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Abstract 

 

 

Calcium leached from NUKON fiberglass in containment following a Loss of Coolant 

Accident (LOCA) could lead to the formation of chemical precipitates that in turn cause 

head-loss increase due to filtering through a fibrous debris accumulation at the sump pump 

screens. Experiments conducted on the bench scale show that the level of fiberglass 

destruction does not affect the concentration of calcium leached. Reduced-scale 

experiments were conducted on three solution inventory scales (0.5 L, 31.5 L, 1136 L) with 

three different flow conditions, and two fiberglass concentrations to investigate calcium 

release from NUKON fiber. Results showed that the calcium leached at a constant 

temperature of 80 C in borated-buffered solution over a 30-day period has a repeatable 

behavior. The calcium concentration behavior can be divided into four distinct regions as 

a function of time. These distinct regions are comprised of a prompt release of calcium, a 

metastable region, followed by an autocatalytic drop region and a final stable concentration 

region. The prompt release of calcium determined by the fiberglass concentration 

determined the maximum calcium concentration reached and the time taken to reach the 

metastable position. The metastable position of calcium is due to the formation of an 

amorphous calcium phosphate (ACP) whose solubility is decreased by the presence of 

magnesium, which also leaches from NUKON fiberglass. Magnesium has been shown to 

behave in a similar manner as calcium. The magnesium concentration initially increased to 

the metastable solubility limit of calcium and then drop out of solution. This drop in 

magnesium concentration coincides with the autocatalytic drop in calcium concentration 

to the final stable position. Understanding the calcium leaching from NUKON fiberglass a 

prototypic debris bed prepared with NUKON fiberglass and particulates was generated in 

a vertical head-loss column to quantify the corresponding head-loss change due to the in 

situ calcium leaching. The measured head-loss slope was compared to regional changes in 

calcium concentration and found to continually increase from 4.4” H2O to 12.2” H2O 

(Head-loss temperature corrected to 20oC over an experimental period of 20 days. 
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Chapter 1: Introduction and Background 

1.1 Introduction 

The primary objective of the work described in this thesis is to characterize the leaching of 

calcium from low density NUKON fiberglass in trisodium phosphate (TSP) buffered and 

borated post loss of coolant accident (LOCA) containment water and characterize the head-

loss associated with its precipitation and filtration through a debris bed accumulated at 

containment sump screens. Generic Safety Issue - 191 (GSI-191) was issued by the Nuclear 

Regulatory Commission (NRC) in 2004 requiring licensee operators of pressurized water 

reactors (PWRs) to perform plant specific analysis and possible modifications due to the 

concerns associated with debris accumulation at sump screen in the event of a LOCA. 

Specifically, the potential accumulation of containment debris at the emergency core 

cooling system (ECCS) sump strainer, could prevent recirculation of coolant water to the 

reactor core. The ECCS pump is designed to return water released into containment back 

into the reactor to prevent the core from overheating through continued recirculation of 

released coolant. Pumping water from post-LOCA containment floor may transport debris 

generated in the accident from jet impingement in the break vicinity, and latent debris to 

the sump screens, forming a bed and leading to head-loss across the sump screen debris 

bed. If head-loss increases and subsequently lowers the available net positive suction head 

(NPSH) below the design margin, the ECCS may not be able to adequately cool the reactor. 

The formation of chemical precipitates may lead to further head-loss through filtration of 

corrosion products across the debris bed; this additional head from generated precipitates 

is known as chemical effects. 

Major contributors to corrosion products in post-LOCA containment include 

aluminum, calcium, and zinc. A fiberglass thermal insulation product NUKON, is a major 

contributor to released materials, the most significant being calcium. Calcium and the other 

elements released by NUKON can interact with containment materials to form precipitates. 

To the author’s knowledge, no research on the separate effects of calcium leached from 

NUKON in a TSP buffered containment has been reported in the general literature. In an 

effort to understand the behavior of calcium leaching from fiberglass, leaching experiments 

were carried out in numerous bench scale investigations, and two large-scale experiments, 
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under variable flow conditions from the bench experiments. The research presented here 

reproduced the behavior of calcium on all spatial scales out to 30 days and identified four 

distinct behavioral regions. This research was able to provide an explanation for the four 

observed regions, and link the behavior of calcium, to the behavior of magnesium also 

leached from NUKON fiberglass. Ultimately, a test was run in a vertical head-loss column 

using a prototypical debris bed. The head-loss behavior was compared to the change in 

head-loss over a 20 day period. This research quantifies the separate effects behavior of 

calcium leached from NUKON in post-LOCA containment and sets a foundation for 

separate effects leaching from NUKON at high temperature. Furthermore the research 

provides insight for future researchers to continue investigations of calcium leached from 

NUKON fiberglass in post-LOCA containment. 

1.2 Loss of Coolant Accidents in PWRs  

Figure 1 shows the normal operation of the primary loop of a typical PWR. The primary 

PWR major components include a reactor vessel which houses the reactor core, steam 

generators to transfer heat to a secondary loop, reactor coolant pumps, a pressurizer to 

maintain a high pressure within the primary loop, and accumulators to supply immediate 

water to the reactor in the case of a loss of coolant accident. The reactor coolant enters the 

loop through the cold leg, flows through the down-comer, and into the pressure vessel 

lower plenum. The water is then circulated from the lower plenum, up the center of the 

reactor core where the fuel rods exchange heat to the water due to fission. The heated water 

exits the vessel through the hot leg heading toward the steam generator, where heat is then 

exchanged to a secondary loop. The secondary loop sends high quality steam to a steam 

turbine to produce power. Following the turbine low quality steam is condensed and sent 

back to the steam generator as feed water (Levy, 1999). 



Chapter 1: Introduction & Background 

3 

 

Figure 1: Typical Pressurized Water Configuration 

The LOCA is an accident scenario where a break in the primary coolant loop occurs 

in either the hot or cold leg. Immediately following the pipe break, the reactor enters a 

sequence known as the blowdown phase. During this stage of the LOCA, subcooled water 

escapes through the pipe break at a maximum of 315oC and 2200 psi (Lahti 2013). 

Stagnation of water occurs in the core due to the differences in flow conditions favoring 

flow out of the pipe break over flow through the pump. The reactor rapidly depressurizes 

and the water in the upper plenum, hot leg, and pressurizer reach saturation pressure and 

temperature, causing consequential flashing into steam. A preset low pressure point is 

reached at which point control rods are inserted, and the primary coolant pumps trip, but 

continue to rotate in a coast-down mode (Levy, 1999).  

The blowdown phase is terminated at the initiation of water insertion from the intact 

accumulator loop, and the reactor enters a phase known as the Emergency Core Cooling 

(ECC) bypass or refill. During this stage, borated water flows from the accumulator into 

the lower plenum. Some of the influent accumulator flow is swept out through the break 
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leading to the lower plenum undergoing a series of influent water build ups, and effluent 

water sweep outs, until the reactor vessel depressurizes more, at which point water will 

remain in the lower plenum. At this point the recirculation period of the LOCA initiates, in 

which the ECCS pumps water from the Reactor Water Storage Tank (RWST) into 

containment through the containment spray system (CSS) (Levy, 1999).  

The initiation of the ECCS pumps leads to the safety concern known as GSI-191, 

specifically addressing the issue of debris accumulation on the PWR sump screens and the 

induced loss of NPSH by the ECCS pump. As shown in Figure 2, debris can be removed 

by jet impingement in the vicinity of the break. Flow from the break may induce the 

transport of removed debris to containment floor. Suction from the ECCS may further 

induce transport of accident debris and latent containment debris to the sump pump screens. 

Increased head-loss across this debris bed due to this accumulation could lead the NPSH 

to fall below the pump design margin, preventing the ECCS from properly cooling the 

reactor (Lee et. al. 2008). There is further concern that an increased loss in NPSH could 

occur due to the particulate generation from interactions between containment materials 

and chemicals leading to the formation of chemical precipitates. Chemical precipitates may 

be filtered by debris at the sump screen leading to a decrease in NPSH known in the 

industry as chemical effects (Bum 2013). 
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Figure 2: Hypothesized GSI-191 LOCA Scenario (Ali, 2014) 

 

1.3 History of Generic Safety Issue – 191 
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recirculation in the event of a LOCA with up to 50% of the sump screens (PWR) or suction 

strainer (boiling water reactor (BWR)) area blocked. In the late 1970s the NRC began 

questioning the design basis of the 50% blockage criterion with the filing of unresolved 

safety issue (USI) A-43 (Hart 2004) addresses the NPSH falling below design 

specifications due to the accumulation of LOCA generated debris on the sump screens. At 

the time no recirculation system strainer had been designed with regard to the head-loss 

and the strainer structural integrity due to the associated increase in pressure. The NRC 
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This resolution promoted the idea that post-LOCA debris accumulation was solely an 

insulation problem (the less fibrous material the lower the chance of a potential blockage). 

This reasoning remained predominate until incidences of BWR strainer blockages occurred 

beginning in 1993 (Hart 2004). 

On April 26, 1993 the NRC issued Information Notice (IN) 93-34 in response to 

the second of two strainer blockages at Cleveland Electric Illuminating Company’s BWR 

Perry-1 plant. The first incident had happened in February of 1992 when miscellaneous 

fibers in the suppression pool were pulled into the Residual Heat Removal (RHR) suction 

strainer causing a sudden decrease in NPSH to 0 psig. This incident was relatively 

unpublicized and not considered significant until the second Perry-1 blockage incident 

occurred following a Swedish safety incident at Barseback-2. In the summer of 1992, the 

Swedish BWR Barseback-2 experience a strainer blockage, due to a safety relief valve 

(SRV) discharging and subsequently sending 220 pounds of mineral wool (thermal 

insulation) into the suppression pool and leading to possible cavitation in 1 of 2 operational 

suction strainers. This incident at Barseback-2 lead to the backfitting of Swedish BWRs to 

increase suction strainer area. Due to the Barseback-2 incident the second incident at Perry-

1 brought the concern of debris accumulation at strainer screen into the NRC’s focus as 

well as the United States public eye.  

The second incident at Perry-1 in February 1993 was caused by an intentional 

discharge of the SRV, and the RHR system. In this event, no thermal insulation was added 

to the suppression pool by SRV release or any other known source, but miscellaneous fiber 

did accumulate on the strainer. Following the fibrous accumulation on suction strainers, 

the fibers then filtered out iron oxide particulate coming from the main steam and feedwater 

carbon steel piping and equipment. The very thin layer of filter fibers led to very high head-

loss; accumulating to the point of suction strainer deformation. This incident was not 

immediately understood but eventually changed the industry’s understanding of USI A-43 

(Hart 2004). 

This shift in perception with regards to the decrease of fibrous material in 

containment, came about because the source of the fiber was never identified, nor listed in 
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documented fibrous material logs. The fiber would later be known as “latent” fibrous 

material, and the resolution to USI A-43 was to reduce and control the fibrous insulation 

in containment was now deemed inadequate. To understand the events leading to 0 NPSH 

at the Perry-1, the NRC hired an outside consulting company to develop a head-loss 

correlation which considered not only fibrous material but particulates as well. This 

correlation is known as the NUREG-6224 correlation (more colloquially known as the 

6224 correlation) and remains the industry standard to this day. The 6224 correlation 

predicts head-loss as a function of water velocity, water viscosity, particulate type and 

quantity. It was determined, from the 6224 correlation, that the relationship between head-

loss and fiber quantity to be highly nonlinear, and non-monotonic, however linear with 

respect to particulate quantity. This correlation gave a clearer explanation to how high 

head-loss developed at Perry-1 due to a thin debris film, and large particulate quantity. The 

6224 correlation further challenged the understating to the resolution to USI A-43 in that 

for the same flow conditions and particulate amount would result in a lower head-loss for 

increased fiber quantity. This head-loss correlation led to the issuance of bulletin 96-03 in 

May of 1996, which led to every BWR back-fitting units with new, large surface area 

suction strainers (Hart 2004). 

Throughout the late 1990s, the NRC issued a number of reports for BWRs 

considering major contributors of particulates in the suppression pool to be paint chips and 

concrete. The relevance of these sources were not well understood with respect to PWRs 

due to their main difference such as the suppression pool, containment configuration, less 

carbon steel piping, and the difference in post-LOCA water chemistry. PWR investigation 

started with the issuance of GSI-191 in June of 2004. An initial case study conducted by 

Los Alamos National Lab (LANL) identified for a Large Break LOCA (LBLOCA) 60 of 

69 US PWRs were either “likely” to “very likely” to have  a sump screen blocked by mixed 

debris (Hart 2004). Since its issuance, GSI-191 has created a tremendous amount of 

industry research in the form of thermodynamic modeling [4,5], materials transport testing 

(Lee et. al 2008), bench scale materials leaching tests (Lane et. al 2006), vertical head-loss 

testing (Park et. al., 2006), and integrated tank testing of representative post LOCA 

materials (Dallaman et. al., 2006). Due to the overwhelming amount of collected data with 
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respect to GSI-191, this review will focus only on the research conducted with relevance 

to the release of calcium from NUKON fiberglass. 

1.4 Historical GSI-191 Calcium Research 

Previous calcium testing for GSI-191 has been carried out primarily at three testing 

locations: Westinghouse Science & Technology (WEC) (Lane et. al 2006), the University 

of New Mexico (UNM) (Dallaman et. al., 2006), and Argonne National Lab (ANL) (Park 

et. al., 2006). Of the three primary metals (Al, Ca, & Zn) calcium research has received the 

least emphasis to date. Significant containment calcium sources include concrete and 

piping insulation such as calcium silicate (Cal-Sil), a drywall-like piping insulation and 

NUKON fiberglass. The WEC program focused on bench scale separate effects leaching 

to study all documented containment materials. UNM conducted a series of scaled 

containment leaching experiments known as the integrated chemical effects test (ICET) 

representing a range of prototypical containment material and chemistry. ANL used results 

obtained from ICET program and chemical surrogate procedures developed at WEC known 

as WCAP-16530-NP (Lane et. al 2006) to investigate and quantify the expected head-loss 

due to the generation of these chemicals in different amounts. Additionally, 

thermodynamic modeling has been conducted (McMurrary et. al., 2006; Jain et. al., 2005) 

as it is an inexpensive and quick method to simulate a large number of containment 

conditions. The thermodynamic modeling presented herein sought to validate data obtained 

in ICET testing to understand the relevance of results obtained from selected 

thermodynamic modeling software. 
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The WEC research (Lane et. al., 2006) focused on benchtop leaching tests at two 

temperatures (87.8oC (190oF), 96.1 (205oF)), three values of pH (4.1, 8, 12) and three time 

scales out to a maximum of 90 min. These tests were conducted without the presence of 

TSP, but TSP was added to the end of some leaching tests. Following the addition of TSP 

filtered samples found precipitates not previously present. Using the total metals data 

versus leaching time obtained in the bench test, a liner regression was used to fit 

coefficients to a leaching model known as WCAP-16530-NP (WCAP). A sensitivity 

analysis using WCAP to model the initial release of 1 gram of NUKON fiberglass in a 500 

mL solution has shown that the release rate is dependent on temperature but relatively 

unaffected by pH. The WCAP model has been found unrepresentative of calcium leaching 

from NUKON fiberglass in a TSP buffered environment. The modeling of the NUKON 

fiberglass leaching as well as the many other separate effects leaching experiments 

conducted in WCAP-16530-np provided insight to results obtained from integrated testing 

efforts. 

 

Figure 3: WCAP-16530 Calcium Release Rate for 1 g of NUKON™ at time zero 
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Figure 4: WCAP-16530 Calcium Release Rate for 1 g of NUKON™ at time zero 
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the LOCA. Water is continuously circulated from the bottom of the tank and back into the 

tank through headers on the north and south side of the tank.  

Table 1: ICET Experimental Conditions (Dallaman et. al., 2014b) 

Experimental scale 250-gallon tank test 

pH *See Table 2 for test-specific pH target values 

Temperature 60°C 

Testing Duration 30 days 

Chemicals 

*See Table 2 for test-specific buffer and insulation information 

Aluminum (118 ft2) 

Galvanized steel (268 ft2) 

IOZ coated steel (154 ft2) 

Copper (200 ft2) 

Uncoated steel (6 ft2) 

Concrete(0.0014 pounds per ft3water) 

Insulation Material (CalSil or NUKON) 0.54 g/L 

Source of Ca Fiberglass, Concrete, Cal-SIl 

 

Table 2: Expected pH, buffer and insulation used for ICET (Dallaman et. al., 2014b) 

Experiment pH Buffer Insulation NUREG 6914 

volume 

ICET 1 10 NaOH NUKON Volume 2 

ICET 2 7 TSP NUKON Volume 3 

ICET 3 7 TSP Cal-sil (80%) and NUKON (20%) 

mix 

Volume 4 

ICET 4 10 NaOH Cal-sil (80%) and NUKON (20%) 

mix 

Volume 5 

ICET 5 8.5 NaTB NUKON Volume 6 
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Figure 5:  ICET- Test loop Schematic and coupon rack arrangement inside the tank (Dallaman et. al., 

2006) 

Most relevant to the research presented here was ICET 2 (Dallaman et. al., 2006), 

conducted using a TSP buffer at a temperature of 60oC, with a NUKON concentration of 

0.54 g/L. The NUKON used in this test was heat treated on one side at 600oF for 1 day 

leading to the browning of one side. This burning represented prototypical heat experience 

in the power plant. The fiberglass was then run through a leaf shredder twice. There was a 

total of 4.58 ft3 enclosed in a stainless steel mesh bag. One quarter of the NUKON was 

placed in the containment spray (unsubmerged) area and the other three quarters were 

submerged. The mesh bags reduced the movement of fiberglass through the tanks. Results 

of this test indicated that the test fluid remained Newtonian at all times of the test, at room 

and test temperatures. Analytical measurements found the presence of calcium, 

magnesium, silica, and sodium present in solution but not aluminum. Fiberglass examined 

at the 15thand 30th day showed a web-like material present on the fiberglass which increased 

between the 15 to 30 day period. The calcium in solution remained constant at 

approximately 8 mg/L through the duration of the test (Figure 6). This behavior was found 

the match the behavior observed in the testing conducted for this research. Ultimately, the 

question of the chemical effects on head-loss was conducted at ANL where scenarios were 

run in which representative amounts of chemicals leached in ICET were used to measure 

head-loss across a debris bed using surrogate methods developed by the WEC bench tests.  
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Figure 6: ICP-AES analysis for filtered and unfiltered samples of Ca & Mg during the ICET-2 30 day 

testing period (Dallaman et. al., 2006) 

The question of the effects of LOCA-specific chemistry on sump screen head-loss 

was addressed by tests performed at ANL. The testing matrix considered the relative 

amounts of debris and precipitates arriving at the screen. The possible precipitates were 

dependent on containment sump residence time, transport time to the screen, initial 

containment pH, containment sump temperature, and the buffer dissolution rate. Tests were 

designed based on scenarios in which representative amounts of chemicals leached (based 

on ICET results) were used to measure head-loss across a debris bed using surrogate 

methods developed by Westinghouse bench tests. A series of the ANL experiments focused 

on calcium chemical effects, using two types of insulation: Calcium-Silicate and NUKON 

fiberglass. The loop contained a total of 119 L, a residence time of 4 minutes and loop 

velocities ranging from 0.02 – 2 ft/s, as well as heating and cooling capabilities (Figure 7). 

Fiberglass beds prepared for head-loss testing were of the blended form, which yields 

highly inconsistent head-loss results for replicate experiments.  
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Figure 7: Schematic of the ANL test loop & vertical column perforated plate with 51% flow area, 3/16” 

holes, & ¼” staggered centers 

ANL concluded that the relationship between head-loss and fiberglass amount is 

highly nonlinear and monotonic, as was previously determined in the 6224 correlation 

(Bum 2013). ANL further concluded that there was variable time between 1 to 4+ days to 

reach an equilibrium concentration of calcium. Deeper insight from these head-loss tests 

can be obtained by considering which calcium precipitate forms, how it may form and the 

precipitates properties such as size, shape, and stabilizing agents. These types of 

understandings have proved somewhat difficult due to the many complications of the 

containment system, but simulations run by thermodynamic software help provide insight 

to these types of questions. 

LOCAs result in rapid changes in the time, temperature, pressure, chemistry, and 

pH conditions in containment. The materials in containment lead to further complications 

by interactions among materials present in the lower region of containment. 

Thermodynamic modeling provides an important role due to its ability to provide quick, 

cheap results for varying containment parameters. Following the measurements of 

corrosion rates, calculations of exposed surface area, and exposed time, thermodynamic 

simulations were run to investigate if debris generation and head-loss can be subsequently 

increased due to interactions between exposed materials and the ECCS/ CSS. The 

simulations utilized a number of different chemical speciation thermodynamic modeling 

software.  
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For each tested software, blind and predictive studies were simulated and compared 

to investigate if a particular program outperformed the others when compared to the results 

of ICET. The software comparison showed that the programs were most sensitive to the 

initially provided database and the chemical species it contained. No one software 

outperformed the others for all cases but some proved easier to manipulate parameters than 

others. Accuracy of the models was increased when using informed bench measurements 

when compared to the ICET testing, but no exact replication of experimental results could 

be simulated for all species. Important containment materials considered included copper, 

galvanized steel, aluminum, NUKON, and concrete. 

Important thermodynamic modeling findings show that the dominate phases 

formed were controlled by the presence of NUKON, aluminum, and concrete. The majority 

of the predicted dominate solid phases consisted of potentially amorphous silicate phases 

such as sodium aluminum silicate, calcium magnesium silicate, calcium silicate, and silica. 

Sodium aluminum silicate was always dominant, and could lead to the formation of a gel 

like substance in alkaline solutions. Based on the dissolution rate of NUKON the average 

fiber insulation at 60oC and an average of 7 µm diameter would leach in 180 hours. 

Furthermore, the leached contribution from NUKON is ~10,000 times more than that for 

concrete walls. Important findings for the thermodynamic modeling are summarized 

below. 
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Table 3: Constituent comparisons for thermodynamic modeling results at neutral and basic pH 
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1.5 Research Motivation 

Calcium testing conducted by Westinghouse bench tests were not leached in the presence 

of TSP and were only allowed to leach for a maximum of 90 minutes, leading to an 

unreliable leaching equation for NUKON fiberglass leaching in a TSP buffered solution 

and inconclusive results to solution behavior beyond 90 minutes (Jain et. al., 2005). To the 

author’s knowledge, separate effects testing of calcium leached from NUKON fiberglass 

in the presence of TSP at high temperature has not been reported. Furthermore, to the 

author’s knowledge, no combination of vertical head-loss through a prototypic debris bed 

and measurements of metals in solution has been conducted. This research was conducted 

to characterize chemical effects from calcium precipitation leached from NUKON 

fiberglass in LOCA conditions where consulting team partners provided input conditions 

for Southern Nuclear Company (SNC) Vogtle LOCA conditions.   
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Chapter 2: Precipitation Chemistry and Thermodynamic Modeling 

2.1 Background 

Post-LOCA containment scenarios encompasses a large array of variable materials and 

subsequent chemical conditions, depending of the type of break (e.g. large, small, double 

guillotine, etc.) and the plant design (e.g. materials used, plant layout, etc.). Historical 

approaches to investigating this problem include the testing of separate and integrated 

effects and thermodynamic modeling. This section presents background information on 

important post-LOCA containment chemicals and thermodynamic modeling basis for the 

conducted experiments. Additionally, this section will outline the chemistry basics of 

multi-protic acids, calcium orthophosphates, and present thermodynamic models which 

will predict the concentration of calcium orthophosphate present in experiments conducted 

during the course of this research. 

2.2 Post-LOCA Solution 

2.2.1 Orthophosphates  

Orthophosphates are added to the post-LOCA environment in the form of a dry chemical, 

TSP (Na3(PO4)2
.12 H2O). An orthophosphate is comprised of one phosphorous joined to 

four oxygens (PO4
3-). Examples of other phosphates include meta- (PO3

-), pyro- (P2O7
4-) 

and poly- ((PO3)n
n-) (Dorozhkin, 2007). Orthophosphates are triprotic acids, having three 

pKa values which determine the phosphate’s level of protonation for a particular pH, 

increasing protonation with decreased pH. The behavior of orthophosphate deprotonation 

can be observed in Equations 1, 2, 3, and graphically in Figure 8, with the most protonated 

species (H3PO4) dominating at low pH, and the most deprotonated species (PO4
3-) 

dominating at high pH. The point at which the concentrations of an acid and its conjugate 

base are equal it at the point which pH equals pKa.  



Chapter 2: Precipitation Chemistry and Thermodynamic Modeling 

19 

𝐻3𝑃𝑂4

 
↔ 𝐻2𝑃𝑂4

− +  𝐻+ 𝑝𝐾𝑎1 =  2.16 (1) 

𝐻2𝑃𝑂4
−  

↔ 𝐻𝑃𝑂4
2− +  𝐻+ 𝑝𝐾𝑎2 =  7.20 (2) 

𝐻𝑃𝑂4
2−  

↔ 𝑃𝑂4
− +  𝐻+ 𝑝𝐾𝑎3 =  12.35 (3) 

When phosphates are present in sufficiently high concentrations in calcium 

containing carbonate systems, orthophosphates dominate precipitation reactions (Bachra 

et. al., 1965). To demonstrate the high orthophosphate concentration in comparison to 

carbonate, a log10(Concentration) (log(C)) vs. pH diagram was generated for prototypic 

phosphate values for a LBLOCA of 5.83 mM TSP and a typical fresh water carbonate level 

of 0.97 mM. The true post-LOCA accident scenario would be expected to have much lower 

values of carbonate. One should note this graph makes a simplifying assumption that the 

system is closed, which is not the case in a LOCA. A prototypic post-LOCA containment 

solution is seeking an equilibrium with containment gases, but this graph demonstrates that 

if one were to consider carbonate levels as high as those found in typical fresh water, the 

phosphate level is still an order of magnitude higher than the carbonate system.  

 

Figure 8: Log(C) vs. pH for prototypic phosphate and typical carbonate levels 
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2.2.2 Orthophosphate & Boric Acid 

The two main constituents in post-LOCA water chemistry are TSP and boric acid. 

Modeling these two constituents provide insights into the expected solution pH and 

illustrate the accompanying dominant boric acid concentration. Boric acid is a weak acid 

used to control reactor activity, and is present in varying quantities during normal reactor 

operation. Unlike orthophosphate, boric acid is a monoprotic acid with a pKa of 9.24 

(Equation (4)). The log(C) vs. pH diagram in Figure 9 includes a prototypical post-LOCA 

concentration of H3BO3 (221.3 mM), provided for a break taking place when boric acid is 

at a concentration near the higher concentration during reactor operation (provide by 

outside consulting partners (Olson, 2014a)). The 5.53 mM of phosphate buffer addition 

from the dissolution of TSP allows for an estimation of pH using a graphical method, which 

is generated from mass balance on the hydronium concentration by a method known as the 

proton condition.  

𝐻3𝐵𝑂3

 
↔ 𝐻2𝐵𝑂3

− +  𝐻+ 𝑝𝐾𝑎1 =  9.24 (4) 

The solution pH may be estimated by establishing a proton reference level (PRL) 

for each species of interest e.g. H3BO3, PO4
3-, and H2O. The PRL is used as a reference to 

define the amount of pronation for each conjugate acid or base associated in comparison 

to the chosen reference level. The protonated and deprotonated species that are higher and 

lower than the reference level are shown in Table 4. Notice that because the H2PO4
- and 

H3PO4 species are two and three times as protonated as the PRL, each of these constituents 

are multiplied by a coefficient equal to the amount by the amount more protonated. This 

leads to the slight change observed in the relative maximums of the orthophosphate species 

seen in Figure 9. 
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Table 4: PRL table displaying the species applied in a graphical charge balance used to determine the solution pH 

PRL H3BO3 PO4
3- H2O 

>PRL - 

[HPO4
2-] 

[H]+ [2 * H2PO4
-] 

[3 * H3PO4] 

<PRL [H2BO3
-] - [OH]- 

 The pH may be estimated graphically by beginning to trace from 2 points in Figure 

9; (1) starting from the species that dominates at pH 0 ([H+]) and (2) from pH 14 ([OH-]).  

The pH is then found by tracing the dominating species defined by the PRL (Table 4), from 

low pH in the positive x-axis direction and the high pH in the negative x-axis direction, 

until the two curves intersect. If one subsequently follows each intersected dominating 

species curve, until the species intersect, the predicted pH is approximately 7.5, where the 

H2BO3
-
 curve meets the H2PO4

- curve. This estimate leads to an inaccurate result in this 

case because at boric concentrations greater than 0.025 M, boron will form polynuclear 

complexes with itself (Austria, 2008), which cannot be predicted by a simple mass and 

charge balance model. Further due to the multiple intersecting lines it is difficult to say that 

one species equals another. As will be discussed later, the expected pH will be 7.1 at 80oC 

from equilibrium modeling, using a software package Visual MINTEQ (Gustafsson, 2012) 

and insights from shakedown bench testing. Nonetheless, the diagram describes the species 

concentrations dependence on pH and demonstrates that H3BO3 is the dominant boron 

species and HPO4
2- is the dominant orthophosphate species in the region around pH 7.1.   
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Figure 9: Log(C) vs. pH for prototypic phosphate and boric acid concentrations 
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tetracalcium phosphate (TTCP) will not be considered for this analysis due to lack of 

fluoride source in containment, and TTCP cannot be precipitated from aqueous solution 

(Dorozhkin, 2007.) 

Table 5: Existing calcium orthophosphates and their major properties (Dorozhkin 2010) 

 

2.3.1 Dicalcium Phosphate Dihydrate (DCPD) & Dicalcium Phosphate Anhydrous 

(DCPA)  

DCPD (CaHPO4
.2H2O) is the most soluble of calcium orthophosphates considered in this 

review and is known by the mineral name brushite (Dorozhkin, 2007). Brushite has the 

fastest formation kinetics of all calcium orthophosphates. These rapid nucleation kinetics 

are believed to be due to the higher solubility, caused by the hydration layers of water. 

Brushite has been proposed as a precursor phase to both Hydroxyapatite (HAp) and 

octacalcium phosphate (OCP). The structure consists of chains of CaPO4
 (Figure 10) with 

layers of water populating the lattice in between. The interface has two separated water 

bilayers: (1) highly ordered layer incorporated into the DCPD crystal structure, and (2) 

exhibits no order, and is only seen layering in the direction perpendicular to the CaPO4 

layers. Magnesium ions have been found to disrupt brushite crystal formation favoring 

thermal hydrolysis to monetite (Shadanbaz, 2014). DCPA, known as the mineral monetite, 
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is similar to DCPD in that it can precipitate from solution, but is less soluble, attributed to 

the lack of water molecules in its structure (Dorozhkin, 2007). 

DCPD is also reported to transform to DCPA at temperatures above 80oC.  

 

Figure 10: A) Scanning probe microscopy (SPM) image of growing hillocks on brushite surface. B) Brushite formation 

shown for one atom; dark lines indicate the newly created edge length. C) overview of brushite atomic structure (Ca 

(light blue), O from HPO4 (red), O from water (dark blue), P coordinated with 4 O (grey tetrahedrons), and H (white). 

D) calcium cluster E) phosphate cluster F) side view of (C) (Qiu & Orme, 2008) 

2.3.2 Octacalcium Phosphate  

Octacalcium phosphate (OCP) has been identified as metastable with respect to HAp and 

a possible precursor phase to the formation of HAp and calcium deficient Hydroxyapatite 

(CDHA). The crystal structure of OCP is remarkably similar to that of HAp (Gustafsson, 

2012), with arrangements of calcium and orthophosphate ions separated by hydrated layers 

such as those in DCPD. OCP’s crystal structure is that of apatite separated by hydrated 

layers. Conversion of OCP to HAp can occur within the crystal structure when water 

molecules enter the hydration layer. OCP to HAp is most commonly accomplished by the 

hydrolysis reaction shown in equation 1 (Gustafsson, 2012): 
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𝐶𝑎8𝐻2(𝑃𝑂4)6 ∗ 5𝐻2𝑂 +  2𝐶𝑎2+  
 

→ 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 +  4𝐻+ (5) 

In neutral solutions hydrolysis of amorphous calcium phosphate (ACP) to OCP has 

been observed. It has also been proposed that OCP is as an intermediate phase between 

ACP and HAp (Gustafsson, 2012). In an experiment carried out at constant temperature 

(26oC), and constant pH 8.50 (Feenstra & De Bruyn, 1979), the extent of reaction exhibits 

three slopes (Figure 11). The extent of reaction was found by an iterative method of 

calculating the level of supersaturation for each solubility product, here considering only 

OCP, TCP, HAp, and DCPD. The experiment concluded that it is not unlikely that ACP 

behaves as a template for heterogeneous nucleation of OCP which in turn serves as a 

template for epitaxial growth of HAp. 

 

Figure 11: Growth curve of pH 8.50 at 26oC plotted as extent of reaction versus time (Feenstra & De Bruyn, 1979) 

2.3.3 α -Tricalcium Phosphate (α-TCP) & β-Tricalcium Phosphate (β-TCP) 

β-TCP cannot be precipitated from aqueous solutions, and exists only from the 

decomposition of another calcium orthophosphate at high temperature such as heating 

CDHA to temperatures  above 800oC, or interactions of acidic calcium orthophosphate 

such as DCPD with a base CaO (Dorozhkin, 2007). If heated to temperature above 1125oC 

β-TCP can transform to α-TCP. α-TCP can be stabilized by the presence of silica at 

temperatures between 800-1000oC.  β-TCP is less soluble than α-TCP in room temperature 
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water, and α-TCP is known to react more quickly than β-TCP. Although they have the 

same chemical composition each phase differs in crystal structure (Dorozhkin, 2007). 

Solubility data (Figure 12) from recent research shows the solubility of β-TCP to be lower 

than previously reported (Pan & Darvell, 2009). 

 

Figure 12: Titration curves for β-TCP in 100 mM KCl solution at 37.0 ±0. oC. HAP results for comparison. Regression 

lines added for only to show change in slope.  

2.3.4 Amorphous Calcium Phosphate (ACP) 

ACP appears spherical (diameter ca. 30-100 nm), with the particle size of ACP depending 

on containment pH, Ca/ PO4 concentration, and temperature. ACP is the first precipitate 

formed from the rapid mixing of supersaturated calcium and orthophosphates; the affinity 

for ACP is believed to be due ACP having lower surface energy than OCP and HAp. The 

transformation of ACP to HAp is a solution mediated first-order reaction which is regulated 

by both the dissolution of ACP and the nucleation of HAp.  The rate of the autocatalytic 

transformation of ACP to HAp, at a given temperature, is determined by the solution pH, 
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independent of the type of buffering or calcium/ phosphate salts used, etc. (Posner et. al., 

1975). The interfacial surfaces of the emerging crystalline HAp act as sites for 

heterogeneous nucleation (Eanes et. al., 1965). Inspection by X-Ray diffraction 

demonstrated for an ACP solution seeded with apatite crystals, the precipitate converted 

exclusively to HAp, suggesting that once a HAp seed crystal is present the solution, only 

HAp is formed (Neuman & Mulryan, 1971). ACP is characterized by its lack of long range 

order, but is known to have short range apatite order, similar to that of HAp, known as the 

Posner’s cluster. The level of amorphization is proportional to the concentration of the 

calcium and orthophosphate. Amorphization has also been found to increases with 

increasing pH and low temperature. While ACP to HAp is the dominate transformation 

path of ACP, high temperatures are one example which would cause ACP to form another 

precipitate such as CDHA. The sequence of ACP to CDHA in the SEM imaging below 

shows the circular cluster formation of ACP, and its transformation e.g. to CDHA.  

 

Figure 13: Bright-field transmission electron micrographs of ACP to CDHA transformation at reaction times of a) 5 

min, b) 3 hour, c) 9 hour, and d) 48 hour (Dorozhkin 2010) 

2.3.5 Calcium-deficient Hydroxyapatite (CDHA) 

CDHA can be formed by adding calcium and orthophosphates to a boiling water solution. 

The ACP will initially precipitate, but restructure and transform to CDHA, leading to 

similarities in the crystal structure and similarities in properties. The lack of defined 

stoichiometry promotes the existence of other ions such as Mg2+, Cl-, or Na+. The variable 
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Ca/P ratio found in CDHA has been explained by multiple methods including: surface 

adsorption, lattice substitution, and intercrystalline mixtures of HAp and OCP. The exact 

structure and unit cell of CDHA is not known. A simple approximation of the structure of 

CDHA is HAp with vacancies filled with Ca or -OH ions (Dorozhkin, 2009).  

2.3.6 Hydroxyapatite (HAp) 

The most thermodynamically stable product of the reaction of calcium and orthophosphate 

salts in neutral or basic solution is a needle-like crystalline precipitate known as 

hydroxyapatite (HAp; Ca10(PO4)6(OH)2) (Posner & Betts, 1975; Wang & Nancollas, 

2008). The formation of HAp is always proceeded by the formation of Amorphous Calcium 

Phosphate (ACP; CaxHy(PO4)z 
. nH2O, n=3-4.5 (Dorozhkin 2010)) in highly supersaturated 

solutions, and unless stabilized, the amorphous phase transforms autocatalytically to HAp 

by the process of solution and re-nucleation (Posner & Betts, 1975).  Figure 14 and Figure 

15 show images of HAp crystal formation by different growth techniques with and without 

the presence of magnesium. As discussed next magnesium is an important metal in 

formation of calcium orthophosphates. This investigation of crystal growth found that 

magnesium was evenly dispersed across all calcium orthophosphate samples and that 

magnesium substitution in HAp increased proportionally to the amount of magnesium 

added. Magnesium was found to result in a similar needle-like structure expect from HAp 

but would exhibit plate-like crystallite agglomerate formations as well (Qiu & Orme, 

2008).Figure 14: TEM image of 1) HAp and 2) Magnesium Hydroxyapatite; SEM 

micrograph images of 3) HAp and 4) Mg-HAp  
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Figure 14: TEM image of 1) HAp and 2) Magnesium Hydroxyapatite; SEM micrograph images of 3) HAp and 4) Mg-

HAp (Farzadi et. al., 2014) 

 

 

Figure 15: FE-SEM microphotoaphs of as-synthesized powders dried at 105oC for20 hours formed with increasing Mg 

concentrations (Stipniece, 2014) 
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2.4 ACP Stabilization 

As previously mentioned it is possible to stabilize ACP. A known ACP stabilizer is 

magnesium, a second column element with a 2+ charge similar to calcium (Tomazic et. al. 

1975). Table 6 below shows that in addition to calcium NUKON fiberglass contains 

magnesium. The leaching of magnesium into solution has been confirmed from leaching 

tests in prototypic post LOCA conditions bench tests conducted at UNM (discussed in 

chapter 4). The presence of magnesium either in the ACP or in the solution affects the 

transformation kinetics, by decreasing the ACP solubility. Posner states that below a 0.2 

Mg:Ca molar ratio the time to reach HAp is increased, but, once HAp nucleation begins, 

the first-order transformation reaction proceeds with the same rate constant as in the 

absence of magnesium (Posner & Betts, 1975). Other researchers have found that 

magnesium’s presence will increase the time it takes to reach HAp transformation, up to a 

limit set by Posner of 0.2 Mg:Ca molar ratio, above which no transformation to HAp will 

occur [20,23]. 

Table 6: NUKON elemental composition by weight percent by EDX analysis (Lane et. al., 

2006) 

Material 

Weight Percent 

C O Mg Al Si K Ca Fe Na Mn 

NUKON 26.65 46.46 0.82 1.43 14.39 0.33 2.95 0.15 6.98 0.03 

The ACP—HAp conversion process has been visualized as occurring in three steps 

(Boskey & Posner, 1974):  

(i) ACP dissolution yielding a saturated solution of ions or ion clusters  

(ii) the first HAp nuclei forms from these ions 

(iii) secondary nucleation leading to the autocatalytic proliferation of HAp  

Analysis of precipitates formed from mixing salts has shown that magnesium ions 

were excluded from matured crystalline HAp (Neuman & Mulryan, 1971). Close to 90% 

of magnesium was located in readily accessible surface positions. When HAp seed was 

added to ACP solutions and allowed to transform, magnesium did not poison the seed or 
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change the crystal growth, further suggesting magnesium is a surface limited ion (Neuman 

& Mulryan, 1971). These results suggest that step (iii) is unaffected by the presence of 

magnesium. Furthermore, the size of the HAp crystal and conversion time from ACP to 

HAp is independent of magnesium concentration, thus further implying that Step (iii) is 

not suspect for the longer induction time associated with the presence of magnesium. The 

lack of magnesium on the HAp crystals surface also suggests that it is Step (i) the 

dissolution of ACP, which is affected by magnesium (Boskey & Posner, 1974). This 

suggests that magnesium attaches on the ACP surface positions and slows the absorption/ 

desorption process with calcium. As magnesium and calcium are both group two alkaline 

earth metals it is not surprising that magnesium may interfere with calcium nucleation sites.  

In conclusion, ACP is always a precursor product formed before HAp. HAp formation 

can be prolonged or prevented depending on the concentration of magnesium. Magnesium 

and calcium are both present in NUKON fiberglass and are known to leach form the 

fiberglass. Magnesium prevents the formation of HAp by preventing adsorption/ 

desorption on the ACP surface nucleation sites. Decreases in magnesium concentration 

would allow calcium to adsorb/ desorb without the interference, leading to the formation 

of a more thermodynamically stable product. This formation could lead immediately to 

HAp or reach an intermediate phase of OCP. The understanding of the relation between 

magnesium and calcium precipitation will provide resolution to questions about the 

behavior of calcium in post LOCA containment solution. 

2.5 Thermodynamic Modeling 

In regards to the research conducted herein, the primary measurement tool used to 

investigate calcium leaching from NUKON fiberglass was inductively coupled plasma – 

optical emission spectroscopy (ICP-OES) total metals by EPA 200.7, which provides an 

accurate measurement of the total calcium concentration and other elements in solution. 

Thermodynamic modeling of the system provides insight into the solubility of calcium in 

solution by assuming the presence of specific calcium orthophosphates in solution. Using 

the thermodynamic modeling software Visual MINTEQ (Gustafsson, 2012), chemical 
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equilibrium modeling was conducted investigating the formation of calcium 

orthophosphate precipitates.  

Simulations were run using prototypical post-LBLOCA TSP and H3BO3 

concentrations, provided by an outside consulting source (Olson, 2014a). The borated and 

buffered concentrations are representative of all experimental solutions used in the testing 

herein, prior to the addition of NUKON. Therefor Visual MINTEQ modeling included a 

total of three species: Na+ (17.49 mM), (PO4)
3-(5.83 mM), and H3BO3 (221.3 mM). An 

initial model using the species above and calculating the pH using mass and charge balance 

returned a pH of 7.1 at 25oC. Another simulation was run at the experimental temperature 

of 80oC, which returned a pH of 6.5. pH 6.5 is below any measured pH from solutions of 

borated and buffered water in shake-down testing. The pH of 7.1 is much closer to the 

observed pH in solution, proposed inaccuracy due to either or both lacking enthalpies, or 

lack of proper modeling of the high concentrations of the acids. The pH of 7.1 will be used 

as the baseline for future discussion in this section. The modeling consists of performing 

pH sweeps for the borated buffered solution. First calcium is considered in solution and 

the dissolved amount is output to show the pH at which precipitation is predicted by Visual 

MINTEQ. Second,  no calcium is modeled in the simulated solution and solubility product 

equilibrium constant (Ksp) of varying calcium orthophosphates are considered to back 

calculate the expected amount of calcium in solution, for comparison to testing results in 

later sections. 

To investigate the expected pH at which calcium is predicted to form calcium 

orthophosphates, dissolved calcium is modeled to include the total available calcium from 

NUKON fiberglass in a LBLOCA that releases the maximum amount of NUKON into 

containment. The maximum expected NUKON concentration, provided by an outside 

consulting company, of 1.18 g/L was multiplied by the total available calcium in NUKON 

listed in Table 6, amounting to a total of 0.87 mM calcium. The pH of the solution was 

swept, and the dissolved calcium species were output. The presence of calcium was 

observed to decrease as pH increased indicating the formation of an insoluble product 

beginning at a pH of 5.5 (Figure 16). Visual MINTEQ predicts the formation of the most 

insoluble product by calculating the saturation index of expected soluble phase. Therefore 
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if the saturation indices were plotted for the available calcium orthophosphates, Visual 

MINTEQ would predict the formation of HAp.  

 

Figure 16: Visual MINTEQ dissolved calcium species for 0.87 mM Ca, 221.3 mM H3BO3, & 17.5 mM PO4
3- 

To determine the calcium concentration in solution for a given solubility product, 

Visual MINTEQ was used to find the ionic concentration as well as the activity of 

orthophosphate species at varying pH. Using Table 5 a solubility product for any species 

may be calculated by considering the dissolution of the solid phase. This investigation 

includes only calcium orthophosphates that are stable at a pH from 5-10, and that include 

only calcium, orthophosphate, hydronium or hydroxide. The Ksp is defined as the activity 
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of the dissolved product divided by activity of the reactant. As the only reactant is a solid 

phase its activity coefficient is not considered in the calculation of Ksp shown below. 

𝐴𝑎𝐵𝑏𝐶𝑐 (𝑠)
 

↔  𝑎𝐴 (𝑎𝑞) + 𝑏𝐵(𝑎𝑞) + 𝑐𝐶(𝑎𝑞) (6) 

𝐾𝑠𝑝 =  {𝐴}𝑎{𝐵}𝑏{𝐶}𝑐 (7) 

If for example one were to consider OCP, its solubility product could be calculated as 

follows: 

𝐶𝑎8(𝐻𝑃𝑂4)2(𝑃𝑂4)4 ∗ 5𝐻2𝑂 
 

↔  8𝐶𝑎 + 2𝐻𝑃𝑂4 + 4𝑃𝑂4 (8) 

𝐾𝑠𝑝 =  {𝐶𝑎}8{𝐻𝑃𝑂4}2{𝑃𝑂4}4 (9) 

The solubility product of OCP is dependent upon the activity of two orthophosphate 

species. As previously discussed the activities of orthophosphates is pH dependent. The 

previously defined system (5.83 mM H3BO3 and 5.53 mM TSP) was simulated for a series 

of defined pH values and using Visual MINTEQ, for which the resultant species activity 

of each orthophosphate, as well as the ionic strength was calculated and output. Using the 

Davies equation (Benjamin, 2014) the activity coefficient was calculated from the ionic 

concentration.  

𝛾𝐷𝑎𝑣𝑖𝑒𝑠 = 10
−𝐴∗𝑧2(

𝐼
1

2⁄

1+𝐼
1

2⁄
−0.3𝐼)

 
(10) 

A is a fitting parameter dependent on the dielectric constant and temperature, but 

an A value of 0.5 (water at 25oC) was used for all calculations. The charge of calcium 

resulted in a z2 of 4, and I represents ionic strength output from Visual MINTEQ. Finally 

the calcium concentration may be obtained by rearranging Equation (6) to solve for calcium 

activity and dividing by the calculated activity coefficient. This procedure was carried out 

for seven calcium orthophosphates listed in order of increasing calcium to phosphate molar 

ratio as arranged in the following figures Figure 17-Figure 23 and listed for the expected 
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pH at two temperatures in Table 5. The generated graphs show that in the neutral pH region, 

slight variations in pH could lead to a significant change in the expect calcium solubility 

limit.  

 

Figure 17: Calcium in solution considering DCPD to control solubility  
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Figure 18: Calcium in solution considering DCPA to control solubility 

 

 

Figure 19: Calcium in solution considering OCP to control solubility 
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Figure 20: Calcium in solution considering TCP-α to control solubility 

 

Figure 21: Calcium in solution considering TCP-β to control solubility 
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Figure 22: Calcium in solution considering CDHA (x=1) to control solubility 

 

Figure 23: Calcium in solution considering HAp to control solubility 
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Table 7: Summary of calcium solubility assuming a specific calcium orthophosphates at baseline pH and experimental 

temperature used in all leaching experiments  

Calcium 

Orthophosphate 

[Ca] [mg/L] 

for pH 7.1 at 25oC 

[Ca] [mg/L] 

for pH 7.1 at 80oC 

DCPD 10.5 13.8 

DCPA 5.53 6.76 

OCP 0.00354 0.00239 

α -TCP 3.73 2.48 

β -TCP 2.61 1.45 

CDHA (x=1) 10.2 6.29 

HAp 0.491 0.164 

 

In conclusion, the thermodynamic modeling has shown that precipitation should 

occur at pH values greater than 5.5. The calcium solubility in solution, when controlled by 

a variety of possible calcium orthophosphates, has been determined for a range of 

temperatures and pH values. The importance of these graphs is twofold: (1) the primary 

measurement made in the leaching experiments was ICP-OES total metals, (2) finding a 

particular precipitate is difficult due to the presence of fiberglass in solution. The presence 

of fiberglass leads to difficulties in separating precipitates due to the large volume of 

fiberglass, as well as the fiberglass fines which settle out of the main fiberglass body during 

testing. These fines also appear in scanning electron microscope SEM imaging, leading to 

difficulties between selecting a precipitate versus a fiberglass fine. For post-LOCA 

containment the true temperature profiles of interest vary over the break period and a more 

detailed analysis should include effects of temperature change overtime. Due to the high 

TSP content the system is calcium limited, a system not typically studied for calcium 

orthophosphate research which may lead to results which vary from the described behavior 

of calcium orthophosphates properties above. This foundation of calcium orthophosphate 

behavior will assist in understanding the behavior of calcium in solution in experimental 

results presented herein.  
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Chapter 3: Experimental Setup & Testing Conditions 

3.1 Introduction to Testing  

Calcium leaching experiments were carried out on the three scales: bench, tank, and 

column with respective solution volumes of 0.5 L, 1135 L, and 31.5 L. For the purposes of 

this research, the column and tank scale experiments are referred to as reduced-scale 

testing. Separate effects calcium testing was initiated with bench scale investigations to 

measure the effects of fiberglass destruction on the release of calcium from NUKON fiber. 

Bench testing continued through investigation of the solubility of calcium in solution using 

a CaCl2 as a calcium surrogate. Bench testing was completed with an investigation into the 

behavior of calcium at leaching periods of 1, 8, and 30 days. A large-scale containment 

tank facility was utilized next to investigate the scaling effects related to the experiment 

findings of the bench scale. Prototypic concentration of fiberglass for a LBLOCA, with the 

greatest amount of submerged NUKON, was leached for 30 days. This tank test 

investigated the possible effects of scaling and fiberglass concentration gradients. A final 

test was conducted in a heated vertical head-loss column to measure head-loss across a 

prototypic fibrous debris bed, and attain a baseline of chemical effects from calcium 

precipitation. In the next two sections, the bench, tank, and column facilities will be 

explained in further detail in addition to the experimental conditions of each test. 

3.2 Bench Facility 

Bench testing was conducted using replica experiments in 1 L Nalgene bottles placed in a 

constant temperature thermal bath supported by a shaker table. Each measurement made 

on the bench scale represents an identical but separate experiment. Chemicals prepared for 

bench scale experiments were massed using an Analytical balance (OHAUS AR1140, 

readability: 0.0001 g, repeatability: 0.0001 g). pH measurements in the lab were made 

using a ThermoOrion, model 720A+ pH meter (precision: 0.05 to .1 pH). The experiment 

took place within 1 L Nalgene polypropylene bottles. Samples were placed in 125 mL 

bottles with 0.4 mL Nitric acid. If samples required filtering, solution was removed from 
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the Nalgene using a 2 oz disposable syringe and docked in to an AquaPrep Device device 

with a 0.45 μm Thermopor membrane. 

There were two heat baths used in bench testing (Figure 24), which were referred to as 

Unit 1 (22” x 22” x 8”, capacity of 20 sample bottles) and Unit 2 (22” x 34” x 8”, capacity 

32 experimental bottles). The heated baths were filled with sufficient deionized water to 

ensure the entirety of the enclosed 500 mL sample solution was submerged. Heat was 

exchanged to the sample bath from water heated by a TECHNE TU-20D Tempunit 

Thermoregulator rod type heater in a separate heat exchanger bath. Water from the heat 

exchanger bath was pumped through copper pipes configured in a square “U” pattern 

across the bottom of the heat bath with 4” separation distance. The shaker tables were a 

VWR Digital Shaker (Models: DS2-500-1(24x24”, 50 kg max load) and 15000 (24x36”, 

68 kg max load) which had a variable speed drive capable of controlling the rotational 

speed of the table.  



Chapter 3: Experimental Setup & Testing Conditions 

42 

 

     

 

Figure 24: Bench Scale Controlled Temperature Baths; Unit 1: 20 sample capacity (top left), Unit 2: 32 sample 

capacity (top right); Heat baths on shaker tables (bottom) 

3.3 Tank Facility 

The tank tests were run in the same tank as described for the ICET (Figure 5). The tank is 

stainless steel and 1.2 m x 1.2 m x 5 m. The tank was heated using the two 10 kW rod type 

heaters to perform high-temperature tests. Solution within the tank was circulated using a 

5 HP motor on a variable frequency drive. Water was circulated through a flowmeter 

followed by inline “T” split with a gate valve for diverting flow for samples. Water was 

pumped back into the tank by two submerged headers on opposite sides of the tank through 

36 evenly spaced 3/8” nozzles.  

NUKON fiber samples were secured in a stainless steel box (9” x 13.5” x 8.5”) and 

two stainless steel bags (1’ x 1.5’); bags were secured using stainless steel screws inserted 

through holes punched through the mesh. The fiber sample containers were completely 
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submerged inside of the tank; all containers were hung from racks inside the tank in a 

symmetric pattern, placed in front of the tank headers. 

 

Figure 25: CHLE Tank Apparatus (left), Stainless steel mesh box to secure fiberglass in tank (right) 

3.4 Column Facility 

The vertical head-loss column as shown in Figure 26, consists of a circulation pump, 

vertical testing column, control valves, and measuring instrumentations. The upper and 

lower portions of the 6-in diameter vertical columns were constructed of stainless steel and 

were sealed at the top with a blind flange. The blind flanges could be removed to introduce 

debris into the head loss assembly. The middle section of the assembly was constructed of 

1/8-in thick polycarbonate to visualize the debris beds. A perforated stainless steel plate 

was installed inside of the polycarbonate tubing for the accumulation of debris materials. 

The plate was supported by a polycarbonate ring located 6-in from the lower edge of the 

section where the debris bed accumulates. The stainless steel screen contained 0.094-inch 

holes. A differential pressure (ΔP) transducer was piped to ports above and below the 

screen support to measure the pressure loss through the debris bed.  Each column had a 

flow meter and control valves to monitor the flow rate and adjust the approach velocity in 

each column (Figure 26). Debris materials were added manually to the columns by pouring 

prepared fiber with particulate mixture from the open lid of each column. The preparation 

of this debris bed is described in the following section. 
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Figure 26: Vertical Head Loss piping Schematic 

3.5 Preparation of Debris Beds 

The debris bed generated for this testing was designed to be reproducible and prototypic to 

LOCA scenarios, following guidelines set by the NEI procedure to simulate mostly class 

1 and 2 as described in NUREG/CR-6224 (Zigler, 1995). Large pieces of NUKON 

fiberglass (Figure 27a) were separated by hand into thin layers and placed in five gallon 

bucket (Figure 27b) with 1 liter of reverse osmosis (RO) water. Fiberglass layers were 

separated using RO water run through a Cleanforce 1800-psi 1.5 gpm Axial Cam Heavy-

Duty Electric pressure washer (Model # CF1800HD) with a 40 degree small diameter fan 

type tip. The nozzle was maintained slightly below the water surface for 2.5-3 minutes 

(Figure 27c), followed by a period where the washer wand oscillated between clockwise 

and counterclockwise motions to keep the disturbance in the water sufficient to separate 

the fiberglass. The fiberglass pressure washing preparation was completed when water 
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nears the top of the 5 gallon bucket. The degree of fiberglass separation is confirmed via 

visual inspection by taking a mixture sample from the 5-gallon bucket.  The sample is 

poured into a clear glass baking dish and inspecting the fiber in baking dish using a light 

table. Using a glass stir rod, the fiberglass solution is swirled gently to reveal any clumps 

and confirm that the fiber distribution is prominently NUREG/CR-6224 Class 1 and 2 

debris.  

The solution was then filtered from the 5 gallon bucket, through a fine mesh to 

preserve the total fiber mass (Figure 27d), and placed into a glass beaker with 3 liters of 

RO water (Figure 27e). Using a glass rod, the fiberglass was pulled to the beaker wall and 

shaken for a few seconds to break any agglomerated fibers (Figure 27f). The water/fiber 

mixture was then circulated for about 20 minutes using a magnetic stirrer (Figure 27g). A 

separate beaker was used for mixing the epoxy paint, inorganic zinc (IOZ), and latent 

particulates with 1 L of RO water.  The mass and type of these particulates  were 

determined by other teams based on a  detailed analysis for different LOCA scenarios and 

determined the transported debris  The particulate-loaded mixture was then combined with 

the fiber-loaded mixture (Figure 27h); this combined mixture was stirred for another 10-

15 minutes on the magnetic stirrer. The debris mixture was prepared to be loaded to the 

vertical column (Figure 26).  

 

Figure 27: Debris mixture preparation process 

(a) (b) (c)

(e) (f) (g)

(d)

(h)
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3.6 Experimental Conditions 

All tests were performed using a solution consisting of 221.3 mM boric acid (H3BO3 and 

5.83 mM TSP (Na3PO4 
. 12H2O yielding a pH near 7.1; test solutions were maintained at 

a temperature of 80oC. NUKON fiberglass used in this experiment was thermally treated 

by the manufacturer (PCI Inc.) at 600oF for 24 hours on one side, prior to its arrival at 

UNM to replicate the high heat conditions that the insulation would experience in the 

nuclear power plant facility. This heat treatment produced a two-toned portion of NUKON 

fiberglass: yellow (“unburnt”) and brown (“burnt”) (Figure 28). Efforts were made to 

maintain the use of equal amounts of “burnt” and “unburnt” fiberglass in all tests 

.  

Figure 28: Blanket of NUKON fiberglass showing the results of heat treatment  

3.7 Bench Experimental Conditions 

Bench tests consisted of 1 gram of NUKON fiberglass in 0.5 L of borated-buffered 

solution, resulting in a fiberglass concentration of 2 g/L (Table 8). Bulk amounts of solution 

were prepared and metered out in 500 mL portions using a graduated cylinder before 

adding to each 1 L test bottle. Solution-filled bottles were placed in the heated bath 

overnight to reach an experimental temperature of 80oC before adding the fiberglass. After 

a designated time in the bath, dependent on experimental focus, samples were taken for 

analysis by removing a bottle from the bath, pulling 125 mL of solution into a syringe, and 

then passing the solution through a 0.45 μm polymer filter in order to remove submerged 

particulate. The solution was stored in a nitric acid-treated bottle in a refrigerator until 
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taken to an outside laboratory for inductively coupled plasma – optical emission 

spectroscopy (ICP-OES) analysis.  

Table 8: Bench Testing Conditions 

RO Water Bench Chemicals 

Volume 0.5 L NUKON 2 g/L 

Resistivity 17 Ω . cm TSP 2.27 g/L 

Turbidity < 0.5 NTU H3BO3 13.7 g/L 

3.8 Tank Experimental Conditions 

The tank experiment began by adding 1135 L of reverse osmosis (RO) water to the tank 

using a totalizer. The tank was heated to 80oC before the addition of boric acid and TSP 

(Table 9). The total amount of fiberglass added to the tank was 1339 grams of NUKON; 

the specific amount of fiberglass used was provided by a consulting partner as a typical 

amount for a large break LOCA. Five fiberglass pieces (~4” thick) were cut from the bulk 

fiberglass sheet to fit exactly to the dimensions of the stainless steel box (Sec. 3.3).  The 

remaining mass of fiberglass (~1 in2 pieces) was placed in two stainless steel mesh bags.  

Table 9: Tank Testing Conditions 

RO Water Tank Chemicals 

Volume 1136 L NUKON 1.18 g/L 

Conductivity 39 μS cm TSP 2.27 g/L 

Turbidity 0.1 NTU H3BO3 13.7 g/L 

3.9 Heated Vertical Column Test 

The heated vertical column test investigated calcium leaching from prototypic debris beds 

and the effects of calcium concentration variation on the measured head-loss. The total 

mass of fiber utilized in this experiment was 37.17 grams in 31.5 L (fiber/water ratio of 

1.18 g/L (Table 10)) in borated TSP-buffered solution. The mixed debris materials were 

scaled to match prototypical values used in the UNM Head Loss (HL) series (Eanes et. al. 

1965).  Following preparation (Sec. 3.5), the debris bed materials were added to the column 

at a flow velocity of 0.05 ft/s to promote debris settling. The measured head loss in 
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considered stable if the root mean square (RMS) value of the measured column head-loss 

for the early 5 minutes of each testing hours does not change by more than 1%. The velocity 

was decreased to the testing velocity (0.013 ft/s) once the head-loss stability criteria was 

met. The column temperature was set higher than testing conditions at 86.2oC, to account 

for temperature losses anticipated during debris bed material addition, and set back to 80oC 

following debris bed loading. 

Aqueous samples were taken from the column for elemental composition analysis 

(using ICP-OES) once per day; spot measurements for turbidity and pH were also collected 

daily. Sample were collected from one of two possible locations: the column drain, located 

below the debris bed relative to the direction of solution flow (Figure 26, “Drain Line”) or 

the top of the column, located above the debris bed (Figure 26, “Movable flange”). Samples 

extracted from the top of the column through the drain line (Figure 26) were filtered 

through a 0.45 μm filter; samples extracted from the bottom of the column were not filtered. 

The advantages of taking samples from the bottom were regarding turbidity due to a small 

portion of unmixed epoxy paint floating at the top of the column, leading to misleading 

turbidity results despite efforts to avoid epoxy paint particulate in the solution. The 

disadvantage of taking a sample from the bottom was a slight increase in the velocity 

through the bed and resulted in slight disturbance in the head loss. Supplementary additions 

(125 mL) of borated-buffered solution were added daily to maintain a constant inventory 

of solution in the column throughout testing. 

Table 10: Column Testing Conditions 

RO Water Column Chemicals & Debris Bed 

Volume 31.5 L NUKON 1.18 g/L 

Conductivity 22.5 μS cm TSP 2.28 g/L 

Turbidity 0.1 NTU H3BO3 13.8 g/L 

Supplementary Bulk Solution Epoxy Brown 0.612 g/L 

TSP 2.22 g/L Epoxy White 0.612 g/L 

H3BO3 13.6 g/L Latent dust/dirt 0.0686 g/L 

 IOZ 0.0695 g/L 
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Chapter 4: Methods and Results  

4.1 Introduction to Calcium Testing and the 4000 Series 

The calcium testing is a subset of the chemical head loss experiment (CHLE) program 

known as the 4000 series. The 4000 series test plan divides data collection into four 

subseries (4100, 4200, 4300, and 4400) (Olson, 2014a). The 4100 series investigated the 

effects of fiberglass destruction on calcium release into solution by considering two 

fiberglass preparation methods: unadulterated fiberglass samples with no preparation, and 

blended fiberglass samples. Following the 4100 series, the 4200 tests sought to 

experimentally determine the solubility limit of calcium in prototypical post-LOCA water 

chemistry, using calcium chloride (CaCl2) as a surrogate. The following 4300 series 

determined the behavior of calcium released through leaching from NUKON fiberglass. 

Once the calcium behavior is well understood, a heated vertical loop head-loss experiment 

measured the chemical effects of calcium (4400 series). The 4400 series was designed to 

simultaneously measure behavioral changes in solution chemistry and head-loss though a 

prototypic fibrous media.  A multi-constituent debris bed was prepared in a temperature 

controlled column and ICP-OES measurements were taken for the following 20 days as 

well as continuous head-loss measurements to study the relation between metals in solution 

and head-loss through a debris bed. This series of testing established a foundation of 

separate calcium chemical effects studies leached from NUKON fiberglass, and provides 

a wealth of new information not previously understood about the leaching of calcium from 

NUKON fiberglass.  

4.2 Effect of Fiberglass Destruction on Calcium (4100) 

In the event of a LOCA various degrees of fiberglass intactness may exist due to the relation 

between the piping insulation location with respect to the pipe break and jet impingement 

angle. NUREG/CR 6224 (Olson, 2014b) determines classes of fiberglass depending on the 

degree of destruction, ranging from class 7 (intact) to class 1 (untangled individual fibers). 

These classes were utilized as the boundaries for a bench scale leaching experiment to 

determine if the level of fiberglass destruction could affect the amount of calcium released 
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from: (1) unadultered (class 7), and (2) blended (modified class 1 and 2; due to the blending 

process changing the fiber characteristic length). Seven bottles, three of each destruction 

level and a blank sample were run for a total test time of eight hours. ICP-OES 

measurements showed an overall slight difference in the average of the two fiberglass 

preparation groups.  Detailed testing procedures can be found in CHLE-SNC-012(Olson, 

2014b). The blank bottle contained a calcium concentration of 0.65 mg/L. The results are 

shown in Table 11 below. 

Table 11: ICP-OES results of [Ca] fiberglass preparation given in mg/L 

Unadulterated Blended 

1.2 1.3† 

1.4 1.0 

1.3 1.1 

† The first value for the blender was considered an 
outlier because upon taking the sample, it was noted that 

the fiber was still intact, as opposed to the fiber slurry 

seen in the other two samples. 

Results of the fiberglass preparation experiment indicated a small difference in the 

average release of calcium between the two data sets: 1.3 mg/L for unadulterated fiberglass, 

1.1 mg/L for blended fiberglass. A student’s ‘t’ test was conducted to investigate the 

similitude of the results, the full calculation is presented in CHLE-SNC-13 (Olson, 2014c). 

The student’s ‘t’ test confirmed that the two averages were statistically similar within a 

95% confidence interval. With this knowledge, future bench tests were conducted with the 

confidence that the destruction level of the fiberglass did not change the rate of calcium 

release. This result further implied that the UNM preparation method used to generate the 

debris bed in the head-loss column testing would have the same calcium release rate from 

NUKON fiberglass when compared to unadulterated fiber used in bench scale testing. The 

bench and tank scale differed from the column test in each of them used unadulterated 

fiberglass. The column fiberglass was prepared using a modified NEI method as described 

in the debris bed section above.  
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4.3 Post-LOCA Calcium Orthophosphate Solubility Limit (4200) 

The goal of the 4200 series was to determine the solubility limit of calcium in post-LOCA 

containment solution at 80oC. The expected amount of calcium in solution can be obtained 

from the thermodynamic modeling (Figure 9). The addition of sufficient quantities of 

calcium salts to a supersaturated solution will result in the formation of HAp ([Ca] = 0.16 

mg/L at 7.1 pH and 80oC). Varying quantities of CaCl2 were added to target pH 7.1 

solutions; after three hours, the solution was filtered (to remove precipitates) into a sample 

bottle for ICP-OES analysis. These results are summarized in Table 12.  

The blank bottle results demonstrate a total calcium contamination of 0.18 mg/L 

from the source water, boric acid, and TSP. This contamination comes from adding 13,600 

mg/L of boric acid and 2,220 mg/L of TSP, so very small traces of contamination (i.e., less 

than 0.01% of the TSP) of the chemicals contributed to the observed calcium.  In addition, 

the chemicals used were “technical grade” chemicals prototypic to the plant, and are of 

substantially lower quality than “reagent grade” or “ACS grade” that is often used in 

laboratory research.  The technical grade TSP used is only about 98 % pure, which leaves 

2% of the mass for impurities, which is fairly substantial (although most of the impurity is 

NaOH).  

HAp was modeled (Chapter 2) with the experimentally measured pH at 80oC, for 

comparison to 4200 results. The blank bottle concentration compared to the expected HAp 

concentration indicates that the contamination level may have exceeded the solubility limit 

(Table 12), and precipitated prior to the addition of CaCl2. If this were the case precipitate 

ripening could have occurred during the heating period, prior to CaCl2 addition. Increasing 

the amount of calcium added to solution does not alter the resulting solubility product. The 

average of the experimental results was within a tenth mg/L compared to the HAp 

solubility. The measured temperature associated with pH was lower than testing 

temperature due to the procedure of sample and data collection. When a sample was 

removed from the bath it was immediately filtered, into the 125 mL nitric treated sample 

bottle, then the pH of the solution would be taken. This time difference led to the solution 

cooling to the measured temperature observed in Table 12.  
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Table 12: Results of salt addition to 4200 series and comparison to thermodynamic prediction 

Ca added 

by CaCl2 

ICP-OES 

Measured Ca Final 

pH 

Temp. 

[oC]† 

[Ca] (mg/L) 

Assume HAp 

80oC 

Final experimental  pH 
[mg/L] [mg/L] 

0 0.18 6.93 63.7 0.21 

40.35 0.24 7.11 64.9 0.16 

79.99 0.25 7.02 63.6 0.17 

161.3 0.33 6.91 61.7 0.21 

Average 0.25 6.99 63.5 0.18 

†Temperture of solution before pH measurement was taken 

Comparing the concentration in solution obtained in the 4200 series with the 4100 

series, it can be seen that a significantly different concentration was obtained using CaCl2 

when compared to using NUKON. These results indicate that the addition of CaCl2 leads 

to the formation of a different solubility product than that which was formed when calcium 

is slowly leached from the fiberglass. This has implications into the validity of the defined 

surrogate preparation technique defined by WCAP-16530-NP (Lane et. al 2006). The 

formation of a different precipitate will lead to different precipitate size. As indicated 

before the addition of HAp will seed the solution leading to only HAp formation (Neuman 

& Mulryan, 1971). Therefore the WCAP-16530-NP defined calcium phosphate surrogate 

is not prototypic of the calcium product formed in post-LOCA solution, and may change 

the characteristics of calcium orthophosphate in solution, if added as a chemical head-loss 

surrogate. 

4.4 Separate effects calcium behavior from NUKON fiberglass (4300) 

Studies investigating the release of calcium into solution out to 30 days, suggest the 

occurrence of an interesting phenomenon that has not been reported in previous chemical 

effects studies. Calcium leached from fiber was expected to reach a maximum 

concentration in solution. After several days of continual exposure of fiber to heated, 

borated, TSP-buffered solution at the maximum concentration, a sudden decrease in 

calcium concentration was measured. Repeated experiments confirmed this result and this 
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variable in calcium concentration over time was the focus of this research. The 4300 series 

consisted of four tests comprised of 3 bench test and 1 tank test. The three bench tests were 

identical 2 g/L experiments conducted at the 7.1 baseline pH, for increasing periods of time 

(1, 8, 30 day). The tank test was conducted at 1.18 g/L, the expected amount of submerged 

NUKON fiberglass for a LBLOCA that releases the maximum amount of NUKON into 

the containment pool. The tank test was performed to provide insight into scaling effects 

of the 4300 bench series, and provided a baseline for calcium behavior to compare to 

integrated tank tests conducted as part of the larger CHLE test series, outside the focus of 

the 4000 series. 

Before experimentally studying the effects of calcium leaching from NUKON 

fiberglass, WCAP (Lane et. al., 2006) was utilized to model the designed experimental 

conditions. The equation predicts the release rate of calcium and the maximum calcium in 

solution would increase with increasing temperature and pH. The release rate predicted by 

the WCAP is sensitive to temperature over the range of interest (doubling as the 

temperature increases from 40oC to 75oC) but not very sensitive to pH (varying by less than 

10 percent between pH 6.5 and 7.5). The release rate of calcium from WCAP was used to 

help guide initial UNM 4300 series testing. 

4.4.1 One Day Leaching from NUKON Fiberglass (4300.P1) 

Currently the WCAP-16530 correlation (Equations (11),(12),(13)) (Lane et. al 2006) is 

utilized to predict the calcium concentration and solubility limit of calcium in post LOCA 

scenarios. The 4300 series experimentally determines the validity of the WCAP correlation 

in representative Vogtle post-LBLOCA water chemistry buffered by TSP. Preliminary 

4300 series investigations sought to determine the release rate of 1 gram of fiberglass at 

the baseline pH (7.14 pH) at 80⁰C over a 24 hour period. The predicted release rate of 

calcium from NUKON™ using WCAP-16530 indicated that saturation would occur within 

3 hours for 1 gram of fiberglass in 500 mL solution at 80⁰C at 7.14 pH (Figure 29). It was 

expected that as time increased during the 24 hour period, the concentration of calcium 

would approach an asymptotic value considered to be the solubility limit. ICP-OES results 
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(Figure 30) demonstrate a linear increase in calcium concentration over the 24 hour period. 

The total calcium concentration measured in a solution with TSP after 24 hours 

corresponded to the WCAP-16530 prediction from an un-buffered solution in the first half 

hour. Therefore the WCAP-16530 equation is not valid for buffered solution NUKON 

leaching, and additional experimentation was completed to find the solubility limit under 

testing conditions. 
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𝑅𝑅 = 𝑘𝐴(1 −
𝐶

𝐾
) (11) 

𝐾 = 10[𝑎+𝑏(𝑝𝐻𝑎)+𝑐(
1000

𝑇
)]

 (12) 

𝑘 =  10[𝑑+𝑒(𝑝𝐻𝑎)+𝑓(
1000

𝑇
)]

 (13) 

RR = release rate 

A= amount of material  

k = constant dependent on pH and temperature 

C = the concentration of the released species 

K = the saturation limit of the released species (a quasi-equilibrium constant) 

 

Figure 29: WCAP-16530 (Lane et. al 2006) prediction [Ca] for 1g of NUKON™ in 500 mL H2O at 80 ⁰C & pH 7.14  
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Figure 30: ICP-OES results for UNM 4300 Calcium Leaching at pH 7.14 & 80 ⁰C 

 

Figure 31: Measured pH at average measured temperature of 69.5oC (temperature loss before measurement)  for 

4300.P1 

4.4.2 Eight Day Leaching from NUKON Fiberglass (4300.P2) 

A longer duration (8 day) 4300 series (4300.P2) test was carried out to reach the solubility 

limit, keeping all other experimental conditions the same. The results showed that the 

maximum calcium concentration was measured on the second day at 6.5 mg/L. The 
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expected asymptotic behavior was observed, giving an approximate saturation limit at ~5.5 

mg/L. An unexpected and significant decrease in calcium concentration observed on the 

on the eighth day (Figure 32).  

 

Figure 32: UNM 4300 Ca Leaching at 2g/L NUKON, 7.14 pH, & 80⁰C for 1 & 8 days 

 

Figure 33: Measured pH at average measured temperature of 70oC (temperature loss before measurement)  for 

4300.P2 
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4.4.3 Thirty Day Leaching from NUKON Fiberglass (4300.P3 & 4300.Tank) 

After the completion of the 8 day test, two hypotheses were developed to explain the 

sudden concentration drop on the 8th day of 4300.P2. The first hypothesis (4300.P3) was 

precipitate aging, which could be investigated by longer testing periods. The second 

hypothesis considered a decrease in the release rate of calcium from the fiberglass surface 

and a continued rate of precipitation and is known as the twice leached fiber (TLF) 

experiment. TLF results are presented following the results of 4300.P3. 4300.P3 was tested 

using two 30 day tests, one on the bench scale (500 mL) and another on the tank scale 

(1136 L (300 gallon)). 

These 30 day experiments investigated the change in calcium concentration for 

increased time periods and experimental scaling effects from the bench to the tank scale. 

The water chemistry in the tank and bench scale were identical. The tank and bench scales 

differed in fiberglass concentration with designed 2 g/L in the bench tests and 1.18 g/L in 

the tank tests, both tests were run at constant temperature of 80 ⁰C. The bench scale 

fiberglass concentration for 4300.P3 was chosen to maintain consistency with previous 

bench tests (1 gram in 500 mL), while the tank scale was chosen based on the expected 

amount of fiberglass to be used in future integrated effects tank tests, outside the scope of 

the CHLE 4000 series.  

The previous 8 day bench test (4300.P2) was compared to the 30 day bench test 

(4300.P3), up to 15 days. During the 30 day bench scale experiment, bottles were prepared 

so that a sample could be collected every third day for 30 days, with duplicate bottles on 

days 3, 6, 9, and 18; an additional jar was also prepared for sampling on the first day. 

4300.P3 shows an overall similar trend to 4300.P2. The calcium concentration reached on 

the 1st day is slightly higher for the 30 day test, and this trend is also noted on the 3rd day 

and one data point for the 6th day. This slightly higher value could be due to the slightly 

lower starting pH of 7.00 for the 30 day test verse pH 7.21 for 4300.P2. The difference in 

the pH was not due to chemicals added, as the same quantity of chemicals was added in 

the preparation of both bulk solutions, and is due to experimental variation possible factors 

include pH probe calibration, carbonate concentration, and initial nanopure pH. As shown 
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in Figure 3 and Figure 4, WCAP suggests higher initial release rate of calcium from 

fiberglass for a higher pH. 

 

Figure 34: Compares identical bench tests (4300. P2 & 4300.P3) up to 15 days (500 mL, 1 gram NUKON, 80 ⁰C) 

 

Figure 35: Measured pH at average measured temperature of 49.2oC (temperature loss before measurement)  for 
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An interesting outcome of performing duplicate experiments is observed on the 6th 

day. One value obtained is slightly higher than that of the 8 day test and the other value is 

significantly lower. A precipitate aging process can reduce the calcium solubility limit to 

a lower value as early as day 6 during a bench test. This could be due to calcium 

contamination leading to HAp formation during the solution heating period prior to 

fiberglass addition (4200). Another data point to take special note of occurs on day 12 with 

a value similar to that seen on the 7th day of the 4300.P2. Day 12 calcium concentration is 

within the expected calcium concentration range, but not for the time period. This result 

indicates that the precipitate ripening may happen as late as day 12. 

For the tank test, samples were collected every day for the first 10 days and every 

5 days for the remaining 20 days. Tank test sampling differed from bench test sampling in 

that the samples were sequentially taken from the same experiment; in bench test 

experiments every point represents a separate but identically prepared experiment. Figure 

36 shows only the first 15 days of the 30 day experiment for comparison with the 8 day 

bench test. In 4300.Tank, the calcium concentration does not reach a steady-state value 

until the third day, whereas 4300.P2 reaches a steady-state value on the second day. The 

tank then follows a similar trend observed in 4300.P2 test where steady state Ca 

concentration is reached (3rd Day), the observed steady state concentration drops slightly 

(~7th day), then significantly to 2 mg/L (>10th -15th Day). Days 4-7 of each test show nearly 

identical behavior. On day eight the tank maintains an approximate calcium concentration 

of 4.5 mg/L whereas the bench scale drops to 2.1 mg/L. The tank experiment then continues 

to have approximately 4.5 mg/L for days 9 and 10. Somewhere between the 10th and 15th 

day of the tank experiment the steady state concentration decreased to 2 mg/L. 
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Figure 36: Compares the 4300.P2 to the 4300.Tank test with identical water chemistry but varying fiberglass 

concentration (Bench 2 g/L vs. Tank 1.18 g/L) 

 

Figure 37: Measured pH at average measured temperature of 63.2oC (temperature loss before measurement)  for 

4300.Tank 

As noted before, the calcium concentration in the 30 day tests for both bench & 

tank scale follow a similar trend to 4300.P2. Figure 38 compares the 4300.P3 and 

4300.Tank and demonstrates that in the 12th day, bench scale has a similar value to that of 

the 8-10 day tank test of calcium concentration. This result may indicate that the precipitate 
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formed here is a metastable precipitate, with the possibility of lasting for up to five days. 

Looking to day 15 of 4300.Tank and 4300.P3, the tank has a calcium concentration of 2 

mg/L versus a concentration of 1.18 mg/L on the bench scale. The offset days of data points 

taken between day 15 and 30, do not allow for direct value comparison but does 

demonstrate the gradual decrease in concentration down to 1.4 and 1.3 mg/L on the bench 

and tank respectively. A complete comparison for the 4300.P2, 4300.P3, and 4300.Tank 

are compared in Figure 39. 

 

Figure 38: Ca in solution for 30 day fiberglass leaching experiments at pH 7.14 & constant 80⁰C 
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Figure 39: Compares 4300.P2, 4300.P3 and 4300.Tank leaching experiments 

4.4.3.1 Twice Leached Fiberglass (4300.P3.TLF) 

After the completion of 4300.P2 (8 day leaching), two hypotheses were developed to 

explain the sudden concentration drop on the 8th day of 4300.P2. The first hypothesis was 
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fiberglass slowed, while the rate of precipitation continued, thereby dropping the calcium 

concentration in solution to a lower value. To test the possibility of a decrease in the release 

rate of calcium from the fiberglass surface, the twice leached fiber (4300.P3.TLF) 

experiment was designed with two leaching periods. For a given sample of fiberglass, the 

initial leaching period was variable (3, 6, 9 & 18 days) while the second leaching period 

was fixed at 24 hours. The experiment sought to define the release rate of calcium from 

fiberglass at different periods in time. 4300.P3.TLF allowed separate 1 gram fiberglass 

samples in 500 mL solution to leach for different initial time periods (e.g. 3, 6, 9, & 18 

days). When the initial time period of leaching was completed, the fiberglass was then 

filtered, added into a new 500 mL solution, and allowed to re-leach for 24 hours. Previous 

bench scale experimentation (4300.P1) had shown it takes more than 24 hours (Figure 30) 
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re-leached in the 24 hour period, following the initial leaching period (3, 6, 9, or 18 days), 

could be compared at different times allowing for observations to be made in changes to 

the leaching rate.   

This experiment utilized the fiberglass samples from the 4300.P3 test. There was 

concern that if precipitation by heterogeneous nucleation had occurred on the fiberglass 

surface or in the filtered fines, precipitates filtered from the initial leaching period could be 

added into the 24 hour leaching experiment. If added to the 24 hour re-leaching bottle they 

would then dissolve into solution and give an inaccurate fiberglass leaching rate. Therefore 

for each initial leaching time period (3, 6, 9 & 18 days) two samples were run. One would 

be added directly into the new 24 hour re-leaching solution and the other would receive a 

30 min deionized water (DI) rinse at room temperature, before addition into the re-leaching 

solution. The DI rise sought to use the retrograde solubility of calcium at low temperatures 

to speed the release of calcium precipitates back into solution. The results of the twice 

leached fiber test are shown in Figure 40. There is a clear decrease in the release rate at 

increased time periods. Noticing that the long periods seem to indicate values similar to 

that of the original leaching experiments Figure 41 and Figure 42 allows for comparison 

of the 24 hour re-leaching values (4300.P3.TLF) with initial leaching period results 

(4300.P3). 
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Figure 40: Calcium concentration results for 24 hour re-leaching experiment at varying initial leaching time periods 

 

Figure 41: Twice Leached fiber (4300.P3.TLF) results compared to [Ca] of original leached results (4300.P3) 
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is lower for day three and higher than the re-leached value for day 6.  Day nine difference 

is double that of day 3 and 6 at 1.4 mg/L and in this case the original leaching value is 

lower than that of the re-leached value. 

 

Figure 42: Twice Leached fiber (4300.P3.TLF) results for fiber that received an additional 30 minute DI rinse prior to 

second leaching period, compared to [Ca] of original leached results (4300.P3) 

The rinsed TLF samples [Ca] returned to values similar to that of the original. Days 

3 and 6 show higher original values, while days 9 and 18 show lower original values. The 

difference in values is similar for days 3, 6, and 18 at 0.3 mg/L, 0.4 mg/L, and 0.3 mg/L 

respectively. The difference in original versus re-leached for day 9 in approximately three 

times as large as the difference seen on any other days at 1.1 mg/L. The 30 minute DI rinse 

at room temperature was ineffective at removing precipitates, but calcium was foun to 

leach into solution during the rinse (Figure 43). This reasonably implies the rate of calcium 

leaching from fiberglass is more favorable, that dissolution of calcium orthophosphate 

precipitates. Overall there are 4 data points with lower original concentrations (average 

difference from original: 0.88 mg/L), 3 data points with higher original values (average 

difference from original: 0.47), and two data points with the same value. The overall 

average difference from the original leaching value including higher, lower, and the same 

as the original is 0.23 mg/L. These results are summarized in Table 13.  

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20

C
al

ci
u

m
  C

o
n

ce
n

tr
at

io
n

 [
m

g/
L]

Leaching Period (4300.P3) (Day) & 
Intial Leaching Period (4300.P3.TLF) (Day)

4300.P3 Rinse

4300.P3.TLF Rinse



Chapter 4: Methods & Results 

67 

 

 

 

Figure 43: ICP-OES results from 1 gram fiberglass in 500 mL DI water at room temperature for 30 min after leaching 

for varying initial time periods in borated buffered water at 80oC 
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Table 13: Summarizes data obtained in the Twice Run Fiberglass Experiment 

TWICE LEACHED FIBERGLASS 

NO RINSE 

Initial 

Leach 

period 

(Day) 

4300.P3  

 [Ca] (mg/L) 

4300.P3.TLF 

[Ca] (mg/L) 

Δ 

(mg/L) 

Original 

Concentration   

1 5.9 5.9 0.00 Same 
 

3 6.5 5.8 0.70 Higher 

6 3.5 4.2 -0.70 Lower Low Avg 

-

1.05 

9 2.3 3.7 -1.40 Lower High Avg 0.70 

18 2.0 2.0 0.00 Same 

No Rinse 

Overall Avg 0.28 

RINSE 

Initial 

Leach 

period 

(Day) 

4300.P3  

 [Ca] (mg/L) 

4300.P3.TLF 

[Ca] (mg/L) 

Δ 

(mg/L) 

Original 

Concentration 

  3 6.3 6.0 0.30 Higher 

6 5.9 5.5 0.40 Higher Low Avg 

-

0.70 

9 1.9 3.0 -1.10 Lower High Avg 0.35 

18 1.7 2.0 -0.30 Lower 

  Rinse 

Overall Avg 0.18 

  

Avg Overall 0.23 

  

Avg Overall Low -0.88 

Avg Overall High 0.47 

 

In conclusion, the data collected in the twice leached fiberglass experiment did not 

provide information on a change in fiberglass release rate. For each of the re-leaching 

experiments one would expect to find that the solution had re-leached to the same value as 

the original 24 hour leaching experiment i.e. 5.9 mg/L, if there was no change in release 

rate. As shown in Table 13 the average difference between original 4300.P3 concentration 

and the re-leached calcium concentration is 0.23 mg/L. In contrast the overall average 

difference between the initial 1 day leaching value and the re-leach value for all 

experiments is 1.67 mg/L (Table 14). Albeit the TLF hypothesized a decrease in the 

calcium release rate from fiberglass with increased time periods, the similarity between the 
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re-leach values and the initial leaching period values leads to inconclusive data with respect 

to the release rate. The data suggests a precipitate was transferred into the re-leaching 

solution in each case, and that this precipitate did not dissolve into solution but instead 

acted as a nucleation site for further precipitate formation.  

Table 14: Compares 4300.P3.TLF results to the expected value leached at 24 hours if assuming no change in fiberglass 

leaching rate with increasing time 

TWICE LEACHED FIBER 

NO RINSE 

Initial 

Leach 

period 

(Day) 

Initial [Ca] 

Leaching in 1 

Day (mg/L) 

4300.P3.TLF    

(24 hr. re-leach) 

[Ca] (mg/L) 

Δ 

(mg/L) 

Original 

Concentration 

  

1 5.9 5.9 0.00 Same 

3 5.9 5.8 -0.10 Lower 

6 5.9 4.2 -1.7 Lower Low Avg -1.98 

9 5.9 3.7 -2.2 Lower High Avg N/A 

18 5.9 2.0 -3.9 Lower Overall Avg -1.58 

RINSE 

Initial 

Leach 

period 

(Day) 

Initial [Ca] 

Leaching in 1 

Day (mg/L) 

4300.P3.TLF      

(24 hr. re-leach) 

[Ca] (mg/L) 

Δ 

(mg/L) 

Original 

Concentration 

  3 5.9 6 0.10 Higher 

6 5.9 5.5 -0.40 Lower Low Avg -2.40 

9 5.9 3 -2.9 Lower High Avg 0.10 

18 5.9 2.0 -3.9 Lower Overall Avg -1.78 

  

Avg Overall -1.67 

  

Avg Overall Low -1.87 

Avg Overall High 0.10 

 

Scanning electron microscope (SEM) images (Figure 44) of fiberglass samples 

allowed to leach for 18 days on the bench scale, do not exhibit noticeable differences. One 

sample was filtered and then taken for SEM imaging (No Wash: A, B); the other sample 

was filtered, added to a 30 min DI wash/ rinse then filtered again before SEM Imaging 

(Wash: C, D). The fibers appear to have particulates on the fiberglass surface. The makeup 

of the particulate is not detectible as EDS analysis returns the composition of the fiberglass. 
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The SEM imaging as well as the similarity of results for washed and no wash samples leads 

to the conclusion that the DI rinse was ineffective. That is not to say that the DI rinse 

removed no calcium. Figure 43 shows ICP-OES results from samples taken from the DI 

rinse that demonstrate an average of 2.6 mg/L of calcium was rinsed from the fiberglass. 

This rinse did not prevent the transfer of aged precipitates to the new solution. 

 

Figure 44: Scanning Electron Microscope (SEM) images of washed and unwashed fiberglass samples from the Twice 

Run Fiberglass experiment 

4.5 Calcium Study in Heated Vertical Head-Loss Column (4400) 

The goal of the 4400 series experiment was to explore and measure calcium chemical 

effects in a heated vertical head-loss column. The test maintained solution chemistry 

(borated & buffered) and temperature conditions as used in all previous bench tests and 

tank test (pH 7.1, 80 oC). The 4400 series test was run for 20 days. The amount of fiberglass 

was scaled to match the fiberglass concentration (fiberglass mass / water volume ratio) 

used in the 4300 tank test. A fiberglass mass of 37.2 grams was used to generate debris bed 

in column with 8.32 gallons of water. In order to create a more prototypic debris bed, 
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epoxy, inorganic zinc (IOZ), and latent dust/dirt were combined with the prepared NUKON 

fiberglass debris to form the multi-constituents fibrous bed. The debris materials were 

scaled to match prototypical values used in the UNM Head Loss (HL) series. The chemicals 

and debris bed constituents masses used in the 4400 series test are listed in Chapter 3 Table 

10. The presence of epoxy in this test led to a higher total inventory of calcium. Leaching 

tests for epoxy are shown in Figure 45. 

 

Figure 45: Epoxy 5 day leaching tests for 2 g, pH 7.14, 500 mL at 80 oC 

The 4400 series was initiated on 10/31/2014 at 10:20 AM with the loading of the multi-

constituents debris bed. The column temperature at debris loading was 86.2oC. The column 

temperature was set higher to account for temperature losses that were anticipated during 

debris bed addition to column. The temperature decrease was observed to decrease from 

86.2oC to 71oC in 6.5 minutes, and returned to the desired testing temperature of 80oC two 

hours into the test. The temperature in the column was maintained at 80oC throughout 

testing. The temperature decrease is observed as shown in Figure 46b, as well as the 

temperature rise to 80 oC over the next 3 hours. The temperature in the column was kept 

stable at 80 oC over the period of testing.  
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Figure 46: (a) 4400 Series 20 Day Temperature profile and (b) change in the temperature due to debris bed loading 

    As per HL testing procedure (Ali et al., 2014), the debris bed was loaded at a column 

approach velocity of 0.05 ft/s, to promote debris settling. The head-loss was allowed to 

stabilize at 0.05 ft/s, before decreasing to the prototypic approach velocity across the sump 

screen of 0.013 ft/s. Figure 47 compares the stability criteria to the velocity profile during 

the high velocity period. The stability criteria was met within the first 24 hours. Due to the 

stability drifting back above 1%/hr between hours 18-28, the planned decrease in velocity 

to the testing velocity (0.013 ft/s) was not performed until the 32nd hour of testing.  
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Figure 47: (a) Velocity profile of the 20 day testing period and (b) comparison of the column approach velocity and 

head loss stability criteria  

 Figure 48a shows the variation in measured turbidity by sample location. The 

measured turbidity from top samples were consistently higher than from samples taken 

from the bottom.  There appears to be consistency in the high and low peaks, though this 

is most likely from variation in floating epoxy particulates. Figure 48b shows the results of 

turbidity samples taken from the bottom of the column, after debris bed filtration. There is 

a general decrease in the trend of the turbidity from samples taken from the bottom, with 

an outlier on the 19th day. Results from the head-loss data (Figure 49) and stability criteria 

for this outlier indicate that the bed seems to have been significantly disturbed during this 

pull from the bottom, most likely resulting in particulate removal from the bed. This means 

that the turbidity reading on day 19 represents a measurement of particulate removed from 

the bed during the sampling transient and not representative of water turbidity at day 19 

under steady state experimental conditions.  Figure 49 shows the stability criteria overlaid 

on a graph of head-loss and includes where the ICP-OES sample was taken for each of the 

20 days of testing. 
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Figure 48: (a) Turbidity data comparison by sample location and (b) turbidity results for samples taken from the drain 

 

Figure 49: Comparison of Head-Loss and stability criterial with indicators of samples taken from either the top or the 

bottom of column 
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 The head-loss observed in the column over time is not due to repeated bed 

disturbance, but due predominantly to chemical effects. Stability spiked (implying the HL 

was momentarily unstable) on days when samples were taken from both the movable flange 

(top) and the drain line (bottom). The stability then returned immediately below the < 1%/ 

hr criteria. There is no clear relation between bed disturbance and sample method i.e. 

samples taken from the top or the bottom. The change is never more than 3 %/hr divergence 

from stability for any observed spike, excluding the 19th day. The stability criteria remained 

stable within 4 %/hr for all testing times and within the 1% stability criteria outside of the 

spiked regions.   

As the head-loss increased due to bed characteristics (porosity) change, resistance to 

the flow increased, changing the operating condition of the centrifugal pump, which 

resulted in reduction in the approach velocity (Figure 50). The pump did not compensate 

the flow resistance by frequency increase to recover the same flow condition (flow rate and 

velocity). The velocity began to noticeably decrease by the 10th day of the experiment, and 

had deviated from the prototypic approach velocity to 0.012 ft/s by the end of the test. The 

exponential fit was done from day 3 because the approach velocity was not decreased from 

the loading value until day 3. The exponential fit will be utilized to perform a linear 

regression and compare changes in head-loss slope for regions of interest defined by the 

behavior of calcium in solution. 
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Figure 50: Exponential fit to HL data from day 3 to 20 

The pH in solution is fairly stable over the 20 day testing period with an average 

value of 7.35 (Figure 51). 4400 fiberglass concentration was scaled from the 4300.Tank 

test and therefore the results were expected to be similar. The 4400 series test differs from 

previous tests in that the debris bed is multi-constituent - containing epoxy, latent debris 

and IOZ - in addition to the NUKON fiberglass. 4400 follows the same trend observed in 

the 4300 bench and tank tests (Figure 52a). The location of the sample extraction does not 

appear to bias the ICP-OES result (Figure 52b). [Ca] increased in solution up to the third 

day, then entered a metastable region for the next seven days. The behavior of [Ca] between 

days 10 & 15 for the tank test is unclear due to a lack of data, but was observed in the 4400 

test that the [Ca] in solution drops between days 10 & 11. It is interesting to note that the 

[Ca] in solution in the column is higher than 4300.Tank before the drop but remains lower 

after the drop.  The final concentration (on day 20) in the 4400 series test is 1.2 mg/L, 

compared to 1.5 mg/L in the tank. 
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Figure 51: 4400 Series Column testing pH measurements with sample location indicator 
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Figure 52: (a) Comparison of ICP-OES Ca results for the 4300.Tank test and the 4400 series column testing and (b) 

4400 ICP-OES results by sample location 

 A comparison was made to determine the relation between the observed change in 

the measured head-loss and calcium concentration change in the column solution (Figure 

53). Calcium concentration follows four distinct regimes between days 3 and 20. Head-

loss data is only considered beginning at day three, which corresponds with the time at 

which the velocity in the column was decreased from the debris bed loading velocity of 

0.05 ft/s to the prototypical approach velocity of 0.013 ft/s. 
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Figure 53: Comparison of [Ca], Head-loss, & velocity in the 4400 column over the 20 day testing period 

Analysis of the measured head-loss can be divided into four regions (Figure 54). 

Region 1 represents a prompt release of calcium which behaves linearly from day 1.3 to 3. 

Region 2 is the head-loss corresponding to the calcium solubility metastable region from 

days 3- 10. Region 3 represents the head-loss measured in days 10 to 12, when the calcium 

concentration drops from 5.5 mg/L to 1.7 mg/L. Region 4 represents recorded head-loss 

behavior in days 12-20, when the calcium solubility is constant. The slope of the head-loss 

curve is calculated for each region using a linear regression through all head-loss points 

within that region. There is a trend of increasing head-loss slope in the three regions: 

Region 1, 0.17; Region 2, 0.80; and Region 3, 1.30. A greater increase in the head-loss 

would have been observable, had the velocity of the experiment be maintained constant. It 

is expected that the porosity of the bed decreases, leading to a resultant head-loss increase 

through the bed. Head-loss continues to increase in Region 4 due to continued crystal 

formation and growth of the ripened precipitate
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Figure 54: Four region calcium behavior compared to linear regression of HL slope 
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4.6 Fiberglass Concentration & Magnesium Behavior (4300 & 4400) 

Fiberglass concentration and magnesium behavior have been shown to interact control 

regions of the calcium behavior in post-LOCA solution. Concentration of fiberglass effects 

the rate at which the prompt release of calcium enters solution. One addition bench test 

was carried out to see the effects of quadrupling the fiberglass concentration in solution. 

Magnesium is a known stabilizer of ACP in solution and active species in the calcium 

orthophosphate system. Magnesium ICP-OES results for the 4300 series (4300.P2, 

4300.P3, & 4300.Tank) and the 4400 series demonstrated a codependent behavior of 

magnesium and calcium in post-LOCA containment solution.  

4.6.1 Increased Fiberglass Concentration Bench Test 

The typical bench test concentration of 2 g/L was quadrupling (1 gram to 4 grams) 

in a 500 mL solution. Calcium release over time was expected to scale proportionally to 

fiberglass mass. In response, the sampling times were reduced by a factor of four. The 

results of this experiment are shown in Figure 55. The ‘4 times fiber’ test demonstrates that 

an increase in the fiberglass mass leads to an increase in the rate at which calcium is 

released into solution. The concentration of calcium in the 4 gram sample reaches 6.9 mg/L 

at 12 hours, while the maximum concentration of the 1 gram sample is 6.5 mg/L at 48 

hours.  Due to the test duration of 18 hours, future tests are needed to determine how the 

calcium in solution will behave after the solubility limit is reached. 
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Figure 55: UNM 4300 Ca Leaching at 7.14 pH & 80 ⁰C for 2 g/L NUKON (square) & 8 g/L NUKON (diamond) 

4.6.2 Eight Day NUKON Leaching Magnesium Results (4300.P2) 

Magnesium exhibits a slow leaching period into solution over the first 5 days (Figure 56). 

After approaching the maximum concentration in solution at ~6.1 mg/L magnesium, there 

is a three day drop in magnesium concentration down to 2.6 mg/L magnesium for day 5 to 

8. After the second day of magnesium decrease from solution, calcium drops auto-

catalytically from 4.9 to 2.1 mg/L calcium. This result further disproves the TLF hypothesis 

of decreased rate of calcium leaching from fiberglass leading to the drop in calcium 

concentration. 
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Figure 56: 4300.P2 comparison of ICP-OES results for calcium & magnesium 

4.6.3 Thirty Day NUKON Leaching Magnesium Results (4300.P3 & 4300.Tank) 

Previously the 30 day bench experiment (4300.P3) had a number of non-typical bench test 

calcium concentrations, specifically, the variable calcium concentration on day 6 and the 

high calcium concentration on day 12. Focusing first on the day 6 results the recorded 

calcium concentration were 5.9 and 3.5 respectively. Experimental conditions between 

4300.P2 and 4300.P3 were identical, therefore referring back to Figure 56, the drop 

magnesium concentration is expected to drop at approximately day 5. The magnesium 

concentrations correlating to the 5.9 mg/L Ca and 3.5 mg/L Ca, were 3.5 mg/L Mg and 2.7 

mg/L Mg respectively. Both magnesium values are lower than those observed from day 6 

of 4300.P2 (4.1 mg/L Mg). In the 4300.P2 the calcium concentration did not drop until the 

magnesium concentration was lower than 2.9 mg/L. Assuming that total magnesium must 

be less than 2.9 mg/L Mg to allow calcium to drop out of solution; it would be expected 

for the 4300.P3 higher calcium concentration to not have dropped whereas for the observed 

lower calcium concentration should have dropped. Lastly turning attention to the day 12 

high calcium concentration it can be seen that the magnesium is at 6.8 mg/L therefore the 

calcium should not have dropped. The experimental conditions which led to the 

stabilization of the magnesium and the resulting stabilization of calcium concentration are 

not clear, but this does further the point that the high magnesium concentration and calcium 
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concentration are correlated, and that magnesium is controlling or at least predeceasing  the 

drop in calcium concentration. 

 

Figure 57: 4300.P3 Bench Test with magnesium data 
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The correlation of magnesium and calcium in the tank demonstrates again that magnesium 

follows the same trend observed in the 4400 series. 4300.Tank reaches a known max value 

of 5.3 mg/L Mg observed on day 10 (Figure 58). The true tank maximum is not known due 

to lack of data collection between days 10 and 15 of the test. The magnesium concentration 

has been observed to approach a value near that of calcium and then decrease to a value 

near that of calcium as well. 

 

Figure 58: 4300.Tank test with magnesium data 

4.6.4 Heated Vertical Head-Loss Column Magnesium Results (4400) 

Comparing the concentration change of calcium and magnesium showed that the sudden 

decrease in calcium concentration in solution is attributed to the presence and change of 

magnesium concentration leaching into solution from the NUKON fiberglass. After eight 

days magnesium reached the maximum measured concentration in solution of 5.7 mg/L 

(Figure 59). Magnesium then drops over a three day period at which point calcium drops. 

Identical to the result in 4300.P2, the calcium drops following a magnesium concentration 

of 2.9 mg/L. There was a time period from day 7 to day 10 where an increase in calcium 

concentration was observed before the drop. This behavior was more pronounced in this 

experiment than the others, but could indicate the metastable solubility product became 

destabilized by the decreasing magnesium concentration. 
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Figure 59: 4400 Ca & Mg ICP-OES results 
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Chapter 5: Discussion and Conclusion 

5.1 Summary 

Six major findings were confirmed through experiments carried out in the 4000 series. 

First, the destruction level of fiberglass did not change the rate of calcium leaching from 

NUKON. Secondly, the addition of CaCl2 into prototypic LBLOCA chemistry resulted in 

the formation of HAp. The solubility limit of HAp was not observed in any NUKON 

leaching experiment. Third, the calcium behavior in solution changed overtime in a 

predictable 4 region pattern. Fourth, in a constant heat vertical head-loss column, the head-

loss associated with chemical effects increased overtime. Higher head-loss was found to 

occur in regions associated with the growth or increase in precipitates. Fifth, increasing 

fiberglass concentration displayed a decrease in time to reach the maximum measured 

calcium concentration. The time to reach the maximum calcium concentration was found 

to be proportional to changes in calcium concentration. Lastly, the behavior of magnesium 

was observed to control the metastable calcium position. This chapter integrates the testing 

efforts of the 4000 series data. The discussion includes a formal investigation of the effects 

of fiberglass concentration, analysis of the metastable (region 2) and stable (region 4) 

determining the thermodynamically expected precipitates. Lastly these concepts are 

applied to interpreting the results of the head-loss test. 

5.2 Effects of Fiberglass Concentration 

Variable amounts of fiberglass may be dislodged and transported to the containment floor 

during a LOCA, depending on pipe break size, location, and available fiber inventory. The 

amount of fiberglass arriving at containment floor and the total volume of water will 

determine the rate of calcium leaching into solution. The dependence of calcium leaching 

rate on fiberglass concentration was investigated on the bench scale and large-scale tests 

investigating three fiberglass concentrations.  

The majority of bench scale testing incorporated a fiberglass concentration of 2 g/L; 

with the exception one short duration test (20 hour), which was run at 8 g/L.  Large-scale 

tests were each run using a fiberglass concentration of 1.18 g/L, though the total available 
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calcium between the tank and column tests differed due to the presence of epoxy paint in 

the column debris bed; separate bench scale leaching experiments have demonstrated that 

epoxy leaches calcium (Figure 45; 4 g/L epoxy, 80oC, 5 days, 1 mg/L Ca total). 

A comparison of the time dependency of calcium leaching from NUKON fiber is 

shown in Figure 60. It is noted that higher initial concentrations of fiberglass in solution 

resulted in reaching the maximum concentration of calcium in solution faster than lesser 

fiberglass concentrations. For example, the maximum concentration of calcium in solution 

for the 8 g/L fiber test occurred four times faster than the 2 g/L fiber test, suggesting an 

approximately linear release rate to reach maximum calcium concentration in solution.  The 

tank (1.18 g/L) experiment took 3 days to reach its maximum calcium concentration, which 

was consistent with the overall trend for calcium release into solution, but does not follow 

the linear relationship noted between the 2 g/L and 8 g/L test samples.  

 

Figure 60: Effects of fiberglass concentration on calcium release in borated TSP-buffered solution 

As also shown in Figure 60, increasing the fiberglass concentration increases the 

maximum calcium concentration reached in solution. The linear relationship in the time 

taken to reach the maximum calcium, observed between the 2 g/L and the 8 g/L, is not true 

for all cases. If a linear release rate was assumed to be consistent for 2 g/L and 1.18 g/L 

fiberglass, there would be a 12% expected deviation from the true value obtained in the 
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tank test (1.18 g/L). The 2 g/L fiber concentration was from 4300.P2, and the 1.18 g/L fiber 

concentration was from 4300.Tank. The leaching behavior observed here is the first of four 

regions of calcium leaching behavior from NUKON fiberglass which will be discussed in 

the following sections. 

5.3 Calcium Orthophosphate Solubility Products from NUKON 

The 4000 series investigations beyond the initial leaching period (discussed in Section 5.2) 

suggested the occurrence of an interesting phenomenon that has not been reported in 

previous chemical effects studies. First, calcium leached from fiber into solution until a 

maximum concentration was reached as expected. Then after several days of continual 

exposure to heated borated and TSP-buffered solution at the maximum concentration, a 

sudden decrease in calcium concentration was measured. This decrease was followed by a 

stable phase out to 30 days. Using thermodynamic modeling techniques discussed in 

chapter 2, this section determines the most probable phases of calcium orthophosphate. 

The solubility product formed in region 4 demonstrated a tapering off behavior 

from the initial drop of ~ 2 mg/L Ca to a final stable value at 30 days of 1.4, and 1.3 mg/L 

Ca for the 4300.P3 and 4300.Tank respectively. The calcium concentration at 30 days was 

considered the most stable product, because the tapering off occurred as a gradual 

perfecting of a more crystal structure. The measured pH on day 30 of 4300.P3 and 

4300.Tank was 7.24, and 7.34 respectively. β-TCP had a solubility limit of 1.14 and 1.00 

mg/L calcium at the final measured pH values for 4300.P3 and 4300.Tank respectively. 

The vicinity of the results indicates β-TCP as the precipitate formed for region four of the 

calcium series. No other calcium orthophosphate species had a representative calcium 

solubility limit to that measured (Table 7) and the new solubility data reported in Figure 

12, agrees well with the data solubility found here further suggesting the formation of β-

TCP. 

β-TCP cannot be precipitated from aqueous solution (Dorozhkin, 2007) β-TCP is 

a high temperature phase of calcium orthophosphate that may be prepared e.g. by the 

thermal decomposition of CDHA at 800oC. Temperature of this magnitude is not expected 

for a LOCA scenario and is not inside the range experimented here. Production of 



Chapter 5: Discussion & Conclusion 

90 

fiberglass requires melting of glass such that the molten glass can be poured and spun to 

create thin strands of glass. PCI states in the NUKON MSDS (PCI, 2015) a melting point 

of 704oC. It is proposed that β-TCP formed in the manufacturing of the NUKON could 

control the solubility, seen in region 4 of calcium leaching experiments. The presence of 

magnesium is believed to prevent the immediate formation of this product.  

  Considering the tapering off behavior to hold true for region 2, the representative 

calcium solubility value for the metastable region was considered to be from the lowest 

attained value for each test’s particular metastable region. For each metastable region 

measured during 4000 series testing, the lowest measured calcium concentration was 

tabulated, including the measured value’s test day, and the measured pH on that day. 

Comparing the values tabulated to Table 7, the most likely solubility products were DCPA 

and CDHA. For each of these calcium orthophosphates the calcium solubility limit was 

calculated at the measured pH value and at the testing temperature of 80oC (Table 15) using 

the process outlined in chapter 2. CDHA has a lack of true crystalline structure resulting in 

variable stoichiometric coefficients (CDHA: Ca(10-x)(HPO4)x(PO4)(6-x)(OH)(2-x)) 

(Dorozhkin, 2009), where x can vary between 0 and 1. The value for CDHA used for this 

initial testing assumed a boundary condition of x equal to 1 resulting in a Ca/P ratio of 1.5; 

the TCP ratio found in region 4. 

Table 15: Models the two most likely calcium orthophosphates solubility limit at the test temperature and measured pH 

for the comparison to metastable calcium concentrations 

Test 

Lowest 

Metastable [Ca] 

(mg/L) 

Test 

Day 
pH 

[Ca] (mg/L) 

Assume DCPA 

80oC 

Measured pH 

[Ca] (mg/L) 

Assume CDHA 

80oC 

Measured pH 

4300.P2 5.4 5 7.25 6.52 4.95 

4300.P3 5.9 6 7.27 6.51 4.80 

4300.Tank 4.5 8, 

10 

7.38,  

7.42 

6.47,  

6.48 

4.08, 

3.85 

4400 4.9 7 7.55 6.54 3.20 

 In general the calculated solubility was closer to CDHA than to DCPA. In the cases 

where DCPA was closer (4300.P3, and slightly for the column) both assumed precipitates 

were off from the measured value by more than 10%. DCPA is more stable at low pH and 
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was not expected at the pH range measured. CDHA may be produced by adding quantities 

of calcium and orthophosphates to boiling water, in sufficient quantities to form immediate 

precipitation, e.g. 4200 series at 100oC. The similarity in the formation of CDHA and ACP 

(same procedure as CDHA at <100oC) leads to similarities in the properties. CDHA has an 

undefined stoichiometry, which is proposed to explain the multiple metastable region 

values have been observed in testing that may be higher or lower based off fiberglass 

concentration.  

The assumed value of x=1 used to generate the thermodynamic modeling is a 

boundary case where the Ca/P ratio is 1.5, the same as β-TCP. Therefore the precipitate 

could be arranging in the formation of β-TCP but the high concentration of magnesium is 

forming magnesium substituted CDHA, or a magnesium substituted β-TCP. To determine 

how close this CDHA value stoichiometry formed was to the boundary condition of x=1, 

the x value for the chemical formula of CDHA (Ca(10-x)(PO4)(6-x)(OH)(2-x)) was manipulated 

to reach the measured calcium concentration at the measured pH (Table 16).  The values 

calculated were near 0.966 except in the case of the column test which differed from other 

tests in the possibility of additional latent debris leaching. 

Table 16: x-value required for theoretical [Ca] to match measure concentration in metastable position 

Test 
[Ca] assume 

CHDA 
Day pH x value 

4300.P2 5.4 5 7.25 0.978 

4300.P3 5.9 6 7.27 0.948 

4300.Tank 4.5 8 7.38 0.978 

4300.Tank 4.5 10 7.42 0.96 

4400 4.9 7 7.55 0.89 

 

Known to have similar properties to ACP, one observed similarity was the presence 

of magnesium stabilizing the CDHA in region 2. Posner set a limit of 0.2 molar ratio of 

Mg:Ca as the limit at which ACP could no longer convert to HAp. To investigate the 

relation of magnesium and calcium, the molar ratio was plotted for comparison to the 

changes in calcium concentration. Although the behavior of calcium was seen to be 

reproducible on the bench scale, results also showed that variations in the drop could occur 
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e.g. 4300.P3 day 6 and 12. Each bench test represents an identically prepared but separate 

experiment, whereas large-scale experimentation represent a continuous experiment. 

Therefore when considering the effects of magnesium on the dropping, each bench test 

must be considered in isolation (e.g. each result is independent), whereas for large-scale 

testing, the change in measured calcium concentration represents the progression of a 

single experiment, and each result may be considered dependent on the previous. Of the 

two large-scale experiments, only the column test captured the drop in calcium 

concentration. 

 

 

Figure 61: 4400 Series molar concentrations and Mg:Ca molar ratio 

 The 4400 series was the only continuous experiment to capture the drop in calcium 

concentration, occurring at a Mg:Ca ratio of 0.87. The drop in magnesium concentration 

occurred at a Mg:Ca molar ratio of 1.9 for the column test (Figure 61). The drop in the 

calcium behavior was proposed to be from the decrease in magnesium, therefore 

destabilizing the CDHA. The final measured molar ratio in region four had a molar ratio 

of 2.7. 
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Figure 62: Molar concentrations of 4300.P3 test and Mg:Ca molar ratio 

The maximum molar ratio in 4300.Tank was observed to be 1.9, the same as the 

maximum molar ratio in the column. No data is available until five days after the maximum 

molar ratio. This 15th day data point for the tank test had a calculated molar ratio of 1.7, 

compared to 2.2 in the tank. The tank approached a molar ratio of 2.2 by day 20. The 

presence of addition leaching materials was proposed to lead to decreased time to observe 

the drop in calcium concentration, and faster rise in the magnesium concentration post 

drop. 
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Figure 63: Molar concentrations of 4300. P2 test and Mg:Ca molar ratio 

The molar ratio of 1.9 is again observed before the drop in calcium concentration in 

4200.P2.  Araujo et. al. (Araujo, 2009) prepared a 0.2 Mg:Ca molar ratio CDHA by wet 

precipitation at pH 9 at 38oC, using 1.25 M Ca(OH)2, 2.85 M H3PO4 and varying amount 

on MgCl2 
. 6H2O, in 25oC solution over 24 hour period. The solution was then dried at 40oC 

and sintered at 1000oC to create a maximum of nearly 15 mol% Mg-β-TCP 

(Ca2.61(Mg10.28,Mg20.11)(PO4)2). Although the exact precipitate is not known, it is most 

likely CDHA, which will assist in the explanation of the observed head-loss. 

5.4 Effects of Precipitate Ripening on Calcium Concentration 

This section will focus on the know properties of the determine solubility products to 

describe the regional calcium behavior. Analyses for the bench (Figure 64) and large-scale 

tests (Figure 65) are divided into two graphs due to the difference in fiberglass 

concentrations (bench: 2 g/L; large-scale: 1.18 g/L) and the previous discussion on the 

dependence of calcium concentration in solution relative to fiberglass concentration. 
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Figure 64: Identical condition bench scale calcium leaching tests with 2 g/L NUKON fiberglass concentration 

Region 1 was the prompt release of calcium which was defined by the calcium 

concentration in solution. The greater the fiberglass concentration the higher observed 

maximum calcium concentration and the less time taken to reach region 2. In addition to 

calcium, region 1 corresponded to a prompt release of magnesium as well. The prompt 

release of magnesium continued into region 2. 

Region 2 was defined as the metastable region of calcium. This metastable region 

was observed from 4 to 7 days. This region was known to be controlled by magnesium, 

where a maximum Mg:Ca ratio of 1.9, initiated a decrease in magnesium concentration. 

Magnesium is still in the prompt release stage during calcium region 2. It was proposed 

that magnesium reaching the maximum value in solution was dependent in the same way 

as calcium. Higher concentrations of fiberglass will lead to a decrease in the time taken for 

magnesium to reach the maximum concentration. Therefore, tests with higher magnesium 

concentrations were expected to have short region 2 durations, in comparison to lower 

fiberglass concentration experiments. Comparing the 2 g/L (Figure 64) metastable region 

to the 1.18 g/L (Figure 65) metastable confirms this hypothesis. 

Region 3 was the autocatalytic drop in calcium concentration occurring 2 days after 

the maximum Mg:Ca molar ratio was achieved for 4300.P2 and 4400. The decrease in 
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magnesium concentration prior to a change in calcium concentration indicated the 

formation of two separate precipitates, of which the calcium orthophosphate was stabilized 

by the presence of magnesium. Considering this precipitate to be CDHA, with similar 

properties to ACP, stabilization by magnesium was reasonable. 

 

Figure 65: Measured calcium and magnesium in solution for large-scale calcium leaching test with fiberglass 

concentration 1.18 g/L 

Region 4 was the final stable position observed to occur out to 30 days presumed 

to be β-TCP. Although β-TCP is unable to precipitate from solution, the fabrication of 

fiberglass could lead contain calcium orthophosphates. If β-TCP is magnesium substituted, 

the solubility of this phase has been found to depend on the concentration of substituted 

magnesium in the β-TCP (Li et. al., 2009) as pKsp = 28.87432 + 1.40348C - 0.3163C2 + 

0.04218C3 - 0.00275C4 + 0.0000681659C5, where C is the concentration of magnesium in 

the β-TCP in mol %.  

5.5 Effects of Calcium & Magnesium on Measured Head-loss 

The fiber leaching experiment conducted in the vertical head-loss column focused on the 

relationship between changes in calcium concentration and head-loss over extended 

periods. During the test, samples were collected from the removable flange on top of the 
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column (before filtration) and from a sampling port at the bottom end of the column (after 

filtration). Sampling port selection did not affect ICP-OES measurements, but samples 

taken from the bottom resulted in more reliable turbidity measurements, which showed a 

decreasing trend on particle size from 1.3 on day 3 to 0.45 on day 15 compared to the top 

samples. During the test, reduction in the measured column approach velocity was 

observed as results of head-loss increase and debris bed compaction. The increased head-

loss caused a slight change in bed porosity, increased the flow resistance, and changed the 

operating condition of the centrifugal pump (Approach velocity 0.013 ft/s). The pump does 

not compensate the flow resistance by increasing its frequency to recover the same flow 

condition (flow rate and velocity) automatically. Starting on the 10th day experimentation 

a decrease in the velocity was observed (Figure 18), and by the 20th day of testing, the 

approach velocity decreased to 0.012 ft/s.  

When comparing the measured head-loss across a prototypic debris bed to the 

regional calcium regional concentrations, each region had a progressively increasing trend 

in head-loss compared to the previous region.  A correlation was developed between the 

formation of calcium phosphate precipitates and the increase in head-loss; each region is 

considered as a different stage of the calcium phosphate precipitation process. The region 

1 head-loss slope only considers from hour 32 (decrease from loading velocity to prototypic 

velocity) onward. There was no increase in head-loss observed in region 1. In region 2, the 

CDHA precipitate had formed and were slowly reaching a stable concentration. As CDHA 

grows in solution, the debris bed porosity is decreasing, and therefore the head-loss should 

begin to increase. On days 8-10, a light increase in the calcium concentration was observed, 

which was attributed to the destabilization of CDHA. In region 3, there was a sharp 

decrease in calcium concentration in solution. There is also a corresponding increase in the 

head-loss, by a factor of 4. Region 4 was a recession period as β-TCP continues to form; a 

continual increase in head-loss is also measured during this period, but at a lesser rate than 

is observed in the transition from region 2 to region 3. 

The resulting head-loss from the chemical behavior was overlain on a graph of the 

measured calcium and magnesium concentrations. The graph was then divided into five 

regions corresponding to the behavior of metals in solution. The regions correspond to the 
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initial four region calcium behavior, but region 2 was divided into 2 regions (A & B) at the 

maximum Mg:Ca molar ratio. This split in region 2 allowed for head-loss changes 

associated with the precipitation of magnesium to be observed. 
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Figure 66: Five-Region column Ca & Mg concentration and the measured corresponding head-loss with stability 

criteria 
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The head-loss was observed to increase in each subsequent region. Region 1, region 

3, and region 4 had the same head-loss slopes as observed in Figure 22. The total region 2 

head-loss slope was 0.17 which now correspond to a head-loss slope of 0.14 and 0.38 for 

region 2 A, and region 2B respectively. The more than 2.5 times increase in head-loss slope 

change in region 2 was attributed to the precipitation of magnesium in region 2B. Region 

3 would be expected to have an even higher increase in head-loss as magnesium continue 

to precipitate and CDHA transforms to β-TCP increasing the amount of calcium in the 

solid phase. A large increase was observed of 2 times increase in head-loss slope. 

5.6 Conclusion 

In an effort to understand the chemical effects of calcium leaching from NUKON 

fiberglass, several experiments were performed on three solution inventory scales 

subjected to a variety of flow profiles. The behavior of calcium in solution was observed 

to be repeatable for the conditions of the test, and can be divided into four predictable 

regions: (1) prompt release, (2) metastable region, (3) autocatalytic drop, and (4) stable 

region. Region 1 was found to be independent of the size distribution of the fiberglass, but 

sensitive to fiberglass concentration. This result implies that regardless of the fiberglass 

size distribution following a LOCA, the amount of calcium released from the NUKON will 

be the same for a given concentration. While independent of size distribution, the approach 

to region 2 demonstrates an inverse relationship between fiberglass concentration and the 

time needed to reach maximum calcium concentration in solution and the maximum 

concentration of leached calcium is dependent on the initial fiberglass concentration.  

The duration of region 2 was directly related to the presence of magnesium in 

solution, since magnesium acts as a stabilizing agent to the ACP that is formed. Magnesium 

must reach a Mg:Ca molar ratio of 1.9, followed by precipitating out of solution. The initial 

drop in magnesium concentration occurring independent of changes in calcium 

concentration suggests that magnesium forms a separate precipitate. As the precipitation 

continues the magnesium concentration decreased, destabilized the CDHA, and allowing 

for the autocatalytic transformation to β-TCP. This investigation demonstrates that the 
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behavior of calcium and magnesium was coupled and that both elements need to be 

considered as co-dependent for future research.  

The drop in calcium concentration observed in region 3 was studied for increases 

in head-loss in a heated vertical column. Head-loss slope demonstrated a four times 

increase in region 4 compared to region 2A determined to increase more than four times 

the head-loss slope observed in region 2. Furthermore outside of the prototypical debris 

bed constituents the head-loss did not account for the formation of corrosion products from 

other prototypical containment debris, most notably aluminum and zinc. Therefore, due to 

the retrograde solubility of calcium phosphates and the exclusion of other containment 

materials this head-loss test represents an upper bound on the formation of calcium 

phosphate chemical effects. 
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