inward flow. The bulk velocity

is calculated from the potential,

U = −
¨

xi

[∇ϕ|xi · nxi dxi. (3.2.11)
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The Moving Wet Front

At the front of the liquid, there is no significant gravitational force and the difference

in the capillary pressure from our definition at the inlet is such that the capillary

pressure does not contribute. This means that the the front pressure, Pf = 0, and

correspondingly, we have as a boundary condition for the front potential,

ϕf = 0. (3.2.12)

When frontal evaporation is included, we must use the full form of Eq. (3.2.6) to

determine the front position,

dxf
dt

= [∇ϕ|xf − qfnxf . (3.2.13)

If there is no evaporation loss the motion of the front is simply calculated from

dxf/dt = [∇ϕ|xf . This differential equation must be integrated over time to deter-

mine the position of the wet front and thereby the solution of all other variables.

Side Boundaries of the Medium

The porous medium also has boundaries which do not contact the reservoir and are

thus either insulated, so there is no mass transport through the boundary, or open

to the atmosphere, and thereby losing mass by a side evaporation flux, qs. These

side boundaries at positions xs are fixed such that Eq. (3.2.6) reduces to a boundary

condition for the potential;

[∇ϕ|xs = qsnxs . (3.2.14)

An insulated side wall gives a no-flux boundary condition, [∇ϕ|xs = 0.

Thus, potential flow models of Green–Ampt theory which incorporate gravity and

evaporation require first the analytical or computational solution of the velocity po-

tential, Eq. (3.2.5), from the boundary conditions, Eq. (5.2.3), (3.2.12), and (3.2.14),
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Figure 3.1. Wicking in a porous medium of constant cross section restrained by gravity
and influenced by evaporation from the surface, sides, and front. The medium is 2a width
and saturated to length L. Gravity restrains the flow with magnitude g in the negative
x-direction. Evaporation flux through the sides occur with magnitude qs.

where all parameters in these equations are known. Then, the front position as a free

boundary is determined as a function of time by Eq. (3.2.13), and the bulk velocity

may be solved from Eq. (3.2.11).

3.3 Derivation of Analytical Model

In this section, we detail the application of the potential flow method in a medium

with constant cross-section with combined capillary, gravity, and evaporation effects.

The total velocity potential is solved in the Cartesian coordinate system from which

we produce the general front position and bulk velocity equations. Several reduced

solutions of the equation of the front are given which illustrate analytical similarities

between normal and side evaporation as well as between front evaporation and gravity.
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3.3.1 The Velocity Potential

The velocity potential equation, Eq. (3.2.5), is expressed in Cartesian coordinates

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= −Q. (3.3.1)

Here we assume that the thickness in the z-direction, denoted δ, is very thin relative

to the x- and y-directions and plays no direct role in the flow. For the total veloc-

ity potential, the boundary conditions (BC) apply each of the individual physical

boundary phenomena,

[ϕ|x=0 = −kPc

µ
+
kρg

µ
L, (3.3.2a)

[ϕ|x=L = 0, (3.3.2b)[
∂ϕ

∂y

∣∣∣∣
y=0

= 0, (3.3.2c)[
∂ϕ

∂y

∣∣∣∣
y=a

= qs. (3.3.2d)

where L is the position of the front along the x-direction and a is half the inlet width.

Each of these boundary conditions are the simplified Cartesian forms of the inlet

BC, Eq. (5.2.3); the front pressure BC, Eq. (3.2.12); the assumed symmetry along

the center of flow; and the side evaporation BC, Eq. (3.2.14), respectively. These

effects on the medium are illustrated in Figure 3.1. The centerline of the flow is along

y = 0 and y = ±a are the boundaries of the domain. Note that the capillary force

expression is negative in magnitude to indicate that it is a driving force, while the

gravity and side evaporation terms resist the flow and hence are positive.

The total velocity potential, ϕ, may be split into sub-potentials for each of the

physical phenomena, so we apply linear superposition because Eq. (3.3.1) is a linear

differential equation with linear boundary conditions, Eq. (3.3.2).28 The sub-potential

for each phenomenon is solved for individually and combined to determine the total
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potential. Thus, we define the total potential,

ϕ = ξ + γ + ζ + ω, (3.3.3)

where we denote the capillary, gravity, normal surface, and side boundary potentials

by ξ, γ, ζ, and ω, respectively. The capillary potential, ξ, is determined by retaining

−kPc/µ as the only non-homogeneous term in Eqs. (3.3.1) and (3.3.2). Similarly,

the gravity potential, γ, is the solution with only kρgL/µ as a boundary condition.

The normal surface evaporation potential, ζ, solves Eq. (3.3.1) when Q is finite for

homogeneous boundary conditions. Finally, the side boundary evaporation potential,

ω, solves the system when qs is the non-homogeneous term. The boundary conditions

of the system, Eq. (3.3.2), indicate the side evaporation sub-potential is dependent on

both the x- and y-direction, while all others are dependent only on x. All the velocity

potentials are made dimensionless by the magnitude of the capillary potential at the

inlet kPc/µ; for example, ϕ̃ = (µ/kPc)ϕ, ξ̃ = (µ/kPc)ξ, etc. We use the capillary

force because the magnitude depends only on the porous medium and is naturally

present throughout all of our subsystems of interest. As shown in Eq. (3.2.13), the

evaporation from the front interface is only incorporated when the actual motion of

the front itself is considered, so we do not need an expression of a front evaporation

potential.

Capillary Potential

Purely capillary-driven flow is described by the system,

d2ξ

dx2
= 0, (3.3.4)

with the boundary conditions,

[ξ|x=0 = −kPc

µ
, (3.3.5a)

[ξ|x=L = 0. (3.3.5b)
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The ordinary differential equation integrates to a linear expression, ξ = cξ,1x + cξ,0,

where we consider cα,i an arbitrary constant in all derivations. Substituting the

boundary conditions we obtain the solution,

ξ̃ = −
(
L̃− x̃
L̃

)
, (3.3.6)

where dimensionless lengths are defined, L̃ = L/a, x̃ = x/a, and ỹ = y/a. In the

literature, the pressure head is represented by L and is often used as the characteristic

length scale because Lss = Pc/ρg is the maximum height of wicking.80 We choose a

instead because it enables analysis in a wider variety of geometries and is constant

over the time of the wicking.23

Gravity Potential

We solve for the gravity potential, γ, with the differential equation,

d2γ

dx2
= 0, (3.3.7)

and the boundary conditions,

[γ|x=0 =
kρg

µ
L, (3.3.8a)

[γ|x=L = 0. (3.3.8b)

The linear expression, γ = cγ,1x + cγ,0 is again the form of the solution, and the

boundary conditions supply the result;

γ̃ = Boa

(
L̃− x̃

)
, (3.3.9)

where we have defined a time invariant Bond number,

Boa =
ρga

Pc

. (3.3.10)
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The Bond number is the ratio of the gravitational to capillary forces and is usually

defined by the hydraulic head Bo = ρgL/Pc = BoaL̃, however a is constant, and

therefore Boa is a constant with time. Also, we will find Boa is a more natural quantity

for comparison with evaporation. Observe that the right hand side of Eq. (3.3.9)

increases in magnitude with increasing front length, L̃, while the capillary potential

in Eq. (3.3.6) contains L̃ in the denominator and does not increase. For this reason

the capillary potential is easily limited by the contribution to the total potential of

the other phenomena as the length of wicking is increased.

Normal Surface Evaporation Potential

The normal surface evaporation potential, ζ, is determined by the non-homogeneous

linear differential equation,
∂2ζ

∂x2
= Q, (3.3.11)

with the homogeneous boundary conditions,

[ζ|x=0 = 0, (3.3.12a)

[ζ|x=L = 0. (3.3.12b)

We integrate the differential equation to find the solution form, ζ = −Q(1
2
x2 + cζ,1x+

cζ,0). The boundary constraints at the inlet and the front give the result,

ζ̃ =
1

2
Nn

(
L̃x̃− x̃2

)
, (3.3.13)

where we define the normal surface evaporation-capillary number (ECN)

Nn =
µa2Q

kPc

. (3.3.14)

We will detail this and other forms of the ECN shortly.∗

∗ The potential given in Eq. (3.3.13) is discussed in §4.3.3 with further details.
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Side Boundary Evaporation Potential

The potential for the side boundary evaporation, ω, is described by the 2D Laplace

equation
∂2ω

∂x2
+
∂2ω

∂y2
= 0, (3.3.15)

with boundary conditions,

[ω|x=0 = 0, (3.3.16a)

[ω|x=L = 0, (3.3.16b)[
∂ω

∂y

∣∣∣∣
y=0

= 0, (3.3.16c)[
∂ω

∂y

∣∣∣∣
y=a

= qs. (3.3.16d)

The potential, ω, may be split into the product of functions, ω(x, y) = X(x)Y (y),

by separation of variables. In the x-direction the solution is necessarily of the form,

X = cx,1 cos(
√
λ x) + cx,2 sin(

√
λ x), where λ is the eigenvalue of the differential

equation d2X/dx2 +λX = 0. When the homogeneous Dirichlet boundary conditions

of the x-direction are applied the cosine term is dropped and the eigenvalues are

determined,
√
λn = nπ/L, where n is a positive integer. This indicates the solution

is the infinite series

X(x) =
∞∑
n=1

cx,n sin
(
nπ

x

L

)
. (3.3.17)

The solution in the y-direction is determined by the differential equation d2Yn/dy2 −
λnYn = 0. The form of the solution is given by Yn = cy,1n cosh(nπy/L)+cy,2n sinh(nπy/L);

applying the third boundary condition indicates that the sinh term must be dropped.

Recombining X and Y , we have a form of solution for the side evaporation potential,

ω =
∞∑
n=1

cω,n cosh
(
nπ

y

L

)
sin
(
nπ

x

L

)
. (3.3.18)
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Finally, the fourth boundary condition is applied to determine the coefficients, cω,n.

By orthogonality of the sine term, the system is invertible, and we find that the

coefficient, cω,k = {4/[(2k − 1)2π2]}{Lqs/ sinh[(2k − 1)πa/L]}, where n = 2k − 1

indicates that only odd integers give non-zero values in the solution terms. Thus, the

solution of the potential for the side boundary evaporation may be arranged in the

form

ω̃ = NsL̃
∞∑
k=1

(
4

(2k − 1)2π2

) cosh
(

(2k − 1)π ỹ

L̃

)
sinh

(
(2k − 1)π 1

L̃

) sin

(
(2k − 1)π

x̃

L̃

)
. (3.3.19)

where we have non-dimensionalized qs to give the side boundary ECN,

Ns =
µaqs
kPc

. (3.3.20)

Note that Ns depends on the diffusive contribution of the evaporation in the form

of aqs as apposed to a2Q in Nn. Eq. (3.3.19) shows that side evaporation effects the

potential in both the x- and y-directions.

The Total Velocity Potential

We arrive at the total velocity potential of the system by substituting the solutions

given in Eqs. (3.3.6), (3.3.9), (3.3.13), and (3.3.19) into Eq. (3.3.3);

ϕ̃ = −
(
L̃− x̃
L̃

)
+ Boa

(
L̃− x̃

)
+

1

2
Nn

(
L̃x̃− x̃2

)

+ NsL̃

∞∑
k=1

(
4

(2k − 1)2π2

) cosh
(

(2k − 1)π ỹ

L̃

)
sinh

(
(2k − 1)π 1

L̃

) sin

(
(2k − 1)π

x̃

L̃

)
.

(3.3.21)
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3.3.2 The Front Velocity Equation

The velocity in the x-direction will determine how the system behaves over time.

From Eq. (3.2.4), the velocity is the gradient of the potential. Thus,

ṽx =
dϕ̃

dx̃
, (3.3.22a)

=
1

L̃
− Boa +

1

2
Nn

(
L̃− 2x̃

)
+ 4Ns

∞∑
k=1

[
1

(2k − 1)π

] cosh
[
(2k − 1)π ỹ

L̃

]
sinh

[
(2k − 1)π 1

L̃

] cos

[
(2k − 1)π

x̃

L̃

]
,

(3.3.22b)

where dimensionless velocity is defined ṽ = (µa/kPc)v.

From Eq. (3.2.13), the position of the front is the time derivative of the velocity

at the front, x = L, given by Eq. (3.3.22b) minus any evaporation loss through the

front interface. For simplicity, we realize that, with exception of contributions of the

side evaporation, the normal vector at the front, xf , lies along x itself, so the flow is

principally in x and we reduce Eq. (3.2.13) to a scalar differential equation. Thus, the

front position as a function of time is given by the solution of a nonlinear ordinary

differential equation;

dL̃

dt̃
=

1

L̃
− Boa −Nf (nL̃ · ı̂)−

1

2
NnL̃

− 4Ns

∞∑
k=1

[
1

(2k − 1)π

] cosh
[
(2k − 1)π ỹ

L̃

]
sinh

[
(2k − 1)π 1

L̃

] . (3.3.23)

where t̃ = (kPc/µa
2)t is the dimensionless time and nL̃ ·̂ı is the projection of the vector

normal to the front interface in the x-direction. Additionally, the front interface ECN

is

Nf =
µaqf
kPc

. (3.3.24)

This equation cannot be solved directly for all five physical phenomena combined

because the term for the side boundary evaporation is not analytically invertible.
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Below, we detail the solution of the equation for capillary force together with each of

the other phenomena individually.

3.3.3 Special Solutions of the Front Velocity Equation

Capillary Flow or the Lucas–Washburn Equation

The solution of Eq. (3.3.23) for only capillary flow is the central result with which

all the following will be compared. Dropping all other terms, we have the relation,

dL̃/dt̃= 1/L̃. The equation may be rearranged and integrated to give the solution

for capillary flow under the Green–Ampt assumption;

L̃ =
√

2t̃ . (3.3.25)

This solution is referred to as the Lucas–Washburn equation (LWE).23 In some in-

stances, it is easier to compare the LWE to other solutions when it is in the form,

L̃2 = 2t̃; we consider both as equivalent forms and reference them identically.

Capillary Flow Restrained by Gravity

The first two terms of the right hand side of Eq. (3.3.23) give capillary flow with the

gravitational contribution;
dL̃

dt̃
=

1

L̃
− Boa. (3.3.26)

Rearranged into the form,
´ L̃

0
L̃/(1−BoaL̃) dL̃ =

´ t̃
0

dt̃, we may integrate the system

to obtain the solution,

BoaL̃+ ln
∣∣∣1− BoaL̃

∣∣∣ = −Bo2
at̃. (3.3.27)

This solution agrees with the result by Fries et al.80, which can also be expressed by

the Lambert W function.74,75
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Capillary Flow with Normal Surface Evaporation

The solution for the case of capillary wicking with gravity and normal surface evap-

oration is given by Fries et al.80 In our recent work,82 this case was fully derived in

the appendix under the potential flow model. Simplifying Eq. (3.3.23) to only the

capillary and normal surface evaporation terms, we have the reduced front position

equation,
dL̃

dt̃
=

1

L̃
− 1

2
NnL̃. (3.3.28)

Integrating from times 0 to t̃ and positions 0 to L̃, we find the solution

1

2
NnL̃

2 = 1− exp
(
−Nnt̃

)
. (3.3.29)

We show in the appendix that this is equivalent to Fries’ solution when gravity is

neglected.∗

Capillary Flow with Side Boundary Evaporation at Asymptotically Large

Times

The total front position equation, Eq. (3.3.23), may also be reduced to account for

capillary flow with only evaporation from the side boundaries of the medium;

dL̃

dt̃
=

1

L̃
− 4Ns

∞∑
k=1

[
1

(2k − 1)π

] cosh
[
(2k − 1)π ỹ

L̃

]
sinh

[
(2k − 1)π 1

L̃

] . (3.3.30)

This nonlinear ordinary differential equation, like Eq. (3.3.23), is not known to have

an analytical solution. Nevertheless, we may consider simplifying the effects of the

side evaporation for asymptotic analysis. From physical intuition we expect the side

evaporation should be phenomenologically the same as normal surface evaporation.

These are both approximations of empirical media where all vapors pass through the

side, but often the evaporating capillary interface is at some depth from the surface.

∗ See Eq. (3.A.5).
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However, the normal surface evaporation model assumes a loss of liquid through the

volume of the porous medium, while side evaporation explicitly considers the loss at

the boundary only. In any case, it seems reasonable that normal and side evaporation

should be asymptotically analogous. If we consider the limit as a→ δ, we expect that

the form of the two solutions should become the same; this is equivalent to L � a.

In the limit of large L, curvature of the front interface will become negligible relative

to the wicking distance, L, and so there is no longer any significant variation in y and

the system reduces significantly.

We return to Eq. (3.3.30) and set ỹ = 1;

dL̃

dt̃
=

1

L̃
− 4Ns

∞∑
k=1

[
1

(2k − 1)π

]
coth

[
(2k − 1)π

1

L̃

]
. (3.3.31a)

If we define z = L̃/[(2k−1)π], then in the limit of z →∞, coth(1/z) ≈ z+1/(3z)+· · ·.
Substituting for only the highest order term of the approximation and simplifying,

dL̃

dt̃
=

1

L̃
−NsL̃

∞∑
k=1

4

(2k − 1)2π2
.

Finally, the summation reduces by the relation
∑∞

k=1 4/[(2k − 1)2π2] = 1/2,

dL̃

dt̃
=

1

L̃
− 1

2
NsL̃. (3.3.31b)

This is precisely the form of the differential equation for the normal surface evapo-

ration as given in Eq. (3.3.28), with only the change in the dimensionless quantity

representing the evaporation effect from normal surface evaporation to side evapora-

tion. This result gives validity to the assumption that the normal surface evaporation

is a simplified approach to the more physically motivated phenomenon of side bound-

ary evaporation. Naturally, the equivalence of Eqs. (3.3.28) and (3.3.31b) indicates

the solution for side evaporation will approximate Eq. (3.3.29) when curvature of the

front interface is suppressed.
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Capillary Flow with Front Interface Evaporation

Eq. (3.3.23) shows that the frontal evaporation affects the motion of the front iden-

tically to the gravitational force in the Green–Ampt approximation of wicking. The

reduced equation is dL̃/dt̃= 1/L̃ − Nf, which is directly analogous to Eq. (3.3.26).

Here the normal vector projected on the x-direction unit vector is unity, or nL̃ · ı̂ = 1.

The solution of capillary flow with evaporation through the front interface is,

NfL̃+ ln
∣∣∣1−NfL̃

∣∣∣ = −Nf
2t̃. (3.3.32)

Thus, the time dependent contribution of front evaporation is similar to gravity and

varies with Nf
2t̃.

3.3.4 The Bulk Velocity

In Eq. (3.2.11), the bulk velocity is defined as the volumetric flux through the inlet

of the medium, or expressed in Cartesian coordinates,

U =

[ˆ a

−a

ˆ δ

0

vx dz dy

∣∣∣∣
x=0

. (3.3.33)

Substituting the velocity given in Eq. (3.3.22b) into Eq. (3.3.33) we reach the expres-

sion,

Ũ =

ˆ 1

−1

 1

L̃
− Boa +

1

2
NnL̃+ Ns

∞∑
k=1

[
4

(2k − 1)π

] cosh
[
(2k − 1)π ỹ

L̃

]
sinh

[
(2k − 1)π 1

L̃

]
dỹ, (3.3.34)

where Ũ = (µ/kPcδ)U . This is the bulk velocity for the general case of L̃ = L̃(ỹ).

For sufficiently far front advancement and small Ns, we may assume L̃ is a constant

in the y-direction. Then we find the explicit form of the bulk velocity;

Ũ =
2

L̃
− 2Boa + NnL̃+ NsL̃. (3.3.35)
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The summation in the side boundary evaporation term reduces by a mathematical

relation in the manner similar to Eq. (3.3.31b). We observe that the magnitude of the

normal surface evaporation and the side boundary evaporation are identical, which

also suggests that these mechanisms are essentially the same in the limit of large front

advancement. The frontal evaporation is not calculated in ṽx, Eq. (3.3.22b), because

the phenomenon is introduced in the front interface material balance, so evaporation

through the front interface influences the bulk velocity only indirectly by slowing the

movement of the front in time.

3.3.5 Numerical Computation of Solutions

The data produced in the results is primarily computed by numerical integration of

the nonlinear differential equations. The front position and bulk velocity equations in

the general case with all physical phenomena are given in Eqs. (3.3.23) and (3.3.34),

respectively. In several simplified cases, the solution is easier to compute; the Lucas–

Washburn equation (3.3.25) and the solution for normal evaporation, Eq. (3.3.29), are

both explicit functions of the time, while the gravity and front evaporation solutions,

Eqs. (3.3.27) and (3.3.32), respectively, are implicit. For each of these individual

solutions, the analytical bulk velocity given in Eq. (3.3.35) is accurate. The front

position for capillary flow with side evaporation, Eq. (3.3.30), and the corresponding

bulk velocity from Eq. (3.3.34) can only be solved by numerical integration. A fourth

order Runge–Kutta method32 is applied to the nonlinear differential equation of the

front with an initial condition, L̃ = 0.04 at time t̃ = 10−3 because the hyperbolic

function terms are numerically unstable for smaller L̃ which therefore restricts the

side evaporation results to small ECN, Ns < 1. This is not a real problem because

higher evaporation rates may be unphysical for the side evaporation model. The

equation is then integrated along constant values of ỹ out to large times, e.g. t̃ = 105.

The bulk velocity in Eq. (3.3.34) is integrated over the y-direction with cubic splines
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at each time step.

3.4 Results

3.4.1 The Evaporation–Capillary Number and Physical Sig-

nificance

In the derivations above, we found three forms of the ECN as defined in Eqs. (3.3.14),

(3.3.20), and (3.3.24);

Nn =
µa2Q

kPc

, Ns =
µaqs
kPc

, Nf =
µaqf
kPc

.

In a physical system the evaporation rates—and by extension the evaporation numbers—

are all related. The side and front evaporation rates, qs and qf , are in units of length

per time, while the normal surface evaporation rate, Q, is in units of inverse time, so

the units of the evaporation rates are equivalent for aQ[=]qs[=]qf . Given the wetted

porous domain of dimensions L× 2a× δ, we may relate the magnitudes of each ECN

by the surfaces through which they occur. The normal surface evaporation and the

side evaporation occur on boundaries exposed to the open air, and as such the mass

flux by evaporation is assumed to be similar from the two different sides. The normal

evaporation will occur through a surface of dimension L×2a and the side evaporation

will occur through two surfaces of L× δ. Setting the mass loss rates through respec-

tive surfaces of evaporation equal, we find δQ = qs. For small inlet hight, δ/a � 1,

the evaporation rate aQ� qs, and by extension

Nn � Ns.

This qualitatively supports the fact that in a thin, 2D-like porous medium the normal

surface evaporation is the dominant mode of mass loss.
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When we compare the side evaporation versus the frontal evaporation, we must

consider that the frontal evaporation is diffusing into the porous medium while the

side evaporation is going out to exterior air. This leads to the reasonable observation

that qf < qs because the frontal evaporation will be slowed by vapor transport in the

medium, and consequently,

Nf < Ns.

However, consider that the front evaporation will have much greater surface area

initially, but have a relatively decreasing ratio to the side evaporation as the imbibition

progresses. In expanding flows, the surface areas of both will grow, but in narrowing

flows the front surface area will decrease while the side increases. Thus, the geometry

of the flow and the porous medium will contribute along with the evaporation numbers

in determining which of the two phenomena is more influential to the flow behavior.

In summary, for a given physical system of 2D-like nature the evaporation numbers

will generally follow an order of relative strength such that,

Nn � Ns > Nf. (3.4.1)

Formally, we define the general evaporation-capillary number as,

N =
characteristic mass flux of evaporation

characteristic mass flux of wicking
. (3.4.2a)

A clear example of this definition is the side boundary ECN, Ns = (ρqs)
/

(ρkPc/µa),

which is rearranged from Eq. (3.3.20); the numerator of the side boundary ECN shows

the mass flux loss due to phase change, ρqs, while the denominator is the characteristic

mass flux of the capillary flow in the porous medium, ρkPc/µa. Similarly, the ECN

is the rate of diffusive transport through evaporation over diffusive transport though

wicking; for example, the front interface ECN, Eq. (3.3.24), can be arranged in the

form Nf = (aqf )
/

(kPc/µ). Alternatively, we may define the ECN as a ratio of time

scales;

N =
time-scale of wicking

time-scale of evaporation
. (3.4.2b)
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The normal surface ECN, Eq. (3.3.14), may be equivalently defined Nn = (µa2/kPc)
/

(1/Q),

which is the time scale of the fluid propagation in the porous medium, µa2/kPc, di-

vided by the timescale of the normal evaporation, 1/Q. In the following results, the

time-scale relation, Eq. (3.4.2b), will often be more useful for analysis of the systems,

even though we consider the mass flux, Eq. (3.4.2a), to be the natural definition of

the quantity. In any case these definitions are equivalent.

The authors have found no dimensionless quantities or trivial combination of other

numbers in the literature which are equivalent to the ECN.∗Philip77 observed the ratio

of the evaporation rate from a pond to the permeability of a soil principally effects

the time to loss of surface water. This was not a dimensionless quantity, though

similar to the ECN, it does effectively consider mass transport due to evaporation

versus the porous medium. Lockington et al.79 used the evaporation rate directly

to make the time dimensionless, and the influx is normalized by the square root of

the capillary diffusivity and the evaporation rate. In both papers, the independent

parameter of the evaporation number was not exploited because of the assumed 1D

geometry. The capillary force in the denominator of the ECN suggests alternative

relations to the Bond number, Eq. (3.3.10), or the Capillary number, Ca = µv/σ,

where σ is the surface tension. For analyzing vertical wicking with evaporation, Fries

et al.80 utilized both Bond and Capillary numbers to non-dimensionalize the height

and the time. They defined a dimensionless quantity, Φ, called the “related maximum

height,” as the ratio of the maximum height of capillary flows under the influence of

gravity with evaporation versus without, so the quantity determines the deviation in

the flow from the ideal case of wicking against gravity. It may be shown (see the

chapter Appendix 3.A.3) that Φ is purely a function of the ratio, Bo2
a/Nn. Other

dimensionless numbers in mass transfer such as the Schmidt and Sherwood numbers

cannot be directly used with Ca to give the ECN because they are defined for single

∗ This chapter is the first published result with the ECN24, however Chapter 4 was the

first place we wrote about the ECN.
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Figure 3.2. Liquid wicking in porous media for 1D (solid line), 2D (dashed line), and 3D
(dotted line) flows. (a) Liquid front position, L̃, versus time, t̃. (b) Bulk liquid flow, Ũ ,
versus time; the bulk flow has been normalized to the same inlet cross-sectional area for all
three cases.

phase diffusion.30 In total, these examples support the need for a quantity such as

the ECN in analysis of flows in porous media. Thus, we suggest that the evaporation-

capillary number is a beneficial, new dimensionless number in fluid mechanics and

porous media.

3.4.2 Capillary Flow

The capillary flow behavior predicted by the Lucas–Washburn law, Eq. (3.3.25), is

the solution which we compare all other phenomena in wicking in porous media. The

first phenomenon of interest is the geometry, where we observe how flow into fully

2D or 3D expanding domains effects the propagation of the front length and the bulk

velocity.∗ Figure 3.2 shows the front positions and bulk velocities for the LW (1D), 2D,

and 3D flows. We observe in Figure 3.2a, the front position for the LWE, L̃2 = t̃/2,

∗ The results summarized here are from Chapter 2, in particular we are modifying Fig-

ures 2.10 and 2.12. This is published in the literature as Ref.23.
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advances more rapidly than the others, where in the limit of large advancement, the

2D case propagates as L̃2 ln (L̃) ∼ t̃ and 3D as L̃3 ∼ t̃.∗ In Figure 3.2b, we observe

that the volumetric flow of the fluid into the medium for the LW case decreases as

Ũ = 1/
√

2t̃ , which is much more rapid than 2D and 3D. In fact, the bulk velocity for

the 3D flow approaches a finite steady state. Hall57 demonstrated both by the theory

of conformal mappings and by experiment that the inflow deviates from the Lucas–

Washburn prediction for 2D and 3D flows. This geometric steady state is a useful

result wherein the parameters of the medium may be tuned such that a sufficient

amount of fluid can be driven into it indefinitely for application in passive fluid-

driven technologies. In other words, fluid may be drawn indefinitely by the capillary

force alone into a 3D porous medium with a small inlet. Philip59 also showed this

finite steady-state in 3D by an assumed moisture profile solution of the Richards

equation. However, this property is desirable in engineering porous media is even

better enhanced by evaporation, as we now detail.

3.4.3 Capillary Flow with Normal Surface Evaporation

The normal surface evaporation is the predominant form of evaporation in a thin

porous strip as we observed in the discussion of Eq. (3.4.1). As such we will use it

as our starting point to compare with the other physical phenomena of evaporation

and gravity. We may assess the validity of our Green–Ampt model of capillary flow

influenced by evaporation with the work by Lockington et al.79 They developed an

approximate analytical solution of the unsaturated flow equation, Eq. (3.2.1), for a

1D medium with power law saturation, Θn, where n is the power law index. Making

their solutions for the front position and inlet velocity nondimensional [Lockington

equations (29) and (31)], we see in Figure 3.3 the comparison between the saturated

∗ These relationships may be observed in Eqs. (2.3.13), (2.3.15), and (2.4.25), but we give

the full details of this power law analysis in §4.4.4, which is published in Ref.82.
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Ũ

Nn

0
1
1, n = 2
1, n = 6

(b) Bulk flow

Figure 3.3. Wicking behavior of liquid with normal surface evaporation in a thin porous
strip for fully and partially saturated flows. The Lucas–Washburn solution is the dark solid
line, the fully saturated solution at Nn = 1 is given by the light solid line, and the partially
saturated solutions at Nn = 1 for diffusivity exponents n = 2 and n = 6 are given with the
light dashed and dotted lines, respectively. (a) Liquid front position, L̃, versus time, t̃. (b)
Bulk liquid flow, Ũ , versus time.

and unsaturated flow models. We consider n = 2 and n = 6 because Lockington

suggests these are the lower and upper bounds of n in common porous media.∗

Figure 3.3a gives the front positions for the LWE as well as the saturated and

unsaturated models at Nn = 1. The shape of the front behavior and bulk velocity

curves are the same for all ECN just transposed in space and time—so the choice of

Nn = 1 is arbitrary—and the discussion is equally applicable to any Nn. The front

positions for both of the unsaturated flow solutions are noticeably shorter than the

LWE prior to evaporation taking effect. This indicates that the Green–Ampt (GA)

model over-predicts the front position. However, as evaporation occurs, the n = 2

case merges with the saturated flow steady state. The n = 6 case has a much lower

steady state from the other two. Figure 3.3b shows the bulk velocity for these four

cases. The bulk flow for the two unsaturated cases, n = 2 and 6 are near to each

∗ The mathematical details relating our solution to Lockington’s is given in the supplemen-

tary material §D.2.
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other, but are substantially lower than the GA model.∗

The differences between the steady state behavior of the GAT and unsaturated

models may be shown quantitatively. We set the velocity in Eq. (3.3.28) equal to zero

and rearrange to get the steady state front position as a function of the ECN,

L̃ss, norm =

√
2

Nn

. (3.4.3)

Lockington gives [equation (32)] an expression for the front position, which in our

notation is

L̃ss, unsat =

√
n+ 2

n

√
2

Nn

. (3.4.4)

When n = 2 the two steady state front positions are the same, and for n = 6

the unsaturated case is smaller by 1/
√

2 . Similarly, the bulk velocities are related

Ũss, unsat = 1/
√
n+ 2 Ũss, norm [see Eq. (3.3.35) and Lockington equation (13)]. This

shows that for all positive values of n the steady state bulk velocity in the unsaturated

case is less than the saturated case. For n = 2, half as much liquid is flowing into the

medium as predicted by GAT, while for n = 6 it is only a factor of 1/2
√

2 ≈ 0.35.

Thus, the GAT over-predicts both the wet front position and the bulk flow rate

into the medium by potentially significant proportions. This is in keeping with the

discussion in Barry et al.81. Nevertheless, the essential power-law behavior of the

Green–Ampt model agrees with the unsaturated flow results as given by Lockington

et al.

3.4.4 Capillary Flow with Side Boundary Evaporation

The evaporation from the side boundaries of a porous strip resembles the normal

surface evaporation. Figure 3.4a shows the front position for intermediate to small

ECN in both cases. We observe the flows follow the LWE and branch away due to

∗ For more details, see supplemental Figure D.1 which plots the steady state front positions

and bulk velocities versus ECN.
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Figure 3.4. Behavior of the liquid front position for side boundary evaporation from a
thin porous strip. (a) Front position, L̃, versus time, t̃, for side (solid lines) and normal
surface (dashed lines) evaporation. Side evaporation data is calculated along the centerline,
ỹ = 0. The solutions with evaporation are shown for evaporation numbers, Ns and Nn,
equal to 0, 10−3, 10−2, 0.1, and 1, from darkest to lightest. (b) Development of the liquid
front shape, L̃(ỹ, t̃), over time of an imbibing liquid with evaporation, Ns = 0.1. Contour
lines correspond to front position at dimensionless times, t̃ = 10−3, 10−2.5, . . . , 102, from
lightest lines to darkest.

evaporation in a similar way around Nnt̃ = 0.3. However, the side evaporation comes

to steady state somewhat more rapidly than the normal surface evaporation. This is

consistent for Ns < 0.1, but is not accurate for Ns ∼ 1. We will discuss these features

of side evaporation more in the next paragraph. In Figure 3.4b, the wet front shape

is illustrated at dimensionless times up to 100 for a system where Ns = 0.1. The

computed front interface progressively curves over time from a straight flow into an

approximately parabolic shape at steady state. This is the natural evolution of the

front shape given by the differential equation, Eq. (3.3.30); no perturbation methods

need to be applied to deform the front. The curvature occurs because the evaporation

through the sides causes liquid loss near the edges, but allows fluid near the center to

penetrate deeper into the medium. All steady states of the side evaporation model
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Figure 3.5. Steady state behavior versus ECN for side and normal evaporation in a thin
porous strip. Side boundary evaporation is plotted with the solid line and normal surface
evaporation with the dashed line. (a) Plot of steady state front position, L̃ss, versus ECN,
N. The dark solid line is calculated along the center-line, ỹ = 0, and the light solid line is
along the boundary, ỹ = 1. (b) Plot of steady state bulk velocity, Ũss, versus ECN, N.

have a curved front shape.∗

The steady state behavior of the side evaporation is compared with the normal

surface evaporation in Figure 3.5. The plot of front position steady state, Figure 3.5a,

shows the power law behavior of the normal and side evaporation modes are the same

in the limit of small ECN. These power laws differ proportionally by a constant of

approximately 1.4 for N < 10−2, with the side evaporation smaller than the surface

evaporation. The front position at the side and the center line of the flow converge

asymptotically in the same limit; however, they are still sufficiently different to exhibit

a curved front shape. In deriving Eq. (3.3.31b), we assumed that the front curvature

was negligible. As we see in Figure 3.4b, this is a reasonable assumption for Nst̃ < 0.1,

but for later times the curvature is important. This means that Eq. (3.3.31b) explains

how the side and normal evaporations match as the evaporation is just beginning

to effect the flow, as is observed in Figure 3.4a, but does not give precise steady-

∗ See Figure D.2b for another example, in addition to the bulk velocity plot in Figure D.2a.
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state values of the side boundary front position. Thus, the proportional difference

between the side and normal evaporation modes is because of the curvature of the

side evaporation front, and we may still consider the normal evaporation a practical

approximation of the side evaporation. The steady bulk velocity, Figure 3.5b, is

greater for the side evaporation. This is due to the front position being less than the

normal evaporation case, so the fluid pressure gradient is stronger.

To our knowledge, an equivalent to the side evaporation model has not been

utilized in the literature. Hohenbichler et al.78 considered a thermodynamic model

of evaporation in a cylindrical porous medium with evaporation. They found curved

steady state front shapes of the liquid by using the Antoine equation and coupling

with the heat input into the system. Their work indicates that in a physical system

where side evaporation is relevant, it cannot be completely decoupled from front

evaporation. Hohenbichler computes a front shape with considerable curvature, but

the shape is significantly different from the one shown in Figure 3.4b. This is because

of their assumed non-constant properties at the boundary of the porous medium, and

the different implementation of the evaporation phenomenon.

3.4.5 Capillary Flow with Front Interface Evaporation

Figure 3.6 compares the flow behavior for front interface evaporation to normal sur-

face evaporation. The front position is plotted in Figure 3.6a, where we see the front

evaporation separates earlier from the Lucas–Washburn flow than the surface evap-

oration. This causes the steady state front position of the front evaporation to be

smaller than similar flows in normal evaporation. From Eq. (3.3.23) we may show the

steady state front position is inversely proportional to the front ECN;

L̃ss, front = 1/Nf. (3.4.5)
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Figure 3.6. The time dependent behavior of front interface evaporation and normal surface
evaporation in a thin porous strip. Front evaporation data is shown by solid lines and normal
evaporation by dashed lines. Data is computed for both ECN: Nf at values of 10, 1, 0.1,
and 0, and Nn, at values of 102, 1, 10−2, and 0 from shades of lightest to darkest. (a) Plot
of front position, L̃, versus time, t̃. (b) Plot of bulk velocity, Ũ , versus time, t̃.

In Figure 3.6b, we see the front evaporation does produce a steady state bulk velocity

even though it was not explicitly included in the calculation of the bulk velocity

directly in Eq. (3.3.34). In both figures the normal ECN varied more widely than the

front ECN to give a similar effect on the steady state. We will discuss this in more

detail later.

Philip77 discussed evaporation from a freshly filled, dry lakebed and found so-

lutions of similar shape to the data shown in Figure 3.6a when plotted on a non-

logarithmic scale. His model is of evaporation taking place from the back of the

medium in the fluid reservoir, while simultaneously affecting the flow potential of the

front. However, Philip only considers the solution out to the point in time where the

reservoir is empty because the physical system fundamentally changes beyond that

time. Sadeghi et al.85 detail steady state shapes of the saturation profile in a porous

medium with front evaporation. They find the saturation function varies significantly
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Figure 3.7. Comparison of bulk velocity, Ũ , versus time, t̃, for front interface evaporation
and gravity in a thin porous strip. The time dependent bulk velocity is given for front
evaporation by solid lines and for gravity by dashed lines. Data is computed for both the
ECN, Nf, and modified Bond number, Boa, at values of 10, 1, 0.1, and 0 from shades of
lightest to darkest.

over the soil by considering a Brooks and Corey94 power law model. This indicates

that the saturated flow front evaporation model is based on an approximation which

does not hold completely to steady state.

3.4.6 Capillary Flow Restrained by Gravity

As noted with Eq. (3.3.32) above, the solutions of front position for front evaporation

and gravity restraint are identical for fully saturated liquid wetting. When plotted the

effect of gravity on the front position is the same as the data of the front evaporation

shown in Figure 3.6a except for equivalent values of Boa instead of Nf.
∗ The steady

state value of the liquid front with gravity restraint is given by Bo = 1, or equivalently,

L̃ss, grav = 1/Boa. (3.4.6)

∗ See Figure D.3 in the supplemental results given in Appendix D.
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Figure 3.8. Contour plot of front position, L̃, over ECN and time, t̃, for a thin porous strip.
Dotted black lines distinguish regimes of flow behavior; the lower left section is dominated
by capillary flow and upper right is at steady state. (a) Dotted lines in the lower left and
upper right correspond to Nnt̃ = 0.1 and Nnt̃ = 10, respectively. (b) Dotted lines in the
lower left and upper right correspond to Nst̃ = 0.1 and Nst̃ = 10, respectively. This figure
is similar to the lower right quadrant of (a).

The effects of gravity on the steady state behavior of the bulk velocity are completely

different from the front evaporation, as we observe in Figure 3.7. The lines of bulk

velocity go to a finite steady state for the front evaporation, but gravity resistance

causes a sharp drop in the bulk flow rate around Boat̃ = 0.1. By Boat̃ = 10, the bulk

flow rate has been reduced to about 0.1% of the Lucas–Washburn value. Thus, the

front evaporation gives a finite steady influx at large times, while the gravity reduces

the incoming flow to zero.

3.4.7 Comparison of All Phenomena

We observed in Figure 3.4a that the normal surface evaporation and the side boundary

evaporation have similar behaviors. In Figure 3.8 we show the front position for both
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Figure 3.9. Contour plot of front position, L̃, over dimensionless control quantity and
time, t̃, for a thin porous strip. Dotted black lines distinguish regimes of flow behavior;
the lower left section is dominated by capillary flow and upper right is at steady state. (a)
Dotted lines in the lower left and upper right correspond to Nf

2t̃ = 0.1 and Nf
2t̃ = 10,

respectively. (b) Dotted lines in the lower left and upper right correspond to Bo2
at̃ = 0.1

and Bo2
at̃ = 10, respectively. The figures, (a) and (b), are essentially identical.

these phenomena as a contour plot over ECN and time.∗ In the bottom left corner

of Figures 3.8a and 3.8b the flow is driven entirely by capillary pressure and the

evaporation number has no effect on the front position. In the upper right corner of

the two figures the flow has reached steady state wherein the front position only varies

with ECN, but not in time. The diagonal band between the upper left and bottom

right constitutes the regime in which both evaporation and capillary force are effecting

the flow. This regime lies approximately in the similar ranges of 0.1 < Nnt̃ < 10 for

surface evaporation and 0.1 < Nst̃ < 10 for side evaporation. Thus, we see a power-

law relation where the time to steady state will be related to inverse ECN for both

normal and side evaporations, or t̃ss ∼ 1/Nn, ss.

∗ The equivalent contour plots for the front velocity and bulk velocity are given in Fig-

ures D.4 and D.5.
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The front evaporation shows a significant difference from the other two evapora-

tion modes. In Figure 3.9a the transition region between capillary dominance and

evaporative steady state is in the power behavior 0.1 < Nf
2t̃ < 10. This means that

the time to steady state is now related to the inverse square ECN. From Figure 3.9b,

we similarly observe the transition region from capillary flow to hydrostatic front

position is 0.1 < Bo2
at̃ < 10. In the analytical solution of the frontal position with

frontal evaporation, Eq. (3.3.32), we find that the evaporation number squared times

time is the natural expression to equate with the frontal motion. This is in contrast

with Eq. (3.3.29) for normal evaporation, where the right hand side is only to the first

power. Therefore, the effect on capillary flow behavior by the front evaporation is

fundamentally different from normal evaporation, but similar to restraint by gravity.

3.5 Conclusion

A physical study of the effects of the modes of evaporation on capillary flow in porous

media may be further extended to more complex geometries and flows. The normal

surface evaporation in a 2D medium may be contrasted to 1D flow.∗The front in-

terface evaporation model may be readily extended into 2D and 3D flows by use of

the capillary potentials.† However, capillary flows with side boundary evaporation

become very challenging in 2D and 3D expanding flows because solving the two-

dimensional potential equation becomes non-trivial, so a semi-analytical method may

not be practical, particularly for the 3D case. The model of unsaturated flow with

evaporation given by Lockington et al.79 should also be applied computationally to

2D and 3D flows to show more accurate physical behaviors of wicking with evap-

oration. Nevertheless, the semi-analytical models of fully saturated flow are useful

in constraining how the wicking is affected by changes in geometry and additional

physical phenomena such as evaporation.

∗ See chapter 4 † See chapter 2 or Ref.23.
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We have shown variations in flow behavior due to evaporative effects on fluid

imbibition by using analytical and semi-analytical solutions of the GAT capillary

flow model. The defined evaporation-capillary number has significant influence on

the flow of the infiltrating liquid. It determines when the capillary motion is effected

by the evaporation and the ultimate steady state front position and bulk velocity.

Normal surface evaporation and side boundary evaporation both show similar time-

dependent effects with the ECN, particularly in the limit of small ECN. Front interface

evaporation behaves analogously to restraint by gravity in influencing the motion of

the front with time; the evaporation noticeably effected the behavior over a longer

period of time, and required a smaller change in magnitude than normal evaporation

to significantly effect the dynamics. We also noted that flow geometry, such as 2D

and 3D, can significantly reduce the front saturation length while simultaneously

increasing the flow of liquid into the medium. These results clearly show the potential

to use evaporation and domain shape to design media to drive liquids which only

require passive energy from the surroundings to function.

3.A Relation of 1D Velocity Potential Method So-

lution to Fries’ Solution

In this appendix, we compare our velocity potential solution to the solution given

by Fries et al.80 through arguments of hydraulic pressure head effects of capillary,

gravity, and normal evaporation on the changing height of the liquid.

73



Chapter 3. Evaporation Influences on Wicking in Thin Porous Strips

3.A.1 Fries Equation for Wicking with Gravity and Evapo-

ration

Fries finds the solution for both gravity and evaporation acting on the wicking liquid.

The governing differential equation for the motion of the front interface, h, is [Fries

equation (27)]

ḣ =
a

h
− b− ch, (3.A.1)

where the coefficients are

a =
2σ cos(θs)

φµ

K

Rs

, (3.A.2a)

b =
ρgK

φµ
, (3.A.2b)

c =
ṁe(W + T )

ρWTφ
, (3.A.2c)

Ψ = −4ac− b2. (3.A.2d)

On the right hand side, the first term accounts for the capillary transport, the second

term gives the gravity contribution, and the last gives the evaporation effect; this

is analogous to Eq. (3.3.23) with only the first, second, and fourth terms in the

right hand side. The Young–Laplace equation, Eq. (3.2.9), accounts for the capillary

pressure when there is a single porous radius, Rs = R1 = R2 in Eq. (3.A.2a); surface

tension, σ; contact angle, θs, and permeability, k = K/φ. Fries’ coefficient for the

evaporation, Eq. (3.A.2c), directly considers the mass loss rate out of the system

due to evaporation, ṁe; the density of the liquid, ρ; the width and thickness of the

medium, W and T , respectively; and the void volume of the medium, φ. Fries implicit

solution of Eq. (3.A.1) is [Fries equation (38)]

t =
1

2c

[
− ln

(−ch2 − bh+ a

a

)]
− b

2c
√
−Ψ

ln

[
(−2ch− b−

√
−Ψ )(−b+

√
−Ψ )

(−2ch− b+
√
−Ψ )(−b−

√
−Ψ )

]
.

(3.A.3)

This solution only applies if there is a finite evaporation rate.
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3.A.2 Wicking with Evaporation Only

Our solution for the normal surface evaporation, Eq. (3.3.29), is related to a reduced

form of Fries’ implicit solution of the wicking front, Eq. (3.A.3), when gravity is

ignored, b = 0;

t =
1

2c

[
− ln

(−ch2 + a

a

)]
. (3.A.4)

The equation may be arranged,

c

a
h2 = 1− e−2ct, (3.A.5)

which is equivalent to Eq. (3.3.29) when

L = h, (3.A.6a)

Q = 2c, (3.A.6b)

kPc

µ
= a. (3.A.6c)

Thus, Fries’ solution agrees with our analytical expression for the normal surface

evaporation.

3.A.3 The Related Maximum Height and the ECN

Fries suggests a parameter, Φ, called the “related maximum height,” to compare the

ratio of the maximum height with capillary, gravity and evaporation over the height

without evaporation [Fries equation (41)];

Φ =
b

a

(
− b

2c
+

√
b2

4c2
+
a

c

)
, (3.A.7a)

=

√(
b2

2ac

)2

+ 2
b2

2ac
− b2

2ac
. (3.A.7b)
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In the second form, we have rearranged the expression to show that it is purely

dependent on a single quantity, b2/(2ac). This is rearranged to an expression in

terms of the modified Bond number and the normal surface ECN,

b2

2ac
=

(Wb/a)2

2cW/a
, (3.A.8a)

=
Bo2

a

Nn

. (3.A.8b)

The ratio suggests another dimensionless number which we define

Eg = Bo2
a/Nn. (3.A.9)

Thus, the related maximum height is reduced to,

Φ =
√

E2
g + 2Eg − Eg. (3.A.10)

Ultimately, this gives an alternative means of using the results by Fries et al.80
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Chapter 4

Time-Dependent Effects of Normal

Surface Evaporation on

Capillary–Driven Flow in

Expanding Geometries

4.1 Introduction

Evaporation in porous media has significant effects on the behavior of capillary-driven

flows, but is still not very well understood. Often, evaporation is considered from the

perspectives of coupled multiple phases, heat transfer, and species diffusion, which

are conjointly very difficult to model and test experimentally, particularly within a

porous solid matrix.30,86 However, for certain systems these complex phenomena may

be reduced to simpler source and sink terms in the liquid saturated portion of the

porous medium.79,80

Capillary-driven flows define a broad and extensively investigated topic, which
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has a significant impact on numerous fields of study.8,51,56 The wicking process in

porous media is an important research area in medical and energy technologies,48–50

thin layer chromatography, and hydrophysical phenomena.47,57,59,62 Phase changes in

porous media such as evaporation and condensation affect the advancement of fluid

in porous media for many different systems.80,87 Design of capillary-driven devices

requires quantitative knowledge of the effects of evaporation on the absorption of

liquids into unsaturated porous media. Capillary driven flows do not require an

external input of energy and as such they are “free,” which makes them attractive

for a variety of engineering applications.21,22 A class of new microfluidic devices,

for example, use capillarity to drive motion of the liquid through the unit, but they

require a steady, finite flow rate for continuous and predictable wicking.17 Evaporation

allows the capillary media to be designed and adaptively tuned to the desired flow

rate through the device.

An easy way to control capillary driven flows in porous materials can be achieved

by designing their macroscopic shape. For example the flow rate in expanding porous

media exhibits a very different time behavior from the simple v ∼ 1/
√
t depen-

dence predicted by the Lucas and Washburn (LW) analysis.54,55 Several studies have

considered expanding flows into two- (2D) and three-dimensional (3D) porous do-

mains.23,50,60,61,73

In general, continuum two phase flows in porous media can be successfully ana-

lyzed by using a continuity equation for unsaturated capillary flow.4,68,70–72

Recently, the phenomenology and potential effects of evaporation in connection

with capillary flows have increasingly been analyzed. Lockington et al.79 developed an

approximate analytical solution for 1D capillary diffusion under evaporation. Fries et

al.80 compared the solution for saturated wicking with evaporation and gravity to ex-

periments in a metallic weave, but found that the theory noticeably over-predicted the

distance of infiltration relative to experiment. Barry et al.81 suggested that capillary
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diffusion and evaporation can explain the discrepancy with the theoretical predic-

tions given by determining the front position via absorbed mass. Villarrubia et al.17

observed a steady-state flow of water due to evaporation into porous paper after an

initial wicking behavior similar to the LW equation in a quasi-2D medium. Liu et

al.95 extended Fries’ methods into 2D radial flow to study convergence between inner

and outer wetting flows.

In this paper, we present analytical solutions to the flow behavior of a liquid wick-

ing into an expanding two-dimensional porous system which is undergoing isotropic

evaporation from the surface normal to the 2D porous medium. Hence, a particular

focus of the our study is on the interplay between the evaporation effect and the shape

of the porous material. We consider 2D domains where the evaporation from surface

normal to the plane of the medium dominates the overall mass loss. The evaporation

losses across the side boundaries can be ignored; in most cases this loss is insignificant

because of the vanishingly small contact area with the surroundings. We show that

the evaporation has an increasing effect on the liquid motion over time, wherein the

flow transitions from purely capillary dominated flow, to a transitional flow regime,

to evaporation dominated steady state. The relative contributions of evaporation

and capillary imbibition is conveniently described by a dimensionless characteristic

(evaporation-capillary) number (see also Ref24). Simplified solutions are obtained for

long times, when the system reaches a steady state, as well as for short times, which

correspond to the initial stage of liquid transport in the porous medium.

The paper is organized as follows: in the next section, we outline potential flow

theory for capillary driven motion with evaporation; the solutions of wicking with

normal surface evaporation for various shapes of the porous media are developed

in Sec. 4.3; Sec. 4.4 details the asymptotic analysis; and Sec. 4.5 summarizes the

conclusions.
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4.2 Governing Equations for the Flow in Porous

Media with Evaporation

The mass balance equation for incompressible flow of liquid through a porous medium

with evaporation rate, Q > 0, is

∇ · v = −Q, (4.2.1)

where the linear liquid velocity, v, is measured over a length scale significantly greater

than the size of the individual pores.92The sink term, Q, is defined as the fractional

mass loss rate (vaporized mass rate over liquid phase mass) from the liquid-filled

domain of the porous medium and has units of inverse time.∗ This evaporation

model restricts the system to a very thin or effectively two-dimensional porous layers

because the evaporation occurs as mass leaving the liquid domain in the direction

normal to the plane of the 2D medium. The plane is orthogonal to gravity or the

Bond number—the ratio of the gravitational to capillary force—is significantly less

than one.89 In the alternative case of Q < 0, capillary condensation would occur.

However, it affects the saturation throughout the medium and results in a diffuse

wetting front, so this model is not practical for condensation.96

The flow of liquid in porous media is irrotational,65 so the velocity may be ex-

pressed as the gradient of a velocity potential, ϕ,

v =∇ϕ. (4.2.2)

By the Darcy law, v = −(k/µ)∇P , the potential is directly related to the driving

pressure, P ,

ϕ = −k
µ
P, (4.2.3)

∗ See the discussion in Chapter 3 in the development of Eq. (3.2.5) for more mathematical

details, here we focus on some of the assumptions relating specifically to normal surface

evaporation.
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where k is the constant isotropic permeability of the medium and µ is the dynamic

viscosity of the liquid.56,90,93,97,98 The pressure gradient driving the liquid motion

is due to the capillary pressure drop at the front of the advancing domain. This

effectively simplifies the behavior of the system to three parameters: the permeability,

which is intrinsic to the solid medium; the viscosity, which characterizes the flow of

liquid; and the capillary pressure, P = Pc. We apply the linear Darcy law which is

valid for incompressible pore networks,56 and at times significantly greater than the

brief inertially-dominated flow regime.64,88,99

The potential and the velocity, equations (4.2.1) and (4.2.2), combine to into a

Poisson equation for the potential,4

∇2ϕ = −Q. (4.2.4)

The velocity potential in Eq. (4.2.4) is solved assuming the potential at the inlet

is ϕ0 = −kPc/µ and ϕf = 0 at the front. For the side boundaries, the flux of the

velocity potential is set to zero. Once the potential is solved, the velocity of the liquid

is found using Eq. (4.2.2). Mass is conserved at the frontal interface, such that the

wet front is moved by the potential driving force of the liquid velocity,54,55

vf =
dxf
dt

, (4.2.5)

where vf and xf are the velocity and position vectors, respectively, of the liquid

at the front boundary.∗ The motion is relatively slow and in a small domain, so we

assume the liquid saturated portion is isothermal.78 The secondary fluid in the system

is normally air, which is sufficiently immiscible with most liquids and low enough in

density to assume the motion of the liquid phase is independent of the gas phase. We

consider the evaporation to be homogenous across the wetted portion of the domain

and the liquid saturated portion of the domain does not have any trapped gas.93

Eq. (4.2.5) is solved to find the dependence of the front position with respect to time.

∗ We show the derivation of this expression in Eq. (3.2.13).
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Finally, the bulk velocity—the volumetric flow rate into the medium—is computed

from the integral of the liquid velocity normal to a complete cross-section of the

flow, particularly the inlet. We refer to these steps generally as the Lucas–Washburn

approach or method as it extends their single-pore techniques to a general porous

medium.23 Eqs. (4.2.4) and (4.2.5) are the governing equations of the infiltrating

liquid system.

4.3 Capillary Driven Flow with Evaporation in Thin

Porous Media

In this section, we derive solutions of wicking with evaporation for 2D-like domains

with circular and flat inlets and a 1D-like domain of constant rectangular cross section.

We solve the total velocity potential to determine the front velocity equation from

which the equations of motion for the wetting front position and the bulk velocity

are determined. A characteristic dimensionless number is introduced to simplify the

asymptotic comparison between the solutions and to consider the time-dependent

effects of the wicking.

4.3.1 Capillary Flow Through a Semicircular Inlet with Sur-

face Evaporation

The radial flow in a 2D porous domain in absence of evaporation was recently solved

by Hyvaluoma et al.61 We extend the analysis by accounting for evaporation losses

by introducing a sink term Q in the mass balance equation Eq. (4.2.4) in polar

coordinates (see also Fig. 4.1)

d2ϕ

dr2
+

1

r

dϕ

dr
= −Q, (4.3.1)
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y

x
r0 r0

rf

vf

θ

r

Q

Figure 4.1. Expanding flow through semicircular inlet into saturated domains with evap-
oration loss, Q, from the normal surface described by polar coordinates.

with the boundary conditions

ϕ|r=r0 = −k
µ
Pc, (4.3.2a)

ϕ|r=rf = 0. (4.3.2b)

The radius of the circular inlet is r0 while rf is the radius of the front of the saturated

domain. The polar angle, θ, varies from 0 to π. The porous material is considered

to be of thickness δ, small enough to ignore any variations in z-direction. The side

boundaries are subject to no flux conditions.

The solution of (4.3.1) with boundary conditions (4.3.2) and constant Q reads

ϕ̃ = − ln(r̃f )− ln(r̃)

ln(r̃f )

− 1

4

µa2Q

kPc

(r̃2 − 1) ln(r̃f )−
(
r̃2
f − 1

)
ln(r̃)

ln(r̃f )
.

(4.3.3)

The dimensionless potential is defined ϕ̃ = (µ/kPc)ϕ and r̃ = r/r0 or r/a with

dimensionless forms of other length variables defined in the same manner. Examining

Eq. (4.3.3), we observe a dimensionless group, which we refer to as the evaporation-
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capillary number, or for brevity, the evaporation number,

Nn =
µa2Q

kPc

. (4.3.4)

The subscript ‘n’ indicates the evaporation mechanism is through the surface normal

to the thin medium.∗ Nn is a measure of the relative strength of the mass loss rate by

evaporation, Q, over mass transport into the medium, kPc/µa
2, by capillary forces

and is found in the general case by proper scaling of Eq. (4.2.4). Alternatively, Nn

may be considered as the ratio of the characteristic time of capillary motion to the

characteristic time of the evaporation loss. From this perspective it is evident that

the quantity, Nn, estimates which mode of transport dominates the time-dependent

behavior of the flow. Large Nn indicates that the flow is mostly driven by the evap-

oration of the flat surface, while small Nn means that the flow is governed by the

capillary pressure drop [see Eq. (4.3.2)].

The velocity in the radial direction is found by differentiating the potential with

respect to r,

ṽr =
1

r̃ ln(r̃f )
− 1

4
Nn

r̃2 ln(r̃2
f )− (r̃2

f − 1)

r̃ ln(r̃f )
. (4.3.5)

Then the velocity at the liquid front, vf , is found by substituting r = rf , so

ṽf =
1

r̃f ln(r̃f )
− 1

4
Nn

r̃2
f ln(r̃2

f )− (r̃2
f − 1)

r̃f ln(r̃f )
. (4.3.6)

where ṽ = (µa/kPc)v. This expression for the front velocity is equivalent to equa-

tion (5) in the recently published work of Liu et al.95 At steady state the front velocity

is zero, so for 2D flow geometry and in the limits of large front radius and small Nn,

r̃2
f, ss ln(r̃f, ss)/2 ≈ 1/Nn. Following the general LW approach and using Eq. (4.2.5), the

evolution equation of the frontal radius is determined by drf/dt = vf . This equation

∗ The evaporation-capillary number as defined for the side and front boundaries are given

in Eqs. (3.3.20) and (3.3.24), respectively. We discuss the nature of the ECN in greater

detail in §3.4.1.
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is integrable and gives an implicit solution of the dependence of the frontal wetted

radius with time

ln

{
1− 1

4
Nn

[
r̃2
f ln
(
r̃2
f

)
−
(
r̃2
f − 1

)]}
= −Nnt̃, (4.3.7)

where t̃ = (kPc/µa
2)t. Expanding the left hand side and keeping only the two lowest-

order terms in Nn with their highest-order terms in the front radius,

1

2

{
r̃2
f ln(r̃f ) +

1

4
Nnr̃

4
f [ln(r̃f )]

2 + · · ·
}

= t̃. (4.3.8)

The expression for the front position, Eq. (4.3.7), may be rearranged,

2r̃2
f ln(r̃f )−

(
r̃2
f − 1

)
=

4

Nn

(
1− e−Nn t̃

)
. (4.3.9)

In the limit of Nn → 0 or for short times, this result agrees with the solution without

evaporation given in Hyvaluoma et al.61 Comparing the leading terms on both sides

reduces Eq. (4.3.9) to

r̃2
f ln(r̃f ) ≈ t̃− 1

2
Nnt̃

2, (4.3.10)

with errors of the order of r̃2
f and N2

nt̃
3. Conversely, for t̃ → ∞, Eq. (4.3.9) matches

the steady state result given in Liu et al.95

The volumetric flux through the inlet into the medium (i.e. bulk velocity) is

computed for polar geometry by

U =

[ˆ δ

0

ˆ π

0

vr r dθ dz

∣∣∣∣
r=r0

. (4.3.11)

The final form of the bulk velocity is determined by integrating the radial velocity

over the angular direction;

Ũ =
π

ln(r̃f )

{
1 +

1

4
Nn

[
r̃2
f − ln(r̃f )

2 − 1
]}
. (4.3.12)

where the dimensionless bulk velocity is defined Ũ = (µ/kPcδ)U . For simplicity in the

form of the solution, we have alternatively chosen δ as the length scale in Ũ instead

of a.
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vf

y

x
−a a

ηf (ψ)

ψ

η

Q

Figure 4.2. Expanding flow through linear inlet into saturated domains with evaporation
loss described by elliptic coordinates.

4.3.2 Expanding Capillary Flow Through a Linear Inlet with

Evaporation

A porous medium with a flat, discrete-sized inlet into a thin half-plane is conve-

niently described by elliptic coordinates.23 This choice follows from the fact that the

equipotential curves corresponding to a finite line source (or sink) are ellipses. The

sudden expansion depicted in Fig. 4.2 can be formally considered as a line source sup-

plying the liquid into a half-plane, which is the 2D porous domain. This also implies

that the side boundary conditions correspond to absence of flux or symmetry [see

Fig. 4.1 and Eqs. (4.3.15) below]. The model has some interesting implications, when

evaporation is present, that are unique to this particular shape and are discussed

below.

The elliptic coordinate system is defined as31

x = a cosh(η) cos(ψ), (4.3.13a)

y = a sinh(η) sin(ψ). (4.3.13b)

The fluid motion occurs primarily in the η-direction, while the angular variable, ψ,
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accounts for small variations in the expansion near the inlet. The inlet width into

the medium is equal to the distance between the two foci of the elliptical coordinate

system, 2a. As in the radial flow case above the porous medium is 2D, hence the z-axis

has no effect on the overall transport. The evaporation of the surface is accounted

for by the sink term Q.

The mass balance equation (4.2.4), for elliptic geometry may be expressed in the

form31

1

a2
[
cosh2(η)− cos2(ψ)

] (∂2ϕ

∂η2
+
∂2ϕ

∂ψ2

)
= −Q. (4.3.14)

The boundary conditions of the system account for capillary-driven motion, and no

flux through the edges of the medium

∂ϕ

∂ψ

∣∣∣∣
ψ=0

= 0, (4.3.15a)

∂ϕ

∂ψ

∣∣∣∣
ψ=π

= 0, (4.3.15b)

ϕ|η=0 = ϕ0 = −k
µ
Pc, (4.3.15c)

ϕ|η=ηf
= 0. (4.3.15d)

The solution for the velocity potential in dimensionless form is (see Ref.100 for details)

ϕ̃ = −ηf − η
ηf

− 1

4
Nn

[
η − ηf + ηf cosh(2η)− η cosh(2ηf )

2ηf

+
sinh(ηf − η) sinh(η)

cosh(ηf )
cos(2ψ)

]
.

(4.3.16)

This potential is then used to derive the velocity of liquid propagation in the porous

materials that includes both capillary and evaporation effects. The first term accounts

for the capillary pressure driven transport, while the second one is for the evaporation

loss.

The velocity of liquid propagation can be expressed as the potential gradient,31
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or

∇ϕ = vηêη + vψêψ (4.3.17a)

=
1

a
[
cosh2(η)− cos2(ψ)

]1/2 [∂ϕ∂η êη +
∂ϕ

∂ψ
êψ

]
. (4.3.17b)

Hence the two components of the velocity are

ṽη =
1[

cosh2(η)− cos2(ψ)
]1/2 { 1

ηf

−1

4
Nn

[
2ηf sinh(2η)− cosh(2ηf ) + 1

2ηf

+
sinh(ηf − 2η)

cosh(ηf )
cos(2ψ)

]}
,

(4.3.18)

and

ṽψ =
−1[

cosh2(η)− cos2(ψ)
]1/2

× 1

2
Nn

sinh(ηf − η) sinh(η)

cosh(ηf )
sin(2ψ).

(4.3.19)

The velocity components are scaled as described above. We are interested in the front

velocity where η = ηf . Examining Eq. (4.3.19) shows that at the front vψ = 0, and

the velocity ṽf has components only along ηf . Restating Eq. (4.2.5) for the elliptic

coordinate system, then the front velocity,

ṽf =
[
cosh2(ηf )− cos2(ψ)

]1/2 dηf

dt̃
(4.3.20a)

=
1[

cosh2(ηf )− cos2(ψ)
]1/2 { 1

ηf

− 1

4
Nn

[
2ηf sinh(2ηf )− cosh(2ηf ) + 1

2ηf

− tanh(ηf ) cos(2ψ)

]}
.

(4.3.20b)

Following the spirit of the LW approach, Eq. (4.3.20b) must be numerically integrated

to give the time-dependent position of the front ηf (t̃).
∗

∗ See §E.1.4 for details. Also, we may compare this solution to Eq. (2.3.7), which yields

the analytical solution Eq. (2.3.9) for 2D flow with capillary force only.
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Both the fluid front velocity ṽf and position ηf are not elliptic in shape. Hence, this

case is different from the simple 1D and 2D circular cases where the both the velocity

and the time-dependent front position have the same shape as the equipotential lines.

More detailed analysis shows that while the shape of the liquid front for expanding

flow through a linear inlet is not elliptic for short times and small ηf , it approaches one

for longer times, which also agrees with experimental observations.100 The deviation

from elliptic shape for ηf ≥ 2 is less than 5% and rapidly decreases further with the

advancement of the liquid front.

The bulk velocity is calculated via

U =

[ˆ δ

0

ˆ π

0

v · n a
[
cosh2(η)− cos2(ψ)

]1/2
dψ dz

∣∣∣∣
η=0

, (4.3.21)

where n is the unit vector normal to the inlet, which in this case is êη. When the

velocity from Eq. (4.3.18) is substituted and the expression simplified, we find the

bulk velocity in integral form,

Ũ =

ˆ π

0

1

ηf
+

1

4
Nn

[
cosh(2ηf )− 1

2ηf
+ tanh(ηf ) cos(2ψ)

]
dψ, (4.3.22)

The integration over the angular variable is not straight-forward because the frontal

position is a weak function of the angle, ηf = ηf (ψ, t), and may only be fully solved nu-

merically. This arises principally from the angular dependence of the inverse squared

metric coefficient in front of the expression for integrating the position over time in

Eq. (4.3.20b). If we assume ηf is constant with respect to ψ, the equation simplifies;

Ũ =
π

ηf
+
π

8
Nn

[
cosh(2ηf )− 1

ηf

]
. (4.3.23)

This equation is only useful qualitatively in the limit of large ηf , and invalid for the

early times of expansion where the angular dependence is especially strong.100∗

∗ This solution for Nn = 0 agrees with the bulk velocity for capillary flow given in

Eq. (2.3.11), indicating that the limitations on the angular variable which we consider

here are important in capillary flow as well.
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4.3.3 Capillary Flow with Normal Surface Evaporation in a

Non-Expanding Porous Media

Before comparing the 2D expanding flow solutions found above, it is instructive to

revisit the known solution for capillary flow through a medium of constant cross

section with normal surface evaporation. This case does not involve any expansion

of the porous medium, which makes the flow effectively 1D. The problem of finding

the time dependence of the front position was first solved by Fries et al.80 (see also

Ref24). The solution for the front position may be presented in the form,

L̃2 =
2

Nn

[
1− exp

(
−Nnt̃

)]
. (4.3.24)

As the exponential term goes to zero at longer time, the steady state value of the

front position becomes L̃ss =
√

2/Nn . Similar to the 2D polar case with Eq. (4.3.10),

the solution may be expressed as a series in the time variable;

1

2
L̃2 = t̃− 1

2
Nnt̃

2 + · · · . (4.3.25)

Rearranging Eq. (4.3.24) into the implicit form of the length variable,

ln

(
1− 1

2
NnL̃

2

)
= −Nnt̃.

We expand the logarithm in the same manner as Eq. (4.3.8) to achieve the series

approximation in the spatial variable;

1

2

(
L̃2 +

1

4
NnL̃

4 + · · ·
)

= t̃. (4.3.26)

The bulk velocity for the porous strips of constant cross section 2a by δ is24

Ũ =
2

L̃
+ NnL̃. (4.3.27)

As L̃ increases, the first term decreases and the evaporation becomes the primary

driver of liquid infiltration. The time-dependent bulk flow-rate can be derived by
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(a) Flow through circular inlet (2Dp) de-
scribed by polar coordinates in Figure 4.1.
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(b) Flow through linear inlet (2D) de-
scribed by elliptic coordinates in Figure 4.2.

Figure 4.3. Front position, ỹf , versus time, t̃, compared to flow through constant cross
section (1D).

substituting Eq. (4.3.24) into (4.3.27). At steady state (t̃ → ∞), the bulk velocity

becomes particularly simple,

Ũss =
√

8Nn . (4.3.28)

4.4 Results and Discussion

4.4.1 Time Dependence of Propagation Length in the Pres-

ence of Evaporation

The LW solution for 1D capillary flow in absence of evaporation predicts that the

distance of liquid imbibition L ∼
√
t . If the porous materials has a varying cross-

section then this simple law is no longer valid.23,60,61 The evaporation effects further

complicate the physical picture and also have an impact on the overall time behavior.

Here we present results on the capillary driven liquid penetration in 2D expanding
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porous with surface evaporation.

Fig. 4.3 illustrates notable differences and similarities in early time dependent be-

havior of the front position solutions for the three cases given above. Fig. 4.3a com-

pares the solution in the Cartesian (1D) and polar (2D radial) solutions, Eq. (4.3.24)

and (4.3.7), respectively. The position along the y-axis is tracked, hence the front in

the figures is denoted by ỹf . The 2D radial flow has a circular inlet, and begins at

ỹ = 1, while the 1D flow, begins at a flat inlet where ỹ = 0. This makes the solutions

disjointed at early times, when plotted together (see Fig. 4.3a). Additionally, the later

time behaviors (with lower evaporation numbers) do not become similar because the

effects of the expansion on the 2D flow reduce the rate of front advancement relative

to the LW result.

In Fig. 4.3b the 2D elliptic coordinate solution, Eq. (4.3.20b), is compared to the

1D solution, Eq. (4.3.24). Here we observe much better agreement, particularly for

high evaporation numbers because the expansion is insignificant for the 2D elliptic

solution at small values of the front position. For Nn = 10, the two solutions are

indistinguishable, and for Nn = 1 the they are still very close. Small numbers, Nn < 1,

lead to increased deviation between the 1D and 2D solutions. This is because the

liquid penetrates further in the porous material and curves due to the expansion in

the 2D case. This effect leads to the observed discrepancy between the 1D and 2D

cases.

Fig. 4.4 presents data for larger values of Nn and much longer times. Fig. 4.4a

shows the front position along the y-axis for both the 2D expansion (elliptic) and 1D

(Cartesian) cases. We again observe the front position data match almost perfectly

for large Nn = 100, and they are very similar for Nn = 1. At longer times and small

Nn, the discrepancies between the 2D and 1D cases are even greater that in Fig. 4.3b,

particularly when the evaporation is low (i.e., Nn = 0.01).
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(a) Comparison of 1D and 2D with linear
inlet.
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(b) Comparison of lateral flow for 2D linear
and 2D circular inlets.

Figure 4.4. Logarithmic comparison of front positions versus time, t̃, for 1D and 2D cases.
The front position is tracked along the y-axis in (a) and x-axis in (b).

Figure 4.4b plots the elliptic and 2D polar solutions of the front position along

the x-axis because the polar front starts at r̃f = 1 as elliptic does along ψ = 0 and

π. The front positions begin close together at early times t̃ < 0.01 and are slightly

different for high evaporation number, Nn = 100. On the opposite scale, at small

evaporation numbers and large times, such as Nn = 0.01 or 0 and t̃ > 103, the

elliptic and polar solutions asymptotically agree. In the intermediate range of t̃ ∼ 1

and Nn ∼ 1, the solutions are noticeably separated due to the subtle difference of

the inlet shape between the elliptic and polar models. Ultimately, we observe that

the length of the propagation of the liquid derived with the elliptic geometry gives

the correct qualitative asymptotic behaviors both with and without the evaporation
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Figure 4.5. Steady state front position along the y-axis, ỹf , versus evaporation number,
Nn, for linear inlet (2D), circular inlet (2Dp), and constant cross section (1D).

effects.∗

The steady state front position versus evaporation number is shown in Fig. 4.5,

which illustrates how far the liquid propagates into the medium depending on the

relative evaporation loss (i.e. the Nn number). The flat linear inlet case (elliptic)

interpolates between the 1D Cartesian and 2D radial flow solutions. The steady

state front position for elliptic coordinates appears to match asymptotically with the

polar case for Nn < 0.01, and is very close to the Cartesian data for Nn > 10. For

evaporation numbers between these two values, the elliptic propagation length is less

than both of the asymptotic cases. Particularly for large Nn, where the 1D Cartesian

case is relevant, the bottom right side of Fig. 4.5 shows the steady state position of

∗ The solutions of the front position in Chapter 2 may be numerically shown to match the

results above in the limit of no evaporation, i.e. Nn = 0. However, Figure 2.10, which gives

the 1D, 2D, and 2D polar solutions of the front position over time, presents the data in

the elliptic variable, η2
f , for asymptotic comparison between the three cases. So, this prior

result is not visually comparable to Figures 4.4a and 4.4b of in this chapter where the data

is relevant asymptotically, relatable to dimensional physical systems, and thereby directly

applicable to physical analysis and device design. This is similar to Figure 3.2.
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Figure 4.6. Contour plot of frontal position, ỹf , over evaporation number, Nn, and time, t̃,
for the elliptic solution. Dashed black lines distinguish regimes of flow behavior; Nnt̃ = 0.1
and Nnt̃ = 10 are plotted in the lower left and upper right, respectively. The lower left
section is dominated by capillary flow and upper right is at steady state.

the front varies as the inverse square root of the evaporation number; ỹf, ss ∼ 1/
√
Nn

or Nnỹ
2
f, ss ∼ 1. This is in agreement with Eq. (4.3.24) at steady state. In the limit

of small Nn, the front advancements for the radial and elliptic flows are less than

in the 1D case. This observation agrees with the steady state form of Eq. (4.3.6);

ỹ2
f, ss ln(ỹf, ss) ∼ 1/Nn.∗

4.4.2 Regimes of Capillary Flow Behavior

Three regimes can be identified in the time-dependent behavior of the capillary driven

frontal fluid motion in the presence of evaporation. These are clearly visible in Fig. 4.6,

where the data from Fig. 4.4a are essentially revisualized as a contour plot of the

magnitude of the front position as it varies over the evaporation number and the

time. The contours exhibit three distinctly patterned zones: vertical lines, horizontal

∗ See Eq. (E.1.17b) for the explanation.

95



Chapter 4. 2D Normal Surface Evaporation

lines, and transitional curves from vertical to horizontal. Each represent different

flow regimes of the liquid front. The first regime (see the vertical lines) indicates that

the front position is very weakly dependent on the evaporation number. This is the

capillary force dominated regime, Nnt̃� 1, where the fluid motion is asymptotically

identical to the infiltration by capillary forces only. The second zone (horizontal

lines) is for longer time scales, Nnt̃� 1, where the evaporation effects become much

greater than the capillary forces and the fluid saturated medium has reached a steady

state. The lines are horizontal because the front position is no longer advancing

with time. Between these two regimes is the transition zone (approximately between

0.1 < Nnt̃ < 10) where the flow behavior is a mixture of capillary and evaporation

effects, with evaporation becoming dominant as time increases.

The relationship between the evaporation number Nn and time is shown analyti-

cally in Eqs. (4.3.9) and (4.3.24), where the implicit function of the front position is

proportional to [1− exp(−Nnt̃ )]/Nn. This illustrates that it is the product Nnt̃ that

determines the time behavior in the presence of surface evaporation. The first order

asymptotic expansion of this expression is in the form t̃(1− 1
2
Nnt̃ ), which is valid for

early times or small evaporation rate [see Eqs. (4.3.25) and (4.3.10)]. For Nnt̃ = 0.1

this means the magnitude of the front position is reduced by 5%. As illustrated in

Figure 4.4, the solution of the behavior of the front in elliptic coordinates matches

the Cartesian and polar solutions asymptotically.100 Thus, in all three cases the front

position of the liquid is determined by Nnt̃, or equivalently in dimensional form, by

the product of the evaporation rate and the wetting time, Qt.

4.4.3 Rate of Liquid Absorption

The bulk velocity is defined as the amount of water the porous medium is absorbing

per unit time. Figure 4.7a plots the bulk velocity versus time for liquid penetrating
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(a) Bulk flowrate vs. time for flat inlet.
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Figure 4.7. Bulk flow-rate behavior with time (a) and with evaporation number at steady
state (b).

an expanding 2D porous medium as described by Eq. (4.3.22).∗ In absence of surface

evaporation, the bulk velocity exhibits a fast initial drop, but declines less rapidly in

2D at later times.†

In the presence of evaporation, the bulk velocity always reaches a finite steady

state. Figure 4.7b gives the specific relationship between the steady state bulk velocity

and the evaporation number for the three geometries: expanding flow from a linear

source (elliptic case), 1D non-expanding flow (the LW case), and radial (polar). All

three cases show similar behavior at high evaporation numbers. The steady state

radial flow is greater than the other two systems by a factor of π/2 because of the

larger circular inlet. For high evaporation numbers, Nn > 10, the bulk velocity varies

as Ũss ∼
√
Nn , which resembles the power law for the 1D non-expanding case [see

∗ In the supplemental material, Figure E.6 gives the contour plot showing the capillary

dominated and steady state regimes. † The results for the zero evaporation rate limit in

Fig. 4.7a gives a more accurate physical value of the bulk velocity with time than in Fig-

ures 2.6 and 2.12. In Chapter 2, the data for the 2D elliptic was calculated from Eq. (2.3.11)

which, similar to Eq. (4.3.23), did not take into account the dependence of ηf on ψ.
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Eq. (4.3.28)]. In the limit of low evaporation numbers, the expanding flow cases are

asymptotically similar and exhibit much higher bulk flow rates into the medium than

in a non-expanding strip. This figure may be used to determine the evaporation

rate required for a desired bulk velocity, and coupled with Fig. 4.4a can estimate the

necessary size of the porous domain. Thus, Figures 4.4a and 4.7b together provide

a practical resource for engineering and design of thin media used in driving liquids,

see for example Refs.17,21

4.4.4 Power Law Behavior of Capillary Flows

Power law relations have played an important role in the study of wicking in porous

media. Here we consider a generic coordinate system where the principal direction of

flow is the y-axis and the variables are in dimensionless form to simplify the compari-

son of various results in the literature. We are interested in the simplest characteristic

relation for capillary driven flows in porous media between the position of the liq-

uid front, ỹf , and the time of contact with the liquid, t̃, while potentially including

evaporation effects given by the evaporation-capillary number, Nn.

Power law behavior was first proposed by Bell and Cameron53 who showed ex-

perimentally ỹnf ∼ t̃, where n was generally measured to be slightly greater than two

for 1D non-expanding flows. In studies of capillary rise, Lucas54 and Washburn,55

theoretically demonstrated that the capillary wetting length varied with the square

root of the time, or
1

2
ỹ2
f = t̃, (4.4.1)

which is known as the Lucas–Washburn equation. In porous media with constant

cross-section, the capillary-driven flow modeled by Green–Ampt theory71 is related

to the LW equation by considering the porous medium as capillary networks, so the

LW equation is applicable in the context of porous media.8
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Flows into porous media of higher dimensional shapes and varying cross-section

can be asymptotically modeled using similar relationships. The solution of Hyväluoma

et al.61 shows that in the case of 2D radial expansion and large advancement of the

liquid, the wet front moves with time according to

1

2
ỹ2
f ln(ỹf ) ≈ t̃. (4.4.2)

Similarly, the result by Xiao et al.60 for capillary driven flow in a 3D spherical system

indicates the asymptotic behavior for large liquid advancement is

1

3
ỹ3
f ≈ t̃. (4.4.3)

The full 2D and 3D solutions include a second order term in ỹf similar to the LW

equation which dominates the behavior at very early times.

In Sec. 4.3 above, we derived reduced solutions for the 1D and 2D capillary flows

with evaporation. The first order effect of the evaporation to the Lucas–Washburn

relation is given in Eq. (4.3.26),

1

2

(
ỹ2
f +

1

4
Nnỹ

4
f

)
≈ t̃, (4.4.4)

where the term Nnỹ
4
f/4 accounts for the surface evaporation. This polynomial gives

the initial evaporation effect for Nnt̃ < 1, but is inaccurate in the steady-state limit.

For 2D expanding flows the approximate power law is [cf. Eq. (4.3.8)]

1

2

{
ỹ2
f ln(ỹf ) +

1

4
Nnỹ

4
f [ln(ỹf )]

2

}
≈ t̃. (4.4.5)

This shows the evaporation influences the frontal motion of the flow more strongly

than for the 1D case because the first order evaporation term is of higher order in

front position, so the initial effect of the evaporation grows more rapidly.
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4.5 Conclusions

The effects of the domain geometry and evaporation from porous media on capillary

flow was explored in the framework of Green–Ampt theory with potential flow. The

prescribed model of evaporation from the surface of a porous medium shows several

important phenomena in the time-dependent and steady state behaviors of the liquid

infiltration. Capillary forces initially drive the liquid into the unsaturated medium,

but the liquid advancement is slowed by the evaporation when the expansion becomes

sufficiently large. A steady state is reached when the evaporation loss flux is equal

to the flow by capillary imbibition of incoming liquid. A dimensionless number,

termed the evaporation-capillary number, Nn was introduced that reflects the relative

contributions of capillary driven flow and evaporation on the overall liquid transport.

The evaporation begins to slow the flow observably around Nnt̃ = 0.1, and the fluid

motion reaches steady state near Nnt̃ = 10. An asymptotic power law behavior of

evaporating liquid wicking into a 2D domain in the form ỹ2
f ln(ỹf )+ỹ4

f [ln(ỹf )]
2/4 ∼ t̃ is

derived for large expansions and moderate evaporation losses. The rate of volumetric

flux of liquid imbibed into the medium is significantly higher for evaporation from

a fanning domain shape than from a strip of constant cross section, which gives a

fanning porous medium a greater capacity to drive fluids through microfluidic devices.

The theory of flow behavior in an effectively two-dimensional medium presented in

this paper gives a useful standard for determining to what extent a proposed domain

geometry improves the bulk flow rate characteristics in an engineered porous medium.
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Chapter 5

Wicking in Expanding Flow

Geometries with Evaporation and

Restraint by Gravity

5.1 Introduction

Several phenomena have significant effects on capillary flows in porous media includ-

ing evaporation, restraint by gravity, and the geometry of the porous domain.23 There

are three modes of evaporation losses from porous materials related to the interface

through which the evaporation occurs; these are normal surface, side boundary, and

front interface evaporation. Each of these modes have distinct effects on the imbibi-

tion rate of liquid into dry porous media.24 Novel technologies are being developed

which make use of capillary flows to drive a reacting fluid in small microfluidic and

fuel cell devices.17,48 This requires accurate predictive models of the fluid rate of liquid

advancement and bulk flow into the porous medium. In this chapter, we present the

semi-analytical solutions for capillary flow in two- and three-dimensional geometries
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when effected by front evaporation, side evaporation, and restraint by gravity.

The effect of the 2D polar and 3D hemi-spherical geometries on unsaturated wick-

ing are given by Hyväluoma et al.61 and Xiao et al.60, respectively. These solutions

and the 1D Lucas–Washburn equation54,55 are compared in Ref.23 along with the

derived solutions expansions with flat inlets.∗ Phillip59 considers the 2D and 3D ex-

panding geometries when the capillary flow has a continuous wetting interface. In

all the studies, it has been observed that a greater dimensionality of the expansion

reduces the rate of advancement of the wet front, but increases the volumetric flow

into the porous medium.

The modes of normal, side, and front evaporation are introduced in Ref.24, where

it was shown that the normal and side evaporation are related in the limit of large

front length.† No prior work on side or front evaporation from 2D or 3D expanding

flows in porous media is known. In soils the evaporation, capillarity, and gravitational

effects all contribute to the moisture profile.83,85 It is clear that the general steady

state front saturation profile of a system with front evaporation is continuous and the

therefore the GAT is limited to shorter times.84,96

Green and Ampt71 observed that the discrete capillary front held more closely

for downward infiltration than upward wicking due to pore-scale variations in capil-

lary diffusion. Philip59 illustrated that gravity deforms the front shape over sufficient

length scales and reduces the symmetry of the front shape, which may also be shown

by the contour shape of the liquid saturation of the medium.101 Barry et al.74 de-

termined the solution of 1D imbibition in the presence of gravity in the form of the

Lambert W function. This solution was reproduced in the formulation of capillary

rise by Fries and Dryer.75,76 Other work has added evaporation to the restraint gravity

acting on wicking.67,80 For sufficiently large pore sizes, the inertia affects the wetting

behavior.89 Milczarek et al.102 have shown that the wetting of some granular media

∗ This is discussed in Ch. 2 and revisited in Sec. 3.4.2. † See Ch. 3.
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deviates from the LWE.

We assume the porous medium itself does not expand during wetting, the evap-

oration rate is a constant, and the process is isothermal. Fingering instabilities are

ignored because the gravity is acting opposite to the flow.91 Normal surface evap-

oration in expanding geometries has already been addressed, and is not physically

relevant to fully 3D porous media.∗ The evaporation capillary number and modi-

fied Bond numbers signify the relative strength of the evaporation and gravity to

the capillary force, respectively. In particular, we quantify the initial effect of the

phenomenon on the rate of advancement of the wet front and the fluid uptake by

the medium, as the Green–Ampt model is relevant for timescales smaller than steady

state.

The material in this chapter is laid out as follows. In the next section, Sec. 5.2,

we outline the expressions of capillary wicking with restraint by gravity and mass

losses by front and side evaporation. Secs. 5.3 and 5.4 present the derivation of the

general equations for 2D and 3D expanding flows, respectively. In Sec. 5.5 we discuss

the simultaneous effects of the dimensionality and the restraining physics. Finally,

we summarize the results in Sec. 5.6.

5.2 Governing Equations

In this section, we review the governing equations for capillary wicking in porous me-

dia with side and front evaporation and with restraint by gravity.† The potential flow

formulation of Green–Ampt theory begins with the conservation of mass equation,

∇ · v = 0, or the velocity, v, is equal into and out of a control volume. For flow in

∗ See Ch. 4. † A more detailed discussion is given in Sec. 3.2.
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porous media the velocity may be given as the gradient of a velocity potential, ϕ;

v =∇ϕ. (5.2.1)

Substituting into the conservation equation

∇2ϕ = 0. (5.2.2)

Here we assume that there is no mass loss due to normal surface evaporation.

From the Darcy law, we may relate the internal pressure to the velocity potential

ϕ = − k
µ
P , where k is the permeability, µ the viscosity, and P the pressure. Combining

the capillary pressure, Pc, and the hydrostatic pressure, we find an expression for the

velocity potential at the inlet,

ϕi = −kPc

µ
+
kρghf
µ

, (5.2.3)

where ρ is the density difference between the liquid and gas, g is the magnitude of the

local gravity, and hf is the correlated height of the liquid front from a given reference

point. The mass balance equation at the front interface is

dxf
dt

= [∇ϕ|xf − qfnxf , (5.2.4)

where xf is the position of the front at time, t; qf is the rate of loss through the

front interface, and nxf is the vector normal to the front interface. For insulated

side boundaries, [∇ϕ|xs = 0. However, when there is evaporation occurring at the

boundary,

[∇ϕ|xs = qsnxs , (5.2.5)

where qs is the rate of loss of fluid through the side boundary. The bulk flow rate

entering the medium, U , is found by integrating the velocity at the inlet

U = −
¨

xi

[∇ϕ|xi · nxi dxi. (5.2.6)
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Figure 5.1. Wicking in a porous medium with 2D expanding capillary flow and evaporation
through the sides and front interface with restraint by gravity.

5.3 Solutions for Two–Dimensional Expansion

Two dimensional expanding flows in porous media is most simply described by polar

coordinates as given in31

x = r cos(θ), (5.3.1a)

y = r sin(θ). (5.3.1b)

Figure 5.1 shows the coordinate system as well as the layout of the porous domain.∗

The thickness of the porous medium in the z-direction, δ, is small so we only consider

behavior in the plane. The gravity restrains the flow along the center axis into the

half-plane of the porous domain. The liquid enters the domain through a circular

inlet of radius r0 and the domain is saturated with liquid out to the radius of the

front, rf . Side evaporation causes a loss of fluid through the sides along the x-axis at

a rate of qs and fluid is also lost through the front at a rate of qf . A system with a

flat inlet may be described by elliptic coordinates.

∗ The differential operators used are summarized in Apx. A.
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5.3.1 General Derivation

Within the wetted porous domain, the mass of the liquid is conserved as indicated in

Eq. (5.2.2); in polar coordinates this is

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
= 0. (5.3.2)

The boundary conditions account for the capillary force (third equation, the side

evaporation (first two equations), and the restraining force of gravity (second RHS

term in third equation); [
−1

r

∂ϕ

∂θ

∣∣∣∣
θ=0

= −qs, (5.3.3a)[
1

r

∂ϕ

∂θ

∣∣∣∣
θ=π

= −qs, (5.3.3b)

[ϕ|r=r0 = ϕ0 +
kρg

µ
rf sin(θ), (5.3.3c)

[ϕ|r=rf = 0. (5.3.3d)

Using linear superposition, this system is solved by splitting the total velocity poten-

tial ϕ = ξ + γ + ω, where ξ, γ, and ω are the capillary, gravity, and side evaporation

potentials, respectively. It is readily shown that the capillary potential is

ξ̃ = − ln(r̃f )− ln(r̃)

ln(r̃f )
. (5.3.4)

The gravity potential is more challenging because of the dependence of the non-

homogenous boundary condition on θ, so the solution is a Fourier series;∗

γ̃ = − 4

π
Boar̃f

∞∑
j=1

1

(2j)2 − 1

r̃4j
f − r̃4j

r̃4j
f − 1

1

r̃2j
cos(2jθ). (5.3.5)

∗ See the derivations of Eqs. (F.1.11) and (F.1.23) for the process of determining the gravity

and side evaporation potentials, respectively.
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Similarly, the side evaporation potential is a series

ω̃ = −2Ns

∞∑
n=1

[1− (−1)nr̃f ] ln(r̃f )

n2π2 + (ln(r̃f ))
2 sin

(
nπ

ln(r̃)

ln(r̃f )

)
×
[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]
.

(5.3.6)

The combined potential is

ϕ̃ = − ln(r̃f )− ln(r̃)

ln(r̃f )
− 4

π
Boar̃f

∞∑
j=1

1

(2j)2 − 1

r̃4j
f − r̃4j

r̃4j
f − 1

1

r̃2j
cos(2jθ)

− 2Ns

∞∑
n=1

[1− (−1)nr̃f ] ln(r̃f )

n2π2 + (ln(r̃f ))
2 sin

(
nπ

ln(r̃)

ln(r̃f )

)
×
[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]
.

(5.3.7)

In general this combined potential is precise at a given instant for only the capillary

potential and either gravity or side evaporation but not both.

The velocity in the radial direction is found from the derivative of the potential,

ṽr =
1

r̃

{
1

ln(r̃f )
− 4

π
Boar̃f

∞∑
j=1

2j

1− (2j)2

r̃4j
f + r̃4j

r̃4j
f − 1

1

r̃2j
cos(2jθ)

−2Ns

∞∑
n=1

nπ [1− (−1)nr̃f ]

n2π2 + (ln(r̃f ))
2 cos

(
nπ

ln(r̃)

ln(r̃f )

)
×
[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]}
.

(5.3.8)

Substituting for the front radius, we get the front velocity inside the wetted domain,

ṽf =
1

r̃f

{
1

ln(r̃f )
− 8

π
Boa

∞∑
j=1

2j

1− (2j)2

r̃2j+1
f

r̃4j
f − 1

cos(2jθ)

−2Ns

∞∑
n=1

(−1)nnπ [1− (−1)nr̃f ]

n2π2 + (ln(r̃f ))
2

×
[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]}
−Nf.

(5.3.9)
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The bulk velocity is

Ũ =

ˆ π

0

1

ln(r̃f )
− 4

π
Boar̃f

∞∑
j=1

2j

(2j)2 − 1

r̃4j
f + 1

r̃4j
f − 1

cos(2jθ)

− 2Ns

∞∑
n=1

nπ [1− (−1)nr̃f ]

n2π2 + (ln(r̃f ))
2

[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]
dθ.

(5.3.10)

Without side evaporation and gravity, the bulk velocity is simply

Ũ =
π

ln(r̃f )
. (5.3.11)

This is valid for front evaporation because that is accounted for only in the front

velocity equation and therefore does not directly affect the bulk velocity.

5.3.2 Front Evaporation

When we reduce the full front equation (5.3.9) to only capillary flow and front evap-

oration, dr̃f/dt̃= 1/[r̃f ln(r̃f )]−Nf, the equation can be put into integral form

ˆ r̃f

1

r̃f ln(r̃f )

1−Nfr̃f ln(r̃f )
dr̃f = t̃. (5.3.12)

The integral in the left hand side is not analytic. But we may expand the integral to

the first order evaporation term,

1

2
r̃2
f ln(r̃f ) + Nf

1

3
r̃3
f [ln(r̃f )]

2 ≈ t̃. (5.3.13)

The velocity equation reduces in the steady state for pure front evaporation to

r̃f, ss ln(r̃f, ss) =
1

Nf

. (5.3.14)
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5.3.3 Gravity

From Eq. (5.3.9), the first order effect of the gravity on the capillary flow along the

x-axis (orthogonal to the gravity vector) is

dr̃f

dt̃
=

1

r̃f ln(r̃f )
+

16

3π
Boa

1

r̃2
f

(5.3.15)

Conversely, along the y-axis (opposite to gravity)

dr̃f

dt̃
=

1

r̃f ln(r̃f )
− 16

3π
Boa

1

r̃2
f

. (5.3.16)

We see that along the x-axis the gravity is increasing the flow rate, but is decreasing

it along the front. When we assume that the gravity has not yet deformed the front

shape, i.e. the front radius is independent of θ, the entire gravity term goes to zero in

the integral for the bulk velocity from Eq. (5.3.10). So, the gravity cannot be having

any influence on the bulk flow if there is no curvature to the front shape.

5.3.4 Side Evaporation

When gravity is dropped and the front shape is assumed to be constant with θ, the

bulk velocity simplifies from the integral into the form,

Ũ =
π

ln(r̃f )
− 4Ns

∞∑
n=1

[1− (−1)nr̃f ] ln(r̃f )

n2π2 + (ln(r̃f ))
2 . (5.3.17)

5.4 Solutions for Three–Dimensional Expansion

Similarly to the 2D-like porous medium discussed in the previous section, we now

have a porous medium of a half space domain with a hemispherical inlet of radius

r0, as shown in Fig. 5.2. Gravity restrains the flow with magnitude g in the negative

z-direction, which is normal to the plane of the half-space. Evaporation flux through
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vf

x

z

r0

rf

θ

r

ψ

g

qs

qf

Figure 5.2. Wicking in a porous medium with 3D expanding capillary flow and evaporation
through the front interface.

the sides occurs with magnitude qs and evaporation also occurs through the front at

a rate qf . The front length, rf , is the distance that the liquid has reached into the

domain.

This system is naturally described by spherical coordinates system as defined by31

x = r sin(θ) cos(ψ), (5.4.1a)

y = r sin(θ) sin(ψ), (5.4.1b)

z = r cos(θ). (5.4.1c)

For a half-space with a flat, circular inlet one may alternatively use oblate spheroid

coordinates.∗

∗ See Apx. A for further details on these coordinate systems which were also used in Ch. 2.
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5.4.1 General Derivation

The Laplace equation for the velocity potential within the wetted region is

∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
+

cot(θ)

r2

∂ϕ

∂θ
= 0. (5.4.2)

The boundary conditions are of the form,[
−1

r

∂ϕ

∂θ

∣∣∣∣
θ=0

= 0, (5.4.3a)[
1

r

∂ϕ

∂θ

∣∣∣∣
θ=π

2

= 0, (5.4.3b)

[ϕ|r=r0 = ϕ0 +
kρg

µ
rf cos(θ), (5.4.3c)

[ϕ|r=rf = 0. (5.4.3d)

The total velocity potential is split up into the capillary and gravity potentials, re-

spectively, ϕ̃ = ξ̃ + γ̃. The capillary potential is

ξ̃ = − r̃f − r̃
r̃f − 1

1

r̃
. (5.4.4)

The gravity potential is∗

γ = −Boar̃f

∞∑
n=0

(−1)n(4n+ 1)

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

(
r̃f
r̃

)2n+1

−
(
r̃
r̃f

)2n

r̃2n+1
f − r̃−2n

f

P2n(cos(θ)). (5.4.5)

The side evaporation potential is

ω̃ = −2Ns

∞∑
n=1

nπ
[
(−1)nr̃

3/2
f − 1

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−1/2(cos(θ))

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)

sin
(
nπ ln(r̃)

ln (r̃f )

)
√
r̃

.

(5.4.6)

∗ See the derivations of Eqs. (F.1.34) and (F.1.46) for details.
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Recombining the separated potentials

ϕ̃ = − r̃f − r̃
r̃f − 1

1

r̃
− Boar̃f

∞∑
n=0

(−1)n(4n+ 1)

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

(
r̃f
r̃

)2n+1

−
(
r̃
r̃f

)2n

r̃2n+1
f − r̃−2n

f

P2n(cos(θ))

− 2Ns

∞∑
n=1

nπ
[
(−1)nr̃

3/2
f − 1

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−1/2(cos(θ))

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)

sin
(
nπ ln(r̃)

ln (r̃f )

)
√
r̃

.

(5.4.7)

Differentiating the potential in the radial direction,

ṽr =

(
r̃f

r̃f − 1

)
1

r̃2
+ Boa

r̃f
r̃

∞∑
n=0

(−1)n(4n+ 1)

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

(2n+ 1)
(
r̃f
r̃

)2n+1
+ 2n

(
r̃
r̃f

)2n

r̃2n+1
f − r̃−2n

f

P2n(cos(θ))

−Ns

∞∑
n=1

nπ
[
(−1)nr̃

3/2
f − 1

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−1/2(cos(θ))

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)

2nπ
ln(r̃f)

cos

(
nπ ln(r̃)

ln(r̃f)

)
− sin

(
nπ ln(r̃)

ln(r̃f)

)
r̃3/2

.

(5.4.8)

Including the front evaporation effect, the front velocity is

ṽf =
dr̃f

dt̃
=

1

r̃2
f − r̃f

−Nf + Boa

∞∑
n=0

(−1)n(4n+ 1)2

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

P2n(cos(θ))

r̃2n+1
f − r̃−2n

f

− 2Ns
1

r̃
3/2
f ln(r̃f )

∞∑
n=1

(nπ)2
[
r̃

3/2
f − (−1)n

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−1/2(cos(θ))

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)
.

(5.4.9)

The bulk velocity is taken from the radial velocity at the inlet

Ũ = 2π

ˆ π/2

0

(
r̃f

r̃f − 1
+ Boar̃f

∞∑
n=0

(−1)n(4n+ 1)

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

(2n+ 1)r̃2n+1
f + 2nr̃−2n

f

r̃2n+1
f − r̃−2n

f

P2n(cos(θ))

− 2Ns
1

ln(r̃f )

∞∑
n=1

(nπ)2
[
(−1)nr̃

3/2
f − 1

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−1/2(cos(θ))

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)

)
sin(θ) dθ.

(5.4.10)
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Without gravity and side evaporation, the bulk velocity simplifies to,

Ũ = 2π
r̃f

r̃f − 1
. (5.4.11)

This is also applicable to front evaporation.

5.4.2 Front Evaporation

The equation reduces to dr̃f/dt̃= 1/(r̃2
f − r̃f )−Nf, which in integral form is,

ˆ r̃f

1

r̃2
f − r̃f

r̃2
f − r̃f − 1

Nf

dr̃f = − t̃

Nf

(5.4.12)

Expanding the integral in powers of r̃f , we find the early time first order perturbation

of the front evaporation is
1

3
r̃3
f + Nf

1

5
r̃5
f ≈ t̃. (5.4.13)

At large times we readily find the front evaporation steady state is

r̃2
f, ss − r̃f, ss =

1

Nf

, (5.4.14)

or for Nf � 1, r̃f, ss ≈ 1/
√
Nf . Unlike with the solution in polar coordinates, there is

an analytic expression for the integral. So the implicit solution for the capillary flow

with front evaporation is

(r̃f − 1) + ln(1−Nf(r̃f − 1)r̃f )

− 2(1 + 1/Nf)√
4/Nf + 1

[
tanh−1

(
2r̃f − 1√
4/Nf + 1

)
− tanh−1

(
1√

4/Nf + 1

)]
= − t̃

Nf

.

(5.4.15)

However, this solution is cumbersome, and we use the differential equation for analysis

instead.
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5.4.3 Gravity

The reduced solution of the bulk velocity for constant radius is,

Ũ = 2π

(
r̃f

r̃f − 1
− Boa

2

r̃2
f

r̃f − 1

)
(5.4.16)

Unlike in the 2D case, this shows that the bulk velocity does depend on the gravity

even when the gravity is not yet perturbing the front shape.

5.4.4 Side Evaporation

Similarly, when we assume that the front radius is independent of θ, we find an

expression for the bulk velocity with side evaporation;

Ũ = 2π

 r̃f
r̃f − 1

−Ns

∞∑
n=1

nπ
[
(−1)nr̃

3/2
f − 1

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−3/2(0)− Pnπ/ ln(r̃f)+1/2(0)

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)

.
(5.4.17)

This complex formula must be computed numerically to find useful information.

5.5 Results

5.5.1 Power Law Analysis

Front Evaporation

We may now consider front evaporation from a wetting interface moving in a medium

of constant cross section.∗ We may contrast with the front evaporation effect with

∗ Here we are expanding the full 1D front evaporation capillary flow solution given in

Eq. (3.3.32).
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that of the normal surface evaporation.∗

1

2
L̃2 + Nf

1

3
L̃3 ≈ t̃. (5.5.1)

The first order effect of the front evaporation is cubic in the front length, while

for normal evaporation the front length is to the fourth power; this indicates the

front evaporation effects the capillary flow at an earlier time than for normal surface

evaporation. As derived above in Eq. (5.3.13), with two dimensional radial expansion

the lowest order effect of the evaporation is described by,

1

2
r̃2
f ln(r̃f ) + Nf

1

3
r̃3
f [ln(r̃f )]

2 ≈ t̃. (5.5.2)

For front evaporation we have uniform front shape in the radial direction. From

Eq. (5.4.13), we have the power law for 3D radial capillary flow with front evaporation,

1

3
r̃3
f + Nf

1

5
r̃5
f ≈ t̃. (5.5.3)

In all these cases, it appears that the first order evaporation term is one polynomial

order lower than for the normal surface evaporation. This means that generally the

front evaporation begins to affect the flow sooner, but that steady state is not reached

as quickly.

Restraint by Gravity

The effect of the restraint of gravity on the liquid for media with constant cross section

is similar to front evaporation;†

1

2
L̃2 + Boa

1

3
L̃3 ≈ t̃. (5.5.4)

The other power law behaviors for gravity and side evaporation are more difficult to

determine because of the inherent series solution, usually of trigonometric functions.

∗ The power-laws for capillary flows and capillarity with normal evaporation are detailed

in Sec. 4.4.4. † As noted with Eq. (3.3.27).
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Also, the power laws are not the same along the center axis of the flow versus along

the side boundary. Thus, we will not discuss any further power series.

5.6 Conclusions

A significant amount of prospective work remains to be carried out on the theory

of evaporation effects in capillary wicking. The general time-dependent behaviors

need to be compared to the described theory. Analysis on the steady states front

deformity of some models is needed. To the authors knowledge, no experiments have

been conducted on the systems analyzed in this chapter. On earth’s surface the

gravitational effect may be significant enough to prohibit experiments on 3D side

evaporation. As it is known that restraining gravity causes a more diffuse wetting

front, some experiments need to be carried out constraining the applicability of the

GAT-based 2D and 3D models above. Some physical challenges are posed to the front

evaporation methodology used in this paper due to the effect that evaporation has on

the capillary via capillary condensation, such that GAT may hold for a short time.

Furthermore, each of these different phenomena should be investigated through the

framework of partially saturated capillary wetting via the Richards equation. Some of

these effects may be best understood via continuum simulations of partially saturated

flow, or through three dimensional pore-scale computational models of two phase flow.

Front evaporation, side evaporation, and restraint by gravity affect the behavior

of capillary flows in two and three-dimensional porous domains in distinct ways from

normal surface evaporation and each other. The front evaporation effects the flow at

an earlier time than normal evaporation, but takes longer to reach steady state. The

restraint by gravity opposite to the central axis of the flow slows the flow in the center

of the flow, but increases flow along the side boundaries. Side evaporation does the

opposite, where the center axis is insignificantly effected by the evaporation, but the
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front along the side boundaries goes to a steady state.
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Chapter 6

Pitting Corrosion at Al-AlO3

Interface

6.1 Introduction

The failure of aluminum mechanical parts due to corrosion demands significant fur-

ther advancements in the understanding of species transport in the pitting corrosion

process. Lattice Boltzmann methods can be used to investigate the transport of

species through irregular sub-surface pores, with solid degradation and electrochem-

ical effects. In this chapter, we present reduced computational models which help to

improve understanding of the interworking physical and chemical mechanisms in the

aluminum corrosion process for the purpose of providing insights on prevention and

repair.

In many ways, corrosion is the cancer of materials—nearly insignificant damages

suddenly lead to catastrophic failure of an entire system. Corrosion costs Ameri-

can organizations on the order of $60 billion per year in maintenance and repair of

damaged vehicles and machinery. The United States military estimates that approxi-
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mately 20% of their maintenance costs are directly related to corrosion. Corrosion is a

frequent cause of mishaps for aircraft, ships, and land vehicles across the globe. Alu-

minum corrosion in particular is a significant economic drain in the aircraft industry

and other light-weight metals applications such as fast naval vessels. Improvements in

materials design and treatment techniques have the potential to increase the lifespan

of such aircraft mechanical parts.46

Pitting corrosion leading to stress corrosion cracking in aluminum is a frequent

cause of failure due to material fatigue. Pitting corrosion is an electrochemical reac-

tion which slowly etches away aluminum from the bulk of the material under cracks

located below the protective aluminum oxide surface.103 In wet or humid environ-

ments, a liquid film may form over surface imperfections, so the corrosion rate is a

function of vapor phase conditions such as humidity, pressure, and temperature. Salt

in the film significantly increases the degradation rate via the action of hydrochloric

acid in the micropore accelerating the dissolution of aluminum.45 The electrolytes

further accelerate the transport of the aluminum ion through diffusiophoresis. As

the aluminum ion approaches the atmospheric boundary of the film, oxygen absorbed

into aqueous phase precipitates the ions into a buildup of aluminum oxide normally

outside the micropore. Thus, the aluminum ion concentration profile, and thereby

the dissolution rate of the metal, is a function of the electrolyte conditions such as

salt concentration, pH, pressure, temperature, and solvated oxygen.

When sufficiently large pits are formed due to corrosion or impact, both the me-

chanical strains on the metal as well as the chemical degradation may interact to

induce stress corrosion cracking (SCC) along the crystal grain boundaries of the

metal.104 As the corrosion process continues, the excess solvated hydrogen ions in

the micropore cause hydrogen embrittlement of the aluminum metal.45,105 This de-

scribes a common pathway through which corrosion accelerates material fatigue.∗

∗ In Apx. H we briefly cover some preliminary work of modeling SCC.
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Corrosion can also be caused by microbial decomposition of the metals—both steel

and aluminum—such as has been observed with the sunken H.M.S. Titanic. However,

we focus only on chemical mechanisms of corrosion and the physical phenomena

influencing the transport of species effecting the aluminum degradation reactions

occurring near the surface.

Corrosion is a chaotic process which involves coupled chemical reactions, diffusion,

surfaces features and chemistry, solid mechanics, and other nonlinear phenomena.

Thus, self-consistent, full-scale computational models of corrosion are computation-

ally challenging to find sensible, repeatable results. Ideally, all phenomena involved

in the corrosion process should be done through ab initio simulations with only given

atomic principles and a minimum of adjustable parameters, but scaled to the time

and length scales involved in corrosion. Naturally, a single computational model is

impractical both now and for the foreseeable future. Quantum density functional

models of local atomic configurations can be used to accurately determine molecular

scale behaviors. From this data, quantum-trained molecular dynamics simulations

may be done on the small grain material physics, surface chemistry, and fluid prop-

erties to feed into the lattice Boltzmann method (LBM). In this configuration, the

LBM would be applied to view mesoscale behaviors of the fluid transport processes

and limitations which govern some of the physical and chemical interactions occur-

ring at the small scales. Returning this information back to the molecular scale model

would allow iteration of physical constraints between these methods to mutually im-

prove the results demonstrated by each method. When the results have converged

to giving regular statistics, the results could be compared with experimental data to

determine if the statistically predicted pit growth rate matches.

In this chapter, we present models of several key transport phenomena involved

in the corrosion process as the basis for future work in the multiscale computational

analysis described above. We use the lattice Boltzmann method to illustrate some of
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the emergent system asymmetries which develop from the physical transport mecha-

nisms of multiphase condensation and electrokinetic effects in a corroded pit. We also

investigate important chemical processes involved in the degradation of the aluminum

such as the reaction in the fluid which solvates the aluminum ion and the resulting ma-

terial loss to the solid metal. In future, each of these methods may be combined into

a pore-scale holistic multiphysics model of the pit corrosion process. Through these

models, we observe some elementary insights into the transport limitations involved

in the aluminum corrosion process.

In the following section, we outline the computational methods used. In sec-

tion 6.3, we present several simplified models of transport phenomena in pitting cor-

rosion with a discussion of the simulation results. Section 6.4 discusses future work

and the conclusions.

6.2 Methods

The lattice Boltzmann method is a mesoscale fluids model especially applicable to

discrete porous domains. The method is a discretized form of the Boltzmann gas

kinetic equation which arose through advancements in lattice gas cellular automata.

Additional phenomena can easily be added to the LBM for the analysis of transport

in corroding and porous systems.∗
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Figure 6.1. Motion of gaseous particles.

6.2.1 The Lattice Boltzmann Method

The Boltzmann Equation

The Boltzmann equation (BE) is a statistical description of the motion of particles

through the distribution function of particles in the phase state, f(t,x,p), at given

time, t, positions, x, and momenta, p;10,12[
∂t + v · ∂x + Fext · ∂p

]
f =

ˆ
(f1′f2′ − f1f2) gσ(g,Ω) dΩ dp2, (6.2.1)

where v is the velocity, Fext any external force acting on the individual particles,

Ω the solid angle of the collisions, g is the magnitude of the difference between the

momenta, and σ is the collision cross section. At the mesoscale, the equation describes

the collective effects of particles with differing momenta moving, coming into contact,

and scattering while preserving the conservation laws of mass, momentum, and energy

as exemplified in Figure 6.1. The left side of the equation is the advection term

which describes the undisturbed movement of the gas-like particles in space, and the

right side of the equation describes the collisions between particle pairs. For low

velocity flows, the collision integral of the Boltzmann equation may be simplified to

the deviation of the distribution function from the statistical equilibrium distribution

or −(f − f eq)/τ , which is referred to as the Bhatnagar–Gross–Krook (BGK) collision

operator; this is commonly used with the LBM.106

∗ For more extensive background and details on the implementations of the LBM, see

Apx. C.
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The Boltzmann and the lattice Boltzmann equations (which we discuss below)

both bridge atomistic and continuum scales.13 At the molecular scale, the Liouville

equation describes the phase state of every individual particle in a given system.9

The Boltzmann equation is readily found by integrating over a given control volume

and limiting the series approximation of possible collisions. Both the BE and LBE

recover the Navier–Stokes equations through the Chapman–Enskog expansion in the

continuum limit.107 Thus, the Boltzmann equation is more detailed description than

the Navier–Stokes equations from a physical perspective.30

The Lattice Boltzmann Equation

The lattice Boltzmann method was developed to overcome computational difficulties

of the Lattice Gas Cellular Automata (LGCA) method, which tracked the advection

and collisions of individual gas-like particles restricted to lattice points and discrete

velocities based on simple automated rules.13 Both methods share the simple idea

of discretizing the velocity space into a very small number of discrete velocities in a

hydrodynamically consistent manner.108 The physical space, limited by these discrete

velocities, becomes a lattice for all points x in the simulation. The LBM is related

to the LGCA in much the same manner that the Boltzmann equation builds on the

Liouville equation; the LBM deals with statistical groups of particles (the distribution

functions) while LGCA treats individual particles in the computation, averaging the

statistical or macroscopic properties later.109

The lattice Boltzmann equation (LBE) with the BGK approximation (or the

LBGK equation) is,110

fα(x + eαδt, t+ δt) = fα(x, t)− fα(x, t)− f eq
α (x, t)

τ
, (6.2.2)

where f eq
α is the equilibrium distribution function calculated from a quadratic approx-

imation of the Maxwell–Boltzmann distribution, δt is the time step size, and τ is the
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Figure 6.2. Two-dimensional discrete velocities of the D2Q9 lattice Boltzmann model.

relaxation time. The LBE governs the updating of the local distribution functions on

the lattice by moving particles in the direction of their momenta each time step (i.e.

the streaming step, LHS), while it also corrects the local deviation from equilibrium

to relax the distribution functions (i.e. the collision step, RHS). The local density of

the fluid is calculated as the zeroth velocity moment or sum of the local distribution

functions, ρ =
∑
fα, and the velocities are calculated through the first velocity mo-

ment, j, of the distribution functions, where u = 1
ρ

∑
fαeα. The viscosity of the fluid

is accounted for with relaxation time through the relation τ = ν/c2
s + 1/2, where cs

is the lattice sound speed.111

Implementation

Among the common computational methods in engineering, the lattice Boltzmann

method presents a superior practical option for pore scale simulations. The simplicity

of the lattice grid for the LBM is beneficial for ease of programming the computational

domain. Figure 6.2 illustrates the nine discrete velocity vectors (the zeroth index

vector is no velocity) of the D2Q9 LBM model, which is the standard model used for

simulation of fluids in two-dimensional domains.111 This common implementation of

the LBE is second order in space and in time, where the time steps are restricted to

small values relating to the pre-set value of the relaxation time.13 Ultimately, this has
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the effect of forcing the simulation to run for shorter timescales. Therefore, while the

spatial resolution may increase and be readily parallelized, total time steps cannot

be decreased, and thus many time dependent LBM simulations require ample time

to run.

Within the lattice, the LBM computes the distribution functions locally and com-

munication between the nodes only occurs during the streaming step. From this

localization, solid nodes are easily implemented at any given point with the bounce

back boundary condition, fα′ = f ∗α, where momentum is reflected instead of accepted

from neighboring fluids. This allows any location to be solid or liquid indiscriminately

with almost no extra computational cost and makes the method highly practical for

modeling amorphous materials including porous media.

There are several common boundary conditions for the LBM.∗ The periodic bound-

ary condition extends the streaming of the distribution functions back to the opposite

sides of the domain as if the system is a torus or an infinite array of identical do-

mains.111 The Zou and He pressure and velocity BCs are derived from the conserved

moments of the distribution functions and by assuming quasi-equilibrium.112,113 Open

outlet BCs are set by copying the distribution function from the neighboring column

or row into the boundary node.

In this chapter, we assume that the length and time scales as well as the strength

of the other phenomena are sufficiently large such that gravity may be ignored. All

computational methods are carried out in lattice units and are not converted into

dimensional units. As a result the timescales observed in some simulations are likely

shorter for the action of a given physical phenomenon than would be the case in

the ordinary unit systems for the corrosion model. However, given the appropriate

physical constants and lattice conversion scales, the data in other physical variables

may be converted from the original lattice units.

∗ The LBM boundary conditions are further outlined in Apx. C.2.3.
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6.2.2 Additional Physical Models

Simulating pitting corrosion in the lattice Boltzmann method requires several ad-

ditional physical and chemical phenomena to be incorporated into the methods to

account for the primary complexities of the system. In particular, we are interested

in multiphase models of the thin liquid film over the pore, the chemical processes

involved in the dissolution of the metal, and the effects of the electrochemistry on the

solute transport. The literature provides a number techniques to coupling the LBM

with the required phenomena.∗ We conducted these simulations in Matlab® instead

of a compiled computational language to give flexibility in the process of building the

new methods.

In humid environments a thin film may spontaneously condense over the pit. The

condensation process may be modeled as a multiphase flow with surface adhesion.

The Shan and Chen LBM uses a “pseudo-potential” to determine the density of

the fluid, where the fluid is attracted to itself and liquids form as high densities.114

Martys and Chen extend the model to include attractive forces between the solids

and the liquids, resulting in sponaneous capillary wetting phenomena.115,116 We have

implemented these methods from the descriptions given in Sukop and Thorne.111

The loss of material from the metal is an interactive chemical process of multiple

species. There are several multispecies transport methods for the LBM; we use the

passive solute method, which is applicable to dilute species in a concentrated or liquid

solvent.111 The Yoshino and Inamuro modified boundary conditions are applied to

improve the behavior of source conditions within the domain. We augment these LB

multispecies methods with chemical reactions of any order by preserving the moments

of the reaction collision operator.116,117 We also represent reactive solid surfaces as a

portion of the domain in which the reaction rate is dramatically higher in the solution

∗ These methods are discussed with more details and example tests of the method in Apx. C,

sections C.2.4 and C.3.1–C.3.4.
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when the lattice point is near solid lattice nodes then for nodes only surrounded by

liquid nodes. An alternative model by Succi et al.118 hybridizes the LBM with a

Lax–Wendroff finite difference method to account for species reactions in solution.

The growth of the subsurface pit is modeled by a reaction-like dissolution process

at the surface nodes of the metal. In the dissolution process, solid nodes progressively

turn from solid to fully liquid. To account for this change, we must track the mixed

phase state of the node and the rate of change between phases. For the variable

solid content, we use the partial permeability LBM discussed in Sukop and Thorne111

which both streams and bounces back quantities of the fluid based on the effective

permeability of the node. For the receding solid surface, we devised a quadratic

relation between the permeability and solid fraction. In this model, the solid is

converted to liquid via a reaction equation which is a function of a limiting saturation

concentration of the aluminum ion and the species saturation of the neighboring

nodes. From this, the calculated fractional solid loss and the known density of the

solid, the increase in solvated state concentration is computed via a mass balance.

The neighboring nodes are accounted via an automatic rule to allow the dissolution

to progress deeper into the metal as solid nodes turn completely to liquid. The

solid oxide is simulated as a non-dissolving, ordinary bounce-back solid. Unlike the

reactions described above, this dissolution process is independent of any other species

in the solvent; this would be a useful future improvement to the model. Kang et

al.119,120 describes a similar surface dissolution reaction methods.

In electrolyte ion solutions, the Poisson equation governs the electric potential and

the Boltzmann charged particle distribution describes the ions in the solution, result-

ing in the Poisson–Boltzmann equation.121 This equation may be recast into a time

dependent diffusion equation and solved on a D2Q9 lattice, resulting in a technique

known as the lattice Poisson–Boltzmann Method (LPBM) which solves an LBE-like

expression for the charge interactions.122 The electric potential is found via the LPBM
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and couples with the LBE via the force term and affects the fluid motion when an

electric field is applied across the domain. We have developed an implementation of

Wang’s LPBM for coupled electrokinetic flows.123 Other electrochemical models may

be used with the LBM, including calculation of the electric potential through the

known concentration of charged species.124 The surface charge of the aluminum oxide

layer also affects the charge in solution and can be more realistically computed via a

charge regulating boundary conditions instead of the common Dirichlet condition.125

6.3 Results

In this section, we present the results of the several models of pitting corrosion dis-

cussed above.

6.3.1 Asymmetric Pitting Condensation

The corrosion process is accelerated by aqueous environments, which often form by

direct fluid contact or through condensation of saturated vapor. Figure 6.3 shows

the progression of condensation into an elliptic subsurface pit with narrow neck inlet

and periodic boundary conditions. Initially, the domain is filled with super-saturated

fluid—in other words, in the spinodal or two phase region of the phase diagram—with

slight perturbations in the density to nucleate condensation (Fig. 6.3a). The fluid

preferentially condenses onto the surfaces except in the middle of the pit where a

droplet forms (b). Soon the droplet fully wets the inner wall and effectively trapped

a bubble on the bottom of the pit (c). Although the simulation does not include

gravity, the bubble rises and moves to the left to minimize the surface free energy of

the system because the pit is slightly horizontally oblongated (d). In some simulations,
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(a) Initial fluid density. (b) Early condensation stage.

(c) Late condensation stage. (d) Migrated bubble.

Figure 6.3. Condensation in a sub-surface pit. Lighter colors indicate higher fluid density:
yellow is liquid, light blue or turquoise is gas, and dark blue is solid (no fluid).

the bubble goes both to the left and others to the right. Thus, we have observed an

asymmetric behavior of the system arise purely as a result of the initial pressure

perturbations.
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(a) Velocity profile. (b) Reactant concentration.

(c) Early product concentration. (d) Developed product concentration.

Figure 6.4. Surface reaction simulation of aluminum ion production in solution.

6.3.2 Reacting Transport Model of Solvating Aluminum

The dissolution of the aluminum metal is a function of the ionic species in the bulk

fluid. In Figure 6.4 we consider the concentration of hydroxide ion and aluminum

hydroxide ion as the Al(OH)3 slowly builds up in the solution. A slow flow of bulk

fluid moves from left to right (Fig. 6.4a), bringing with it the hydroxide ion at a

pH of about 10 (b). An insignificant concentration gradient of OH– is visible due to

the density gradient over the total system from the compressibility of the LBM. A

small nick in the oxide layer exposes some of the aluminum metal and generates the

aluminum hydroxide ion at the surface as it is slowly reacted with the hydroxide (c).

The two-species reaction model is driven by an effectively third order reaction which
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(a) Initial ion concentra-
tion.

(b) Intermediate concen-
tration.

(c) Concentration in devel-
oped pit.

(d) Initial phase state. (e) Early pitting. (f) Developed pit.

Figure 6.5. Solid dissolution process on an aluminum metal surface using a saturated ionic
species limited model. Fluid shown in black, aluminum metal in gray, and oxide shown in
white.

is intrinsically slow and not diffusion limited. However, we observe the aluminum ion

disperse in the fluid and build up its concentration over time (d). This shows the

importance of coupled interactions between the ions for the dissolution modeling.

6.3.3 Surface Dissolution and Degradation

The key interest in the simulation of the pitting corrosion process is the rate at which

the metal is lost. In Figure 6.5, we apply the reaction-dissolution model to the early

progression of a dissolving pit. In this model we have the bulk fluid and one explicitly

tracked solute species, the dissolved metal ion. The fluid flows from left to right over
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the surface which is mostly covered by the oxide and does not dissolve, and a shallow

nick in the surface exposes a small amount of the pure aluminum metal (Fig. 6.5d).

Initially, the bulk contains no dissolved ion except at the aluminum surface where a

small amount of metal has been lost in the first time step (a). The dissolution rate

is a function of solute concentration in fluid phase and is limited by the saturation

concentration of the ion. So, we observe that the concentration of solute upstream

is lower than for portions of the pit which are down-stream (b). This leads to faster

degradation in the pit upstream (e). Thus, concentration differences near the surface

change the dissolution rate of the solid and the dissolution progresses asymmetrically

due to the flow of liquid in the bulk. As the corrosion progresses further, the flow over

the pit affects the transport near the dissolving surface to a lesser degree and the ion

is at saturated concentration almost uniformly over the exposed metal surface (c).

This slows the over-all progression of the dissolution as the reaction becomes limited

by the rate at which the ion can leave the mouth of the pit and reduces the rate of

asymmetric growth (f).

6.3.4 Electrokinetic Transport in a Developed Pit

Electrolyte solutions involved in the pitting corrosion process have distinctive and

important effects on aqueous solute transport. Figure 6.6 shows the lattice Poisson–

Boltzmann simulation of the electric potential and the resulting electrokinetic flow.

In Figure 6.6a, the LPBM-based potential in the small subsurface pit is computed for

a pit with oxide layer over the entire surface. This is the result of the ion configuration

due to the surface potential of the oxide and develops an electric double layer observed

over the entire surface of the metal. When an electric field is applied across the domain

from bottom left to upper right, this field interacts with the charged fluid near the

surface to drive the electrokinetic flow shown in Figure 6.6b. In a corroding pit, a net

electric field could be induced by the oxidation-reduction reaction across the cathodes
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(a) Electric potential. (b) Fluid velocity.

Figure 6.6. Electric field driven flow of brine. Electric field is imposed from upper left to
lower right.

and anodes. In this case, we observe that the liquid in the pore swirls because of the

induced flow. On the upper left and bottom right of the pit walls, the fluid flows

down and to the left. However, these flows curve into each other near the bottom left

of the pit and then swirl back around, resulting in the double vortex within the pit.

Changing the electric field from diagonal (as it is in Figure 6.6) to lateral (right to

left) causes the fluid in the pit to flow in a single vortex as shown in Figure 6.7. The

fluid motion due to the induced surface potential in the bulk and from the charged

upper portion of the pit causes the fluid in the pit to move in a counter-clockwise

vortex. However, at the very bottom of the pit the electric field effect on the ionic

electric potential causes flow in the clockwise direction which resists the vortex of

flow from the rest of the fluid.

As seen in both simulations, the electric field may significantly enhance transport

in the pit. Furthermore, the location of the anodes and cathodes of the oxidation and

reduction reactions can cause further asymmetry in the pitting due to the induced
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Figure 6.7. Lateral electric field driving swirling flow of brine in a developed pit.

ionic motion.

6.4 Conclusions

The long-term goal of this project is to model the progression of a corroding pit with

all the essential transport processes and thereby to suggest methods of pit mitigation.

All of the physical models discussed in the results above are important in the full sys-

tem model. With further development, the combination of the methods will produce

more relevant and useful models of the corrosion process in the aluminum subsur-

face pore. The implementations of each of the physical phenomena may be verified

with analytical solutions or, in more complicated cases, finite element methods and

would thus improve minor flaws in the current methodology. The methods may be

further translated into a compiled computer language for numerical scalability and
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efficiency, including a two-dimensional parallel decomposition of the domain. These

improvements will allow the simulations to run for larger time and length scales. This

compiled lattice Boltzmann code may be developed out of the numerical methods al-

ready built for analysis of biporous media as discussed in the following chapter.

Furthermore, several enhancements to the physical models will increase the scope

of the analysis. Firstly, we can track the set of relevant species that is involved

in the common corrosion process such as water, hydrogen and hydroxide ions, salt

ions, aluminum hydroxide, aqueous oxygen, solid aluminum and aluminum oxide.

The solvated ions experience significant electrochemical transport phenomena such

as chemiosmotics, diffusiophoresis, and surface charge. This will require a revised elec-

trochemical potential model beyond the LPBM, which calculates the electric potential

based on the concentration of ionic species. From this full model of the chemistry, we

desire to build fully coupled, first principles reaction models of the dissolution and

precipitation in and around the pit. The whole process should accurately account for

the reduction and oxidation reactions and their electrochemical effects on the flow.

This will improve our understanding of the important rates and key dimensional scales

involved in the process. On the whole, we would like to know how the electrolytes

and electrokinetics accelerate or stabilize the corrosion process.

In conclusion, the work in this chapter has illustrated several techniques for inves-

tigating aluminum corrosion. The lattice Boltzmann method is a simulation technique

which offers flexible approaches to numerous fluid processes and works with many of

the important physics at the porescale. In some of the simulations, we observed how

asymmetries in the system may develop due to underlying fluid and species process.

In particular, random initial density fluctuations perturbing a supersaturated fluid

caused condensation in the subsurface pit to form bubbles which migrate to one side

or the other of the pit. Also, fluid motion over a pit undergoing dissolution can drive

a higher material loss on the upstream side of the dissolving solid. Finally, we have
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shown how an electric field may cause flows within the pit due to the motion of the

ions in solution.
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Chapter 7

Fluid Transport in Bimodal Porous

Media

7.1 Introduction

Bimodal porous media is an emerging area of experimental and theoretical research.

Biporous media are materials with two distinct internal pore sizes and have potential

application in catalysts,27 drug delivery,18,126 and chemical separations.127 Theoretical

modeling is still largely in its infancy and the effective permeabilities of the media

are not well understood. Of particular importance are the relationships between

the different internal pore sizes, their relative fractions in the medium, and their

interconnectivity. It is anticipated that each of these parameters influence the bulk

fluid motion through the medium.

Recent work by Carroll, et al.1 demonstrated a useful method for producing micro-

spheres with two distinct internal pore sizes. This biporous material has pore sizes

on the order of 5 nm and 50 nm (see figure 7.1a), where the distinct pores are a

result of micro-emulsion templating in solutions before the particle is solidified. An
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(a) Pore radius (b) Biporous sphere

Figure 7.1. Bimodal porous spherical particles. (Ref1)

example particle is shown in figure 7.1b. Using a ‘lost wax’ technique these particles

may be implanted with platinum for catalysts.1,27 Additionally, these spheres may

potentially be produced into monodisperse spheres using microfluidic devices and

settled into a packed bed to further create a larger third level of porosity in the

system.128 Spherical porous particles are well-established as important materials in

modern catalyst systems such as packed beds and slurries, and are being intensively

researched for medical use in targeted drug-delivery.∗ A key relationship implicit in

the continuum modeling of a porous medium is the connection between permeability

with the pore radius, porosity, tortuosity an interconnectivity. The coefficient of

permeability is a crucial material parameter in porous media models because it is

the dominant term in determining the bulk fluid motion through the media over a

given pressure drop. This is a complex system-dependent interaction; however, some

experimental and algebraic models do exist.8 It will suffice to observe that generally,

as porosity (the volume of the object which is porous for liquid propagation) and pore

radius increase, the permeability will also increase.

Understanding the species transport properties in bidisperse media will impact

∗ See also Figure 1.1e.
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design and optimization. The relationship between the permeability and the pore

size and tortuosity is well understood for monoporous materials, but has not yet

received extensive treatment for biporous media and is especially unexplored for fluid

transport on length scales nearing Knudsen diffusion (i.e., molecular scale). Exploring

the transport effects in this complex physical regime will enable better design and

analysis of nano-porous structures.

The focus of this chapter is to analyze a computational tool which has practical

and scalable application to the modeling of bimodal porous media used in engineering

applications. The lattice Boltzmann method presents a very practical means of mod-

eling the solid domain while still preserving the mesoscopic behavior of the fluid. We

have produced a LBM code which is able to model two-dimensional biporous domains

of arbitrary shaped solids.∗ The physical pore geometry of the particles of interest

may be mimicked using internal pores of two distinct sizes.

The Darcy law approximates the pressure to volumetric flux through a porous

medium with a linear permeability.5,8 The applicability of the continuum porous flow

approximation may be extended with Brinkman and Forschheimer terms.20,129,130

These equations essentially retain additional terms of the Navier–Stokes equation

in averaged porous media form.† Discrete porous media are also analyzed through

other means. For example, the Kozeny–Carman equation gives the exact analytical

expression for flow through a single pore with a driving pressure gradient.56 The

Darcy number for the porous particles as well as the Reynolds number for the flow

help to characterize the fluid system.131

In the following section we summarize the methods used for computation, partic-

ularly the parallelization of the lattice Boltzmann method. Sec. 7.3 gives the results

of simulation of biporous media and the parallel code, and Sec. 7.4 outlines areas for

∗ Some details on mono-disperse discrete pore modeling of 2D and 3D particles using finite

element methods are given in Apx. I. † For other details see Sec. I.2.
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potential work and the conclusions.

7.2 Methods

7.2.1 Lattice Boltzmann Code

We have implemented the lattice Boltzmann method in the C++ compiled computer

language with periodic boundary conditions from all sides of the domain.∗ The fluid is

driven by gravity to simplify the structure and implementation of the code. The code

has been functionalized and designed with parameter input capabilities, debugging,

and final data output for post-processing. This code may be further augmented with

additional physical methods to increase the applicability to kinds of biporous media

applications (see Section 7.4 below).

Solid Lattice Domains

The great benefit of the LBM is the intrinsic flexibility in handling amorphous solid

domains, which makes it widely applicable to porous materials. Several of the simu-

lation domains (Figures 7.2a–c) were digitally hand-sketched and then converted into

solid-liquid domain grids.These domains are all used for the scaling tests.

Biporous simulation domains were developed with slightly randomized sizes for

the large and small pores and potentially a macro-particle. For example, the domain

shown in Figure 7.2d was automatically generated in Matlab®. Here, the large pores

are placed in a hexagonal grid of circles with random size in a Gaussian distribution

with a limit on maximum size (half the distance between the hexagonal lattice sites).

The hexagonal layout mimics the natural close-packing of the spherical voids. The

∗ See Sec. 6.2.1 for the overview of the LBM with further details in Apx. C.
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(a) n = 50 (b) n = 100

(c) n = 200 (d) n = 200

Figure 7.2. Square porous domains of width and length n used in scaling tests.

small pores are approximately a tenth the size of the large ones and twelve of them

radiate out from the center of the large pores to connect with other large pores.

To create a biporous particle, with larger domains the solid points can be removed

outside a set particle radius, as shown for example in Figure 7.4 below. The particle

radius is also chosen from a Gaussian distribution with a mean of approximately

ten times greater than the large pores. Lastly, a small amount of random solid

noise (on the order of one in every one thousand nodes) is peppered into the domain

to mimic other small scale heterogenous behaviors may occur in a physical porous

medium. This method generates a physically motivated 2D cross-sectional model of

the 3D biporous particle. The particle would have approximately 5 nm small pores,

50 nm large pores, and would be about 500 nm in radius—all of these specifications

corresponding to reasonable values observed with the real particles produced in the

laboratory.1
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7.2.2 Parallel Computation

Parallel programming allows computational resources to be used more efficiently by

assigning portions of the problem to different processors. In general this significantly

reduces the time a given problem takes to solve and conversely allows much bigger

problems to be posed.

There are four central program design paradigms in modern parallel computing.132

First, there are serial codes which execute a problem sequentially and entirely on a

single processor. In some cases, a single serial application may be scripted to run

multiple problems simultaneously on different processors, where each problem run is

assigned to a different problem. This is a form of parallelism but is not a classical

paradigm and is not used here.

Second, distributed memory parallelization is when the application itself is written

such that different parts of the problem may be assigned a specific processor and the

processor has its own allocated memory to store the data in for the sub-problem.

Each of these processors communicate with each other via messages as prescribed by

the program. The modern standard for distributed memory implementation are the

Message Passing Interface (MPI) library functions.

Third, shared memory is similar to the distributed memory, except that the pro-

cessors are all assumed to be working from the same set of memory and therefore

explicit communication between processors is not required. This is very helpful in

modern multi-core computers which commonly have 4–8 processors; however care

must be taken in designing these codes to prevent processors from over-writing other

processors work. Furthermore, shared memory on CPUs does not scale well beyond

32 processors, and for most applications is used on a smaller number. Common im-

plementations of shared memory include OpenMP and pThreads. The pThreads is

more customizable than OpenMP, but OpenMP is much easier to add to an existing
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serial code.

Finally, graphics processing units (GPUs) are a designated processing compo-

nent, separate from the central processing unit (CPU), that often has the ability to

do numerous simple operations in a similar way to shared memory. Numerous compu-

tational methods, including LBM, have been ported to GPUs, however this generally

requires a significantly different program design from CPU-based codes and will not

be done with our codes because of the large resource investment in redevelopment.

Hybrid parallelization methods may make use of a combination any two or more of

the different paradigms.

There are several concepts used to analyze the performance of a parallel algorithm.

Naturally, the time taken for a given problem to be computed is the central focus.

Less time taken in parallel means that the problem is scaling with parallelization.

When a given problem is parallelized and broken up across different processors the

time it takes to run the parallelized program versus the original serial program is

referred to as strong scaling. The case where the problem size itself is increased to

match the number of processors is referred to as weak scaling.132

MPI Implementation

We are interested in optimizing a LBM code on large-scale distributed memory

super-computers with shared memory multi-core processors in the individual com-

pute nodes. The first step to accomplishing this is to incorporating the Message

Passing Interface (MPI) into the LBM code because it should scale well with problem

size for a 1D or 2D processor domain decomposition. Thus, the functions in the code

were modified so that the processors only work on the local data within the boundaries

for their cells. The streaming step of the LBE computation required communication

of boundary conditions between computational cells. The communication was done
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(a) Equal size decomposition (b) Optimized histogram decomposition

Figure 7.3. Parallel domain decomposition example

with blocking send and receive in step between neighboring cells and cells connected

through the periodic boundary conditions in the same order as the lattice velocities,

e.g. right first, above second, etc for the zeroth processor. This limits the number of

processors along each dimension of the decomposition to even values, i.e. the total

number of processors must be a multiple of four.

To further optimize the MPI method, we designed domain decomposition algo-

rithm to pre-optimize the size of the sub-domains owned by each processor as is

illustrated in Figure 7.3. Fig. 7.3a shows the domain split into four equal areas, each

to be distributed to a single processor. In Figure. 7.3b the grid lines have been shifted

such that processors with domains which are mostly solid gain more of the domain

to even out the load. Because many possible domains may be weighted more heavily

on one side or another due to inhomogeneities in the porous medium it was approxi-

mated that the liquid lattice sites cost 30 times more operations than the solid. From

the optimized boundary lines, the computed domains were pre-set at beginning of
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simulation. This was done by computing the histogram of fluid nodes from both x

and y directions and then iterating the processor boundary locations such that these

histograms were as nearly equally split in total area as possible. This histogram

method allowed the boundaries to be iterated in each direction by simple rules. The

method has not been compared to simulations using the naive approach of a simply

gridded domain. This simple iterative method sets the values of the lattice domain

edges which yield a more nearly even load balance.

OpenMP Implementation

The ultimate purpose in adding OpenMP to the numerical methods, is to conserve

memory in a distributed memory system with multi-core nodes. Ideally, this would

take advantage of the processors to naturally load balance and to reduce communica-

tion costs which would be necessary in a large-scale distributed memory simulation.

This type of parallelization is also generally helpful for optimizing an already parallel

code in machines with nodes of multiple cores or for some basic scale-up on a small

machine with several cores. However, it is not as versatile as MPI.

The OpenMP shared memory capabilities are incorporated into the code through

relatively simple and straightforward compiler flags which tell the compiler what parts

can be run in parallel.132 The majority of the computation of the lattice Boltzmann

equation involves for-loops over the lattice sites, with all computation local to each

lattice node. In this case the OpenMP flags have been added to the for-loop directly.

The streaming step, where fluid is advected from one point to another, is the portion

of the computation with interaction of computer memory between the lattice cells,

and therefore is parsed into a three-banded routine with blocking between the bands

to prevent over-writing of data from different threads. This may slow down the

computation, but prevents data being overwritten by separate cores accessing and

writing the data simultaneously.
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Computational Speedup and Scaling

Speedup data is calculated from the raw timing data taken on specific machines for

each test. First, the average runtime per cell per time step is calculated for each

number of processors;

t̂p =
runtimep
n2 tfinal

, (7.2.1)

then the speedup was computed based on the speed of a single processor;

speedupp =
t̂p

t̂1
. (7.2.2)

This allows for comparison of algorithm performance and efficiency. Ideal speedup is

when the measured speedup is the same as the number of processors.133

7.3 Results

7.3.1 Serial LBM

Anisotropic Flow

Figure 7.4 shows the result of one of the largest domains run on the C++ serial LBM

code. The simulation demonstrates that the highest flow regions through an automat-

ically generated biporous particle are near the edges of the particle, with significantly

less flow through the center. This stems from the much higher velocity fluid flow

around the outer edges of the particle and from the much higher viscous resistance

of the thicker porous medium through the middle. Due to the periodic boundary

conditions this model is effectively like a square packed bed of these particles, which

is why the flow at the top and bottom of the domain is much greater. In effect it

appears that only about an eighth to a sixth of the particle volume has significant
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Figure 7.4. 2D LBM of biporous structure on a 500 by 500 grid. Fluid velocities shown in
half-log, half-linear scale, where blue to yellow shows exponential increase in velocity, and
yellow to red relates to linear increase.

flow through it. In this porous domain, the fluid flowing through the particle must al-

ways go through the small pores, bringing it into close contact with the pore surfaces,

which is good for surface reactions.

Runtime

In figure 7.5 the runtime of the serial code is shown with differing sizes of edge lengths.

The runtime of the serial code scales as approximately n3.26 where n is the edge length

in lattice units. This calculation may be higher than ideal as extra calculation and

saving was being done on saving data during the simulation. However, there is also

likely some factor of difficulty due to memory access issues for the larger domains.

This scaling is somewhat worse than the anticipated n3 for a two-dimensional sim-
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Figure 7.5. Runtime of serial lattice Boltzmann code to time of convergence

ulation, and this makes it more difficult to perform weak scaling tests of the code

with good certainty. There is also the possibility this extra one-third factor is due to

the extra number of time steps which the simulation takes to reach the convergence

criterion. Because of this increase in cost with domain size, it is clear that for larger

scale simulations the code needs to be parallelized to run the separate portions of the

domain more quickly.
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(b) Scaling of OpenMP LBM code

Figure 7.6. Parallel scaling of prototype lattice Boltzmann code.

7.3.2 Parallel LBM

MPI

Our current LBM MPI implementation has only had a small amount of strong scal-

ing tests conducted on it. The parallel domain decomposition is limited to square

arrangements of 4 or 16 processors due to data communication restraints. For the

present the code has only been compiled on a machine with 8 cores, so we will simply

compare a 4 processor set of runs with the MPI code to a similar serial version. In

Figure 7.6a we observe that there is a minor improvement of the speedup for the

100–500 size runs. The 50×50 system likely is doing poorly due to too much commu-

nication overhead. The 100×100 domain is scaling the best with a 1.80 speedup for 4

processors; this is not a very significant improvement. It is encouraging that the 500

run is very close behind, though the 200 being slower than both seems anomalous.

which is not near the benefits needed to run on around 100 processors with reasonable

scaleup. On the data side, one concern with these runs is that the number of conver-
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gence steps is slightly different for the MPI code from the serial; this is not the case

with OpenMP implementation and does not make sense from a physical standpoint.

OpenMP

As shown in Figure 7.6b, the size 500 run does not have as much speedup as the other

runs of size 50–200. It is suspected that the arrays are too large to fit in cache which

leads to numerous expensive memory accesses due to the cache misses, however this

is not as detrimental for the larger number of processors. Another noticeable feature

of the graph is the fact that the 50, 100, and 200 runs drop massively in speedup at

16 processors. This is likely due to the fact that multithreading may be occurring and

that the machines used likely do not have 16 processors. However, the 500 may already

be maxed on the cache or memory access speeds so much that the multithreading does

not slow the run down further. The max speedup achieved was 3.22 which was done

on the size 200 run with 8 processors. However, this is only about a 40% efficiency

which is not a good argument for implementing these more complicated algorithms.

Thus, we have demonstrated the capability to parallelize a lattice Boltzmann code

which is a first step in preparing for large-scale simulations. Neither of these parallel

codes performs ideally and require further optimization to improve their speed.∗

7.4 Conclusions

In the future additional physical capabilities should be coupled with the current fluid

flow methods to make the make the simulations become suitable to the full range of

physics desired for this application. Firstly, the biporous models may be advanced

∗ Both parallel scaling tests of the MPI and OpenMP were run on UNM Department of

Computer Science machines.
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by varying the particle sizes, pore size distributions, and greater interconnectivity of

the larger pores. Multiple particles may then be laid in square or hexagonal lattices

of varying particle size. To further extend the physical analysis of the fluid system

we can add pressure and velocity boundary conditions to compare the results more

directly to Darcy’s law. Porous media flows are most commonly driven by pressure

differences across the flow domain and constant pressure boundary conditions may

alternatively be applied on both sides of the domain to simulate this difference. The

multiple relaxation time collision method for LBM improves the computationally

determined permeability of the porous medium.134∗ The analysis of the flow should

give the net velocity and pressure through and around the particles. Comparisons

may be made to continuum equations, such as the Darcy equation and its variants,

and to discrete pore models of two pores size to analyze changes in fluid motion due

to the addition of the smallest pores. The relative volume fraction and size ratio of

the pores will be compared among the different solutions to analyze their effects on

the fluid permeation.

The fluids model may be augmented with multi-species capabilities to investi-

gate diffusive transport in the highly irregular geometries both for drug delivery and

catalysis applications. The multicomponent systems require more entire distribution

function arrays for each species and appropriate manipulation routines and bound-

ary conditions.† With heterogeneous catalysts, surface reaction models of chemical

transformations would be critical and heat transfer models should be added later to

account for the thermal processes.

The lattice Boltzmann code can be further optimized to advance the scale of

simulations. The MPI implementation currently runs processor domains of specific

processor numbers of square decompositions 4n2 (e.g. 4, 16, 36, . . . ), and should be

∗ See Apx. C.2.1 for details on the MRT method and pressure BCs. † This is partially

discussed in Sec. C.3.1, however the multi-species methods are currently implemented in

Matlab® only.
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redesigned with communication methods which adapt to any domain grid layout. The

goal would be to run lattice domains of upwards of 4000×4000 grids on up to 64 pro-

cessors, which would require improvements in scaling and efficiency. The achievement

of this goal would allow the simulation of a complete cross-section of a scale porous

particle with two distinct small pore sizes and to model a small packed bed of slightly

smaller particles. The optimization also be improved using blocked data structures

of the domains one or two hundred lattice points square blocks. OpenMP can be

used to further improve the optimization to hybridize the parallel implementation,

though this is not the priority because the current OpenMP implementation was less

successful than anticipated. Both the serial and parallel codes should be subjected to

thorough verification and validation with, for example, the method of manufactured

solution.

In this chapter we have shown the LBM is useful for complicated pore systems.

Bimodal porous media present interesting possibilities for transport modeling partic-

ularly to understand fluid species behavior approaching surface contact. A parallel

lattice Boltzmann code has been developed for OpenMP and MPI, though the meth-

ods could benefit from improvements in optimization. A bimodal particle shows flow

passing heterogeneously through the object which implies much of the volume of the

particle would not be as important for catalysis as the portions near the high-flow

boundaries. This work may be extended to larger particles and higher flow resolution

and comparisons with continuum models. The net permeability of biporous media

should be measured as a function of connectivity and pore size. Multispecies and

three dimensional simulations may be further added to understand species contact

with the surfaces of particles.
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Summary and Conclusion

This dissertation investigated three topic areas covering the pore to continuum scales

of fluid transport in porous media for application to materials design and engineering.

In this chapter, we summarize the results found in each topic, the future work, and

the relation of the results to their applications. The following two sections—the first

focused on theory and the second on computation—outline the key results presented

in the dissertation. First, using semi-analytical models we have shown many signif-

icant effects of evaporation on capillary wetting in porous media. Second, we have

applied the lattice Boltzmann method to pore-scale multiphysics models of pitting

corrosion and heterogeneous flow behavior in bimodal porous media. In Sec. 8.3 we

note significant topic areas which may advance the work. Finally, in Sec. 8.4 we con-

clude by outlining the general importance of the results to the associated engineering

applications.

Metaphorically, we first look at each tree we have had a hand in growing, consider

trees to be grown and nurtured, then observe the wider forest.
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8.1 Capillary Wetting and Evaporation in Expand-

ing Porous Domains

In Chapters 2 through 5, we investigated the theoretical implications of the effects of

domain geometry and evaporation on the wicking of liquids into unsaturated porous

media, and we produced the following results:∗

1. We developed a potential flow theory formulation of the Lucas–Washburn

method of capillary wicking in porous media.

This formulation generalizes the domain shapes which may be analyzed, and

facilitates incorporation of the source and sink terms which account for evapora-

tion.† For example, we correctly analyzed expanding geometries with flat inlets

(i.e. elliptic and oblate spheroid coordinates), when previously only circular in-

lets were easily solved (i.e. polar61 and spherical60 coordinates). The method

produces semi-analytical solutions of the front position and bulk velocity, but is

limited to Green–Ampt Theory71 (GAT) applicable systems; in systems where

this assumption fails, the wetting must be modeled with a continuous saturation

function as given in the Richards equation.70

All further results in this section rely on this formulation of the Lucas–Washburn

method (LWM), so these limitations also constrain the derived results.‡

2. The rate of advancement of the wet front is slower for capillary flow

through higher dimensional expansions than through lower.

∗ All results constitute original work by the author; although, some results are—to vary-

ing degrees—important redevelopments of others’ work. The results include established

physical facts, demonstrations of likely physical phenomena, or developed methodological

capabilities. A brief note is given to clarify each result’s implications and/or limitations.
† Sec. 2.2 first proposes the theory, which is generalized in Sec. 3.2. ‡ Some of these

limitations are addressed by Result 7 below.
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The Lucas–Washburn equation relates the length of the liquid penetration, ỹf ,

to the square root of the wetting time, t̃, or ỹ2
f/2 = t̃. We have shown that

while the flow behavior at very early times is similar to the LWE, in the large

expansion limit, e.g. ỹf > 10, the asymptotic power law relations for the cap-

illary wicking go to ỹ2
f ln (ỹf )/2 ≈ t̃ for 2D radial flow and to ỹ3

f/3 ≈ t̃ for 3D

spherical.∗

3. Conversely, for a given inlet size, the magnitude of the flux into the

porous domain increases with increasing dimensionality of the domain

expansion.

The bulk velocity into a fully three-dimensional porous domain from a finite

inlet has a finite constant steady rate of imbibition, in agreement with the

conclusion of Philip59 which was alternatively found for a continuous moisture

profile. The Lucas–Washburn bulk velocity slowly goes to zero via Ũ ∼ 1/
√
t̃ ,

while the magnitude of the bulk velocity for 2D flow lies between the 1D and

3D relationships.†

4. In thin porous media there are three modes of evaporation: normal

surface, side boundary, and front interface.

Each mode acts through three different kinds of surfaces and is mathemati-

cally formulated in distinct ways. Building on the work of Fries et al.80, who

considered the effect of restraint by gravity and normal surface loss from a wick-

ing capillary porous medium, we showed that each mode of evaporation causes

significant, but unique, deviations from Lucas–Washburn behavior in media of

constant cross section.‡

∗ The solutions are presented in Ch. 2, while the power laws are detailed in Sec. 4.4.4; see

also Figs. 2.10 and 3.2a and related discussions. † See Figs. 2.12 and 3.2b with related

discussion. ‡ See Secs. 3.2 and 3.4.
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5. The ratio of the evaporation rate over the intrinsic capillary flow rate

is a useful dimensionless quantity which we have called, for the first

time, the evaporation-capillary number.

The evaporation number governs the behavior of the system by determining

when the evaporation begins to dominate the capillary flow. Each of the three

evaporation modes has a specific expression of the evaporation number, but the

ratio has the same fundamental meaning.∗

To our knowledge, this essential quantity has not been specifically noted in the

related porous media and fluid mechanics literature.

6. Normal surface evaporation is the predominant mode of evaporation

in thin porous media.

In thin porous media, the ratio of the side height to the inlet width of the domain

is very small, so the relative surface area through with normal evaporation

occurs is much greater than for side and front evaporation.†

7. The Lucas–Washburn method theoretical solution for capillary wick-

ing with evaporation in a porous domain of constant cross section

behaves with similar asymptotics to the related partially saturated

wicking model, but often over-predicts the magnitude by a given pro-

portion.

For wicking with a continuous saturation profile, we have observed that a capil-

lary diffusivity proportional to a power-law saturation function of Θ2 gives very

similar results to the GAT model front position.79 However, the magnitude of

the bulk velocity is over-predicted by a factor of two because there is only half

the volume of liquid in the medium, but the behavior has nearly the same pro-

file.81 Higher-order saturation functions have even lower predicted values, but

∗ See Secs. 3.4.1 and 4.3.1 for details. † See the discussion in Sec. 3.4.1, particularly

around Eq. (3.4.1).
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still have very similar behavior profiles to the GAT model for both variables.

Thus, we conclude that the overall time-dependent behavior profiles predicted

by the GAT is sufficiently close to the Richards equation solution, but we recog-

nize that the predicted magnitude may be too large by a factor of approximately

two to four.∗

Using a geometric analogy to the volumes of cones and hyper-cones, we hypoth-

esize that for 2D and 3D expansions model with GAT the deviations may be by

factors of three and four, respectively, for the second order saturation function

and up to nine and sixteen for the highest orders, but that the general trends

in behavior would be analogous and are therefore physically insightful.

8. Normal surface evaporation and side boundary evaporation occur

through the same fundamental physical mechanism, and in porous

media of constant cross section, they behave analogously.

While side evaporation results in a curved wet front, in the limit of thin media

and large fluid propagation, the characteristic behavior of the two modes only

differ by a small fraction, and the curvature of the side evaporation becomes

negligible in comparison to the total length of penetration. Additionally, the

range of time from when the evaporation mode first influences the capillary flow

to reaching evaporative steady state is well constrained by 0.1 < Nt̃ < 10 for

both normal and surface evaporation numbers.†

Thus, we have shown it is reasonable to use normal evaporation as an approx-

imation to what is ultimately evaporation through a domain side but through

an infinitesimally thin system dimension.

9. For capillary flow in a porous domain of constant cross section, the

effects of front interface evaporation and restraint by gravity are an-

alytically identical in the LWM.

∗ See Sec. 3.4.3 and Fig. 3.3. † See Secs. 3.3.3, 3.4.4 (particularly Fig. 3.5), and 3.4.7.
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We have shown that the derived solutions for 1D capillary flow, the front evap-

oration and gravity solutions are the same. Of particular note, unlike with

normal and side evaporation, for these two phenomena it is the dimensionless

quantity squared, i.e. 0.1 < Nf
2t̃ or Bo2

at̃ < 10, which determines the time

range of non-steady state influence of the phenomenon, where Boa is the mod-

ified Bond number scaled with inlet size. This squared factor also shows that

for small values of Nf front evaporation is less significant than normal surface

evaporation.∗

In practice, both of these phenomena may degrade the assumption of a discon-

tinuous front interface, however the result should hold for the early time effects

of the phenomena on the capillary flow.

10. In fan shaped media, both the expanding domain shape and the evap-

oration can affect the behavior of capillary flow.

In particular, the front goes to a stationary profile and the bulk velocity remains

finite at that steady state. Additionally, the velocity of the flow inside the

medium may be calculated given the front position and evaporation number.†

11. The predicted front shape for 2D wicking out of a flat inlet agrees

with the experimentally observed profile and behavior.

This is in contrast to Hall57, who suggested theoretically that the shape was

a pure ellipse. Instead, we observe the shape going from a LWE-like plug flow

initially to a rectangle with rounded corners to a nearly circular shape at later

times.‡

∗ See Secs. 3.3.3 and 3.4.7. † See Ch. 4, particularly the discussion of Fig. 4.7. The

solution for the 2D radial flow with evaporation agrees with the recent work by Liu et al.95,

but it was done prior to their publication and thus independently. ‡ See Ch. 4 and the

discussion of supplemental Figs. E.1 and E.2.
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12. We have plotted the steady state front positions and bulk velocities

for fanning domains as a function of the evaporation number.

Given a desired steady state bulk velocity for a 1D or 2D fan shaped domain, the

related evaporation number may be quickly determined. From the determined

evaporation number the required size of the domain may be estimated by the

corresponding steady state front position (provided that the over-prediction is

accounted for as mentioned in Result 7).∗

This will be especially useful for design of porous domains used to drive mi-

croflows via capillary action as we discuss below in Sec. 8.4.

13. Similar to pure capillary flow, the front motion is slowed by the nor-

mal surface evaporation more strongly with increasing dimensionality

of the expanding domain.

Intuitively, this stems from the greater surface area increase that an advance-

ment of the front represents for 2D than for 1D expansions. Alternatively, this

is readily illustrated via the first order terms for the evaporation number in

power series of the front position solutions for the 1D Cartesian and 2D radial

coordinate systems. Adding each term to the left side of the corresponding

expressions for capillary flow (see Result 2), for sufficiently low evaporation

number and times at least an order of magnitude below the onset of the steady

state, the first order perturbation of the evaporation to the LWE is 1
8
Nnỹ

4
f , while

for the 2D expansion the perturbation is 1
8
Nnỹ

4
f [ln(ỹf )]

2. The perturbation for

2D wicking due to evaporation is a higher order expression and therefore has a

stronger effect.†

14. The effect of front evaporation on reducing front motion with increas-

ing dimensionality follows the same general trend as normal evapo-

∗ See Figs. 4.5 and 4.7b. † This comparison is fully detailed in Sec. 4.4.4; also see Figs. 4.3b

and 4.4a.
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ration but is relatively smaller.

We may intuit the trend in the effect on the front behavior by considering that

the surface area through which the front evaporation occurs also increase in

dimension along with the increasing degree of expansion (i.e. constant area,

growing in 1D, and growing in 2D, for 1D, 2D and 3D expansions, respec-

tively). Adding the first order asymptotic expansion of the front evaporation

number series to the left side of the power laws for capillary flow (Result 2),

for low evaporation numbers the Lucas–Washburn relation is slowed by 1
3
Nfỹ

3
f ,

the 2D radial by 1
3
Nfỹ

3
f [ln(ỹf )]

2, and the 3D hemispherical by 1
5
Nfỹ

5
f . These

series approximation terms are lower order than the equivalent terms for normal

evaporation which thus has a greater relative effect on the flow.∗

15. We have derived the semi-analytical GAT solutions for the effects of

side evaporation and restraint by gravity on capillary flow in 2D and

3D expanding domains.

In future, we may prioritize generating results on these solutions. In the least,

they provide constraints on the degree at which these phenomena may be af-

fecting other results; for example, whether observed deviations from the ideal

theoretical front position in the experiments of Xiao et al.60 could be due to

front evaporation, restraining gravity, or another source of error.†

We anticipate that we will observe markedly distinct behaviors between the 2D

effects of side and normal evaporation on the behavior, unlike with thin porous

strips (as seen with Result 8).

∗ See Sec. 5.5.1. † See Secs. 5.3 and 5.4—also the summary of derived potentials in

Apx. B.1.
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8.2 Pore-scale Simulations of Corrosion and Bi-

porous Media

In Chapters 6 and 7, we used the lattice Boltzmann method (LBM) to simulate pore-

scale phenomena involved in pitting corrosion of aluminum and transport in bimodal

porous particles; we have demonstrated the following results:∗

16. We have produced our own implementations of the LBM.

The lattice Boltzmann method is a mesoscale (between continuum and atom-

istic) fluid simulation method which solves the Boltzmann kinetic equations on

a Cartesian lattice. We have implementations of the 2D (D2Q9) method writ-

ten in C++ and Matlab®. The LBM has the particular benefit of handling

amorphous porous media, and relative ease of programming.†

At present, our simulations are only run in lattice units and not directly con-

verted into physical units.

17. We developed several modified and new implementations of physical

phenomena to couple with the LBM.

Beyond the basic method, standard boundary conditions, and common physical

phenomena coupled with the LBM, we have prototyped our own models of

surface reactions, solid dissolution, and 2D extension of the lattice Poisson–

Boltzmann method for electrokinetics flows.‡

18. We have produced and tested parallel executable LB methods for

prospective large-scale simulations of transport phenomena in porous

materials.
∗ We continue the numbering of the results from the previous section so all results are

uniquely assigned. † See Sec. 6.2.1 and Apx. C for more details. ‡ For overview, see

Sec. 6.2.2 and appendix Secs. C.3.2, C.3.3, and C.3.4 for specific details.
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Implementations of the LBM with shared memory parallelism using OpenMP

and distributed parallelism using MPI have been successfully run on small par-

allel machines. Though the current parallelized methods are functional, the

code requires more LB methods development and gains in optimization before

it would be used to simulate larger multiphysics porous transport problems.∗

19. We have built a set of various, simplistic LB models of physical pitting

corrosion of aluminum surfaces.

The transport of ionic species and oxidation/reduction chemistry are important

to model and understand the aluminum pitting corrosion process, which is a

large problem for materials science. So, we have begun to use the LBM to look

into the important and highly complex transport phenomena involved in the

pitting corrosion process.†

For more complete models of the process, we need to combine, advance, and

optimize the different phenomenological models of corrosion transport.

20. Condensation in metal subsurface pits may lead to asymmetry of the

system.

Using the Sukop and Thorne111 description of the Shan–Chen multiphase LBM,

we have observed in the process of a liquid condensing into a mirror-symmetric

elliptic subsurface pore, that a spontaneously imbedded bubble migrates to

either side of the pore to minimize the free energy of the system. As a result

one side of the pit is exposed to air and the other to water, which can cause the

pit to degrade asymmetrically. This demonstrates that multiphase processes

are important for the analysis of the pit corrosion development.‡

21. Exterior advection produces asymmetry in the development of a dis-

solving surface pit.

∗ As discussed in Secs. 7.2.2 and 7.3.2. † See Sec. 6.2.2 and Apx. ??. ‡ See Sec. 6.3.1

for details.
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When the protective aluminum oxide coating is scratched off the surface of an

aluminum part and the exposed aluminum comes into contact with a caustic so-

lution, the aluminum metal may begin to dissolve. We have observed that when

the solvent is flowing, and the dissolving ion has a small maximum saturation,

the upstream portion of the exposed aluminum will dissolve more rapidly, thus

promoting uneven growth of the pit.∗

22. Electrokinetic flows inside a subsurface pit may also drive asymmetric

dissolution.

Applying the modified lattice Poisson–Boltzmann method,122 when an electric

field is imposed over an ionic fluid in a subsurface pit with charged walls, the

field drives rotational motion of the fluid. This is one demonstration of the

possible importance of the ionic character of the fluid in the dissolution process,

although other effects such as diffusiophoresis or the electrochemical effects of

the oxidation/reduction reactions may be more important to the net transport

of the system.†

23. We have designed a physically motivated model of bimodal porous

particles.

We produced an automated domain generation algorithm which produces a 2D

cross section of particles similar to those of Carroll et al.1 These generated

particle solid lattice domains are used by the LBM to simulate fluid flows in

biporous particles.‡

At present, the model has the small pores connecting the distinct large pores,

but in future, the transport would have more interconnection between the large

pores to make the domain more biporous in character.

24. Fluid flows inhomogeneously inside biporous particles.

∗ See Sec. 6.3.3. † See Sec. 6.3.4. ‡ See Sec. 7.2.1 for a description of the generation

method.
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In body force driven flows across a biporous particle cross section, the velocity

around the edges perpendicular to the force gradient is much higher. This drives

much more flow through the internal pores near these edges, while the total

resistance to flow by pores along the middle of the particle prohibits significant

fluid motion.∗ As a result, a significant fraction of the particle will only have

diffusion-dominated transport in reactive processes.

However, this permeability behavior may be more prominent in body force

driven flows. We expect the permeation through the center of the particle

would improve with a prescribed pressure drop over the particle.

8.3 Prospective Work

There are several important directions for future investigation of the effects of evap-

oration on wicking. First, the theory would benefit from further validation with

wetting paper in dry environments.† Furthermore, the accuracy of the LWM-based

predictions should be checked with partially saturated flow models to consider the

degree of likely over-prediction in magnitude of our theoretical results (see Result 7

above).

We would like to create methods with predictive capabilities for pitting corrosion

rates and effects. This would include accurate models of stress corrosion cracking in

aluminum,‡ interfacing our LBMs with results from simulations at the molecular scale,

∗ See Sec. 7.3.1, particularly Fig. 7.4. † See Apx. G for discussion on three prototyping

experiments. The theoretical prediction for the front position with active surface evapora-

tion match reasonably closely with experiments. Also, the measured bulk velocity goes to a

finite steady state due to the evaporation. ‡ Preliminary results on SCC are outlined in

Apx H. Due to preferential capillary condensation, narrower cracks and pores retain liquids

better than wider ones. Exterior fluid advection has a negligible transport effect on solutes

reaching or leaving the crack tip.
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and quantitatively comparing the results for similarity to experiments on corrosion

and fatigue.

Monoporous media provide a useful benchmark for checking the accuracy of per-

meability simulations, and should be further analyzed to compare with biporous me-

dia.∗ If feasible, the permeabilities of the original biporous particles will be measured

for validation. Furthermore, the model may be combined with species diffusion, reac-

tions, thermal, and other relevant catalytic or drug delivery methods to improve the

analysis of the other important phenomena involved in the applications.

8.4 Conclusion

In this dissertation, we developed useful techniques of study and showed insightful

details regarding fluid transport behaviors in three topic areas in porous media. These

results will be beneficial to future design of media with optimal transport properties.

In Chapters 2 through 5, we significantly improved the theoretical basis for the

analysis of the effects of evaporation and varied domain geometry on capillary wicking

in porous media, and we observed the importance and variety of evaporation effects

on behaviors of the system (Results 1 and 4). Several of the results have shown

that the other conclusions derived by the methodology are generally sound for our

particular applications and give proper constraints to their applicability (Results 7,

11, and 15).† In addition to deriving the specific equations for the motion of the

front and the bulk velocity, we have shown the general trends in behavior of capillary

∗ Some preliminary results on monoporous media are given in Apx. I. We show the flux

through a monoporous cylindrical particle in a low Reynolds number flow is proportional to

the Reynolds number times the square root of the Darcy number. Flow through 2D and 3D

monoporous particles are similar, while the flow profiles around them are distinct. † See

also the experimental work of Apx G.
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flows, with and without evaporation from the surface and the front, as the system

dimensionality is varied (Results 2, 3, 13, and 14).

We have substantially unified and improved the basic formulation of the evapo-

ration effects on capillary wicking (Results 4 and 6); in particular, we have shown

the important role the evaporation capillary number has in the system behavior (Re-

sult 5). Also, we have demonstrated important connections and differences between

the modes of evaporation (Results 8, 9, and 14).

Finally, we have produced analytical relations and resources which will be bene-

ficial in design of porous media used for passive driving of fluid via capillary action

(Results 10 and 12). In practice, the most promising application of these results is in

optimizing reactive transport processes in passive capillary driven fuel cell devices.17,22

Thus, we have presented a more rigorous understanding of the underlying theory

of capillary flow in lab-scale engineering porous media, observed surprising physical

behaviors, and increased in our capability to predict flow behaviors.

In Chapters 6 and 7, we laid practical groundwork for further computational anal-

ysis of pitting corrosion in aluminum and transport in biporous materials, and we have

found a few elementary insights on the systems. We have assembled modeling and

simulations resources catered to these applications (Results 16–19 and 23), and with

some improvements to the methods, we expect these resources to yield groundbreak-

ing insights into the engineering problems.

The costly damage to mechanical systems caused by the complex process of cor-

rosion has been widely studied empirically, but many further advancements may be

made in theoretical models. We focused particularly on the mitigation of pitting

corrosion in aluminum mechanical parts (Result 19). We have observed three very

different fluid processes that may cause spontaneous asymmetry in the developement

the pit corrosion system (Results 20, 21, and 22). These results demonstrate the com-
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plicated nature of the system and illustrates the need for more coupled multiphysics

models of the pitting corrosion process.

Fundamental flow and transport modeling of bimodal porous media is an open

area of research. Practical understanding of bimodal pore structure effects on the

permeability of porous media is required for future advancements in biporous me-

dia applications such as catalysts and drug delivery particles1 (Result 23). We have

shown that the flow in an array of these biporous particles may not produce gen-

eral flow through a significant fraction of the particle volume—potentially limiting

their effectiveness (Result 24). A number of future modifications to the biporous

simulations could show this is less significant.

In conclusion, this dissertation has presented significant results and useful prelim-

inary capabilities in the three topic areas of porous media. We have demonstrated

the importance of using analytical and computational models to understand fluid

transport properties of porous media, and we believe that these results will improve

the engineering of advanced materials.
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Appendix A

Coordinate Transforms

This appendix tabulates key mathematical expressions relating to the coordinate

systems used in this dissertation. The method of coordinate transforms is summa-

rized in the first section. In the second section, we present the major differential

expressions—the differential length, gradient, laplacian, and divergence—in the five

coordinate systems: Cartesian, polar, elliptic, spherical, and oblate spheroid.

A.1 General Curvilinear Coordinate Transforms

This section details the essential relations used to derive the differential expressions in

a given coordinate system.coordinate system!transforms—(textbf Significant portions

of the material in this appendix have been synthesized from the following textbooks,

in order of importance:

• Moon and Spencer, Field Theory Handbook, 1989;31

• Bird, Stewart and Lightfoot, Transport Phenomena, 2nd edition 2006;30

• McQuarrie, Mathematical Methods for Scientists and Engineers, 2003.29
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We only are considering coordinate systems where the metric tensor is diagonal.

A.1.1 Coordinate Systems

In transforming from cartesian coordinates, which we shall indicate by xi with unit

vectors êxi . Say êui is the unit vector in the ui variable of the transformed space and

N is the dimensions of the system; for most practical engineering purposes this is 2

or 3. For a three-dimensional system we may illustrate this,

x1 = x1(u1, u2, u3), (A.1.1a)

x2 = x2(u1, u2, u3), (A.1.1b)

x3 = x3(u1, u2, u3). (A.1.1c)

In vector notation, x = x(u). The metric coefficients of the transform to our system

are, (for r =
∑N

j=1 xj êxj),

hui =

∣∣∣∣ ∂r

∂ui

∣∣∣∣, or (A.1.2a)

=

√√√√ N∑
j=1

(
∂xj
∂ui

)2

. (A.1.2b)

For convenience, we define

h =
N∏
i=1

hui (A.1.3)

which is the product of all the metric coefficients and is the coefficient of the total

differential volume.

A.1.2 Unit Vectors

For a variety of applications it is helpful to know the specific form of the unit vectors

in one coordinate system in terms of another coordinate system. The form of a
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unit vector in the transformed coordinates in terms of the Cartesian (or original)

coordinate system is,

êuj = huj
∑
i

(
∂uj
∂xi

)
êxi , (A.1.4a)

=
1

huj

∑
i

(
∂xi
∂uj

)
êxi . (A.1.4b)

Expressing the Cartesian unit vectors in terms of the transformed coordinate unit

vectors is similar;

êxi =
∑
j

huj

(
∂uj
∂xi

)
êuj , (A.1.5a)

=
∑
j

1

huj

(
∂xi
∂uj

)
êuj . (A.1.5b)

This second form can be used to determine the vector transform of a gravity vector

acting on a liquid in a porous medium.

A.1.3 Differential Operators

There are several differential operators that are of major importance in differential

equations because of their invariance. The differential length in a general orthonormal

coordinate system is,

(ds)2 =
N∑
i=1

(hui)
2 (dui)

2 . (A.1.6)

The general gradient of a scalar function is,

∇ϕ =
N∑
i=1

1

hui

∂ϕ

∂ui
êui . (A.1.7)

The divergence operator on a vector in the transform space (i.e. vector values corre-

sponding to the spacial variables in the transformed space) is,

∇ · f =
1

h

N∑
i=1

∂

∂ui

(
h

hui
fui

)
. (A.1.8)
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The Laplace operator, or simply Laplacian, is defined as ∇2 = ∇ · ∇ which is

represented by

∇2ϕ =
1

h

N∑
i=1

∂

∂ui

(
h

h2
ui

∂ϕ

∂ui

)
. (A.1.9)

The advection operator is common in fluid dynamics and is part of the material

derivative (Dq
Dt

= ∂q
∂t

+ v ·∇q).

v ·∇q =
N∑
i=1

vi
hui

∂q

∂ui
. (A.1.10)

Several operators above are shown as operating on scalar quantities. In many cases

these operators are inadequate forms to be applied to vector quantities. coordinate

system!transforms—)textbf

A.2 Coordinate systems: Metrics and Operators

In this section, we define several important coordinate systems, their metric coef-

ficients, and the major differential operators. We detail the Cartesian, cylindrical,

elliptic cylindrical, spherical, and oblate spheroidal coordinate systems. The infor-

mation is provided in the notation of Moon and Spencer.31

In the work in this dissertation primarily used standard Cartesian coordinates in

the 1D flow solutions and in computational simulations, but relied significantly on

elliptic cylinder and oblate spheroid coordinates for realistic extensions into 2D and

3D. Cylindrical and spherical coordinates were used primarily to derive solutions used

for asymptotic verification of solutions in the other coordinates.
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A.2.1 Cartesian

Definition of coordinates

x = x (A.2.1a)

y = y (A.2.1b)

z = z (A.2.1c)

Metric coefficients

hx = 1 (A.2.2a)

hy = 1 (A.2.2b)

hz = 1 (A.2.2c)

Operators

(ds)2 = (dx)2 + (dy)2 + (dz)2 (A.2.3)

∇ϕ =
∂ϕ

∂x
êx +

∂ϕ

∂y
êy +

∂ϕ

∂z
êz (A.2.4a)

=
∂ϕ

∂x
ı̂ +

∂ϕ

∂y
̂ +

∂ϕ

∂z
k̂ (A.2.4b)

∇ · f =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

(A.2.5)

∇2ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
(A.2.6)

v ·∇q = vx
∂q

∂x
+ vy

∂q

∂y
+ vz

∂q

∂z
(A.2.7)
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A.2.2 Cylindrical/Polar

Definition of coordinates

x = r cos(θ) (A.2.8a)

y = r sin(θ) (A.2.8b)

z = z (A.2.8c)

Metric coefficients

hr = 1 (A.2.9a)

hθ = r (A.2.9b)

hz = 1 (A.2.9c)

Operators

(ds)2 = (dr)2 + r2 (dθ)2 + (dz)2 (A.2.10)

∇ϕ =
∂ϕ

∂r
êr +

1

r

∂ϕ

∂θ
êθ +

∂ϕ

∂z
êz (A.2.11)

∇ · f =
∂fr
∂r

+
fr
r

+
1

r

∂fθ
∂θ

+
∂fz
∂z

(A.2.12)

∇2ϕ =
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
+
∂2ϕ

∂z2
(A.2.13)

v ·∇q = vr
∂q

∂r
+
vθ
r

∂q

∂θ
+ vz

∂q

∂z
(A.2.14)

175



Appendix A. Coordinate Transforms

A.2.3 Elliptical Cylinder

Definition of coordinates

x = a cosh(η) cos(ψ) (A.2.15a)

y = a sinh(η) sin(ψ) (A.2.15b)

z = z (A.2.15c)

Metric coefficients

hη = a

√
cosh2(η)− cos2(ψ) (A.2.16a)

hψ = a

√
cosh2(η)− cos2(ψ) = hη (A.2.16b)

hz = 1 (A.2.16c)

Note: hη is equivalently a
√

sinh2(η) + sin2 ψ .

Operators

(ds)2 = a2
(
cosh2(η)− cos2(ψ)

) [
(dη)2 + (dθ)2]+ (dz)2 (A.2.17)

∇ϕ =
1

a
(
cosh2(η)− cos2(ψ)

)1/2

[
∂ϕ

∂η
êη +

∂ϕ

∂ψ
êψ

]
+
∂ϕ

∂z
êz (A.2.18)

∇ · f =
1

a
(
cosh2(η)− cos2(ψ)

)1/2

[
∂

∂η

((
cosh2(η)− cos2(ψ)

)1/2
fη

)
+
∂

∂ψ

((
cosh2(η)− cos2(ψ)

)1/2
fψ

)]
+
∂fz
∂z

∇2ϕ =

∂2ϕ
∂η2 + ∂2ϕ

∂ψ2

a2
(
cosh2(η)− cos2(ψ)

) +
∂2ϕ

∂z2
(A.2.19)
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v ·∇q =
vη

∂q
∂η

+ vψ
∂q
∂ψ

a
(
cosh2(η)− cos2(ψ)

)1/2
+ vz

∂q

∂z
(A.2.20)

A.2.4 Spherical

Definition of coordinates

x = r sin(θ) cos(ψ) (A.2.21a)

y = r sin(θ) sin(ψ) (A.2.21b)

z = r cos(θ) (A.2.21c)

Metric coefficients

hr = 1 (A.2.22a)

hθ = r (A.2.22b)

hψ = r sin(θ) (A.2.22c)

Operators

(ds)2 = (dr)2 + r2 (dθ)2 + r2 sin2 θ (dψ)2 (A.2.23)

∇ϕ =
∂ϕ

∂r
êr +

1

r

∂ϕ

∂θ
êθ +

1

r sin(θ)

∂ϕ

∂ψ
êψ (A.2.24)

∇ · f =
∂fr
∂r

+
2

r
fr +

1

r

∂fθ
∂θ

+
cot(θ)

r
fθ +

1

r sin(θ)

∂fψ
∂ψ

(A.2.25)

∇2ϕ =
∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
+

cot(θ)

r2

∂ϕ

∂θ
+

1

r2 sin2(θ)

∂2ϕ

∂ψ2
(A.2.26)
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v ·∇q = vr
∂q

∂r
+
vθ
r

∂q

∂θ
+

vψ
r sin(θ)

∂q

∂ψ
(A.2.27)

A.2.5 Oblate Spheroid

Definition of coordinates

x = a cosh(η) sin(θ) cos(ψ) (A.2.28a)

y = a cosh(η) sin(θ) sin(ψ) (A.2.28b)

z = a sinh(η) cos(θ) (A.2.28c)

Metric coefficients

hη = a

√
cosh2(η)− sin2(θ) (A.2.29a)

hθ = a

√
cosh2(η)− sin2(θ) = hη (A.2.29b)

hψ = a cosh(η) sin(θ) (A.2.29c)

Operators

(ds)2 = a2
(
cosh2(η)− sin2(θ)

) [
(dη)2 + (dθ)2]

+ a cosh2(η) sin2(θ) (dψ)2 (A.2.30)

∇ϕ =

∂ϕ
∂η

êη + ∂ϕ
∂θ

êθ

a
(
cosh2(η)− sin2(θ)

)1/2
+

∂ϕ
∂ψ

êψ

a cosh(η) sin(θ)
(A.2.31)
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∇ · f =
1

a
(
cosh2(η)− sin2(θ)

)1/2

×

 ∂
∂η

((
cosh2(η)− sin2(θ)

)1/2
cosh(η)fη

)
cosh(η)

+

∂
∂θ

((
cosh2(η)− sin2(θ)

)1/2
sin(θ)fθ

)
sin(θ)


+

1

a cosh(η) sin(θ)

∂fψ
∂ψ

(A.2.32)

∇2ϕ =

∂2ϕ
∂η2 + tanh(η)∂ϕ

∂η
+ ∂2ϕ

∂θ2 + cot(θ)∂ϕ
∂θ

a2
(
cosh2(η)− sin2(θ)

)
+

1

a2
(
cosh2(η)− sin2(θ)

) ∂2ϕ

∂ψ2

(A.2.33)

v ·∇q =
vη

∂q
∂η

+ vθ
∂q
∂θ

a
(
cosh2(η)− sin2(θ)

)1/2
+

vψ
a cosh(η) sin(θ)

∂q

∂ψ
(A.2.34)

179



Appendix B

Summary of Analytical Results

B.1 Chapters 2–5 Solutions

In this section, some important analytical results from the chapters on capillary flow

in porous media (chs 2–5) are tabulated for reference and for easy comparison. The

velocity potentials are given for capillary, normal surface and side evaporation, and

gravity. We note the solution for the 3D oblate spheroid side evaporation potential

has not been determined.

B.1.1 Velocity Potentials

All solved velocity potentials are enumerated below for the physical phenomena of

capillary driven motion, wicking gravity effects, normal surface evaporation, and side

evaporation for each of the six coordinate systems.∗ The systems employed in this

work are standard Cartesian, elliptic, polar, oblate spheroid, and spherical. Cylindri-

∗ Front evaporation is not included because this phenomenon only influences the potential

indirectly via the frontal mass balance equation.
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cal is technically the same system as polar, but the direction of motion is in z not in

r hence the usage is different. The first three coordinate systems include the normal

surface evaporation, whereas the source term approach is not physically appropriate

as a model of evaporation in the three latter coordinate systems.

The capillary potential is represented by ξ, the gravity potential by γ, the surface

evaporation potential by ζ, and the side evaporation potential by ω. Hence, the

potential for a system with any combination of these phenomena will be found by

ϕ = ξ + γ + ζ + ω. (B.1.1)

Cartesian Coordinates

All of these potentials are derived in Chapter 3, and the phenomena are thoroughly

compared to each other.

Capillary potential: The capillary potential for 1D-like flow gives rise to the

Lucas–Washburn equation. We present its derivation in Eq. (3.3.6) and derive it

alternatively in Eq. (E.1.14),

ξ̃ = − L̃− x̃
L̃

. (B.1.2)

Gravity potential: The gravity potential is derived in Eq. (3.3.9), and is similarly

linearly dependent on the spatial variable, however it does not drop off as the front

length advances;

γ̃ = Boa

(
L̃− x̃

)
. (B.1.3)

Normal suface evaporation potential: The normal evaporation potential equa-

tion is derived around Eq. (3.3.13);

ζ̃ = −1

2
Nn

(
x̃2 − L̃x̃

)
. (B.1.4)
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Some alternative discussion of the results of this equation are given in §4.3.3.

Side boundary evaporation potential: The derivation of the constant cross-

section side evaporation potential culminates in Eq. (3.3.19), wherein the first poten-

tial with two-dimensional behavior is seen;

ω̃ = NsL̃

∞∑
k=1

(
4

(2k − 1)2π2

) cosh
(

(2k − 1)π ỹ

L̃

)
sinh

(
(2k − 1)π 1

L̃

) sin

(
(2k − 1)π

x̃

L̃

)
, (B.1.5)

where sinh and cosh are the hyperbolic sine and cosine functions.

Elliptic Coordinates

The capillary potential for elliptic coordinates is derived in chapter 2, while the normal

surface evaporation is effect is thoroughly detailed in chapter 4. The elliptic gravity

and side evaporation potentials are not used in any of the results in this dissertation.

Capillary potential: The capillary potential is given originally in Eq. (2.3.5);

ξ̃ =
η − ηf
ηf

. (B.1.6)

It is also used in Eq. (4.3.16).

Gravity potential: Here we give the restraining gravity potential for the elliptic

coordinate system as one of several potentials which were not derived or used in this

dissertation.

γ̃ =
4

π
Boa sinh(ηf )

∞∑
k=1

1

1− (2k)2
[cosh(2kη)− coth(2kηf ) sinh(2kη)] cos(2kψ).

(B.1.7)
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This is for the sake of thoroughness, ease of comparing the analytical solutions of

other coordinate systems (such as in this case polar coordinates), and for any future

extensions to the work by the authors or readers.

Normal suface evaporation potential: The normal surface evaporation poten-

tial in elliptic coordinates is given and described with Eq. (4.3.16), but is thoroughly

derivedEq. (E.1.11);

ζ̃ = −1

4
Nn

[
η − ηf + ηf cosh(2η)− η cosh(2ηf )

2ηf
+

sinh(ηf − η) sinh(η)

cosh(ηf )
cos(2ψ)

]
.

(B.1.8)

This partial potential was the most critical to derive of this project.

Side boundary evaporation potential: The side evaporation potential for the

elliptic coordinate system is;

ω̃ = −2Ns

∞∑
n=1

ηf sinh(ηf )

n2π2 + ηf 2

[
coth

(
nπ

π/2

ηf

)
cosh

(
nπ

ψ

ηf

)
− sinh

(
nπ

ψ

ηf

)]
sin

(
nπ

η

ηf

)
,

(B.1.9)

where coth is the hyperbolic cotangent function. This equation is not derived or used

elsewhere.

Polar Coordinates

Section 5.3 applies the several velocity potentials for polar coordinates, with exception

of the normal surface evaporation potential which is discussed in §4.3.1.

Capillary potential: The two-dimensional polar capillary potential was first con-

sidered, though not explicitly given, with the work in Sec. 2.3, but in §4.3.1 the
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potential was derived with Eq. (4.3.3) as well as Eq (5.3.4);

ξ̃ =
ln(r̃f )− ln(r̃)

ln(r̃f )
, (B.1.10)

where ln(x) is the base-e logarithmic (i.e. natural log) function. This potential is

closely analogous to the elliptic capillary potential, Eq. B.1.6.

Gravity potential: The restraining gravity potential for polar coordinates is de-

rived in Eq. (F.1.11), and further described in Eq. (5.3.7);

γ̃ =
4

π
Boar̃f

∞∑
j=1

1

1− (2j)2

r̃4j
f − r̃4j

(r̃f )4j − 1

(
1

r̃2j

)
cos(2jθ). (B.1.11)

Normal suface evaporation potential: The polar normal surface evaporation

potential is derived with Eq. (4.3.3);

ζ̃ =
1

4
Nn

(
r̃2
f − 1

)
ln(r̃)− (r̃2 − 1) ln(r̃f )

ln(r̃f )
(B.1.12)

This equation has a very interesting symmetry between the quadratic and logarithmic

terms.

Side boundary evaporation potential: The polar side evaporation potential is

derived in Eq. (F.1.23), but it’s application is discussed with Eq. (5.3.7);

ω̃ = −2Ns

∞∑
n=1

[1− (−1)nr̃f ] ln(r̃f )

n2π2 + (ln(r̃f ))
2 sin

(
nπ

ln(r̃)

ln(r̃f )

)
×
[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]
.

Cylindrical Coordinates

These potentials are not employed in this dissertation, however they can be used as

a 1D-like asymptotic comparison to the 3D spherical and oblate spheroid solutions.

Length scales are made dimensionless by the inlet radius, R.
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Capillary potential: The capillary potential in cylindrical coordinates is readily

found by a transformation of variables from Cartesian coordinates, Eq. (B.1.2);

ξ̃ = − L̃− z̃
L̃

. (B.1.13)

Gravity potential: Similar to the capillary potential, the velocity potential for

restraint by gravity is determined from transforming the coordinates of Eq. (B.1.3);

γ̃ = Boa

(
L̃− z̃

)
. (B.1.14)

Side boundary evaporation potential: The side evaporation potential for loss

of liquid through the side of a cylindrical porous medium was derived elsewhere;

ω̃ = NsL̃

(
4

π2

) ∞∑
k=1

1

(2k − 1)2

I0

(
(2k − 1)π r̃

L̃

)
I1

(
(2k − 1)π 1

L̃

) sin

(
(2k − 1)π

z̃

L̃

)
, (B.1.15)

where Ik(x) is the modified Bessel function of the first kind.

Oblate Spheroid Coordinates

These potentials are useful for three dimensional expansions through flat circular

inlets.

Capillary potential: The 3D oblate spheroid capillary potential is derived in

Eq. (2.4.5);

ξ̃ = −arctan
(
tanh

(ηf
2

))
− arctan

(
tanh

(
η
2

))
arctan

(
tanh

(ηf
2

)) , (B.1.16)

where arctan(x) is the inverse tangent trigonometric function and tanh(x) is the

hyperbolic tangent. It’s resulting front velocity equation is further compared relative

to Eq. (B.1.18).
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Gravity potential: The restraining gravity potential in oblate spheroid coordi-

nates is

γ̃ = −Boa sinh(ηf )
∞∑
n=0

(−1)n(4n+ 1)

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

× i Q2n(i sinh(ηf )) P2n(i sinh(η))− P2n(i sinh(ηf )) i Q2n(i sinh(η))

i Q2n(i sinh(ηf )) P2n(0)
P2n(cos(θ)).

(B.1.17)

The functions P and Q are the Legendre functions of the first and second kinds,

respectively. The collected terms P2n(ix) and i Q2n(ix) are real valued functions of x.

This equation is not applied in any of the results in this dissertation.

Side boundary evaporation potential: The partial differential equation for the

velocity potential in oblate spheroid coordinates does not yield a closed-form analyt-

ical solution, i.e. the root must be found for each eigenvalues in the infinite series.

Spherical Coordinates

The potentials for the spherical coordinate system are given in Sec. 5.4, with their

applications.

Capillary potential: The capillary potential in spherical coordinates is first de-

rived in Eq. (2.4.18), but also in Eq. (5.4.4);

ξ̃ = − r̃f − r̃
r̃f − 1

1

r̃
. (B.1.18)

Gravity potential: The spherical restraining gravity potential is fully derived in

Eq. (F.1.34), and detailed in Eq. (5.4.7);

γ̃ = −Boar̃f

∞∑
n=0

(−1)n(4n+ 1)

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

(
r̃f
r̃

)2n+1

−
(
r̃
r̃f

)2n

(r̃f )
2n+1 −

(
1
r̃f

)2n P2n(cos(θ)). (B.1.19)
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Side boundary evaporation potential: The side evaporation velocity potential

for the spherical coordinate system is derived in Eq. (F.1.46) and further applied with

Eq. (5.4.7);

ω̃ = −2Ns

∞∑
n=1

nπ
[
(−1)nr̃

3/2
f − 1

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−1/2(cos(θ))

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)

sin
(
nπ ln(r̃)

ln (r̃f )

)
√
r̃

.

(B.1.20)
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Implementation of Lattice

Boltzmann Methods

C.1 The Boltzmann Kinetic Equation

Statistical physics arose in part through the pioneering work of Ludwig Boltzmann

in the 1870s. Boltzmann considered the effects of an ensemble of gas-like particles.135

This was an important deviation from Newtonian mechanics where each gas could be

modeled individually, however, Boltzmann realized the complexity (and unnecessary

work) that this entailed.9 His work ultimately proved that many macroscopic and

thermodynamic relations can be derived directly from first principles.10

One of his key discoveries (along with the third law of thermodynamics and the

arrow of time) was the Boltzmann transport equation;

[
∂t + v · ∂x + Fext · ∂p

]
f =

ˆ
(f1′f2′ − f1f2) gσ(g,Ω) dΩ dp2. (C.1.1)

On the streaming (left) side of the equation, t is time, v is the microscopic velocity of

the gas, x is the position, Fext accounts for any external forces, p is the momentum,
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f is the distribution function. On the collision side of the equation, f1′ and f2′ are the

distribution functions of particles 1 and 2 at time t+δt, respectively, while f1 and f2 is

at time t (before collision), the The streaming portion of the equation accounts for the

natural movement of un-inhibited particles through space including an external body

forces. The collision integral adjusts for all possible collision angles and momenta that

could change the distribution function.13 Macroscopic physical variables are found by

the moments of the distribution function;

ρ = m

ˆ
f dv, (C.1.2a)

u =
m

ρ

ˆ
fv dv, (C.1.2b)

e =
m

ρ

ˆ
f
v2

2
dv, (C.1.2c)

where ρ is the density, m is the unit mass, u is the macroscopic velocity, and e is the

unit energy.

The Bhatnagar–Gross–Krook equation (BGK) in 1954 was an important devel-

opment in the theory of statistical gas dynamics because its simplified approach to

handling the collision operator.106 BGK analyzed the collision as a deviation from

the equilibrium distribution of the system;

∂f

∂t
+ v · ∂f

∂x
+ Fext · ∂f

∂p
= −f − f

eq

τ
. (C.1.3)

The equilibrium, f eq is calculated based on the thermodynamical properties of the

system.

C.2 The Lattice Boltzmann Equation

The lattice Boltzmann method (LBM) is a computational technique for the simulation

of fluid dynamics.∗ The method solves a discretized version of the Boltzmann equation

∗ The LBM is also discussed in Sec. 6.2.1.
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Figure C.1. Three-dimensional velocities of the D3Q19 Lattice Boltzmann model (stereo-
scopic images).

on a Cartesian lattice in space with an explicit time stepping routine to determine

the fluid motion. These spatial properties allow the domains to be easily separated

with only a small amount of edge communication necessary for each time step. Thus,

LBM is very parallelizable for single-phase simulations of fluids even up to unsteady

flow regimes and very irregular boundaries, such as porous media.∗

The lattice Boltzmann method developed around 1988 as a probabilistic offshoot

to a discrete fluid model called Lattice Gas Cellular Automata (LGCA). LGCA ef-

fectively models single particles on a discrete hexagonal lattice with only 6 possible

velocities and a small number of collision rules. This method was fascinating because

it showed full hydrodynamic phenomena as a deterministic result of the averaged loca-

tions and velocities of the discrete particles. The lattice Boltzmann method however

emerged to correct limitations of LGCA such as difficult extension to three dimen-

sions and failure at higher velocities. Furthermore, LBM was fit neatly in the theory

as a continuum method with second-order convergence in space and time.

The lattice Boltzmann method contains several branches of core equations. The

simplest form of the lattice Boltzmann equation (LBE) is the lattice–BGK equation

which simplifies the calculation of the collision from a collision matrix into the devi-

ation from the equilibrium distribution. This equation is suitable for many types of

∗ Parallel computation and LBM implementation is discussed in Sec. 7.2.2.
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Figure C.2. 3D LBM simulation of single pore on 15 by 15 by 15 grid.

isothermal fluid flows especially laminar in porous media.111 Below the equation is

shown as a difference equation,

fα(x + eαδt, t+ δt) = fα(x, t)− fα(x, t)− f eq
α (x, t)

τ
, (C.2.1)

where eα are the discrete velocity vectors of the model. This difference equation form

is easily codable because it will directly increment the local value. The commonly

used three-dimensional lattice, D3Q19, is shown in Figure C.1. Note that e0 is no

velocity—effectively the density of stationary fluid in the cell—and is at the center of

the lattice cell. In Figure C.2 an example 3D simulation shown; it is the result of a

modified Matlab® code found online.

For our simulations we are using the two-dimensional nine velocity (D2Q9) model

for the lattice Boltzmann equation. First, the domain must be initialized (some dis-

cussion on this shortly). In each time loop iteration we first calculate the macroscopic
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variables which are determined from the moments of the distribution functions,

ρ =
8∑
i=0

fα, (C.2.2a)

u =
1

ρ

8∑
i=0

fαeα. (C.2.2b)

Next, the equilibrium distribution is calculated from the quadratic approximation of

the Maxwell–Boltzmann equilibrium;

f eq
α (x, t) = ωαρ(x)

(
1 + 3

eα · u
c2

+
9

2

(eα · u)2

c4
− 3

2

u2

c2

)
. (C.2.3)

where

ωα =


4
9
, α = 0;

1
9
, α = 1, . . . , 4;

1
36
, α = 5, . . . , 8,

(C.2.4)

are the weights of the different velocity directions, c is the speed of sound in the

medium (usually 1/
√

3 ). The collision step is calculated by recombining the stream-

ing and equilibrium results,

fα(x, t+ δt) = fα(x, t)− fα(x, t)− f eq
α (x, t)

τ
. (C.2.5)

Finally, in the streaming step the distribution function values are transferred between

the different neighboring lattice cells,

f temp
α (x + eαδt, t+ δt) = fα(x, t+ δt), (C.2.6)

and the distribution function is updated from the temporary distribution function.

The lattice is usually an equally spaced Cartesian grid. This limits the common

LBM to systems where high resolution is not required in select subportions of the

domain. Methods do exist to extend LBM domains to locally high-resolution, but are

non-trivial to program and can defeat the purpose of computing over a simple lattice.
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C.2.1 Alternative Collision Integration

Above we discussed the LBE with the Batnagar–Gross–Krook collision term, which

is expressed

ΩBGK = −fα(x, t)− f eq
α (x, t)

τ
, (C.2.7)

where Ω is the collision operator for the BGK. However, while this method is easy

to implement, it does not perform well numerically for high advection flows, e.g.

turbulent flows or some flows in complex porous media.∗

The most common alternative method for is the multiple relaxation times (MRT)

LBE. The MRT collision integral step is given generally by a collision matrix S op-

erating on the deviation of the distribution functions from equilibrium,†

ΩMRT = −S [f (x, t)− f eq (x, t)]. (C.2.8a)

The Gram–Schmidt orthogonalization procedure is then applied to the collision ma-

trix to find another matrix, M, such that the collision matrix, Ŝ, is now diagonalized,

or S = M−1ŜM, and the form of the collision integral becomes

= −M−1ŜM [f (x, t)− f eq (x, t)]. (C.2.8b)

The MRT LBE is given by

f (x + eδt, t+ δt) = f (x, t)−
[
M−1Ŝ

]
[m (x, t)−meq (x, t)] + F, (C.2.9)

where the moments of the distribution functions are m = Mf . For the D2Q9, the

equilibrium moments are given by the vector,136

meq =
[
ρ e(eq) ε(eq) jx q

(eq)
x jy q

(eq)
y p

(eq)
xx p

(eq)
xy

]ᵀ
, (C.2.10)

∗ Thus, the following discussion is important to the future work of Chapter 7. † Here

we use alternate vector notation where the distribution function fα is represented by f and

the tensor operation, Sαβfβ, is Sf .
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where

e(eq) = −2ρ+
3

ρ

(
j2
x + j2

y

)
, (C.2.11a)

ε(eq) = ρ− 3

ρ

(
j2
x + j2

y

)
, (C.2.11b)

q(eq)
x = −jx, (C.2.11c)

q(eq)
y = −jy, (C.2.11d)

p(eq)
xx =

1

ρ

(
j2
x − j2

y

)
, (C.2.11e)

p(eq)
xy =

1

ρ
jxjy. (C.2.11f)

Note that j is the momentum flux given by,

j =
∑
α

fαêα. (C.2.12)

The related collision moment matrix is

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



. (C.2.13)

The diagonalized collision matrix with the relaxation times is commonly defined,

Ŝ = diag
([

1 1.1 1 1 1.2 1 1.2 1/τ 1/τ
])
. (C.2.14)
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C.2.2 Body forces

There are several important physical conditions that may be added to a lattice Boltz-

mann model. In some systems the primary driving force is gravity. To incorporate

gravity into the LBGK method, the velocity is calculated before the equilibrium step

to include the acceleration due to gravity on the new velocity, or

ueq = u +
τF

ρ
, (C.2.15)

where F = mg in this case. The force may also be incorporated directly into the LBE

as we will see below with the lattice Poisson–Boltzmann method.∗

C.2.3 Boundary Conditions

Below we outline the boundary conditions which have been used in this dissertation.†

Many of these boundary conditions are similar to those given in Sukop and Thorne.111

Each condition is only described for a single boundary, though they can all be trans-

formed to apply to all side boundaries of the domain. The boundary conditions are

generally referred to by the cardinal directions of west, north, east, and south on the

right, top, left, and bottom of the domain, respectively. We do not discuss any corner

cases, which often involve adapting for two different kinds of boundary conditions

simultaneously, nor is the free-slip boundary condition covered.

Solid bounce back boundary condition

The solid bounce back boundary condition is the condition applied at all solid point,

wherein the solid interface affects the flow half-way between the liquid and solid lattice

∗ Gravity is the primary driving force in Ch. 7. † These boundary conditions are also

briefly summarized in Sec. 6.2.1.

195



Appendix C. Implementation of Lattice Boltzmann Methods

0
1

2

3

4

56

7 8

f7e7

f3e3

f6e6

0
1

2

3

4

56

7 8

f5e5

f1e1

f8e8

Figure C.3. 2D bounce back boundary condition.

nodes. The method simply reverses the direction of the distribution function fα′ from

the previous direction prior to the collision f ∗α. As an equation,

fα′ = f ∗α. (C.2.16)

For example, if we define in the algorithm some temporary variable f temp at any

solid node next to a liquid then we may exchange the opposite distribution functions

during collision;111

f temp = f1, (C.2.17a)

f1 = f3, (C.2.17b)

f3 = f temp. (C.2.17c)

Here velocity direction 1 is opposite to 3; this may be applied to all reflecting pairs

of distribution functions.

Periodic boundary condition

The periodic boundary condition transfers information between opposite edges of

the lattice. For example, at the north boundary of the domain, the distribution

functions must be advected from the top nodes to the bottom ones. On internal

lattice nodes, the distribution functions moving vertically are transferred from nodes
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j to j + 1, where j is the lattice position in the y-direction. At the north boundary,

however, information is moved from from `y to 1, where `y being the upper-most

lattice point. Specifically, the distribution functions at a given point x = [i, `y] on

the north boundary are advected in the form,111

f2([i, 1], t) = f2([i, `y], t), (C.2.18a)

f5([i+ 1, 1], t) = f5([i, `y], t), (C.2.18b)

f6([i− 1, 1], t) = f6([i, `y], t). (C.2.18c)

Conversely for a southern boundary, the formulas for the x-direction may be similarly

determined by working with i = 1 and `x.

In parallel computation, the periodic boundary condition increases the total amount

of communication by necessitating transfer of this information between upper/lower

and left/right bounding computational cells. So using other boundaries which elimi-

nate periodic conditions may reduce the run-time of parallel codes, and increase code

design flexibility.

These first two boundary conditions are sufficient for a simulation of simple porous

media flow. The following boundary conditions significantly increase the variety of

simulations which are possible to be run.

Pressure boundary condition

In general, for a given non-corner boundary there are three distribution functions at

each lattice node which are unknown because they are not received from neighboring

nodes in the streaming process. Naturally, the three degrees of freedom must be

constrained by three equations and three knowns; the equations are the density and

the velocity expressions at the given node. This is true of both pressure and velocity

boundary conditions, it is merely a variation of the three knowns which distinguishes

the two boundary conditions.
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Figure C.4. 2D velocities for the pressure boundary condition applied to the west wall.

Now consider the pressure boundary condition, which for lattice Boltzmann sim-

ulations means a density boundary condition because pressure and the density are

directly related.111 So for a set density ρ0, we also have the local density equation

ρ0 =
∑
α

fα. (C.2.19)

In addition the velocity is determined from

v =
1

ρ

∑
α

fαeα. (C.2.20)

Here we define the velocity at this boundary node to be v = v∗ [cos(θ)̂ı + sin(θ)̂],

where the angle θ is a prescribed direction of the flow as the common angle counter-

clockwise from the x-axis. The final constraint on fα is most commonly provided by

the Zou and He112 non-equilibrium condition as we will exemplify below.

As an example, consider the west boundary of the domain, wherein the unknown

distribution functions are f1, f5, f8 as illustrated in Figure C.4. The non-equilibrium

values of the distribution functions normal and anti-normal to the boundary are set

equal;

f1 − f eq
1 = f3 − f eq

3 . (C.2.21)

With the three previous equations the unknown distribution functions are solved via
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Figure C.5. 2D velocities for the velocity boundary condition applied to the west wall.

the effective fluid velocity, v∗,

v∗ =
ρ0 − (f0 + f2 + f4)− 2 (f3 + f6 + f7)

ρ0 cos(θ)
, (C.2.22a)

f1 = f3 +
2

3
ρ0v
∗ cos(θ), (C.2.22b)

f5 = f7 +
1

2
(−f2 + f4) +

1

2

[
1

3
cos(θ) + sin(θ)

]
ρ0v
∗, (C.2.22c)

f8 = f6 +
1

2
(f2 − f4) +

1

2

[
1

3
cos(θ)− sin(θ)

]
ρ0v
∗. (C.2.22d)

This boundary condition works for values of θ near the direction normal to the bound-

ary surface, but fails when the angle is parallel to the boundary.

Velocity boundary condition

For the velocity boundary condition, we set

u0 =

u0

v0

. (C.2.23)

where u0 and v0 are the velocities in x- and y-directions.111 The total velocity is

alternatively related through |u0| =
√
u2

0 + v2
0 with θ = arctan(v0/u0) similar to the

pressure BC above. The nodal density equation,

ρ∗ =
∑
α

fα, (C.2.24)
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and velocity equation,

u0 =
1

ρ∗

∑
α

fαeα, (C.2.25)

once again are the relations which resolve the degrees of freedom. As shown in Fig-

ure C.5, for the west wall, we again have the unknowns f1, f5, f8 and the intermediate

variable, ρ∗. The Zou and He non-equilibrium balance is the same, f1−f eq
1 = f3−f eq

3 ,

and the resulting distribution functions for prescribed fluid velocity are112

ρ∗ =
(f0 + f2 + f4) + 2 (f3 + f6 + f7)

1− u0

, (C.2.26a)

f1 = f3 +
2

3
u0ρ

∗, (C.2.26b)

f5 = f7 +
1

2
(−f2 + f4) +

1

2

(
1

3
u0 + v0

)
ρ∗, (C.2.26c)

f8 = f6 +
1

2
(f2 − f4) +

1

2

(
1

3
u0 − v0

)
ρ∗. (C.2.26d)

The no-flux condition normal to the boundary is determined by setting u0 = v0 = 0.

Open outlet boundary condition

In the open outlet boundary condition the edge nodes do not preserve information

and effectively forget all information at each step as if the fluid particles simply left

the domain without any future interaction. This is implemented by setting the values

of the distribution functions at the boundary equal to that of the nearest neighboring

node in the column or row next to the boundary. For example, if we are along the

west boundary of a 2D domain then we are at the coordinate `x—the farthest node

in the x-direction—and the next nearest node would then be at `x − 1. So in the

implementation, once the advection has been carried out on all the internal lattice

nodes, we apply to the west boundary nodes the rule

fα([`x, y], t) = fα([`x − 1, y], t), (C.2.27)
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for all values of y and i at the given time t. This boundary condition is only useful

in special cases, particularly in the multi-species models, because in the bulk fluid it

can result in unphysical mass-loss through the boundary.

All of the above boundary conditions may also be applied to the multispecies

methods discussed below in Sec. C.3.1.

C.2.4 Multiphase Fluids

Multiphase fluid systems (e.g. liquid water with vapor) occur in conjunction with

numerous kinds of porous media such as soils, filters, and corroding pores.61,69 For

the LBM, multiphase systems require determination of the strength of interaction

between the matter in neighboring cells. The Shan and Chen multiphase model, also

known as the pseudo-potential method, uses an inter-particle force calculated by137

F (x, t) = −Gψ(x, t)
8∑

α=1

wαψ(x + eαδt, t)eα. (C.2.28)

The ideal gas equation of state is P = c2
sρ.11 In the pseudo-potential method, the

equation of state is similar to the van der Waals equation of state;66

P =
ρ

3
+
G

6
ψ2, (C.2.29)

where the additional second term is the attractive/repulsive non-linear term. The

form of the potential must be specified, and we use the exponential inter-particle

potential

ψ(ρ) = ψ0 exp

(−ρ0

ρ

)
, (C.2.30)

although alternative potentials are used such as ψ(ρ) = ρ. The particle-wall force

between solid points and fluid particles may be calculated in a similar way with the

Martys and Chen model,115,116

Fads(x, t) = −Gadsψ(x, t)
∑
α

wαs(x + eαδt)eα. (C.2.31)
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(a) Early time density variation. (b) Surface and bulk condensation.

(c) Remaining droplets. (d) Single equilibrium droplet.

Figure C.6. Multi-phase droplet condensation model.

Other multiphase and fluid-solid interaction models exist, including the color gradient,

free energy, and interface tracking models.137 The interaction of values between neigh-

boring cells which is critical in multiphase models especially near solid/liquid/gas

interfaces, makes parallelizing the system more difficult due to higher communication

load111∗

In Figure C.6 we show an example simulation of this two phase model with hy-

drophilic behavior on the solid boundaries above and below (periodic BCs are applied

on the left and right). Initial perturbations in the density (Figure C.6a) cause in-

stabilities in the fluid which drive condensation both on the surface and in the bulk

(b). Most of the droplets proceed to coalesce into a minimal number of droplets (c).

Finally (d), fluid from the remaining drops continues to slowly evaporate and con-

dense, which results in mass being added to the larger drop, eventually consuming

∗ These methods are further applied in Sec. 6.3.1.
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the smaller.

C.3 Coupling Additional Physics to the Lattice

Boltzmann Fluid Equation

C.3.1 Species transport

The dilute multispecies lattice Boltzmann method utilizes the lattice BGK equation

for each additional species, σ,111

gα (x + eαδt,Dσ , t+ δt,Dσ)− gα (x, t) = − 1

τDσ
[gα (x, t)− geq

α (x, t)]. (C.3.1)

where gσα is the non-solvent species distribution function, and the relaxation time is

related to the diffusivity by Dσ = (τDσ − 1/2)/3. Here we are only considering a non-

ionic species. Since we may assume that this dilute species is principally interacting

with the solvent, the equilibrium calculation is simplified to

gσ,eq
α = wαCσ (1 + 3eα · u). (C.3.2)

Here the species concentration (alternatively the density) is the zeroth moment of the

species distribution function,

Cσ =
8∑

α=0

gσ,α. (C.3.3)

Because of the lower order of the equilibrium function, it is not necessary to use the

more complex boundary conditions described above in Sec. C.2.3. Given a Dirichlet

boundary condition with constant concentration, C̄σ, the effective concentration, C ′σ,

at that boundary is111

C ′σ =
C̄σ −

∑
α∈Sk gσ,α∑

α∈Su ωα
, (C.3.4)
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(a) Velocity profile. (b) Instantaneous concentration.

Figure C.7. LBM model of flow between plates with transient species diffusion from walls.

where Sk is the set of known distribution functions and Su are the unknowns. The

remaining distribution functions are then calculated gσ,α = ωαC
′
σ, where ωα is given

above in Eq. (C.2.4). This is equally applicable to an internal source condition.

In Figure C.7 we show an example simulation using the multispecies method

coupled with net flow. Solid boundaries at the top and bottom resist flow, but

are permeable to and diffusing a soluble species in the flowing solvent. A pressure

differential across the domain drives the Poisuielle flow through the channel from

right to left resulting in the ordinary parabolic velocity profile (Fig. C.7a). With a

negligible concentration of the solute at the inlet and an open outlet on the right

(b), we see the species building up in the channel, but the pure solvent at the inlet

preventing the whole channel from being saturated.

C.3.2 Reacting Flows

Reacting fluids in the LBM are constrained by the ordinary conservation properties

of mass and momentum. For a given reactive process, the collision operator is split
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into the two terms of the reactive and non-reactive processes

Ωσ = Ωσ,NR + Ωσ,R. (C.3.5)

The nonreactive operator, Ωσ,NR, (the equilibrium operator and force terms) are

known from ordinary fluid processes, while the reacting collision operator, Ωσ,R ac-

counts for the additional effects on the distribution functions due to the reactions.

The moments of on the reacting operator are also conserved because the operator

itself conserves mass and momentum,∑
σ

Mσ

∑
α

Ωσ,R
α = 0, (C.3.6a)∑

σ

Mσ

∑
α

Ωσ,R
α eα = 0. (C.3.6b)

As an example, consider the first order reaction

A→ B, (C.3.7)

with a rate constant k. The ordinary kinetic equations are

dCA
dt

= −kCA, (C.3.8a)

dCB
dt

= kCA. (C.3.8b)

Adding the effective loss/gain of the reaction to the separate component LBEs, we

have

gAα (x + eαδt, t+ δt)− gAα (x, t) =
1

τA

[
gAα (x, t)− gA,eq

α (x, t)
]
− kgAα (x, t), (C.3.9a)

gBα (x + eαδt, t+ δt)− gBα (x, t) =
1

τB

[
gBα (x, t)− gB,eq

α (x, t)
]

+ kgAα (x, t). (C.3.9b)

Higher order reactions and systems of more parameters may also be implemented. Al-

ternative methods of carrying out the reactions include coupling with a Lax–Wendroff

method to handle the multiple species.118
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Say we have a reacting process where the rate in the bulk fluid, kf , differs from the

rate at a catalytic wall, kw. Then for a two dimensional model a given fluid node will

have a given number solid neighbors at its sides, ns, and at its corners, nc. Weighting

each of the neighboring nodes, the reaction rate k is computed as an effective average

of these bounding rates,

k(x) =

[(∑
α 6=0 ωα

)
− ωcnc(x)− ωsns(x)

]
kf + [ωcnc(x) + ωsns(x)] kw∑

α 6=0 ωα
, (C.3.10)

where the denominator normalizes the effects of the bounding nodes. For the D2Q9

method, the surface reaction reaction is then implemented with,

k(x) =
9

5

{[
5

9
− 1

36
nc(x)− 1

9
ns(x)

]
kf +

[
1

36
nc(x) +

1

9
ns(x)

]
kw

}
. (C.3.11)

This is under the assumption that all reactions are based on collisions between neigh-

boring nodes. For the case of local node being included then the formula is
∑

α ωα = 1

instead of
∑

α 6=0 ωα. This model does not take into account solids which change the

order of the reaction.∗

To demonstrate the model in Figure C.8 the solid surface reaction model is applied

for flow and diffusion around a circular particle. The domain is initially pure solvent

and the reaction is first order. At first only a small amount of reactant enters the

domain from the left side and slowly reacts with itself in the bulk causing a low

concentration wave of product coming from the left (Fig. C.8a). When the reactant

reaches the particle surface the reaction rate increases and the product is rapidly

generated diffusing from the particle wall (b). Over time the product builds up

around the particle and then diffuses throughout the bulk (c). The reaction takes

place at such a small magnitude that the concentration of reactant appears virtually

identical as with diffusion around a particle (d).

∗ This method is applied in Sec. 6.3.2.
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(a) Early concentration of product. (b) Beginning surface reaction.

(c) Late surface reaction. (d) Concentration of reactant.

Figure C.8. Reaction-diffusion at a catalytic particle surface.

C.3.3 Solid Dissolution Partial Permeability Model

In our model of the dissolution process of a solid, the solid nodes turn to progressively

turn into liquid nodes, with the solid matter transformed into solvated species. To

account for partially liquid nodes, we used the partial fluid permeability model devel-

oped generally for porous media.111 This effectively allows some fraction of particles

to move like an ordinary fluid while others are bounced back. In place of the ordi-

nary streaming step with bounce-back boundary condition we have an intermediate

streaming function f ∗∗α , which then may be bounced back fractionally as a function
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of the permeability of that node (which is a function of the solid fraction);

f ∗∗α (x, t+ δt) = f ∗α(x, t) +
1

τ
[f eq
α (x, t)− f ∗α(x, t)], (C.3.12a)

fα(x, t+ δt) = f ∗∗α (x, t+ δt) + kperm [f ∗∗α′ (x + eαδt, t+ δt)− f ∗∗α (x, t+ δt)].

(C.3.12b)

The permeability and solid fraction relation is quadratic, kperm = n2
s , for dissolving

surfaces and ns = 1 is a solid node and zero if it is not. This quadratic relation is

specifically for a solid boundary layer and not applicable for porous media, generally.

The implementation of ordinary solid bounce-back boundary condition may still be

used for non-dissolving solids.

The solid dissolution rate, ∆ns, is calculated as a first order function of the local

fluid concentration and in neighboring lattice cites,

∆ns(x) = −k
∑
i

ωα
Cs − Ci
Cs

[1− ns(xn,i)], (C.3.13)

for neighbor i and Cs is the saturated concentration of the species. The quantity of

solid is then directly translated into an added local concentration of solvated species;

∆Cliq = ∆nsCsolid, (C.3.14)

where Csolid is concentration of the solid (essentially ρsolid). The neighboring nodes

are used as a means to allow the dissolution can propagate deeper into the solid.∗

In Figure C.9 the method is applied to a dissolving channel wall. The fluid flows

through the channel in a laminar, parabolic flow profile (Fig. C.9a) which begins

to remove solid from the wall (b). We see the flow dissolves the solid away at an

approximately linear rate (c), until only the non-dissolving channel walls remain (d).

This example of dissolution is similar to Kang’s models of dissolving pores.120

∗ Sec. 6.3.3 discusses the application of this method to pitting corrosion.
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(a) Early channel velocity. (b) Early dissolution of first solid layer.

(c) Progressing solid dissolution. (d) Cleared fluid channel.

Figure C.9. Simulated dissolution of a soluble solid in a channel. Total white is a non-
dissolvable solid, lightest gray is a fully dissolvable solid node, black is liquid, and other
shades of gray are partially liquid solid nodes.

C.3.4 Electrochemistry

The electric potential has as significant effect on the behavior of charged and polar

fluids. The Poisson equation describes the effective behavior of the electric potential

in a dielectric medium,121

∇2Ψ = − 1

εrε0

∑
σ

ezσCσ, (C.3.15)
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where Ψ is the potential, εr is the relative permittivity, ε0 is the vacuum permittivity,

e is the charge of the electron, zσ is the charge number of ion σ, and Cσ is the

local concentration of the ion. Now according to Boltzmann statistics, for dilute

electrolytes in solution the charge density is related to the potential via

Cσ = Cσ,∞e
− ezσΨ

kbT , (C.3.16)

where kb is the Boltzmann constant, and T is the temperature. Substituting into the

Poisson equation we get the non-linear Poisson–Boltzmann equation (PBE),

∇2Ψ = − 1

εrε0

∑
σ

zσenσ,∞ exp

(
− zσe
kbT

Ψ

)
, (C.3.17)

where nσ,∞ is the number density of the ions in the bulk solution. This equation

dictates the behavior of the electric potential in an ionic fluid.

To make a well-posed computational method, Lattice Poisson–Boltzmann Equa-

tion (LPBE)123 is based on the convergence of a time-dependent form of the Poisson–

Boltzmann Equation
∂Ψ

∂t
= ∇2Ψ +

ρe
εrε0

. (C.3.18)

This describes a virtual diffusion of potential. Discretizing the electric potential into

lattice vectors

Ψ =
∑
α

(
hα +

1

2
δt,ΨωαhRHS

)
, (C.3.19)

gives the LPBE

hα (x + eαδt,Ψ, t+ δt,Ψ)−hα (x, t) = − 1

τΨ

[hα (x, t)− heq
α (x, t)]+

(
1− 0.5

τΨ

)
δt,ΨωαhRHS.

(C.3.20)

The hRHS accounts for the Boltzmann statistical charge density, which is a sink term

in the above diffusion equation. (In principle, the LPBE may be modified to use other

media such as semiconductors.) For the idealized case of 1:1 electrolyte solution the

charge density is simplified to122

hRHS =
2n∞ze

εrε0

sinh

(
ze

kbT
Ψ

)
, (C.3.21)
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This is used as a first step because then the electrolytes do not need to be tracked

individually. The equilibrium is calculated with

heq
α = ω̄αΨ, (C.3.22)

where these integral weights are

ω̄α =


0, α = 0;

1/6, α = 1, . . . , 4;

1/12, α = 5, . . . , 8,

(C.3.23)

We have found that the calculated electric potential computing via the LPBE usually

converges significantly more quickly than the flow field determined by the LBE (e.g.

in less than a hundred time steps, versus over a thousand).

We primarily employ a Dirichlet boundary condition much as described above

in the species transport section, but with the alternative integral weights. The flux

boundary condition can easily be added to the method for metals or insulating walls.

The LPBE has not yet been coupled to a charge regulation boundary condition any-

where in the literature. The method could benefit from further advancements in

simulating with different material and fluid characteristics. In addition, a future

model of interest would assign charges to each of several dilute species modeled with

the multicomponent LBM to determine the electric potential directly from the ionic

species.

Once the electric potential is known, the potential and a given net electric field

applied over the domain can significantly affect the fluid flow. The external force

is given by Fext = −ρe∇Ψext. The electric field couples with the LBE through the

discrete force term,

fα(r + eαδt, t+ δt)− fα(r, t) = − 1

τν
[fα(r, t)− f eq

α (r, t)] + δtFα. (C.3.24)

211



Appendix C. Implementation of Lattice Boltzmann Methods

Figure C.10. Electrical potential profile in a narrow channel for changing surface poten-
tials.

The discrete force term is calculated from

Fα = ρeE · (eα − u) f eq
α /RT. (C.3.25)

The LBE is otherwise computed as described previously.

In Figure C.10, we reproduce a figure given in Wang et al.122 as example of the

method. This figure shows the change of the profile of the electrical potential as the

surface potential changes. Due to the nonlinearity of the Boltzmann statistics the

charge mostly changes near the surface, but quickly goes to zero in the middle of the

channel. This method is easily extended to a generalized 2D shaped domain.∗

C.4 Summary

In this appendix we have outlined and developed the lattice Boltzmann methods

employed in this dissertation. The LBM is a versatile computational method that is

∗ Sec. 6.3.4 applies the LPBM to pitting corrosion.
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helpful to the study of porous media particularly through the simple implementation

of solids in the fluid. The mesoscale fluids representation is readily augmented to

account for multiphase fluid phenomena. Multiple species models with diffusion and

bulk and surface reactions have been implemented. These models are further extended

to account for dissolution of the solid into an unsaturated bulk fluid. The lattice

Poisson–Boltzmann method accounts for electrochemical phenomena in the fluid.
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Appendix D

Additional Details on Evaporation

in a Thin Porous Strip

In this appendix, we give further results for evaporation in thin porous strips. The

steady state front position behaves similarly for saturated and unsaturated models,

while the bulk flow rate is significantly over-predicted by the fully saturated GAT

model. Wicking with side evaporation causes significant curvature in the front shape

which reduces the bulk flow rate relative to normal surface evaporation. The contour

phase diagrams of the front velocity and bulk flow show very clear signatures of

similar behavior between the phenomena of interest. Finally, we discuss the solutions

by Lockington et al.79 and their relevant dimensionless form used in the chapter.
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Ũ

Satd
n = 1
n = 2
n = 4
n = 8

(b) Bulk flow

Figure D.1. Steady state behavior for saturated and unsaturated wicking with normal
surface evaporation in a thin porous strip. Saturated flow is plotted with solid lines and
unsaturated flows with dashed lines. Unsaturated flows are plotted for diffusivity exponents
n = 1, 2, 4, and 8 from darkest to lightest. (a) Plot of steady state front position, L̃ss, versus
ECN, Nn. The saturated data is identical to the unsaturated for n = 2. (b) Plot of steady
state bulk velocity, Ũss, versus ECN, Nn.

D.1 Supplementary Results

D.1.1 Capillary Flow with Normal Surface Evaporation

In Fig. D.1, the steady states for the saturated and unsaturated capillary flows with

evaporation are shown. The plot of the steady state front position, Figure D.1a, shows

that for n = 2, the capillary diffusion of second order, the front position predicted by

the unsaturated method matches the fully saturated solution given in Eq. (3.3.29).

Capillary diffusion of lower order will be under-predicted by the saturated normal

evaporation model, while n > 2 over predicts the front position. All of the predicted

fronts are a function of the square root of the inverse ECN. Figure D.1b shows that

the two different models give the same power-law dependence of the bulk velocity on

Nn; Ũ ∼
√
Nn . However, in all cases the saturated model significantly over-predicts

the magnitude of the absorbed liquid by approximately a factor of four or greater.
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(a) Bulk liquid velocity

−1.0 −0.5 0.0 0.5 1.0

ỹ
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Figure D.2. Wicking behavior of side boundary evaporation from a thin porous strip.
(a) Bulk velocity, Ũ , versus time, t̃, for side (solid lines) and normal surface (dashed lines)
evaporation. The solutions with evaporation are shown for evaporation numbers, Ns and
Nn, equal to 0, 10−3, 10−2, 0.1, and 1, from darkest to lightest. (b) Development of the liquid
front shape, L̃(ỹ, t̃), over time of an imbibing liquid with evaporation, Ns = 1. Contour
lines correspond to front position at dimensionless times, t̃ = 10−3, 10−2.5, . . . , 101, from
lightest lines to darkest.

D.1.2 Capillary Flow with Side Boundary Evaporation

Side evaporation is more mathematically complex than the other evaporation

methods. Figure D.2, gives further results concerning the side boundary evapora-

tion model in addition to that previously shown in Figures 3.4 and 3.5, where front

shape and steady state behaviors where investigated. The bulk velocity, illustrated

in Figure D.2a, is significantly greater for the side evaporation than for the normal

surface evaporation. Figure D.2b shows the front shape for side evaporation when

Ns = 1, in contrast to Figure 3.4b where the ECN is 0.1. The steady state front shape

is slightly more pointed, but nevertheless still looks similar to a flipped hyperbolic

cosine function. In the steady state, the distance between the front along the x-axis

and at ỹ = ±1 slightly greater than 1, similar to the case of Ns = 0.1. However,

217



Appendix D. Additional Details on Evaporation in a Thin Porous Strip

10−4 10−3 10−2 10−1 100 101 102 103 104

t̃

10−2

10−1

100

101

102

L̃

Nf =0
Nf =0.1
Nf =1
Nf =10

Boa =0
Boa =0.1
Boa =1
Boa =10

Figure D.3. Comparison of front position, L̃, versus time, t̃, for front interface evaporation
and gravity in a thin porous strip. The time dependent front position for front evaporation
is shown by solid lines and for gravity by dashed lines. Data is computed for both the ECN,
Nf, and modified Bond number, Boa, at values of 10, 1, 0.1, and 0 from shades of lightest
to darkest; the darkest line is the Lucas–Washburn Equation. The data are identical, so
only the front evaporation plot is visible.

the portion of the side through which the evaporation occurs is relatively small in

comparison to the penetration length by a factor of about five, whereas with the lower

evaporation they are only different by a factor of about 1.4.

D.1.3 Capillary Flow with Gravity

Figure D.3 shows the data for the 1D restraint by gravity solution perfectly overlays

the solution for the front evaporation. This is calculated by the numerical solver

using Eq. (3.3.26) and the equivalent expression for front evaporation, from the full

differential equation, Eq. (3.3.23). This is the corresponding figure related to Fig. 3.7,

where the bulk velocity is shown to be radically different for front evaporation versus

gravity.
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D.1.4 Comparison of All Phenomena

In Figures 3.8 and 3.9, we discussed differences between the behaviors of the

front positions with time and ECN. Now in Figures D.4 and D.5, the data for the

front velocity and bulk velocity is also considered. The front velocity for all the

phenomena shown in Figure D.4, clearly shows that the lines of Nnt̃ = Nst̃ = 10 and

Bo2
at̃ = Nf

2t̃ = 10 marks the point when the front velocity, ṽf , has become negligibly

small. The front velocity is defined as ∇ϕ(x̃ = L̃). The bulk velocity shown in

Figure D.5 gives somewhat more varied results. The value of Nnt̃ = Nst̃ = 10 seems

to be far past the point at which the bulk velocity for the steady state of the normal

and side evaporation occurs, as we see in Figures D.5a and D.5b, respectively. The

contour plot for gravity, Figure D.5c, shows that the bulk velocity comes to a steady

state as apposed to the case of the front velocity, in Figure D.5d.

D.2 Supplementary Information

D.2.1 Solution of 1D Capillary-Driven Flow under Evapora-

tion with Partial Saturation

Lockington et al.79 derive the solutions of the liquid saturation function in a wetting

porous medium by capillary flow with arbitrary constant evaporation from the wetted

medium. This is similar to our constant cross section model of 1D normal surface

evaporation derived in Eq. 3.3.29, and analyzed in Section 3.4.3. Lockington considers

a 1D Richards equation without gravity, but with an evaporation loss, k, which is

linear with saturation, Θ, in Equation (5);

∂Θ

∂t
=

∂

∂x

(
D(Θ)

∂Θ

∂x

)
− kΘ.
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He considers a power-law model for the capillary diffusivity in Equation (4)

D = D0Θn,

where D is the capillary diffusivity, D0 is the constant of capillary diffusivity (the

diffusivity when in a fully saturated flow), and n is the power index of the saturation.

Lockington suggests that n is usually between values of two to six in many physical

systems. The model assumes an initially dry medium, which comes into contact with

a fully wetted reservoir at t = 0.

An analytical solution for the steady state case may be found by setting the left

hand side of (5) equal to zero; this gives the inlet velocity in Equation (13)

q =

√
2kD0

n+ 2
.

Lockington converts this into the simple form q√
kD0

=
√

2
n+2

for analysis in Figure 1

because this gives a simple function of a single variable, n. However, we are interested

in the bulk velocity as it depends on the evaporation number. In dimensionless

notation

Ũ =
1√
n+ 2

√
2Nn . (D.2.1)

where the inlet velocity is Ũ = aq/D0 and we have defined the evaporation–capillary

number Nn = a2k/D0. The steady state solution for the GAT bulk velocity is Ũ =
√

2Nn , from which we get

Ũss, unsat = 1/
√
n+ 2 Ũss, norm, (D.2.2)

as mentioned in the text. The saturation function found by Lockington in the steady

state is [Equation (12)]

Θn =

[
1− n√

2(n+ 2)

√
k

D0

x

]2
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which in our variables may be expressed,

Θn =

[
1− n√

2(n+ 2)
N1/2

n x̃

]2

(D.2.3)

This readily gives the steady state front position,

L̃ =

√
n+ 2

n

√
2

Nn

(D.2.4)

where L̃ = x̃F in Lockington’s notation. We present this as Eq. (3.4.4). This is also

derived from the time dependent solution later in equation (32). Eqs. (D.2.4) and

(D.2.1) give the unsatured data for Fig. D.1.

Lockington furthermore gives an accurate analytical approximation to the time

dependent solution of equation (5). He first determines a solution to the steady inflow

[Equation (29)], which we give here in our dimensionless notation,

q̃ =
√

Nn

√
1

2(n+ 1)(n+ 2)

×
2(n+ 1)ns − n−

(n+ 2)2

2(n+ 1)[1 + (n+ 1)us]{
[1 + (n+ 1)us] (us − 1)− 1

2

(
n+ 2

n+ 1

)2

ln

(
1 + (n+ 1)us

n+ 2

)}1/2
,

(D.2.5)

where us = exp(kt). Then the saturation is given in equation (30) which yields the

position of the wet front [equation (31)]

L̃ =

√
1 + 2

n
− 2

n
Nn

q̃2 − 1

q̃
(

1− Nn

q̃2

) (D.2.6)

These two equations is used to calculate the unsaturated data given in our Fig. 3.3.

221



Appendix D. Additional Details on Evaporation in a Thin Porous Strip

10−4 10−3 10−2 0.1 1 10 102 103 104

t̃

10−4

10−3

10−2

0.1

1

10

102

103

104

N
n

10 −
3

10 −
1

10
1

10 −
3

10 −
5
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Figure D.4. Contour plot of front velocity, ṽf , over corresponding dimensionless quantity
and time for flow through thin porous strip. Dotted black lines distinguish regimes of flow
behavior; the lower left section is dominated by capillary flow and upper right is at steady
state. (a) Dotted lines in the lower left and upper right correspond to Nnt̃ = 0.1 and
Nnt̃ = 10, respectively. (b) Dotted lines in the lower left and upper right correspond to
Nst̃ = 0.1 and Nst̃ = 10, respectively. This figure is similar to the lower right quadrant
of (a). (c) Dotted lines in the lower left and upper right correspond to Bo2

at̃ = 0.1 and
Bo2

at̃ = 10, respectively. (d) Dotted lines in the lower left and upper right correspond to
Nf

2t̃ = 0.1 and Nf
2t̃ = 10, respectively. The figures, (c) and (d), are essentially identical.
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Figure D.5. Contour plot of bulk velocity, Ũ , over corresponding dimensionless quantity
and time for for flow through thin porous strip. Dotted black lines distinguish regimes of
flow behavior; the lower left section is dominated by capillary flow and upper right is at
steady state. (a) Dotted lines in the lower left and upper right correspond to Nnt̃ = 0.1
and Nnt̃ = 10, respectively. (b) Dotted lines in the lower left and upper right correspond
to Nst̃ = 0.1 and Nst̃ = 10, respectively. (c) Dotted lines in the lower left and upper right
correspond to Bo2

at̃ = 0.1 and Bo2
at̃ = 10, respectively. (d) Dotted lines in the lower left

and upper right correspond to Nf
2t̃ = 0.1 and Nf

2t̃ = 10, respectively.
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Appendix E

Additional Details on Normal

Surface Evaporation

This appendix extends the work presented in Ch. 4 and provides further details of

the solution of the total velocity potentials for the elliptic and Cartesian coordinate

systems. The front velocity of the fan-shaped domain agree asymptotically with

the one-dimensional solution of constant cross-section and with a given reduced two-

dimensional solution defined by a semicircular inlet shape. The general numerical

methodology is described. Additionally, the shape of the expanding front and the

asymptotic behavior of the front velocity are discussed in greater depth.
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E.1 Velocity Potential for the Capillary Flow with

Evaporation in Expanding 2D Media

E.1.1 Evaporation Potential for 2D Expanding Porous Media

in Elliptic Coordinates

Restating the system for the 2D flow in the elliptic coordinate system with evaporation

given in Eqs. (4.3.14) and (4.3.15);

1

a2
[
cosh2(η)− cos2(ψ)

] (∂2ϕ

∂η2
+
∂2ϕ

∂ψ2

)
= −Q, (E.1.1)

and boundary conditions,

∂ϕ

∂ψ

∣∣∣∣
ψ=0

= 0, (E.1.2a)

∂ϕ

∂ψ

∣∣∣∣
ψ=π

= 0, (E.1.2b)

ϕ|η=0 = ϕ0 = −k
µ
Pc, (E.1.2c)

ϕ|η=ηf
= 0. (E.1.2d)

The system may be solved using superposition to separate the influence of the

capillary forces, ξ, and the evaporation effects on the potential, ζ;

ϕ(η, ψ) = ξ(η) + ζ(η, ψ). (E.1.3)

The solution of the capillary potential, ξ, is readily determined from the homoge-

neous differential equation, d2ξ/dη2 = 0, and the boundary conditions given by

Eqs. (E.1.2c) and (E.1.2d);∗

ξ(η) =
kPc

µ

(
−ηf − η

ηf

)
. (E.1.4)

∗ See Eq. (2.3.5).
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The evaporation potential, ζ, is solved from the non-homogenous Eq. (E.1.1) with

purely homogenous boundary conditions in the form of Eqs. (E.1.2). Using trigono-

metric identities, the right-hand side of Eq. (E.1.1) is rearranged into a truncated

Fourier series;

∂2ζ

∂η2
+
∂2ζ

∂ψ2
=

[
−1

2
Qa2 cosh(2η)

]
+

(
1

2
Qa2

)
cos(2ψ), (E.1.5)

The first term of the right-hand side corresponds to the zero-order term of a Fourier-

cosine series, while the second term is second-order. Thus, we define ζ as a cosine

series in ψ;

ζ(η, ψ) =
∞∑
n=0

Hn(η) cos(nψ). (E.1.6)

This also satisfies the homogeneous Neumann boundary conditions in ψ, Eqs. (E.1.2a)

and (E.1.2b).

Substitution of Eq. (E.1.6) into Eq. (E.1.5) allows the solution to be reduced to

an infinite series of ordinary differential equations (ODEs), where each differential

equation comes from a different cosine term. However, the individual ODEs are non-

homogeneous only for n = 0 and 2, so the differential equations are homogeneous

with purely homogeneous boundary conditions for all other values of n. Thus, zero

is the only admissible solution for each of these other cases, or

Hn(η) ≡ 0, for n = 1, 3, 4, . . . (E.1.7)

The non-homogeneous ordinary differential equation for n = 0 is

d2H0(η)

dη2
= −1

2
Qa2 cosh(2η), (E.1.8a)

with homogeneous boundary conditions at η = 0 and η = ηf . Integrating the ODE

and substituting for the boundary conditions, we find the solution

H0(η) = −Qa
2

8

[
η − ηf + ηf cosh(2η)− η cosh(2ηf )

ηf

]
. (E.1.8b)
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This corresponds to the behavior of the evaporation potential without accounting for

angular dependence. The ordinary differential equation for n = 2 is

d2H2(η)

dη2
− 4H2(η) =

1

2
Qa2. (E.1.9a)

When homogeneous boundary conditions are applied, this yields the solution

H2(η) = −1

8
Qa2

{
sinh(2ηf )− sinh(2η)− sinh[2(ηf − η)]

sinh(2ηf )

}
. (E.1.9b)

By Eq. (E.1.6), the evaporation potential, ζ, is the combination of the partial potential

solutions;

ζ(η, ψ) = H0(η) +H2(η) cos(2ψ), (E.1.10a)

= −Qa
2

8

{
η − ηf + ηf cosh(2η)− η cosh(2ηf )

ηf

+
sinh(2ηf )− sinh(2η)− sinh[2(ηf − η)]

sinh(2ηf )
cos(2ψ)

}
.

(E.1.10b)

This gives the solution for the evaporation potential in elliptic coordinates and satisfies

Eqs. (E.1.5) and (E.1.2) in homogenous form.

Therefore, the total velocity potential in the elliptic coordinate system is expressed

by the sum of the capillary and evaporation potentials as shown in Eq. (E.1.3). Sim-

plifying the evaporation potential by trigonometric identities, the dimensionless form

of the combined potentials is

ϕ̃ = −ηf − η
ηf

− 1

8

(
µa2Q

kPc

){
η − ηf + ηf cosh(2η)− η cosh(2ηf )

ηf

+
sinh(ηf − η) sinh(η)

cosh(ηf )
cos(2ψ)

}
.

(E.1.11)

This is the solution given in Eq. (4.3.16).
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E.1.2 Detailed Derivation of Capillary Flow with Evapora-

tion in a Cartesian Geometry

We develop the frontal position and bulk velocity equations for the Cartesian geom-

etry using potential flow theory with evaporation. This is a reworking of the method

given in previous work24 which is similar to the solution by Fries et al.80 when gravity

is ignored. The Cartesian coordinate system naturally expresses the wicking in thin

strips of constant cross section, which is similar to the elliptic system when the front

shape is only slightly deformed around the edges. In the Cartesian geometry, the

differential equation for the velocity potential, Eq. (4.2.4), immediately reduces to

d2ϕ

dx2
= −Q, (E.1.12)

with relevant boundary conditions in the x-direction,

ϕ|x=0 = −k
µ
Pc, (E.1.13a)

ϕ|x=L = 0. (E.1.13b)

The liquid saturated domain extends from the inlet, x = 0, to the front position,

x = L. The domain spans the y-direction from −a to a with no flux through the

boundaries, and similarly, the z-direction spans from 0 to δ, where δ � 2a. The

capillary potential is easily found by integrating for the case of Q = 0 and applying

the boundary conditions, Eq. (E.1.13). Additionally, the evaporation potential is

also determined by direct integration of Eq. (E.1.12) with homogeneous boundary

conditions. The resulting total velocity potential in dimensionless form is

ϕ̃ = −
(
L̃− x̃
L̃

)
− 1

2
Nn

(
x̃2 − L̃x̃

)
. (E.1.14)

This shows that the power law behavior of the capillary potential is linear in space,

while the evaporation potential is quadratic. Differentiating the potential with respect
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to x gives the velocity in the x-direction,

ṽx =
1

L̃
− 1

2
Nn

(
2x̃− L̃

)
. (E.1.15)

Then substituting for x̃ = L̃ gives the velocity of the front for 1D capillary flows;

ṽf =
1

L̃
− 1

2
NnL̃. (E.1.16)

This shows that the magnitude of the frontal velocity without evaporation is inversely

proportional to the saturation length, while the velocity is proportional to the distance

of the front in the evaporation term. This is physically important because the capillary

potential decreases due to hydrodynamic drag, but contributes to the forward motion

of the front.

However, as the liquid propagates, the strength of the evaporation effect grows

due to increased surface area, and reduces the speed of the frontal motion because

of the negative sign in front of the term. The frontal velocity is integrated according

to Eq. (4.2.5),
´ L

0
(1/vf ) dx =

´ t
0

dt, and the result may be expressed as an implicit

solution for the front position, L(t);

ln

(
1− 1

2
NnL̃

2

)
= −Nnt̃. (E.1.17a)

When the implicit equation is rearranged, we find the front position as an explicit

function of the time in dimensionless units,

L̃(t̃) =

√
2

Nn

[
1− exp

(
−Nnt̃

)]
. (E.1.17b)

We note in24 that this solution is in strong agreement with the solution by Fries et

al.80 for the case of evaporation only. The volumetric flow is determined from the

expression,

U =

ˆ δ

0

ˆ a

−a
[vx|x=0 dy dz. (E.1.18)

Substituting the velocity in the x-direction and simplifying,

Ũ =
2

L̃
+ NnL̃. (E.1.19)
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E.1.3 Velocity at Asymptotically Small and Large Front Ad-

vancement

The solution derived of the front velocity for the elliptic case in section 4.3.2 may

be verified by asymptotic comparison with the solutions the Cartesian and polar

geometries given in sections E.1.2 and 4.3.1, respectively. The front position itself

cannot be analytically compared between these solutions; similarly, the bulk velocities

will not be directly contrasted due to the integral expression in the elliptic case. The

velocity potential is implicitly verified because the frontal velocity is a direct result

of the potential.

Comparison to Cartesian geometry solution at small front advancement

The solution of the frontal velocity for a strip of constant cross section oriented in

the y-direction is given in Eq. (E.1.16),

ṽf, cart =
1

ỹf
− 1

2
Nnỹf . (E.1.20)

This simpler solution also approximates the solution for the 2D fan at early times and

high evaporation numbers. Considering the behavior along the y-axis (ψ = π/2) of

the velocity derived in elliptic geometry, the form of Eq. (4.3.20a) may be simplified;

ṽf, ell =
1

ηf cosh(ηf )

− 1

4
Nn

[
2ηf sinh(2ηf )− cosh(2ηf ) + 1

2ηf cosh(ηf )
+

sinh(ηf )

[cosh(ηf )]2

]
.

(E.1.21a)

Substituting cosh(ηf ) ≈ 1 and sinh(ηf ) ≈ ηf , then recognizing ηf ≈ ỹf for ηf < 1,

the first order expression for the velocity simplifies,

ṽf, ell ≈
1

ỹf
− 1

2
Nnỹf = ṽf, cart. (E.1.21b)

Thus, we see that the front motion will behave similarly for early times and short

advancement of the liquid because these two solutions are in asymptotic agreement.
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Comparison to polar geometry for low evaporation rates and large front

advancement

At large front advancement, the solution of the front velocity in the elliptic geometry

is similar to solution in the polar geometry. The front velocity in polar coordinates

is

ṽf, pol =
1

r̃f ln(r̃f )
− 1

4
Nn

[
2r̃f −

r̃f
ln(r̃f )

+
1

r̃f ln(r̃f )

]
. (E.1.22a)

as given by rearrangement of Eq. (4.3.6). Simplified for large r̃f , the dominant terms

reduce on the right hand side,

ṽf, pol ≈
1

r̃f ln(r̃f )
− 1

2
Nnr̃f . (E.1.22b)

This equation describes the effective front velocity for large time expansions with

low evaporation rates. Therefore, the velocity of the front for the elliptic coordinate

system, Eq. (4.3.20a), may be compared to verify the solution for small evaporation

number. Evaluating the elliptic solution along the x-axis (ψ = 0) and simplifying

with trigonometric identities, we find

ṽf, ell =
1

ηf sinh(ηf )

− 1

4
Nn

[
2 cosh(ηf )−

sinh(ηf )

ηf
− 1

cosh(ηf )

]
.

(E.1.23a)

We observe r̃2
f = sinh2(ηf ) sin2(ψ) + cosh2(ηf ) cos2(ψ) = cosh2(ηf ) for ψ = 0, which

gives r̃f = cosh(ηf ). For large values of ηf , we may approximate the functions

sinh(ηf ) =
√
r̃2
f − 1 ≈ r̃f and ηf = cosh−1(r̃f ) ≈ ln(r̃f ). When we keep only the

highest order term of the evaporation portion and apply these simplified relation-

ships, the asymptotic expression reduces to

ṽf, ell ≈
1

r̃f ln(r̃f )
− 1

2
Nnr̃f ≈ ṽf, pol. (E.1.23b)

Thus, both approximations of the front velocity at large expansion, Eqs. (E.1.22b)

and (E.1.23b), match in the limit of large r̃f and small Nn, and so in this limit the

front position will behave similarly (see Figure E.4).
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E.1.4 Numerical Solution of the Position and Bulk Velocity

Equations

To produce data for analysis, the differential equation of the front position for the el-

liptic system, Eq. (4.3.20b), and the integral equation for the bulk velocity, Eq. (4.3.22),

require numerical time integration. We apply a fourth order Runge–Kutta solver32

to the nonlinear ordinary differential equation, Eq. (4.3.20b), to determine the front

position with an initial condition of ηf = 0 at a non-zero early time, 0 < t̃ � 1,

for numerical stability. The equation is then integrated in a specific time-sequence,

along values of constant ψ out to sufficiently large time—usually t̃ = 106. The data

is naturally computed in elliptic variables and is converted back into Cartesian co-

ordinates by applying the elliptic coordinate transformation given in Eq. (4.3.13).

To determine the value of the bulk velocity from Eq. (4.3.22), we integrate over the

angular variable, ψ, with cubic splines at every time step, which noticeably increases

computational cost. The data for the polar and linear cases of the implicit solutions

of the front position, Eqs. (4.3.7) and (4.3.24), respectively, are used directly, and the

result may be put into Eqs. (4.3.12) and (4.3.27) to compute the bulk velocity.

The simplifications inherent in the models of 2D capillary flow with evaporation

discussed in this paper may be relaxed. Using computational methods, the geometry

of the porous medium can be modified to fit a wide variety of prospective systems

for capillary driven motion, including medical diagnostic devices or microfluidic fuel

cells.17,21,50,61 The evaporation rate is assumed to be constant with respect to space

and time which may not be the case due to various nonlinear effects of change in

temperature, convection, surface chemistry, and other physical phenomena on the

evaporation rate from the thin porous medium. The differential equations for the

motion of the front in 2D expanding flows, Eqs. (4.3.6) and (4.3.20b), may be applied

without any loss of generality for evaporation as a well behaved function of time, Q(t),

because yf (t) is determined numerically. To account for a spatially non-homogeneous
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evaporation rate, a Greens function technique may be applied to the solution of the

potential for some Q(x, y; t). Both of these additions must be made with caution as

significant discontinuities in functions of time and space lead to unphysical results; a

sudden increase in evaporation rate causes rapid drying of the medium near the wet

front, in which case the Green–Ampt model breaks down.

E.2 Front Shape Evolution

We detail in this section further results of the 2D expanding flow in capillary media

with evaporation. First, we illustrate the time evolution of the shape of the liquid

front for the 2D elliptic fan and compare to the empirical observations with good

agreement. Other details on advancement of the front and the steady state front

shape are given. Then we consider the behavior of the front velocity itself and show

that both the front velocity and bulk velocities also demonstrate the three flow regimes

noted in the text with Fig. 4.6.

E.2.1 Shape of the Liquid Front

Liquid infiltration into a porous medium is most naturally understood by observing

the liquid frontal position progressing through the entire porous domain, which we

do by considering a single system with evaporation. In Fig. E.1a, we observe the

developing front shape versus time for a physical system with a noticeable but small

evaporation number, Nn = 0.1, which is a common order of magnitude for experiment.

The figure illustrates the shape of the front transitioning from flat center with slight

curvature around the inlet sides for t̃ < 0.1 into a nearly semi-circular shape by t̃ > 10.

Naturally, the flow should deform from the Lucas–Washburn rectangular plug into

the polar system of equal radius, hence the observation makes sense both physically
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Figure E.1. Development of the liquid front shape over time of an imbibing liquid with
evaporation, Nn = 0.1, via flow through an linear inlet. Figure b is the data computed
in elliptic coordinates, and figure a is the same computed data transformed into Cartesian
coordinates via Eq. (4.3.13).

and in connection to the asymptotic cases.57 Finally, it is clear that by t̃ = 100 the

liquid front is no longer advancing, and the system has reached steady state where the

flow at the entrance equals the evaporation flux. In Figure E.1b we see the value of

the front position in elliptic coordinates, ηf , is not in fact constant with the angular

variable, ψ, as is assumed for the derivation of the potential. This discrepancy occurs

because the metric coefficients—which factor into the derivation of the front position

equation, Eq. (4.3.20b)—are dependent on ψ.

The shape of the liquid front predicted by the theory agrees with experimental

observations presented in Fig. E.2. Both images in the figure were taken at times

where the wicking liquid is still advancing and not visibly slowed by evaporation.

Figure E.2a shows the front shape at an early time is mostly flat around the mid-

dle while displaying some curvature near the edges of the flow. The second image,

Fig. E.2b, shows the water significantly advanced such that the middle of the front is

curved as well, but the shape does not yet appear to be a circle. Thus, the empirical
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(a) Early front shape (t̃ ≈ 0.1). (b) Progressing front shape (t̃ ≈ 1).

Figure E.2. Experimentally observed front shape at early infiltration. Water fully wets
the paper, so the front of the liquid is well defined. The front shape transforms from a plug
shape (a) to nearly an ellipse (b).

observations support the front shape predicted by the solution of Eq. (4.3.20b) for a

half plane with a straight inlet line. This is quite remarkable as we assumed in choos-

ing the coordinate system that the potential would be bound by expanding ellipses.

However, the front motion deviates as prescribed by the metric coefficients from the

actual shape of an ellipse and so the solution naturally deforms the front shape from

a line source into a circle, which in fact shows that the choice of elliptic coordinates

is reasonable. So unlike in the 1D and 2D polar cases, the shape of the isopotential

lines in the wetted domain of the 2D elliptic case is not the same as the velocity.

The experiments were conducted specifically to observe the qualitative shape of

the front of the liquid as it advanced into the medium. Whatman 1001-185 grade 1

qualitative filter paper was used for the experimental porous medium. The paper was

laid on a horizontal mesh in a small enclosure to minimize airflow and disturbances

at 296 K, 32% humidity, and elevation 1 mile. The inlet strip was cut to 1 inch width

and 1.5 inches long and was almost fully immersed in a 50 mL jar filled with deionized

water. The fanning portion of the medium was cut into a semicircle of radius 3 inches.

The images in Figures E.2a and E.2b were taken at 0.65 and 4.25 minutes after the

liquid reached the fan entrance, respectively.∗

∗ Quantitative evaporation experiments are discussed in § G.
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Figure E.3. Steady state front shape at given evaporation rates.

Thus, instead of applying elliptic coordinates to fully describe the system and ex-

pecting to observe confocal ellipses which grow with time, we have found a different

shape which is arguably more physical than perfect ellipses as we have considered

qualitatively in Figure E.1a and demonstrated experimentally Figure E.2. The time

dependent behavior of the frontal motion deviates from the exact elliptic shape as-

sumed in solving the potential, but the deformation of the front shape from a line

source into a circle is correct for this physical system. Therefore, these results bare

sufficient relation to the spacial relationships of the flow shape to realistically inves-

tigate the effects of evaporation on an imbibing liquid.

Figure E.3 illustrates the shape of the liquid front when the infiltration has reached

a steady state at various evaporation numbers. This figure may be useful in design

of the size of a porous domain in an environment with a given evaporation number.

Comparing to Figure E.1a, which shows the time dependent nature of the infiltration

into the domain, we see that the essential shape of the front is extremely similar

where the steady state fronts are not an explicitly elliptical in shape, but deform

from nearly rectangles into circles. The front shape for evaporation numbers greater

than ten is almost perfectly flat near the y-axis, while edges of the liquid flow appear

very nearly elliptical.
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Figure E.4. Comparison of front velocity, ṽf , versus time, t̃, with asymptotic solutions.

E.2.2 Flow Behavior of the Front Velocity and Bulk Velocity

Figure E.4 shows the front velocity of the elliptic case, Eq. (4.3.20a), plotted

against the Cartesian and polar solutions, Eqs. (E.1.16) and (4.3.6), respectively.

This figure shows quantitatively how close the asymptotic comparisons discussed in

section E.1.3 are to each other. Note that in the velocity space the only really signif-

icant deviations are where the Cartesian solution deviates from the other two in the

limit of low evaporation, e.g. Nn < 10−1 and t̃ > 102. Otherwise, all three solutions

of the front velocity are nearly identical when plotted logarithmically. The values for

the front velocity without evaporation agree with the data given in Figure 4b of our

previous paper23.

The front velocity gives the clearest picture of the distinct regimes given by the

product Nnt̃. In Figure E.5, we see that the contours are almost vertical lines, con-

stants with evaporation rate, for all values Nnt̃ < 0.1. For Nnt̃ > 10 there is no data

plotted—the figure is devoid of contour lines in the upper right portion—because the

front velocity has dropped so significantly relative to the capillary driven velocity
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ṽf(Nn, t̃)

Figure E.5. Contour plot of front velocity over evaporation number and time for the
elliptic solution. Dashed black lines represent Nnt̃ = 0.1 and Nnt̃ = 10 in the lower left and
upper right, respectively. The upper right corner is blank because the numerical value of
the flow velocity is too insignificant to plot; the lowest contours plotted are ṽf = 10−5.

rates that we can consider the system to have reached steady state. In between these

two values, the contours drop off very rapidly. So we see from this figure that the

bounding lines of Nnt̃ = 0.1 and 10 parameterize the three flow regimes very well. In

essence this shows that the evaporation can have an effect on the flow at times only

1% of the time to reach steady state.

Figure E.6 produces a detailed contour plot of the bulk velocity versus time and

evaporation number. This was generated by the assumed constant front shape equa-

tion of the bulk velocity, Eq. (4.3.23), instead of the integral equation, Eq (4.3.22),

which was used in Figure 4.7. It shows essentially the same phase behavior observed

in Figures 4.6 and E.5. However, one notable difference from those figures is the wider

spacing of contour lines in the lower right corner. This is the effect of the higher finite

bulk flow rate for the 2D case which is visible in the right side of Figure 4.7a. We

also observe that the steady state bulk velocity is fully horizontal by Nnt̃ = 10. Both
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Figure E.6. Contour plot of bulk velocity over evaporation number and time for the
elliptic solution. Dashed black lines represent Nnt̃ = 0.1 and Nnt̃ = 10 in the lower left and
upper right, respectively.

Figs. E.5 and E.6 confirm the time dependent regimes of flow observed in Figure 4.6.
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Additional Details on Restraint by

Gravity and Side Evaporation

F.1 Supplemental Derivations

In this section, we outline the derivations of the side evaporation and gravity po-

tentials given in Secs. 5.3 and 5.4. We use separation of variables to solve the two-

dimensional partial differential equations for each case.

F.1.1 Polar Restraining Gravity Potential

The velocity potential for the restraining gravity effect is given by the differential

equation,
∂2γ

∂r2
+

1

r

∂γ

∂r
+

1

r2

∂2γ

∂θ2
= 0, (F.1.1)
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were the boundary conditions are[
−1

r

∂γ

∂θ

∣∣∣∣
θ=0

= 0, (F.1.2a)[
1

r

∂γ

∂θ

∣∣∣∣
θ=π

= 0, (F.1.2b)

[γ|r=r0 = −sg
kρg

µ
rf sin(θ), (F.1.2c)

[γ|r=rf = 0. (F.1.2d)

Using separation of variables, γ(r, θ) = R(r)Θ(θ), the equation in the angular direc-

tion is
d2Θ

dθ2
+ λΘ = 0. (F.1.3)

This is solved by the simple harmonic series,

Θ = C1 cos
(√

λ θ
)

+ C2 sin
(√

λ θ
)
. (F.1.4)

Taking the derivative, we see at θ = 0 that C2 = 0. Furthermore, applying the other

boundary condition, we constrain the eigenvalues to be
√
λ = n. So the solution of

angular potential is given by the series,

Θ =
∞∑
n=0

C1n cos(nθ). (F.1.5)

The differential equation in the radial direction is

r2 d2R

dr2
+ r

dR

dr
− λR = 0. (F.1.6)

This is an Euler–Cauchy equation which is clearly solved by

R(r) = D1r
−n +D2r

n. (F.1.7)

Then applying the condition at the wet front, [R|r=rf = 0, we find D1 = −D2r
2n
f , and

the solution is,

R(r) = −D2

(
r2n
f − r2n

)
r−n. (F.1.8)
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Combining R(r) and Θ(θ), the potential is of the form,

γ =
∞∑
n=1

cn
(
r2n
f − r2n

)
r−n cos(nθ). (F.1.9)

Substituting the final boundary condition and applying orthogonality, the series co-

efficients are determined,

cn =
2

π

kρg

µ
rf

1 + (−1)n

1− n2

rn0
r2n
f − r2n

0

(F.1.10)

Substituting this form and changing the index of the summation to n = 2j because

only even values of n are non-zero, we get the gravity potential in polar coordinates;

γ̃ = − 4

π
Boar̃f

∞∑
j=1

1

(2j)2 − 1

r̃4j
f − r̃4j

r̃4j
f − 1

1

r̃2j
cos(2jθ). (F.1.11)

F.1.2 Polar Side Evaporation Potential

The side evaporation potential is expressed by the same differential equation,

∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2
= 0, (F.1.12)

but with the different boundary conditions,[
−1

r

∂ω

∂θ

∣∣∣∣
θ=0

= −qs, (F.1.13a)[
1

r

∂ω

∂θ

∣∣∣∣
θ=π/2

= 0, (F.1.13b)

[ω|r=r0 = 0, (F.1.13c)

[ω|r=rf = 0. (F.1.13d)

Observe that the non-homogenous BC is in the θ-direction instead of the radial di-

rection as it was with the gravity potential. The variables are separable, so we define

ω(r, θ) = R(r)Θ(θ) to find the equation in the radial direction

r2 d2R

dr2
+ r

dR

dr
= −λR. (F.1.14)
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As an Euler–Cauchy equation, we apply the form R(r) = Crk and find from the

indicial equation, k = ±i
√
λ = 0± iβ. This gives the harmonic series,

R(r) = C1 cos(β ln(r)) + C2 sin(β ln(r)). (F.1.15)

From the boundary condition at the inlet, C1 = 0, and from the second boundary

condition we find the eigenvalues are

βn =
nπ

ln(rf/r0)
. (F.1.16)

This gives the series equations

R̃(r̃) =
∞∑
n=1

C ′2n sin

(
nπ

ln(r̃)

ln(r̃f )

)
. (F.1.17)

The differential equation in the θ-direction is

d2Θ

dθ2
− λΘ = 0, (F.1.18)

which is evidently solved by hyperbolic sine and cosine series,

Θ(θ) = D1 cosh
(√

λ θ
)

+D2 sinh
(√

λ θ
)
. (F.1.19)

The homogenous BC gives the relation between the coefficientsD1 = −D2 coth
(√

λ π
2

)
,

and the solution form becomes,

Θ(θ) = −D2

[
coth

(√
λ
π

2

)
cosh

(√
λ θ
)
− sinh

(√
λ θ
)]
. (F.1.20)

Combining the separated variables, we get the solution

ω̃ =
∞∑
n=1

Cn sin

(
nπ

ln(r̃)

ln(r̃f )

)[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]
.

(F.1.21)

The coefficients were determined from the final boundary condition,

Cn = −2Ns
[1− (−1)nr̃f ] ln(r̃f )

n2π2 + (ln(r̃f ))
2 . (F.1.22)
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Thus the full side evaporation potential for polar coordinates is,

ω̃ = −2Ns

∞∑
n=1

[1− (−1)nr̃f ] ln(r̃f )

n2π2 + (ln(r̃f ))
2 sin

(
nπ

ln(r̃)

ln(r̃f )

)
×
[
coth

(
nπ

π/2

ln(r̃f )

)
cosh

(
nπ

θ

ln(r̃f )

)
− sinh

(
nπ

θ

ln(r̃f )

)]
.

(F.1.23)

F.1.3 Spherical Restraining Gravity Potential

The partial differential equation for the gravitational velocity potential is

∂2γ

∂r2
+

2

r

∂γ

∂r
+

1

r2

∂2γ

∂θ2
+

cot(θ)

r2

∂γ

∂θ
= 0, (F.1.24)

with boundary conditions, [
−1

r

∂γ

∂θ

∣∣∣∣
θ=0

= 0, (F.1.25a)[
1

r

∂γ

∂θ

∣∣∣∣
θ=π

2

= 0, (F.1.25b)

[γ|r=r0 = −sg
kρg

µ
rf cos(θ), (F.1.25c)

[γ|r=rf = 0. (F.1.25d)

We separate along the variables with γ(r, θ) = R(r)Θ(θ). In the angular direction

the separate potential is,

d2Θ

dθ2
+ cot(θ)

dΘ

dθ
+ λΘ = 0. (F.1.26)

This equation is solved by Legendre functions where the eigenvalues are λ = p(p+ 1),

Θ(θ) = C1 Pp(cos(θ)) + C2 Qp(cos(θ)). (F.1.27)
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From the boundary condition along the z-axis, C2 = 0, and the other boundary

condition quickly constrains the eigenvalues to

0 = C1

[
d Pp(cos(θ))

dθ

]
θ=π

2

, (F.1.28a)

p = 2n. (F.1.28b)

Thus, the potential in the angular dimension is the series,

Θ =
∞∑
n=0

Cn P2n(cos(θ)). (F.1.29)

Now the separated solution in the radial direction is

r2 d2R

dr2
+ 2r

dR

dr
− λR = 0, (F.1.30)

where λ = 2n(2n+ 1). This Euler–Cauchy equation is solved by in the form R(r) =

D1r
2n+D2r

−(2n+1). From the boundary condition at the front, the solution simplifies

to;

R(r) = D2

( rf
r

)2n+1 −
(
r
rf

)2n

r2n+1
f

. (F.1.31)

Combining the separated equations,

γ̃ =
∞∑
n=0

cn

(
r̃f
r̃

)2n+1

−
(
r̃
r̃f

)2n

r̃2n+1
f

P2n(cos(θ)). (F.1.32)

The boundary condition,

cm = Boa
(−1)m+1r̃f

1− r̃−(4m+1)
f

4m+ 1

(2m− 1)(2m+ 2)

(2m)!

22m(m!)2
(F.1.33)

Finally, the gravitational velocity potential is produced;

γ̃ = −Boar̃f

∞∑
n=0

(−1)n(4n+ 1)

(2n− 1)(2n+ 2)

(2n)!

22n(n!)2

(
r̃f
r̃

)2n+1

−
(
r̃
r̃f

)2n

r̃2n+1
f − r̃−2n

f

P2n(cos(θ)). (F.1.34)
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F.1.4 Spherical Side Evaporation Potential

The differential equation for the side evaporation potential in spherical coordinates

is,
∂2ω

∂r2
+

2

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2
+

cot(θ)

r2

∂ω

∂θ
= 0, (F.1.35)

along with the boundary conditions,[
1

r

∂ω

∂θ

∣∣∣∣
θ=0

= 0, (F.1.36a)[
1

r

∂ω

∂θ

∣∣∣∣
θ=π

2

= qs, (F.1.36b)

[ω|r=r0 = 0, (F.1.36c)

[ω|r=rf = 0. (F.1.36d)

Separating the differential equation with ω(r, θ) = R(r)Θ(θ), the equation in the

radial direction is

r2 d2R

dr2
+ 2r

dR

dr
+ λR = 0. (F.1.37)

The roots of the indicial equation are −1
2
± 1

2

√
1− 4λ , which gives the solution in

the form,

R̃(r̃) =
1√
r̃

[
C ′1 cos

(
−1

2

√
4λ− 1 ln(r)

)
+ C ′2 sin

(
−1

2

√
4λ− 1 ln(r̃)

)]
. (F.1.38)

From the boundary condition at r = r0, the cosine series must be zero or C ′1 = 0.

The boundary condition at r = rf constrains the eigenvalues to the form

λn =
1

4
+

(nπ)2

[ln(r̃f )]2
. (F.1.39)

Thus, the solution in the radial direction is given by the series,

R̃(r̃) =
1√
r̃

∞∑
n=1

C ′n sin

(
nπ

ln(r̃)

ln(r̃f )

)
. (F.1.40)
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The separated differential equation in the θ-direction is

d2Θ

dθ2
+ cot(θ)

dΘ

dθ
− λΘ = 0. (F.1.41)

This equation is solved by Legendre functions in the form,

Θn = D1 Pnπ/ ln(r̃f)−1/2(cos(θ)) +D2 Qnπ/ ln(r̃f)−1/2(cos(θ)) (F.1.42)

The homogeneous Neumann boundary condition at θ = 0 reduces the solution to

Θn = D1,n Pnπ/ ln(r̃f)−1/2(cos(θ)) (F.1.43)

due to the derivative of the second Legendre function being undefined. The solution

form is now,

ω̃ =
1√
r̃

∞∑
n=1

Cn Pnπ/ ln(r̃f)−1/2(cos(θ)) sin

(
nπ

ln(r̃f )
ln(r̃)

)
. (F.1.44)

Applying the final boundary condition, we get the coefficient is

Cn = −Ns

mπ
[
(−1)mr̃

3/2
f − 1

]
(mπ)2 +

[
ln
(
r̃

3/2
f

)]2

2

[mπ/ ln(r̃f ) + 1/2] Pmπ/ ln(r̃f)+1/2(0)
(F.1.45)

Combining, the 3D side evaporation potential is

ω̃ = −2Ns

∞∑
n=1

nπ
[
(−1)nr̃

3/2
f − 1

]
(nπ)2 +

[
ln
(
r̃

3/2
f

)]2

Pnπ/ ln(r̃f)−1/2(cos(θ))

[nπ/ ln(r̃f ) + 1/2] Pnπ/ ln(r̃f)+1/2(0)

sin
(
nπ ln(r̃)

ln (r̃f )

)
√
r̃

.

(F.1.46)
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Appendix G

Experiments on Capillary–Driven

Flow in Thin Expanding Porous

Media with Evaporation

G.1 Background

Recent work on microfluidic devices and medical diagnostics have motivated a deeper

understanding of the dynamics of wetting porous media. Shaped porous paper has

found use in advancing multiple simultaneous medical tests using single fluid sam-

ples.48–50 Furthermore, some sugar based micro fuel cells use wicking in paper to con-

tinue driving the reactant solution by the passive and non-energy intensive process of

capillary action and evaporation.17,21,22,73 Some other applications of wicking include

wet soils, building materials, and underground contaminant transport.4,7,63 Thus, the

rate of fluid uptake into the porous medium must be understood quantitatively for

accurate design of these devices.

Lucas and Washburn54,55 determined the position of the front advances as the
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square root of the contact time in wetting capillary flows. This is also applicable to

porous media when the front is assumed to be discontinuous between wetted and dry

regions.71 Xiao et al.60 observed some discrepancies from this behavior that may be

due to the effects of both gravity and evaporation. Fries et al.80 showed the decrease in

front motion caused by evaporation with partial agreement with experiments. Ref.24

discusses the 1D evaporation in further depth and show that interfaces through which

the evaporation occurs affect the behavior of the front.∗ It is also observed that a

dimensionless quantity, called the evaporation capillary number, governs the rate at

which the evaporation effects the flow in the porous medium. This has been extended

into the case of 2D flows with circular inlets95 and flat inlets.82 However, these most

recent studies have not been validated with physical experiments as is necessary before

they may be acceptable for use in device design.22

In this appendix, we discuss experiments on 1D and 2D capillary wicking with

evaporation losses from thin media and their relation to proposed theories. Initially

dry paper strips and fans are partially immersed in a beaker of water and the front

position is measured at regular time intervals. We hypothesize that the observed

wetting fronts will match the predictions of the theoretical models.

In the following section we review key analytical relations from the recent theoret-

ical models of 1D and 2D wicking with evaporation. Sec. G.3 details the experimental

methods. Sec. G.4 compares the experiments to the theory, and the conclusions are

given in Sec. G.5.

∗ The theories investigated in this chapter are given in Chs. 3 and 4.
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G.2 Theory

In this section, we lay out the essential equations which describe wicking in thin

porous media. These are principally the equations of front position and fluid uptake

rate.

G.2.1 Flow in Thin Strips of Constant Cross Section

Lucas54 and Washburn55 demonstrated the central relationship for capillary imbibi-

tion, also called the Lucas–Washburn Equation (LWE)

1

2

(
L

a

)2

=
ϕ0t

a2
. (G.2.1)

where L is the wetted length, a is half the size of the inlet, ϕ0 = kPc/µ is the maximum

capillary potential, and t is the wetted time. Here we have presented the LWE in the

form wherein it is applicable to flow in porous media of constant cross section with

a discontinuous wetting interface.53,71 This is referred to as a 1D capillary wicking.

The characteristic parameters of the wetting porous media are the permeability, k,

the capillary pressure Pc, and the viscosity, µ. The total uptake of fluid, U , from

the reservoir and into the porous medium is related to the inverse square root of the

imbibition time, U ∼ 1/
√
t .

Capillary Flow with Evaporation

The wicking of liquids is significantly effected by evaporation.∗ The evaporation

capillary number, Nn, describes the relative effects of the evaporation rate, Q, to the

∗ Here we are primarily revisiting the work in Ch. 3. In particular, the evaporation capillary

number is detailed in Sec. 3.4.1 and Eq. (3.4.2a). The following equations are originally given

as Eqs. (3.3.29), (3.4.3), (3.3.35), and (4.3.28), respectively. This theory is alternatively

derived in Sec. E.1.2 and compared to the literature in Sec. 3.A.
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capillary diffusivity;

Nn =
µa2Q

kPc

=
characteristic mass flux of evaporation

characteristic mass flux of wicking
. (G.2.2)

This number indicates the strength of the evaporation rate on the flow and its inverse

approximates the time at which evaporation becomes important in the behavior of

the system.

The position of the front with time is described

1

2
NnL̃

2 = 1− exp
(
−Nnt̃

)
, (G.2.3)

where L̃ = L/a is the front position in dimensionless form, and t̃ = kPct/(µa
2). This

agrees with the solution given by Fries et al.80. At large times the equation reduces

to the steady-state front position as a relation to the evaporation number

L̃ss =

√
2

Nn

. (G.2.4)

The bulk flow rate into the porous medium is increased by the evaporation

Ũ =
2

L̃
+ NnL̃, (G.2.5)

where Ũ = (µ/kPcδ)U , and δ is the small thickness of the porous medium in the

z-direction such that δ � 2a. For the 1D-like flow, we also find an explicit expression

for the steady state the bulk velocity versus evaporation number

Ũss =
√

8Nn . (G.2.6)
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G.2.2 Flow in Thin Fanning Porous Media

The theoretical model for wicking in a two-dimenaionally expanding domain through

a flat inlet is described by elliptic coordinates;∗

x = a cosh(η) cos(ψ), (G.2.7a)

y = a sinh(η) sin(ψ). (G.2.7b)

Therefore when a point in elliptic coordinates is known, (η, ψ), the values in Cartesian

coordinates may be readily determined. The front position equation for the 2D elliptic

expansion is found via

dηf

dt̃
=

1

cosh2(ηf )− cos2(ψ)

{
1

ηf

− 1

4
Nn

[
2ηf sinh(2ηf )− cosh(2ηf ) + 1

2ηf
− tanh(ηf ) cos(2ψ)

]}
.

(G.2.8)

This first order nonlinear differential equation does not have an analytical solution

and so it requires a numerical method to evaluate the front position with time. Note

that this elliptic solution may be approximated at large expansions by a domain with

a semi-circular inlet similar to the work done by Hyväluoma et al.61 and Liu et al..95.

In general, the bulk velocity must be computed from an integral expression because

the front position weakly depends on ψ.

Ũ =

ˆ π

0

1

ηf
+

1

4
Nn

[
cosh(2ηf )− 1

2ηf
+ tanh(ηf ) cos(2ψ)

]
dψ. (G.2.9)

By assuming an elliptic front shape, this approximately simplifies to

Ũ =
π

ηf
+
π

8
Nn

[
cosh(2ηf )− 1

ηf

]
. (G.2.10)

∗ In the following summary of theory, we outline the key work presented in Ch. 4. The

following equations are first given as Eqs. (4.3.13), (4.3.20b), (4.3.22), and (4.3.23), respec-

tively.
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G.2.3 Power Law Approximations

The solutions given above may be approximated by simple power laws to describe the

earliest time evaporation effects.∗ Setting the axis of the flow along the y-direction,

as is the case for the centerline of the 2D case, we consider the position of the front

by ỹf . For 1D capillary flow with evaporation, the first order effect of the evaporation

is given by
1

2

(
ỹ2
f +

1

4
Nnỹ

4
f

)
≈ t̃. (G.2.11)

This is only accurate only for the early time effects of the evaporation, approximately

up to Nnt̃ < 1. For 2D radial flow (derived from the polar coordinate approximation

which is applicable at large advancements) the power series is similar, but of a higher

order
1

2

{
ỹ2
f ln(ỹf ) +

1

4
Nnỹ

4
f [ln(ỹf )]

2

}
≈ t̃. (G.2.12)

Along with the steady-state relationships, these two relations are useful for estimation

of the time behaviors of the systems.

G.3 Methods

In this section, we discuss the experimental methods and configurations used for data

acquisition of wicking in porous media. Additionally, the numerical optimization

procedure for the fitting and comparison of the theory to the empirical results is

outlined.

∗ This discussion is given in its full form in Sec. 4.4.4, where the following two equations

are Eqs. (4.4.4) and (4.4.5).
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G.3.1 Experimental

The experiments were designed to reproduce the results for the Lucas–Washburn

relation with evaporation and the 2D elliptic expansion with evaporation.∗ The ex-

periments measured the wet front position and in some cases the movement of the

fluid into the porous medium via the mass lost from the reservoir. The evaporation

rate was controlled by keeping the wetting porous media in a closed box to minimize

airflow and disturbances with a volume of approximately 2 m3, a constant tempera-

ture around 23 °C, and maintaining the humidity to within ±2% of a given set point.

The humidity was controlled manually via the operation of a humidifier (located at

the rear of the box) when indicated by a digital humidity meter (seen on the right side

of the experimental configurations shown in Figs. G.1 and G.2). The local elevation

is approximately one mile above sea level.

Data was taken at regular intervals up to four hours by which time a steady state

was reached. The porous media were dipped into 50 mL jars (the reservoir of liquid)

filled with deionized water. The front position was measured using an elementary

ruler and all the jars were weighed on a digital scale accurate to 0.0001 grams to

determine the volumetric absorption rate (except in the third set of experiments,

where this was not analyzed). The porous medium in all experiments was Whatman

1001-185 grade 1 qualitative filter paper.

Experiment 1: Vertical Fans

This experiment was carried out to reproduce unpublished work carried out by other

groups and determine the variation of the evaporation rate with the humidity. In the

first set of experiments three fans were clipped vertically as shown in Fig. G.1. The

∗ The first two series of experiments were conducted by Madelaine S. Chavez in the summer

of 2014; the third set was done by Daniel M. Gilliam the following summer.
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Figure G.1. Laboratory configuration for vertical fan wetting experiments.

Figure G.2. Laboratory configuration for horizontal wetting experiments.

fourth jar without a fan, nearer the front of the box, is the control for evaporation

loss of liquid from the jars. Data was taken in prescribed intervals from five minutes

to an hour and a half.Both the height of the wetted liquid (the front position) and

the mass of each of the jars was measured at each time, where the timing began when

the porous media were first put into the jars. The fan radii were 3.5 inches, with tails

of 3 and 11/16 inches long. The humidity was held at 30%, 40%, and 50% for each

of the three data series.

Experiment 2: Horizontal Fans and Strips

In the second experiment, data was collected on three strips of constant cross section

and three fanning domains to facilitate direct comparison between the LWE with
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evaporation and the 2D elliptic solution. Although no influence due to gravity was

observed in the first experiment, the experimental apparatus was redesigned with

a horizontal mesh to lay the media on to eliminate any direct effects of gravity, as

illustrated in Fig. G.2. The three initially dry rectangular strips were placed on the

wire mesh nearest to the back of the box. The three fans were set on the front of the

mesh. On both sides in between the initially dry strips and the fans sat the two fully

wetted rectangular strips intended for evaporation rate measurements. The jar for

control of evaporation from the reservoir was placed near the right behind the mesh.∗

The tail length was reduced to have less effect on the flow (the exposed tail surface

area increases over the experiment so the effect of the evaporation on this part of the

porous domain is not known precisely). The width of all strips and tails were one

inch, and the tails of the strips and fans were 2.25 inches in length (the portion which

extends below the mesh and immerses in the reservoir). The initially dry strips were

8.5 total inches long, while the fully wetted strips were only 5.25 inches. The fan was

cut with a radius of 3.5 inches.

The experiment time was set to zero when the liquid reached the inlet to the fans

and data was taken up to three hours.Wetted length was measured both along the

x- and y-directions to account for the variable effects of the flat geometry on the

front shape. The effect of the varying evaporation rate was tested for six different

humidities from 20% to 70% in increments of 10%. Higher humidities caused capillary

condensation in the media and did not produce a reliable wetting front position

measurement; this even began to occur after two hours for 70% humidity.

∗ The data may be analyzed so the parameters of ϕ0 and Q are found independently,

although this particular analytical procedure has not been conducted. The fully-wetted

strips would determine the value of the evaporation rate, Q, while the initially dry strips,

obeying the LWE at early times, would determine the capillary potential, ϕ0. Ideally, with

the known parameter values the behavior of the flow in the wetting fans would be fully

predictable, and the experimental data for the fans should match the theoretical prediction

without any optimization procedure.
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Experiment 3: Horizontal Fans

In the third set of experiments, we desired to analyze the effects of inlet size on the

motion of the front.∗ The inlets strips to the porous fans ranged from 0.25, 0.5,

and 0.75 inches wide and the experiments were conducted separately at 30%, 40%,

and 50% humidity. The tail of each fan was 1.5 in long, and the radius of the fans

was 3 inches. Horizontal wetting strips and evaporation control strips were not used,

because these were sufficiently explored in the second experiment, and they have a

much less significant inlet size effect. Otherwise the configuration was similar to the

second experiment, shown in Fig. G.2. In this experiment the rate of absorption into

the porous media was not measured via the mass lost from the reservoir jars. The

data was taken at prescribed intervals from one minute to about four hours.Because

the jars were not weighed, the front position could be measured at closer intervals and

so the data was earlier and more often, which was beneficial in accurately determining

the capillary potential.

G.3.2 Numerical

Data Analysis and Optimization

The experimental data sets were tabulated for all measurements, items, and times.The

length was measured in either in mm or inches. The mass loss from the control jar

was subtracted from that of the other jars and divided by the time interval to give

the mass loss rate per jar, and through the density of water converted to volume per

time in units of mL/min. Then the data for the three texts was averaged and the

∗ The pictures in Fig. E.2 were taken as part of this experiment to show the qualitative

evolution of the fan shape as compared to the theoretical prediction given in Fig. E.1, and

discussed in Sec. E.2.
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standard deviation taken as an estimate of error. Thus, the experimental data was

prepared for analysis.

The theoretical values of the front position is calculated directly by Eq. (G.2.3) in

the 1D strips, while a Runge–Kutta numerical method is used to solve Eq. (G.2.8)∗

The bulk velocity for the 1D case is also calculated directly from Eq. (G.2.5). The

bulk velocity for 2D flow given in Eq. (G.2.9) requires numerically integration over

the instantaneous front length using cubic splines.†

Once the theoretical data was computed and empirical data had been processed

into dimensionless form, an interpolating function is made from the theoretical data,

and the theoretical values at the desired experimental times are calculated. These

two data sets were then used to compute the correlation residual,

R2 =
N∑
i=1

[ỹf, theo(ti)− ỹf, expr(ti)]
2 . (G.3.1)

The residual was minimized using an implementation of the BFGS optimization

method in pythonTM, with the theoretical data recomputed at each iteration as the

value of the evaporation needed to change. This requires initial estimates of the phys-

ical parameters ϕ0 and Q as well as the time deviation, ∆t0 as we will discuss below.

All of these equations were implemented and computed in pythonTM 2.7.

Initialization of parameters

In determining the closeness of fit of the predicted flow model, we need to know the

physical parameters of the system to give initial values for the optimization. When

we are analyzing the flow in 1D strips, we use the LWE and it’s modification with

∗ Other descriptions of the numerical methods are given in Secs. 3.3.5 and E.1.4. † In

future these bulk velocities could then be directly compared to the experimental volumetric

flow data using the parameters found from analysis of the front length.
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evaporation to find the parameters. The known parameter is a, while ϕ0 and Q are

undetermined, but vary by less than an order of magnitude. The initial guess of the

evaporation number, N∗n, is easily found by rearranging Eq. (G.2.4)

N∗n =
2a2

L2
ss

. (G.3.2)

So we take the final front position as the steady state and determine the evaporation

number. However, this assumes that the front has completely come to rest by the

last point in the data. The capillary potential is related to the slope of the plotted

line of the capillary flow. Rearranging the LWE, Eq. (G.2.1), we may choose a data

point of a given time and position and estimate the capillary potential,

ϕ∗0 =
1

2

(
L

a

)2
a2

t
. (G.3.3)

To find the value of the evaporation rate, Q∗, we use the evaporation number and cap-

illary potential determined above, and substitute into the reordered form of Eq. (G.2.1),

Q∗ =
ϕ∗0
a2

N∗n. (G.3.4)

To account for measurement error of the initial time, a time correction, ∆t0, is

incorporated into the model. We redefine the dimensionless time for all data in the

form,

t̃∗ = ϕ∗0
t−∆t0
a2

. (G.3.5)

Rearranging the equation, we find

∆t∗0 = t− a2t̃∗

ϕ∗0
. (G.3.6)

From which we may determine the initial time correction. All of these parameters

are now initialized in a physically motivated manner which should bring convergence

to the is a stiff nonlinear optimization problem described previously.
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For the radial expansion in fanning media the parameters ϕ∗0 and ∆t∗0 are de-

termined as given above in Eqs. (G.3.3) and (G.3.6) because they are determined

through early time data, wherein the behaviors are nearly the same for 1D and 2D.

However, the evaporation number should be determined using the correct 2D behav-

ior as is necessitated for larger expansions in a fanning domain. Setting the velocity

to zero in Eq. (G.2.8) and steady-state front position

N∗n =
8

2ηf sinh(2ηf )− cosh(2ηf ) + 1− 2ηf tanh(ηf ) cos(2ψ)
. (G.3.7)

G.4 Results

In this section, we compare the theoretical models to the experimental data using

the data from the three sets of front position measurements described above.We find

the values both unknown physical parameters the capillary potential, ϕ0 and the

evaporation rate, Q (via measurement of the evaporation capillary number, Nn), and

analyze the accuracy of the method. These optimized parameters also are useful in

making the experimental data dimensionless or conversely bringing the theoretical fit

into dimensional variables. The residual is calculated to quantify error between the

predicted and empirical plots.

G.4.1 First Experiment: Vertical Fans

The averages of the experimental data for the vertically clipped long-tailed fans are

shown in Figure G.3. Figure G.3a shows three key qualitative similarities to the the-

oretical results for the behavior of the front position (infiltration length) with time.

First, at early times the slope is significantly greater than for later times, indicating

that the flow goes progressively from capillary dominated flow to evaporation domi-

nated. Second, as the humidity increases by increments of 10% the evaporation rate
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Figure G.3. Changing infiltration behavior with respect to humidity.

decreases, and the front movement is not slowed down as quickly. Finally, the front

position does not progress at long times—on the order of greater than two hours—

which indicates steady state has been reached as expected. One difference between

the theoretical predictions and the empirical data is that the magnitude of the front

position is noticeably greater for lower evaporation rates at early times. According to

the theory, at early enough time the evaporation should have no effect and the three

lines above should sit atop each other; this does not appear to be the case.∗ This

separation of the lines indicates that the evaporation effect is significant only five min-

utes into the experiment as we discuss later through understanding the quantitative

description of the system.

In Figure G.3b, the calculated mass flow rate into the medium is shown as it

varies over time. The data is noisy because the mass flow is the difference between

a previous and current weight, and this kind of discrete derivative is highly sensitive

to variations in the measured values. Thus, the mass flow into the porous media is

not quantitatively analyzed in this chapter because of the magnitude of these errors.

The relation between the different humidities is not as strong as for the positions;

∗ For example see Figure 4.4, where the early time plots perfectly line up for different

evaporation numbers in both the 1D and 2D cases.

261



Appendix G. Experiments on Expanding Media with Evaporation

100 101 102 103

time (min)

10-1

100

101
a
v
g
 p
o
s 
(i
n
)

20%

30%

40%

50%

60%

70%

(a) Imbibition in y-direction.

100 101 102 103

time (min)

100

101

a
v
g
 p
o
s 
(i
n
)

Loglog position

left/right fan

20%

30%

40%

50%

60%

70%

(b) Imbibition in x-direction.

Figure G.4. Changing infiltration behavior with respect to humidity for horizontal fans.

the 50% trend is almost always greater than the 40%, but the 30% fluctuates heavily.

However, the flow rate clearly decreases at the beginning of the experiment, while it

hovers near a steady state value on the order of 0.004 mL/min near the end. This

matches the qualitative predictions of the theoretical models as these strips are able

to drive a finite quantity of fluid at an approximately constant rate over long periods

of time.

G.4.2 Second Experiment: Fans and Strips

In this experiment, we desired to compare the 1D and 2D systems from first-principles.

Fig. G.4a shows the front position along the central y-axis of the flow. We see a

progressive decrease in the steady state front as the humidity decreases because the

evaporation rate is increasing. In contrast Fig. G.4b gives the wetted distance across

the x-axis along the sides of the fan domain. This quantifies the variation in the

wetted front length. Fig. G.5 shows the front position for the wetted strips. The

front position advances further for this 1D-like flow than for the 2D expanding flow

shown in Fig. G.4a. It was observed that some of the times the front shape in the strips
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Figure G.5. Changing front position for horizontal strips with varying humidity.

was slightly parabolic, likely due to a small evaporation from the side boundaries.∗

Though data was taken on the rate of fluid uptake into the porous medium, we

do not discuss any related results here. Similar to the first experiment, this data was

noisy and difficult to analyze; qualitatively showing the drop in flow rate and steady

state flow.

This set of experiments showed some challenges to testing the theoretical results

experimentally. Ambient humidity is not directly convertible into evaporation rate;

ideally this must be controlled for and measured by the wetted strips. However, the

wetted strips did not necessarily reach steady state evaporation rate until at least

an hour into the experiment. The variation of humidity can be used to change the

evaporation rate only within a fairly narrow range. For the given temperature, holding

a stable 20% humidity was not easy to do at the location. Experiments beyond 70%

humidity failed because capillary condensation into the medium was strong and the

front position quickly became too diffuse to measure. This is why the humidities are

limited from 20–70% as shown in the figures.

∗ See Fig. 3.4 for theory.
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Figure G.6. Changing front position for 2D fans of varying inlet size at 30% and 40%
humidity.

G.4.3 Third Experiment: Effect of Fan Inlet Size

The third experiment showed variations in the front position behavior with inlet

size, a, and humidity, effectively Q, as expected. The front position over time with

varying inlet size is illustrated for humidities of 30, 40, and 50% in Figs. G.6a, G.6b,

and G.7, respectively. As in all cases above the capillary potential, ϕ0, should be a

constant throughout the experiments. In all three figures, we observe that the front
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Figure G.7. Changing front position for 2D fans of varying inlet size at 50% humidity.
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Figure G.8. Example closeness of fit to theoretical prediction to 1D strip data. The initial
and converged theoretical predictions are shown for comparison. The humidity is 40%.

position advances more quickly going from quarter inch to half than from half inch

to three quarters. This stems from the definition of dimensionless time, t̃ = ϕ0t/a
2,

where the effect of the inlet size reduces the dimensionless time quadratically. In

other words, had the largest inlet size been a full inch instead of 3/4, then we would

have expected a nearly equal linear increase in advancement for each of the intervals

of advancement for the three porous domains. As the humidity is varied, we also

observe that the steady state front position advances; e.g. for the smallest inlet size,

we have steady state positions of 60, 76, and 91 mm.

G.4.4 Analysis and Discussion

Closeness of Fit

Figure G.8 shows an example of a strong fitting of the theoretical prediction to the

experimental data. This shows that the 1D model can fit the 1D flow data with close

accuracy. Fig. G.8a shows a linear plot of the data, which gives a clearer picture of the

match at later times, while Fig. G.8b gives the same data plotted logarithmically. We
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Figure G.9. Optimized parameter variation for strips from second set of experiments.

also see that the first theoretical prediction based on the initialized parameter values

is close, but significantly improved by the further optimization. In this case, both the

linear and logarithmic plots match the data very strongly; in some other data sets

one or the other does not fit as well because of early or middle time deviations.

Some errors were observed in the process of the analysis. The L2 ln(L) effect

in the 2D expansion, seen in Eq. (G.2.12), versus L2 behavior in the LWE with

evaporation means that applying the 1D or 2D theory to the same medium will result

in a logarithmic deviation in the measurement of ϕ0 depending on which theory is

appropriate for the given medium. For the first set of experiments, the experimental

data was only taken shortly after dimensionless time t̃ > 1. This means that the

varying front shape of the fans was already affecting the flow and so the LWE-like

behavior had been deviated from. In a few of the cases of lower evaporation rate,

it is also likely that the evaporative steady state had not yet been reached, which

inhibited the optimized theoretical data from fitting with the experimental.
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Experimental Parameter Determination

In Figure G.9, we plot the values of the parameters, ϕ0 and Q, as optimized from the

experimental data as described in Sec. G.3.2, for the 1D strips in the second experi-

ment. Ideally, the maximum capillary potential, ϕ0, should be a constant, while the

evaporation rate, Q, should be a monotonically decreasing function with respect the

the humidity and should be consistent for various domains. However, in the figure, the

max potential varies from 150 to 300 mm2/min; this is likely due to insufficient early

time data to better constrain the potential. The evaporation number and capillary

potential, being related, means that the variation in ϕ0 causes spurious variation in

the computed evaporation rate. So, while we observe a reasonable downward trend of

the evaporation rate—going from 0.04/min to 0.02/min over the span of 20% to 60%

humidity—we notice that at 50% humidity the evaporation rate increases slightly. In

part, these errors in the measure parameters stem from the difficulty in optimizing

the data correctly. The shape of the data is numerically very stiff as seen in Fig. G.8a,

and this makes the process very difficult to do accurately.

In this section, we do not investigate the ramifications of the theory on predicted

values of the bulk velocity.Also, the data for the 70% humidity was not analyzed

because the data was not able to be taken as far into the steady-state regime and

would therefor not be as accurate.

Figure G.10 shows the parameters extracted from the 2D fan using the 2D flow

model. The parameters should be comparable between the 1D strips and the 2D fans

at given humidities. However, in most cases, the optimized values of the capillary

potential and the evaporation rate are lower from the 2D data. The match seems to

be closest at higher percent humidities, e.g. 50% and 60%, while 30% is especially

different between the two data sets. The capillary potential has a high variation—on

the order of a factor of three from 20% to 60% humidity. Now, we may notice in both
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Figure G.10. Optimized parameter variation for fans from second set of experiments.

Figs. G.9b and G.10b that the evaporation rate varies only by about a factor of two

over the span of a forty percentage point change. This indicates that small changes in

ambient humidity do not have very strong effects on the over-all rate of evaporation

from the surface of the porous medium.

Figure G.11 shows the optimized parameters from the data for the third experi-

ment. The trend lines are for different size of the domain inlet, however they generally

trend reasonably near to each other as would be expected from the theory (they should
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Figure G.11. Optimized parameter variation from third set of experiments.
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be identical). The observed variation in the maximum capillary potential is not as

large as with the second experiment. This is likely due to the several additional data

points early and late in the experiment (e.g. starting at one minute instead of five).

At given humidities, the evaporation rate measured in this experiment is lower than

in the previous experiment It is possible that the temperature was not identical in

the two experiments. The closeness of the evaporation rates also indicates that the

evaporation number is being very useful in extracting the dynamic behavior of the

front.

G.5 Conclusions

The experiments could benefit from several improvements in future work. Firstly, the

error in the experiments would be reduced by automating the measurement of the

front position and mass of the fluid reservoirs. This would be accomplished with a

camera suspended above the wetting media taking images at regular intervals while

the liquid beakers are permanently positioned on accurate scales. Data acquisition

software would then generate the dataset. The automated system would improve

the control for the internal temperature and humidity and as a result should give a

more consistent evaporation rate. Acquiring more data at the very early times of the

experiment, where t̃� Nn, would make the predicted values of the capillary potential

and start time more accurate. The porous fans should have shorter tails to accurately

observe the early spreading of the fluid into the 2D domain. The automated system

could also go further into the steady state behavior, because there should be fewer

errors accumulated in the longer time data. Ideally the work in the vertical wicking

experiment should account for the effect of the restraint on the flow by gravity.75

To check the self-consistency of the theory, the parameters determined using the

front position may be used to independently predict the mass absorption rate by
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the porous paper. This may resolve the discrepancies observed in Fries et al.80 and

further explored in Barry et al..81 A wider variety of experiments with various liquids,

types of media, etc. would change the capillary potential and span a more significant

portion of the range of theoretical predictions; this could give further insights into

the limitations of the proposed theory. The theory may be extended by developing a

semi-analytical expression for flow in a fan with a tail to accurately predict the flow in

the physical media which have been tested, and we may analyze the accuracy of the

predicted theoretical power law and steady state approximations of the given systems.

Additionally, experimental comparisons may be done on the reaction rate effects of a

sucrose reaction as a function of the flow in the fanning porous medium.21,22

In this chapter we applied the mathematical techniques developed for solving cap-

illary flow problems to relevant experimental data. In this work, we developed numer-

ical methods to analyze experimental data and compare to the theoretical models.

Results correlate well with recently developed theoretical models, and produce the

physical values of the evaporation rate and capillary potential. We observed empir-

ically that the dimension of the flow domain decreases length of penetration of the

liquid at a given time but increases imbibition rate into the medium. The evaporation

supports continuous flow of liquid into the porous media. The evaporation-capillary

number correlates to the steady state and gives the evaporation rate in the porous

medium. We found that the evaporation rate is more stable with respect to humidity

variations than expected.
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Transport in Stress Corroding

Aluminum Pores

H.1 Introduction

Stress corrosion cracking (SCC) is the most common final state preceding failure of

manufactured aluminum parts. This process occurs as an interplay between chemi-

cal corrosion and mechanical stress coupled to degrade the strength of the material

through crack propagation. SCC commonly grows from corroded pits on the surface.

At the tip of the crack, hydrogen reaches the interstitial sites within the aluminum

alloy matrix to degrade the local strength of the metal; this is referred to as hydrogen

embrittlement. In some cases, microbes can accelerate the corrosion rate. Within the

crack, the fluid flow is effected by the surface chemistry, the multi-ion interactions,

diffusiophoresis, electrolytic reactions, and other effects.

From the solid mechanics perspective, molecular dynamics has been used to model

the crack propagation atomistically.138 Lattice Boltzmann methods, as a model of gas-

like interactions, has not naturally incorporated solid mechanics into the methodology,
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but it may be coupled to other methods such as finite difference or discrete element

solid mechanics models of the solid domain deformations if desired.139 The extended

finite element method (XFEM) is specially designed for modeling of crack propagation

in solids and would be useful in understanding larger time scale crack failure.140 A

significant literature on SCC in alloys exists for comparison of model results with

experiments, for example see work by Macdonald.

In this appendix, we build on the work in Ch. 6 and apply our methods to the

SCC problem.∗ In this appendix, we first outline the methods used in Sec. H.2, then

illustrate our preliminary results in Sec. H.3, and finally summarize the results and

future work in Sec. H.4. The goal of this work is to improve our understanding of

this the corrosion fatigue process in aluminum.

H.2 Methods

This appendix uses the multiphase and multi-species models utilized in Ch. 6 and

further detailed in Apx. C. The Shan–Chen multiphase model provides a computa-

tionally simple model of fluids in the spinodal thermodynamic state, as we discuss in

further detail in Sec. C.2.4.111 In all models, the solid domains were sketched manually

in a digital image editing software. For the two-phase model, periodic boundary con-

ditions were used in both directions. Additionally, the fluids by solids have attractive

forces which manifest as a capillary pressure at the two-phase interface.

We detailed the multi-component method in Sec. C.3.1. We apply the passive

solute component model with one explicit species and one implicit solvent species ac-

∗ In fact, the work of this chapter was conducted first because the failure of the part is of

highest interest. However, the pitting corrosion became the primary focus because it is the

more fundamental fluid process from which we could build up models of stress cracking,

and SCC is also a much larger scale problem.
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counting for full advection in the low concentration limit of the explicit species.111For

LBGK models the diffusivity is not fully independent of the viscosity of the fluids,

but has the computational advantage of a simple first order equilibrium collision

approximation.

Fully physical models of stress corrosion cracking requires an accurate model of

the solid mechanics of crack propagation. Ideally, the mechanical behaviors would be

derived from ab initio constitutive relationships via molecular dynamics simulations.

A first means of constraining the fluid behavior is using the immersed boundary

methods (IBM) to describe a moving solid boundary, fluctuating with the oscillatory

mechanical strain that the part undergoes during usage. The IBM gives a versatile

formulation of Lagrangian solid points and is often used for flexible solids. The

IBM would need to be specially extended to account for fracture tip advancement in

the full crack failure model. The discrete element method couples with the lattice

Boltzmann method as a Lagrangian method with rigid solids and can be used for

the boundary oscillations due to metal flexing. Alternatively, finite elements may

be used to model solid mechanics and couple to the fluid mechanics. The extended

finite element method models the behavior of crack tip propagation through material

failure.

H.3 Results

H.3.1 Capillary Condensation

In Fig. H.1 we observe the coalescence process into a single crack. The density of the

fluid is initialized with random initial density variations of order 5% with a density

in the super-saturated regime and no prescribed velocity or gravitational force. The

pseudo-potential is described by the exponential equation of state with a density-
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(a) Initial density. (b) Density at time 128.

(c) Density at time 500. (d) Density at time 10k.

Figure H.1. Capillary condensation in a single crack.

based attractive surface potential. As the simulation progresses the fluid separates

into liquid and gas and condenses into several droplets on the surface, some of which

fill the crack. The crack continues to attract the fluid to condense preferentially in the

crack until all fluid in the bulk have condensed over the crack by acquiring the fluids

from the other droplets. Thus, the simulation gives the expected crack condensation

behavior.

The simulation was then enlarged for a domain with two larger cracks, one wider

than the other. In Figure H.2 we see the condensation process into the two cracks.

First, we observe the condensation process initially occurring around the mouths of
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(a) Initial density. (b) Incompletely condensed.

(c) Early fluid levels in cracks. (d) Late fluid levels.

Figure H.2. Capillary condensation in two cracks.

the cracks. Both cracks then fill partially with liquid, however we see that the smaller

crack has a much higher curvature than the larger because of the capillary pressure

with the narrower walls. So evaporation from the surface of the larger pore liquid

then condenses in the narrower crack to minimize the free energy of the system. We

can see that the radius of curvature at a much later time is nearly identical in the

two cracks. It should be noted that this is a slow process on the order of thirty times

longer to reach this equilibrium state than to initially fill the cracks. The equilibrium

is dependent on the geometry; specifically liquids condense preferentially in narrow

cracks. This is similar to the bubble migration in a subsurface pit observed in Fig. 6.3.
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(a) Velocity over crack. (b) Steady diffusion profile.

Figure H.3. Diffusion through a jagged crack.

H.3.2 Multispecies Transport

In Fig. H.3 we see the results of a simulation of species advection-diffusion from the

tip of a deep jagged crack due to a dissolution process. The diffusion does not include

electrochemical effects such as surface potential and electroosmosis. Bulk fluid flows

from left to right over the crack via the lattice Boltzmann BGK equation, but we see

that the velocity within the crack is not significant. A constant concentration source

term is placed at the crack tip to add the ionic species into the fluid. Near the crack

tip the transport is nearly pure diffusion because the flow is less than three orders

of magnitude that of the velocity outside the crack.Thus, we do not need to consider

advection as a primary transport mode in future simulations of species transport in

static cracks.

H.4 Conclusions

Numerous improvements in methods may be made to advance the models for this

project. First, the transport of solutes within the channel due to motion of the
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solid crack walls may be implemented with the immersed boundary method.141 The

moving boundaries would be initially implemented with a naive solid grid, but in

future, rely on the immersed boundary method for better resolution of the solid.142

The mechanical strain may be computed using discrete elements or finite elements.

For corroborating the fluid results with finite elements, we may use COMSOL® to

prototype the simulations and GOMA to probe further depth in the physics. To un-

derstand the propagation of the crack tip, the extended finite element method may

be used. Other physical effects on the fluid transport may be included such as elec-

trochemistry, surface reactions, with particular interest in the hydrogen absorption

at the crack tip. As the current models are not fully computationally optimized,

they can be rewritten in a compiled language such as C++ or Fortran, and a one-

dimensional parallel domain decomposition may be used along the length of the crack

to accelerate the method because of the aspect ratio of the pore length is significantly

greater than the width.

In this preliminary study, we showed that species transport within static cracks is

dominated by diffusion and not by net flow or advection of the fluid. This indicates a

longer timescale is needed for the simulation process, especially with cracks of common

physical aspect ratios. Also, we have demonstrated the effect of parasitic capillary

effects of small pores. Thus, water will preferential condense in narrower pores, and

also not diffuse from them as easily. This is a mechanism for the degradation of small

cracks. However, these models require a significantly more computational power than

pitting corrosion due to the larger length and time scales and wider range of multi-

physics phenomena.
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Discrete Pore Models of Flow in

Monoporous Particles

I.1 Background

In this appendix, we explore finite element methods of discrete pore modeling as a

complimentary approach to the work given in Ch. 7. There we showed the application

of the lattice Boltzmann method (LBM) to the simulation fluid motion in discrete

porous materials, with an emphasis on biporous media, and we discussed elementary

methods of parallel implementation of the LBM. However, to understand the macro-

scopic permeability from a pore scale, we should determine at least empirically, if

not theoretically, a relation between the flow around a particle, its porosity, and the

resulting net flow through the particle. In this chapter, we also set out to determine

the applicability of a 2D model of porous transport in a particle to real 3D particles.

Now, we review some of the relevant background to these problem.

In analogy with heat transport, the permeability of a porous medium, which is

related to the porosity, is the hydraulic ‘conductivity’.4,8 This is shown through the
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Darcy equation5, which facilitates the solution of systems with small pressure gradi-

ents and large system size with respect to the pore radius of the medium. In 1901,

Philipp Forshheimer proposed a modification to the Darcy law that behaved more

realistically at the early times of imbibition by adding in an inertial term to the

equation. Furthermore, another common extension to Darcy’s law was proposed by

Brinkman to allow the model to function at very high permeabilities by adding in the

locally-averaged viscous term contained in the Navier–Stokes equations.20,129,130 Fi-

nally, these three models are often combined into the Darcy–Brinkman–Forchheimer

equation which is often used, coupled with the energy equations, for heat transfer

problems.143 This equation allows for a wide range of capabilities although it ap-

proaches the coupled Navier–Stokes equations in computational difficulty.144

The finite element method is an extremely flexible and useful tool in modern

computational modeling. Using variational principles, FEM allows the user to solve

the system of interest by breaking the domain of the system into smaller spaces, or

elements, and solving approximations to the desired solution across the elements.

The finite element method approximates the solution of differential equations by

converting the solution form into a series of basis functions, then the basis functions

are applied to the weak form of the differential equation. This gives a matrix system

which may be inverted directly to give the approximate solution of linear differential

equations, or may be iterated for nonlinear systems. The convergence rate of the

method is commonly second order in space, while in time it may be first order or

greater depending on the need of the problem.

Finite elements is increasingly used in solving the fluid dynamics of porous sys-

tems. It’s flexibility makes it especially practical in simultaneously solving multiple,

interacting physical phenomena. FEM is sometimes used for discrete porous models

in fractured media but is not often used for three dimensional bundles of tubes due

to the computational complexity of the simulation domain. This will limit our use of
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finite element codes to smaller problems. For continuous porous models, the Poisson

equation may be solved for Darcy models of the porous medium.36 More complex

continuum models of effective behaviors of porous media may also be solved. In our

work these features allow the finite element method to be a framework for solutions

which complement what is primarily found using lattice Boltzmann. It is desired that

the capabilities of the two methods intersect to a degree which allows them to have

comparable results.

The recent literature shows several examples of research into the geometries of

interest. Transition Reynolds numbers, Re, for cylinders and spheres as referred to

below will be on the order of 1 < Re < 100. It is worthwhile noting that many of the

discrete grids used in the simulations are circular/spherical and not cartesian.

In bimodal porous materials, recent computational work on modeling heat trans-

port in approximately 2D bidisperse porous media domains have shown a growing

interest in continuum models of complex fluid domains.145,146 Fractal models have

also utilized effective fractal dimensionality of a medium to approximate the internal

fluid transport properties.26,147

The current literature also contains several examples of research into the flow

around porous materials. It is worthwhile to note that many of the discrete grids

used in the simulations are circular/spherical and not cartesian. The sources discussed

below did not use discrete pores, but instead utilized the continuum equations for the

porous medium. Yu, et al. numerically studied permeable cylinders and spheres to

investigate the effects on the wake of small Reynolds number flows with the variation

of the Darcy number.131,148 They utilized the finite volume method in 2D and 3D

axisymmetric coordinates to solve the Darcy–Brinkman–Forchheimer model within

the object. Using the Darcy–Brinkman equation, Vainshtien, et al. analytically give

streamlines through and around spheroids (oblate disks) in Stokes flow and high

Darcy numbers.149 Kim and Phillips discuss the use of the less-common dissipative
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particle dynamics method for fluid flow in an array of cylinders.150 For packed beds

in general, Maier, et al. discuss the dispersion of fluids through cylinders of packed

spheres and the simulation of fluid motion by the Monte Carlo method.151 They

observe peak flow effects in the average fluid motion near the walls. Overall, the

literature provides a variety of prior works that are potentially useful comparisons for

our fluid system.152–156

In the following section we discuss some of the underlying theory of discrete and

continuum porous models. Sec. I.3 outlines the simulations and methods. Sec. I.4

presents the results for 2D-like and 3D particles, and Sec. I.5 gives the future work

and conclusions.

I.2 Theory

Darcy spurred the physical analysis of porous media with the development of his now

eponymous equation,

v = −k
µ
∇P (I.2.1)

where v is the volumetric flux (or velocity) of fluid through the porous medium, k

is the porosity, µ is the viscosity of the fluid, and P is the pressure, where each

variable averages over a size much greater than the individual pores.5 In essence,

equation (I.2.1) defines the macroscopic parameter of porosity so that the flux through

the medium may be directly related to the pressure applied to the system.

A key relationship implicit in the continuum modeling of a porous medium is the

connection between permeability with the pore radius, porosity, and other material

factors. This is unfortunately, a complex system-dependent interaction; however,

some experimental algebraic models do exist.8 A particular theoretical model is the
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Kozeny–Carman equation,

k =
1

2

φ3

(2πr/A)2
, (I.2.2)

which relates the the permeability with the void volume and other parameters of the

medium.30,56

The Reynolds number and the Darcy Number are dimensionless numbers relevant

to the analysis of porous particles and may be defined

Re =
ρU∞D

µ
, (I.2.3a)

Da =
k

D2
, (I.2.3b)

where ρ is the fluid density, µ is the fluid viscosity, U∞ is the characteristic veloc-

ity, D is the particle diameter, and k is the permeability.131 This is an elementary

approximation to fluid models around spheres and packed beds and focusses on the

Stokes flow regime, or Re� 1. For solid cylinders and spheres, Van Dyke157 outlines

the basic discussion on the singular perturbation issues of higher-order solutions of

symmetric fluid flows around the particles.

I.3 Methods

Simulations were run on discrete porous particles using COMSOL® to understand

the permeability of porous media from the porescale, with a goal of extending this to

biporous media.158 The software and method was chosen due to its flexibility for fluid

applications, adaptable user interface, and easy access to the software. COMSOL®

is a commercial multiphysics code which includes several fluid and porous media

models as well as capabilities for 2D, 2D axisymmetric, and 3D simulations. The

finite element method was used to investigate the effects on the ratio of fluid through

versus around a porous spherical particle by changing various system parameters.
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(a) 2D porous mesh. (b) 3D porous mesh.

Figure I.1. 2D and 3D FEM meshes.

The focus of this preliminary work was placed on the 2D simulations so that the

computational runs would be tractable. Some 3D models were explored, however

meshing difficulties reduced the variety of media tested; hence 3D is lightly explored

in the appendix. In two dimensions the model is effectively a cylinder, while in

three dimensions the model particle is a sphere. Figure I.1a shows the 2D mesh

for a particle with seven 0.8 µm pores. In Fig. I.1b the mesh for a 3D quarter-space

with quarter sphere on an edge—effectively a sphere when using symmetric boundary

(a) 1 Pore. (b) 3 Pores. (c) 5 Pores. (d) 7 Pores.

Figure I.2. Increasing numbers of discrete internal pores.
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conditions—shows the large number of elements that are needed around the particle,

while the majority of the fluid domain may be solved with larger element sizes. The

continuum equations of porous media [e.g. Eqn. (I.2.1)] may be used as a model for the

internal fluid motion in the particle; instead rectangles (2D) and tubes (3D) layed

parallel penetrate through the objects as a model for discrete pores. The particle

radius in all the models explored is 10 µm, while in 2D models the pore radii ranged

from 0.8–1.1 µm and the number of pores varied from 1–7. Figure I.2 shows four

different examples of 2D particles with different numbers of internal pores. Across

different simulation runs, the Reynolds number of the system was also made to vary

from 0.001–20 with a default value of 0.01. These ranges keep the simulation in the

laminar (usually Stokes) region of the behavior of the Navier–Stokes equations for

cylindrical and spherical objects. The model fluid was water at 20°C, with a density

of 998.2 kg/m3 and viscosity of 1.002× 10−3 Pa-s.

I.4 Results

I.4.1 Two–Dimensional Models

The data on the flow field through the cross-section of the fluid motion showed the

distinct effects of the porous medium on the fluid motion. As shown in Fig. I.3a, the

fluid is largely detoured around the particles. However, motion through the pores

increase significantly with the velocity of the fluid (Fig. I.3b). The higher velocity

also brings the maximum of the fluid speed closer to the surface of the particle. The

cross-sections were also integrated over space to find both the total fluid that had

transversed the whole fluid domain as well as just the particles.

This entire matrix of simulations (184 simulations) took 26 minutes to run and

usually each simulation was about 40,000 triangular elements. The results are plotted
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(a) Full cross-section. (b) Cross-section over particle.

Figure I.3. Cross-section velocity for seven pore 2D cylinder with varying Reynolds num-
ber.

in Fig. I.4 with the colored data. The fraction of fluid flowing through the particle

increases drastically with increasing Reynolds number. Similarly, increasing Darcy

number also increases the flow through the particle, however the slope is not as

great. The gray colored plane represents a plane of best fit through this data. In the

direction of the Darcy number the slope is approximately 0.5, while in the direction of

the Reynolds number the slope is around one. This leads to the following hypothesis;

for a cylindrical porous object in an infinite fluid medium

˜
Axsec

vx dAxsec

v∞Axsec

∼ Re1Da1/2 (I.4.1)

for small Re and Da. In words, the flux of liquid through a particle relative to the

flux it displaces increases linearly with the Reynolds number of the system and with

the square root of the Darcy number of the particle for Reynolds and Darcy numbers

approaching zero. The exact reasons for this result have not yet been explored in

depth. It is hoped that from the inverse of this relationship, the permeability of com-

plex particles may be measured. This would be of practical benefit in understanding

biporous particles.

The matrix of two-dimensional simulations gave a wealth of data concerning the
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Figure I.4. Flow behavior with varying Reynolds and Darcy numbers in 2D.

low Reynolds number behaviors of the discrete particles. First, as shown in Fig. I.5,

the shape of the fluid motion is significantly affected by the velocity of the fluid.

(a) Re = 10−3. (b) Re = 0.33. (c) Re = 20.

Figure I.5. Asymmetry of velocity with varying Reynolds number.
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At very low (Stokes) Reynolds number the flow is symmetric as shown in Fig. I.5a.

However, the flow field begins to deform as the Reynolds number reaches 1 (Fig. I.5b)

and has acquired a tail which is not yet oscillating at Re = 20 as illustrated in Fig. I.5c.

This phenomenon is a validation to the discrete pore model because it is consistent

with well known effects for solid cylinders.

I.4.2 Three–Dimensional Models

The three-dimensional simulations had mixed success in running. The solid sphere

was able to be run with only minor refinements to the default physics. With 90,000

tetrahedral (tet) elements the simulation ran in about 15 minutes. The single pore

simulation required 115,000 tet elements and took close to a half hour to run. This

required adjusting the boundary layers and the adaptivity of the mesh for the simu-

lation to run well. The solid sphere and single-pore sphere showed very similar flow

profiles as compared qualitatively in Figs. I.6a and I.6b. It is especially important to

note that the total volume fraction going through the sphere is quite insignificant to

what goes around it.

Simulations with additional pores were attempted, however they did not success-

fully run. In Fig. I.7 meshes for a seven pore sphere (a) and thirty-four pore sphere

(b) are shown. In both instances the simulations failed due to the multi-grid solver

being unable to coarsen the mesh sufficiently to begin simulating the domain; in other

words the system failed to initialize. It is surprising that this was not also the case

for the single pore, although the symmetry boundary conditions next to the pore may

have influenced the successful run.
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(a) Solid sphere. (b) Single pore sphere.

Figure I.6. Simulation of 3D solid particle and particle with a single pore.

Comparison of Behavior Between 2D and 3D Discrete Pore Models

The simulations of the particle with a 1 µm radius pore in the center and a Reynolds

number of 0.01 in two and three dimensions were compared (Fig. I.8). It was found

(a) 1 pore layer. (b) 3 pore layers.

Figure I.7. Various numbers of internal pores.
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(b) Half cross-section of particle.

Figure I.8. Cross-section velocity (m/s) versus radius (µm) for single pore models in 2D
and 3D.

that the linear cross-sectional flow profile outside the particles were significantly dif-

ferent. In Fig. I.8a the 3D model increases in flow and then levels off much more

quickly than the 2D simulation. This is reasonable since in three dimensions the flow

would be effected less by a sphere than by a full cylinder of equal radius as there

is more volume and surface area to the cylinder to affect fluid motion. However, in

Fig. I.8b the flow profiles within the pore appear very similar. The integral of the

linear cross-section for 2D is 1.31 × 10−6 m2/s and for the 3D pore the integral is

1.37 × 10−6 m2/s. This is a limited result as the profile of the 2D simulation is not

completely resolved as shown by the blue curve in Fig. I.8b. The similar values of

the flow is important as it shows that the flow profile within the pore may be com-

parable in behavior between two and three dimensional systems. Ultimately, three

dimensional systems were difficult computationally to resolve, however may still bring

some helpful insights. The linear cross-section of a cylinder and sphere of the same

specifications gave very similar flow profiles.
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I.5 Summary

The three-dimensional meshes should be modified until they are able to work for a

greater number of pores, and then run over a variety of Reynolds numbers and with

varying pore sizes. This will probably be done on a more limited scale than the 2D

simulations due to the computational time involved. It would be beneficial to com-

pare the geometric effects of 2D and fully 3D particle models and how that impacts

the interpretation of flow behavior. Finite elements are capable of discretizing is con-

tinuum models (such as the Darcy or the Darcy–Brinkman equations) of the internal

porous nature of the particles; this would be a useful extension to be quantitatively

compared to these discrete porous models. Other FEA software may be used, such as

GOMA—an open source code from Sandia National Laboratories—which has built in

continuum approximations of approximate pore distributions.159 We may modify the

size of the fluid domains and shift to periodic boundary conditions, so that the system

would be treated either a slurry or packed bed of spheres in cubic or body-centered

cubic lattices. Finally, a 2D finite element model of biporous media would bring full

extension of the FEA to connect with the LBM results.

We have discussed some discrete pore models of fluid flow through particles using

COMSOL®. We found for 2D particles that the flow through the inside of the par-

ticle varies proportional to the Reynolds number around the particle and the square

root of the Darcy number of the particle itself. This indicated a possible means of

computationally determining permeability from the flow cross-section of the particle.

Furthermore, we showed that the flow around the exterior of 2D and 3D particles is

distinctly different, while the flows through the particles is parabolic. Thus, we be-

lieve for low pressure differential pressures across a particle, that 2D is a reasonable

approximation for 3D flow and permeability affects.
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This glossary lists the symbols and abbreviations used in this dissertation.
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Glossary

Acronyms

BC Boundary Condition

BGK Bhatnagar–Gross–Krook

ECN Evaporation–Capillary Number

FEM Finite Element Method

GAT Green–Ampt Theory

LBE Lattice Boltzmann Equation

LBM Lattice Boltzmann Method

LGCA Lattice Gas Cellular Automata

LHS Left Hand Side

LPBM Lattice Poisson–Boltzmann Method

MPI Message Passing Interface

RHS Right Hand Side

SCC Stress Corrosion Cracking

UNM University of New Mexico

Symbols

0 Prescribed boundary value

0 Through inlet
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a Half width of inlet

α Discrete distribution function index

α Liquid/solid contact angle

Bo Bond number

Boa Modified Bond number

C Concentration

cs Lattice sound speed

Dσ Diffusion of species

Da Darcy number

δ z-direction thickness of thin porous media

δt Lattice time step

E Electric field

e Energy per mass

e Fundamental electric charge

eα Discrete unit velocity

εr Relative permittivity

ε0 Vacuum permittivity

eq Equilibrium

η Elliptic spatial variable

F Force term

f Distribution function

f Front position

f Through front interface

G Multiphase fluid-fluid interaction strength

g Species distribution function
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Appendix I. Discrete Pore Models of Flow in Monoporous Particles

Gads Multiphase fluid-solid interaction strength

γ Gravity velocity potential

γ Interfacial tension

h Electric potential distribution function

i Lattice coordinate in x-direction

i Through inlet

j Fluid momentum density

j Integer index

j Lattice coordinate in y-direction

k Permeability

k Reaction rate

kb Boltzmann constant

kf Reaction rate in the fluid

kw Reaction rate of the wall

L Wetted length

`x lattice size in the x-direction

`y lattice size in the y-direction

M LBM MRT moment inversion matrix

m Integer index

N Evaporation-capillary number

n Capillary diffusion order

n Integer index

nc Integral weight of corner/diagonal velocities

Nf Front interface evaporation-capillary number

n∞ Bulk ionic number density
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Appendix I. Discrete Pore Models of Flow in Monoporous Particles

Nn Normal surface evaporation-capillary number

Ns Side boundary evaporation-capillary number

ns Integral weight of side velocities

ns Solid occupancy of lattice

ν Dynamic viscosity

ν Lattice viscosity

Ω Collision opperator

ω Distribution function weights

ω Side evaporation velocity potential

ω̄ Electric potential distribution function weights

ωc Integral weight of corner/diagonal velocities

ωs Integral weight of side velocities

p Momentum

P Pressure

Pc Capillary pressure

ϕ Total velocity potential

Ψ Electric potential

ψ Asimuthal variable

ψ Inter-particle potential

Q Normal surface evaporation rate

qf Front interface evaporation rate

qs Side boundary evaporation rate

R1 First principle radius of curvature

R2 Second principle radius of curvature

R Gas constant
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Appendix I. Discrete Pore Models of Flow in Monoporous Particles

r Radius

Re Reynolds number

ρ Fluid density

ρe Electron density

S LBM scattering matrix

Ŝ Orthogonalized LBM MRT scattering matrix

σ Species index

s Through side boundary

SS Steady state

T Temperature

t Time

τ Relaxation time

τDσ Species relaxation time

θ Primary angular variable

u Velocity

U Bulk velocity

u Velocity in the x-direction

v Velocity

v Velocity in the y-direction

x Position

x Position in the ı̂ direction

ξ Capillary velocity potential

y Position in the ̂ direction

z Ionic electric charge

z Position in the k̂ direction
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[34] Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Dover Publ. 2000.

[35] Reddy JN. An Introduction to the Finite Element Method. McGraw-Hill Series
in Mechanical Engineering. McGraw-Hill Education. 2006.

[36] Wang HF, Anderson MP. Introduction to Groundwater Modeling: Finite Dif-
ference and Finite Element Methods. Elsevier Science. 1995.

299



REFERENCES

[37] Anderson JD. Computational fluid dynamics: the basics with applications.
McGraw–Hill series in aeronautical and aerospace engineering. McGraw–Hill.
1995.
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[61] Hyväluoma J, Raiskinmäki P, Jäsberg A, Koponen A, Kataja M, Timonen J.
Simulation of liquid penetration in paper. Phys Rev E. 2006;73:036705.

[62] Philip JR. Theory of Infiltration. Advances in Hydroscience. New York: Aca-
demic Press. 1969.

[63] Gummerson RJ, Hall C, Heft WD, Hawkes R, Holland GN, Moore WS. Unsat-
urated water flow within porous materials observed by NMR imaging. Nature.
1979;281:56–57.

[64] Lavi B, Marmur A, Bachmann J. Porous Media Characterization by the Two-
Liquid Method: Effect of Dynamic Contact Angle and Inertia. Langmuir. 2008;
24:1918–1923.

301



REFERENCES

[65] Wilkes JO. Fluid Mechanics for Chemical Engineers with Microfluidics and
CFD. New York: Prentice Hall. 2006.

[66] Rowlinson JS, Widom B. Molecular Theory of Capillarity. Dover books on
chemistry. Dover Publications. 2002.

[67] Achour NS, Hamdaoui M, Nasrallah SB. Wicking and Evaporation of Liquids
in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity
and Evaporation. Int J Innov Res Sci Eng Technol. 2015;9(7):1371–1376.

[68] Hornberger GM. Elements of physical hydrology. JHU Press. 1998.

[69] Bear J. Hydraulics of groundwater. Courier Corporation. 2012.

[70] Richards LA. Capillary conduction of liquids through porous mediums. Journal
of Applied Physics. 1931;1(5):318–333.

[71] Green WH, Ampt GA. Studies on soil physics: I. Flow of air and water through
soils. J Agric Sci. 1911;4:1–24.

[72] Swartzendruber D. Derivation of a two-term infiltration equation from the
Green–Ampt model. Journal of Hydrology. 2000;236(3):247–251.

[73] Elizalde E, Urteaga R, Berli CL. Rational design of capillary-driven flows for
paper-based microfluidics. Lab on a Chip. 2015;15(10):2173–2180.

[74] Barry DA, Parlange JY, Sander GC, Sivaplan M. A class of exact solutions for
Richards’ equation. Journal of Hydrology. 1993;142(1):29–46.

[75] Fries N, Dreyer M. An analytic solution of capillary rise restrained by gravity.
Journal of colloid and interface science. 2008;320(1):259–263.

[76] Barry DA, Wissmeier L, Parlange JY, Sander GC, Lockington DA. Comment
on “An analytic solution of capillary rise restrained by gravity” by N. Fries and
M. Dreyer. Journal of colloid and interface science. 2009;338(1):293–295.

[77] Philip JR. Falling-head ponded infiltration with evaporation. Journal of Hy-
drology. 1992;138(3):591–598.
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