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ABSTRACT 

 In this dissertation, we enhance the efficiency of thin flexible monocrystalline 

silicon solar cells by breaking symmetry in light trapping nanostructures and improving 

homogeneity in dopant concentration profile.  These thin cells are potentially less 

expensive than conventional thick silicon cells by using less silicon material and making 

the cells more convenient to be handled when supported on polymer films.  Moreover, 

these cells are widely applicable due to their flexibility and lightweight.  However, for 

high efficiencies, these cells require effective light trapping and charge collection.  We 

achieve these in cells based on 14-m-thick free-standing silicon films with light-

trapping arrays of nanopyramidal dips fabricated by wet etching. 

 We break the symmetry of nanopyramids by etch mask design and its rotation 

with respect to a crystallographic direction in silicon substrate.  This approach 

eliminates the need for using expensive off-cut silicon wafers.  We also make use of 

low-cost, manufacturable, wet etching steps to fabricate the nanopyramidal dips.  In our 

experiment, the new symmetry-breaking approach enhances the cell efficiency by 1.1%.  
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 In light-trapping nanostructures, the texture size is comparable to or smaller than 

the characteristic diffusion length of a dopant.  In this size regime, strong 

inhomogeneity in the dopant concentration often develops in the pn-junction of the cells.  

The strong inhomogeneity creates electrically inactive regions in the texture.  We 

improve the homogeneity by diffusing a dopant through selective surface regions 

exposed by wet etch masks.  Our experiments demonstrate that this dopant diffusion 

method enhances the cell efficiency by 0.8%.  This method would be generally 

applicable for other micro/nano structures, semiconductor materials, and optoelectronic 

devices. 
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1. INTRODUCTION 

 A solar cell generates electricity from solar radiation.  A spectrum of radiative 

power per unit area perpendicular to the direction of the sun at the position of the outside 

of the earth’s atmosphere is called the solar constant or air mass zero (AM0) radiation.  

This electromagnetic spectrum is used to research solar cells for space applications, and 

the total power of air mass zero radiation is 1353 W/m
2
 [1].  However, thin crystalline 

silicon (c-Si) solar cells are widely adopted to terrestrial and mobile applications.  As 

the sunlight passes through the earth's atmosphere, solar irradiance is attenuated because 

of both Rayleigh scattering of short wavelength lights and light absorption by gases 

constituting atmosphere.  Hence, a solar spectrum at the sea level is a function of total 

traveled distance through the atmosphere.  A pathlength of sunlight through the 

atmosphere is the shortest when the sun is directly overhead, and this solar spectrum is 

called air mass one (AM1) radiation.  The AM1 radiation is the maximum of solar 

irradiance we can expect at the sea level.  However, it is only a special case that rarely 

happens.  Therefore, the most widely used standard solar spectrum is AM1.5 radiation 

which is the case when the solar zenith angle is 48.19
o
 with the power density of 1000 

W/m
2
 at the sea level.  The AM1.5 represents an averaged solar spectrum over a year at 

mid-latitudes.  Figure 1.1 compares the AM0 solar radiation with the AM1.5 solar 

radiation [2]. 
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Figure 1.1.  The spectral distribution of AM0 (red solid line) and AM1.5 radiation (blue 

solid line). The AM0 spectrum is measured above the earth’s atmosphere, and AM1.5 

spectrum is measured at the sea level when the solar zenith angle is 48.19
o
 on a clear day 

[2]. 

 

The large market share (~85%) of crystalline silicon (c-Si) solar cells is expected 

to continue in the near future [3], and the industry is rapidly moving towards thin 

crystalline film technologies.  The benefit of using thin films is two-fold.  The 1
st
 

benefit is reduced material cost.  The c-Si wafers used in commercial solar cells today 

are typically 100-300 m thick and constitute approximately 30-40% of total module cost 

[4].  Therefore, using thin (10 m) c-Si films would provide a substantial cost 

advantage.  The 2
nd

 benefit is reduced weight and great flexibility.  A thin c-Si film can 



3 

be supported on a light-weight flexible platform instead of conventional thick (3 mm) 

glass substrates which constitute most of the module weight.  This weight reduction 

would decrease transportation and installation costs providing savings in the overall 

balance-of-system costs [5].  In addition to this, a well-known problem of rigid and 

heavy solar cells is that they are not able to be installed on a curved surface like arched 

roofs.  The lightweight and flexible solar cells can resolve this issue and can be also 

used for mobile applications, such as clothes, boats, planes, recreational vehicles or 

military base tents.  While the benefits of cost reduction and broader applications are 

clear, the optical absorption in thin c-Si films is much less than that of thick films.  

Therefore, the thin c-Si solar cells requires highly efficient light trapping to achieve the 

comparable level of efficiency of thick films. 

A function of solar cells can be divided into two main roles, absorbing sunlight to 

generate charge carriers and collecting the generated charge carriers as a useful form of 

energy before charge carrier recombination as depicted in Figure 1.2.  Hence, to 

enhance photovoltaic efficiency, optical pathlength within a solar cell device should be 

large enough to generate more charge carriers, and the recombination of charge carriers 

through various mechanisms should be effectively suppressed to increase a charge 

collection probability.  Both aspects of researches, researching optical responses to 

increase light absorption and researching electromagnetic properties of charge carriers to 

enhance the charge collection probability, are actively studied.  For example, optical 

studies of solar cells have extensively introduced various light-trapping schemes [6-33].  

Also, electromagnetic properties of charge carriers have been actively studied.  There 

are various approaches for passivating a c-Si surface to minimize recombination [34-36].  
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In the present research, the effects of optical and electrical properties on solar cells will 

be investigated simultaneously when a light-trapping structure is integrated into a solar 

cell, because both of the optical and the electrical aspects are equally important to 

achieve higher photovoltaic efficiency of solar cells. 

Figure 1.2.  A schematic diagram of two main roles of a working solar cell from a cross-

sectional view.  The first main role of a solar cell is absorbing sunlight to generate 

charge carriers, and the second main role is collecting charge carriers at pn-junction for a 

useful form of energy. 

 

The various light-trapping schemes exist today: light scattering by nanoparticles 

[6-9], random/quasi-random surface corrugation [10-13], nanorod arrays [14-22], and 

diffraction gratings [24-33].  Firstly, when metal/dielectric nanoparticles are placed on a 

film [Figure 1.3 (a)], light is efficiently scattered into the underlying film at the resonance 

frequencies.  However, the metal nanoparticles strongly absorb light when they are 
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placed on weakly absorbing photoactive films [7].  This optical loss limits light-trapping 

efficiency.  In addition to this, the use of metal elements for light trapping cannot be 

compatible with high-temperature fabrication processes due to sintering of metal.  Also, 

the metal elements, such as gold, silver, or iron, can diffuse into deep silicon and 

introduce allowed energy levels into the band gap of silicon [37, 38].  These energy 

levels due to impurities can trap charge carriers in photovoltaics (PV) devices, so 

recombination of the charge carriers becomes significant.  Secondly, the random surface 

corrugation is another cost-effective manufacturing method to scatter light into the films 

efficiently [Figure 1.3 (b)].  However, the inherent nonuniformity of a random structure 

makes it difficult to optimize and improve both electrical and optical characteristics in 

PV applications [33].  Thirdly, a periodic nanorod array strongly absorbs light, and its 

optical characteristics can be controlled more systematically compared to the random 

surface features [Figure 1.3 (c)].  However, the surface recombination of the nanorod 

structure becomes significant due to its large surface-to-volume ratio [18].  Also, the 

vertical surfaces of nanorods are difficult to be passivated and metallized by conventional 

fabrication methods.  Lastly, the periodic diffraction grating structure can be fabricated 

by cost-effective methods, such as nanoimprint or optical lithography [Figure 1.3 (d)].  

And, the carefully designed diffraction grating structure can enhance the light absorption 

of PV devices.  Based on the evaluation of various light-trapping schemes, the light-

trapping structure for Si-based PV devices should be an impurity-free and periodic 

diffraction grating nanostructure with a low surface to volume ratio.  The inverted 

nanopyramids structure (shown in Figure 1.4) is a good candidate for light trapping of PV 

devices because it can satisfy all the criteria above.  The applications of inverted 
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nanopyramids to various types of solar cells are extensively studied [5, 39-42].  It 

should be noted that macroscopic inverted pyramids can be also used for solar cells, 

however the physics of light-trapping enhancement is different with that of 

nanopyramids.  In case of macroscopic inverted pyramids, the light trapping can be 

analyzed by a ray tracing technique [43].  Moreover, the macroscopic inverted pyramid 

structures which have base size larger than tens of microns are not applicable to thin c-Si 

solar cells due to a large amount of silicon loss in KOH texturing [39]. 

Figure 1.3.  Various light-trapping strategies for thin films, (a) scattering by metal 

nanoparticles [9], (b) random surface corrugation [13], (c) periodic nanorod arrays [23], 

and (d) diffraction gratings [33]. 

 

The light-trapping inverted nanopyramids structure has many unique properties.  

Firstly, it is cost-effective to be fabricated.  The fabrication of the inverted 
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nanopyramids structure on c-Si takes advantage of intrinsic nature of potassium 

hydroxide (KOH) wet-etching [44-46].  The etch rate of c-Si(111) is hundreds of times 

slower than that of c-Si(100).  Therefore, after the KOH wet-etching, remaining c-

Si(111) surfaces naturally form inverted nanopyramids as shown in Figure 1.4.  This 

conventional wet-etching method with optical lithography to fabricate an inverted 

nanopyramid array has significant cost advantages compared to fabricating 

nanostructures with electron/ion beam lithography.  Secondly, the inverted 

nanopyramids structure is entirely compatible with silicon PV device fabrication 

processes.  The inverted nanopyramids structure does not include additional 

metal/dielectric materials.  In other words, the inverted nanopyramids structure after wet 

etching purely consists of c-Si as shown in Figure 1.4.  Hence, we can avoid a risk of 

contaminating tools and our solar cells’ being contaminated by metal during high 

temperature fabrication processes.  Thirdly, the silicon surfaces after the KOH wet-

etching are suitable for solar cell fabrication because the number of surface states can be 

effectively reduced.  Generally, the number of surface states is a function of surface 

area, roughness, and a type of crystalline surfaces [47, 48].  Notice that the surface area 

of the inverted nanopyramids structure increases only by 1.7 times compared with that of 

the flat surface.  Also, the surfaces of the inverted nanopyramids structure after wet 

etching are atomically smooth due to intrinsic properties of the KOH wet etching as 

shown in Figure 1.4.  The atomically smooth inverted nanopyramids surfaces can have 

low density of surface states because the roughness of surface is related to the number of 

surface states [47, 48].  In addition, the hydrogen terminated silicon atom on c-Si(111) 

surface has a higher stability than that of silicon atom on c-Si(100) because each silicon 
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atom on c-Si(111) has only one dangling bond [47].  To summarize, the cost-

effectiveness of fabrication, the impurity-free light-trapping structure, the atomically 

smooth surfaces, the high stability of a hydrogen terminated silicon atom, and the low 

surface area make the inverted nanopyramids structure suitable to an application of PV 

devices.   

Figure 1.4.  A Scanning Electron Microscope image of an atomically smooth inverted 

nanopyramids structure on crystalline silicon fabricated by potassium hydroxide wet 

etching.  The inverted nanopyramids contain only c-Si(111) surfaces. 

 

The Lambertian limit is a thermodynamic limit of maximum absorption in a film 

in the geometric optics regime when the surface of the film is assumed as an ideal 

random scattering media [10, 49].  The enhancement factor of optical path length in a 

Lambertian film with a bottom reflector is 4n
2
 where n is the refractive index of the film.  

The Lambertian limit has been compared with many light-trapping structures as a target 

of light trapping efficiency.   
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For a successful application of an inverted nanopyramids structure to thin c-Si 

solar cells, the inverted nanopyramids structure should enhance light trapping without 

negative effects on the electrical properties of thin c-Si solar cells.  For example, a 

nanorods structure absorbs light effectively, so the light absorption can exceed the 

Lambertian limit [24].  However, the nanorods structure needs special cares for a solar 

cell fabrication due to its vertical geometry.  For example, the plasma enhanced 

chemical vapor deposition, pn-junction fabrication, reactive ion etching, and top contact 

formation on the nanorods structure have challenges for an application to the vertical 

surfaces.  Also, the nanorods structure can have negative effects on the electronic 

properties of solar cells due to its high surface area to volume ratio.  Like this, many 

research have introduced various light-trapping nanostructures [6-33].  In the present 

research, we concentrated on the practical value of light-trapping structure specifically 

for thin c-Si solar cells.  Therefore, the effects of inverted nanopyramids structure on 

both optical and electrical properties of solar cells will be investigated. 

Branham et al. have already reported a 10-m-thick c-Si solar cell with 15.7% of 

photovoltaic efficiency using an inverted nanopyramid array [5].  However, the light-

trapping efficiency can be further enhanced when the symmetry of an inverted 

nanopyramid array is properly reduced.  Han et al. theoretically showed that proper 

symmetry breaking in periodic nanostructures enhances light trapping [24, 50].  

Symmetry breaking in periodic nanostructures can create new resonant absorption peaks 

and split degenerate absorption peaks, improving the light absorption over the broad solar 

spectrum [50-53].  There are many methods for fabricating symmetry-broken 

nanostructures, such as directional dry etching [52], glancing angle deposition [54], wet 
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etching on off-cut Si surfaces [55, 56], and multiple exposures in interference lithography 

[57].  However, fabricating such structures in a scalable, cost-effective, and 

manufacturable manner remains elusive.  Therefore, to further enhance the light 

trapping of inverted nanopyramids structure, a new approach to systematically break the 

symmetry in an inverted nanopyramid array will be introduced.  The new approach 

introduced in this study relies on simple and low-cost wet-etch processing steps, which 

are unnecessary to use expensive off-cut Si wafers.  Based on the new symmetry 

breaking approach, the thin c-Si solar cells with various symmetries of inverted 

nanopyramid arrays will be fabricated.   

The effects of inverted nanopyramids on the electronic properties of solar cells 

will be also investigated.  A diffusion process is commonly used to fabricate a pn-

junction in a textured surface of solar cells.  In this case, strong inhomogeneity in 

dopant concentration typically develops along the textured surface when the structural 

dimension of the texture is comparable to or smaller than the characteristic diffusion 

length.  The inhomogeneity in dopant concentration results in locally overdoped and/or 

underdoped regions which decrease photovoltaic efficiencies of the solar cells.  

Moreover, because overall charge concentration is high in thin cells with efficient light-

trapping structures, the volume fraction of such inactive regions is high in thin films, 

potentially resulting in significant degradation in photovoltaic efficiency.  To fully 

harness the advantage of such light-trapping structures, we introduce a unique method for 

rendering the doping concentration uniform by diffusing a dopant through selective 

regions of the light-trapping structure. 
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2. LITERATURE SURVEY 

2.1.  Symmetry Breaking of Periodic Nanostructures for Thin c-Si Solar Cells 

Periodic and random structures have been compared for their light-trapping 

performance [33, 58, 59].  The performance of the two is found to be similar to each 

other for silicon photovoltaics.  However, it should be limited to the specific structures 

used in the studies.  The reason is that depending on the geometry and scale, periodic 

structures may provide greater light trapping than random structures and vice versa.  

Additional complexity in this comparison is that controlling the spatial correlation in 

random structures has been found to improve the light-trapping efficiency over both 

periodic and random structures [11, 12, 60, 61].  However, the correlation control 

requires rather expensive fabrication techniques.  Compared to the random structure, the 

PV characteristics can be controlled more systematically by introducing periodic 

nanostructures. 

Han et al. recently reported that proper symmetry breaking in periodic 

nanostructures enhances light trapping [24, 50].  Figure 2.1 shows the calculated 

photovoltaic efficiencies of various structures with respect to their effective thickness.  

The solid black line shows the calculated efficiency of the nanopyramids structure which 

has 4-fold rotation axis and four mirror planes (C4v symmetry).  The symmetry group is 

denoted by the Schönflies notation.  The skewed nanopyramids structure is non 

symmetric (C1 symmetry), and the calculated efficiency (solid red line) is close to the 

Lambertian limit (black dashed) as shown in Figure 2.1.  Symmetry breaking in periodic 

nanostructures can create new resonant absorption peaks and split degenerate absorption 

peaks, which is improving the light absorption over the broad solar spectrum.  T. Cai et 
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al. also reported that the absorptance in thin silicon films increases as a symmetry of 

nanostructures is reduced from C4v to C1 as shown in Figure 2.2 [50].  It should be noted 

that symmetry breaking in macroscopic structures is also found to enhance absorption, 

but the physics of enhancement is fundamentally different [53, 62]. 

 

Figure 2.1.  Calculated efficiencies of various structures as a function of their effective 

thickness based on the mass of Silicon.  Each structure has an Ag back reflector and a 

61-nm-thick silicon nitride anti-reflective coating (ARC) layer.  A flat surface, inverted 

pyramids, pyramids, skewed pyramids, and rods structures are represented as solid blue 

line, solid pink line, solid black line, solid red line, and solid green line, respectively.  

As the symmetry of the pyramid structure is reduced to the skewed pyramid structure, the 

calculated efficiency approaches to the Lambertian limit (dashed black line) [24]. 
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Figure 2.2.  Absorptance in Si averaged over the spectrum between 0.7 and 1.0 m for 

incidence of unpolarized light [50]. As the symmetry of nanostructure is reduced from 

C4v to C1, the absorptance increases. 

 

2.2.  Recombination of Charge Carriers 

 Concentration of charge carrier is in an equilibrium between charge carrier 

generation and recombination under the dark.  When the light is incident on a c-Si layer, 

pairs of an excess electron and an excess hole are generated.  The generated electrons 

and holes due to the incidence of light are called as excess charge carriers because their 

numbers are more than their equilibrium values and are relatively free to move in a 

semiconductor at room temperature.  A reverse process is recombination of a pair of an 

electron and a hole eliminating charge carriers.  The concentration of charge carrier is in 

a steady state between the generation and recombination processes under the light.  To 

maximize the number of charge carriers at the steady state, the recombination should be 

effectively suppressed, and there are four recombination mechanisms, bulk 
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recombination, Auger recombination, recombination by a trap, and recombination at 

surfaces. 

As the name indicated, the bulk recombination happens in bulk regions of silicon.  

It is not related to fabrication processes but related to a quality of the c-Si substrate.  

Minority carrier lifetime, the averaged time for a charge carrier to stay before 

recombining, is the most important specification related to the bulk recombination.  

High-quality and ultra-pure c-Si wafers which have minority carrier lifetime longer than a 

millisecond are required to fabricate a good efficiency solar cell.   

Auger process is recombination of an electron-hole pair giving excess energy to a 

second electron or a hole instead of emitting a photon as shown in Figure 2.3 [63, 64].  

The energetic second electron or hole relaxes back to an initial state by emitting phonons.  

Because the Auger recombination involves the additional second charge carrier, a 

probability of the Auger recombination is proportional to n
2
 + np where n is 

concentration of excess electrons and p is concentration of holes.  Due to the second 

order in n, it is generally effective in highly doped regions.  Hence, the Auger 

recombination should be carefully considered during the diffusion processes for 

fabricating a pn-junction or an interfacial region for metal ohmic contact.  When a 

quality of a c-Si substrate is good, namely the bulk recombination is not significant, the 

Auger recombination is one of the major recombination processes for c-Si solar cells.   

  



15 

 

Figure 2.3.  A schematic diagram of Auger recombination [63].  The probability of 

involving both an excess electron and a hole in recombination is ~ n  p, and the 

probability of a 2
nd

 excess electron being next to the recombining electron is ~n
2
. The 

energetic 2
nd

 electron relaxes back to an initial state by emitting phonons.  

 

 Impurities in silicon introduce allowed energy levels within a band gap of c-Si.  

The impurities which are easily exposed from other users or an environment in a 

cleanroom at the Center for High Technology Materials (CHTM) have been summarized 

in Figure 2.4.  Notice the metal impurities, Ag, Au, and Fe, introduce energy levels 

close to the gap center of c-Si.  These impurity levels are detrimental for solar cell 

efficiency because the probability of trapping both an excess electron and a hole in the 
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impurity levels near the gap center is significant.  In addition to this, the diffusivities of 

Ag, Au, and Fe in Si are ranged from 10
-10

 to 10
-6

 cm
2
/s at 900 

o
C [37].  Compared to 

other impurities, such as boron or phosphorus, the diffusivities of these metals are 10
6
-

10
10 

times higher.  Hence, the contamination of Ag, Au, and Fe should be avoided for 

the efficiency of solar cells.  In this research, a protective layer or a diffusion barrier is 

used for high-temperature processes to minimize the contaminations from environments. 

 

Figure 2.4.  Introduced energy levels within a band gap due to various impurities in c-Si.  

Capital letters, A and D, represents an acceptor level and a donor level, respectively.  

The numbers next to A- & D- indicate energy difference in eV from a valence band (for 

acceptor levels) or from a conduction band (for donor levels) [38].  
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 A discontinuity in an array of silicon atoms can be represented as severe defects.  

This abrupt change in a structure or a periodicity introduces many surface quantum states.  

In addition to this, dangling bonds of a silicon atom on a surface of Si are associated with 

interfacial states of electrons.  These surface states are within the band gap of c-Si, and 

suppressing the surface recombination of charge carriers is critical for the high efficiency 

of solar cells.  To suppress the recombination, Nemeth et al. introduced a method of 

polycrystalline silicon (poly-Si) passivation for high-efficiency solar cells [35].  Figure 

2.5 shows the concentration profile of doped phosphorus atoms and hydrogen atoms in 

the triple layer of poly-Si/SiO2/c-Si.  The most of interfacial states are saturated with 

oxygen bonds by a thermally grown tunneling SiO2 layer [34, 35].  Because the SiO2 

layer is grown from an underlying c-Si substrate, the periodicity at the interface changes 

gradually, and the number of the interfacial states is minimized.  The remaining 

interfacial states are further decreased with hydrogen bonds through the forming gas 

annealing.  The properly doped polysilicon passivating layer serves as an inter-layer for 

an ohmic contact between metal and c-Si [35].  The structural resemblance between c-Si 

and crystallized poly-Si effectively suppresses the number of surface states.  This 

surface passivating technique is used in the National Renewable Energy Laboratory 

(NREL), and we adapted it for an application of a solar cell research in the Center for 

High Technology Materials (CHTM). 
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Figure 2.5.  The concentration profile of phosphorus and hydrogen atoms along the 

depth after diffusion and forming gas annealing [35]. The hydrogen concentration 

represents the concentration of Si dangling bonds terminated by a hydrogen atom. A 

phosphorous concentration fluctuates at the interface of a tunneling SiO2 layer which 

serves as a diffusion barrier. 

 

 The diffusion of phosphorus or boron for fabricating a pn-junction or an ohmic 

contact can introduce the dead layers.  The dead layer is a region where dopant 

precipitation, aggregation of excess dopants into clusters, occurs resulting in a low charge 
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collection probability.  Figure 2.6 shows concentration profile of electrically active 

phosphorus (P) in silicon after pre-deposition.  It clearly shows there is a limit of active 

P concentration at ~ 4.5  10
20

 regardless of processing time [65].  This upper limit of 

active dopant concentration (ne) is equal to the solubility of P in silicon at the temperature 

of diffusion.  Solmi et al. experimentally determined the equilibrium concentration of 

phosphorus (Csat) with phosphorus precipitates as a function of temperature [66].  

Because the equilibrium concentration of phosphorus (Csat) is higher than the upper limit 

of active dopant concentration (ne) at the temperature higher than 750 
o
C as shown in 

Figure 2.7 [66], the inactive dopant region is easily developed during dopant diffusion.  

The inactive dopant region significantly reduces charge carrier lifetime so forms the dead 

layers [67].  This problem becomes more significant when light-trapping nanostructures 

are applied to solar cells.  During making a pn-junction along the nanostructure by 

dopant diffusion, inhomogeneity in dopant concentration develops significantly due to a 

geometric effect of the nanostructure.  Moreover, because overall charge concentration 

is high in thin cells with efficient light-trapping structures, a volume fraction of such 

inactive regions is high in thin films, potentially resulting in significant degradation in 

photovoltaic efficiency.  In this study, the doping inhomogeneity problem due to an 

inverted nanopyramid array will be discussed in Section 3.4.1, 3.4.3, 4.2, and 4.3.   
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Figure 2.6.  The concentration profile of active phosphorous after diffusion using POCl3 

source at 950 
o
C for 10, 20, 30, and 60 minutes [65]. The upper limit of active 

phosphorus is relatively insensitive to the time of diffusion but a function of solubility at 

diffusion temperature. 
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Figure 2.7.  Dependence of upper limit of active dopant concentration (ne) and 

experimentally determined saturation concentration of phosphorus (Csat) on diffusion 

temperature [66]. Due to the difference of between Csat and ne at high temperature, the 

inactive dopant regions develop. 
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3. EXPERIMENT 

3.1.  Wafer Preparation and Cleaning  

A c-Si wafer should be carefully chosen for fabrication of semiconductor devices.  

The impurities commonly found in a c-Si wafer are Aluminum (Al), Boron (B), Carbon 

(C), Chromium (Cr), Iron (Fe), Manganese (Mg), Nickel (Ni), Phosphorus (P), Titanium 

(Ti) and Vanadium (V) [60], and the concentration of impurities ranges from 10
10

 to 10
17

 

elements/cm
3
 [68].  The impurities and defects in a semiconductor introduce allowed 

energy levels within a band gap of c-Si as described in Section 2.2.  Charge carriers in a 

semiconductor are easily trapped and recombined in these defects or impurities levels 

[69].  The recombination significantly decreases minority carrier lifetime in a 

semiconductor; hence it results in poor device efficiency.  For high device efficiencies, 

silicon must not only be very pure but also be in a single-crystal form with essentially 

zero defects in the crystal structure.  The methods used to produce a high-quality 

crystalline silicon ingot from polysilicon pellets are Czochralski and Float-zone processes 

[70].  A Float-zone silicon wafer is extremely pure silicon obtained by a vertical zone 

melting technique [71, 72].  The Float-zone process produces high-quality c-Si wafers 

for applications of photovoltaic devices as an alternative to the Czochralski method. 

In this study, a boron-doped Float-zone c-Si(100) wafer with minority carrier 

lifetime longer than a 1 millisecond was used for solar cell fabrication.  Diameter and 

thickness of the wafers were 4-inch and ~250 m, respectively.  The doping level of 

boron was about 10
15

 elements/cm
3
, and the resistivity of the wafer is 1-10 ohm-cm. 

 The c-Si wafer was pre-treated and cleaned by the methods shown in Table 3.1 at 

the beginning/middle (if necessary) of solar cell fabrication processes.  The c-Si 
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substrate surface can have irreversible damages from high-temperature processes, and 

these damaged surfaces are removed by isotropic etching and/or plasma etching and/or 

thermal oxidation.  The recipes and roles of c-Si wafer treating processes used in this 

study are summarized in Table 3.1.  In addition to this, the cleaned wafer should be 

carefully handled to avoid contaminations from the environment.  We employed 

extremely clean tweezers and quartz/glass beakers which were dedicated to each step of 

cleaning to prevent contaminations of c-Si wafers. 
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Table 3.1  Cleaning processes for a c-Si wafer used in this research 

Process Recipes 
Temperature and 

duration 
Roles 

Deionized water 

rinse 
Deionized water  

Room 

temperature for 

10 minutes 

Rinsing in a 

flowing batch 

Buffered oxide 

etching (BOE) 

20:1 volume ratio of 

40% ammonium 

fluoride and 49% of 

hydrofluoric solution 

Room 

temperature for  

a minute 

Removing native 

and chemically 

grown silicon 

oxide layer 

Piranha Cleaning 

3:1 volume ratio of 

98% sulfuric acid and 

30% hydrogen peroxide 

80 
o
C for  

10 minutes 

Removing organic 

residues 

RCA1 cleaning 

5:1:1 volume ratio of 

deionized water, 

ammonium hydroxide, 

and 30% hydrogen 

peroxide 

80 
o
C for  

10 minutes 

Removing organic 

residues 

RCA2 cleaning 

7:1:1 volume ratio of 

deionized water, 37% 

hydrochloric acid, and 

30% hydrogen peroxide 

80 
o
C for  

10 minutes 

Removing metallic 

contaminants 

Isotropic etching 
300:1 volume ratio of 

HNO3 and HF 
Room temperature 

for a few minutes 

Cleaning of 

damaged c-Si 

Plasma cleaning O2 chemistry 
Room temperature 

for a few minutes 

Removing organic 

compounds 

RIE etching CHF3/O2 chemistry 
Room temperature 

for a few minutes  

Cleaning of 

damaged c-Si 

Thermal 

oxidation  
O2 100% dry 

at 800-1000 
o
C 

for 10 minutes 

Cleaning of 

damaged c-Si 

 

  



25 

3.2.  Crystalline Si Wafer Thinning 

 Commercially available thin c-Si wafers are expensive and limited to specific 

types of wafers.  For example, the University Wafers supplies wafers thinner than 50 

m, and the price started from $1376 for a 4-inch diameter wafer in 2017.  Besides, 

these expensive thin wafers are limited to a specific type of wafers, which does not offer 

various specifications of c-Si wafers, such as minority carrier lifetime, type of dopant, 

diameter, thickness, and resistivity.  We have employed thinning of c-Si wafers to 

resolve these problems.  Extremely clean quartz wares including 2-liter beakers and 4-

inch sample holders were used in this study.  Figure 3.1 shows the thinning system 

where c-Si wafers were etched by potassium hydroxide (KOH).  We used 

semiconductor grade 50 wt.% of KOH solution [73], and the solution in a quartz beaker 

was heated to the targeted value, 90 
o
C, on a hot plate by a proportional integral 

derivative (PID) controller with resistance temperature detectors (RTD).  Stirring of the 

solution was necessary before wafers were dipped into the KOH solution to decrease 

response time and hysteresis of PID control.  When the temperature reached targeted 

value, 4-inch c-Si wafers on a quartz holder were immersed into the KOH solution for 

thinning. 
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Figure 3.1. A photograph of a 4-inch c-Si wafer on a quartz sample holder in the middle 

of thinning.  The vigorously formed hydrogen bubbles mix the solution effectively at 90 
o
C in 50 wt.% KOH solution. 

 

A rate-determining step of KOH etching is the surface reaction [74], so the 

thickness uniformity after etching will mainly depend on the temperature gradients of the 

solution.  Although the reaction rate is not limited by the transport of reactants in KOH 

solution, forming a gas phase bubble on the c-Si surface still can cause thickness 

nonuniformity.  As KOH etches the c-Si, hydrogen bubbles form and block the c-Si 

surface, which can cause nonuniformity on the c-Si surfaces.  In this case, a higher 

temperature of the solution will help to enhance the uniformity of c-Si surfaces because 

vigorously formed hydrogen bubbles agglomerate and leave quickly from the surface, 
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and the phase separation effects are averaged out over the entire regions of c-Si surfaces.  

H. Tanakaac et al. reported that the higher temperature and concentration of KOH 

solution help to fabricate a smooth surface after c-Si(100) etching [75].  The floating 

hydrogen bubbles near the surface of c-Si enhance convection in the solution, hence the 

additional stirring is not necessary to decrease temperature gradients while the thinning is 

being performed.  We measured the thickness at various positions (more than 9 points) 

over 10 inch
2
 area on a 4-inch thinned c-Si wafer to check the flatness of thinned wafer 

using a Peacock thickness gauge.  The variation of thickness with respect to the 

positions of the wafer was negligible in our experiment. 

We conducted the KOH thinning on mildly doped p-type c-Si wafers.  Unless 

the wafer is heavily doped with boron, the KOH etch rate does not significantly depend 

on the type and the concentration of dopant.  However, the KOH etch rate is slow on a 

heavily boron-doped Si wafer because of a high activation energy [76].  Hence, the 

thinning introduced in this Section can be applied to most c-Si wafers unless the c-Si 

wafer is heavily boron-doped.  We will control the etch rate by boron doping in light-

trapping structure fabrication as detailed in Section 5.2.  To obtain a thinning rate, the 

thickness of c-Si wafers has been measured before and after KOH thinning by a peacock 

thickness gauge station.  We were able to obtain 50-m-thick 4-inch wafers without 

breaking them at a success rate of 90%.  Figure 3.2 shows the wafer thickness as a 

function of etching time, and the determined thinning rate was about 60 m/hour/side.  

A free-standing 50-m-thick 4-inch c-Si wafer was mechanically strong enough to be 

handled in the solar cell fabrication processes.  Figure 3.3 shows a 50-m-thick 4-inch 

wafer held by tweezers without being bent or broken. 
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Figure 3.2.  The thickness of wafers as a function of etching time at 90 
o
C in 50 wt.% 

KOH.  Thirty-three c-Si wafers were thinned down one by one, and the etch rate was 

about 60 m/hr/side. 
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Figure 3.3.  A free-standing 50-m-thick 4-inch c-Si wafer.  The thinned c-Si wafers 

can be handled by tweezers without being bent or broken. 

 

We measured surface roughness of the thinned c-Si wafer by the Dektek 

profilometer because nanopatterning by an interference lithography (IL) system can be 

affected by the surface roughness of thinned wafers.  The measurement was performed 

after calibration with 1-m and 50-m standard samples.  The pictures of c-Si wafers in 

Figure 3.4 (a) and (c) show that the mirror-like polished surface was conserved well after 

KOH thinning.  We analyzed heights of the surface a Dektek Profilometer [Figure 3.4 

(b) and (d)], and the scanned length was 1000 m with 2000 data points.  The heights of 

wafer after thinning fluctuated by 20-40 nm over local points.  This roughness 

amplitude of the thinned c-Si surface was much shorter than the wavelength of IL laser 

(355 nm, YAG-Nd laser, Infinity 40-100, Coherent Inc.).  Therefore, the thinning did 

not have any issues on IL nanopatterning.  Figure 3.4 (e) shows a good quality of IL 

nanopatterns on a thinned 50-m-thick wafer. 
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Figure 3.4.  A photograph of the c-Si wafer before (a) and after (c) thinning.  The 

polished surface is conserved well after thinning.  The reflected mirror image on thinned 

c-Si wafer (c) indicates that the surface is polished-like.  Dektek Profilometer height 

scans before (b) and after (d) thinning.  (e) shows a photograph of uniform IL 

nanopatterns on thinned 50-m-thick wafers. 
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The minimum thickness of a 4-inch c-Si wafer achieved by the thinning without 

any technical difficulties was about 50 m.  To further thin down to 10-20 m, a whole 

4-inch wafer was firstly thinned down to 50 m and then cleaved into 2-inch
2
 size pieces 

for further thinning.  This two-step approach can achieve an ultra-thin transparent c-Si 

wafer without any problems.  A polished surface before thinning remained as polished-

like surface after thinning to 10 m.  The wafer was not only flexible as shown in 

Figure 3.5 (a) and (b) but also transparent to yellow and green light as shown in Figure 

3.5 (c) and (d).  The solar cells based on this flexible c-Si film offer unique properties 

distinguishable from the conventional c-Si solar cells which are usually unbendable and 

rigid.  For example, the free-standing thin c-Si wafers can be contoured on highly 

curved surfaces.  It is discussed in Section 5.2 as future work. 

 A free-standing 10-m-thick thinned c-Si wafer can be handled without much 

difficulty in the texturing and cell fabrication processes.  The detailed process for 

texturing and solar cell fabrication is described in Section 3.3 and Section 3.4, 

respectively.  Figure 3.6 (a) shows a scanning electron microscopy (SEM, JSM-IT100, 

Jeol) image of an inverted nanopyramid array on a 10-m-thick thinned c-Si wafer.  We 

characterized symmetries, periodicities, and lattice types of an inverted nanopyramid 

array from a top view of SEM images, and Figure 3.6 (a) shows lattice constants of a 

rectangular lattice (800 nm  870 nm).  Also, we used an optical microscopy or an SEM 

to accurately measure the thickness of thinned c-Si wafer as an alternative to a 

profilometer and a peacock thickness gauge.  Figure 3.6 (b) shows an SEM image of a 

9.4-m-thick thinned c-Si wafer with an inverted nanopyramid array from a side view.   
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Figure 3.5.  (a) A 35- m-thick 4-inch wafer after the thinning, (b) A 10-m-thick c-Si 

wafer, (c) & (d) A 10-m-thick c-Si film which is transparent to yellow and green light. 
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Figure 3.6.  An SEM image of a C2 symmetry inverted nanopyramid array on a thinned 

9.4-m-thick c-Si wafer from (a) a top view and (b) a side view.  
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3.3.  Fabrication of an Inverted Nanopyramids Structure 

3.3.1. Fabricating a Potassium Hydroxide Wet Etch Mask 

We deposited a silicon nitride (Si3N4) layer on a c-Si wafer by plasma enhanced 

chemical vapor deposition (PECVD) as a mask for potassium hydroxide (KOH) etching.  

Silane (5% SiH4/Ar) and ammonia (NH3) gases were used in this study for chemical 

reactions to form a Si3N4 film at 300 
o
C.  As a ratio of silane flow rates to ammonia flow 

rates increases, the refractive index of deposited SiNx film increases [77].  We precisely 

controlled flow rates of feed gases by mass flow controllers.  To characterize optical 

properties of our deposited films, ellipsometry with a Cauchy/c-Si model was used.  We 

optimized the ratio of feed gases for a deposited Si3N4 film to have ~1.9 of refractive 

index and ~zero of extinction coefficient at 633 nm.  The thickness of silicon nitride 

film on our free-standing thinned 14-m-thick c-Si wafer should be less than 30 nm to 

prevent the wafer from being bent due to tensile stress developed at the interface of the c-

Si substrate and the deposited Si3N4 film.   

 

3.3.2. Interference Lithography  

We sequentially spin-coated a 160-nm-thick anti-reflection (ARC iCON-16, 

Brewer Science) layer and a 500-nm-thick negative photoresist (NR7-500P, Futurrex) 

film on Si3N4/c-Si for interference lithography.  The temperatures of soft bake for an 

anti-reflective coating (ARC) layer and a photoresist (PR) film were 180 
o
C and 150 

o
C, 

respectively.  We used Lloyd’s mirror interferometry with 355-nm-wavelength-light 

(YAG-Nd laser, Infinity 40-100, Coherent Inc.) to pattern the prepared substrate 

(PR/ARC/Si3N4/c-Si).  Then the substrate was post-baked at 100 
o
C for a minute and 
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developed in a diluted resistor developer (RD6, Futurrex, Inc.).  The scanning electron 

microscope (SEM) image in Figure 3.7 shows a square lattice of periodic holes in a 

developed photoresist film in our Lloyd’s mirror interferometry system, and the diameter 

of holes is typically about half of their periodicity.  The size of holes can be tuned by 

changing the recipes of interference lithography and photoresist development. 

 

 

Figure 3.7.  An SEM image of circular periodic holes in a photoresist film fabricated by 

our Lloyd’s mirror interferometry system.  The diameter of circular openings is usually 

about half of the periodicity. 
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3.3.3 Symmetry Control of Inverted Nanopyramid Arrays 

The highly anisotropic KOH etching on c-Si(100) wafers leaves etched surface 

with a fixed angle parallel to c-Si(111) surfaces.  An etch rate of c-Si(111) surface is 

several hundred times slower than other c-Si surfaces, so the c-Si(111) surfaces leave 

inverted or positive pyramid structures when complete etching of c-Si(100) is performed.  

Hence, it is difficult to fabricate various shapes of etched structure with different angles 

of etched surfaces.  This reduces degrees of freedom in the fabrication of various shapes 

of nanopyramids structures.  For example, an array of circular opening etch-mask from 

lithography [Figure 3.7] results in a periodic inverted pyramid structure with c-Si(111) 

surfaces when complete etching of c-Si(100) is performed.  Although we cannot change 

the shape of each nanostructure, we can fabricate various symmetries of arrays by 

rotating etch masks about c-Si [001] axis and/or changing lattice types of etch mask.  

Figure 3.8 illustrates our unique approach to fabricate various symmetries of inverted 

nanopyramid arrays.  In this study, the symmetry groups were denoted by the Schönflies 

notation.  The left column of Figure 3.8 shows various lattice types of etching templates 

represented by the yellow mask with perforations.  We defined the open windows in the 

etch masks with perforations represented by yellow using lithography and dry etching.  

The exposed underlying c-Si surface was then etched in KOH solution to create the 

inverted nanopyramids shown in the right column of Figure 3.8.  

The fabrication technique is valid for single crystalline semiconductors, but not 

for polycrystalline or amorphous materials.  However, a metal layer deposited on the 

inverted nanopyramid arrays can be exfoliated and subsequently used as a bottom contact 
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to deposit polycrystalline or amorphous materials.  Thus, our symmetry breaking 

method can be extended to non-crystalline films.   

In Figure 3.8, we used a square lattice with C4v symmetry as the basis of 

comparison, where lattice vectors are parallel/perpendicular to the c-Si[110] directions of 

the c-Si substrate [32].  The first level of symmetry breaking can be achieved by rotating 

the lattice vector of the etch template with respect to the c-Si[110] direction around the c-

Si[001] axis [Figure 3.8 inset].  This lattice rotation effectively results in each inverted 

nanopyramid rotated around its own apex.  Consequently, the mirror symmetry is 

completely broken while the 4-fold rotational symmetry is preserved.  In addition to the 

rotation, the symmetry can be further broken by arranging the etch windows in non-

square-lattice patterns.  The possible two-dimensional non-square lattices are 

rectangular, triangular, centered-rectangular, and oblique lattices [74].  With the 

previously described sequence of symmetry breaking, we can reduce the symmetry of 

inverted nanopyramid arrays from C4v to C2. 
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Figure 3.8.  A schematic approach to systematically break the symmetry by rotating the 

etch template (inset) and arranging the openings in various lattice types. Left figures 

show the etch template rotated about the c-Si[001] axis. The flat region on the right side 

of each c-Si wafer indicates the c-Si[110] direction. Subsequent etching in an alkaline 

solution defines inverted nanopyramids on c-Si(100) surfaces (right figures). The 

resulting symmetries are labeled in Schönflies notation. “Reprinted with permission 

from ref[78]. Optical Society of America.” 
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3.3.4. Transferring Nano-pattern to Wet Etch Mask 

 We used reactive ion etching (RIE) for transferring patterns in a photoresist film 

to underlying anti-reflective coating (ARC) and Si3N4 layers.  The RIE process 

consisted of two consecutive steps which use oxygen or CHF3/O2 for etching ARC or 

Si3N4, respectively.  An ion bombardment through a potential bias between electrodes 

was highly directional towards the cathode, so the pattern in the photoresist film was 

effectively transferred to the underlying ARC and Si3N4 layers.  We used 50-125 W of 

power at 13.56 MHz radio frequency (RF) to maintain the plasma.  A small amount of 

O2 was added to the CHF3 feed gas to boost etch rate of Si3N4 and increase sidewall 

angles [79].  Moreover, the addition of O2 helped the etch rate to be stable as a function 

of time avoiding mass transport problems [79, 80].  The process flow of an RIE for 

transferring pattern in the PR film to the Si3N4 layer is described in Figure 3.9. 
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Figure 3.9.  A process flow of RIE etching for transferring a pattern in PR to an ARC 

and an etch mask.  Directional bombardments of oxygen or fluorine ions in a potential 

bias etch underlying films to transfer a pattern. 

 

 

3.3.5. Potassium Hydroxide Etching 

In this research, a potassium hydroxide (KOH) etching of c-Si was used for 

fabricating a light-trapping structure on thinned c-Si wafers.  The KOH etching takes 

advantage of the intrinsic nature of the KOH wet-etching of c-Si [44-46].  The etch rate 

of a c-Si(111) surface in KOH solution is hundreds of times slower than that of a c-

Si(100) surface.  This strong anisotropy naturally left c-Si(111) surfaces when complete 

KOH wet-etching of c-Si(100) is performed, and these c-Si(111) surfaces formed 

inverted pyramid structures.  In this study, an array of periodic circular openings was 

used as an etch mask as shown in Figure 3.7, and KOH solution etched the surfaces 

exposed by mask openings to form an array of periodic inverted-nanopyramids. 

We nano-textured the surface at 50 
o
C for 10 minutes in 20 wt.% KOH solution.  

Please noted that temperature and concentration of the KOH solution for nano-texturing 
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were lower than those in the KOH c-Si wafer thinning (90 
o
C and 50 wt.%) [Section 

3.2].  In this condition, the KOH etch rate became slow enough to precisely control the 

size of inverted nanopyramids.  We measured the temperature using resistance 

temperature detectors (RTD).  To set the temperature of the KOH solution, output 

power of the hot-plate was controlled by a PID controller with stirring.  The stirring 

reduced not only the response time of the heating system for an accurate temperature 

control but also the temperature gradients in the KOH solution for uniform 

nanostructures.  We recorded the temperature data by data acquisition (DAQ, Lab 

Jack) using an analog output signal of the PID controller.  A photograph and a 

schematic diagram of the KOH etching system are shown in Figure 3.10 (a) and (b). 
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Figure 3.10.  A photograph (a) of a schematic diagram (b) and the KOH wet etching 

system for nano-texturing and thinning of a c-Si wafer.  A solid-state relay was used 

for controlling the heating element.  A variance resistor was for calibrating the voltage 

signals for data acquisition. 

  



43 

 

3.4. Fabrication of Solar Cells 

We adapted a p-type c-Si solar cell fabrication process used in the National 

Renewable Energy Laboratory (NREL).  In this process, a thin (20-100 nm) doped poly-Si layer 

and an SiO2 layer(~1 nm) were inserted between a c-Si substrate and a metal contact for excellent 

passivation [35].  Directly contacting metal on a c-Si substrate without these passivation layers 

increase the number of surface quantum states due to abrupt change in periodic structure to 

amorphous structures.  The solar cell fabrication process that we adapted based on the NREL 

process is summarized in Figure 3.11 where the process flow starts from the textured c-Si 

substrate.  In this process flow, the n-type and p-type spin-on-dopants (n-SOD and p-SOD) were 

used for making a pn-junction on a top surface and an ohmic contact on a bottom surface, 

respectively, because a diffusion furnace with dopant gas flows and PECVD for doped 

amorphous silicon were not available in the CHTM.  We used bi-directional drive-in to 

dope both a top crystallized poly-Si layer and a bottom substrate for good ohmic contacts 

and passivation.  Details of the process are described in the Subsections below. 
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Figure 3.11.  A flow diagram of the c-Si solar cell fabrication. 
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3.4.1. Pre-deposition 

 In the pre-deposition step, a dopant was diffused into the vicinity of the surface 

with a contacting source layer by diffusion.  We deposited an n-type spin-on-dopant (n-

SOD, P-1200, Desert Silicon) layer on top of the inverted nanopyramids structure to form 

a pn-junction.  On the bottom side, a p-type spin-on-dopant (p-SOD, B-200, Desert 

Silicon) layer was deposited to form a highly boron doped c-Si layer for an ohmic-contact 

to a metal back reflector.  These SOD layers served as source layers during pre-

deposition, and the dopant atoms were infiltrated into the vicinity of the surface.  We 

performed the pre-deposition at 960 
o
C for 2 hours.  After pre-deposition, the surfaces 

were carefully cleaned because a boron silicide layer on bottom and defects on top could 

be developed.  The boron silicide layer has negative effects on solar cell performance by 

increasing contact resistances and the number of surface states.  Also, a phosphorous 

atom has a bigger atomic radius than that of boron.  Hence, the diffusion of phosphorous 

can cause damaged surfaces on top.  In this study, to remove these boron silicide layer 

and damaged surfaces, we used the methods of RIE etching, isotropic wet etching, and/or 

thermal oxidation introduced in Section 3.1.  We ramped up the temperature of pre-

deposition slowly to minimize the damages from phosphorous diffusion. 

 Figure 3.12 shows the calculated dopant concentration profile in a cross-section of 

the c-Si substrate with a grooved surface when the doping was performed by the pre-

deposition.  The dopant in the calculation was phosphorus (P), and the grooves were 

triangular in a cross-sectional plane along the dashed red line in Figure 3.12 inset.  We 

used a finite difference method to calculate 2D diffusion profile in triangular grooves.  

In the simulation, rectangular meshes (5 nm  7.1 nm) were used with a time step of 



46 

0.005 hours.  Periodic boundary condition on the side of the unit cell was used.  The 

values of saturation concentration at 960 
o
C were adopted for boundary condition from 

the literature [66]. 

 

Figure 3.12.  Calculated dopant concentration profile in a cross section of c-Si substrate 

along a dashed red line (in the inset) with periodic triangular grooves.  The inset shows 

an SEM image of triangular grooves in a c-Si substrate after KOH etching.  
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3.4.2. Surface Passivation 

We passivated the top and bottom of pre-deposited surfaces for metal electrodes 

contact.  A proper passivation technique can effectively reduce the number of surface 

states, which is required for high efficiency solar cells.  For the passivation, we made a 

stack of a tunneling SiO2 layer and a highly doped polysilicon (poly-Si) layer.  The 

tunneling SiO2 layer is thermally grown on c-Si substrate for the passivation.  And then, 

an intrinsic amorphous-silicon (i-aSi) layer was deposited by PECVD on SiO2/c-Si 

substrate.  The bi-directional dopant drive-in was performed to crystallize and dope the 

i-aSi layer into a highly doped poly-Si layer at 950 
o
C for 3 hours.  The detailed 

procedures for the passivation techniques used in this study are described in Subsections 

below. 

 

3.4.2.1. Thermal Oxidation 

 A thickness of thermally grown SiO2 layer is recommended to be less than 2 nm 

to enable tunneling [81].  The SiO2 growth rate on different c-Si surfaces is different, 

and the inverted nanopyramid structure is mostly composed of c-Si(111) surfaces.  

Hence the c-Si(111) wafers are used in this study.  The Deal-Grove model 

mathematically describes a growth of an oxide layer on a silicon surface [82].  However, 

a tunneling oxide layer grows much faster than the Deal-Grove model so we investigated 

the thicknesses of thermally grown SiO2 layers on c-Si(111) by ellipsometry (M-2000, J. 

A. Woollam).  Ellipsometry is a non-contact and non-destructive optical technique that 

determines the optical properties (refractive index and attenuation coefficient) and 

thickness of films.  We used a white light source which covers a wavelength range from 
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270 nm to 1700 nm at various incidence angles from 45
o
 to 85

o
.  The c-Si(111) wafer 

was pre-treated to remove a native oxide layer, and then a SiO2 layer was grown at 700 

o
C for the duration from 3 minutes to 12 minutes.  Figure 3.13 shows the thickness of 

SiO2 layers measured by an ellipsometer with the model of Cauchy/effective medium (1 

nm)/c-Si.  The oxidation time and thickness of SiO2 layers are summarized in Table 3.2.  

The silicon atoms at the interface of a thermal SiO2 layer and a c-Si substrate are 

naturally inter-connected by covalent bonds, which minimizes abrupt change in structure 

and the number of dangling bonds at the interface.  However, due to the distance 

mismatch between Si-Si interatomic distance (2.35 Å ) in c-Si and the Si-Si second 

neighbor distance (3.05 Å ) in SiO2, there are remaining Si dangling bonds at the 

interface.  We terminated these dangling bonds by hydrogen using forming gas 

annealing for 10 minutes at 400 
o
C. 
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Figure 3.13.  Thickness of thermally grown SiO2 layers on c-Si(111) as a function of 

oxidation time at 700 
o
C. 

 

Table 3.2  Thickness of thermally grown SiO2 layers at 700 
o
C on a c-Si(111) substrate 

Oxidation time Thickness of SiO2  

3 minutes 1.29 nm 

6 minutes 1.34 nm 

9 minutes 1.51 nm 

12 minutes 1.72 nm 
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3.4.2.2. Plasma Enhanced Chemical Vapor Deposition for Amorphous Silicon 

In our passivation approach, a good uniformity of 20-100 nm thick intrinsic 

amorphous Si (i-aSi) layer was required for high efficiency of solar cells.  The 20-100 

nm thick i-aSi layer is too thin to analyze with an SEM.  Hence, we deposited thick (4 

m or 8 m) i-aSi layers by PECVD to accurately measure the rate of i-aSi deposition 

and the number density of plasma dust particles.  The formation of plasma dust particles 

is due to a homogeneous gas phase nucleation which grows negatively charged silicon 

particles trapped electrostatically in the plasma.  The sizes of dust particles increase 

until the gravitational and electrostatic forces are unbalanced [83, 84].  These plasma 

dust particles on a deposited film reduce solar cell efficiency on our inverted 

nanopyramid structure.  In this study, we varied a pressure of silane gas, which contains 

95% Ar, and RF power to optimize the quality of an i-aSi film.  The experimental 

conditions and results are summarized in Table 3.3.  Figure 3.14 (a) shows SEM (left) 

and optical (right) images of an 8-m-thick i-aSi layer deposited by PECVD at the 

pressure of 850 mTorr silane/Ar.  Operated RF (13.56 MHz) power was 100 W, and the 

measured deposition rate was ~40 nm/minute.  As shown in Figure 3.14 (a), many 

plasma dust particles were on the deposited i-aSi film, and their diameters were about 3 

m.  We deposited another 8-m-thick i-aSi film at reduced RF power of 50 W while 

maintaining the pressure of SiH4/Ar as 850 mTorr.  A deposition rate was unchanged at 

~40 nm/minute, but the diameters and the number density of plasma dust particles were 

significantly reduced.  However, large plasma particles were observable in an optical 

microscope image as shown in Figure 3.14 (b).  In our experiment, the best quality of an 

i-aSi film was achieved when the pressure was 450 mTorr silane/Ar and RF power was 
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50 W.  In this case, the deposition rate was reduced by a factor of two as the pressure 

was decreased from 850 mTorr to 450 mTorr, and Figure 3.14 (c) shows a deposited 4-

m-thick i-aSi film.  The diameter of the plasma dust particles was about 300 nm, so 

they were indistinguishable in an optical image.  Therefore, if we make a solar cell with 

this film, optical scattering by plasma particles can be minimized because both the 

diameter and the number density of plasma dust particles are small enough.  All the 

experiments were done at 300 
o
C, and the general trends of our experiments agreed well 

with the Perrin's research [83, 84].   
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Figure 3.14.  SEM (left column) and optical (right column) images of PECVDed i-aSi 

layers under the condition of (a) 850 mTorr silane, 300 
o
C, 100 W, (b) 850 mTorr silane, 

300 
o
C 50 W, and (c) 450 mTorr silane, 300 

o
C, 50 W. 
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Table 3.3  Effect of pressure and RF power on i-aSi PECVD at 300 
o
C  

 

3.4.2.3. Bi-directional Drive-in and Crystallization 

 We diffused dopant atoms into the vicinity of the surface with a contacting source 

layer by the pre-deposition described in Section 3.4.1.  The impurities near the surface 

was diffused deep into the substrate through a drive-in process.  We performed drive-in 

bi-directionally to diffuse dopant atoms into both an underlying c-Si substrate and a top 

thin poly-Si layer at 950 
o
C for 3 hours.  During the bi-directional drive-in, the dopant 

atoms diffused deep into the c-Si substrate to form Gaussian dopant concentration profile, 

and the thin poly-Si layer was highly doped to make an interfacial layer for an ohmic 

contact with metal electrodes.  A gradual and smooth change of dopant concentration in 

c-Si substrate reduces the recombination of charge carriers by decreasing the number of 

surface states.  We covered the substrate with a 100-nm-thick SiO2 layer to protect the 

substrate from contaminations during the bi-directional drive-in.  The protective SiO2 
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layer was deposited by PEVCD at 300 
o
C.  To calculate the concentration profile, the 

dopant concentration in Figure 3.12 was used as an initial condition.  The calculated 

dopant concentration profile after drive-in with periodic triangular grooves is shown in 

Figure 3.15.  The targeted pn-junction depth was about 500 nm for our solar cells.  Our 

calculations showed that dopant concentration along a textured surface can vary by a 

factor of two because the periodicity of structure (700 nm) is comparable to the desired 

thickness of pn-junction (500 nm).  This inhomogeneity in concentration has negative 

effects on solar cell efficiency and will be studied in Section 4.2. 

 

Figure 3.15.  Calculated dopant concentration profile after drive-in in a c-Si substrate 

with periodic triangular grooves.  The concentration profile roughly represents that in a 

cross section of an inverted nanopyramid array (top view in the inset) marked by a red-

dashed line. 
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 A 50-nm-thick of i-aSi layer on top of the structure is crystallized to poly-Si while 

temperature is ramped up for drive-in.  The temperature was slowly ramped up from 

200 
o
C to 950 

o
C at the rate of 83 

o
C/hour.  The required temperature for crystallization 

was above 800 
o
C.  The pre-deposited dopant atoms also diffused into a poly-Si layer 

during the bi-directional drive-in, hence the layer became a highly doped poly-Si layer to 

reduce a width of Schottky barrier width for ohmic contacts through tunneling.  The 

crystallized doped poly-Si layer on a c-Si substrate provides a gradual transition from c-

Si to metal [35].   

A quality of crystallized poly-Si layer depends on the initial state of an i-aSi layer.  

For example, hydrogen in an i-aSi layer releases hydrogen gases (H2) from (Si-H)n 

complexes in voids during crystallization, and thermal expansion of H2 in voids forms 

blisters [85].  Figure 3.16 (a) and (b) show optical images of 100-nm-thick poly-Si 

layers crystallized from i-aSi layers deposited at (a) 450 mTorr and (b) 250 mTorr at 50 

W by PECVD.  Even though both i-aSi films were highly uniform, they become very 

different in uniformity after crystallization.  
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Figure 3.16.  Magnified optical images of crystallized 100-nm-thick polysilicon films 

from (a) a PECVDed i-aSi layer at 450 mTorr with 50 W RF power and (b) a PEVCDed 

i-aSi layer at 250 mTorr with 50 W RF power. 
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3.4.3. Metal Contact Fabrication 

 We deposited a top metal contact grid by an e-beam evaporator.  To selectively 

deposit metal on a region of top contact grid, a mask with grid opening scribed by a laser 

cutter was used.  We prepared the mask made of pure c-Si to avoid contamination of 

solar cells because the mask was contacting a solar cell during the metal deposition.  

Figure 3.17 (a) shows a magnified optical image of the fabricated c-Si mask at a region 

near the contact pad indicated as a dashed red square in Figure 3.17 (b).  

 We characterized the dimension of top metal contact grid by an optical 

microscope.  Measured width of each finger was 70 m, and the 35 fingers on each side 

of the busbar were equally spaced by 700 m.  Because the spacing between fingers 

determines average distance that needs to be traveled by a charge carrier in a 

semiconductor, it is closely related to a power loss from sheet resistance.  Measured 

width and length of the busbar were 270 m and 25 mm, respectively.  We deposited a 

stack of 20-nm-thick Ti/1500-nm-thick Ag/20-nm-thick Pd layers for the top metal 

contact grid.  The thin (20 nm) Ti layer was deposited before depositing the Ag layer to 

improve adhesion between contact grid and c-Si substrate.  A thickness and a width of 

Ag were related to a power loss of solar cells in series resistance.  Due to high 

conductivity of Ag, a 1500-nm-thick-Ag layer was enough to achieve the fill factor of 75 

%.  A capping thin (20 nm) Pd layer helped to protect an Ag metal grid from oxidation.  

Figure 3.17 (b) shows an optical image of the deposited top metal grid on a flat c-Si solar 

cell.  
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Figure 3.17.  (a): A magnified optical image of the c-Si mask made by laser cutting.  

The black region is an opening for a contacting grid.  The c-Si mask has pyramids on its 

surface because the mask is post-treated by KOH etching to fabricate sharp edges of the 

opening.  The dashed red square in (b) indicates the magnified region of the mask to 

obtain an image of (a).  (b): A photograph of the deposited top metal contact grid on a 

flat-c-Si solar cell.   

 

 

3.4.4. Anti-reflective Coating 

 We deposited a quarter-wavelength anti-reflective coating layer on top of the 

structure to minimize reflection losses in solar cells.  The refractive index of c-Si at 633 

nm of wavelength is about 3.88, hence the optimum refractive index of the anti-reflective 

coating layer for a c-Si solar cell in the air is a square root of the c-Si's refractive index 

(n=1.97).  An optical response of a solar cell is sensitive to the refractive index of an 

anti-reflective layer, so we characterized the deposited SiNx films by ellipsometry.  In 

this experiment, the white light source of ellipsometry covered a range of wavelength 

from 270 nm to 1700 nm at various incidence angles from 45
o
 to 85

o
.  We deposited an 

anti-reflective SiNx layer by PECVD at 300 
o
C with 50 W RF power.  The feed gases 
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were a gas of 5% SiH4 contains 95% Ar and a pure gas of NH3,and they were precisely 

controlled by mass flow controllers.  The ellipsometry results of deposited SiNx films 

were compared with two models, a Cauchy/c-Si model and a Palik’s Si3N4/c-Si model.  

The deposited SiNx films were fitted into the Cauchy/c-Si model to find out the refractive 

index of deposited SiNx films.  If the deposited SiNx film had zero extinction 

coefficients over the entire wavelength range of source light, the deposited SiNx film 

would be fitted into a Cauchy layer which is essentially a transparent dielectric layer.  

However, the SiNx and reference Si3N4 layers have non-zero but small extinction 

coefficients at a short wavelength range of our source light, hence the good quality SiNx 

film would be slightly off from the Cauchy model.  This is why we used the second 

model, Palik Si3N4/c-Si, to compare with the optical constants of reference Si3N4.  A 

good quality of deposited SiNx film will show good fits with both of the two models.  

We used mean square errors (MSE) to quantify the goodness of fit with the models.  

Basically, the MSE is root of mean square errors between measured data and model 

generated data.  We obtained MSE using Eq. (2) as below  

     
 

    
   

       

     
 
 

  
       

     
 
 

  
       

     
 
 

 

 

   

                

where n is the number of measured wavelengths, m is the number of fit parameters, 

subscription E represents experimented data, subscription G represents generated data by 

model, N=cos(2  Psi), C=sin(2  Psi)  cos(Delta), and S= sin(2  Psi)  sin(Delta). 

The three parameters are non-zero components of Mueller-matrix for the case of isotropic 

sample.  The Mueller-matrix mathematically describes how an electromagnetic wave 

interacts with the sample.  The details for analysis of ellipsometry results with the 
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Mueller-matrix formalism are introduced in Ref[86, 87].  In general, the lower the MSE 

values are, the better agreements between data from an actual SiNx film and generated 

data from the model are expected.  The experimental condition of PECVD and 

elipsometry results are summarized in Table 3.4.  As we changed the volumetric flow 

ratio of SiH4/Ar to NH3 from 1.0 to 4.0, the refractive index of the Cauchy layer 

increased from 1.76 to 1.9.  The deposited SiNx films with the flow ratio of SiH4/Ar to 

NH3 from 1.0 to 3.0 were represented as a Cauchy layer but significantly different from 

the reference Palik Si3N4 layer (MSE > 50) due to their low refractive indices.  When 

the volumetric flow ratio of SiH4/Ar to NH3 was higher than 5.0, the film was neither a 

Cauchy layer nor a Palik Si3N4 layer due to its high extinction coefficients.  We 

obtained the best SiNx film when the flow ratio of SiH4/Ar to NH3 was 4.0.  The film 

deposited in this condition could be considered as both the Cauchy layer and the Palik 

Si3N4 layer.  Figure 3.18 compares the ellipsometry results of a deposited SiNx film 

(solid lines, using volumetric ratio of 4.0) with the reference model of Palik Si3N4/c-Si 

(doted lines).  The optical response of the deposited SiNx layer agreed well with the 

reference model; hence the deposited film was close to the reference Palik Si3N4 film. 
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Figure 3.18.  Comparison of ellipsometry results (Psi and Delta) at various incidence 

angles (55, 65 and 75
o
) between deposited SiNx film by PECVD and the reference model 

of Palik’s Si3N4 film. 
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Table 3.4  Summary of ellipsometry results on SiNx PECVD 

The 

volumetric 

flow ratio of 

5% SiH4/Ar 

to NH3 

Deposition 

pressure 

[mTorr] 

n of 

Cauchy 

layer at 

633 nm 

MSE of 

Cauchy 

on c-Si 

MSE of 

Palik 

Si3N4 on 

c-Si 

Remarks 

1.0 600 1.76 4.72 

96.99 

(out of 

spec.) 

Cauchy layer 

2.0 600 1.77 4.45 

94.36 

(out of 

spec.) 

Cauchy layer 

3.0 800 1.81 3.42 

52.67 

(out of 

spec.) 

Cauchy layer 

4.0 1000 1.9 8.28 26.01 
Cauchy layer 

& Palik Si3N4 

5.0 1200 1.9 

111.09 

(out of 

spec.) 

157.54 

(out of 

spec.) 

None 
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4.  RESULTS AND DISCUSSION 

4.1. Light Trapping of Various Symmetries of Inverted Nanopyramid Arrays 

 A square lattice of the C4v symmetry structure has two lattice vectors which are 

parallel and perpendicular to the c-Si[110] directions [32].  The first level of symmetry 

breaking can be achieved by rotating the lattice vectors of the etch template with respect 

to the c-Si[110] direction around the c-Si[001] axis.  This lattice rotation effectively 

results in each inverted nanopyramid rotated around its own apex.  Consequently, the 

mirror symmetry is completely broken while the 4-fold rotational symmetry is preserved.  

In addition to the rotation, the symmetry can be further broken by arranging the etch 

windows in non-square-lattice patterns.  The possible two-dimensional non-square 

lattices are rectangular, triangular, centered-rectangular, and oblique lattices [88].  With 

the previously described sequence of symmetry breaking in Section 3.3.3, we can reduce 

the symmetry of inverted nanopyramid arrays from C4v to C2. 

 The symmetry-breaking inverted nanopyramids can be directly fabricated on 

kerfless thin c-Si films or KOH thinned c-Si films.  The c-Si films of a few m to tens 

of m in thickness are produced using a kerfless process and commercially available 

today.  In this Section, solely for the convenience of handling samples, we used silicon-

on-insulator (SOI) wafers to obtain the light-trapping structures on thin c-Si films.  The 

SOI wafers consisted of a 10-m-thick device layer, a 500-nm-thick buried SiO2 layer, 

and a thick handle layer.  The etch masks were fabricated on the device layer of SOI 

wafers using interference lithography (IL) and reactive ion etching (RIE) [Figure 4.1(a) 

left].  The SOI wafers with the etch masks were etched in a KOH solution to define the 

inverted nanopyramids into the underlying c-Si, and the etch masks were subsequently 
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removed [Figure 4.1(a) middle].  Since the anisotropic etching step leaves flat unetched 

areas between the inverted pyramids, which reduces light trapping [32], we used a 

HNO3/HF aqueous solution to further etch the c-Si isotropically [89].  Then, a 73-nm-

thick silicon nitride (SiNx) layer was deposited on the nanopyramids for antireflection 

using plasma-enhanced chemical vapor deposition (PECVD).  The refractive index of 

the SiNx layer was determined by ellipsometry to be 1.7 – 1.9 at the wavelength of 632.8 

nm.  A depression window was then created in the handle wafer using etching in a KOH 

solution over an area defined by lithography.  To protect the front SiNx layer and 

nanopyramids during the depression window etching, we spin-coated a polymer (Protek 

B3, Brewer Science) on the front surface before etching.  The buried SiO2 layer in the 

SOI wafer served as the etch stop.  After etching the depression window, the polymer 

protective film was removed, and a 100-nm-thick Ag film was deposited on the exposed 

surface of the SiO2 layer as a backside reflector [Figure. 4.1(a) right].  In our current 

effort, we defined the thin-film structures over a 2.5 cm  1 cm area in SOI wafers.  

Similar procedures for preparing a thin c-Si film using SOI wafers can be found in 

References [5, 32].  

Figure 2(b)-(d) show SEM images of inverted nanopyramid arrays with C4v, C4, 

and C2 symmetry fabricated on SOI wafers before the SiNx layer was deposited.  The 

pitch in the square lattice was 700 nm for C4v and C4 symmetry.  For C2 symmetry, we 

used a rectangular lattice where the pitches along the lattice vectors were 800 and 900 

nm, respectively.  The C4 and the C2 structures were obtained by rotating the square and 

rectangular template lattices according to our scheme in Figure 3.8 (2nd and 3rd rows) in 

Section 3.3.4.  The rotation angle was approximately 22.5
o
.  This angle was chosen to 
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be half of 45
o
 to reduce the symmetry from C4v to C4; 45

o
 rotation would result in the 

same C4v symmetry.  The isotropic etching time was kept for 10 minutes to minimize 

the unetched area while maintaining the shape definition of inverted nanopyramids.  

Prolonged isotropic etching tends to blur the shape of nanopyramids and makes it 

difficult to be compared with modeling results.  Figure 4.1 illustrates this uniformity 

over 10 m range, and multiple scans over ~1 cm range at sampled regions show similar 

uniformity.  Overall, we have established a systematic approach to break the symmetry 

in an inverted nanopyramid array on a c-Si(001) surface, using scalable lithography and 

simple wet etching steps.  

Figure 4.1.  (a) An illustration of the fabrication process for light-trapping structures on 

thin c-Si films. (b)-(d) Scanning electron micrographs of the inverted nanopyramid arrays 

with (b) C4v, (c) C4, and (d) C2 symmetry.  The insets are a de-magnified view of each 

structure.  These structures were obtained after 8-min anisotropic etching at 55°C 

followed by 10-min isotropic etching at 25°C.  In (c) and (d), each pyramid was rotated 

by approximately 22.5
o
 around its own apex from a lattice vector.  The periodicity in the 

two orthogonal directions was 700 nm  700 nm for (b)-(c) and 800 nm  900 nm for (d). 

“Reprinted with permission from ref[78]. Optical Society of America.” 
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 The pitches of the three structures correspond to the maximum absorption for ~2-

m-thick c-Si films based on optical calculations.  To find the optimum pitches, we 

performed optical calculations based on the transfer matrix method [90].  To save 

computation time in searching through many parameter values, we considered the 

nanostructures etched into a 2-m-thick or 2.33-m-thick c-Si film.  For the C4 and C2 

symmetry inverted nanopyramid arrays, the angle between one of the lattice vectors and 

the c-Si[110] direction was set to 22.5º.  We assumed the inverted nanopyramid arrays 

have no unetched horizontal areas by complete isotropic etching after KOH etching.  

The structures were conformally coated with a 60-nm-thick SiNx layer with a refractive 

index of 1.9 for anti-reflection.  On the backside of the c-Si film, a 717-nm-thick SiO2 

film and a 150-nm-thick Ag layer were placed as a reflector.  Figure 4.2 (a) shows the 

periodicity dependence of the calculated photovoltaic efficiency for the C4v and C4 

symmetry inverted nanopyramid arrays on 2.33-m-thick and 2-m-thick c-Si films, 

respectively.  In both cases, the optimized periodicity was found at 700 nm.  Figure 4.2 

(b) displays the efficiency map of the C2 symmetry (C4 symmetry on the diagonal) 

structures for various combinations of periodicities from 500 to 1000 nm in the x and y 

directions which correspond to the lattice vectors.  This map reveals that the maximum 

efficiency occurs when the periodicities are 800 and 900 nm in the x and y directions, 

respectively.  Thus, for the maximum light trapping with inverted nanopyramids, the 

symmetry should be broken from C4 to C2 but not by a great degree of change in 

periodicity from that of C4.  The optimum periodicities found in the calculations are 

employed in our experiment as shown in Figure 4.1 (b)-(d).  The calculated efficiencies 

at the optimum periodicities for C4v (2.33 m thickness), C4 (2 m thickness), and C2 (2 
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m thickness) symmetry inverted nanopyramids were 0.228, 0.237, and 0.251, 

respectively.  

Figure 4.2.  (a) Calculated photovoltaic efficiency based on absorption in a 2.33-m-

thick and 2-m-thick c-Si film for the C4v and C4 symmetry light-trapping structures, 

respectively, as a function of the periodicity.  (b) Calculated efficiency for the C2 

symmetry structures based on a rotated rectangular lattice with various periodicities in x 

and y directions where the angle between x-axis and c-Si[110] direction is 22.5º. 

“Reprinted with permission from ref[78]. Optical Society of America.” 
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 Light absorption by the periodic structures is strongly governed by the number of 

resonance peaks and the coupling strength of the resonances to external radiation [50, 

91].  In general, the number of peaks can be increased by breaking the symmetry, while 

the coupling strength is not trivial to be controlled or estimated.  Group theory predicts 

that, at normal incidence, the number of peaks, N, within a spectrum should be N(C4v) = 

N(C4) < N(C2) when N is large [50].  Using the transfer matrix method [90], we 

calculated the absorption spectrum from 0.99 to 1 m for our 3 samples in Figure 4.1 (b)-

(d) and count N.  The large-scale difference between the etch depth of ~0.5 m and the 

film thickness of 10 m poses a significant challenge in numerical calculations.  To 

efficiently overcome the challenge, we used a layer-doubling technique in the transfer 

matrix method.  In this technique, a transfer matrix for a thick Si layer was easily 

obtained by doubling the matrix for a thin layer multiple times.  The calculated 

absorption spectrum is shown in Figure 4.3.  For accurate counting of the number of 

peaks, we used high spectral resolution at small intervals of 510
-5

 eV and took the 

second derivative of the spectrum.  Peak positions were identified as the points where 

the second derivative was negative and local minimum.  In an agreement with group 

theory, N increased from 23 for the C4v and C4 structures to 34 for the C2 structure.  For 

C4v and C4 symmetries, the optical response was the same for two orthogonal linear 

polarizations, resulting in degeneracy in the peaks.  For C2 symmetry, the 4-fold rotation 

symmetry was broken, and the degeneracy was lifted resulting in resonance peak splitting 

and increased absorption.  While the spectral range of investigation was very narrow, 

the results were a proof-of-concept demonstration of how the number of resonance peaks 

depends on the symmetry.  Therefore, it is expected that the light absorption will 
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increase as the symmetry is reduced from C4v (or C4) to C2.  Moreover, the light 

absorption can increase despite the same number of resonance peaks (e.g., C4 vs. C4v) 

[50], if light coupling can be strengthened.  As a result, the light absorption 

progressively increases as the symmetry is reduced from C4v to C4 to C2. 

Figure 4.3.  Calculated spectra of absorption in a 10-m-thick c-Si film for the C4v, C4, 

and C2 symmetry light-trapping structures shown in Figure 4.1(b)-(d).  Arrows indicate 

peak positions found from the second derivatives of the spectra. “Reprinted with 

permission from ref[78]. Optical Society of America.” 
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 The optical absorption spectra of the C4v, C4, and C2 symmetry samples have been 

measured using a spectrophotometer with an integrating sphere (Lambda 950, Perkin-

Elmer).  The angle of incidence was 8° from the surface normal.  Figure 4.4 (a)-(c) 

show the measured and calculated spectra of total absorption for the samples of C4v, C4, 

and C2 symmetry, respectively.  In general, good agreement between the measured and 

calculated absorption is observed.  Calculated absorption in Ag is also displayed in 

Figure 4.4 (a)-(c).  The metal loss is appreciable only for wavelengths greater than 900 

nm.  

Figure 4.4.  (a)-(c) Comparison of experimental (solid line) and calculated (dashed line) 

total absorptance and calculated absorption in Ag (dot-dashed) for the inverted 

nanopyramid arrays of (a) C4v, (b) C4 and (c) C2 symmetry shown in Figure 4.1(b)-(d).  

For the calculated absorption, the spectra were averaged over a photon energy range of 

0.06 eV to smoothen sharp peaks.  The refractive index of the SiNx coating was 1.7 for 

(a), (b) and 1.9 for (c) in the calculations.  (d) Absorptance in c-Si for the inverted 

nanopyramid arrays of C4v (blue), C4 (black), and C2 (red) symmetry.  The calculated 

photovoltaic efficiency for each nanopyramids structure is introduced in the parenthesis. 

“Reprinted with permission from ref[78]. Optical Society of America.” 
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 The absorption in c-Si is determined by subtracting the calculated absorption in 

Ag from experimentally measured total absorptance and displayed in Figure 4.4(d).  

Absorption in the SiNx coating is negligible while it exhibits slight absorption below 0.4 

m in wavelength.  When the refractive index of SiNx films is relatively low (< 1.9) as 

found in the films, the solar-weighted average absorption in the films is estimated to be 

less than 0.1% even over a corrugated surface [92].  Figure 4.4(d) shows that the 

systematic symmetry breaking along the C4v  C4  C2 sequence increases the 

absorption in c-Si in the long wavelengths, approaching closely to the Lambertian light-

trapping limit [10].  For photovoltaic applications, light trapping in the long 

wavelengths is important because the charge thermalization loss is minimal in these 

wavelengths.  To estimate the effect of symmetry breaking on the photovoltaic 

efficiency enhancement, we calculated the photovoltaic efficiency using the spectra in 

Figure 4.4(d).  The efficiency calculation assumed that the charge carrier loss is only 

due to radiative recombination and the solar cell is at room temperature.  With this 

assumption, the current density J is given by 
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where V, λ, h, c, ASi, I, e, Eg, λg, kB, and T denote voltage, wavelength, Planck’s constant, 

light speed, absorption in c-Si, AM1.5G solar spectrum electronic charge, c-Si band gap, 

wavelength corresponding to the band gap, Boltzmann’s constant, and solar cell 

temperature, respectively.  The efficiency is the maximum of J product V divided by 

incident power.  When absorption is perfect, this efficiency leads to the Shockley-

Queisser limit [93].  Note that Eq. (1) is different from Eq. (16) in Ref. [94].  This is 

because the substrate is a metal in our case while Ref. [94] assumes an absorbing 
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semiconductor substrate.  The efficiencies for the C4v, C4, and C2 symmetry samples 

were calculated to be 27.0%, 27.5%, and 27.9%, respectively.  That is, the efficiency 

increases by the systematic symmetry breaking in the inverted nanopyramid arrays.  The 

absolute increase of 0.9% in the efficiency by symmetry breaking could further increase 

when the corrugation structure is optimized and when the active layer thickness 

increases.  For example, we consider the structures where the unetched flat areas 

between nanopyramids are completely removed by isotropic etching.  In this case, the 

efficiencies for C4v, C4, and C2 symmetry inverted nanopyramids on a 20-m-thick 

silicon layer are estimated to be 28.1%, 29.1%, and 30.0%, respectively.  This indicates 

that, if wet etching steps are further optimized, and the active layer thickness is doubled, 

our symmetry breaking method would increase the efficiency by 1.9%, a significant 

number for Si photovoltaics.  Considering 15.7% device efficiency experimentally 

demonstrated by Han and his collaborators [5] from C4v symmetry surface corrugation on 

10-m-thick substrates, we can extrapolate the device efficiency for our structures.  For 

example, because the calculated efficiencies are 27.0% and 30.0% for a 10-m-thick Si 

film with the C4v symmetry structure and a 20-m-thick Si film with the C2 symmetry 

structure, one could potentially achieve 15.7%  30.0 / 27.0 = 17.4% efficiency for 20-

m-thick solar cells with C2 symmetry structures when flat areas between nanopyramids 

are minimal. 
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4.2. Dopant Diffusion Through Selective Regions 

 In our experiments, a series of conventional pre-deposition (Section 3.4.1) and 

drive-in (Section 3.4.2.3) results in inhomogeneity of dopant concentration profile due to 

the geometric effect of nanostructures on diffusion.  The concentration at the top is 

twice more than that at the bottom of the triangular grooves as shown in Figure 3.15.  

When doping is performed long enough to avoid underdoped regions, the top region 

would be overdoped resulting in a reduction in minority carrier lifetime.  Oppositely, 

when an overall doping level is low to avoid overdoped regions, the bottom regions 

would be underdoped, and the series resistance of solar cells would increase.  Thus, in 

both cases, solar cell efficiency decreases in general due to the doping inhomogeneity.  

To resolve this inhomogeneity problem in the concentration of dopant, a new method for 

dopant diffusion has been introduced. 

A conventional process for diode fabrication removes an etch mask after 

texturing, and subsequently, a pn-junction is created.  This can cause inhomogeneity of 

dopant concentration due to the geometry of texture as explained above.  We used the 

etch mask as a barrier of dopant diffusion in the pre-deposition process to reduce 

inhomogeneity of dopant concentration.  Figure 4.5 illustrates our process flow for a 

dopant diffusion through selective regions of the surface by an etch mask.  In this 

process flow, etching was performed to define an inverted nanopyramid array when a 

perforated etch mask was placed on a c-Si substrate.  A spin-on-dopant (SOD) layer was 

spin-coated on the structure which includes the etch mask.  During pre-deposition, the 

dopant atoms were infiltrated selectively through the c-Si surface regions that directly 
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contact the SOD layer.  The etch mask and the SOD layer were subsequently removed, 

and the dopant drive-in was performed to obtain Gaussian concentration profile.   

 

Figure 4.5.  A process flow for pn-junction fabrication by dopant diffusion through 

selective regions of the surface into micro/nanotextured c-Si substrate. 

 

We estimated the effect of dopant diffusion through the selective regions of the 

surface on concentration profile by a computer simulation.  As a rough approximation, 

we calculated the concentration profile of phosphorous in a 2D triangular groove 

structure using a finite difference method.  Figure 4.6 shows concentration profiles 

before pre-deposition [Figure 4.6 top], after pre-deposition [Figure 4.6 middle], and after 

drive-in [Figure 4.6 bottom] for the both cases of diffusion through selective regions of 

the surface [left column of Figure 4.6] and conventional diffusion [right column of Figure 

4.6].  When the dopant diffusion through selective regions of the surface was performed, 

the KOH etch mask was intentionally unremoved from a top of the groove structure, so 
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the c-Si substrate was covered by the etch mask for the dopant diffusion through selective 

regions.  The dopant concentration near the top region covered by the etch mask was 

significantly reduced, whereas that near the bottom of the grooves was negligibly altered.  

The inhomogeneity of dopant concentration was mitigated considerably using the dopant 

diffusion through selective regions.  

 When the dopant concentration is below 3.7  10
20

 cm
-3

 at the diffusion 

temperature of 950 °C and the thickness of the doped region is on the order of 500 nm, 

the solar cell would function well [66].  In the calculations, after drive-in, the thickness 

of doped region at the bottom was ~270 nm, and the concentration at the top region with 

conventional diffusion was above 3.7  10
20

 cm
-3

.  These results indicate that the 

underdoped bottom region may lead to relatively high sheet resistance, and the overdoped 

top region would result in strong charge recombination.  In this work, the effect of 

dopant diffusion through selective regions of the surface on the concentration in the top 

region is focused.  Figure 4.7 displays excess dopant concentration above 3.7  10
20

 cm
-

3
 which represents the concentration of electrically inactive dopant in c-Si.  By the 

dopant diffusion through selective regions, the excess concentration was reduced by a 

factor of two under the same diffusion conditions.  Thus, our new method would 

increase open circuit voltage (Voc), fill factor (FF), and photovoltaic efficiency of the 

cells by reducing the concentration of inactive dopant. 
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Figure 4.6.  Calculated dopant concentration profile in periodic triangular grooves for 

(a) dopant diffusion through selective regions of the surface and (b) conventional 

diffusion after pre-deposition and drive-in. 
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Figure 4.7.  Electrically inactive dopant concentration extracted from Figure 4.6. 
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4.3. Application to Thin c-Si Solar Cells 

 Figure 4.8 shows a process flow for fabrication of three different types of thin c-

Si solar cells: (1) a C4v symmetry structured thin c-Si solar cell (through a blue colored 

path), (2) a C2 symmetry structured thin c-Si solar cell (through a red colored path), and 

(3) a C4v symmetry structured thin c-Si solar cell with dopant diffusion through selective 

regions of the surface (through a green colored path).  The first two samples, (1) and (2), 

are for investigating the effect of inverted nanopyramid array’s symmetry on the 

efficiency of thin c-Si solar cells.  The samples with the same C4v symmetry structure, 

(1) and (3), are used for comparing photovoltaic efficiencies between a thin c-Si solar cell 

fabricated by conventional diffusion and a thin c-Si solar cell fabricated by dopant 

diffusion through the selective regions of the surface.  

To make thin c-Si solar cells, p-type Float-zone 250-m-thick c-Si wafers were 

thinned down to 14 m as described in Section 3.2.  The thinned c-Si wafers were free-

standing without frames, and there were no issues on handling by tweezers.  The surface 

flatness of thinned c-Si wafers was good enough for an application of interference 

lithography as shown in Section 3.2.  A 30-nm-thick Si3N4 layer for a KOH etch mask 

was deposited on the thinned c-Si wafer as described in Section 3.3.1.  When the Si3N4 

film was thicker than 30 nm, tensile stress was developed between a Si3N4 layer and a c-

Si layer, hence the underlying thin c-Si wafer was bent.  Two different lattice types of 

etch mask openings, a square lattice for a C4v symmetry structure and a rotated 

rectangular lattice for a C2 symmetry structure, were fabricated by interference 

lithography and reactive ion etching (RIE) as discussed in Section 3.3.3 and 3.3.4.  

Then, the samples were etched in a KOH solution to define an inverted nanopyramid 
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array on the free-standing thin c-Si wafers as described in Section 3.3.5.  For fabrication 

of pn-junctions, the etch masks were removed, and the phosphorous dopant pre-

deposition was performed at 960 
o
C for 2 hours as described in Section 3.4.1 (C4v and C2 

symmetries cells through the blue and red paths, respectively).  In case for the solar cell 

with dopant diffusion through selective regions, the etch mask was not removed to be 

used as a diffusion barrier in pre-deposition as introduced in Section 4.2 (a C4v symmetry 

cell through the green path).  Then, all the samples were cleaned, and the surfaces were 

passivated by thermally grown 1.2 nm-thick SiO2 layers as described in Section 3.4.2.1.  

Remaining dangling Si bonds were terminated by hydrogen (Si-H) using forming gas 

(H2) annealing at 400 
o
C for 10 minutes.  50-nm-thick i-aSi layers were deposited on top 

and bottom of the cell by PECVD as described in Section 3.4.2.2, and the sample was 

continued to the drive-in for crystallization and bi-directional dopant diffusion as 

described in Section 3.4.2.3.  During the drive-in, the temperature was slowly ramped 

from 200 to 950 
o
C at the rate of 83 

o
C/hour to crystallize i-aSi layers.  The bi-

directional drive-in was performed at 950 
o
C for 3 hours and formed highly doped poly-

Si layers for ohmic contacts of electrodes.  These diffusion conditions and passivation 

approaches led to fill factor of 75% in our experiment.  As described in Section 3.4.3, 

the e-beam evaporator was used for depositing a metal contact grid (20-nm-thick-

Ti/1500-nm-thick-Ag/20-nm-thick-Pd) and a metal reflector (1500-nm-thick-Ag) on the 

top and bottom of the cell, respectively.  Then an anti-reflective Si3N4 layer (90-nm-

thick with a refractive index of 1.9 at 633 nm of wavelength) was deposited by PECVD 

on the top of the solar cell as discussed in Section 3.4.4. 
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Figure 4.8.  A fabrication process flow for various types of thin c-Si solar cells, a C4v 

symmetry of inverted nanopyramid array thin c-Si solar cells (through a blue path), a C2 

symmetry of inverted nanopyramid array thin c-Si solar cells (through a red path), and a 

C4v symmetry of inverted nanopyramid array thin c-Si solar cells with dopant diffusion 

through the selective regions of the surface(through a green path). 



81 

 Figure 4.9 (a)-(c) show top view SEM images of inverted nanopyramid arrays of 

(a) a reference C4v symmetry solar cell, (b) a symmetry broken C2 symmetry solar cell, 

and (c) a C4v symmetry solar cell processes by dopant diffusion through selective regions 

of the surface.  As discussed in Section 4.1, we targeted lattice types and periodicities of 

C4v and C2 symmetry inverted nanopyramid array as a square lattice with periodicities of 

700 nm  700 nm and a rotated rectangular lattice with periodicities of 800 nm  900 nm, 

respectively.  The actual periodicities are shown in Figure 4.9 (a)-(c).  Notice that we 

fabricated the identical C4v symmetry inverted nanopyramid arrays [Figure 4.9 (a) & (c)] 

to check the effect of dopant diffusion through selective regions of the surface on solar 

cells, eliminating the effect of light-trapping nanostructures.  The symmetry-broken C2 

symmetry structure [Figure 4.9 (b)] had a rotated rectangular lattice (785 nm x 900 nm).  

For fabrication of pn-junction, we removed Si3N4 etch masks on the samples with the C4v 

and C2 symmetry inverted nanopyramid arrays [Figure 4.9 (a) & (b)] before pre-

deposition.  On the other hand, the sample with the C4v symmetry inverted nanopyramid 

array [Figure 4.9 (c)] was proceeded for dopant diffusion through selective regions of the 

surface without removing the etch mask.  In this case, the etch mask was used as a 

diffusion barrier for pre-deposition.  Figure 4.9 (d)-(f) show the cross-sectional SEM 

images of a C4v reference solar cell, a C2 symmetry solar cell, and a C4v symmetry solar 

cell processed with dopant diffusion through selective regions of the surface, 

respectively.  All the solar cells had almost the same thickness of c-Si layer.  

 Figure 4.10 (a)-(c) show photographs of free-standing 14-m-thick c-Si solar 

cells.  Top metal contact grids were on the nanopyramid arrays, and diffraction patterns 

were visible on top metal grids.  The sizes of the solar cells were about 1 cm  0.5 cm.  
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We are fabricating a full size (1.4 cm  2.5 cm) solar cell with a wavy shaped c-Si 

substrate, and it will be introduced in Section 5.2 as future work.  

 

Figure 4.9.  Top view SEM images of inverted nanopyramid arrays on thin c-Si solar 

cells: (a) a C4v symmetry for a reference solar cell, (b) a C2 symmetry for a reduced 

symmetry solar cell, and (c) a C4v symmetry for dopant diffusion through selective 

regions of the surface. (d)-(f) show side view SEM images of each solar cell. 
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Figure 4.10.  Photographs of fabricated 14-m-thick c-Si solar cells with (a) a C4v light 

trapping reference structure, (b) a symmetry-broken C2 symmetry structure, and (c) a C4v 

symmetry structure processed by dopant diffusion through selective regions of the 

surface. 
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We measured I-V characteristics of the solar cells using a source meter (Keithley 

2400).  A voltage bias was linearly increased from -0.5 V to 0.7 V with a constant step 

size of 0.018 V.  A probing station including four-point sensors and a vacuum stage 

(TFI-5M, PV Measurements) was used for voltage sweeps.  For light I-V characteristics, 

the cells were illuminated by a light beam of the AM1.5 spectrum from a solar simulator 

(ABET, LS-150).  The power of the beam was measured by a thermopile sensor 

(Newport, 919P-003-10) to set the power of the light to be 1000 W/cm
2
.  Figure 4.11 

shows an example of an I-V characterization of a solar cell under a solar simulator. 

 

 

Figure 4.11.  An optical image of a flat solar cell on a vacuum probe station for a light I-

V characterization. 
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The light I-V characteristics of three different thin c-Si solar cells are shown in 

Figure 4.12.  As the symmetry of inverted nanopyramid array was reduced from C4v 

(solid blue line) to C2 (dash-dot red line), the short circuit current density (Jsc) was 

enhanced from 28.2 mA/cm
2
 to 29.9 mA/cm

2
.  The optical calculations and experiments 

in Section 4.1 showed that the symmetry reduction of inverted nanopyramid array from 

C4v to C2 increased light absorption by increasing the number of absorption peaks.  The 

enhanced light absorption generates more charge carriers in a solar cell.  Hence, the 

short circuit current can be increased.  We investigated the optical properties (total 

reflectance and transmittance) of solar cells by a Spectrometer (VERTEX 70, Bruker and 

Lambda 950, Perkin-Elmer) with an integrating sphere (A562, Bruker).  The inset SEM 

images in Figure 4.13 show six inverted nanopyramids of C4v and C2 symmetry arrays.  

The maximum absorption was about 86% because of the shaded area from top metal 

contact grids.  The shaded area of our solar cells was about 10% of the active solar cell 

area.  Figure 4.13 shows a clear enhancement of total light absorption in the thin c-Si 

solar cell with a C2 symmetry inverted nanopyramid array.  The efficiency enhancement 

due to the symmetry breaking of nanopyramids was 1.1%, and it was mainly due to the 

enhancement in Jsc.  The I-V curves (solid blue line vs. dashed green line) in Figure 4.12 

demonstrate that the dopant diffusion through the selective regions of the surface 

increases both fill factor (FF) and open circuit voltage (Voc).  In this case, the Jsc stayed 

at the same level because the symmetry and the lattice constants of nanopyramid arrays 

were almost identical.  This effect amounted to an increase of photovoltaic efficiency 

from 12.5% to 13.3%. 
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Figure 4.12.  Comparison of I-V curves among a C4v thin c-Si solar cell (solid blue line), 

a C2 thin c-Si solar cell (dash-dot red line), and a C4v thin c-Si solar cell with dopant 

diffusion through the selective regions of the surface (dashed green line). 

 

  



87 

 

Figure 4.13.  Comparison of total absorptance between C4v and C2 symmetry inverted 

nanopyramids thin c-Si solar cells.  Inset SEM images show six inverted nanopyramids 

of each structure. 
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5.  CONCLUSION AND FUTURE WORKS 

5.1. Conclusion 

 An application of inverted nanopyramid arrays to thin c-Si solar cells has been 

investigated in two different aspects, an optical property and an electrical property of 

solar cells. 

For further enhancement of light absorption in thin c-Si solar cells, a simple 

method to systematically break the symmetry on inverted nanopyramid array has been 

introduced.  This method makes use of cost-effective and manufacturable wet etching 

steps directly applicable to kerfless or thinned c-Si films.  Following this approach, the 

symmetry was reduced from C4v to C4 to C2.  Our experiment and calculation results 

show that the optical absorptance increases with the symmetry breaking.  As the 

symmetry of the inverted nanopyramid array is broken in the sequence of C4v  C4  

C2, the light trapping efficiency would increase along the path.  In this research, the 

optimized inverted nanopyramid array for thin c-Si solar cells was C2 symmetry structure 

with a rotated rectangular lattice of 800 nm  900 nm.  In general, the number of 

absorption peaks can be increased by breaking the symmetry of the inverted nanopyramid 

array.  

The C4v (700 nm  700 nm) and C2 (800 nm  900 nm) symmetry thin c-Si solar 

cells have been fabricated on a thinned 14-m-thick c-Si wafer.  Our experiments show 

that the total light absorption of a thin c-Si solar cell is improved as the symmetry of 

inverted nanopyramid array is reduced from C4v to C2.  Our I-V characteristic 

experiments show that the photovoltaic efficiency increased from 12.5% to 13.6% as the 
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symmetry was broken from C4v to C2, and the enhancement of solar cell efficiency was 

attributed to an increase of short circuit current. 

 When nanostructure is integrated into thin solar cells, strong doping 

inhomogeneity can develop while a pn-junction is made along a nanostructured surface.  

Such inhomogeneity often develops when the texture size is comparable to or smaller 

than the characteristic diffusion length, and the inhomogeneity decreases solar cell 

efficiency significantly.  Our calculations show that dopant concentration along a 

textured surface can vary by a factor of two when conventional diffusion is performed. 

 To improve inhomogeneity in dopant concentration, we introduced a unique 

method for dopant diffusion through the selective regions of the surface.  The method 

uses a KOH etch mask as a diffusion barrier for pre-deposition.  In this case, the 

inhomogeneity is reduced by diffusing dopant atoms through the selective regions of the 

surface exposed by an etch mask remaining on the surface after texturing.  Our 14-m-

thick c-Si solar cell which was fabricated by the dopant diffusion through selective 

regions increased photovoltaic efficiency from 12.5% to 13.3% by increasing both open 

circuit voltage and fill factor.  While we demonstrate the effectiveness of the dopant 

diffusion through selective regions of the surface in thin c-Si solar cells, our method 

would be broadly applicable to other semiconductor materials, light-trapping structures, 

and optoelectronic devices. 

 

5.2. Future Work 

In this study, the solar cells have been fabricated through the process flows shown 

in Figure 4.5.  There is another version of the solar cell fabrication process which can 
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provide much better open circuit voltage (0.64 V).  The disadvantage of this fabrication 

process is taking longer time to finish the solar cell.  I have further modified this 

fabrication process by integrating three processing steps, crystallization, PECVD, and 

drive-in, into a single step.  This modified process sacrifices the efficiency of the solar 

cells for the better reproducibility of results with simplified experiments.  However, I 

am still suspecting that my modified fabrication processes have not drawn the full 

potential of solar efficiencies.  Therefore, if we solve the reproducibility issues in the 

old fabrication processes, I am expecting a thin (5-15 m) c-Si solar cell with a C1 or C2 

inverted nanopyramid array fabricated by the old process flow shown in Figure 5.1 can 

achieve an efficiency level close to the world's record. 

Figure 5.1.  The process flow for better photovoltaic efficiency with ~0.64 V of Voc and 

75% of FF.  This process flow still needs to be optimized for better reproducibility. 

 

 A free-standing thinned c-Si wafer has excellent flexibility.  A solar cell on 

Ethylene-vinyl acetate (EVA) can be cured on a wavy shaped polymer substrate to 

transform the macroscopic geometry of a thin c-Si solar cell.  The schematic diagram is 
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shown in Figure 5.2.  This wavy structured solar cell will have advantages in 

macroscopic solar cell properties, better heat dissipation, improved impact resistance, and 

an additional geometric light trapping effect.  Fabricating this wavy solar cell is in 

progress, and Figure 5.3 shows optical images of the wavy c-Si wafer. 

 

Figure 5.2.  The process flow for fabricating various geometries of a solar cell with re-

usable template molds. 

 

 

Figure 5.3.  Optical images of a wavy shaped c-Si wafer from (a) a top view and (b) a 

bird’s-eye view.  

 

 Highly boron-doped c-Si is often used as an etch stop layer [76], so boron 

diffusion through the selective regions of the surface shown in Section 4.2 can be used 

for fabricating a second etch mask.  The first KOH etching step produces inverted 

pyramid structures, and the subsequent second KOH etching step after boron diffusion 
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through selective regions etches the region around the inverted nanopyramids.  As a 

result, a new shape of nanostructure, volcano structure, can be fabricated as shown in 

Figure 5.4.  Although it is not clear whether an optical response of the volcano structure 

is better than that of the inverted pyramids or not, the C2 symmetry volcano structure can 

be fabricated without unetched area.  As we manipulated interference lithography to 

fabricate various symmetries of inverted nanopyramid arrays, the unetched area was 

unavoidable as shown in Figure 3.8.  This volcano structure can solve this problem.  

 

 

Figure 5.4.  A SEM image of volcano structure after second KOH etching using a mask 

from the boron diffusion through selective regions of the surface. 
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SUMMARY IN KOREAN 

결정질 실리콘 (crystalline silicon) 박막 태양전지는 가볍고 유연하여 

자동차, 비행기, 이동식 군용 텐트 등에 이용 가능합니다.  필요한 실리콘의 

양이 기존 태양전지의 1/10 수준으로 줄어 셀 제조 비용 또한 줄일 수 

있습니다.  하지만, 빛 흡수층이 얇아 효과적인 태양 빛 흡수를 위해서는 

효율적인 빛 가둠 (light trapping) 기술이 필요합니다. 

본 연구에서는 결정질 실리콘 박막 태양전지의 효율을 높이고자 다양한 

대칭성의 역나노피라미드 배열(inverted nanopyramid arrays)을 적용하였습니다.  

다양한 대칭성의 역나노피라미드 구조를 얻기 위해 간단하고 예측 가능하며 

비용이 효과적인 새로운 방법을 제시하였습니다.  일반적으로 대칭성이 

줄어들면 중첩된(degenerated) 흡수피크(absorption peaks)가 나누어지고 새로운 

공명의 흡수피크를 만들어내 태양전지의 빛 흡수가 증가합니다.  

태양전지 나노 구조 배열의 대칭성이 C4v  C4  C2 로 줄어들 때 

실리콘층의 빛흡수가 증가함을 컴퓨터 시뮬레이션과 광학실험을 통해 

확인하였습니다.  태양전지 적용에 최적화된 구조는 C2 대칭성을 갖고, 800 nm 

 900 nm의 직사각형 격자구조가 실리콘 [100] 방향을 따라 실리콘 

[110]으로부터 약 22.5 도 회전한 역나노피라미드 배열의 구조입니다. 

이러한 나노 구조를 태양전지에 적용할 때 태양전지의 전자기적 현상 

또한 고려해야 합니다.  PN 접합이 나노 구조를 따라 확산에 의해 형성될 때 

도펀트의 농도는 나노 구조의 위치에 따라 불균일해 졌고, 이는 컴퓨터 

시뮬레이션을 통해 확인하였습니다.  이러한 농도의 불균일함은 태양전지의 
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효율에 악영향을 미치므로 이를 해결하기 위해 나노 구조를 만드는 데 

사용했던 마스크를 재활용하여 도펀트의 선택적 확산 방법을 제시하였습니다. 

세 가지 종류의 박막 태양전지를 제작하여 태양전지의 효율에 대칭성과 

선택적 확산이 어떻게 영향을 미치는지 실험하였습니다.  태양전지 나노 

구조의 대칭성이 줄어들 때 효율이 12.5%에서 13.6%로 좋아짐을 

확인하였습니다.  이는 효율적인 빛흡수를 통해 더 많은 전하 캐리어(charge 

carriers)가 생성되어 단락 전류(short circuit current)가 증가했기 때문입니다. 

선택적 확산을 이용해 만든 태양전지의 경우 개방 회로 전압(open circuit 

voltage)과 채우기 팩터(fill factor)가 증가하였으며 이로 인해 효율은 12.5%에서 

13.3%로 증가하였습니다 
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