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Assessing Drought-Induced Change in a Piñon-Juniper Woodland with Landsat:  

A Multiple Endmember Spectral Mixture Analysis Approach 

 

By 

William L. Brewer 

B.A. Geography, Texas Tech University, 2012 

M.S. Geography, University of New Mexico, 2016 

 

Abstract 

Piñon-juniper communities exist on mid-elevation mountain ranges throughout 

the southwestern United States. Drought adapted, these species have lived with climatic 

stochasticity since the end of the Pleistocene. However, increasing temperatures and 

drought within the last two decades have stressed this community beyond its adaptive 

limits. With increased drought-induced stress, piñon show greater vulnerability to die-off 

than juniper. Widespread piñon die-off occurred during 2002-2004 from extreme drought 

in northern New Mexico with minimal juniper die-off.  

This study quantified the differential piñon and juniper mortality during the 2010-

2013 drought at a site in central New Mexico by performing multiple endmember 

spectral mixture analysis (MESMA) on six Landsat images from 2009 through 2015 

using field-based spectral endmembers collected throughout 2015. An ideal spectral 

seperability date was identified to maximize separation between constituent land cover 

classes by calculating NDVI, SAVI, and RENDVI for the five dominant land cover 

classes at the site (juniper, piñon, dead piñon, herbaceous, and bare soil) and analyzing 



vi 
 

precipitation and temperature data. Peak seperabililty between land cover classes was 

determined to occur during the pre-monsoon season between late spring/early summer 

(May) when no spectral overlap occurred between classes (σ = 1). The field-based 

reference endmembers were then used to unmix each image in the study period. Results 

indicate a 24.6% decline in piñon fractional cover across the study period with a 

comparable 23.8% increase in dead piñon fractional cover and minimal 5.9% change in 

juniper fractional cover. Accuracy assessment validation using high spatial resolution (5-

8 cm) imagery for 2014 and 2015 showed a high degree of confidence in modeled 

fractional cover results during 2014 - GV (piñon and juniper together) (R2 = 0.632) and 

dead piñon (R2 = 0.854), and 2015 - GV  (R2 = 0.735) and dead piñon (R2 = 0.881). 

Results indicate the utility of MESMA to monitor and quantify the differential die-off 

piñon and juniper at a regional scale as climate change-induced drought and higher 

temperatures are projected to continue in the Southwest.  
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Chapter 1 

Introduction 

1.0 Introduction and Background  

Climatic variability is a natural component of the environment in the Southwestern 

United States. Fluctuations in rainfall and temperature have influenced the evolution of 

drought tolerant traits for millennia. Drought tolerant species like the piñon pine (Pinus 

edulis) and one-seed juniper (Juniperus monosperma) have thrived. Occupying a range of 

100 million acres across the West (Romme et al. 2009), piñon-juniper woodland 

(hereinafter referred to as PJ) is one of the most widely distributed cover types in the 

Southwest and also one of the most heavily impacted by drought. Recent large-scale 

severe droughts combined with higher temperatures have stressed PJ communities 

beyond their adaptive limits (Breshears et al., 2005; Breshears et al, 2009; Williams et al, 

2013). As temperatures and drought are predicted to increase (IPCC, 2014) in the 

Southwest United States, monitoring the effect of disturbance events on the spatially 

extant and ecologically significant PJ communities has critical importance. Analysis of 

moderate spatial resolution remotely-sensed imagery such as Landsat offer the ability to 

quantify the scope and rate of change of this critical plant community across the 

Southwest (Xiao et al., 2005; Yang et al., 2012). This thesis aims to 1) determine what 

time of year are piñon and juniper most spectrally separable from the surrounding 

environment, 2) determine how precipitation influences the timing of separability 

between PJ and the surrounding environment, and between piñon and juniper, 3) 

determine if piñon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma) 

spectrally separable in Landsat imagery using MESMA, and 4) determine if MESMA can 
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be used to detect a change in the proportion of piñon and juniper between 2009 and 2015 

on the Deer Creek Plateau in central New Mexico. 

Drought and high temperatures affect plant communities in a variety of ways. 

Stress on plant hydraulic systems hampers carbon uptake and metabolism, increasing the 

likelihood of carbon starvation (Zeppel et al., 2012). A prolonged drought can also result 

in low water potentials, raising the potential for xylem cavitation, leading to plant death 

(Rennenberg et al., 2006). Trees not directly killed but weakened by drought have 

increased vulnerability to infestation from pathogens and pests such as pine bark beetles 

(Allen et al., 2010). A greater number of host trees leads to larger insect/pathogen 

population outbreaks, which are exacerbated by longer breeding seasons resulting from 

warmer average annual temperatures (Raffa et al., 2008). Increased surface temperatures 

combined with more severe droughts are expected to increase the probability of insect 

outbreaks in western North American forestland (Logan et al., 2003). The correlation 

between insect outbreaks, physiological stress from higher temperatures, and more 

frequent drought indicate that climate change is likely to result in increased tree mortality 

in the Southwest (Williams et al. 2013).  

Two of the most widely studied species that have been impacted by drought-

induced tree mortality in the Southwest have been the piñon pine (Pinus edulis) and one-

seed juniper (Juniperus monosperma) (Breshears et al., 2005; Clifford et al., 

2011;Gaylord et al., 2013). An expansive co-occurring species, PJ form a dominant 

regional cover type that can be found between 4,500-8,500 feet above mean sea level 

(AMSL) from southern Wyoming to northern Mexico and from western Oklahoma to 

Eastern California (Figure 1). The community is dominated by a PJ overstory but contain 
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a variety of C4 grasses (e.g. Bouteloua spp.) and succulents (e.g. Opuntia spp.) in the 

understory. PJ distribution and composition has been heavily influenced by drought 

which has persisted in the Southwest since the mid-1990s (Shaw et al., 2005). PJ saw 

significant composition changes across 1.5 million ha of its range from a particularly 

severe 1999-2002 drought period. Drought impact was disproportionate between piñon 

and juniper, with piñon experiencing 40-95% mortality while juniper experienced 2-25% 

mortality (Breshears et al., 2005, Shaw et al., 2005, Williams et al., 2010). The 

differential mortality rate is further accentuated when larger, more reproductively mature 

piñon trees are considered. More mature trees (basal trunk diameter (BTD) >12) 

experienced a 200-600% greater mortality rate than smaller (BTD <12cm) trees (Mueller 

2005).  

 Widespread and disproportionate mortality of both piñon and juniper indicates a 

fundamental change in the spatial extent of PJ woodland as well as species composition. 

Stand structure has experienced a significant shift towards juniper and juvenile (non-

reproductive) piñon, resulting in lower canopy height and average stem diameter within 

the system (Clifford et al., 2008). This composition change in the two dominant overstory 

species impacts a variety of ecological and physical processes present within these 

systems with widespread changes to soil water content, light infiltration, and soil nutrient 

content (Clifford et al. 2008, Rich et al. 2008). Monitoring PJ die-off at the regional scale 

is critical for understanding these underlying systemic transformations within the biome.  

 The effects of climate-induced disturbance are distributed across a variety of 

spatial scales, from the local to the regional, and are not equitably distributed. A host of 

local abiotic factors, including microclimates, topography, and geology affect the scope 
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and impact of disturbance events. Drought induced mortality of piñon during the 2002-

2003 drought showed significant spatial variability. Piñon mortality was 1.2 % in the 

southern portions of its range (Manzano Mountains) of the Middle Rio Grande Basin 

(MRGB) in New Mexico, compared with mortality rates as high as 62% in northern 

sections of the MRGB (Clifford et al., 2008). The cause of the regional variability is 

unknown.  

With the onset of the 2011-2014 drought, spatial variability may again exist in the 

extent of piñon die-off throughout the MRGB. Drought intensity during this period was 

severe (Figure 2). The lowest Palmer Drought Severity Index (PDSI) value on record (-

7.23) for the Central Highlands of New Mexico (which overlays the eastern portion of the 

Middle Rio Grande Basin) recorded during 2011 (South Central Climate Science Center, 

2013). PDSI is useful at measuring long-term droughts on a scale with 0 as normal, above 

average moisture conditions as positive numbers and drought depicted as negative 

numbers; a value of negative 1 is mild drought, negative 2 moderate drought, negative 3 

severe drought, and negative 4 is extreme drought (Palmer, 1965). A value of -7.23 

represents exceptional drought. 

The effects of drought on PJ woodland manifest at different rates with stress not 

always immediately apparent. Gaylord et al. 2013 recorded piñon death from beetle 

infestation one year after drought onset. Temporal lags of the effect of drought on PJ 

stress may exist in other forms as well. Piñon trees weakened from associated drought 

and temperature increase may succumb to stress even after a drought has ended (Litvak, 

personal communication).  
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PJ is an essential component in these semi-arid woodland ecosystems. The 

communities provide several ecological and cultural benefits to the natural and human 

environment. They help regulate soil moisture content, act as carbon sinks, and provide 

habitat for endangered species (e.g. Gray Vireo) as well as endemic plants. Culturally it 

provides locally sourced food (pine nuts), firewood, and aesthetic beauty to the 

Southwest. Given the widespread distribution of PJ throughout the Southwest and its 

sensitivity to drought, developing effective mapping and monitoring techniques at the 

regional scale becomes critical, especially considering its importance to the ecosystem 

and regional culture.  

 

1.1 Research Objectives and Questions 

With two drought periods in the last 15 years and more drought unequivocally 

predicted across the Southwest (IPCC, 2014), the need to examine change in the 

distribution and composition of piñon and juniper is critical to understanding the effects 

of drought on PJ communities across the Southwest. Research questions are aimed at 

evaluating the potential of field spectroscopy of dominant vegetation species in PJ 

communities as inputs for MESMA of Landsat data to monitor change in PJ communities 

across the Southwest. 

1. What time of year are piñon and juniper most spectrally separable from the 

surrounding environment? 

2. How does precipitation influence the timing of separability between PJ and the 

surrounding environment, and between piñon and juniper? 
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3. Are piñon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma) 

spectrally separable in Landsat imagery using MESMA?  

4. Can we use MESMA to detect a change in the proportion of piñon and juniper 

between 2009 and 2015 on the Deer Creek Plateau in central New Mexico? 

 

1.2 Background 

Remote sensing technologies offer wide utility in monitoring PJ distribution 

across large spatial extents. PJ distribution has been studied extensively with field-based 

methods, utilizing plot and line-intercept techniques (Padien et al. 1992; Miller et al. 

2008). While these techniques provide a detailed inventory of species richness and 

abundance, they are labor intensive, making them impractical to implement at large 

scales. Collected at spatially and temporally consistent intervals, satellite-based remote 

sensing offers physically based methods to monitor PJ distribution in a precise, 

reproducible manner. Landsat provides the spectral and temporal resolution necessary to 

perform most image-based analysis techniques at a moderate (30 x 30 m) spatial 

resolution. Archived remotely sensed imagery allows for comparison of vegetation 

composition and distribution through time. Previous mortality events can be explored in 

relation to drought episodes, shedding light on potential temporal patterns of PJ mortality 

related to drought stress.  
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1.2.1 Vegetation Phenology 

Successful remote sensing hinges upon the ability to differentiate target materials. 

For remote sensing of vegetation, identifying when natural variation in the environment 

best maximizes target differentiation is key to improving results (Woolley 1970). 

Phenology refers to the timing of cyclical biological phases in plants and how they are 

influenced by seasonal and interannual variation in the climate and physical environment. 

Some examples of phenological phases (phenophases) in plants include germination, leaf 

emergence, flowering, and senescence. Environmental factors and seasonal variation 

greatly influence the timing, duration, and outcome of phenophases.  

In water limited Southwestern dryland systems, plants display significant 

interannual phenophase variation depending on water accessibility (Duncan et al. 1993; 

Franklin et al. 1993). Understanding seasonal variation in the environment is essential for 

timing image collection in order to maximize separability between vegetation types. The 

evergreen piñon and juniper maintain relatively even phenology throughout the year, 

displaying minimal variation in spectral properties between the wetter summer 

monsoonal period and drier fall and spring seasons. However, piñon and juniper show 

different physiological reactions to drought that may help to spectrally differentiate them. 

The isohydric piñon are more likely to stop photosynthesizing earlier in response to 

drought stress by closing their stomata than the anisohydric juniper (Plaut et al., 2012; 

Limousin et al., 2013). Piñon are more likely to take advantage of wetter periods than 

juniper, however they must close their stomata more quickly in drier periods, indicating a 

stronger reaction to moisture deficit when compared to juniper (McDowell et al., 2008; 

Petrie et al. 2016). 
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In contrast, surrounding forbs and grasses exhibit markedly different phenophases 

with unique spectral signatures coinciding with annual seasonal changes in precipitation. 

Photosynthetic activity in grasses and forbs is driven by seasonal summer monsoonal 

precipitation events with senescence occurring outside the summer monsoon. 

Identification of vegetation cover types in remotely sensed imagery can be greatly 

improved with knowledge of specific phenophases considering germination, leaf 

emergence, flowering, and senescence can vary greatly between cover types (Franklin 

2002). Successfully distinguishing PJ from the surrounding environment and P from J 

requires knowledge of the interaction of regional climate and annual weather variation on 

species specific phenophases. 

 

1.2.2 Vegetation Mapping 

A variety of remote sensing methodologies have been applied to measure the 

distribution of vegetation in arid environments. Vegetation indices have been developed 

to take advantage of the unique reflectance signature of plants in the NIR and visible. 

Researchers have typically assumed that the chlorophyll content of leaves are 

proportional to moisture content (e.g. Tucker, 1977; Paltridge & Barber, 1988; Illera et 

al., 1996).One of the most popular, the normalized difference vegetation index (NDVI) 

(Eq. 1), is commonly used to estimate the amount of photosynthetic activity by simply 

taking the difference of the red and NIR band then dividing it by its sum (Tucker, 1979). 

NDVI =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
         (1) 
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However such indices commonly overestimate photosynthetically active 

vegetation in semi-arid environments (Kremer et al., 1993; Peters et al., 1995). NDVI 

was shown to be less effective at retrieving estimates of tree cover and monitoring change 

in recently disturbed PJ woodland (Yang et al., 2012). In semi-arid systems, sparse 

vegetation can increase the proportion of soil background reflectance which confounds 

the index, rendering it less effective at measuring photosynthetically active vegetation 

(Eitel et al., 2009). 

 

1.2.3 Mixed Pixels 

Mixed pixels are an endemic problem in remotely sensed imagery. H – resolution 

scenes are composed of features larger than the spatial resolution and can, therefore, be 

resolved (Cracknell, 1998). Whereas, L – resolution scenes are composed of features 

smaller than the spatial resolution and, thus, cannot be resolved.  When the scene 

resolution is larger than the materials that compose it, the ground elements in that pixel 

are “mixed”, meaning they are composed of more than one material (Strahler et al. 1986). 

At all resolutions, mixed pixels can misrepresent spatially explicit landcover. However, 

analysis techniques have been developed to determine the subpixel landcover content for 

moderate spatial resolution image data: Spectral Mixture Analysis (SMA) and its more 

powerful extension, Multiple Endmember Spectral Mixture Analysis (MESMA). 
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1.2.3.1 Spectral Mixture Analysis 

 SMA is a physically based approach using the spectral signature of a pixel to 

determine its component parts by predicting the proportion of a pixel that belongs to a 

class based on the spectral signatures of endmembers (Adams, et al., 1995; Roberts, et al., 

1998a). It estimates the proportion of spectral endmembers that could produce the 

reflectance observed for a pixel. Endmembers are “pure” spectra that correspond to a 

landcover class. Endmembers can either be collected from the image (image 

endmembers) or from in situ field measurements (reference endmembers). These 

endmembers are typically composed of green vegetation (GV), non-photosynthetic 

vegetation (NPV), soil, and shade components for a natural system (Adams et al., 1993). 

The number of endmembers SMA can model is limited by the dimensionality of the 

image to N+1, where N is the number of spectral bands  (eq. 2) (Adams et al., 1993). 

SMA can be expressed as: 

𝑅𝑖 = ∑ 𝑓𝑘 𝑅𝑗𝑘 + 𝜀𝑖
𝑛
𝑘=1          (2) 

where i is the number of spectral bands used; k=1, . . . , n (number of endmembers); 

Ri is the spectral reflectance of band i of a pixel, which contains one or more 

endmembers; fk is the proportion of endmember k within the pixel; Rjk is the spectral 

reflectance of endmember k within the pixel on band i, and 𝜀𝑖 is the error for band i. 

Heterogeneous environments are challenging to unmix at a species level using SMA. 

Evergreen dominated PJ systems offer phenological phases in which it may be possible to 

model piñon and juniper as GV, and understory herbs and grasses and dead piñon as 

NPV. Shade fractions can help distinguish overstory vegetation from understory 

vegetation (Roberts et al., 2002). However, SMA is limited by its use of one set of 
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endmembers to model all pixels. This limitation inhibits the model from unmixing 

spectrally diverse environments like semi-arid woodlands. In response, Multiple 

Endmember Spectral Mixture Analysis (MESMA) has been developed to allow the 

number and type of endmember to vary per pixel across an image (Roberts et al. 1998). 

 

1.2.3.2 Multiple Endmember Spectral Mixture Analysis 

MESMA functions similarly to SMA except that it accounts for within 

endmember variability by allowing for multiple definitions of each endmember class 

(Roberts et al., 1998). By allowing for increased spectral endmember variability, 

MESMA overcomes the SMA limitation of using the same endmembers to model all 

pixels whether the endmember is present in the pixel or not (Roberts et al., 1998; Myint 

& Okin 2009). MESMA models all possible combinations of soil, GV, and NPV 

endmembers and allows for a variable number of endmembers to solve a given pixel. 

Optimum models are selected based on best spectral fit and overall best fractional and 

residual constraints set by the user. MESMA has successfully been applied to map plant 

species distribution in semiarid environments (Roberts et al., 1998; Okin et al.2001; 

Dennison & Roberts, 2003; Quintano et al. 2013). MESMA utilizes a spectral library 

made of image or reference endmembers. Reference endmembers, obtained directly from 

the environment, offer an advantage over image derived endmembers; they offer absolute 

modeled fraction estimations because they are a purer in-situ representation of a material, 

(Drake et al., 1999). The library can be composed of a large number of samples from any 

cover type to represent soil, GV, and NPV.  
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Chapter 2 

Methodology 

 

2.0 Overview 

Field spectra were collected at a PJ site in Central New Mexico throughout 2015 

to provide temporal and spectral data for discriminating between target land cover 

classes. Spectral libraries were generated from field spectra for input to MESMA applied 

to Landsat data.  MESMA was used to model vegetation life form distribution and 

composition within at the site annually from 2009 to 2015. Change in vegetation cover 

proportions was quantified and evaluated with respect to drought conditions over the 

study period. Accuracy of modeled results was assessed against high spatial resolution 

airborne imagery acquired in 2014 and 2015. 

 

2.1 Study Area 

This research site was at the Deer Creek Plateau, hereafter referred to as DCP, 

located south of the city of Mountainair, New Mexico at approximately 34 26’18.420” N, 

106 14’15.698”W (Figure 3).  The elevation at the top of the plateau averages 2190 m. 

The soil across the plateau is Turkey Springs stony loam, primarily characterized by 

alluvially deposited limestone (Soil Survey Staff). The regional climate is semi-arid, with 

a mean annual precipitation of 372mm (+/- 86.8 mm standard deviation, sd) and mean, 

max, and min temperatures of 19.8C (+/- 0.77C sd) and 2.32C (+/- 0.64C sd) 
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respectively, over the past 20 years (PRISM Climate Group, Oregon State University, 

http://prism.oregonstate.edu, created 28 June 2004).  The site primarily receives moisture 

from winter snow melt (January to March) and summer monsoon (late July through 

September). Precipitation varies substantially from year to year, influencing soil moisture 

levels and the onset of phenophases. 

Vegetation across the plateau is semi-arid woodland dominated with a piñon pine 

(Pinus edulis) and one-seed juniper (Juniperus monosperma) overstory and an understory 

characterized by perennial C4 grasses and annual forbs. The DCP is the site of a long-

term biological field station (Dr. Marcy Litvak, UNM Department of Biology) situated 

amongst a low density housing development. Research on the site has focused on long-

term PJ manipulation studies that provide an ideal assortment of in situ data to 

corroborate remote sensing analyses.  

 

2.2 Data 

2.2.1 Landsat Imagery 

The principal analysis imagery used in this study was acquired from the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

(http://earthexplorer.usgs.gov/). All Landsat scenes were processed to level L1T and 

atmospherically corrected using an absolute correction method (MODTRAN). Image 

values were recorded in surface reflectance (0-10,000). One cloud-free scene was 

selected from path 33, row 36 for each year that fell within two weeks of the ideal 

separability date (May 7th) and at least one week from major precipitation events (Table 

http://earthexplorer.usgs.gov/
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1). Imagery from 2009-2011 was collected with Landsat 5 TM while 2013-2015 imagery 

was collected from Landsat 8 OLI. Image data from 2012 was omitted due to the 

unavailability of complete data from the Landsat 7 scan line corrector failure.  

 

2.2.2 Field Spectroscopy 

Reference endmembers were collected from field-based reflectance measurements 

using a field spectrometer (ASD Fieldspec 4® Standard Resolution Spectroradiometer). The 

spectrometer has a spectral range of 350-2500 nm. It collects in the visible and near-

infrared (350-1000 nm) at a 3 nm full width half maximum and the short wave infrared 

(1000-2500 nm) at a 10 nm full width half maximum. Five cover types were identified as 

primary scene constituents: piñon (P), dead piñon (DP), juniper (J), herbaceous (H), and 

bare ground (soil). Collections were made at five dates throughout 2015 to determine the 

optimal date to maximize cover type separability.  

Sites representative of each cover type were selected within close proximity to the 

PJC (Figure 4). Site selection was based on unobstructed solar illumination +/- 2 hours of 

solar noon (10 am- 2 pm) and on minimal interference from background scattering of 

surrounding vegetation. Sites were spread out to capture local topographic variability 

accessible within a limited 4-hour collection window (Figure 4). Real Time Kinematic 

(RTK) GPS coordinates were recorded for each location to ensure their location was 

known for future measurements. All selected P and J sites were mature trees with no 

chlorosis or partial mortality present.  DP sites were mature standing-dead trees 

composed of completely defoliated non-photosynthetic woody material. H sites were 
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selected based on complete, homogenous ground cover of the same grass species type 

(e.g. Bouteloua spp.) which were then aggragated together to form the H class.  

Bareground (soil) sites were selected for open bare soil away from tree coverage or water 

drainages. A higher proportion of P (n=20), DP (n=20), and J (n=10) sites were selected 

to capture greater signature variability. Fewer soil (n=2) sites were selected due to 

pseudo-invariability across the plateau and high spectral separability between soil and the 

vegetation classes. Similarly, fewer H (n=5) sites were selected due to high interclass 

spectral separability (Table 2).  

Five spectra collections were made throughout 2015. Each date was spaced 

approximately two months apart to capture seasonal phenological changes across the site. 

All collections were made under cloud free conditions. The spectrometer was 

standardized to a Halon white reference panel every 10 minutes or with a change in 

collection location. Reflectance measurements were collected 20-30 cm above each target 

with the sensor positioned at nadir. Measurements were recorded using a 25° field-of-

view optic, creating an 8-16 cm diameter footprint. Spectra were collected at each site 

based on homogeneity of cover within the field-of-view optic (i.e. densely leafed branch, 

dense grass cover, etc.). Seasonal changes in illumination and daily fluctuations in 

shadow could change the location of spectra collection at each site. However, care was 

taken to ensure that spectra collection locations (i.e. individual branches) were 

representative of the site as a whole. Spectra collections were taken at the same sites 

throughout the study period. Ten reflectance recordings were made for each target at two 

second intervals. The May 7th collection contained fewer spectra recordings (10 

samples/site, instead of 30) due to a battery failure during that collection date.  
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2.2.3 Accuracy Assessment 

2014 and 2015 MESMA results were assessed for accuracy using true color high 

spatial resolution (5-9 cm) imagery collected over the Deer Creek Plateau September 2-4, 

2014 and October 13-15, 2015 using a 2x Canon 5D Mark II fixed to a light wing 

aircraft. Both imagery dates were geometrically corrected and show a high coregistration 

level (<1 m error) by the GIScience for Environmental Management (GEM) Lab at the 

University of New Mexico. 

 

2.3 Preprocessing 

2.3.1 Landsat Preprocessing 

All Landsat scenes were georeferenced prior to download to a L1T Level 1 

Product Generation System (LGPS) standard which includes terrain corrected processing 

of approximately 128 GCPs w/ <0.5 RMSE. Six band (blue, green, red, NIR, SWIR1, and 

SWIR2) image stacks were generated for each date. The imagery was then subset to the 

extent of the DCP study area (13.9 km2). 

 

2.3.2 Field Spectra Preprocessing  

Field spectra were evaluated for quality at each collection date using ViewSpec 

Pro software (ViewSpec Pro™ User Manual, 2008). Individual spectra samples 

displaying dramatic in-class irregularities were removed. The remainder were averaged 
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by land cover type (i.e. P, J, DP, H, and soil) and by target (1 target = 10 spectra) in 

ViewSpec Pro. Spectra were then resampled to Landsat bands in ENVI 5.2 image 

processing software (http://www.exelisvis.com/). All spectra were averaged by land 

cover class  from the May 7th collection date and then convolved to both Landsat 5 TM 

(bands - 1, 2, 3, 4, 5, and 7) and Landsat 8 OLI (bands – 2, 3, 4, 5, 6, 7).  

 

2.4 Spectral Separability Analysis 

The optimal date for distinguishing land cover types was determined through a                      

qualitative separability analysis of vegetation indices and bands. NDVI (eq. 1), SAVI (eq. 

3), and RENDVI (eq. 4) were calculated from the averaged class values at all five 

collection dates. Landsat 5 convolved green, red, and NIR bands were plotted for each 

class. Sample standard deviations (eq. 5) were calculated from the convolved target 

averages for each land cover type.  

𝑆𝐴𝑉𝐼 =
(NIR−RED)

(NIR+RED)
∗ (1 + 𝐿)        (3) 

where NIR is the reflectance value of the near-infrared band and RED is the reflectance 

value of the red band convolved to the corresponding Landsat 5 bands and L is the soil 

brightness correction factor. 

RENDVI =
𝜌750−𝜌705

𝜌750+ 𝜌705
         (4) 

where 𝜌750 and 𝜌705 are the reflectance values at 750 nm and 705 nm, respectively. 
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𝑆 = √
∑(𝑥−𝑥̅)2

𝑛−1
          (5) 

where 𝑆 is the square root of the sum of the sample mean ( 𝑥̅ ) squared, divided by the 

number of samples (𝑛). 

               Visual inspection of spectral shape and overlap between classes across the 

entirety of the spectrum allowed for the assessment of class separability at each collection 

date. Sample standard deviation error bars (s = 1) were calculated to show the range of 

data within the mean and provided additional context for determining separability. 

Spectral libraries were then created in ENVI from all raw spectra from the optimal 

spectral separability date (May 7th). The library was then convolved to Landsat 5 TM 

(bands - 1, 2, 3, 4, 5, and 7) and Landsat 8 OLI (bands – 2, 3, 4, 5, 6, 7). 

 

2.4.1 Climate Data 

           Climate data includes precipitation data sourced from daily collections made at the 

PJ Control site 2009-2015 (Litvak Lab, University of New Mexico, 2016).  

 

2.4.2 Precipitation and Spectral Separability 

Precipitation data was plotted to weekly increments for 2009-2015. Plots were 

then used to determine: 1) how precipitation (duration, time since last substantial 

precipitation event, and annual amount) is related to separability between classes and 2) 

precipitation induced variation in Landsat image dates. Ideal dates of separability 
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between land cover classes were identified for 2015 by comparing vegetation indices 

with spectral curves with precipitation data (one week, one month, and time since last 

precipitation) for the five collection dates. The collection date that occurred during a 

month with minimal total precipitation and farthest from major precipitation events (>10 

mm) was chosen for analysis. 

 

2.5 MESMA 

The May 7th field-based spectral libraries were then used as inputs for image 

unmixing. Multiple Endmember Spectral Mixture Analysis (MESMA) was applied to six 

Landsat image dates (Table 1) to estimate fractional cover of green vegetation, non-

photosynthetic vegetation, and bare ground within the study area. 

 

2.5.1 Endmember Selection 

The TM and OLI convolved spectral libraries from the May 7th spectra collection 

were input to the Visualization and Image Processing for Environmental Research 

(VIPER) Tools 2.0, an open source extension to ENVI 4.7 used for endmember 

refinement and MESMA processing (http://www.vipertools.org). Three endmember 

classes were created to represent the five input land cover types: green vegetation (GV) 

containing photosynthetic P and J spectra, non-photosynthetic vegetation (NPV) 

containing H and DP spectra, and soil containing bare ground spectra.  

A total of 55 potential endmembers were input into the model before erroneous 

spectra were removed (29 GV (P=18, J=11), 24 NPV (H=5, 19=DP), and 2 soil). 

http://www.vipertools.org/
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Potential endmembers input to MESMA are refined by a set of three indexes provided in 

VIPER Tools: Count based Endmember selection (CoB), Minimum Average Spectral 

Angle (MASA), and Endmember Average RMSE (EAR) (Figure 5). MASA identifies 

which spectra best models each class by determining which has the lowest average 

spectral angle between all other spectra within the same class (Dennison et al., 2004). 

EAR determines which spectra produce the lowest average RMSE when used to model  

all other spectra of the same class (Dennison & Roberts, 2003). CoB selects optimal 

endmembers that best model the other within class spectra (Roberts et al., 2003). Optimal 

CoB models unmix other spectra in the library within user defined fraction, RMSE, and 

residual constraints. The total number of spectra modeled within the class (in_Cob) and 

the total outside the (out_CoB) are recorded for each model. Spectra with the highest 

in_CoB and lowest out_CoB, EAR, and MASA will be selected for MESMA (Roberts et 

al., 2003). 

EAR can be described in Eq. 6 where i is an endmember, j is the modeled 

spectrum, N is the number of endmembers, and n is the number of modeled spectra.  

𝐸𝐴𝑅𝑖 =
∑ 𝑅𝑀𝑆𝐸𝑖,𝑗

𝑁
𝑗=1

n−1
         (6) 

MASA functions similarly to EAR, but uses the spectral angle (𝜃) for the error 

metric. The optimum spectra has the lowest average RMSE. MASA can be defined as 

(Eq. 7): 

𝑀𝐴𝑆𝐴𝑖 =
∑ 𝜃𝑖𝑗

𝑁
𝑗=1

n−1
         (7) 
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In MASA, the spectral angle is defined as the reflectance of an endmember (ρλ), 

the reflectance of a modeled spectrum (ρ’λ), the length of the endmember vector (Lρ) and 

the length of the modeled spectrum vector (Lρ’). Length is the square root of the sum of 

reflectance in each wavelength of the model. The spectral angle is defined as (Eq. 8): 

𝜃 = 𝑐𝑜𝑠−1 (
∑ 𝜌λ𝜌′λ

𝑀
λ=1

𝐿𝜌𝐿𝜌′
)        (8) 

A total of 19 endmember signatures were extracted as the input spectral libraries 

for MESMA (Figure 6). A total of eight endmembers were selected to represent GV 

(P=5, J=3), nine endmembers were used to represent NPV (DP=7, H=2), and  two 

endmembers were used for Bare Ground.  A shade endmember was not used, but treated 

as a remainder in the unmixing process. It is assumed to be a unique component of each 

class with differences image to image.  

 

2.5.2 Application of MESMA 

Each Landsat image date was modeled (i.e. unmixed) using MESMA routines in 

Viper Tools. This unmixing approach estimates the proportions of GV, NPV, and soil per 

pixel in an image with endmembers from the input spectral library. Output fractional 

cover images and proportions were used to derive quantitative estimates and maps of 

vegetation cover.  

 One-, two-, and three- endmember models were applied to each Landsat image. 

Two constraints were set for each model, fraction values had to range between -0.05 and 

1.05 with a RMSE threshold of 0.025 (Viper Tools User Manual). A pixel was left 

unmodeled if the constraints were not met. All possible combinations of endmembers 
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were run for each one-, two-, and three-endmember models (269 total). The optimal 

model was then selected for each pixel. Optimization was achieved by selecting the 

model with the fewest endmembers and the lowest RMSE (eq. 9). 

𝑅𝑀𝑆𝐸 = (∑ (𝑒𝑘)2/𝑁𝑁
𝑘=1 )1/2        (9) 

  Where N is the number of bands, 𝑒𝑘 is the residual term at band k (k= 1,2,….N). 

In addition to helping fit the model and create endmembers, RMSE can be used as an 

accuracy assessment tool. 

 Seven bands of information were generated for each unmixed image. A band 

containing the fractional cover for each endmember: GV, NPV, soil, and shade as well as 

bands containing model complexity (one-, two-, or three-endmember), RMSE, and model 

number (unique ID of endmember combination selected to model each pixel). Following 

the three endmember analysis of GV, NPV, and soil, another MESMA model was run for 

P, J, DP, H, and soil as five separate endmembers. 

 

2.5.3 Estimation of Fractional Cover 

Total fractional cover was generated by summing each endmember fraction and 

dividing by the total number of pixels in the study area for each image date. Fractional 

cover was estimated for three sites: the entire DCP, the PJC (4 ha), and PJG sites (4 ha). 

Fractional cover for each endmember was summed for all pixels that fell completely 

within each site to account for co-registration differences between Landsat pixels and site 

boundaries. Individual bands containing endmember fractional cover estimates for GV, 

NPV, and soil were output for each study area and date to spreadsheets for quantitative 

analysis.  
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2.5.4 Evaluation of Vegetation Change 

Percentage of vegetation change was determined for all three sites (DCP, PJC, 

and PJG) by evaluating fractional cover proportion at each date. Change in proportion of 

vegetation was calculated between each year and across the study period.  

 

2.6 Accuracy Assessment 

The accuracy of MESMA modeled fractions were assessed for 2014 and 2015 

using high spatial resolution imagery. Ten 90 x 90 m reference plots were created to a 

match a 3 x 3 Landsat pixel equivalent to avoid co-registration errors (Figure 7). Plots 

were randomly distributed across the study site using a simple random pattern 

distribution model in ArcMap. The simple random distribution pattern reduces user bias 

and helps ensure topographic and vegetation variability at the site is randomly included in 

the validation. Validation data of fractional cover was generated using a point-grid 

sampling method. A dot matrix grid was generated and overlaid on the reference 

imagery. 441 sample points were laid out per plot (49 points/pixel). Four cover types 

were discernable in the reference imagery and recorded: piñon/juniper, dead piñon, 

herbaceous, and soil. Cover types directly coincident to each point were visually 

determined, recorded, and exported for further analysis.  

Three statistical measures (RMSE MAE, and R2) were used to determine the error 

between MESMA modeled fractions and cover fractions evaluated in reference plots. 
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Mean Absolute Error (MAE) provides an average of the absolute errors |𝑒𝑖| =  |𝑓𝑖 − 𝑦𝑖|, 

where 𝑓𝑖 is the prediction and 𝑦𝑖 the true value, and is provided in the formula (Eq. 10): 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|

𝑛
𝑖−1 =  

1

𝑛
∑ |𝑒𝑖|

𝑛
𝑖=1       (10) 

R2 regression analysis was used to evaluate how well the MESMA modeled 

fractions compared to reference data, where 𝑆𝑆𝑟𝑒𝑠 is the sum of the squared error and 

𝑆𝑆𝑡𝑜𝑡 is the sum of the squared total (Eq.11): 

𝑅2 = 1 − 
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
         (11) 

               RMSE, MAE, and R2 were computed for each plot and averaged. Each 

endmember was assessed individually. Of the cover types discernable on the assessment 

imagery, piñon/juniper were grouped as GV, dead piñon/herbaceous were grouped as 

NPV, and soil as soil.  

 

2.6.1 Evaluating MESMA Differentiation Between Piñon and Juniper  

The effectiveness of MESMA at differentiating P and J was determined by 

comparing MESMA modeled fractions with data from a DCP manipulation study. In 

September 2009, 1632 adult piñon (>7 cm diameter at breast height) were girdled in a 4 

ha plot (girdled site). Juniper at the girdled site were left unaltered. A 4 ha control plot 3 

km away was untreated. By the spring of 2010 all adult piñon at the girdled site had died 

and defoliated. Increased drought mortality and pine bark beetle outbreak killed the other 

standing immature piñon in the years immediately following the treatment at the girdled 
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site, leaving the site nearly void of piñon. The control site experienced mortality at a rate 

similar to the rest of the plateau. 

The girdled site provides a site for comparison of MESMA modeled fractions 

with ground based data. Output models for 2009 for the girdled site should not differ 

significantly from the control plot in P endmember selection. In the years following 2010 

(after complete mortality of girdled piñon) no P endmembers should be selected for 

modeling pixels inside the girdled site. Modeled fractions at the control site should not 

differ from those of the surrounding environment. Evaluating the ability of the modeled 

fractions to reflect the P mortality at the girdled site after 2009 provides a basis for how 

effectively MESMA can differentiate P from J. 
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Chapter 3 

Results 

 

3.1 Piñon and Juniper Spectral Separability 

Mean spectral curves of all spectra collected for each class (P, J, DP, H, and soil) 

were plotted for each collection date (Figure 8). Separability was visually determined 

using spectral plots as well as reflectance and vegetation index values (Figure 9).  Field-

based spectral measurements indicate spectral separability between vegetation types is 

substantially affected by precipitation events associated with the seasonal summer 

monsoon, apparent in the substantial increase in precipitation at each year in the study 

period (Figure 10). The precipitation increase triggers the green up of normally senescent 

low lying herbaceous vegetation and grasses (primarily C4) while evergreen piñon and 

juniper do not respond noticeably to seasonal changes in moisture, maintaining relatively 

consistent spectral signatures throughout the year (Figure 11). 

Juniper showed the least amount of change in SVI values throughout the study 

period. NDVI fluctuated less than 5% between the lowest and highest collection dates 

(mean NDVI = 0.719 and 0.751, respectively). The P class showed noticeably more 

variation with NDVI fluctuating 22.6% throughout the study period between the lowest 

and highest years (mean NDVI = 0.583 and 0.754, respectively). The highest 

photosynthetic rates for both piñon and juniper occurred during the September and 

November collection dates (Figure 9).  
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Peak separability of all spectra occurred during the May collection date for 2015. 

At this period in the growing season, a high degree of separability was exhibited between 

bands and vegetation indices for all classes, with particularly high separability displayed 

between piñon and juniper. No overlap in spectral reflectance occurred between piñon 

and juniper during the May collection within one standard deviation (Figure 9). SVI 

values demonstrate that the greatest between class separability occurred immediately 

before the onset of the monsoon, in May and slightly less so in July. May was also the 

best date for discriminating piñon and J from other land cover classes as there is also no 

overlap in reflectance between piñon and J and the other classes using NDVI, SAVI, and 

RENDVI. 

  

3.2 Evaluation of Precipitation and Spectral Separability 

Class separability varied little between soil and the NPV classes (H and DP) 

throughout all five collection dates with both showing high separability in the Red, 

Green, and NIR bands of Landsat. Similarly, soil showed minimal overlap with the GV 

classes, (P and J). 

At the February recording date, the H class displayed the highest reflectance 

values in the green and red bands (0.11 and 0.14, respectively) (Figure 9) across all five 

collection dates, indicating a low concentration of photosynthetic pigments. The 

November collection had the second highest reflectance in the red and green bands (0.13 

and 0.16, respectively). The lowest spectral vegetation indices (NDVI, SAVI, and 

RENDVI) were recorded during the February collection and second lowest during the 
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November collection, representing low photosynthetic activity during months farthest 

from the monsoon. 

Collections made during May, July, and September showed noticeably greater 

photosynthetic activity in the spectral reflectance curves of the H class (Figure 9). The 

highest SVI values occurred during July, coinciding with the early monsoon period. The 

highest SVI values for the H class were recorded at the July collection. Following peak 

photosynthetic activity, the H class bands and SVIs (σ=1) displayed some overlap with 

the soil and DP classes during the period of little to no photosynthetic activity (fall and 

early winter).  

Warmer spring temperatures and modest precipitation provided enough moisture 

for sufficient photosynthetic activity in the H class, allowing for spectral separation from 

the soil and DP classes without confusion with the P and J classes (Figure 11). Prior to 

the May 7th spectra collection, 15 mm of rain fell within the previous week and 26.5 mm 

within the previous 31 days. Only five days separated the collection date from the closest 

previous measureable (>1 mm) rainfall event.  

 The spectral response of P and J display less variation than the H class throughout 

the study period. However, little precipitation during late winter and early spring reduced 

the photosynthetic activity of the P class during May, allowing for spectral separation 

from the J class. A total of 76.5 mm of precipitation fell from January to May, compared 

to 243.58 mm from July through November. During the 31 days immediately prior to the 

May collection, only 26.5 mm of precipitation fell. That amount is similar to the 18.6 mm 

recorded during the 31 days prior to the February collection which saw similarly low SVI 

values for the P class. In contrast, September and November saw the highest SVI values 
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for the study period as well as some of the highest precipitation amounts for the 31 days 

prior to collection, 42.7 and 87.2 mm, respectively. The low SVI values for the P class 

during the July collection at first appear anomalous, considering 69.1 mm of precipitation 

fell during the 31 days prior. However, considering the low precipitation amounts during 

the winter and spring months prior to July and that 28.9 mm of the 69.1 mm of the total 

monthly precipitation fell during the week immediately prior to collection, it is not 

surprising that piñon continued to display low photosynthetic activity comparable to the 

rate displayed in May. The lower greenness displayed by piñon when compared to 

juniper may be explained by the isohydric strategy of piñon to stop or greatly reduce 

photosynthesis in response to drought when compared to the anisohydric juniper which 

continue photosynthesizing in drier conditions (McDowell et al., 2008; Petrie et al. 2016). 

 

3.1 Evaluation of Precipitation Preceding Landsat Imagery  

Rainfall events of similar intensity to the 2015 May collection preceded each 

Landsat image collection date for the study period (Table 3). This moderate pre-

monsoonal precipitation and relative evenness allowed for the greatest overall class 

separability between the primary scene components. 

 

3.3 MESMA Evaluation 

3.3.1 Accuracy Assessment 
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 Statistical tests computed for fractional cover accuracy were based on high spatial 

resolution reference imagery. Statistical test results (RMSE, MAE, and R2 ) from 2014 

and 2015 are shown in Table 4. Accuracy assessment results from 2014 show a high 

degree of agreement between the modeled and reference fractions. Of all the classes 

modeled, the soil fraction had the lowest MAE and RMSE and the second highest R2 

value (Figure 12). The high agreement is not surprising given the contrast in spectral 

characteristics (e.g., higher reflectivity, spectral shape) of soil compared to the other 

cover types. NPV showed a similar level of agreement between modeled and reference 

fractions with low MAE and RMSE and a R2 of 0.96. Evaluation of H and DP classes 

demonstrated a lower degree of accuracy between reference and modeled fractions in 

comparison to overall NPV. There was a high degree of agreement between reference and 

modeled fractions for GV (low MAE and RMSE), however, the R2 value for GV (0.63) 

was relatively low compared to the other classes. 

A comparison of reference and MESMA modeled fractional cover for 2015 

showed a similar pattern of agreement to 2014 (Figure 12). Bare ground and NPV 

exhibited low MAE and RMSE with R2 values of 0.95 and 0.96, respectively. GV 

endmembers continued to display a high degree of agreement between reference and 

modeled fractions (MAE=0.025 and RMSE=0.028), and a lower R2 (0.74) value 

continued to typify the GV class. 
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3.3.2 Fractional Cover Estimates 

Fractional cover was assessed quantitatively for the dominant land cover classes 

modeled across the DCP study region and for specific sites within the DCP. Maps 

illustrating fractional cover estimates for GV, NPV, and soil in the DCP are shown for 

each date (Figure 13). Maps illustrating fractional cover estimates for each endmember 

class (GV, NPV, and soil) were calculated for the DCP (Figure 14). Individual fractional 

cover estimates were calculated for each land cover class – P (Figure 15), J (Figure 15), 

DP (Figure 16), Soil (Figure 17), and H (Figure 18). Bar graphs illustrating fractional 

cover estimates for GV, NPV, and soil are shown in Figure 19 and target land cover 

classes (P, J, DP, H, and soil) are shown in Figure 20. 

 

3.3.3 Temporal Changes in Fractional Cover 

The distribution and stability of modeled fractions were evaluated with regards to 

expected changes in land cover classes following well understood disturbances that 

occurred during the study period. The most pronounced change in fractional cover 

occurred between GV (P and J) and NPV (H and DP), reflecting the extensive piñon die-

off at the site. Across the entire DCP, from 2009-2015, GV declined from 32.7% in 2009 

to 16.6% in 2015, an overall fractional cover decline of 16.1% (Table 5), with a peak GV 

fraction of 44.8% in 2011. This extensive reduction in GV coincided with an increase in 

NPV. Between 2009 and 2015, fractional NPV cover increased 21.4%. The proportion of 

NPV reached its lowest point in 2011 at 38.8%, during the same year when the 

proportion of GV peaked. 
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An assessment of the PJC and PJG sites within the DCP provided a way to assess 

how well MESMA modeled actual change in P, J, and DP. All mature piñon at the PJG 

site were girdled in September 2009. The effect of girdling was reflected in the MESMA 

results with a substantial decline in the proportion of GV. Decline in GV proportion at the 

PJG site occurred a year earlier than the DCP as a whole. Fractional GV cover declined 

16.4% throughout the study period while NPV increased 20.4% at the PJG (Figure 19). 

Field measurements at the site documented complete defoliation of girdled piñon 

trees by August of 2010 (Krofcheck et al. 2014). MESMA fractional cover estimates for 

the PJG showed a 20.7% decline of GV between 2010 and 2011, corresponding to the 

defoliation date (Table 5). Complete defoliation of girdled piñon trees coincided with a 

sharp increase in the proportion of NPV between 2010 and 2011 (16.4%). GV fraction 

declined 30.9% from a pre-girdle high of 46.4% in 2010 to a study period low of 16.6% 

in 2015. This decline occurred coincident to a 36.8% increase of NPV over the same time 

period. 

The change in fractional cover proportions at the PJC are similar in timing to the 

change in proportion for the entire DCP. At the PJC, GV declined 13% across the study 

period from 31.7% in 2009 to 18.7% in 2015 (Table 5). GV declined from a peak 

proportion of 49.4% in 2011 to a study period low of 18.7% in 2015. Like the PJG, the 

extensive reduction in GV occurred commensurate with an increase in NPV. Between 

2009 and 2015, NPV increased 22.4% at PJC. The lowest overall NPV proportion at the 

site was 40.2% in 2011. The NPV proportion then increased 40.1% in the following three 

years to a high of 82.3% of cover in 2015 (Table 5). 
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 Change in soil across all sites displayed a similar pattern. In the year immediately 

following the initial decline in GV (DCP-2011, PJG-2010, and PJC-2011) the proportion 

of soil peaked and then experienced a steady decline in the following years (Figure 19). 

Peak soil proportions coincided with the driest years (2010-2011) in the study period 

when herbaceous cover was least active. 

Intra-endmember class (P and J, and DP and H) fractional cover demonstrated 

considerable variation throughout the site and across the study period. Across all sites, 

the proportion of H remained a small component of the landscape, changing little across 

the study period. Within the NPV class, the percentage of dead piñon (DP) across the 

DCP increased from 50.7% in 2009 to 74.5% in 2015. At the PJC and PJG, the overall 

percentage of DP increased 21% and 26.4%, respectively (Table 6). The proportion of DP 

at PJG increased sharply between 2010 and 2011, a year earlier than both the DCP and 

PJC, coinciding with the defoliation of girdled piñon . Across the DCP, PJC and PJG, the 

increase in DP coincided with a decrease in P, indicating the ability of MESMA to 

accurately model P mortality as an increase in DP (Figure 20).  

 

3.4 Change in Piñon and Juniper Abundance 

 MESMA model variation used in the unmixing process indicate species specific 

fractional cover is discernable between P and J. A trend towards decreasing piñon was 

observed across the DCP. This decline was mirrored by a nearly equivalent increase in 

DP across the study period. Analysis of annual changes in class proportion and model 

selection indicate that P and J are spectrally separable in Landsat using MESMA. 
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Fractional cover results indicate a 24.5% decline in P from 29.2% in 2009 to 2.2% 

in 2015 across the DCP (Table 6). The decline at the PJG was even more pronounced, 

with the proportion of P falling 32% from 34.2% in 2009 to 2.2% in 2015. While there 

was a slight increase in P fractional cover between 2009 and 2011, the proportion of P 

showed a general trend of decline in cover across the study period.  

Between 2009 and 2015 the juniper fraction increased in contrast to the decline in 

P across the DCP (Figure 20). Across the study period, the proportion of J increased from 

6% in 2009 to 11.9% in 2015 of total fractional cover across the DCP. A similar trend 

was seen at the PJG and PJC. However, this trend is likely attributable to herbaceous 

green up under dead piñon canopies, discussed in further detail below in the discussion 

section. 

An evaluation of fractional cover changes at the PJC shows similarities to the 

DCP as a whole. Complete defoliation of girdled piñon occurred at the PJG between 

2010 and 2011. Over the same time period, the proportion of P declined from a study 

period high of 43.3% in 2010 to 27.6% in 2011 (Table 6). This decrease contrasts with a 

moderate increase in P across the ungirdled DCP and PJC over the same period, 

reflecting that the site was not girdled. However, across the study period, the proportion 

of P declined from 23.2% in 2009 to 0% in 2015 at the PJC. A significant decrease in P 

fractional cover following piñon girdling at the PJC commensurate with relatively stable 

J fractional cover indicates the ability of MESMA to detect spectral changes unique to 

individual P and J classes. 

As P mortality spread across the site, the date of mortality onset at individual sites 

is detectable. P proportion increased across the DCP between 2009 and 2011 to a high of 
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44.6% in 2011 then sharply declined to 17.9% in 2013 (Figure 20). Similar to the DCP, 

the onset of P mortality at the PJC occurred between 2011 and 2013 where P declined 

from a study period high of 50.7% in 2011 to 3% by 2013. The timing of P decline at the 

ungirdled DCP and PJC indicate widespread P mortality occurred between 2011 and 

2013. 
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Chapter 4 

Discussion and Conclusions 

4.0 Discussion and Conclusions 

Rapid climatic transition is forecast for the Southwestern U.S. with higher 

temperatures and less precipitation predicted to continue for the next 100 years (Seager et 

al., 2012; Overpeck & Udall, 2010). To mitigate the potential widespread deleterious 

impact of such rapid change, effective strategies must be in place for monitoring how PJ 

woodlands react to a warmer, drier environment. Previous studies have demonstrated the 

applicability of remote sensing technologies in monitoring PJ woodlands (e.g., Krofcheck 

et al. 2014). This thesis expands on those studies by showing that in-situ spectral data and 

MESMA can successfully be used for measuring vegetation change in PJ woodlands 

replicable regionally on an annual time-scale. 

In-situ spectral measurements collected throughout a growing season and 

generation of spectral vegetation indices allowed for the identification of the ideal 

phenological phases to separate the primary land-cover types present in a PJ Woodland at 

the Deer Creek Plateau, New Mexico.  High spectral resolution field spectroscopic data 

collected at five points evenly spaced throughout 2015 were shown to be useful for 

determining when P and J were most separable from surrounding vegetation and from 

each other.  

For 2015, early summer (May) was the ideal date of separability between all 

classes. At this period in the growing season, P and J are most separable from one another 

and the other dominant land cover types. P and J showed different phenology in response 
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to the warmer temperatures and drier conditions found during early summer, with P 

showing lower NDVI values than the more stable J. Herbaceous vegetation has greened 

up in response to precipitation and warmer temperatures, allowing for sufficient 

separation from DP and soil, though the photosynthetic response of Herbaceous cover is 

still less than P and J, allowing for spectral distinction. Inter-annual variation in 

precipitation may affect the onset and duration of phenological changes, and 

consequently the optimal dates of discrimination, yet this exploration provides insight 

into the spectral-temporal characteristics of the dominant land cover components of 

piñon-juniper woodland. 

Scene vegetation components showed significant variation related to the onset and 

duration of the summer monsoon (late June-August), with greatest separability occurring 

immediately before the onset of the monsoon season. This suggests the timing of image 

acquisition prior to major precipitation events is critical for effective separation of semi-

arid vegetation cover types in remotely sensed imagery. Image selection for this study 

was limited to a +/- 2 week window around the May 7th separability date and could have 

been improved with a more thorough review of precipitation records. Examining the time 

since last major precipitation event and total weekly/monthly precipitation prior to image 

collection could help minimize the effects inter-annual precipitation variation on 

vegetation phenology. Selecting images with minimal inter-annual variation in 

precipitation prior to image collection is more essential for reducing inter-annual 

variability in green-up than just limiting the selection of images to +/- 2 weeks of May 

7th. 
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However, the findings from this research indicate that MESMA applied to a 

Landsat time series is capable of distinguishing between the primary land-cover 

components of a piñon-juniper woodland with a high degree of accuracy. MAE and 

RMSE values were below 0.05 for all modeled and reference percentages at both 

accuracy assessment dates, indicating that MESMA is effective at quantifying changes in 

fractional cover above 0.05, providing a way to accurately quantify fine shifts in 

vegetation abundance. 

 MESMA was able to reliably quantify fractional changes in P cover; 

demonstrated in this study by modeling the decrease in P with a proportional increase in 

DP post mortality across the DCP. Assessment of fractional cover proportions at the PJG 

provided an additional opportunity to assess the potential of MESMA to model species 

level vegetation changes in an artificially disturbed environment. Modeled fractional 

cover changes were analogous to expected changes in vegetation cover at the DCP and to 

measurements of primary land-cover components estimated using high spatial resolution 

imagery acquired in 2014 and 2015.  

MESMA results from Landsat time series showed a decline in P fractional cover 

at all three sites, consistent with observed widespread P die-off. Between 2009 and 2015, 

total fractional cover of P decreased from 29.2% to 4.7% across the DCP, demonstrating 

the sensitivity of MESMA to detecting the decline in P abundance.  In addition, across 

the DCP as a whole, the 24.5% decline in total fractional cover of P throughout the study 

period closely matched a near proportional 23.8% increase in total fractional cover of DP.  

At the smaller PJC, MESMA modelled a 23.2% decline in the total fractional cover of P 

with a nearly proportional 21% increase in the total fractional cover of  DP. Similarly at 
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the PJG, P declined 32% in total fractional cover while DP increased 26.4%, further 

indicating the ability of MESMA to model the transition of P to DP post mortality.  

However, it is unknown how well MESMA was able to classify P in the process 

of dying. Prior to mortality, the trees become chlorotic when their leaves are unable to 

maintain normal chlorophyll levels due to stress. The spectral signature of chlorotic trees 

likely differs from a healthy (nonchlorotic) and defoliated tree. However, the transition 

between a live and dead tree during which a tree is chlorotic is brief. Therefore while it is 

possible that enough trees experienced chlorosis simultaneously across the plateau to 

affect fractional cover results during a few study years, since fractional cover of P in 

2009 was determined pre-drought when trees were mostly healthy, and post-drought in 

2015 when trees were either completely defoliated or mostly nonchlorotic, estimated total 

fractional cover change for P across the study period was likely not seriously affected.   

In spite of chlorotic events, MESMA fractional cover results showed continuity 

across the P and DP classes, fractional cover for the J class showed significant variation 

across the study period at all sites. For example, at the DCP total fractional cover of J 

increased from 6% to 11.9% between 2009 and 2015. This increase is unlikely for the 

slow growing woody juniper during a drought period. The increase is likely attributable 

to inter-annual fluctuations in herbaceous cover misclassified as J. Previous studies have 

shown herbaceous cover to increase in abundance underneath the canopies of defoliated 

piñon trees post mortality (Krofcheck et al., 2014). It is likely that this increase in 

herbaceous cover is responsible for the increase in J fractional cover during the study 

period. Collecting spectra for these mostly annual herbaceous species for inclusion in the 
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unmixing process would help reduce erroneous fluctuations and misclassification in the J 

class. 

Overall, MESMA demonstrated an ability to distinguish and map stress-induced 

physical changes in a PJ Woodland. As drought is predicted to increase in intensity and 

frequency for the immediate future in the Southwest United States, forest mortality is 

likely to continue (Breshears et al, 2009; Williams et al, 2013; IPCC, 2014). Vulnerable 

species like piñon pine will be the first to show the effects of stress, a key indicator 

species for climate related disturbance. MESMA has been proven to be a valuable tool 

for mapping and monitoring species level changes in piñon-juniper woodland. 

 

4.1 Limitations of Study 

 Due the launch failure of Landsat 6 and the scan line corrector (SLC) failure 

aboard Landsat 7, complete Landsat data is unavailable for 2012. Normal data infills for 

Landsat 7 images with the SLC off will not account for the data accuracy needed for 

MESMA analysis. Therefore, 2012 was a permanent gap year in the study.   

 All imagery was selected for clear atmospheric conditions with reference to 

precipitation records. However, the need to use cloud free scenes in the analysis 

introduced a temporal offset in the study period equal to one month between the earliest 

scene date (April 22nd) and latest date (May 21st). Inter-annual variation in vegetation 

phenology due to precipitation and temperature likely increased due to this temporal 

offset, influencing the fractional cover.   
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 Landsat scenes are geometrically corrected to a level L1 T standard. Little 

variation in pixel placement exists for the same Landsat scene date-to-date. However, it is 

impossible to determine small co-registration errors between the Landsat images and the 

higher-resolution images used in the accuracy assessment. Large co-registration errors 

(where present) were detected and corrected using a second order polynomial warp, but 

errors smaller than 30 meters are difficult to detect and are, therefore, permanent. The 

effect of this error on results was reduced by enlarging the accuracy assessment area to a 

3 x 3 pixel area, but some co-registration error must be accepted as part of this study. 

Temporal mismatch in the collection of the accuracy assessment and Landsat 

imagery also likely introduced small levels of error in the accuracy assessment results. 

Vegetation in the accuracy assessment imagery collected in October looks different than 

the vegetation classified in the May Landsat dates due to seasonal differences in 

precipitation. That difference likely introduced small levels of error in how that 

vegetation was classified in the accuracy assessment. In addition, the five month temporal 

difference of the two imagery collection dates likely introduced a temporal mismatch 

between visible changes in system structure due to the widespread P dieoff. This effect 

likely caused P mortality to be slightly overestimated in the accuracy assessment 

imagery. 

In addition, mapping spectrally diverse PJ semi-arid woodland is challenging due 

to the heterogeneous mixture of perennial and annual grasses and forbs as well as 

evergreen conifers. Collecting additional spectra for inclusion in the spectral library 

would add rigor to the unmixing process. Adding spectra for the annual forbs that grow 

underneath defoliated piñon  canopies, in particular would help reduce misclassification 
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in the J class. Additional site planning during summer would be necessary to identify the 

location and variety of herbaceous cover present at the site that senesce post monsoon. 

Finally, a stand of ponderosa pine (Pinus ponderosa) went unnoticed on the 

plateau during spectra collection. MESMA overclassified the abundance of P for that 

section of the plateau due to the lack of spectral information for the grove (Figure 14). 

Adding spectra for ponderosa from either in-situ data or a previously created spectral 

library would help to correctly classify the grove, further reducing misclassification. In 

conclusion, building a spectral library that more appropriately describes the 

heterogeneous land cover present at the site would do the most to improve future 

MESMA classification results.  

 

4.2 Future Research 

This research would benefit from the addition of more spectra collections 

throughout the year. Spectra collections made at monthly intervals would provide 

additional information about species-specific phenophases and the relationship to 

seasonal precipitation patterns. These collections would potentially allow the 

identification of a date with greater separability. The inclusion of more spectra collection 

sites representative of component materials (ie. soil and herbaceous/grass) would aid in 

building a stronger model. The Deer Creek Plateau has a significant variety of herbaceous 

and graminoid species. The identification and inclusion of those species in the model 

would add robustness. Additional in-class endmember refinement within MESMA to 
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increase the separability of spectra used to model principle scene components would help 

strengthen results. 

Incorporating additional PJ woodlands with distinct environmental characteristics 

and histories would provide an additional backdrop for future analysis. Examination of 

burned areas and woodlands closer to ecotone boundaries would further test the ability of 

MESMA to discern changes in PJ woodland cover. Expanding the study area to include 

the neighboring Sevilleta Longterm Ecological Research Station (SLTER) and Manzano 

Mountains offer that backdrop. The SLTER would incorporate a varied ecological 

gradient encompassing the lower elevation PJ ecotone while the Manzano Mountains 

would encompass the higher elevation PJ ecotone. In addition, the Manzano Mountains 

would provide a study area with varied wildfire histories affecting PJ woodlands. The 

study area expansion into these PJ woodlands would incorporate additional 

environmental characteristics that have been shaped by drought and climate change 

further testing MESMA’s ability to model PJ woodlands with varied growth histories at a 

regional scale. 
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Figure 1. Piñon-Juniper range across the southwestern United States. Courtesy of: Pinyon 

Juniper Woodlands Information Network, 2004. 
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Figure 2. Palmer Drought Severity Index for the Middle Rio Grande Basin 2009-2014. 

Brewer, 2015. 
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Figure 3. Deer Creek Plateau (DCP) study area outlined in white and PJ-Control (PJC) 

and PJ-Girdle (PJG) outlined in black. 
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Figure 4. Field site locations.  
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Figure 5. MESMA Workflow. 
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Figure 6. Reflectance curves for all selected spectra in May 7th collection date (n=19). 
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Figure 7. Example accuracy assessment plot where A) is a 90 x 90 m plot (9 Landsat 

pixels) overlayed by 450 sampling points. B) contains accuracy assessment imagery. 
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Figure 8.  Mean spectral curves of spectra classes (Soil, DP, H, J, and P) at each 

collection date (February, May, June, September, November). 
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Figure 9. Reflectance spectra of all five cover type classes convolved to Landsat 5 TM a) 

Green, b) Red, and c) NIR bands, and broadband vegetation indices d) Normalized 

Difference Vegetation Index and e) Soil Adjusted Vegetation Index, and narrowband 

vegetation index f) Red Edge Normalized Difference Vegetation Index each with error 

bars (σ=1) per class. 

 

e) 

a) 

c) d) 

f) 

b) 
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Figure 10. Total monthly and annual precipitation records from 2008-2015. Monthly 

precipitation shown in barplots and annual precipitation shown with dashed line. 

 

 

Figure 11. Weekly precipitation averages plotted against NDVI calculations of the five 

cover type classes for all five collection dates for 2015. 
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Figure 12. Regression models of modeled and reference fractions at each date for: Non-

photosynthetic Vegetation (NPV), Green Vegetation (GV), Soil, Dead Piñon  (DP), and 

Herbaceous (H). 
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Figure 13. Fractional cover maps generated from MESMA results. GV, NPV, Soil are shown in RGB, respectively: a) 2009, b) 

2010, c) 2011, d) 2013, e) 2014, and f) 2015. Color mixtures represent mixed fractional cover.  
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Figure 14. MESMA P proportions displayed in a stretched greyscale palette: a) 2009, b) 2010, c) 2011, d) 2013, e) 2014, f) 

2015. Lighter tones represent higher P proportion, darker tones lower P proportion. 
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Figure 15. MESMA J proportions displayed in a stretched greyscale palette: a) 2009, b) 2010, c) 2011, d) 2013, e) 2014, f) 

2015. Lighter tones represent higher J proportion, darker tones lower J proportion. 
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Figure 16. MESMA DP proportions displayed in a stretched greyscale palette: a) 2009, b) 2010, c) 2011, d) 2013, e) 2014, f) 

2015. Lighter tones represent higher DP proportion, darker tones lower DP proportion. 
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Figure 17. MESMA Soil proportions displayed in a stretched greyscale palette: a) 2009, b) 2010, c) 2011, d) 2013, e) 2014, f) 

2015. Lighter tones represent higher Soil proportion, darker tones lower Soil proportion. 
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Figure 18. MESMA H proportions displayed in a stretched greyscale palette: a) 2009, b) 2010, c) 2011, d) 2013, e) 2014, f) 

2015. Lighter tones represent higher H proportion, darker tones lower H proportion.
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c) 

 

Figure 19. Change in fractional cover of soil, GV, and NPV across the study period at a) 

DCP, b) PJC, and c) PJG. 
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a) 
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  c) 

 

Figure 20. Change in fractional cover for all five classes (DP, H, J, P, and Soil) across the 

study period at a) DCP, b) PJC, and c) PJG. 
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 Table 1. Selected Landsat image dates. 

 

 

 

Table 2. Spectral sampling scheme. 

 

Land Cover Type Endmember Sites 

Piñon (P) GV 20 

Juniper (J) GV 10 

Dead Piñon (DP) NPV 20 

Herbaceous (H) NPV 5 

Bareground (Soil) Soil 2 

 

 

 

 

 

 

 

 

 

Year Sensor Month Day of Month 

2009 TM May 10 

2010 TM April 27 

2011 TM April 30 

2013 OLI May 21 

2014 OLI April 22 

2015 OLI May 11 
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Table 3. Precipitation (mm) 2 weeks, 1 month (30 days), and 2 months (60 days) prior to 

Landsat imagery collection date.  

 

 

 

 

 

 

 

 

 

Table 4. Root Mean Square Error, Mean Absolute Error, and R2 values for the modeled 

and reference fractions from 2014 and 2015 accuracy assessment dates. 

 

 

 

  

 

 

 

Image Collection Date 2 weeks 1 month 2 month 

  May 10, 2009 0.7 11.5 13.9 

  April 27, 2010 26.2 26.2 73.3 

  April 30, 2011 0 0.7 3 

  May 21, 2013 3.2 4 9.1 

  April 23, 2014 16.3 16.3 28 

  May 11, 2015 21.3 26.5 50.5 

2014  

 Soil GV NPV DP H 

    RMSE 0.022 0.027 0.031 0.273 0.26 

    MAE 0.016 0.021 0.026 0.269 0.256 

    R2 0.946 0.632 0.961 0.854 0.182 

2015 

    RMSE 0.016 0.028 0.035 0.373 0.348 

    MAE 0.012 0.025 0.032 0.365 0.338 

    R2 0.863 0.735 0.966 0.881 0.244 
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Table 5. Change in fractional cover for GV, NPV, and soil across the study period for 

Deer Creek Plateau, PJ Girdle, and PJ Control site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2009 2010 2011 2013 2014 2015 Δ 2009 – 2015 

DCP 

    Soil 13.7 12.7 16.2 18.8 11.7 8.4 -5.3 

    GV 32.7 40.5 44.8 25.8 18.1 16.6 -16.1 

   NPV 53.4 46.7 38.8 55.2 70.1 74.8 21.4 

PJG  

    Soil 13.9 15.7 20.2 18.2 14.5 9.9 -4 

    GV 31.9 46.4 25.7 17.1 18.3 15.5 -16.4 

   NPV 54.1 37.7 54.1 64.7 67.2 74.5 20.4 

PJC  

    Soil 8.3 6.9 10.4 11 6.7 -1 -9.3 

    GV 31.7 32.1 49.4 19 18.8 18.7 -13 

   NPV 59.9 61 40.2 70 74.5 82.3 22.4 
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Table 6. Change in fractional cover for all land cover classes across the study period for 

the Deer Creek Plateau (DCP), PJ Control (PJC), and PJ Girdle (PJG).  

 

 

 

 

 

  2009 2010 2011 2013 2014 2015 Δ 2009 – 2015 

DCP 

    Soil 12.9 12.4 15.5 19 12.2 8.7 -4.2 

    DP 50.7 46.4 33.7 55.2 68.7 74.5 23.8 

    H 1.1 0 3.8 0.2 1.1 0.1 -1 

    J 6 7.6 2.3 7.7 5.5 11.9 5.9 

    P 29.2 33.5 44.6 17.9 12.4 4.7 -24.5 

PJC 

    Soil 6.6 6.7 9.1 11.2 6.7 -1.1 -7.7 

    DP 61.9 61.1 37.8 70 76.9 82.9 21 

    H -1.7 -0.3 1.8 -0.9 -2.2 -0.7 1 

    J 10 10.5 0.5 16.6 15.6 18.8 8.8 

    P 23.2 22 50.7 3 3 0 -23.2 

PJG 

    Soil 11.1 15.1 19.1 17.8 15.3 10.2 -0.9 

    DP 48.4 39.2 51.7 65.2 66.7 74.8 26.4 

    H 1 -1.8 0.5 -0.9 -0.3 -0.8 -1.8 

    J 5.3 4.2 1 4.9 1.4 13.7 8.4 

    P 34.2 43.3 27.6 13 17 2.2 -32 
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