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Abstract 

 

Developing hybrid catalytic systems has been researched for the past decade in an effort to 

efficiently incorporate catalysts of different modalities in catalytic cascades. It has become 

imperative to design a cascade system where the catalysts are spatially organized to control the 

delivery of precursors, intermediates, and products. In this work, we have shown that a molecular 

catalyst, biocatalyst, and metallic catalyst can be co-localized using a carbonaceous support to 

create a hybrid catalytic system and complete the oxidation of oxalic acid to create a 

microchemical reactor. The molecular, pyrene-TEMPO catalyst oxidizes glyoxalic acid to oxalic 

acid. The enzyme oxalate decarboxylase from Bacillus Subtilis is being used to convert oxalic acid 
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to formic acid followed by formic acid oxidation to CO2 by the metallic catalyst, gold 

nanoparticles. This work continues to demonstrate incorporating these three catalysts of these three 

distinct modalities on the same support to catalyze a three-step catalytic reaction as a 

fundamentally new result. Finding the optimal ways to incorporate three catalysts with different 

modalities on the same support is expected to lead to the novel pathways in the design of synthetic 

multi-step cascade reactions towards the development of microchemical reactors.  

 

This work is a contribution to the fundamental science behind developing hybrid catalysts of 

distinctly different modalities and their use in multi-step catalytic reactions. One of the main 

technical contributions of this work in creating a synthetic catalytic cascade was by immobilizing 

metallic nanoparticles, molecular redox catalysts, and an enzyme in the same carbonaceous 

support and demonstrating the synergistic effect of their co-presence in an overall catalytic reaction 

enhancement. This research opens paths to develop and engineer more complex synthetic hybrid 

catalysts for larger multi-step cascade reactions as well as the development of more sophisticated 

microchemical reactors, which include using different catalysts and different alternative fuels.  
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Chapter 1 

Introduction 

 

The use of fossil fuels, such as oil, coal, and natural gas, for current energy conservation 

and chemical processes relies primarily on their combustion in air or with oxygen derived 

from air, at power plants, to provide heat. Fossil hydrocarbon sources employed as a 

feedstock in chemical industry are being thermally activated, thus requiring more fossil 

fuels for its conversion, thus placing yet another branch of technology in its dependence. 

 

These fossil fuels and hydrocarbon sources used in both power and heat generation, 

transportation and as a source of chemical in synthesis are non-renewable, limited 

resources. Their use is predominantly, in gas phase, elevated temperature, and as it is being 

conducted on a large scale they preset the largest component of current man-made heat and 

CO2 production. Technology is moving towards developing multi-step reactions on a 

condensed size. As a part of overcoming total reliance on fossil fuels, a new technology is 

emerging dependent on the development of multi-step reactions, carried out with catalytic 

processes in condensed/ liquid phase and allow (or lower) temperatures. These new 

generation of chemical reactions tend to rely on development of the process based on light 

or electrochemical opposed to thermally or under high pressure. Such technology is aiming 

to replace large scale reactor units, with desirably more flexible, smaller scale distributed 

chemical technology, relying on heterogeneous liquid phase reactors operating at room 

temperature.  Ultimately, such processes should not require fossil fuels or a fossil feedstock 

but O2 capture on energy from renewable sources.   This vision integrates hydrogen 
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economy with carbon-neutral technology and fuel electrosynthesis with electrolysis and 

hydrogen fuel cells 1. 

 

One of the complex alternative fuels is biodiesel, produced from algae or plant-generated 

fatty acids. One of the main byproducts during production of biodiesel is glycerol obtained 

in the process of hydrolysis of triglycerides, from which fatty acids are being derived. For 

every 100 kilograms of biodiesel produced, it yields 10 kilograms of crude glycerol (also 

known as glycerin).  

 

In nature multi-step catalytic reactions are carried out on assemblies of enzymatic catalyst, 

quaternary protein structures, in which the constituent enzymes are assembled in physical 

proximity and in exact, specific special orientation to each other to catalyze the consecutive 

processes. Such dynamic structures, that specifically exist in organelles responsible for 

complex metabolic processes (like the mitochondria or thylakoids), are called metabolons. 

This dissertation central synthetic idea rests on the notion of “artificial metabolon.” This is 

a biomimetic/bioinspired concept, which postulates that ensuring spatial proximity and 

cooperation of catalysts with distinctly different modality (type, nature structure) is a 

critical step towards building multi-stage catalytic chemistries for liquid-phase chemical 

processes.  Constructing cascade heterogenous reaction with different modalities, 

“artificial metabolons”, is one pathway that leads to low temperature cascade reaction that 

ultimately could impact the entire field of chemical engineering. The focus of this 

dissertation will be primarily on biological catalysts (enzymes), molecular catalysts 
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(organocatalysts), and metallic (nanoparticle) catalysts to develop a synthetic multi-step 

catalyst cascade system inspired by metabolons as a concept.  

 

Importance of Catalytic Systems for Multi-Step Cascades 

 

Metabolons were observed in nature and the system of these enzymes convert precursors 

to desires products. Researchers suggest the existence of preferential intermolecular 

interactions between sequential enzymes of metabolic pathways often termed a metabolon; 

a multienzyme complex. There is a specific type of conversions in these systems, called 

substrate channeling, where the binding sites of the enzymes are in close proximity and the 

precursors can be shuttled from one enzyme to the next without diffusing into the bulk 

solution 2,3. 

 

Glycerol was chosen as the fuel for the cascade because it is abundant, an alternative fuel, 

readily available, has a high energy density, and is inexpensive 4,5. It is a byproduct from 

the Biodiesel production; an alternative fuel. The oxidation of glycerol will serve as the 

model cascade that will be used towards this research (Figure 1-1). This cascade reaction 

has been used studied by other groups with the use of enzymatic, molecular, and hybrid 

enzymatic-molecular catalysts. Enzyme cascades were recently been studied towards the 

use of biofuel cells where compartmentalization and a multienzyme complexes were used 

to complete the oxidation of glycerol. However, there are challenges with the stability and 

the specificity of enzymes utilized 6,7,8.  
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Figure 1- 1: Multi-step fructose oxidation cascade 

 

In the glycerol oxidation cascade, there is a problematic step which involves breaking the 

C-C bonds in oxygenated molecules, which only enzymes and inorganic catalysts can 

perform. A combination of the three types of catalysts promises to create a complex system 

that can mimic natures solution of creating metabolons 9,10,11. This complex system of 

catalysts promises to produce multi-step chemical cascade reactions that effectively control 

the flux of precursors, intermediates, and products. 
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The catalyst works by reducing the activation energy necessary to form reaction 

intermediates. In doing so, they increase the rate at which the thermodynamically favored 

products are formed (Figure 1-2). 

 

Figure 1- 2: Example of Free energy vs Reaction coordinate diagram showing the difference using a 
catalyst vs no catalyst in activation energy. 

 

Enzymatic Catalyst 

 

Enzymatic catalysts increase the rate of a chemical reaction in the active site of a protein. 

They lower the activation energy of a reaction by providing the reaction with an alternative 

route to form reaction intermediates and in doing so, increase the rate at which the 

thermodynamically favored products are formed (Figure 1-2). They can be part of a multi-

subunit complex or associated with a co-factor reaction. These catalysts, unlike others, are 

not consumed in the reaction and therefore can perform multiple catalysis. Enzymatic 

catalysts are very fragile, but they are able to catalyze the breaking of C-C bonds in cascade 

systems. Enzymes are powerful catalysts for use in electrochemical systems for a number 



 

 6 

of reasons. They have high selectivity for reactants (substrates); they are active only 

towards specific substrates. Their activity remains high in dilute acidic or neutral solutions 

as well as at temperatures close to room or slightly above. They also have a very high 

specific activity per active site (high turn-over). 

 

Enzymatic catalysts are known to follow the Michaelis-Menten model which describe the 

enzyme kinetics This is the rate of enzymatic catalytic reactions (U) can be described in 

terms of the substrate concentration [S] as follows: 

 𝑈 =
𝑉$%& ∗ [𝑆]
𝑘, + [𝑆]

 (1) 

 

𝑉$%& represents the maximum rate achieved by the system, at saturating substrate 

concentration [S]. The Michaelis constant, 𝑘,, is the substrate concentration at which the 

reaction rate is half of 𝑉$%& (Figure 1-3). 

 

Figure 1- 3: Example of a Michaelis-Menten plot 
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Molecular/ Organic Catalyst 

 

The term organo-catalysis (molecular catalysis) refers to a form of catalysis, where the rate 

of a chemical reaction is increased by an organic catalyst. This catalyst consists of carbon, 

hydrogen, sulfur and other nonmetal elements found in organic compounds. They are 

oxidation catalysts that are capable of catalyzing the oxidation of multiple oxygen-

containing functional groups. There are also advantages to using an organic catalyst. There 

is no need for the use of metal-based catalysis thus making a contribution to green 

chemistry. 

 

Metallic/ Inorganic Catalyst 

 

An inorganic catalyst is a substance with catalyzing properties that lacks carbon-carbon 

and carbon-hydrogen bonds, such as the elements platinum and rhodium. Commonly used 

catalysts for the oxidation of intermediates in the glycerol cascade are based on platinum 

and Pt-based alloys 12. However, platinum can become deactivated due to the formation of 

an oxide layer, and/or poisoned in the presence of organic molecules and intermediates that 

are generated in the oxidation process 13. It has been shown that when oxalic acid is reduced 

on the surface of Pt (110), it leads to the formation of irreversibly bonded CO, which 

poisons the catalyst. Other studies have shown that on Pt electrodes, mesoxalic acid is 

being oxidized through an irreversible four electron reaction.  These limitations can be 

overcome by several alternatives, which include Pd and Pd-based alloys. These catalysts 

are characterized with superior performance for the selective oxidation of alcohols, such 
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as ethanol, lower costs and reduced COads poisoning effect 14,15,16. The metallic catalyst that 

will be used and incorporated into this system is gold and gold nanoparticles and have 

shown to be active towards the oxidation of glycerol 17. More specifically it has been shown 

to be active towards the ending intermediates of the glycerol cascade. 

 

Hybrid Enzymatic-Molecular Catalyst Systems 

 

There has been previous work done towards the combination of a hybrid enzymatic-

molecular catalyst system 18,19,20. It has been demonstrated that the enzyme oxalate oxidase 

(OxOx) and the molecular catalyst amino-TEMPO (TEMPO-NH2) are able to catalyze the 

oxidation of the glycerol. In this cascade reaction, TEMPO-NH2 oxidized glycerol to 

mesoxalic acid and OxOx in the combination with TEMPO-NH2 was used to oxidize 

mesoxalic acid all the way to CO2. However, this system had limitations which included 

low enzyme specific activity, low substrate range of the enzyme and incompatibility pH 

range between the two catalysts. OxOx and its cupin superfamily enzymes are optimized 

to function in pH 4 and TEMPO functions in pHs higher the 4. The overlapping pH range 

was studied for these two catalysts and the pH was determined to be pH 5.2 (Figure 1-4). 
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Figure 1- 4: Overlapping pH profile range for oxalate oxidase (open circle), TEMPO (diamond), TEMPO-
NH2 (solid circle). Dotted lines indicate overlapping pH range 19. 

 

These two catalysts were not co-localized on a support to carry out a multi-step reaction 

but instead was carried out by bulk electrolysis of a solution containing both the enzymatic 

and organic catalysts 19. 

 

It was found that there is low compatibility of the pH range between the TEMPO-NH2 and 

OxOx so further research was made to oxidize glycerol. OxOx was replaced with oxalate 

decarboxylase (OxDC). In this reaction scheme, TEMPO-NH2 oxidized glycerol to 

mesoxalic acid, and a combination of TEMPO-NH2 and OxDC transformed mesoxalic acid 

to glyoxylic acid, oxalic acid, formic acid, and then to CO2. It was found that the current 

density of the OxDC increased 8 times and is compatible with TEMPO-NH2 at a larger pH 

range when compared to OxOx. The products were measured with HPLC and 13C-NMR20. 

This information helped guide the direction of this proposal namely that the same two 

catalyst were used to develop a hybrid catalyst. 



 

 10 

Hybrid enzymatic-metallic catalytic system 

 

Similar to the enzymatic-molecular catalyst, a hybrid enzymatic-metallic catalyst was also 

explored previously. OxDC was used as the enzymatic catalyst and PdNP was used for the 

metallic catalyst co-localized on 3D-GNS. OxDC natural substrate is oxalic acid and Pd is 

a less selective catalyst. It is able to oxidize a range of the substrates in the glycerol cascade. 

OxDC converts oxalic acid to formic acid and PdNPs oxidize formic acid to CO2 in pH 5.2 

as well. The combination of the two catalysts were able to carry out a two-step subsequent 

reaction.  

 

Figure 1- 5:  Chronoamperogram Activity for a) Pd/3D-GNS in the presence of oxalic acid (red) and b) 
OxDC/Pd/3D-GNS in the presence of oxalic acid (red) at pH 5.2 in 0.1 M citric phosphate buffer at 25°C 
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The two catalysts were both spatially organized on the same support instead of in bulk 

electrolysis, however, the system was not optimized which resulted in slightly higher 

activity of the hybrid catalyst when compared to the single catalyst. Furthermore, it was 

not shown how effectively the enzyme was immobilized to the carbon support. 

 

This has also been demonstrated by Engstrom, et al. where they immobilized an enzyme 

and a nanometal species into the cavity of a mesoporous heterogeneous support.  This co-

immobilization method was demonstrated by the dynamic kinetic resolution (DKR) of a 

primary amine, which was used as a model reaction. The reactant 1-phenylethylamine, 

racemic amine, entered the cavity support and was exposed to the enzyme Candida 

antarctica lipase B. This led to the selective acylation of the (R)-enantiomer of the amine. 

The (R)-amide exited the cavity and the (S)-enantiomer of the amine was racemized by 

nanopalladium inside the cavity. The racemic amine formed again, and the reaction was 

repeated. 
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Chapter 2 
 

Problem Statement and Objectives 

 

The production of fossil fuels and renewable fuels have their own advantages and 

disadvantages. Some of the disadvantages in a developing work of technologies are that 

the use of these fuels is most of the time thermodynamic, which means takes place at a 

high temperature. They are also conducted on a macro scale, in gas phase, and are 

sometimes fossil fuels/non-renewable fuel sources. The primary objective of the work 

described in this proposal is to explore the fundamental research to develop a hybrid 

catalyst that can catalyze a multi-step cascade reaction but on a micro scale to develop the 

beginnings of a microchemical reactor. This idea is inspired by a phenomenon in nature 

observed as metabolons. 

 

The incorporation of catalysts of different modalities on the same support presents several 

challenges from several perspectives. These involve the engineering of a system to spatially 

organizing these catalysts on the same support in which they cooperate to provide one 

product to the next catalyst. Each catalyst can function on its own, however when 

incorporating more than one catalyst of different modalities, each catalyst functions in a 

set of parameters or optimal environmental settings. The challenge will be in finding one 

environment in which all the catalysts can co-exist and can function efficiently while being 

immobilized on the same support. 
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The model cascade that will be used was mentioned before, oxidation of glycerol however, 

this research will focus on the last three steps of the glycerol cascade. The goal is to design 

chemical processes to co-localize three catalysts of three different modalities on the same 

support while maintaining their activity. This also needs to be achieved at room 

temperature, on a small scale, and in liquid phase. The first reaction will be the oxidation 

of glyoxalic acid to oxalic acid by TEMPO. The second reaction will be catalyzed by 

OxDC, which converts oxalic acid to formic acid. The last reaction will be catalyzed by 

the AuNP, which will oxidize formic acid to CO2. The reaction scheme is shown in Scheme 

1. The primary objective of the work described in this proposal is to design and engineer a 

synthetic multi-step cascade reaction system. The completion of this fundamental research 

will demonstrate a small-scale reaction at room temperature in liquid phase by using 

electrochemical methods. 

 

Engineering Objectives 

 

Developing techniques towards designing a synthetic multi-step cascade reaction to mimic 

natures strategy of developing metabolons, which will lead to a cascade reaction 

undertaken on a small scale and in liquid phase at room temperature. The limitations and 

strengths of each catalyst will be studied, which will enable their successful incorporation 

in one hybrid catalyst. 
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Scheme 1: The proposed multi-step cascade reaction of oxidation of glycerol. (1) glyoxylic 
acid, (2) oxalic acid, (3) formic acid, and (4) carbon dioxide. 

 

•  Task 1: Immobilization of Oxalate Decarboxylase on 3D-GNS. 

A UV-Vis formic acid dehydrogenase-based assay will be used to determine if oxalate 

decarboxylase is immobilized to the carbonaceous support. The immobilization of oxalate 

decarboxylase will be designed and optimized using a tether, 1-pyrenebutyric acid n-

hydroxysuccinimide ester (PBSE). The immobilization of OxDC will first be demonstrated 

on a simple support and the technique will then be translated to a complex support; 3D-

GNS and tested using the same UV-Vis FDH based assay. This assay will yield information 

on the kinetics of the enzyme to determine which loading of PBSE is optimal for 

immobilization. 

 

• Task 2: Design of Hybrid Enzymatic-Molecular Catalyst on 3D-GNS 

As a result, from Task 1, OxDC will be immobilized to a complex support such as 3D-

GNS and can successfully convert oxalic acid to formic acid. As a part of Task 2, pyrene-

TEMPO, an organocatalyst, will be immobilized onto 3D-GN. As a next stage, both OxDC 

and pyrene-TEMPO will be immobilized to 3D-GNS so that they can perform a two-step 

hybrid cascade reaction of oxalic acid to formic acid to CO2. A simple electrochemical 
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technique will be employed to determine the current densities of the hybrid system to 

determine the completion of the two-step cascade reaction. 

 

• Task 3: Hybrid Enzymatic-Molecular-Metallic Catalyst on 3D-GNS 

The objective is to successfully incorporate three catalysts, pyrene-TEMPO, OxDC, and 

AuNPs onto 3D-GNS in order to catalyze the three-step reaction of glyoxalic acid 

oxidation. Three catalysts of three different modalities supported on the same platform 

have never been incorporated in such a way to complete a catalytic cascade. Each catalyst 

thrives in different conditions such as pH and temperature or is active at different 

potentials. The goal is to discover one environment in which these catalysts are still active 

and can oxidize glyoxalic acid to CO2 while being supported on the scaffold. 

 

• Task 4: Incorporation of Microchemical Reactor 

The objective for this last objective is to further actualize reactions on a smaller scale by 

incorporating the use of a microchemical reactor. The hybrid catalysts will function as the 

working electrode on the reactor that will have windows for SERS detection zones. This 

technique will allow for the determination of the analytes before and after the reaction has 

proceeded to analyze the products formed in the effluent. This SERS detection zones will 

be analyzed by using a Raman microscope. 
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Chapter 3 

Experimental Methods 

 

UV-Visible Spectroscopy 

 

Ultraviolet-visible spectroscopy is a spectroscopy technique that refers to the absorption or 

reflectance spectroscopy in the ultraviolet-visible light spectral region. Molecules that 

contain electrons (non-binding electrons) can absorb energy in the form of ultraviolet or 

visible light. The electrons are excited to a higher anti-bonding molecular orbital. If the 

electrons are easily excitable, the longer the wavelength of light it can absorb. The intensity 

of light passing through a sample can be measured by a UV-Vis spectrophotometer. To 

determine the absorbance of a sample, the Beer-Lambert law can be used, which states that 

the absorbance of a solution is directly proportional to the concentration of the absorbing 

species in the solution and the path length. For a given path length, UV/Vis spectroscopy 

can be used to determine the concentration of the absorber in a solution. 

 

Cyclic Voltammetry  

 

The system is characterized by varying the current and measuring the resulting change in 

potential. This is operating as a galvanostatic cell or galvanodynamic regime. A single 

electrode (anode or cathode) is operated in half cell in what is known as a three-electrode 

mode. In this cell set up, the electrode being characterized is the working electrode, and 

operating opposite to it is a counter electrode composed of a high activity material like Pt 
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that can complete the circuit, by catalyzing the conversion of H+ and e- to H2. Between the 

working and counter electrodes is a reference electrode with a known potential. This allows 

for the relative potential of the working electrode to be determined and controlled. 

 

All electrochemical experiments were performed with a three-electrode half-cell consisting 

of a glassy carbon working electrode, a platinum counter electrode and a Ag/AgCl 

reference electrode. Cyclic voltammetry (CV) is used to determine the oxidation-reduction 

reactions that occur on an electrocatalyst. Cyclic voltammetry is a very useful 

electrochemical characterization technique that determines the behavior of oxidation-

reduction reactions that occur on an electrocatalyst. A potentiostat applies a potential that 

varies with time. The potential follows a triangular waveform that varies as a function of 

the potential range as well as the rate of change in potential. 

 

Synthesis of Modified Graphene Nanosheet Supports  

 

The Graphene nanosheets were synthesized by adopting the modified Hummer Method 21. 

Graphite flakes were intercalated and oxidized to yield Graphene Oxide (GOx). The GOx 

was then washed with DI water and centrifuged at 3500 rpm twice followed by exfoliation 

in a water solution using a high-power ultrasonic probe. 
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Figure 3- 1: Illustration of chemically and thermally reduced 3D graphene nanosheet supports synthesized 
using the sacrificial support method. 

 

Sacrificial Support Method (Templating)  

 

20 g of fumed silica sacrificial template EH5 (Cab-O-Sil® EH5, surface area ~ 400 m2 g-

1, 0.14 mm size of agglomerates) was infused with 10 g of GOx exfoliated mixture (2:1 

weight ratio). The infused GOx-EH5 exfoliated mixture can then be divided into two 

batches and reduced further to GNS using thermal or chemical reduction methods. 

 

Thermal Reduction 

 

The GOx-EH5 exfoliated mixture was dried in an oven operating at T = 85°C overnight. It 

was then ball-milled at 400 RPM for 15 min and subjected to thermal reduction in 7 at % 

H2 (flow rate = 100 ccm) at T = 800°C for 1 h). 

 

 



 

 19 

Acid Etching of the Sacrificial Template  

 

The resulting batches of dried powder obtained from a thermally reduced sample were then 

leached with 25 wt.% HF overnight 22. This is done to remove the sacrificial (EH5) 

template 21,22. The black suspension was then washed by centrifugation until it reached a 

neutral pH, followed by overnight drying at T = 85°C. This resulted in the final material 

used as the support in which the catalysts were immobilized. 

 

Figure 3- 2: Illustration of thermally reduced 3D graphene nanosheet supports synthesized using the 
sacrificial support method. 
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Chapter 4 

Immobilization of Oxalate Decarboxylase on Carbonaceous Supports 

 

The first objective of this project was to immobilize an enzyme to a carbonaceous support. 

The enzyme chosen is a large hexameric enzyme, Oxalate decarboxylase (OxDC) from 

Bacillus subtilus. OxDC belongs to cupin superfamily. It catalyzes the cleaving of the C-

C bond in oxalic acid to form formic acid and CO2 and requires molecular oxygen for a 

catalytic turnover. It is a large hexameric, approximately 12-13 nm across in diameter, 

enzyme with a quaternary structure of two homotrimers (Figure 4-1). As each monomer 

contains two Mn-binding sites (orange spheres); the entire enzyme contains twelve Mn-

binding sites. It functions under oxygenated conditions. It is easily expressed through E. 

coli, has high specific activity, and offers advantages in terms of cost and possibility of 

enzymatic engineering. 23,24.  
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Figure 4- 1: Ribbon representation of the oxalate decarboxylase trimer in which the enzyme monomers are 
shown in different hues of green and blue (top view) from the high-resolution crystal structure of B. subtilis. 
Bound Mn(II) ions are shown as orange spheres. In the biologically active form of the enzyme, two trimers 
are packed together to give a hexamer quaternary structure (side view). 

 

OxDC has been immobilized before to the membrane of the CO2 sensor, Eupergit, and Zn-

IMAC resin either by entrapment or by covalent attachment 25,26,27. Our group has 

immobilized enzymes before using a tethering technique with 1-pyrenebutyric acid N-

hydroxysuccinimide ester (PBSE). PBSE has been used by the Atanassov group to 

immobilize other enzymes such as bilirubin oxidase to multiwalled carbon nanotube bucky 

paper and horseradish peroxidase to carbonaceous platforms 28,29,30. The pyrene moiety of 

PBSE π-π stacks with the carbon nanotubes and the head group makes amide bonds with 

the NH2 groups on the enzyme.  By tethering enzymes there is a low immobilization rate 

as well as decreased efficiency. OxDC is a large hexameric enzyme that requires complex 

immobilization techniques. OxDC has six subunits in its structure and subunit-subunit 
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interactions may be weakened by immobilization, which may cause the multimeric enzyme 

to dissociate resulting in rapid inactivation 31. The kinetics of immobilized OxDC, using 

various concentrations of the tether, was studied in this first part of the project to determine 

how much tether would cause inactivation and how much tether was optimal for maximum 

activity. Scheme 4-1 depicts the reaction scheme that was used to determine the kinetics of 

OxDC. Oxalic acid is converted to formic acid by OxDC and formic acid is oxidized to 

CO2 by FDH. The co-factor reaction that occurs when formic acid is oxidized to CO2, in 

which NAD+ oxidized to NADH is monitored using UV-Visible spectroscopy at 340 nm. 

 

Scheme 4- 1: Schematic view of the FDH assay used to study the enzymatic properties of OxDC in solution 
and OxDC immobilized on multi-wall bucky paper. OxDC converts oxalic acid to formic acid. FDH converts 
formic acid to CO2 while the co-factor reaction of NAD+ oxidizes to NADH and is visible at 340 nm. 
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Expression/Purification of Oxalate Decarboxylase from Bacillus Subtilis 

 

The oxalate decarboxylase (OxDC) gene from Bacillus subtilis was amplified using the 

high-fidelity AccuPrime™ Pfx DNA Polymerase using the plasmid pET-16b-OxDC. The 

template was supplied generously by Professor Steven Ealick from Cornell University 

(Ithaca, NY). The PCR was performed with T7 promoter primer (5’-

TAATACGACTCACTATAGG-3’) and T7 terminator primer (5’-

GCTAGTTATTGCTCAGCGG-3’). The PCR product was digested by restriction 

enzymes, BamH1 and Nde1, and cloned into pET-9a expression vector (Novagen®, San 

Diego, CA), which was previously digested with the same restriction enzymes. The 

resulting plasmid (pET-9a-oxdc) was sequenced by the Health Science Core facility at the 

University of Utah which was used to transform E. coli BL-21(DE3). After selection onto 

Luria-Bertani (LB)-Agar in presence of 100 µg ml-1 kanamycin and chloramphenicol, one 

positive colony was inoculated into LB broth containing the same quantity of antibiotics 

and incubated at 37° C overnight. 20 ml was used to inoculate 2 L of LB broth and the 

resulting cultures were incubated at 37° C until an OD600nm of 0.5 was reached. To this, 

a heat shock of 42° C for 15 minutes was applied to the induction of the expression 

followed by the addition of 1 mM IPTG and 5 mM MnCl2. The induced cells were then 

incubated at 30° C for 4 h, while shaking. Cells were then harvested by centrifugation at 

5000 g, during 15 min at 4° C, and re-suspended in 50 mM Tris-HCl (pH 7.0) followed by 

a mechanic disruption through two passages into microfluidizer (18,000 psi, at 4°C). After 

centrifugation at 10000 g for 15 min at 4° C, the soluble fraction of the cell lysate was 

applied to a Q-Sepharose Fast Flow column (2.5 cm x 25 cm) equilibrated with 50 mM 
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Tris-HCl (pH 7.0). Elution was performed using a 500 ml linear gradient from 0 to 1 M 

NaCl. The fractions contained purified OxDC was pooled and concentrated by 

ultracentrifugation in Amicon centrifugal filter (30 kDa, Millipore, Billerica, MA) to a final 

volume of 5 ml. The protein was then desalted using a Hitrap desalting column (5 ml, GE 

Healthcare) equilibrated with 50 mM phosphate buffer (pH 7) containing 100 mM NaCl. 

The resulting protein was flash frozen in liquid N2 and stored at -80°C. 

 

Multiwalled Carbon Nanotube Buckypaper 

 

Circular disks (d = 2 mm) of multiwalled carbon nanotube (MWNT) buckypaper were cut 

and conditioned in 50, 100, 150, 200 mM PBSE for 1 hour, which was dissolved in ethanol 

and sonicated for 30 minutes prior. The MWNT buckypaper was rinsed in citric phosphate 

buffer (CPB) pH = 4 to remove any PBSE that was not attached. This also prepared the 

buckypaper for the enzyme instead of being washed in water. 10 μL of OxDC, from 

Bacillus subtilis, was dropped onto the MWNT buckypaper disk and is stored at 4°C for 

16-18 hours covered to cure. Before experiments, the MWNT buckypapers were rinsed in 

CPB to eliminate enzyme that was not immobilized. 

 

3-Dimensional Graphene Nanosheets Electrodes 

 

The base ink consists of 5 mg of 3D-GNS were mixed into 925 μL of H2O and 75 μL of 

TBAB Nafion (5 mg of TBAB Nafion in 63 μL of ethanol sonicated for 30 minutes) and 

was ultra-sonicated for 10 seconds to allow for dispersion. 40 μL of base ink was combined 
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with 10 μL of PBSE (150, 200 and 300 mM PBSE sonicated in ethanol for 30 minutes) 

and 2 μL of 2.3 mg/ml OxDC making the total volume 50 μL. 3uL of the combined ink 

was drop-casted onto a glassy carbon electrode and stored at 4°C for 16-18 hours to cure. 

The electrodes were rinsed with CPB to remove enzyme that was not immobilized before 

experiments. 

 

Formic Acid Dehydrogenase Assay 

 

Dilutions from 5 to 250 mM of formic acid in citric phosphate buffer (pH = 4) were placed 

in wells of a 96-well plate. 200 mM dipotassium phosphate was added followed by the 

addition of 100 mM NAD+ and 2.5 U of FDH from Candida boidinii. UV-visible 

measurements were then taken using a Spectra Max M2e equipped with a plate reader at 

340 nm. 

 

Oxalate Decarboxylase Assay 

 

Dilutions from 5 to 50 mM of oxalic acid in citric phosphate buffer (pH = 4) were placed 

in wells of a 96-well plate. The electrodes with immobilized enzymes were placed into 

each well of the different concentrations and incubated for 2 minutes. 200 mM dipotassium 

phosphate was added to quench the reaction followed by the addition of 100 mM NAD+ 

and 2.5 U of FDH. UV-visible measurements were then taken using a Spectra Max M2e 

equipped with a plate reader at 340 nm. 
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Kinetics of Oxalate Decarboxylase in Solution 

 

The FDH assay was used to determine and study the kinetics of OxDC in solution in which 

the Michaelis-Menten plot was obtained. The FDH assay was used to indirectly monitor 

the production of formic acid by OxDC. For formic acid to be consumed by FDH, a co-

factor reaction takes place simultaneously where NAD+ was consumed and converted to 

NADH. The assay quantitatively tracks the formation of NAD+ to NADH in which formic 

acid was being oxidized to CO2 by formic acid dehydrogenase using UV-Visible at 340 

nm. The standard FDH assay curve was obtained from formic acid concentrations 

quantified using the slopes from the increase of absorbance using Beer’s law: 

 𝐴 = ℰ𝐿𝐶 (2) 

Knowing 234
35
	7, the slope that was observed during UV-Visible measurements and the 

extinction coefficient of NADH (6220 cm-1) the concentration per time 238
35
	7 could then be 

calculated for each desired concentration using the differentiated Beer’s law equation:  

 
𝑑𝐴
𝑑𝑡

= ℰ𝐿
𝑑𝐶
𝑑𝑡

 (3) 

This equation yields, 238
35
	7, which is also known as U or V in μmol min-1 after unit 

manipulation. This plotted against formic acid concentration yield a calibration curve. The 

calibration curve was fitted in Origin Pro to a Michaelis-Menten equation (Eq. 3) and yields 

the Michaelis-Menten constant, KM, and maximum velocity, Vmax, for each assay: 

 𝑈 =
𝑉$%& ∗ [𝑓𝑜𝑟𝑚𝑎𝑡𝑒]
𝑘, + [𝑓𝑜𝑟𝑚𝑎𝑡𝑒]

 (4) 
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The values were then used to calculate the rate of OxDC in each assay. This was done by 

first calculating formic acid concentration using Eq. 4: 

 [𝑆] =
𝑘, ∗ 𝑈
𝑉$%& − 𝑈

 (5) 

This was used to calculate formic acid quantity in μmol using Eq. 5 by dividing by the 

volume used in the 96-well: 

 𝐹𝑜𝑟𝑚𝑎𝑡𝑒	𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = [𝑆] ∗ 𝑣𝑜𝑙𝑢𝑚𝑒 ∗ 1000 (6) 

To obtain the rate of OxDC (μmol min-1), this value was divided by the incubation time, in 

minutes, your rate of reaction: 

 𝑅𝑎𝑡𝑒	𝑜𝑓	𝑂𝑥𝐷𝐶 =
𝑓𝑜𝑟𝑚𝑎𝑡𝑒	𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
𝑖𝑛𝑐𝑏𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	

 (7) 

The obtained values along with the concentration of oxalic acid were used to create a 

Michaelis-Menten plot. From the Michaelis-Menten plots, the Hanes-Woolf plots were 

derived to determine KM and Vmax of OxDC for each concentration of PBSE that was used 

to tether the enzyme. This was done using the same program Origin pro, fitted using its 

linear regression parameters. The Vmax value obtained from the inverse of the slope and KM 

was obtained from Vmax multiplied by the y-intercept and then used to fit a Michaelis-

Menten curve to the experimental data. These plots were determined for two different 

platforms; multiwalled carbon nanotube (MWNT) buckypaper and 3-dimensional 

graphene nanosheets (3D-GNS).  

 

The kinetics of OxDC was first determined in solution (Figure 4-2) to compare with 

immobilized OxDC. Free enzyme was expected to have a higher activity than when it is 

immobilized and was more efficient at converting its substrates. The oxalate decarboxylase 
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assay was used in conjunction with the formic acid dehydrogenase assay to obtain the 

Michaelis-Menten plot (Figure 4-2a) as well as the Hanes-Woolf plot (Figure 4-2b). KM 

and Vmax were found to be 15.29 mM and 1.78 𝜇mol min-1, respectively. 

 

Figure 4- 2: a) Michaelis-Menten plot of the activity of OxDC in solution with oxalic acid. b) Hanes-Woolf 
plots derived from data in A). Kinetic measurements were performed at 25°C in 200 mM citric phosphate 
buffer, pH 4.0. All initial velocities were determined in triplicate. 
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Kinetics of Oxalate Decarboxylase on Multiwalled Carbon Nanotube 

Buckypaper 

 

Michaelis-Menten and Hanes-Woolf plots were created for both physically adsorbed and 

tethered enzyme as shown in Figure 4-3, using the same procedure as the enzyme in 

solution. The KM and Vmax values were extrapolated from the Hanes-Woolf plots (Figure 

4-3b). When the enzyme was immobilized on MWNT buckypaper through physical 

adsorption it was found that the Michaelis-Menten constant KM, and maximum velocity, 

Vmax, were 5.58 mM and 0.08 μmol min-1, respectively. Next, OxDC was immobilized 

using the tether PBSE. The concentration of PBSE needed to be optimized for these sets 

of experiments because this either increases or decreases the kinetics of OxDC depending 

on if it was appropriately tethered to the buckypaper. It was determined that the optimized 

concentration of PBSE for immobilizing OxDC on MWNT buckypaper is 200 mM and KM 

and Vmax were determined as 4.69 mM and 0.19 μmol min-1. Lower KM indicates that the 

enzyme requires less substrate for the enzyme to consume to reach maximum velocity. 

These values are much lower than what was determined for the enzyme in solution. This 

could be attributed to the small immobilization efficiency or the structure change caused 

by the interaction with the surface. OxDC has a large hexameric structure which makes 

immobilization difficult 31, which is why different concentrations of PBSE were explored. 

If there was too little PBSE, the enzyme cannot be immobilized other than by physical 

adsorption, which lowers its kinetics. If there was too much PBSE, the enzyme may not be 

able to immobilize because the surface is too packed with the tether, which also lowers its 

kinetics. By finding the optimized concentration of PBSE on a simple system, such as 
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MWNT buckypaper, this method could then be extended to a more complex support. Table 

4-1 lists the KM and Vmax determined for each of the concentrations that were explored 

from which the optimal concentration was determined. 

 

Figure 4- 3: a) Michaelis-Menten plot of the activity of OxDC immobilized on multiwall carbon nanotube 
buckypaper by physical adsorption (black), 50 mM (red), 100 mM (blue), 150 mM (green) and 200 mM 
PBSE (violet). b) Hanes-Woolf plots derived from data in a). Kinetic measurements were performed at 25°C 
in 200 mM citric phosphate buffer, pH 4.0. All initial velocities were determined in triplicates 
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Table 4- 1: Steady-state kinetic parameters obtained from the OxDC activity with oxalic acid on MWNT 
buckypaper. The kinetic parameters were calculated by non-linear regression analysis of experimental 
steady-state data. 

PBSE concentration Km 
(mM) 

Vm (nmol/min) 

0 mM 5.58 0.08 

50 mM 7.77 0.11 

100 mM 11.89 0.23 

150 mM 8.30 0.21 

200 mM 4.69 0.19 
  

Kinetics of Oxalate Decarboxylase on 3-Dimensional Graphene Nanosheets 

 

The technique for immobilization of OxDC was then used and extended to a more complex 

support, 3D-GNS. Oxalic acid was converted by OxDC to formic acid and FDH oxidized 

formic acid to CO2 (Scheme 4-2), while simultaneously NAD+ is converted to NADH, 

which can be monitored at 340 nm using UV-Visible spectroscopy. 
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Scheme 4- 2: Reaction scheme of FDH assay used to determine immobilization of OxDC on 3D-GNS. OxDC 
converts oxalic acid to formic acid. FDH converts formic acid to CO2 while the co-factor reaction of NAD+ 
oxidizes to NADH and is visible at 340 nm. 

 

This was done using the same tether, PBSE, and the same UV-Vis based FDH assay. 

Michaelis-Menten constants, KM, and maximum velocity, Vmax, for physically adsorbed 

OxDC as well as for tethered OxDC were determined by creating Michaelis-Menten and 

Hanes-Woolf plots (Figure 4-4). 3D-GNS have been developed and designed by our group 

in which the porosity and delivery of the substrates in carbonaceous materials are 

increased, which previously are used as supports for metal nanoparticles 32,33. These 

supports are characterized with a network of porous channels within the graphene 

nanosheet matrix, which gives it a three-dimensional spatial arrangement and macroporous 

morphology. In addition, doping these supports with a transition metal or nitrogen can be 

used to introduce additional functionalities and modify the electronic properties of 3D-

GNS supports, which can improve conductivity and facilitate charge transfer 17,34. 
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Several concentrations of PBSE were explored for this support because it was 

morphologically different than MWNT buckypaper. KM and Vmax values for physical 

adsorption of OxDC on 3D-GNS were determined as 1.70 mM and 0.05 𝜇mol min-1, 

respectively. Comparing these values to the values of OxDC that was physically adsorbed 

on MWNT buckypaper, KM =5.58 mM and Vmax = 0.08 𝜇mol min-1, we can conclude that 

smaller amounts of the substrate are needed to reach half of the maximal velocity for 3D-

GNS.  

 

However, the maximal velocity of OxDC on 3D-GNS was smaller than in the case of the 

enzyme immobilized on MWNT buckypaper. In both cases, the maximal velocity is much 

lower than compared to the maximal velocity of the enzyme in the solution. KM and Vmax 

for OxDC immobilized on 3D-GNS when using 150 mM PBSE as a tether, were 

determined as 0.60 mM and 0.07 𝜇mol min-1, respectively. Comparing these values to the 

values of physically adsorbed OxDC on 3D-GNS, KM is three times smaller than it is used 

with the tether. This translates to the enzyme consuming less substrate to reach maximum 

velocity when it is tethered than it is for non-tethered. In addition, the maximal velocity of 

the enzyme increased from 0.05 to 0.07 𝜇mol min-1, indicating that the use of PBSE is 

beneficial both in the case of MWNT buckypaper and 3D-GNS. Now comparing the values 

obtained for OxDC immobilized on 3D-GNS and the values obtained for OxDC 

immobilized on MWNT buckypaper, KM is smaller for 3D-GNS, and the maximal velocity 

decreased from 0.19 𝜇mol min-1 to 0.07 𝜇mol min-1, indicating the enzyme immobilized 

on 3D-GN is less efficient then it is for MWNT buckypaper. This can be correlated to the 

differences in the morphological features between the two supports. Namely, 3D-GNS 
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have an intricate three-dimensional morphology, which is expected to decrease the 

interactions between the larger multimeric enzymatic systems and the carbonaceous 

support. Table 4-2 lists the values for KM and Vmax of the concentrations of PBSE that were 

explored for this support. 

 

Figure 4- 4: a) Michaelis-Menten plot of the activity of OxDC immobilized on 3-dimensional graphene 
nanosheets by physical adsorption (black), 150 mM (green), 200 mM (blue), 300 mM and 300 mM PBSE 
(violet). b) Hanes-Woolf plots derived from data in a). Kinetic measurements were performed at 25°C in 200 
mM citric phosphate buffer, pH 4.0. All initial velocities were determined in triplicates 
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Table 4- 2: Steady-state kinetic parameters obtained from the OxDC activity with oxalic acid on 3D-GNS. 
The kinetic parameters were calculated by non-linear regression analysis of experimental steady-state data. 

PBSE concentration Km 
(mM) 

Vm (nmol/min) 

0 mM 1.70 0.05 

150 mM 0.60 0.07 

200 mM 1.34 0.04 

300 mM 1.94 0.06 
 

A procedure was designed and optimized to immobilize the large hexameric enzyme, 

oxalate decarboxylase from Bacillus subtilis, on multiwalled carbon nanotube buckypaper 

and 3D-Graphene nanosheets using 1-pyrenebutyric acid n-hydroxysuccinimide ester 

(PBSE) as a tethering agent. It was found that for this large hexameric enzyme, finding the 

optimal concentration was crucial for the enzymes performance by preventing disassociate 

of its subunits. The optimal amount of tether for the simple carbon support is 200 mM. 

OxDC was successfully immobilized on both a simple support, such as MWNT 

buckypaper, as well as a complex one; 3D-GNS, while retaining its functionality. The The 

optimal amount of tether for the simple carbon support is 150 mM. 
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Chapter 5 
 

Design of Hybrid Enzymatic-Molecular Catalyst on 3D-GNS 

 

The next objective was to incorporate the enzymatic catalyst with a molecular catalyst on 

the same platform to catalyze a two-step reaction. The molecular catalyst used is 2,2,6,6-

(tetramethylpiperidin-1-yl)oxyl (TEMPO). It is a nitroxyl-radical containing compound 

and has many derivatives. It is capable of electrocatalytically oxidizing simple alcohols 

and amines in alkaline media 35. 4-amino-TEMPO does not possess substrate limitations 

that enzymes do. The TEMPO used was modified by the Minteer group with a pyrene 

moiety so that it can be immobilized on the graphitic material. 

 

Figure 5- 1: Pyrene-TEMPO compound generated by Auto Dock Vina software. 

 

This hybrid system will have its advantages and disadvantages. Enzymes are extremely 

fragile. They work in specific pH environments, temperatures and are specific to their 

substrates. However, organic and inorganic catalysts are less fragile, which promises to 

produce a more advanced system by its incorporation.  
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TEMPO is able to oxidize a wide range of alcohols and many substrates in the glycerol 

cascade that was designed and explored by the Minteer group 35. The Minteer group also 

modified TEMPO with a pyrene base, which can be used to immobilize TEMPO in the 

same way the enzyme was immobilized. TEMPO modified with the pyrene moiety will be 

indicated as pyrene-TEMPO. Substrates of this family of molecular catalysts are primary 

and secondary alcohols, which means that TEMPO does not have much specificity and can 

oxidize most of the intermediates in the glycerol cascade. Scheme 5-1 shows the reaction 

scheme that is proposed for the two-step cascade. The two catalysts will be immobilized 

on the complex support 3D-GNS, as was successfully demonstrated for OxDC in the 

previous chapter. OxDC will convert oxalic acid to formic acid and formic acid will be 

further oxidized to CO2 by pyrene-TEMPO. TEMPO is electrochemically active and the 

performance of the hybrid OxDC/pyrene-TEMPO catalyst will be studied by detecting the 

activity of TEMPO using electrochemical techniques. 
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Scheme 5-1: OxDC tethered using PBSE and pyrene-TEMPO spatially organized on 3D-GNS. OxDC 
converts oxalic acid to formic acid and pyrene-TEMPO oxidizes formic acid to CO2. 
 

Pyrene-TEMPO Synthesis  

 

 

1.0 mmol PBSE was dissolved in CH2Cl2, which was then added to a stirred mixture of 1.1 

mmol 4-amino-TEMPO in a mixture of 8:1 CH2Cl2/MeOH. This mixture was stirred for 

20 hours at 25°C and after which it was concentrated under reduced pressure. The crude 

product was purified by a 5:1 hexane and ethyl acetate silica flash gel column 

chromatography. The solid product was obtained upon removal of solvent under reduced 

pressure (0.355 g, 80% yield). Prior to analysis, diphenylhydrazine was used to reduce the 

nitroxyl radical product to its corresponding hydroxylamine by NMR. 1H-NMR (300 MHz, 
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CDCl3): δ 8.30 (d, 1H), 8.16 – 8.10 (m, 4H), 8.00 (t, 1H), 7.88 (d, 1H), 5.04 (s, 1H), 4.17 

(s, 1H), 3.40 (s, 2H), 2.22 (s, 4H), 1.80 (dd, 2H), 1.19 (s, 6H), 1.15 (s, 6H). 

 

Bimodal Electrode Preparation 

 

Pyrene-TEMPO/3D-GNS was prepared in a vial by combining 40 μL of base ink with 8 

μL of 100 mM solution of pyrene-TEMPO dissolved in acetone, and 2 μL of citric 

phosphate buffer. The base ink was made by combining 5 mg of 3D-GNS in 925 μL of DI 

and 75 μL tetrabutylammonium bromide Nafion (TBAB). 5 mg of TBAB was sonicated in 

80 μL of acetone for 10 minutes. 10 μL of the pyrene-TEMPO/3D-GNS was then drop-

casted onto a glassy carbon electrode and dried.  

 

OxDC/3D-GNS was prepared in a vial by combining 40 μL of base ink, 8 μL of the tether 

(150 mM solution of PBSE dissolved in acetone), and 2 μL of OxDC from Bacillus subtilis 

with the concentration of 2.3 mg/mL. 10 μL of the OxDC/3D-GNS was then drop-casted 

onto a glassy carbon electrode and dried. The electrodes were kept at 4°C for 16-18 hours 

to cure before the electrochemical and UV-VIS measurements. Before performing 

experiments, electrodes were washed in citric phosphate buffer to remove any enzyme that 

was not immobilized. 

 

To make OxDC/pyrene-TEMPO/3D-GNS electrodes, 25 μL of pyrene-TEMPO/3D-GNS 

and 25 μL of OxDC/3D-GNS were combined in a separate vial. 10 μL of the vial content 

was then drop-casted onto a glassy carbon electrode and dried. The electrodes were kept at 
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4°C for 16-18 hours to cure and then washed with citric acid buffer to remove any enzyme 

or pyrene-TEMPO that was not immobilized. The electrodes were then immersed in 100 

mM oxalic acid or 100 mM formic acid for electrochemical experiments. 

 

Bimodal Electrochemical Measurements 

 

Electrochemical experiments were performed using a three-electrode half-cell with the 

Ag/AgCl electrode as a reference electrode and a platinum wire as the counter electrode. 

A glassy carbon electrode on which the prepared ink was drop-casted was used as the 

working electrode. The control experiments were performed using a citric phosphate 

buffer, which consisted of 0.1 M citric acid and 0.2 M sodium phosphate dibasic at pH 5.2, 

which was purged with N2. All the cyclic voltammogram (CV) were obtained in a potential 

window between 0 and 0.85 V at a scan rate of 10 mV/s. After the control curves were 

obtained, 100 mM of a substrate (oxalic acid or formic acid) was introduced and the cyclic 

voltammograms were recorded using the same potential range and the same scan rate. The 

cyclic voltammograms reported in the manuscript show the third scan, which corresponds 

to the steady state. All electrochemical experiments were done in triplicates to confirm 

their reproducibility. 

 

Activity of Molecular Catalyst 

 

To demonstrate the two-step cascade of the conversion of oxalic acid to formic acid to CO2, 

pyrene-TEMPO was first explored to determine if it could be immobilized and function 
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after immobilization. Cyclic voltammograms of pyrene-TEMPO on 3D-GNS in CPB, pH 

5.2, (black) and 100 mM formic acid (red) in Frigure 5-2a shows that pyrene-TEMPO is 

active towards formic. The pH 5.2 was chosen because this is the pH that overlaps for the 

two catalysts activity 19. The maximum current was determined as 674.4 ± 20.9 μA cm-2 

for the potential window of 0 to 0.8 V, which was calculated by taking the difference of 

the current obtained from the substrate and in the buffer at U = 0.8V. The onset potential 

was 0.608 V and was determined by using Eq 7. It was the potential at which the current 

increased to 10 times the standard deviation of the capacitive current.  

 

The measured onset potential for pyrene-TEMPO in formic acid was in agreement with the 

onset potential for the oxidation of formic acid by 4-amino-TEMPO determined in previous 

work as 0.668 V vs. SCE 19. The activity of formic acid was also tested on 3D-GNS alone 

and showed that 3D-GNS has no activity towards formic acid (Figure 5-2b). This also 

confirms that pyrene-TEMPO is active while immobilized onto 3D-GNS and that the 

observed activity was not due to the 3D-GNS. Therefore, we can conclude that pyrene-

TEMPO can be successfully immobilized on 3D-GNS. 

 𝑂𝑛𝑠𝑒𝑡	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑈	(𝐼	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑣𝑒 + 10 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	(𝑠𝑡𝑑𝑒𝑣) (8) 
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Figure 5- 2: a) CV of pyrene-TEMPO/3D-GNS in 0.1 M citric phosphate buffer (black) and 100 mM formic 
acid (red). b) CV of 3D-GNS in the 0.1 M citric acid buffer (black) and 100 mM formic acid (red). 
Experiments were performed at pH 5.2 and 25°C with a scan rate of 10 mV/s. 

 

 

Hybrid Enzymatic-Molecular Catalyst on 3D-GNS 

 

To go forward with this two-step cascade, OxDC and pyrene-TEMPO were also tested for 

each substrate in the two-step cascade individually. Pyrene-TEMPO on 3D-GNS was 

tested in oxalic acid and formic acid as well as OxDC on 3D-GNS in oxalic acid and formic 

acid. The results show that pyrene-TEMPO has minimal activity for oxalic acid (Figure 5-
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3). The maximal current density and onset potential was 116.6 ± 77.5 μA cm-2 and 0.605 

V. These results show that the observed activity of the hybrid system is not due to the 

activity of pyrene-TEMPO towards oxalic acid. 

 

Figure 5- 3: CV of pyrene-TEMPO/3D-GNS in 0.1 M citric phosphate buffer (black) and 100 mM oxalic 
acid (red). All measurements were performed at pH 5.2 and 25°C with a scan rate of 10 mV/s. 

 

Several other control studies were performed to confirm the validity of the two-step 

cascade. OxDC/3D-GNS in oxalic acid showed minimal activity of 132.3 ± 14.8 μA cm-2 

and an onset potential of 0.617 V (Figure 5-4).  Again, from these results, we can conclude 

that the observed activity of the hybrid catalyst was not due to OxDC in oxalic acid. 
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Figure 5- 4: CV of OxDC/3D-GNS in 0.1 M citric phosphate buffer (black) and 100 mM oxalic acid (red). 
All measurements were performed at pH 5.2 and 25°C with a scan rate of 10 mV/s. 

 

Furthermore, there was no activity when formic acid is introduced to OxDC/3D-GNS, 

which suggests that OxDC immobilized on 3D-GNS is not active towards formic acid 

(Figure 5-5). These control experiments show that the current observed  with the hybrid 

catalyst was not due OxDC in the presence of oxalic acid or formic acid. 

 

Figure 5- 5: OxDC/3D-GNS in 0.1 M citric phosphate buffer (black) and 100 mM formic acid (red). All 
measurements were performed at pH 5.2 and 25°C with a scan rate of 10 mV/s. 
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However, the CVs in Figure 5-6 show that there is activity of 3D-GNS in oxalic acid which 

can be attributed to the impurities in the support. The activity is greatly suppressed in the 

presence of the immobilized enzyme, which is supported by CVs in Figure 5-4. This shows 

that the small activity observed with OxDC in oxalic acid was not due to OxDC but 

probably the ability of 3D-GNS to oxidize oxalic acid. The activity of OxDC/3D-GNS in 

oxalic acid was still small compared to the activity of the OxDC/pyrene-TEMPO hybrid in 

oxalic acid, which means that the current observed with the hybrid catalyst provides 

evidence for a two-step cascade reaction and is not due to the oxidation of oxalic acid by 

OxDC/3D-GNS. 

 

 

Figure 5- 6: CV of 3D-GNS in 0.1 M citric phosphate buffer (black) and 100 mM oxalic acid (red). All 
measurements were performed at pH 5.2 at 25°C with a scan rate of 10 mV/s. 

 

Finally, the hybrid system of OxDC/pyrene-TEMPO/3D-GNS shows a maximal current of 

361.6 ± 88.6 μA cm-2 and onset potential of 0.592 V (Figure 5-7). This confirms that the 

two-step cascade, first of all, was working, and second, the observed activity was due 
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pyrene-TEMPO in the presence of formic acid, which was converted from oxalic acid by 

the enzyme. 

 

Figure 5- 7: CV of OxDC/pyrene-TEMPO/3D-GNS in 0.1 M citric phosphate buffer (black) and 100 mM 
oxalic acid (red). All measurements were performed at pH 5.2 and 25°C with a scan rate of 10 mV/s. 
 

 

Electrochemical techniques were used to demonstrate that two catalysts of two different 

modalities, an enzymatic and molecular catalysts, can be immobilized and co-localized on 

3D-GNS. As confirmed by the means of electrochemistry, this hybrid system is able to 

catalyze two-subsequent reactions. The support used has also been proven to be a superior 

support for the incorporation of metallic nanoparticles as catalytic sites. This work, 

therefore provides a path for designing more complex assemblies that would contain any 

combination of an enzymatic, molecular, and inorganic catalyst. This chapter has been 

completed and a paper was prepared combining this chapter and chapter 4 and submitted 

to Electrochemical Acta. Work in chapter 6 incorporate a third catalyst supported on the 

3D-GNS to complete a multi-step cascade reaction. 

  



 

 47 

Chapter 6 
 

Incorporation of Three Catalysts of Three Different Modalities 
 

 

In the previous work by Atanassov group, , the enzyme, OxDC, has been co-localized with 

PdNP decorated on 3D-GNS. This was successfully accomplished at pH 5.2 in 0.1 M citric 

phosphate buffer at room temperature. The enzyme converts oxalic acid to formic acid and 

PdNP oxidized formic acid to CO2. However, the enzyme immobilization was not 

characterized by any techniques to confirm its immobilization nor were the kinetics 

optimized. In the previous chapters, it was also shown that the enzyme could be 

successfully co-localized with the molecular catalyst, pyrene-TEMPO, on 3D-GNS.  The 

immobilization of the enzyme and characterization of the two-step cascade reaction 

discussed in detail in the previous chapters.  

 

The objective in this task were to incorporate all three catalysts on the same support, co-

locally, and create a functional hybrid catalyst (Scheme 6-1) that can convert glyoxalic acid 

to CO2 protons and electrons. There was observed activity in the previous hybrid 

enzymatic-molecular catalyst, however, in this part of the proposal, the aim is not only to 

spatially organize all three catalysts of three different modalities to catalyze a multi-step 

cascade reaction but to also achieve efficiency. TEMPO functions in more basic conditions 

while the enzyme naturally operates in more acid conditions. Previous studies by Minteer 

group were done, without manipulation of the catalysts, to identify an overlapping pH = 

5.2. However, in this part of the proposal pH was set to 6.2. Namely, the molecular catalyst 
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is more active towards glyoxalic acid at higher pHs and a mutant of OxDC, which will be 

used at pH 6.2, had to be developed.  In addition, gold nanoparticles will replace the 

palladium nanoparticles because gold nanoparticles are more selective for the substrates in 

the glyoxalic acid cascade. The first reaction will be catalyzed by the molecular catalyst, 

TEMPO, which will oxidize glyoxalic acid to oxalic acid. The second reaction will be 

performed by the enzymatic catalyst, OxDC, which will convert oxalic acid to formic acid. 

Finally, the last reaction will be catalyzed by the inorganic catalyst, Au, which will oxidize 

formic acid to CO2. All catalysts will be co-localized on the same support. 

 

Scheme 6- 1: OxDC tethered by PBSE and pyrene-TEMPO spatially organized on 3D-GNS that is 
decorated with PdNP. Pyrene-TEMPO oxidizes glyoxalic acid to oxalic acid. OxDC converts oxalic acid to 
formic acid and the PdNP oxidize formic acid to CO2. 
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Au colloid synthesis using polyol method 

 

The gold colloid was prepared using the polyol method 36,37. 60 mL of ethylene glycol was 

dissolved in 4.2 g of PVP stirred at room temperature (which yields 5.1wt.% PVP: ethylene 

glycol). The solution was heated to 120°C. 30 mg of gold (III) chloride hydrate (HAuCl4 · 

aq) was dissolved in 10 mL of ethylene glycol at room temperature. This was added to the 

PVP-ethylene glycol solution and proceeded for 2 hours. 

 

Au decorated on 3D-GNS 

 

The gold colloid solution was added to 3D-GNS (to yield 20wt.% loading of Au:carbon) 

then the pH was adjusted, using sulfuric acid, to pH=2.5. After, the solution was cover and 

stirred for 22 hours. 

 

Ink Preparation for Hybrid Catalyst 

 

Au//3D-GNS was prepared in a vial by combining 40 μL of base ink with 10 μL of citric 

phosphate buffer (pH 6.2). The base ink was made by combining 5 mg of 3D-GNS in 925 

μL and 75 μL TBAN Nafion. 5 mg of TBAB was sonicated in 80 μL of acetone for 10 

minutes. 3 μL of the Pd/3D-GNS was then drop-casted onto a glassy carbon electrode and 

dried. 
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To make OxDCMUT/Au/3D-GNS, 40 μL of solution A, 8 μL of solutions B (150 mM 

solution of PBSE sonicated in acetone 10 minutes) and 2 μL of 2.3 mg/mL OxDCMUT were 

combined in a vial. 

 

To make pyrene-TEMPO/Au/3D-GNS, 40 μL of solution A was combined with 10 μL of 

(150 mM solution of pyrene-TEMPO dissolved in acetone). 

 

Electrode Preparation for Hybrid Catalyst 

 

To make OxDCMUT/pyrene-TEMPO/Au/3D-GNS electrodes, 25 μL of pyrene-

TEMPO/Au/3D-GNS and 25 μL of OxDCMUT/Au/3D-GNS were first combined in 

individual vials and then combined into one vial after 10 minutes. 3 μL of the vial content 

was then drop-casted onto a glassy carbon electrode and dried. The electrodes were kept at 

4°C for 16-18 hours to cure and then washed with citric acid buffer to remove non-

immobilized components. The electrodes were then immersed in 100 mM glyoxalic acid 

for electrochemical experiments. 

 

Design and Engineering of Hybrid Catalyst -- Molecular Catalyst  

 

In this part of the proposal, the focus was to analyze each step of the cascade with the 

desired catalysts to ensure the presence of a multi-step reaction. The multi-step cascade 

reaction begins with the molecular catalyst, TEMPO, which will oxidize glyoxalic acid to 

oxalic acid. It was previously shown that pyrene-TEMPO/3D-GNS is active towards 
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formic acid (Figure 5-2a) and shows minimal activity towards oxalic acid (Figure 5-3). 

Cyclic voltammograms were taken of pyrene-TEMPO/3D-GNS in glyoxlaic acid (0.1 M 

CPB pH=6.2) to provide evidence that in the first part of the cascade, glyoxalic acid will 

be oxidized to the next substrate (Figure 6-2). The pH was changed from 5.2 to 6.2 because 

1) the molecular catalysts was more active for glyoxalic acid at a higher pH and 2) the 

mutant enzyme was engineered to function at pH as high as 6.2 

 
Figure 6- 1: CV of pyrene-TEMPO/3D-GNS in 100 mM glyoxalic acid (0.1 M CPB pH=6.2 at 25°C). 

 

The CV in Figure 6-1 shows that pyrene-TEMPO can oxidize glyoxalic acid at higher pH. 

This suggests that the activity of pyrene-TEMPO in the presence of glyoxalic acid will not 

be overtaken by the oxidation of formic acid by pyrene-TEMPO in the presence of formic 

acid.  

 

Design and Engineering of Hybrid Catalyst -- Enzymatic Catalyst 

 

The second reaction in the cascade will be catalyzed by an enzymatic catalyst, which will 

convert oxalic acid to formic acid. The overlapping pH for TEMPO and OxDCWT (wild 
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type) was pH 5.2. However, the optimal pH for OxDCWT was approximately pH = 4. 

TEMPO and its derivatives perform better at higher pHs. The Minteer group have been 

working towards an enzyme that functions at a higher pH to be able to gain the maximum 

activity of TEMPO electrochemically. The overlapping pH for the engineered enzymes and 

the molecular catalyst was found to be pH=6.2. Enzyme 1: OxDC mutant 3-3-8 E4, has 

one mutation, R66Q, concentration 21 mg/mL, and specific activity of 20 U/mg. Enzyme 

2: OxDC mutant 3-3-3 F3 has two mutations, I91T and E147D, 38 mg/mL, and specific 

activity of 14 U/mg. These two enzymes were incorporated in the hybrid-molecular-

enzymatic two-step cascade and tested for their ability to convert oxalic acid to formic acid. 

The maximum currents due to oxidation of formic acid by pyrene-TEMPO, were 

determined as 16 μA, 7.3 μA, and 1.3 μA for the hybrid containing OxDCWT, OxDC 3-3-

8-E4, and OxDC 3-3-3-F3, respectively. To determine which mutant enzyme to move 

forward with, CVs of the mutant enzyme-molecular catalyst were compared to the 

performance of the wild type enzyme-molecular catalyst at pH=5.2 (Figure 6-2a), which 

was studied in the previous chapter. The objective was to determine if the enzymes can 

function at the proposed higher pH (pH=6.2) not enhance their function. These results, im 

Figure 6, show that both proposed enzymes OxDC 3-3-8-E4 (Figure 6-2b) and OxDC 3-3-

3-F3 (Figure 6-2c) can convert oxalic acid to formic acid at pH 6.2. The currents observed 

are due to the subsequent oxidation of formic acid on pyrene-TEMPO because the enzyme 

is not electrochemically active. Therefore, it can be concluded that these two enzymes can 

be used towards the synthetic cascade system at pH 6.2.  
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Figure 6- 2: CV of the hybrid enzymatic-molecular system in citric phosphate buffer pH = 5.2 (black) and 
100 mM oxalic acid (blue) purged in O2 for a) OxDCWT (pH=5.2),  b) OxDC 3-3-8-E4 (pH=6.2), c) OxDC 
3-3-3-F3 (pH=6.2). 

 

Table 6-1 reviews the currents and onset potentials for the three possible OxDC that could 

still function in this system. Maximum current values for the hybrid catalyst containing 

OxDC 3-3-8-E4 and OxDC 3-3-3-F3 were determined to be 7.3 μA and 1.3 μA, 

respectively. The results show that either of the two enzyme mutants would perform the 

second reaction in this sophisticated cascade at pH=6.2, however, to introduce some system 

efficiency, OxDC 3-3-8-E4 was chosen for the further work on of designing the hybrid 

catalyst for the multi-step cascade system. 

 

Table 6- 1: Electrocatalytic screening of OxDC mutants in oxalic acid. Catalytic activity was determined by 
comparison of cyclic voltammograms in the presence and absence of 0.1 M oxalic acid using 0.1 M CPB, 
pH = 6.2, at 25 °C. 

Enzyme OxDCWT OxDC1 (3-3-8-E4) OxDC2 (3-3-3-F3) 

Maximum Current [μA] 16 7.3 1.3 

Onset Potential [V] 0.592 0.559 0.598 
 

 

 

 



 

 54 

Design and Engineering of Hybrid Catalyst -- Metallic Catalyst  

 

The third reaction in which of formic acid is oxidized to CO2 can be performed by the 

palladium nanoparticles. These nanoparticles are decorated on 3D-GNS at a 20wt.% 

loading of Pd:carbon38. Each nanoparticle was 5-7 nm in diameter, which is almost half the 

size of the OxDC enzyme (Figure 6-3). 

 

 

Figure 6- 3: TEM micrographs of Pd nanoparticles deposited on thermally reduced 3D-Graphene nanosheets. 

 

The objective of this part of the cascade was to test if the metallic catalyst was active and 

selective towards for formic acid oxidation. The activity of Pd/3D-GNS towards the three 

substrates in the cascade (glyoxalic acid, oxalic acid, and formic acid) was studied by 

collecting voltammograms. Figure 6-4a shows that palladium was most active toward 

formic acid with low onset potential. However, the results also show tha Pd/3D-GNS is 

also active for glyoxalic and oxalic acid (Figure 6b-c). This implies that the catalyst would 

overtake the whole cascade without producing a multi-step cascade reaction performed by 

multiple catalysts. In addition, when the activity of pallidum towards glyoxalic acid was 

compared to the activity of the molecular catalyst (Figure 6-1) in glyoxalic acid, palladium 
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was more active toward glyoxalic acid than the molecular catalyst. Attempts were made to 

poisoning the catalyst to improve selectivity, but this strategy was not successful. In most 

cases, changing to another metal would be less favorable, but in our case this wa proven to 

be a more viable approach. 

 

 
Figure 6- 4: CV of Pd/3D-GNS in 100 mM a) glyoxalic acid b) oxalic acid and c) formic acid in 0.1 M CPB 
pH=6.2 at 25°C in O2. 

 

To avoid the entire cascade to be overtaken by palladium, gold was proposed as the new 

metallic catalyst. Gold binds all oxygenated intermediates involved in the alcohols 

oxidation much weaker than Pd, resulting in reduced performances 39,40,41,42. A gold colloid 

solution was made using 5.1wt.% PVP: ethylene glycol as the surfactant so the 

nanoparticles would be supported in solution without their structure being destroyed. The 

reaction took place at 150°C for 2 hours. To characterize the Au nanoparticles, TEM 

micrographs were taken using a JOEL model at 60 K. Figure 6-5 shows on average, the 

size of the gold nanoparticle was much larger than that of the palladium nanoparticles. 
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Figure 6- 5: TEM micrographs of Au nanoparticles from colloid solution. 

 

Cyclic voltammograms in each substrate of the multi-step cascade were obtained to 

determine the activity of the Au nanoparticles towards each substrate. Figure 6-6a shows 

that gold inhibits the oxidation of glyoxalic acid. Observably, there was almost no current 

difference between the blank and the substrate. The objective was to have a metallic 

catalyst that was more selective for the substrates in the cascade rather than it being more 

active for formic acid.  

 

As seen in a previous chapter, the activity of the Au/3D-GNS for the oxidation of oxalic 

acid (Figure 6-5b) is identical to the activity of the carbon support for the oxidation of 

oxalic acid (Figure 5-6). This suggests, that at high potentials, the 3D-GNS also contributes 

to the oxidation of oxalic acid. This was also the case for other tested carbon supports 

(Appendix A3).  
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Figure 6- 6: CV of Au/3D-GNS in 100 mM a) glyoxalic acid b) oxalic acid and c) formic acid in 0.1 M CPB 
pH=6.2 at 25°C in O2. 

 

Figure 6-6c further shoes that gold was active for formic acid; however, the onset potential 

was approximately 0.2 V vs. Ag/AgCl, and the peak current for the oxidation of formic 

acid oxidation was surprisingly low. This could be explained by the contamination of the 

gold surface due to the surfactant (PVP). For that reason, the amount of surfactant was 

further investigated and optimized. 

 

Different Au colloid solutions have been deposited on 3D-GNS, varying the amount of 

surfactant in the colloid solution. Two amounts of surfactants have been tested, 1wt.% 

(Figure 6-7a) and 4.8wt.% (Figure 6-7b). As prepared Au/3D-GNS were then tested 

towards the oxidation of formic acid. Figure 6-7 shows that as the decrease in the amount 

of surfactant increases the peak current and that the 1wt.% of surfactant produced Au/3D-

GNS with the highest activity for formic acid oxidation. Not enough surfactant in the 

colloid solution will cause the nanoparticles to collapse resulting in little or few 

nanoparticles. 
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Figure 6- 7: CV of Au/3D-GNS in 100 mM formic acid (0.1 M CPB pH=6.2 at 25°C in O2) using a) 1 wt.% 
PVP and b) 4.8 wt.% PVP. 

 

Design and Engineering of Hybrid Catalyst 

 

Half of the cascade was tested to determine the impact of the enzyme: the activity of the 

OxDC1/Au/3D-GNS (Figure 6-8b) and OxDC1/Pd/3D-GNS (Figure 6-8c) was tested in the 

presence of oxalic acid. When comparing these with their base components we find that 

the enzyme does not have an impact on the electrochemistry of the cascade. For example, 

when comparing OxDC1/Au/3D-GNS (Figure 6-8b) with Au/3D-GNS (Figure 6-6b), in the 

presence of oxalic acid, the peak current of both systems was approximately the same. The 

same comparison can be made for the palladium based system. 
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Figure 6- 8: a) activity curve of hybrid catalyst in the presence of 100 mM oxalic acid for OxDC1/Au/3D-
GNS (circle) and OxDC1/Pd/3D-GNS (triangle). CVs for b) OxDC1/Au/3D-GNS and c) OxDC1/Pd/3D-GNS 
in 100 mM oxalic acid (blue) buffered with 0.1 M CPB pH=6.2 in O2. 

 

The result is both expected and problematic. The enzyme is not electrochemically active; 

hence the signal is due to the metallic catalyst OxDC should convert oxalic acid to formic 

acid, which can be further oxidized by Au and Pd. The fact that the onset potential is not 

lower, indicated that we are observing oxidation of oxalic acid by the metal nanoparticles 

while as we should see the oxidation of the formic acid by the nanoparticles. One 

explanation for this is that there was not enough reaction time for the enzyme to convert 

oxalic acid to formic acid for further oxidation. A second reason was that the Au and Pd 

nanoparticles are either not as non-accessible because covered by the enzyme or partly 
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poisoned by the PVP (for Au). The latter may be the more likely case, as it was shown in 

a previous chapter when the enzyme was immobilized, in the presence of oxalic acid, the 

signal suppressed (Figure 5-4). The carbon support can also oxidize oxalic acid which 

results in large current. With the optimized amount of immobilized enzyme, the support 

cannot oxidize oxalic acid has previously been seen. However, in the case of Au and Pd, 

there was a large peak current even with the enzyme immobilized and this could be due to 

the fact that the previous optimized tether amount was no longer relevant because of the 

presence of gold in the system taking up the surface area of the 3D-GNS. Also, too much 

tether on the surface causes the decrease in activity of the enzyme, as discussed in Chapter 

4. 

 

To reiterate, the enzyme does not have an impact on the signal in the CV studies as it is not 

electrochemically active. OxDC therefore converts oxalic acid to formic acid without 

exchanging electrons with the electrode. This can be confirmed by testing an 

electrochemically active catalyst alone and adding the enzyme (Figure 6-9). Pyrene-

TEMPO alone on 3D-GNS compared to pyrene-TEMPO with OxDC1/3D-GNS shows no 

difference in activity in the presence of glyoxalic acid. The signal in the separate graphs 

are almost identical. 
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Figure 6- 9: a) activity curve in the presence of 100 mM glyoxalic acid for OxDC1/pyrene-TEMPO/3D-GNS 
(circle) and pyrene-TEMPO/3D-GNS (triangle). CVs for b) pyrene-TEMPO/3D-GNS and c) OxDC1/pyrene-
TEMPO/3D-GNS in 100 mM glyoxalic acid (blue) buffered with 0.1 M CPB pH=6.2 in O2. 

 

Finally, the components of the hybrid catalyst are all immobilized or supported on 3D-

GNS. In the presence of glyoxalic acid, the hybrid catalyst with Au (Figure 6-10b) was 

better than the catalyst with Pd (Figure 6-10c). There was an observable increase in the 

peak current when gold was substituted into the system. 
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Figure 6- 10:  a) activity curve of hybrid catalyst in the presence of 100 mM glyoxalic acid for OxDC1/pyrene-
TEMPO/Au/3D-GNS (circle) and OxDC1/pyrene-TEMPO/Pd/3D-GNS (triangle). CVs for b) 
OxDC1/pyrene-TEMPO/Au/3D-GNS and c) OxDC1/pyrene-TEMPO/Pd/3D-GNS in 100 mM oxalic acid 
(green) buffered with 0.1 M CPB pH=6.2 in O2. 

 

However, CV curves are limited in the information that can be derived from them. It can 

be argued that it was unclear whether or not this hybrid catalyst was in fact catalyzing a 

multi-step cascade reaction. The next chapter describes a way to determine how 

OxDC/pyrene-TEMPo/Au/3D-GNS hybrid catalyst converts the substrates in the multi-

step reaction. 

 

Further work will include looking into different metallic catalysts and their incorporation 

in the multi-step cascade with molecular and enzymatic catalysts. In this work, gold 
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nanoparticles have been shown to be more selective towards the oxidation of formic acid 

than Pd 43 with suppressed activity towards glyoxalic acid.  Furthermore, Au can oxidize 

formic acid at lower potentials than oxalic acid, which opens a possibility of using cell 

potential to ensure selectivity in the cascade. In this chapter we explored designing and 

engineering a synthetic multi-step cascade reaction system. The system consisting of a 

molecular, enzymatic, and metallic catalyst was successfully carried out on a small scale, 

at room temperature, in liquid phase, using glyoxalic acid as a fuel. This is the fundamental 

work in creating smaller multi-step reaction cascades, but it opens novel pathways for the 

use of multi-modal catalytic systems in different energy conversion technologies that rely 

on the catalysis of complex multi-step cascade reactions in designing microchemical 

reactors. 
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Chapter 7  
 

Development of A Microchemical Reactor 
 

 

Microfluid devices allow for the control of precursors to products. They are modular, take 

place in a liquid medium, and at room temperature. Surface Enhance Raman Spectroscopy 

(SERS) was used to determine the spectra of the effluent stream of the microchemical 

reactor by using SERS substrate. This demonstrates the integration of an electrochemical 

cell working on a smaller scale, in liquid phase, and at room temperature using an 

alternative fuel. It has been previously successfully eployed, in two instances, where the 

understandings of the flow and the kinetics of the catalyst have been determined by using 

molecular dynamics, kinetic Monte Carlo, and electrochemical paper-based analytical 

devices 44,45. Having a paper-based analytical device provides a means of detecting 

products almost immediately after they are formed. Another advantage is extreme 

sensitivity of the SERS which allows for a more promising method for detecting analytes 

46. 

 
Microfluidic Reactor 
  

The microfluidic platform was designed and engineering at the University of New Mexico 

by the Atanassov group 44. Its main components comprise of the platform, made of 

Whatman paper, SERS detection zones, and stencil printed electrode, which mimicked a 

three-electrode electrochemical cell (Figure 7-1). The electrochemical experiment on the 
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platform were performed by holding potential at 0.8 V vs. Ag/AgCl in 0.1 M glyoxalic acid 

(pH=6.2) at 25°C. 

 

Figure 7- 1: Schematic of the microchemical reactor a) aerial view, b) oblique view, and c) photograph of 
an electrochemical platform 

 

Surface-Enhanced Raman Spectroscopy (SERS) 

 

The SERS detections zones were designed and fabricated at the University of New 

Mexico44. Stock solutions were made first. A 50 mM silver nitrate solution was made and 

used as the silver source. The reducing agent consisted of two solutions: one solution of 50 

mM sodium borohydride and 50 mM sodium hydroxide solution. A capping agent solution 

consisted of 0.1% poly(vinyl alcohol)and was obtained by dissolving the PVA granules in 

DI water. The PVA solution was heated to 75°C for 40 minutes to promote dissolution. 
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The silver nanoparticles were made by adding 100 µL of the silver nitrate solution to 9.37 

mL of DI water and shaken briefly to mix. To this, 30 µL of PVA solution was added. The 

reducing solution (NaBH4 and NaOH mixture, 200 µL) was added, which was covered and 

shaken vigorously for 30 seconds to release H2 gas and promote the formation of 

nanoparticles. This solution was pipetted onto glass coverslips in 10 µL aliquots and placed 

in an oven at 75°C for 20 minutes to make the SERS substrates.  

 

Spectral Results for Hybrid Catalyst Conversion 

 

To first determine the spectra of the products produced from the microchemical reactor, 

the spectrum from the reference solutions were first analyzed using the reactants. This 

consisted of three references, 100 mM glyoxalic acid (GA), 100 mM oxalic acid (OA) and 

100 mM formic acid (FA) (Figure 7-2). The windows for the SERS detection zones allowed 

for analysis of the reactant and products. Each substrate has a unique spectrum and they 

are different from one another however, they share some similarities are similar due to their 

similarities in their chemical structure. The peaks were characteristic of the formation of 

dimers from carboxylic acid groups, monomers of carboxylic acid, alcohols, aldehydes, 

ketones, and formates. The substrates are 0.1 M and buffered with CPB to pH 6.2 which 

may cause steric hindrance and results in shifting of the peaks. For glyoxalic acid (green), 

the peaks unique to this substrate are at 837 cm-1, 1038 cm-1, 1421 cm-1. For oxalic acid 

(blue), the first peak was bimodal where the peaks arise at 837 cm-1, 904 cm-1. It also has 

a second and third peak at 1038 cm-1, and 1421 cm-1, respectively.  The peak in oxalic acid 

at 1421 cm-1 was noticeably higher than in glyoxalic acid. Between the two substrates, the 
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peak present in oxalic acid but not glyoxalic acid was at 904 cm-1. Formic acid (red) has 

one characteristic peak at 837 cm-1. 

 

Next, the analyte mixture spectrum was determined for GA/OA, GA/FA, OA/FA, and a 

combination of the three, GA/OA/FA. The spectrum for GA/OA has a combination of GA 

and OA spectrum but the two individual spectrums do not necessarily overlap nor are they 

superimposable. The GA/OA spectrum has a similar low peak at 1421 cm-1 and another 

peak at 2930 cm-1 that was similar to the peak found in GA. Similar peaks that resembles 

the OA spectrum was the bimodal peak at 837 cm-1, 904 cm-1. The GA/FA spectrum was 

a combination of the two individual spectra. It still has a characteristic peak at 837 cm-1, 

the same as GA and FA spectrum. It also has another small peak at 1421 cm-1, which was 

visible in the GA spectra but not in the FA spectra. The OA/FA spectrum was much 

different than the original spectrum. There was no longer a bimodal peak at 837 cm-1, 904 

cm-1 but instead one large peak at 837 cm-1 which is characteristic of the FA spectra. There 

was also another noticeable peak at 1547 cm-1 and two intense peaks at 2861 cm-1 and 2930 

cm-1. These two peaks are not observable in any of the previous spectrum, which means 

they are unique to the OA/FA spectra. The last mixture spectrum examined was for the 

GA/OA/FA combination. The same peak that was prominent throughout all the spectrum 

was at 837 cm-1 however, its intensity is decreased. The same peak that appears in OA/FA 

appears at 1547 cm-1 as well as the last two peaks at 2861 cm-1 and 2930 cm-1.  
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Figure 7- 2: SERS spectrum of cascade analytes and product stream (0.1 M citric phosphate buffer pH = 6.2). 

 

The products spectra are unlike the reference spectrum. The peak at 1421 cm-1 was 

noticeable in mixtures containing glyoxalic acid, but it was suppressed in the product 

spectra which indicate low levels of glyoxalic acid present.  The two peaks 2861 and 2931 

cm-1 at were more pronounced which was similar to the GA/OA/FA spectrum. This was 

indicative of the product stream being a mixture of GA, OA, and FA, which suggests that 

hybrid catalyst successfully oxidized glyoxalic acid, which was then converted to oxalic 

acid, which was then oxidized to formic acid. 

 

This technique not only incorporated three catalysts on a small scale, but it was also a 

method used to test the hybrid catalyst’s ability to catalyze a multi-step cascade reaction 

by the means of electrochemical techniques. This was then further verified by the 

microchemical reactor by analyzing the spectrum of the products by using SERS with a 
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Raman microscope. It was confirmed that the hybrid catalyst was able to oxidize glyoxalic 

acid to formic acid via a three-step cascade reaction. 
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Chapter 8  
 

Conclusions and Future Direction 
 

The presented researched explored the incorporation of the three catalysts with three 

different modalities, molecular, enzymatic, and metallic catalyst on the same support. This 

allows for novel pathways to be further explored and expanded towards the catalysis of 

multi-step reactions by interchanging any of the three catalytic components. An 

immobilization technique based on the tethering of the large multimeric enzyme on the 

carbon-based supports was further developed. The efficiency of the immobilized procedure 

was tested using a UV-visible based FDH assay. The developed immobilized approach can 

be translated to other enzymes, whether they are large (hexameric) or smaller. Successful 

immobilization was accomplished on both a simple carbonaceous support, MWNT, as well 

as on a complex carbonaceous support, 3D-GNS. The approach can therefore be used not 

only for different enzymes but also for different carbon-based supports. The molecular 

catalyst was successfully immobilized on 3D-GNS by modifying it with a pyrene moiety. 

This procedure enables immobilization of the molecular catalysts close to other catalysts 

in the cascade. In addition, a hybrid enzymatic-molecular catalyst was designed, using the 

same immobilization technique, and was used to catalyze a two-step reaction. Enzymatic 

systems convert oxalic acid to formic acid, and the molecular system further oxidizes 

formic acid to CO2, which was confirmed using electrochemical methods. This allowed 

for the integration of a third catalysts of a different modality from the first two catalysts. 

The design of the hybrid molecular-enzymatic-metallic catalyst allows for further 

exploration of interchanging the catalysts. For example, interchanging palladium for gold, 
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which allowed for a higher selectivity of the metallic catalyst in the cascade. However, the 

exploration of optimal the metallic catalyst can be further tested. Finally, a technique was 

used to confirm the conversion of the reactants to products in the hybrid cascade by using 

a spectro-electrochemical platform. 

 

This proposal explores the fundamental science behind developing hybrid catalysts of three 

different modalities and their use in multi-step catalytic reaction on s small scale in liquid 

media. This work also provides basis for further improvements in the synthetic catalytic 

cascades, which would lead to the increase in their efficiency and allow more control over 

the catalytic process. One of the options is the exploration of surface-bound diffusion as a 

way to create more effective transport of intermediates in the cascade. This can be done by 

modifying the carbonaceous support by doping the support with nitrogen or boron. The 

change in the surface charge of the support has the potential to keep intermediates close to 

the surface and within the vicinity of the next catalyst allowing for more efficient transport 

and conversion by the next catalyst downstream in the synthetic cascade. Molecular 

dynamics simulations can also be used to explore the positioning of the enzyme when it is 

immobilized to the support. This will help further optimize the tether and enzyme 

concentration to avoid enzyme emulsification. Furthermore, characterization of the created 

molecular-enzymatic-metallic system by fluorescence microscopy techniques would help 

us understand how the enzymatic catalyst is distributed on the support and enable us to 

start understanding the structure to function properties of these complex systems. This 

research also opens pathways to develop and engineer more complex synthetic hybrid 

catalysts for larger multi-step cascade reactions as well as the development of more 
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sophisticated microchemical reactors, which include using different catalyst and different 

alternative fuels.  
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Appendix  
A1 CV of Pd/3D-GNS in 0.1 M citric phosphate buffer pH = 6.2 (black) and 100 mM 
a) oxalic acid, b) glyoxalic acid and c) formic acid purged in N2.  
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A2 Electrocatalytical activity summary of Pd/3D-GNS towards formic acid  

 

A3 CV curves of FXC-400 in GA, OA, and FA  
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