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A Comparison of Presence-Only Suitability Models to Accurately Identify 

Prehistoric Agricultural Fields in Western New Mexico through Remote Sensing 

By 

 

Alissa Healy 

B.A., Anthropology, Northern Arizona University, 2010 

M.S., Geography, University of New Mexico, 2016 

 

ABSTRACT 

This project aims to provide greater understanding of the agricultural practices of 

prehistoric cultures throughout the arid and semi-arid environments of western New 

Mexico by developing a remote sensing suitability model that will identify prime 

environments for a specific form of agricultural field, ak chin, that are often difficult to 

locate with standard field-based archaeological methods. Remote sensing and 

Geographic Information Systems methods were applied to develop suitability models 

that will identify ideal environments for ak chin style agricultural fields based on a small 

training data sample. Three models: Mahalanobis Technicality, Maximum Entropy 

(Maxent), and Multi-Criteria Evaluation Ordered Weighted Average (MCE OWA) were 

used and the suitability raster results were compared. Area Under the Curve (AUC) 

values were calculated and used to validate model results. Although archaeological 

fieldwork is a required follow up to these results, technological verification methods 

indicate that Mahalanobis Typicality and Maxent performed well in identifying potential 

new prehistoric agricultural fields.  
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Chapter 1  

1.1 Introduction 
 

 This project aims to provide greater understanding of the agricultural practices of 

prehistoric cultures throughout the arid and semi-arid environments of western New 

Mexico. It develops a remote sensing suitability model that will identify prime 

environments for a specific form of agricultural field, ak chin, that are often difficult to 

locate with standard field-based archaeological methods. Many prehistoric 

archaeological sites found throughout New Mexico and Arizona consist of cultural 

materials that indicate humans were continuously adapting to adverse conditions, 

including severe water scarcity and a warming climate. Archaeologists believe that 

prehistoric societies flourished in these difficult conditions by studying and 

understanding the natural hydrologic cycle. The earliest known presence of domesticated 

crops in the American Southwest dates back approximately 4,000 years before present 

(bp), but it took at least a thousand years before agriculture was widely developed and 

commonly practiced throughout the region, given the importance of developing a vital 

knowledge base that could sustain these agriculturally dependent communities. Various 

cultures throughout this area developed their own methods for collecting, managing, and 

using floodwaters and runoff for agricultural development. The presence of agriculture 

among archaeological sites is strongly indicative of many defining cultural traits and 

changes throughout time.  

This research focuses specifically on ak chin style agricultural fields, which are 

found in locations where reliable water sources were not necessarily readily available. 
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Ak chin was one of several known forms of runoff/dryland agriculture that prehistoric 

populations used to grow crops and ultimately flourish in unwelcoming environments. 

Ak chin is a Tohono O’Odham term that translates to “mouth of the arroyo.” Ak 

chin is not only the descriptive name for this style of agricultural field, but is also the 

name of a Tohono O’Odham community in southern Arizona. Although other forms of 

prehistoric dryland farming relied on a variety of construction approaches—check dams, 

terraces, rock mulch fields, rock piles, or rock grid fields—to catch excess water in the 

immediate area, ak chin farming is unique in that it takes advantage of the natural flood 

patterns of arroyos and drainages. Where the steepness of the slope decreases at the 

mouth of the arroyos, decelerating floodwaters deposit nutrient-rich sandy sediments on 

the alluvial fans. The water subsequently soaks into the clay rich deposits below the 

sand, which act as a natural reservoir. Ak chin style fields planted on these fans enabled 

agriculture in otherwise arid environments (Sandor 1990). This type of field required 

very little manual labor to build and maintain. Some ak chin style fields include rock 

terracing upslope of the fields to assist in slowing down water as it moves towards the 

mouth of the arroyo, but terracing is not always associated with these fields. In fact, the 

lack of obvious landscape alterations is a signature of ak chin fields that makes them 

very difficult for archeologists to locate. 
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Figure 1. How ak chin agricultural fields work. Water is channeled down through the “feeder arroyo,” and then as it 

decelerates, the water and soil nutrients are deposited within the alluvial fan. This is where agricultural fields were 
placed (Phillips et al. 1993). 

 

Despite its minimalism, ak chin fields were effective for taking advantage of less 

than ideal environmental conditions to cultivate crops. The presence of ak chin fields is 

known within several archaeological sites throughout western New Mexico; however, 

the extent and density of these features throughout the region is unknown. To date, little 

research has been completed to further understand this type of field, partly because they 

are so difficult to locate. This project used remotely sensed imagery to identify a 

consistent spectral signature of fifteen known ak chin style dryland agricultural fields 

and to test the abilities of three different suitability models for identifying new 

agricultural fields in the future. 
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1.2 Project Description 

 

Figure 2. Project study area. The area outlined in black above represents the study area for this project, which includes 
most of western New Mexico. 

 

This study addresses the lack of research regarding ak chin style agricultural 

fields by developing a suitability model to more easily locate these features. Although 

minimal environmental alterations are required to construct ak chin fields, I 

hypothesized that they could be remotely identified based on similarities in 

environmental composition and cultural context, as reflected in the following variables: 

elevation, solar radiation, Normalized Difference Water Index (NDWI), Normalized 

Difference Vegetation Index (NDVI), cost-distance, and slope degree. By testing the 



5 
 

  
 

ability of suitability models to predict likely ak chin field locations based on these 

spatial-environmental criteria, this study contributes not only to our knowledge of 

prehistoric agricultural practices in the American Southwest but also to the development 

of new applications for remote sensing technology. 

 Most of the environmental variables identified above were expected to be 

constant at all alluvial fans throughout the study area, regardless of whether agricultural 

fields were present. Since it would be improbable that ak chin agricultural fields were 

developed at every single alluvial fan in the Southwest, however, additional variables 

were needed to help refine the results. To limit the suitability models’ predictions to 

those alluvial fans most likely to have been targeted for ak chin field development, both 

cost distance analysis and solar radiation data were included in the modeling process.  

 To begin this research, known ak chin style fields were plotted in ArcMap 10.1. 

The locational data for known ak chin style fields were collected from various 

researchers throughout the state of New Mexico. This file was then used to inform three 

different suitability models of the appropriate spatial-environmental contexts, so that the 

models could identify new field candidate sites. The results of this analysis are presented 

as a series of suitability maps in conjunction with a discussion of what the results mean 

in terms of both the archaeological and geographical records.  

1.3 Research Question  

Which “presence-only” suitability models perform best in identifying ak chin 

style agricultural fields? 
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Chapter 2 

2.1 Background 
 

Prehistoric habitation sites provide valuable data for furthering the knowledge of 

ancient landscapes, climate conditions, and land use practices. Identifying the presence of 

agricultural fields is extremely important in the archaeological record for understanding 

subsistence patterns, which in turn gives researchers information about how land was 

being used and what this meant in terms of the social structure. The type of environment 

and period of habitation can help to determine the types of households or residences that 

should have been present, which in turn may help to identify the social structure of a 

community (Chang 1958). A 1987 archaeological study regarding the cultural change 

from pit structures to pueblos in the American Southwest around A.D. 1150, for example, 

determined that climate played a large role in this transition (Gilman 1987).  

Other cultural transitions were noted around this same period. Paleoindian 

groups were highly mobile, moving regularly to follow big game and other valuable 

resources. As climate changed and as domesticated crops began to spread throughout the 

region, archaic people became significantly more dependent on a combination of 

hunting and gathering. Eventually, the farming of domesticated crops became more 

important than hunting for many groups. This transition towards sedentary lifestyles 

suggests that it was considered worthwhile for communities to put in the labor efforts 

required to build permanent settlements (Gilman 1987). 

To better understand prehistoric cultural behavior, archaeologists focus on 

human behavioral ecology. They study artifacts left behind hundreds to thousands of 

years in the past in order to reconstruct human behaviors and early cultural practices 



7 
 

  
 

(Res 2006). Many of the data examined in this research fall into the category of 

ethnoarchaeology. This field of study acknowledges that all present understandings of 

prehistoric cultures are based on what humans know to be true today (Huckell 1996; Res 

2006). Using a behavioral ecology model, many archaeologists believe that humans 

adopted an “optimal foraging” practice, which suggests humans would only hunt or 

gather animals and plants that were most beneficial for their own livelihood. For 

example, if hunting an animal utilized more calories and effort to capture than it 

provided in sustenance, prehistoric hunters would look for something that required less 

effort (Res 2006). This perspective provides an introduction to the examination of 

human behavioral patterns that can be used as a guide to understanding prehistoric 

actions. Additionally, understanding prehistoric behavioral patterns may begin to shed 

light on the early factors that encouraged prehistoric populations to begin domesticating 

crops.  

Prehistoric life during major droughts has been studied through the 

archaeological record in the American Southwest. According to various paleoclimatic 

and paleohydrologic models, cultures extant between 1200-650 years bp survived 

several detrimental droughts that caused huge problems for prehistoric populations. As 

climate changed, resources became less available causing major cultural changes such as 

temporary abandonment of certain regions during times of severe drought. Droughts 

caused severe lack of water, dispersal of animal populations, and reduced crop 

production meaning that many cultures were forced to relocate or find new methods of 

survival (Jones et al. 1999). Adaptations that resulted from this transformation of 

subsistence patterns included the development of increasingly sedentary lifestyles of late 
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archaic to late prehistoric populations, as observed through the settlement of large 

groups in semi-permanent residences. 

 

Figure 3. Western New Mexico prehistoric culture groups. This figure shows the major culture groups that were 

present in the American Southwest, from ~AD 200-1500. The groups pertinent to this research are the Ancestral Pueblo 

in Northwest New Mexico and the Mogollon in Southwest New Mexico (Peeples 2015). 

 

Western New Mexico consists of two main culture areas: Mogollon and 

Ancestral Pueblo. Within each of these culture group areas, there are numerous different 

populations. In the Mogollon region, an increase in the reliance upon agriculture during 

the early to late pithouse periods (AD 200—1000) has been identified by archaeologists. 
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Cultures in this area (modern day southwest New Mexico) were generally dependent on 

water from the Gila River and its tributaries in the surrounding area (Hegmon and 

Nelson 2003). 

Ancestral Puebloans were the dominant culture group in the Four Corners region 

of the American southwest. This region includes major cultural sites such as Chaco 

Canyon, Bandelier, and Mesa Verde. Early during the Archaic period, groups built 

pithouse structures and eventually began to develop large, permanent, above-ground 

structures made from masonry. Ancestral Pueblo groups were also dependent on 

agriculture for subsistence once the population began to grow due to an increasingly 

sedentary lifestyle (National Park Service 2016). 

 

Figure 4. Chaco Canyon. This figure shows structural remains found within the Ancestral Pueblo region of New 

Mexico. Large structures, such as these, are common at sedentary agricultural sites, but settlements are not always this 
large. Image by author. 
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Figure 5. Prehistoric cultural timeline. This figure provides a timeline of prehistoric events, specifically involving 

the Mimbres and the Ancestral Pueblo cultures. Column 3 describes the agricultural events that have been compiled 

through archaeological records—describing its progression through the southwest. 

 

All prehistoric culture groups throughout the southwest, especially in New 

Mexico, dealt with difficult environmental conditions and a severe lack of water. Four-

thousand years ago, temperatures were beginning to warm and the environment was very 

similar to that which is experienced today (PHMC 2015). This changing climate may 

have caused major cultural changes for archaic hunters and gatherers, leading to a 
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dependence upon agricultural practices (PHMC 2015). In this way, the development of 

ak chin style agricultural fields was extremely important for the survival of these 

prehistoric groups in areas that did not have access to a dependable water source. 
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Chapter 3 

3.1 Literature Review 
 

Prehistoric land use can be difficult to interpret from modern field sites; 

however, the combination of archaeological field studies coupled with geographic 

information systems (GIS) and a general understanding of human responses to climate 

change can help researchers to better understand how prehistoric people interacted with 

their natural environments. The first section of this literature review will identify recent 

studies of the impacts of climate change on prehistoric human populations. The second 

section of this review will address recent data on prehistoric land use patterns, 

specifically focusing on researchers’ present understanding of ak chin style floodplain 

agricultural fields. The final section will identify the most effective remote sensing data 

and image manipulation processes for identifying and interpreting archaeological sites. 

3.1.1 Impact of Climate Change on Prehistoric Human Populations 

Prehistoric habitation sites can be studied for evidence about ancient landscapes, 

climate conditions, and land use practices. Climate is a major driver of human activity 

and lifestyle, and can therefore be studied by archaeologists to better understand how 

people may have responded to past environments (Force 2004; Clevis 2006; Blinman 

2008). A 1987 archaeological study regarding the cultural change from pit structures to 

pueblos, for example, determined that climate played a significant role in this transition. 

Larger and more permanent structures were built in response to groups becoming more 

sedentary and dependent upon agriculture for subsistence (Gilman 1987). 

Current research seeks to understand the relationship between humans and their 

environment, and how humans have ultimately had to adapt over time to changing 
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environmental conditions. Some of the key topics addressed in this line of inquiry 

include the assessment of climate and culture (Force 2004; Blinman 2008; Wills and 

Dorshaw 2011), the transition from hunter-gatherer to agricultural societies (Jones et al. 

1999; Force 2004; Roth and Freeman 2008; Wills and Dorshaw 2011), changes in social 

structure (Chang 1958; Cordell 2007; Roth and Freeman 2008; Wills and Dorshaw 

2011; Mabry 2008), and access to water (re)sources (Wills and Dorshaw 2011; Hall 

2013). 

 Climate change can be studied using several methods through the archaeological 

record. Dendrochronology (tree-ring analysis), the generation of Species Distribution 

Models (SDMs), and the effects of changing water patterns are all methods used to 

document climate change through the archaeological record. Paleoclimate is fairly well 

studied on a global scale; however, impacts on individual regions are less studied. For 

the American Southwest, the assemblage and interpretation of tree-rings has been used 

to identify six major droughts (Benson and Berry 2009) and to identify climate change 

as a key driver in the cultural change from hunter-gatherer society to agricultural 

subsistence patterns (Bocinsky and Kohler 2014). Dendrochronology is a common way 

for researchers to observe climate patterns throughout the southwest, which could 

ultimately be correlated with different periods of cultural change—including the 

transition to agriculture and specifically maize (Alshuwaikhat and Nkwenti 2002; 

Banister 2011; Benson and Berry 2009; Tacoli 2009), and the change to seasonal 

habitation of prime cultivation and wintering locations (Huckell 1996; Hill and Holliday 

2011).  
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 For areas where prehistoric agriculture was practiced, carbon 14 dating can be 

used in combination with tree-ring analysis (Riede 2009; Alshuwaikhat and Nkwenti 

2002; Banister 2011; Benson and Berry 2009; Tacoli 2009) to identify fluctuating 

cultural population densities and activities on a regional scale. These dates can be used 

to correlate cultural success or failure to major environmental changes (Riede 2009). 

Research using these techniques shows that the Archaic period was characterized 

primarily by aridity with minor rainy seasons (Huckell 1996). 

Blinman (2008) examined pollen samples, tree core samples, and 

geomorphological deposition throughout the Southwest to understand what conditions 

were like throughout the last 12,000 years, and identified seven cultural transitions 

within the last 2,000 years. Cultural success can be measured by the geographic 

distribution and estimated population densities of various groups. For example, evidence 

of larger and more dispersed populations are indicative of increasingly stable societies 

(Blinman 2008).  

Climate change can also be observed through a change in species zonation. The 

lowering of tree lines and changing locations of vegetation types can be observed using 

Species Distribution Models (SDM). As temperatures rise, tree and vegetation zones 

move up or down mountain slopes to relocate to a more climatically appropriate 

environment (Beltran et al 2014). The types of vegetation present prehistorically can be 

determined through both pollen and starch analysis. 

Conversely, humans also impact climatic and environmental factors through the 

overuse of resources in certain locations which, for example, can change the natural 

patterns of rivers and streams. As climate continues to change and temperatures rise, it is 
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possible for these resources to disappear completely—ultimately altering human 

settlement patterns, because humans will always seek out water sources. Different 

climatic patterns create the need for distinctly different settlement patterns. The 

archaeological record shows that paleo-lakes were a prime location for Paleoindian 

groups—this pattern has been recorded through the presence of mostly Paleoindian 

artifacts that were present in high density surrounding the lakes, but were completely 

absent in areas further away; however, as the lakes dried up and climate changed, human 

settlement patterns altered and Archaic groups began to migrate to locations where water 

was still present. This change resulted in a fairly extreme transition in land use patterns. 

Paleoindian hunters had to be mobile and able to follow herds of large game to retain 

this primary food source. As climate warmed, Archaic groups began to rely on a broad 

spectrum of wild food sources collected through both hunting and gathering practices. 

Approximately 4,000 years bp, agriculture was introduced to the Southwest and over 

time groups became significantly more dependent on crop cultivation. This provided 

greater stability and less mobility among populations (Hill and Holliday 2011). 

A variety of geo-archaeological studies has been conducted on sites throughout 

the American Southwest (De Cunzo 2010, Sandor 1993), highlighting the importance of 

understanding climatic and cultural history throughout the region for predicting 

locations of previously unidentified prehistoric agricultural fields.  

Agricultural remains are among the material culture that can be studied by 

archaeologists. The presence of agricultural fields is extremely important in the 

archaeological record for understanding prehistoric subsistence patterns, which in turn 

gives researchers information about how land was being used and how this may have 
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related to social structures. Through the collection and analysis of soil samples, 

researchers have been able to refine their understanding of ancient agricultural fields to 

better understand how prehistoric people engaged in subsistence activities (Homberg et 

al. 2005). These authors identified definite patterns of agricultural land use along 

floodplains where the soil was most fertile (Clevis 2006; Gregory et al. 2008). These 

patterns indicate that prehistoric people were aware of the variation between land 

qualities and were able to identify ideal locations for growing crops—and may have 

even sought them out during the growing seasons. Similar studies have been conducted 

within the Hohokam region of southern Arizona. Certain agricultural sites within the 

American Southwest still reveal altered soil chemistry and soil development from 

centuries ago (Homberg et al. 2011; Hall et al. 2013).  

Cultural response to a changing climate can easily be observed through the 

archaeological record in Chaco Canyon, a large Ancestral Pueblo structural site located 

in northwest New Mexico. Extensive research in this region has focused on the 

subsistence of these prehistoric Ancestral Pueblo cultures. Life in this arid zone was 

undoubtedly challenging and arguments have been made that trade was a primary 

resource through Chaco Canyon since the soil there does not hold sufficient nutritional 

value for crops (Cordell 2007; Wills and Dorshaw 2011).  

Chaco Canyon and the surrounding region have been heavily studied and very 

little evidence for agricultural fields has been documented. Only one semi-confirmed 

agricultural field has been identified via remote sensing (Wills and Dorshaw 2011). 

Wills, Hall, and Force have all recognized the potential for water control systems, 

leading to the belief that agriculture was at least minimally occurring at the site (Force 
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2004; Wills and Dorshaw 2011; Hall 2013). Wills and Dorshaw (2011) state that one 

potential explanation for the uncertainty of agricultural presence is that the land was 

over-cultivated, thereby causing crops to not grow, leading to a catastrophic economic 

collapse and diaspora which would further exemplify the importance of agriculture and 

land use (Wills and Dorshaw 2011).  

Human survival was largely based on the optimal use of the land by prehistoric 

people (Blinman 2008). Chaco Canyon populations were not the only early settlements 

to attempt to control water flow. The Hohokam built intricate irrigation systems to direct 

water towards maize and cotton crops. In fact, most early cultures had some way of 

efficiently diverting and using water resources; these methods include the construction 

of rock alignments, check dams, rock mulch gardens, and terraces in addition to the 

irrigation canals observed within Hohokam archaeological sites (Hall et al. 2013). 

Huckell (1996) states that climate change was a major driver of a socioeconomic 

shift from Archaic hunter-gatherers to Middle Archaic and late prehistoric agricultural 

social structures. This change was accompanied by a decrease in big game and an 

increase in the presence of maize throughout the archaeological record. 

Dendrochronology (Bocinsky and Kohler 2014; Benson and Berry 2009), archaeological 

investigations (Alshuwaikhat and Nkwenti 2002; Bailey 2011; Bansiter 2011; Benson 

and Berry 2009; Tacoli 2009), and a documented increase in maize and seed grinding 

technology (Huckell 1996; Hill and Holliday 2011) help solidify the claims that climate 

change impacted prehistoric human populations.  

In some ways, climate change had a positive effect on prehistoric groups by 

generating a more sedentary lifestyle where food resources were more regularly 
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available, but climate has also been documented as a factor in cultural decline. The 

Fremont culture (primarily found throughout Utah) is an excellent example of a cultural 

collapse based on climate change and the fall of agriculture. The Fremont are 

characterized as having a complex social and economic structure; however, researchers 

tracked the prosperity of this culture using stable isotope analysis from bones collected 

at a burial site in the region and determined that due to a changing climate, crop 

production must have substantially decreased. There was evidence that due to the 

decline in agriculture, the Fremont culture could no longer trade for necessary items 

such as animal products and labor, and therefore, their society collapsed (Brenner and 

Leavitt 2002). 

It is clear that climate had a lasting impact on prehistoric life and was the cause 

of many site abandonments throughout time. A study conducted by Jones et al. (1999) 

throughout western North America indicates a distinct correlation between climate 

change, cultural productivity, and settlement patterns from A.D. 800 to 1350. During the 

medieval period, several major droughts resulted in cultures having to find new areas to 

reside due to a lack of water or infertile soil for agriculturalists. Some areas, such as the 

Great Basin, are thought to have been completely abandoned during the worst droughts 

and repopulated when the drought receded. The study argues that climate is a major 

driver in the success and/or failure of cultures. When natural resources are impacted, 

prehistoric cultures must have also been negatively impacted since they depended so 

heavily on the environment (Jones et al.1999). 
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Due to a changing climate and a progressively more sedentary lifestyle, the study 

of prehistoric agriculture can bring to light deeper interpretations of ancient lifestyles, 

social structures, and subsistence patterns. 

3.1.2 Prehistoric Cultures and Agriculture 

Research has been conducted around the world to examine the distribution of 

Paleolithic to Late Prehistoric sites, noting changes in land use all the way up to the 

agricultural period (Rodning 2010). Roth and Freeman (2008) argue that agriculture in 

the American Southwest started during the Middle Archaic, based on extensive research 

involving ancient climate patterns observed through both pollen and plant analysis. The 

early stages of agriculture brought about a strong change in land use patterns of 

prehistoric groups (Chang 1958; Cordell 2007; Roth and Freeman 2008; Mabry 2008; 

Wills and Dorshaw 2011).  

Hunter-gatherer societies relied on the hunting and gathering of available 

resources. Their lifestyle required high mobility and responsiveness to environmental 

factors; however, as the presence of maize and other crops grew within the American 

Southwest, many cultures began to adopt this new form of sustenance. The change in 

habitation can be determined through the construction of more permanent residences and 

large grinding tools (manos and metates) that indicate an agricultural yield of corn or 

similar crops (Roth and Freeman 2008). Ancestral Puebloan people relied upon 

precipitation and their trade relationships with surrounding groups during the growing 

seasons (Cordell 2007). Some locations were endowed with more rainfall than others; 

therefore, if one group had a surplus of agricultural goods, they could trade for other 

items that were abundant in nearby locations (Cordell 2007). This provides a strong 
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argument for how different settlements interacted, and more specifically, suggests a 

change in social structure due to a change in subsistence patterns (Chang 1958; Cordell 

2007).  

Generally, dryland agricultural fields are fairly unpredictable. Dryland 

agriculture is an effective method in that it takes advantage of the natural hydrologic 

cycle; however, it is unreliable because it is impossible to know exactly which areas will 

receive the most precipitation each year. At any given time, therefore, only 15% of 

dryland fields were likely active (Field 2001). 

Ak chin farming occurs at the terminus of arroyos within the associated alluvial 

fans. The water is directed down through arroyos to the base of mountains. At the mouth 

of the arroyo the water slows down and fans out. These fields required minimal labor to 

produce the most effective form of agricultural fields (Phillips et al. 1993). This type of 

agriculture helps to explain the presence of prehistoric people in such arid locations 

where few resources were present. Huckleberry and Billman (1998) state that ak chin 

farming is a system wherein people responded and adapted to a changing environment 

and brought agriculture to a landscape that would often not be considered a sustainable 

location for crops.  

Government documentation from the late 1800s states that Ak Chin users, 

although intelligent about their land use practices, were malnourished because they 

depended so heavily on barely sufficient precipitation levels in southern Arizona. During 

this time, ak chin water sources were altered by Anglos, which heavily impacted the 

Tohono O’Odham community’s ability to farm effectively on their land. Ak chin 

agriculture is believed to have been extremely successful pre-contact; however, as the 



21 
 

  
 

government began to control the land more, any individual who practiced traditional ak 

chin farming would be imprisoned—ultimately ending this traditional practice. The 

United States Government created an Ak Chin reservation in 1912 and continues to 

provide water to this group (Marmaduke et al. 1983).    

Sediment at the base of drainages is considerably more fertile and more nutrient 

rich than the sediments near the top of arroyos. Research previously conducted on these 

fields was completed using Landsat-3 satellite imagery and Google Earth to identify 

these fields (Phillips et al. 1993). Some research has found that the potential exists for ak 

chin agriculture to have been used by the Hohokam culture as well as in the Wupatki 

region of Northern Arizona (Downum and Stone 1999). It is unclear if any ak chin crop 

fields have been verified in Wupatki; however, it is hypothesized that this type of field 

would be a prime source for agriculture in this type of environment (Downum and Stone 

1999). Agricultural presence can be identified within the archaeological record by 

collecting soil samples for pollen analysis (Homberg and Sandor 2011).  

Archaeological analysis can help researchers to better understand the 

environment. In terms of agriculture, these studies can indicate whether the soil is too 

degraded to grow crops or if it still has the potential for productivity (Dominguez and 

Kolm 2005; Homberg and Sandor 2011). The sandy sediment deposited within these ak 

chin style fields allows water to soak in to the more clay-rich sediments below, which 

subsequently prevents water from evaporating rapidly (Phillips 1993; Sandor et al. 

2008). In addition to the primary environmental trademarks of ak chin style fields, there 

will often be a single pit house located along the edge of these ak chin style agricultural 
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fields, most likely for the individual guarding the field and planting the crops (Mabry 

2008). 

3.1.3 Remote Sensing and GIS in archaeology 

  Remote sensing has become an important and valuable resource for 

archaeologists around the world, especially in the last five years (Parcak 2009; Giardino 

2010; Harrower 2010; Hritz 2010; Pappu 2010; Lasaponara and Masini 2011; Dorshow 

2012 Morehart 2012; McFeeters 2013; Chase 2014; Knott 2014). Until recently, only 

basic aerial imagery—typically from Google Earth—had been regularly used within 

archaeology. This review will examine the use of Landsat and Sentinel Imagery to 

identify vegetation changes over buried cultural remains (Agapiou et al. 2014), research 

examining the effects of prolonged human habitation within the archaeological record 

via aerial imagery (Parcak 2009; Dorshaw 2012; Giardino 2010; Chase 2014; Knott 

2014), and specific methods that can be used to identify high moisture levels in the 

sediments (McFeeters 1996; 2013). 

 Remotely sensed imagery can be used alongside archaeological site data and 

climate reconstructions to assist in the identification of prehistoric habitation sites. Most 

analysis of archaeological sites has been done within other countries that have similarly 

arid and semi-arid environments as the southwestern United States, but few have 

actually been conducted in the Southwest (Parcak 2009; Hritz 2010; Dorshow 2012; 

Morehart 2012; Pappu 2010).  

 Remote sensing in archaeology will significantly increase the efficiency and 

overall understanding of the spatial characteristics of archaeological sites (Agapiou et al. 

2014; Lasaponara and Masini 2011; Parcak 2009; Giardino 2010; Dorshow 2012; Pappu 
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2010). Recently, researchers have conducted their own experiments to better understand 

the altered surface vegetation patterns that appear over subsurface cultural deposits 

(Agapiou et al. 2014). Researchers physically buried structural materials at various 

depths below modern ground surface as a control sample for their study. They allowed 

vegetation to grow on top of the buried materials and documented the vegetation 

differences using temporal analysis (Agapiou et al. 2014). This research could help 

future archaeologists identify subsurface features before even setting foot in the field 

(Agapiou et al. 2014; Lasaponara and Masini 2011). Along these same lines, Lasaponara 

and Masini (2011) reviewed the uses Thematic Mapper (TM) in assessing soil marks and 

changes that are indicative of human impact. Lasaponara and Masini state that remote 

sensing is a non-invasive survey method to better understand the archaeological 

environment (Lasaponara and Masini 2011). Research conducted by Pappu (2010) 

primarily helped in identifying general spatial patterns of archaeological site distribution 

throughout south India. This research found that satellite imagery, in combination with 

thematic mapping, GIS modeling techniques, and field investigations, could accurately 

be used to develop a predictive model to help archaeologists find the most probable 

locations for prehistoric site placement.  

 In the mid 1990s, GIS modeling was a new application in the field of 

archaeology. Rivet (1997) discusses the value of examining archaeological sites in 

relationship to their surrounding environments. He states that archaeological site 

modeling is vital in predicting where sites would/should be located, especially in 

locations with heavy vegetation and alluvial deposition obscuring the ground surface. In 

1997, environmental data was less widely available which made this type of modeling 
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very challenging; however, it was clear that environmental predictive modeling was 

becoming a key resource in archaeological survey.  

Many archaeologists feel that remote sensing is the future of archaeology, and 

this is demonstrated through the extensive research involved in identifying 

archaeological remains through the use of this technology (Parcak 2009; Giardino 2010). 

Some research has shown that it is possible to identify specific stratigraphic layers 

throughout a region that are the same as the stratigraphy containing the earliest hominids 

(Parcak 2009). Giardino identified Thermal Infrared Multispectral Scanner (TIMS) and 

the Thematic Mapper Simulator (TMS) as good sensors to use for identifying locations 

heavily impacted by human use. At the time of Giardino’s publication, NASA was 

taking images from appropriate altitudes for effectively identifying archaeological sites 

(Giardino 2010). Knott (2014) hypothesized that known archaeological sites are not 

entirely random, but that their placement is predictable based on environmental 

components. This author used a DEM, LiDAR data, vegetation data, geomorphology, 

hydrological data, and a file of known archaeological sites in the study region. A 

weighted overlay suitability model was developed in ArcGIS software where each input 

raster was assigned a weighted value of importance in identifying new archaeological 

sites. Using this model and methodology, researchers were able to predict where sites 

are likely to be located in hopes that more archaeological sites may be saved from 

destruction through urban development (Knott 2014). 

A study conducted by Merwin and Bernstein (2003) proved that predictive 

modeling can be used to predict the locations of archaeological sites now completely 

inundated by the Atlantic Ocean. This research used a variety of environmental inputs, 
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and it was found that there is a regularity in the distribution of archaeological sites on 

the landscape. This means that, based on a set of known archaeological sites in the 

region, general locations of currently submerged archaeological sites can be predicted 

using this type of presence only GIS modeling (Merwin and Bernstein 2003). 

 Remotely sensed imagery is especially helpful in identifying and interpreting 

prehistoric agricultural fields (Parcak 2009; Dorshow 2012; Morehart 2012; Bauer 2014; 

Chase 2014). An extensive amount of work has been conducted in India in relation to 

agricultural soil erosion analysis; additionally, it is possible to examine the vegetation 

differences over a specific spatial range and to identify localities of prolonged human 

occupation (Parcak 2009; Chase 2014). Morehart (2012) utilized Landsat data, 

Quickbird, Very High Resolution (VHR) imagery and aerial photographs to identify 

canal systems in Mexico, but the author makes it clear that this technology is best for 

examining previously identified sites (Morehart 2012). A 2010 study in south India 

determined that LiDAR and Digital Elevation Models (DEMs) are useful for mapping 

archaeological sites by providing a more accurate representation and greater spatial 

identification of an archaeological landscape. It assists in the mapping of archaeological 

features that are difficult to view from ground level. It also provides a somewhat more 

accurate representation of the cultural materials present (Chase 2014). Some remote 

sensors can also pick up soil differences, river channel flooding potential, crop 

cultivation, and agricultural landscapes (Dorshow 2012). Bauer conducted an analysis of 

Neolithic impacts on land in India, and argued that agricultural processes sped up 

erosion. Remote sensing was used to identify change in sediment over time to help 
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archaeologists see which locations were degrading more quickly and how specific 

locations have been directly impacted by human use (Bauer 2014).  

 GIS and remotely sensed imagery can also bring to light the extent and context 

of a variety of archaeological sites. The entire scope of the Hohokam irrigation canals 

are difficult to grasp. Aerial imagery can assist in the interpretation and identification of 

these large features from ground level. Researchers are beginning to use remote sensing 

technology to better understand prehistoric water diversion features (Harrower 2010; 

Hritz 210). Harrower has utilized this technology to identify prehistoric water flow 

systems (such as canals and irrigation systems, etc.). He was able to identify how 

prehistoric societies were utilizing available water resources (Harrower 2010). Hritz 

examined prehistoric land use and settlement patterns as well as ancient water paths 

using remotely sensed imagery. He argued that by using this technology to study 

prehistoric land use, archaeologists will have a more extensive working knowledge of 

prehistoric life (Hritz 2010). 

 When attempting to understand water catchment or agricultural features, imagery 

can be altered to better accentuate them. Since agricultural fields often hold water better 

than surrounding areas, the soil is often more rich in clay deposits. A Normalized 

Difference Water Index (NDWI) most effectively detects moisture that is present in the 

soil and is an important element to finding distinct differences between various land 

uses. It was introduced by McFeeters in 1996 as an effective method of illuminating 

open water regions throughout a landscape on an aerial image (McFeeters 1996). In 

2006, Xu conducted an analysis of the levels of efficiency between using NDWI and a 

modified NDWI. The modified NDWI will better enhance the appearance of water (Xu 
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2006). An area that was once used for agriculture will be apparent with higher moisture 

densities being retained immediately after a precipitation event (McFeeters 2013). Li 

Zhang and Wylle (2009) conducted a comparative study between different 

methodologies for delineating water within a region and determined that NDWI was the 

most useful. There are still some errors in this data that researchers should be aware of, 

but overall the results were acceptably accurate. 

 Kailihiwa (2015) conducted an analysis of a rock mulch/alignment/pile 

agricultural fields using Maximum Entropy presence-only modeling to identify ideal 

geographic locations and general distributions of these features throughout the 

landscape. Kailihiwa used rainfall data, elevation data, slope aspect, slope degree, and 

soil fertility data as inputs for his modeling to help locate ideal locations for 

archaeological agriculture fields. The results from his research showed that Maximum 

Entropy, a common Habitat Suitability Model, is effective in identifying agricultural 

features. It also provides evidence that presence-only modeling can be effective for these 

purposes (Kailihiwa 2015). 

3.2 Gaps in the Literature 

 A few major gaps were identified throughout all three sets of literature. 

Increasingly, studies are being conducted that link remote sensing and archaeology 

within the southwestern United States. Specific uses of remote sensing in archaeology 

could benefit from further analysis and a more intensive use within the field. Also, ak 

chin style agriculture is under-researched (Phillips et al. 1993). It is uncertain exactly 

where ak chin agriculture was utilized. The available research on ak chin agricultural 

fields fails to indicate what prehistoric period and what cultural affiliation is associated 
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with ak chin style agriculture. Lastly, a more in depth regional study would be useful for 

understanding and interpreting cultural features before actually visiting the field.  

My research addresses some of these remaining questions. My research is 

centered on prehistoric cultures and agricultural practices, specifically focusing upon the 

ak chin floodwater fields in the arid southwest. Agricultural practices are ultimately the 

result of changing climate and a need for different subsistence patterns. A greater 

understanding of prehistoric agricultural practices will be gained by incorporating 

remote sensing derived metrics of climate conditions (e.g., NDWI) into a suitability 

model trained on known ak chin style agricultural fields. This work could aid the 

archaeological community in the identification of prehistoric ak chin style agricultural 

fields, leading to a further understanding. Work extending beyond this thesis may further 

investigate the potential of using these suitability models in conjunction with 

archaeological field investigations.  
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Chapter 4 

Research Design 

 

4.1 Research Question 

Which “presence-only” suitability models perform best in identifying ak chin 

style agricultural fields? 

4.2 Methods 

Three suitability models were selected to identify potential ak chin style 

prehistoric agricultural fields; these include Maximum Entropy (Maxent), Mahalanobis 

Typicality, and Multi-Criteria Evaluation. The results of these three models were 

compared and ultimately the most ideal suitability model for identifying ak chin style 

agricultural fields was determined.  

4.2.1 Data 

This research required the use of mostly secondary data sources. The first step to 

data processing required gathering raw data, from which all spatial-environmental 

variables were created. 

4.2.1.1 Known Ak Chin Style Agricultural Field UTM data (Training data) 

Training data field locations were extracted from a combination of sources: A 

thesis by Antonio De Cunzo (a former student at Eastern New Mexico University), 

records at the Office of the state Engineer, and research conducted by Dr. Jonathan 

Sandor (Emeritus Faculty member at Iowa State University). This data was provided in 

UTM format which was then used to generate a .csv file to create the Training Data 

raster input file. 
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4.2.1.2 Digital Elevation Model 

A 10 meter Digital Elevation Model (DEM) of the entire state of New Mexico 

was obtained from the New Mexico Resource Geographic Information System (RGIS) at 

the University of New Mexico. This raw data file was used to create the slope, elevation, 

and solar radiation input variables. 

4.2.1.3 Archaeological Site Data 

 A shapefile containing archaeological site locations and boundaries was obtained 

from the New Mexico Cultural Resource Information System (NMCRIS). This data was 

provided in both polygon shapefile and an excel database file and was gathered by a 

variety of archaeologists and archaeological companies throughout the state of New 

Mexico.  

A specialized query was conducted of the NMCRIS database to cater directly to 

this research. The query conducted by NMCRIS extracted only site data that consisted of 

two or more room blocks, pithouses, or other structural remains that have been dated 

between Basketmaker II (~500 B.C.E) to Pueblo III (A.D. 1300) time periods. 

Additionally, the query was limited to a UTM range of 103690 mE to 419700 mE UTM 

zone 13N and all northing values from the furthest south portion of the study area to the 

Colorado/New Mexico border (along the boundaries of the study area) to help limit the 

search to western New Mexico. 

The Cost Distance input variable was created from a combination of the 

archaeological site data shapefile and the 10 meter digital elevation model. 
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4.2.1.4 Landsat 8 OLI-TIRS satellite imagery 

 Fourteen Landsat 8 OLI/TIRS scenes were downloaded from 

http://earthexplorer.usgs.gov, these included paths 33-35 and rows 34-38. All of this data 

was collected during a seventeen day time frame that ranged from May 31 to Jun 16, 

2014. All 14 scenes were not required to cover the study area, but were downloaded to 

ensure all gaps were covered. This raw data was used to create the Normalized 

Difference Vegetation Index (NDVI) and the Normalized Difference Water Index 

(NDWI) input variables. 

 

 

 

 

 

4.2.2 Initial Data preparation 

 Since the state of New Mexico crosses a line of longitude, the downloaded 

imagery originated within two separate UTM zones: UTM 13N and UTM 12N. This 

meant that all of the scenes had to be re-projected so that they could be mosaicked into 

one single image. To accomplish this, all scenes were first re-projected into the 

Albers_Equal_Area_Conic_USGS_version EPSG: 5070 format and were then 

mosaicked together. All data were then converted to UTM 13N, as this is the convention 

in the state of New Mexico. 

After all data were correctly projected, they were clipped so that each input 

variable contained the exact same number of columns and rows as well as the same x- 

Data Format Source 

Training data UTM locational data Sandor, De Cunzo, OSE 

Elevation (DEM) Raster RGIS 

Landsat 8 Raster Earthexplorer.usgs.gov 

Archaeological 

Site data 
Shapefile and Database NMCRIS 

Table 1. Raw Data 
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and y- minimum and maximum coordinates, thereby ensuring that the models would run 

properly. Once complete, the raw data was processed and prepared to function as spatial-

environmental input variables. 

4.3 Variable Preparation 

 The raw data described above was used to create six different spatial-

environmental input variables and a training data file. 

4.3.1. Dependent Variables  

 Dependent variables are those which are dependent upon the values of each 

variable within the independent variables. 

4.3.1.1 Training Data (Known field data) 

The training data consists of a limited number of verified ak chin style 

agricultural fields that were used to calibrate the models to find environments similar to 

the known field data. Each model utilizes the information extracted from each spatial-

environmental input variable at the training field locations and calibrates the model to 

identify other locations with the same or similar spatial-environmental characteristics.  

This file was created using a UTM center point for each known field and a 

Comma Delimited file (.csv) was created using the Northings and Eastings of each 

training site. This file was imported into TerrSet using the xyz-idrisi module, which 

generated a TerrSet compatible vector file. This file was converted from a vector point 

file into a TerrSet raster Boolean file, with a value of ‘1’ representing the presence of 

agricultural fields, and a value of ‘0’ representing the absence of known agricultural 

fields.  
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Although a polygon format would likely have been more effective for modeling 

this type of agricultural field, the data collected by both archaeologists and soil 

specialists were provided as center points. Since these fields may range in size from 10 

meters to 5 kilometers depending on the alluvial fan and the arroyo supplying water 

(Phillips et al. 1993), estimating boundaries would have provided more inaccurate 

results than simply running these models with point file training data.  

Very few ak chin style agricultural fields have been identified and verified 

throughout the American southwest. Although only 15 total fields have been identified 

and verified within the study area, several others have also been found throughout Maja 

and Hohokam sites in southern Arizona. In an attempt to limit the total area examined 

for this research, the study area excluded Arizona.  

 

Field 

# 
Site Description Source 

UTM 

East 

UTM 

North 

1 Mimbres, NM Jon Sandor 766172 3659226 

2 Mimbres, NM Jon Sandor 766129 3659481 

3 Mimbres, NM Jon Sandor 765842 3659370 

4 Zuni, NM Jon Sandor 719105 3887210 

5 Weekoty Field Jon Sandor 714761 3893965 

6 Weekoty Field Jon Sandor 712953 3893208 

7 Laate Field Jon Sandor 717560 3903984 

8 Montecello Box Canyon Antonio De Cunzo 263521 3714303 

9 Ak Chin Acoma 1 OSE Adjudication 265920 3861617 

10 Ak Chin Acoma 2 OSE Adjudication 259715 3864054 

11 Ak Chin Laguna 1 OSE Adjudication 273718 3889574 

12 Ak Chin Laguna 2 OSE Adjudication 273946 3889113 

13 Ak Chin Laguna 3 OSE Adjudication 244499 3847851 

14 Ak Chin Laguna 4 OSE Adjudication 269834 3871805 

15 Ak Chin Laguna 5 OSE Adjudication 292447 3870884 

Table 2. Ak Chin field training data. The data represented in this table consists of UTM’s for each reference ak 

chin style agricultural field. It includes the appropriate data for the 8 training site data and the 15 training site data. 
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The first eight training data fields (Numbers 1-8 in Table 2) consist of fields that 

were sampled by Jonathan Sandor and Antonio De Cunzo. This soil analysis verified the 

presence of Zea Mays (corn); this type of pollen is heavier than most others and is not 

often found far from actual prehistoric agricultural fields (Pfarr 2008).  

The last seven training data fields (#9-15 in Table 2) consist of ak chin fields 

documented through Pueblo litigations from the Office of the State Engineer (OSE). 

Although archaeologists and soil specialists have not tested these fields for pollen, they 

have been officially identified as ak chin style agricultural fields by the associated 

pueblos (HKM Engineering Inc. 2003). All of the known fields addressed here were 

within the western half of New Mexico. 

4.3.2 Independent Variables 

 Independent variables are those that researchers have control over and which 

drive the other variables in analysis. 

4.3.2.1 Cultural Factors (Cost-Distance) 

 Cost-distance analysis was the only cultural input variable created for this 

analysis. The cost-distance variable proved to be the most valuable resource in this 

analysis. This variable informs the models of the effort required to travel from the source 

location (known archaeological sites) to a certain distance away from these known 

archaeological sites. This helps to dictate feasible routes and indicates the likelihood that 

people would put forth the effort required to travel to a potential ak chin agricultural 

field. Locations that require extremely difficult climbs or go through steep environments 

may be eliminated from the analysis. 
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The results were buffered so that only locations within five miles of known 

archaeological sites were observed. All potential locations further than five miles from 

known archaeological sites were not considered because they cannot be easily associated 

with a specific cultural component—this is not to say that fields do not exist at a 

distance greater than five miles from known sites. If environmental conditions required 

this type of trek, fieldhouses would have been placed at the agricultural field and 

individuals would have stayed at the field until crops were produced. 

Since the environmental variables were expected to provide an ample number of 

potential ak chin agricultural field locations, this input helped to define the locations 

where potential agricultural fields would most likely be present. To create this variable, 

archaeological site data and the digital elevation model were input into the cost-distance 

analysis module; the archaeological site data was input as a polygon shapefile and the 

DEM was input as a raster file.  

It is important to note that not all archaeological sites have been located and 

recorded throughout the state of New Mexico. It is also possible that groups not residing 

in semi-permanent settlements were participating in agricultural practices; however, this 

cannot easily be verified and modeled by researchers. Additionally, site density is much 

greater in the northern portion of the state than it is in the southern portion of the state. 

This distribution may be due to the number of archaeological projects that have been 

completed in each region of New Mexico or is simply a reflection of the data available 

through NMCRIS; either way, this variable may have had an effect on the overall results 

by skewing the number of potential fields identified to the northern portion of the state. 
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4.3.2.2 Environmental Factors 

Five environmental variables were taken into consideration to complete the 

modeling process. These variables include slope, elevation, solar radiation, Normalized 

Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). 

Each of the environmental input variables are discussed below. 

4.3.2.3: Slope 

Ak chin style agricultural fields are located on very gradually sloping alluvial 

fans. It was expected that this analysis would easily identify all alluvial fans in the study 

area. This variable helped to limit the number of potential ak chin style agricultural 

fields that were found through this analysis by providing additional known data to 

calibrate the models. 

The slope image was calculated using the “slope” module in Erdas Imagine. The 

output image is represented in slope degrees and was created using a 10 meter digital 

elevation model (DEM) of the state of New Mexico. Once the slope input was created it 

was processed through CONTRACT in TerrSet to make it a 30 meter resolution image. 

Ak chin agricultural fields typically exist on a 2-10 percent (1-5 degree) slope, and this 

input will help identify new locations with similarly shallow slopes as the training site 

data.  

4.3.2.4: Solar radiation 

Solar radiation is a key variable that was expected to greatly inform researchers 

of where crops were most likely to grow. All newly identified fields should reflect 

similar solar radiation patterns as the training data sites. Solar radiation analysis takes 

into consideration not only the direction landforms face (aspect) but also slope, 
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topography, atmospheric effects, and the reflectivity of different landscapes (Jenness 

2007). These various elements can be vital in understanding habitat suitability. Latitude 

and season can impact solar radiation; therefore, based on an understanding of the 

general growing season in the American Southwest, specific dates were chosen to most 

accurately represent prehistoric growing conditions. Numerous environmental 

components were considered with solar radiation analysis including soil temperature 

regimes, evapotranspiration, snow melt, and soil moisture patterns (Esri 2013).  

To develop a solar radiation map of western New Mexico several steps were 

taken. First, a 10 meter resolution DEM of New Mexico was imported into Erdas 

Imagine. Next, a grid layer consisting of 66 separate 0.5 x 0.5 degree blocks was 

developed in ArcMap 10.3 and imported into Erdas Imagine as a vector layer. This grid 

helped researchers divide up the 10 meter resolution DEM into equal sized blocks to 

make analysis easier. Since this is a very time consuming processes, this ensured that the 

solar radiation analysis could be processed quickly and successfully in a parallel 

computing environment.  

Each half degree, 10 meter resolution block was selected individually and was 

clipped so that each individual block could be processed through the “area solar 

radiation” module in ArcMap 10.3. All 66 blocks were subsequently mosaicked back 

together in Erdas Imagine. 

The inputs selected consist of a one month analysis from June 15, 2014 to July 

15, 2014 since this range falls within the midpoint of the major growing season 

throughout the American southwest which is consistent with what growing seasons 

would have been 3,000 years ago. The sky size resolution input was set to 512—
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increasing the accuracy of the process from the default setting of 200. Additionally, this 

input was be sufficient for mapping solar radiation over a larger region (Esri 2005). The 

results were mosaicked back together and converted to a 30 meter resolution to function 

as the solar radiation input for the suitability modeling process.  

Below is an image of the 10 meter DEM of New Mexico with the grid that 

parsed this 10 meter resolution DEM into 66 0.5 x 0.5 degree latitude/longitude blocks 

overlaying it; this demonstrates how the image was divided to run solar radiation. The 

first six blocks from the western edge of the study area and all blocks north to south 

within the study area were processed (represented by the light blue outline in figure 6 

below). 
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Figure 6. Solar Radiation Analysis Grid. This figure displays the division of the DEM for the purposes of creating an 

estimate of solar radiation. A total of 66 half degree blocks were clipped and separately processed through the Area 
Solar Radiation Graphical User Interface in ArcMap 10.3. 

 

4.3.2.5: Elevation  

 All known ak chin style fields are located within an elevation range of 1800-

2200 meters. This was an ideal range where the fields were high enough in elevation that 

temperatures were not too hot and water would be able to reach them, but also low 

enough in elevation that the fields would not freeze early in the growing season. 

Based on previous archaeological studies of ak chin fields (Phillips et al. 1993), 

elevation is an important variable for understanding their likely locations. This data was 

created by simply using the DEM as the input variable.  
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4.3.2.6: Normalized Difference Vegetation Index (NDVI) 

 NDVI was included to provide a measure of the physical environment associated 

with ak chin features. NDVI helped identify the presence of living vegetation, thereby 

identifying locations of greater water retention in the arid study region. It was calculated 

using the following equation: 

(1)  Band 5 (NIR) - Band 4 (Red) 

      Band 5 (NIR) + Band 4 (Red)    

4.3.2.7: Normalized Difference Water Index (NDWI) 

 NDWI was included to provide data on the presence of water features and water 

content in the soils of the region. This image was created using the following equation: 

   (2)  Band 3 (Green) – Band 5 (NIR) 

                    Band 3 (Green) + Band 5 (NIR) 

Variable Input Source Use 

Training Site Data UTM’s created .csv file Dependent 

Elevation 10m DEM Independent 

Slope 10m DEM Independent 

Solar Radiation 10m DEM Independent 

NDVI Landsat 8 mosaicked scenes Independent 

NDWI Landsat 8 mosaicked scenes Independent 

Cost-Distance 10m DEM and Archaeological Site data Independent 
Table 3. Spatial-environmental input variables 

 

4.3.2.8 Data Input Variable Values  

The values of each input variable were extracted for each of the training sites. 

Field number 8 yielded an unexpectedly high slope degree, which may have adversely 

impacted the overall results. An ideal slope for ak chin style farming is typically no 

greater than 3.2% but can range between 2-10% or 1 to 5 degrees (Phillips 2006). A few 

other training fields fall above this mark, but are still within an acceptable range. 
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Essentially, ak chin fields (and most other floodwater farming fields) must be situated on 

a very gentle slope where water naturally slows down and pools, using the natural 

hydrological processes to the greatest extent possible. The values for elevation at the 

training sites fit the known attributes for ak chin style agricultural fields.  

30 Meter Resolution, Training Data Locations and Original Data 

Training 

site # 

UTM 

East 

UTM 

North 
Elevation 

Solar 

Radiation 

Cost 

Distance 
NDVI NDWI 

Slope 

(°) 

1 205790 3660283 1921.43 207948.34 3065811.75 0.17 -0.18 2.12 

2 205820 3660026 1909.49 210781.53 2904198.25 0.16 -0.17 1.91 

3 205495 3660189 1919.23 211508.23 24277750.75 0.15 -0.18 3.41 

4 172191 3890452 2073.32 213674.13 264195.53 0.16 -0.22 0.72 

5 168221 3897531 2094.60 213511.70 507972.03 0.13 -0.19 0.64 

6 165082 3897218 2078.82 211907.87 507972.03 0.14 -0.19 0.73 

7 171662 3907334 2074.49 214303.03 2452140.75 0.11 -0.16 0.72 

8 263521 3714303 1871.97 196124.84 782477.50 0.11 -0.15 13.38 

9 265920 3861617 1927.42 210877.00 19140142.00 0.10 -0.17 0.30 

10 259715 3864054 1952.99 210875.42 32793396.00 0.11 -0.15 0.12 

11 273718 3889574 1951.58 212222.39 426125.50 0.10 -0.16 0.48 

12 273946 3889113 1940.87 211887.94 4345121.00 0.09 -0.15 0.30 

13 244499 3847851 2420.18 220995.92 6819125.50 0.18 -0.19 5.69 

14 269834 3871805 1851.38 209956.81 17467916.00 0.13 -0.17 0.35 

15 292447 3870884 1700.06 207418.19 11958494.00 0.09 -0.22 0.91 

Table 4. 30 meter training data values. The data displayed is for each training data site. 

 

4.3.2.9: Excluded Variables  

Three additional environmental variables were considered but rejected due to the 

non-standard nature of the data. Vegetation is often different from within the ak chin 

agricultural field and the surrounding area; however, all current vegetation maps are 

grossly generalized and fine scale variations cannot not accurately be identified. Field 

size and shape were also considered but could not be used as input variables because not 

all ak chin fields are the same size or shape and the shape and size of known ak chin 

fields is not well understood or consistent. Both are heavily dependent on the size of the 

alluvial fan and the amount of rain each region receives, and these are not generalizable 
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variables. Research conducted within various regions of southern Arizona and central 

New Mexico indicate that these fields were often several square kilometers in size 

(Phillips et al. 1993); however, without specific data indicating the exact size of each 

known field, it is impossible to delineate definite field boundaries. 

4.4 Suitability Models 

Three different suitability models were selected based on their potential for 

identifying potential new locations for ak chin style agricultural fields. These models 

consist of Maximum Entropy (Maxent), Mahalanobis Typicality, and Multi-Criteria 

Evaluation (MCE) Ordered Weighted Average (OWA). Since the training data for this 

research contains “presence-only” information, the selected models had to be 

compatible. Presence-only models utilize known location data about the variable being 

researched, but do not provide training information about environments where the 

species were not found. 

 Minimum 

# 

Training 

Data 

Type Theoretical Framework Output 

Leave 

one 

out? 

Maxent 15 
Presence-

only 

Identifies largest geographic 

spread of species presence 

based on the training data and 

the associated spatial-

environmental values. 

Raster 

Suitability, 

jackknife, 

response 

curves 

AUC value 

No 

Mahalanobis 

Typicality 
10 

Presence-

only 

Identifies how typical (how 

similar) each pixel is of the 

training data. 

Raster 

Suitability 
Yes 

MCE OWA n/a 
Presence-

only 

Expert system. Researchers 

weight the model based on 

what is known to be the most 

important data. 

Raster 

Suitability 
No 

Table 5. Brief breakdown of each suitability models requirements. 
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4.4.1: Maximum Entropy (Maxent) 

Maxent is a suitability model that uses presence-only training data. Maximum 

Entropy works by “finding the largest spread (maximum entropy) in a geographic 

dataset of species presences in relation to a set of ‘background’ environmental variables” 

(Phillips et al. 2006). Essentially it uses the presence-only data supplied by researchers 

to find the most suitable environments based on all additional spatial-environmental 

variables. It predicts where similar environments are likely to occur. The model 

completes multiple iterations in which it uses the training data to “learn” the ideal 

environmental input variables of the desired study area. These iterations begin by 

assuming equal distribution of potentially suitable locations and each time it runs, the 

model improves upon the “fit” of potentially suitable locations—eventually outputting a 

suitability raster that displays a range of locations from the least suitable to the most 

suitable potential field environments.  

This suitability model uses all environmental inputs to define the likely 

distribution of agricultural fields. This model, though typically used for identifying 

species distribution, will be used to identify environmental and cultural signatures of ak 

chin fields. Maximum Entropy is especially designed to work with small training 

samples (Phillips et. al 2006). Many settings are available for this model; however, for 

the purposes of this project, the default settings were utilized (described in model 

parameterization in section 4.5.1. page 48 below).  

For this analysis, a minimum of 15 training sites were required to obtain 

appropriate results. As with any suitability model, a higher sample size provides a 

greater accuracy of results (Phillips et al. 2008). Training data containing 15 or more 
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training fields utilizes a combination of linear, hinge, and quadratic computational 

features. Each additional computational feature utilized during model analysis constrains 

the overall output for the Maxent Model to provide increasingly more accurate results 

(Kailihiwa 2015). Linear features utilize the spatial-environmental variable values at 

each training field to find locations throughout the data that have the exact same spatial-

environmental values as the training data. These linear features consist of all continuous 

inputs—i.e. slope, elevation, etc. Categorical input variables such as soil data would not 

be useful in this context (Kailihiwa 2015).  Variables are not weighted based on 

importance, rather they are considered equally for the output suitability distribution of 

potential agricultural fields (specifically for this research).  

The quadratic features further constrain the linear feature output distribution 

suitability file for agricultural fields by accounting for a variance in the data. A margin 

of error is calculated and any pixels within a specific range of the expected data values 

are analyzed more extensively (Kailihiwa 2015; Phillips et al. 2006).  

Hinge features further constrain linear distributions by identifying even more 

complex relationships between the training data and the spatial-environmental input 

variables. The suitability results are constrained by developing a binary probability grid 

that identifies ideal locations based on the training data. A threshold of a certain distance 

from most suitable environments is calculated using values from the linear function 

(described above), and more accurate/extensive processing is conducted on these more 

ideal locations within the data. (Phillips and Dudik 2008). The additional output 

features, while all still dependent upon linear features, help to further restrain the model 

results.  
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In addition to a raster suitability map, Maxent results consists of response curves 

and jackknife results that help researchers to interpret and understand the use of the 

input variables in the overall outcome of the model. Response curves allow researchers 

to understand the probability that a species will be present. The model provides two sets 

of response curves—one provides the average values identified for each variable and the 

second set displays the response of each individual variable when all other variables are 

excluded from the analysis. These response curves assist researchers in understanding 

how much each independent variable effected the overall suitability results.  

The Jackknife results provide a bar graph representation of how well each model 

performs when run using all input variables, when using all but one variable, and lastly 

when using only one variable. This helps to determine which variable had the greatest 

impact on the overall outcome of the Maxent suitability model (“Presence-Only 

Modeling with Maxent” 2016). 

4.4.2: Mahalanobis Typicality  

Mahalanobis Typicality is also a presence-only model that accepts only 

continuous data. Continuous data—which defines all input variables in this research—

cannot be quantified or divided into distinct groups (whereas categorical data, such as a 

soil map, can be). 

Mahalanobis Typicality works by assessing how “typical” each pixel is within 

the study area. Typicality in this context refers to how similar each pixel is to the pixels 

on which the model was trained. The results of this model are provided in the form of a 

suitability raster that consists of a range of decimals between 0 and 1, where values 

closer to 1 are considered more likely to be more suitable environments for ak chin style 
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agricultural fields and decimals closer to zero represent locations that are less suitable 

environments. The results from this model require careful interpretation since all values 

fall between 0 and 1—and the suitability of each pixel is relative to the rest of the image, 

making it easy to erroneously interpret the results (Eastman 2015). 

Mahalanobis Typicality assesses each individual pixel and determines how 

typical each one is in terms of the training site data (Clark Labs 2015); whereas, Maxent 

begins by assuming that there is an even distribution of suitable environments across the 

grid and as the model runs, it “learns” from the training data and identifies increasingly 

more suitable environments (“Presence-Only Modeling with Maxent” 2016). The results 

for both models are provided as a suitability raster. Each pixel is assigned a suitability 

rating between 0 and 1, and the pixels with values closer to 1 indicate that that pixel is 

more typical of the training environments. However, the interpretation of Mahalanobis 

typicality results are far more general than those of the Maxent suitability model because 

the Maxent model provides AUC data, response curves, and jackknife graphs in addition 

to the suitability raster.   

4.4.3: Multi-Criteria Evaluation, Ordered Weighted Average 

As an expert system, Multi-Criteria Evaluation (MCE) Ordered Weighted 

Average (OWA) evaluates a combination of criteria to develop a single composite based 

on researcher designations of factor weights. This model is designed to work with data 

sets that do not have training data available. This model was chosen for the purposes of 

this research to compare the differences between models that train on ak chin style 

agricultural field locations and one based on expert opinion based primarily on the 

literature (Philips 1993; Sandor 2008). Since these fields have specific elements that can 



47 
 

  
 

be somewhat generalized, researchers were interested in understanding if expert 

knowledge on these fields was sufficient for identifying ak chin style agricultural field 

environments or if additional data was extracted when using the training data with 

Maxent and Mahalanobis typicality. 

The MCE OWA model uses a decision making algorithm based in the input 

variables that requires a certain degree of risk-taking and tradeoffs. These risks and 

trade-offs help to evaluate a wide range of possibilities when the inputs and criteria are 

uncertain (Gorsevski et al. 2012). Risk is the potential that a decision made by the model 

for any particular locations may be incorrect (Drobne and Lisec 2009). Trade-off is 

dependent on the factor weights and ordered weights. When one variable is deemed 

more important than another, the ordered weights will make a decision for which 

variable will be given greater consideration. For example, if there is low risk and no 

tradeoff, then the model will search for locations that have high values for each input 

variable. If there were high risk, then the suitable environments identified may only be 

ideal for one or two of the input variables because the model had to decide which 

variable was most important for the analysis (tradeoff).  

All variables are used as inputs and each variable is assigned a factor weight that 

indicates how important researchers believe each variable to be in identifying the 

suitability based on the literature regarding ak chin style agricultural fields. Factor 

weights are applied to each variable and must sum to 1 among all inputs; the factor 

weights that are applied to each input variable are assigned to every pixel within that 

specific variable. MCE-OWA utilizes a second set of weights called “ordered weights” 

which introduces a degree of trade-off between each of the input variables (or factors). 
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Ordered weights are assigned on a pixel by pixel basis rather than a variable by 

variable basis—as the factor weights are. The ordered weight is directly correlated to the 

amount of trade-off experienced by the model (Drobne and Lisec 2009). When ordered 

weights of [1, 0, 0…] are applied, this results in a “minimum operator of fuzzy sets”—

the author refers to this as “ANDness” (Eastman 1999; Drobne and Lisec 2009) and 

consists of no trade-off among variables. As these ordered weights are altered, and 

various values are utilized—such as [0.5, 0.3, 0.2…] or [0.3, 0.3, 0.3…] different 

degrees of trade-off are introduced into the model. These different ordered weights 

effect the degree of trade-off and risk that are being implemented in the processing of 

the model.  

 

Figure 7. MCE-OWA Risk and tradeoff graph. MCE-OWA involves a series of risks and tradeoffs when calculating 

which variables are the most important (Eastman 2015). When there is an equal amount of risk (i.e. the ordered weights 

are all equal), there is potential for full trade-off of the importance of each variable. When there is either no risk (Ordered 

weight: 1, 0, 0…) or full risk (Ordered weight: ...0, 0, 1), there is little to no potential tradeoff between each variable. 
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4.5 Model Parameterization 

Each of the three models were run with all six of the environmental and cultural 

input variables with somewhat unique input selections based on model requirements. 

The resulting suitability models were visually assessed and then processed through a 

verification module to interpret the accuracy of the results. 

4.5.1 Maxent 

 The defaults for this model were selected for the purposes of this analysis. These 

default settings require the model to produce the “auto features”—for 15 training data 

sites this includes Linear, Quadratic, and Hinge computational features. Additionally, 

the model is set to produce logistic results that will also result in response curves and a 

jackknife test graph. It is set to run 500 iterations with a convergence threshold of 

0.00001. All input variables were of a continuous format and the training data file with 

15 known ak chin style agricultural fields was used.  

4.5.2 Mahalanobis Typicality 

 The parameters for this model consist of six raster input variables and the raster 

training data file. The output file was named appropriately and the model was run.  

4.5.3 MCE-OWA 

 Multi-Criteria Evaluation Ordered Weighted Average required the six input 

variables to be added and factor weights were assigned to each. The exact values 

assigned are displayed in table 6 below. Cost-distance was considered the most 

important input variable and the best limiting factor for ak chin style agricultural fields 

because it identified a cultural component for this research—therefore, this variable was 

assigned the highest factor weight. Slope and elevation both consist of known values in 
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which ak chin style agricultural fields should be found and therefore these values were 

assigned the second highest factor weights. There are not previously determined values 

or a solid background literature describing specific values expected for NDWI, Solar 

radiation, and NDVI within ak chin agricultural environments and therefore these 

variables were assigned the lowest factor weights.  

The Ordered weights of [1, 0, 0, 0, 0, 0] were then selected. This set of ordered 

weights applied all weight to the variable with the lowest factor weight. Variables with 

higher factor weights received no weight. This means that factor weights are not 

contributing much in this scenario and that no trade-off was applied to this model when 

it was run, meaning that all factors were taken into consideration and only locations that 

included all variables were considered suitable. The values for both the factor weights 

and ordered weights are displayed in table 6 below.  

  

Variable Factor Weights Ordered Weights 

Cost Distance 0.25 1 

Slope 0.2 0 

Elevation 0.2 0 

NDWI 0.15 0 

Solar Radiation 0.1 0 

NDVI 0.1 0 

Total 1 1 
Table 6. MCE-OWA input weights. The Factor weights indicate that the Cost Distance variable holds the greatest 

importance for the outcome of the model. By placing a value of 1 in the first ordered weight and zeros for the 

remaining variables, this results in a low-risk analysis of the input data. No Training data is required for this type 
of analysis. 
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4.6 Model Validation 

In order to test the accuracy of the suitability models, several steps were taken. 

Each model had slightly different input requirements and therefore, the process to 

analyze the accuracy for each of the results varied slightly.  

First, a “leave one out” method was completed in order to begin verifying the 

Mahalanobis Typicality results. This model was run fifteen separate times, each time 

excluding one of the training data sites from the file. The UTM location for the excluded 

training site was located on the resulting image and the suitability value was recorded, as 

displayed in table 7 below. These values are what ROC works with to interpret model 

accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. This table displays the 

suitability results of Mahalanobis Typicality. The decimals values indicate suitability values extracted directly from 

the Mahalanobis Typicality suitability image. These values do not represent the accuracy of the model—each value is 
relative to the rest of the image. The highest possible value in each suitability result was 1.0. 

Mahalanobis Typicality Suitability Values 

Field # excluded 
Mahalanobis  Typicality 

30m 

1 0.215616 

2 0.339474 

3 0.204086 

4 0.17923 

5 0.753231 

6 0.542683 

7 0.636428 

8 0.0001 

9 0.843656 

10 0.000152 

11 0.727655 

12 0.371858 

13 0.0001 

14 0.749466 

15 0.0001 
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Once all suitability maps were created, the results were validated using the 

Receiver Operating Characteristic (ROC) module. ROC was chosen as a validation 

method because it evaluates the predictive abilities of a suitability model without 

introducing any external bias. Researchers specified ROC to run 100 thresholds to 

compare the two Boolean images. This method identifies the true presence or false 

presence of suitable environments (Lippitt et al. 2008). ROC is the best method for 

verifying these presence-only models. 

ROC calculates the Area Under the Curve (AUC), which indicates how 

accurately the model performed. It takes into consideration the suitability model maps 

and the Boolean training data image that informs ROC of where the class (ak chin 

agricultural fields—in the case of this research) likely exists. ROC values are based on a 

random prediction trajectory (0.5); therefore, values that fall between 0.5-0.6 indicate 

that the model failed and values between 0.9-1.0 indicate that the model performed well; 

the intermediate values are ranked appropriately between these two extremes.  

The initial suitability images for all models had too large of a gap between the 

number of pixels in the image to the number of training data pixels available. To correct 

for this, the overall study area was reduced to surround only the 15 known training sites. 

This made the pixel ratio more manageable for ROC, but still included the entire range 

of resulting suitability values. The AUC results are listed in table 8 below. Since the 

leave-one-out method could only be used for Mahalanobis Typicality, these are the most 

comprehensive AUC results. Maxent, while appearing to perform well, requires 

additional fieldwork to verify potential ak chin fields because without a leave-one-out 
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verification process, we can only know that it is finding the training field environments 

with great accuracy. This value is directly comparable to the Mahalanobis 15 site ROC 

value, but it cannot be assumed that this model is finding other locations with the 

appropriate environmental characteristics without running leave-one-out. 

Lastly, Suitability results from each model were run through TOPRANK. This 

module allows researchers to display only the locations with the top 1% suitability 

ratings from the MCE module. The locations for the top 1% of pixels for each model 

were found in significantly different locations. This process is most useful for visually 

interpreting the results and understanding what types of environments are being found 

with each suitability model. All analyses conducted for this research were processed on 

the initial suitability results, not the top 1% images.  
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Chapter 5  

Results and Discussion  

 

5.1 Results  
 

Maxent, Mahalanobis Typicality, and MCE-OWA models all produced 

suitability maps that consisted of varying decimal values for each pixel. For all three 

models, the resulting values ranged from 0 to 1; the closer the value was to 1, the more 

similar the pixel was considered to be to the training fields for ak chin style agricultural 

fields. Any value that is greater than zero contains some degree of similarity to the 

training pixels used in the analyses; however, as values approach zero, they are 

considered increasingly dissimilar to the training pixels. These suitability results identify 

locations that are the best fit for the appropriate environmental conditions based on the 

analysis (Eastman 2015). The values for each unique suitability map are relative to the 

rest of the image and the highest value for a suitability result may actually be lower than 

1; additionally, the highest value will often be different for each suitability image.  

A common theme noted among all model results is that there was a higher 

density of newly identified potential ak chin style fields noted in the northern half of the 

study area. This is directly correlated to the elevation differences between the northern 

and southern portions of the state, as elevations fall far below the acceptable range in the 

southern half of the study area and the northern portion has more acceptable elevation 

ranges for this type of field. These results may further correlate to the distribution of 

recorded archaeological sites throughout the state of New Mexico.  
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ROC AUC Results for each model Includes “Leave-One-Out Results” 

Training 

Sites 

Mahal. 

Typicality 30m 

MCE 30m 

 

Maxent 

30m 

All Training 

sites 
0.893000 0.562333 0.922 

1st Out 0.885667   

2nd Out 0.888334   

3rd Out 0.885000   

4th Out 0.888334   

5th Out 0.891667   

6th  Out 0.890334   

7th Out 0.895000   

8th  Out 0.883667   

9th Out 0.896334   

10th Out 0.895000   

11th Out 0.892334   

12th Out 0.889667   

13th Out 0.937000   

14th Out 0.887667   

15th Out 0.902333   

Table 8. This table represents the accuracy rating calculated using ROC based on the suitability results of each model. 
Mahalanobis Typicality is the only model that could use a leave-one-out process. 

 

 

5.1.1 Mahalanobis Typicality 

  

The suitability results from Mahalanobis Typicality when using 15 training sites 

had an AUC result of 0.893000. This ROC value indicates that this model performed 

well, and potential new fields were likely accurately identified. The “leave one out” 

analysis determined the lowest AUC value to be 0.883667 and the highest value was 

0.937000. All values calculated are presented in table 8 above.  

The ROC results indicated that this model performed very well in identifying 

potential new ak chin style agricultural field environments; however, this analysis does 

not replace the need to conduct fieldwork to further validate the results.  

A histogram analysis of the initial suitability raster revealed that only three 

potential fields were identified among the highest suitability range (0.9999-1.0099). This 
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further suggests that the model performed well in identifying ideal locations since the 

highest suitability range did not include hundreds of top potential locations for ak chin 

style agricultural fields.  

A visual assessment of the Mahalanobis Typicality results supports the claim that 

this model performed well in identifying potential new ak chin style agricultural fields. 

Potential locations appear to fall generally within alluvial fans and the appropriate 

environmental ranges—based on what is known about ak chin fields (Philips 1993). 
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Figure 8. Potential field locations identified using Mahalanobis Typicality. These results were created using 30 meter 
resolution data and 15 training sites. The turquoise dots represent potential ak chin style agricultural field environments. 
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5.1.2 Maximum Entropy (Maxent)  

The AUC value is 0.922 and is based on 500 iterations of this model. This 

indicates exceptional accuracy for these results. A value of 0.922 was calculated through 

the Maxent model as well as the ROC module in TerrSet as a verification method. It was 

derived from the suitability model resulting from all 15 training sites. Since less than 15 

training sites cannot be used for this model (due to a difference in features that would 

limit the results) this AUC value is only comparable to Mahalanobis Typicality 15 site 

ROC results. Since all 15 training fields were used in the ROC analysis this value says 

that Maxent can fit the training fields well, but does not necessarily indicate that it can 

perform well in identifying potential new field environments. The initial suitability 

results for Maxent indicated that only one potential new ak chin style agricultural field 

was identified within the highest suitability range (0.9730-1.9727). 

The first set of response curves (figure 10)—or marginal response curves—

describes the average response of each variable when all variables were processed 

simultaneously. These response curves indicate that the model identified locations that 

range in elevation from 1400 to 2800 meters, with a spike in new potential locations 

between 1800-2200 meters in elevation. The slope and cost-distance response curves 

had similarly accurate responses. The graphs display ideal environmental conditions that 

align with the known attributes of ak chin style agricultural fields.  

NDWI seems to have identified a certain signature that is common among the 

most suitable environments based on the training data. This is data that researchers did 

not have specific value ranges for and were therefore not well understood. The marginal 
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response curves indicates that ideal values for NDWI range from -0.1 to 0.1. The 

outliers—NDVI and solar radiation—provide some uncertainties.  

Neither NDVI nor solar radiation provide much information in the marginal 

response curve; however, the second set of response curves (figure 11) shows the 

greatest amount of change in the solar radiation and NDVI variables. Somehow during 

the processing of this model, these two variables were marginalized to the point that they 

did not have a significant impact on the overall outcome. The second set of response 

curves has identified specific range of values that are applicable to primarily solar 

radiation and NDVI, but this is not apparent when all six spatial-environmental variables 

are processed together. The other four variables—cost-distance, slope, elevation, and 

NDWI had similar response curves that were simply more exaggerated than they were in 

the marginal response curves.   

The jackknife results presented in figure 9 below allow researchers to further 

understand the impact of each individual input variable on the overall results of this 

suitability model. The jackknife results indicate that cost-distance was the most 

important input variable. It consists of the most data that is not present in any other input 

variable and without it, the results would change more drastically than when any other 

variables were omitted. This graph also shows that if NDVI and solar radiation were 

completely excluded from the analysis, the results would not be different—which 

supports the response curve analysis. NDWI does not appear to have had a significant 

impact on the final results, but removing it from the analysis does change the overall 
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results slightly. Slope, elevation, and cost-distance had the greatest impact on the results 

of this analysis.  

 

 

Figure 9. 30 meter Maxent Jackknife results. The jackknife graph above represents different responses for each 

variable; the blue bar displays the response when only that variable is used, and again with all variables included (red 

bar), and the impact of the results when each variable is left out (green bar). The red bar at the bottom shows the response 
when all six input variables were used, meaning that none of the green bars should extend past this point. 

 

 

 

Figure 10. Marginal response curves. The six graphs above illustrate the response of each input variable when all 
other variables are changed slightly. 
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Figure 11. Individual Response Curves. This figure shows the response curves when the model was run six different 

times, each time using only one variable. The biggest differences observed are with the NDVI and solar radiation 

variables. 
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Figure 12. The map above shows the potential field locations identified using Maxent with 30 meter resolution 

input imagery. The purple dots represent the top 1% of the most suitable locations identified with this model. 
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5.1.3 Multi-Criteria Evaluation-Ordered Weighted Average 

 Multi-Criteria Evaluation Ordered Weighted Average (MCE OWA) did not 

perform well in terms of identifying potential new locations for ak chin style agricultural 

fields. The ROC result for MCE OWA was 0.562333, meaning that this model failed in 

identifying potential agricultural fields. The ROC value is only slightly better than 

random prediction; this low accuracy rating is interesting in that it indicates that either 

researchers chose to weight the model incorrectly or that using training data is truly the 

most effective way to predict ak chin style agricultural field locations. The initial 

suitability model results indicated that only one potential new ak chin style agricultural 

field was identified within the highest suitability range (0.0697-0.07674). 

The initial results of this model are somewhat difficult to interpret and therefore 

the results were processed through the TOPRANK module in TerrSet to extract only the 

top 1% for visual interpretation. The results of this model primarily displayed locations 

that fell within river and drainage beds. Visual inspection of MCE OWA results support 

the argument that this model did not accurately identified potential ak chin style 

agricultural field environments.  
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Figure 13. The map displayed above displays the results of MCE-OWA with 30 meter resolution input data. The 
green dots represent the top 1% of the most suitable locations identified using this model. 
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5.2 Model Comparisons 

 The following maps allow for a visual comparison between the results from all 

three suitability models. For display purposes, the top 1% of locations are shown. The 

variations between each model are clear; MCE OWA (green) follows the paths of 

drainage beds, whereas Mahalanobis Typicality (turquoise) and Maxent (purple) results 

are scattered among likely alluvial fan locations, with more results from Mahalanobis 

Typicality than Maxent. 

In an attempt to find similarities between all three of the suitability model results, 

a query was conducted to identify all overlapping locations among all three suitability 

results if any exist—none were identified. The query formula is indicated below. 

(3) “30m Mahalanobis Typicality” & “30m Maxent” & “30m MCE” 

Second, comparisons were then made between two models at a time. MCE and 

Maxent had 45,140 overlapping points and Mahalanobis Typicality and Maxent had 

62,454. No overlap was found between Mahalanobis Typicality and MCE-OWA.  

 It is interesting to note that the results from MCE-OWA and Maxent identified 

locations in the river/drainage beds, which are not ideal environments for ak chin style 

agricultural fields. While some potential fields identified through Maxent were found 

within drainages it is visually clear that the majority did not; however, most potential 

fields found through MCE OWA were located in drainage beds. Maxent still appears to 

have performed better than MCE OWA.  

 Figures 15 and 16 display the potential field locations identified through the 

overlap analysis of model results, and are defined by the title of each map. 
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Figure 14. The map displayed above shows the top 1% of results from all three suitability models. Purple 
represents Maxent, green represents MCE-OWA, and turquoise represents Mahalanobis Typicality. 
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Figure 15. The map displayed above displays the overlapping potential field locations between MCE-OWA and 
Maxent. There are 45,140 locations that overlap between these two models. 
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Figure 16. The map above displays the overlapping potential field locations between Maxent and Mahalanobis 

Typicality. There are 62,454 potential locations that overlap. 
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5.3 Soil Data 

Soil data was extracted post processing of each model as an additional check on 

whether the locations identified as highly suitable are found within the expected soil 

types. The soil data is not very detailed because it is a general dataset with a 1:100,000 

scale and fine scale differences between soil types were not distinguishable.  

When examining soil types from these agricultural fields, it is important to 

remember that the soils being discussed are those that exist within the fields today; 

3,000-1,000 years before present these soils may have been somewhat different 

depending on the type of soil development found. Ideally the types of soil found at 

prehistorically cultivated fields consist of an older colluvium soil that consists of 

Argiustolls with clay-rich soils found underneath sandier soils. Argiustolls can be up to 

50 centimeters thick and are indicative of prehistoric agricultural practices because they 

take a very long time to develop; it is likely similar in composition today to what it was 

3,000 years ago. Less stable soil development such as that found in Torriorthents and 

Haplustolls provides less ideal agricultural environments (Sandor et al. 1990). These 

types of soils are likely not the same as the soils present 3,000 years before present. 

 Where disturbed features are identified, there is some degree of instability in the 

soil—meaning crops are less likely to grow.  Overall, these results do not aid the 

suitability results presented here at all. In the future, a more precise soil map should be 

used to locate specific soil types.   

Table 9 describes the five different soil types found among all 15 training sites 

and the number of sites found on those particular soils. These soil types were then sorted 
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and the number of fields found on each soil type from the training data were tabulated 

(table 10). 

 The fifteen training sites for the models were located on five different soil types: 

Haplustolls-Argiustolls-Rockland, Torrifluvents-Haplargids-Haplustolls, Argiustolls-

Haplargids-Rockland, Rockland-Torriorthents-Argiustolls, and Rockland-Torriorthents-

Haplargids.  

 Rockland is an unexpected result for ak chin style agricultural fields. Generally 

in New Mexico, this indicates a lava flow where very little soil or sediment development 

exists and plants do not grow as easily; however, when Rockland environments are 

combined with various types of soil development, such as Argiustolls or Haplargids 

which commonly have subsurface clay accumulation and fairly stable alluvium soil, they 

may have been more ideal for growing crops. 

 Locations with predominately Torriorthents and Haplustolls have little to no 

subsurface development, so when they are associated with Rockland deposits, it is 

unlikely that agriculture would be successful in such an environment. The soils 

associated with the training sites consist of a wide range of soil types, from stable 

environments that have been around for thousands of years and considerably less stable 

lavaflow environments.  
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SOILTYPE COUNT 

Haplustolls-Argiustolls-Rockland 4.00 

Torrifluvents-Haplargids-Haplustolls 6.00 

Argiustolls-Haplargids-Rockland 1.00 

Rockland-Torriorthents-Argiustolls 2.00 

Rockland-Torriorthents-Haplargids 2.00 

Table 9. Training site soil types. Two of the training sites were found on Rockland-Torriorthents-Haplargids soil, 

whereas the highest count of newly found sites were found on this same soil. 

 

 

Top Soil Types from Training Data 

 Haplustolls-

Argiustolls-

Rockland 

Torrifluvents-

Haplargids-

Haplustolls 

Argiustolls-

Haplargids-

Rockland 

Rockland-

Torriorthents-

Argiustolls 

Rockland-

Torriorthents-

Haplargids 

30m 

Mahalanobis 

Typicality 

19750 22901 13545 8131 195278 

30m MCE 74294 26238 48798 80665 108587 

30m Maxent 2880 33932 2356 7426 52200 

Table 10. Number of potential new fields on each of the top five soil types. This table is based on the results in 

table 13. The soil types present at the 15 training sites were examined individually and the counts of all newly 
identified potential agricultural fields were assessed and tabulated. 
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5.4 Discussion 

The suitability models and the verification module ROC suggest that potential 

new fields are likely being identified; however, it is also likely that other environmental 

characteristics not associated with ak chin style agricultural fields are also being 

identified. One potential error in the models and/or the data may include the finding of 

all alluvial fans within a five mile radius of known archaeological sites within the study 

area. It is possible that certain input variables have the greatest effect on the results. 

Short of individually analyzing each alluvial fan in the study area, it is hard to say for 

certain if this is occurring. If this is in fact occurring, it is highly likely that the various 

alluvial fans are just being identified with varying suitability ratings—some more 

suitable than others. 

A second possible error involves the over dependence on a single input variable. 

Maxent indicated that the cost-distance variable had the most impact on the model 

results and researchers decided that the input factor weights of MCE OWA should put 

the most emphasis on the cost-distance variable. It is possible that the results are simply 

reflecting this variable. The literature for cost-distance does not address the impact that 

cost-distance may have for suitability modeling purposes, and therefore the overall 

effect is currently unknown. The locations being found may just be alluvial fans that 

meet all of the same criteria, but may not be associated with any cultural developments. 

Third, a different soil map should be used in the future. A better scale is 

necessary to identify minor changes in the soil within these ak chin agricultural fields.  
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Fourth, the potential field locations identified might not all fall within 

agricultural contexts. Since field work has not yet been conducted alongside the model 

results, it is hard to know for certain what the models are identifying. While accuracy 

ratings appear to be good, researchers will remain uncertain about the actual accuracy of 

the models until potential fields are visited and assessed for pollen residue or cultural 

modifications to the land.  

 Fifth, the training data is represented only as point data, not as polygon data. The 

point data limits potential field locations significantly since it only trains the models on 

one 30 x 30 meter pixel. These fields are potentially much larger or much smaller than 

one pixel, and with the appropriate training data, model accuracy would greatly improve. 

Until more data is collected, it will be difficult to determine which variable impacts the 

results most. 

Lastly, Maxent ROC values only indicate that the training data fields are a good 

fit for ak chin style agricultural fields. Since a leave-one-out verification method could 

not be used on this dataset, these results are not indicative of model fit and are also not 

indicative of the entire field population for this type of agricultural field. Without 

developing a larger training data file (by visiting potential fields and conducting analysis 

on the soils) it will be hard to know whether this model is working to fit a general 

population of potential ak chin style agricultural fields or if it is only identifying the 15 

training fields.  

Initially, this research had intended to use both 30 meter resolution and 10 meter 

resolution data. Upon analysis it was discovered that the 10 meter resolution needed to 
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begin at a higher resolution. Initial analysis was conducted with imagery displayed at a 

10 meter resolution (from the 30 meter Landsat scenes) and the combination of too few 

training sites paired with too large of a study area led to significantly inaccurate ROC 

results. The settings programmed in TerrSet required a mask to process the 10 meter 

resolution images, which also impacted the overall results. When these ROC results 

from TerrSet were compared with the ROC results from the Maxent model 10 meter 

results, the discrepancy was clear. Maxent produced an AUC of 0.912 whereas the ROC 

result calculated for the same image through TerrSet was 0.526667. It is expected that 

the 10 meter resolution would likely be more precise for this type of analysis and all 

future work should consider using a higher resolution image set. Sentinel-2 recently 

came online with good 10 meter resolution imagery that would work well for this 

analysis. Additionally, if more training fields are identified through this analysis, a larger 

training set will assist in improving future results/accuracy. 

The results obtained from the 30 meter resolution data are believed to be fairly 

accurate as far as the suitability models are concerned. This does not mean that true ak 

chin style agricultural fields have actually been identified. The most suitable potential 

fields will need to be visited and soil samples will need to be collected and analyzed for 

agricultural remains. The environments surrounding these potential fields should also be 

surveyed to identify any cultural modifications made to the land surrounding the 

features. This will help to further suggest that the land was used for prehistoric 

agricultural purposes.  
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Chapter 6 

6.1 Limitations 

 

The most significant limitation associated with suitability modeling is that the 

models are identifying sites that share characteristics with known sites. This may not 

capture the full range of variability among different ak chin style agricultural fields since 

there may be many other axes of variables that are unknown to researchers. These 

suitability models are not necessarily predicting where sites exist, they are simply 

predicting locations where similar spatial-environmental attributes exist. 

A second limitation was that the amount of validation data available was 

extremely limited. Since Mahalanobis typicality could be run with less than 15 training 

data fields, a leave-one-out verification method was used to help validate the results. 

When ROC is run using all 15 training data sites on the initial suitability result, it is 

simply saying that the fields that the model trained on are a good fit. It does not tell us a 

lot about how well potential new fields were identified. This could not be done with 

Maxent because less than 15 training sites—as would be necessary for a leave-one-out 

assessment—would provide results based on a different set of output features. 

This work was also limited by the site data currently available. NMCRIS site 

records are limited to the data that has been collected and submitted by field 

archaeologists. This type of data collection is completed in survey transects that only 

represent a sample of the study area—therefore every site that exists within New Mexico 

has not been identified and recorded. It is unknown to what extent this may adversely 

affect the results of this research. This archaeological site data, though collected from a 

specific timeframe with certain structural features present points towards agricultural 
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practices, it does not guarantee that these groups were growing crops. This is based on 

educated estimations. 

Additional limitations are introduced with the training data. It is expected that 

better results could be obtained from a polygon shapefile of the known ak chin style 

agricultural fields rather than the point file used. In the future, known fields should be 

physically visited and mapped with polygon shapefiles prior to running more suitability 

models.  
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Chapter 7 

7.1 Conclusions 
 

The results of these suitability models indicate that there is great promise for 

modeling the potential locations for ak chin style agricultural fields. The methods may 

be improved upon (as indicated in the “future work” section—section 8.1 on page 79), 

but overall the input variables for the models have sufficiently zoned in on ideal 

environmental and cultural contexts where these fields are expected to be present. As 

more fields are found and verified, the training data will significantly improve. With 

more detailed training data, the number of potentially suitable field locations is expected 

to decrease and the accuracy of the model is expected to increase.  

 Until actual soil samples are collected from potential new fields and analyzed for 

pollen residue, it is impossible to know if these models are actually finding agricultural 

fields or just prime environments for ak chin agricultural fields. But visual and 

algorithmic data suggest Maxent and Mahalanobis Typicality performed well. Table 11 

lists the northings and eastings for the top 10 potential ak chin style agricultural fields 

from the Mahalanobis Typicality and Maxent suitability model results. It is suggested 

that researchers visit these fields first to test for agricultural presence.  

 Upon comparison of the three suitability model results, it is clear that Multi-

Criteria Evaluation Ordered Weighted Average results are the least accurate and in the 

future should not be consulted. This model identified primarily environments in arroyos 

and river beds and although this type of environment does allow for growing crops in 

some contexts, these are not the environments that are in question. This does, however, 
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demonstrate the effectiveness of the training data input into the other two models. MCE 

OWA focuses solely on environmental features that align with the input variables 

indicated as the most important to least important and does not take into consideration 

any training data. In some cases, it appears that appropriate environments were 

identified, but these were few and far between. 

 The results from the two models that utilized training data found much more 

select environments primarily within alluvial fans. The importance of training data is 

made clear with these models. Overall, it is clear that Mahalanobis Typicality is more 

effective than MCE OWA. The true accuracy of Maxent is unknown due to the inability 

to run a leave-one-out analysis. The response curves and jackknife results indicate that 

Maxent was the most effective of all three models.  

Table 11 displays the top ten potential ak chin style agricultural fields that should 

be visited first, based on these suitability model results. 

Top Potential Ak Chin Style Agricultural Fields to Visit 

   Mahalanobis Typicality Maxent 

 Easting Northing Easting Northing 

1 229335.69 4090709.82 286437.06 4098430.90 

2 229546.58 4090728.00 275612.48  4045124.95 

3 230715.99  4091649.19 248900.08  3997370.33 

4 231425.31  4092051.78 248993.87  3997244.38 

5 255533.47  4091387.72 252139.68  3985992.66 

6 255519.93  4071079.44 251959.33  3985687.94 

7 259075.94  4069640.11 251928.23  3985691.05 

8 260515.28  4067862.11 159477.13  3953611.32 

9 290320.06  4045019.26 157637.61  3930617.25 

10 284121.62 4017901.11 260068.58  3884632.77 

Table 11. UTM’s for the top 10 potential ak chin style agricultural fields. UTM’s have been extracted for both the 

Mahalanobis Typicality and Maxent model results. UTM’s were not extracted from MCE, OWA since the results were 
not considered valuable. 
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Chapter 8 

8.1 Future Work 
 

The suitability model results of this project may be greatly improved upon if the 

known agricultural fields were fully mapped with polygon shapefile data. This would 

increase the accuracy of the model predictions. Additionally, this project would be 

considerably improved upon by completing fieldwork to support the analysis conducted 

in this research. A selection of the most suitable field locations should be sampled and 

tested for the remains of Zea Mays. Table 11 above lists the top 10 field locations for 

both Mahalanobis Typicality and Maximum Entropy. The suitability model results were 

reclassified and only the top 10 potential field locations from each model were 

presented. The UTM’s were then extracted from these images and fall within a 30 meter 

radius of potential fields. When visiting these fields it is recommended to bring an expert 

to help verify the presence of these fields.  

This modeling process can easily be applied to different forms of agricultural 

fields—such as rock mulch gardens and rock grid fields, both of which have strong 

environmental signatures and definite shapes. This type of analysis would accurately 

identify prehistoric fields. This has recently been done in Hawaii (Kailihiwa 2015), but 

has not yet been practiced in the southwest.  

 

 

 



80 
 

  
 

References 

1. Agapiou, Athos, Dimitrios D. Alexakis, Apostolos Sarris, and Diofantos G. 

Hadjimitsis. 2014. “Evaluating the Potentials of Sentinel-2 for 

Archaeological Perspective.” Remote Sensing, no. 6: 2176–94. doi: 

10.3390/rs6032176. 

 

2. Alshuwaikhat, Habib M., and Danjuma Nkwenti. 2002. “Developing Sustainable 

Cities in Arid Regions.” Elsevier Science Ltd. 19 (2): 85–94. 

 

3. Arias, Veronica Maria. 2013. “Application of GIS and Spatial Data Modeling to                                   

       Archaeology: A Case Study in the American Southwest.” Dissertation,         

       Albuquerque: The University of New Mexico. 

 

4. Bailey, Adrian. 2011. “Population Geographies and Climate Change.” Progress 

in Human Geography 35 (5): 686–95. 

 

5. Banister, David. 2011. “Cities, Mobility, and Climate Change.” Journal of 

Transport Geography 19: 1538–46. doi:10.1016/j.jtrangeo.2011.03.009. 

 

6. Bauer, Andrew M. 2014. “Impacts of Mid- to Late-Holocene Land Use on 

Residual Hill Geomorphology: A Remote Sensing and Archaeological 

Evaluation of Human-Related Soil Erosion in Central Karnataka, South 

India.” Holocene 24 (1): 3–14. Doi: 10.1177/0959683613512165. 

 

7. Beltran, Bray J., Janet Franklin, Alexandra D. Syphard, Helen M. Regan, 

Lorraine E. Flint, and Alan L. Flint. 2014. Effects of climate change and 

urban development on the distribution and conservation of vegetation in a 

Mediterranean type ecosystem. International Journal of Geographical 

Information Science 28, (8) (Aug 03): 1561-1589, 

http://search.proquest.com/docview/1534819914?accountid=14613 

(accessed November 13, 2014). 

 

8. Benson, Larry, and Michael S. Berry. “Climate Change and Cultural Response in 

the Prehistoric American Southwest.” USGS Staff Published Research, 

2009, 89–119. 

 

9. Bentley, Michael. 2007. “Healthy Cities, Local Environmental Action and 

Climate Change.” Health Promotion International 22 (3): 246–53. 

 

10. Bird, Douglas W., and James F. O’Connell. “Behavioral Ecology and 

Archaeology.” Journal of Archaeological Resources 14 (2006): 143–88. 

Doi: 10.1007/s10814-006-9003-6. 

 

 

 



81 
 

  
 

11. Blinman, Eric. 2008. “2000 Years of Cultural Adaptation to Climate Change in 

the Southwestern United States.” Royal Swedish Academy of Science 37 

(14): 498–487. Doi: http://dx.doi.org/10.1579/0044-7447-37.sp14.489. 

 

12. Bocinsky, R. Kyle, and Timothy A. Kohler. “A 2,000-Year Reconstruction of the 

Rain-Fed Maize Agricultural Niche in the US Southwest.” Nature 

Communications, 2014, 1–12. Doi: 10.1038/ncomms6618. 

 

13. Bolten, Andreas, Olaf Bubenzer, and Frank Darius. 2006. “A Digital Elevation 

Model as a Base for the Reconstruction of Holocene Land-Use Potential in 

Arid Regions.” Geoarchaeology: An International Journal 21 (7): 751–62. 

doi:DOI:10.1002/gea.20137. 

 

14. Brenner, Coltrain, and Steven w. Leavitt. “Climate and Diet in Fremont 

Prehistory: Economic Variability and Abandonment of Maize Agriculture 

in the Great Salt Lake Basin.” Society for American Archaeology 67, no. 3 

(2002): 453–85. 

 

15. Chang, Kwang-Chih. “Study of the Neolithic Social Grouping: Examples from 

the New World.” Harvard University, 1958. 

 

16. Chase, Arlen F., Diane Z. Chase, Jaime J. Awe, John F. Weishampel, Gyles 

Iannone, Holley Moyes, Jason Yaeger, et al. 2014. “Ancient Maya 

Regional Settlement and Inter-Site Analysis: The 2013 West-Central Belize 

LiDAR Survey.” Remote Sensing, no. 6: 8671–95. Doi: 

10.3390/rs6098671. 

 

17. “Clark Labs.” 2015. Org. Species Distribution Modeling with TerrSet’s Habitat 

and Biodiversity Modeler. https://clarklabs.org/species-distribution-

modeling-in-terrsets-land-change-modeler/. 

 

18. Clevis, Quintijn, Gregory E. Tucker, Gary Lock, Stephen T. Lancaster, Nicole 

Gasparini, Arnaud Desitter, and Rafael L. Bras. 2006. “Geoarchaeological 

Simulation of Meandering River Deposits and Settlement Distributions: A 

Three-Dimensional Approach.” Geoarchaeology: An International Journal 

21 (8): 843874. Doi: 10.1002/gea.20142. 

 

19. Cordell, Linda S., Carla R. Van West, Jeffrey S. Dean, and Deborah Muenchrath. 

“Mesa Verde Settlement History and Relocation: Climate Change, Social 

Networks, and Ancestral Pueblo Migration.” Kiva: The Journal of the 

Southwestern Anthropology and History 72, no. 4 (2007): 391–417. 

 

20. De Cunzo, Antonio. “A Geoarchaeological Investigation of Linear Rock Features 

at the Victorio Site (LA 88889), Canada Alamosa.” Master of Arts, Eastern 

New Mexico University, 2010. 

http://dx.doi.org/http:/dx.doi.org/10.1579/0044-7447-37.sp14.489
http://dx.doi.org/10.1002/gea.20142


82 
 

  
 

 

21. Dominguez, Steven, and Kenneth E. Kolm. “Beyond Water Harvesting: A Soil 

Hydrology Perspective on Traditional Southwestern Agricultural 

Technology.” Society for American Archaeology 70, no. 4 (2005): 732–65. 

 

22. Dorshow, Wetherbee Bryan. 2012. “Modeling Agricultural Potential in Chaco 

Canyon during the Bonito Phase: A Predictive Geospatial Approach.” 

Journal of Archaeological Science 39: 2098–2115. 

doi:10.1016/j.jas.2012.02.004. 

 

23. Downum, Christian E., and Glenn Davis Stone. 1999. “Non-Boserupian Ecology 

and Agricultural Risk: Ethnic Politics and Land Control in the Arid 

Southwest - Stone - 2008 - American Anthropologist - Wiley Online 

Library.” American Anthropologist 101 (1): 113–28. 

 

24. Drobne, Samo, and Anka Lisec. 2009. “Multi-Attribute Decision Analysis in 

GIS: Weighted Linear Combination and Ordered Weighted Averaging.” 

Informatica 33 (4). http://wen.ijs.si/ojs-

2.4.3/index.php/informatica/article/download/263/260. 

 

25. Eastman, J. R. 1999. “Multi-Criteria Evaluation and GIS.” Geographical 

Information Systems 1: 493–502. 

 

26. Eastman, J. Ronald. 2015. “TerrSet Manual: Clark Labs.” Clark Labs. 

http://planet.botany.uwc.ac.za/NISL/BDC332/Terrset/TerrSet%20Manual.p

df. 

 

27. EPA. 2016. “Summary Table: Characteristics of the Ecoregions of New 

Mexico.” Government. Accessed January 12. 

ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/nm/nm_back.pd

f. 

 

28. Esri. 1995–2013. “ArGIS Resources.” Commercial. ArcGIS Help 10.1. 

http://resources.arcgis.com/EN/HELP/MAIN/10.1/index.html#//00qn00000

01p000000. 

 

29. “Eureka Cartography.” 2015. Eureka Cartography. 

http://www.maps-eureka.com/gallery.php?galleryID=42&galleryIndex=35. 

 

30.  Field, John J. “An Evaluation of Alluvial Fan Agriculture.” The University of 

Arizona Press, 2001. 

http://www.uapress.arizona.edu/onlinebks/Fish/chapter5.htm. 

 

http://planet.botany.uwc.ac.za/NISL/BDC332/Terrset/TerrSet%20Manual.pdf
http://planet.botany.uwc.ac.za/NISL/BDC332/Terrset/TerrSet%20Manual.pdf
ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/nm/nm_back.pdf
ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/nm/nm_back.pdf
http://resources.arcgis.com/EN/HELP/MAIN/10.1/index.html#//00qn0000001p000000
http://resources.arcgis.com/EN/HELP/MAIN/10.1/index.html#//00qn0000001p000000
http://www.maps-eureka.com/gallery.php?galleryID=42&galleryIndex=35
http://www.uapress.arizona.edu/onlinebks/Fish/chapter5.htm


83 
 

  
 

31. Finlayson, Clive, and Jose S. Carrion. “Rapid Ecological Turnover and Its 

Impact on Neanderthal and Other Human Populations.” Trends in Ecology 

and Evolution 22, no. 4 (2007): 213–22. doi::10.1016/j.tree.2007.02.001. 

 

32. Force, Eric R. 2004. “Late Holocene Behavior of Chaco and McElmo Canyon 

Drainages (Southwest U.S.): A Comparison Based on Archaeologic Age 

Controls.” Geoarchaeology: An International Journal 19 (6): 583–609. 

Doi: 10.1002/gea.20013. 

 

33. Giardino, Marco J. 2010. “A History of NASA Remote Sensing Contributions to 

Archaeology.” Journal of Archaeological Science 38: 2003–9. 

doi:10.1016/j.jas.2010.09.017. 

 

34. Gilman, Patricia A. “Architecture as Artifact: Pit Structures and Pueblos in the 

American Southwest.” Society for American Archaeology 52, no. 3 (1987): 

538–64. 

 

35. Gorsevski, Pece V., Katerina R. Donevska, Cvetko D. Mitrovski, and Joseph P. 

Frizado. 2012. “Integrating Multi-Criteria Evaluation Techniques with 

Geographic Information Systems for Landfill Site Selection: A Case Study 

Using Ordered Weighted Average.” Waste Management 32 (2): 287–96. 

doi:doi:10.1016/j.wasman.2011.09.023. 

 

36. Gregory, David A., Fred L. Nials, and J. Brett Hill. 2008. “Early Agricultural 

Period Settlement Strategies in the Southern Southwest.” 

 

37. Hall, Sharon J., Jolene Trujillo, Dana Nakase, Colleen Strawhacker, Melissa 

Kruse-Peeples, Hoski Schaafsma, and John Briggs. 2013. “Legacies of 

prehistoric agricultural practices within plant and soil properties across an 

arid ecosystem.” Ecosystems 16, (7) (11): 1273-1293, 

http://search.proquest.com/docview/1549666620?accountid=14613 

(accessed October 26, 2014). 

 

38. Harrower, Michael J. 2010. “Geographic Information Systems (GIS) 

Hydrological Modeling in Archaeology: An Example from the Origins of 

Irrigation in Southwest Arabia (Yemen).” Journal of Archaeological 

Science 37: 1447–52. doi:10.1016/j.jas.2010.01.004. 

 

39. Hegmon, Michelle, and Margaret Nelson. 2003. “The Archaeology and Meaning 

of Mimbres.” Archaeology Southwest: Exploring and Protecting the Places 

of Our Past 17 (4): 13. 

 

 

 

http://dx.doi.org/10.1002/gea.20013


84 
 

  
 

40. Hill, Matthew E., and Vance T. Holliday. “Paleoindian and Later Occupations 

along Ancient Shorelines of the San Agustin Plains, New Mexico.” Journal 

of Field Archaeology 36, no. 1 (2011): 3–20. Doi: 

10.1179/009346910X12707321242557. 

 

41. HKM Engineering Inc. 2003. “Rio San Jose Stream System Laguna Pueblo 

Water Use Survey: Supplemental Surface Water Irrigation Uses.” Office of 

the State Engineer. 

 

42. Homburg, Jeffrey A., Jonathan A. Sandor, and Jay B. Norton. 2005. 

“Anthropogenic Influences on Zuni Agricultural Soils.” Geoarchaeology: 

An International Journal 20 (7): 661–93. Doi: 10.1002. 

 

43. Homberg, Jeffrey A., and Jonathan A. Sandor. “Anthropogenic Effects on Soil 

Quality of Ancient Agricultural Systems of the American Southwest.” 

Catena 85 (2011): 144–54. doi:10.1016/j.catena.2010.08.005. 

 

44. Hritz, Carrie. 2010. “Tracing Settlement Patterns and Channel Systems in 

Southern Mesopotamia Using Remote Sensing.” The Journal of Field 

Archaeology 35 (2): 184–203. Doi: 10.1179/009346910X12707321520477. 

 

45. Huckell, Bruce C. “The Archaic Prehistory of the North American Southwest.” 

Journal of World Prehistory 10, no. 3 (1996): 306–73. 

 

46. Huckleberry, Gary A., and Brian R. Billman. “Floodwater Farming, 

Discontinuous Ephemeral Streams, and Puebloan Abandonment in 

Southwestern Colorado.” Society for American Archaeology 63, no. 4 

(1998): 595–616. 

 

47. Jenness, Jeff. 2007. “Some Thoughts on Analyzing Topographic Habitat 

Characteristics.” Jenness Enterprises. 

http://www.jennessent.com/downloads/topographic_analysis_online.pdf. 

 

48. Jones, Terry L., Gary M. Brown, L. Mark Raab, Janet L. McVickar, W. Geoffrey 

Spaulding, Douglas J. Kennett, Andrew York, and Phillip L. Walker. 

“Environmental Imperatives Reconsidered: Demographic Crises in Western 

North America During the Medieval Climatic Anomaly.” Current 

Anthropology 40, no. 2 (1999): 137–70. 

 

49. Kailihiwa, III, Soloman Ha’aheo. 2015. “Using Maxent to Model the 

Distribution of Prehistoric Agricultural Features in a Portion of the 

Hokuli’a Subdivision in Kona, Hawai’i.” Master of Science, University of 

Southern California. http://spatial.usc.edu/wp-

content/uploads/2014/03/KailihiwaSolomonThesis.pdf. 

 

http://dx.doi.org/10.1002
http://dx.doi.org/10.1179/009346910X12707321520477
http://www.jennessent.com/downloads/topographic_analysis_online.pdf
http://spatial.usc.edu/wp-content/uploads/2014/03/KailihiwaSolomonThesis.pdf
http://spatial.usc.edu/wp-content/uploads/2014/03/KailihiwaSolomonThesis.pdf


85 
 

  
 

50. Knott, Leanne D. 2014. “GIS Predictive Model of Potential Undiscovered Native  

American Archaeology Sites for the Red Wing Locality, Red Wing 

Minnesota.” Papers in Resource Analysis 16: 13. 

 

51. Lasaponara, Rosa, and Nicola Masini. 2011. “Satellite Remote Sensing in 

Archaeology: Past, Present, and Future Perspectives.” Journal of 

Archaeological Science 38 (9): 1995–2002. doi:10.1016/j.jas.2011.02.002. 

 

52. Li Zhang, Lei Ji and Bruce Wylle. “Analysis of Dynamic Thresholds for the 

Normalized Difference Water Index.” Photogrammetric Engineering and 

Remote Sensing 75, no. 11 (2009): 1307–17. 

 

53. Lippitt, Christopher D., John Rogan, James Toledano, Florencia Sangermano, J. 

Ronald Eastman, Victor Mastro, and Alan Sawyer. 2008. “Incorporating 

Anthropogenic Variables into a Species Distribution Model to Map Gypsy 

Moth Risk.” Ecological Modelling 210 (3): 339–50. 

doi:10.1016/j.ecolmodel.2007.08.005. 

 

54. Mabry, Jonathan B. 2008. “Irrigation, Short-Term Sedentism, and Corporate 

Organization during the San Pedro Phase,” 293–327, n.d. 

 

55. Maetstri, Nicoletta. 2015. “Anasazi Timeline - Chronology of the Ancestral 

Pueblo People.” Anasazi Timeline - Chronology of the Ancestral Pueblo 

People. 

http://archaeology.about.com/od/americansouthwest/a/anasazi_timeline.ht

m. 

 

56. Marmaduke, W. S., C. F. Berry, L. Conway, and D. G. Robinson. The Ak Chin 

Farm Project: Intensive Archaeological Survey of the Ak Chin Indian 

Reservation, West Half. Ak Chin Community: Bureau of Land 

Management, 1983. 

 

57. Mas, Jean-François, Britaldo Filho, Robert Pontius, Michelle Gutiérrez, and 

Hermann Rodrigues. 2013. “A Suite of Tools for ROC Analysis of Spatial 

Models.” ISPRS International Journal of Geo-Information 2 (3): 869–87. 

Doi: 10.3390/ijgi2030869. 

 

58. McFeeters, S.K. “The Use of Normalized Difference Water Index (NDWI) in the 

Delineation of Open Water Features.” International Journal of Remote 

Sensing 17, no. 7 (1996): 1425–32. 

 

59. McFeeters, Stuart K. 2013. “Using the Normalized Difference Water Index 

(NDWI) within a Geographic Information System to Detect Swimming 

Pools for Mosquito Abatement: A Practical Approach.” Remote Sensing 5 

(7): 3544–61. www.mdpi.com/journal/remotesensing. 

http://archaeology.about.com/od/americansouthwest/a/anasazi_timeline.htm
http://archaeology.about.com/od/americansouthwest/a/anasazi_timeline.htm
https://www.zotero.org/ahealy124/items/collectionKey/H9NIMF2I/itemKey/www.mdpi.com/journal/remotesensing


86 
 

  
 

60. Merwin, Daria E., and David J. Bernstein. 2003. “A GIS-Based Model for 

Predicting the Location so Submerged Prehistoric Archaeological Sites in 

New York Harbor.” State University of New York at Stony Brook. 

 

61. Morehart, Christopher T. 2012. “Mapping Ancient Chinampa Landscapes in the 

Basin of Mexico: A Remote Sensing and GIS Approach.” Journal of 

Archaeological Science 39: 2541–51. doi:10.1016/j.jas.2012.03.001. 

 

62. “National Park Service.” 2016. Government. Bandelier. 

http://www.nps.gov/band/learn/historyculture/ancestral-pueblo-people.htm. 

 

63. National Park Service. 2015. “Ancestral Puebloans and Their World.” Accessed 

May 9. 

http://www.nps.gov/meve/learn/education/upload/ancestral_puebloans.pdf. 

 

64. Office of the State Engineer. n.d. “Rio San Jose Water Rights Adjudication 

Process.” State. New Mexico Office of the State Engineer/Interstate Stream 

Commission. 

http://www.ose.state.nm.us/Legal/Adjudication/SanJose/adj_sj.php. 

 

65. Pappu, Shanti, Kumar Akhilesh, Sudha Ravindranath, and Uday Raj. 2010. 

“Applications of Satellite Remote Sensing for Research and Heritage 

Management in Indian Prehistory.” Journal of Archaeological Science 37: 

2316–1331. doi:10.1016/j.jas.2010.04.005. 

 

66. Peeples, Matt. 2015. “Preservation Archaeology”. Organization. Archaeology 

Southwest: Exploring and Protecting the Places of Our Past. 

http://www.archaeologysouthwest.org/2013/11/25/back-to-basics-part-1/. 

 

67. “Pennsylvania Historical & Museum Commission (PHMC).” 2015. State. 

Transitional Period--4,000-3,000 Years Ago. 

http://www.portal.state.pa.us/portal/server.pt/community 

/native_american_archaeology/3316/transitional_period/405752. 

 

68. Pfarr, Joshua M. “Geoarchaeological Investigations of Floodwater Farming at 

Canada Alamosa, New Mexico.” Master of Arts, Eastern New Mexico 

University, 2008.  

 

69. Parcak, Sarah H. 2009. Satellite Remote Sensing for Archaeology. New York, 

NY: Routledge. 

 

70. Phillips, Jr., David A., Thomas R. Motsinger, and Heidi M. Roberts. 1993. 

Excavations at the Maja Site: A Tanque Verde Phase Field House in the 

Avra Valley, Pima County, Arizona. Archaeological Report 93-2. SWCA. 

 

http://www.nps.gov/band/learn/historyculture/ancestral-pueblo-people.htm
http://www.nps.gov/meve/learn/education/upload/ancestral_puebloans.pdf
http://www.ose.state.nm.us/Legal/Adjudication/SanJose/adj_sj.php
http://www.archaeologysouthwest.org/2013/11/25/back-to-basics-part-1/
http://www.portal.state.pa.us/portal/server.pt/community%20/native_american_archaeology/3316/transitional_period/405752
http://www.portal.state.pa.us/portal/server.pt/community%20/native_american_archaeology/3316/transitional_period/405752


87 
 

  
 

71. Phillips, Jr., David A. 2006. “Agriculture at Pottery Mound: A Working 

Hypothesis.” The Archaeological Society of New Mexico: Southwestern 

Interludes 32: 119–28. 

 

72. Phillips, Steven J., Robert P. Anderson, and Robert E. Schapire. 2006. 

“Maximum Entropy Modeling of Species Geographic Distributions.” 

Ecological Modelling 190: 231–59. doi:10.1016/j.ecolmodel.2005.03.026. 

 

73. Phillips, Steven, Miro Dudik, and Rob Schapire. 2008. “Help for Maximum 

Entropy Species Distribution Modeling.” AT&T Labs-Research and 

Princeton University. 

 

74. “Presence-Only Modeling with Maxent.” 2016. Education. Accessed February 

22. http://plantecology.syr.edu/fridley/bio793/maxent.html. 

 

75. Riede, Felix. “Climate and Demography in Early Prehistory: Using Calibrated 

14C Dates as Population Proxies.” Human Biology 81, no. 2–3 (2009): 

309–37. 

 

76. Rivett, Paul. 1997. “Conceptual Data Modelling in an Archaeological GIS.” 

Proceedings of GeoComputation, 15–26. 

http://www.geocomputation.org/1997/papers/rivett.pdf. 

 

77. Rodning, Christopher. 2010. “Place, Landscape, and Environment: 

Anthropological Archaeology in 2009.” American Anthropologist 112 (2): 

180–90. Doi: 10.1111/j.1548-1433.2010.01217.x. 

 

78. Roth, Barbara J, and Andrea Freeman. 2008. “The Middle Archaic Period and 

the Transition to Agriculture in the Sonoran Desert of Southern Arizona” 

Kiva: The Journal of the Southwestern Anthropology and History 73 (3): 

321–53. 

 

79. Sandor, J.A., P.L. Gersper, and J.W Hawley. 1990. “Prehistoric Agricultural 

Terraces and Soils in the Mimbres Area, New Mexico.” World 

Archaeology 22 (1): 70–86. 

 

80. Sandor, Jonathan A., John W. Hawley, Robert H. Schiowitz, and Paul L. 

Gersper. 2008. “Soil-Geomorphic Setting and Change in Prehistoric 

Agricultural Terraces in the Mimbres Area, New Mexico.” New Mexico 

Geological Society 59: 167–75. 

 

81. Strange, Niels, Bo Jellesmark Thorsen, Jesper Bladt, Kerrie A. Wilson, and 

Carsten Rahbek. 2011. “Conservation Policies and Planning under Climate 

Change.” Biological Conservation 144 (12): 2968–77. 

doi:10.1016/j.biocon.2011.08.022. 

http://www.geocomputation.org/1997/papers/rivett.pdf
http://dx.doi.org/10.1111/j.1548-1433.2010.01217.x


88 
 

  
 

82. Tacoli, Cecilia. 2009. “Crisis or Adaptation? Migration and Climate Change in a 

Context of High Mobility.” Environment and Urbanization 21 (2): 513–25. 

 

83. Thompson, Robert S., and Katherine H. Anderson. 2013. “Past Climate and 

Vegetation Changes in the Southwestern United States.” USGS. Impacts of 

Climate Change and Land Use in the Southwestern United States. 

http://geochange.er.usgs.gov/sw/impacts/biology/pastclim/. 

 

84. Wills, W.H., and Wetherbee Bryan Dorshow. 2011. “Agriculture and 

Community in Chaco Canyon: Revisiting Pueblo Alto.” Journal of 

Anthropological Archaeology 31: 138–55. doi:10.1016/j.jaa.2011.11.002. 

 

85. Xu, Hanqiu. “Modification of Normalized Difference Water Index (NDWI) to 

Enhance Open Water Features in Remotely Sensed Imagery.” International 

Journal of Remote Sensing 27, no. 14 (2006): 3025–33. 

 

 

http://geochange.er.usgs.gov/sw/impacts/biology/pastclim/

	University of New Mexico
	UNM Digital Repository
	6-9-2016

	A Comparison of Presence Only Suitability Models to Accurately Identify Prehistoric Agricultural Fields in Western New Mexico Through Remote Sensing
	Alissa Healy
	Recommended Citation


	tmp.1472663525.pdf.BYVHe

